bpf: Use bpf_prog_run_array_cg_flags everywhere
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
51580e79 26
f4ac7e0b
JK
27#include "disasm.h"
28
00176a34 29static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 30#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
31 [_id] = & _name ## _verifier_ops,
32#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 33#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
34#include <linux/bpf_types.h>
35#undef BPF_PROG_TYPE
36#undef BPF_MAP_TYPE
f2e10bff 37#undef BPF_LINK_TYPE
00176a34
JK
38};
39
51580e79
AS
40/* bpf_check() is a static code analyzer that walks eBPF program
41 * instruction by instruction and updates register/stack state.
42 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43 *
44 * The first pass is depth-first-search to check that the program is a DAG.
45 * It rejects the following programs:
46 * - larger than BPF_MAXINSNS insns
47 * - if loop is present (detected via back-edge)
48 * - unreachable insns exist (shouldn't be a forest. program = one function)
49 * - out of bounds or malformed jumps
50 * The second pass is all possible path descent from the 1st insn.
8fb33b60 51 * Since it's analyzing all paths through the program, the length of the
eba38a96 52 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
53 * insn is less then 4K, but there are too many branches that change stack/regs.
54 * Number of 'branches to be analyzed' is limited to 1k
55 *
56 * On entry to each instruction, each register has a type, and the instruction
57 * changes the types of the registers depending on instruction semantics.
58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59 * copied to R1.
60 *
61 * All registers are 64-bit.
62 * R0 - return register
63 * R1-R5 argument passing registers
64 * R6-R9 callee saved registers
65 * R10 - frame pointer read-only
66 *
67 * At the start of BPF program the register R1 contains a pointer to bpf_context
68 * and has type PTR_TO_CTX.
69 *
70 * Verifier tracks arithmetic operations on pointers in case:
71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73 * 1st insn copies R10 (which has FRAME_PTR) type into R1
74 * and 2nd arithmetic instruction is pattern matched to recognize
75 * that it wants to construct a pointer to some element within stack.
76 * So after 2nd insn, the register R1 has type PTR_TO_STACK
77 * (and -20 constant is saved for further stack bounds checking).
78 * Meaning that this reg is a pointer to stack plus known immediate constant.
79 *
f1174f77 80 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 81 * means the register has some value, but it's not a valid pointer.
f1174f77 82 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
83 *
84 * When verifier sees load or store instructions the type of base register
c64b7983
JS
85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86 * four pointer types recognized by check_mem_access() function.
51580e79
AS
87 *
88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89 * and the range of [ptr, ptr + map's value_size) is accessible.
90 *
91 * registers used to pass values to function calls are checked against
92 * function argument constraints.
93 *
94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95 * It means that the register type passed to this function must be
96 * PTR_TO_STACK and it will be used inside the function as
97 * 'pointer to map element key'
98 *
99 * For example the argument constraints for bpf_map_lookup_elem():
100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101 * .arg1_type = ARG_CONST_MAP_PTR,
102 * .arg2_type = ARG_PTR_TO_MAP_KEY,
103 *
104 * ret_type says that this function returns 'pointer to map elem value or null'
105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106 * 2nd argument should be a pointer to stack, which will be used inside
107 * the helper function as a pointer to map element key.
108 *
109 * On the kernel side the helper function looks like:
110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111 * {
112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113 * void *key = (void *) (unsigned long) r2;
114 * void *value;
115 *
116 * here kernel can access 'key' and 'map' pointers safely, knowing that
117 * [key, key + map->key_size) bytes are valid and were initialized on
118 * the stack of eBPF program.
119 * }
120 *
121 * Corresponding eBPF program may look like:
122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126 * here verifier looks at prototype of map_lookup_elem() and sees:
127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129 *
130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132 * and were initialized prior to this call.
133 * If it's ok, then verifier allows this BPF_CALL insn and looks at
134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 136 * returns either pointer to map value or NULL.
51580e79
AS
137 *
138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139 * insn, the register holding that pointer in the true branch changes state to
140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141 * branch. See check_cond_jmp_op().
142 *
143 * After the call R0 is set to return type of the function and registers R1-R5
144 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
145 *
146 * The following reference types represent a potential reference to a kernel
147 * resource which, after first being allocated, must be checked and freed by
148 * the BPF program:
149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150 *
151 * When the verifier sees a helper call return a reference type, it allocates a
152 * pointer id for the reference and stores it in the current function state.
153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155 * passes through a NULL-check conditional. For the branch wherein the state is
156 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
157 *
158 * For each helper function that allocates a reference, such as
159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160 * bpf_sk_release(). When a reference type passes into the release function,
161 * the verifier also releases the reference. If any unchecked or unreleased
162 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
163 */
164
17a52670 165/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 166struct bpf_verifier_stack_elem {
17a52670
AS
167 /* verifer state is 'st'
168 * before processing instruction 'insn_idx'
169 * and after processing instruction 'prev_insn_idx'
170 */
58e2af8b 171 struct bpf_verifier_state st;
17a52670
AS
172 int insn_idx;
173 int prev_insn_idx;
58e2af8b 174 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
175 /* length of verifier log at the time this state was pushed on stack */
176 u32 log_pos;
cbd35700
AS
177};
178
b285fcb7 179#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 180#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 181
d2e4c1e6
DB
182#define BPF_MAP_KEY_POISON (1ULL << 63)
183#define BPF_MAP_KEY_SEEN (1ULL << 62)
184
c93552c4
DB
185#define BPF_MAP_PTR_UNPRIV 1UL
186#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
187 POISON_POINTER_DELTA))
188#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189
190static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
191{
d2e4c1e6 192 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
193}
194
195static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
196{
d2e4c1e6 197 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
198}
199
200static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
201 const struct bpf_map *map, bool unpriv)
202{
203 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
204 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
205 aux->map_ptr_state = (unsigned long)map |
206 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
207}
208
209static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
210{
211 return aux->map_key_state & BPF_MAP_KEY_POISON;
212}
213
214static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
215{
216 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
217}
218
219static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
220{
221 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
222}
223
224static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
225{
226 bool poisoned = bpf_map_key_poisoned(aux);
227
228 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
229 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 230}
fad73a1a 231
23a2d70c
YS
232static bool bpf_pseudo_call(const struct bpf_insn *insn)
233{
234 return insn->code == (BPF_JMP | BPF_CALL) &&
235 insn->src_reg == BPF_PSEUDO_CALL;
236}
237
e6ac2450
MKL
238static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
239{
240 return insn->code == (BPF_JMP | BPF_CALL) &&
241 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
242}
243
33ff9823
DB
244struct bpf_call_arg_meta {
245 struct bpf_map *map_ptr;
435faee1 246 bool raw_mode;
36bbef52 247 bool pkt_access;
435faee1
DB
248 int regno;
249 int access_size;
457f4436 250 int mem_size;
10060503 251 u64 msize_max_value;
1b986589 252 int ref_obj_id;
3e8ce298 253 int map_uid;
d83525ca 254 int func_id;
22dc4a0f 255 struct btf *btf;
eaa6bcb7 256 u32 btf_id;
22dc4a0f 257 struct btf *ret_btf;
eaa6bcb7 258 u32 ret_btf_id;
69c087ba 259 u32 subprogno;
33ff9823
DB
260};
261
8580ac94
AS
262struct btf *btf_vmlinux;
263
cbd35700
AS
264static DEFINE_MUTEX(bpf_verifier_lock);
265
d9762e84
MKL
266static const struct bpf_line_info *
267find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
268{
269 const struct bpf_line_info *linfo;
270 const struct bpf_prog *prog;
271 u32 i, nr_linfo;
272
273 prog = env->prog;
274 nr_linfo = prog->aux->nr_linfo;
275
276 if (!nr_linfo || insn_off >= prog->len)
277 return NULL;
278
279 linfo = prog->aux->linfo;
280 for (i = 1; i < nr_linfo; i++)
281 if (insn_off < linfo[i].insn_off)
282 break;
283
284 return &linfo[i - 1];
285}
286
77d2e05a
MKL
287void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
288 va_list args)
cbd35700 289{
a2a7d570 290 unsigned int n;
cbd35700 291
a2a7d570 292 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
293
294 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
295 "verifier log line truncated - local buffer too short\n");
296
8580ac94 297 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
298 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
299
300 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
301 return;
302 }
436d404c
HT
303
304 n = min(log->len_total - log->len_used - 1, n);
305 log->kbuf[n] = '\0';
a2a7d570
JK
306 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
307 log->len_used += n;
308 else
309 log->ubuf = NULL;
cbd35700 310}
abe08840 311
6f8a57cc
AN
312static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
313{
314 char zero = 0;
315
316 if (!bpf_verifier_log_needed(log))
317 return;
318
319 log->len_used = new_pos;
320 if (put_user(zero, log->ubuf + new_pos))
321 log->ubuf = NULL;
322}
323
abe08840
JO
324/* log_level controls verbosity level of eBPF verifier.
325 * bpf_verifier_log_write() is used to dump the verification trace to the log,
326 * so the user can figure out what's wrong with the program
430e68d1 327 */
abe08840
JO
328__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
329 const char *fmt, ...)
330{
331 va_list args;
332
77d2e05a
MKL
333 if (!bpf_verifier_log_needed(&env->log))
334 return;
335
abe08840 336 va_start(args, fmt);
77d2e05a 337 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
338 va_end(args);
339}
340EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
341
342__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
343{
77d2e05a 344 struct bpf_verifier_env *env = private_data;
abe08840
JO
345 va_list args;
346
77d2e05a
MKL
347 if (!bpf_verifier_log_needed(&env->log))
348 return;
349
abe08840 350 va_start(args, fmt);
77d2e05a 351 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
352 va_end(args);
353}
cbd35700 354
9e15db66
AS
355__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
356 const char *fmt, ...)
357{
358 va_list args;
359
360 if (!bpf_verifier_log_needed(log))
361 return;
362
363 va_start(args, fmt);
364 bpf_verifier_vlog(log, fmt, args);
365 va_end(args);
366}
367
d9762e84
MKL
368static const char *ltrim(const char *s)
369{
370 while (isspace(*s))
371 s++;
372
373 return s;
374}
375
376__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
377 u32 insn_off,
378 const char *prefix_fmt, ...)
379{
380 const struct bpf_line_info *linfo;
381
382 if (!bpf_verifier_log_needed(&env->log))
383 return;
384
385 linfo = find_linfo(env, insn_off);
386 if (!linfo || linfo == env->prev_linfo)
387 return;
388
389 if (prefix_fmt) {
390 va_list args;
391
392 va_start(args, prefix_fmt);
393 bpf_verifier_vlog(&env->log, prefix_fmt, args);
394 va_end(args);
395 }
396
397 verbose(env, "%s\n",
398 ltrim(btf_name_by_offset(env->prog->aux->btf,
399 linfo->line_off)));
400
401 env->prev_linfo = linfo;
402}
403
bc2591d6
YS
404static void verbose_invalid_scalar(struct bpf_verifier_env *env,
405 struct bpf_reg_state *reg,
406 struct tnum *range, const char *ctx,
407 const char *reg_name)
408{
409 char tn_buf[48];
410
411 verbose(env, "At %s the register %s ", ctx, reg_name);
412 if (!tnum_is_unknown(reg->var_off)) {
413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
414 verbose(env, "has value %s", tn_buf);
415 } else {
416 verbose(env, "has unknown scalar value");
417 }
418 tnum_strn(tn_buf, sizeof(tn_buf), *range);
419 verbose(env, " should have been in %s\n", tn_buf);
420}
421
de8f3a83
DB
422static bool type_is_pkt_pointer(enum bpf_reg_type type)
423{
424 return type == PTR_TO_PACKET ||
425 type == PTR_TO_PACKET_META;
426}
427
46f8bc92
MKL
428static bool type_is_sk_pointer(enum bpf_reg_type type)
429{
430 return type == PTR_TO_SOCKET ||
655a51e5 431 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
432 type == PTR_TO_TCP_SOCK ||
433 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
434}
435
cac616db
JF
436static bool reg_type_not_null(enum bpf_reg_type type)
437{
438 return type == PTR_TO_SOCKET ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_MAP_VALUE ||
69c087ba 441 type == PTR_TO_MAP_KEY ||
01c66c48 442 type == PTR_TO_SOCK_COMMON;
cac616db
JF
443}
444
d83525ca
AS
445static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
446{
447 return reg->type == PTR_TO_MAP_VALUE &&
448 map_value_has_spin_lock(reg->map_ptr);
449}
450
cba368c1
MKL
451static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
452{
c25b2ae1
HL
453 return base_type(type) == PTR_TO_SOCKET ||
454 base_type(type) == PTR_TO_TCP_SOCK ||
5c073f26
KKD
455 base_type(type) == PTR_TO_MEM ||
456 base_type(type) == PTR_TO_BTF_ID;
cba368c1
MKL
457}
458
20b2aff4
HL
459static bool type_is_rdonly_mem(u32 type)
460{
461 return type & MEM_RDONLY;
cba368c1
MKL
462}
463
1b986589 464static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 465{
1b986589 466 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
467}
468
48946bd6 469static bool type_may_be_null(u32 type)
fd1b0d60 470{
48946bd6 471 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
472}
473
fd978bf7
JS
474/* Determine whether the function releases some resources allocated by another
475 * function call. The first reference type argument will be assumed to be
476 * released by release_reference().
477 */
478static bool is_release_function(enum bpf_func_id func_id)
479{
457f4436
AN
480 return func_id == BPF_FUNC_sk_release ||
481 func_id == BPF_FUNC_ringbuf_submit ||
482 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
483}
484
64d85290 485static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
486{
487 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 488 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 489 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
490 func_id == BPF_FUNC_map_lookup_elem ||
491 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
492}
493
494static bool is_acquire_function(enum bpf_func_id func_id,
495 const struct bpf_map *map)
496{
497 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
498
499 if (func_id == BPF_FUNC_sk_lookup_tcp ||
500 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
501 func_id == BPF_FUNC_skc_lookup_tcp ||
502 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
503 return true;
504
505 if (func_id == BPF_FUNC_map_lookup_elem &&
506 (map_type == BPF_MAP_TYPE_SOCKMAP ||
507 map_type == BPF_MAP_TYPE_SOCKHASH))
508 return true;
509
510 return false;
46f8bc92
MKL
511}
512
1b986589
MKL
513static bool is_ptr_cast_function(enum bpf_func_id func_id)
514{
515 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
516 func_id == BPF_FUNC_sk_fullsock ||
517 func_id == BPF_FUNC_skc_to_tcp_sock ||
518 func_id == BPF_FUNC_skc_to_tcp6_sock ||
519 func_id == BPF_FUNC_skc_to_udp6_sock ||
520 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
521 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
522}
523
39491867
BJ
524static bool is_cmpxchg_insn(const struct bpf_insn *insn)
525{
526 return BPF_CLASS(insn->code) == BPF_STX &&
527 BPF_MODE(insn->code) == BPF_ATOMIC &&
528 insn->imm == BPF_CMPXCHG;
529}
530
c25b2ae1
HL
531/* string representation of 'enum bpf_reg_type'
532 *
533 * Note that reg_type_str() can not appear more than once in a single verbose()
534 * statement.
535 */
536static const char *reg_type_str(struct bpf_verifier_env *env,
537 enum bpf_reg_type type)
538{
c6f1bfe8 539 char postfix[16] = {0}, prefix[32] = {0};
c25b2ae1
HL
540 static const char * const str[] = {
541 [NOT_INIT] = "?",
7df5072c 542 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
543 [PTR_TO_CTX] = "ctx",
544 [CONST_PTR_TO_MAP] = "map_ptr",
545 [PTR_TO_MAP_VALUE] = "map_value",
546 [PTR_TO_STACK] = "fp",
547 [PTR_TO_PACKET] = "pkt",
548 [PTR_TO_PACKET_META] = "pkt_meta",
549 [PTR_TO_PACKET_END] = "pkt_end",
550 [PTR_TO_FLOW_KEYS] = "flow_keys",
551 [PTR_TO_SOCKET] = "sock",
552 [PTR_TO_SOCK_COMMON] = "sock_common",
553 [PTR_TO_TCP_SOCK] = "tcp_sock",
554 [PTR_TO_TP_BUFFER] = "tp_buffer",
555 [PTR_TO_XDP_SOCK] = "xdp_sock",
556 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 557 [PTR_TO_MEM] = "mem",
20b2aff4 558 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
559 [PTR_TO_FUNC] = "func",
560 [PTR_TO_MAP_KEY] = "map_key",
561 };
562
563 if (type & PTR_MAYBE_NULL) {
5844101a 564 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
565 strncpy(postfix, "or_null_", 16);
566 else
567 strncpy(postfix, "_or_null", 16);
568 }
569
20b2aff4 570 if (type & MEM_RDONLY)
c6f1bfe8 571 strncpy(prefix, "rdonly_", 32);
a672b2e3 572 if (type & MEM_ALLOC)
c6f1bfe8
YS
573 strncpy(prefix, "alloc_", 32);
574 if (type & MEM_USER)
575 strncpy(prefix, "user_", 32);
5844101a
HL
576 if (type & MEM_PERCPU)
577 strncpy(prefix, "percpu_", 32);
20b2aff4
HL
578
579 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
580 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
581 return env->type_str_buf;
582}
17a52670 583
8efea21d
EC
584static char slot_type_char[] = {
585 [STACK_INVALID] = '?',
586 [STACK_SPILL] = 'r',
587 [STACK_MISC] = 'm',
588 [STACK_ZERO] = '0',
589};
590
4e92024a
AS
591static void print_liveness(struct bpf_verifier_env *env,
592 enum bpf_reg_liveness live)
593{
9242b5f5 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
595 verbose(env, "_");
596 if (live & REG_LIVE_READ)
597 verbose(env, "r");
598 if (live & REG_LIVE_WRITTEN)
599 verbose(env, "w");
9242b5f5
AS
600 if (live & REG_LIVE_DONE)
601 verbose(env, "D");
4e92024a
AS
602}
603
f4d7e40a
AS
604static struct bpf_func_state *func(struct bpf_verifier_env *env,
605 const struct bpf_reg_state *reg)
606{
607 struct bpf_verifier_state *cur = env->cur_state;
608
609 return cur->frame[reg->frameno];
610}
611
22dc4a0f 612static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 613{
22dc4a0f 614 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
615}
616
0f55f9ed
CL
617static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
618{
619 env->scratched_regs |= 1U << regno;
620}
621
622static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
623{
343e5375 624 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
625}
626
627static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
628{
629 return (env->scratched_regs >> regno) & 1;
630}
631
632static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
633{
634 return (env->scratched_stack_slots >> regno) & 1;
635}
636
637static bool verifier_state_scratched(const struct bpf_verifier_env *env)
638{
639 return env->scratched_regs || env->scratched_stack_slots;
640}
641
642static void mark_verifier_state_clean(struct bpf_verifier_env *env)
643{
644 env->scratched_regs = 0U;
343e5375 645 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
646}
647
648/* Used for printing the entire verifier state. */
649static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
650{
651 env->scratched_regs = ~0U;
343e5375 652 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
653}
654
27113c59
MKL
655/* The reg state of a pointer or a bounded scalar was saved when
656 * it was spilled to the stack.
657 */
658static bool is_spilled_reg(const struct bpf_stack_state *stack)
659{
660 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
661}
662
354e8f19
MKL
663static void scrub_spilled_slot(u8 *stype)
664{
665 if (*stype != STACK_INVALID)
666 *stype = STACK_MISC;
667}
668
61bd5218 669static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
670 const struct bpf_func_state *state,
671 bool print_all)
17a52670 672{
f4d7e40a 673 const struct bpf_reg_state *reg;
17a52670
AS
674 enum bpf_reg_type t;
675 int i;
676
f4d7e40a
AS
677 if (state->frameno)
678 verbose(env, " frame%d:", state->frameno);
17a52670 679 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
680 reg = &state->regs[i];
681 t = reg->type;
17a52670
AS
682 if (t == NOT_INIT)
683 continue;
0f55f9ed
CL
684 if (!print_all && !reg_scratched(env, i))
685 continue;
4e92024a
AS
686 verbose(env, " R%d", i);
687 print_liveness(env, reg->live);
7df5072c 688 verbose(env, "=");
b5dc0163
AS
689 if (t == SCALAR_VALUE && reg->precise)
690 verbose(env, "P");
f1174f77
EC
691 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
692 tnum_is_const(reg->var_off)) {
693 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 694 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 695 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 696 } else {
7df5072c
ML
697 const char *sep = "";
698
699 verbose(env, "%s", reg_type_str(env, t));
5844101a 700 if (base_type(t) == PTR_TO_BTF_ID)
22dc4a0f 701 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
7df5072c
ML
702 verbose(env, "(");
703/*
704 * _a stands for append, was shortened to avoid multiline statements below.
705 * This macro is used to output a comma separated list of attributes.
706 */
707#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
708
709 if (reg->id)
710 verbose_a("id=%d", reg->id);
711 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
712 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
f1174f77 713 if (t != SCALAR_VALUE)
7df5072c 714 verbose_a("off=%d", reg->off);
de8f3a83 715 if (type_is_pkt_pointer(t))
7df5072c 716 verbose_a("r=%d", reg->range);
c25b2ae1
HL
717 else if (base_type(t) == CONST_PTR_TO_MAP ||
718 base_type(t) == PTR_TO_MAP_KEY ||
719 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
720 verbose_a("ks=%d,vs=%d",
721 reg->map_ptr->key_size,
722 reg->map_ptr->value_size);
7d1238f2
EC
723 if (tnum_is_const(reg->var_off)) {
724 /* Typically an immediate SCALAR_VALUE, but
725 * could be a pointer whose offset is too big
726 * for reg->off
727 */
7df5072c 728 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
729 } else {
730 if (reg->smin_value != reg->umin_value &&
731 reg->smin_value != S64_MIN)
7df5072c 732 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
733 if (reg->smax_value != reg->umax_value &&
734 reg->smax_value != S64_MAX)
7df5072c 735 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 736 if (reg->umin_value != 0)
7df5072c 737 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 738 if (reg->umax_value != U64_MAX)
7df5072c 739 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
740 if (!tnum_is_unknown(reg->var_off)) {
741 char tn_buf[48];
f1174f77 742
7d1238f2 743 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 744 verbose_a("var_off=%s", tn_buf);
7d1238f2 745 }
3f50f132
JF
746 if (reg->s32_min_value != reg->smin_value &&
747 reg->s32_min_value != S32_MIN)
7df5072c 748 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
749 if (reg->s32_max_value != reg->smax_value &&
750 reg->s32_max_value != S32_MAX)
7df5072c 751 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
752 if (reg->u32_min_value != reg->umin_value &&
753 reg->u32_min_value != U32_MIN)
7df5072c 754 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
755 if (reg->u32_max_value != reg->umax_value &&
756 reg->u32_max_value != U32_MAX)
7df5072c 757 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 758 }
7df5072c
ML
759#undef verbose_a
760
61bd5218 761 verbose(env, ")");
f1174f77 762 }
17a52670 763 }
638f5b90 764 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
765 char types_buf[BPF_REG_SIZE + 1];
766 bool valid = false;
767 int j;
768
769 for (j = 0; j < BPF_REG_SIZE; j++) {
770 if (state->stack[i].slot_type[j] != STACK_INVALID)
771 valid = true;
772 types_buf[j] = slot_type_char[
773 state->stack[i].slot_type[j]];
774 }
775 types_buf[BPF_REG_SIZE] = 0;
776 if (!valid)
777 continue;
0f55f9ed
CL
778 if (!print_all && !stack_slot_scratched(env, i))
779 continue;
8efea21d
EC
780 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
781 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 782 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
783 reg = &state->stack[i].spilled_ptr;
784 t = reg->type;
7df5072c 785 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
786 if (t == SCALAR_VALUE && reg->precise)
787 verbose(env, "P");
788 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
789 verbose(env, "%lld", reg->var_off.value + reg->off);
790 } else {
8efea21d 791 verbose(env, "=%s", types_buf);
b5dc0163 792 }
17a52670 793 }
fd978bf7
JS
794 if (state->acquired_refs && state->refs[0].id) {
795 verbose(env, " refs=%d", state->refs[0].id);
796 for (i = 1; i < state->acquired_refs; i++)
797 if (state->refs[i].id)
798 verbose(env, ",%d", state->refs[i].id);
799 }
bfc6bb74
AS
800 if (state->in_callback_fn)
801 verbose(env, " cb");
802 if (state->in_async_callback_fn)
803 verbose(env, " async_cb");
61bd5218 804 verbose(env, "\n");
0f55f9ed 805 mark_verifier_state_clean(env);
17a52670
AS
806}
807
2e576648
CL
808static inline u32 vlog_alignment(u32 pos)
809{
810 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
811 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
812}
813
814static void print_insn_state(struct bpf_verifier_env *env,
815 const struct bpf_func_state *state)
816{
817 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
818 /* remove new line character */
819 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
820 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
821 } else {
822 verbose(env, "%d:", env->insn_idx);
823 }
824 print_verifier_state(env, state, false);
17a52670
AS
825}
826
c69431aa
LB
827/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
828 * small to hold src. This is different from krealloc since we don't want to preserve
829 * the contents of dst.
830 *
831 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
832 * not be allocated.
638f5b90 833 */
c69431aa 834static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 835{
c69431aa
LB
836 size_t bytes;
837
838 if (ZERO_OR_NULL_PTR(src))
839 goto out;
840
841 if (unlikely(check_mul_overflow(n, size, &bytes)))
842 return NULL;
843
844 if (ksize(dst) < bytes) {
845 kfree(dst);
846 dst = kmalloc_track_caller(bytes, flags);
847 if (!dst)
848 return NULL;
849 }
850
851 memcpy(dst, src, bytes);
852out:
853 return dst ? dst : ZERO_SIZE_PTR;
854}
855
856/* resize an array from old_n items to new_n items. the array is reallocated if it's too
857 * small to hold new_n items. new items are zeroed out if the array grows.
858 *
859 * Contrary to krealloc_array, does not free arr if new_n is zero.
860 */
861static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
862{
863 if (!new_n || old_n == new_n)
864 goto out;
865
866 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
867 if (!arr)
868 return NULL;
869
870 if (new_n > old_n)
871 memset(arr + old_n * size, 0, (new_n - old_n) * size);
872
873out:
874 return arr ? arr : ZERO_SIZE_PTR;
875}
876
877static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
878{
879 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
880 sizeof(struct bpf_reference_state), GFP_KERNEL);
881 if (!dst->refs)
882 return -ENOMEM;
883
884 dst->acquired_refs = src->acquired_refs;
885 return 0;
886}
887
888static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
889{
890 size_t n = src->allocated_stack / BPF_REG_SIZE;
891
892 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
893 GFP_KERNEL);
894 if (!dst->stack)
895 return -ENOMEM;
896
897 dst->allocated_stack = src->allocated_stack;
898 return 0;
899}
900
901static int resize_reference_state(struct bpf_func_state *state, size_t n)
902{
903 state->refs = realloc_array(state->refs, state->acquired_refs, n,
904 sizeof(struct bpf_reference_state));
905 if (!state->refs)
906 return -ENOMEM;
907
908 state->acquired_refs = n;
909 return 0;
910}
911
912static int grow_stack_state(struct bpf_func_state *state, int size)
913{
914 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
915
916 if (old_n >= n)
917 return 0;
918
919 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
920 if (!state->stack)
921 return -ENOMEM;
922
923 state->allocated_stack = size;
924 return 0;
fd978bf7
JS
925}
926
927/* Acquire a pointer id from the env and update the state->refs to include
928 * this new pointer reference.
929 * On success, returns a valid pointer id to associate with the register
930 * On failure, returns a negative errno.
638f5b90 931 */
fd978bf7 932static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 933{
fd978bf7
JS
934 struct bpf_func_state *state = cur_func(env);
935 int new_ofs = state->acquired_refs;
936 int id, err;
937
c69431aa 938 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
939 if (err)
940 return err;
941 id = ++env->id_gen;
942 state->refs[new_ofs].id = id;
943 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 944
fd978bf7
JS
945 return id;
946}
947
948/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 949static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
950{
951 int i, last_idx;
952
fd978bf7
JS
953 last_idx = state->acquired_refs - 1;
954 for (i = 0; i < state->acquired_refs; i++) {
955 if (state->refs[i].id == ptr_id) {
956 if (last_idx && i != last_idx)
957 memcpy(&state->refs[i], &state->refs[last_idx],
958 sizeof(*state->refs));
959 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
960 state->acquired_refs--;
638f5b90 961 return 0;
638f5b90 962 }
638f5b90 963 }
46f8bc92 964 return -EINVAL;
fd978bf7
JS
965}
966
f4d7e40a
AS
967static void free_func_state(struct bpf_func_state *state)
968{
5896351e
AS
969 if (!state)
970 return;
fd978bf7 971 kfree(state->refs);
f4d7e40a
AS
972 kfree(state->stack);
973 kfree(state);
974}
975
b5dc0163
AS
976static void clear_jmp_history(struct bpf_verifier_state *state)
977{
978 kfree(state->jmp_history);
979 state->jmp_history = NULL;
980 state->jmp_history_cnt = 0;
981}
982
1969db47
AS
983static void free_verifier_state(struct bpf_verifier_state *state,
984 bool free_self)
638f5b90 985{
f4d7e40a
AS
986 int i;
987
988 for (i = 0; i <= state->curframe; i++) {
989 free_func_state(state->frame[i]);
990 state->frame[i] = NULL;
991 }
b5dc0163 992 clear_jmp_history(state);
1969db47
AS
993 if (free_self)
994 kfree(state);
638f5b90
AS
995}
996
997/* copy verifier state from src to dst growing dst stack space
998 * when necessary to accommodate larger src stack
999 */
f4d7e40a
AS
1000static int copy_func_state(struct bpf_func_state *dst,
1001 const struct bpf_func_state *src)
638f5b90
AS
1002{
1003 int err;
1004
fd978bf7
JS
1005 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1006 err = copy_reference_state(dst, src);
638f5b90
AS
1007 if (err)
1008 return err;
638f5b90
AS
1009 return copy_stack_state(dst, src);
1010}
1011
f4d7e40a
AS
1012static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1013 const struct bpf_verifier_state *src)
1014{
1015 struct bpf_func_state *dst;
1016 int i, err;
1017
06ab6a50
LB
1018 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1019 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1020 GFP_USER);
1021 if (!dst_state->jmp_history)
1022 return -ENOMEM;
b5dc0163
AS
1023 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1024
f4d7e40a
AS
1025 /* if dst has more stack frames then src frame, free them */
1026 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1027 free_func_state(dst_state->frame[i]);
1028 dst_state->frame[i] = NULL;
1029 }
979d63d5 1030 dst_state->speculative = src->speculative;
f4d7e40a 1031 dst_state->curframe = src->curframe;
d83525ca 1032 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
1033 dst_state->branches = src->branches;
1034 dst_state->parent = src->parent;
b5dc0163
AS
1035 dst_state->first_insn_idx = src->first_insn_idx;
1036 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1037 for (i = 0; i <= src->curframe; i++) {
1038 dst = dst_state->frame[i];
1039 if (!dst) {
1040 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1041 if (!dst)
1042 return -ENOMEM;
1043 dst_state->frame[i] = dst;
1044 }
1045 err = copy_func_state(dst, src->frame[i]);
1046 if (err)
1047 return err;
1048 }
1049 return 0;
1050}
1051
2589726d
AS
1052static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1053{
1054 while (st) {
1055 u32 br = --st->branches;
1056
1057 /* WARN_ON(br > 1) technically makes sense here,
1058 * but see comment in push_stack(), hence:
1059 */
1060 WARN_ONCE((int)br < 0,
1061 "BUG update_branch_counts:branches_to_explore=%d\n",
1062 br);
1063 if (br)
1064 break;
1065 st = st->parent;
1066 }
1067}
1068
638f5b90 1069static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1070 int *insn_idx, bool pop_log)
638f5b90
AS
1071{
1072 struct bpf_verifier_state *cur = env->cur_state;
1073 struct bpf_verifier_stack_elem *elem, *head = env->head;
1074 int err;
17a52670
AS
1075
1076 if (env->head == NULL)
638f5b90 1077 return -ENOENT;
17a52670 1078
638f5b90
AS
1079 if (cur) {
1080 err = copy_verifier_state(cur, &head->st);
1081 if (err)
1082 return err;
1083 }
6f8a57cc
AN
1084 if (pop_log)
1085 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1086 if (insn_idx)
1087 *insn_idx = head->insn_idx;
17a52670 1088 if (prev_insn_idx)
638f5b90
AS
1089 *prev_insn_idx = head->prev_insn_idx;
1090 elem = head->next;
1969db47 1091 free_verifier_state(&head->st, false);
638f5b90 1092 kfree(head);
17a52670
AS
1093 env->head = elem;
1094 env->stack_size--;
638f5b90 1095 return 0;
17a52670
AS
1096}
1097
58e2af8b 1098static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1099 int insn_idx, int prev_insn_idx,
1100 bool speculative)
17a52670 1101{
638f5b90 1102 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1103 struct bpf_verifier_stack_elem *elem;
638f5b90 1104 int err;
17a52670 1105
638f5b90 1106 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1107 if (!elem)
1108 goto err;
1109
17a52670
AS
1110 elem->insn_idx = insn_idx;
1111 elem->prev_insn_idx = prev_insn_idx;
1112 elem->next = env->head;
6f8a57cc 1113 elem->log_pos = env->log.len_used;
17a52670
AS
1114 env->head = elem;
1115 env->stack_size++;
1969db47
AS
1116 err = copy_verifier_state(&elem->st, cur);
1117 if (err)
1118 goto err;
979d63d5 1119 elem->st.speculative |= speculative;
b285fcb7
AS
1120 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1121 verbose(env, "The sequence of %d jumps is too complex.\n",
1122 env->stack_size);
17a52670
AS
1123 goto err;
1124 }
2589726d
AS
1125 if (elem->st.parent) {
1126 ++elem->st.parent->branches;
1127 /* WARN_ON(branches > 2) technically makes sense here,
1128 * but
1129 * 1. speculative states will bump 'branches' for non-branch
1130 * instructions
1131 * 2. is_state_visited() heuristics may decide not to create
1132 * a new state for a sequence of branches and all such current
1133 * and cloned states will be pointing to a single parent state
1134 * which might have large 'branches' count.
1135 */
1136 }
17a52670
AS
1137 return &elem->st;
1138err:
5896351e
AS
1139 free_verifier_state(env->cur_state, true);
1140 env->cur_state = NULL;
17a52670 1141 /* pop all elements and return */
6f8a57cc 1142 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1143 return NULL;
1144}
1145
1146#define CALLER_SAVED_REGS 6
1147static const int caller_saved[CALLER_SAVED_REGS] = {
1148 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1149};
1150
f54c7898
DB
1151static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1152 struct bpf_reg_state *reg);
f1174f77 1153
e688c3db
AS
1154/* This helper doesn't clear reg->id */
1155static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1156{
b03c9f9f
EC
1157 reg->var_off = tnum_const(imm);
1158 reg->smin_value = (s64)imm;
1159 reg->smax_value = (s64)imm;
1160 reg->umin_value = imm;
1161 reg->umax_value = imm;
3f50f132
JF
1162
1163 reg->s32_min_value = (s32)imm;
1164 reg->s32_max_value = (s32)imm;
1165 reg->u32_min_value = (u32)imm;
1166 reg->u32_max_value = (u32)imm;
1167}
1168
e688c3db
AS
1169/* Mark the unknown part of a register (variable offset or scalar value) as
1170 * known to have the value @imm.
1171 */
1172static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1173{
1174 /* Clear id, off, and union(map_ptr, range) */
1175 memset(((u8 *)reg) + sizeof(reg->type), 0,
1176 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1177 ___mark_reg_known(reg, imm);
1178}
1179
3f50f132
JF
1180static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1181{
1182 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1183 reg->s32_min_value = (s32)imm;
1184 reg->s32_max_value = (s32)imm;
1185 reg->u32_min_value = (u32)imm;
1186 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1187}
1188
f1174f77
EC
1189/* Mark the 'variable offset' part of a register as zero. This should be
1190 * used only on registers holding a pointer type.
1191 */
1192static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1193{
b03c9f9f 1194 __mark_reg_known(reg, 0);
f1174f77 1195}
a9789ef9 1196
cc2b14d5
AS
1197static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1198{
1199 __mark_reg_known(reg, 0);
cc2b14d5
AS
1200 reg->type = SCALAR_VALUE;
1201}
1202
61bd5218
JK
1203static void mark_reg_known_zero(struct bpf_verifier_env *env,
1204 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1205{
1206 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1207 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1208 /* Something bad happened, let's kill all regs */
1209 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1210 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1211 return;
1212 }
1213 __mark_reg_known_zero(regs + regno);
1214}
1215
4ddb7416
DB
1216static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1217{
c25b2ae1 1218 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1219 const struct bpf_map *map = reg->map_ptr;
1220
1221 if (map->inner_map_meta) {
1222 reg->type = CONST_PTR_TO_MAP;
1223 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1224 /* transfer reg's id which is unique for every map_lookup_elem
1225 * as UID of the inner map.
1226 */
34d11a44
AS
1227 if (map_value_has_timer(map->inner_map_meta))
1228 reg->map_uid = reg->id;
4ddb7416
DB
1229 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1230 reg->type = PTR_TO_XDP_SOCK;
1231 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1232 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1233 reg->type = PTR_TO_SOCKET;
1234 } else {
1235 reg->type = PTR_TO_MAP_VALUE;
1236 }
c25b2ae1 1237 return;
4ddb7416 1238 }
c25b2ae1
HL
1239
1240 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1241}
1242
de8f3a83
DB
1243static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1244{
1245 return type_is_pkt_pointer(reg->type);
1246}
1247
1248static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1249{
1250 return reg_is_pkt_pointer(reg) ||
1251 reg->type == PTR_TO_PACKET_END;
1252}
1253
1254/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1255static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1256 enum bpf_reg_type which)
1257{
1258 /* The register can already have a range from prior markings.
1259 * This is fine as long as it hasn't been advanced from its
1260 * origin.
1261 */
1262 return reg->type == which &&
1263 reg->id == 0 &&
1264 reg->off == 0 &&
1265 tnum_equals_const(reg->var_off, 0);
1266}
1267
3f50f132
JF
1268/* Reset the min/max bounds of a register */
1269static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1270{
1271 reg->smin_value = S64_MIN;
1272 reg->smax_value = S64_MAX;
1273 reg->umin_value = 0;
1274 reg->umax_value = U64_MAX;
1275
1276 reg->s32_min_value = S32_MIN;
1277 reg->s32_max_value = S32_MAX;
1278 reg->u32_min_value = 0;
1279 reg->u32_max_value = U32_MAX;
1280}
1281
1282static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1283{
1284 reg->smin_value = S64_MIN;
1285 reg->smax_value = S64_MAX;
1286 reg->umin_value = 0;
1287 reg->umax_value = U64_MAX;
1288}
1289
1290static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1291{
1292 reg->s32_min_value = S32_MIN;
1293 reg->s32_max_value = S32_MAX;
1294 reg->u32_min_value = 0;
1295 reg->u32_max_value = U32_MAX;
1296}
1297
1298static void __update_reg32_bounds(struct bpf_reg_state *reg)
1299{
1300 struct tnum var32_off = tnum_subreg(reg->var_off);
1301
1302 /* min signed is max(sign bit) | min(other bits) */
1303 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1304 var32_off.value | (var32_off.mask & S32_MIN));
1305 /* max signed is min(sign bit) | max(other bits) */
1306 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1307 var32_off.value | (var32_off.mask & S32_MAX));
1308 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1309 reg->u32_max_value = min(reg->u32_max_value,
1310 (u32)(var32_off.value | var32_off.mask));
1311}
1312
1313static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1314{
1315 /* min signed is max(sign bit) | min(other bits) */
1316 reg->smin_value = max_t(s64, reg->smin_value,
1317 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1318 /* max signed is min(sign bit) | max(other bits) */
1319 reg->smax_value = min_t(s64, reg->smax_value,
1320 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1321 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1322 reg->umax_value = min(reg->umax_value,
1323 reg->var_off.value | reg->var_off.mask);
1324}
1325
3f50f132
JF
1326static void __update_reg_bounds(struct bpf_reg_state *reg)
1327{
1328 __update_reg32_bounds(reg);
1329 __update_reg64_bounds(reg);
1330}
1331
b03c9f9f 1332/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1333static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1334{
1335 /* Learn sign from signed bounds.
1336 * If we cannot cross the sign boundary, then signed and unsigned bounds
1337 * are the same, so combine. This works even in the negative case, e.g.
1338 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1339 */
1340 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1341 reg->s32_min_value = reg->u32_min_value =
1342 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1343 reg->s32_max_value = reg->u32_max_value =
1344 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1345 return;
1346 }
1347 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1348 * boundary, so we must be careful.
1349 */
1350 if ((s32)reg->u32_max_value >= 0) {
1351 /* Positive. We can't learn anything from the smin, but smax
1352 * is positive, hence safe.
1353 */
1354 reg->s32_min_value = reg->u32_min_value;
1355 reg->s32_max_value = reg->u32_max_value =
1356 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1357 } else if ((s32)reg->u32_min_value < 0) {
1358 /* Negative. We can't learn anything from the smax, but smin
1359 * is negative, hence safe.
1360 */
1361 reg->s32_min_value = reg->u32_min_value =
1362 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1363 reg->s32_max_value = reg->u32_max_value;
1364 }
1365}
1366
1367static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1368{
1369 /* Learn sign from signed bounds.
1370 * If we cannot cross the sign boundary, then signed and unsigned bounds
1371 * are the same, so combine. This works even in the negative case, e.g.
1372 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1373 */
1374 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1375 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1376 reg->umin_value);
1377 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1378 reg->umax_value);
1379 return;
1380 }
1381 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1382 * boundary, so we must be careful.
1383 */
1384 if ((s64)reg->umax_value >= 0) {
1385 /* Positive. We can't learn anything from the smin, but smax
1386 * is positive, hence safe.
1387 */
1388 reg->smin_value = reg->umin_value;
1389 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1390 reg->umax_value);
1391 } else if ((s64)reg->umin_value < 0) {
1392 /* Negative. We can't learn anything from the smax, but smin
1393 * is negative, hence safe.
1394 */
1395 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1396 reg->umin_value);
1397 reg->smax_value = reg->umax_value;
1398 }
1399}
1400
3f50f132
JF
1401static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1402{
1403 __reg32_deduce_bounds(reg);
1404 __reg64_deduce_bounds(reg);
1405}
1406
b03c9f9f
EC
1407/* Attempts to improve var_off based on unsigned min/max information */
1408static void __reg_bound_offset(struct bpf_reg_state *reg)
1409{
3f50f132
JF
1410 struct tnum var64_off = tnum_intersect(reg->var_off,
1411 tnum_range(reg->umin_value,
1412 reg->umax_value));
1413 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1414 tnum_range(reg->u32_min_value,
1415 reg->u32_max_value));
1416
1417 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1418}
1419
e572ff80
DB
1420static bool __reg32_bound_s64(s32 a)
1421{
1422 return a >= 0 && a <= S32_MAX;
1423}
1424
3f50f132 1425static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1426{
3f50f132
JF
1427 reg->umin_value = reg->u32_min_value;
1428 reg->umax_value = reg->u32_max_value;
e572ff80
DB
1429
1430 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1431 * be positive otherwise set to worse case bounds and refine later
1432 * from tnum.
3f50f132 1433 */
e572ff80
DB
1434 if (__reg32_bound_s64(reg->s32_min_value) &&
1435 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 1436 reg->smin_value = reg->s32_min_value;
e572ff80
DB
1437 reg->smax_value = reg->s32_max_value;
1438 } else {
3a71dc36 1439 reg->smin_value = 0;
e572ff80
DB
1440 reg->smax_value = U32_MAX;
1441 }
3f50f132
JF
1442}
1443
1444static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1445{
1446 /* special case when 64-bit register has upper 32-bit register
1447 * zeroed. Typically happens after zext or <<32, >>32 sequence
1448 * allowing us to use 32-bit bounds directly,
1449 */
1450 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1451 __reg_assign_32_into_64(reg);
1452 } else {
1453 /* Otherwise the best we can do is push lower 32bit known and
1454 * unknown bits into register (var_off set from jmp logic)
1455 * then learn as much as possible from the 64-bit tnum
1456 * known and unknown bits. The previous smin/smax bounds are
1457 * invalid here because of jmp32 compare so mark them unknown
1458 * so they do not impact tnum bounds calculation.
1459 */
1460 __mark_reg64_unbounded(reg);
1461 __update_reg_bounds(reg);
1462 }
1463
1464 /* Intersecting with the old var_off might have improved our bounds
1465 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1466 * then new var_off is (0; 0x7f...fc) which improves our umax.
1467 */
1468 __reg_deduce_bounds(reg);
1469 __reg_bound_offset(reg);
1470 __update_reg_bounds(reg);
1471}
1472
1473static bool __reg64_bound_s32(s64 a)
1474{
388e2c0b 1475 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1476}
1477
1478static bool __reg64_bound_u32(u64 a)
1479{
b9979db8 1480 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1481}
1482
1483static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1484{
1485 __mark_reg32_unbounded(reg);
1486
b0270958 1487 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1488 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1489 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1490 }
10bf4e83 1491 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1492 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1493 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1494 }
3f50f132
JF
1495
1496 /* Intersecting with the old var_off might have improved our bounds
1497 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1498 * then new var_off is (0; 0x7f...fc) which improves our umax.
1499 */
1500 __reg_deduce_bounds(reg);
1501 __reg_bound_offset(reg);
1502 __update_reg_bounds(reg);
b03c9f9f
EC
1503}
1504
f1174f77 1505/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1506static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1507 struct bpf_reg_state *reg)
f1174f77 1508{
a9c676bc
AS
1509 /*
1510 * Clear type, id, off, and union(map_ptr, range) and
1511 * padding between 'type' and union
1512 */
1513 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1514 reg->type = SCALAR_VALUE;
f1174f77 1515 reg->var_off = tnum_unknown;
f4d7e40a 1516 reg->frameno = 0;
2c78ee89 1517 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1518 __mark_reg_unbounded(reg);
f1174f77
EC
1519}
1520
61bd5218
JK
1521static void mark_reg_unknown(struct bpf_verifier_env *env,
1522 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1523{
1524 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1525 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1526 /* Something bad happened, let's kill all regs except FP */
1527 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1528 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1529 return;
1530 }
f54c7898 1531 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1532}
1533
f54c7898
DB
1534static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1535 struct bpf_reg_state *reg)
f1174f77 1536{
f54c7898 1537 __mark_reg_unknown(env, reg);
f1174f77
EC
1538 reg->type = NOT_INIT;
1539}
1540
61bd5218
JK
1541static void mark_reg_not_init(struct bpf_verifier_env *env,
1542 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1543{
1544 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1545 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1546 /* Something bad happened, let's kill all regs except FP */
1547 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1548 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1549 return;
1550 }
f54c7898 1551 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1552}
1553
41c48f3a
AI
1554static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1555 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 1556 enum bpf_reg_type reg_type,
c6f1bfe8
YS
1557 struct btf *btf, u32 btf_id,
1558 enum bpf_type_flag flag)
41c48f3a
AI
1559{
1560 if (reg_type == SCALAR_VALUE) {
1561 mark_reg_unknown(env, regs, regno);
1562 return;
1563 }
1564 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 1565 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 1566 regs[regno].btf = btf;
41c48f3a
AI
1567 regs[regno].btf_id = btf_id;
1568}
1569
5327ed3d 1570#define DEF_NOT_SUBREG (0)
61bd5218 1571static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1572 struct bpf_func_state *state)
17a52670 1573{
f4d7e40a 1574 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1575 int i;
1576
dc503a8a 1577 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1578 mark_reg_not_init(env, regs, i);
dc503a8a 1579 regs[i].live = REG_LIVE_NONE;
679c782d 1580 regs[i].parent = NULL;
5327ed3d 1581 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1582 }
17a52670
AS
1583
1584 /* frame pointer */
f1174f77 1585 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1586 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1587 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1588}
1589
f4d7e40a
AS
1590#define BPF_MAIN_FUNC (-1)
1591static void init_func_state(struct bpf_verifier_env *env,
1592 struct bpf_func_state *state,
1593 int callsite, int frameno, int subprogno)
1594{
1595 state->callsite = callsite;
1596 state->frameno = frameno;
1597 state->subprogno = subprogno;
1598 init_reg_state(env, state);
0f55f9ed 1599 mark_verifier_state_scratched(env);
f4d7e40a
AS
1600}
1601
bfc6bb74
AS
1602/* Similar to push_stack(), but for async callbacks */
1603static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1604 int insn_idx, int prev_insn_idx,
1605 int subprog)
1606{
1607 struct bpf_verifier_stack_elem *elem;
1608 struct bpf_func_state *frame;
1609
1610 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1611 if (!elem)
1612 goto err;
1613
1614 elem->insn_idx = insn_idx;
1615 elem->prev_insn_idx = prev_insn_idx;
1616 elem->next = env->head;
1617 elem->log_pos = env->log.len_used;
1618 env->head = elem;
1619 env->stack_size++;
1620 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1621 verbose(env,
1622 "The sequence of %d jumps is too complex for async cb.\n",
1623 env->stack_size);
1624 goto err;
1625 }
1626 /* Unlike push_stack() do not copy_verifier_state().
