bpf: restrict stack pointer arithmetic for unprivileged
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
8e17c1b1 179#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151 180#define BPF_COMPLEXITY_LIMIT_STACK 1024
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
195 return aux->map_state & BPF_MAP_PTR_UNPRIV;
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
203 aux->map_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
fad73a1a 206
33ff9823
DB
207struct bpf_call_arg_meta {
208 struct bpf_map *map_ptr;
435faee1 209 bool raw_mode;
36bbef52 210 bool pkt_access;
435faee1
DB
211 int regno;
212 int access_size;
849fa506
YS
213 s64 msize_smax_value;
214 u64 msize_umax_value;
fd978bf7 215 int ptr_id;
33ff9823
DB
216};
217
cbd35700
AS
218static DEFINE_MUTEX(bpf_verifier_lock);
219
d9762e84
MKL
220static const struct bpf_line_info *
221find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222{
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239}
240
77d2e05a
MKL
241void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
cbd35700 243{
a2a7d570 244 unsigned int n;
cbd35700 245
a2a7d570 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
cbd35700 258}
abe08840
JO
259
260/* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
430e68d1 263 */
abe08840
JO
264__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266{
267 va_list args;
268
77d2e05a
MKL
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
abe08840 272 va_start(args, fmt);
77d2e05a 273 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
274 va_end(args);
275}
276EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279{
77d2e05a 280 struct bpf_verifier_env *env = private_data;
abe08840
JO
281 va_list args;
282
77d2e05a
MKL
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
abe08840 286 va_start(args, fmt);
77d2e05a 287 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
288 va_end(args);
289}
cbd35700 290
d9762e84
MKL
291static const char *ltrim(const char *s)
292{
293 while (isspace(*s))
294 s++;
295
296 return s;
297}
298
299__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302{
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325}
326
de8f3a83
DB
327static bool type_is_pkt_pointer(enum bpf_reg_type type)
328{
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7
JS
335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 type == PTR_TO_SOCKET_OR_NULL;
337}
338
339static bool type_is_refcounted(enum bpf_reg_type type)
340{
341 return type == PTR_TO_SOCKET;
342}
343
344static bool type_is_refcounted_or_null(enum bpf_reg_type type)
345{
346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
347}
348
349static bool reg_is_refcounted(const struct bpf_reg_state *reg)
350{
351 return type_is_refcounted(reg->type);
352}
353
354static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
355{
356 return type_is_refcounted_or_null(reg->type);
357}
358
359static bool arg_type_is_refcounted(enum bpf_arg_type type)
360{
361 return type == ARG_PTR_TO_SOCKET;
362}
363
364/* Determine whether the function releases some resources allocated by another
365 * function call. The first reference type argument will be assumed to be
366 * released by release_reference().
367 */
368static bool is_release_function(enum bpf_func_id func_id)
369{
6acc9b43 370 return func_id == BPF_FUNC_sk_release;
840b9615
JS
371}
372
17a52670
AS
373/* string representation of 'enum bpf_reg_type' */
374static const char * const reg_type_str[] = {
375 [NOT_INIT] = "?",
f1174f77 376 [SCALAR_VALUE] = "inv",
17a52670
AS
377 [PTR_TO_CTX] = "ctx",
378 [CONST_PTR_TO_MAP] = "map_ptr",
379 [PTR_TO_MAP_VALUE] = "map_value",
380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 381 [PTR_TO_STACK] = "fp",
969bf05e 382 [PTR_TO_PACKET] = "pkt",
de8f3a83 383 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 384 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 385 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
386 [PTR_TO_SOCKET] = "sock",
387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
388};
389
8efea21d
EC
390static char slot_type_char[] = {
391 [STACK_INVALID] = '?',
392 [STACK_SPILL] = 'r',
393 [STACK_MISC] = 'm',
394 [STACK_ZERO] = '0',
395};
396
4e92024a
AS
397static void print_liveness(struct bpf_verifier_env *env,
398 enum bpf_reg_liveness live)
399{
9242b5f5 400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
401 verbose(env, "_");
402 if (live & REG_LIVE_READ)
403 verbose(env, "r");
404 if (live & REG_LIVE_WRITTEN)
405 verbose(env, "w");
9242b5f5
AS
406 if (live & REG_LIVE_DONE)
407 verbose(env, "D");
4e92024a
AS
408}
409
f4d7e40a
AS
410static struct bpf_func_state *func(struct bpf_verifier_env *env,
411 const struct bpf_reg_state *reg)
412{
413 struct bpf_verifier_state *cur = env->cur_state;
414
415 return cur->frame[reg->frameno];
416}
417
61bd5218 418static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 419 const struct bpf_func_state *state)
17a52670 420{
f4d7e40a 421 const struct bpf_reg_state *reg;
17a52670
AS
422 enum bpf_reg_type t;
423 int i;
424
f4d7e40a
AS
425 if (state->frameno)
426 verbose(env, " frame%d:", state->frameno);
17a52670 427 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
428 reg = &state->regs[i];
429 t = reg->type;
17a52670
AS
430 if (t == NOT_INIT)
431 continue;
4e92024a
AS
432 verbose(env, " R%d", i);
433 print_liveness(env, reg->live);
434 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
435 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
436 tnum_is_const(reg->var_off)) {
437 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 438 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
439 if (t == PTR_TO_STACK)
440 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 441 } else {
61bd5218 442 verbose(env, "(id=%d", reg->id);
f1174f77 443 if (t != SCALAR_VALUE)
61bd5218 444 verbose(env, ",off=%d", reg->off);
de8f3a83 445 if (type_is_pkt_pointer(t))
61bd5218 446 verbose(env, ",r=%d", reg->range);
f1174f77
EC
447 else if (t == CONST_PTR_TO_MAP ||
448 t == PTR_TO_MAP_VALUE ||
449 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 450 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
451 reg->map_ptr->key_size,
452 reg->map_ptr->value_size);
7d1238f2
EC
453 if (tnum_is_const(reg->var_off)) {
454 /* Typically an immediate SCALAR_VALUE, but
455 * could be a pointer whose offset is too big
456 * for reg->off
457 */
61bd5218 458 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
459 } else {
460 if (reg->smin_value != reg->umin_value &&
461 reg->smin_value != S64_MIN)
61bd5218 462 verbose(env, ",smin_value=%lld",
7d1238f2
EC
463 (long long)reg->smin_value);
464 if (reg->smax_value != reg->umax_value &&
465 reg->smax_value != S64_MAX)
61bd5218 466 verbose(env, ",smax_value=%lld",
7d1238f2
EC
467 (long long)reg->smax_value);
468 if (reg->umin_value != 0)
61bd5218 469 verbose(env, ",umin_value=%llu",
7d1238f2
EC
470 (unsigned long long)reg->umin_value);
471 if (reg->umax_value != U64_MAX)
61bd5218 472 verbose(env, ",umax_value=%llu",
7d1238f2
EC
473 (unsigned long long)reg->umax_value);
474 if (!tnum_is_unknown(reg->var_off)) {
475 char tn_buf[48];
f1174f77 476
7d1238f2 477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 478 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 479 }
f1174f77 480 }
61bd5218 481 verbose(env, ")");
f1174f77 482 }
17a52670 483 }
638f5b90 484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
485 char types_buf[BPF_REG_SIZE + 1];
486 bool valid = false;
487 int j;
488
489 for (j = 0; j < BPF_REG_SIZE; j++) {
490 if (state->stack[i].slot_type[j] != STACK_INVALID)
491 valid = true;
492 types_buf[j] = slot_type_char[
493 state->stack[i].slot_type[j]];
494 }
495 types_buf[BPF_REG_SIZE] = 0;
496 if (!valid)
497 continue;
498 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
499 print_liveness(env, state->stack[i].spilled_ptr.live);
500 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 501 verbose(env, "=%s",
638f5b90 502 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
503 else
504 verbose(env, "=%s", types_buf);
17a52670 505 }
fd978bf7
JS
506 if (state->acquired_refs && state->refs[0].id) {
507 verbose(env, " refs=%d", state->refs[0].id);
508 for (i = 1; i < state->acquired_refs; i++)
509 if (state->refs[i].id)
510 verbose(env, ",%d", state->refs[i].id);
511 }
61bd5218 512 verbose(env, "\n");
17a52670
AS
513}
514
84dbf350
JS
515#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
516static int copy_##NAME##_state(struct bpf_func_state *dst, \
517 const struct bpf_func_state *src) \
518{ \
519 if (!src->FIELD) \
520 return 0; \
521 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
522 /* internal bug, make state invalid to reject the program */ \
523 memset(dst, 0, sizeof(*dst)); \
524 return -EFAULT; \
525 } \
526 memcpy(dst->FIELD, src->FIELD, \
527 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
528 return 0; \
638f5b90 529}
fd978bf7
JS
530/* copy_reference_state() */
531COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
532/* copy_stack_state() */
533COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
534#undef COPY_STATE_FN
535
536#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
537static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
538 bool copy_old) \
539{ \
540 u32 old_size = state->COUNT; \
541 struct bpf_##NAME##_state *new_##FIELD; \
542 int slot = size / SIZE; \
543 \
544 if (size <= old_size || !size) { \
545 if (copy_old) \
546 return 0; \
547 state->COUNT = slot * SIZE; \
548 if (!size && old_size) { \
549 kfree(state->FIELD); \
550 state->FIELD = NULL; \
551 } \
552 return 0; \
553 } \
554 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
555 GFP_KERNEL); \
556 if (!new_##FIELD) \
557 return -ENOMEM; \
558 if (copy_old) { \
559 if (state->FIELD) \
560 memcpy(new_##FIELD, state->FIELD, \
561 sizeof(*new_##FIELD) * (old_size / SIZE)); \
562 memset(new_##FIELD + old_size / SIZE, 0, \
563 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
564 } \
565 state->COUNT = slot * SIZE; \
566 kfree(state->FIELD); \
567 state->FIELD = new_##FIELD; \
568 return 0; \
569}
fd978bf7
JS
570/* realloc_reference_state() */
571REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
572/* realloc_stack_state() */
573REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
574#undef REALLOC_STATE_FN
638f5b90
AS
575
576/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
577 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 578 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
579 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
580 * which realloc_stack_state() copies over. It points to previous
581 * bpf_verifier_state which is never reallocated.
638f5b90 582 */
fd978bf7
JS
583static int realloc_func_state(struct bpf_func_state *state, int stack_size,
584 int refs_size, bool copy_old)
638f5b90 585{
fd978bf7
JS
586 int err = realloc_reference_state(state, refs_size, copy_old);
587 if (err)
588 return err;
589 return realloc_stack_state(state, stack_size, copy_old);
590}
591
592/* Acquire a pointer id from the env and update the state->refs to include
593 * this new pointer reference.
594 * On success, returns a valid pointer id to associate with the register
595 * On failure, returns a negative errno.
638f5b90 596 */
fd978bf7 597static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 598{
fd978bf7
JS
599 struct bpf_func_state *state = cur_func(env);
600 int new_ofs = state->acquired_refs;
601 int id, err;
602
603 err = realloc_reference_state(state, state->acquired_refs + 1, true);
604 if (err)
605 return err;
606 id = ++env->id_gen;
607 state->refs[new_ofs].id = id;
608 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 609
fd978bf7
JS
610 return id;
611}
612
613/* release function corresponding to acquire_reference_state(). Idempotent. */
614static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
615{
616 int i, last_idx;
617
618 if (!ptr_id)
619 return -EFAULT;
620
621 last_idx = state->acquired_refs - 1;
622 for (i = 0; i < state->acquired_refs; i++) {
623 if (state->refs[i].id == ptr_id) {
624 if (last_idx && i != last_idx)
625 memcpy(&state->refs[i], &state->refs[last_idx],
626 sizeof(*state->refs));
627 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
628 state->acquired_refs--;
638f5b90 629 return 0;
638f5b90 630 }
638f5b90 631 }
fd978bf7
JS
632 return -EFAULT;
633}
634
635/* variation on the above for cases where we expect that there must be an
636 * outstanding reference for the specified ptr_id.
637 */
638static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
639{
640 struct bpf_func_state *state = cur_func(env);
641 int err;
642
643 err = __release_reference_state(state, ptr_id);
644 if (WARN_ON_ONCE(err != 0))
645 verbose(env, "verifier internal error: can't release reference\n");
646 return err;
647}
648
649static int transfer_reference_state(struct bpf_func_state *dst,
650 struct bpf_func_state *src)
651{
652 int err = realloc_reference_state(dst, src->acquired_refs, false);
653 if (err)
654 return err;
655 err = copy_reference_state(dst, src);
656 if (err)
657 return err;
638f5b90
AS
658 return 0;
659}
660
f4d7e40a
AS
661static void free_func_state(struct bpf_func_state *state)
662{
5896351e
AS
663 if (!state)
664 return;
fd978bf7 665 kfree(state->refs);
f4d7e40a
AS
666 kfree(state->stack);
667 kfree(state);
668}
669
1969db47
AS
670static void free_verifier_state(struct bpf_verifier_state *state,
671 bool free_self)
638f5b90 672{
f4d7e40a
AS
673 int i;
674
675 for (i = 0; i <= state->curframe; i++) {
676 free_func_state(state->frame[i]);
677 state->frame[i] = NULL;
678 }
1969db47
AS
679 if (free_self)
680 kfree(state);
638f5b90
AS
681}
682
683/* copy verifier state from src to dst growing dst stack space
684 * when necessary to accommodate larger src stack
685 */
f4d7e40a
AS
686static int copy_func_state(struct bpf_func_state *dst,
687 const struct bpf_func_state *src)
638f5b90
AS
688{
689 int err;
690
fd978bf7
JS
691 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
692 false);
693 if (err)
694 return err;
695 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
696 err = copy_reference_state(dst, src);
638f5b90
AS
697 if (err)
698 return err;
638f5b90
AS
699 return copy_stack_state(dst, src);
700}
701
f4d7e40a
AS
702static int copy_verifier_state(struct bpf_verifier_state *dst_state,
703 const struct bpf_verifier_state *src)
704{
705 struct bpf_func_state *dst;
706 int i, err;
707
708 /* if dst has more stack frames then src frame, free them */
709 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
710 free_func_state(dst_state->frame[i]);
711 dst_state->frame[i] = NULL;
712 }
713 dst_state->curframe = src->curframe;
f4d7e40a
AS
714 for (i = 0; i <= src->curframe; i++) {
715 dst = dst_state->frame[i];
716 if (!dst) {
717 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
718 if (!dst)
719 return -ENOMEM;
720 dst_state->frame[i] = dst;
721 }
722 err = copy_func_state(dst, src->frame[i]);
723 if (err)
724 return err;
725 }
726 return 0;
727}
728
638f5b90
AS
729static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
730 int *insn_idx)
731{
732 struct bpf_verifier_state *cur = env->cur_state;
733 struct bpf_verifier_stack_elem *elem, *head = env->head;
734 int err;
17a52670
AS
735
736 if (env->head == NULL)
638f5b90 737 return -ENOENT;
17a52670 738
638f5b90
AS
739 if (cur) {
740 err = copy_verifier_state(cur, &head->st);
741 if (err)
742 return err;
743 }
744 if (insn_idx)
745 *insn_idx = head->insn_idx;
17a52670 746 if (prev_insn_idx)
638f5b90
AS
747 *prev_insn_idx = head->prev_insn_idx;
748 elem = head->next;
1969db47 749 free_verifier_state(&head->st, false);
638f5b90 750 kfree(head);
17a52670
AS
751 env->head = elem;
752 env->stack_size--;
638f5b90 753 return 0;
17a52670
AS
754}
755
58e2af8b
JK
756static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
757 int insn_idx, int prev_insn_idx)
17a52670 758{
638f5b90 759 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 760 struct bpf_verifier_stack_elem *elem;
638f5b90 761 int err;
17a52670 762
638f5b90 763 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
764 if (!elem)
765 goto err;
766
17a52670
AS
767 elem->insn_idx = insn_idx;
768 elem->prev_insn_idx = prev_insn_idx;
769 elem->next = env->head;
770 env->head = elem;
771 env->stack_size++;
1969db47
AS
772 err = copy_verifier_state(&elem->st, cur);
773 if (err)
774 goto err;
07016151 775 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 776 verbose(env, "BPF program is too complex\n");
17a52670
AS
777 goto err;
778 }
779 return &elem->st;
780err:
5896351e
AS
781 free_verifier_state(env->cur_state, true);
782 env->cur_state = NULL;
17a52670 783 /* pop all elements and return */
638f5b90 784 while (!pop_stack(env, NULL, NULL));
17a52670
AS
785 return NULL;
786}
787
788#define CALLER_SAVED_REGS 6
789static const int caller_saved[CALLER_SAVED_REGS] = {
790 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
791};
792
f1174f77
EC
793static void __mark_reg_not_init(struct bpf_reg_state *reg);
794
b03c9f9f
EC
795/* Mark the unknown part of a register (variable offset or scalar value) as
796 * known to have the value @imm.
797 */
798static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
799{
a9c676bc
AS
800 /* Clear id, off, and union(map_ptr, range) */
801 memset(((u8 *)reg) + sizeof(reg->type), 0,
802 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
803 reg->var_off = tnum_const(imm);
804 reg->smin_value = (s64)imm;
805 reg->smax_value = (s64)imm;
806 reg->umin_value = imm;
807 reg->umax_value = imm;
808}
809
f1174f77
EC
810/* Mark the 'variable offset' part of a register as zero. This should be
811 * used only on registers holding a pointer type.
812 */
813static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 814{
b03c9f9f 815 __mark_reg_known(reg, 0);
f1174f77 816}
a9789ef9 817
cc2b14d5
AS
818static void __mark_reg_const_zero(struct bpf_reg_state *reg)
819{
820 __mark_reg_known(reg, 0);
cc2b14d5
AS
821 reg->type = SCALAR_VALUE;
822}
823
61bd5218
JK
824static void mark_reg_known_zero(struct bpf_verifier_env *env,
825 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
826{
827 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 828 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
829 /* Something bad happened, let's kill all regs */
830 for (regno = 0; regno < MAX_BPF_REG; regno++)
831 __mark_reg_not_init(regs + regno);
832 return;
833 }
834 __mark_reg_known_zero(regs + regno);
835}
836
de8f3a83
DB
837static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
838{
839 return type_is_pkt_pointer(reg->type);
840}
841
842static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
843{
844 return reg_is_pkt_pointer(reg) ||
845 reg->type == PTR_TO_PACKET_END;
846}
847
848/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
849static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
850 enum bpf_reg_type which)
851{
852 /* The register can already have a range from prior markings.
853 * This is fine as long as it hasn't been advanced from its
854 * origin.
855 */
856 return reg->type == which &&
857 reg->id == 0 &&
858 reg->off == 0 &&
859 tnum_equals_const(reg->var_off, 0);
860}
861
b03c9f9f
EC
862/* Attempts to improve min/max values based on var_off information */
863static void __update_reg_bounds(struct bpf_reg_state *reg)
864{
865 /* min signed is max(sign bit) | min(other bits) */
866 reg->smin_value = max_t(s64, reg->smin_value,
867 reg->var_off.value | (reg->var_off.mask & S64_MIN));
868 /* max signed is min(sign bit) | max(other bits) */
869 reg->smax_value = min_t(s64, reg->smax_value,
870 reg->var_off.value | (reg->var_off.mask & S64_MAX));
871 reg->umin_value = max(reg->umin_value, reg->var_off.value);
872 reg->umax_value = min(reg->umax_value,
873 reg->var_off.value | reg->var_off.mask);
874}
875
876/* Uses signed min/max values to inform unsigned, and vice-versa */
877static void __reg_deduce_bounds(struct bpf_reg_state *reg)
878{
879 /* Learn sign from signed bounds.
880 * If we cannot cross the sign boundary, then signed and unsigned bounds
881 * are the same, so combine. This works even in the negative case, e.g.
882 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
883 */
884 if (reg->smin_value >= 0 || reg->smax_value < 0) {
885 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
886 reg->umin_value);
887 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
888 reg->umax_value);
889 return;
890 }
891 /* Learn sign from unsigned bounds. Signed bounds cross the sign
892 * boundary, so we must be careful.
893 */
894 if ((s64)reg->umax_value >= 0) {
895 /* Positive. We can't learn anything from the smin, but smax
896 * is positive, hence safe.
897 */
898 reg->smin_value = reg->umin_value;
899 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
900 reg->umax_value);
901 } else if ((s64)reg->umin_value < 0) {
902 /* Negative. We can't learn anything from the smax, but smin
903 * is negative, hence safe.
904 */
905 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
906 reg->umin_value);
907 reg->smax_value = reg->umax_value;
908 }
909}
910
911/* Attempts to improve var_off based on unsigned min/max information */
912static void __reg_bound_offset(struct bpf_reg_state *reg)
913{
914 reg->var_off = tnum_intersect(reg->var_off,
915 tnum_range(reg->umin_value,
916 reg->umax_value));
917}
918
919/* Reset the min/max bounds of a register */
920static void __mark_reg_unbounded(struct bpf_reg_state *reg)
921{
922 reg->smin_value = S64_MIN;
923 reg->smax_value = S64_MAX;
924 reg->umin_value = 0;
925 reg->umax_value = U64_MAX;
926}
927
f1174f77
EC
928/* Mark a register as having a completely unknown (scalar) value. */
929static void __mark_reg_unknown(struct bpf_reg_state *reg)
930{
a9c676bc
AS
931 /*
932 * Clear type, id, off, and union(map_ptr, range) and
933 * padding between 'type' and union
934 */
935 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 936 reg->type = SCALAR_VALUE;
f1174f77 937 reg->var_off = tnum_unknown;
f4d7e40a 938 reg->frameno = 0;
b03c9f9f 939 __mark_reg_unbounded(reg);
f1174f77
EC
940}
941
61bd5218
JK
942static void mark_reg_unknown(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
944{
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 946 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
947 /* Something bad happened, let's kill all regs except FP */
948 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
949 __mark_reg_not_init(regs + regno);
950 return;
951 }
952 __mark_reg_unknown(regs + regno);
953}
954
955static void __mark_reg_not_init(struct bpf_reg_state *reg)
956{
957 __mark_reg_unknown(reg);
958 reg->type = NOT_INIT;
959}
960
61bd5218
JK
961static void mark_reg_not_init(struct bpf_verifier_env *env,
962 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
963{
964 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 965 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
966 /* Something bad happened, let's kill all regs except FP */
967 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
968 __mark_reg_not_init(regs + regno);
969 return;
970 }
971 __mark_reg_not_init(regs + regno);
a9789ef9
DB
972}
973
61bd5218 974static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 975 struct bpf_func_state *state)
17a52670 976{
f4d7e40a 977 struct bpf_reg_state *regs = state->regs;
17a52670
AS
978 int i;
979
dc503a8a 980 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 981 mark_reg_not_init(env, regs, i);
dc503a8a 982 regs[i].live = REG_LIVE_NONE;
679c782d 983 regs[i].parent = NULL;
dc503a8a 984 }
17a52670
AS
985
986 /* frame pointer */
f1174f77 987 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 988 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 989 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
990
991 /* 1st arg to a function */
992 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 993 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
994}
995
f4d7e40a
AS
996#define BPF_MAIN_FUNC (-1)
997static void init_func_state(struct bpf_verifier_env *env,
998 struct bpf_func_state *state,
999 int callsite, int frameno, int subprogno)
1000{
1001 state->callsite = callsite;
1002 state->frameno = frameno;
1003 state->subprogno = subprogno;
1004 init_reg_state(env, state);
1005}
1006
17a52670
AS
1007enum reg_arg_type {
1008 SRC_OP, /* register is used as source operand */
1009 DST_OP, /* register is used as destination operand */
1010 DST_OP_NO_MARK /* same as above, check only, don't mark */
1011};
1012
cc8b0b92
AS
1013static int cmp_subprogs(const void *a, const void *b)
1014{
9c8105bd
JW
1015 return ((struct bpf_subprog_info *)a)->start -
1016 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1017}
1018
1019static int find_subprog(struct bpf_verifier_env *env, int off)
1020{
9c8105bd 1021 struct bpf_subprog_info *p;
cc8b0b92 1022
9c8105bd
JW
1023 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1024 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1025 if (!p)
1026 return -ENOENT;
9c8105bd 1027 return p - env->subprog_info;
cc8b0b92
AS
1028
1029}
1030
1031static int add_subprog(struct bpf_verifier_env *env, int off)
1032{
1033 int insn_cnt = env->prog->len;
1034 int ret;
1035
1036 if (off >= insn_cnt || off < 0) {
1037 verbose(env, "call to invalid destination\n");
1038 return -EINVAL;
1039 }
1040 ret = find_subprog(env, off);
1041 if (ret >= 0)
1042 return 0;
4cb3d99c 1043 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1044 verbose(env, "too many subprograms\n");
1045 return -E2BIG;
1046 }
9c8105bd
JW
1047 env->subprog_info[env->subprog_cnt++].start = off;
1048 sort(env->subprog_info, env->subprog_cnt,
1049 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1050 return 0;
1051}
1052
1053static int check_subprogs(struct bpf_verifier_env *env)
1054{
1055 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1056 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1057 struct bpf_insn *insn = env->prog->insnsi;
1058 int insn_cnt = env->prog->len;
1059
f910cefa
JW
1060 /* Add entry function. */
1061 ret = add_subprog(env, 0);
1062 if (ret < 0)
1063 return ret;
1064
cc8b0b92
AS
1065 /* determine subprog starts. The end is one before the next starts */
1066 for (i = 0; i < insn_cnt; i++) {
1067 if (insn[i].code != (BPF_JMP | BPF_CALL))
1068 continue;
1069 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1070 continue;
1071 if (!env->allow_ptr_leaks) {
1072 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1073 return -EPERM;
1074 }
cc8b0b92
AS
1075 ret = add_subprog(env, i + insn[i].imm + 1);
1076 if (ret < 0)
1077 return ret;
1078 }
1079
4cb3d99c
JW
1080 /* Add a fake 'exit' subprog which could simplify subprog iteration
1081 * logic. 'subprog_cnt' should not be increased.
1082 */
1083 subprog[env->subprog_cnt].start = insn_cnt;
1084
cc8b0b92
AS
1085 if (env->log.level > 1)
1086 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1087 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1088
1089 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1090 subprog_start = subprog[cur_subprog].start;
1091 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1092 for (i = 0; i < insn_cnt; i++) {
1093 u8 code = insn[i].code;
1094
1095 if (BPF_CLASS(code) != BPF_JMP)
1096 goto next;
1097 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1098 goto next;
1099 off = i + insn[i].off + 1;
1100 if (off < subprog_start || off >= subprog_end) {
1101 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1102 return -EINVAL;
1103 }
1104next:
1105 if (i == subprog_end - 1) {
1106 /* to avoid fall-through from one subprog into another
1107 * the last insn of the subprog should be either exit
1108 * or unconditional jump back
1109 */
1110 if (code != (BPF_JMP | BPF_EXIT) &&
1111 code != (BPF_JMP | BPF_JA)) {
1112 verbose(env, "last insn is not an exit or jmp\n");
1113 return -EINVAL;
1114 }
1115 subprog_start = subprog_end;
4cb3d99c
JW
1116 cur_subprog++;
1117 if (cur_subprog < env->subprog_cnt)
9c8105bd 1118 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1119 }
1120 }
1121 return 0;
1122}
1123
679c782d
EC
1124/* Parentage chain of this register (or stack slot) should take care of all
1125 * issues like callee-saved registers, stack slot allocation time, etc.
1126 */
f4d7e40a 1127static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1128 const struct bpf_reg_state *state,
1129 struct bpf_reg_state *parent)
f4d7e40a
AS
1130{
1131 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1132
1133 while (parent) {
1134 /* if read wasn't screened by an earlier write ... */
679c782d 1135 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1136 break;
9242b5f5
AS
1137 if (parent->live & REG_LIVE_DONE) {
1138 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1139 reg_type_str[parent->type],
1140 parent->var_off.value, parent->off);
1141 return -EFAULT;
1142 }
dc503a8a 1143 /* ... then we depend on parent's value */
679c782d 1144 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1145 state = parent;
1146 parent = state->parent;
f4d7e40a 1147 writes = true;
dc503a8a 1148 }
f4d7e40a 1149 return 0;
dc503a8a
EC
1150}
1151
1152static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1153 enum reg_arg_type t)
1154{
f4d7e40a
AS
1155 struct bpf_verifier_state *vstate = env->cur_state;
1156 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1157 struct bpf_reg_state *regs = state->regs;
dc503a8a 1158
17a52670 1159 if (regno >= MAX_BPF_REG) {
61bd5218 1160 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1161 return -EINVAL;
1162 }
1163
1164 if (t == SRC_OP) {
1165 /* check whether register used as source operand can be read */
1166 if (regs[regno].type == NOT_INIT) {
61bd5218 1167 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1168 return -EACCES;
1169 }
679c782d
EC
1170 /* We don't need to worry about FP liveness because it's read-only */
1171 if (regno != BPF_REG_FP)
1172 return mark_reg_read(env, &regs[regno],
1173 regs[regno].parent);
17a52670
AS
1174 } else {
1175 /* check whether register used as dest operand can be written to */
1176 if (regno == BPF_REG_FP) {
61bd5218 1177 verbose(env, "frame pointer is read only\n");
17a52670
AS
1178 return -EACCES;
1179 }
dc503a8a 1180 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1181 if (t == DST_OP)
61bd5218 1182 mark_reg_unknown(env, regs, regno);
17a52670
AS
1183 }
1184 return 0;
1185}
1186
1be7f75d
AS
1187static bool is_spillable_regtype(enum bpf_reg_type type)
1188{
1189 switch (type) {
1190 case PTR_TO_MAP_VALUE:
1191 case PTR_TO_MAP_VALUE_OR_NULL:
1192 case PTR_TO_STACK:
1193 case PTR_TO_CTX:
969bf05e 1194 case PTR_TO_PACKET:
de8f3a83 1195 case PTR_TO_PACKET_META:
969bf05e 1196 case PTR_TO_PACKET_END:
d58e468b 1197 case PTR_TO_FLOW_KEYS:
1be7f75d 1198 case CONST_PTR_TO_MAP:
c64b7983
JS
1199 case PTR_TO_SOCKET:
1200 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1201 return true;
1202 default:
1203 return false;
1204 }
1205}
1206
cc2b14d5
AS
1207/* Does this register contain a constant zero? */
1208static bool register_is_null(struct bpf_reg_state *reg)
1209{
1210 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1211}
1212
17a52670
AS
1213/* check_stack_read/write functions track spill/fill of registers,
1214 * stack boundary and alignment are checked in check_mem_access()
1215 */
61bd5218 1216static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1217 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1218 int off, int size, int value_regno, int insn_idx)
17a52670 1219{
f4d7e40a 1220 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1221 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1222 enum bpf_reg_type type;
638f5b90 1223
f4d7e40a 1224 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1225 state->acquired_refs, true);
638f5b90
AS
1226 if (err)
1227 return err;
9c399760
AS
1228 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1229 * so it's aligned access and [off, off + size) are within stack limits
1230 */
638f5b90
AS
1231 if (!env->allow_ptr_leaks &&
1232 state->stack[spi].slot_type[0] == STACK_SPILL &&
1233 size != BPF_REG_SIZE) {
1234 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1235 return -EACCES;
1236 }
17a52670 1237
f4d7e40a 1238 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1239 if (value_regno >= 0 &&
f4d7e40a 1240 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1241
1242 /* register containing pointer is being spilled into stack */
9c399760 1243 if (size != BPF_REG_SIZE) {
61bd5218 1244 verbose(env, "invalid size of register spill\n");
17a52670
AS
1245 return -EACCES;
1246 }
1247
f4d7e40a
AS
1248 if (state != cur && type == PTR_TO_STACK) {
1249 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1250 return -EINVAL;
1251 }
1252
17a52670 1253 /* save register state */
f4d7e40a 1254 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1255 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1256
af86ca4e
AS
1257 for (i = 0; i < BPF_REG_SIZE; i++) {
1258 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1259 !env->allow_ptr_leaks) {
1260 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1261 int soff = (-spi - 1) * BPF_REG_SIZE;
1262
1263 /* detected reuse of integer stack slot with a pointer
1264 * which means either llvm is reusing stack slot or
1265 * an attacker is trying to exploit CVE-2018-3639
1266 * (speculative store bypass)
1267 * Have to sanitize that slot with preemptive
1268 * store of zero.
1269 */
1270 if (*poff && *poff != soff) {
1271 /* disallow programs where single insn stores
1272 * into two different stack slots, since verifier
1273 * cannot sanitize them
1274 */
1275 verbose(env,
1276 "insn %d cannot access two stack slots fp%d and fp%d",
1277 insn_idx, *poff, soff);
1278 return -EINVAL;
1279 }
1280 *poff = soff;
1281 }
638f5b90 1282 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1283 }
9c399760 1284 } else {
cc2b14d5
AS
1285 u8 type = STACK_MISC;
1286
679c782d
EC
1287 /* regular write of data into stack destroys any spilled ptr */
1288 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1289 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1290 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1291 for (i = 0; i < BPF_REG_SIZE; i++)
1292 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1293
cc2b14d5
AS
1294 /* only mark the slot as written if all 8 bytes were written
1295 * otherwise read propagation may incorrectly stop too soon
1296 * when stack slots are partially written.
1297 * This heuristic means that read propagation will be
1298 * conservative, since it will add reg_live_read marks
1299 * to stack slots all the way to first state when programs
1300 * writes+reads less than 8 bytes
1301 */
1302 if (size == BPF_REG_SIZE)
1303 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1304
1305 /* when we zero initialize stack slots mark them as such */
1306 if (value_regno >= 0 &&
1307 register_is_null(&cur->regs[value_regno]))
1308 type = STACK_ZERO;
1309
0bae2d4d 1310 /* Mark slots affected by this stack write. */
9c399760 1311 for (i = 0; i < size; i++)
638f5b90 1312 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1313 type;
17a52670
AS
1314 }
1315 return 0;
1316}
1317
61bd5218 1318static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1319 struct bpf_func_state *reg_state /* func where register points to */,
1320 int off, int size, int value_regno)
17a52670 1321{
f4d7e40a
AS
1322 struct bpf_verifier_state *vstate = env->cur_state;
1323 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1324 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1325 u8 *stype;
17a52670 1326
f4d7e40a 1327 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1328 verbose(env, "invalid read from stack off %d+0 size %d\n",
1329 off, size);
1330 return -EACCES;
1331 }
f4d7e40a 1332 stype = reg_state->stack[spi].slot_type;
17a52670 1333
638f5b90 1334 if (stype[0] == STACK_SPILL) {
9c399760 1335 if (size != BPF_REG_SIZE) {
61bd5218 1336 verbose(env, "invalid size of register spill\n");
17a52670
AS
1337 return -EACCES;
1338 }
9c399760 1339 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1340 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1341 verbose(env, "corrupted spill memory\n");
17a52670
AS
1342 return -EACCES;
1343 }
1344 }
1345
dc503a8a 1346 if (value_regno >= 0) {
17a52670 1347 /* restore register state from stack */
f4d7e40a 1348 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1349 /* mark reg as written since spilled pointer state likely
1350 * has its liveness marks cleared by is_state_visited()
1351 * which resets stack/reg liveness for state transitions
1352 */
1353 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1354 }
679c782d
EC
1355 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1356 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1357 return 0;
1358 } else {
cc2b14d5
AS
1359 int zeros = 0;
1360
17a52670 1361 for (i = 0; i < size; i++) {
cc2b14d5
AS
1362 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1363 continue;
1364 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1365 zeros++;
1366 continue;
17a52670 1367 }
cc2b14d5
AS
1368 verbose(env, "invalid read from stack off %d+%d size %d\n",
1369 off, i, size);
1370 return -EACCES;
1371 }
679c782d
EC
1372 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1373 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1374 if (value_regno >= 0) {
1375 if (zeros == size) {
1376 /* any size read into register is zero extended,
1377 * so the whole register == const_zero
1378 */
1379 __mark_reg_const_zero(&state->regs[value_regno]);
1380 } else {
1381 /* have read misc data from the stack */
1382 mark_reg_unknown(env, state->regs, value_regno);
1383 }
1384 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1385 }
17a52670
AS
1386 return 0;
1387 }
1388}
1389
e4298d25
DB
1390static int check_stack_access(struct bpf_verifier_env *env,
1391 const struct bpf_reg_state *reg,
1392 int off, int size)
1393{
1394 /* Stack accesses must be at a fixed offset, so that we
1395 * can determine what type of data were returned. See
1396 * check_stack_read().
1397 */
1398 if (!tnum_is_const(reg->var_off)) {
1399 char tn_buf[48];
1400
1401 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1402 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1403 tn_buf, off, size);
1404 return -EACCES;
1405 }
1406
1407 if (off >= 0 || off < -MAX_BPF_STACK) {
1408 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1409 return -EACCES;
1410 }
1411
1412 return 0;
1413}
1414
17a52670 1415/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1416static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1417 int size, bool zero_size_allowed)
17a52670 1418{
638f5b90
AS
1419 struct bpf_reg_state *regs = cur_regs(env);
1420 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1421
9fd29c08
YS
1422 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1423 off + size > map->value_size) {
61bd5218 1424 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1425 map->value_size, off, size);
1426 return -EACCES;
1427 }
1428 return 0;
1429}
1430
f1174f77
EC
1431/* check read/write into a map element with possible variable offset */
1432static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1433 int off, int size, bool zero_size_allowed)
dbcfe5f7 1434{
f4d7e40a
AS
1435 struct bpf_verifier_state *vstate = env->cur_state;
1436 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1437 struct bpf_reg_state *reg = &state->regs[regno];
1438 int err;
1439
f1174f77
EC
1440 /* We may have adjusted the register to this map value, so we
1441 * need to try adding each of min_value and max_value to off
1442 * to make sure our theoretical access will be safe.
dbcfe5f7 1443 */
61bd5218
JK
1444 if (env->log.level)
1445 print_verifier_state(env, state);
dbcfe5f7
GB
1446 /* The minimum value is only important with signed
1447 * comparisons where we can't assume the floor of a
1448 * value is 0. If we are using signed variables for our
1449 * index'es we need to make sure that whatever we use
1450 * will have a set floor within our range.
1451 */
b03c9f9f 1452 if (reg->smin_value < 0) {
61bd5218 1453 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1454 regno);
1455 return -EACCES;
1456 }
9fd29c08
YS
1457 err = __check_map_access(env, regno, reg->smin_value + off, size,
1458 zero_size_allowed);
dbcfe5f7 1459 if (err) {
61bd5218
JK
1460 verbose(env, "R%d min value is outside of the array range\n",
1461 regno);
dbcfe5f7
GB
1462 return err;
1463 }
1464
b03c9f9f
EC
1465 /* If we haven't set a max value then we need to bail since we can't be
1466 * sure we won't do bad things.
1467 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1468 */
b03c9f9f 1469 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1470 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1471 regno);
1472 return -EACCES;
1473 }
9fd29c08
YS
1474 err = __check_map_access(env, regno, reg->umax_value + off, size,
1475 zero_size_allowed);
f1174f77 1476 if (err)
61bd5218
JK
1477 verbose(env, "R%d max value is outside of the array range\n",
1478 regno);
f1174f77 1479 return err;
dbcfe5f7
GB
1480}
1481
969bf05e
AS
1482#define MAX_PACKET_OFF 0xffff
1483
58e2af8b 1484static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1485 const struct bpf_call_arg_meta *meta,
1486 enum bpf_access_type t)
4acf6c0b 1487{
36bbef52 1488 switch (env->prog->type) {
5d66fa7d 1489 /* Program types only with direct read access go here! */
3a0af8fd
TG
1490 case BPF_PROG_TYPE_LWT_IN:
1491 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1492 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1493 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1494 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1495 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1496 if (t == BPF_WRITE)
1497 return false;
7e57fbb2 1498 /* fallthrough */
5d66fa7d
DB
1499
1500 /* Program types with direct read + write access go here! */
36bbef52
DB
1501 case BPF_PROG_TYPE_SCHED_CLS:
1502 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1503 case BPF_PROG_TYPE_XDP:
3a0af8fd 1504 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1505 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1506 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1507 if (meta)
1508 return meta->pkt_access;
1509
1510 env->seen_direct_write = true;
4acf6c0b
BB
1511 return true;
1512 default:
1513 return false;
1514 }
1515}
1516
f1174f77 1517static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1518 int off, int size, bool zero_size_allowed)
969bf05e 1519{
638f5b90 1520 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1521 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1522
9fd29c08
YS
1523 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1524 (u64)off + size > reg->range) {
61bd5218 1525 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1526 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1527 return -EACCES;
1528 }
1529 return 0;
1530}
1531
f1174f77 1532static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1533 int size, bool zero_size_allowed)
f1174f77 1534{
638f5b90 1535 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1536 struct bpf_reg_state *reg = &regs[regno];
1537 int err;
1538
1539 /* We may have added a variable offset to the packet pointer; but any
1540 * reg->range we have comes after that. We are only checking the fixed
1541 * offset.
1542 */
1543
1544 /* We don't allow negative numbers, because we aren't tracking enough
1545 * detail to prove they're safe.
1546 */
b03c9f9f 1547 if (reg->smin_value < 0) {
61bd5218 1548 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1549 regno);
1550 return -EACCES;
1551 }
9fd29c08 1552 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1553 if (err) {
61bd5218 1554 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1555 return err;
1556 }
e647815a
JW
1557
1558 /* __check_packet_access has made sure "off + size - 1" is within u16.
1559 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1560 * otherwise find_good_pkt_pointers would have refused to set range info
1561 * that __check_packet_access would have rejected this pkt access.
1562 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1563 */
1564 env->prog->aux->max_pkt_offset =
1565 max_t(u32, env->prog->aux->max_pkt_offset,
1566 off + reg->umax_value + size - 1);
1567
f1174f77
EC
1568 return err;
1569}
1570
1571/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1572static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1573 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1574{
f96da094
DB
1575 struct bpf_insn_access_aux info = {
1576 .reg_type = *reg_type,
1577 };
31fd8581 1578
4f9218aa 1579 if (env->ops->is_valid_access &&
5e43f899 1580 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1581 /* A non zero info.ctx_field_size indicates that this field is a
1582 * candidate for later verifier transformation to load the whole
1583 * field and then apply a mask when accessed with a narrower
1584 * access than actual ctx access size. A zero info.ctx_field_size
1585 * will only allow for whole field access and rejects any other
1586 * type of narrower access.
31fd8581 1587 */
23994631 1588 *reg_type = info.reg_type;
31fd8581 1589
4f9218aa 1590 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1591 /* remember the offset of last byte accessed in ctx */
1592 if (env->prog->aux->max_ctx_offset < off + size)
1593 env->prog->aux->max_ctx_offset = off + size;
17a52670 1594 return 0;
32bbe007 1595 }
17a52670 1596
61bd5218 1597 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1598 return -EACCES;
1599}
1600
d58e468b
PP
1601static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1602 int size)
1603{
1604 if (size < 0 || off < 0 ||
1605 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1606 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1607 off, size);
1608 return -EACCES;
1609 }
1610 return 0;
1611}
1612
c64b7983
JS
1613static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1614 int size, enum bpf_access_type t)
1615{
1616 struct bpf_reg_state *regs = cur_regs(env);
1617 struct bpf_reg_state *reg = &regs[regno];
1618 struct bpf_insn_access_aux info;
1619
1620 if (reg->smin_value < 0) {
1621 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1622 regno);
1623 return -EACCES;
1624 }
1625
1626 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1627 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1628 off, size);
1629 return -EACCES;
1630 }
1631
1632 return 0;
1633}
1634
4cabc5b1
DB
1635static bool __is_pointer_value(bool allow_ptr_leaks,
1636 const struct bpf_reg_state *reg)
1be7f75d 1637{
4cabc5b1 1638 if (allow_ptr_leaks)
1be7f75d
AS
1639 return false;
1640
f1174f77 1641 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1642}
1643
2a159c6f
DB
1644static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1645{
1646 return cur_regs(env) + regno;
1647}
1648
4cabc5b1
DB
1649static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1650{
2a159c6f 1651 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1652}
1653
f37a8cb8
DB
1654static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1655{
2a159c6f 1656 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1657
fd978bf7
JS
1658 return reg->type == PTR_TO_CTX ||
1659 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1660}
1661
ca369602
DB
1662static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1663{
2a159c6f 1664 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1665
1666 return type_is_pkt_pointer(reg->type);
1667}
1668
4b5defde
DB
1669static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1670{
1671 const struct bpf_reg_state *reg = reg_state(env, regno);
1672
1673 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1674 return reg->type == PTR_TO_FLOW_KEYS;
1675}
1676
61bd5218
JK
1677static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1678 const struct bpf_reg_state *reg,
d1174416 1679 int off, int size, bool strict)
969bf05e 1680{
f1174f77 1681 struct tnum reg_off;
e07b98d9 1682 int ip_align;
d1174416
DM
1683
1684 /* Byte size accesses are always allowed. */
1685 if (!strict || size == 1)
1686 return 0;
1687
e4eda884
DM
1688 /* For platforms that do not have a Kconfig enabling
1689 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1690 * NET_IP_ALIGN is universally set to '2'. And on platforms
1691 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1692 * to this code only in strict mode where we want to emulate
1693 * the NET_IP_ALIGN==2 checking. Therefore use an
1694 * unconditional IP align value of '2'.
e07b98d9 1695 */
e4eda884 1696 ip_align = 2;
f1174f77
EC
1697
1698 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1699 if (!tnum_is_aligned(reg_off, size)) {
1700 char tn_buf[48];
1701
1702 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1703 verbose(env,
1704 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1705 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1706 return -EACCES;
1707 }
79adffcd 1708
969bf05e
AS
1709 return 0;
1710}
1711
61bd5218
JK
1712static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1713 const struct bpf_reg_state *reg,
f1174f77
EC
1714 const char *pointer_desc,
1715 int off, int size, bool strict)
79adffcd 1716{
f1174f77
EC
1717 struct tnum reg_off;
1718
1719 /* Byte size accesses are always allowed. */
1720 if (!strict || size == 1)
1721 return 0;
1722
1723 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1724 if (!tnum_is_aligned(reg_off, size)) {
1725 char tn_buf[48];
1726
1727 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1728 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1729 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1730 return -EACCES;
1731 }
1732
969bf05e
AS
1733 return 0;
1734}
1735
e07b98d9 1736static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1737 const struct bpf_reg_state *reg, int off,
1738 int size, bool strict_alignment_once)
79adffcd 1739{
ca369602 1740 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1741 const char *pointer_desc = "";
d1174416 1742
79adffcd
DB
1743 switch (reg->type) {
1744 case PTR_TO_PACKET:
de8f3a83
DB
1745 case PTR_TO_PACKET_META:
1746 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1747 * right in front, treat it the very same way.
1748 */
61bd5218 1749 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1750 case PTR_TO_FLOW_KEYS:
1751 pointer_desc = "flow keys ";
1752 break;
f1174f77
EC
1753 case PTR_TO_MAP_VALUE:
1754 pointer_desc = "value ";
1755 break;
1756 case PTR_TO_CTX:
1757 pointer_desc = "context ";
1758 break;
1759 case PTR_TO_STACK:
1760 pointer_desc = "stack ";
a5ec6ae1
JH
1761 /* The stack spill tracking logic in check_stack_write()
1762 * and check_stack_read() relies on stack accesses being
1763 * aligned.
1764 */
1765 strict = true;
f1174f77 1766 break;
c64b7983
JS
1767 case PTR_TO_SOCKET:
1768 pointer_desc = "sock ";
1769 break;
79adffcd 1770 default:
f1174f77 1771 break;
79adffcd 1772 }
61bd5218
JK
1773 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1774 strict);
79adffcd
DB
1775}
1776
f4d7e40a
AS
1777static int update_stack_depth(struct bpf_verifier_env *env,
1778 const struct bpf_func_state *func,
1779 int off)
1780{
9c8105bd 1781 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1782
1783 if (stack >= -off)
1784 return 0;
1785
1786 /* update known max for given subprogram */
9c8105bd 1787 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1788 return 0;
1789}
f4d7e40a 1790
70a87ffe
AS
1791/* starting from main bpf function walk all instructions of the function
1792 * and recursively walk all callees that given function can call.
1793 * Ignore jump and exit insns.
1794 * Since recursion is prevented by check_cfg() this algorithm
1795 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1796 */
1797static int check_max_stack_depth(struct bpf_verifier_env *env)
1798{
9c8105bd
JW
1799 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1800 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1801 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1802 int ret_insn[MAX_CALL_FRAMES];
1803 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1804
70a87ffe
AS
1805process_func:
1806 /* round up to 32-bytes, since this is granularity
1807 * of interpreter stack size
1808 */
9c8105bd 1809 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1810 if (depth > MAX_BPF_STACK) {
f4d7e40a 1811 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1812 frame + 1, depth);
f4d7e40a
AS
1813 return -EACCES;
1814 }
70a87ffe 1815continue_func:
4cb3d99c 1816 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1817 for (; i < subprog_end; i++) {
1818 if (insn[i].code != (BPF_JMP | BPF_CALL))
1819 continue;
1820 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1821 continue;
1822 /* remember insn and function to return to */
1823 ret_insn[frame] = i + 1;
9c8105bd 1824 ret_prog[frame] = idx;
70a87ffe
AS
1825
1826 /* find the callee */
1827 i = i + insn[i].imm + 1;
9c8105bd
JW
1828 idx = find_subprog(env, i);
1829 if (idx < 0) {
70a87ffe
AS
1830 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1831 i);
1832 return -EFAULT;
1833 }
70a87ffe
AS
1834 frame++;
1835 if (frame >= MAX_CALL_FRAMES) {
1836 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1837 return -EFAULT;
1838 }
1839 goto process_func;
1840 }
1841 /* end of for() loop means the last insn of the 'subprog'
1842 * was reached. Doesn't matter whether it was JA or EXIT
1843 */
1844 if (frame == 0)
1845 return 0;
9c8105bd 1846 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1847 frame--;
1848 i = ret_insn[frame];
9c8105bd 1849 idx = ret_prog[frame];
70a87ffe 1850 goto continue_func;
f4d7e40a
AS
1851}
1852
19d28fbd 1853#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1854static int get_callee_stack_depth(struct bpf_verifier_env *env,
1855 const struct bpf_insn *insn, int idx)
1856{
1857 int start = idx + insn->imm + 1, subprog;
1858
1859 subprog = find_subprog(env, start);
1860 if (subprog < 0) {
1861 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1862 start);
1863 return -EFAULT;
1864 }
9c8105bd 1865 return env->subprog_info[subprog].stack_depth;
1ea47e01 1866}
19d28fbd 1867#endif
1ea47e01 1868
58990d1f
DB
1869static int check_ctx_reg(struct bpf_verifier_env *env,
1870 const struct bpf_reg_state *reg, int regno)
1871{
1872 /* Access to ctx or passing it to a helper is only allowed in
1873 * its original, unmodified form.
1874 */
1875
1876 if (reg->off) {
1877 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1878 regno, reg->off);
1879 return -EACCES;
1880 }
1881
1882 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1883 char tn_buf[48];
1884
1885 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1886 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1887 return -EACCES;
1888 }
1889
1890 return 0;
1891}
1892
0c17d1d2
JH
1893/* truncate register to smaller size (in bytes)
1894 * must be called with size < BPF_REG_SIZE
1895 */
1896static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1897{
1898 u64 mask;
1899
1900 /* clear high bits in bit representation */
1901 reg->var_off = tnum_cast(reg->var_off, size);
1902
1903 /* fix arithmetic bounds */
1904 mask = ((u64)1 << (size * 8)) - 1;
1905 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1906 reg->umin_value &= mask;
1907 reg->umax_value &= mask;
1908 } else {
1909 reg->umin_value = 0;
1910 reg->umax_value = mask;
1911 }
1912 reg->smin_value = reg->umin_value;
1913 reg->smax_value = reg->umax_value;
1914}
1915
17a52670
AS
1916/* check whether memory at (regno + off) is accessible for t = (read | write)
1917 * if t==write, value_regno is a register which value is stored into memory
1918 * if t==read, value_regno is a register which will receive the value from memory
1919 * if t==write && value_regno==-1, some unknown value is stored into memory
1920 * if t==read && value_regno==-1, don't care what we read from memory
1921 */
ca369602
DB
1922static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1923 int off, int bpf_size, enum bpf_access_type t,
1924 int value_regno, bool strict_alignment_once)
17a52670 1925{
638f5b90
AS
1926 struct bpf_reg_state *regs = cur_regs(env);
1927 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1928 struct bpf_func_state *state;
17a52670
AS
1929 int size, err = 0;
1930
1931 size = bpf_size_to_bytes(bpf_size);
1932 if (size < 0)
1933 return size;
1934
f1174f77 1935 /* alignment checks will add in reg->off themselves */
ca369602 1936 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1937 if (err)
1938 return err;
17a52670 1939
f1174f77
EC
1940 /* for access checks, reg->off is just part of off */
1941 off += reg->off;
1942
1943 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1944 if (t == BPF_WRITE && value_regno >= 0 &&
1945 is_pointer_value(env, value_regno)) {
61bd5218 1946 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1947 return -EACCES;
1948 }
48461135 1949
9fd29c08 1950 err = check_map_access(env, regno, off, size, false);
17a52670 1951 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1952 mark_reg_unknown(env, regs, value_regno);
17a52670 1953
1a0dc1ac 1954 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1955 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1956
1be7f75d
AS
1957 if (t == BPF_WRITE && value_regno >= 0 &&
1958 is_pointer_value(env, value_regno)) {
61bd5218 1959 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1960 return -EACCES;
1961 }
f1174f77 1962
58990d1f
DB
1963 err = check_ctx_reg(env, reg, regno);
1964 if (err < 0)
1965 return err;
1966
31fd8581 1967 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1968 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1969 /* ctx access returns either a scalar, or a
de8f3a83
DB
1970 * PTR_TO_PACKET[_META,_END]. In the latter
1971 * case, we know the offset is zero.
f1174f77
EC
1972 */
1973 if (reg_type == SCALAR_VALUE)
638f5b90 1974 mark_reg_unknown(env, regs, value_regno);
f1174f77 1975 else
638f5b90 1976 mark_reg_known_zero(env, regs,
61bd5218 1977 value_regno);
638f5b90 1978 regs[value_regno].type = reg_type;
969bf05e 1979 }
17a52670 1980
f1174f77 1981 } else if (reg->type == PTR_TO_STACK) {
f1174f77 1982 off += reg->var_off.value;
e4298d25
DB
1983 err = check_stack_access(env, reg, off, size);
1984 if (err)
1985 return err;
8726679a 1986
f4d7e40a
AS
1987 state = func(env, reg);
1988 err = update_stack_depth(env, state, off);
1989 if (err)
1990 return err;
8726679a 1991
638f5b90 1992 if (t == BPF_WRITE)
61bd5218 1993 err = check_stack_write(env, state, off, size,
af86ca4e 1994 value_regno, insn_idx);
638f5b90 1995 else
61bd5218
JK
1996 err = check_stack_read(env, state, off, size,
1997 value_regno);
de8f3a83 1998 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1999 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2000 verbose(env, "cannot write into packet\n");
969bf05e
AS
2001 return -EACCES;
2002 }
4acf6c0b
BB
2003 if (t == BPF_WRITE && value_regno >= 0 &&
2004 is_pointer_value(env, value_regno)) {
61bd5218
JK
2005 verbose(env, "R%d leaks addr into packet\n",
2006 value_regno);
4acf6c0b
BB
2007 return -EACCES;
2008 }
9fd29c08 2009 err = check_packet_access(env, regno, off, size, false);
969bf05e 2010 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2011 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2012 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2013 if (t == BPF_WRITE && value_regno >= 0 &&
2014 is_pointer_value(env, value_regno)) {
2015 verbose(env, "R%d leaks addr into flow keys\n",
2016 value_regno);
2017 return -EACCES;
2018 }
2019
2020 err = check_flow_keys_access(env, off, size);
2021 if (!err && t == BPF_READ && value_regno >= 0)
2022 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
2023 } else if (reg->type == PTR_TO_SOCKET) {
2024 if (t == BPF_WRITE) {
2025 verbose(env, "cannot write into socket\n");
2026 return -EACCES;
2027 }
2028 err = check_sock_access(env, regno, off, size, t);
2029 if (!err && value_regno >= 0)
2030 mark_reg_unknown(env, regs, value_regno);
17a52670 2031 } else {
61bd5218
JK
2032 verbose(env, "R%d invalid mem access '%s'\n", regno,
2033 reg_type_str[reg->type]);
17a52670
AS
2034 return -EACCES;
2035 }
969bf05e 2036
f1174f77 2037 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2038 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2039 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2040 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2041 }
17a52670
AS
2042 return err;
2043}
2044
31fd8581 2045static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2046{
17a52670
AS
2047 int err;
2048
2049 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2050 insn->imm != 0) {
61bd5218 2051 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2052 return -EINVAL;
2053 }
2054
2055 /* check src1 operand */
dc503a8a 2056 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2057 if (err)
2058 return err;
2059
2060 /* check src2 operand */
dc503a8a 2061 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2062 if (err)
2063 return err;
2064
6bdf6abc 2065 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2066 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2067 return -EACCES;
2068 }
2069
ca369602 2070 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde
DB
2071 is_pkt_reg(env, insn->dst_reg) ||
2072 is_flow_key_reg(env, insn->dst_reg)) {
ca369602 2073 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2074 insn->dst_reg,
2075 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2076 return -EACCES;
2077 }
2078
17a52670 2079 /* check whether atomic_add can read the memory */
31fd8581 2080 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2081 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2082 if (err)
2083 return err;
2084
2085 /* check whether atomic_add can write into the same memory */
31fd8581 2086 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2087 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2088}
2089
2090/* when register 'regno' is passed into function that will read 'access_size'
2091 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2092 * and all elements of stack are initialized.