1627 * The caller state doesn't matter.
1628 * This is async callback. It starts in a fresh stack.
1629 * Initialize it similar to do_check_common().
1630 */
1631 elem->st.branches = 1;
1632 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1633 if (!frame)
1634 goto err;
1635 init_func_state(env, frame,
1636 BPF_MAIN_FUNC /* callsite */,
1637 0 /* frameno within this callchain */,
1638 subprog /* subprog number within this prog */);
1639 elem->st.frame[0] = frame;
1640 return &elem->st;
1641err:
1642 free_verifier_state(env->cur_state, true);
1643 env->cur_state = NULL;
1644 /* pop all elements and return */
1645 while (!pop_stack(env, NULL, NULL, false));
1646 return NULL;
1647}
1648
1649
17a52670
AS
1650enum reg_arg_type {
1651 SRC_OP, /* register is used as source operand */
1652 DST_OP, /* register is used as destination operand */
1653 DST_OP_NO_MARK /* same as above, check only, don't mark */
1654};
1655
cc8b0b92
AS
1656static int cmp_subprogs(const void *a, const void *b)
1657{
9c8105bd
JW
1658 return ((struct bpf_subprog_info *)a)->start -
1659 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1660}
1661
1662static int find_subprog(struct bpf_verifier_env *env, int off)
1663{
9c8105bd 1664 struct bpf_subprog_info *p;
cc8b0b92 1665
9c8105bd
JW
1666 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1667 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1668 if (!p)
1669 return -ENOENT;
9c8105bd 1670 return p - env->subprog_info;
cc8b0b92
AS
1671
1672}
1673
1674static int add_subprog(struct bpf_verifier_env *env, int off)
1675{
1676 int insn_cnt = env->prog->len;
1677 int ret;
1678
1679 if (off >= insn_cnt || off < 0) {
1680 verbose(env, "call to invalid destination\n");
1681 return -EINVAL;
1682 }
1683 ret = find_subprog(env, off);
1684 if (ret >= 0)
282a0f46 1685 return ret;
4cb3d99c 1686 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1687 verbose(env, "too many subprograms\n");
1688 return -E2BIG;
1689 }
e6ac2450 1690 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1691 env->subprog_info[env->subprog_cnt++].start = off;
1692 sort(env->subprog_info, env->subprog_cnt,
1693 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1694 return env->subprog_cnt - 1;
cc8b0b92
AS
1695}
1696
2357672c
KKD
1697#define MAX_KFUNC_DESCS 256
1698#define MAX_KFUNC_BTFS 256
1699
e6ac2450
MKL
1700struct bpf_kfunc_desc {
1701 struct btf_func_model func_model;
1702 u32 func_id;
1703 s32 imm;
2357672c
KKD
1704 u16 offset;
1705};
1706
1707struct bpf_kfunc_btf {
1708 struct btf *btf;
1709 struct module *module;
1710 u16 offset;
e6ac2450
MKL
1711};
1712
e6ac2450
MKL
1713struct bpf_kfunc_desc_tab {
1714 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1715 u32 nr_descs;
1716};
1717
2357672c
KKD
1718struct bpf_kfunc_btf_tab {
1719 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1720 u32 nr_descs;
1721};
1722
1723static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1724{
1725 const struct bpf_kfunc_desc *d0 = a;
1726 const struct bpf_kfunc_desc *d1 = b;
1727
1728 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1729 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1730}
1731
1732static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1733{
1734 const struct bpf_kfunc_btf *d0 = a;
1735 const struct bpf_kfunc_btf *d1 = b;
1736
1737 return d0->offset - d1->offset;
e6ac2450
MKL
1738}
1739
1740static const struct bpf_kfunc_desc *
2357672c 1741find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1742{
1743 struct bpf_kfunc_desc desc = {
1744 .func_id = func_id,
2357672c 1745 .offset = offset,
e6ac2450
MKL
1746 };
1747 struct bpf_kfunc_desc_tab *tab;
1748
1749 tab = prog->aux->kfunc_tab;
1750 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1751 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1752}
1753
1754static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 1755 s16 offset)
2357672c
KKD
1756{
1757 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1758 struct bpf_kfunc_btf_tab *tab;
1759 struct bpf_kfunc_btf *b;
1760 struct module *mod;
1761 struct btf *btf;
1762 int btf_fd;
1763
1764 tab = env->prog->aux->kfunc_btf_tab;
1765 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1766 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1767 if (!b) {
1768 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1769 verbose(env, "too many different module BTFs\n");
1770 return ERR_PTR(-E2BIG);
1771 }
1772
1773 if (bpfptr_is_null(env->fd_array)) {
1774 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1775 return ERR_PTR(-EPROTO);
1776 }
1777
1778 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1779 offset * sizeof(btf_fd),
1780 sizeof(btf_fd)))
1781 return ERR_PTR(-EFAULT);
1782
1783 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1784 if (IS_ERR(btf)) {
1785 verbose(env, "invalid module BTF fd specified\n");
2357672c 1786 return btf;
588cd7ef 1787 }
2357672c
KKD
1788
1789 if (!btf_is_module(btf)) {
1790 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1791 btf_put(btf);
1792 return ERR_PTR(-EINVAL);
1793 }
1794
1795 mod = btf_try_get_module(btf);
1796 if (!mod) {
1797 btf_put(btf);
1798 return ERR_PTR(-ENXIO);
1799 }
1800
1801 b = &tab->descs[tab->nr_descs++];
1802 b->btf = btf;
1803 b->module = mod;
1804 b->offset = offset;
1805
1806 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1807 kfunc_btf_cmp_by_off, NULL);
1808 }
2357672c 1809 return b->btf;
e6ac2450
MKL
1810}
1811
2357672c
KKD
1812void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1813{
1814 if (!tab)
1815 return;
1816
1817 while (tab->nr_descs--) {
1818 module_put(tab->descs[tab->nr_descs].module);
1819 btf_put(tab->descs[tab->nr_descs].btf);
1820 }
1821 kfree(tab);
1822}
1823
1824static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 1825 u32 func_id, s16 offset)
2357672c 1826{
2357672c
KKD
1827 if (offset) {
1828 if (offset < 0) {
1829 /* In the future, this can be allowed to increase limit
1830 * of fd index into fd_array, interpreted as u16.
1831 */
1832 verbose(env, "negative offset disallowed for kernel module function call\n");
1833 return ERR_PTR(-EINVAL);
1834 }
1835
b202d844 1836 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
1837 }
1838 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
1839}
1840
2357672c 1841static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
1842{
1843 const struct btf_type *func, *func_proto;
2357672c 1844 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
1845 struct bpf_kfunc_desc_tab *tab;
1846 struct bpf_prog_aux *prog_aux;
1847 struct bpf_kfunc_desc *desc;
1848 const char *func_name;
2357672c 1849 struct btf *desc_btf;
8cbf062a 1850 unsigned long call_imm;
e6ac2450
MKL
1851 unsigned long addr;
1852 int err;
1853
1854 prog_aux = env->prog->aux;
1855 tab = prog_aux->kfunc_tab;
2357672c 1856 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
1857 if (!tab) {
1858 if (!btf_vmlinux) {
1859 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1860 return -ENOTSUPP;
1861 }
1862
1863 if (!env->prog->jit_requested) {
1864 verbose(env, "JIT is required for calling kernel function\n");
1865 return -ENOTSUPP;
1866 }
1867
1868 if (!bpf_jit_supports_kfunc_call()) {
1869 verbose(env, "JIT does not support calling kernel function\n");
1870 return -ENOTSUPP;
1871 }
1872
1873 if (!env->prog->gpl_compatible) {
1874 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1875 return -EINVAL;
1876 }
1877
1878 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1879 if (!tab)
1880 return -ENOMEM;
1881 prog_aux->kfunc_tab = tab;
1882 }
1883
a5d82727
KKD
1884 /* func_id == 0 is always invalid, but instead of returning an error, be
1885 * conservative and wait until the code elimination pass before returning
1886 * error, so that invalid calls that get pruned out can be in BPF programs
1887 * loaded from userspace. It is also required that offset be untouched
1888 * for such calls.
1889 */
1890 if (!func_id && !offset)
1891 return 0;
1892
2357672c
KKD
1893 if (!btf_tab && offset) {
1894 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1895 if (!btf_tab)
1896 return -ENOMEM;
1897 prog_aux->kfunc_btf_tab = btf_tab;
1898 }
1899
b202d844 1900 desc_btf = find_kfunc_desc_btf(env, func_id, offset);
2357672c
KKD
1901 if (IS_ERR(desc_btf)) {
1902 verbose(env, "failed to find BTF for kernel function\n");
1903 return PTR_ERR(desc_btf);
1904 }
1905
1906 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
1907 return 0;
1908
1909 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1910 verbose(env, "too many different kernel function calls\n");
1911 return -E2BIG;
1912 }
1913
2357672c 1914 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
1915 if (!func || !btf_type_is_func(func)) {
1916 verbose(env, "kernel btf_id %u is not a function\n",
1917 func_id);
1918 return -EINVAL;
1919 }
2357672c 1920 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
1921 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1922 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1923 func_id);
1924 return -EINVAL;
1925 }
1926
2357672c 1927 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
1928 addr = kallsyms_lookup_name(func_name);
1929 if (!addr) {
1930 verbose(env, "cannot find address for kernel function %s\n",
1931 func_name);
1932 return -EINVAL;
1933 }
1934
8cbf062a
HT
1935 call_imm = BPF_CALL_IMM(addr);
1936 /* Check whether or not the relative offset overflows desc->imm */
1937 if ((unsigned long)(s32)call_imm != call_imm) {
1938 verbose(env, "address of kernel function %s is out of range\n",
1939 func_name);
1940 return -EINVAL;
1941 }
1942
e6ac2450
MKL
1943 desc = &tab->descs[tab->nr_descs++];
1944 desc->func_id = func_id;
8cbf062a 1945 desc->imm = call_imm;
2357672c
KKD
1946 desc->offset = offset;
1947 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
1948 func_proto, func_name,
1949 &desc->func_model);
1950 if (!err)
1951 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 1952 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
1953 return err;
1954}
1955
1956static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1957{
1958 const struct bpf_kfunc_desc *d0 = a;
1959 const struct bpf_kfunc_desc *d1 = b;
1960
1961 if (d0->imm > d1->imm)
1962 return 1;
1963 else if (d0->imm < d1->imm)
1964 return -1;
1965 return 0;
1966}
1967
1968static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1969{
1970 struct bpf_kfunc_desc_tab *tab;
1971
1972 tab = prog->aux->kfunc_tab;
1973 if (!tab)
1974 return;
1975
1976 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1977 kfunc_desc_cmp_by_imm, NULL);
1978}
1979
1980bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1981{
1982 return !!prog->aux->kfunc_tab;
1983}
1984
1985const struct btf_func_model *
1986bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1987 const struct bpf_insn *insn)
1988{
1989 const struct bpf_kfunc_desc desc = {
1990 .imm = insn->imm,
1991 };
1992 const struct bpf_kfunc_desc *res;
1993 struct bpf_kfunc_desc_tab *tab;
1994
1995 tab = prog->aux->kfunc_tab;
1996 res = bsearch(&desc, tab->descs, tab->nr_descs,
1997 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1998
1999 return res ? &res->func_model : NULL;
2000}
2001
2002static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2003{
9c8105bd 2004 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2005 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2006 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2007
f910cefa
JW
2008 /* Add entry function. */
2009 ret = add_subprog(env, 0);
e6ac2450 2010 if (ret)
f910cefa
JW
2011 return ret;
2012
e6ac2450
MKL
2013 for (i = 0; i < insn_cnt; i++, insn++) {
2014 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2015 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2016 continue;
e6ac2450 2017
2c78ee89 2018 if (!env->bpf_capable) {
e6ac2450 2019 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2020 return -EPERM;
2021 }
e6ac2450 2022
3990ed4c 2023 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2024 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2025 else
2357672c 2026 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2027
cc8b0b92
AS
2028 if (ret < 0)
2029 return ret;
2030 }
2031
4cb3d99c
JW
2032 /* Add a fake 'exit' subprog which could simplify subprog iteration
2033 * logic. 'subprog_cnt' should not be increased.
2034 */
2035 subprog[env->subprog_cnt].start = insn_cnt;
2036
06ee7115 2037 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2038 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2039 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2040
e6ac2450
MKL
2041 return 0;
2042}
2043
2044static int check_subprogs(struct bpf_verifier_env *env)
2045{
2046 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2047 struct bpf_subprog_info *subprog = env->subprog_info;
2048 struct bpf_insn *insn = env->prog->insnsi;
2049 int insn_cnt = env->prog->len;
2050
cc8b0b92 2051 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2052 subprog_start = subprog[cur_subprog].start;
2053 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2054 for (i = 0; i < insn_cnt; i++) {
2055 u8 code = insn[i].code;
2056
7f6e4312
MF
2057 if (code == (BPF_JMP | BPF_CALL) &&
2058 insn[i].imm == BPF_FUNC_tail_call &&
2059 insn[i].src_reg != BPF_PSEUDO_CALL)
2060 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2061 if (BPF_CLASS(code) == BPF_LD &&
2062 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2063 subprog[cur_subprog].has_ld_abs = true;
092ed096 2064 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2065 goto next;
2066 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2067 goto next;
2068 off = i + insn[i].off + 1;
2069 if (off < subprog_start || off >= subprog_end) {
2070 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2071 return -EINVAL;
2072 }
2073next:
2074 if (i == subprog_end - 1) {
2075 /* to avoid fall-through from one subprog into another
2076 * the last insn of the subprog should be either exit
2077 * or unconditional jump back
2078 */
2079 if (code != (BPF_JMP | BPF_EXIT) &&
2080 code != (BPF_JMP | BPF_JA)) {
2081 verbose(env, "last insn is not an exit or jmp\n");
2082 return -EINVAL;
2083 }
2084 subprog_start = subprog_end;
4cb3d99c
JW
2085 cur_subprog++;
2086 if (cur_subprog < env->subprog_cnt)
9c8105bd 2087 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2088 }
2089 }
2090 return 0;
2091}
2092
679c782d
EC
2093/* Parentage chain of this register (or stack slot) should take care of all
2094 * issues like callee-saved registers, stack slot allocation time, etc.
2095 */
f4d7e40a 2096static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2097 const struct bpf_reg_state *state,
5327ed3d 2098 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2099{
2100 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2101 int cnt = 0;
dc503a8a
EC
2102
2103 while (parent) {
2104 /* if read wasn't screened by an earlier write ... */
679c782d 2105 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2106 break;
9242b5f5
AS
2107 if (parent->live & REG_LIVE_DONE) {
2108 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2109 reg_type_str(env, parent->type),
9242b5f5
AS
2110 parent->var_off.value, parent->off);
2111 return -EFAULT;
2112 }
5327ed3d
JW
2113 /* The first condition is more likely to be true than the
2114 * second, checked it first.
2115 */
2116 if ((parent->live & REG_LIVE_READ) == flag ||
2117 parent->live & REG_LIVE_READ64)
25af32da
AS
2118 /* The parentage chain never changes and
2119 * this parent was already marked as LIVE_READ.
2120 * There is no need to keep walking the chain again and
2121 * keep re-marking all parents as LIVE_READ.
2122 * This case happens when the same register is read
2123 * multiple times without writes into it in-between.
5327ed3d
JW
2124 * Also, if parent has the stronger REG_LIVE_READ64 set,
2125 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2126 */
2127 break;
dc503a8a 2128 /* ... then we depend on parent's value */
5327ed3d
JW
2129 parent->live |= flag;
2130 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2131 if (flag == REG_LIVE_READ64)
2132 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2133 state = parent;
2134 parent = state->parent;
f4d7e40a 2135 writes = true;
06ee7115 2136 cnt++;
dc503a8a 2137 }
06ee7115
AS
2138
2139 if (env->longest_mark_read_walk < cnt)
2140 env->longest_mark_read_walk = cnt;
f4d7e40a 2141 return 0;
dc503a8a
EC
2142}
2143
5327ed3d
JW
2144/* This function is supposed to be used by the following 32-bit optimization
2145 * code only. It returns TRUE if the source or destination register operates
2146 * on 64-bit, otherwise return FALSE.
2147 */
2148static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2149 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2150{
2151 u8 code, class, op;
2152
2153 code = insn->code;
2154 class = BPF_CLASS(code);
2155 op = BPF_OP(code);
2156 if (class == BPF_JMP) {
2157 /* BPF_EXIT for "main" will reach here. Return TRUE
2158 * conservatively.
2159 */
2160 if (op == BPF_EXIT)
2161 return true;
2162 if (op == BPF_CALL) {
2163 /* BPF to BPF call will reach here because of marking
2164 * caller saved clobber with DST_OP_NO_MARK for which we
2165 * don't care the register def because they are anyway
2166 * marked as NOT_INIT already.
2167 */
2168 if (insn->src_reg == BPF_PSEUDO_CALL)
2169 return false;
2170 /* Helper call will reach here because of arg type
2171 * check, conservatively return TRUE.
2172 */
2173 if (t == SRC_OP)
2174 return true;
2175
2176 return false;
2177 }
2178 }
2179
2180 if (class == BPF_ALU64 || class == BPF_JMP ||
2181 /* BPF_END always use BPF_ALU class. */
2182 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2183 return true;
2184
2185 if (class == BPF_ALU || class == BPF_JMP32)
2186 return false;
2187
2188 if (class == BPF_LDX) {
2189 if (t != SRC_OP)
2190 return BPF_SIZE(code) == BPF_DW;
2191 /* LDX source must be ptr. */
2192 return true;
2193 }
2194
2195 if (class == BPF_STX) {
83a28819
IL
2196 /* BPF_STX (including atomic variants) has multiple source
2197 * operands, one of which is a ptr. Check whether the caller is
2198 * asking about it.
2199 */
2200 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2201 return true;
2202 return BPF_SIZE(code) == BPF_DW;
2203 }
2204
2205 if (class == BPF_LD) {
2206 u8 mode = BPF_MODE(code);
2207
2208 /* LD_IMM64 */
2209 if (mode == BPF_IMM)
2210 return true;
2211
2212 /* Both LD_IND and LD_ABS return 32-bit data. */
2213 if (t != SRC_OP)
2214 return false;
2215
2216 /* Implicit ctx ptr. */
2217 if (regno == BPF_REG_6)
2218 return true;
2219
2220 /* Explicit source could be any width. */
2221 return true;
2222 }
2223
2224 if (class == BPF_ST)
2225 /* The only source register for BPF_ST is a ptr. */
2226 return true;
2227
2228 /* Conservatively return true at default. */
2229 return true;
2230}
2231
83a28819
IL
2232/* Return the regno defined by the insn, or -1. */
2233static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2234{
83a28819
IL
2235 switch (BPF_CLASS(insn->code)) {
2236 case BPF_JMP:
2237 case BPF_JMP32:
2238 case BPF_ST:
2239 return -1;
2240 case BPF_STX:
2241 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2242 (insn->imm & BPF_FETCH)) {
2243 if (insn->imm == BPF_CMPXCHG)
2244 return BPF_REG_0;
2245 else
2246 return insn->src_reg;
2247 } else {
2248 return -1;
2249 }
2250 default:
2251 return insn->dst_reg;
2252 }
b325fbca
JW
2253}
2254
2255/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2256static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2257{
83a28819
IL
2258 int dst_reg = insn_def_regno(insn);
2259
2260 if (dst_reg == -1)
b325fbca
JW
2261 return false;
2262
83a28819 2263 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2264}
2265
5327ed3d
JW
2266static void mark_insn_zext(struct bpf_verifier_env *env,
2267 struct bpf_reg_state *reg)
2268{
2269 s32 def_idx = reg->subreg_def;
2270
2271 if (def_idx == DEF_NOT_SUBREG)
2272 return;
2273
2274 env->insn_aux_data[def_idx - 1].zext_dst = true;
2275 /* The dst will be zero extended, so won't be sub-register anymore. */
2276 reg->subreg_def = DEF_NOT_SUBREG;
2277}
2278
dc503a8a 2279static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2280 enum reg_arg_type t)
2281{
f4d7e40a
AS
2282 struct bpf_verifier_state *vstate = env->cur_state;
2283 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2284 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2285 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2286 bool rw64;
dc503a8a 2287
17a52670 2288 if (regno >= MAX_BPF_REG) {
61bd5218 2289 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2290 return -EINVAL;
2291 }
2292
0f55f9ed
CL
2293 mark_reg_scratched(env, regno);
2294
c342dc10 2295 reg = &regs[regno];
5327ed3d 2296 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2297 if (t == SRC_OP) {
2298 /* check whether register used as source operand can be read */
c342dc10 2299 if (reg->type == NOT_INIT) {
61bd5218 2300 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2301 return -EACCES;
2302 }
679c782d 2303 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2304 if (regno == BPF_REG_FP)
2305 return 0;
2306
5327ed3d
JW
2307 if (rw64)
2308 mark_insn_zext(env, reg);
2309
2310 return mark_reg_read(env, reg, reg->parent,
2311 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2312 } else {
2313 /* check whether register used as dest operand can be written to */
2314 if (regno == BPF_REG_FP) {
61bd5218 2315 verbose(env, "frame pointer is read only\n");
17a52670
AS
2316 return -EACCES;
2317 }
c342dc10 2318 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2319 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2320 if (t == DST_OP)
61bd5218 2321 mark_reg_unknown(env, regs, regno);
17a52670
AS
2322 }
2323 return 0;
2324}
2325
b5dc0163
AS
2326/* for any branch, call, exit record the history of jmps in the given state */
2327static int push_jmp_history(struct bpf_verifier_env *env,
2328 struct bpf_verifier_state *cur)
2329{
2330 u32 cnt = cur->jmp_history_cnt;
2331 struct bpf_idx_pair *p;
2332
2333 cnt++;
2334 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2335 if (!p)
2336 return -ENOMEM;
2337 p[cnt - 1].idx = env->insn_idx;
2338 p[cnt - 1].prev_idx = env->prev_insn_idx;
2339 cur->jmp_history = p;
2340 cur->jmp_history_cnt = cnt;
2341 return 0;
2342}
2343
2344/* Backtrack one insn at a time. If idx is not at the top of recorded
2345 * history then previous instruction came from straight line execution.
2346 */
2347static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2348 u32 *history)
2349{
2350 u32 cnt = *history;
2351
2352 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2353 i = st->jmp_history[cnt - 1].prev_idx;
2354 (*history)--;
2355 } else {
2356 i--;
2357 }
2358 return i;
2359}
2360
e6ac2450
MKL
2361static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2362{
2363 const struct btf_type *func;
2357672c 2364 struct btf *desc_btf;
e6ac2450
MKL
2365
2366 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2367 return NULL;
2368
b202d844 2369 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off);
2357672c
KKD
2370 if (IS_ERR(desc_btf))
2371 return "<error>";
2372
2373 func = btf_type_by_id(desc_btf, insn->imm);
2374 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2375}
2376
b5dc0163
AS
2377/* For given verifier state backtrack_insn() is called from the last insn to
2378 * the first insn. Its purpose is to compute a bitmask of registers and
2379 * stack slots that needs precision in the parent verifier state.
2380 */
2381static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2382 u32 *reg_mask, u64 *stack_mask)
2383{
2384 const struct bpf_insn_cbs cbs = {
e6ac2450 2385 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2386 .cb_print = verbose,
2387 .private_data = env,
2388 };
2389 struct bpf_insn *insn = env->prog->insnsi + idx;
2390 u8 class = BPF_CLASS(insn->code);
2391 u8 opcode = BPF_OP(insn->code);
2392 u8 mode = BPF_MODE(insn->code);
2393 u32 dreg = 1u << insn->dst_reg;
2394 u32 sreg = 1u << insn->src_reg;
2395 u32 spi;
2396
2397 if (insn->code == 0)
2398 return 0;
496f3324 2399 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
2400 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2401 verbose(env, "%d: ", idx);
2402 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2403 }
2404
2405 if (class == BPF_ALU || class == BPF_ALU64) {
2406 if (!(*reg_mask & dreg))
2407 return 0;
2408 if (opcode == BPF_MOV) {
2409 if (BPF_SRC(insn->code) == BPF_X) {
2410 /* dreg = sreg
2411 * dreg needs precision after this insn
2412 * sreg needs precision before this insn
2413 */
2414 *reg_mask &= ~dreg;
2415 *reg_mask |= sreg;
2416 } else {
2417 /* dreg = K
2418 * dreg needs precision after this insn.
2419 * Corresponding register is already marked
2420 * as precise=true in this verifier state.
2421 * No further markings in parent are necessary
2422 */
2423 *reg_mask &= ~dreg;
2424 }
2425 } else {
2426 if (BPF_SRC(insn->code) == BPF_X) {
2427 /* dreg += sreg
2428 * both dreg and sreg need precision
2429 * before this insn
2430 */
2431 *reg_mask |= sreg;
2432 } /* else dreg += K
2433 * dreg still needs precision before this insn
2434 */
2435 }
2436 } else if (class == BPF_LDX) {
2437 if (!(*reg_mask & dreg))
2438 return 0;
2439 *reg_mask &= ~dreg;
2440
2441 /* scalars can only be spilled into stack w/o losing precision.
2442 * Load from any other memory can be zero extended.
2443 * The desire to keep that precision is already indicated
2444 * by 'precise' mark in corresponding register of this state.
2445 * No further tracking necessary.
2446 */
2447 if (insn->src_reg != BPF_REG_FP)
2448 return 0;
b5dc0163
AS
2449
2450 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2451 * that [fp - off] slot contains scalar that needs to be
2452 * tracked with precision
2453 */
2454 spi = (-insn->off - 1) / BPF_REG_SIZE;
2455 if (spi >= 64) {
2456 verbose(env, "BUG spi %d\n", spi);
2457 WARN_ONCE(1, "verifier backtracking bug");
2458 return -EFAULT;
2459 }
2460 *stack_mask |= 1ull << spi;
b3b50f05 2461 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2462 if (*reg_mask & dreg)
b3b50f05 2463 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2464 * to access memory. It means backtracking
2465 * encountered a case of pointer subtraction.
2466 */
2467 return -ENOTSUPP;
2468 /* scalars can only be spilled into stack */
2469 if (insn->dst_reg != BPF_REG_FP)
2470 return 0;
b5dc0163
AS
2471 spi = (-insn->off - 1) / BPF_REG_SIZE;
2472 if (spi >= 64) {
2473 verbose(env, "BUG spi %d\n", spi);
2474 WARN_ONCE(1, "verifier backtracking bug");
2475 return -EFAULT;
2476 }
2477 if (!(*stack_mask & (1ull << spi)))
2478 return 0;
2479 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2480 if (class == BPF_STX)
2481 *reg_mask |= sreg;
b5dc0163
AS
2482 } else if (class == BPF_JMP || class == BPF_JMP32) {
2483 if (opcode == BPF_CALL) {
2484 if (insn->src_reg == BPF_PSEUDO_CALL)
2485 return -ENOTSUPP;
2486 /* regular helper call sets R0 */
2487 *reg_mask &= ~1;
2488 if (*reg_mask & 0x3f) {
2489 /* if backtracing was looking for registers R1-R5
2490 * they should have been found already.
2491 */
2492 verbose(env, "BUG regs %x\n", *reg_mask);
2493 WARN_ONCE(1, "verifier backtracking bug");
2494 return -EFAULT;
2495 }
2496 } else if (opcode == BPF_EXIT) {
2497 return -ENOTSUPP;
2498 }
2499 } else if (class == BPF_LD) {
2500 if (!(*reg_mask & dreg))
2501 return 0;
2502 *reg_mask &= ~dreg;
2503 /* It's ld_imm64 or ld_abs or ld_ind.
2504 * For ld_imm64 no further tracking of precision
2505 * into parent is necessary
2506 */
2507 if (mode == BPF_IND || mode == BPF_ABS)
2508 /* to be analyzed */
2509 return -ENOTSUPP;
b5dc0163
AS
2510 }
2511 return 0;
2512}
2513
2514/* the scalar precision tracking algorithm:
2515 * . at the start all registers have precise=false.
2516 * . scalar ranges are tracked as normal through alu and jmp insns.
2517 * . once precise value of the scalar register is used in:
2518 * . ptr + scalar alu
2519 * . if (scalar cond K|scalar)
2520 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2521 * backtrack through the verifier states and mark all registers and
2522 * stack slots with spilled constants that these scalar regisers
2523 * should be precise.
2524 * . during state pruning two registers (or spilled stack slots)
2525 * are equivalent if both are not precise.
2526 *
2527 * Note the verifier cannot simply walk register parentage chain,
2528 * since many different registers and stack slots could have been
2529 * used to compute single precise scalar.
2530 *
2531 * The approach of starting with precise=true for all registers and then
2532 * backtrack to mark a register as not precise when the verifier detects
2533 * that program doesn't care about specific value (e.g., when helper
2534 * takes register as ARG_ANYTHING parameter) is not safe.
2535 *
2536 * It's ok to walk single parentage chain of the verifier states.
2537 * It's possible that this backtracking will go all the way till 1st insn.
2538 * All other branches will be explored for needing precision later.
2539 *
2540 * The backtracking needs to deal with cases like:
2541 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2542 * r9 -= r8
2543 * r5 = r9
2544 * if r5 > 0x79f goto pc+7
2545 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2546 * r5 += 1
2547 * ...
2548 * call bpf_perf_event_output#25
2549 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2550 *
2551 * and this case:
2552 * r6 = 1
2553 * call foo // uses callee's r6 inside to compute r0
2554 * r0 += r6
2555 * if r0 == 0 goto
2556 *
2557 * to track above reg_mask/stack_mask needs to be independent for each frame.
2558 *
2559 * Also if parent's curframe > frame where backtracking started,
2560 * the verifier need to mark registers in both frames, otherwise callees
2561 * may incorrectly prune callers. This is similar to
2562 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2563 *
2564 * For now backtracking falls back into conservative marking.
2565 */
2566static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2567 struct bpf_verifier_state *st)
2568{
2569 struct bpf_func_state *func;
2570 struct bpf_reg_state *reg;
2571 int i, j;
2572
2573 /* big hammer: mark all scalars precise in this path.
2574 * pop_stack may still get !precise scalars.
2575 */
2576 for (; st; st = st->parent)
2577 for (i = 0; i <= st->curframe; i++) {
2578 func = st->frame[i];
2579 for (j = 0; j < BPF_REG_FP; j++) {
2580 reg = &func->regs[j];
2581 if (reg->type != SCALAR_VALUE)
2582 continue;
2583 reg->precise = true;
2584 }
2585 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2586 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2587 continue;
2588 reg = &func->stack[j].spilled_ptr;
2589 if (reg->type != SCALAR_VALUE)
2590 continue;
2591 reg->precise = true;
2592 }
2593 }
2594}
2595
a3ce685d
AS
2596static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2597 int spi)
b5dc0163
AS
2598{
2599 struct bpf_verifier_state *st = env->cur_state;
2600 int first_idx = st->first_insn_idx;
2601 int last_idx = env->insn_idx;
2602 struct bpf_func_state *func;
2603 struct bpf_reg_state *reg;
a3ce685d
AS
2604 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2605 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2606 bool skip_first = true;
a3ce685d 2607 bool new_marks = false;
b5dc0163
AS
2608 int i, err;
2609
2c78ee89 2610 if (!env->bpf_capable)
b5dc0163
AS
2611 return 0;
2612
2613 func = st->frame[st->curframe];
a3ce685d
AS
2614 if (regno >= 0) {
2615 reg = &func->regs[regno];
2616 if (reg->type != SCALAR_VALUE) {
2617 WARN_ONCE(1, "backtracing misuse");
2618 return -EFAULT;
2619 }
2620 if (!reg->precise)
2621 new_marks = true;
2622 else
2623 reg_mask = 0;
2624 reg->precise = true;
b5dc0163 2625 }
b5dc0163 2626
a3ce685d 2627 while (spi >= 0) {
27113c59 2628 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2629 stack_mask = 0;
2630 break;
2631 }
2632 reg = &func->stack[spi].spilled_ptr;
2633 if (reg->type != SCALAR_VALUE) {
2634 stack_mask = 0;
2635 break;
2636 }
2637 if (!reg->precise)
2638 new_marks = true;
2639 else
2640 stack_mask = 0;
2641 reg->precise = true;
2642 break;
2643 }
2644
2645 if (!new_marks)
2646 return 0;
2647 if (!reg_mask && !stack_mask)
2648 return 0;
b5dc0163
AS
2649 for (;;) {
2650 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2651 u32 history = st->jmp_history_cnt;
2652
496f3324 2653 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163
AS
2654 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2655 for (i = last_idx;;) {
2656 if (skip_first) {
2657 err = 0;
2658 skip_first = false;
2659 } else {
2660 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2661 }
2662 if (err == -ENOTSUPP) {
2663 mark_all_scalars_precise(env, st);
2664 return 0;
2665 } else if (err) {
2666 return err;
2667 }
2668 if (!reg_mask && !stack_mask)
2669 /* Found assignment(s) into tracked register in this state.
2670 * Since this state is already marked, just return.
2671 * Nothing to be tracked further in the parent state.
2672 */
2673 return 0;
2674 if (i == first_idx)
2675 break;
2676 i = get_prev_insn_idx(st, i, &history);
2677 if (i >= env->prog->len) {
2678 /* This can happen if backtracking reached insn 0
2679 * and there are still reg_mask or stack_mask
2680 * to backtrack.
2681 * It means the backtracking missed the spot where
2682 * particular register was initialized with a constant.
2683 */
2684 verbose(env, "BUG backtracking idx %d\n", i);
2685 WARN_ONCE(1, "verifier backtracking bug");
2686 return -EFAULT;
2687 }
2688 }
2689 st = st->parent;
2690 if (!st)
2691 break;
2692
a3ce685d 2693 new_marks = false;
b5dc0163
AS
2694 func = st->frame[st->curframe];
2695 bitmap_from_u64(mask, reg_mask);
2696 for_each_set_bit(i, mask, 32) {
2697 reg = &func->regs[i];
a3ce685d
AS
2698 if (reg->type != SCALAR_VALUE) {
2699 reg_mask &= ~(1u << i);
b5dc0163 2700 continue;
a3ce685d 2701 }
b5dc0163
AS
2702 if (!reg->precise)
2703 new_marks = true;
2704 reg->precise = true;
2705 }
2706
2707 bitmap_from_u64(mask, stack_mask);
2708 for_each_set_bit(i, mask, 64) {
2709 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2710 /* the sequence of instructions:
2711 * 2: (bf) r3 = r10
2712 * 3: (7b) *(u64 *)(r3 -8) = r0
2713 * 4: (79) r4 = *(u64 *)(r10 -8)
2714 * doesn't contain jmps. It's backtracked
2715 * as a single block.
2716 * During backtracking insn 3 is not recognized as
2717 * stack access, so at the end of backtracking
2718 * stack slot fp-8 is still marked in stack_mask.
2719 * However the parent state may not have accessed
2720 * fp-8 and it's "unallocated" stack space.
2721 * In such case fallback to conservative.
b5dc0163 2722 */
2339cd6c
AS
2723 mark_all_scalars_precise(env, st);
2724 return 0;
b5dc0163
AS
2725 }
2726
27113c59 2727 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2728 stack_mask &= ~(1ull << i);
b5dc0163 2729 continue;
a3ce685d 2730 }
b5dc0163 2731 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2732 if (reg->type != SCALAR_VALUE) {
2733 stack_mask &= ~(1ull << i);
b5dc0163 2734 continue;
a3ce685d 2735 }
b5dc0163
AS
2736 if (!reg->precise)
2737 new_marks = true;
2738 reg->precise = true;
2739 }
496f3324 2740 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 2741 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
2742 new_marks ? "didn't have" : "already had",
2743 reg_mask, stack_mask);
2e576648 2744 print_verifier_state(env, func, true);
b5dc0163
AS
2745 }
2746
a3ce685d
AS
2747 if (!reg_mask && !stack_mask)
2748 break;
b5dc0163
AS
2749 if (!new_marks)
2750 break;
2751
2752 last_idx = st->last_insn_idx;
2753 first_idx = st->first_insn_idx;
2754 }
2755 return 0;
2756}
2757
a3ce685d
AS
2758static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2759{
2760 return __mark_chain_precision(env, regno, -1);
2761}
2762
2763static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2764{
2765 return __mark_chain_precision(env, -1, spi);
2766}
b5dc0163 2767
1be7f75d
AS
2768static bool is_spillable_regtype(enum bpf_reg_type type)
2769{
c25b2ae1 2770 switch (base_type(type)) {
1be7f75d 2771 case PTR_TO_MAP_VALUE:
1be7f75d
AS
2772 case PTR_TO_STACK:
2773 case PTR_TO_CTX:
969bf05e 2774 case PTR_TO_PACKET:
de8f3a83 2775 case PTR_TO_PACKET_META:
969bf05e 2776 case PTR_TO_PACKET_END:
d58e468b 2777 case PTR_TO_FLOW_KEYS:
1be7f75d 2778 case CONST_PTR_TO_MAP:
c64b7983 2779 case PTR_TO_SOCKET:
46f8bc92 2780 case PTR_TO_SOCK_COMMON:
655a51e5 2781 case PTR_TO_TCP_SOCK:
fada7fdc 2782 case PTR_TO_XDP_SOCK:
65726b5b 2783 case PTR_TO_BTF_ID:
20b2aff4 2784 case PTR_TO_BUF:
744ea4e3 2785 case PTR_TO_MEM:
69c087ba
YS
2786 case PTR_TO_FUNC:
2787 case PTR_TO_MAP_KEY:
1be7f75d
AS
2788 return true;
2789 default:
2790 return false;
2791 }
2792}
2793
cc2b14d5
AS
2794/* Does this register contain a constant zero? */
2795static bool register_is_null(struct bpf_reg_state *reg)
2796{
2797 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2798}
2799
f7cf25b2
AS
2800static bool register_is_const(struct bpf_reg_state *reg)
2801{
2802 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2803}
2804
5689d49b
YS
2805static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2806{
2807 return tnum_is_unknown(reg->var_off) &&
2808 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2809 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2810 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2811 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2812}
2813
2814static bool register_is_bounded(struct bpf_reg_state *reg)
2815{
2816 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2817}
2818
6e7e63cb
JH
2819static bool __is_pointer_value(bool allow_ptr_leaks,
2820 const struct bpf_reg_state *reg)
2821{
2822 if (allow_ptr_leaks)
2823 return false;
2824
2825 return reg->type != SCALAR_VALUE;
2826}
2827
f7cf25b2 2828static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2829 int spi, struct bpf_reg_state *reg,
2830 int size)
f7cf25b2
AS
2831{
2832 int i;
2833
2834 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2835 if (size == BPF_REG_SIZE)
2836 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 2837
354e8f19
MKL
2838 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2839 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 2840
354e8f19
MKL
2841 /* size < 8 bytes spill */
2842 for (; i; i--)
2843 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
2844}
2845
01f810ac 2846/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2847 * stack boundary and alignment are checked in check_mem_access()
2848 */
01f810ac
AM
2849static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2850 /* stack frame we're writing to */
2851 struct bpf_func_state *state,
2852 int off, int size, int value_regno,
2853 int insn_idx)
17a52670 2854{
f4d7e40a 2855 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2856 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2857 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2858 struct bpf_reg_state *reg = NULL;
638f5b90 2859
c69431aa 2860 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2861 if (err)
2862 return err;
9c399760
AS
2863 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2864 * so it's aligned access and [off, off + size) are within stack limits
2865 */
638f5b90
AS
2866 if (!env->allow_ptr_leaks &&
2867 state->stack[spi].slot_type[0] == STACK_SPILL &&
2868 size != BPF_REG_SIZE) {
2869 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2870 return -EACCES;
2871 }
17a52670 2872
f4d7e40a 2873 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2874 if (value_regno >= 0)
2875 reg = &cur->regs[value_regno];
2039f26f
DB
2876 if (!env->bypass_spec_v4) {
2877 bool sanitize = reg && is_spillable_regtype(reg->type);
2878
2879 for (i = 0; i < size; i++) {
2880 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2881 sanitize = true;
2882 break;
2883 }
2884 }
2885
2886 if (sanitize)
2887 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2888 }
17a52670 2889
0f55f9ed 2890 mark_stack_slot_scratched(env, spi);
354e8f19 2891 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 2892 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2893 if (dst_reg != BPF_REG_FP) {
2894 /* The backtracking logic can only recognize explicit
2895 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2896 * scalar via different register has to be conservative.
b5dc0163
AS
2897 * Backtrack from here and mark all registers as precise
2898 * that contributed into 'reg' being a constant.
2899 */
2900 err = mark_chain_precision(env, value_regno);
2901 if (err)
2902 return err;
2903 }
354e8f19 2904 save_register_state(state, spi, reg, size);
f7cf25b2 2905 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2906 /* register containing pointer is being spilled into stack */
9c399760 2907 if (size != BPF_REG_SIZE) {
f7cf25b2 2908 verbose_linfo(env, insn_idx, "; ");
61bd5218 2909 verbose(env, "invalid size of register spill\n");
17a52670
AS
2910 return -EACCES;
2911 }
f7cf25b2 2912 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2913 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2914 return -EINVAL;
2915 }
354e8f19 2916 save_register_state(state, spi, reg, size);
9c399760 2917 } else {
cc2b14d5
AS
2918 u8 type = STACK_MISC;
2919
679c782d
EC
2920 /* regular write of data into stack destroys any spilled ptr */
2921 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 2922 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 2923 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 2924 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 2925 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 2926
cc2b14d5
AS
2927 /* only mark the slot as written if all 8 bytes were written
2928 * otherwise read propagation may incorrectly stop too soon
2929 * when stack slots are partially written.
2930 * This heuristic means that read propagation will be
2931 * conservative, since it will add reg_live_read marks
2932 * to stack slots all the way to first state when programs
2933 * writes+reads less than 8 bytes
2934 */
2935 if (size == BPF_REG_SIZE)
2936 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2937
2938 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2939 if (reg && register_is_null(reg)) {
2940 /* backtracking doesn't work for STACK_ZERO yet. */
2941 err = mark_chain_precision(env, value_regno);
2942 if (err)
2943 return err;
cc2b14d5 2944 type = STACK_ZERO;
b5dc0163 2945 }
cc2b14d5 2946
0bae2d4d 2947 /* Mark slots affected by this stack write. */
9c399760 2948 for (i = 0; i < size; i++)
638f5b90 2949 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2950 type;
17a52670
AS
2951 }
2952 return 0;
2953}
2954
01f810ac
AM
2955/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2956 * known to contain a variable offset.
2957 * This function checks whether the write is permitted and conservatively
2958 * tracks the effects of the write, considering that each stack slot in the
2959 * dynamic range is potentially written to.
2960 *
2961 * 'off' includes 'regno->off'.
2962 * 'value_regno' can be -1, meaning that an unknown value is being written to
2963 * the stack.
2964 *
2965 * Spilled pointers in range are not marked as written because we don't know
2966 * what's going to be actually written. This means that read propagation for
2967 * future reads cannot be terminated by this write.
2968 *
2969 * For privileged programs, uninitialized stack slots are considered
2970 * initialized by this write (even though we don't know exactly what offsets
2971 * are going to be written to). The idea is that we don't want the verifier to
2972 * reject future reads that access slots written to through variable offsets.
2973 */
2974static int check_stack_write_var_off(struct bpf_verifier_env *env,
2975 /* func where register points to */
2976 struct bpf_func_state *state,
2977 int ptr_regno, int off, int size,
2978 int value_regno, int insn_idx)
2979{
2980 struct bpf_func_state *cur; /* state of the current function */
2981 int min_off, max_off;
2982 int i, err;
2983 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2984 bool writing_zero = false;
2985 /* set if the fact that we're writing a zero is used to let any
2986 * stack slots remain STACK_ZERO
2987 */
2988 bool zero_used = false;
2989
2990 cur = env->cur_state->frame[env->cur_state->curframe];
2991 ptr_reg = &cur->regs[ptr_regno];
2992 min_off = ptr_reg->smin_value + off;
2993 max_off = ptr_reg->smax_value + off + size;
2994 if (value_regno >= 0)
2995 value_reg = &cur->regs[value_regno];
2996 if (value_reg && register_is_null(value_reg))
2997 writing_zero = true;
2998
c69431aa 2999 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3000 if (err)
3001 return err;
3002
3003
3004 /* Variable offset writes destroy any spilled pointers in range. */
3005 for (i = min_off; i < max_off; i++) {
3006 u8 new_type, *stype;
3007 int slot, spi;
3008
3009 slot = -i - 1;
3010 spi = slot / BPF_REG_SIZE;
3011 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 3012 mark_stack_slot_scratched(env, spi);
01f810ac
AM
3013
3014 if (!env->allow_ptr_leaks
3015 && *stype != NOT_INIT
3016 && *stype != SCALAR_VALUE) {
3017 /* Reject the write if there's are spilled pointers in
3018 * range. If we didn't reject here, the ptr status
3019 * would be erased below (even though not all slots are
3020 * actually overwritten), possibly opening the door to
3021 * leaks.
3022 */
3023 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3024 insn_idx, i);
3025 return -EINVAL;
3026 }
3027
3028 /* Erase all spilled pointers. */
3029 state->stack[spi].spilled_ptr.type = NOT_INIT;
3030
3031 /* Update the slot type. */
3032 new_type = STACK_MISC;
3033 if (writing_zero && *stype == STACK_ZERO) {
3034 new_type = STACK_ZERO;
3035 zero_used = true;
3036 }
3037 /* If the slot is STACK_INVALID, we check whether it's OK to
3038 * pretend that it will be initialized by this write. The slot
3039 * might not actually be written to, and so if we mark it as
3040 * initialized future reads might leak uninitialized memory.
3041 * For privileged programs, we will accept such reads to slots
3042 * that may or may not be written because, if we're reject
3043 * them, the error would be too confusing.
3044 */
3045 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3046 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3047 insn_idx, i);
3048 return -EINVAL;
3049 }
3050 *stype = new_type;
3051 }
3052 if (zero_used) {
3053 /* backtracking doesn't work for STACK_ZERO yet. */
3054 err = mark_chain_precision(env, value_regno);
3055 if (err)
3056 return err;
3057 }
3058 return 0;
3059}
3060
3061/* When register 'dst_regno' is assigned some values from stack[min_off,
3062 * max_off), we set the register's type according to the types of the
3063 * respective stack slots. If all the stack values are known to be zeros, then
3064 * so is the destination reg. Otherwise, the register is considered to be
3065 * SCALAR. This function does not deal with register filling; the caller must
3066 * ensure that all spilled registers in the stack range have been marked as
3067 * read.
3068 */
3069static void mark_reg_stack_read(struct bpf_verifier_env *env,
3070 /* func where src register points to */
3071 struct bpf_func_state *ptr_state,
3072 int min_off, int max_off, int dst_regno)
3073{
3074 struct bpf_verifier_state *vstate = env->cur_state;
3075 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3076 int i, slot, spi;
3077 u8 *stype;
3078 int zeros = 0;
3079
3080 for (i = min_off; i < max_off; i++) {
3081 slot = -i - 1;
3082 spi = slot / BPF_REG_SIZE;
3083 stype = ptr_state->stack[spi].slot_type;
3084 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3085 break;
3086 zeros++;
3087 }
3088 if (zeros == max_off - min_off) {
3089 /* any access_size read into register is zero extended,
3090 * so the whole register == const_zero
3091 */
3092 __mark_reg_const_zero(&state->regs[dst_regno]);
3093 /* backtracking doesn't support STACK_ZERO yet,
3094 * so mark it precise here, so that later
3095 * backtracking can stop here.
3096 * Backtracking may not need this if this register
3097 * doesn't participate in pointer adjustment.
3098 * Forward propagation of precise flag is not
3099 * necessary either. This mark is only to stop
3100 * backtracking. Any register that contributed
3101 * to const 0 was marked precise before spill.
3102 */
3103 state->regs[dst_regno].precise = true;
3104 } else {
3105 /* have read misc data from the stack */
3106 mark_reg_unknown(env, state->regs, dst_regno);
3107 }
3108 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3109}
3110
3111/* Read the stack at 'off' and put the results into the register indicated by
3112 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3113 * spilled reg.
3114 *
3115 * 'dst_regno' can be -1, meaning that the read value is not going to a
3116 * register.
3117 *
3118 * The access is assumed to be within the current stack bounds.