2093 * Unlike most pointer bounds-checking functions, this one doesn't take an
2094 * 'off' argument, so it has to add in reg->off itself.
17a52670 2095 */
58e2af8b 2096static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2097 int access_size, bool zero_size_allowed,
2098 struct bpf_call_arg_meta *meta)
17a52670 2099{
2a159c6f 2100 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2101 struct bpf_func_state *state = func(env, reg);
638f5b90 2102 int off, i, slot, spi;
17a52670 2103
914cb781 2104 if (reg->type != PTR_TO_STACK) {
f1174f77 2105 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2106 if (zero_size_allowed && access_size == 0 &&
914cb781 2107 register_is_null(reg))
8e2fe1d9
DB
2108 return 0;
2109
61bd5218 2110 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2111 reg_type_str[reg->type],
8e2fe1d9 2112 reg_type_str[PTR_TO_STACK]);
17a52670 2113 return -EACCES;
8e2fe1d9 2114 }
17a52670 2115
f1174f77 2116 /* Only allow fixed-offset stack reads */
914cb781 2117 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2118 char tn_buf[48];
2119
914cb781 2120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2121 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2122 regno, tn_buf);
ea25f914 2123 return -EACCES;
f1174f77 2124 }
914cb781 2125 off = reg->off + reg->var_off.value;
17a52670 2126 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2127 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2128 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2129 regno, off, access_size);
2130 return -EACCES;
2131 }
2132
435faee1
DB
2133 if (meta && meta->raw_mode) {
2134 meta->access_size = access_size;
2135 meta->regno = regno;
2136 return 0;
2137 }
2138
17a52670 2139 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2140 u8 *stype;
2141
638f5b90
AS
2142 slot = -(off + i) - 1;
2143 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2144 if (state->allocated_stack <= slot)
2145 goto err;
2146 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2147 if (*stype == STACK_MISC)
2148 goto mark;
2149 if (*stype == STACK_ZERO) {
2150 /* helper can write anything into the stack */
2151 *stype = STACK_MISC;
2152 goto mark;
17a52670 2153 }
cc2b14d5
AS
2154err:
2155 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2156 off, i, access_size);
2157 return -EACCES;
2158mark:
2159 /* reading any byte out of 8-byte 'spill_slot' will cause
2160 * the whole slot to be marked as 'read'
2161 */
679c782d
EC
2162 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2163 state->stack[spi].spilled_ptr.parent);
17a52670 2164 }
f4d7e40a 2165 return update_stack_depth(env, state, off);
17a52670
AS
2166}
2167
06c1c049
GB
2168static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2169 int access_size, bool zero_size_allowed,
2170 struct bpf_call_arg_meta *meta)
2171{
638f5b90 2172 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2173
f1174f77 2174 switch (reg->type) {
06c1c049 2175 case PTR_TO_PACKET:
de8f3a83 2176 case PTR_TO_PACKET_META:
9fd29c08
YS
2177 return check_packet_access(env, regno, reg->off, access_size,
2178 zero_size_allowed);
06c1c049 2179 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2180 return check_map_access(env, regno, reg->off, access_size,
2181 zero_size_allowed);
f1174f77 2182 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2183 return check_stack_boundary(env, regno, access_size,
2184 zero_size_allowed, meta);
2185 }
2186}
2187
90133415
DB
2188static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2189{
2190 return type == ARG_PTR_TO_MEM ||
2191 type == ARG_PTR_TO_MEM_OR_NULL ||
2192 type == ARG_PTR_TO_UNINIT_MEM;
2193}
2194
2195static bool arg_type_is_mem_size(enum bpf_arg_type type)
2196{
2197 return type == ARG_CONST_SIZE ||
2198 type == ARG_CONST_SIZE_OR_ZERO;
2199}
2200
58e2af8b 2201static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2202 enum bpf_arg_type arg_type,
2203 struct bpf_call_arg_meta *meta)
17a52670 2204{
638f5b90 2205 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2206 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2207 int err = 0;
2208
80f1d68c 2209 if (arg_type == ARG_DONTCARE)
17a52670
AS
2210 return 0;
2211
dc503a8a
EC
2212 err = check_reg_arg(env, regno, SRC_OP);
2213 if (err)
2214 return err;
17a52670 2215
1be7f75d
AS
2216 if (arg_type == ARG_ANYTHING) {
2217 if (is_pointer_value(env, regno)) {
61bd5218
JK
2218 verbose(env, "R%d leaks addr into helper function\n",
2219 regno);
1be7f75d
AS
2220 return -EACCES;
2221 }
80f1d68c 2222 return 0;
1be7f75d 2223 }
80f1d68c 2224
de8f3a83 2225 if (type_is_pkt_pointer(type) &&
3a0af8fd 2226 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2227 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2228 return -EACCES;
2229 }
2230
8e2fe1d9 2231 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2232 arg_type == ARG_PTR_TO_MAP_VALUE ||
2233 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2234 expected_type = PTR_TO_STACK;
d71962f3 2235 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2236 type != expected_type)
6841de8b 2237 goto err_type;
39f19ebb
AS
2238 } else if (arg_type == ARG_CONST_SIZE ||
2239 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2240 expected_type = SCALAR_VALUE;
2241 if (type != expected_type)
6841de8b 2242 goto err_type;
17a52670
AS
2243 } else if (arg_type == ARG_CONST_MAP_PTR) {
2244 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2245 if (type != expected_type)
2246 goto err_type;
608cd71a
AS
2247 } else if (arg_type == ARG_PTR_TO_CTX) {
2248 expected_type = PTR_TO_CTX;
6841de8b
AS
2249 if (type != expected_type)
2250 goto err_type;
58990d1f
DB
2251 err = check_ctx_reg(env, reg, regno);
2252 if (err < 0)
2253 return err;
c64b7983
JS
2254 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2255 expected_type = PTR_TO_SOCKET;
2256 if (type != expected_type)
2257 goto err_type;
fd978bf7
JS
2258 if (meta->ptr_id || !reg->id) {
2259 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2260 meta->ptr_id, reg->id);
2261 return -EFAULT;
2262 }
2263 meta->ptr_id = reg->id;
90133415 2264 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2265 expected_type = PTR_TO_STACK;
2266 /* One exception here. In case function allows for NULL to be
f1174f77 2267 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2268 * happens during stack boundary checking.
2269 */
914cb781 2270 if (register_is_null(reg) &&
db1ac496 2271 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2272 /* final test in check_stack_boundary() */;
de8f3a83
DB
2273 else if (!type_is_pkt_pointer(type) &&
2274 type != PTR_TO_MAP_VALUE &&
f1174f77 2275 type != expected_type)
6841de8b 2276 goto err_type;
39f19ebb 2277 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2278 } else {
61bd5218 2279 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2280 return -EFAULT;
2281 }
2282
17a52670
AS
2283 if (arg_type == ARG_CONST_MAP_PTR) {
2284 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2285 meta->map_ptr = reg->map_ptr;
17a52670
AS
2286 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2287 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2288 * check that [key, key + map->key_size) are within
2289 * stack limits and initialized
2290 */
33ff9823 2291 if (!meta->map_ptr) {
17a52670
AS
2292 /* in function declaration map_ptr must come before
2293 * map_key, so that it's verified and known before
2294 * we have to check map_key here. Otherwise it means
2295 * that kernel subsystem misconfigured verifier
2296 */
61bd5218 2297 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2298 return -EACCES;
2299 }
d71962f3
PC
2300 err = check_helper_mem_access(env, regno,
2301 meta->map_ptr->key_size, false,
2302 NULL);
2ea864c5
MV
2303 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2304 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2305 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2306 * check [value, value + map->value_size) validity
2307 */
33ff9823 2308 if (!meta->map_ptr) {
17a52670 2309 /* kernel subsystem misconfigured verifier */
61bd5218 2310 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2311 return -EACCES;
2312 }
2ea864c5 2313 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2314 err = check_helper_mem_access(env, regno,
2315 meta->map_ptr->value_size, false,
2ea864c5 2316 meta);
90133415 2317 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2318 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2319
849fa506
YS
2320 /* remember the mem_size which may be used later
2321 * to refine return values.
2322 */
2323 meta->msize_smax_value = reg->smax_value;
2324 meta->msize_umax_value = reg->umax_value;
2325
f1174f77
EC
2326 /* The register is SCALAR_VALUE; the access check
2327 * happens using its boundaries.
06c1c049 2328 */
f1174f77 2329 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2330 /* For unprivileged variable accesses, disable raw
2331 * mode so that the program is required to
2332 * initialize all the memory that the helper could
2333 * just partially fill up.
2334 */
2335 meta = NULL;
2336
b03c9f9f 2337 if (reg->smin_value < 0) {
61bd5218 2338 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2339 regno);
2340 return -EACCES;
2341 }
06c1c049 2342
b03c9f9f 2343 if (reg->umin_value == 0) {
f1174f77
EC
2344 err = check_helper_mem_access(env, regno - 1, 0,
2345 zero_size_allowed,
2346 meta);
06c1c049
GB
2347 if (err)
2348 return err;
06c1c049 2349 }
f1174f77 2350
b03c9f9f 2351 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2352 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2353 regno);
2354 return -EACCES;
2355 }
2356 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2357 reg->umax_value,
f1174f77 2358 zero_size_allowed, meta);
17a52670
AS
2359 }
2360
2361 return err;
6841de8b 2362err_type:
61bd5218 2363 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2364 reg_type_str[type], reg_type_str[expected_type]);
2365 return -EACCES;
17a52670
AS
2366}
2367
61bd5218
JK
2368static int check_map_func_compatibility(struct bpf_verifier_env *env,
2369 struct bpf_map *map, int func_id)
35578d79 2370{
35578d79
KX
2371 if (!map)
2372 return 0;
2373
6aff67c8
AS
2374 /* We need a two way check, first is from map perspective ... */
2375 switch (map->map_type) {
2376 case BPF_MAP_TYPE_PROG_ARRAY:
2377 if (func_id != BPF_FUNC_tail_call)
2378 goto error;
2379 break;
2380 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2381 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2382 func_id != BPF_FUNC_perf_event_output &&
2383 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2384 goto error;
2385 break;
2386 case BPF_MAP_TYPE_STACK_TRACE:
2387 if (func_id != BPF_FUNC_get_stackid)
2388 goto error;
2389 break;
4ed8ec52 2390 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2391 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2392 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2393 goto error;
2394 break;
cd339431 2395 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2396 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2397 if (func_id != BPF_FUNC_get_local_storage)
2398 goto error;
2399 break;
546ac1ff
JF
2400 /* devmap returns a pointer to a live net_device ifindex that we cannot
2401 * allow to be modified from bpf side. So do not allow lookup elements
2402 * for now.
2403 */
2404 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2405 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2406 goto error;
2407 break;
fbfc504a
BT
2408 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2409 * appear.
2410 */
6710e112 2411 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2412 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2413 if (func_id != BPF_FUNC_redirect_map)
2414 goto error;
2415 break;
56f668df 2416 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2417 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2418 if (func_id != BPF_FUNC_map_lookup_elem)
2419 goto error;
16a43625 2420 break;
174a79ff
JF
2421 case BPF_MAP_TYPE_SOCKMAP:
2422 if (func_id != BPF_FUNC_sk_redirect_map &&
2423 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2424 func_id != BPF_FUNC_map_delete_elem &&
2425 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2426 goto error;
2427 break;
81110384
JF
2428 case BPF_MAP_TYPE_SOCKHASH:
2429 if (func_id != BPF_FUNC_sk_redirect_hash &&
2430 func_id != BPF_FUNC_sock_hash_update &&
2431 func_id != BPF_FUNC_map_delete_elem &&
2432 func_id != BPF_FUNC_msg_redirect_hash)
2433 goto error;
2434 break;
2dbb9b9e
MKL
2435 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2436 if (func_id != BPF_FUNC_sk_select_reuseport)
2437 goto error;
2438 break;
f1a2e44a
MV
2439 case BPF_MAP_TYPE_QUEUE:
2440 case BPF_MAP_TYPE_STACK:
2441 if (func_id != BPF_FUNC_map_peek_elem &&
2442 func_id != BPF_FUNC_map_pop_elem &&
2443 func_id != BPF_FUNC_map_push_elem)
2444 goto error;
2445 break;
6aff67c8
AS
2446 default:
2447 break;
2448 }
2449
2450 /* ... and second from the function itself. */
2451 switch (func_id) {
2452 case BPF_FUNC_tail_call:
2453 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2454 goto error;
f910cefa 2455 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2456 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2457 return -EINVAL;
2458 }
6aff67c8
AS
2459 break;
2460 case BPF_FUNC_perf_event_read:
2461 case BPF_FUNC_perf_event_output:
908432ca 2462 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2463 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2464 goto error;
2465 break;
2466 case BPF_FUNC_get_stackid:
2467 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2468 goto error;
2469 break;
60d20f91 2470 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2471 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2472 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2473 goto error;
2474 break;
97f91a7c 2475 case BPF_FUNC_redirect_map:
9c270af3 2476 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2477 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2478 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2479 goto error;
2480 break;
174a79ff 2481 case BPF_FUNC_sk_redirect_map:
4f738adb 2482 case BPF_FUNC_msg_redirect_map:
81110384 2483 case BPF_FUNC_sock_map_update:
174a79ff
JF
2484 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2485 goto error;
2486 break;
81110384
JF
2487 case BPF_FUNC_sk_redirect_hash:
2488 case BPF_FUNC_msg_redirect_hash:
2489 case BPF_FUNC_sock_hash_update:
2490 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2491 goto error;
2492 break;
cd339431 2493 case BPF_FUNC_get_local_storage:
b741f163
RG
2494 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2495 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2496 goto error;
2497 break;
2dbb9b9e
MKL
2498 case BPF_FUNC_sk_select_reuseport:
2499 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2500 goto error;
2501 break;
f1a2e44a
MV
2502 case BPF_FUNC_map_peek_elem:
2503 case BPF_FUNC_map_pop_elem:
2504 case BPF_FUNC_map_push_elem:
2505 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2506 map->map_type != BPF_MAP_TYPE_STACK)
2507 goto error;
2508 break;
6aff67c8
AS
2509 default:
2510 break;
35578d79
KX
2511 }
2512
2513 return 0;
6aff67c8 2514error:
61bd5218 2515 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2516 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2517 return -EINVAL;
35578d79
KX
2518}
2519
90133415 2520static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2521{
2522 int count = 0;
2523
39f19ebb 2524 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2525 count++;
39f19ebb 2526 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2527 count++;
39f19ebb 2528 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2529 count++;
39f19ebb 2530 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2531 count++;
39f19ebb 2532 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2533 count++;
2534
90133415
DB
2535 /* We only support one arg being in raw mode at the moment,
2536 * which is sufficient for the helper functions we have
2537 * right now.
2538 */
2539 return count <= 1;
2540}
2541
2542static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2543 enum bpf_arg_type arg_next)
2544{
2545 return (arg_type_is_mem_ptr(arg_curr) &&
2546 !arg_type_is_mem_size(arg_next)) ||
2547 (!arg_type_is_mem_ptr(arg_curr) &&
2548 arg_type_is_mem_size(arg_next));
2549}
2550
2551static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2552{
2553 /* bpf_xxx(..., buf, len) call will access 'len'
2554 * bytes from memory 'buf'. Both arg types need
2555 * to be paired, so make sure there's no buggy
2556 * helper function specification.
2557 */
2558 if (arg_type_is_mem_size(fn->arg1_type) ||
2559 arg_type_is_mem_ptr(fn->arg5_type) ||
2560 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2561 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2562 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2563 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2564 return false;
2565
2566 return true;
2567}
2568
fd978bf7
JS
2569static bool check_refcount_ok(const struct bpf_func_proto *fn)
2570{
2571 int count = 0;
2572
2573 if (arg_type_is_refcounted(fn->arg1_type))
2574 count++;
2575 if (arg_type_is_refcounted(fn->arg2_type))
2576 count++;
2577 if (arg_type_is_refcounted(fn->arg3_type))
2578 count++;
2579 if (arg_type_is_refcounted(fn->arg4_type))
2580 count++;
2581 if (arg_type_is_refcounted(fn->arg5_type))
2582 count++;
2583
2584 /* We only support one arg being unreferenced at the moment,
2585 * which is sufficient for the helper functions we have right now.
2586 */
2587 return count <= 1;
2588}
2589
90133415
DB
2590static int check_func_proto(const struct bpf_func_proto *fn)
2591{
2592 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2593 check_arg_pair_ok(fn) &&
2594 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2595}
2596
de8f3a83
DB
2597/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2598 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2599 */
f4d7e40a
AS
2600static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2601 struct bpf_func_state *state)
969bf05e 2602{
58e2af8b 2603 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2604 int i;
2605
2606 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2607 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2608 mark_reg_unknown(env, regs, i);
969bf05e 2609
f3709f69
JS
2610 bpf_for_each_spilled_reg(i, state, reg) {
2611 if (!reg)
969bf05e 2612 continue;
de8f3a83
DB
2613 if (reg_is_pkt_pointer_any(reg))
2614 __mark_reg_unknown(reg);
969bf05e
AS
2615 }
2616}
2617
f4d7e40a
AS
2618static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2619{
2620 struct bpf_verifier_state *vstate = env->cur_state;
2621 int i;
2622
2623 for (i = 0; i <= vstate->curframe; i++)
2624 __clear_all_pkt_pointers(env, vstate->frame[i]);
2625}
2626
fd978bf7
JS
2627static void release_reg_references(struct bpf_verifier_env *env,
2628 struct bpf_func_state *state, int id)
2629{
2630 struct bpf_reg_state *regs = state->regs, *reg;
2631 int i;
2632
2633 for (i = 0; i < MAX_BPF_REG; i++)
2634 if (regs[i].id == id)
2635 mark_reg_unknown(env, regs, i);
2636
2637 bpf_for_each_spilled_reg(i, state, reg) {
2638 if (!reg)
2639 continue;
2640 if (reg_is_refcounted(reg) && reg->id == id)
2641 __mark_reg_unknown(reg);
2642 }
2643}
2644
2645/* The pointer with the specified id has released its reference to kernel
2646 * resources. Identify all copies of the same pointer and clear the reference.
2647 */
2648static int release_reference(struct bpf_verifier_env *env,
2649 struct bpf_call_arg_meta *meta)
2650{
2651 struct bpf_verifier_state *vstate = env->cur_state;
2652 int i;
2653
2654 for (i = 0; i <= vstate->curframe; i++)
2655 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2656
2657 return release_reference_state(env, meta->ptr_id);
2658}
2659
f4d7e40a
AS
2660static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2661 int *insn_idx)
2662{
2663 struct bpf_verifier_state *state = env->cur_state;
2664 struct bpf_func_state *caller, *callee;
fd978bf7 2665 int i, err, subprog, target_insn;
f4d7e40a 2666
aada9ce6 2667 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2668 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2669 state->curframe + 2);
f4d7e40a
AS
2670 return -E2BIG;
2671 }
2672
2673 target_insn = *insn_idx + insn->imm;
2674 subprog = find_subprog(env, target_insn + 1);
2675 if (subprog < 0) {
2676 verbose(env, "verifier bug. No program starts at insn %d\n",
2677 target_insn + 1);
2678 return -EFAULT;
2679 }
2680
2681 caller = state->frame[state->curframe];
2682 if (state->frame[state->curframe + 1]) {
2683 verbose(env, "verifier bug. Frame %d already allocated\n",
2684 state->curframe + 1);
2685 return -EFAULT;
2686 }
2687
2688 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2689 if (!callee)
2690 return -ENOMEM;
2691 state->frame[state->curframe + 1] = callee;
2692
2693 /* callee cannot access r0, r6 - r9 for reading and has to write
2694 * into its own stack before reading from it.
2695 * callee can read/write into caller's stack
2696 */
2697 init_func_state(env, callee,
2698 /* remember the callsite, it will be used by bpf_exit */
2699 *insn_idx /* callsite */,
2700 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2701 subprog /* subprog number within this prog */);
f4d7e40a 2702
fd978bf7
JS
2703 /* Transfer references to the callee */
2704 err = transfer_reference_state(callee, caller);
2705 if (err)
2706 return err;
2707
679c782d
EC
2708 /* copy r1 - r5 args that callee can access. The copy includes parent
2709 * pointers, which connects us up to the liveness chain
2710 */
f4d7e40a
AS
2711 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2712 callee->regs[i] = caller->regs[i];
2713
679c782d 2714 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2715 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2716 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2717 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2718 }
2719
2720 /* only increment it after check_reg_arg() finished */
2721 state->curframe++;
2722
2723 /* and go analyze first insn of the callee */
2724 *insn_idx = target_insn;
2725
2726 if (env->log.level) {
2727 verbose(env, "caller:\n");
2728 print_verifier_state(env, caller);
2729 verbose(env, "callee:\n");
2730 print_verifier_state(env, callee);
2731 }
2732 return 0;
2733}
2734
2735static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2736{
2737 struct bpf_verifier_state *state = env->cur_state;
2738 struct bpf_func_state *caller, *callee;
2739 struct bpf_reg_state *r0;
fd978bf7 2740 int err;
f4d7e40a
AS
2741
2742 callee = state->frame[state->curframe];
2743 r0 = &callee->regs[BPF_REG_0];
2744 if (r0->type == PTR_TO_STACK) {
2745 /* technically it's ok to return caller's stack pointer
2746 * (or caller's caller's pointer) back to the caller,
2747 * since these pointers are valid. Only current stack
2748 * pointer will be invalid as soon as function exits,
2749 * but let's be conservative
2750 */
2751 verbose(env, "cannot return stack pointer to the caller\n");
2752 return -EINVAL;
2753 }
2754
2755 state->curframe--;
2756 caller = state->frame[state->curframe];
2757 /* return to the caller whatever r0 had in the callee */
2758 caller->regs[BPF_REG_0] = *r0;
2759
fd978bf7
JS
2760 /* Transfer references to the caller */
2761 err = transfer_reference_state(caller, callee);
2762 if (err)
2763 return err;
2764
f4d7e40a
AS
2765 *insn_idx = callee->callsite + 1;
2766 if (env->log.level) {
2767 verbose(env, "returning from callee:\n");
2768 print_verifier_state(env, callee);
2769 verbose(env, "to caller at %d:\n", *insn_idx);
2770 print_verifier_state(env, caller);
2771 }
2772 /* clear everything in the callee */
2773 free_func_state(callee);
2774 state->frame[state->curframe + 1] = NULL;
2775 return 0;
2776}
2777
849fa506
YS
2778static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2779 int func_id,
2780 struct bpf_call_arg_meta *meta)
2781{
2782 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2783
2784 if (ret_type != RET_INTEGER ||
2785 (func_id != BPF_FUNC_get_stack &&
2786 func_id != BPF_FUNC_probe_read_str))
2787 return;
2788
2789 ret_reg->smax_value = meta->msize_smax_value;
2790 ret_reg->umax_value = meta->msize_umax_value;
2791 __reg_deduce_bounds(ret_reg);
2792 __reg_bound_offset(ret_reg);
2793}
2794
c93552c4
DB
2795static int
2796record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2797 int func_id, int insn_idx)
2798{
2799 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2800
2801 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2802 func_id != BPF_FUNC_map_lookup_elem &&
2803 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2804 func_id != BPF_FUNC_map_delete_elem &&
2805 func_id != BPF_FUNC_map_push_elem &&
2806 func_id != BPF_FUNC_map_pop_elem &&
2807 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2808 return 0;
09772d92 2809
c93552c4
DB
2810 if (meta->map_ptr == NULL) {
2811 verbose(env, "kernel subsystem misconfigured verifier\n");
2812 return -EINVAL;
2813 }
2814
2815 if (!BPF_MAP_PTR(aux->map_state))
2816 bpf_map_ptr_store(aux, meta->map_ptr,
2817 meta->map_ptr->unpriv_array);
2818 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2819 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2820 meta->map_ptr->unpriv_array);
2821 return 0;
2822}
2823
fd978bf7
JS
2824static int check_reference_leak(struct bpf_verifier_env *env)
2825{
2826 struct bpf_func_state *state = cur_func(env);
2827 int i;
2828
2829 for (i = 0; i < state->acquired_refs; i++) {
2830 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2831 state->refs[i].id, state->refs[i].insn_idx);
2832 }
2833 return state->acquired_refs ? -EINVAL : 0;
2834}
2835
f4d7e40a 2836static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2837{
17a52670 2838 const struct bpf_func_proto *fn = NULL;
638f5b90 2839 struct bpf_reg_state *regs;
33ff9823 2840 struct bpf_call_arg_meta meta;
969bf05e 2841 bool changes_data;
17a52670
AS
2842 int i, err;
2843
2844 /* find function prototype */
2845 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2846 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2847 func_id);
17a52670
AS
2848 return -EINVAL;
2849 }
2850
00176a34 2851 if (env->ops->get_func_proto)
5e43f899 2852 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2853 if (!fn) {
61bd5218
JK
2854 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2855 func_id);
17a52670
AS
2856 return -EINVAL;
2857 }
2858
2859 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2860 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2861 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2862 return -EINVAL;
2863 }
2864
04514d13 2865 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2866 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2867 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2868 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2869 func_id_name(func_id), func_id);
2870 return -EINVAL;
2871 }
969bf05e 2872
33ff9823 2873 memset(&meta, 0, sizeof(meta));
36bbef52 2874 meta.pkt_access = fn->pkt_access;
33ff9823 2875
90133415 2876 err = check_func_proto(fn);
435faee1 2877 if (err) {
61bd5218 2878 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2879 func_id_name(func_id), func_id);
435faee1
DB
2880 return err;
2881 }
2882
17a52670 2883 /* check args */
33ff9823 2884 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2885 if (err)
2886 return err;
33ff9823 2887 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2888 if (err)
2889 return err;
33ff9823 2890 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2891 if (err)
2892 return err;
33ff9823 2893 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2894 if (err)
2895 return err;
33ff9823 2896 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2897 if (err)
2898 return err;
2899
c93552c4
DB
2900 err = record_func_map(env, &meta, func_id, insn_idx);
2901 if (err)
2902 return err;
2903
435faee1
DB
2904 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2905 * is inferred from register state.
2906 */
2907 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2908 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2909 BPF_WRITE, -1, false);
435faee1
DB
2910 if (err)
2911 return err;
2912 }
2913
fd978bf7
JS
2914 if (func_id == BPF_FUNC_tail_call) {
2915 err = check_reference_leak(env);
2916 if (err) {
2917 verbose(env, "tail_call would lead to reference leak\n");
2918 return err;
2919 }
2920 } else if (is_release_function(func_id)) {
2921 err = release_reference(env, &meta);
2922 if (err)
2923 return err;
2924 }
2925
638f5b90 2926 regs = cur_regs(env);
cd339431
RG
2927
2928 /* check that flags argument in get_local_storage(map, flags) is 0,
2929 * this is required because get_local_storage() can't return an error.
2930 */
2931 if (func_id == BPF_FUNC_get_local_storage &&
2932 !register_is_null(&regs[BPF_REG_2])) {
2933 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2934 return -EINVAL;
2935 }
2936
17a52670 2937 /* reset caller saved regs */
dc503a8a 2938 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2939 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2940 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2941 }
17a52670 2942
dc503a8a 2943 /* update return register (already marked as written above) */
17a52670 2944 if (fn->ret_type == RET_INTEGER) {
f1174f77 2945 /* sets type to SCALAR_VALUE */
61bd5218 2946 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2947 } else if (fn->ret_type == RET_VOID) {
2948 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2949 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2950 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 2951 /* There is no offset yet applied, variable or fixed */
61bd5218 2952 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2953 /* remember map_ptr, so that check_map_access()
2954 * can check 'value_size' boundary of memory access
2955 * to map element returned from bpf_map_lookup_elem()
2956 */
33ff9823 2957 if (meta.map_ptr == NULL) {
61bd5218
JK
2958 verbose(env,
2959 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2960 return -EINVAL;
2961 }
33ff9823 2962 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
2963 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2964 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2965 } else {
2966 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2967 regs[BPF_REG_0].id = ++env->id_gen;
2968 }
c64b7983 2969 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
2970 int id = acquire_reference_state(env, insn_idx);
2971 if (id < 0)
2972 return id;
c64b7983
JS
2973 mark_reg_known_zero(env, regs, BPF_REG_0);
2974 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 2975 regs[BPF_REG_0].id = id;
17a52670 2976 } else {
61bd5218 2977 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2978 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2979 return -EINVAL;
2980 }
04fd61ab 2981
849fa506
YS
2982 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2983
61bd5218 2984 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2985 if (err)
2986 return err;
04fd61ab 2987
c195651e
YS
2988 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2989 const char *err_str;
2990
2991#ifdef CONFIG_PERF_EVENTS
2992 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2993 err_str = "cannot get callchain buffer for func %s#%d\n";
2994#else
2995 err = -ENOTSUPP;
2996 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2997#endif
2998 if (err) {
2999 verbose(env, err_str, func_id_name(func_id), func_id);
3000 return err;
3001 }
3002
3003 env->prog->has_callchain_buf = true;
3004 }
3005
969bf05e
AS
3006 if (changes_data)
3007 clear_all_pkt_pointers(env);
3008 return 0;
3009}
3010
b03c9f9f
EC
3011static bool signed_add_overflows(s64 a, s64 b)
3012{
3013 /* Do the add in u64, where overflow is well-defined */
3014 s64 res = (s64)((u64)a + (u64)b);
3015
3016 if (b < 0)
3017 return res > a;
3018 return res < a;
3019}
3020
3021static bool signed_sub_overflows(s64 a, s64 b)
3022{
3023 /* Do the sub in u64, where overflow is well-defined */
3024 s64 res = (s64)((u64)a - (u64)b);
3025
3026 if (b < 0)
3027 return res < a;
3028 return res > a;
969bf05e
AS
3029}
3030
bb7f0f98
AS
3031static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3032 const struct bpf_reg_state *reg,
3033 enum bpf_reg_type type)
3034{
3035 bool known = tnum_is_const(reg->var_off);
3036 s64 val = reg->var_off.value;
3037 s64 smin = reg->smin_value;
3038
3039 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3040 verbose(env, "math between %s pointer and %lld is not allowed\n",
3041 reg_type_str[type], val);
3042 return false;
3043 }
3044
3045 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3046 verbose(env, "%s pointer offset %d is not allowed\n",
3047 reg_type_str[type], reg->off);
3048 return false;
3049 }
3050
3051 if (smin == S64_MIN) {
3052 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3053 reg_type_str[type]);
3054 return false;
3055 }
3056
3057 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3058 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3059 smin, reg_type_str[type]);
3060 return false;
3061 }
3062
3063 return true;
3064}
3065
f1174f77 3066/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3067 * Caller should also handle BPF_MOV case separately.
3068 * If we return -EACCES, caller may want to try again treating pointer as a
3069 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3070 */
3071static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3072 struct bpf_insn *insn,
3073 const struct bpf_reg_state *ptr_reg,
3074 const struct bpf_reg_state *off_reg)
969bf05e 3075{
f4d7e40a
AS
3076 struct bpf_verifier_state *vstate = env->cur_state;
3077 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3078 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3079 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3080 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3081 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3082 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3083 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 3084 u8 opcode = BPF_OP(insn->code);
f1174f77 3085 u32 dst = insn->dst_reg;
969bf05e 3086
f1174f77 3087 dst_reg = &regs[dst];
969bf05e 3088
6f16101e
DB
3089 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3090 smin_val > smax_val || umin_val > umax_val) {
3091 /* Taint dst register if offset had invalid bounds derived from
3092 * e.g. dead branches.
3093 */
3094 __mark_reg_unknown(dst_reg);
3095 return 0;
f1174f77
EC
3096 }
3097
3098 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3099 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3100 verbose(env,
3101 "R%d 32-bit pointer arithmetic prohibited\n",
3102 dst);
f1174f77 3103 return -EACCES;
969bf05e
AS
3104 }
3105
aad2eeaf
JS
3106 switch (ptr_reg->type) {
3107 case PTR_TO_MAP_VALUE_OR_NULL:
3108 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3109 dst, reg_type_str[ptr_reg->type]);
f1174f77 3110 return -EACCES;
aad2eeaf
JS
3111 case CONST_PTR_TO_MAP:
3112 case PTR_TO_PACKET_END:
c64b7983
JS
3113 case PTR_TO_SOCKET:
3114 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
3115 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3116 dst, reg_type_str[ptr_reg->type]);
f1174f77 3117 return -EACCES;
aad2eeaf
JS
3118 default:
3119 break;
f1174f77
EC
3120 }
3121
3122 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3123 * The id may be overwritten later if we create a new variable offset.
969bf05e 3124 */
f1174f77
EC
3125 dst_reg->type = ptr_reg->type;
3126 dst_reg->id = ptr_reg->id;
969bf05e 3127
bb7f0f98
AS
3128 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3129 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3130 return -EINVAL;
3131
f1174f77
EC
3132 switch (opcode) {
3133 case BPF_ADD:
3134 /* We can take a fixed offset as long as it doesn't overflow
3135 * the s32 'off' field
969bf05e 3136 */
b03c9f9f
EC
3137 if (known && (ptr_reg->off + smin_val ==
3138 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3139 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3140 dst_reg->smin_value = smin_ptr;
3141 dst_reg->smax_value = smax_ptr;
3142 dst_reg->umin_value = umin_ptr;
3143 dst_reg->umax_value = umax_ptr;
f1174f77 3144 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3145 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3146 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3147 break;
3148 }
f1174f77
EC
3149 /* A new variable offset is created. Note that off_reg->off
3150 * == 0, since it's a scalar.
3151 * dst_reg gets the pointer type and since some positive
3152 * integer value was added to the pointer, give it a new 'id'
3153 * if it's a PTR_TO_PACKET.
3154 * this creates a new 'base' pointer, off_reg (variable) gets
3155 * added into the variable offset, and we copy the fixed offset
3156 * from ptr_reg.
969bf05e 3157 */
b03c9f9f
EC
3158 if (signed_add_overflows(smin_ptr, smin_val) ||
3159 signed_add_overflows(smax_ptr, smax_val)) {
3160 dst_reg->smin_value = S64_MIN;
3161 dst_reg->smax_value = S64_MAX;
3162 } else {
3163 dst_reg->smin_value = smin_ptr + smin_val;
3164 dst_reg->smax_value = smax_ptr + smax_val;
3165 }
3166 if (umin_ptr + umin_val < umin_ptr ||
3167 umax_ptr + umax_val < umax_ptr) {
3168 dst_reg->umin_value = 0;
3169 dst_reg->umax_value = U64_MAX;
3170 } else {
3171 dst_reg->umin_value = umin_ptr + umin_val;
3172 dst_reg->umax_value = umax_ptr + umax_val;
3173 }
f1174f77
EC
3174 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3175 dst_reg->off = ptr_reg->off;
0962590e 3176 dst_reg->raw = ptr_reg->raw;
de8f3a83 3177 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3178 dst_reg->id = ++env->id_gen;
3179 /* something was added to pkt_ptr, set range to zero */
0962590e 3180 dst_reg->raw = 0;
f1174f77
EC
3181 }
3182 break;
3183 case BPF_SUB:
3184 if (dst_reg == off_reg) {
3185 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3186 verbose(env, "R%d tried to subtract pointer from scalar\n",
3187 dst);
f1174f77
EC
3188 return -EACCES;
3189 }
3190 /* We don't allow subtraction from FP, because (according to
3191 * test_verifier.c test "invalid fp arithmetic", JITs might not
3192 * be able to deal with it.
969bf05e 3193 */
f1174f77 3194 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3195 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3196 dst);
f1174f77
EC
3197 return -EACCES;
3198 }
b03c9f9f
EC
3199 if (known && (ptr_reg->off - smin_val ==
3200 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3201 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3202 dst_reg->smin_value = smin_ptr;
3203 dst_reg->smax_value = smax_ptr;
3204 dst_reg->umin_value = umin_ptr;
3205 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3206 dst_reg->var_off = ptr_reg->var_off;
3207 dst_reg->id = ptr_reg->id;
b03c9f9f 3208 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3209 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3210 break;
3211 }
f1174f77
EC
3212 /* A new variable offset is created. If the subtrahend is known
3213 * nonnegative, then any reg->range we had before is still good.
969bf05e 3214 */
b03c9f9f
EC
3215 if (signed_sub_overflows(smin_ptr, smax_val) ||
3216 signed_sub_overflows(smax_ptr, smin_val)) {
3217 /* Overflow possible, we know nothing */
3218 dst_reg->smin_value = S64_MIN;
3219 dst_reg->smax_value = S64_MAX;
3220 } else {
3221 dst_reg->smin_value = smin_ptr - smax_val;
3222 dst_reg->smax_value = smax_ptr - smin_val;
3223 }
3224 if (umin_ptr < umax_val) {
3225 /* Overflow possible, we know nothing */
3226 dst_reg->umin_value = 0;
3227 dst_reg->umax_value = U64_MAX;
3228 } else {
3229 /* Cannot overflow (as long as bounds are consistent) */
3230 dst_reg->umin_value = umin_ptr - umax_val;
3231 dst_reg->umax_value = umax_ptr - umin_val;
3232 }
f1174f77
EC
3233 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3234 dst_reg->off = ptr_reg->off;
0962590e 3235 dst_reg->raw = ptr_reg->raw;
de8f3a83 3236 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3237 dst_reg->id = ++env->id_gen;
3238 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3239 if (smin_val < 0)
0962590e 3240 dst_reg->raw = 0;
43188702 3241 }
f1174f77
EC
3242 break;
3243 case BPF_AND:
3244 case BPF_OR:
3245 case BPF_XOR:
82abbf8d
AS
3246 /* bitwise ops on pointers are troublesome, prohibit. */
3247 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3248 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3249 return -EACCES;
3250 default:
3251 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3252 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3253 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3254 return -EACCES;
43188702
JF
3255 }
3256
bb7f0f98
AS
3257 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3258 return -EINVAL;
3259
b03c9f9f
EC
3260 __update_reg_bounds(dst_reg);
3261 __reg_deduce_bounds(dst_reg);
3262 __reg_bound_offset(dst_reg);
0d6303db
DB
3263
3264 /* For unprivileged we require that resulting offset must be in bounds
3265 * in order to be able to sanitize access later on.
3266 */
e4298d25
DB
3267 if (!env->allow_ptr_leaks) {
3268 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3269 check_map_access(env, dst, dst_reg->off, 1, false)) {
3270 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3271 "prohibited for !root\n", dst);
3272 return -EACCES;
3273 } else if (dst_reg->type == PTR_TO_STACK &&
3274 check_stack_access(env, dst_reg, dst_reg->off +
3275 dst_reg->var_off.value, 1)) {
3276 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3277 "prohibited for !root\n", dst);
3278 return -EACCES;
3279 }
0d6303db
DB
3280 }
3281
43188702
JF
3282 return 0;
3283}
3284
468f6eaf
JH
3285/* WARNING: This function does calculations on 64-bit values, but the actual
3286 * execution may occur on 32-bit values. Therefore, things like bitshifts
3287 * need extra checks in the 32-bit case.
3288 */
f1174f77
EC
3289static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3290 struct bpf_insn *insn,
3291 struct bpf_reg_state *dst_reg,
3292 struct bpf_reg_state src_reg)
969bf05e 3293{
638f5b90 3294 struct bpf_reg_state *regs = cur_regs(env);
48461135 3295 u8 opcode = BPF_OP(insn->code);
f1174f77 3296 bool src_known, dst_known;
b03c9f9f
EC
3297 s64 smin_val, smax_val;
3298 u64 umin_val, umax_val;
468f6eaf 3299 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 3300
b799207e
JH
3301 if (insn_bitness == 32) {
3302 /* Relevant for 32-bit RSH: Information can propagate towards
3303 * LSB, so it isn't sufficient to only truncate the output to
3304 * 32 bits.
3305 */
3306 coerce_reg_to_size(dst_reg, 4);
3307 coerce_reg_to_size(&src_reg, 4);
3308 }
3309
b03c9f9f
EC
3310 smin_val = src_reg.smin_value;
3311 smax_val = src_reg.smax_value;
3312 umin_val = src_reg.umin_value;
3313 umax_val = src_reg.umax_value;
f1174f77
EC
3314 src_known = tnum_is_const(src_reg.var_off);
3315 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3316
6f16101e
DB
3317 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3318 smin_val > smax_val || umin_val > umax_val) {
3319 /* Taint dst register if offset had invalid bounds derived from
3320 * e.g. dead branches.
3321 */
3322 __mark_reg_unknown(dst_reg);
3323 return 0;
3324 }
3325
bb7f0f98
AS
3326 if (!src_known &&
3327 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3328 __mark_reg_unknown(dst_reg);
3329 return 0;
3330 }
3331
48461135
JB
3332 switch (opcode) {
3333 case BPF_ADD:
b03c9f9f
EC
3334 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3335 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3336 dst_reg->smin_value = S64_MIN;
3337 dst_reg->smax_value = S64_MAX;
3338 } else {
3339 dst_reg->smin_value += smin_val;
3340 dst_reg->smax_value += smax_val;
3341 }
3342 if (dst_reg->umin_value + umin_val < umin_val ||
3343 dst_reg->umax_value + umax_val < umax_val) {
3344 dst_reg->umin_value = 0;
3345 dst_reg->umax_value = U64_MAX;
3346 } else {
3347 dst_reg->umin_value += umin_val;
3348 dst_reg->umax_value += umax_val;
3349 }
f1174f77 3350 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3351 break;
3352 case BPF_SUB:
b03c9f9f
EC
3353 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3354 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3355 /* Overflow possible, we know nothing */
3356 dst_reg->smin_value = S64_MIN;
3357 dst_reg->smax_value = S64_MAX;
3358 } else {
3359 dst_reg->smin_value -= smax_val;
3360 dst_reg->smax_value -= smin_val;
3361 }
3362 if (dst_reg->umin_value < umax_val) {
3363 /* Overflow possible, we know nothing */
3364 dst_reg->umin_value = 0;
3365 dst_reg->umax_value = U64_MAX;
3366 } else {
3367 /* Cannot overflow (as long as bounds are consistent) */
3368 dst_reg->umin_value -= umax_val;
3369 dst_reg->umax_value -= umin_val;
3370 }
f1174f77 3371 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3372 break;
3373 case BPF_MUL:
b03c9f9f
EC
3374 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3375 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3376 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3377 __mark_reg_unbounded(dst_reg);
3378 __update_reg_bounds(dst_reg);
f1174f77
EC
3379 break;
3380 }
b03c9f9f
EC
3381 /* Both values are positive, so we can work with unsigned and
3382 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3383 */
b03c9f9f
EC
3384 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3385 /* Potential overflow, we know nothing */
3386 __mark_reg_unbounded(dst_reg);
3387 /* (except what we can learn from the var_off) */
3388 __update_reg_bounds(dst_reg);
3389 break;
3390 }
3391 dst_reg->umin_value *= umin_val;
3392 dst_reg->umax_value *= umax_val;
3393 if (dst_reg->umax_value > S64_MAX) {
3394 /* Overflow possible, we know nothing */
3395 dst_reg->smin_value = S64_MIN;
3396 dst_reg->smax_value = S64_MAX;
3397 } else {
3398 dst_reg->smin_value = dst_reg->umin_value;
3399 dst_reg->smax_value = dst_reg->umax_value;
3400 }
48461135
JB
3401 break;
3402 case BPF_AND:
f1174f77 3403 if (src_known && dst_known) {
b03c9f9f
EC
3404 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3405 src_reg.var_off.value);
f1174f77
EC
3406 break;
3407 }
b03c9f9f
EC
3408 /* We get our minimum from the var_off, since that's inherently
3409 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3410 */
f1174f77 3411 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3412 dst_reg->umin_value = dst_reg->var_off.value;
3413 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3414 if (dst_reg->smin_value < 0 || smin_val < 0) {
3415 /* Lose signed bounds when ANDing negative numbers,
3416 * ain't nobody got time for that.
3417 */
3418 dst_reg->smin_value = S64_MIN;
3419 dst_reg->smax_value = S64_MAX;
3420 } else {
3421 /* ANDing two positives gives a positive, so safe to
3422 * cast result into s64.
3423 */
3424 dst_reg->smin_value = dst_reg->umin_value;
3425 dst_reg->smax_value = dst_reg->umax_value;
3426 }
3427 /* We may learn something more from the var_off */
3428 __update_reg_bounds(dst_reg);
f1174f77
EC
3429 break;
3430 case BPF_OR:
3431 if (src_known && dst_known) {
b03c9f9f
EC
3432 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3433 src_reg.var_off.value);
f1174f77
EC
3434 break;
3435 }
b03c9f9f
EC
3436 /* We get our maximum from the var_off, and our minimum is the
3437 * maximum of the operands' minima
f1174f77
EC
3438 */
3439 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3440 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3441 dst_reg->umax_value = dst_reg->var_off.value |
3442 dst_reg->var_off.mask;
3443 if (dst_reg->smin_value < 0 || smin_val < 0) {
3444 /* Lose signed bounds when ORing negative numbers,
3445 * ain't nobody got time for that.
3446 */
3447 dst_reg->smin_value = S64_MIN;
3448 dst_reg->smax_value = S64_MAX;
f1174f77 3449 } else {
b03c9f9f
EC
3450 /* ORing two positives gives a positive, so safe to
3451 * cast result into s64.
3452 */
3453 dst_reg->smin_value = dst_reg->umin_value;
3454 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3455 }
b03c9f9f
EC
3456 /* We may learn something more from the var_off */
3457 __update_reg_bounds(dst_reg);
48461135
JB
3458 break;
3459 case BPF_LSH:
468f6eaf
JH
3460 if (umax_val >= insn_bitness) {
3461 /* Shifts greater than 31 or 63 are undefined.
3462 * This includes shifts by a negative number.
b03c9f9f 3463 */
61bd5218 3464 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3465 break;
3466 }
b03c9f9f
EC
3467 /* We lose all sign bit information (except what we can pick
3468 * up from var_off)
48461135 3469 */
b03c9f9f
EC
3470 dst_reg->smin_value = S64_MIN;
3471 dst_reg->smax_value = S64_MAX;
3472 /* If we might shift our top bit out, then we know nothing */
3473 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3474 dst_reg->umin_value = 0;
3475 dst_reg->umax_value = U64_MAX;
d1174416 3476 } else {
b03c9f9f
EC
3477 dst_reg->umin_value <<= umin_val;
3478 dst_reg->umax_value <<= umax_val;
d1174416 3479 }
afbe1a5b 3480 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3481 /* We may learn something more from the var_off */
3482 __update_reg_bounds(dst_reg);
48461135
JB
3483 break;
3484 case BPF_RSH:
468f6eaf
JH
3485 if (umax_val >= insn_bitness) {
3486 /* Shifts greater than 31 or 63 are undefined.
3487 * This includes shifts by a negative number.
b03c9f9f 3488 */
61bd5218 3489 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3490 break;
3491 }
4374f256
EC
3492 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3493 * be negative, then either:
3494 * 1) src_reg might be zero, so the sign bit of the result is
3495 * unknown, so we lose our signed bounds
3496 * 2) it's known negative, thus the unsigned bounds capture the
3497 * signed bounds
3498 * 3) the signed bounds cross zero, so they tell us nothing
3499 * about the result
3500 * If the value in dst_reg is known nonnegative, then again the
3501 * unsigned bounts capture the signed bounds.
3502 * Thus, in all cases it suffices to blow away our signed bounds
3503 * and rely on inferring new ones from the unsigned bounds and
3504 * var_off of the result.
3505 */
3506 dst_reg->smin_value = S64_MIN;
3507 dst_reg->smax_value = S64_MAX;
afbe1a5b 3508 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3509 dst_reg->umin_value >>= umax_val;
3510 dst_reg->umax_value >>= umin_val;
3511 /* We may learn something more from the var_off */
3512 __update_reg_bounds(dst_reg);
48461135 3513 break;
9cbe1f5a
YS
3514 case BPF_ARSH:
3515 if (umax_val >= insn_bitness) {
3516 /* Shifts greater than 31 or 63 are undefined.
3517 * This includes shifts by a negative number.
3518 */
3519 mark_reg_unknown(env, regs, insn->dst_reg);
3520 break;
3521 }
3522
3523 /* Upon reaching here, src_known is true and
3524 * umax_val is equal to umin_val.
3525 */
3526 dst_reg->smin_value >>= umin_val;
3527 dst_reg->smax_value >>= umin_val;
3528 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3529
3530 /* blow away the dst_reg umin_value/umax_value and rely on
3531 * dst_reg var_off to refine the result.
3532 */
3533 dst_reg->umin_value = 0;
3534 dst_reg->umax_value = U64_MAX;
3535 __update_reg_bounds(dst_reg);
3536 break;
48461135 3537 default:
61bd5218 3538 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3539 break;
3540 }
3541
468f6eaf
JH
3542 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3543 /* 32-bit ALU ops are (32,32)->32 */
3544 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3545 }
3546
b03c9f9f
EC
3547 __reg_deduce_bounds(dst_reg);
3548 __reg_bound_offset(dst_reg);
f1174f77
EC
3549 return 0;
3550}
3551
3552/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3553 * and var_off.
3554 */
3555static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3556 struct bpf_insn *insn)
3557{
f4d7e40a
AS
3558 struct bpf_verifier_state *vstate = env->cur_state;
3559 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3560 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3561 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3562 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3563
3564 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3565 src_reg = NULL;
3566 if (dst_reg->type != SCALAR_VALUE)
3567 ptr_reg = dst_reg;
3568 if (BPF_SRC(insn->code) == BPF_X) {
3569 src_reg = &regs[insn->src_reg];
f1174f77
EC
3570 if (src_reg->type != SCALAR_VALUE) {
3571 if (dst_reg->type != SCALAR_VALUE) {
3572 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3573 * an arbitrary scalar. Disallow all math except
3574 * pointer subtraction
f1174f77 3575 */
dd066823 3576 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3577 mark_reg_unknown(env, regs, insn->dst_reg);
3578 return 0;
f1174f77 3579 }
82abbf8d
AS
3580 verbose(env, "R%d pointer %s pointer prohibited\n",
3581 insn->dst_reg,
3582 bpf_alu_string[opcode >> 4]);
3583 return -EACCES;
f1174f77
EC
3584 } else {
3585 /* scalar += pointer
3586 * This is legal, but we have to reverse our
3587 * src/dest handling in computing the range
3588 */
82abbf8d
AS
3589 return adjust_ptr_min_max_vals(env, insn,
3590 src_reg, dst_reg);
f1174f77
EC
3591 }
3592 } else if (ptr_reg) {
3593 /* pointer += scalar */
82abbf8d
AS
3594 return adjust_ptr_min_max_vals(env, insn,
3595 dst_reg, src_reg);
f1174f77
EC
3596 }
3597 } else {
3598 /* Pretend the src is a reg with a known value, since we only
3599 * need to be able to read from this state.