3119 */
3120static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3121 /* func where src register points to */
3122 struct bpf_func_state *reg_state,
3123 int off, int size, int dst_regno)
17a52670 3124{
f4d7e40a
AS
3125 struct bpf_verifier_state *vstate = env->cur_state;
3126 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3127 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3128 struct bpf_reg_state *reg;
354e8f19 3129 u8 *stype, type;
17a52670 3130
f4d7e40a 3131 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3132 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3133
27113c59 3134 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3135 u8 spill_size = 1;
3136
3137 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3138 spill_size++;
354e8f19 3139
f30d4968 3140 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3141 if (reg->type != SCALAR_VALUE) {
3142 verbose_linfo(env, env->insn_idx, "; ");
3143 verbose(env, "invalid size of register fill\n");
3144 return -EACCES;
3145 }
354e8f19
MKL
3146
3147 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3148 if (dst_regno < 0)
3149 return 0;
3150
f30d4968 3151 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3152 /* The earlier check_reg_arg() has decided the
3153 * subreg_def for this insn. Save it first.
3154 */
3155 s32 subreg_def = state->regs[dst_regno].subreg_def;
3156
3157 state->regs[dst_regno] = *reg;
3158 state->regs[dst_regno].subreg_def = subreg_def;
3159 } else {
3160 for (i = 0; i < size; i++) {
3161 type = stype[(slot - i) % BPF_REG_SIZE];
3162 if (type == STACK_SPILL)
3163 continue;
3164 if (type == STACK_MISC)
3165 continue;
3166 verbose(env, "invalid read from stack off %d+%d size %d\n",
3167 off, i, size);
3168 return -EACCES;
3169 }
01f810ac 3170 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3171 }
354e8f19 3172 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3173 return 0;
17a52670 3174 }
17a52670 3175
01f810ac 3176 if (dst_regno >= 0) {
17a52670 3177 /* restore register state from stack */
01f810ac 3178 state->regs[dst_regno] = *reg;
2f18f62e
AS
3179 /* mark reg as written since spilled pointer state likely
3180 * has its liveness marks cleared by is_state_visited()
3181 * which resets stack/reg liveness for state transitions
3182 */
01f810ac 3183 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3184 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3185 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3186 * it is acceptable to use this value as a SCALAR_VALUE
3187 * (e.g. for XADD).
3188 * We must not allow unprivileged callers to do that
3189 * with spilled pointers.
3190 */
3191 verbose(env, "leaking pointer from stack off %d\n",
3192 off);
3193 return -EACCES;
dc503a8a 3194 }
f7cf25b2 3195 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3196 } else {
3197 for (i = 0; i < size; i++) {
01f810ac
AM
3198 type = stype[(slot - i) % BPF_REG_SIZE];
3199 if (type == STACK_MISC)
cc2b14d5 3200 continue;
01f810ac 3201 if (type == STACK_ZERO)
cc2b14d5 3202 continue;
cc2b14d5
AS
3203 verbose(env, "invalid read from stack off %d+%d size %d\n",
3204 off, i, size);
3205 return -EACCES;
3206 }
f7cf25b2 3207 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3208 if (dst_regno >= 0)
3209 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3210 }
f7cf25b2 3211 return 0;
17a52670
AS
3212}
3213
01f810ac
AM
3214enum stack_access_src {
3215 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3216 ACCESS_HELPER = 2, /* the access is performed by a helper */
3217};
3218
3219static int check_stack_range_initialized(struct bpf_verifier_env *env,
3220 int regno, int off, int access_size,
3221 bool zero_size_allowed,
3222 enum stack_access_src type,
3223 struct bpf_call_arg_meta *meta);
3224
3225static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3226{
3227 return cur_regs(env) + regno;
3228}
3229
3230/* Read the stack at 'ptr_regno + off' and put the result into the register
3231 * 'dst_regno'.
3232 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3233 * but not its variable offset.
3234 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3235 *
3236 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3237 * filling registers (i.e. reads of spilled register cannot be detected when
3238 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3239 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3240 * offset; for a fixed offset check_stack_read_fixed_off should be used
3241 * instead.
3242 */
3243static int check_stack_read_var_off(struct bpf_verifier_env *env,
3244 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3245{
01f810ac
AM
3246 /* The state of the source register. */
3247 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3248 struct bpf_func_state *ptr_state = func(env, reg);
3249 int err;
3250 int min_off, max_off;
3251
3252 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3253 */
01f810ac
AM
3254 err = check_stack_range_initialized(env, ptr_regno, off, size,
3255 false, ACCESS_DIRECT, NULL);
3256 if (err)
3257 return err;
3258
3259 min_off = reg->smin_value + off;
3260 max_off = reg->smax_value + off;
3261 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3262 return 0;
3263}
3264
3265/* check_stack_read dispatches to check_stack_read_fixed_off or
3266 * check_stack_read_var_off.
3267 *
3268 * The caller must ensure that the offset falls within the allocated stack
3269 * bounds.
3270 *
3271 * 'dst_regno' is a register which will receive the value from the stack. It
3272 * can be -1, meaning that the read value is not going to a register.
3273 */
3274static int check_stack_read(struct bpf_verifier_env *env,
3275 int ptr_regno, int off, int size,
3276 int dst_regno)
3277{
3278 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3279 struct bpf_func_state *state = func(env, reg);
3280 int err;
3281 /* Some accesses are only permitted with a static offset. */
3282 bool var_off = !tnum_is_const(reg->var_off);
3283
3284 /* The offset is required to be static when reads don't go to a
3285 * register, in order to not leak pointers (see
3286 * check_stack_read_fixed_off).
3287 */
3288 if (dst_regno < 0 && var_off) {
e4298d25
DB
3289 char tn_buf[48];
3290
3291 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3292 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3293 tn_buf, off, size);
3294 return -EACCES;
3295 }
01f810ac
AM
3296 /* Variable offset is prohibited for unprivileged mode for simplicity
3297 * since it requires corresponding support in Spectre masking for stack
3298 * ALU. See also retrieve_ptr_limit().
3299 */
3300 if (!env->bypass_spec_v1 && var_off) {
3301 char tn_buf[48];
e4298d25 3302
01f810ac
AM
3303 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3304 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3305 ptr_regno, tn_buf);
e4298d25
DB
3306 return -EACCES;
3307 }
3308
01f810ac
AM
3309 if (!var_off) {
3310 off += reg->var_off.value;
3311 err = check_stack_read_fixed_off(env, state, off, size,
3312 dst_regno);
3313 } else {
3314 /* Variable offset stack reads need more conservative handling
3315 * than fixed offset ones. Note that dst_regno >= 0 on this
3316 * branch.
3317 */
3318 err = check_stack_read_var_off(env, ptr_regno, off, size,
3319 dst_regno);
3320 }
3321 return err;
3322}
3323
3324
3325/* check_stack_write dispatches to check_stack_write_fixed_off or
3326 * check_stack_write_var_off.
3327 *
3328 * 'ptr_regno' is the register used as a pointer into the stack.
3329 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3330 * 'value_regno' is the register whose value we're writing to the stack. It can
3331 * be -1, meaning that we're not writing from a register.
3332 *
3333 * The caller must ensure that the offset falls within the maximum stack size.
3334 */
3335static int check_stack_write(struct bpf_verifier_env *env,
3336 int ptr_regno, int off, int size,
3337 int value_regno, int insn_idx)
3338{
3339 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3340 struct bpf_func_state *state = func(env, reg);
3341 int err;
3342
3343 if (tnum_is_const(reg->var_off)) {
3344 off += reg->var_off.value;
3345 err = check_stack_write_fixed_off(env, state, off, size,
3346 value_regno, insn_idx);
3347 } else {
3348 /* Variable offset stack reads need more conservative handling
3349 * than fixed offset ones.
3350 */
3351 err = check_stack_write_var_off(env, state,
3352 ptr_regno, off, size,
3353 value_regno, insn_idx);
3354 }
3355 return err;
e4298d25
DB
3356}
3357
591fe988
DB
3358static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3359 int off, int size, enum bpf_access_type type)
3360{
3361 struct bpf_reg_state *regs = cur_regs(env);
3362 struct bpf_map *map = regs[regno].map_ptr;
3363 u32 cap = bpf_map_flags_to_cap(map);
3364
3365 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3366 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3367 map->value_size, off, size);
3368 return -EACCES;
3369 }
3370
3371 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3372 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3373 map->value_size, off, size);
3374 return -EACCES;
3375 }
3376
3377 return 0;
3378}
3379
457f4436
AN
3380/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3381static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3382 int off, int size, u32 mem_size,
3383 bool zero_size_allowed)
17a52670 3384{
457f4436
AN
3385 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3386 struct bpf_reg_state *reg;
3387
3388 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3389 return 0;
17a52670 3390
457f4436
AN
3391 reg = &cur_regs(env)[regno];
3392 switch (reg->type) {
69c087ba
YS
3393 case PTR_TO_MAP_KEY:
3394 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3395 mem_size, off, size);
3396 break;
457f4436 3397 case PTR_TO_MAP_VALUE:
61bd5218 3398 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3399 mem_size, off, size);
3400 break;
3401 case PTR_TO_PACKET:
3402 case PTR_TO_PACKET_META:
3403 case PTR_TO_PACKET_END:
3404 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3405 off, size, regno, reg->id, off, mem_size);
3406 break;
3407 case PTR_TO_MEM:
3408 default:
3409 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3410 mem_size, off, size);
17a52670 3411 }
457f4436
AN
3412
3413 return -EACCES;
17a52670
AS
3414}
3415
457f4436
AN
3416/* check read/write into a memory region with possible variable offset */
3417static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3418 int off, int size, u32 mem_size,
3419 bool zero_size_allowed)
dbcfe5f7 3420{
f4d7e40a
AS
3421 struct bpf_verifier_state *vstate = env->cur_state;
3422 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3423 struct bpf_reg_state *reg = &state->regs[regno];
3424 int err;
3425
457f4436 3426 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3427 * need to try adding each of min_value and max_value to off
3428 * to make sure our theoretical access will be safe.
2e576648
CL
3429 *
3430 * The minimum value is only important with signed
dbcfe5f7
GB
3431 * comparisons where we can't assume the floor of a
3432 * value is 0. If we are using signed variables for our
3433 * index'es we need to make sure that whatever we use
3434 * will have a set floor within our range.
3435 */
b7137c4e
DB
3436 if (reg->smin_value < 0 &&
3437 (reg->smin_value == S64_MIN ||
3438 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3439 reg->smin_value + off < 0)) {
61bd5218 3440 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3441 regno);
3442 return -EACCES;
3443 }
457f4436
AN
3444 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3445 mem_size, zero_size_allowed);
dbcfe5f7 3446 if (err) {
457f4436 3447 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3448 regno);
dbcfe5f7
GB
3449 return err;
3450 }
3451
b03c9f9f
EC
3452 /* If we haven't set a max value then we need to bail since we can't be
3453 * sure we won't do bad things.
3454 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3455 */
b03c9f9f 3456 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3457 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3458 regno);
3459 return -EACCES;
3460 }
457f4436
AN
3461 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3462 mem_size, zero_size_allowed);
3463 if (err) {
3464 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3465 regno);
457f4436
AN
3466 return err;
3467 }
3468
3469 return 0;
3470}
d83525ca 3471
e9147b44
KKD
3472static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3473 const struct bpf_reg_state *reg, int regno,
3474 bool fixed_off_ok)
3475{
3476 /* Access to this pointer-typed register or passing it to a helper
3477 * is only allowed in its original, unmodified form.
3478 */
3479
3480 if (reg->off < 0) {
3481 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3482 reg_type_str(env, reg->type), regno, reg->off);
3483 return -EACCES;
3484 }
3485
3486 if (!fixed_off_ok && reg->off) {
3487 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3488 reg_type_str(env, reg->type), regno, reg->off);
3489 return -EACCES;
3490 }
3491
3492 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3493 char tn_buf[48];
3494
3495 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3496 verbose(env, "variable %s access var_off=%s disallowed\n",
3497 reg_type_str(env, reg->type), tn_buf);
3498 return -EACCES;
3499 }
3500
3501 return 0;
3502}
3503
3504int check_ptr_off_reg(struct bpf_verifier_env *env,
3505 const struct bpf_reg_state *reg, int regno)
3506{
3507 return __check_ptr_off_reg(env, reg, regno, false);
3508}
3509
457f4436
AN
3510/* check read/write into a map element with possible variable offset */
3511static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3512 int off, int size, bool zero_size_allowed)
3513{
3514 struct bpf_verifier_state *vstate = env->cur_state;
3515 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3516 struct bpf_reg_state *reg = &state->regs[regno];
3517 struct bpf_map *map = reg->map_ptr;
3518 int err;
3519
3520 err = check_mem_region_access(env, regno, off, size, map->value_size,
3521 zero_size_allowed);
3522 if (err)
3523 return err;
3524
3525 if (map_value_has_spin_lock(map)) {
3526 u32 lock = map->spin_lock_off;
d83525ca
AS
3527
3528 /* if any part of struct bpf_spin_lock can be touched by
3529 * load/store reject this program.
3530 * To check that [x1, x2) overlaps with [y1, y2)
3531 * it is sufficient to check x1 < y2 && y1 < x2.
3532 */
3533 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3534 lock < reg->umax_value + off + size) {
3535 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3536 return -EACCES;
3537 }
3538 }
68134668
AS
3539 if (map_value_has_timer(map)) {
3540 u32 t = map->timer_off;
3541
3542 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3543 t < reg->umax_value + off + size) {
3544 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3545 return -EACCES;
3546 }
3547 }
f1174f77 3548 return err;
dbcfe5f7
GB
3549}
3550
969bf05e
AS
3551#define MAX_PACKET_OFF 0xffff
3552
58e2af8b 3553static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3554 const struct bpf_call_arg_meta *meta,
3555 enum bpf_access_type t)
4acf6c0b 3556{
7e40781c
UP
3557 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3558
3559 switch (prog_type) {
5d66fa7d 3560 /* Program types only with direct read access go here! */
3a0af8fd
TG
3561 case BPF_PROG_TYPE_LWT_IN:
3562 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3563 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3564 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3565 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3566 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3567 if (t == BPF_WRITE)
3568 return false;
8731745e 3569 fallthrough;
5d66fa7d
DB
3570
3571 /* Program types with direct read + write access go here! */
36bbef52
DB
3572 case BPF_PROG_TYPE_SCHED_CLS:
3573 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3574 case BPF_PROG_TYPE_XDP:
3a0af8fd 3575 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3576 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3577 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3578 if (meta)
3579 return meta->pkt_access;
3580
3581 env->seen_direct_write = true;
4acf6c0b 3582 return true;
0d01da6a
SF
3583
3584 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3585 if (t == BPF_WRITE)
3586 env->seen_direct_write = true;
3587
3588 return true;
3589
4acf6c0b
BB
3590 default:
3591 return false;
3592 }
3593}
3594
f1174f77 3595static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3596 int size, bool zero_size_allowed)
f1174f77 3597{
638f5b90 3598 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3599 struct bpf_reg_state *reg = &regs[regno];
3600 int err;
3601
3602 /* We may have added a variable offset to the packet pointer; but any
3603 * reg->range we have comes after that. We are only checking the fixed
3604 * offset.
3605 */
3606
3607 /* We don't allow negative numbers, because we aren't tracking enough
3608 * detail to prove they're safe.
3609 */
b03c9f9f 3610 if (reg->smin_value < 0) {
61bd5218 3611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3612 regno);
3613 return -EACCES;
3614 }
6d94e741
AS
3615
3616 err = reg->range < 0 ? -EINVAL :
3617 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3618 zero_size_allowed);
f1174f77 3619 if (err) {
61bd5218 3620 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3621 return err;
3622 }
e647815a 3623
457f4436 3624 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3625 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3626 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3627 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3628 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3629 */
3630 env->prog->aux->max_pkt_offset =
3631 max_t(u32, env->prog->aux->max_pkt_offset,
3632 off + reg->umax_value + size - 1);
3633
f1174f77
EC
3634 return err;
3635}
3636
3637/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3638static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3639 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3640 struct btf **btf, u32 *btf_id)
17a52670 3641{
f96da094
DB
3642 struct bpf_insn_access_aux info = {
3643 .reg_type = *reg_type,
9e15db66 3644 .log = &env->log,
f96da094 3645 };
31fd8581 3646
4f9218aa 3647 if (env->ops->is_valid_access &&
5e43f899 3648 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3649 /* A non zero info.ctx_field_size indicates that this field is a
3650 * candidate for later verifier transformation to load the whole
3651 * field and then apply a mask when accessed with a narrower
3652 * access than actual ctx access size. A zero info.ctx_field_size
3653 * will only allow for whole field access and rejects any other
3654 * type of narrower access.
31fd8581 3655 */
23994631 3656 *reg_type = info.reg_type;
31fd8581 3657
c25b2ae1 3658 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 3659 *btf = info.btf;
9e15db66 3660 *btf_id = info.btf_id;
22dc4a0f 3661 } else {
9e15db66 3662 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3663 }
32bbe007
AS
3664 /* remember the offset of last byte accessed in ctx */
3665 if (env->prog->aux->max_ctx_offset < off + size)
3666 env->prog->aux->max_ctx_offset = off + size;
17a52670 3667 return 0;
32bbe007 3668 }
17a52670 3669
61bd5218 3670 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3671 return -EACCES;
3672}
3673
d58e468b
PP
3674static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3675 int size)
3676{
3677 if (size < 0 || off < 0 ||
3678 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3679 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3680 off, size);
3681 return -EACCES;
3682 }
3683 return 0;
3684}
3685
5f456649
MKL
3686static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3687 u32 regno, int off, int size,
3688 enum bpf_access_type t)
c64b7983
JS
3689{
3690 struct bpf_reg_state *regs = cur_regs(env);
3691 struct bpf_reg_state *reg = &regs[regno];
5f456649 3692 struct bpf_insn_access_aux info = {};
46f8bc92 3693 bool valid;
c64b7983
JS
3694
3695 if (reg->smin_value < 0) {
3696 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3697 regno);
3698 return -EACCES;
3699 }
3700
46f8bc92
MKL
3701 switch (reg->type) {
3702 case PTR_TO_SOCK_COMMON:
3703 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3704 break;
3705 case PTR_TO_SOCKET:
3706 valid = bpf_sock_is_valid_access(off, size, t, &info);
3707 break;
655a51e5
MKL
3708 case PTR_TO_TCP_SOCK:
3709 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3710 break;
fada7fdc
JL
3711 case PTR_TO_XDP_SOCK:
3712 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3713 break;
46f8bc92
MKL
3714 default:
3715 valid = false;
c64b7983
JS
3716 }
3717
5f456649 3718
46f8bc92
MKL
3719 if (valid) {
3720 env->insn_aux_data[insn_idx].ctx_field_size =
3721 info.ctx_field_size;
3722 return 0;
3723 }
3724
3725 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 3726 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
3727
3728 return -EACCES;
c64b7983
JS
3729}
3730
4cabc5b1
DB
3731static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3732{
2a159c6f 3733 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3734}
3735
f37a8cb8
DB
3736static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3737{
2a159c6f 3738 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3739
46f8bc92
MKL
3740 return reg->type == PTR_TO_CTX;
3741}
3742
3743static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3744{
3745 const struct bpf_reg_state *reg = reg_state(env, regno);
3746
3747 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3748}
3749
ca369602
DB
3750static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3751{
2a159c6f 3752 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3753
3754 return type_is_pkt_pointer(reg->type);
3755}
3756
4b5defde
DB
3757static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3758{
3759 const struct bpf_reg_state *reg = reg_state(env, regno);
3760
3761 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3762 return reg->type == PTR_TO_FLOW_KEYS;
3763}
3764
61bd5218
JK
3765static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3766 const struct bpf_reg_state *reg,
d1174416 3767 int off, int size, bool strict)
969bf05e 3768{
f1174f77 3769 struct tnum reg_off;
e07b98d9 3770 int ip_align;
d1174416
DM
3771
3772 /* Byte size accesses are always allowed. */
3773 if (!strict || size == 1)
3774 return 0;
3775
e4eda884
DM
3776 /* For platforms that do not have a Kconfig enabling
3777 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3778 * NET_IP_ALIGN is universally set to '2'. And on platforms
3779 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3780 * to this code only in strict mode where we want to emulate
3781 * the NET_IP_ALIGN==2 checking. Therefore use an
3782 * unconditional IP align value of '2'.
e07b98d9 3783 */
e4eda884 3784 ip_align = 2;
f1174f77
EC
3785
3786 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3787 if (!tnum_is_aligned(reg_off, size)) {
3788 char tn_buf[48];
3789
3790 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3791 verbose(env,
3792 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3793 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3794 return -EACCES;
3795 }
79adffcd 3796
969bf05e
AS
3797 return 0;
3798}
3799
61bd5218
JK
3800static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3801 const struct bpf_reg_state *reg,
f1174f77
EC
3802 const char *pointer_desc,
3803 int off, int size, bool strict)
79adffcd 3804{
f1174f77
EC
3805 struct tnum reg_off;
3806
3807 /* Byte size accesses are always allowed. */
3808 if (!strict || size == 1)
3809 return 0;
3810
3811 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3812 if (!tnum_is_aligned(reg_off, size)) {
3813 char tn_buf[48];
3814
3815 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3816 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3817 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3818 return -EACCES;
3819 }
3820
969bf05e
AS
3821 return 0;
3822}
3823
e07b98d9 3824static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3825 const struct bpf_reg_state *reg, int off,
3826 int size, bool strict_alignment_once)
79adffcd 3827{
ca369602 3828 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3829 const char *pointer_desc = "";
d1174416 3830
79adffcd
DB
3831 switch (reg->type) {
3832 case PTR_TO_PACKET:
de8f3a83
DB
3833 case PTR_TO_PACKET_META:
3834 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3835 * right in front, treat it the very same way.
3836 */
61bd5218 3837 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3838 case PTR_TO_FLOW_KEYS:
3839 pointer_desc = "flow keys ";
3840 break;
69c087ba
YS
3841 case PTR_TO_MAP_KEY:
3842 pointer_desc = "key ";
3843 break;
f1174f77
EC
3844 case PTR_TO_MAP_VALUE:
3845 pointer_desc = "value ";
3846 break;
3847 case PTR_TO_CTX:
3848 pointer_desc = "context ";
3849 break;
3850 case PTR_TO_STACK:
3851 pointer_desc = "stack ";
01f810ac
AM
3852 /* The stack spill tracking logic in check_stack_write_fixed_off()
3853 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3854 * aligned.
3855 */
3856 strict = true;
f1174f77 3857 break;
c64b7983
JS
3858 case PTR_TO_SOCKET:
3859 pointer_desc = "sock ";
3860 break;
46f8bc92
MKL
3861 case PTR_TO_SOCK_COMMON:
3862 pointer_desc = "sock_common ";
3863 break;
655a51e5
MKL
3864 case PTR_TO_TCP_SOCK:
3865 pointer_desc = "tcp_sock ";
3866 break;
fada7fdc
JL
3867 case PTR_TO_XDP_SOCK:
3868 pointer_desc = "xdp_sock ";
3869 break;
79adffcd 3870 default:
f1174f77 3871 break;
79adffcd 3872 }
61bd5218
JK
3873 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3874 strict);
79adffcd
DB
3875}
3876
f4d7e40a
AS
3877static int update_stack_depth(struct bpf_verifier_env *env,
3878 const struct bpf_func_state *func,
3879 int off)
3880{
9c8105bd 3881 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3882
3883 if (stack >= -off)
3884 return 0;
3885
3886 /* update known max for given subprogram */
9c8105bd 3887 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3888 return 0;
3889}
f4d7e40a 3890
70a87ffe
AS
3891/* starting from main bpf function walk all instructions of the function
3892 * and recursively walk all callees that given function can call.
3893 * Ignore jump and exit insns.
3894 * Since recursion is prevented by check_cfg() this algorithm
3895 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3896 */
3897static int check_max_stack_depth(struct bpf_verifier_env *env)
3898{
9c8105bd
JW
3899 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3900 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3901 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3902 bool tail_call_reachable = false;
70a87ffe
AS
3903 int ret_insn[MAX_CALL_FRAMES];
3904 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3905 int j;
f4d7e40a 3906
70a87ffe 3907process_func:
7f6e4312
MF
3908 /* protect against potential stack overflow that might happen when
3909 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3910 * depth for such case down to 256 so that the worst case scenario
3911 * would result in 8k stack size (32 which is tailcall limit * 256 =
3912 * 8k).
3913 *
3914 * To get the idea what might happen, see an example:
3915 * func1 -> sub rsp, 128
3916 * subfunc1 -> sub rsp, 256
3917 * tailcall1 -> add rsp, 256
3918 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3919 * subfunc2 -> sub rsp, 64
3920 * subfunc22 -> sub rsp, 128
3921 * tailcall2 -> add rsp, 128
3922 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3923 *
3924 * tailcall will unwind the current stack frame but it will not get rid
3925 * of caller's stack as shown on the example above.
3926 */
3927 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3928 verbose(env,
3929 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3930 depth);
3931 return -EACCES;
3932 }
70a87ffe
AS
3933 /* round up to 32-bytes, since this is granularity
3934 * of interpreter stack size
3935 */
9c8105bd 3936 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3937 if (depth > MAX_BPF_STACK) {
f4d7e40a 3938 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3939 frame + 1, depth);
f4d7e40a
AS
3940 return -EACCES;
3941 }
70a87ffe 3942continue_func:
4cb3d99c 3943 subprog_end = subprog[idx + 1].start;
70a87ffe 3944 for (; i < subprog_end; i++) {
7ddc80a4
AS
3945 int next_insn;
3946
69c087ba 3947 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3948 continue;
3949 /* remember insn and function to return to */
3950 ret_insn[frame] = i + 1;
9c8105bd 3951 ret_prog[frame] = idx;
70a87ffe
AS
3952
3953 /* find the callee */
7ddc80a4
AS
3954 next_insn = i + insn[i].imm + 1;
3955 idx = find_subprog(env, next_insn);
9c8105bd 3956 if (idx < 0) {
70a87ffe 3957 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 3958 next_insn);
70a87ffe
AS
3959 return -EFAULT;
3960 }
7ddc80a4
AS
3961 if (subprog[idx].is_async_cb) {
3962 if (subprog[idx].has_tail_call) {
3963 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3964 return -EFAULT;
3965 }
3966 /* async callbacks don't increase bpf prog stack size */
3967 continue;
3968 }
3969 i = next_insn;
ebf7d1f5
MF
3970
3971 if (subprog[idx].has_tail_call)
3972 tail_call_reachable = true;
3973
70a87ffe
AS
3974 frame++;
3975 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3976 verbose(env, "the call stack of %d frames is too deep !\n",
3977 frame);
3978 return -E2BIG;
70a87ffe
AS
3979 }
3980 goto process_func;
3981 }
ebf7d1f5
MF
3982 /* if tail call got detected across bpf2bpf calls then mark each of the
3983 * currently present subprog frames as tail call reachable subprogs;
3984 * this info will be utilized by JIT so that we will be preserving the
3985 * tail call counter throughout bpf2bpf calls combined with tailcalls
3986 */
3987 if (tail_call_reachable)
3988 for (j = 0; j < frame; j++)
3989 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
3990 if (subprog[0].tail_call_reachable)
3991 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 3992
70a87ffe
AS
3993 /* end of for() loop means the last insn of the 'subprog'
3994 * was reached. Doesn't matter whether it was JA or EXIT
3995 */
3996 if (frame == 0)
3997 return 0;
9c8105bd 3998 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3999 frame--;
4000 i = ret_insn[frame];
9c8105bd 4001 idx = ret_prog[frame];
70a87ffe 4002 goto continue_func;
f4d7e40a
AS
4003}
4004
19d28fbd 4005#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
4006static int get_callee_stack_depth(struct bpf_verifier_env *env,
4007 const struct bpf_insn *insn, int idx)
4008{
4009 int start = idx + insn->imm + 1, subprog;
4010
4011 subprog = find_subprog(env, start);
4012 if (subprog < 0) {
4013 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4014 start);
4015 return -EFAULT;
4016 }
9c8105bd 4017 return env->subprog_info[subprog].stack_depth;
1ea47e01 4018}
19d28fbd 4019#endif
1ea47e01 4020
afbf21dc
YS
4021static int __check_buffer_access(struct bpf_verifier_env *env,
4022 const char *buf_info,
4023 const struct bpf_reg_state *reg,
4024 int regno, int off, int size)
9df1c28b
MM
4025{
4026 if (off < 0) {
4027 verbose(env,
4fc00b79 4028 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 4029 regno, buf_info, off, size);
9df1c28b
MM
4030 return -EACCES;
4031 }
4032 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4033 char tn_buf[48];
4034
4035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4036 verbose(env,
4fc00b79 4037 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
4038 regno, off, tn_buf);
4039 return -EACCES;
4040 }
afbf21dc
YS
4041
4042 return 0;
4043}
4044
4045static int check_tp_buffer_access(struct bpf_verifier_env *env,
4046 const struct bpf_reg_state *reg,
4047 int regno, int off, int size)
4048{
4049 int err;
4050
4051 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4052 if (err)
4053 return err;
4054
9df1c28b
MM
4055 if (off + size > env->prog->aux->max_tp_access)
4056 env->prog->aux->max_tp_access = off + size;
4057
4058 return 0;
4059}
4060
afbf21dc
YS
4061static int check_buffer_access(struct bpf_verifier_env *env,
4062 const struct bpf_reg_state *reg,
4063 int regno, int off, int size,
4064 bool zero_size_allowed,
afbf21dc
YS
4065 u32 *max_access)
4066{
44e9a741 4067 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
4068 int err;
4069
4070 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4071 if (err)
4072 return err;
4073
4074 if (off + size > *max_access)
4075 *max_access = off + size;
4076
4077 return 0;
4078}
4079
3f50f132
JF
4080/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4081static void zext_32_to_64(struct bpf_reg_state *reg)
4082{
4083 reg->var_off = tnum_subreg(reg->var_off);
4084 __reg_assign_32_into_64(reg);
4085}
9df1c28b 4086
0c17d1d2
JH
4087/* truncate register to smaller size (in bytes)
4088 * must be called with size < BPF_REG_SIZE
4089 */
4090static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4091{
4092 u64 mask;
4093
4094 /* clear high bits in bit representation */
4095 reg->var_off = tnum_cast(reg->var_off, size);
4096
4097 /* fix arithmetic bounds */
4098 mask = ((u64)1 << (size * 8)) - 1;
4099 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4100 reg->umin_value &= mask;
4101 reg->umax_value &= mask;
4102 } else {
4103 reg->umin_value = 0;
4104 reg->umax_value = mask;
4105 }
4106 reg->smin_value = reg->umin_value;
4107 reg->smax_value = reg->umax_value;
3f50f132
JF
4108
4109 /* If size is smaller than 32bit register the 32bit register
4110 * values are also truncated so we push 64-bit bounds into
4111 * 32-bit bounds. Above were truncated < 32-bits already.
4112 */
4113 if (size >= 4)
4114 return;
4115 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4116}
4117
a23740ec
AN
4118static bool bpf_map_is_rdonly(const struct bpf_map *map)
4119{
353050be
DB
4120 /* A map is considered read-only if the following condition are true:
4121 *
4122 * 1) BPF program side cannot change any of the map content. The
4123 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4124 * and was set at map creation time.
4125 * 2) The map value(s) have been initialized from user space by a
4126 * loader and then "frozen", such that no new map update/delete
4127 * operations from syscall side are possible for the rest of
4128 * the map's lifetime from that point onwards.
4129 * 3) Any parallel/pending map update/delete operations from syscall
4130 * side have been completed. Only after that point, it's safe to
4131 * assume that map value(s) are immutable.
4132 */
4133 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4134 READ_ONCE(map->frozen) &&
4135 !bpf_map_write_active(map);
a23740ec
AN
4136}
4137
4138static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4139{
4140 void *ptr;
4141 u64 addr;
4142 int err;
4143
4144 err = map->ops->map_direct_value_addr(map, &addr, off);
4145 if (err)
4146 return err;
2dedd7d2 4147 ptr = (void *)(long)addr + off;
a23740ec
AN
4148
4149 switch (size) {
4150 case sizeof(u8):
4151 *val = (u64)*(u8 *)ptr;
4152 break;
4153 case sizeof(u16):
4154 *val = (u64)*(u16 *)ptr;
4155 break;
4156 case sizeof(u32):
4157 *val = (u64)*(u32 *)ptr;
4158 break;
4159 case sizeof(u64):
4160 *val = *(u64 *)ptr;
4161 break;
4162 default:
4163 return -EINVAL;
4164 }
4165 return 0;
4166}
4167
9e15db66
AS
4168static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4169 struct bpf_reg_state *regs,
4170 int regno, int off, int size,
4171 enum bpf_access_type atype,
4172 int value_regno)
4173{
4174 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4175 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4176 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 4177 enum bpf_type_flag flag = 0;
9e15db66
AS
4178 u32 btf_id;
4179 int ret;
4180
9e15db66
AS
4181 if (off < 0) {
4182 verbose(env,
4183 "R%d is ptr_%s invalid negative access: off=%d\n",
4184 regno, tname, off);
4185 return -EACCES;
4186 }
4187 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4188 char tn_buf[48];
4189
4190 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4191 verbose(env,
4192 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4193 regno, tname, off, tn_buf);
4194 return -EACCES;
4195 }
4196
c6f1bfe8
YS
4197 if (reg->type & MEM_USER) {
4198 verbose(env,
4199 "R%d is ptr_%s access user memory: off=%d\n",
4200 regno, tname, off);
4201 return -EACCES;
4202 }
4203
5844101a
HL
4204 if (reg->type & MEM_PERCPU) {
4205 verbose(env,
4206 "R%d is ptr_%s access percpu memory: off=%d\n",
4207 regno, tname, off);
4208 return -EACCES;
4209 }
4210
27ae7997 4211 if (env->ops->btf_struct_access) {
22dc4a0f 4212 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
c6f1bfe8 4213 off, size, atype, &btf_id, &flag);
27ae7997
MKL
4214 } else {
4215 if (atype != BPF_READ) {
4216 verbose(env, "only read is supported\n");
4217 return -EACCES;
4218 }
4219
22dc4a0f 4220 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
c6f1bfe8 4221 atype, &btf_id, &flag);
27ae7997
MKL
4222 }
4223
9e15db66
AS
4224 if (ret < 0)
4225 return ret;
4226
41c48f3a 4227 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 4228 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
4229
4230 return 0;
4231}
4232
4233static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4234 struct bpf_reg_state *regs,
4235 int regno, int off, int size,
4236 enum bpf_access_type atype,
4237 int value_regno)
4238{
4239 struct bpf_reg_state *reg = regs + regno;
4240 struct bpf_map *map = reg->map_ptr;
c6f1bfe8 4241 enum bpf_type_flag flag = 0;
41c48f3a
AI
4242 const struct btf_type *t;
4243 const char *tname;
4244 u32 btf_id;
4245 int ret;
4246
4247 if (!btf_vmlinux) {
4248 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4249 return -ENOTSUPP;
4250 }
4251
4252 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4253 verbose(env, "map_ptr access not supported for map type %d\n",
4254 map->map_type);
4255 return -ENOTSUPP;
4256 }
4257
4258 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4259 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4260
4261 if (!env->allow_ptr_to_map_access) {
4262 verbose(env,
4263 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4264 tname);
4265 return -EPERM;
9e15db66 4266 }
27ae7997 4267
41c48f3a
AI
4268 if (off < 0) {
4269 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4270 regno, tname, off);
4271 return -EACCES;
4272 }
4273
4274 if (atype != BPF_READ) {
4275 verbose(env, "only read from %s is supported\n", tname);
4276 return -EACCES;
4277 }
4278
c6f1bfe8 4279 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
41c48f3a
AI
4280 if (ret < 0)
4281 return ret;
4282
4283 if (value_regno >= 0)
c6f1bfe8 4284 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 4285
9e15db66
AS
4286 return 0;
4287}
4288
01f810ac
AM
4289/* Check that the stack access at the given offset is within bounds. The
4290 * maximum valid offset is -1.
4291 *
4292 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4293 * -state->allocated_stack for reads.
4294 */
4295static int check_stack_slot_within_bounds(int off,
4296 struct bpf_func_state *state,
4297 enum bpf_access_type t)
4298{
4299 int min_valid_off;
4300
4301 if (t == BPF_WRITE)
4302 min_valid_off = -MAX_BPF_STACK;
4303 else
4304 min_valid_off = -state->allocated_stack;
4305
4306 if (off < min_valid_off || off > -1)
4307 return -EACCES;
4308 return 0;
4309}
4310
4311/* Check that the stack access at 'regno + off' falls within the maximum stack
4312 * bounds.
4313 *
4314 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4315 */
4316static int check_stack_access_within_bounds(
4317 struct bpf_verifier_env *env,
4318 int regno, int off, int access_size,
4319 enum stack_access_src src, enum bpf_access_type type)
4320{
4321 struct bpf_reg_state *regs = cur_regs(env);
4322 struct bpf_reg_state *reg = regs + regno;
4323 struct bpf_func_state *state = func(env, reg);
4324 int min_off, max_off;
4325 int err;
4326 char *err_extra;
4327
4328 if (src == ACCESS_HELPER)
4329 /* We don't know if helpers are reading or writing (or both). */
4330 err_extra = " indirect access to";
4331 else if (type == BPF_READ)
4332 err_extra = " read from";
4333 else
4334 err_extra = " write to";
4335
4336 if (tnum_is_const(reg->var_off)) {
4337 min_off = reg->var_off.value + off;
4338 if (access_size > 0)
4339 max_off = min_off + access_size - 1;
4340 else
4341 max_off = min_off;
4342 } else {
4343 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4344 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4345 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4346 err_extra, regno);
4347 return -EACCES;
4348 }
4349 min_off = reg->smin_value + off;
4350 if (access_size > 0)
4351 max_off = reg->smax_value + off + access_size - 1;
4352 else
4353 max_off = min_off;
4354 }
4355
4356 err = check_stack_slot_within_bounds(min_off, state, type);
4357 if (!err)
4358 err = check_stack_slot_within_bounds(max_off, state, type);
4359
4360 if (err) {
4361 if (tnum_is_const(reg->var_off)) {
4362 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4363 err_extra, regno, off, access_size);
4364 } else {
4365 char tn_buf[48];
4366
4367 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4368 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4369 err_extra, regno, tn_buf, access_size);
4370 }
4371 }
4372 return err;
4373}
41c48f3a 4374
17a52670
AS
4375/* check whether memory at (regno + off) is accessible for t = (read | write)
4376 * if t==write, value_regno is a register which value is stored into memory
4377 * if t==read, value_regno is a register which will receive the value from memory
4378 * if t==write && value_regno==-1, some unknown value is stored into memory
4379 * if t==read && value_regno==-1, don't care what we read from memory
4380 */
ca369602
DB
4381static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4382 int off, int bpf_size, enum bpf_access_type t,
4383 int value_regno, bool strict_alignment_once)
17a52670 4384{
638f5b90
AS
4385 struct bpf_reg_state *regs = cur_regs(env);
4386 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4387 struct bpf_func_state *state;
17a52670
AS
4388 int size, err = 0;
4389
4390 size = bpf_size_to_bytes(bpf_size);
4391 if (size < 0)
4392 return size;
4393
f1174f77 4394 /* alignment checks will add in reg->off themselves */
ca369602 4395 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4396 if (err)
4397 return err;
17a52670 4398
f1174f77
EC
4399 /* for access checks, reg->off is just part of off */
4400 off += reg->off;
4401
69c087ba
YS
4402 if (reg->type == PTR_TO_MAP_KEY) {
4403 if (t == BPF_WRITE) {
4404 verbose(env, "write to change key R%d not allowed\n", regno);
4405 return -EACCES;
4406 }
4407
4408 err = check_mem_region_access(env, regno, off, size,
4409 reg->map_ptr->key_size, false);
4410 if (err)
4411 return err;
4412 if (value_regno >= 0)
4413 mark_reg_unknown(env, regs, value_regno);
4414 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4415 if (t == BPF_WRITE && value_regno >= 0 &&
4416 is_pointer_value(env, value_regno)) {
61bd5218 4417 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4418 return -EACCES;
4419 }
591fe988
DB
4420 err = check_map_access_type(env, regno, off, size, t);
4421 if (err)
4422 return err;
9fd29c08 4423 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4424 if (!err && t == BPF_READ && value_regno >= 0) {
4425 struct bpf_map *map = reg->map_ptr;
4426
4427 /* if map is read-only, track its contents as scalars */
4428 if (tnum_is_const(reg->var_off) &&
4429 bpf_map_is_rdonly(map) &&
4430 map->ops->map_direct_value_addr) {
4431 int map_off = off + reg->var_off.value;
4432 u64 val = 0;
4433
4434 err = bpf_map_direct_read(map, map_off, size,
4435 &val);
4436 if (err)
4437 return err;
4438
4439 regs[value_regno].type = SCALAR_VALUE;
4440 __mark_reg_known(&regs[value_regno], val);
4441 } else {
4442 mark_reg_unknown(env, regs, value_regno);
4443 }
4444 }
34d3a78c
HL
4445 } else if (base_type(reg->type) == PTR_TO_MEM) {
4446 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4447
4448 if (type_may_be_null(reg->type)) {
4449 verbose(env, "R%d invalid mem access '%s'\n", regno,
4450 reg_type_str(env, reg->type));
4451 return -EACCES;
4452 }
4453
4454 if (t == BPF_WRITE && rdonly_mem) {
4455 verbose(env, "R%d cannot write into %s\n",
4456 regno, reg_type_str(env, reg->type));
4457 return -EACCES;
4458 }
4459
457f4436
AN
4460 if (t == BPF_WRITE && value_regno >= 0 &&
4461 is_pointer_value(env, value_regno)) {
4462 verbose(env, "R%d leaks addr into mem\n", value_regno);
4463 return -EACCES;
4464 }
34d3a78c 4465
457f4436
AN
4466 err = check_mem_region_access(env, regno, off, size,
4467 reg->mem_size, false);
34d3a78c 4468 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 4469 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4470 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4471 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4472 struct btf *btf = NULL;
9e15db66 4473 u32 btf_id = 0;
19de99f7 4474
1be7f75d
AS
4475 if (t == BPF_WRITE && value_regno >= 0 &&
4476 is_pointer_value(env, value_regno)) {
61bd5218 4477 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4478 return -EACCES;
4479 }
f1174f77 4480
be80a1d3 4481 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
4482 if (err < 0)
4483 return err;
4484
c6f1bfe8
YS
4485 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4486 &btf_id);
9e15db66
AS
4487 if (err)
4488 verbose_linfo(env, insn_idx, "; ");
969bf05e 4489 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4490 /* ctx access returns either a scalar, or a
de8f3a83
DB
4491 * PTR_TO_PACKET[_META,_END]. In the latter
4492 * case, we know the offset is zero.
f1174f77 4493 */
46f8bc92 4494 if (reg_type == SCALAR_VALUE) {
638f5b90 4495 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4496 } else {
638f5b90 4497 mark_reg_known_zero(env, regs,
61bd5218 4498 value_regno);
c25b2ae1 4499 if (type_may_be_null(reg_type))
46f8bc92 4500 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4501 /* A load of ctx field could have different
4502 * actual load size with the one encoded in the
4503 * insn. When the dst is PTR, it is for sure not
4504 * a sub-register.
4505 */
4506 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 4507 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4508 regs[value_regno].btf = btf;
9e15db66 4509 regs[value_regno].btf_id = btf_id;
22dc4a0f 4510 }
46f8bc92 4511 }
638f5b90 4512 regs[value_regno].type = reg_type;
969bf05e 4513 }
17a52670 4514
f1174f77 4515 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4516 /* Basic bounds checks. */
4517 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4518 if (err)
4519 return err;
8726679a 4520
f4d7e40a
AS
4521 state = func(env, reg);
4522 err = update_stack_depth(env, state, off);
4523 if (err)
4524 return err;
8726679a 4525
01f810ac
AM
4526 if (t == BPF_READ)
4527 err = check_stack_read(env, regno, off, size,
61bd5218 4528 value_regno);
01f810ac
AM
4529 else
4530 err = check_stack_write(env, regno, off, size,
4531 value_regno, insn_idx);
de8f3a83 4532 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4533 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4534 verbose(env, "cannot write into packet\n");
969bf05e
AS
4535 return -EACCES;
4536 }
4acf6c0b
BB
4537 if (t == BPF_WRITE && value_regno >= 0 &&
4538 is_pointer_value(env, value_regno)) {
61bd5218
JK
4539 verbose(env, "R%d leaks addr into packet\n",
4540 value_regno);
4acf6c0b
BB
4541 return -EACCES;
4542 }
9fd29c08 4543 err = check_packet_access(env, regno, off, size, false);
969bf05e 4544 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4545 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4546 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4547 if (t == BPF_WRITE && value_regno >= 0 &&
4548 is_pointer_value(env, value_regno)) {
4549 verbose(env, "R%d leaks addr into flow keys\n",
4550 value_regno);
4551 return -EACCES;
4552 }
4553
4554 err = check_flow_keys_access(env, off, size);
4555 if (!err && t == BPF_READ && value_regno >= 0)
4556 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4557 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4558 if (t == BPF_WRITE) {
46f8bc92 4559 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 4560 regno, reg_type_str(env, reg->type));
c64b7983
JS
4561 return -EACCES;
4562 }
5f456649 4563 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4564 if (!err && value_regno >= 0)
4565 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4566 } else if (reg->type == PTR_TO_TP_BUFFER) {
4567 err = check_tp_buffer_access(env, reg, regno, off, size);
4568 if (!err && t == BPF_READ && value_regno >= 0)
4569 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
4570 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4571 !type_may_be_null(reg->type)) {
9e15db66
AS
4572 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4573 value_regno);
41c48f3a
AI
4574 } else if (reg->type == CONST_PTR_TO_MAP) {
4575 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4576 value_regno);
20b2aff4
HL
4577 } else if (base_type(reg->type) == PTR_TO_BUF) {
4578 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
4579 u32 *max_access;
4580
4581 if (rdonly_mem) {
4582 if (t == BPF_WRITE) {
4583 verbose(env, "R%d cannot write into %s\n",
4584 regno, reg_type_str(env, reg->type));
4585 return -EACCES;
4586 }
20b2aff4
HL
4587 max_access = &env->prog->aux->max_rdonly_access;
4588 } else {
20b2aff4 4589 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 4590 }
20b2aff4 4591
f6dfbe31 4592 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 4593 max_access);
20b2aff4
HL
4594
4595 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 4596 mark_reg_unknown(env, regs, value_regno);
17a52670 4597 } else {
61bd5218 4598 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 4599 reg_type_str(env, reg->type));
17a52670
AS
4600 return -EACCES;
4601 }
969bf05e 4602
f1174f77 4603 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4604 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4605 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4606 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4607 }
17a52670
AS
4608 return err;
4609}
4610
91c960b0 4611static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4612{
5ffa2550 4613 int load_reg;
17a52670
AS
4614 int err;
4615
5ca419f2
BJ
4616 switch (insn->imm) {
4617 case BPF_ADD:
4618 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4619 case BPF_AND:
4620 case BPF_AND | BPF_FETCH:
4621 case BPF_OR:
4622 case BPF_OR | BPF_FETCH:
4623 case BPF_XOR:
4624 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4625 case BPF_XCHG:
4626 case BPF_CMPXCHG:
5ca419f2
BJ
4627 break;
4628 default:
91c960b0
BJ
4629 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4630 return -EINVAL;
4631 }
4632
4633 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4634 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4635 return -EINVAL;
4636 }
4637
4638 /* check src1 operand */
dc503a8a 4639 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4640 if (err)
4641 return err;
4642
4643 /* check src2 operand */
dc503a8a 4644 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4645 if (err)
4646 return err;
4647
5ffa2550
BJ
4648 if (insn->imm == BPF_CMPXCHG) {
4649 /* Check comparison of R0 with memory location */
a82fe085
DB
4650 const u32 aux_reg = BPF_REG_0;
4651
4652 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
4653 if (err)
4654 return err;
a82fe085
DB
4655
4656 if (is_pointer_value(env, aux_reg)) {
4657 verbose(env, "R%d leaks addr into mem\n", aux_reg);
4658 return -EACCES;
4659 }
5ffa2550
BJ
4660 }
4661
6bdf6abc 4662 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4663 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4664 return -EACCES;
4665 }
4666
ca369602 4667 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4668 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4669 is_flow_key_reg(env, insn->dst_reg) ||
4670 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4671 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 4672 insn->dst_reg,
c25b2ae1 4673 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
4674 return -EACCES;
4675 }
4676
37086bfd
BJ
4677 if (insn->imm & BPF_FETCH) {
4678 if (insn->imm == BPF_CMPXCHG)
4679 load_reg = BPF_REG_0;
4680 else
4681 load_reg = insn->src_reg;
4682
4683 /* check and record load of old value */
4684 err = check_reg_arg(env, load_reg, DST_OP);
4685 if (err)
4686 return err;
4687 } else {
4688 /* This instruction accesses a memory location but doesn't
4689 * actually load it into a register.
4690 */
4691 load_reg = -1;
4692 }
4693
7d3baf0a
DB
4694 /* Check whether we can read the memory, with second call for fetch
4695 * case to simulate the register fill.
4696 */
31fd8581 4697 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
4698 BPF_SIZE(insn->code), BPF_READ, -1, true);
4699 if (!err && load_reg >= 0)
4700 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4701 BPF_SIZE(insn->code), BPF_READ, load_reg,
4702 true);
17a52670
AS
4703 if (err)
4704 return err;
4705
7d3baf0a 4706 /* Check whether we can write into the same memory. */
5ca419f2
BJ
4707 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4708 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4709 if (err)
4710 return err;
4711
5ca419f2 4712 return 0;
17a52670
AS
4713}
4714
01f810ac
AM
4715/* When register 'regno' is used to read the stack (either directly or through
4716 * a helper function) make sure that it's within stack boundary and, depending
4717 * on the access type, that all elements of the stack are initialized.
4718 *
4719 * 'off' includes 'regno->off', but not its dynamic part (if any).
4720 *
4721 * All registers that have been spilled on the stack in the slots within the
4722 * read offsets are marked as read.
4723 */
4724static int check_stack_range_initialized(
4725 struct bpf_verifier_env *env, int regno, int off,
4726 int access_size, bool zero_size_allowed,
4727 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4728{
4729 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4730 struct bpf_func_state *state = func(env, reg);
4731 int err, min_off, max_off, i, j, slot, spi;
4732 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4733 enum bpf_access_type bounds_check_type;
4734 /* Some accesses can write anything into the stack, others are
4735 * read-only.
4736 */
4737 bool clobber = false;
2011fccf 4738
01f810ac
AM
4739 if (access_size == 0 && !zero_size_allowed) {
4740 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4741 return -EACCES;
4742 }
2011fccf 4743
01f810ac
AM
4744 if (type == ACCESS_HELPER) {
4745 /* The bounds checks for writes are more permissive than for
4746 * reads. However, if raw_mode is not set, we'll do extra
4747 * checks below.
4748 */
4749 bounds_check_type = BPF_WRITE;
4750 clobber = true;
4751 } else {
4752 bounds_check_type = BPF_READ;
4753 }
4754 err = check_stack_access_within_bounds(env, regno, off, access_size,
4755 type, bounds_check_type);
4756 if (err)
4757 return err;
4758
17a52670 4759
2011fccf 4760 if (tnum_is_const(reg->var_off)) {
01f810ac 4761 min_off = max_off = reg->var_off.value + off;
2011fccf 4762 } else {
088ec26d
AI
4763 /* Variable offset is prohibited for unprivileged mode for
4764 * simplicity since it requires corresponding support in
4765 * Spectre masking for stack ALU.
4766 * See also retrieve_ptr_limit().
4767 */
2c78ee89 4768 if (!env->bypass_spec_v1) {
088ec26d 4769 char tn_buf[48];
f1174f77 4770
088ec26d 4771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4772 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4773 regno, err_extra, tn_buf);
088ec26d
AI
4774 return -EACCES;
4775 }
f2bcd05e
AI
4776 /* Only initialized buffer on stack is allowed to be accessed
4777 * with variable offset. With uninitialized buffer it's hard to
4778 * guarantee that whole memory is marked as initialized on
4779 * helper return since specific bounds are unknown what may
4780 * cause uninitialized stack leaking.
4781 */
4782 if (meta && meta->raw_mode)
4783 meta = NULL;
4784
01f810ac
AM
4785 min_off = reg->smin_value + off;
4786 max_off = reg->smax_value + off;
17a52670
AS
4787 }
4788
435faee1
DB
4789 if (meta && meta->raw_mode) {
4790 meta->access_size = access_size;
4791 meta->regno = regno;
4792 return 0;
4793 }
4794
2011fccf 4795 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4796 u8 *stype;
4797
2011fccf 4798 slot = -i - 1;
638f5b90 4799 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4800 if (state->allocated_stack <= slot)
4801 goto err;
4802 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4803 if (*stype == STACK_MISC)
4804 goto mark;
4805 if (*stype == STACK_ZERO) {
01f810ac
AM
4806 if (clobber) {
4807 /* helper can write anything into the stack */
4808 *stype = STACK_MISC;
4809 }
cc2b14d5 4810 goto mark;
17a52670 4811 }
1d68f22b 4812
27113c59 4813 if (is_spilled_reg(&state->stack[spi]) &&
5844101a 4814 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
1d68f22b
YS
4815 goto mark;
4816
27113c59 4817 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
4818 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4819 env->allow_ptr_leaks)) {
01f810ac
AM
4820 if (clobber) {
4821 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4822 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 4823 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 4824 }
f7cf25b2
AS
4825 goto mark;
4826 }
4827
cc2b14d5 4828err:
2011fccf 4829 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4830 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4831 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4832 } else {
4833 char tn_buf[48];
4834
4835 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4836 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4837 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4838 }
cc2b14d5
AS
4839 return -EACCES;
4840mark:
4841 /* reading any byte out of 8-byte 'spill_slot' will cause
4842 * the whole slot to be marked as 'read'
4843 */
679c782d 4844 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4845 state->stack[spi].spilled_ptr.parent,
4846 REG_LIVE_READ64);
17a52670 4847 }
2011fccf 4848 return update_stack_depth(env, state, min_off);
17a52670
AS
4849}
4850
06c1c049
GB
4851static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4852 int access_size, bool zero_size_allowed,
4853 struct bpf_call_arg_meta *meta)
4854{
638f5b90 4855 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 4856 u32 *max_access;
06c1c049 4857
20b2aff4 4858 switch (base_type(reg->type)) {
06c1c049 4859 case PTR_TO_PACKET:
de8f3a83 4860 case PTR_TO_PACKET_META:
9fd29c08
YS
4861 return check_packet_access(env, regno, reg->off, access_size,
4862 zero_size_allowed);
69c087ba 4863 case PTR_TO_MAP_KEY:
7b3552d3
KKD
4864 if (meta && meta->raw_mode) {
4865 verbose(env, "R%d cannot write into %s\n", regno,
4866 reg_type_str(env, reg->type));
4867 return -EACCES;
4868 }
69c087ba
YS
4869 return check_mem_region_access(env, regno, reg->off, access_size,
4870 reg->map_ptr->key_size, false);
06c1c049 4871 case PTR_TO_MAP_VALUE:
591fe988
DB
4872 if (check_map_access_type(env, regno, reg->off, access_size,
4873 meta && meta->raw_mode ? BPF_WRITE :
4874 BPF_READ))
4875 return -EACCES;
9fd29c08
YS
4876 return check_map_access(env, regno, reg->off, access_size,
4877 zero_size_allowed);
457f4436 4878 case PTR_TO_MEM:
97e6d7da
KKD
4879 if (type_is_rdonly_mem(reg->type)) {
4880 if (meta && meta->raw_mode) {
4881 verbose(env, "R%d cannot write into %s\n", regno,
4882 reg_type_str(env, reg->type));
4883 return -EACCES;
4884 }
4885 }
457f4436
AN
4886 return check_mem_region_access(env, regno, reg->off,
4887 access_size, reg->mem_size,
4888 zero_size_allowed);
20b2aff4
HL
4889 case PTR_TO_BUF:
4890 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
4891 if (meta && meta->raw_mode) {
4892 verbose(env, "R%d cannot write into %s\n", regno,
4893 reg_type_str(env, reg->type));
20b2aff4 4894 return -EACCES;
97e6d7da 4895 }
20b2aff4 4896
20b2aff4
HL
4897 max_access = &env->prog->aux->max_rdonly_access;
4898 } else {
20b2aff4
HL
4899 max_access = &env->prog->aux->max_rdwr_access;
4900 }
afbf21dc
YS
4901 return check_buffer_access(env, reg, regno, reg->off,
4902 access_size, zero_size_allowed,
44e9a741 4903 max_access);
0d004c02 4904 case PTR_TO_STACK:
01f810ac
AM
4905 return check_stack_range_initialized(
4906 env,
4907 regno, reg->off, access_size,
4908 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4909 default: /* scalar_value or invalid ptr */
4910 /* Allow zero-byte read from NULL, regardless of pointer type */
4911 if (zero_size_allowed && access_size == 0 &&
4912 register_is_null(reg))
4913 return 0;
4914
c25b2ae1
HL
4915 verbose(env, "R%d type=%s ", regno,
4916 reg_type_str(env, reg->type));
4917 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 4918 return -EACCES;
06c1c049
GB
4919 }
4920}
4921
d583691c
KKD
4922static int check_mem_size_reg(struct bpf_verifier_env *env,
4923 struct bpf_reg_state *reg, u32 regno,
4924 bool zero_size_allowed,
4925 struct bpf_call_arg_meta *meta)
4926{
4927 int err;
4928
4929 /* This is used to refine r0 return value bounds for helpers
4930 * that enforce this value as an upper bound on return values.
4931 * See do_refine_retval_range() for helpers that can refine
4932 * the return value. C type of helper is u32 so we pull register
4933 * bound from umax_value however, if negative verifier errors
4934 * out. Only upper bounds can be learned because retval is an
4935 * int type and negative retvals are allowed.
4936 */
be77354a 4937 meta->msize_max_value = reg->umax_value;
d583691c
KKD
4938
4939 /* The register is SCALAR_VALUE; the access check
4940 * happens using its boundaries.
4941 */
4942 if (!tnum_is_const(reg->var_off))
4943 /* For unprivileged variable accesses, disable raw
4944 * mode so that the program is required to
4945 * initialize all the memory that the helper could
4946 * just partially fill up.
4947 */
4948 meta = NULL;
4949
4950 if (reg->smin_value < 0) {
4951 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4952 regno);
4953 return -EACCES;
4954 }
4955
4956 if (reg->umin_value == 0) {
4957 err = check_helper_mem_access(env, regno - 1, 0,
4958 zero_size_allowed,
4959 meta);
4960 if (err)
4961 return err;
4962 }
4963
4964 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4965 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4966 regno);
4967 return -EACCES;
4968 }
4969 err = check_helper_mem_access(env, regno - 1,
4970 reg->umax_value,
4971 zero_size_allowed, meta);
4972 if (!err)
4973 err = mark_chain_precision(env, regno);
4974 return err;
4975}
4976
e5069b9c
DB
4977int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4978 u32 regno, u32 mem_size)
4979{
be77354a
KKD
4980 bool may_be_null = type_may_be_null(reg->type);
4981 struct bpf_reg_state saved_reg;
4982 struct bpf_call_arg_meta meta;
4983 int err;
4984
e5069b9c
DB
4985 if (register_is_null(reg))
4986 return 0;
4987
be77354a
KKD
4988 memset(&meta, 0, sizeof(meta));
4989 /* Assuming that the register contains a value check if the memory
4990 * access is safe. Temporarily save and restore the register's state as
4991 * the conversion shouldn't be visible to a caller.
4992 */
4993 if (may_be_null) {
4994 saved_reg = *reg;
e5069b9c 4995 mark_ptr_not_null_reg(reg);
e5069b9c
DB
4996 }
4997
be77354a
KKD
4998 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
4999 /* Check access for BPF_WRITE */
5000 meta.raw_mode = true;
5001 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5002
5003 if (may_be_null)
5004 *reg = saved_reg;
5005
5006 return err;
e5069b9c
DB
5007}
5008
d583691c
KKD
5009int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5010 u32 regno)
5011{
5012 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5013 bool may_be_null = type_may_be_null(mem_reg->type);
5014 struct bpf_reg_state saved_reg;
be77354a 5015 struct bpf_call_arg_meta meta;
d583691c
KKD
5016 int err;
5017
5018 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5019
be77354a
KKD
5020 memset(&meta, 0, sizeof(meta));
5021
d583691c
KKD
5022 if (may_be_null) {
5023 saved_reg = *mem_reg;
5024 mark_ptr_not_null_reg(mem_reg);
5025 }
5026
be77354a
KKD
5027 err = check_mem_size_reg(env, reg, regno, true, &meta);
5028 /* Check access for BPF_WRITE */
5029 meta.raw_mode = true;
5030 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
5031
5032 if (may_be_null)
5033 *mem_reg = saved_reg;
5034 return err;
5035}
5036
d83525ca
AS
5037/* Implementation details:
5038 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5039 * Two bpf_map_lookups (even with the same key) will have different reg->id.
5040 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5041 * value_or_null->value transition, since the verifier only cares about
5042 * the range of access to valid map value pointer and doesn't care about actual
5043 * address of the map element.
5044 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5045 * reg->id > 0 after value_or_null->value transition. By doing so
5046 * two bpf_map_lookups will be considered two different pointers that
5047 * point to different bpf_spin_locks.
5048 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5049 * dead-locks.
5050 * Since only one bpf_spin_lock is allowed the checks are simpler than
5051 * reg_is_refcounted() logic. The verifier needs to remember only
5052 * one spin_lock instead of array of acquired_refs.
5053 * cur_state->active_spin_lock remembers which map value element got locked
5054 * and clears it after bpf_spin_unlock.
5055 */
5056static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5057 bool is_lock)
5058{
5059 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5060 struct bpf_verifier_state *cur = env->cur_state;
5061 bool is_const = tnum_is_const(reg->var_off);
5062 struct bpf_map *map = reg->map_ptr;
5063 u64 val = reg->var_off.value;
5064
d83525ca
AS
5065 if (!is_const) {
5066 verbose(env,
5067 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5068 regno);
5069 return -EINVAL;
5070 }
5071 if (!map->btf) {
5072 verbose(env,
5073 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5074 map->name);
5075 return -EINVAL;
5076 }
5077 if (!map_value_has_spin_lock(map)) {
5078 if (map->spin_lock_off == -E2BIG)
5079 verbose(env,
5080 "map '%s' has more than one 'struct bpf_spin_lock'\n",
5081 map->name);
5082 else if (map->spin_lock_off == -ENOENT)
5083 verbose(env,
5084 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
5085 map->name);
5086 else
5087 verbose(env,
5088 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5089 map->name);
5090 return -EINVAL;
5091 }
5092 if (map->spin_lock_off != val + reg->off) {
5093 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5094 val + reg->off);
5095 return -EINVAL;
5096 }
5097 if (is_lock) {
5098 if (cur->active_spin_lock) {
5099 verbose(env,
5100 "Locking two bpf_spin_locks are not allowed\n");
5101 return -EINVAL;
5102 }
5103 cur->active_spin_lock = reg->id;
5104 } else {
5105 if (!cur->active_spin_lock) {
5106 verbose(env, "bpf_spin_unlock without taking a lock\n");
5107 return -EINVAL;
5108 }
5109 if (cur->active_spin_lock != reg->id) {
5110 verbose(env, "bpf_spin_unlock of different lock\n");
5111 return -EINVAL;
5112 }
5113 cur->active_spin_lock = 0;
5114 }
5115 return 0;
5116}
5117
b00628b1
AS
5118static int process_timer_func(struct bpf_verifier_env *env, int regno,
5119 struct bpf_call_arg_meta *meta)
5120{
5121 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5122 bool is_const = tnum_is_const(reg->var_off);
5123 struct bpf_map *map = reg->map_ptr;
5124 u64 val = reg->var_off.value;
5125
5126 if (!is_const) {
5127 verbose(env,
5128 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5129 regno);
5130 return -EINVAL;
5131 }
5132 if (!map->btf) {
5133 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5134 map->name);
5135 return -EINVAL;
5136 }
68134668
AS
5137 if (!map_value_has_timer(map)) {
5138 if (map->timer_off == -E2BIG)
5139 verbose(env,
5140 "map '%s' has more than one 'struct bpf_timer'\n",
5141 map->name);
5142 else if (map->timer_off == -ENOENT)
5143 verbose(env,
5144 "map '%s' doesn't have 'struct bpf_timer'\n",
5145 map->name);
5146 else
5147 verbose(env,
5148 "map '%s' is not a struct type or bpf_timer is mangled\n",
5149 map->name);
5150 return -EINVAL;
5151 }
5152 if (map->timer_off != val + reg->off) {
5153 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5154 val + reg->off, map->timer_off);
b00628b1
AS
5155 return -EINVAL;
5156 }
5157 if (meta->map_ptr) {
5158 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5159 return -EFAULT;
5160 }
3e8ce298 5161 meta->map_uid = reg->map_uid;
b00628b1
AS
5162 meta->map_ptr = map;
5163 return 0;
5164}
5165
90133415
DB
5166static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5167{
48946bd6
HL
5168 return base_type(type) == ARG_PTR_TO_MEM ||
5169 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
90133415
DB
5170}
5171
5172static bool arg_type_is_mem_size(enum bpf_arg_type type)
5173{
5174 return type == ARG_CONST_SIZE ||
5175 type == ARG_CONST_SIZE_OR_ZERO;
5176}
5177
457f4436
AN
5178static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5179{
5180 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5181}
5182
57c3bb72
AI
5183static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5184{
5185 return type == ARG_PTR_TO_INT ||
5186 type == ARG_PTR_TO_LONG;
5187}
5188
5189static int int_ptr_type_to_size(enum bpf_arg_type type)
5190{
5191 if (type == ARG_PTR_TO_INT)
5192 return sizeof(u32);
5193 else if (type == ARG_PTR_TO_LONG)
5194 return sizeof(u64);
5195
5196 return -EINVAL;
5197}
5198
912f442c
LB
5199static int resolve_map_arg_type(struct bpf_verifier_env *env,
5200 const struct bpf_call_arg_meta *meta,
5201 enum bpf_arg_type *arg_type)
5202{
5203 if (!meta->map_ptr) {
5204 /* kernel subsystem misconfigured verifier */
5205 verbose(env, "invalid map_ptr to access map->type\n");
5206 return -EACCES;
5207 }
5208
5209 switch (meta->map_ptr->map_type) {
5210 case BPF_MAP_TYPE_SOCKMAP:
5211 case BPF_MAP_TYPE_SOCKHASH:
5212 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5213 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5214 } else {
5215 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5216 return -EINVAL;
5217 }
5218 break;
9330986c
JK
5219 case BPF_MAP_TYPE_BLOOM_FILTER:
5220 if (meta->func_id == BPF_FUNC_map_peek_elem)
5221 *arg_type = ARG_PTR_TO_MAP_VALUE;
5222 break;
912f442c
LB
5223 default:
5224 break;
5225 }
5226 return 0;
5227}
5228
f79e7ea5
LB
5229struct bpf_reg_types {
5230 const enum bpf_reg_type types[10];
1df8f55a 5231 u32 *btf_id;
f79e7ea5
LB
5232};
5233
5234static const struct bpf_reg_types map_key_value_types = {
5235 .types = {
5236 PTR_TO_STACK,
5237 PTR_TO_PACKET,
5238 PTR_TO_PACKET_META,
69c087ba 5239 PTR_TO_MAP_KEY,
f79e7ea5
LB
5240 PTR_TO_MAP_VALUE,
5241 },
5242};
5243
5244static const struct bpf_reg_types sock_types = {
5245 .types = {
5246 PTR_TO_SOCK_COMMON,
5247 PTR_TO_SOCKET,
5248 PTR_TO_TCP_SOCK,
5249 PTR_TO_XDP_SOCK,
5250 },
5251};
5252
49a2a4d4 5253#ifdef CONFIG_NET
1df8f55a
MKL
5254static const struct bpf_reg_types btf_id_sock_common_types = {
5255 .types = {
5256 PTR_TO_SOCK_COMMON,
5257 PTR_TO_SOCKET,
5258 PTR_TO_TCP_SOCK,
5259 PTR_TO_XDP_SOCK,
5260 PTR_TO_BTF_ID,
5261 },
5262 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5263};
49a2a4d4 5264#endif
1df8f55a 5265
f79e7ea5
LB
5266static const struct bpf_reg_types mem_types = {
5267 .types = {
5268 PTR_TO_STACK,
5269 PTR_TO_PACKET,
5270 PTR_TO_PACKET_META,
69c087ba 5271 PTR_TO_MAP_KEY,
f79e7ea5
LB
5272 PTR_TO_MAP_VALUE,
5273 PTR_TO_MEM,
a672b2e3 5274 PTR_TO_MEM | MEM_ALLOC,
20b2aff4 5275 PTR_TO_BUF,
f79e7ea5
LB
5276 },
5277};
5278
5279static const struct bpf_reg_types int_ptr_types = {
5280 .types = {
5281 PTR_TO_STACK,
5282 PTR_TO_PACKET,
5283 PTR_TO_PACKET_META,
69c087ba 5284 PTR_TO_MAP_KEY,
f79e7ea5
LB
5285 PTR_TO_MAP_VALUE,
5286 },
5287};
5288
5289static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5290static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5291static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
a672b2e3 5292static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
f79e7ea5
LB
5293static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5294static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5295static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5844101a 5296static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
69c087ba
YS
5297static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5298static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5299static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5300static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 5301
0789e13b 5302static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
5303 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5304 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5305 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
f79e7ea5
LB
5306 [ARG_CONST_SIZE] = &scalar_types,
5307 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5308 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5309 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5310 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 5311 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5312#ifdef CONFIG_NET
1df8f55a 5313 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5314#endif
f79e7ea5 5315 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
5316 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5317 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5318 [ARG_PTR_TO_MEM] = &mem_types,
f79e7ea5
LB
5319 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5320 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
f79e7ea5
LB
5321 [ARG_PTR_TO_INT] = &int_ptr_types,
5322 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5323 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 5324 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 5325 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 5326 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5327 [ARG_PTR_TO_TIMER] = &timer_types,
f79e7ea5
LB
5328};
5329
5330static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
5331 enum bpf_arg_type arg_type,
5332 const u32 *arg_btf_id)
f79e7ea5
LB
5333{
5334 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5335 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5336 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5337 int i, j;
5338
48946bd6 5339 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
5340 if (!compatible) {
5341 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5342 return -EFAULT;
5343 }
5344
216e3cd2
HL
5345 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5346 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5347 *
5348 * Same for MAYBE_NULL:
5349 *
5350 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5351 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5352 *
5353 * Therefore we fold these flags depending on the arg_type before comparison.
5354 */
5355 if (arg_type & MEM_RDONLY)
5356 type &= ~MEM_RDONLY;
5357 if (arg_type & PTR_MAYBE_NULL)
5358 type &= ~PTR_MAYBE_NULL;
5359
f79e7ea5
LB
5360 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5361 expected = compatible->types[i];
5362 if (expected == NOT_INIT)
5363 break;
5364
5365 if (type == expected)
a968d5e2 5366 goto found;
f79e7ea5
LB
5367 }
5368
216e3cd2 5369 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 5370 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
5371 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5372 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 5373 return -EACCES;
a968d5e2
MKL
5374
5375found:
216e3cd2 5376 if (reg->type == PTR_TO_BTF_ID) {
1df8f55a
MKL
5377 if (!arg_btf_id) {
5378 if (!compatible->btf_id) {
5379 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5380 return -EFAULT;
5381 }
5382 arg_btf_id = compatible->btf_id;
5383 }
5384
22dc4a0f
AN
5385 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5386 btf_vmlinux, *arg_btf_id)) {
a968d5e2 5387 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
5388 regno, kernel_type_name(reg->btf, reg->btf_id),
5389 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
5390 return -EACCES;
5391 }
a968d5e2
MKL
5392 }
5393
5394 return 0;
f79e7ea5
LB
5395}
5396
25b35dd2
KKD
5397int check_func_arg_reg_off(struct bpf_verifier_env *env,
5398 const struct bpf_reg_state *reg, int regno,
24d5bb80
KKD
5399 enum bpf_arg_type arg_type,
5400 bool is_release_func)
25b35dd2 5401{
24d5bb80 5402 bool fixed_off_ok = false, release_reg;
25b35dd2 5403 enum bpf_reg_type type = reg->type;
25b35dd2
KKD
5404
5405 switch ((u32)type) {
5406 case SCALAR_VALUE:
5407 /* Pointer types where reg offset is explicitly allowed: */
5408 case PTR_TO_PACKET:
5409 case PTR_TO_PACKET_META:
5410 case PTR_TO_MAP_KEY:
5411 case PTR_TO_MAP_VALUE:
5412 case PTR_TO_MEM:
5413 case PTR_TO_MEM | MEM_RDONLY:
5414 case PTR_TO_MEM | MEM_ALLOC:
5415 case PTR_TO_BUF:
5416 case PTR_TO_BUF | MEM_RDONLY:
5417 case PTR_TO_STACK:
5418 /* Some of the argument types nevertheless require a
5419 * zero register offset.
5420 */
5421 if (arg_type != ARG_PTR_TO_ALLOC_MEM)
5422 return 0;
5423 break;
5424 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5425 * fixed offset.
5426 */
5427 case PTR_TO_BTF_ID:
24d5bb80
KKD
5428 /* When referenced PTR_TO_BTF_ID is passed to release function,
5429 * it's fixed offset must be 0. We rely on the property that
5430 * only one referenced register can be passed to BPF helpers and
5431 * kfuncs. In the other cases, fixed offset can be non-zero.
5432 */
5433 release_reg = is_release_func && reg->ref_obj_id;
5434 if (release_reg && reg->off) {
5435 verbose(env, "R%d must have zero offset when passed to release func\n",
5436 regno);
5437 return -EINVAL;
5438 }
5439 /* For release_reg == true, fixed_off_ok must be false, but we
5440 * already checked and rejected reg->off != 0 above, so set to
5441 * true to allow fixed offset for all other cases.
5442 */
25b35dd2
KKD
5443 fixed_off_ok = true;
5444 break;
5445 default:
5446 break;
5447 }
5448 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5449}
5450
af7ec138
YS
5451static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5452 struct bpf_call_arg_meta *meta,
5453 const struct bpf_func_proto *fn)
17a52670 5454{
af7ec138 5455 u32 regno = BPF_REG_1 + arg;
638f5b90 5456 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5457 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5458 enum bpf_reg_type type = reg->type;
17a52670
AS
5459 int err = 0;
5460
80f1d68c 5461 if (arg_type == ARG_DONTCARE)
17a52670
AS
5462 return 0;
5463
dc503a8a
EC
5464 err = check_reg_arg(env, regno, SRC_OP);
5465 if (err)
5466 return err;
17a52670 5467
1be7f75d
AS
5468 if (arg_type == ARG_ANYTHING) {
5469 if (is_pointer_value(env, regno)) {
61bd5218
JK
5470 verbose(env, "R%d leaks addr into helper function\n",
5471 regno);
1be7f75d
AS
5472 return -EACCES;
5473 }
80f1d68c 5474 return 0;
1be7f75d 5475 }
80f1d68c 5476
de8f3a83 5477 if (type_is_pkt_pointer(type) &&
3a0af8fd 5478 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5479 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5480 return -EACCES;
5481 }
5482
48946bd6
HL
5483 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5484 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
912f442c
LB
5485 err = resolve_map_arg_type(env, meta, &arg_type);
5486 if (err)
5487 return err;
5488 }
5489
48946bd6 5490 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
5491 /* A NULL register has a SCALAR_VALUE type, so skip
5492 * type checking.
5493 */
5494 goto skip_type_check;
5495
a968d5e2 5496 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
5497 if (err)
5498 return err;
5499
24d5bb80 5500 err = check_func_arg_reg_off(env, reg, regno, arg_type, is_release_function(meta->func_id));
25b35dd2
KKD
5501 if (err)
5502 return err;
d7b9454a 5503
fd1b0d60 5504skip_type_check:
24d5bb80
KKD
5505 /* check_func_arg_reg_off relies on only one referenced register being
5506 * allowed for BPF helpers.
5507 */
02f7c958 5508 if (reg->ref_obj_id) {
457f4436
AN
5509 if (meta->ref_obj_id) {
5510 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5511 regno, reg->ref_obj_id,
5512 meta->ref_obj_id);
5513 return -EFAULT;
5514 }
5515 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5516 }
5517
17a52670
AS
5518 if (arg_type == ARG_CONST_MAP_PTR) {
5519 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5520 if (meta->map_ptr) {
5521 /* Use map_uid (which is unique id of inner map) to reject:
5522 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5523 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5524 * if (inner_map1 && inner_map2) {
5525 * timer = bpf_map_lookup_elem(inner_map1);
5526 * if (timer)
5527 * // mismatch would have been allowed
5528 * bpf_timer_init(timer, inner_map2);
5529 * }
5530 *
5531 * Comparing map_ptr is enough to distinguish normal and outer maps.
5532 */
5533 if (meta->map_ptr != reg->map_ptr ||
5534 meta->map_uid != reg->map_uid) {
5535 verbose(env,
5536 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5537 meta->map_uid, reg->map_uid);
5538 return -EINVAL;
5539 }
b00628b1 5540 }
33ff9823 5541 meta->map_ptr = reg->map_ptr;
3e8ce298 5542 meta->map_uid = reg->map_uid;
17a52670
AS
5543 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5544 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5545 * check that [key, key + map->key_size) are within
5546 * stack limits and initialized
5547 */
33ff9823 5548 if (!meta->map_ptr) {
17a52670
AS
5549 /* in function declaration map_ptr must come before
5550 * map_key, so that it's verified and known before
5551 * we have to check map_key here. Otherwise it means
5552 * that kernel subsystem misconfigured verifier
5553 */
61bd5218 5554 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5555 return -EACCES;
5556 }
d71962f3
PC
5557 err = check_helper_mem_access(env, regno,
5558 meta->map_ptr->key_size, false,
5559 NULL);
48946bd6
HL
5560 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5561 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5562 if (type_may_be_null(arg_type) && register_is_null(reg))
5563 return 0;
5564
17a52670
AS
5565 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5566 * check [value, value + map->value_size) validity
5567 */
33ff9823 5568 if (!meta->map_ptr) {
17a52670 5569 /* kernel subsystem misconfigured verifier */
61bd5218 5570 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5571 return -EACCES;
5572 }
2ea864c5 5573 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
5574 err = check_helper_mem_access(env, regno,
5575 meta->map_ptr->value_size, false,
2ea864c5 5576 meta);
eaa6bcb7
HL
5577 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5578 if (!reg->btf_id) {
5579 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5580 return -EACCES;
5581 }
22dc4a0f 5582 meta->ret_btf = reg->btf;
eaa6bcb7 5583 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
5584 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5585 if (meta->func_id == BPF_FUNC_spin_lock) {
5586 if (process_spin_lock(env, regno, true))
5587 return -EACCES;
5588 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5589 if (process_spin_lock(env, regno, false))
5590 return -EACCES;
5591 } else {
5592 verbose(env, "verifier internal error\n");
5593 return -EFAULT;
5594 }
b00628b1
AS
5595 } else if (arg_type == ARG_PTR_TO_TIMER) {
5596 if (process_timer_func(env, regno, meta))
5597 return -EACCES;
69c087ba
YS
5598 } else if (arg_type == ARG_PTR_TO_FUNC) {
5599 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5600 } else if (arg_type_is_mem_ptr(arg_type)) {
5601 /* The access to this pointer is only checked when we hit the
5602 * next is_mem_size argument below.
5603 */
5604 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5605 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5606 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5607
d583691c 5608 err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta);
457f4436
AN
5609 } else if (arg_type_is_alloc_size(arg_type)) {
5610 if (!tnum_is_const(reg->var_off)) {
28a8add6 5611 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5612 regno);
5613 return -EACCES;
5614 }
5615 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5616 } else if (arg_type_is_int_ptr(arg_type)) {
5617 int size = int_ptr_type_to_size(arg_type);
5618
5619 err = check_helper_mem_access(env, regno, size, false, meta);
5620 if (err)
5621 return err;
5622 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5623 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5624 struct bpf_map *map = reg->map_ptr;
5625 int map_off;
5626 u64 map_addr;
5627 char *str_ptr;
5628
a8fad73e 5629 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5630 verbose(env, "R%d does not point to a readonly map'\n", regno);
5631 return -EACCES;
5632 }
5633
5634 if (!tnum_is_const(reg->var_off)) {
5635 verbose(env, "R%d is not a constant address'\n", regno);
5636 return -EACCES;
5637 }
5638
5639 if (!map->ops->map_direct_value_addr) {
5640 verbose(env, "no direct value access support for this map type\n");
5641 return -EACCES;
5642 }
5643
5644 err = check_map_access(env, regno, reg->off,
5645 map->value_size - reg->off, false);
5646 if (err)
5647 return err;
5648
5649 map_off = reg->off + reg->var_off.value;
5650 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5651 if (err) {
5652 verbose(env, "direct value access on string failed\n");
5653 return err;
5654 }
5655
5656 str_ptr = (char *)(long)(map_addr);
5657 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5658 verbose(env, "string is not zero-terminated\n");
5659 return -EINVAL;
5660 }
17a52670
AS
5661 }
5662
5663 return err;
5664}
5665
0126240f
LB
5666static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5667{
5668 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5669 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5670
5671 if (func_id != BPF_FUNC_map_update_elem)
5672 return false;
5673
5674 /* It's not possible to get access to a locked struct sock in these
5675 * contexts, so updating is safe.
5676 */
5677 switch (type) {
5678 case BPF_PROG_TYPE_TRACING:
5679 if (eatype == BPF_TRACE_ITER)
5680 return true;
5681 break;
5682 case BPF_PROG_TYPE_SOCKET_FILTER:
5683 case BPF_PROG_TYPE_SCHED_CLS:
5684 case BPF_PROG_TYPE_SCHED_ACT:
5685 case BPF_PROG_TYPE_XDP:
5686 case BPF_PROG_TYPE_SK_REUSEPORT:
5687 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5688 case BPF_PROG_TYPE_SK_LOOKUP:
5689 return true;
5690 default:
5691 break;
5692 }
5693
5694 verbose(env, "cannot update sockmap in this context\n");
5695 return false;
5696}
5697
e411901c
MF
5698static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5699{
5700 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5701}
5702
61bd5218
JK
5703static int check_map_func_compatibility(struct bpf_verifier_env *env,
5704 struct bpf_map *map, int func_id)
35578d79 5705{
35578d79
KX
5706 if (!map)
5707 return 0;
5708
6aff67c8
AS
5709 /* We need a two way check, first is from map perspective ... */
5710 switch (map->map_type) {
5711 case BPF_MAP_TYPE_PROG_ARRAY:
5712 if (func_id != BPF_FUNC_tail_call)
5713 goto error;
5714 break;
5715 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5716 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5717 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5718 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5719 func_id != BPF_FUNC_perf_event_read_value &&
5720 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5721 goto error;
5722 break;
457f4436
AN
5723 case BPF_MAP_TYPE_RINGBUF:
5724 if (func_id != BPF_FUNC_ringbuf_output &&
5725 func_id != BPF_FUNC_ringbuf_reserve &&
457f4436
AN
5726 func_id != BPF_FUNC_ringbuf_query)
5727 goto error;
5728 break;
6aff67c8
AS
5729 case BPF_MAP_TYPE_STACK_TRACE:
5730 if (func_id != BPF_FUNC_get_stackid)
5731 goto error;
5732 break;
4ed8ec52 5733 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5734 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5735 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5736 goto error;
5737 break;
cd339431 5738 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5739 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5740 if (func_id != BPF_FUNC_get_local_storage)
5741 goto error;
5742 break;
546ac1ff 5743 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5744 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5745 if (func_id != BPF_FUNC_redirect_map &&
5746 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5747 goto error;
5748 break;
fbfc504a
BT
5749 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5750 * appear.
5751 */
6710e112
JDB
5752 case BPF_MAP_TYPE_CPUMAP:
5753 if (func_id != BPF_FUNC_redirect_map)
5754 goto error;
5755 break;
fada7fdc
JL
5756 case BPF_MAP_TYPE_XSKMAP:
5757 if (func_id != BPF_FUNC_redirect_map &&
5758 func_id != BPF_FUNC_map_lookup_elem)
5759 goto error;
5760 break;
56f668df 5761 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5762 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5763 if (func_id != BPF_FUNC_map_lookup_elem)
5764 goto error;
16a43625 5765 break;
174a79ff
JF
5766 case BPF_MAP_TYPE_SOCKMAP:
5767 if (func_id != BPF_FUNC_sk_redirect_map &&
5768 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5769 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5770 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5771 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5772 func_id != BPF_FUNC_map_lookup_elem &&
5773 !may_update_sockmap(env, func_id))
174a79ff
JF
5774 goto error;
5775 break;
81110384
JF
5776 case BPF_MAP_TYPE_SOCKHASH:
5777 if (func_id != BPF_FUNC_sk_redirect_hash &&
5778 func_id != BPF_FUNC_sock_hash_update &&
5779 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5780 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5781 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5782 func_id != BPF_FUNC_map_lookup_elem &&
5783 !may_update_sockmap(env, func_id))
81110384
JF
5784 goto error;
5785 break;
2dbb9b9e
MKL
5786 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5787 if (func_id != BPF_FUNC_sk_select_reuseport)
5788 goto error;
5789 break;
f1a2e44a
MV
5790 case BPF_MAP_TYPE_QUEUE:
5791 case BPF_MAP_TYPE_STACK:
5792 if (func_id != BPF_FUNC_map_peek_elem &&
5793 func_id != BPF_FUNC_map_pop_elem &&
5794 func_id != BPF_FUNC_map_push_elem)
5795 goto error;
5796 break;
6ac99e8f
MKL
5797 case BPF_MAP_TYPE_SK_STORAGE:
5798 if (func_id != BPF_FUNC_sk_storage_get &&
5799 func_id != BPF_FUNC_sk_storage_delete)
5800 goto error;
5801 break;
8ea63684
KS
5802 case BPF_MAP_TYPE_INODE_STORAGE:
5803 if (func_id != BPF_FUNC_inode_storage_get &&
5804 func_id != BPF_FUNC_inode_storage_delete)
5805 goto error;
5806 break;
4cf1bc1f
KS
5807 case BPF_MAP_TYPE_TASK_STORAGE:
5808 if (func_id != BPF_FUNC_task_storage_get &&
5809 func_id != BPF_FUNC_task_storage_delete)
5810 goto error;
5811 break;
9330986c
JK
5812 case BPF_MAP_TYPE_BLOOM_FILTER:
5813 if (func_id != BPF_FUNC_map_peek_elem &&
5814 func_id != BPF_FUNC_map_push_elem)
5815 goto error;
5816 break;
6aff67c8
AS
5817 default:
5818 break;
5819 }
5820
5821 /* ... and second from the function itself. */
5822 switch (func_id) {
5823 case BPF_FUNC_tail_call:
5824 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5825 goto error;
e411901c
MF
5826 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5827 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5828 return -EINVAL;
5829 }
6aff67c8
AS
5830 break;
5831 case BPF_FUNC_perf_event_read:
5832 case BPF_FUNC_perf_event_output:
908432ca 5833 case BPF_FUNC_perf_event_read_value:
a7658e1a 5834 case BPF_FUNC_skb_output:
d831ee84 5835 case BPF_FUNC_xdp_output:
6aff67c8
AS
5836 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5837 goto error;
5838 break;
5b029a32
DB
5839 case BPF_FUNC_ringbuf_output:
5840 case BPF_FUNC_ringbuf_reserve:
5841 case BPF_FUNC_ringbuf_query:
5842 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5843 goto error;
5844 break;
6aff67c8
AS
5845 case BPF_FUNC_get_stackid:
5846 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5847 goto error;
5848 break;
60d20f91 5849 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5850 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5851 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5852 goto error;
5853 break;
97f91a7c 5854 case BPF_FUNC_redirect_map:
9c270af3 5855 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5856 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5857 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5858 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5859 goto error;
5860 break;
174a79ff 5861 case BPF_FUNC_sk_redirect_map:
4f738adb 5862 case BPF_FUNC_msg_redirect_map:
81110384 5863 case BPF_FUNC_sock_map_update:
174a79ff
JF
5864 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5865 goto error;
5866 break;
81110384
JF
5867 case BPF_FUNC_sk_redirect_hash:
5868 case BPF_FUNC_msg_redirect_hash:
5869 case BPF_FUNC_sock_hash_update:
5870 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5871 goto error;
5872 break;
cd339431 5873 case BPF_FUNC_get_local_storage:
b741f163
RG
5874 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5875 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5876 goto error;
5877 break;
2dbb9b9e 5878 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5879 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5880 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5881 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5882 goto error;
5883 break;
f1a2e44a 5884 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
5885 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5886 map->map_type != BPF_MAP_TYPE_STACK)
5887 goto error;
5888 break;
9330986c
JK
5889 case BPF_FUNC_map_peek_elem:
5890 case BPF_FUNC_map_push_elem:
5891 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5892 map->map_type != BPF_MAP_TYPE_STACK &&
5893 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5894 goto error;
5895 break;
6ac99e8f
MKL
5896 case BPF_FUNC_sk_storage_get:
5897 case BPF_FUNC_sk_storage_delete:
5898 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5899 goto error;
5900 break;
8ea63684
KS
5901 case BPF_FUNC_inode_storage_get:
5902 case BPF_FUNC_inode_storage_delete:
5903 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5904 goto error;
5905 break;
4cf1bc1f
KS
5906 case BPF_FUNC_task_storage_get:
5907 case BPF_FUNC_task_storage_delete:
5908 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5909 goto error;
5910 break;
6aff67c8
AS
5911 default:
5912 break;
35578d79
KX
5913 }
5914
5915 return 0;
6aff67c8 5916error:
61bd5218 5917 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5918 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5919 return -EINVAL;
35578d79
KX
5920}
5921
90133415 5922static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5923{
5924 int count = 0;
5925
39f19ebb 5926 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5927 count++;
39f19ebb 5928 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5929 count++;
39f19ebb 5930 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5931 count++;
39f19ebb 5932 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5933 count++;
39f19ebb 5934 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5935 count++;
5936
90133415
DB
5937 /* We only support one arg being in raw mode at the moment,
5938 * which is sufficient for the helper functions we have
5939 * right now.
5940 */
5941 return count <= 1;
5942}
5943
5944static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5945 enum bpf_arg_type arg_next)
5946{
5947 return (arg_type_is_mem_ptr(arg_curr) &&
5948 !arg_type_is_mem_size(arg_next)) ||
5949 (!arg_type_is_mem_ptr(arg_curr) &&
5950 arg_type_is_mem_size(arg_next));
5951}
5952
5953static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5954{
5955 /* bpf_xxx(..., buf, len) call will access 'len'
5956 * bytes from memory 'buf'. Both arg types need
5957 * to be paired, so make sure there's no buggy
5958 * helper function specification.
5959 */
5960 if (arg_type_is_mem_size(fn->arg1_type) ||
5961 arg_type_is_mem_ptr(fn->arg5_type) ||
5962 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5963 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5964 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5965 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5966 return false;
5967
5968 return true;
5969}
5970
1b986589 5971static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5972{
5973 int count = 0;
5974
1b986589 5975 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5976 count++;
1b986589 5977 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5978 count++;
1b986589 5979 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5980 count++;
1b986589 5981 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5982 count++;
1b986589 5983 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5984 count++;
5985
1b986589
MKL
5986 /* A reference acquiring function cannot acquire
5987 * another refcounted ptr.
5988 */
64d85290 5989 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5990 return false;
5991
fd978bf7
JS
5992 /* We only support one arg being unreferenced at the moment,
5993 * which is sufficient for the helper functions we have right now.
5994 */
5995 return count <= 1;
5996}
5997
9436ef6e
LB
5998static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5999{
6000 int i;
6001
1df8f55a 6002 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
6003 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6004 return false;
6005
1df8f55a
MKL
6006 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
6007 return false;
6008 }
6009
9436ef6e
LB
6010 return true;
6011}
6012
1b986589 6013static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
6014{
6015 return check_raw_mode_ok(fn) &&
fd978bf7 6016 check_arg_pair_ok(fn) &&
9436ef6e 6017 check_btf_id_ok(fn) &&
1b986589 6018 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
6019}
6020
de8f3a83
DB
6021/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6022 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 6023 */
f4d7e40a
AS
6024static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
6025 struct bpf_func_state *state)
969bf05e 6026{
58e2af8b 6027 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
6028 int i;
6029
6030 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 6031 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 6032 mark_reg_unknown(env, regs, i);
969bf05e 6033
f3709f69
JS
6034 bpf_for_each_spilled_reg(i, state, reg) {
6035 if (!reg)
969bf05e 6036 continue;
de8f3a83 6037 if (reg_is_pkt_pointer_any(reg))
f54c7898 6038 __mark_reg_unknown(env, reg);
969bf05e
AS
6039 }
6040}
6041
f4d7e40a
AS
6042static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6043{
6044 struct bpf_verifier_state *vstate = env->cur_state;
6045 int i;
6046
6047 for (i = 0; i <= vstate->curframe; i++)
6048 __clear_all_pkt_pointers(env, vstate->frame[i]);
6049}
6050
6d94e741
AS
6051enum {
6052 AT_PKT_END = -1,
6053 BEYOND_PKT_END = -2,
6054};
6055
6056static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6057{
6058 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6059 struct bpf_reg_state *reg = &state->regs[regn];
6060
6061 if (reg->type != PTR_TO_PACKET)
6062 /* PTR_TO_PACKET_META is not supported yet */
6063 return;
6064
6065 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6066 * How far beyond pkt_end it goes is unknown.
6067 * if (!range_open) it's the case of pkt >= pkt_end
6068 * if (range_open) it's the case of pkt > pkt_end
6069 * hence this pointer is at least 1 byte bigger than pkt_end
6070 */
6071 if (range_open)
6072 reg->range = BEYOND_PKT_END;
6073 else
6074 reg->range = AT_PKT_END;
6075}
6076
fd978bf7 6077static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
6078 struct bpf_func_state *state,
6079 int ref_obj_id)
fd978bf7
JS
6080{
6081 struct bpf_reg_state *regs = state->regs, *reg;
6082 int i;
6083
6084 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 6085 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
6086 mark_reg_unknown(env, regs, i);
6087
6088 bpf_for_each_spilled_reg(i, state, reg) {
6089 if (!reg)
6090 continue;
1b986589 6091 if (reg->ref_obj_id == ref_obj_id)
f54c7898 6092 __mark_reg_unknown(env, reg);
fd978bf7
JS
6093 }
6094}
6095
6096/* The pointer with the specified id has released its reference to kernel
6097 * resources. Identify all copies of the same pointer and clear the reference.
6098 */
6099static int release_reference(struct bpf_verifier_env *env,
1b986589 6100 int ref_obj_id)
fd978bf7
JS
6101{
6102 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 6103 int err;
fd978bf7
JS
6104 int i;
6105
1b986589
MKL
6106 err = release_reference_state(cur_func(env), ref_obj_id);
6107 if (err)
6108 return err;
6109
fd978bf7 6110 for (i = 0; i <= vstate->curframe; i++)
1b986589 6111 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 6112
1b986589 6113 return 0;
fd978bf7
JS
6114}
6115
51c39bb1
AS
6116static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6117 struct bpf_reg_state *regs)
6118{
6119 int i;
6120
6121 /* after the call registers r0 - r5 were scratched */
6122 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6123 mark_reg_not_init(env, regs, caller_saved[i]);
6124 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6125 }
6126}
6127
14351375
YS
6128typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6129 struct bpf_func_state *caller,
6130 struct bpf_func_state *callee,
6131 int insn_idx);
6132
6133static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6134 int *insn_idx, int subprog,
6135 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
6136{
6137 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 6138 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 6139 struct bpf_func_state *caller, *callee;
14351375 6140 int err;
51c39bb1 6141 bool is_global = false;
f4d7e40a 6142
aada9ce6 6143 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 6144 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 6145 state->curframe + 2);
f4d7e40a
AS
6146 return -E2BIG;
6147 }
6148
f4d7e40a
AS
6149 caller = state->frame[state->curframe];
6150 if (state->frame[state->curframe + 1]) {
6151 verbose(env, "verifier bug. Frame %d already allocated\n",
6152 state->curframe + 1);
6153 return -EFAULT;
6154 }
6155
51c39bb1
AS
6156 func_info_aux = env->prog->aux->func_info_aux;
6157 if (func_info_aux)
6158 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 6159 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
6160 if (err == -EFAULT)
6161 return err;
6162 if (is_global) {
6163 if (err) {
6164 verbose(env, "Caller passes invalid args into func#%d\n",
6165 subprog);
6166 return err;
6167 } else {
6168 if (env->log.level & BPF_LOG_LEVEL)
6169 verbose(env,
6170 "Func#%d is global and valid. Skipping.\n",
6171 subprog);
6172 clear_caller_saved_regs(env, caller->regs);
6173
45159b27 6174 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 6175 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 6176 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
6177
6178 /* continue with next insn after call */
6179 return 0;
6180 }
6181 }
6182
bfc6bb74 6183 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 6184 insn->src_reg == 0 &&
bfc6bb74
AS
6185 insn->imm == BPF_FUNC_timer_set_callback) {
6186 struct bpf_verifier_state *async_cb;
6187
6188 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 6189 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
6190 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6191 *insn_idx, subprog);
6192 if (!async_cb)
6193 return -EFAULT;
6194 callee = async_cb->frame[0];
6195 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6196
6197 /* Convert bpf_timer_set_callback() args into timer callback args */
6198 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6199 if (err)
6200 return err;
6201
6202 clear_caller_saved_regs(env, caller->regs);
6203 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6204 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6205 /* continue with next insn after call */
6206 return 0;
6207 }
6208
f4d7e40a
AS
6209 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6210 if (!callee)
6211 return -ENOMEM;
6212 state->frame[state->curframe + 1] = callee;
6213
6214 /* callee cannot access r0, r6 - r9 for reading and has to write
6215 * into its own stack before reading from it.