3600 */
3601 off_reg.type = SCALAR_VALUE;
b03c9f9f 3602 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3603 src_reg = &off_reg;
82abbf8d
AS
3604 if (ptr_reg) /* pointer += K */
3605 return adjust_ptr_min_max_vals(env, insn,
3606 ptr_reg, src_reg);
f1174f77
EC
3607 }
3608
3609 /* Got here implies adding two SCALAR_VALUEs */
3610 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3611 print_verifier_state(env, state);
61bd5218 3612 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3613 return -EINVAL;
3614 }
3615 if (WARN_ON(!src_reg)) {
f4d7e40a 3616 print_verifier_state(env, state);
61bd5218 3617 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3618 return -EINVAL;
3619 }
3620 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3621}
3622
17a52670 3623/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3624static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3625{
638f5b90 3626 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3627 u8 opcode = BPF_OP(insn->code);
3628 int err;
3629
3630 if (opcode == BPF_END || opcode == BPF_NEG) {
3631 if (opcode == BPF_NEG) {
3632 if (BPF_SRC(insn->code) != 0 ||
3633 insn->src_reg != BPF_REG_0 ||
3634 insn->off != 0 || insn->imm != 0) {
61bd5218 3635 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3636 return -EINVAL;
3637 }
3638 } else {
3639 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3640 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3641 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3642 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3643 return -EINVAL;
3644 }
3645 }
3646
3647 /* check src operand */
dc503a8a 3648 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3649 if (err)
3650 return err;
3651
1be7f75d 3652 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3653 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3654 insn->dst_reg);
3655 return -EACCES;
3656 }
3657
17a52670 3658 /* check dest operand */
dc503a8a 3659 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3660 if (err)
3661 return err;
3662
3663 } else if (opcode == BPF_MOV) {
3664
3665 if (BPF_SRC(insn->code) == BPF_X) {
3666 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3667 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3668 return -EINVAL;
3669 }
3670
3671 /* check src operand */
dc503a8a 3672 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3673 if (err)
3674 return err;
3675 } else {
3676 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3677 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3678 return -EINVAL;
3679 }
3680 }
3681
fbeb1603
AF
3682 /* check dest operand, mark as required later */
3683 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3684 if (err)
3685 return err;
3686
3687 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
3688 struct bpf_reg_state *src_reg = regs + insn->src_reg;
3689 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
3690
17a52670
AS
3691 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3692 /* case: R1 = R2
3693 * copy register state to dest reg
3694 */
e434b8cd
JW
3695 *dst_reg = *src_reg;
3696 dst_reg->live |= REG_LIVE_WRITTEN;
17a52670 3697 } else {
f1174f77 3698 /* R1 = (u32) R2 */
1be7f75d 3699 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3700 verbose(env,
3701 "R%d partial copy of pointer\n",
1be7f75d
AS
3702 insn->src_reg);
3703 return -EACCES;
e434b8cd
JW
3704 } else if (src_reg->type == SCALAR_VALUE) {
3705 *dst_reg = *src_reg;
3706 dst_reg->live |= REG_LIVE_WRITTEN;
3707 } else {
3708 mark_reg_unknown(env, regs,
3709 insn->dst_reg);
1be7f75d 3710 }
e434b8cd 3711 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
3712 }
3713 } else {
3714 /* case: R = imm
3715 * remember the value we stored into this reg
3716 */
fbeb1603
AF
3717 /* clear any state __mark_reg_known doesn't set */
3718 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3719 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3720 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3721 __mark_reg_known(regs + insn->dst_reg,
3722 insn->imm);
3723 } else {
3724 __mark_reg_known(regs + insn->dst_reg,
3725 (u32)insn->imm);
3726 }
17a52670
AS
3727 }
3728
3729 } else if (opcode > BPF_END) {
61bd5218 3730 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3731 return -EINVAL;
3732
3733 } else { /* all other ALU ops: and, sub, xor, add, ... */
3734
17a52670
AS
3735 if (BPF_SRC(insn->code) == BPF_X) {
3736 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3737 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3738 return -EINVAL;
3739 }
3740 /* check src1 operand */
dc503a8a 3741 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3742 if (err)
3743 return err;
3744 } else {
3745 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3746 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3747 return -EINVAL;
3748 }
3749 }
3750
3751 /* check src2 operand */
dc503a8a 3752 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3753 if (err)
3754 return err;
3755
3756 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3757 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3758 verbose(env, "div by zero\n");
17a52670
AS
3759 return -EINVAL;
3760 }
3761
229394e8
RV
3762 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3763 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3764 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3765
3766 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3767 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3768 return -EINVAL;
3769 }
3770 }
3771
1a0dc1ac 3772 /* check dest operand */
dc503a8a 3773 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3774 if (err)
3775 return err;
3776
f1174f77 3777 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3778 }
3779
3780 return 0;
3781}
3782
f4d7e40a 3783static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3784 struct bpf_reg_state *dst_reg,
f8ddadc4 3785 enum bpf_reg_type type,
fb2a311a 3786 bool range_right_open)
969bf05e 3787{
f4d7e40a 3788 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3789 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3790 u16 new_range;
f4d7e40a 3791 int i, j;
2d2be8ca 3792
fb2a311a
DB
3793 if (dst_reg->off < 0 ||
3794 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3795 /* This doesn't give us any range */
3796 return;
3797
b03c9f9f
EC
3798 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3799 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3800 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3801 * than pkt_end, but that's because it's also less than pkt.
3802 */
3803 return;
3804
fb2a311a
DB
3805 new_range = dst_reg->off;
3806 if (range_right_open)
3807 new_range--;
3808
3809 /* Examples for register markings:
2d2be8ca 3810 *
fb2a311a 3811 * pkt_data in dst register:
2d2be8ca
DB
3812 *
3813 * r2 = r3;
3814 * r2 += 8;
3815 * if (r2 > pkt_end) goto <handle exception>
3816 * <access okay>
3817 *
b4e432f1
DB
3818 * r2 = r3;
3819 * r2 += 8;
3820 * if (r2 < pkt_end) goto <access okay>
3821 * <handle exception>
3822 *
2d2be8ca
DB
3823 * Where:
3824 * r2 == dst_reg, pkt_end == src_reg
3825 * r2=pkt(id=n,off=8,r=0)
3826 * r3=pkt(id=n,off=0,r=0)
3827 *
fb2a311a 3828 * pkt_data in src register:
2d2be8ca
DB
3829 *
3830 * r2 = r3;
3831 * r2 += 8;
3832 * if (pkt_end >= r2) goto <access okay>
3833 * <handle exception>
3834 *
b4e432f1
DB
3835 * r2 = r3;
3836 * r2 += 8;
3837 * if (pkt_end <= r2) goto <handle exception>
3838 * <access okay>
3839 *
2d2be8ca
DB
3840 * Where:
3841 * pkt_end == dst_reg, r2 == src_reg
3842 * r2=pkt(id=n,off=8,r=0)
3843 * r3=pkt(id=n,off=0,r=0)
3844 *
3845 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3846 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3847 * and [r3, r3 + 8-1) respectively is safe to access depending on
3848 * the check.
969bf05e 3849 */
2d2be8ca 3850
f1174f77
EC
3851 /* If our ids match, then we must have the same max_value. And we
3852 * don't care about the other reg's fixed offset, since if it's too big
3853 * the range won't allow anything.
3854 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3855 */
969bf05e 3856 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3857 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3858 /* keep the maximum range already checked */
fb2a311a 3859 regs[i].range = max(regs[i].range, new_range);
969bf05e 3860
f4d7e40a
AS
3861 for (j = 0; j <= vstate->curframe; j++) {
3862 state = vstate->frame[j];
f3709f69
JS
3863 bpf_for_each_spilled_reg(i, state, reg) {
3864 if (!reg)
f4d7e40a 3865 continue;
f4d7e40a
AS
3866 if (reg->type == type && reg->id == dst_reg->id)
3867 reg->range = max(reg->range, new_range);
3868 }
969bf05e
AS
3869 }
3870}
3871
4f7b3e82
AS
3872/* compute branch direction of the expression "if (reg opcode val) goto target;"
3873 * and return:
3874 * 1 - branch will be taken and "goto target" will be executed
3875 * 0 - branch will not be taken and fall-through to next insn
3876 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3877 */
3878static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3879{
3880 if (__is_pointer_value(false, reg))
3881 return -1;
3882
3883 switch (opcode) {
3884 case BPF_JEQ:
3885 if (tnum_is_const(reg->var_off))
3886 return !!tnum_equals_const(reg->var_off, val);
3887 break;
3888 case BPF_JNE:
3889 if (tnum_is_const(reg->var_off))
3890 return !tnum_equals_const(reg->var_off, val);
3891 break;
960ea056
JK
3892 case BPF_JSET:
3893 if ((~reg->var_off.mask & reg->var_off.value) & val)
3894 return 1;
3895 if (!((reg->var_off.mask | reg->var_off.value) & val))
3896 return 0;
3897 break;
4f7b3e82
AS
3898 case BPF_JGT:
3899 if (reg->umin_value > val)
3900 return 1;
3901 else if (reg->umax_value <= val)
3902 return 0;
3903 break;
3904 case BPF_JSGT:
3905 if (reg->smin_value > (s64)val)
3906 return 1;
3907 else if (reg->smax_value < (s64)val)
3908 return 0;
3909 break;
3910 case BPF_JLT:
3911 if (reg->umax_value < val)
3912 return 1;
3913 else if (reg->umin_value >= val)
3914 return 0;
3915 break;
3916 case BPF_JSLT:
3917 if (reg->smax_value < (s64)val)
3918 return 1;
3919 else if (reg->smin_value >= (s64)val)
3920 return 0;
3921 break;
3922 case BPF_JGE:
3923 if (reg->umin_value >= val)
3924 return 1;
3925 else if (reg->umax_value < val)
3926 return 0;
3927 break;
3928 case BPF_JSGE:
3929 if (reg->smin_value >= (s64)val)
3930 return 1;
3931 else if (reg->smax_value < (s64)val)
3932 return 0;
3933 break;
3934 case BPF_JLE:
3935 if (reg->umax_value <= val)
3936 return 1;
3937 else if (reg->umin_value > val)
3938 return 0;
3939 break;
3940 case BPF_JSLE:
3941 if (reg->smax_value <= (s64)val)
3942 return 1;
3943 else if (reg->smin_value > (s64)val)
3944 return 0;
3945 break;
3946 }
3947
3948 return -1;
3949}
3950
48461135
JB
3951/* Adjusts the register min/max values in the case that the dst_reg is the
3952 * variable register that we are working on, and src_reg is a constant or we're
3953 * simply doing a BPF_K check.
f1174f77 3954 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3955 */
3956static void reg_set_min_max(struct bpf_reg_state *true_reg,
3957 struct bpf_reg_state *false_reg, u64 val,
3958 u8 opcode)
3959{
f1174f77
EC
3960 /* If the dst_reg is a pointer, we can't learn anything about its
3961 * variable offset from the compare (unless src_reg were a pointer into
3962 * the same object, but we don't bother with that.
3963 * Since false_reg and true_reg have the same type by construction, we
3964 * only need to check one of them for pointerness.
3965 */
3966 if (__is_pointer_value(false, false_reg))
3967 return;
4cabc5b1 3968
48461135
JB
3969 switch (opcode) {
3970 case BPF_JEQ:
3971 /* If this is false then we know nothing Jon Snow, but if it is
3972 * true then we know for sure.
3973 */
b03c9f9f 3974 __mark_reg_known(true_reg, val);
48461135
JB
3975 break;
3976 case BPF_JNE:
3977 /* If this is true we know nothing Jon Snow, but if it is false
3978 * we know the value for sure;
3979 */
b03c9f9f 3980 __mark_reg_known(false_reg, val);
48461135 3981 break;
960ea056
JK
3982 case BPF_JSET:
3983 false_reg->var_off = tnum_and(false_reg->var_off,
3984 tnum_const(~val));
3985 if (is_power_of_2(val))
3986 true_reg->var_off = tnum_or(true_reg->var_off,
3987 tnum_const(val));
3988 break;
48461135 3989 case BPF_JGT:
b03c9f9f
EC
3990 false_reg->umax_value = min(false_reg->umax_value, val);
3991 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3992 break;
48461135 3993 case BPF_JSGT:
b03c9f9f
EC
3994 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3995 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3996 break;
b4e432f1
DB
3997 case BPF_JLT:
3998 false_reg->umin_value = max(false_reg->umin_value, val);
3999 true_reg->umax_value = min(true_reg->umax_value, val - 1);
4000 break;
4001 case BPF_JSLT:
4002 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
4003 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
4004 break;
48461135 4005 case BPF_JGE:
b03c9f9f
EC
4006 false_reg->umax_value = min(false_reg->umax_value, val - 1);
4007 true_reg->umin_value = max(true_reg->umin_value, val);
4008 break;
48461135 4009 case BPF_JSGE:
b03c9f9f
EC
4010 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
4011 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 4012 break;
b4e432f1
DB
4013 case BPF_JLE:
4014 false_reg->umin_value = max(false_reg->umin_value, val + 1);
4015 true_reg->umax_value = min(true_reg->umax_value, val);
4016 break;
4017 case BPF_JSLE:
4018 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
4019 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
4020 break;
48461135
JB
4021 default:
4022 break;
4023 }
4024
b03c9f9f
EC
4025 __reg_deduce_bounds(false_reg);
4026 __reg_deduce_bounds(true_reg);
4027 /* We might have learned some bits from the bounds. */
4028 __reg_bound_offset(false_reg);
4029 __reg_bound_offset(true_reg);
4030 /* Intersecting with the old var_off might have improved our bounds
4031 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4032 * then new var_off is (0; 0x7f...fc) which improves our umax.
4033 */
4034 __update_reg_bounds(false_reg);
4035 __update_reg_bounds(true_reg);
48461135
JB
4036}
4037
f1174f77
EC
4038/* Same as above, but for the case that dst_reg holds a constant and src_reg is
4039 * the variable reg.
48461135
JB
4040 */
4041static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4042 struct bpf_reg_state *false_reg, u64 val,
4043 u8 opcode)
4044{
f1174f77
EC
4045 if (__is_pointer_value(false, false_reg))
4046 return;
4cabc5b1 4047
48461135
JB
4048 switch (opcode) {
4049 case BPF_JEQ:
4050 /* If this is false then we know nothing Jon Snow, but if it is
4051 * true then we know for sure.
4052 */
b03c9f9f 4053 __mark_reg_known(true_reg, val);
48461135
JB
4054 break;
4055 case BPF_JNE:
4056 /* If this is true we know nothing Jon Snow, but if it is false
4057 * we know the value for sure;
4058 */
b03c9f9f 4059 __mark_reg_known(false_reg, val);
48461135 4060 break;
960ea056
JK
4061 case BPF_JSET:
4062 false_reg->var_off = tnum_and(false_reg->var_off,
4063 tnum_const(~val));
4064 if (is_power_of_2(val))
4065 true_reg->var_off = tnum_or(true_reg->var_off,
4066 tnum_const(val));
4067 break;
48461135 4068 case BPF_JGT:
b03c9f9f
EC
4069 true_reg->umax_value = min(true_reg->umax_value, val - 1);
4070 false_reg->umin_value = max(false_reg->umin_value, val);
4071 break;
48461135 4072 case BPF_JSGT:
b03c9f9f
EC
4073 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
4074 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 4075 break;
b4e432f1
DB
4076 case BPF_JLT:
4077 true_reg->umin_value = max(true_reg->umin_value, val + 1);
4078 false_reg->umax_value = min(false_reg->umax_value, val);
4079 break;
4080 case BPF_JSLT:
4081 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
4082 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
4083 break;
48461135 4084 case BPF_JGE:
b03c9f9f
EC
4085 true_reg->umax_value = min(true_reg->umax_value, val);
4086 false_reg->umin_value = max(false_reg->umin_value, val + 1);
4087 break;
48461135 4088 case BPF_JSGE:
b03c9f9f
EC
4089 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
4090 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 4091 break;
b4e432f1
DB
4092 case BPF_JLE:
4093 true_reg->umin_value = max(true_reg->umin_value, val);
4094 false_reg->umax_value = min(false_reg->umax_value, val - 1);
4095 break;
4096 case BPF_JSLE:
4097 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
4098 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
4099 break;
48461135
JB
4100 default:
4101 break;
4102 }
4103
b03c9f9f
EC
4104 __reg_deduce_bounds(false_reg);
4105 __reg_deduce_bounds(true_reg);
4106 /* We might have learned some bits from the bounds. */
4107 __reg_bound_offset(false_reg);
4108 __reg_bound_offset(true_reg);
4109 /* Intersecting with the old var_off might have improved our bounds
4110 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4111 * then new var_off is (0; 0x7f...fc) which improves our umax.
4112 */
4113 __update_reg_bounds(false_reg);
4114 __update_reg_bounds(true_reg);
f1174f77
EC
4115}
4116
4117/* Regs are known to be equal, so intersect their min/max/var_off */
4118static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4119 struct bpf_reg_state *dst_reg)
4120{
b03c9f9f
EC
4121 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4122 dst_reg->umin_value);
4123 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4124 dst_reg->umax_value);
4125 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4126 dst_reg->smin_value);
4127 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4128 dst_reg->smax_value);
f1174f77
EC
4129 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4130 dst_reg->var_off);
b03c9f9f
EC
4131 /* We might have learned new bounds from the var_off. */
4132 __update_reg_bounds(src_reg);
4133 __update_reg_bounds(dst_reg);
4134 /* We might have learned something about the sign bit. */
4135 __reg_deduce_bounds(src_reg);
4136 __reg_deduce_bounds(dst_reg);
4137 /* We might have learned some bits from the bounds. */
4138 __reg_bound_offset(src_reg);
4139 __reg_bound_offset(dst_reg);
4140 /* Intersecting with the old var_off might have improved our bounds
4141 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4142 * then new var_off is (0; 0x7f...fc) which improves our umax.
4143 */
4144 __update_reg_bounds(src_reg);
4145 __update_reg_bounds(dst_reg);
f1174f77
EC
4146}
4147
4148static void reg_combine_min_max(struct bpf_reg_state *true_src,
4149 struct bpf_reg_state *true_dst,
4150 struct bpf_reg_state *false_src,
4151 struct bpf_reg_state *false_dst,
4152 u8 opcode)
4153{
4154 switch (opcode) {
4155 case BPF_JEQ:
4156 __reg_combine_min_max(true_src, true_dst);
4157 break;
4158 case BPF_JNE:
4159 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4160 break;
4cabc5b1 4161 }
48461135
JB
4162}
4163
fd978bf7
JS
4164static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4165 struct bpf_reg_state *reg, u32 id,
840b9615 4166 bool is_null)
57a09bf0 4167{
840b9615 4168 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4169 /* Old offset (both fixed and variable parts) should
4170 * have been known-zero, because we don't allow pointer
4171 * arithmetic on pointers that might be NULL.
4172 */
b03c9f9f
EC
4173 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4174 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4175 reg->off)) {
b03c9f9f
EC
4176 __mark_reg_known_zero(reg);
4177 reg->off = 0;
f1174f77
EC
4178 }
4179 if (is_null) {
4180 reg->type = SCALAR_VALUE;
840b9615
JS
4181 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4182 if (reg->map_ptr->inner_map_meta) {
4183 reg->type = CONST_PTR_TO_MAP;
4184 reg->map_ptr = reg->map_ptr->inner_map_meta;
4185 } else {
4186 reg->type = PTR_TO_MAP_VALUE;
4187 }
c64b7983
JS
4188 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4189 reg->type = PTR_TO_SOCKET;
56f668df 4190 }
fd978bf7
JS
4191 if (is_null || !reg_is_refcounted(reg)) {
4192 /* We don't need id from this point onwards anymore,
4193 * thus we should better reset it, so that state
4194 * pruning has chances to take effect.
4195 */
4196 reg->id = 0;
56f668df 4197 }
57a09bf0
TG
4198 }
4199}
4200
4201/* The logic is similar to find_good_pkt_pointers(), both could eventually
4202 * be folded together at some point.
4203 */
840b9615
JS
4204static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4205 bool is_null)
57a09bf0 4206{
f4d7e40a 4207 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4208 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 4209 u32 id = regs[regno].id;
f4d7e40a 4210 int i, j;
57a09bf0 4211
fd978bf7
JS
4212 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4213 __release_reference_state(state, id);
4214
57a09bf0 4215 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4216 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4217
f4d7e40a
AS
4218 for (j = 0; j <= vstate->curframe; j++) {
4219 state = vstate->frame[j];
f3709f69
JS
4220 bpf_for_each_spilled_reg(i, state, reg) {
4221 if (!reg)
f4d7e40a 4222 continue;
fd978bf7 4223 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4224 }
57a09bf0
TG
4225 }
4226}
4227
5beca081
DB
4228static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4229 struct bpf_reg_state *dst_reg,
4230 struct bpf_reg_state *src_reg,
4231 struct bpf_verifier_state *this_branch,
4232 struct bpf_verifier_state *other_branch)
4233{
4234 if (BPF_SRC(insn->code) != BPF_X)
4235 return false;
4236
4237 switch (BPF_OP(insn->code)) {
4238 case BPF_JGT:
4239 if ((dst_reg->type == PTR_TO_PACKET &&
4240 src_reg->type == PTR_TO_PACKET_END) ||
4241 (dst_reg->type == PTR_TO_PACKET_META &&
4242 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4243 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4244 find_good_pkt_pointers(this_branch, dst_reg,
4245 dst_reg->type, false);
4246 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4247 src_reg->type == PTR_TO_PACKET) ||
4248 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4249 src_reg->type == PTR_TO_PACKET_META)) {
4250 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4251 find_good_pkt_pointers(other_branch, src_reg,
4252 src_reg->type, true);
4253 } else {
4254 return false;
4255 }
4256 break;
4257 case BPF_JLT:
4258 if ((dst_reg->type == PTR_TO_PACKET &&
4259 src_reg->type == PTR_TO_PACKET_END) ||
4260 (dst_reg->type == PTR_TO_PACKET_META &&
4261 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4262 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4263 find_good_pkt_pointers(other_branch, dst_reg,
4264 dst_reg->type, true);
4265 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4266 src_reg->type == PTR_TO_PACKET) ||
4267 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4268 src_reg->type == PTR_TO_PACKET_META)) {
4269 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4270 find_good_pkt_pointers(this_branch, src_reg,
4271 src_reg->type, false);
4272 } else {
4273 return false;
4274 }
4275 break;
4276 case BPF_JGE:
4277 if ((dst_reg->type == PTR_TO_PACKET &&
4278 src_reg->type == PTR_TO_PACKET_END) ||
4279 (dst_reg->type == PTR_TO_PACKET_META &&
4280 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4281 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4282 find_good_pkt_pointers(this_branch, dst_reg,
4283 dst_reg->type, true);
4284 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4285 src_reg->type == PTR_TO_PACKET) ||
4286 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4287 src_reg->type == PTR_TO_PACKET_META)) {
4288 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4289 find_good_pkt_pointers(other_branch, src_reg,
4290 src_reg->type, false);
4291 } else {
4292 return false;
4293 }
4294 break;
4295 case BPF_JLE:
4296 if ((dst_reg->type == PTR_TO_PACKET &&
4297 src_reg->type == PTR_TO_PACKET_END) ||
4298 (dst_reg->type == PTR_TO_PACKET_META &&
4299 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4300 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4301 find_good_pkt_pointers(other_branch, dst_reg,
4302 dst_reg->type, false);
4303 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4304 src_reg->type == PTR_TO_PACKET) ||
4305 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4306 src_reg->type == PTR_TO_PACKET_META)) {
4307 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4308 find_good_pkt_pointers(this_branch, src_reg,
4309 src_reg->type, true);
4310 } else {
4311 return false;
4312 }
4313 break;
4314 default:
4315 return false;
4316 }
4317
4318 return true;
4319}
4320
58e2af8b 4321static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4322 struct bpf_insn *insn, int *insn_idx)
4323{
f4d7e40a
AS
4324 struct bpf_verifier_state *this_branch = env->cur_state;
4325 struct bpf_verifier_state *other_branch;
4326 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4327 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
4328 u8 opcode = BPF_OP(insn->code);
4329 int err;
4330
b4e432f1 4331 if (opcode > BPF_JSLE) {
61bd5218 4332 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
4333 return -EINVAL;
4334 }
4335
4336 if (BPF_SRC(insn->code) == BPF_X) {
4337 if (insn->imm != 0) {
61bd5218 4338 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4339 return -EINVAL;
4340 }
4341
4342 /* check src1 operand */
dc503a8a 4343 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4344 if (err)
4345 return err;
1be7f75d
AS
4346
4347 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4348 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4349 insn->src_reg);
4350 return -EACCES;
4351 }
17a52670
AS
4352 } else {
4353 if (insn->src_reg != BPF_REG_0) {
61bd5218 4354 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4355 return -EINVAL;
4356 }
4357 }
4358
4359 /* check src2 operand */
dc503a8a 4360 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4361 if (err)
4362 return err;
4363
1a0dc1ac
AS
4364 dst_reg = &regs[insn->dst_reg];
4365
4f7b3e82
AS
4366 if (BPF_SRC(insn->code) == BPF_K) {
4367 int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4368
4369 if (pred == 1) {
4370 /* only follow the goto, ignore fall-through */
17a52670
AS
4371 *insn_idx += insn->off;
4372 return 0;
4f7b3e82
AS
4373 } else if (pred == 0) {
4374 /* only follow fall-through branch, since
17a52670
AS
4375 * that's where the program will go
4376 */
4377 return 0;
4378 }
4379 }
4380
4381 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4382 if (!other_branch)
4383 return -EFAULT;
f4d7e40a 4384 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4385
48461135
JB
4386 /* detect if we are comparing against a constant value so we can adjust
4387 * our min/max values for our dst register.
f1174f77
EC
4388 * this is only legit if both are scalars (or pointers to the same
4389 * object, I suppose, but we don't support that right now), because
4390 * otherwise the different base pointers mean the offsets aren't
4391 * comparable.
48461135
JB
4392 */
4393 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
4394 if (dst_reg->type == SCALAR_VALUE &&
4395 regs[insn->src_reg].type == SCALAR_VALUE) {
4396 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 4397 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
4398 dst_reg, regs[insn->src_reg].var_off.value,
4399 opcode);
4400 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 4401 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
4402 &regs[insn->src_reg],
4403 dst_reg->var_off.value, opcode);
4404 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4405 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4406 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4407 &other_branch_regs[insn->dst_reg],
f1174f77
EC
4408 &regs[insn->src_reg],
4409 &regs[insn->dst_reg], opcode);
4410 }
4411 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4412 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
4413 dst_reg, insn->imm, opcode);
4414 }
4415
58e2af8b 4416 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 4417 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4418 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4419 reg_type_may_be_null(dst_reg->type)) {
4420 /* Mark all identical registers in each branch as either
57a09bf0
TG
4421 * safe or unknown depending R == 0 or R != 0 conditional.
4422 */
840b9615
JS
4423 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4424 opcode == BPF_JNE);
4425 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4426 opcode == BPF_JEQ);
5beca081
DB
4427 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4428 this_branch, other_branch) &&
4429 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4430 verbose(env, "R%d pointer comparison prohibited\n",
4431 insn->dst_reg);
1be7f75d 4432 return -EACCES;
17a52670 4433 }
61bd5218 4434 if (env->log.level)
f4d7e40a 4435 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4436 return 0;
4437}
4438
0246e64d
AS
4439/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4440static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4441{
4442 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4443
4444 return (struct bpf_map *) (unsigned long) imm64;
4445}
4446
17a52670 4447/* verify BPF_LD_IMM64 instruction */
58e2af8b 4448static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4449{
638f5b90 4450 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4451 int err;
4452
4453 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4454 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4455 return -EINVAL;
4456 }
4457 if (insn->off != 0) {
61bd5218 4458 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4459 return -EINVAL;
4460 }
4461
dc503a8a 4462 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4463 if (err)
4464 return err;
4465
6b173873 4466 if (insn->src_reg == 0) {
6b173873
JK
4467 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4468
f1174f77 4469 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4470 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4471 return 0;
6b173873 4472 }
17a52670
AS
4473
4474 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4475 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4476
4477 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4478 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4479 return 0;
4480}
4481
96be4325
DB
4482static bool may_access_skb(enum bpf_prog_type type)
4483{
4484 switch (type) {
4485 case BPF_PROG_TYPE_SOCKET_FILTER:
4486 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4487 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4488 return true;
4489 default:
4490 return false;
4491 }
4492}
4493
ddd872bc
AS
4494/* verify safety of LD_ABS|LD_IND instructions:
4495 * - they can only appear in the programs where ctx == skb
4496 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4497 * preserve R6-R9, and store return value into R0
4498 *
4499 * Implicit input:
4500 * ctx == skb == R6 == CTX
4501 *
4502 * Explicit input:
4503 * SRC == any register
4504 * IMM == 32-bit immediate
4505 *
4506 * Output:
4507 * R0 - 8/16/32-bit skb data converted to cpu endianness
4508 */
58e2af8b 4509static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4510{
638f5b90 4511 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4512 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4513 int i, err;
4514
24701ece 4515 if (!may_access_skb(env->prog->type)) {
61bd5218 4516 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4517 return -EINVAL;
4518 }
4519
e0cea7ce
DB
4520 if (!env->ops->gen_ld_abs) {
4521 verbose(env, "bpf verifier is misconfigured\n");
4522 return -EINVAL;
4523 }
4524
f910cefa 4525 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4526 /* when program has LD_ABS insn JITs and interpreter assume
4527 * that r1 == ctx == skb which is not the case for callees
4528 * that can have arbitrary arguments. It's problematic
4529 * for main prog as well since JITs would need to analyze
4530 * all functions in order to make proper register save/restore
4531 * decisions in the main prog. Hence disallow LD_ABS with calls
4532 */
4533 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4534 return -EINVAL;
4535 }
4536
ddd872bc 4537 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4538 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4539 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4540 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4541 return -EINVAL;
4542 }
4543
4544 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4545 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4546 if (err)
4547 return err;
4548
fd978bf7
JS
4549 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4550 * gen_ld_abs() may terminate the program at runtime, leading to
4551 * reference leak.