6216 * callee can read/write into caller's stack
6217 */
6218 init_func_state(env, callee,
6219 /* remember the callsite, it will be used by bpf_exit */
6220 *insn_idx /* callsite */,
6221 state->curframe + 1 /* frameno within this callchain */,
f910cefa 6222 subprog /* subprog number within this prog */);
f4d7e40a 6223
fd978bf7 6224 /* Transfer references to the callee */
c69431aa 6225 err = copy_reference_state(callee, caller);
fd978bf7
JS
6226 if (err)
6227 return err;
6228
14351375
YS
6229 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6230 if (err)
6231 return err;
f4d7e40a 6232
51c39bb1 6233 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6234
6235 /* only increment it after check_reg_arg() finished */
6236 state->curframe++;
6237
6238 /* and go analyze first insn of the callee */
14351375 6239 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6240
06ee7115 6241 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6242 verbose(env, "caller:\n");
0f55f9ed 6243 print_verifier_state(env, caller, true);
f4d7e40a 6244 verbose(env, "callee:\n");
0f55f9ed 6245 print_verifier_state(env, callee, true);
f4d7e40a
AS
6246 }
6247 return 0;
6248}
6249
314ee05e
YS
6250int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6251 struct bpf_func_state *caller,
6252 struct bpf_func_state *callee)
6253{
6254 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6255 * void *callback_ctx, u64 flags);
6256 * callback_fn(struct bpf_map *map, void *key, void *value,
6257 * void *callback_ctx);
6258 */
6259 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6260
6261 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6262 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6263 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6264
6265 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6266 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6267 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6268
6269 /* pointer to stack or null */
6270 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6271
6272 /* unused */
6273 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6274 return 0;
6275}
6276
14351375
YS
6277static int set_callee_state(struct bpf_verifier_env *env,
6278 struct bpf_func_state *caller,
6279 struct bpf_func_state *callee, int insn_idx)
6280{
6281 int i;
6282
6283 /* copy r1 - r5 args that callee can access. The copy includes parent
6284 * pointers, which connects us up to the liveness chain
6285 */
6286 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6287 callee->regs[i] = caller->regs[i];
6288 return 0;
6289}
6290
6291static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6292 int *insn_idx)
6293{
6294 int subprog, target_insn;
6295
6296 target_insn = *insn_idx + insn->imm + 1;
6297 subprog = find_subprog(env, target_insn);
6298 if (subprog < 0) {
6299 verbose(env, "verifier bug. No program starts at insn %d\n",
6300 target_insn);
6301 return -EFAULT;
6302 }
6303
6304 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6305}
6306
69c087ba
YS
6307static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6308 struct bpf_func_state *caller,
6309 struct bpf_func_state *callee,
6310 int insn_idx)
6311{
6312 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6313 struct bpf_map *map;
6314 int err;
6315
6316 if (bpf_map_ptr_poisoned(insn_aux)) {
6317 verbose(env, "tail_call abusing map_ptr\n");
6318 return -EINVAL;
6319 }
6320
6321 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6322 if (!map->ops->map_set_for_each_callback_args ||
6323 !map->ops->map_for_each_callback) {
6324 verbose(env, "callback function not allowed for map\n");
6325 return -ENOTSUPP;
6326 }
6327
6328 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6329 if (err)
6330 return err;
6331
6332 callee->in_callback_fn = true;
6333 return 0;
6334}
6335
e6f2dd0f
JK
6336static int set_loop_callback_state(struct bpf_verifier_env *env,
6337 struct bpf_func_state *caller,
6338 struct bpf_func_state *callee,
6339 int insn_idx)
6340{
6341 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6342 * u64 flags);
6343 * callback_fn(u32 index, void *callback_ctx);
6344 */
6345 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6346 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6347
6348 /* unused */
6349 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6350 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6351 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6352
6353 callee->in_callback_fn = true;
6354 return 0;
6355}
6356
b00628b1
AS
6357static int set_timer_callback_state(struct bpf_verifier_env *env,
6358 struct bpf_func_state *caller,
6359 struct bpf_func_state *callee,
6360 int insn_idx)
6361{
6362 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6363
6364 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6365 * callback_fn(struct bpf_map *map, void *key, void *value);
6366 */
6367 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6368 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6369 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6370
6371 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6372 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6373 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6374
6375 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6376 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6377 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6378
6379 /* unused */
6380 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6381 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6382 callee->in_async_callback_fn = true;
b00628b1
AS
6383 return 0;
6384}
6385
7c7e3d31
SL
6386static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6387 struct bpf_func_state *caller,
6388 struct bpf_func_state *callee,
6389 int insn_idx)
6390{
6391 /* bpf_find_vma(struct task_struct *task, u64 addr,
6392 * void *callback_fn, void *callback_ctx, u64 flags)
6393 * (callback_fn)(struct task_struct *task,
6394 * struct vm_area_struct *vma, void *callback_ctx);
6395 */
6396 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6397
6398 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6399 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6400 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 6401 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
6402
6403 /* pointer to stack or null */
6404 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6405
6406 /* unused */
6407 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6408 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6409 callee->in_callback_fn = true;
6410 return 0;
6411}
6412
f4d7e40a
AS
6413static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6414{
6415 struct bpf_verifier_state *state = env->cur_state;
6416 struct bpf_func_state *caller, *callee;
6417 struct bpf_reg_state *r0;
fd978bf7 6418 int err;
f4d7e40a
AS
6419
6420 callee = state->frame[state->curframe];
6421 r0 = &callee->regs[BPF_REG_0];
6422 if (r0->type == PTR_TO_STACK) {
6423 /* technically it's ok to return caller's stack pointer
6424 * (or caller's caller's pointer) back to the caller,
6425 * since these pointers are valid. Only current stack
6426 * pointer will be invalid as soon as function exits,
6427 * but let's be conservative
6428 */
6429 verbose(env, "cannot return stack pointer to the caller\n");
6430 return -EINVAL;
6431 }
6432
6433 state->curframe--;
6434 caller = state->frame[state->curframe];
69c087ba
YS
6435 if (callee->in_callback_fn) {
6436 /* enforce R0 return value range [0, 1]. */
6437 struct tnum range = tnum_range(0, 1);
6438
6439 if (r0->type != SCALAR_VALUE) {
6440 verbose(env, "R0 not a scalar value\n");
6441 return -EACCES;
6442 }
6443 if (!tnum_in(range, r0->var_off)) {
6444 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6445 return -EINVAL;
6446 }
6447 } else {
6448 /* return to the caller whatever r0 had in the callee */
6449 caller->regs[BPF_REG_0] = *r0;
6450 }
f4d7e40a 6451
fd978bf7 6452 /* Transfer references to the caller */
c69431aa 6453 err = copy_reference_state(caller, callee);
fd978bf7
JS
6454 if (err)
6455 return err;
6456
f4d7e40a 6457 *insn_idx = callee->callsite + 1;
06ee7115 6458 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6459 verbose(env, "returning from callee:\n");
0f55f9ed 6460 print_verifier_state(env, callee, true);
f4d7e40a 6461 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 6462 print_verifier_state(env, caller, true);
f4d7e40a
AS
6463 }
6464 /* clear everything in the callee */
6465 free_func_state(callee);
6466 state->frame[state->curframe + 1] = NULL;
6467 return 0;
6468}
6469
849fa506
YS
6470static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6471 int func_id,
6472 struct bpf_call_arg_meta *meta)
6473{
6474 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6475
6476 if (ret_type != RET_INTEGER ||
6477 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6478 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6479 func_id != BPF_FUNC_probe_read_str &&
6480 func_id != BPF_FUNC_probe_read_kernel_str &&
6481 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6482 return;
6483
10060503 6484 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6485 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6486 ret_reg->smin_value = -MAX_ERRNO;
6487 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
6488 __reg_deduce_bounds(ret_reg);
6489 __reg_bound_offset(ret_reg);
10060503 6490 __update_reg_bounds(ret_reg);
849fa506
YS
6491}
6492
c93552c4
DB
6493static int
6494record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6495 int func_id, int insn_idx)
6496{
6497 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6498 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6499
6500 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
6501 func_id != BPF_FUNC_map_lookup_elem &&
6502 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
6503 func_id != BPF_FUNC_map_delete_elem &&
6504 func_id != BPF_FUNC_map_push_elem &&
6505 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 6506 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
6507 func_id != BPF_FUNC_for_each_map_elem &&
6508 func_id != BPF_FUNC_redirect_map)
c93552c4 6509 return 0;
09772d92 6510
591fe988 6511 if (map == NULL) {
c93552c4
DB
6512 verbose(env, "kernel subsystem misconfigured verifier\n");
6513 return -EINVAL;
6514 }
6515
591fe988
DB
6516 /* In case of read-only, some additional restrictions
6517 * need to be applied in order to prevent altering the
6518 * state of the map from program side.
6519 */
6520 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6521 (func_id == BPF_FUNC_map_delete_elem ||
6522 func_id == BPF_FUNC_map_update_elem ||
6523 func_id == BPF_FUNC_map_push_elem ||
6524 func_id == BPF_FUNC_map_pop_elem)) {
6525 verbose(env, "write into map forbidden\n");
6526 return -EACCES;
6527 }
6528
d2e4c1e6 6529 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 6530 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 6531 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 6532 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 6533 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 6534 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
6535 return 0;
6536}
6537
d2e4c1e6
DB
6538static int
6539record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6540 int func_id, int insn_idx)
6541{
6542 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6543 struct bpf_reg_state *regs = cur_regs(env), *reg;
6544 struct bpf_map *map = meta->map_ptr;
6545 struct tnum range;
6546 u64 val;
cc52d914 6547 int err;
d2e4c1e6
DB
6548
6549 if (func_id != BPF_FUNC_tail_call)
6550 return 0;
6551 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6552 verbose(env, "kernel subsystem misconfigured verifier\n");
6553 return -EINVAL;
6554 }
6555
6556 range = tnum_range(0, map->max_entries - 1);
6557 reg = &regs[BPF_REG_3];
6558
6559 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6560 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6561 return 0;
6562 }
6563
cc52d914
DB
6564 err = mark_chain_precision(env, BPF_REG_3);
6565 if (err)
6566 return err;
6567
d2e4c1e6
DB
6568 val = reg->var_off.value;
6569 if (bpf_map_key_unseen(aux))
6570 bpf_map_key_store(aux, val);
6571 else if (!bpf_map_key_poisoned(aux) &&
6572 bpf_map_key_immediate(aux) != val)
6573 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6574 return 0;
6575}
6576
fd978bf7
JS
6577static int check_reference_leak(struct bpf_verifier_env *env)
6578{
6579 struct bpf_func_state *state = cur_func(env);
6580 int i;
6581
6582 for (i = 0; i < state->acquired_refs; i++) {
6583 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6584 state->refs[i].id, state->refs[i].insn_idx);
6585 }
6586 return state->acquired_refs ? -EINVAL : 0;
6587}
6588
7b15523a
FR
6589static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6590 struct bpf_reg_state *regs)
6591{
6592 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6593 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6594 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6595 int err, fmt_map_off, num_args;
6596 u64 fmt_addr;
6597 char *fmt;
6598
6599 /* data must be an array of u64 */
6600 if (data_len_reg->var_off.value % 8)
6601 return -EINVAL;
6602 num_args = data_len_reg->var_off.value / 8;
6603
6604 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6605 * and map_direct_value_addr is set.
6606 */
6607 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6608 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6609 fmt_map_off);
8e8ee109
FR
6610 if (err) {
6611 verbose(env, "verifier bug\n");
6612 return -EFAULT;
6613 }
7b15523a
FR
6614 fmt = (char *)(long)fmt_addr + fmt_map_off;
6615
6616 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6617 * can focus on validating the format specifiers.
6618 */
48cac3f4 6619 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
6620 if (err < 0)
6621 verbose(env, "Invalid format string\n");
6622
6623 return err;
6624}
6625
9b99edca
JO
6626static int check_get_func_ip(struct bpf_verifier_env *env)
6627{
9b99edca
JO
6628 enum bpf_prog_type type = resolve_prog_type(env->prog);
6629 int func_id = BPF_FUNC_get_func_ip;
6630
6631 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 6632 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
6633 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6634 func_id_name(func_id), func_id);
6635 return -ENOTSUPP;
6636 }
6637 return 0;
9ffd9f3f
JO
6638 } else if (type == BPF_PROG_TYPE_KPROBE) {
6639 return 0;
9b99edca
JO
6640 }
6641
6642 verbose(env, "func %s#%d not supported for program type %d\n",
6643 func_id_name(func_id), func_id, type);
6644 return -ENOTSUPP;
6645}
6646
69c087ba
YS
6647static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6648 int *insn_idx_p)
17a52670 6649{
17a52670 6650 const struct bpf_func_proto *fn = NULL;
3c480732 6651 enum bpf_return_type ret_type;
c25b2ae1 6652 enum bpf_type_flag ret_flag;
638f5b90 6653 struct bpf_reg_state *regs;
33ff9823 6654 struct bpf_call_arg_meta meta;
69c087ba 6655 int insn_idx = *insn_idx_p;
969bf05e 6656 bool changes_data;
69c087ba 6657 int i, err, func_id;
17a52670
AS
6658
6659 /* find function prototype */
69c087ba 6660 func_id = insn->imm;
17a52670 6661 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
6662 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6663 func_id);
17a52670
AS
6664 return -EINVAL;
6665 }
6666
00176a34 6667 if (env->ops->get_func_proto)
5e43f899 6668 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 6669 if (!fn) {
61bd5218
JK
6670 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6671 func_id);
17a52670
AS
6672 return -EINVAL;
6673 }
6674
6675 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 6676 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 6677 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
6678 return -EINVAL;
6679 }
6680
eae2e83e
JO
6681 if (fn->allowed && !fn->allowed(env->prog)) {
6682 verbose(env, "helper call is not allowed in probe\n");
6683 return -EINVAL;
6684 }
6685
04514d13 6686 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 6687 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
6688 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6689 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6690 func_id_name(func_id), func_id);
6691 return -EINVAL;
6692 }
969bf05e 6693
33ff9823 6694 memset(&meta, 0, sizeof(meta));
36bbef52 6695 meta.pkt_access = fn->pkt_access;
33ff9823 6696
1b986589 6697 err = check_func_proto(fn, func_id);
435faee1 6698 if (err) {
61bd5218 6699 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6700 func_id_name(func_id), func_id);
435faee1
DB
6701 return err;
6702 }
6703
d83525ca 6704 meta.func_id = func_id;
17a52670 6705 /* check args */
523a4cf4 6706 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6707 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6708 if (err)
6709 return err;
6710 }
17a52670 6711
c93552c4
DB
6712 err = record_func_map(env, &meta, func_id, insn_idx);
6713 if (err)
6714 return err;
6715
d2e4c1e6
DB
6716 err = record_func_key(env, &meta, func_id, insn_idx);
6717 if (err)
6718 return err;
6719
435faee1
DB
6720 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6721 * is inferred from register state.
6722 */
6723 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6724 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6725 BPF_WRITE, -1, false);
435faee1
DB
6726 if (err)
6727 return err;
6728 }
6729
e6f2dd0f 6730 if (is_release_function(func_id)) {
1b986589 6731 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6732 if (err) {
6733 verbose(env, "func %s#%d reference has not been acquired before\n",
6734 func_id_name(func_id), func_id);
fd978bf7 6735 return err;
46f8bc92 6736 }
fd978bf7
JS
6737 }
6738
638f5b90 6739 regs = cur_regs(env);
cd339431 6740
e6f2dd0f
JK
6741 switch (func_id) {
6742 case BPF_FUNC_tail_call:
6743 err = check_reference_leak(env);
6744 if (err) {
6745 verbose(env, "tail_call would lead to reference leak\n");
6746 return err;
6747 }
6748 break;
6749 case BPF_FUNC_get_local_storage:
6750 /* check that flags argument in get_local_storage(map, flags) is 0,
6751 * this is required because get_local_storage() can't return an error.
6752 */
6753 if (!register_is_null(&regs[BPF_REG_2])) {
6754 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6755 return -EINVAL;
6756 }
6757 break;
6758 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
6759 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6760 set_map_elem_callback_state);
e6f2dd0f
JK
6761 break;
6762 case BPF_FUNC_timer_set_callback:
b00628b1
AS
6763 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6764 set_timer_callback_state);
e6f2dd0f
JK
6765 break;
6766 case BPF_FUNC_find_vma:
7c7e3d31
SL
6767 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6768 set_find_vma_callback_state);
e6f2dd0f
JK
6769 break;
6770 case BPF_FUNC_snprintf:
7b15523a 6771 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
6772 break;
6773 case BPF_FUNC_loop:
6774 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6775 set_loop_callback_state);
6776 break;
7b15523a
FR
6777 }
6778
e6f2dd0f
JK
6779 if (err)
6780 return err;
6781
17a52670 6782 /* reset caller saved regs */
dc503a8a 6783 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6784 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6785 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6786 }
17a52670 6787
5327ed3d
JW
6788 /* helper call returns 64-bit value. */
6789 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6790
dc503a8a 6791 /* update return register (already marked as written above) */
3c480732 6792 ret_type = fn->ret_type;
c25b2ae1 6793 ret_flag = type_flag(fn->ret_type);
3c480732 6794 if (ret_type == RET_INTEGER) {
f1174f77 6795 /* sets type to SCALAR_VALUE */
61bd5218 6796 mark_reg_unknown(env, regs, BPF_REG_0);
3c480732 6797 } else if (ret_type == RET_VOID) {
17a52670 6798 regs[BPF_REG_0].type = NOT_INIT;
3c480732 6799 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
f1174f77 6800 /* There is no offset yet applied, variable or fixed */
61bd5218 6801 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6802 /* remember map_ptr, so that check_map_access()
6803 * can check 'value_size' boundary of memory access
6804 * to map element returned from bpf_map_lookup_elem()
6805 */
33ff9823 6806 if (meta.map_ptr == NULL) {
61bd5218
JK
6807 verbose(env,
6808 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6809 return -EINVAL;
6810 }
33ff9823 6811 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 6812 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
6813 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
6814 if (!type_may_be_null(ret_type) &&
6815 map_value_has_spin_lock(meta.map_ptr)) {
6816 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 6817 }
3c480732 6818 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
c64b7983 6819 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 6820 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
3c480732 6821 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
85a51f8c 6822 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 6823 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
3c480732 6824 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
655a51e5 6825 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 6826 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
3c480732 6827 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
457f4436 6828 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 6829 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 6830 regs[BPF_REG_0].mem_size = meta.mem_size;
3c480732 6831 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6832 const struct btf_type *t;
6833
6834 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6835 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6836 if (!btf_type_is_struct(t)) {
6837 u32 tsize;
6838 const struct btf_type *ret;
6839 const char *tname;
6840
6841 /* resolve the type size of ksym. */
22dc4a0f 6842 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6843 if (IS_ERR(ret)) {
22dc4a0f 6844 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6845 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6846 tname, PTR_ERR(ret));
6847 return -EINVAL;
6848 }
c25b2ae1 6849 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
6850 regs[BPF_REG_0].mem_size = tsize;
6851 } else {
34d3a78c
HL
6852 /* MEM_RDONLY may be carried from ret_flag, but it
6853 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
6854 * it will confuse the check of PTR_TO_BTF_ID in
6855 * check_mem_access().
6856 */
6857 ret_flag &= ~MEM_RDONLY;
6858
c25b2ae1 6859 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 6860 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6861 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6862 }
3c480732 6863 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6864 int ret_btf_id;
6865
6866 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 6867 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
af7ec138
YS
6868 ret_btf_id = *fn->ret_btf_id;
6869 if (ret_btf_id == 0) {
3c480732
HL
6870 verbose(env, "invalid return type %u of func %s#%d\n",
6871 base_type(ret_type), func_id_name(func_id),
6872 func_id);
af7ec138
YS
6873 return -EINVAL;
6874 }
22dc4a0f
AN
6875 /* current BPF helper definitions are only coming from
6876 * built-in code with type IDs from vmlinux BTF
6877 */
6878 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6879 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6880 } else {
3c480732
HL
6881 verbose(env, "unknown return type %u of func %s#%d\n",
6882 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
6883 return -EINVAL;
6884 }
04fd61ab 6885
c25b2ae1 6886 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
6887 regs[BPF_REG_0].id = ++env->id_gen;
6888
0f3adc28 6889 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6890 /* For release_reference() */
6891 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6892 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6893 int id = acquire_reference_state(env, insn_idx);
6894
6895 if (id < 0)
6896 return id;
6897 /* For mark_ptr_or_null_reg() */
6898 regs[BPF_REG_0].id = id;
6899 /* For release_reference() */
6900 regs[BPF_REG_0].ref_obj_id = id;
6901 }
1b986589 6902
849fa506
YS
6903 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6904
61bd5218 6905 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6906 if (err)
6907 return err;
04fd61ab 6908
fa28dcb8
SL
6909 if ((func_id == BPF_FUNC_get_stack ||
6910 func_id == BPF_FUNC_get_task_stack) &&
6911 !env->prog->has_callchain_buf) {
c195651e
YS
6912 const char *err_str;
6913
6914#ifdef CONFIG_PERF_EVENTS
6915 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6916 err_str = "cannot get callchain buffer for func %s#%d\n";
6917#else
6918 err = -ENOTSUPP;
6919 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6920#endif
6921 if (err) {
6922 verbose(env, err_str, func_id_name(func_id), func_id);
6923 return err;
6924 }
6925
6926 env->prog->has_callchain_buf = true;
6927 }
6928
5d99cb2c
SL
6929 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6930 env->prog->call_get_stack = true;
6931
9b99edca
JO
6932 if (func_id == BPF_FUNC_get_func_ip) {
6933 if (check_get_func_ip(env))
6934 return -ENOTSUPP;
6935 env->prog->call_get_func_ip = true;
6936 }
6937
969bf05e
AS
6938 if (changes_data)
6939 clear_all_pkt_pointers(env);
6940 return 0;
6941}
6942
e6ac2450
MKL
6943/* mark_btf_func_reg_size() is used when the reg size is determined by
6944 * the BTF func_proto's return value size and argument.
6945 */
6946static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6947 size_t reg_size)
6948{
6949 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6950
6951 if (regno == BPF_REG_0) {
6952 /* Function return value */
6953 reg->live |= REG_LIVE_WRITTEN;
6954 reg->subreg_def = reg_size == sizeof(u64) ?
6955 DEF_NOT_SUBREG : env->insn_idx + 1;
6956 } else {
6957 /* Function argument */
6958 if (reg_size == sizeof(u64)) {
6959 mark_insn_zext(env, reg);
6960 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6961 } else {
6962 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6963 }
6964 }
6965}
6966
5c073f26
KKD
6967static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6968 int *insn_idx_p)
e6ac2450
MKL
6969{
6970 const struct btf_type *t, *func, *func_proto, *ptr_type;
6971 struct bpf_reg_state *regs = cur_regs(env);
6972 const char *func_name, *ptr_type_name;
6973 u32 i, nargs, func_id, ptr_type_id;
5c073f26 6974 int err, insn_idx = *insn_idx_p;
e6ac2450 6975 const struct btf_param *args;
2357672c 6976 struct btf *desc_btf;
5c073f26 6977 bool acq;
e6ac2450 6978
a5d82727
KKD
6979 /* skip for now, but return error when we find this in fixup_kfunc_call */
6980 if (!insn->imm)
6981 return 0;
6982
b202d844 6983 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off);
2357672c
KKD
6984 if (IS_ERR(desc_btf))
6985 return PTR_ERR(desc_btf);
6986
e6ac2450 6987 func_id = insn->imm;
2357672c
KKD
6988 func = btf_type_by_id(desc_btf, func_id);
6989 func_name = btf_name_by_offset(desc_btf, func->name_off);
6990 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 6991
b202d844
KKD
6992 if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
6993 BTF_KFUNC_TYPE_CHECK, func_id)) {
e6ac2450
MKL
6994 verbose(env, "calling kernel function %s is not allowed\n",
6995 func_name);
6996 return -EACCES;
6997 }
6998
5c073f26
KKD
6999 acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7000 BTF_KFUNC_TYPE_ACQUIRE, func_id);
7001
e6ac2450 7002 /* Check the arguments */
2357672c 7003 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
5c073f26 7004 if (err < 0)
e6ac2450 7005 return err;
5c073f26
KKD
7006 /* In case of release function, we get register number of refcounted
7007 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7008 */
7009 if (err) {
7010 err = release_reference(env, regs[err].ref_obj_id);
7011 if (err) {
7012 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7013 func_name, func_id);
7014 return err;
7015 }
7016 }
e6ac2450
MKL
7017
7018 for (i = 0; i < CALLER_SAVED_REGS; i++)
7019 mark_reg_not_init(env, regs, caller_saved[i]);
7020
7021 /* Check return type */
2357672c 7022 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
5c073f26
KKD
7023
7024 if (acq && !btf_type_is_ptr(t)) {
7025 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7026 return -EINVAL;
7027 }
7028
e6ac2450
MKL
7029 if (btf_type_is_scalar(t)) {
7030 mark_reg_unknown(env, regs, BPF_REG_0);
7031 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7032 } else if (btf_type_is_ptr(t)) {
2357672c 7033 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
7034 &ptr_type_id);
7035 if (!btf_type_is_struct(ptr_type)) {
2357672c 7036 ptr_type_name = btf_name_by_offset(desc_btf,
e6ac2450
MKL
7037 ptr_type->name_off);
7038 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
7039 func_name, btf_type_str(ptr_type),
7040 ptr_type_name);
7041 return -EINVAL;
7042 }
7043 mark_reg_known_zero(env, regs, BPF_REG_0);
2357672c 7044 regs[BPF_REG_0].btf = desc_btf;
e6ac2450
MKL
7045 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7046 regs[BPF_REG_0].btf_id = ptr_type_id;
5c073f26
KKD
7047 if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7048 BTF_KFUNC_TYPE_RET_NULL, func_id)) {
7049 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7050 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7051 regs[BPF_REG_0].id = ++env->id_gen;
7052 }
e6ac2450 7053 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
5c073f26
KKD
7054 if (acq) {
7055 int id = acquire_reference_state(env, insn_idx);
7056
7057 if (id < 0)
7058 return id;
7059 regs[BPF_REG_0].id = id;
7060 regs[BPF_REG_0].ref_obj_id = id;
7061 }
e6ac2450
MKL
7062 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7063
7064 nargs = btf_type_vlen(func_proto);
7065 args = (const struct btf_param *)(func_proto + 1);
7066 for (i = 0; i < nargs; i++) {
7067 u32 regno = i + 1;
7068
2357672c 7069 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
7070 if (btf_type_is_ptr(t))
7071 mark_btf_func_reg_size(env, regno, sizeof(void *));
7072 else
7073 /* scalar. ensured by btf_check_kfunc_arg_match() */
7074 mark_btf_func_reg_size(env, regno, t->size);
7075 }
7076
7077 return 0;
7078}
7079
b03c9f9f
EC
7080static bool signed_add_overflows(s64 a, s64 b)
7081{
7082 /* Do the add in u64, where overflow is well-defined */
7083 s64 res = (s64)((u64)a + (u64)b);
7084
7085 if (b < 0)
7086 return res > a;
7087 return res < a;
7088}
7089
bc895e8b 7090static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
7091{
7092 /* Do the add in u32, where overflow is well-defined */
7093 s32 res = (s32)((u32)a + (u32)b);
7094
7095 if (b < 0)
7096 return res > a;
7097 return res < a;
7098}
7099
bc895e8b 7100static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
7101{
7102 /* Do the sub in u64, where overflow is well-defined */
7103 s64 res = (s64)((u64)a - (u64)b);
7104
7105 if (b < 0)
7106 return res < a;
7107 return res > a;
969bf05e
AS
7108}
7109
3f50f132
JF
7110static bool signed_sub32_overflows(s32 a, s32 b)
7111{
bc895e8b 7112 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
7113 s32 res = (s32)((u32)a - (u32)b);
7114
7115 if (b < 0)
7116 return res < a;
7117 return res > a;
7118}
7119
bb7f0f98
AS
7120static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7121 const struct bpf_reg_state *reg,
7122 enum bpf_reg_type type)
7123{
7124 bool known = tnum_is_const(reg->var_off);
7125 s64 val = reg->var_off.value;
7126 s64 smin = reg->smin_value;
7127
7128 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7129 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 7130 reg_type_str(env, type), val);
bb7f0f98
AS
7131 return false;
7132 }
7133
7134 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7135 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 7136 reg_type_str(env, type), reg->off);
bb7f0f98
AS
7137 return false;
7138 }
7139
7140 if (smin == S64_MIN) {
7141 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 7142 reg_type_str(env, type));
bb7f0f98
AS
7143 return false;
7144 }
7145
7146 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7147 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 7148 smin, reg_type_str(env, type));
bb7f0f98
AS
7149 return false;
7150 }
7151
7152 return true;
7153}
7154
979d63d5
DB
7155static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7156{
7157 return &env->insn_aux_data[env->insn_idx];
7158}
7159
a6aaece0
DB
7160enum {
7161 REASON_BOUNDS = -1,
7162 REASON_TYPE = -2,
7163 REASON_PATHS = -3,
7164 REASON_LIMIT = -4,
7165 REASON_STACK = -5,
7166};
7167
979d63d5 7168static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 7169 u32 *alu_limit, bool mask_to_left)
979d63d5 7170{
7fedb63a 7171 u32 max = 0, ptr_limit = 0;
979d63d5
DB
7172
7173 switch (ptr_reg->type) {
7174 case PTR_TO_STACK:
1b1597e6 7175 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
7176 * left direction, see BPF_REG_FP. Also, unknown scalar
7177 * offset where we would need to deal with min/max bounds is
7178 * currently prohibited for unprivileged.
1b1597e6
PK
7179 */
7180 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 7181 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 7182 break;
979d63d5 7183 case PTR_TO_MAP_VALUE:
1b1597e6 7184 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
7185 ptr_limit = (mask_to_left ?
7186 ptr_reg->smin_value :
7187 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 7188 break;
979d63d5 7189 default:
a6aaece0 7190 return REASON_TYPE;
979d63d5 7191 }
b658bbb8
DB
7192
7193 if (ptr_limit >= max)
a6aaece0 7194 return REASON_LIMIT;
b658bbb8
DB
7195 *alu_limit = ptr_limit;
7196 return 0;
979d63d5
DB
7197}
7198
d3bd7413
DB
7199static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7200 const struct bpf_insn *insn)
7201{
2c78ee89 7202 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
7203}
7204
7205static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7206 u32 alu_state, u32 alu_limit)
7207{
7208 /* If we arrived here from different branches with different
7209 * state or limits to sanitize, then this won't work.
7210 */
7211 if (aux->alu_state &&
7212 (aux->alu_state != alu_state ||
7213 aux->alu_limit != alu_limit))
a6aaece0 7214 return REASON_PATHS;
d3bd7413 7215
e6ac5933 7216 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
7217 aux->alu_state = alu_state;
7218 aux->alu_limit = alu_limit;
7219 return 0;
7220}
7221
7222static int sanitize_val_alu(struct bpf_verifier_env *env,
7223 struct bpf_insn *insn)
7224{
7225 struct bpf_insn_aux_data *aux = cur_aux(env);
7226
7227 if (can_skip_alu_sanitation(env, insn))
7228 return 0;
7229
7230 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7231}
7232
f5288193
DB
7233static bool sanitize_needed(u8 opcode)
7234{
7235 return opcode == BPF_ADD || opcode == BPF_SUB;
7236}
7237
3d0220f6
DB
7238struct bpf_sanitize_info {
7239 struct bpf_insn_aux_data aux;
bb01a1bb 7240 bool mask_to_left;
3d0220f6
DB
7241};
7242
9183671a
DB
7243static struct bpf_verifier_state *
7244sanitize_speculative_path(struct bpf_verifier_env *env,
7245 const struct bpf_insn *insn,
7246 u32 next_idx, u32 curr_idx)
7247{
7248 struct bpf_verifier_state *branch;
7249 struct bpf_reg_state *regs;
7250
7251 branch = push_stack(env, next_idx, curr_idx, true);
7252 if (branch && insn) {
7253 regs = branch->frame[branch->curframe]->regs;
7254 if (BPF_SRC(insn->code) == BPF_K) {
7255 mark_reg_unknown(env, regs, insn->dst_reg);
7256 } else if (BPF_SRC(insn->code) == BPF_X) {
7257 mark_reg_unknown(env, regs, insn->dst_reg);
7258 mark_reg_unknown(env, regs, insn->src_reg);
7259 }
7260 }
7261 return branch;
7262}
7263
979d63d5
DB
7264static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7265 struct bpf_insn *insn,
7266 const struct bpf_reg_state *ptr_reg,
6f55b2f2 7267 const struct bpf_reg_state *off_reg,
979d63d5 7268 struct bpf_reg_state *dst_reg,
3d0220f6 7269 struct bpf_sanitize_info *info,
7fedb63a 7270 const bool commit_window)
979d63d5 7271{
3d0220f6 7272 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 7273 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 7274 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 7275 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
7276 bool ptr_is_dst_reg = ptr_reg == dst_reg;
7277 u8 opcode = BPF_OP(insn->code);
7278 u32 alu_state, alu_limit;
7279 struct bpf_reg_state tmp;
7280 bool ret;
f232326f 7281 int err;
979d63d5 7282
d3bd7413 7283 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
7284 return 0;
7285
7286 /* We already marked aux for masking from non-speculative
7287 * paths, thus we got here in the first place. We only care
7288 * to explore bad access from here.
7289 */
7290 if (vstate->speculative)
7291 goto do_sim;
7292
bb01a1bb
DB
7293 if (!commit_window) {
7294 if (!tnum_is_const(off_reg->var_off) &&
7295 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7296 return REASON_BOUNDS;
7297
7298 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
7299 (opcode == BPF_SUB && !off_is_neg);
7300 }
7301
7302 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
7303 if (err < 0)
7304 return err;
7305
7fedb63a
DB
7306 if (commit_window) {
7307 /* In commit phase we narrow the masking window based on
7308 * the observed pointer move after the simulated operation.
7309 */
3d0220f6
DB
7310 alu_state = info->aux.alu_state;
7311 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
7312 } else {
7313 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 7314 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
7315 alu_state |= ptr_is_dst_reg ?
7316 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
7317
7318 /* Limit pruning on unknown scalars to enable deep search for
7319 * potential masking differences from other program paths.
7320 */
7321 if (!off_is_imm)
7322 env->explore_alu_limits = true;
7fedb63a
DB
7323 }
7324
f232326f
PK
7325 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7326 if (err < 0)
7327 return err;
979d63d5 7328do_sim:
7fedb63a
DB
7329 /* If we're in commit phase, we're done here given we already
7330 * pushed the truncated dst_reg into the speculative verification
7331 * stack.
a7036191
DB
7332 *
7333 * Also, when register is a known constant, we rewrite register-based
7334 * operation to immediate-based, and thus do not need masking (and as
7335 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7336 */
a7036191 7337 if (commit_window || off_is_imm)
7fedb63a
DB
7338 return 0;
7339
979d63d5
DB
7340 /* Simulate and find potential out-of-bounds access under
7341 * speculative execution from truncation as a result of
7342 * masking when off was not within expected range. If off
7343 * sits in dst, then we temporarily need to move ptr there
7344 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7345 * for cases where we use K-based arithmetic in one direction
7346 * and truncated reg-based in the other in order to explore
7347 * bad access.
7348 */
7349 if (!ptr_is_dst_reg) {
7350 tmp = *dst_reg;
7351 *dst_reg = *ptr_reg;
7352 }
9183671a
DB
7353 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7354 env->insn_idx);
0803278b 7355 if (!ptr_is_dst_reg && ret)
979d63d5 7356 *dst_reg = tmp;
a6aaece0
DB
7357 return !ret ? REASON_STACK : 0;
7358}
7359
fe9a5ca7
DB
7360static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7361{
7362 struct bpf_verifier_state *vstate = env->cur_state;
7363
7364 /* If we simulate paths under speculation, we don't update the
7365 * insn as 'seen' such that when we verify unreachable paths in
7366 * the non-speculative domain, sanitize_dead_code() can still
7367 * rewrite/sanitize them.
7368 */
7369 if (!vstate->speculative)
7370 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7371}
7372
a6aaece0
DB
7373static int sanitize_err(struct bpf_verifier_env *env,
7374 const struct bpf_insn *insn, int reason,
7375 const struct bpf_reg_state *off_reg,
7376 const struct bpf_reg_state *dst_reg)
7377{
7378 static const char *err = "pointer arithmetic with it prohibited for !root";
7379 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7380 u32 dst = insn->dst_reg, src = insn->src_reg;
7381
7382 switch (reason) {
7383 case REASON_BOUNDS:
7384 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7385 off_reg == dst_reg ? dst : src, err);
7386 break;
7387 case REASON_TYPE:
7388 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7389 off_reg == dst_reg ? src : dst, err);
7390 break;
7391 case REASON_PATHS:
7392 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7393 dst, op, err);
7394 break;
7395 case REASON_LIMIT:
7396 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7397 dst, op, err);
7398 break;
7399 case REASON_STACK:
7400 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7401 dst, err);
7402 break;
7403 default:
7404 verbose(env, "verifier internal error: unknown reason (%d)\n",
7405 reason);
7406 break;
7407 }
7408
7409 return -EACCES;
979d63d5
DB
7410}
7411
01f810ac
AM
7412/* check that stack access falls within stack limits and that 'reg' doesn't
7413 * have a variable offset.
7414 *
7415 * Variable offset is prohibited for unprivileged mode for simplicity since it
7416 * requires corresponding support in Spectre masking for stack ALU. See also
7417 * retrieve_ptr_limit().
7418 *
7419 *
7420 * 'off' includes 'reg->off'.
7421 */
7422static int check_stack_access_for_ptr_arithmetic(
7423 struct bpf_verifier_env *env,
7424 int regno,
7425 const struct bpf_reg_state *reg,
7426 int off)
7427{
7428 if (!tnum_is_const(reg->var_off)) {
7429 char tn_buf[48];
7430
7431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7432 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7433 regno, tn_buf, off);
7434 return -EACCES;
7435 }
7436
7437 if (off >= 0 || off < -MAX_BPF_STACK) {
7438 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7439 "prohibited for !root; off=%d\n", regno, off);
7440 return -EACCES;
7441 }
7442
7443 return 0;
7444}
7445
073815b7
DB
7446static int sanitize_check_bounds(struct bpf_verifier_env *env,
7447 const struct bpf_insn *insn,
7448 const struct bpf_reg_state *dst_reg)
7449{
7450 u32 dst = insn->dst_reg;
7451
7452 /* For unprivileged we require that resulting offset must be in bounds
7453 * in order to be able to sanitize access later on.
7454 */
7455 if (env->bypass_spec_v1)
7456 return 0;
7457
7458 switch (dst_reg->type) {
7459 case PTR_TO_STACK:
7460 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7461 dst_reg->off + dst_reg->var_off.value))
7462 return -EACCES;
7463 break;
7464 case PTR_TO_MAP_VALUE:
7465 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7466 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7467 "prohibited for !root\n", dst);
7468 return -EACCES;
7469 }
7470 break;
7471 default:
7472 break;
7473 }
7474
7475 return 0;
7476}
01f810ac 7477
f1174f77 7478/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
7479 * Caller should also handle BPF_MOV case separately.
7480 * If we return -EACCES, caller may want to try again treating pointer as a
7481 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7482 */
7483static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7484 struct bpf_insn *insn,
7485 const struct bpf_reg_state *ptr_reg,
7486 const struct bpf_reg_state *off_reg)
969bf05e 7487{
f4d7e40a
AS
7488 struct bpf_verifier_state *vstate = env->cur_state;
7489 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7490 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 7491 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
7492 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7493 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7494 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7495 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 7496 struct bpf_sanitize_info info = {};
969bf05e 7497 u8 opcode = BPF_OP(insn->code);
24c109bb 7498 u32 dst = insn->dst_reg;
979d63d5 7499 int ret;
969bf05e 7500
f1174f77 7501 dst_reg = &regs[dst];
969bf05e 7502
6f16101e
DB
7503 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7504 smin_val > smax_val || umin_val > umax_val) {
7505 /* Taint dst register if offset had invalid bounds derived from
7506 * e.g. dead branches.
7507 */
f54c7898 7508 __mark_reg_unknown(env, dst_reg);
6f16101e 7509 return 0;
f1174f77
EC
7510 }
7511
7512 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7513 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
7514 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7515 __mark_reg_unknown(env, dst_reg);
7516 return 0;
7517 }
7518
82abbf8d
AS
7519 verbose(env,
7520 "R%d 32-bit pointer arithmetic prohibited\n",
7521 dst);
f1174f77 7522 return -EACCES;
969bf05e
AS
7523 }
7524
c25b2ae1 7525 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 7526 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 7527 dst, reg_type_str(env, ptr_reg->type));
f1174f77 7528 return -EACCES;
c25b2ae1
HL
7529 }
7530
7531 switch (base_type(ptr_reg->type)) {
aad2eeaf 7532 case CONST_PTR_TO_MAP:
7c696732
YS
7533 /* smin_val represents the known value */
7534 if (known && smin_val == 0 && opcode == BPF_ADD)
7535 break;
8731745e 7536 fallthrough;
aad2eeaf 7537 case PTR_TO_PACKET_END:
c64b7983 7538 case PTR_TO_SOCKET:
46f8bc92 7539 case PTR_TO_SOCK_COMMON:
655a51e5 7540 case PTR_TO_TCP_SOCK:
fada7fdc 7541 case PTR_TO_XDP_SOCK:
aad2eeaf 7542 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 7543 dst, reg_type_str(env, ptr_reg->type));
f1174f77 7544 return -EACCES;
aad2eeaf
JS
7545 default:
7546 break;
f1174f77
EC
7547 }
7548
7549 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7550 * The id may be overwritten later if we create a new variable offset.
969bf05e 7551 */
f1174f77
EC
7552 dst_reg->type = ptr_reg->type;
7553 dst_reg->id = ptr_reg->id;
969bf05e 7554
bb7f0f98
AS
7555 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7556 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7557 return -EINVAL;
7558
3f50f132
JF
7559 /* pointer types do not carry 32-bit bounds at the moment. */
7560 __mark_reg32_unbounded(dst_reg);
7561
7fedb63a
DB
7562 if (sanitize_needed(opcode)) {
7563 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 7564 &info, false);
a6aaece0
DB
7565 if (ret < 0)
7566 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 7567 }
a6aaece0 7568
f1174f77
EC
7569 switch (opcode) {
7570 case BPF_ADD:
7571 /* We can take a fixed offset as long as it doesn't overflow
7572 * the s32 'off' field
969bf05e 7573 */
b03c9f9f
EC
7574 if (known && (ptr_reg->off + smin_val ==
7575 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 7576 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
7577 dst_reg->smin_value = smin_ptr;
7578 dst_reg->smax_value = smax_ptr;
7579 dst_reg->umin_value = umin_ptr;
7580 dst_reg->umax_value = umax_ptr;
f1174f77 7581 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 7582 dst_reg->off = ptr_reg->off + smin_val;
0962590e 7583 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7584 break;
7585 }
f1174f77
EC
7586 /* A new variable offset is created. Note that off_reg->off
7587 * == 0, since it's a scalar.
7588 * dst_reg gets the pointer type and since some positive
7589 * integer value was added to the pointer, give it a new 'id'
7590 * if it's a PTR_TO_PACKET.
7591 * this creates a new 'base' pointer, off_reg (variable) gets
7592 * added into the variable offset, and we copy the fixed offset
7593 * from ptr_reg.
969bf05e 7594 */
b03c9f9f
EC
7595 if (signed_add_overflows(smin_ptr, smin_val) ||
7596 signed_add_overflows(smax_ptr, smax_val)) {
7597 dst_reg->smin_value = S64_MIN;
7598 dst_reg->smax_value = S64_MAX;
7599 } else {
7600 dst_reg->smin_value = smin_ptr + smin_val;
7601 dst_reg->smax_value = smax_ptr + smax_val;
7602 }
7603 if (umin_ptr + umin_val < umin_ptr ||
7604 umax_ptr + umax_val < umax_ptr) {
7605 dst_reg->umin_value = 0;
7606 dst_reg->umax_value = U64_MAX;
7607 } else {
7608 dst_reg->umin_value = umin_ptr + umin_val;
7609 dst_reg->umax_value = umax_ptr + umax_val;
7610 }
f1174f77
EC
7611 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7612 dst_reg->off = ptr_reg->off;
0962590e 7613 dst_reg->raw = ptr_reg->raw;
de8f3a83 7614 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7615 dst_reg->id = ++env->id_gen;
7616 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 7617 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
7618 }
7619 break;
7620 case BPF_SUB:
7621 if (dst_reg == off_reg) {
7622 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
7623 verbose(env, "R%d tried to subtract pointer from scalar\n",
7624 dst);
f1174f77
EC
7625 return -EACCES;
7626 }
7627 /* We don't allow subtraction from FP, because (according to
7628 * test_verifier.c test "invalid fp arithmetic", JITs might not
7629 * be able to deal with it.
969bf05e 7630 */
f1174f77 7631 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
7632 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7633 dst);
f1174f77
EC
7634 return -EACCES;
7635 }
b03c9f9f
EC
7636 if (known && (ptr_reg->off - smin_val ==
7637 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 7638 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
7639 dst_reg->smin_value = smin_ptr;
7640 dst_reg->smax_value = smax_ptr;
7641 dst_reg->umin_value = umin_ptr;
7642 dst_reg->umax_value = umax_ptr;
f1174f77
EC
7643 dst_reg->var_off = ptr_reg->var_off;
7644 dst_reg->id = ptr_reg->id;
b03c9f9f 7645 dst_reg->off = ptr_reg->off - smin_val;
0962590e 7646 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7647 break;
7648 }
f1174f77
EC
7649 /* A new variable offset is created. If the subtrahend is known
7650 * nonnegative, then any reg->range we had before is still good.
969bf05e 7651 */
b03c9f9f
EC
7652 if (signed_sub_overflows(smin_ptr, smax_val) ||
7653 signed_sub_overflows(smax_ptr, smin_val)) {
7654 /* Overflow possible, we know nothing */
7655 dst_reg->smin_value = S64_MIN;
7656 dst_reg->smax_value = S64_MAX;
7657 } else {
7658 dst_reg->smin_value = smin_ptr - smax_val;
7659 dst_reg->smax_value = smax_ptr - smin_val;
7660 }
7661 if (umin_ptr < umax_val) {
7662 /* Overflow possible, we know nothing */
7663 dst_reg->umin_value = 0;
7664 dst_reg->umax_value = U64_MAX;
7665 } else {
7666 /* Cannot overflow (as long as bounds are consistent) */
7667 dst_reg->umin_value = umin_ptr - umax_val;
7668 dst_reg->umax_value = umax_ptr - umin_val;
7669 }
f1174f77
EC
7670 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7671 dst_reg->off = ptr_reg->off;
0962590e 7672 dst_reg->raw = ptr_reg->raw;
de8f3a83 7673 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7674 dst_reg->id = ++env->id_gen;
7675 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 7676 if (smin_val < 0)
22dc4a0f 7677 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 7678 }
f1174f77
EC
7679 break;
7680 case BPF_AND:
7681 case BPF_OR:
7682 case BPF_XOR:
82abbf8d
AS
7683 /* bitwise ops on pointers are troublesome, prohibit. */
7684 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7685 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
7686 return -EACCES;
7687 default:
7688 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
7689 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7690 dst, bpf_alu_string[opcode >> 4]);
f1174f77 7691 return -EACCES;
43188702
JF
7692 }
7693
bb7f0f98
AS
7694 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7695 return -EINVAL;
7696
b03c9f9f
EC
7697 __update_reg_bounds(dst_reg);
7698 __reg_deduce_bounds(dst_reg);
7699 __reg_bound_offset(dst_reg);
0d6303db 7700
073815b7
DB
7701 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7702 return -EACCES;
7fedb63a
DB
7703 if (sanitize_needed(opcode)) {
7704 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 7705 &info, true);
7fedb63a
DB
7706 if (ret < 0)
7707 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
7708 }
7709
43188702
JF
7710 return 0;
7711}
7712
3f50f132
JF
7713static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7714 struct bpf_reg_state *src_reg)
7715{
7716 s32 smin_val = src_reg->s32_min_value;
7717 s32 smax_val = src_reg->s32_max_value;
7718 u32 umin_val = src_reg->u32_min_value;
7719 u32 umax_val = src_reg->u32_max_value;
7720
7721 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7722 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7723 dst_reg->s32_min_value = S32_MIN;
7724 dst_reg->s32_max_value = S32_MAX;
7725 } else {
7726 dst_reg->s32_min_value += smin_val;
7727 dst_reg->s32_max_value += smax_val;
7728 }
7729 if (dst_reg->u32_min_value + umin_val < umin_val ||
7730 dst_reg->u32_max_value + umax_val < umax_val) {
7731 dst_reg->u32_min_value = 0;
7732 dst_reg->u32_max_value = U32_MAX;
7733 } else {
7734 dst_reg->u32_min_value += umin_val;
7735 dst_reg->u32_max_value += umax_val;
7736 }
7737}
7738
07cd2631
JF
7739static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7740 struct bpf_reg_state *src_reg)
7741{
7742 s64 smin_val = src_reg->smin_value;
7743 s64 smax_val = src_reg->smax_value;
7744 u64 umin_val = src_reg->umin_value;
7745 u64 umax_val = src_reg->umax_value;
7746
7747 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7748 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7749 dst_reg->smin_value = S64_MIN;
7750 dst_reg->smax_value = S64_MAX;
7751 } else {
7752 dst_reg->smin_value += smin_val;
7753 dst_reg->smax_value += smax_val;
7754 }
7755 if (dst_reg->umin_value + umin_val < umin_val ||
7756 dst_reg->umax_value + umax_val < umax_val) {
7757 dst_reg->umin_value = 0;
7758 dst_reg->umax_value = U64_MAX;
7759 } else {
7760 dst_reg->umin_value += umin_val;
7761 dst_reg->umax_value += umax_val;
7762 }
3f50f132
JF
7763}
7764
7765static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7766 struct bpf_reg_state *src_reg)
7767{
7768 s32 smin_val = src_reg->s32_min_value;
7769 s32 smax_val = src_reg->s32_max_value;
7770 u32 umin_val = src_reg->u32_min_value;
7771 u32 umax_val = src_reg->u32_max_value;
7772
7773 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7774 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7775 /* Overflow possible, we know nothing */
7776 dst_reg->s32_min_value = S32_MIN;
7777 dst_reg->s32_max_value = S32_MAX;
7778 } else {
7779 dst_reg->s32_min_value -= smax_val;
7780 dst_reg->s32_max_value -= smin_val;
7781 }
7782 if (dst_reg->u32_min_value < umax_val) {
7783 /* Overflow possible, we know nothing */
7784 dst_reg->u32_min_value = 0;
7785 dst_reg->u32_max_value = U32_MAX;
7786 } else {
7787 /* Cannot overflow (as long as bounds are consistent) */
7788 dst_reg->u32_min_value -= umax_val;
7789 dst_reg->u32_max_value -= umin_val;
7790 }
07cd2631
JF
7791}
7792
7793static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7794 struct bpf_reg_state *src_reg)
7795{
7796 s64 smin_val = src_reg->smin_value;
7797 s64 smax_val = src_reg->smax_value;
7798 u64 umin_val = src_reg->umin_value;
7799 u64 umax_val = src_reg->umax_value;
7800
7801 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7802 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7803 /* Overflow possible, we know nothing */
7804 dst_reg->smin_value = S64_MIN;
7805 dst_reg->smax_value = S64_MAX;
7806 } else {
7807 dst_reg->smin_value -= smax_val;
7808 dst_reg->smax_value -= smin_val;
7809 }
7810 if (dst_reg->umin_value < umax_val) {
7811 /* Overflow possible, we know nothing */
7812 dst_reg->umin_value = 0;
7813 dst_reg->umax_value = U64_MAX;
7814 } else {
7815 /* Cannot overflow (as long as bounds are consistent) */
7816 dst_reg->umin_value -= umax_val;
7817 dst_reg->umax_value -= umin_val;
7818 }
3f50f132
JF
7819}
7820
7821static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7822 struct bpf_reg_state *src_reg)
7823{
7824 s32 smin_val = src_reg->s32_min_value;
7825 u32 umin_val = src_reg->u32_min_value;
7826 u32 umax_val = src_reg->u32_max_value;
7827
7828 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7829 /* Ain't nobody got time to multiply that sign */
7830 __mark_reg32_unbounded(dst_reg);
7831 return;
7832 }
7833 /* Both values are positive, so we can work with unsigned and
7834 * copy the result to signed (unless it exceeds S32_MAX).
7835 */
7836 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7837 /* Potential overflow, we know nothing */
7838 __mark_reg32_unbounded(dst_reg);
7839 return;
7840 }
7841 dst_reg->u32_min_value *= umin_val;
7842 dst_reg->u32_max_value *= umax_val;
7843 if (dst_reg->u32_max_value > S32_MAX) {
7844 /* Overflow possible, we know nothing */
7845 dst_reg->s32_min_value = S32_MIN;
7846 dst_reg->s32_max_value = S32_MAX;
7847 } else {
7848 dst_reg->s32_min_value = dst_reg->u32_min_value;
7849 dst_reg->s32_max_value = dst_reg->u32_max_value;
7850 }
07cd2631
JF
7851}
7852
7853static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7854 struct bpf_reg_state *src_reg)
7855{
7856 s64 smin_val = src_reg->smin_value;
7857 u64 umin_val = src_reg->umin_value;
7858 u64 umax_val = src_reg->umax_value;
7859
07cd2631
JF
7860 if (smin_val < 0 || dst_reg->smin_value < 0) {
7861 /* Ain't nobody got time to multiply that sign */
3f50f132 7862 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7863 return;
7864 }
7865 /* Both values are positive, so we can work with unsigned and
7866 * copy the result to signed (unless it exceeds S64_MAX).
7867 */
7868 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7869 /* Potential overflow, we know nothing */
3f50f132 7870 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7871 return;
7872 }
7873 dst_reg->umin_value *= umin_val;
7874 dst_reg->umax_value *= umax_val;
7875 if (dst_reg->umax_value > S64_MAX) {
7876 /* Overflow possible, we know nothing */
7877 dst_reg->smin_value = S64_MIN;
7878 dst_reg->smax_value = S64_MAX;
7879 } else {
7880 dst_reg->smin_value = dst_reg->umin_value;
7881 dst_reg->smax_value = dst_reg->umax_value;
7882 }
7883}
7884
3f50f132
JF
7885static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7886 struct bpf_reg_state *src_reg)
7887{
7888 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7889 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7890 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7891 s32 smin_val = src_reg->s32_min_value;
7892 u32 umax_val = src_reg->u32_max_value;
7893
049c4e13
DB
7894 if (src_known && dst_known) {
7895 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7896 return;
049c4e13 7897 }
3f50f132
JF
7898
7899 /* We get our minimum from the var_off, since that's inherently
7900 * bitwise. Our maximum is the minimum of the operands' maxima.
7901 */
7902 dst_reg->u32_min_value = var32_off.value;
7903 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7904 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7905 /* Lose signed bounds when ANDing negative numbers,
7906 * ain't nobody got time for that.
7907 */
7908 dst_reg->s32_min_value = S32_MIN;
7909 dst_reg->s32_max_value = S32_MAX;
7910 } else {
7911 /* ANDing two positives gives a positive, so safe to
7912 * cast result into s64.
7913 */
7914 dst_reg->s32_min_value = dst_reg->u32_min_value;
7915 dst_reg->s32_max_value = dst_reg->u32_max_value;
7916 }
3f50f132
JF
7917}
7918
07cd2631
JF
7919static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7920 struct bpf_reg_state *src_reg)
7921{
3f50f132
JF
7922 bool src_known = tnum_is_const(src_reg->var_off);
7923 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7924 s64 smin_val = src_reg->smin_value;
7925 u64 umax_val = src_reg->umax_value;
7926
3f50f132 7927 if (src_known && dst_known) {
4fbb38a3 7928 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7929 return;
7930 }
7931
07cd2631
JF
7932 /* We get our minimum from the var_off, since that's inherently
7933 * bitwise. Our maximum is the minimum of the operands' maxima.
7934 */
07cd2631
JF
7935 dst_reg->umin_value = dst_reg->var_off.value;
7936 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7937 if (dst_reg->smin_value < 0 || smin_val < 0) {
7938 /* Lose signed bounds when ANDing negative numbers,
7939 * ain't nobody got time for that.
7940 */
7941 dst_reg->smin_value = S64_MIN;
7942 dst_reg->smax_value = S64_MAX;
7943 } else {
7944 /* ANDing two positives gives a positive, so safe to
7945 * cast result into s64.
7946 */
7947 dst_reg->smin_value = dst_reg->umin_value;
7948 dst_reg->smax_value = dst_reg->umax_value;
7949 }
7950 /* We may learn something more from the var_off */
7951 __update_reg_bounds(dst_reg);
7952}
7953
3f50f132
JF
7954static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7955 struct bpf_reg_state *src_reg)
7956{
7957 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7958 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7959 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7960 s32 smin_val = src_reg->s32_min_value;
7961 u32 umin_val = src_reg->u32_min_value;
3f50f132 7962
049c4e13
DB
7963 if (src_known && dst_known) {
7964 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7965 return;
049c4e13 7966 }
3f50f132
JF
7967
7968 /* We get our maximum from the var_off, and our minimum is the
7969 * maximum of the operands' minima
7970 */
7971 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7972 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7973 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7974 /* Lose signed bounds when ORing negative numbers,
7975 * ain't nobody got time for that.
7976 */
7977 dst_reg->s32_min_value = S32_MIN;
7978 dst_reg->s32_max_value = S32_MAX;
7979 } else {
7980 /* ORing two positives gives a positive, so safe to
7981 * cast result into s64.
7982 */
5b9fbeb7
DB
7983 dst_reg->s32_min_value = dst_reg->u32_min_value;
7984 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7985 }
7986}
7987
07cd2631
JF
7988static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7989 struct bpf_reg_state *src_reg)
7990{
3f50f132
JF
7991 bool src_known = tnum_is_const(src_reg->var_off);
7992 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7993 s64 smin_val = src_reg->smin_value;
7994 u64 umin_val = src_reg->umin_value;
7995
3f50f132 7996 if (src_known && dst_known) {
4fbb38a3 7997 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7998 return;
7999 }
8000
07cd2631
JF
8001 /* We get our maximum from the var_off, and our minimum is the
8002 * maximum of the operands' minima
8003 */
07cd2631
JF
8004 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8005 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8006 if (dst_reg->smin_value < 0 || smin_val < 0) {
8007 /* Lose signed bounds when ORing negative numbers,
8008 * ain't nobody got time for that.
8009 */
8010 dst_reg->smin_value = S64_MIN;
8011 dst_reg->smax_value = S64_MAX;
8012 } else {
8013 /* ORing two positives gives a positive, so safe to
8014 * cast result into s64.
8015 */
8016 dst_reg->smin_value = dst_reg->umin_value;
8017 dst_reg->smax_value = dst_reg->umax_value;
8018 }
8019 /* We may learn something more from the var_off */
8020 __update_reg_bounds(dst_reg);
8021}
8022
2921c90d
YS
8023static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8024 struct bpf_reg_state *src_reg)
8025{
8026 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8027 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8028 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8029 s32 smin_val = src_reg->s32_min_value;
8030
049c4e13
DB
8031 if (src_known && dst_known) {
8032 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 8033 return;
049c4e13 8034 }
2921c90d
YS
8035
8036 /* We get both minimum and maximum from the var32_off. */
8037 dst_reg->u32_min_value = var32_off.value;
8038 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8039
8040 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8041 /* XORing two positive sign numbers gives a positive,
8042 * so safe to cast u32 result into s32.
8043 */
8044 dst_reg->s32_min_value = dst_reg->u32_min_value;
8045 dst_reg->s32_max_value = dst_reg->u32_max_value;
8046 } else {
8047 dst_reg->s32_min_value = S32_MIN;
8048 dst_reg->s32_max_value = S32_MAX;
8049 }
8050}
8051
8052static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8053 struct bpf_reg_state *src_reg)
8054{
8055 bool src_known = tnum_is_const(src_reg->var_off);
8056 bool dst_known = tnum_is_const(dst_reg->var_off);
8057 s64 smin_val = src_reg->smin_value;
8058
8059 if (src_known && dst_known) {
8060 /* dst_reg->var_off.value has been updated earlier */
8061 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8062 return;
8063 }
8064
8065 /* We get both minimum and maximum from the var_off. */
8066 dst_reg->umin_value = dst_reg->var_off.value;
8067 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8068
8069 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8070 /* XORing two positive sign numbers gives a positive,
8071 * so safe to cast u64 result into s64.
8072 */
8073 dst_reg->smin_value = dst_reg->umin_value;
8074 dst_reg->smax_value = dst_reg->umax_value;
8075 } else {
8076 dst_reg->smin_value = S64_MIN;
8077 dst_reg->smax_value = S64_MAX;
8078 }
8079
8080 __update_reg_bounds(dst_reg);
8081}
8082
3f50f132
JF
8083static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8084 u64 umin_val, u64 umax_val)
07cd2631 8085{
07cd2631
JF
8086 /* We lose all sign bit information (except what we can pick
8087 * up from var_off)
8088 */
3f50f132
JF
8089 dst_reg->s32_min_value = S32_MIN;
8090 dst_reg->s32_max_value = S32_MAX;
8091 /* If we might shift our top bit out, then we know nothing */
8092 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8093 dst_reg->u32_min_value = 0;
8094 dst_reg->u32_max_value = U32_MAX;
8095 } else {
8096 dst_reg->u32_min_value <<= umin_val;
8097 dst_reg->u32_max_value <<= umax_val;
8098 }
8099}
8100
8101static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8102 struct bpf_reg_state *src_reg)
8103{
8104 u32 umax_val = src_reg->u32_max_value;
8105 u32 umin_val = src_reg->u32_min_value;
8106 /* u32 alu operation will zext upper bits */
8107 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8108
8109 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8110 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8111 /* Not required but being careful mark reg64 bounds as unknown so
8112 * that we are forced to pick them up from tnum and zext later and
8113 * if some path skips this step we are still safe.
8114 */
8115 __mark_reg64_unbounded(dst_reg);
8116 __update_reg32_bounds(dst_reg);
8117}
8118
8119static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8120 u64 umin_val, u64 umax_val)
8121{
8122 /* Special case <<32 because it is a common compiler pattern to sign
8123 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8124 * positive we know this shift will also be positive so we can track
8125 * bounds correctly. Otherwise we lose all sign bit information except
8126 * what we can pick up from var_off. Perhaps we can generalize this
8127 * later to shifts of any length.
8128 */
8129 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8130 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8131 else
8132 dst_reg->smax_value = S64_MAX;
8133
8134 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8135 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8136 else
8137 dst_reg->smin_value = S64_MIN;
8138
07cd2631
JF
8139 /* If we might shift our top bit out, then we know nothing */
8140 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8141 dst_reg->umin_value = 0;
8142 dst_reg->umax_value = U64_MAX;
8143 } else {
8144 dst_reg->umin_value <<= umin_val;
8145 dst_reg->umax_value <<= umax_val;
8146 }
3f50f132
JF
8147}
8148
8149static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8150 struct bpf_reg_state *src_reg)
8151{
8152 u64 umax_val = src_reg->umax_value;
8153 u64 umin_val = src_reg->umin_value;
8154
8155 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
8156 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8157 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8158
07cd2631
JF
8159 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8160 /* We may learn something more from the var_off */
8161 __update_reg_bounds(dst_reg);
8162}
8163
3f50f132
JF
8164static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8165 struct bpf_reg_state *src_reg)
8166{
8167 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8168 u32 umax_val = src_reg->u32_max_value;
8169 u32 umin_val = src_reg->u32_min_value;
8170
8171 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8172 * be negative, then either:
8173 * 1) src_reg might be zero, so the sign bit of the result is
8174 * unknown, so we lose our signed bounds
8175 * 2) it's known negative, thus the unsigned bounds capture the
8176 * signed bounds
8177 * 3) the signed bounds cross zero, so they tell us nothing
8178 * about the result
8179 * If the value in dst_reg is known nonnegative, then again the
18b24d78 8180 * unsigned bounds capture the signed bounds.
3f50f132
JF
8181 * Thus, in all cases it suffices to blow away our signed bounds
8182 * and rely on inferring new ones from the unsigned bounds and
8183 * var_off of the result.
8184 */
8185 dst_reg->s32_min_value = S32_MIN;
8186 dst_reg->s32_max_value = S32_MAX;
8187
8188 dst_reg->var_off = tnum_rshift(subreg, umin_val);
8189 dst_reg->u32_min_value >>= umax_val;
8190 dst_reg->u32_max_value >>= umin_val;
8191
8192 __mark_reg64_unbounded(dst_reg);
8193 __update_reg32_bounds(dst_reg);
8194}
8195
07cd2631
JF
8196static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8197 struct bpf_reg_state *src_reg)
8198{
8199 u64 umax_val = src_reg->umax_value;
8200 u64 umin_val = src_reg->umin_value;
8201
8202 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8203 * be negative, then either:
8204 * 1) src_reg might be zero, so the sign bit of the result is
8205 * unknown, so we lose our signed bounds
8206 * 2) it's known negative, thus the unsigned bounds capture the
8207 * signed bounds
8208 * 3) the signed bounds cross zero, so they tell us nothing
8209 * about the result
8210 * If the value in dst_reg is known nonnegative, then again the
18b24d78 8211 * unsigned bounds capture the signed bounds.
07cd2631
JF
8212 * Thus, in all cases it suffices to blow away our signed bounds
8213 * and rely on inferring new ones from the unsigned bounds and
8214 * var_off of the result.
8215 */
8216 dst_reg->smin_value = S64_MIN;
8217 dst_reg->smax_value = S64_MAX;
8218 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8219 dst_reg->umin_value >>= umax_val;
8220 dst_reg->umax_value >>= umin_val;
3f50f132
JF
8221
8222 /* Its not easy to operate on alu32 bounds here because it depends
8223 * on bits being shifted in. Take easy way out and mark unbounded
8224 * so we can recalculate later from tnum.
8225 */
8226 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
8227 __update_reg_bounds(dst_reg);
8228}
8229
3f50f132
JF
8230static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8231 struct bpf_reg_state *src_reg)
07cd2631 8232{
3f50f132 8233 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
8234
8235 /* Upon reaching here, src_known is true and
8236 * umax_val is equal to umin_val.
8237 */
3f50f132
JF
8238 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8239 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 8240
3f50f132
JF
8241 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8242
8243 /* blow away the dst_reg umin_value/umax_value and rely on
8244 * dst_reg var_off to refine the result.
8245 */
8246 dst_reg->u32_min_value = 0;
8247 dst_reg->u32_max_value = U32_MAX;
8248
8249 __mark_reg64_unbounded(dst_reg);
8250 __update_reg32_bounds(dst_reg);
8251}
8252
8253static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8254 struct bpf_reg_state *src_reg)
8255{
8256 u64 umin_val = src_reg->umin_value;
8257
8258 /* Upon reaching here, src_known is true and umax_val is equal
8259 * to umin_val.
8260 */
8261 dst_reg->smin_value >>= umin_val;
8262 dst_reg->smax_value >>= umin_val;
8263
8264 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
8265
8266 /* blow away the dst_reg umin_value/umax_value and rely on
8267 * dst_reg var_off to refine the result.
8268 */
8269 dst_reg->umin_value = 0;
8270 dst_reg->umax_value = U64_MAX;
3f50f132
JF
8271
8272 /* Its not easy to operate on alu32 bounds here because it depends
8273 * on bits being shifted in from upper 32-bits. Take easy way out
8274 * and mark unbounded so we can recalculate later from tnum.
8275 */
8276 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
8277 __update_reg_bounds(dst_reg);
8278}
8279
468f6eaf
JH
8280/* WARNING: This function does calculations on 64-bit values, but the actual
8281 * execution may occur on 32-bit values. Therefore, things like bitshifts
8282 * need extra checks in the 32-bit case.
8283 */
f1174f77
EC
8284static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8285 struct bpf_insn *insn,
8286 struct bpf_reg_state *dst_reg,
8287 struct bpf_reg_state src_reg)
969bf05e 8288{
638f5b90 8289 struct bpf_reg_state *regs = cur_regs(env);
48461135 8290 u8 opcode = BPF_OP(insn->code);
b0b3fb67 8291 bool src_known;
b03c9f9f
EC
8292 s64 smin_val, smax_val;
8293 u64 umin_val, umax_val;
3f50f132
JF
8294 s32 s32_min_val, s32_max_val;
8295 u32 u32_min_val, u32_max_val;
468f6eaf 8296 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 8297 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 8298 int ret;
b799207e 8299
b03c9f9f
EC
8300 smin_val = src_reg.smin_value;
8301 smax_val = src_reg.smax_value;
8302 umin_val = src_reg.umin_value;
8303 umax_val = src_reg.umax_value;
f23cc643 8304
3f50f132
JF
8305 s32_min_val = src_reg.s32_min_value;
8306 s32_max_val = src_reg.s32_max_value;
8307 u32_min_val = src_reg.u32_min_value;
8308 u32_max_val = src_reg.u32_max_value;
8309
8310 if (alu32) {
8311 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
8312 if ((src_known &&
8313 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8314 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8315 /* Taint dst register if offset had invalid bounds
8316 * derived from e.g. dead branches.
8317 */
8318 __mark_reg_unknown(env, dst_reg);
8319 return 0;
8320 }
8321 } else {
8322 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
8323 if ((src_known &&
8324 (smin_val != smax_val || umin_val != umax_val)) ||
8325 smin_val > smax_val || umin_val > umax_val) {
8326 /* Taint dst register if offset had invalid bounds
8327 * derived from e.g. dead branches.
8328 */
8329 __mark_reg_unknown(env, dst_reg);
8330 return 0;
8331 }
6f16101e
DB
8332 }
8333
bb7f0f98
AS
8334 if (!src_known &&
8335 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8336 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8337 return 0;
8338 }
8339
f5288193
DB
8340 if (sanitize_needed(opcode)) {
8341 ret = sanitize_val_alu(env, insn);
8342 if (ret < 0)
8343 return sanitize_err(env, insn, ret, NULL, NULL);
8344 }
8345
3f50f132
JF
8346 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8347 * There are two classes of instructions: The first class we track both
8348 * alu32 and alu64 sign/unsigned bounds independently this provides the
8349 * greatest amount of precision when alu operations are mixed with jmp32
8350 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8351 * and BPF_OR. This is possible because these ops have fairly easy to
8352 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8353 * See alu32 verifier tests for examples. The second class of
8354 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8355 * with regards to tracking sign/unsigned bounds because the bits may
8356 * cross subreg boundaries in the alu64 case. When this happens we mark
8357 * the reg unbounded in the subreg bound space and use the resulting
8358 * tnum to calculate an approximation of the sign/unsigned bounds.
8359 */
48461135
JB
8360 switch (opcode) {
8361 case BPF_ADD:
3f50f132 8362 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 8363 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 8364 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
8365 break;
8366 case BPF_SUB:
3f50f132 8367 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 8368 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 8369 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
8370 break;
8371 case BPF_MUL:
3f50f132
JF
8372 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8373 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 8374 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
8375 break;
8376 case BPF_AND:
3f50f132
JF
8377 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8378 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 8379 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
8380 break;
8381 case BPF_OR:
3f50f132
JF
8382 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8383 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 8384 scalar_min_max_or(dst_reg, &src_reg);
48461135 8385 break;
2921c90d
YS
8386 case BPF_XOR:
8387 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8388 scalar32_min_max_xor(dst_reg, &src_reg);
8389 scalar_min_max_xor(dst_reg, &src_reg);
8390 break;
48461135 8391 case BPF_LSH:
468f6eaf
JH
8392 if (umax_val >= insn_bitness) {
8393 /* Shifts greater than 31 or 63 are undefined.
8394 * This includes shifts by a negative number.
b03c9f9f 8395 */
61bd5218 8396 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8397 break;
8398 }
3f50f132
JF
8399 if (alu32)
8400 scalar32_min_max_lsh(dst_reg, &src_reg);
8401 else
8402 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
8403 break;
8404 case BPF_RSH:
468f6eaf
JH
8405 if (umax_val >= insn_bitness) {
8406 /* Shifts greater than 31 or 63 are undefined.
8407 * This includes shifts by a negative number.
b03c9f9f 8408 */
61bd5218 8409 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8410 break;
8411 }
3f50f132
JF
8412 if (alu32)
8413 scalar32_min_max_rsh(dst_reg, &src_reg);
8414 else
8415 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 8416 break;
9cbe1f5a
YS
8417 case BPF_ARSH:
8418 if (umax_val >= insn_bitness) {
8419 /* Shifts greater than 31 or 63 are undefined.
8420 * This includes shifts by a negative number.
8421 */
8422 mark_reg_unknown(env, regs, insn->dst_reg);
8423 break;
8424 }
3f50f132
JF
8425 if (alu32)
8426 scalar32_min_max_arsh(dst_reg, &src_reg);
8427 else
8428 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 8429 break;
48461135 8430 default:
61bd5218 8431 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
8432 break;
8433 }
8434
3f50f132
JF
8435 /* ALU32 ops are zero extended into 64bit register */
8436 if (alu32)
8437 zext_32_to_64(dst_reg);
468f6eaf 8438
294f2fc6 8439 __update_reg_bounds(dst_reg);
b03c9f9f
EC
8440 __reg_deduce_bounds(dst_reg);
8441 __reg_bound_offset(dst_reg);
f1174f77
EC
8442 return 0;
8443}
8444
8445/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8446 * and var_off.
8447 */
8448static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8449 struct bpf_insn *insn)
8450{
f4d7e40a
AS
8451 struct bpf_verifier_state *vstate = env->cur_state;
8452 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8453 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
8454 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8455 u8 opcode = BPF_OP(insn->code);
b5dc0163 8456 int err;
f1174f77
EC
8457
8458 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
8459 src_reg = NULL;
8460 if (dst_reg->type != SCALAR_VALUE)
8461 ptr_reg = dst_reg;
75748837
AS
8462 else
8463 /* Make sure ID is cleared otherwise dst_reg min/max could be
8464 * incorrectly propagated into other registers by find_equal_scalars()
8465 */
8466 dst_reg->id = 0;
f1174f77
EC
8467 if (BPF_SRC(insn->code) == BPF_X) {
8468 src_reg = &regs[insn->src_reg];
f1174f77
EC
8469 if (src_reg->type != SCALAR_VALUE) {
8470 if (dst_reg->type != SCALAR_VALUE) {
8471 /* Combining two pointers by any ALU op yields
82abbf8d
AS
8472 * an arbitrary scalar. Disallow all math except
8473 * pointer subtraction
f1174f77 8474 */
dd066823 8475 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
8476 mark_reg_unknown(env, regs, insn->dst_reg);
8477 return 0;
f1174f77 8478 }
82abbf8d
AS
8479 verbose(env, "R%d pointer %s pointer prohibited\n",
8480 insn->dst_reg,
8481 bpf_alu_string[opcode >> 4]);
8482 return -EACCES;
f1174f77
EC
8483 } else {
8484 /* scalar += pointer
8485 * This is legal, but we have to reverse our
8486 * src/dest handling in computing the range
8487 */
b5dc0163
AS
8488 err = mark_chain_precision(env, insn->dst_reg);
8489 if (err)
8490 return err;
82abbf8d
AS
8491 return adjust_ptr_min_max_vals(env, insn,
8492 src_reg, dst_reg);
f1174f77
EC
8493 }
8494 } else if (ptr_reg) {
8495 /* pointer += scalar */
b5dc0163
AS
8496 err = mark_chain_precision(env, insn->src_reg);
8497 if (err)
8498 return err;
82abbf8d
AS
8499 return adjust_ptr_min_max_vals(env, insn,
8500 dst_reg, src_reg);
f1174f77
EC
8501 }
8502 } else {
8503 /* Pretend the src is a reg with a known value, since we only
8504 * need to be able to read from this state.
8505 */
8506 off_reg.type = SCALAR_VALUE;
b03c9f9f 8507 __mark_reg_known(&off_reg, insn->imm);
f1174f77 8508 src_reg = &off_reg;
82abbf8d
AS
8509 if (ptr_reg) /* pointer += K */
8510 return adjust_ptr_min_max_vals(env, insn,
8511 ptr_reg, src_reg);
f1174f77
EC
8512 }
8513
8514 /* Got here implies adding two SCALAR_VALUEs */
8515 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 8516 print_verifier_state(env, state, true);
61bd5218 8517 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
8518 return -EINVAL;
8519 }
8520 if (WARN_ON(!src_reg)) {
0f55f9ed 8521 print_verifier_state(env, state, true);
61bd5218 8522 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
8523 return -EINVAL;
8524 }
8525 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
8526}
8527
17a52670 8528/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 8529static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8530{
638f5b90 8531 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
8532 u8 opcode = BPF_OP(insn->code);
8533 int err;
8534
8535 if (opcode == BPF_END || opcode == BPF_NEG) {
8536 if (opcode == BPF_NEG) {
8537 if (BPF_SRC(insn->code) != 0 ||
8538 insn->src_reg != BPF_REG_0 ||
8539 insn->off != 0 || insn->imm != 0) {
61bd5218 8540 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
8541 return -EINVAL;
8542 }
8543 } else {
8544 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
8545 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8546 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 8547 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
8548 return -EINVAL;
8549 }
8550 }
8551
8552 /* check src operand */
dc503a8a 8553 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8554 if (err)
8555 return err;
8556
1be7f75d 8557 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 8558 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
8559 insn->dst_reg);
8560 return -EACCES;
8561 }
8562
17a52670 8563 /* check dest operand */
dc503a8a 8564 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8565 if (err)
8566 return err;
8567
8568 } else if (opcode == BPF_MOV) {
8569
8570 if (BPF_SRC(insn->code) == BPF_X) {
8571 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8572 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8573 return -EINVAL;
8574 }
8575
8576 /* check src operand */
dc503a8a 8577 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8578 if (err)
8579 return err;
8580 } else {
8581 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8582 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8583 return -EINVAL;
8584 }
8585 }
8586
fbeb1603
AF
8587 /* check dest operand, mark as required later */
8588 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8589 if (err)
8590 return err;
8591
8592 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
8593 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8594 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8595
17a52670
AS
8596 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8597 /* case: R1 = R2
8598 * copy register state to dest reg
8599 */
75748837
AS
8600 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8601 /* Assign src and dst registers the same ID
8602 * that will be used by find_equal_scalars()
8603 * to propagate min/max range.
8604 */
8605 src_reg->id = ++env->id_gen;
e434b8cd
JW
8606 *dst_reg = *src_reg;
8607 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8608 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 8609 } else {
f1174f77 8610 /* R1 = (u32) R2 */
1be7f75d 8611 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
8612 verbose(env,
8613 "R%d partial copy of pointer\n",
1be7f75d
AS
8614 insn->src_reg);
8615 return -EACCES;
e434b8cd
JW
8616 } else if (src_reg->type == SCALAR_VALUE) {
8617 *dst_reg = *src_reg;
75748837
AS
8618 /* Make sure ID is cleared otherwise
8619 * dst_reg min/max could be incorrectly
8620 * propagated into src_reg by find_equal_scalars()
8621 */
8622 dst_reg->id = 0;
e434b8cd 8623 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8624 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
8625 } else {
8626 mark_reg_unknown(env, regs,
8627 insn->dst_reg);
1be7f75d 8628 }
3f50f132 8629 zext_32_to_64(dst_reg);
3cf2b61e
DB
8630
8631 __update_reg_bounds(dst_reg);
8632 __reg_deduce_bounds(dst_reg);
8633 __reg_bound_offset(dst_reg);
17a52670
AS
8634 }
8635 } else {
8636 /* case: R = imm
8637 * remember the value we stored into this reg
8638 */
fbeb1603
AF
8639 /* clear any state __mark_reg_known doesn't set */
8640 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 8641 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
8642 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8643 __mark_reg_known(regs + insn->dst_reg,
8644 insn->imm);
8645 } else {
8646 __mark_reg_known(regs + insn->dst_reg,
8647 (u32)insn->imm);
8648 }
17a52670
AS
8649 }
8650
8651 } else if (opcode > BPF_END) {
61bd5218 8652 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
8653 return -EINVAL;
8654
8655 } else { /* all other ALU ops: and, sub, xor, add, ... */
8656
17a52670
AS
8657 if (BPF_SRC(insn->code) == BPF_X) {
8658 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8659 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8660 return -EINVAL;
8661 }
8662 /* check src1 operand */
dc503a8a 8663 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8664 if (err)
8665 return err;
8666 } else {
8667 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8668 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8669 return -EINVAL;
8670 }
8671 }
8672
8673 /* check src2 operand */
dc503a8a 8674 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8675 if (err)
8676 return err;
8677
8678 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8679 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 8680 verbose(env, "div by zero\n");
17a52670
AS
8681 return -EINVAL;
8682 }
8683
229394e8
RV
8684 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8685 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8686 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8687
8688 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 8689 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
8690 return -EINVAL;
8691 }
8692 }
8693
1a0dc1ac 8694 /* check dest operand */
dc503a8a 8695 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
8696 if (err)
8697 return err;
8698
f1174f77 8699 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
8700 }
8701
8702 return 0;
8703}
8704
c6a9efa1
PC
8705static void __find_good_pkt_pointers(struct bpf_func_state *state,
8706 struct bpf_reg_state *dst_reg,
6d94e741 8707 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
8708{
8709 struct bpf_reg_state *reg;
8710 int i;
8711
8712 for (i = 0; i < MAX_BPF_REG; i++) {
8713 reg = &state->regs[i];
8714 if (reg->type == type && reg->id == dst_reg->id)
8715 /* keep the maximum range already checked */
8716 reg->range = max(reg->range, new_range);
8717 }
8718
8719 bpf_for_each_spilled_reg(i, state, reg) {
8720 if (!reg)
8721 continue;
8722 if (reg->type == type && reg->id == dst_reg->id)
8723 reg->range = max(reg->range, new_range);
8724 }
8725}
8726
f4d7e40a 8727static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 8728 struct bpf_reg_state *dst_reg,
f8ddadc4 8729 enum bpf_reg_type type,
fb2a311a 8730 bool range_right_open)
969bf05e 8731{
6d94e741 8732 int new_range, i;
2d2be8ca 8733
fb2a311a
DB
8734 if (dst_reg->off < 0 ||
8735 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
8736 /* This doesn't give us any range */
8737 return;
8738
b03c9f9f
EC
8739 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8740 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
8741 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8742 * than pkt_end, but that's because it's also less than pkt.
8743 */
8744 return;
8745
fb2a311a
DB
8746 new_range = dst_reg->off;
8747 if (range_right_open)
2fa7d94a 8748 new_range++;
fb2a311a
DB
8749
8750 /* Examples for register markings:
2d2be8ca 8751 *
fb2a311a 8752 * pkt_data in dst register:
2d2be8ca
DB
8753 *
8754 * r2 = r3;
8755 * r2 += 8;
8756 * if (r2 > pkt_end) goto <handle exception>
8757 * <access okay>
8758 *
b4e432f1
DB
8759 * r2 = r3;
8760 * r2 += 8;
8761 * if (r2 < pkt_end) goto <access okay>
8762 * <handle exception>
8763 *
2d2be8ca
DB
8764 * Where:
8765 * r2 == dst_reg, pkt_end == src_reg
8766 * r2=pkt(id=n,off=8,r=0)
8767 * r3=pkt(id=n,off=0,r=0)
8768 *
fb2a311a 8769 * pkt_data in src register:
2d2be8ca
DB
8770 *
8771 * r2 = r3;
8772 * r2 += 8;
8773 * if (pkt_end >= r2) goto <access okay>
8774 * <handle exception>
8775 *
b4e432f1
DB
8776 * r2 = r3;
8777 * r2 += 8;
8778 * if (pkt_end <= r2) goto <handle exception>
8779 * <access okay>
8780 *
2d2be8ca
DB
8781 * Where:
8782 * pkt_end == dst_reg, r2 == src_reg
8783 * r2=pkt(id=n,off=8,r=0)
8784 * r3=pkt(id=n,off=0,r=0)
8785 *
8786 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8787 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8788 * and [r3, r3 + 8-1) respectively is safe to access depending on
8789 * the check.
969bf05e 8790 */
2d2be8ca 8791
f1174f77
EC
8792 /* If our ids match, then we must have the same max_value. And we
8793 * don't care about the other reg's fixed offset, since if it's too big
8794 * the range won't allow anything.
8795 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8796 */
c6a9efa1
PC
8797 for (i = 0; i <= vstate->curframe; i++)
8798 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8799 new_range);
969bf05e
AS
8800}
8801
3f50f132 8802static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8803{
3f50f132
JF
8804 struct tnum subreg = tnum_subreg(reg->var_off);
8805 s32 sval = (s32)val;
a72dafaf 8806
3f50f132
JF
8807 switch (opcode) {
8808 case BPF_JEQ:
8809 if (tnum_is_const(subreg))
8810 return !!tnum_equals_const(subreg, val);
8811 break;
8812 case BPF_JNE:
8813 if (tnum_is_const(subreg))
8814 return !tnum_equals_const(subreg, val);
8815 break;
8816 case BPF_JSET:
8817 if ((~subreg.mask & subreg.value) & val)
8818 return 1;
8819 if (!((subreg.mask | subreg.value) & val))
8820 return 0;
8821 break;
8822 case BPF_JGT:
8823 if (reg->u32_min_value > val)
8824 return 1;
8825 else if (reg->u32_max_value <= val)
8826 return 0;
8827 break;
8828 case BPF_JSGT:
8829 if (reg->s32_min_value > sval)
8830 return 1;
ee114dd6 8831 else if (reg->s32_max_value <= sval)
3f50f132
JF
8832 return 0;
8833 break;
8834 case BPF_JLT:
8835 if (reg->u32_max_value < val)
8836 return 1;
8837 else if (reg->u32_min_value >= val)
8838 return 0;
8839 break;
8840 case BPF_JSLT:
8841 if (reg->s32_max_value < sval)
8842 return 1;
8843 else if (reg->s32_min_value >= sval)
8844 return 0;
8845 break;
8846 case BPF_JGE:
8847 if (reg->u32_min_value >= val)
8848 return 1;
8849 else if (reg->u32_max_value < val)
8850 return 0;
8851 break;
8852 case BPF_JSGE:
8853 if (reg->s32_min_value >= sval)
8854 return 1;
8855 else if (reg->s32_max_value < sval)
8856 return 0;
8857 break;
8858 case BPF_JLE:
8859 if (reg->u32_max_value <= val)
8860 return 1;
8861 else if (reg->u32_min_value > val)
8862 return 0;
8863 break;
8864 case BPF_JSLE:
8865 if (reg->s32_max_value <= sval)
8866 return 1;
8867 else if (reg->s32_min_value > sval)
8868 return 0;
8869 break;
8870 }
4f7b3e82 8871
3f50f132
JF
8872 return -1;
8873}
092ed096 8874
3f50f132
JF
8875
8876static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8877{
8878 s64 sval = (s64)val;
a72dafaf 8879
4f7b3e82
AS
8880 switch (opcode) {
8881 case BPF_JEQ:
8882 if (tnum_is_const(reg->var_off))
8883 return !!tnum_equals_const(reg->var_off, val);
8884 break;
8885 case BPF_JNE:
8886 if (tnum_is_const(reg->var_off))
8887 return !tnum_equals_const(reg->var_off, val);
8888 break;
960ea056
JK
8889 case BPF_JSET:
8890 if ((~reg->var_off.mask & reg->var_off.value) & val)
8891 return 1;
8892 if (!((reg->var_off.mask | reg->var_off.value) & val))
8893 return 0;
8894 break;
4f7b3e82
AS
8895 case BPF_JGT:
8896 if (reg->umin_value > val)
8897 return 1;
8898 else if (reg->umax_value <= val)
8899 return 0;
8900 break;
8901 case BPF_JSGT:
a72dafaf 8902 if (reg->smin_value > sval)
4f7b3e82 8903 return 1;
ee114dd6 8904 else if (reg->smax_value <= sval)
4f7b3e82
AS
8905 return 0;
8906 break;
8907 case BPF_JLT:
8908 if (reg->umax_value < val)
8909 return 1;
8910 else if (reg->umin_value >= val)
8911 return 0;
8912 break;
8913 case BPF_JSLT:
a72dafaf 8914 if (reg->smax_value < sval)
4f7b3e82 8915 return 1;
a72dafaf 8916 else if (reg->smin_value >= sval)
4f7b3e82
AS
8917 return 0;
8918 break;
8919 case BPF_JGE:
8920 if (reg->umin_value >= val)
8921 return 1;
8922 else if (reg->umax_value < val)
8923 return 0;
8924 break;
8925 case BPF_JSGE:
a72dafaf 8926 if (reg->smin_value >= sval)
4f7b3e82 8927 return 1;
a72dafaf 8928 else if (reg->smax_value < sval)
4f7b3e82
AS
8929 return 0;
8930 break;
8931 case BPF_JLE:
8932 if (reg->umax_value <= val)
8933 return 1;
8934 else if (reg->umin_value > val)
8935 return 0;
8936 break;
8937 case BPF_JSLE:
a72dafaf 8938 if (reg->smax_value <= sval)
4f7b3e82 8939 return 1;
a72dafaf 8940 else if (reg->smin_value > sval)
4f7b3e82
AS
8941 return 0;
8942 break;
8943 }
8944
8945 return -1;
8946}
8947
3f50f132
JF
8948/* compute branch direction of the expression "if (reg opcode val) goto target;"
8949 * and return:
8950 * 1 - branch will be taken and "goto target" will be executed
8951 * 0 - branch will not be taken and fall-through to next insn
8952 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8953 * range [0,10]
604dca5e 8954 */
3f50f132
JF
8955static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8956 bool is_jmp32)
604dca5e 8957{
cac616db
JF
8958 if (__is_pointer_value(false, reg)) {
8959 if (!reg_type_not_null(reg->type))
8960 return -1;
8961
8962 /* If pointer is valid tests against zero will fail so we can
8963 * use this to direct branch taken.
8964 */
8965 if (val != 0)
8966 return -1;
8967
8968 switch (opcode) {
8969 case BPF_JEQ:
8970 return 0;
8971 case BPF_JNE:
8972 return 1;
8973 default:
8974 return -1;
8975 }
8976 }
604dca5e 8977
3f50f132
JF
8978 if (is_jmp32)
8979 return is_branch32_taken(reg, val, opcode);
8980 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8981}
8982
6d94e741
AS
8983static int flip_opcode(u32 opcode)
8984{
8985 /* How can we transform "a <op> b" into "b <op> a"? */
8986 static const u8 opcode_flip[16] = {
8987 /* these stay the same */
8988 [BPF_JEQ >> 4] = BPF_JEQ,
8989 [BPF_JNE >> 4] = BPF_JNE,
8990 [BPF_JSET >> 4] = BPF_JSET,
8991 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8992 [BPF_JGE >> 4] = BPF_JLE,
8993 [BPF_JGT >> 4] = BPF_JLT,
8994 [BPF_JLE >> 4] = BPF_JGE,
8995 [BPF_JLT >> 4] = BPF_JGT,
8996 [BPF_JSGE >> 4] = BPF_JSLE,
8997 [BPF_JSGT >> 4] = BPF_JSLT,
8998 [BPF_JSLE >> 4] = BPF_JSGE,
8999 [BPF_JSLT >> 4] = BPF_JSGT
9000 };
9001 return opcode_flip[opcode >> 4];
9002}
9003
9004static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9005 struct bpf_reg_state *src_reg,
9006 u8 opcode)
9007{
9008 struct bpf_reg_state *pkt;
9009
9010 if (src_reg->type == PTR_TO_PACKET_END) {
9011 pkt = dst_reg;
9012 } else if (dst_reg->type == PTR_TO_PACKET_END) {
9013 pkt = src_reg;
9014 opcode = flip_opcode(opcode);
9015 } else {
9016 return -1;
9017 }
9018
9019 if (pkt->range >= 0)
9020 return -1;
9021
9022 switch (opcode) {
9023 case BPF_JLE:
9024 /* pkt <= pkt_end */
9025 fallthrough;
9026 case BPF_JGT:
9027 /* pkt > pkt_end */
9028 if (pkt->range == BEYOND_PKT_END)
9029 /* pkt has at last one extra byte beyond pkt_end */
9030 return opcode == BPF_JGT;
9031 break;
9032 case BPF_JLT:
9033 /* pkt < pkt_end */
9034 fallthrough;
9035 case BPF_JGE:
9036 /* pkt >= pkt_end */
9037 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9038 return opcode == BPF_JGE;
9039 break;
9040 }
9041 return -1;
9042}
9043
48461135
JB
9044/* Adjusts the register min/max values in the case that the dst_reg is the
9045 * variable register that we are working on, and src_reg is a constant or we're
9046 * simply doing a BPF_K check.
f1174f77 9047 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
9048 */
9049static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
9050 struct bpf_reg_state *false_reg,
9051 u64 val, u32 val32,
092ed096 9052 u8 opcode, bool is_jmp32)
48461135 9053{
3f50f132
JF
9054 struct tnum false_32off = tnum_subreg(false_reg->var_off);
9055 struct tnum false_64off = false_reg->var_off;
9056 struct tnum true_32off = tnum_subreg(true_reg->var_off);
9057 struct tnum true_64off = true_reg->var_off;
9058 s64 sval = (s64)val;
9059 s32 sval32 = (s32)val32;
a72dafaf 9060
f1174f77
EC
9061 /* If the dst_reg is a pointer, we can't learn anything about its
9062 * variable offset from the compare (unless src_reg were a pointer into
9063 * the same object, but we don't bother with that.
9064 * Since false_reg and true_reg have the same type by construction, we
9065 * only need to check one of them for pointerness.
9066 */
9067 if (__is_pointer_value(false, false_reg))
9068 return;
4cabc5b1 9069
48461135
JB
9070 switch (opcode) {
9071 case BPF_JEQ:
48461135 9072 case BPF_JNE:
a72dafaf
JW
9073 {
9074 struct bpf_reg_state *reg =
9075 opcode == BPF_JEQ ? true_reg : false_reg;
9076
e688c3db
AS
9077 /* JEQ/JNE comparison doesn't change the register equivalence.
9078 * r1 = r2;
9079 * if (r1 == 42) goto label;
9080 * ...
9081 * label: // here both r1 and r2 are known to be 42.
9082 *
9083 * Hence when marking register as known preserve it's ID.
48461135 9084 */
3f50f132
JF
9085 if (is_jmp32)
9086 __mark_reg32_known(reg, val32);
9087 else
e688c3db 9088 ___mark_reg_known(reg, val);
48461135 9089 break;
a72dafaf 9090 }
960ea056 9091 case BPF_JSET:
3f50f132
JF
9092 if (is_jmp32) {
9093 false_32off = tnum_and(false_32off, tnum_const(~val32));
9094 if (is_power_of_2(val32))
9095 true_32off = tnum_or(true_32off,
9096 tnum_const(val32));
9097 } else {
9098 false_64off = tnum_and(false_64off, tnum_const(~val));
9099 if (is_power_of_2(val))
9100 true_64off = tnum_or(true_64off,
9101 tnum_const(val));
9102 }
960ea056 9103 break;
48461135 9104 case BPF_JGE:
a72dafaf
JW
9105 case BPF_JGT:
9106 {
3f50f132
JF
9107 if (is_jmp32) {
9108 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
9109 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9110
9111 false_reg->u32_max_value = min(false_reg->u32_max_value,
9112 false_umax);
9113 true_reg->u32_min_value = max(true_reg->u32_min_value,
9114 true_umin);
9115 } else {
9116 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
9117 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9118
9119 false_reg->umax_value = min(false_reg->umax_value, false_umax);
9120 true_reg->umin_value = max(true_reg->umin_value, true_umin);
9121 }
b03c9f9f 9122 break;
a72dafaf 9123 }
48461135 9124 case BPF_JSGE:
a72dafaf
JW
9125 case BPF_JSGT:
9126 {
3f50f132
JF
9127 if (is_jmp32) {
9128 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
9129 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 9130
3f50f132
JF
9131 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9132 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9133 } else {
9134 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
9135 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9136
9137 false_reg->smax_value = min(false_reg->smax_value, false_smax);
9138 true_reg->smin_value = max(true_reg->smin_value, true_smin);
9139 }
48461135 9140 break;
a72dafaf 9141 }
b4e432f1 9142 case BPF_JLE:
a72dafaf
JW
9143 case BPF_JLT:
9144 {
3f50f132
JF
9145 if (is_jmp32) {
9146 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
9147 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9148
9149 false_reg->u32_min_value = max(false_reg->u32_min_value,
9150 false_umin);
9151 true_reg->u32_max_value = min(true_reg->u32_max_value,
9152 true_umax);
9153 } else {
9154 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
9155 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9156
9157 false_reg->umin_value = max(false_reg->umin_value, false_umin);
9158 true_reg->umax_value = min(true_reg->umax_value, true_umax);
9159 }
b4e432f1 9160 break;
a72dafaf 9161 }
b4e432f1 9162 case BPF_JSLE:
a72dafaf
JW
9163 case BPF_JSLT:
9164 {
3f50f132
JF
9165 if (is_jmp32) {
9166 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
9167 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 9168
3f50f132
JF
9169 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9170 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9171 } else {
9172 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
9173 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9174
9175 false_reg->smin_value = max(false_reg->smin_value, false_smin);
9176 true_reg->smax_value = min(true_reg->smax_value, true_smax);
9177 }
b4e432f1 9178 break;
a72dafaf 9179 }
48461135 9180 default:
0fc31b10 9181 return;
48461135
JB
9182 }
9183
3f50f132
JF
9184 if (is_jmp32) {
9185 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9186 tnum_subreg(false_32off));
9187 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9188 tnum_subreg(true_32off));
9189 __reg_combine_32_into_64(false_reg);
9190 __reg_combine_32_into_64(true_reg);
9191 } else {
9192 false_reg->var_off = false_64off;
9193 true_reg->var_off = true_64off;
9194 __reg_combine_64_into_32(false_reg);
9195 __reg_combine_64_into_32(true_reg);
9196 }
48461135
JB
9197}
9198
f1174f77
EC
9199/* Same as above, but for the case that dst_reg holds a constant and src_reg is
9200 * the variable reg.