4552 */
4553 err = check_reference_leak(env);
4554 if (err) {
4555 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4556 return err;
4557 }
4558
ddd872bc 4559 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4560 verbose(env,
4561 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4562 return -EINVAL;
4563 }
4564
4565 if (mode == BPF_IND) {
4566 /* check explicit source operand */
dc503a8a 4567 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4568 if (err)
4569 return err;
4570 }
4571
4572 /* reset caller saved regs to unreadable */
dc503a8a 4573 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4574 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4575 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4576 }
ddd872bc
AS
4577
4578 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4579 * the value fetched from the packet.
4580 * Already marked as written above.
ddd872bc 4581 */
61bd5218 4582 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4583 return 0;
4584}
4585
390ee7e2
AS
4586static int check_return_code(struct bpf_verifier_env *env)
4587{
4588 struct bpf_reg_state *reg;
4589 struct tnum range = tnum_range(0, 1);
4590
4591 switch (env->prog->type) {
4592 case BPF_PROG_TYPE_CGROUP_SKB:
4593 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4594 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4595 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4596 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4597 break;
4598 default:
4599 return 0;
4600 }
4601
638f5b90 4602 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4603 if (reg->type != SCALAR_VALUE) {
61bd5218 4604 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4605 reg_type_str[reg->type]);
4606 return -EINVAL;
4607 }
4608
4609 if (!tnum_in(range, reg->var_off)) {
61bd5218 4610 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4611 if (!tnum_is_unknown(reg->var_off)) {
4612 char tn_buf[48];
4613
4614 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4615 verbose(env, "has value %s", tn_buf);
390ee7e2 4616 } else {
61bd5218 4617 verbose(env, "has unknown scalar value");
390ee7e2 4618 }
61bd5218 4619 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4620 return -EINVAL;
4621 }
4622 return 0;
4623}
4624
475fb78f
AS
4625/* non-recursive DFS pseudo code
4626 * 1 procedure DFS-iterative(G,v):
4627 * 2 label v as discovered
4628 * 3 let S be a stack
4629 * 4 S.push(v)
4630 * 5 while S is not empty
4631 * 6 t <- S.pop()
4632 * 7 if t is what we're looking for:
4633 * 8 return t
4634 * 9 for all edges e in G.adjacentEdges(t) do
4635 * 10 if edge e is already labelled
4636 * 11 continue with the next edge
4637 * 12 w <- G.adjacentVertex(t,e)
4638 * 13 if vertex w is not discovered and not explored
4639 * 14 label e as tree-edge
4640 * 15 label w as discovered
4641 * 16 S.push(w)
4642 * 17 continue at 5
4643 * 18 else if vertex w is discovered
4644 * 19 label e as back-edge
4645 * 20 else
4646 * 21 // vertex w is explored
4647 * 22 label e as forward- or cross-edge
4648 * 23 label t as explored
4649 * 24 S.pop()
4650 *
4651 * convention:
4652 * 0x10 - discovered
4653 * 0x11 - discovered and fall-through edge labelled
4654 * 0x12 - discovered and fall-through and branch edges labelled
4655 * 0x20 - explored
4656 */
4657
4658enum {
4659 DISCOVERED = 0x10,
4660 EXPLORED = 0x20,
4661 FALLTHROUGH = 1,
4662 BRANCH = 2,
4663};
4664
58e2af8b 4665#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4666
475fb78f
AS
4667static int *insn_stack; /* stack of insns to process */
4668static int cur_stack; /* current stack index */
4669static int *insn_state;
4670
4671/* t, w, e - match pseudo-code above:
4672 * t - index of current instruction
4673 * w - next instruction
4674 * e - edge
4675 */
58e2af8b 4676static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4677{
4678 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4679 return 0;
4680
4681 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4682 return 0;
4683
4684 if (w < 0 || w >= env->prog->len) {
d9762e84 4685 verbose_linfo(env, t, "%d: ", t);
61bd5218 4686 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4687 return -EINVAL;
4688 }
4689
f1bca824
AS
4690 if (e == BRANCH)
4691 /* mark branch target for state pruning */
4692 env->explored_states[w] = STATE_LIST_MARK;
4693
475fb78f
AS
4694 if (insn_state[w] == 0) {
4695 /* tree-edge */
4696 insn_state[t] = DISCOVERED | e;
4697 insn_state[w] = DISCOVERED;
4698 if (cur_stack >= env->prog->len)
4699 return -E2BIG;
4700 insn_stack[cur_stack++] = w;
4701 return 1;
4702 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
4703 verbose_linfo(env, t, "%d: ", t);
4704 verbose_linfo(env, w, "%d: ", w);
61bd5218 4705 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4706 return -EINVAL;
4707 } else if (insn_state[w] == EXPLORED) {
4708 /* forward- or cross-edge */
4709 insn_state[t] = DISCOVERED | e;
4710 } else {
61bd5218 4711 verbose(env, "insn state internal bug\n");
475fb78f
AS
4712 return -EFAULT;
4713 }
4714 return 0;
4715}
4716
4717/* non-recursive depth-first-search to detect loops in BPF program
4718 * loop == back-edge in directed graph
4719 */
58e2af8b 4720static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4721{
4722 struct bpf_insn *insns = env->prog->insnsi;
4723 int insn_cnt = env->prog->len;
4724 int ret = 0;
4725 int i, t;
4726
4727 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4728 if (!insn_state)
4729 return -ENOMEM;
4730
4731 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4732 if (!insn_stack) {
4733 kfree(insn_state);
4734 return -ENOMEM;
4735 }
4736
4737 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4738 insn_stack[0] = 0; /* 0 is the first instruction */
4739 cur_stack = 1;
4740
4741peek_stack:
4742 if (cur_stack == 0)
4743 goto check_state;
4744 t = insn_stack[cur_stack - 1];
4745
4746 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4747 u8 opcode = BPF_OP(insns[t].code);
4748
4749 if (opcode == BPF_EXIT) {
4750 goto mark_explored;
4751 } else if (opcode == BPF_CALL) {
4752 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4753 if (ret == 1)
4754 goto peek_stack;
4755 else if (ret < 0)
4756 goto err_free;
07016151
DB
4757 if (t + 1 < insn_cnt)
4758 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4759 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4760 env->explored_states[t] = STATE_LIST_MARK;
4761 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4762 if (ret == 1)
4763 goto peek_stack;
4764 else if (ret < 0)
4765 goto err_free;
4766 }
475fb78f
AS
4767 } else if (opcode == BPF_JA) {
4768 if (BPF_SRC(insns[t].code) != BPF_K) {
4769 ret = -EINVAL;
4770 goto err_free;
4771 }
4772 /* unconditional jump with single edge */
4773 ret = push_insn(t, t + insns[t].off + 1,
4774 FALLTHROUGH, env);
4775 if (ret == 1)
4776 goto peek_stack;
4777 else if (ret < 0)
4778 goto err_free;
f1bca824
AS
4779 /* tell verifier to check for equivalent states
4780 * after every call and jump
4781 */
c3de6317
AS
4782 if (t + 1 < insn_cnt)
4783 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4784 } else {
4785 /* conditional jump with two edges */
3c2ce60b 4786 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4787 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4788 if (ret == 1)
4789 goto peek_stack;
4790 else if (ret < 0)
4791 goto err_free;
4792
4793 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4794 if (ret == 1)
4795 goto peek_stack;
4796 else if (ret < 0)
4797 goto err_free;
4798 }
4799 } else {
4800 /* all other non-branch instructions with single
4801 * fall-through edge
4802 */
4803 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4804 if (ret == 1)
4805 goto peek_stack;
4806 else if (ret < 0)
4807 goto err_free;
4808 }
4809
4810mark_explored:
4811 insn_state[t] = EXPLORED;
4812 if (cur_stack-- <= 0) {
61bd5218 4813 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4814 ret = -EFAULT;
4815 goto err_free;
4816 }
4817 goto peek_stack;
4818
4819check_state:
4820 for (i = 0; i < insn_cnt; i++) {
4821 if (insn_state[i] != EXPLORED) {
61bd5218 4822 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4823 ret = -EINVAL;
4824 goto err_free;
4825 }
4826 }
4827 ret = 0; /* cfg looks good */
4828
4829err_free:
4830 kfree(insn_state);
4831 kfree(insn_stack);
4832 return ret;
4833}
4834
838e9690
YS
4835/* The minimum supported BTF func info size */
4836#define MIN_BPF_FUNCINFO_SIZE 8
4837#define MAX_FUNCINFO_REC_SIZE 252
4838
c454a46b
MKL
4839static int check_btf_func(struct bpf_verifier_env *env,
4840 const union bpf_attr *attr,
4841 union bpf_attr __user *uattr)
838e9690
YS
4842{
4843 u32 i, nfuncs, urec_size, min_size, prev_offset;
4844 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 4845 struct bpf_func_info *krecord;
838e9690 4846 const struct btf_type *type;
c454a46b
MKL
4847 struct bpf_prog *prog;
4848 const struct btf *btf;
838e9690 4849 void __user *urecord;
838e9690
YS
4850 int ret = 0;
4851
4852 nfuncs = attr->func_info_cnt;
4853 if (!nfuncs)
4854 return 0;
4855
4856 if (nfuncs != env->subprog_cnt) {
4857 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
4858 return -EINVAL;
4859 }
4860
4861 urec_size = attr->func_info_rec_size;
4862 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
4863 urec_size > MAX_FUNCINFO_REC_SIZE ||
4864 urec_size % sizeof(u32)) {
4865 verbose(env, "invalid func info rec size %u\n", urec_size);
4866 return -EINVAL;
4867 }
4868
c454a46b
MKL
4869 prog = env->prog;
4870 btf = prog->aux->btf;
838e9690
YS
4871
4872 urecord = u64_to_user_ptr(attr->func_info);
4873 min_size = min_t(u32, krec_size, urec_size);
4874
ba64e7d8 4875 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
4876 if (!krecord)
4877 return -ENOMEM;
ba64e7d8 4878
838e9690
YS
4879 for (i = 0; i < nfuncs; i++) {
4880 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
4881 if (ret) {
4882 if (ret == -E2BIG) {
4883 verbose(env, "nonzero tailing record in func info");
4884 /* set the size kernel expects so loader can zero
4885 * out the rest of the record.
4886 */
4887 if (put_user(min_size, &uattr->func_info_rec_size))
4888 ret = -EFAULT;
4889 }
c454a46b 4890 goto err_free;
838e9690
YS
4891 }
4892
ba64e7d8 4893 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 4894 ret = -EFAULT;
c454a46b 4895 goto err_free;
838e9690
YS
4896 }
4897
d30d42e0 4898 /* check insn_off */
838e9690 4899 if (i == 0) {
d30d42e0 4900 if (krecord[i].insn_off) {
838e9690 4901 verbose(env,
d30d42e0
MKL
4902 "nonzero insn_off %u for the first func info record",
4903 krecord[i].insn_off);
838e9690 4904 ret = -EINVAL;
c454a46b 4905 goto err_free;
838e9690 4906 }
d30d42e0 4907 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
4908 verbose(env,
4909 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 4910 krecord[i].insn_off, prev_offset);
838e9690 4911 ret = -EINVAL;
c454a46b 4912 goto err_free;
838e9690
YS
4913 }
4914
d30d42e0 4915 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
4916 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
4917 ret = -EINVAL;
c454a46b 4918 goto err_free;
838e9690
YS
4919 }
4920
4921 /* check type_id */
ba64e7d8 4922 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
4923 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
4924 verbose(env, "invalid type id %d in func info",
ba64e7d8 4925 krecord[i].type_id);
838e9690 4926 ret = -EINVAL;
c454a46b 4927 goto err_free;
838e9690
YS
4928 }
4929
d30d42e0 4930 prev_offset = krecord[i].insn_off;
838e9690
YS
4931 urecord += urec_size;
4932 }
4933
ba64e7d8
YS
4934 prog->aux->func_info = krecord;
4935 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
4936 return 0;
4937
c454a46b 4938err_free:
ba64e7d8 4939 kvfree(krecord);
838e9690
YS
4940 return ret;
4941}
4942
ba64e7d8
YS
4943static void adjust_btf_func(struct bpf_verifier_env *env)
4944{
4945 int i;
4946
4947 if (!env->prog->aux->func_info)
4948 return;
4949
4950 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 4951 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
4952}
4953
c454a46b
MKL
4954#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
4955 sizeof(((struct bpf_line_info *)(0))->line_col))
4956#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
4957
4958static int check_btf_line(struct bpf_verifier_env *env,
4959 const union bpf_attr *attr,
4960 union bpf_attr __user *uattr)
4961{
4962 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
4963 struct bpf_subprog_info *sub;
4964 struct bpf_line_info *linfo;
4965 struct bpf_prog *prog;
4966 const struct btf *btf;
4967 void __user *ulinfo;
4968 int err;
4969
4970 nr_linfo = attr->line_info_cnt;
4971 if (!nr_linfo)
4972 return 0;
4973
4974 rec_size = attr->line_info_rec_size;
4975 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
4976 rec_size > MAX_LINEINFO_REC_SIZE ||
4977 rec_size & (sizeof(u32) - 1))
4978 return -EINVAL;
4979
4980 /* Need to zero it in case the userspace may
4981 * pass in a smaller bpf_line_info object.
4982 */
4983 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
4984 GFP_KERNEL | __GFP_NOWARN);
4985 if (!linfo)
4986 return -ENOMEM;
4987
4988 prog = env->prog;
4989 btf = prog->aux->btf;
4990
4991 s = 0;
4992 sub = env->subprog_info;
4993 ulinfo = u64_to_user_ptr(attr->line_info);
4994 expected_size = sizeof(struct bpf_line_info);
4995 ncopy = min_t(u32, expected_size, rec_size);
4996 for (i = 0; i < nr_linfo; i++) {
4997 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
4998 if (err) {
4999 if (err == -E2BIG) {
5000 verbose(env, "nonzero tailing record in line_info");
5001 if (put_user(expected_size,
5002 &uattr->line_info_rec_size))
5003 err = -EFAULT;
5004 }
5005 goto err_free;
5006 }
5007
5008 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5009 err = -EFAULT;
5010 goto err_free;
5011 }
5012
5013 /*
5014 * Check insn_off to ensure
5015 * 1) strictly increasing AND
5016 * 2) bounded by prog->len
5017 *
5018 * The linfo[0].insn_off == 0 check logically falls into
5019 * the later "missing bpf_line_info for func..." case
5020 * because the first linfo[0].insn_off must be the
5021 * first sub also and the first sub must have
5022 * subprog_info[0].start == 0.
5023 */
5024 if ((i && linfo[i].insn_off <= prev_offset) ||
5025 linfo[i].insn_off >= prog->len) {
5026 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5027 i, linfo[i].insn_off, prev_offset,
5028 prog->len);
5029 err = -EINVAL;
5030 goto err_free;
5031 }
5032
fdbaa0be
MKL
5033 if (!prog->insnsi[linfo[i].insn_off].code) {
5034 verbose(env,
5035 "Invalid insn code at line_info[%u].insn_off\n",
5036 i);
5037 err = -EINVAL;
5038 goto err_free;
5039 }
5040
23127b33
MKL
5041 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5042 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
5043 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5044 err = -EINVAL;
5045 goto err_free;
5046 }
5047
5048 if (s != env->subprog_cnt) {
5049 if (linfo[i].insn_off == sub[s].start) {
5050 sub[s].linfo_idx = i;
5051 s++;
5052 } else if (sub[s].start < linfo[i].insn_off) {
5053 verbose(env, "missing bpf_line_info for func#%u\n", s);
5054 err = -EINVAL;
5055 goto err_free;
5056 }
5057 }
5058
5059 prev_offset = linfo[i].insn_off;
5060 ulinfo += rec_size;
5061 }
5062
5063 if (s != env->subprog_cnt) {
5064 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5065 env->subprog_cnt - s, s);
5066 err = -EINVAL;
5067 goto err_free;
5068 }
5069
5070 prog->aux->linfo = linfo;
5071 prog->aux->nr_linfo = nr_linfo;
5072
5073 return 0;
5074
5075err_free:
5076 kvfree(linfo);
5077 return err;
5078}
5079
5080static int check_btf_info(struct bpf_verifier_env *env,
5081 const union bpf_attr *attr,
5082 union bpf_attr __user *uattr)
5083{
5084 struct btf *btf;
5085 int err;
5086
5087 if (!attr->func_info_cnt && !attr->line_info_cnt)
5088 return 0;
5089
5090 btf = btf_get_by_fd(attr->prog_btf_fd);
5091 if (IS_ERR(btf))
5092 return PTR_ERR(btf);
5093 env->prog->aux->btf = btf;
5094
5095 err = check_btf_func(env, attr, uattr);
5096 if (err)
5097 return err;
5098
5099 err = check_btf_line(env, attr, uattr);
5100 if (err)
5101 return err;
5102
5103 return 0;
ba64e7d8
YS
5104}
5105
f1174f77
EC
5106/* check %cur's range satisfies %old's */
5107static bool range_within(struct bpf_reg_state *old,
5108 struct bpf_reg_state *cur)
5109{
b03c9f9f
EC
5110 return old->umin_value <= cur->umin_value &&
5111 old->umax_value >= cur->umax_value &&
5112 old->smin_value <= cur->smin_value &&
5113 old->smax_value >= cur->smax_value;
f1174f77
EC
5114}
5115
5116/* Maximum number of register states that can exist at once */
5117#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5118struct idpair {
5119 u32 old;
5120 u32 cur;
5121};
5122
5123/* If in the old state two registers had the same id, then they need to have
5124 * the same id in the new state as well. But that id could be different from
5125 * the old state, so we need to track the mapping from old to new ids.
5126 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5127 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5128 * regs with a different old id could still have new id 9, we don't care about
5129 * that.
5130 * So we look through our idmap to see if this old id has been seen before. If
5131 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 5132 */
f1174f77 5133static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 5134{
f1174f77 5135 unsigned int i;
969bf05e 5136
f1174f77
EC
5137 for (i = 0; i < ID_MAP_SIZE; i++) {
5138 if (!idmap[i].old) {
5139 /* Reached an empty slot; haven't seen this id before */
5140 idmap[i].old = old_id;
5141 idmap[i].cur = cur_id;
5142 return true;
5143 }
5144 if (idmap[i].old == old_id)
5145 return idmap[i].cur == cur_id;
5146 }
5147 /* We ran out of idmap slots, which should be impossible */
5148 WARN_ON_ONCE(1);
5149 return false;
5150}
5151
9242b5f5
AS
5152static void clean_func_state(struct bpf_verifier_env *env,
5153 struct bpf_func_state *st)
5154{
5155 enum bpf_reg_liveness live;
5156 int i, j;
5157
5158 for (i = 0; i < BPF_REG_FP; i++) {
5159 live = st->regs[i].live;
5160 /* liveness must not touch this register anymore */
5161 st->regs[i].live |= REG_LIVE_DONE;
5162 if (!(live & REG_LIVE_READ))
5163 /* since the register is unused, clear its state
5164 * to make further comparison simpler
5165 */
5166 __mark_reg_not_init(&st->regs[i]);
5167 }
5168
5169 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5170 live = st->stack[i].spilled_ptr.live;
5171 /* liveness must not touch this stack slot anymore */
5172 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5173 if (!(live & REG_LIVE_READ)) {
5174 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5175 for (j = 0; j < BPF_REG_SIZE; j++)
5176 st->stack[i].slot_type[j] = STACK_INVALID;
5177 }
5178 }
5179}
5180
5181static void clean_verifier_state(struct bpf_verifier_env *env,
5182 struct bpf_verifier_state *st)
5183{
5184 int i;
5185
5186 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5187 /* all regs in this state in all frames were already marked */
5188 return;
5189
5190 for (i = 0; i <= st->curframe; i++)
5191 clean_func_state(env, st->frame[i]);
5192}
5193
5194/* the parentage chains form a tree.
5195 * the verifier states are added to state lists at given insn and
5196 * pushed into state stack for future exploration.
5197 * when the verifier reaches bpf_exit insn some of the verifer states
5198 * stored in the state lists have their final liveness state already,
5199 * but a lot of states will get revised from liveness point of view when
5200 * the verifier explores other branches.
5201 * Example:
5202 * 1: r0 = 1
5203 * 2: if r1 == 100 goto pc+1
5204 * 3: r0 = 2
5205 * 4: exit
5206 * when the verifier reaches exit insn the register r0 in the state list of
5207 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5208 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5209 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5210 *
5211 * Since the verifier pushes the branch states as it sees them while exploring
5212 * the program the condition of walking the branch instruction for the second
5213 * time means that all states below this branch were already explored and
5214 * their final liveness markes are already propagated.
5215 * Hence when the verifier completes the search of state list in is_state_visited()
5216 * we can call this clean_live_states() function to mark all liveness states
5217 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5218 * will not be used.
5219 * This function also clears the registers and stack for states that !READ
5220 * to simplify state merging.
5221 *
5222 * Important note here that walking the same branch instruction in the callee
5223 * doesn't meant that the states are DONE. The verifier has to compare
5224 * the callsites
5225 */
5226static void clean_live_states(struct bpf_verifier_env *env, int insn,
5227 struct bpf_verifier_state *cur)
5228{
5229 struct bpf_verifier_state_list *sl;
5230 int i;
5231
5232 sl = env->explored_states[insn];
5233 if (!sl)
5234 return;
5235
5236 while (sl != STATE_LIST_MARK) {
5237 if (sl->state.curframe != cur->curframe)
5238 goto next;
5239 for (i = 0; i <= cur->curframe; i++)
5240 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5241 goto next;
5242 clean_verifier_state(env, &sl->state);
5243next:
5244 sl = sl->next;
5245 }
5246}
5247
f1174f77 5248/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
5249static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5250 struct idpair *idmap)
f1174f77 5251{
f4d7e40a
AS
5252 bool equal;
5253
dc503a8a
EC
5254 if (!(rold->live & REG_LIVE_READ))
5255 /* explored state didn't use this */
5256 return true;
5257
679c782d 5258 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
5259
5260 if (rold->type == PTR_TO_STACK)
5261 /* two stack pointers are equal only if they're pointing to
5262 * the same stack frame, since fp-8 in foo != fp-8 in bar
5263 */
5264 return equal && rold->frameno == rcur->frameno;
5265
5266 if (equal)
969bf05e
AS
5267 return true;
5268
f1174f77
EC
5269 if (rold->type == NOT_INIT)
5270 /* explored state can't have used this */
969bf05e 5271 return true;
f1174f77
EC
5272 if (rcur->type == NOT_INIT)
5273 return false;
5274 switch (rold->type) {
5275 case SCALAR_VALUE:
5276 if (rcur->type == SCALAR_VALUE) {
5277 /* new val must satisfy old val knowledge */
5278 return range_within(rold, rcur) &&
5279 tnum_in(rold->var_off, rcur->var_off);
5280 } else {
179d1c56
JH
5281 /* We're trying to use a pointer in place of a scalar.
5282 * Even if the scalar was unbounded, this could lead to
5283 * pointer leaks because scalars are allowed to leak
5284 * while pointers are not. We could make this safe in
5285 * special cases if root is calling us, but it's
5286 * probably not worth the hassle.
f1174f77 5287 */
179d1c56 5288 return false;
f1174f77
EC
5289 }
5290 case PTR_TO_MAP_VALUE:
1b688a19
EC
5291 /* If the new min/max/var_off satisfy the old ones and
5292 * everything else matches, we are OK.
5293 * We don't care about the 'id' value, because nothing
5294 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
5295 */
5296 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5297 range_within(rold, rcur) &&
5298 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
5299 case PTR_TO_MAP_VALUE_OR_NULL:
5300 /* a PTR_TO_MAP_VALUE could be safe to use as a
5301 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5302 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5303 * checked, doing so could have affected others with the same
5304 * id, and we can't check for that because we lost the id when
5305 * we converted to a PTR_TO_MAP_VALUE.
5306 */
5307 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5308 return false;
5309 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5310 return false;
5311 /* Check our ids match any regs they're supposed to */
5312 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 5313 case PTR_TO_PACKET_META:
f1174f77 5314 case PTR_TO_PACKET:
de8f3a83 5315 if (rcur->type != rold->type)
f1174f77
EC
5316 return false;
5317 /* We must have at least as much range as the old ptr
5318 * did, so that any accesses which were safe before are
5319 * still safe. This is true even if old range < old off,
5320 * since someone could have accessed through (ptr - k), or
5321 * even done ptr -= k in a register, to get a safe access.
5322 */
5323 if (rold->range > rcur->range)
5324 return false;
5325 /* If the offsets don't match, we can't trust our alignment;
5326 * nor can we be sure that we won't fall out of range.
5327 */
5328 if (rold->off != rcur->off)
5329 return false;
5330 /* id relations must be preserved */
5331 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5332 return false;
5333 /* new val must satisfy old val knowledge */
5334 return range_within(rold, rcur) &&
5335 tnum_in(rold->var_off, rcur->var_off);
5336 case PTR_TO_CTX:
5337 case CONST_PTR_TO_MAP:
f1174f77 5338 case PTR_TO_PACKET_END:
d58e468b 5339 case PTR_TO_FLOW_KEYS:
c64b7983
JS
5340 case PTR_TO_SOCKET:
5341 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
5342 /* Only valid matches are exact, which memcmp() above
5343 * would have accepted
5344 */
5345 default:
5346 /* Don't know what's going on, just say it's not safe */
5347 return false;
5348 }
969bf05e 5349
f1174f77
EC
5350 /* Shouldn't get here; if we do, say it's not safe */
5351 WARN_ON_ONCE(1);
969bf05e
AS
5352 return false;
5353}
5354
f4d7e40a
AS
5355static bool stacksafe(struct bpf_func_state *old,
5356 struct bpf_func_state *cur,
638f5b90
AS
5357 struct idpair *idmap)
5358{
5359 int i, spi;
5360
638f5b90
AS
5361 /* walk slots of the explored stack and ignore any additional
5362 * slots in the current stack, since explored(safe) state
5363 * didn't use them
5364 */
5365 for (i = 0; i < old->allocated_stack; i++) {
5366 spi = i / BPF_REG_SIZE;
5367
b233920c
AS
5368 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5369 i += BPF_REG_SIZE - 1;
cc2b14d5 5370 /* explored state didn't use this */
fd05e57b 5371 continue;
b233920c 5372 }
cc2b14d5 5373
638f5b90
AS
5374 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5375 continue;
19e2dbb7
AS
5376
5377 /* explored stack has more populated slots than current stack
5378 * and these slots were used
5379 */
5380 if (i >= cur->allocated_stack)
5381 return false;
5382
cc2b14d5
AS
5383 /* if old state was safe with misc data in the stack
5384 * it will be safe with zero-initialized stack.
5385 * The opposite is not true
5386 */
5387 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5388 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5389 continue;
638f5b90
AS
5390 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5391 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5392 /* Ex: old explored (safe) state has STACK_SPILL in
5393 * this stack slot, but current has has STACK_MISC ->
5394 * this verifier states are not equivalent,
5395 * return false to continue verification of this path
5396 */
5397 return false;
5398 if (i % BPF_REG_SIZE)
5399 continue;
5400 if (old->stack[spi].slot_type[0] != STACK_SPILL)
5401 continue;
5402 if (!regsafe(&old->stack[spi].spilled_ptr,
5403 &cur->stack[spi].spilled_ptr,
5404 idmap))
5405 /* when explored and current stack slot are both storing
5406 * spilled registers, check that stored pointers types
5407 * are the same as well.