48461135
JB
9201 */
9202static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
9203 struct bpf_reg_state *false_reg,
9204 u64 val, u32 val32,
092ed096 9205 u8 opcode, bool is_jmp32)
48461135 9206{
6d94e741 9207 opcode = flip_opcode(opcode);
0fc31b10
JH
9208 /* This uses zero as "not present in table"; luckily the zero opcode,
9209 * BPF_JA, can't get here.
b03c9f9f 9210 */
0fc31b10 9211 if (opcode)
3f50f132 9212 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
9213}
9214
9215/* Regs are known to be equal, so intersect their min/max/var_off */
9216static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9217 struct bpf_reg_state *dst_reg)
9218{
b03c9f9f
EC
9219 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9220 dst_reg->umin_value);
9221 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9222 dst_reg->umax_value);
9223 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9224 dst_reg->smin_value);
9225 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9226 dst_reg->smax_value);
f1174f77
EC
9227 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9228 dst_reg->var_off);
b03c9f9f
EC
9229 /* We might have learned new bounds from the var_off. */
9230 __update_reg_bounds(src_reg);
9231 __update_reg_bounds(dst_reg);
9232 /* We might have learned something about the sign bit. */
9233 __reg_deduce_bounds(src_reg);
9234 __reg_deduce_bounds(dst_reg);
9235 /* We might have learned some bits from the bounds. */
9236 __reg_bound_offset(src_reg);
9237 __reg_bound_offset(dst_reg);
9238 /* Intersecting with the old var_off might have improved our bounds
9239 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
9240 * then new var_off is (0; 0x7f...fc) which improves our umax.
9241 */
9242 __update_reg_bounds(src_reg);
9243 __update_reg_bounds(dst_reg);
f1174f77
EC
9244}
9245
9246static void reg_combine_min_max(struct bpf_reg_state *true_src,
9247 struct bpf_reg_state *true_dst,
9248 struct bpf_reg_state *false_src,
9249 struct bpf_reg_state *false_dst,
9250 u8 opcode)
9251{
9252 switch (opcode) {
9253 case BPF_JEQ:
9254 __reg_combine_min_max(true_src, true_dst);
9255 break;
9256 case BPF_JNE:
9257 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 9258 break;
4cabc5b1 9259 }
48461135
JB
9260}
9261
fd978bf7
JS
9262static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9263 struct bpf_reg_state *reg, u32 id,
840b9615 9264 bool is_null)
57a09bf0 9265{
c25b2ae1 9266 if (type_may_be_null(reg->type) && reg->id == id &&
93c230e3 9267 !WARN_ON_ONCE(!reg->id)) {
b03c9f9f
EC
9268 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9269 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 9270 reg->off)) {
e60b0d12
DB
9271 /* Old offset (both fixed and variable parts) should
9272 * have been known-zero, because we don't allow pointer
9273 * arithmetic on pointers that might be NULL. If we
9274 * see this happening, don't convert the register.
9275 */
9276 return;
f1174f77
EC
9277 }
9278 if (is_null) {
9279 reg->type = SCALAR_VALUE;
1b986589
MKL
9280 /* We don't need id and ref_obj_id from this point
9281 * onwards anymore, thus we should better reset it,
9282 * so that state pruning has chances to take effect.
9283 */
9284 reg->id = 0;
9285 reg->ref_obj_id = 0;
4ddb7416
DB
9286
9287 return;
9288 }
9289
9290 mark_ptr_not_null_reg(reg);
9291
9292 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
9293 /* For not-NULL ptr, reg->ref_obj_id will be reset
9294 * in release_reg_references().
9295 *
9296 * reg->id is still used by spin_lock ptr. Other
9297 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
9298 */
9299 reg->id = 0;
56f668df 9300 }
57a09bf0
TG
9301 }
9302}
9303
c6a9efa1
PC
9304static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9305 bool is_null)
9306{
9307 struct bpf_reg_state *reg;
9308 int i;
9309
9310 for (i = 0; i < MAX_BPF_REG; i++)
9311 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9312
9313 bpf_for_each_spilled_reg(i, state, reg) {
9314 if (!reg)
9315 continue;
9316 mark_ptr_or_null_reg(state, reg, id, is_null);
9317 }
9318}
9319
57a09bf0
TG
9320/* The logic is similar to find_good_pkt_pointers(), both could eventually
9321 * be folded together at some point.
9322 */
840b9615
JS
9323static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9324 bool is_null)
57a09bf0 9325{
f4d7e40a 9326 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 9327 struct bpf_reg_state *regs = state->regs;
1b986589 9328 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 9329 u32 id = regs[regno].id;
c6a9efa1 9330 int i;
57a09bf0 9331
1b986589
MKL
9332 if (ref_obj_id && ref_obj_id == id && is_null)
9333 /* regs[regno] is in the " == NULL" branch.
9334 * No one could have freed the reference state before
9335 * doing the NULL check.
9336 */
9337 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9338
c6a9efa1
PC
9339 for (i = 0; i <= vstate->curframe; i++)
9340 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
9341}
9342
5beca081
DB
9343static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9344 struct bpf_reg_state *dst_reg,
9345 struct bpf_reg_state *src_reg,
9346 struct bpf_verifier_state *this_branch,
9347 struct bpf_verifier_state *other_branch)
9348{
9349 if (BPF_SRC(insn->code) != BPF_X)
9350 return false;
9351
092ed096
JW
9352 /* Pointers are always 64-bit. */
9353 if (BPF_CLASS(insn->code) == BPF_JMP32)
9354 return false;
9355
5beca081
DB
9356 switch (BPF_OP(insn->code)) {
9357 case BPF_JGT:
9358 if ((dst_reg->type == PTR_TO_PACKET &&
9359 src_reg->type == PTR_TO_PACKET_END) ||
9360 (dst_reg->type == PTR_TO_PACKET_META &&
9361 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9362 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9363 find_good_pkt_pointers(this_branch, dst_reg,
9364 dst_reg->type, false);
6d94e741 9365 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9366 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9367 src_reg->type == PTR_TO_PACKET) ||
9368 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9369 src_reg->type == PTR_TO_PACKET_META)) {
9370 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9371 find_good_pkt_pointers(other_branch, src_reg,
9372 src_reg->type, true);
6d94e741 9373 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9374 } else {
9375 return false;
9376 }
9377 break;
9378 case BPF_JLT:
9379 if ((dst_reg->type == PTR_TO_PACKET &&
9380 src_reg->type == PTR_TO_PACKET_END) ||
9381 (dst_reg->type == PTR_TO_PACKET_META &&
9382 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9383 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9384 find_good_pkt_pointers(other_branch, dst_reg,
9385 dst_reg->type, true);
6d94e741 9386 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
9387 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9388 src_reg->type == PTR_TO_PACKET) ||
9389 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9390 src_reg->type == PTR_TO_PACKET_META)) {
9391 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9392 find_good_pkt_pointers(this_branch, src_reg,
9393 src_reg->type, false);
6d94e741 9394 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
9395 } else {
9396 return false;
9397 }
9398 break;
9399 case BPF_JGE:
9400 if ((dst_reg->type == PTR_TO_PACKET &&
9401 src_reg->type == PTR_TO_PACKET_END) ||
9402 (dst_reg->type == PTR_TO_PACKET_META &&
9403 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9404 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9405 find_good_pkt_pointers(this_branch, dst_reg,
9406 dst_reg->type, true);
6d94e741 9407 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
9408 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9409 src_reg->type == PTR_TO_PACKET) ||
9410 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9411 src_reg->type == PTR_TO_PACKET_META)) {
9412 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9413 find_good_pkt_pointers(other_branch, src_reg,
9414 src_reg->type, false);
6d94e741 9415 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
9416 } else {
9417 return false;
9418 }
9419 break;
9420 case BPF_JLE:
9421 if ((dst_reg->type == PTR_TO_PACKET &&
9422 src_reg->type == PTR_TO_PACKET_END) ||
9423 (dst_reg->type == PTR_TO_PACKET_META &&
9424 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9425 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9426 find_good_pkt_pointers(other_branch, dst_reg,
9427 dst_reg->type, false);
6d94e741 9428 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
9429 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9430 src_reg->type == PTR_TO_PACKET) ||
9431 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9432 src_reg->type == PTR_TO_PACKET_META)) {
9433 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9434 find_good_pkt_pointers(this_branch, src_reg,
9435 src_reg->type, true);
6d94e741 9436 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
9437 } else {
9438 return false;
9439 }
9440 break;
9441 default:
9442 return false;
9443 }
9444
9445 return true;
9446}
9447
75748837
AS
9448static void find_equal_scalars(struct bpf_verifier_state *vstate,
9449 struct bpf_reg_state *known_reg)
9450{
9451 struct bpf_func_state *state;
9452 struct bpf_reg_state *reg;
9453 int i, j;
9454
9455 for (i = 0; i <= vstate->curframe; i++) {
9456 state = vstate->frame[i];
9457 for (j = 0; j < MAX_BPF_REG; j++) {
9458 reg = &state->regs[j];
9459 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9460 *reg = *known_reg;
9461 }
9462
9463 bpf_for_each_spilled_reg(j, state, reg) {
9464 if (!reg)
9465 continue;
9466 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9467 *reg = *known_reg;
9468 }
9469 }
9470}
9471
58e2af8b 9472static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
9473 struct bpf_insn *insn, int *insn_idx)
9474{
f4d7e40a
AS
9475 struct bpf_verifier_state *this_branch = env->cur_state;
9476 struct bpf_verifier_state *other_branch;
9477 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 9478 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 9479 u8 opcode = BPF_OP(insn->code);
092ed096 9480 bool is_jmp32;
fb8d251e 9481 int pred = -1;
17a52670
AS
9482 int err;
9483
092ed096
JW
9484 /* Only conditional jumps are expected to reach here. */
9485 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9486 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
9487 return -EINVAL;
9488 }
9489
9490 if (BPF_SRC(insn->code) == BPF_X) {
9491 if (insn->imm != 0) {
092ed096 9492 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9493 return -EINVAL;
9494 }
9495
9496 /* check src1 operand */
dc503a8a 9497 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9498 if (err)
9499 return err;
1be7f75d
AS
9500
9501 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 9502 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
9503 insn->src_reg);
9504 return -EACCES;
9505 }
fb8d251e 9506 src_reg = &regs[insn->src_reg];
17a52670
AS
9507 } else {
9508 if (insn->src_reg != BPF_REG_0) {
092ed096 9509 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9510 return -EINVAL;
9511 }
9512 }
9513
9514 /* check src2 operand */
dc503a8a 9515 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9516 if (err)
9517 return err;
9518
1a0dc1ac 9519 dst_reg = &regs[insn->dst_reg];
092ed096 9520 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 9521
3f50f132
JF
9522 if (BPF_SRC(insn->code) == BPF_K) {
9523 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9524 } else if (src_reg->type == SCALAR_VALUE &&
9525 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9526 pred = is_branch_taken(dst_reg,
9527 tnum_subreg(src_reg->var_off).value,
9528 opcode,
9529 is_jmp32);
9530 } else if (src_reg->type == SCALAR_VALUE &&
9531 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9532 pred = is_branch_taken(dst_reg,
9533 src_reg->var_off.value,
9534 opcode,
9535 is_jmp32);
6d94e741
AS
9536 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9537 reg_is_pkt_pointer_any(src_reg) &&
9538 !is_jmp32) {
9539 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
9540 }
9541
b5dc0163 9542 if (pred >= 0) {
cac616db
JF
9543 /* If we get here with a dst_reg pointer type it is because
9544 * above is_branch_taken() special cased the 0 comparison.
9545 */
9546 if (!__is_pointer_value(false, dst_reg))
9547 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
9548 if (BPF_SRC(insn->code) == BPF_X && !err &&
9549 !__is_pointer_value(false, src_reg))
b5dc0163
AS
9550 err = mark_chain_precision(env, insn->src_reg);
9551 if (err)
9552 return err;
9553 }
9183671a 9554
fb8d251e 9555 if (pred == 1) {
9183671a
DB
9556 /* Only follow the goto, ignore fall-through. If needed, push
9557 * the fall-through branch for simulation under speculative
9558 * execution.
9559 */
9560 if (!env->bypass_spec_v1 &&
9561 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9562 *insn_idx))
9563 return -EFAULT;
fb8d251e
AS
9564 *insn_idx += insn->off;
9565 return 0;
9566 } else if (pred == 0) {
9183671a
DB
9567 /* Only follow the fall-through branch, since that's where the
9568 * program will go. If needed, push the goto branch for
9569 * simulation under speculative execution.
fb8d251e 9570 */
9183671a
DB
9571 if (!env->bypass_spec_v1 &&
9572 !sanitize_speculative_path(env, insn,
9573 *insn_idx + insn->off + 1,
9574 *insn_idx))
9575 return -EFAULT;
fb8d251e 9576 return 0;
17a52670
AS
9577 }
9578
979d63d5
DB
9579 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9580 false);
17a52670
AS
9581 if (!other_branch)
9582 return -EFAULT;
f4d7e40a 9583 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 9584
48461135
JB
9585 /* detect if we are comparing against a constant value so we can adjust
9586 * our min/max values for our dst register.
f1174f77
EC
9587 * this is only legit if both are scalars (or pointers to the same
9588 * object, I suppose, but we don't support that right now), because
9589 * otherwise the different base pointers mean the offsets aren't
9590 * comparable.
48461135
JB
9591 */
9592 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 9593 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 9594
f1174f77 9595 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
9596 src_reg->type == SCALAR_VALUE) {
9597 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
9598 (is_jmp32 &&
9599 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 9600 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 9601 dst_reg,
3f50f132
JF
9602 src_reg->var_off.value,
9603 tnum_subreg(src_reg->var_off).value,
092ed096
JW
9604 opcode, is_jmp32);
9605 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
9606 (is_jmp32 &&
9607 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 9608 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 9609 src_reg,
3f50f132
JF
9610 dst_reg->var_off.value,
9611 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
9612 opcode, is_jmp32);
9613 else if (!is_jmp32 &&
9614 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 9615 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
9616 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9617 &other_branch_regs[insn->dst_reg],
092ed096 9618 src_reg, dst_reg, opcode);
e688c3db
AS
9619 if (src_reg->id &&
9620 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
9621 find_equal_scalars(this_branch, src_reg);
9622 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9623 }
9624
f1174f77
EC
9625 }
9626 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 9627 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
9628 dst_reg, insn->imm, (u32)insn->imm,
9629 opcode, is_jmp32);
48461135
JB
9630 }
9631
e688c3db
AS
9632 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9633 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
9634 find_equal_scalars(this_branch, dst_reg);
9635 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9636 }
9637
092ed096
JW
9638 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9639 * NOTE: these optimizations below are related with pointer comparison
9640 * which will never be JMP32.
9641 */
9642 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 9643 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 9644 type_may_be_null(dst_reg->type)) {
840b9615 9645 /* Mark all identical registers in each branch as either
57a09bf0
TG
9646 * safe or unknown depending R == 0 or R != 0 conditional.
9647 */
840b9615
JS
9648 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9649 opcode == BPF_JNE);
9650 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9651 opcode == BPF_JEQ);
5beca081
DB
9652 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9653 this_branch, other_branch) &&
9654 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
9655 verbose(env, "R%d pointer comparison prohibited\n",
9656 insn->dst_reg);
1be7f75d 9657 return -EACCES;
17a52670 9658 }
06ee7115 9659 if (env->log.level & BPF_LOG_LEVEL)
2e576648 9660 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
9661 return 0;
9662}
9663
17a52670 9664/* verify BPF_LD_IMM64 instruction */
58e2af8b 9665static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9666{
d8eca5bb 9667 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 9668 struct bpf_reg_state *regs = cur_regs(env);
4976b718 9669 struct bpf_reg_state *dst_reg;
d8eca5bb 9670 struct bpf_map *map;
17a52670
AS
9671 int err;
9672
9673 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 9674 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
9675 return -EINVAL;
9676 }
9677 if (insn->off != 0) {
61bd5218 9678 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
9679 return -EINVAL;
9680 }
9681
dc503a8a 9682 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9683 if (err)
9684 return err;
9685
4976b718 9686 dst_reg = &regs[insn->dst_reg];
6b173873 9687 if (insn->src_reg == 0) {
6b173873
JK
9688 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9689
4976b718 9690 dst_reg->type = SCALAR_VALUE;
b03c9f9f 9691 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 9692 return 0;
6b173873 9693 }
17a52670 9694
d400a6cf
DB
9695 /* All special src_reg cases are listed below. From this point onwards
9696 * we either succeed and assign a corresponding dst_reg->type after
9697 * zeroing the offset, or fail and reject the program.
9698 */
9699 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 9700
d400a6cf 9701 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 9702 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 9703 switch (base_type(dst_reg->type)) {
4976b718
HL
9704 case PTR_TO_MEM:
9705 dst_reg->mem_size = aux->btf_var.mem_size;
9706 break;
9707 case PTR_TO_BTF_ID:
22dc4a0f 9708 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
9709 dst_reg->btf_id = aux->btf_var.btf_id;
9710 break;
9711 default:
9712 verbose(env, "bpf verifier is misconfigured\n");
9713 return -EFAULT;
9714 }
9715 return 0;
9716 }
9717
69c087ba
YS
9718 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9719 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
9720 u32 subprogno = find_subprog(env,
9721 env->insn_idx + insn->imm + 1);
69c087ba
YS
9722
9723 if (!aux->func_info) {
9724 verbose(env, "missing btf func_info\n");
9725 return -EINVAL;
9726 }
9727 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9728 verbose(env, "callback function not static\n");
9729 return -EINVAL;
9730 }
9731
9732 dst_reg->type = PTR_TO_FUNC;
9733 dst_reg->subprogno = subprogno;
9734 return 0;
9735 }
9736
d8eca5bb 9737 map = env->used_maps[aux->map_index];
4976b718 9738 dst_reg->map_ptr = map;
d8eca5bb 9739
387544bf
AS
9740 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9741 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
9742 dst_reg->type = PTR_TO_MAP_VALUE;
9743 dst_reg->off = aux->map_off;
d8eca5bb 9744 if (map_value_has_spin_lock(map))
4976b718 9745 dst_reg->id = ++env->id_gen;
387544bf
AS
9746 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9747 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 9748 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
9749 } else {
9750 verbose(env, "bpf verifier is misconfigured\n");
9751 return -EINVAL;
9752 }
17a52670 9753
17a52670
AS
9754 return 0;
9755}
9756
96be4325
DB
9757static bool may_access_skb(enum bpf_prog_type type)
9758{
9759 switch (type) {
9760 case BPF_PROG_TYPE_SOCKET_FILTER:
9761 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 9762 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
9763 return true;
9764 default:
9765 return false;
9766 }
9767}
9768
ddd872bc
AS
9769/* verify safety of LD_ABS|LD_IND instructions:
9770 * - they can only appear in the programs where ctx == skb
9771 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9772 * preserve R6-R9, and store return value into R0
9773 *
9774 * Implicit input:
9775 * ctx == skb == R6 == CTX
9776 *
9777 * Explicit input:
9778 * SRC == any register
9779 * IMM == 32-bit immediate
9780 *
9781 * Output:
9782 * R0 - 8/16/32-bit skb data converted to cpu endianness
9783 */
58e2af8b 9784static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9785{
638f5b90 9786 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9787 static const int ctx_reg = BPF_REG_6;
ddd872bc 9788 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9789 int i, err;
9790
7e40781c 9791 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9792 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9793 return -EINVAL;
9794 }
9795
e0cea7ce
DB
9796 if (!env->ops->gen_ld_abs) {
9797 verbose(env, "bpf verifier is misconfigured\n");
9798 return -EINVAL;
9799 }
9800
ddd872bc 9801 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9802 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9803 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9804 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9805 return -EINVAL;
9806 }
9807
9808 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9809 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9810 if (err)
9811 return err;
9812
fd978bf7
JS
9813 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9814 * gen_ld_abs() may terminate the program at runtime, leading to
9815 * reference leak.
9816 */
9817 err = check_reference_leak(env);
9818 if (err) {
9819 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9820 return err;
9821 }
9822
d83525ca
AS
9823 if (env->cur_state->active_spin_lock) {
9824 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9825 return -EINVAL;
9826 }
9827
6d4f151a 9828 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9829 verbose(env,
9830 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9831 return -EINVAL;
9832 }
9833
9834 if (mode == BPF_IND) {
9835 /* check explicit source operand */
dc503a8a 9836 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9837 if (err)
9838 return err;
9839 }
9840
be80a1d3 9841 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
9842 if (err < 0)
9843 return err;
9844
ddd872bc 9845 /* reset caller saved regs to unreadable */
dc503a8a 9846 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9847 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9848 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9849 }
ddd872bc
AS
9850
9851 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9852 * the value fetched from the packet.
9853 * Already marked as written above.
ddd872bc 9854 */
61bd5218 9855 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9856 /* ld_abs load up to 32-bit skb data. */
9857 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9858 return 0;
9859}
9860
390ee7e2
AS
9861static int check_return_code(struct bpf_verifier_env *env)
9862{
5cf1e914 9863 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9864 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9865 struct bpf_reg_state *reg;
9866 struct tnum range = tnum_range(0, 1);
7e40781c 9867 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9868 int err;
bfc6bb74
AS
9869 struct bpf_func_state *frame = env->cur_state->frame[0];
9870 const bool is_subprog = frame->subprogno;
27ae7997 9871
9e4e01df 9872 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9873 if (!is_subprog &&
9874 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9875 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9876 !prog->aux->attach_func_proto->type)
9877 return 0;
9878
8fb33b60 9879 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9880 * to return the value from eBPF program.
9881 * Make sure that it's readable at this time
9882 * of bpf_exit, which means that program wrote
9883 * something into it earlier
9884 */
9885 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9886 if (err)
9887 return err;
9888
9889 if (is_pointer_value(env, BPF_REG_0)) {
9890 verbose(env, "R0 leaks addr as return value\n");
9891 return -EACCES;
9892 }
390ee7e2 9893
f782e2c3 9894 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
9895
9896 if (frame->in_async_callback_fn) {
9897 /* enforce return zero from async callbacks like timer */
9898 if (reg->type != SCALAR_VALUE) {
9899 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 9900 reg_type_str(env, reg->type));
bfc6bb74
AS
9901 return -EINVAL;
9902 }
9903
9904 if (!tnum_in(tnum_const(0), reg->var_off)) {
9905 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9906 return -EINVAL;
9907 }
9908 return 0;
9909 }
9910
f782e2c3
DB
9911 if (is_subprog) {
9912 if (reg->type != SCALAR_VALUE) {
9913 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 9914 reg_type_str(env, reg->type));
f782e2c3
DB
9915 return -EINVAL;
9916 }
9917 return 0;
9918 }
9919
7e40781c 9920 switch (prog_type) {
983695fa
DB
9921 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9922 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9923 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9924 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9925 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9926 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9927 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9928 range = tnum_range(1, 1);
77241217
SF
9929 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9930 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9931 range = tnum_range(0, 3);
ed4ed404 9932 break;
390ee7e2 9933 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9934 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9935 range = tnum_range(0, 3);
9936 enforce_attach_type_range = tnum_range(2, 3);
9937 }
ed4ed404 9938 break;
390ee7e2
AS
9939 case BPF_PROG_TYPE_CGROUP_SOCK:
9940 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9941 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9942 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9943 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9944 break;
15ab09bd
AS
9945 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9946 if (!env->prog->aux->attach_btf_id)
9947 return 0;
9948 range = tnum_const(0);
9949 break;
15d83c4d 9950 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9951 switch (env->prog->expected_attach_type) {
9952 case BPF_TRACE_FENTRY:
9953 case BPF_TRACE_FEXIT:
9954 range = tnum_const(0);
9955 break;
9956 case BPF_TRACE_RAW_TP:
9957 case BPF_MODIFY_RETURN:
15d83c4d 9958 return 0;
2ec0616e
DB
9959 case BPF_TRACE_ITER:
9960 break;
e92888c7
YS
9961 default:
9962 return -ENOTSUPP;
9963 }
15d83c4d 9964 break;
e9ddbb77
JS
9965 case BPF_PROG_TYPE_SK_LOOKUP:
9966 range = tnum_range(SK_DROP, SK_PASS);
9967 break;
e92888c7
YS
9968 case BPF_PROG_TYPE_EXT:
9969 /* freplace program can return anything as its return value
9970 * depends on the to-be-replaced kernel func or bpf program.
9971 */
390ee7e2
AS
9972 default:
9973 return 0;
9974 }
9975
390ee7e2 9976 if (reg->type != SCALAR_VALUE) {
61bd5218 9977 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 9978 reg_type_str(env, reg->type));
390ee7e2
AS
9979 return -EINVAL;
9980 }
9981
9982 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9983 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9984 return -EINVAL;
9985 }
5cf1e914 9986
9987 if (!tnum_is_unknown(enforce_attach_type_range) &&
9988 tnum_in(enforce_attach_type_range, reg->var_off))
9989 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9990 return 0;
9991}
9992
475fb78f
AS
9993/* non-recursive DFS pseudo code
9994 * 1 procedure DFS-iterative(G,v):
9995 * 2 label v as discovered
9996 * 3 let S be a stack
9997 * 4 S.push(v)
9998 * 5 while S is not empty
9999 * 6 t <- S.pop()
10000 * 7 if t is what we're looking for:
10001 * 8 return t
10002 * 9 for all edges e in G.adjacentEdges(t) do
10003 * 10 if edge e is already labelled
10004 * 11 continue with the next edge
10005 * 12 w <- G.adjacentVertex(t,e)
10006 * 13 if vertex w is not discovered and not explored
10007 * 14 label e as tree-edge
10008 * 15 label w as discovered
10009 * 16 S.push(w)
10010 * 17 continue at 5
10011 * 18 else if vertex w is discovered
10012 * 19 label e as back-edge
10013 * 20 else
10014 * 21 // vertex w is explored
10015 * 22 label e as forward- or cross-edge
10016 * 23 label t as explored
10017 * 24 S.pop()
10018 *
10019 * convention:
10020 * 0x10 - discovered
10021 * 0x11 - discovered and fall-through edge labelled
10022 * 0x12 - discovered and fall-through and branch edges labelled
10023 * 0x20 - explored
10024 */
10025
10026enum {
10027 DISCOVERED = 0x10,
10028 EXPLORED = 0x20,
10029 FALLTHROUGH = 1,
10030 BRANCH = 2,
10031};
10032
dc2a4ebc
AS
10033static u32 state_htab_size(struct bpf_verifier_env *env)
10034{
10035 return env->prog->len;
10036}
10037
5d839021
AS
10038static struct bpf_verifier_state_list **explored_state(
10039 struct bpf_verifier_env *env,
10040 int idx)
10041{
dc2a4ebc
AS
10042 struct bpf_verifier_state *cur = env->cur_state;
10043 struct bpf_func_state *state = cur->frame[cur->curframe];
10044
10045 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
10046}
10047
10048static void init_explored_state(struct bpf_verifier_env *env, int idx)
10049{
a8f500af 10050 env->insn_aux_data[idx].prune_point = true;
5d839021 10051}
f1bca824 10052
59e2e27d
WAF
10053enum {
10054 DONE_EXPLORING = 0,
10055 KEEP_EXPLORING = 1,
10056};
10057
475fb78f
AS
10058/* t, w, e - match pseudo-code above:
10059 * t - index of current instruction
10060 * w - next instruction
10061 * e - edge
10062 */
2589726d
AS
10063static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10064 bool loop_ok)
475fb78f 10065{
7df737e9
AS
10066 int *insn_stack = env->cfg.insn_stack;
10067 int *insn_state = env->cfg.insn_state;
10068
475fb78f 10069 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 10070 return DONE_EXPLORING;
475fb78f
AS
10071
10072 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 10073 return DONE_EXPLORING;
475fb78f
AS
10074
10075 if (w < 0 || w >= env->prog->len) {
d9762e84 10076 verbose_linfo(env, t, "%d: ", t);
61bd5218 10077 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
10078 return -EINVAL;
10079 }
10080
f1bca824
AS
10081 if (e == BRANCH)
10082 /* mark branch target for state pruning */
5d839021 10083 init_explored_state(env, w);
f1bca824 10084
475fb78f
AS
10085 if (insn_state[w] == 0) {
10086 /* tree-edge */
10087 insn_state[t] = DISCOVERED | e;
10088 insn_state[w] = DISCOVERED;
7df737e9 10089 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 10090 return -E2BIG;
7df737e9 10091 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 10092 return KEEP_EXPLORING;
475fb78f 10093 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 10094 if (loop_ok && env->bpf_capable)
59e2e27d 10095 return DONE_EXPLORING;
d9762e84
MKL
10096 verbose_linfo(env, t, "%d: ", t);
10097 verbose_linfo(env, w, "%d: ", w);
61bd5218 10098 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
10099 return -EINVAL;
10100 } else if (insn_state[w] == EXPLORED) {
10101 /* forward- or cross-edge */
10102 insn_state[t] = DISCOVERED | e;
10103 } else {
61bd5218 10104 verbose(env, "insn state internal bug\n");
475fb78f
AS
10105 return -EFAULT;
10106 }
59e2e27d
WAF
10107 return DONE_EXPLORING;
10108}
10109
efdb22de
YS
10110static int visit_func_call_insn(int t, int insn_cnt,
10111 struct bpf_insn *insns,
10112 struct bpf_verifier_env *env,
10113 bool visit_callee)
10114{
10115 int ret;
10116
10117 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10118 if (ret)
10119 return ret;
10120
10121 if (t + 1 < insn_cnt)
10122 init_explored_state(env, t + 1);
10123 if (visit_callee) {
10124 init_explored_state(env, t);
86fc6ee6
AS
10125 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10126 /* It's ok to allow recursion from CFG point of
10127 * view. __check_func_call() will do the actual
10128 * check.
10129 */
10130 bpf_pseudo_func(insns + t));
efdb22de
YS
10131 }
10132 return ret;
10133}
10134
59e2e27d
WAF
10135/* Visits the instruction at index t and returns one of the following:
10136 * < 0 - an error occurred
10137 * DONE_EXPLORING - the instruction was fully explored
10138 * KEEP_EXPLORING - there is still work to be done before it is fully explored
10139 */
10140static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10141{
10142 struct bpf_insn *insns = env->prog->insnsi;
10143 int ret;
10144
69c087ba
YS
10145 if (bpf_pseudo_func(insns + t))
10146 return visit_func_call_insn(t, insn_cnt, insns, env, true);
10147
59e2e27d
WAF
10148 /* All non-branch instructions have a single fall-through edge. */
10149 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10150 BPF_CLASS(insns[t].code) != BPF_JMP32)
10151 return push_insn(t, t + 1, FALLTHROUGH, env, false);
10152
10153 switch (BPF_OP(insns[t].code)) {
10154 case BPF_EXIT:
10155 return DONE_EXPLORING;
10156
10157 case BPF_CALL:
bfc6bb74
AS
10158 if (insns[t].imm == BPF_FUNC_timer_set_callback)
10159 /* Mark this call insn to trigger is_state_visited() check
10160 * before call itself is processed by __check_func_call().
10161 * Otherwise new async state will be pushed for further
10162 * exploration.
10163 */
10164 init_explored_state(env, t);
efdb22de
YS
10165 return visit_func_call_insn(t, insn_cnt, insns, env,
10166 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
10167
10168 case BPF_JA:
10169 if (BPF_SRC(insns[t].code) != BPF_K)
10170 return -EINVAL;
10171
10172 /* unconditional jump with single edge */
10173 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10174 true);
10175 if (ret)
10176 return ret;
10177
10178 /* unconditional jmp is not a good pruning point,
10179 * but it's marked, since backtracking needs
10180 * to record jmp history in is_state_visited().
10181 */
10182 init_explored_state(env, t + insns[t].off + 1);
10183 /* tell verifier to check for equivalent states
10184 * after every call and jump
10185 */
10186 if (t + 1 < insn_cnt)
10187 init_explored_state(env, t + 1);
10188
10189 return ret;
10190
10191 default:
10192 /* conditional jump with two edges */
10193 init_explored_state(env, t);
10194 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10195 if (ret)
10196 return ret;
10197
10198 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10199 }
475fb78f
AS
10200}
10201
10202/* non-recursive depth-first-search to detect loops in BPF program
10203 * loop == back-edge in directed graph
10204 */
58e2af8b 10205static int check_cfg(struct bpf_verifier_env *env)
475fb78f 10206{
475fb78f 10207 int insn_cnt = env->prog->len;
7df737e9 10208 int *insn_stack, *insn_state;
475fb78f 10209 int ret = 0;
59e2e27d 10210 int i;
475fb78f 10211
7df737e9 10212 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
10213 if (!insn_state)
10214 return -ENOMEM;
10215
7df737e9 10216 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 10217 if (!insn_stack) {
71dde681 10218 kvfree(insn_state);
475fb78f
AS
10219 return -ENOMEM;
10220 }
10221
10222 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10223 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 10224 env->cfg.cur_stack = 1;
475fb78f 10225
59e2e27d
WAF
10226 while (env->cfg.cur_stack > 0) {
10227 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 10228
59e2e27d
WAF
10229 ret = visit_insn(t, insn_cnt, env);
10230 switch (ret) {
10231 case DONE_EXPLORING:
10232 insn_state[t] = EXPLORED;
10233 env->cfg.cur_stack--;
10234 break;
10235 case KEEP_EXPLORING:
10236 break;
10237 default:
10238 if (ret > 0) {
10239 verbose(env, "visit_insn internal bug\n");
10240 ret = -EFAULT;
475fb78f 10241 }
475fb78f 10242 goto err_free;
59e2e27d 10243 }
475fb78f
AS
10244 }
10245
59e2e27d 10246 if (env->cfg.cur_stack < 0) {
61bd5218 10247 verbose(env, "pop stack internal bug\n");
475fb78f
AS
10248 ret = -EFAULT;
10249 goto err_free;
10250 }
475fb78f 10251
475fb78f
AS
10252 for (i = 0; i < insn_cnt; i++) {
10253 if (insn_state[i] != EXPLORED) {
61bd5218 10254 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
10255 ret = -EINVAL;
10256 goto err_free;
10257 }
10258 }
10259 ret = 0; /* cfg looks good */
10260
10261err_free:
71dde681
AS
10262 kvfree(insn_state);
10263 kvfree(insn_stack);
7df737e9 10264 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
10265 return ret;
10266}
10267
09b28d76
AS
10268static int check_abnormal_return(struct bpf_verifier_env *env)
10269{
10270 int i;
10271
10272 for (i = 1; i < env->subprog_cnt; i++) {
10273 if (env->subprog_info[i].has_ld_abs) {
10274 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10275 return -EINVAL;
10276 }
10277 if (env->subprog_info[i].has_tail_call) {
10278 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10279 return -EINVAL;
10280 }
10281 }
10282 return 0;
10283}
10284
838e9690
YS
10285/* The minimum supported BTF func info size */
10286#define MIN_BPF_FUNCINFO_SIZE 8
10287#define MAX_FUNCINFO_REC_SIZE 252
10288
c454a46b
MKL
10289static int check_btf_func(struct bpf_verifier_env *env,
10290 const union bpf_attr *attr,
af2ac3e1 10291 bpfptr_t uattr)
838e9690 10292{
09b28d76 10293 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 10294 u32 i, nfuncs, urec_size, min_size;
838e9690 10295 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 10296 struct bpf_func_info *krecord;
8c1b6e69 10297 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
10298 struct bpf_prog *prog;
10299 const struct btf *btf;
af2ac3e1 10300 bpfptr_t urecord;
d0b2818e 10301 u32 prev_offset = 0;
09b28d76 10302 bool scalar_return;
e7ed83d6 10303 int ret = -ENOMEM;
838e9690
YS
10304
10305 nfuncs = attr->func_info_cnt;
09b28d76
AS
10306 if (!nfuncs) {
10307 if (check_abnormal_return(env))
10308 return -EINVAL;
838e9690 10309 return 0;
09b28d76 10310 }
838e9690
YS
10311
10312 if (nfuncs != env->subprog_cnt) {
10313 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10314 return -EINVAL;
10315 }
10316
10317 urec_size = attr->func_info_rec_size;
10318 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10319 urec_size > MAX_FUNCINFO_REC_SIZE ||
10320 urec_size % sizeof(u32)) {
10321 verbose(env, "invalid func info rec size %u\n", urec_size);
10322 return -EINVAL;
10323 }
10324
c454a46b
MKL
10325 prog = env->prog;
10326 btf = prog->aux->btf;
838e9690 10327
af2ac3e1 10328 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
10329 min_size = min_t(u32, krec_size, urec_size);
10330
ba64e7d8 10331 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
10332 if (!krecord)
10333 return -ENOMEM;
8c1b6e69
AS
10334 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10335 if (!info_aux)
10336 goto err_free;
ba64e7d8 10337
838e9690
YS
10338 for (i = 0; i < nfuncs; i++) {
10339 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10340 if (ret) {
10341 if (ret == -E2BIG) {
10342 verbose(env, "nonzero tailing record in func info");
10343 /* set the size kernel expects so loader can zero
10344 * out the rest of the record.
10345 */
af2ac3e1
AS
10346 if (copy_to_bpfptr_offset(uattr,
10347 offsetof(union bpf_attr, func_info_rec_size),
10348 &min_size, sizeof(min_size)))
838e9690
YS
10349 ret = -EFAULT;
10350 }
c454a46b 10351 goto err_free;
838e9690
YS
10352 }
10353
af2ac3e1 10354 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10355 ret = -EFAULT;
c454a46b 10356 goto err_free;
838e9690
YS
10357 }
10358
d30d42e0 10359 /* check insn_off */
09b28d76 10360 ret = -EINVAL;
838e9690 10361 if (i == 0) {
d30d42e0 10362 if (krecord[i].insn_off) {
838e9690 10363 verbose(env,
d30d42e0
MKL
10364 "nonzero insn_off %u for the first func info record",
10365 krecord[i].insn_off);
c454a46b 10366 goto err_free;
838e9690 10367 }
d30d42e0 10368 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
10369 verbose(env,
10370 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 10371 krecord[i].insn_off, prev_offset);
c454a46b 10372 goto err_free;
838e9690
YS
10373 }
10374
d30d42e0 10375 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 10376 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 10377 goto err_free;
838e9690
YS
10378 }
10379
10380 /* check type_id */
ba64e7d8 10381 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 10382 if (!type || !btf_type_is_func(type)) {
838e9690 10383 verbose(env, "invalid type id %d in func info",
ba64e7d8 10384 krecord[i].type_id);
c454a46b 10385 goto err_free;
838e9690 10386 }
51c39bb1 10387 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
10388
10389 func_proto = btf_type_by_id(btf, type->type);
10390 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10391 /* btf_func_check() already verified it during BTF load */
10392 goto err_free;
10393 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10394 scalar_return =
10395 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10396 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10397 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10398 goto err_free;
10399 }
10400 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10401 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10402 goto err_free;
10403 }
10404
d30d42e0 10405 prev_offset = krecord[i].insn_off;
af2ac3e1 10406 bpfptr_add(&urecord, urec_size);
838e9690
YS
10407 }
10408
ba64e7d8
YS
10409 prog->aux->func_info = krecord;
10410 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 10411 prog->aux->func_info_aux = info_aux;
838e9690
YS
10412 return 0;
10413
c454a46b 10414err_free:
ba64e7d8 10415 kvfree(krecord);
8c1b6e69 10416 kfree(info_aux);
838e9690
YS
10417 return ret;
10418}
10419
ba64e7d8
YS
10420static void adjust_btf_func(struct bpf_verifier_env *env)
10421{
8c1b6e69 10422 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
10423 int i;
10424
8c1b6e69 10425 if (!aux->func_info)
ba64e7d8
YS
10426 return;
10427
10428 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 10429 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
10430}
10431
1b773d00 10432#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
10433#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10434
10435static int check_btf_line(struct bpf_verifier_env *env,
10436 const union bpf_attr *attr,
af2ac3e1 10437 bpfptr_t uattr)
c454a46b
MKL
10438{
10439 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10440 struct bpf_subprog_info *sub;
10441 struct bpf_line_info *linfo;
10442 struct bpf_prog *prog;
10443 const struct btf *btf;
af2ac3e1 10444 bpfptr_t ulinfo;
c454a46b
MKL
10445 int err;
10446
10447 nr_linfo = attr->line_info_cnt;
10448 if (!nr_linfo)
10449 return 0;
0e6491b5
BC
10450 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10451 return -EINVAL;
c454a46b
MKL
10452
10453 rec_size = attr->line_info_rec_size;
10454 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10455 rec_size > MAX_LINEINFO_REC_SIZE ||
10456 rec_size & (sizeof(u32) - 1))
10457 return -EINVAL;
10458
10459 /* Need to zero it in case the userspace may
10460 * pass in a smaller bpf_line_info object.
10461 */
10462 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10463 GFP_KERNEL | __GFP_NOWARN);
10464 if (!linfo)
10465 return -ENOMEM;
10466
10467 prog = env->prog;
10468 btf = prog->aux->btf;
10469
10470 s = 0;
10471 sub = env->subprog_info;
af2ac3e1 10472 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
10473 expected_size = sizeof(struct bpf_line_info);
10474 ncopy = min_t(u32, expected_size, rec_size);
10475 for (i = 0; i < nr_linfo; i++) {
10476 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10477 if (err) {
10478 if (err == -E2BIG) {
10479 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
10480 if (copy_to_bpfptr_offset(uattr,
10481 offsetof(union bpf_attr, line_info_rec_size),
10482 &expected_size, sizeof(expected_size)))
c454a46b
MKL
10483 err = -EFAULT;
10484 }
10485 goto err_free;
10486 }
10487
af2ac3e1 10488 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
10489 err = -EFAULT;
10490 goto err_free;
10491 }
10492
10493 /*
10494 * Check insn_off to ensure
10495 * 1) strictly increasing AND
10496 * 2) bounded by prog->len
10497 *
10498 * The linfo[0].insn_off == 0 check logically falls into
10499 * the later "missing bpf_line_info for func..." case
10500 * because the first linfo[0].insn_off must be the
10501 * first sub also and the first sub must have
10502 * subprog_info[0].start == 0.
10503 */
10504 if ((i && linfo[i].insn_off <= prev_offset) ||
10505 linfo[i].insn_off >= prog->len) {
10506 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10507 i, linfo[i].insn_off, prev_offset,
10508 prog->len);
10509 err = -EINVAL;
10510 goto err_free;
10511 }
10512
fdbaa0be
MKL
10513 if (!prog->insnsi[linfo[i].insn_off].code) {
10514 verbose(env,
10515 "Invalid insn code at line_info[%u].insn_off\n",
10516 i);
10517 err = -EINVAL;
10518 goto err_free;
10519 }
10520
23127b33
MKL
10521 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10522 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
10523 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10524 err = -EINVAL;
10525 goto err_free;
10526 }
10527
10528 if (s != env->subprog_cnt) {
10529 if (linfo[i].insn_off == sub[s].start) {
10530 sub[s].linfo_idx = i;
10531 s++;
10532 } else if (sub[s].start < linfo[i].insn_off) {
10533 verbose(env, "missing bpf_line_info for func#%u\n", s);
10534 err = -EINVAL;
10535 goto err_free;
10536 }
10537 }
10538
10539 prev_offset = linfo[i].insn_off;
af2ac3e1 10540 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
10541 }
10542
10543 if (s != env->subprog_cnt) {
10544 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10545 env->subprog_cnt - s, s);
10546 err = -EINVAL;
10547 goto err_free;
10548 }
10549
10550 prog->aux->linfo = linfo;
10551 prog->aux->nr_linfo = nr_linfo;
10552
10553 return 0;
10554
10555err_free:
10556 kvfree(linfo);
10557 return err;
10558}
10559
fbd94c7a
AS
10560#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
10561#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
10562
10563static int check_core_relo(struct bpf_verifier_env *env,
10564 const union bpf_attr *attr,
10565 bpfptr_t uattr)
10566{
10567 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
10568 struct bpf_core_relo core_relo = {};
10569 struct bpf_prog *prog = env->prog;
10570 const struct btf *btf = prog->aux->btf;
10571 struct bpf_core_ctx ctx = {
10572 .log = &env->log,
10573 .btf = btf,
10574 };
10575 bpfptr_t u_core_relo;
10576 int err;
10577
10578 nr_core_relo = attr->core_relo_cnt;
10579 if (!nr_core_relo)
10580 return 0;
10581 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
10582 return -EINVAL;
10583
10584 rec_size = attr->core_relo_rec_size;
10585 if (rec_size < MIN_CORE_RELO_SIZE ||
10586 rec_size > MAX_CORE_RELO_SIZE ||
10587 rec_size % sizeof(u32))
10588 return -EINVAL;
10589
10590 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
10591 expected_size = sizeof(struct bpf_core_relo);
10592 ncopy = min_t(u32, expected_size, rec_size);
10593
10594 /* Unlike func_info and line_info, copy and apply each CO-RE
10595 * relocation record one at a time.
10596 */
10597 for (i = 0; i < nr_core_relo; i++) {
10598 /* future proofing when sizeof(bpf_core_relo) changes */
10599 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
10600 if (err) {
10601 if (err == -E2BIG) {
10602 verbose(env, "nonzero tailing record in core_relo");
10603 if (copy_to_bpfptr_offset(uattr,
10604 offsetof(union bpf_attr, core_relo_rec_size),
10605 &expected_size, sizeof(expected_size)))
10606 err = -EFAULT;
10607 }
10608 break;
10609 }
10610
10611 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
10612 err = -EFAULT;
10613 break;
10614 }
10615
10616 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
10617 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
10618 i, core_relo.insn_off, prog->len);
10619 err = -EINVAL;
10620 break;
10621 }
10622
10623 err = bpf_core_apply(&ctx, &core_relo, i,
10624 &prog->insnsi[core_relo.insn_off / 8]);
10625 if (err)
10626 break;
10627 bpfptr_add(&u_core_relo, rec_size);
10628 }
10629 return err;
10630}
10631
c454a46b
MKL
10632static int check_btf_info(struct bpf_verifier_env *env,
10633 const union bpf_attr *attr,
af2ac3e1 10634 bpfptr_t uattr)
c454a46b
MKL
10635{
10636 struct btf *btf;
10637 int err;
10638
09b28d76
AS
10639 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10640 if (check_abnormal_return(env))
10641 return -EINVAL;
c454a46b 10642 return 0;
09b28d76 10643 }
c454a46b
MKL
10644
10645 btf = btf_get_by_fd(attr->prog_btf_fd);
10646 if (IS_ERR(btf))
10647 return PTR_ERR(btf);
350a5c4d
AS
10648 if (btf_is_kernel(btf)) {
10649 btf_put(btf);
10650 return -EACCES;
10651 }
c454a46b
MKL
10652 env->prog->aux->btf = btf;
10653
10654 err = check_btf_func(env, attr, uattr);
10655 if (err)
10656 return err;
10657
10658 err = check_btf_line(env, attr, uattr);
10659 if (err)
10660 return err;
10661
fbd94c7a
AS
10662 err = check_core_relo(env, attr, uattr);
10663 if (err)
10664 return err;
10665
c454a46b 10666 return 0;
ba64e7d8
YS
10667}
10668
f1174f77
EC
10669/* check %cur's range satisfies %old's */
10670static bool range_within(struct bpf_reg_state *old,
10671 struct bpf_reg_state *cur)
10672{
b03c9f9f
EC
10673 return old->umin_value <= cur->umin_value &&
10674 old->umax_value >= cur->umax_value &&
10675 old->smin_value <= cur->smin_value &&
fd675184
DB
10676 old->smax_value >= cur->smax_value &&
10677 old->u32_min_value <= cur->u32_min_value &&
10678 old->u32_max_value >= cur->u32_max_value &&
10679 old->s32_min_value <= cur->s32_min_value &&
10680 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
10681}
10682
f1174f77
EC
10683/* If in the old state two registers had the same id, then they need to have
10684 * the same id in the new state as well. But that id could be different from
10685 * the old state, so we need to track the mapping from old to new ids.
10686 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10687 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10688 * regs with a different old id could still have new id 9, we don't care about
10689 * that.