5408 * Ex: explored safe path could have stored
5409 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5410 * but current path has stored:
5411 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5412 * such verifier states are not equivalent.
5413 * return false to continue verification of this path
5414 */
5415 return false;
5416 }
5417 return true;
5418}
5419
fd978bf7
JS
5420static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5421{
5422 if (old->acquired_refs != cur->acquired_refs)
5423 return false;
5424 return !memcmp(old->refs, cur->refs,
5425 sizeof(*old->refs) * old->acquired_refs);
5426}
5427
f1bca824
AS
5428/* compare two verifier states
5429 *
5430 * all states stored in state_list are known to be valid, since
5431 * verifier reached 'bpf_exit' instruction through them
5432 *
5433 * this function is called when verifier exploring different branches of
5434 * execution popped from the state stack. If it sees an old state that has
5435 * more strict register state and more strict stack state then this execution
5436 * branch doesn't need to be explored further, since verifier already
5437 * concluded that more strict state leads to valid finish.
5438 *
5439 * Therefore two states are equivalent if register state is more conservative
5440 * and explored stack state is more conservative than the current one.
5441 * Example:
5442 * explored current
5443 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5444 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5445 *
5446 * In other words if current stack state (one being explored) has more
5447 * valid slots than old one that already passed validation, it means
5448 * the verifier can stop exploring and conclude that current state is valid too
5449 *
5450 * Similarly with registers. If explored state has register type as invalid
5451 * whereas register type in current state is meaningful, it means that
5452 * the current state will reach 'bpf_exit' instruction safely
5453 */
f4d7e40a
AS
5454static bool func_states_equal(struct bpf_func_state *old,
5455 struct bpf_func_state *cur)
f1bca824 5456{
f1174f77
EC
5457 struct idpair *idmap;
5458 bool ret = false;
f1bca824
AS
5459 int i;
5460
f1174f77
EC
5461 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5462 /* If we failed to allocate the idmap, just say it's not safe */
5463 if (!idmap)
1a0dc1ac 5464 return false;
f1174f77
EC
5465
5466 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 5467 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 5468 goto out_free;
f1bca824
AS
5469 }
5470
638f5b90
AS
5471 if (!stacksafe(old, cur, idmap))
5472 goto out_free;
fd978bf7
JS
5473
5474 if (!refsafe(old, cur))
5475 goto out_free;
f1174f77
EC
5476 ret = true;
5477out_free:
5478 kfree(idmap);
5479 return ret;
f1bca824
AS
5480}
5481
f4d7e40a
AS
5482static bool states_equal(struct bpf_verifier_env *env,
5483 struct bpf_verifier_state *old,
5484 struct bpf_verifier_state *cur)
5485{
5486 int i;
5487
5488 if (old->curframe != cur->curframe)
5489 return false;
5490
5491 /* for states to be equal callsites have to be the same
5492 * and all frame states need to be equivalent
5493 */
5494 for (i = 0; i <= old->curframe; i++) {
5495 if (old->frame[i]->callsite != cur->frame[i]->callsite)
5496 return false;
5497 if (!func_states_equal(old->frame[i], cur->frame[i]))
5498 return false;
5499 }
5500 return true;
5501}
5502
8e9cd9ce 5503/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
5504 * straight-line code between a state and its parent. When we arrive at an
5505 * equivalent state (jump target or such) we didn't arrive by the straight-line
5506 * code, so read marks in the state must propagate to the parent regardless
5507 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 5508 * in mark_reg_read() is for.
8e9cd9ce 5509 */
f4d7e40a
AS
5510static int propagate_liveness(struct bpf_verifier_env *env,
5511 const struct bpf_verifier_state *vstate,
5512 struct bpf_verifier_state *vparent)
dc503a8a 5513{
f4d7e40a
AS
5514 int i, frame, err = 0;
5515 struct bpf_func_state *state, *parent;
dc503a8a 5516
f4d7e40a
AS
5517 if (vparent->curframe != vstate->curframe) {
5518 WARN(1, "propagate_live: parent frame %d current frame %d\n",
5519 vparent->curframe, vstate->curframe);
5520 return -EFAULT;
5521 }
dc503a8a
EC
5522 /* Propagate read liveness of registers... */
5523 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5524 /* We don't need to worry about FP liveness because it's read-only */
5525 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 5526 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 5527 continue;
f4d7e40a 5528 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
5529 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5530 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
5531 if (err)
5532 return err;
dc503a8a
EC
5533 }
5534 }
f4d7e40a 5535
dc503a8a 5536 /* ... and stack slots */
f4d7e40a
AS
5537 for (frame = 0; frame <= vstate->curframe; frame++) {
5538 state = vstate->frame[frame];
5539 parent = vparent->frame[frame];
5540 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5541 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
5542 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5543 continue;
5544 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
5545 mark_reg_read(env, &state->stack[i].spilled_ptr,
5546 &parent->stack[i].spilled_ptr);
dc503a8a
EC
5547 }
5548 }
f4d7e40a 5549 return err;
dc503a8a
EC
5550}
5551
58e2af8b 5552static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 5553{
58e2af8b
JK
5554 struct bpf_verifier_state_list *new_sl;
5555 struct bpf_verifier_state_list *sl;
679c782d 5556 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 5557 int i, j, err, states_cnt = 0;
f1bca824
AS
5558
5559 sl = env->explored_states[insn_idx];
5560 if (!sl)
5561 /* this 'insn_idx' instruction wasn't marked, so we will not
5562 * be doing state search here
5563 */
5564 return 0;
5565
9242b5f5
AS
5566 clean_live_states(env, insn_idx, cur);
5567
f1bca824 5568 while (sl != STATE_LIST_MARK) {
638f5b90 5569 if (states_equal(env, &sl->state, cur)) {
f1bca824 5570 /* reached equivalent register/stack state,
dc503a8a
EC
5571 * prune the search.
5572 * Registers read by the continuation are read by us.
8e9cd9ce
EC
5573 * If we have any write marks in env->cur_state, they
5574 * will prevent corresponding reads in the continuation
5575 * from reaching our parent (an explored_state). Our
5576 * own state will get the read marks recorded, but
5577 * they'll be immediately forgotten as we're pruning
5578 * this state and will pop a new one.
f1bca824 5579 */
f4d7e40a
AS
5580 err = propagate_liveness(env, &sl->state, cur);
5581 if (err)
5582 return err;
f1bca824 5583 return 1;
dc503a8a 5584 }
f1bca824 5585 sl = sl->next;
ceefbc96 5586 states_cnt++;
f1bca824
AS
5587 }
5588
ceefbc96
AS
5589 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5590 return 0;
5591
f1bca824
AS
5592 /* there were no equivalent states, remember current one.
5593 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
5594 * but it will either reach outer most bpf_exit (which means it's safe)
5595 * or it will be rejected. Since there are no loops, we won't be
5596 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5597 * again on the way to bpf_exit
f1bca824 5598 */
638f5b90 5599 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
5600 if (!new_sl)
5601 return -ENOMEM;
5602
5603 /* add new state to the head of linked list */
679c782d
EC
5604 new = &new_sl->state;
5605 err = copy_verifier_state(new, cur);
1969db47 5606 if (err) {
679c782d 5607 free_verifier_state(new, false);
1969db47
AS
5608 kfree(new_sl);
5609 return err;
5610 }
f1bca824
AS
5611 new_sl->next = env->explored_states[insn_idx];
5612 env->explored_states[insn_idx] = new_sl;
7640ead9
JK
5613 /* connect new state to parentage chain. Current frame needs all
5614 * registers connected. Only r6 - r9 of the callers are alive (pushed
5615 * to the stack implicitly by JITs) so in callers' frames connect just
5616 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
5617 * the state of the call instruction (with WRITTEN set), and r0 comes
5618 * from callee with its full parentage chain, anyway.
5619 */
5620 for (j = 0; j <= cur->curframe; j++)
5621 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
5622 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8e9cd9ce
EC
5623 /* clear write marks in current state: the writes we did are not writes
5624 * our child did, so they don't screen off its reads from us.
5625 * (There are no read marks in current state, because reads always mark
5626 * their parent and current state never has children yet. Only
5627 * explored_states can get read marks.)
5628 */
dc503a8a 5629 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
5630 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5631
5632 /* all stack frames are accessible from callee, clear them all */
5633 for (j = 0; j <= cur->curframe; j++) {
5634 struct bpf_func_state *frame = cur->frame[j];
679c782d 5635 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 5636
679c782d 5637 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 5638 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
5639 frame->stack[i].spilled_ptr.parent =
5640 &newframe->stack[i].spilled_ptr;
5641 }
f4d7e40a 5642 }
f1bca824
AS
5643 return 0;
5644}
5645
c64b7983
JS
5646/* Return true if it's OK to have the same insn return a different type. */
5647static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5648{
5649 switch (type) {
5650 case PTR_TO_CTX:
5651 case PTR_TO_SOCKET:
5652 case PTR_TO_SOCKET_OR_NULL:
5653 return false;
5654 default:
5655 return true;
5656 }
5657}
5658
5659/* If an instruction was previously used with particular pointer types, then we
5660 * need to be careful to avoid cases such as the below, where it may be ok
5661 * for one branch accessing the pointer, but not ok for the other branch:
5662 *
5663 * R1 = sock_ptr
5664 * goto X;
5665 * ...
5666 * R1 = some_other_valid_ptr;
5667 * goto X;
5668 * ...
5669 * R2 = *(u32 *)(R1 + 0);
5670 */
5671static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5672{
5673 return src != prev && (!reg_type_mismatch_ok(src) ||
5674 !reg_type_mismatch_ok(prev));
5675}
5676
58e2af8b 5677static int do_check(struct bpf_verifier_env *env)
17a52670 5678{
638f5b90 5679 struct bpf_verifier_state *state;
17a52670 5680 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 5681 struct bpf_reg_state *regs;
f4d7e40a 5682 int insn_cnt = env->prog->len, i;
17a52670
AS
5683 int insn_processed = 0;
5684 bool do_print_state = false;
5685
d9762e84
MKL
5686 env->prev_linfo = NULL;
5687
638f5b90
AS
5688 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5689 if (!state)
5690 return -ENOMEM;
f4d7e40a 5691 state->curframe = 0;
f4d7e40a
AS
5692 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5693 if (!state->frame[0]) {
5694 kfree(state);
5695 return -ENOMEM;
5696 }
5697 env->cur_state = state;
5698 init_func_state(env, state->frame[0],
5699 BPF_MAIN_FUNC /* callsite */,
5700 0 /* frameno */,
5701 0 /* subprogno, zero == main subprog */);
c08435ec 5702
17a52670
AS
5703 for (;;) {
5704 struct bpf_insn *insn;
5705 u8 class;
5706 int err;
5707
c08435ec 5708 if (env->insn_idx >= insn_cnt) {
61bd5218 5709 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 5710 env->insn_idx, insn_cnt);
17a52670
AS
5711 return -EFAULT;
5712 }
5713
c08435ec 5714 insn = &insns[env->insn_idx];
17a52670
AS
5715 class = BPF_CLASS(insn->code);
5716
07016151 5717 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
5718 verbose(env,
5719 "BPF program is too large. Processed %d insn\n",
17a52670
AS
5720 insn_processed);
5721 return -E2BIG;
5722 }
5723
c08435ec 5724 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
5725 if (err < 0)
5726 return err;
5727 if (err == 1) {
5728 /* found equivalent state, can prune the search */
61bd5218 5729 if (env->log.level) {
f1bca824 5730 if (do_print_state)
61bd5218 5731 verbose(env, "\nfrom %d to %d: safe\n",
c08435ec 5732 env->prev_insn_idx, env->insn_idx);
f1bca824 5733 else
c08435ec 5734 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
5735 }
5736 goto process_bpf_exit;
5737 }
5738
c3494801
AS
5739 if (signal_pending(current))
5740 return -EAGAIN;
5741
3c2ce60b
DB
5742 if (need_resched())
5743 cond_resched();
5744
61bd5218
JK
5745 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5746 if (env->log.level > 1)
c08435ec 5747 verbose(env, "%d:", env->insn_idx);
c5fc9692 5748 else
61bd5218 5749 verbose(env, "\nfrom %d to %d:",
c08435ec 5750 env->prev_insn_idx, env->insn_idx);
f4d7e40a 5751 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
5752 do_print_state = false;
5753 }
5754
61bd5218 5755 if (env->log.level) {
7105e828
DB
5756 const struct bpf_insn_cbs cbs = {
5757 .cb_print = verbose,
abe08840 5758 .private_data = env,
7105e828
DB
5759 };
5760
c08435ec
DB
5761 verbose_linfo(env, env->insn_idx, "; ");
5762 verbose(env, "%d: ", env->insn_idx);
abe08840 5763 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
5764 }
5765
cae1927c 5766 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
5767 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
5768 env->prev_insn_idx);
cae1927c
JK
5769 if (err)
5770 return err;
5771 }
13a27dfc 5772
638f5b90 5773 regs = cur_regs(env);
c08435ec 5774 env->insn_aux_data[env->insn_idx].seen = true;
fd978bf7 5775
17a52670 5776 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 5777 err = check_alu_op(env, insn);
17a52670
AS
5778 if (err)
5779 return err;
5780
5781 } else if (class == BPF_LDX) {
3df126f3 5782 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
5783
5784 /* check for reserved fields is already done */
5785
17a52670 5786 /* check src operand */
dc503a8a 5787 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5788 if (err)
5789 return err;
5790
dc503a8a 5791 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5792 if (err)
5793 return err;
5794
725f9dcd
AS
5795 src_reg_type = regs[insn->src_reg].type;
5796
17a52670
AS
5797 /* check that memory (src_reg + off) is readable,
5798 * the state of dst_reg will be updated by this func
5799 */
c08435ec
DB
5800 err = check_mem_access(env, env->insn_idx, insn->src_reg,
5801 insn->off, BPF_SIZE(insn->code),
5802 BPF_READ, insn->dst_reg, false);
17a52670
AS
5803 if (err)
5804 return err;
5805
c08435ec 5806 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
5807
5808 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
5809 /* saw a valid insn
5810 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 5811 * save type to validate intersecting paths
9bac3d6d 5812 */
3df126f3 5813 *prev_src_type = src_reg_type;
9bac3d6d 5814
c64b7983 5815 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
5816 /* ABuser program is trying to use the same insn
5817 * dst_reg = *(u32*) (src_reg + off)
5818 * with different pointer types:
5819 * src_reg == ctx in one branch and
5820 * src_reg == stack|map in some other branch.
5821 * Reject it.
5822 */
61bd5218 5823 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
5824 return -EINVAL;
5825 }
5826
17a52670 5827 } else if (class == BPF_STX) {
3df126f3 5828 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 5829
17a52670 5830 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 5831 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
5832 if (err)
5833 return err;
c08435ec 5834 env->insn_idx++;
17a52670
AS
5835 continue;
5836 }
5837
17a52670 5838 /* check src1 operand */
dc503a8a 5839 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5840 if (err)
5841 return err;
5842 /* check src2 operand */
dc503a8a 5843 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5844 if (err)
5845 return err;
5846
d691f9e8
AS
5847 dst_reg_type = regs[insn->dst_reg].type;
5848
17a52670 5849 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
5850 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
5851 insn->off, BPF_SIZE(insn->code),
5852 BPF_WRITE, insn->src_reg, false);
17a52670
AS
5853 if (err)
5854 return err;
5855
c08435ec 5856 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
5857
5858 if (*prev_dst_type == NOT_INIT) {
5859 *prev_dst_type = dst_reg_type;
c64b7983 5860 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 5861 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
5862 return -EINVAL;
5863 }
5864
17a52670
AS
5865 } else if (class == BPF_ST) {
5866 if (BPF_MODE(insn->code) != BPF_MEM ||
5867 insn->src_reg != BPF_REG_0) {
61bd5218 5868 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
5869 return -EINVAL;
5870 }
5871 /* check src operand */
dc503a8a 5872 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5873 if (err)
5874 return err;
5875
f37a8cb8 5876 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 5877 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
5878 insn->dst_reg,
5879 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
5880 return -EACCES;
5881 }
5882
17a52670 5883 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
5884 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
5885 insn->off, BPF_SIZE(insn->code),
5886 BPF_WRITE, -1, false);
17a52670
AS
5887 if (err)
5888 return err;
5889
5890 } else if (class == BPF_JMP) {
5891 u8 opcode = BPF_OP(insn->code);
5892
5893 if (opcode == BPF_CALL) {
5894 if (BPF_SRC(insn->code) != BPF_K ||
5895 insn->off != 0 ||
f4d7e40a
AS
5896 (insn->src_reg != BPF_REG_0 &&
5897 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 5898 insn->dst_reg != BPF_REG_0) {
61bd5218 5899 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
5900 return -EINVAL;
5901 }
5902
f4d7e40a 5903 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 5904 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 5905 else
c08435ec 5906 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
5907 if (err)
5908 return err;
5909
5910 } else if (opcode == BPF_JA) {
5911 if (BPF_SRC(insn->code) != BPF_K ||
5912 insn->imm != 0 ||
5913 insn->src_reg != BPF_REG_0 ||
5914 insn->dst_reg != BPF_REG_0) {
61bd5218 5915 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
5916 return -EINVAL;
5917 }
5918
c08435ec 5919 env->insn_idx += insn->off + 1;
17a52670
AS
5920 continue;
5921
5922 } else if (opcode == BPF_EXIT) {
5923 if (BPF_SRC(insn->code) != BPF_K ||
5924 insn->imm != 0 ||
5925 insn->src_reg != BPF_REG_0 ||
5926 insn->dst_reg != BPF_REG_0) {
61bd5218 5927 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5928 return -EINVAL;
5929 }
5930
f4d7e40a
AS
5931 if (state->curframe) {
5932 /* exit from nested function */
c08435ec
DB
5933 env->prev_insn_idx = env->insn_idx;
5934 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
5935 if (err)
5936 return err;
5937 do_print_state = true;
5938 continue;
5939 }
5940
fd978bf7
JS
5941 err = check_reference_leak(env);
5942 if (err)
5943 return err;
5944
17a52670
AS
5945 /* eBPF calling convetion is such that R0 is used
5946 * to return the value from eBPF program.
5947 * Make sure that it's readable at this time
5948 * of bpf_exit, which means that program wrote
5949 * something into it earlier
5950 */
dc503a8a 5951 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5952 if (err)
5953 return err;
5954
1be7f75d 5955 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5956 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5957 return -EACCES;
5958 }
5959
390ee7e2
AS
5960 err = check_return_code(env);
5961 if (err)
5962 return err;
f1bca824 5963process_bpf_exit:
c08435ec
DB
5964 err = pop_stack(env, &env->prev_insn_idx,
5965 &env->insn_idx);
638f5b90
AS
5966 if (err < 0) {
5967 if (err != -ENOENT)
5968 return err;
17a52670
AS
5969 break;
5970 } else {
5971 do_print_state = true;
5972 continue;
5973 }
5974 } else {
c08435ec 5975 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
5976 if (err)
5977 return err;
5978 }
5979 } else if (class == BPF_LD) {
5980 u8 mode = BPF_MODE(insn->code);
5981
5982 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5983 err = check_ld_abs(env, insn);
5984 if (err)
5985 return err;
5986
17a52670
AS
5987 } else if (mode == BPF_IMM) {
5988 err = check_ld_imm(env, insn);
5989 if (err)
5990 return err;
5991
c08435ec
DB
5992 env->insn_idx++;
5993 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 5994 } else {
61bd5218 5995 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5996 return -EINVAL;
5997 }
5998 } else {
61bd5218 5999 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
6000 return -EINVAL;
6001 }
6002
c08435ec 6003 env->insn_idx++;
17a52670
AS
6004 }
6005
4bd95f4b
DB
6006 verbose(env, "processed %d insns (limit %d), stack depth ",
6007 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 6008 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 6009 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
6010
6011 verbose(env, "%d", depth);
f910cefa 6012 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
6013 verbose(env, "+");
6014 }
6015 verbose(env, "\n");
9c8105bd 6016 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
6017 return 0;
6018}
6019
56f668df
MKL
6020static int check_map_prealloc(struct bpf_map *map)
6021{
6022 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
6023 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6024 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
6025 !(map->map_flags & BPF_F_NO_PREALLOC);
6026}
6027
61bd5218
JK
6028static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6029 struct bpf_map *map,
fdc15d38
AS
6030 struct bpf_prog *prog)
6031
6032{
56f668df
MKL
6033 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6034 * preallocated hash maps, since doing memory allocation
6035 * in overflow_handler can crash depending on where nmi got
6036 * triggered.
6037 */
6038 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6039 if (!check_map_prealloc(map)) {
61bd5218 6040 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
6041 return -EINVAL;
6042 }
6043 if (map->inner_map_meta &&
6044 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 6045 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
6046 return -EINVAL;
6047 }
fdc15d38 6048 }
a3884572
JK
6049
6050 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 6051 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
6052 verbose(env, "offload device mismatch between prog and map\n");
6053 return -EINVAL;
6054 }
6055
fdc15d38
AS
6056 return 0;
6057}
6058
b741f163
RG
6059static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6060{
6061 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6062 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6063}
6064
0246e64d
AS
6065/* look for pseudo eBPF instructions that access map FDs and
6066 * replace them with actual map pointers
6067 */
58e2af8b 6068static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
6069{
6070 struct bpf_insn *insn = env->prog->insnsi;
6071 int insn_cnt = env->prog->len;
fdc15d38 6072 int i, j, err;
0246e64d 6073
f1f7714e 6074 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
6075 if (err)
6076 return err;
6077
0246e64d 6078 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 6079 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 6080 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 6081 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
6082 return -EINVAL;
6083 }
6084
d691f9e8
AS
6085 if (BPF_CLASS(insn->code) == BPF_STX &&
6086 ((BPF_MODE(insn->code) != BPF_MEM &&
6087 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 6088 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
6089 return -EINVAL;
6090 }
6091
0246e64d
AS
6092 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6093 struct bpf_map *map;
6094 struct fd f;
6095
6096 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6097 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6098 insn[1].off != 0) {
61bd5218 6099 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
6100 return -EINVAL;
6101 }
6102
6103 if (insn->src_reg == 0)
6104 /* valid generic load 64-bit imm */
6105 goto next_insn;
6106
6107 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
6108 verbose(env,
6109 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
6110 return -EINVAL;
6111 }
6112
6113 f = fdget(insn->imm);
c2101297 6114 map = __bpf_map_get(f);
0246e64d 6115 if (IS_ERR(map)) {
61bd5218 6116 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 6117 insn->imm);
0246e64d
AS
6118 return PTR_ERR(map);
6119 }
6120
61bd5218 6121 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
6122 if (err) {
6123 fdput(f);
6124 return err;
6125 }
6126
0246e64d
AS
6127 /* store map pointer inside BPF_LD_IMM64 instruction */
6128 insn[0].imm = (u32) (unsigned long) map;
6129 insn[1].imm = ((u64) (unsigned long) map) >> 32;
6130
6131 /* check whether we recorded this map already */
6132 for (j = 0; j < env->used_map_cnt; j++)
6133 if (env->used_maps[j] == map) {
6134 fdput(f);
6135 goto next_insn;
6136 }
6137
6138 if (env->used_map_cnt >= MAX_USED_MAPS) {
6139 fdput(f);
6140 return -E2BIG;
6141 }
6142
0246e64d
AS
6143 /* hold the map. If the program is rejected by verifier,
6144 * the map will be released by release_maps() or it
6145 * will be used by the valid program until it's unloaded
ab7f5bf0 6146 * and all maps are released in free_used_maps()
0246e64d 6147 */
92117d84
AS
6148 map = bpf_map_inc(map, false);
6149 if (IS_ERR(map)) {
6150 fdput(f);
6151 return PTR_ERR(map);
6152 }
6153 env->used_maps[env->used_map_cnt++] = map;
6154
b741f163 6155 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 6156 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 6157 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
6158 fdput(f);
6159 return -EBUSY;
6160 }
6161
0246e64d
AS
6162 fdput(f);
6163next_insn:
6164 insn++;
6165 i++;
5e581dad
DB
6166 continue;
6167 }
6168
6169 /* Basic sanity check before we invest more work here. */
6170 if (!bpf_opcode_in_insntable(insn->code)) {
6171 verbose(env, "unknown opcode %02x\n", insn->code);
6172 return -EINVAL;
0246e64d
AS
6173 }
6174 }
6175
6176 /* now all pseudo BPF_LD_IMM64 instructions load valid
6177 * 'struct bpf_map *' into a register instead of user map_fd.
6178 * These pointers will be used later by verifier to validate map access.
6179 */
6180 return 0;
6181}
6182
6183/* drop refcnt of maps used by the rejected program */
58e2af8b 6184static void release_maps(struct bpf_verifier_env *env)
0246e64d 6185{
8bad74f9 6186 enum bpf_cgroup_storage_type stype;
0246e64d
AS
6187 int i;
6188
8bad74f9
RG
6189 for_each_cgroup_storage_type(stype) {
6190 if (!env->prog->aux->cgroup_storage[stype])
6191 continue;
de9cbbaa 6192 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
6193 env->prog->aux->cgroup_storage[stype]);
6194 }
de9cbbaa 6195
0246e64d
AS
6196 for (i = 0; i < env->used_map_cnt; i++)
6197 bpf_map_put(env->used_maps[i]);
6198}
6199
6200/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 6201static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
6202{
6203 struct bpf_insn *insn = env->prog->insnsi;
6204 int insn_cnt = env->prog->len;
6205 int i;
6206
6207 for (i = 0; i < insn_cnt; i++, insn++)
6208 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6209 insn->src_reg = 0;
6210}
6211
8041902d
AS
6212/* single env->prog->insni[off] instruction was replaced with the range
6213 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
6214 * [0, off) and [off, end) to new locations, so the patched range stays zero
6215 */
6216static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6217 u32 off, u32 cnt)
6218{
6219 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 6220 int i;
8041902d
AS
6221
6222 if (cnt == 1)
6223 return 0;
fad953ce
KC
6224 new_data = vzalloc(array_size(prog_len,
6225 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
6226 if (!new_data)
6227 return -ENOMEM;
6228 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6229 memcpy(new_data + off + cnt - 1, old_data + off,
6230 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
6231 for (i = off; i < off + cnt - 1; i++)
6232 new_data[i].seen = true;
8041902d
AS
6233 env->insn_aux_data = new_data;
6234 vfree(old_data);
6235 return 0;
6236}
6237
cc8b0b92
AS
6238static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6239{
6240 int i;
6241
6242 if (len == 1)
6243 return;
4cb3d99c
JW
6244 /* NOTE: fake 'exit' subprog should be updated as well. */
6245 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 6246 if (env->subprog_info[i].start <= off)
cc8b0b92 6247 continue;
9c8105bd 6248 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
6249 }
6250}
6251
8041902d
AS
6252static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6253 const struct bpf_insn *patch, u32 len)
6254{
6255 struct bpf_prog *new_prog;
6256
6257 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6258 if (!new_prog)
6259 return NULL;
6260 if (adjust_insn_aux_data(env, new_prog->len, off, len))
6261 return NULL;
cc8b0b92 6262 adjust_subprog_starts(env, off, len);
8041902d
AS
6263 return new_prog;
6264}
6265
2a5418a1
DB
6266/* The verifier does more data flow analysis than llvm and will not
6267 * explore branches that are dead at run time. Malicious programs can
6268 * have dead code too. Therefore replace all dead at-run-time code
6269 * with 'ja -1'.
6270 *
6271 * Just nops are not optimal, e.g. if they would sit at the end of the
6272 * program and through another bug we would manage to jump there, then
6273 * we'd execute beyond program memory otherwise. Returning exception
6274 * code also wouldn't work since we can have subprogs where the dead
6275 * code could be located.
c131187d
AS
6276 */
6277static void sanitize_dead_code(struct bpf_verifier_env *env)
6278{
6279 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 6280 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
6281 struct bpf_insn *insn = env->prog->insnsi;
6282 const int insn_cnt = env->prog->len;
6283 int i;
6284
6285 for (i = 0; i < insn_cnt; i++) {
6286 if (aux_data[i].seen)
6287 continue;
2a5418a1 6288 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
6289 }
6290}
6291
c64b7983
JS
6292/* convert load instructions that access fields of a context type into a
6293 * sequence of instructions that access fields of the underlying structure:
6294 * struct __sk_buff -> struct sk_buff
6295 * struct bpf_sock_ops -> struct sock
9bac3d6d 6296 */
58e2af8b 6297static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 6298{
00176a34 6299 const struct bpf_verifier_ops *ops = env->ops;
f96da094 6300 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 6301 const int insn_cnt = env->prog->len;
36bbef52 6302 struct bpf_insn insn_buf[16], *insn;
46f53a65 6303 u32 target_size, size_default, off;
9bac3d6d 6304 struct bpf_prog *new_prog;
d691f9e8 6305 enum bpf_access_type type;
f96da094 6306 bool is_narrower_load;
9bac3d6d 6307
b09928b9
DB
6308 if (ops->gen_prologue || env->seen_direct_write) {
6309 if (!ops->gen_prologue) {
6310 verbose(env, "bpf verifier is misconfigured\n");
6311 return -EINVAL;
6312 }
36bbef52
DB
6313 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
6314 env->prog);
6315 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 6316 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
6317 return -EINVAL;
6318 } else if (cnt) {
8041902d 6319 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
6320 if (!new_prog)
6321 return -ENOMEM;
8041902d 6322
36bbef52 6323 env->prog = new_prog;
3df126f3 6324 delta += cnt - 1;
36bbef52
DB
6325 }
6326 }
6327
c64b7983 6328 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
6329 return 0;
6330
3df126f3 6331 insn = env->prog->insnsi + delta;
36bbef52 6332
9bac3d6d 6333 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
6334 bpf_convert_ctx_access_t convert_ctx_access;
6335
62c7989b
DB
6336 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
6337 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
6338 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 6339 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 6340 type = BPF_READ;
62c7989b
DB
6341 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
6342 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
6343 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 6344 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
6345 type = BPF_WRITE;
6346 else
9bac3d6d
AS
6347 continue;
6348
af86ca4e
AS
6349 if (type == BPF_WRITE &&
6350 env->insn_aux_data[i + delta].sanitize_stack_off) {
6351 struct bpf_insn patch[] = {
6352 /* Sanitize suspicious stack slot with zero.
6353 * There are no memory dependencies for this store,
6354 * since it's only using frame pointer and immediate
6355 * constant of zero
6356 */
6357 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
6358 env->insn_aux_data[i + delta].sanitize_stack_off,
6359 0),
6360 /* the original STX instruction will immediately
6361 * overwrite the same stack slot with appropriate value
6362 */
6363 *insn,
6364 };
6365
6366 cnt = ARRAY_SIZE(patch);
6367 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
6368 if (!new_prog)
6369 return -ENOMEM;
6370
6371 delta += cnt - 1;
6372 env->prog = new_prog;
6373 insn = new_prog->insnsi + i + delta;
6374 continue;
6375 }
6376
c64b7983
JS
6377 switch (env->insn_aux_data[i + delta].ptr_type) {
6378 case PTR_TO_CTX:
6379 if (!ops->convert_ctx_access)
6380 continue;
6381 convert_ctx_access = ops->convert_ctx_access;
6382 break;
6383 case PTR_TO_SOCKET:
6384 convert_ctx_access = bpf_sock_convert_ctx_access;
6385 break;
6386 default:
9bac3d6d 6387 continue;
c64b7983 6388 }
9bac3d6d 6389
31fd8581 6390 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 6391 size = BPF_LDST_BYTES(insn);
31fd8581
YS
6392
6393 /* If the read access is a narrower load of the field,
6394 * convert to a 4/8-byte load, to minimum program type specific
6395 * convert_ctx_access changes. If conversion is successful,
6396 * we will apply proper mask to the result.
6397 */
f96da094 6398 is_narrower_load = size < ctx_field_size;
46f53a65
AI
6399 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
6400 off = insn->off;
31fd8581 6401 if (is_narrower_load) {
f96da094
DB
6402 u8 size_code;
6403
6404 if (type == BPF_WRITE) {
61bd5218 6405 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
6406 return -EINVAL;
6407 }
31fd8581 6408
f96da094 6409 size_code = BPF_H;
31fd8581
YS
6410 if (ctx_field_size == 4)
6411 size_code = BPF_W;
6412 else if (ctx_field_size == 8)
6413 size_code = BPF_DW;
f96da094 6414
bc23105c 6415 insn->off = off & ~(size_default - 1);
31fd8581
YS
6416 insn->code = BPF_LDX | BPF_MEM | size_code;
6417 }
f96da094
DB
6418
6419 target_size = 0;
c64b7983
JS
6420 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
6421 &target_size);
f96da094
DB
6422 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
6423 (ctx_field_size && !target_size)) {
61bd5218 6424 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
6425 return -EINVAL;
6426 }
f96da094
DB
6427
6428 if (is_narrower_load && size < target_size) {
46f53a65
AI
6429 u8 shift = (off & (size_default - 1)) * 8;
6430
6431 if (ctx_field_size <= 4) {
6432 if (shift)
6433 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
6434 insn->dst_reg,
6435 shift);
31fd8581 6436 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 6437 (1 << size * 8) - 1);
46f53a65
AI
6438 } else {
6439 if (shift)
6440 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
6441 insn->dst_reg,
6442 shift);
31fd8581 6443 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 6444 (1 << size * 8) - 1);
46f53a65 6445 }
31fd8581 6446 }
9bac3d6d 6447
8041902d 6448 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
6449 if (!new_prog)
6450 return -ENOMEM;
6451
3df126f3 6452 delta += cnt - 1;
9bac3d6d
AS
6453
6454 /* keep walking new program and skip insns we just inserted */
6455 env->prog = new_prog;
3df126f3 6456 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
6457 }
6458
6459 return 0;
6460}
6461
1c2a088a
AS
6462static int jit_subprogs(struct bpf_verifier_env *env)
6463{
6464 struct bpf_prog *prog = env->prog, **func, *tmp;
6465 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 6466 struct bpf_insn *insn;
1c2a088a 6467 void *old_bpf_func;
c454a46b 6468 int err;
1c2a088a 6469
f910cefa 6470 if (env->subprog_cnt <= 1)
1c2a088a
AS
6471 return 0;
6472
7105e828 6473 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
6474 if (insn->code != (BPF_JMP | BPF_CALL) ||
6475 insn->src_reg != BPF_PSEUDO_CALL)
6476 continue;
c7a89784
DB
6477 /* Upon error here we cannot fall back to interpreter but
6478 * need a hard reject of the program. Thus -EFAULT is
6479 * propagated in any case.
6480 */
1c2a088a
AS
6481 subprog = find_subprog(env, i + insn->imm + 1);
6482 if (subprog < 0) {
6483 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6484 i + insn->imm + 1);
6485 return -EFAULT;
6486 }
6487 /* temporarily remember subprog id inside insn instead of
6488 * aux_data, since next loop will split up all insns into funcs
6489 */
f910cefa 6490 insn->off = subprog;
1c2a088a
AS
6491 /* remember original imm in case JIT fails and fallback
6492 * to interpreter will be needed
6493 */
6494 env->insn_aux_data[i].call_imm = insn->imm;
6495 /* point imm to __bpf_call_base+1 from JITs point of view */
6496 insn->imm = 1;
6497 }
6498
c454a46b
MKL
6499 err = bpf_prog_alloc_jited_linfo(prog);
6500 if (err)
6501 goto out_undo_insn;
6502
6503 err = -ENOMEM;
6396bb22 6504 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 6505 if (!func)
c7a89784 6506 goto out_undo_insn;
1c2a088a 6507
f910cefa 6508 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 6509 subprog_start = subprog_end;
4cb3d99c 6510 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
6511
6512 len = subprog_end - subprog_start;
6513 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
6514 if (!func[i])
6515 goto out_free;
6516 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
6517 len * sizeof(struct bpf_insn));
4f74d809 6518 func[i]->type = prog->type;
1c2a088a 6519 func[i]->len = len;
4f74d809
DB
6520 if (bpf_prog_calc_tag(func[i]))
6521 goto out_free;
1c2a088a 6522 func[i]->is_func = 1;
ba64e7d8
YS
6523 func[i]->aux->func_idx = i;
6524 /* the btf and func_info will be freed only at prog->aux */
6525 func[i]->aux->btf = prog->aux->btf;
6526 func[i]->aux->func_info = prog->aux->func_info;
6527
1c2a088a
AS
6528 /* Use bpf_prog_F_tag to indicate functions in stack traces.
6529 * Long term would need debug info to populate names
6530 */
6531 func[i]->aux->name[0] = 'F';
9c8105bd 6532 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 6533 func[i]->jit_requested = 1;
c454a46b
MKL
6534 func[i]->aux->linfo = prog->aux->linfo;
6535 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
6536 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
6537 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
6538 func[i] = bpf_int_jit_compile(func[i]);
6539 if (!func[i]->jited) {
6540 err = -ENOTSUPP;
6541 goto out_free;
6542 }
6543 cond_resched();
6544 }
6545 /* at this point all bpf functions were successfully JITed
6546 * now populate all bpf_calls with correct addresses and
6547 * run last pass of JIT
6548 */
f910cefa 6549 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6550 insn = func[i]->insnsi;
6551 for (j = 0; j < func[i]->len; j++, insn++) {
6552 if (insn->code != (BPF_JMP | BPF_CALL) ||
6553 insn->src_reg != BPF_PSEUDO_CALL)
6554 continue;
6555 subprog = insn->off;
1c2a088a
AS
6556 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6557 func[subprog]->bpf_func -
6558 __bpf_call_base;
6559 }
2162fed4
SD
6560
6561 /* we use the aux data to keep a list of the start addresses
6562 * of the JITed images for each function in the program
6563 *
6564 * for some architectures, such as powerpc64, the imm field
6565 * might not be large enough to hold the offset of the start
6566 * address of the callee's JITed image from __bpf_call_base
6567 *
6568 * in such cases, we can lookup the start address of a callee
6569 * by using its subprog id, available from the off field of
6570 * the call instruction, as an index for this list
6571 */
6572 func[i]->aux->func = func;
6573 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 6574 }
f910cefa 6575 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6576 old_bpf_func = func[i]->bpf_func;
6577 tmp = bpf_int_jit_compile(func[i]);
6578 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6579 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 6580 err = -ENOTSUPP;
1c2a088a
AS
6581 goto out_free;
6582 }
6583 cond_resched();
6584 }
6585
6586 /* finally lock prog and jit images for all functions and
6587 * populate kallsysm
6588 */
f910cefa 6589 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6590 bpf_prog_lock_ro(func[i]);
6591 bpf_prog_kallsyms_add(func[i]);
6592 }
7105e828
DB
6593
6594 /* Last step: make now unused interpreter insns from main
6595 * prog consistent for later dump requests, so they can
6596 * later look the same as if they were interpreted only.
6597 */
6598 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
6599 if (insn->code != (BPF_JMP | BPF_CALL) ||
6600 insn->src_reg != BPF_PSEUDO_CALL)
6601 continue;
6602 insn->off = env->insn_aux_data[i].call_imm;
6603 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 6604 insn->imm = subprog;
7105e828
DB
6605 }
6606
1c2a088a
AS
6607 prog->jited = 1;
6608 prog->bpf_func = func[0]->bpf_func;
6609 prog->aux->func = func;
f910cefa 6610 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 6611 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
6612 return 0;
6613out_free:
f910cefa 6614 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
6615 if (func[i])
6616 bpf_jit_free(func[i]);
6617 kfree(func);
c7a89784 6618out_undo_insn:
1c2a088a
AS
6619 /* cleanup main prog to be interpreted */
6620 prog->jit_requested = 0;
6621 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6622 if (insn->code != (BPF_JMP | BPF_CALL) ||
6623 insn->src_reg != BPF_PSEUDO_CALL)
6624 continue;
6625 insn->off = 0;
6626 insn->imm = env->insn_aux_data[i].call_imm;
6627 }
c454a46b 6628 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
6629 return err;
6630}
6631
1ea47e01
AS
6632static int fixup_call_args(struct bpf_verifier_env *env)
6633{
19d28fbd 6634#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6635 struct bpf_prog *prog = env->prog;
6636 struct bpf_insn *insn = prog->insnsi;
6637 int i, depth;
19d28fbd 6638#endif
e4052d06 6639 int err = 0;
1ea47e01 6640
e4052d06
QM
6641 if (env->prog->jit_requested &&
6642 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
6643 err = jit_subprogs(env);
6644 if (err == 0)
1c2a088a 6645 return 0;
c7a89784
DB
6646 if (err == -EFAULT)
6647 return err;
19d28fbd
DM
6648 }
6649#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6650 for (i = 0; i < prog->len; i++, insn++) {
6651 if (insn->code != (BPF_JMP | BPF_CALL) ||
6652 insn->src_reg != BPF_PSEUDO_CALL)
6653 continue;
6654 depth = get_callee_stack_depth(env, insn, i);
6655 if (depth < 0)
6656 return depth;
6657 bpf_patch_call_args(insn, depth);
6658 }
19d28fbd
DM
6659 err = 0;
6660#endif
6661 return err;
1ea47e01
AS
6662}
6663
79741b3b 6664/* fixup insn->imm field of bpf_call instructions
81ed18ab 6665 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
6666 *
6667 * this function is called after eBPF program passed verification
6668 */
79741b3b 6669static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 6670{
79741b3b
AS
6671 struct bpf_prog *prog = env->prog;
6672 struct bpf_insn *insn = prog->insnsi;
e245c5c6 6673 const struct bpf_func_proto *fn;
79741b3b 6674 const int insn_cnt = prog->len;
09772d92 6675 const struct bpf_map_ops *ops;
c93552c4 6676 struct bpf_insn_aux_data *aux;
81ed18ab
AS
6677 struct bpf_insn insn_buf[16];
6678 struct bpf_prog *new_prog;
6679 struct bpf_map *map_ptr;
6680 int i, cnt, delta = 0;
e245c5c6 6681
79741b3b 6682 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
6683 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6684 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6685 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 6686 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
6687 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6688 struct bpf_insn mask_and_div[] = {
6689 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6690 /* Rx div 0 -> 0 */
6691 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6692 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6693 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6694 *insn,
6695 };
6696 struct bpf_insn mask_and_mod[] = {
6697 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6698 /* Rx mod 0 -> Rx */
6699 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6700 *insn,
6701 };
6702 struct bpf_insn *patchlet;
6703
6704 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6705 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6706 patchlet = mask_and_div + (is64 ? 1 : 0);
6707 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6708 } else {
6709 patchlet = mask_and_mod + (is64 ? 1 : 0);
6710 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6711 }
6712
6713 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
6714 if (!new_prog)
6715 return -ENOMEM;
6716
6717 delta += cnt - 1;
6718 env->prog = prog = new_prog;
6719 insn = new_prog->insnsi + i + delta;
6720 continue;
6721 }
6722
e0cea7ce
DB
6723 if (BPF_CLASS(insn->code) == BPF_LD &&
6724 (BPF_MODE(insn->code) == BPF_ABS ||
6725 BPF_MODE(insn->code) == BPF_IND)) {
6726 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6727 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6728 verbose(env, "bpf verifier is misconfigured\n");
6729 return -EINVAL;
6730 }
6731
6732 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6733 if (!new_prog)
6734 return -ENOMEM;
6735
6736 delta += cnt - 1;
6737 env->prog = prog = new_prog;
6738 insn = new_prog->insnsi + i + delta;
6739 continue;
6740 }
6741
79741b3b
AS
6742 if (insn->code != (BPF_JMP | BPF_CALL))
6743 continue;
cc8b0b92
AS
6744 if (insn->src_reg == BPF_PSEUDO_CALL)
6745 continue;
e245c5c6 6746
79741b3b
AS
6747 if (insn->imm == BPF_FUNC_get_route_realm)
6748 prog->dst_needed = 1;
6749 if (insn->imm == BPF_FUNC_get_prandom_u32)
6750 bpf_user_rnd_init_once();
9802d865
JB
6751 if (insn->imm == BPF_FUNC_override_return)
6752 prog->kprobe_override = 1;
79741b3b 6753 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
6754 /* If we tail call into other programs, we
6755 * cannot make any assumptions since they can
6756 * be replaced dynamically during runtime in
6757 * the program array.
6758 */
6759 prog->cb_access = 1;
80a58d02 6760 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 6761 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 6762
79741b3b
AS
6763 /* mark bpf_tail_call as different opcode to avoid
6764 * conditional branch in the interpeter for every normal
6765 * call and to prevent accidental JITing by JIT compiler
6766 * that doesn't support bpf_tail_call yet
e245c5c6 6767 */
79741b3b 6768 insn->imm = 0;
71189fa9 6769 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 6770
c93552c4
DB
6771 aux = &env->insn_aux_data[i + delta];
6772 if (!bpf_map_ptr_unpriv(aux))
6773 continue;
6774
b2157399
AS
6775 /* instead of changing every JIT dealing with tail_call
6776 * emit two extra insns:
6777 * if (index >= max_entries) goto out;
6778 * index &= array->index_mask;
6779 * to avoid out-of-bounds cpu speculation
6780 */
c93552c4 6781 if (bpf_map_ptr_poisoned(aux)) {
40950343 6782 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
6783 return -EINVAL;
6784 }
c93552c4
DB
6785
6786 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
6787 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6788 map_ptr->max_entries, 2);
6789 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6790 container_of(map_ptr,
6791 struct bpf_array,
6792 map)->index_mask);
6793 insn_buf[2] = *insn;
6794 cnt = 3;
6795 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6796 if (!new_prog)
6797 return -ENOMEM;
6798
6799 delta += cnt - 1;
6800 env->prog = prog = new_prog;
6801 insn = new_prog->insnsi + i + delta;
79741b3b
AS
6802 continue;
6803 }
e245c5c6 6804
89c63074 6805 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
6806 * and other inlining handlers are currently limited to 64 bit
6807 * only.
89c63074 6808 */
60b58afc 6809 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
6810 (insn->imm == BPF_FUNC_map_lookup_elem ||
6811 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
6812 insn->imm == BPF_FUNC_map_delete_elem ||
6813 insn->imm == BPF_FUNC_map_push_elem ||
6814 insn->imm == BPF_FUNC_map_pop_elem ||
6815 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
6816 aux = &env->insn_aux_data[i + delta];
6817 if (bpf_map_ptr_poisoned(aux))
6818 goto patch_call_imm;
6819
6820 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
6821 ops = map_ptr->ops;
6822 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6823 ops->map_gen_lookup) {
6824 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6825 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6826 verbose(env, "bpf verifier is misconfigured\n");
6827 return -EINVAL;
6828 }
81ed18ab 6829
09772d92
DB
6830 new_prog = bpf_patch_insn_data(env, i + delta,
6831 insn_buf, cnt);
6832 if (!new_prog)
6833 return -ENOMEM;
81ed18ab 6834
09772d92
DB
6835 delta += cnt - 1;
6836 env->prog = prog = new_prog;
6837 insn = new_prog->insnsi + i + delta;
6838 continue;
6839 }
81ed18ab 6840
09772d92
DB
6841 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6842 (void *(*)(struct bpf_map *map, void *key))NULL));
6843 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6844 (int (*)(struct bpf_map *map, void *key))NULL));
6845 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6846 (int (*)(struct bpf_map *map, void *key, void *value,
6847 u64 flags))NULL));
84430d42
DB
6848 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6849 (int (*)(struct bpf_map *map, void *value,
6850 u64 flags))NULL));
6851 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6852 (int (*)(struct bpf_map *map, void *value))NULL));
6853 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6854 (int (*)(struct bpf_map *map, void *value))NULL));
6855
09772d92
DB
6856 switch (insn->imm) {
6857 case BPF_FUNC_map_lookup_elem:
6858 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6859 __bpf_call_base;
6860 continue;
6861 case BPF_FUNC_map_update_elem:
6862 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6863 __bpf_call_base;
6864 continue;
6865 case BPF_FUNC_map_delete_elem:
6866 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6867 __bpf_call_base;
6868 continue;
84430d42
DB
6869 case BPF_FUNC_map_push_elem:
6870 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6871 __bpf_call_base;
6872 continue;
6873 case BPF_FUNC_map_pop_elem:
6874 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6875 __bpf_call_base;
6876 continue;
6877 case BPF_FUNC_map_peek_elem:
6878 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6879 __bpf_call_base;
6880 continue;
09772d92 6881 }
81ed18ab 6882
09772d92 6883 goto patch_call_imm;
81ed18ab
AS
6884 }
6885
6886patch_call_imm:
5e43f899 6887 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
6888 /* all functions that have prototype and verifier allowed
6889 * programs to call them, must be real in-kernel functions
6890 */
6891 if (!fn->func) {
61bd5218
JK
6892 verbose(env,
6893 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
6894 func_id_name(insn->imm), insn->imm);
6895 return -EFAULT;
e245c5c6 6896 }
79741b3b 6897 insn->imm = fn->func - __bpf_call_base;
e245c5c6 6898 }
e245c5c6 6899
79741b3b
AS
6900 return 0;
6901}
e245c5c6 6902
58e2af8b 6903static void free_states(struct bpf_verifier_env *env)
f1bca824 6904{
58e2af8b 6905 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
6906 int i;
6907
6908 if (!env->explored_states)
6909 return;
6910
6911 for (i = 0; i < env->prog->len; i++) {
6912 sl = env->explored_states[i];
6913
6914 if (sl)
6915 while (sl != STATE_LIST_MARK) {
6916 sln = sl->next;
1969db47 6917 free_verifier_state(&sl->state, false);
f1bca824
AS
6918 kfree(sl);
6919 sl = sln;
6920 }
6921 }
6922
6923 kfree(env->explored_states);
6924}
6925
838e9690
YS
6926int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
6927 union bpf_attr __user *uattr)
51580e79 6928{
58e2af8b 6929 struct bpf_verifier_env *env;
b9193c1b 6930 struct bpf_verifier_log *log;
51580e79
AS
6931 int ret = -EINVAL;
6932
eba0c929
AB
6933 /* no program is valid */
6934 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6935 return -EINVAL;
6936
58e2af8b 6937 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
6938 * allocate/free it every time bpf_check() is called
6939 */
58e2af8b 6940 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
6941 if (!env)
6942 return -ENOMEM;
61bd5218 6943 log = &env->log;
cbd35700 6944
fad953ce
KC
6945 env->insn_aux_data =
6946 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6947 (*prog)->len));
3df126f3
JK
6948 ret = -ENOMEM;
6949 if (!env->insn_aux_data)
6950 goto err_free_env;
9bac3d6d 6951 env->prog = *prog;
00176a34 6952 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 6953
cbd35700
AS
6954 /* grab the mutex to protect few globals used by verifier */
6955 mutex_lock(&bpf_verifier_lock);
6956
6957 if (attr->log_level || attr->log_buf || attr->log_size) {
6958 /* user requested verbose verifier output
6959 * and supplied buffer to store the verification trace
6960 */
e7bf8249
JK
6961 log->level = attr->log_level;
6962 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6963 log->len_total = attr->log_size;
cbd35700
AS
6964
6965 ret = -EINVAL;
e7bf8249
JK
6966 /* log attributes have to be sane */
6967 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6968 !log->level || !log->ubuf)
3df126f3 6969 goto err_unlock;
cbd35700 6970 }
1ad2f583
DB
6971
6972 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6973 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 6974 env->strict_alignment = true;
e9ee9efc
DM
6975 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
6976 env->strict_alignment = false;
cbd35700 6977
f4e3ec0d
JK
6978 ret = replace_map_fd_with_map_ptr(env);
6979 if (ret < 0)
6980 goto skip_full_check;
6981
cae1927c 6982 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 6983 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 6984 if (ret)
f4e3ec0d 6985 goto skip_full_check;
ab3f0063
JK
6986 }
6987
9bac3d6d 6988 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6989 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6990 GFP_USER);
6991 ret = -ENOMEM;
6992 if (!env->explored_states)
6993 goto skip_full_check;
6994
cc8b0b92
AS
6995 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6996
d9762e84 6997 ret = check_subprogs(env);
475fb78f
AS
6998 if (ret < 0)
6999 goto skip_full_check;
7000
c454a46b 7001 ret = check_btf_info(env, attr, uattr);
838e9690
YS
7002 if (ret < 0)
7003 goto skip_full_check;
7004
d9762e84
MKL
7005 ret = check_cfg(env);
7006 if (ret < 0)
7007 goto skip_full_check;
7008
17a52670 7009 ret = do_check(env);
8c01c4f8
CG
7010 if (env->cur_state) {
7011 free_verifier_state(env->cur_state, true);
7012 env->cur_state = NULL;
7013 }
cbd35700 7014
c941ce9c
QM
7015 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
7016 ret = bpf_prog_offload_finalize(env);
7017
0246e64d 7018skip_full_check:
638f5b90 7019 while (!pop_stack(env, NULL, NULL));
f1bca824 7020 free_states(env);
0246e64d 7021
c131187d 7022 if (ret == 0)
9b38c405 7023 ret = check_max_stack_depth(env);
c131187d 7024
9b38c405 7025 /* instruction rewrites happen after this point */
70a87ffe 7026 if (ret == 0)
9b38c405 7027 sanitize_dead_code(env);
70a87ffe 7028
9bac3d6d
AS
7029 if (ret == 0)
7030 /* program is valid, convert *(u32*)(ctx + off) accesses */
7031 ret = convert_ctx_accesses(env);
7032
e245c5c6 7033 if (ret == 0)
79741b3b 7034 ret = fixup_bpf_calls(env);
e245c5c6 7035
1ea47e01
AS
7036 if (ret == 0)
7037 ret = fixup_call_args(env);
7038
a2a7d570 7039 if (log->level && bpf_verifier_log_full(log))
cbd35700 7040 ret = -ENOSPC;
a2a7d570 7041 if (log->level && !log->ubuf) {
cbd35700 7042 ret = -EFAULT;
a2a7d570 7043 goto err_release_maps;
cbd35700
AS
7044 }
7045
0246e64d
AS
7046 if (ret == 0 && env->used_map_cnt) {
7047 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
7048 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7049 sizeof(env->used_maps[0]),
7050 GFP_KERNEL);
0246e64d 7051
9bac3d6d 7052 if (!env->prog->aux->used_maps) {
0246e64d 7053 ret = -ENOMEM;
a2a7d570 7054 goto err_release_maps;
0246e64d
AS
7055 }
7056
9bac3d6d 7057 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 7058 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 7059 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
7060
7061 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
7062 * bpf_ld_imm64 instructions
7063 */
7064 convert_pseudo_ld_imm64(env);
7065 }
cbd35700 7066
ba64e7d8
YS
7067 if (ret == 0)
7068 adjust_btf_func(env);
7069
a2a7d570 7070err_release_maps:
9bac3d6d 7071 if (!env->prog->aux->used_maps)
0246e64d 7072 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 7073 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
7074 */
7075 release_maps(env);
9bac3d6d 7076 *prog = env->prog;
3df126f3 7077err_unlock:
cbd35700 7078 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
7079 vfree(env->insn_aux_data);
7080err_free_env:
7081 kfree(env);
51580e79
AS
7082 return ret;
7083}