10690 * So we look through our idmap to see if this old id has been seen before. If
10691 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 10692 */
c9e73e3d 10693static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 10694{
f1174f77 10695 unsigned int i;
969bf05e 10696
c9e73e3d 10697 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
10698 if (!idmap[i].old) {
10699 /* Reached an empty slot; haven't seen this id before */
10700 idmap[i].old = old_id;
10701 idmap[i].cur = cur_id;
10702 return true;
10703 }
10704 if (idmap[i].old == old_id)
10705 return idmap[i].cur == cur_id;
10706 }
10707 /* We ran out of idmap slots, which should be impossible */
10708 WARN_ON_ONCE(1);
10709 return false;
10710}
10711
9242b5f5
AS
10712static void clean_func_state(struct bpf_verifier_env *env,
10713 struct bpf_func_state *st)
10714{
10715 enum bpf_reg_liveness live;
10716 int i, j;
10717
10718 for (i = 0; i < BPF_REG_FP; i++) {
10719 live = st->regs[i].live;
10720 /* liveness must not touch this register anymore */
10721 st->regs[i].live |= REG_LIVE_DONE;
10722 if (!(live & REG_LIVE_READ))
10723 /* since the register is unused, clear its state
10724 * to make further comparison simpler
10725 */
f54c7898 10726 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
10727 }
10728
10729 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10730 live = st->stack[i].spilled_ptr.live;
10731 /* liveness must not touch this stack slot anymore */
10732 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10733 if (!(live & REG_LIVE_READ)) {
f54c7898 10734 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
10735 for (j = 0; j < BPF_REG_SIZE; j++)
10736 st->stack[i].slot_type[j] = STACK_INVALID;
10737 }
10738 }
10739}
10740
10741static void clean_verifier_state(struct bpf_verifier_env *env,
10742 struct bpf_verifier_state *st)
10743{
10744 int i;
10745
10746 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10747 /* all regs in this state in all frames were already marked */
10748 return;
10749
10750 for (i = 0; i <= st->curframe; i++)
10751 clean_func_state(env, st->frame[i]);
10752}
10753
10754/* the parentage chains form a tree.
10755 * the verifier states are added to state lists at given insn and
10756 * pushed into state stack for future exploration.
10757 * when the verifier reaches bpf_exit insn some of the verifer states
10758 * stored in the state lists have their final liveness state already,
10759 * but a lot of states will get revised from liveness point of view when
10760 * the verifier explores other branches.
10761 * Example:
10762 * 1: r0 = 1
10763 * 2: if r1 == 100 goto pc+1
10764 * 3: r0 = 2
10765 * 4: exit
10766 * when the verifier reaches exit insn the register r0 in the state list of
10767 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10768 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10769 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10770 *
10771 * Since the verifier pushes the branch states as it sees them while exploring
10772 * the program the condition of walking the branch instruction for the second
10773 * time means that all states below this branch were already explored and
8fb33b60 10774 * their final liveness marks are already propagated.
9242b5f5
AS
10775 * Hence when the verifier completes the search of state list in is_state_visited()
10776 * we can call this clean_live_states() function to mark all liveness states
10777 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10778 * will not be used.
10779 * This function also clears the registers and stack for states that !READ
10780 * to simplify state merging.
10781 *
10782 * Important note here that walking the same branch instruction in the callee
10783 * doesn't meant that the states are DONE. The verifier has to compare
10784 * the callsites
10785 */
10786static void clean_live_states(struct bpf_verifier_env *env, int insn,
10787 struct bpf_verifier_state *cur)
10788{
10789 struct bpf_verifier_state_list *sl;
10790 int i;
10791
5d839021 10792 sl = *explored_state(env, insn);
a8f500af 10793 while (sl) {
2589726d
AS
10794 if (sl->state.branches)
10795 goto next;
dc2a4ebc
AS
10796 if (sl->state.insn_idx != insn ||
10797 sl->state.curframe != cur->curframe)
9242b5f5
AS
10798 goto next;
10799 for (i = 0; i <= cur->curframe; i++)
10800 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10801 goto next;
10802 clean_verifier_state(env, &sl->state);
10803next:
10804 sl = sl->next;
10805 }
10806}
10807
f1174f77 10808/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
10809static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10810 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 10811{
f4d7e40a
AS
10812 bool equal;
10813
dc503a8a
EC
10814 if (!(rold->live & REG_LIVE_READ))
10815 /* explored state didn't use this */
10816 return true;
10817
679c782d 10818 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
10819
10820 if (rold->type == PTR_TO_STACK)
10821 /* two stack pointers are equal only if they're pointing to
10822 * the same stack frame, since fp-8 in foo != fp-8 in bar
10823 */
10824 return equal && rold->frameno == rcur->frameno;
10825
10826 if (equal)
969bf05e
AS
10827 return true;
10828
f1174f77
EC
10829 if (rold->type == NOT_INIT)
10830 /* explored state can't have used this */
969bf05e 10831 return true;
f1174f77
EC
10832 if (rcur->type == NOT_INIT)
10833 return false;
c25b2ae1 10834 switch (base_type(rold->type)) {
f1174f77 10835 case SCALAR_VALUE:
e042aa53
DB
10836 if (env->explore_alu_limits)
10837 return false;
f1174f77 10838 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
10839 if (!rold->precise && !rcur->precise)
10840 return true;
f1174f77
EC
10841 /* new val must satisfy old val knowledge */
10842 return range_within(rold, rcur) &&
10843 tnum_in(rold->var_off, rcur->var_off);
10844 } else {
179d1c56
JH
10845 /* We're trying to use a pointer in place of a scalar.
10846 * Even if the scalar was unbounded, this could lead to
10847 * pointer leaks because scalars are allowed to leak
10848 * while pointers are not. We could make this safe in
10849 * special cases if root is calling us, but it's
10850 * probably not worth the hassle.
f1174f77 10851 */
179d1c56 10852 return false;
f1174f77 10853 }
69c087ba 10854 case PTR_TO_MAP_KEY:
f1174f77 10855 case PTR_TO_MAP_VALUE:
c25b2ae1
HL
10856 /* a PTR_TO_MAP_VALUE could be safe to use as a
10857 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10858 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10859 * checked, doing so could have affected others with the same
10860 * id, and we can't check for that because we lost the id when
10861 * we converted to a PTR_TO_MAP_VALUE.
10862 */
10863 if (type_may_be_null(rold->type)) {
10864 if (!type_may_be_null(rcur->type))
10865 return false;
10866 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10867 return false;
10868 /* Check our ids match any regs they're supposed to */
10869 return check_ids(rold->id, rcur->id, idmap);
10870 }
10871
1b688a19
EC
10872 /* If the new min/max/var_off satisfy the old ones and
10873 * everything else matches, we are OK.
d83525ca
AS
10874 * 'id' is not compared, since it's only used for maps with
10875 * bpf_spin_lock inside map element and in such cases if
10876 * the rest of the prog is valid for one map element then
10877 * it's valid for all map elements regardless of the key
10878 * used in bpf_map_lookup()
1b688a19
EC
10879 */
10880 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10881 range_within(rold, rcur) &&
10882 tnum_in(rold->var_off, rcur->var_off);
de8f3a83 10883 case PTR_TO_PACKET_META:
f1174f77 10884 case PTR_TO_PACKET:
de8f3a83 10885 if (rcur->type != rold->type)
f1174f77
EC
10886 return false;
10887 /* We must have at least as much range as the old ptr
10888 * did, so that any accesses which were safe before are
10889 * still safe. This is true even if old range < old off,
10890 * since someone could have accessed through (ptr - k), or
10891 * even done ptr -= k in a register, to get a safe access.
10892 */
10893 if (rold->range > rcur->range)
10894 return false;
10895 /* If the offsets don't match, we can't trust our alignment;
10896 * nor can we be sure that we won't fall out of range.
10897 */
10898 if (rold->off != rcur->off)
10899 return false;
10900 /* id relations must be preserved */
10901 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10902 return false;
10903 /* new val must satisfy old val knowledge */
10904 return range_within(rold, rcur) &&
10905 tnum_in(rold->var_off, rcur->var_off);
10906 case PTR_TO_CTX:
10907 case CONST_PTR_TO_MAP:
f1174f77 10908 case PTR_TO_PACKET_END:
d58e468b 10909 case PTR_TO_FLOW_KEYS:
c64b7983 10910 case PTR_TO_SOCKET:
46f8bc92 10911 case PTR_TO_SOCK_COMMON:
655a51e5 10912 case PTR_TO_TCP_SOCK:
fada7fdc 10913 case PTR_TO_XDP_SOCK:
f1174f77
EC
10914 /* Only valid matches are exact, which memcmp() above
10915 * would have accepted
10916 */
10917 default:
10918 /* Don't know what's going on, just say it's not safe */
10919 return false;
10920 }
969bf05e 10921
f1174f77
EC
10922 /* Shouldn't get here; if we do, say it's not safe */
10923 WARN_ON_ONCE(1);
969bf05e
AS
10924 return false;
10925}
10926
e042aa53
DB
10927static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10928 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
10929{
10930 int i, spi;
10931
638f5b90
AS
10932 /* walk slots of the explored stack and ignore any additional
10933 * slots in the current stack, since explored(safe) state
10934 * didn't use them
10935 */
10936 for (i = 0; i < old->allocated_stack; i++) {
10937 spi = i / BPF_REG_SIZE;
10938
b233920c
AS
10939 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10940 i += BPF_REG_SIZE - 1;
cc2b14d5 10941 /* explored state didn't use this */
fd05e57b 10942 continue;
b233920c 10943 }
cc2b14d5 10944
638f5b90
AS
10945 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10946 continue;
19e2dbb7
AS
10947
10948 /* explored stack has more populated slots than current stack
10949 * and these slots were used
10950 */
10951 if (i >= cur->allocated_stack)
10952 return false;
10953
cc2b14d5
AS
10954 /* if old state was safe with misc data in the stack
10955 * it will be safe with zero-initialized stack.
10956 * The opposite is not true
10957 */
10958 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10959 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10960 continue;
638f5b90
AS
10961 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10962 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10963 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10964 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10965 * this verifier states are not equivalent,
10966 * return false to continue verification of this path
10967 */
10968 return false;
27113c59 10969 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 10970 continue;
27113c59 10971 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 10972 continue;
e042aa53
DB
10973 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10974 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
10975 /* when explored and current stack slot are both storing
10976 * spilled registers, check that stored pointers types
10977 * are the same as well.
10978 * Ex: explored safe path could have stored
10979 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10980 * but current path has stored:
10981 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10982 * such verifier states are not equivalent.
10983 * return false to continue verification of this path
10984 */
10985 return false;
10986 }
10987 return true;
10988}
10989
fd978bf7
JS
10990static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10991{
10992 if (old->acquired_refs != cur->acquired_refs)
10993 return false;
10994 return !memcmp(old->refs, cur->refs,
10995 sizeof(*old->refs) * old->acquired_refs);
10996}
10997
f1bca824
AS
10998/* compare two verifier states
10999 *
11000 * all states stored in state_list are known to be valid, since
11001 * verifier reached 'bpf_exit' instruction through them
11002 *
11003 * this function is called when verifier exploring different branches of
11004 * execution popped from the state stack. If it sees an old state that has
11005 * more strict register state and more strict stack state then this execution
11006 * branch doesn't need to be explored further, since verifier already
11007 * concluded that more strict state leads to valid finish.
11008 *
11009 * Therefore two states are equivalent if register state is more conservative
11010 * and explored stack state is more conservative than the current one.
11011 * Example:
11012 * explored current
11013 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11014 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11015 *
11016 * In other words if current stack state (one being explored) has more
11017 * valid slots than old one that already passed validation, it means
11018 * the verifier can stop exploring and conclude that current state is valid too
11019 *
11020 * Similarly with registers. If explored state has register type as invalid
11021 * whereas register type in current state is meaningful, it means that
11022 * the current state will reach 'bpf_exit' instruction safely
11023 */
c9e73e3d 11024static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 11025 struct bpf_func_state *cur)
f1bca824
AS
11026{
11027 int i;
11028
c9e73e3d
LB
11029 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11030 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
11031 if (!regsafe(env, &old->regs[i], &cur->regs[i],
11032 env->idmap_scratch))
c9e73e3d 11033 return false;
f1bca824 11034
e042aa53 11035 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 11036 return false;
fd978bf7
JS
11037
11038 if (!refsafe(old, cur))
c9e73e3d
LB
11039 return false;
11040
11041 return true;
f1bca824
AS
11042}
11043
f4d7e40a
AS
11044static bool states_equal(struct bpf_verifier_env *env,
11045 struct bpf_verifier_state *old,
11046 struct bpf_verifier_state *cur)
11047{
11048 int i;
11049
11050 if (old->curframe != cur->curframe)
11051 return false;
11052
979d63d5
DB
11053 /* Verification state from speculative execution simulation
11054 * must never prune a non-speculative execution one.
11055 */
11056 if (old->speculative && !cur->speculative)
11057 return false;
11058
d83525ca
AS
11059 if (old->active_spin_lock != cur->active_spin_lock)
11060 return false;
11061
f4d7e40a
AS
11062 /* for states to be equal callsites have to be the same
11063 * and all frame states need to be equivalent
11064 */
11065 for (i = 0; i <= old->curframe; i++) {
11066 if (old->frame[i]->callsite != cur->frame[i]->callsite)
11067 return false;
c9e73e3d 11068 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
11069 return false;
11070 }
11071 return true;
11072}
11073
5327ed3d
JW
11074/* Return 0 if no propagation happened. Return negative error code if error
11075 * happened. Otherwise, return the propagated bit.
11076 */
55e7f3b5
JW
11077static int propagate_liveness_reg(struct bpf_verifier_env *env,
11078 struct bpf_reg_state *reg,
11079 struct bpf_reg_state *parent_reg)
11080{
5327ed3d
JW
11081 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11082 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
11083 int err;
11084
5327ed3d
JW
11085 /* When comes here, read flags of PARENT_REG or REG could be any of
11086 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11087 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11088 */
11089 if (parent_flag == REG_LIVE_READ64 ||
11090 /* Or if there is no read flag from REG. */
11091 !flag ||
11092 /* Or if the read flag from REG is the same as PARENT_REG. */
11093 parent_flag == flag)
55e7f3b5
JW
11094 return 0;
11095
5327ed3d 11096 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
11097 if (err)
11098 return err;
11099
5327ed3d 11100 return flag;
55e7f3b5
JW
11101}
11102
8e9cd9ce 11103/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
11104 * straight-line code between a state and its parent. When we arrive at an
11105 * equivalent state (jump target or such) we didn't arrive by the straight-line
11106 * code, so read marks in the state must propagate to the parent regardless
11107 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 11108 * in mark_reg_read() is for.
8e9cd9ce 11109 */
f4d7e40a
AS
11110static int propagate_liveness(struct bpf_verifier_env *env,
11111 const struct bpf_verifier_state *vstate,
11112 struct bpf_verifier_state *vparent)
dc503a8a 11113{
3f8cafa4 11114 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 11115 struct bpf_func_state *state, *parent;
3f8cafa4 11116 int i, frame, err = 0;
dc503a8a 11117
f4d7e40a
AS
11118 if (vparent->curframe != vstate->curframe) {
11119 WARN(1, "propagate_live: parent frame %d current frame %d\n",
11120 vparent->curframe, vstate->curframe);
11121 return -EFAULT;
11122 }
dc503a8a
EC
11123 /* Propagate read liveness of registers... */
11124 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 11125 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
11126 parent = vparent->frame[frame];
11127 state = vstate->frame[frame];
11128 parent_reg = parent->regs;
11129 state_reg = state->regs;
83d16312
JK
11130 /* We don't need to worry about FP liveness, it's read-only */
11131 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
11132 err = propagate_liveness_reg(env, &state_reg[i],
11133 &parent_reg[i]);
5327ed3d 11134 if (err < 0)
3f8cafa4 11135 return err;
5327ed3d
JW
11136 if (err == REG_LIVE_READ64)
11137 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 11138 }
f4d7e40a 11139
1b04aee7 11140 /* Propagate stack slots. */
f4d7e40a
AS
11141 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11142 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
11143 parent_reg = &parent->stack[i].spilled_ptr;
11144 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
11145 err = propagate_liveness_reg(env, state_reg,
11146 parent_reg);
5327ed3d 11147 if (err < 0)
3f8cafa4 11148 return err;
dc503a8a
EC
11149 }
11150 }
5327ed3d 11151 return 0;
dc503a8a
EC
11152}
11153
a3ce685d
AS
11154/* find precise scalars in the previous equivalent state and
11155 * propagate them into the current state
11156 */
11157static int propagate_precision(struct bpf_verifier_env *env,
11158 const struct bpf_verifier_state *old)
11159{
11160 struct bpf_reg_state *state_reg;
11161 struct bpf_func_state *state;
11162 int i, err = 0;
11163
11164 state = old->frame[old->curframe];
11165 state_reg = state->regs;
11166 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11167 if (state_reg->type != SCALAR_VALUE ||
11168 !state_reg->precise)
11169 continue;
11170 if (env->log.level & BPF_LOG_LEVEL2)
11171 verbose(env, "propagating r%d\n", i);
11172 err = mark_chain_precision(env, i);
11173 if (err < 0)
11174 return err;
11175 }
11176
11177 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 11178 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
11179 continue;
11180 state_reg = &state->stack[i].spilled_ptr;
11181 if (state_reg->type != SCALAR_VALUE ||
11182 !state_reg->precise)
11183 continue;
11184 if (env->log.level & BPF_LOG_LEVEL2)
11185 verbose(env, "propagating fp%d\n",
11186 (-i - 1) * BPF_REG_SIZE);
11187 err = mark_chain_precision_stack(env, i);
11188 if (err < 0)
11189 return err;
11190 }
11191 return 0;
11192}
11193
2589726d
AS
11194static bool states_maybe_looping(struct bpf_verifier_state *old,
11195 struct bpf_verifier_state *cur)
11196{
11197 struct bpf_func_state *fold, *fcur;
11198 int i, fr = cur->curframe;
11199
11200 if (old->curframe != fr)
11201 return false;
11202
11203 fold = old->frame[fr];
11204 fcur = cur->frame[fr];
11205 for (i = 0; i < MAX_BPF_REG; i++)
11206 if (memcmp(&fold->regs[i], &fcur->regs[i],
11207 offsetof(struct bpf_reg_state, parent)))
11208 return false;
11209 return true;
11210}
11211
11212
58e2af8b 11213static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 11214{
58e2af8b 11215 struct bpf_verifier_state_list *new_sl;
9f4686c4 11216 struct bpf_verifier_state_list *sl, **pprev;
679c782d 11217 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 11218 int i, j, err, states_cnt = 0;
10d274e8 11219 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 11220
b5dc0163 11221 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 11222 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
11223 /* this 'insn_idx' instruction wasn't marked, so we will not
11224 * be doing state search here
11225 */
11226 return 0;
11227
2589726d
AS
11228 /* bpf progs typically have pruning point every 4 instructions
11229 * http://vger.kernel.org/bpfconf2019.html#session-1
11230 * Do not add new state for future pruning if the verifier hasn't seen
11231 * at least 2 jumps and at least 8 instructions.
11232 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11233 * In tests that amounts to up to 50% reduction into total verifier
11234 * memory consumption and 20% verifier time speedup.
11235 */
11236 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11237 env->insn_processed - env->prev_insn_processed >= 8)
11238 add_new_state = true;
11239
a8f500af
AS
11240 pprev = explored_state(env, insn_idx);
11241 sl = *pprev;
11242
9242b5f5
AS
11243 clean_live_states(env, insn_idx, cur);
11244
a8f500af 11245 while (sl) {
dc2a4ebc
AS
11246 states_cnt++;
11247 if (sl->state.insn_idx != insn_idx)
11248 goto next;
bfc6bb74 11249
2589726d 11250 if (sl->state.branches) {
bfc6bb74
AS
11251 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11252
11253 if (frame->in_async_callback_fn &&
11254 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11255 /* Different async_entry_cnt means that the verifier is
11256 * processing another entry into async callback.
11257 * Seeing the same state is not an indication of infinite
11258 * loop or infinite recursion.
11259 * But finding the same state doesn't mean that it's safe
11260 * to stop processing the current state. The previous state
11261 * hasn't yet reached bpf_exit, since state.branches > 0.
11262 * Checking in_async_callback_fn alone is not enough either.
11263 * Since the verifier still needs to catch infinite loops
11264 * inside async callbacks.
11265 */
11266 } else if (states_maybe_looping(&sl->state, cur) &&
11267 states_equal(env, &sl->state, cur)) {
2589726d
AS
11268 verbose_linfo(env, insn_idx, "; ");
11269 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11270 return -EINVAL;
11271 }
11272 /* if the verifier is processing a loop, avoid adding new state
11273 * too often, since different loop iterations have distinct
11274 * states and may not help future pruning.
11275 * This threshold shouldn't be too low to make sure that
11276 * a loop with large bound will be rejected quickly.
11277 * The most abusive loop will be:
11278 * r1 += 1
11279 * if r1 < 1000000 goto pc-2
11280 * 1M insn_procssed limit / 100 == 10k peak states.
11281 * This threshold shouldn't be too high either, since states
11282 * at the end of the loop are likely to be useful in pruning.
11283 */
11284 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11285 env->insn_processed - env->prev_insn_processed < 100)
11286 add_new_state = false;
11287 goto miss;
11288 }
638f5b90 11289 if (states_equal(env, &sl->state, cur)) {
9f4686c4 11290 sl->hit_cnt++;
f1bca824 11291 /* reached equivalent register/stack state,
dc503a8a
EC
11292 * prune the search.
11293 * Registers read by the continuation are read by us.
8e9cd9ce
EC
11294 * If we have any write marks in env->cur_state, they
11295 * will prevent corresponding reads in the continuation
11296 * from reaching our parent (an explored_state). Our
11297 * own state will get the read marks recorded, but
11298 * they'll be immediately forgotten as we're pruning
11299 * this state and will pop a new one.
f1bca824 11300 */
f4d7e40a 11301 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
11302
11303 /* if previous state reached the exit with precision and
11304 * current state is equivalent to it (except precsion marks)
11305 * the precision needs to be propagated back in
11306 * the current state.
11307 */
11308 err = err ? : push_jmp_history(env, cur);
11309 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
11310 if (err)
11311 return err;
f1bca824 11312 return 1;
dc503a8a 11313 }
2589726d
AS
11314miss:
11315 /* when new state is not going to be added do not increase miss count.
11316 * Otherwise several loop iterations will remove the state
11317 * recorded earlier. The goal of these heuristics is to have
11318 * states from some iterations of the loop (some in the beginning
11319 * and some at the end) to help pruning.
11320 */
11321 if (add_new_state)
11322 sl->miss_cnt++;
9f4686c4
AS
11323 /* heuristic to determine whether this state is beneficial
11324 * to keep checking from state equivalence point of view.
11325 * Higher numbers increase max_states_per_insn and verification time,
11326 * but do not meaningfully decrease insn_processed.
11327 */
11328 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11329 /* the state is unlikely to be useful. Remove it to
11330 * speed up verification
11331 */
11332 *pprev = sl->next;
11333 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
11334 u32 br = sl->state.branches;
11335
11336 WARN_ONCE(br,
11337 "BUG live_done but branches_to_explore %d\n",
11338 br);
9f4686c4
AS
11339 free_verifier_state(&sl->state, false);
11340 kfree(sl);
11341 env->peak_states--;
11342 } else {
11343 /* cannot free this state, since parentage chain may
11344 * walk it later. Add it for free_list instead to
11345 * be freed at the end of verification
11346 */
11347 sl->next = env->free_list;
11348 env->free_list = sl;
11349 }
11350 sl = *pprev;
11351 continue;
11352 }
dc2a4ebc 11353next:
9f4686c4
AS
11354 pprev = &sl->next;
11355 sl = *pprev;
f1bca824
AS
11356 }
11357
06ee7115
AS
11358 if (env->max_states_per_insn < states_cnt)
11359 env->max_states_per_insn = states_cnt;
11360
2c78ee89 11361 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 11362 return push_jmp_history(env, cur);
ceefbc96 11363
2589726d 11364 if (!add_new_state)
b5dc0163 11365 return push_jmp_history(env, cur);
ceefbc96 11366
2589726d
AS
11367 /* There were no equivalent states, remember the current one.
11368 * Technically the current state is not proven to be safe yet,
f4d7e40a 11369 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 11370 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 11371 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
11372 * again on the way to bpf_exit.
11373 * When looping the sl->state.branches will be > 0 and this state
11374 * will not be considered for equivalence until branches == 0.
f1bca824 11375 */
638f5b90 11376 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
11377 if (!new_sl)
11378 return -ENOMEM;
06ee7115
AS
11379 env->total_states++;
11380 env->peak_states++;
2589726d
AS
11381 env->prev_jmps_processed = env->jmps_processed;
11382 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
11383
11384 /* add new state to the head of linked list */
679c782d
EC
11385 new = &new_sl->state;
11386 err = copy_verifier_state(new, cur);
1969db47 11387 if (err) {
679c782d 11388 free_verifier_state(new, false);
1969db47
AS
11389 kfree(new_sl);
11390 return err;
11391 }
dc2a4ebc 11392 new->insn_idx = insn_idx;
2589726d
AS
11393 WARN_ONCE(new->branches != 1,
11394 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 11395
2589726d 11396 cur->parent = new;
b5dc0163
AS
11397 cur->first_insn_idx = insn_idx;
11398 clear_jmp_history(cur);
5d839021
AS
11399 new_sl->next = *explored_state(env, insn_idx);
11400 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
11401 /* connect new state to parentage chain. Current frame needs all
11402 * registers connected. Only r6 - r9 of the callers are alive (pushed
11403 * to the stack implicitly by JITs) so in callers' frames connect just
11404 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11405 * the state of the call instruction (with WRITTEN set), and r0 comes
11406 * from callee with its full parentage chain, anyway.
11407 */
8e9cd9ce
EC
11408 /* clear write marks in current state: the writes we did are not writes
11409 * our child did, so they don't screen off its reads from us.
11410 * (There are no read marks in current state, because reads always mark
11411 * their parent and current state never has children yet. Only
11412 * explored_states can get read marks.)
11413 */
eea1c227
AS
11414 for (j = 0; j <= cur->curframe; j++) {
11415 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11416 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11417 for (i = 0; i < BPF_REG_FP; i++)
11418 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11419 }
f4d7e40a
AS
11420
11421 /* all stack frames are accessible from callee, clear them all */
11422 for (j = 0; j <= cur->curframe; j++) {
11423 struct bpf_func_state *frame = cur->frame[j];
679c782d 11424 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 11425
679c782d 11426 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 11427 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
11428 frame->stack[i].spilled_ptr.parent =
11429 &newframe->stack[i].spilled_ptr;
11430 }
f4d7e40a 11431 }
f1bca824
AS
11432 return 0;
11433}
11434
c64b7983
JS
11435/* Return true if it's OK to have the same insn return a different type. */
11436static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11437{
c25b2ae1 11438 switch (base_type(type)) {
c64b7983
JS
11439 case PTR_TO_CTX:
11440 case PTR_TO_SOCKET:
46f8bc92 11441 case PTR_TO_SOCK_COMMON:
655a51e5 11442 case PTR_TO_TCP_SOCK:
fada7fdc 11443 case PTR_TO_XDP_SOCK:
2a02759e 11444 case PTR_TO_BTF_ID:
c64b7983
JS
11445 return false;
11446 default:
11447 return true;
11448 }
11449}
11450
11451/* If an instruction was previously used with particular pointer types, then we
11452 * need to be careful to avoid cases such as the below, where it may be ok
11453 * for one branch accessing the pointer, but not ok for the other branch:
11454 *
11455 * R1 = sock_ptr
11456 * goto X;
11457 * ...
11458 * R1 = some_other_valid_ptr;
11459 * goto X;
11460 * ...
11461 * R2 = *(u32 *)(R1 + 0);
11462 */
11463static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11464{
11465 return src != prev && (!reg_type_mismatch_ok(src) ||
11466 !reg_type_mismatch_ok(prev));
11467}
11468
58e2af8b 11469static int do_check(struct bpf_verifier_env *env)
17a52670 11470{
6f8a57cc 11471 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 11472 struct bpf_verifier_state *state = env->cur_state;
17a52670 11473 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 11474 struct bpf_reg_state *regs;
06ee7115 11475 int insn_cnt = env->prog->len;
17a52670 11476 bool do_print_state = false;
b5dc0163 11477 int prev_insn_idx = -1;
17a52670 11478
17a52670
AS
11479 for (;;) {
11480 struct bpf_insn *insn;
11481 u8 class;
11482 int err;
11483
b5dc0163 11484 env->prev_insn_idx = prev_insn_idx;
c08435ec 11485 if (env->insn_idx >= insn_cnt) {
61bd5218 11486 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 11487 env->insn_idx, insn_cnt);
17a52670
AS
11488 return -EFAULT;
11489 }
11490
c08435ec 11491 insn = &insns[env->insn_idx];
17a52670
AS
11492 class = BPF_CLASS(insn->code);
11493
06ee7115 11494 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
11495 verbose(env,
11496 "BPF program is too large. Processed %d insn\n",
06ee7115 11497 env->insn_processed);
17a52670
AS
11498 return -E2BIG;
11499 }
11500
c08435ec 11501 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
11502 if (err < 0)
11503 return err;
11504 if (err == 1) {
11505 /* found equivalent state, can prune the search */
06ee7115 11506 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 11507 if (do_print_state)
979d63d5
DB
11508 verbose(env, "\nfrom %d to %d%s: safe\n",
11509 env->prev_insn_idx, env->insn_idx,
11510 env->cur_state->speculative ?
11511 " (speculative execution)" : "");
f1bca824 11512 else
c08435ec 11513 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
11514 }
11515 goto process_bpf_exit;
11516 }
11517
c3494801
AS
11518 if (signal_pending(current))
11519 return -EAGAIN;
11520
3c2ce60b
DB
11521 if (need_resched())
11522 cond_resched();
11523
2e576648
CL
11524 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
11525 verbose(env, "\nfrom %d to %d%s:",
11526 env->prev_insn_idx, env->insn_idx,
11527 env->cur_state->speculative ?
11528 " (speculative execution)" : "");
11529 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
11530 do_print_state = false;
11531 }
11532
06ee7115 11533 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 11534 const struct bpf_insn_cbs cbs = {
e6ac2450 11535 .cb_call = disasm_kfunc_name,
7105e828 11536 .cb_print = verbose,
abe08840 11537 .private_data = env,
7105e828
DB
11538 };
11539
2e576648
CL
11540 if (verifier_state_scratched(env))
11541 print_insn_state(env, state->frame[state->curframe]);
11542
c08435ec 11543 verbose_linfo(env, env->insn_idx, "; ");
2e576648 11544 env->prev_log_len = env->log.len_used;
c08435ec 11545 verbose(env, "%d: ", env->insn_idx);
abe08840 11546 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
11547 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
11548 env->prev_log_len = env->log.len_used;
17a52670
AS
11549 }
11550
cae1927c 11551 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
11552 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11553 env->prev_insn_idx);
cae1927c
JK
11554 if (err)
11555 return err;
11556 }
13a27dfc 11557
638f5b90 11558 regs = cur_regs(env);
fe9a5ca7 11559 sanitize_mark_insn_seen(env);
b5dc0163 11560 prev_insn_idx = env->insn_idx;
fd978bf7 11561
17a52670 11562 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 11563 err = check_alu_op(env, insn);
17a52670
AS
11564 if (err)
11565 return err;
11566
11567 } else if (class == BPF_LDX) {
3df126f3 11568 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
11569
11570 /* check for reserved fields is already done */
11571
17a52670 11572 /* check src operand */
dc503a8a 11573 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11574 if (err)
11575 return err;
11576
dc503a8a 11577 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
11578 if (err)
11579 return err;
11580
725f9dcd
AS
11581 src_reg_type = regs[insn->src_reg].type;
11582
17a52670
AS
11583 /* check that memory (src_reg + off) is readable,
11584 * the state of dst_reg will be updated by this func
11585 */
c08435ec
DB
11586 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11587 insn->off, BPF_SIZE(insn->code),
11588 BPF_READ, insn->dst_reg, false);
17a52670
AS
11589 if (err)
11590 return err;
11591
c08435ec 11592 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11593
11594 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
11595 /* saw a valid insn
11596 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 11597 * save type to validate intersecting paths
9bac3d6d 11598 */
3df126f3 11599 *prev_src_type = src_reg_type;
9bac3d6d 11600
c64b7983 11601 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
11602 /* ABuser program is trying to use the same insn
11603 * dst_reg = *(u32*) (src_reg + off)
11604 * with different pointer types:
11605 * src_reg == ctx in one branch and
11606 * src_reg == stack|map in some other branch.
11607 * Reject it.
11608 */
61bd5218 11609 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
11610 return -EINVAL;
11611 }
11612
17a52670 11613 } else if (class == BPF_STX) {
3df126f3 11614 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 11615
91c960b0
BJ
11616 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11617 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
11618 if (err)
11619 return err;
c08435ec 11620 env->insn_idx++;
17a52670
AS
11621 continue;
11622 }
11623
5ca419f2
BJ
11624 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11625 verbose(env, "BPF_STX uses reserved fields\n");
11626 return -EINVAL;
11627 }
11628
17a52670 11629 /* check src1 operand */
dc503a8a 11630 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11631 if (err)
11632 return err;
11633 /* check src2 operand */
dc503a8a 11634 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11635 if (err)
11636 return err;
11637
d691f9e8
AS
11638 dst_reg_type = regs[insn->dst_reg].type;
11639
17a52670 11640 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11641 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11642 insn->off, BPF_SIZE(insn->code),
11643 BPF_WRITE, insn->src_reg, false);
17a52670
AS
11644 if (err)
11645 return err;
11646
c08435ec 11647 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11648
11649 if (*prev_dst_type == NOT_INIT) {
11650 *prev_dst_type = dst_reg_type;
c64b7983 11651 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 11652 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
11653 return -EINVAL;
11654 }
11655
17a52670
AS
11656 } else if (class == BPF_ST) {
11657 if (BPF_MODE(insn->code) != BPF_MEM ||
11658 insn->src_reg != BPF_REG_0) {
61bd5218 11659 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
11660 return -EINVAL;
11661 }
11662 /* check src operand */
dc503a8a 11663 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11664 if (err)
11665 return err;
11666
f37a8cb8 11667 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 11668 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f 11669 insn->dst_reg,
c25b2ae1 11670 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
11671 return -EACCES;
11672 }
11673
17a52670 11674 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11675 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11676 insn->off, BPF_SIZE(insn->code),
11677 BPF_WRITE, -1, false);
17a52670
AS
11678 if (err)
11679 return err;
11680
092ed096 11681 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
11682 u8 opcode = BPF_OP(insn->code);
11683
2589726d 11684 env->jmps_processed++;
17a52670
AS
11685 if (opcode == BPF_CALL) {
11686 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
11687 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11688 && insn->off != 0) ||
f4d7e40a 11689 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
11690 insn->src_reg != BPF_PSEUDO_CALL &&
11691 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
11692 insn->dst_reg != BPF_REG_0 ||
11693 class == BPF_JMP32) {
61bd5218 11694 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
11695 return -EINVAL;
11696 }
11697
d83525ca
AS
11698 if (env->cur_state->active_spin_lock &&
11699 (insn->src_reg == BPF_PSEUDO_CALL ||
11700 insn->imm != BPF_FUNC_spin_unlock)) {
11701 verbose(env, "function calls are not allowed while holding a lock\n");
11702 return -EINVAL;
11703 }
f4d7e40a 11704 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 11705 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 11706 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 11707 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 11708 else
69c087ba 11709 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
11710 if (err)
11711 return err;
17a52670
AS
11712 } else if (opcode == BPF_JA) {
11713 if (BPF_SRC(insn->code) != BPF_K ||
11714 insn->imm != 0 ||
11715 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11716 insn->dst_reg != BPF_REG_0 ||
11717 class == BPF_JMP32) {
61bd5218 11718 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
11719 return -EINVAL;
11720 }
11721
c08435ec 11722 env->insn_idx += insn->off + 1;
17a52670
AS
11723 continue;
11724
11725 } else if (opcode == BPF_EXIT) {
11726 if (BPF_SRC(insn->code) != BPF_K ||
11727 insn->imm != 0 ||
11728 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11729 insn->dst_reg != BPF_REG_0 ||
11730 class == BPF_JMP32) {
61bd5218 11731 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
11732 return -EINVAL;
11733 }
11734
d83525ca
AS
11735 if (env->cur_state->active_spin_lock) {
11736 verbose(env, "bpf_spin_unlock is missing\n");
11737 return -EINVAL;
11738 }
11739
f4d7e40a
AS
11740 if (state->curframe) {
11741 /* exit from nested function */
c08435ec 11742 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
11743 if (err)
11744 return err;
11745 do_print_state = true;
11746 continue;
11747 }
11748
fd978bf7
JS
11749 err = check_reference_leak(env);
11750 if (err)
11751 return err;
11752
390ee7e2
AS
11753 err = check_return_code(env);
11754 if (err)
11755 return err;
f1bca824 11756process_bpf_exit:
0f55f9ed 11757 mark_verifier_state_scratched(env);
2589726d 11758 update_branch_counts(env, env->cur_state);
b5dc0163 11759 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 11760 &env->insn_idx, pop_log);
638f5b90
AS
11761 if (err < 0) {
11762 if (err != -ENOENT)
11763 return err;
17a52670
AS
11764 break;
11765 } else {
11766 do_print_state = true;
11767 continue;
11768 }
11769 } else {
c08435ec 11770 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
11771 if (err)
11772 return err;
11773 }
11774 } else if (class == BPF_LD) {
11775 u8 mode = BPF_MODE(insn->code);
11776
11777 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
11778 err = check_ld_abs(env, insn);
11779 if (err)
11780 return err;
11781
17a52670
AS
11782 } else if (mode == BPF_IMM) {
11783 err = check_ld_imm(env, insn);
11784 if (err)
11785 return err;
11786
c08435ec 11787 env->insn_idx++;
fe9a5ca7 11788 sanitize_mark_insn_seen(env);
17a52670 11789 } else {
61bd5218 11790 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
11791 return -EINVAL;
11792 }
11793 } else {
61bd5218 11794 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
11795 return -EINVAL;
11796 }
11797
c08435ec 11798 env->insn_idx++;
17a52670
AS
11799 }
11800
11801 return 0;
11802}
11803
541c3bad
AN
11804static int find_btf_percpu_datasec(struct btf *btf)
11805{
11806 const struct btf_type *t;
11807 const char *tname;
11808 int i, n;
11809
11810 /*
11811 * Both vmlinux and module each have their own ".data..percpu"
11812 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11813 * types to look at only module's own BTF types.
11814 */
11815 n = btf_nr_types(btf);
11816 if (btf_is_module(btf))
11817 i = btf_nr_types(btf_vmlinux);
11818 else
11819 i = 1;
11820
11821 for(; i < n; i++) {
11822 t = btf_type_by_id(btf, i);
11823 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11824 continue;
11825
11826 tname = btf_name_by_offset(btf, t->name_off);
11827 if (!strcmp(tname, ".data..percpu"))
11828 return i;
11829 }
11830
11831 return -ENOENT;
11832}
11833
4976b718
HL
11834/* replace pseudo btf_id with kernel symbol address */
11835static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11836 struct bpf_insn *insn,
11837 struct bpf_insn_aux_data *aux)
11838{
eaa6bcb7
HL
11839 const struct btf_var_secinfo *vsi;
11840 const struct btf_type *datasec;
541c3bad 11841 struct btf_mod_pair *btf_mod;
4976b718
HL
11842 const struct btf_type *t;
11843 const char *sym_name;
eaa6bcb7 11844 bool percpu = false;
f16e6313 11845 u32 type, id = insn->imm;
541c3bad 11846 struct btf *btf;
f16e6313 11847 s32 datasec_id;
4976b718 11848 u64 addr;
541c3bad 11849 int i, btf_fd, err;
4976b718 11850
541c3bad
AN
11851 btf_fd = insn[1].imm;
11852 if (btf_fd) {
11853 btf = btf_get_by_fd(btf_fd);
11854 if (IS_ERR(btf)) {
11855 verbose(env, "invalid module BTF object FD specified.\n");
11856 return -EINVAL;
11857 }
11858 } else {
11859 if (!btf_vmlinux) {
11860 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11861 return -EINVAL;
11862 }
11863 btf = btf_vmlinux;
11864 btf_get(btf);
4976b718
HL
11865 }
11866
541c3bad 11867 t = btf_type_by_id(btf, id);
4976b718
HL
11868 if (!t) {
11869 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
11870 err = -ENOENT;
11871 goto err_put;
4976b718
HL
11872 }
11873
11874 if (!btf_type_is_var(t)) {
541c3bad
AN
11875 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11876 err = -EINVAL;
11877 goto err_put;
4976b718
HL
11878 }
11879
541c3bad 11880 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11881 addr = kallsyms_lookup_name(sym_name);
11882 if (!addr) {
11883 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11884 sym_name);
541c3bad
AN
11885 err = -ENOENT;
11886 goto err_put;
4976b718
HL
11887 }
11888
541c3bad 11889 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11890 if (datasec_id > 0) {
541c3bad 11891 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11892 for_each_vsi(i, datasec, vsi) {
11893 if (vsi->type == id) {
11894 percpu = true;
11895 break;
11896 }
11897 }
11898 }
11899
4976b718
HL
11900 insn[0].imm = (u32)addr;
11901 insn[1].imm = addr >> 32;
11902
11903 type = t->type;
541c3bad 11904 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 11905 if (percpu) {
5844101a 11906 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 11907 aux->btf_var.btf = btf;
eaa6bcb7
HL
11908 aux->btf_var.btf_id = type;
11909 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11910 const struct btf_type *ret;
11911 const char *tname;
11912 u32 tsize;
11913
11914 /* resolve the type size of ksym. */
541c3bad 11915 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11916 if (IS_ERR(ret)) {
541c3bad 11917 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11918 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11919 tname, PTR_ERR(ret));
541c3bad
AN
11920 err = -EINVAL;
11921 goto err_put;
4976b718 11922 }
34d3a78c 11923 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
11924 aux->btf_var.mem_size = tsize;
11925 } else {
11926 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11927 aux->btf_var.btf = btf;
4976b718
HL
11928 aux->btf_var.btf_id = type;
11929 }
541c3bad
AN
11930
11931 /* check whether we recorded this BTF (and maybe module) already */
11932 for (i = 0; i < env->used_btf_cnt; i++) {
11933 if (env->used_btfs[i].btf == btf) {
11934 btf_put(btf);
11935 return 0;
11936 }
11937 }
11938
11939 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11940 err = -E2BIG;
11941 goto err_put;
11942 }
11943
11944 btf_mod = &env->used_btfs[env->used_btf_cnt];
11945 btf_mod->btf = btf;
11946 btf_mod->module = NULL;
11947
11948 /* if we reference variables from kernel module, bump its refcount */
11949 if (btf_is_module(btf)) {
11950 btf_mod->module = btf_try_get_module(btf);
11951 if (!btf_mod->module) {
11952 err = -ENXIO;
11953 goto err_put;
11954 }
11955 }
11956
11957 env->used_btf_cnt++;
11958
4976b718 11959 return 0;
541c3bad
AN
11960err_put:
11961 btf_put(btf);
11962 return err;
4976b718
HL
11963}
11964
56f668df
MKL
11965static int check_map_prealloc(struct bpf_map *map)
11966{
11967 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11968 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11969 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11970 !(map->map_flags & BPF_F_NO_PREALLOC);
11971}
11972
d83525ca
AS
11973static bool is_tracing_prog_type(enum bpf_prog_type type)
11974{
11975 switch (type) {
11976 case BPF_PROG_TYPE_KPROBE:
11977 case BPF_PROG_TYPE_TRACEPOINT:
11978 case BPF_PROG_TYPE_PERF_EVENT:
11979 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11980 return true;
11981 default:
11982 return false;
11983 }
11984}
11985
94dacdbd
TG
11986static bool is_preallocated_map(struct bpf_map *map)
11987{
11988 if (!check_map_prealloc(map))
11989 return false;
11990 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11991 return false;
11992 return true;
11993}
11994
61bd5218
JK
11995static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11996 struct bpf_map *map,
fdc15d38
AS
11997 struct bpf_prog *prog)
11998
11999{
7e40781c 12000 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
12001 /*
12002 * Validate that trace type programs use preallocated hash maps.
12003 *
12004 * For programs attached to PERF events this is mandatory as the
12005 * perf NMI can hit any arbitrary code sequence.
12006 *
12007 * All other trace types using preallocated hash maps are unsafe as
12008 * well because tracepoint or kprobes can be inside locked regions
12009 * of the memory allocator or at a place where a recursion into the
12010 * memory allocator would see inconsistent state.
12011 *
2ed905c5
TG
12012 * On RT enabled kernels run-time allocation of all trace type
12013 * programs is strictly prohibited due to lock type constraints. On
12014 * !RT kernels it is allowed for backwards compatibility reasons for
12015 * now, but warnings are emitted so developers are made aware of
12016 * the unsafety and can fix their programs before this is enforced.
56f668df 12017 */
7e40781c
UP
12018 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
12019 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 12020 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
12021 return -EINVAL;
12022 }
2ed905c5
TG
12023 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
12024 verbose(env, "trace type programs can only use preallocated hash map\n");
12025 return -EINVAL;
12026 }
94dacdbd
TG
12027 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
12028 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 12029 }
a3884572 12030
9e7a4d98
KS
12031 if (map_value_has_spin_lock(map)) {
12032 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12033 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12034 return -EINVAL;
12035 }
12036
12037 if (is_tracing_prog_type(prog_type)) {
12038 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12039 return -EINVAL;
12040 }
12041
12042 if (prog->aux->sleepable) {
12043 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12044 return -EINVAL;
12045 }
d83525ca
AS
12046 }
12047
5e0bc308
DB
12048 if (map_value_has_timer(map)) {
12049 if (is_tracing_prog_type(prog_type)) {
12050 verbose(env, "tracing progs cannot use bpf_timer yet\n");
12051 return -EINVAL;
12052 }
12053 }
12054
a3884572 12055 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 12056 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
12057 verbose(env, "offload device mismatch between prog and map\n");
12058 return -EINVAL;
12059 }
12060
85d33df3
MKL
12061 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12062 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12063 return -EINVAL;
12064 }
12065
1e6c62a8
AS
12066 if (prog->aux->sleepable)
12067 switch (map->map_type) {
12068 case BPF_MAP_TYPE_HASH:
12069 case BPF_MAP_TYPE_LRU_HASH:
12070 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
12071 case BPF_MAP_TYPE_PERCPU_HASH:
12072 case BPF_MAP_TYPE_PERCPU_ARRAY:
12073 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12074 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12075 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
12076 if (!is_preallocated_map(map)) {
12077 verbose(env,
638e4b82 12078 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
12079 return -EINVAL;
12080 }
12081 break;
ba90c2cc 12082 case BPF_MAP_TYPE_RINGBUF:
0fe4b381
KS
12083 case BPF_MAP_TYPE_INODE_STORAGE:
12084 case BPF_MAP_TYPE_SK_STORAGE:
12085 case BPF_MAP_TYPE_TASK_STORAGE:
ba90c2cc 12086 break;
1e6c62a8
AS
12087 default:
12088 verbose(env,
ba90c2cc 12089 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
12090 return -EINVAL;
12091 }
12092
fdc15d38
AS
12093 return 0;
12094}
12095
b741f163
RG
12096static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12097{
12098 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12099 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12100}
12101
4976b718
HL
12102/* find and rewrite pseudo imm in ld_imm64 instructions:
12103 *
12104 * 1. if it accesses map FD, replace it with actual map pointer.
12105 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12106 *
12107 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 12108 */
4976b718 12109static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
12110{
12111 struct bpf_insn *insn = env->prog->insnsi;
12112 int insn_cnt = env->prog->len;
fdc15d38 12113 int i, j, err;
0246e64d 12114
f1f7714e 12115 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
12116 if (err)
12117 return err;
12118
0246e64d 12119 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 12120 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 12121 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 12122 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
12123 return -EINVAL;
12124 }
12125
0246e64d 12126 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 12127 struct bpf_insn_aux_data *aux;
0246e64d
AS
12128 struct bpf_map *map;
12129 struct fd f;
d8eca5bb 12130 u64 addr;
387544bf 12131 u32 fd;
0246e64d
AS
12132
12133 if (i == insn_cnt - 1 || insn[1].code != 0 ||
12134 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12135 insn[1].off != 0) {
61bd5218 12136 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
12137 return -EINVAL;
12138 }
12139
d8eca5bb 12140 if (insn[0].src_reg == 0)
0246e64d
AS
12141 /* valid generic load 64-bit imm */
12142 goto next_insn;
12143
4976b718
HL
12144 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12145 aux = &env->insn_aux_data[i];
12146 err = check_pseudo_btf_id(env, insn, aux);
12147 if (err)
12148 return err;
12149 goto next_insn;
12150 }
12151
69c087ba
YS
12152 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12153 aux = &env->insn_aux_data[i];
12154 aux->ptr_type = PTR_TO_FUNC;
12155 goto next_insn;
12156 }
12157
d8eca5bb
DB
12158 /* In final convert_pseudo_ld_imm64() step, this is
12159 * converted into regular 64-bit imm load insn.
12160 */
387544bf
AS
12161 switch (insn[0].src_reg) {
12162 case BPF_PSEUDO_MAP_VALUE:
12163 case BPF_PSEUDO_MAP_IDX_VALUE:
12164 break;
12165 case BPF_PSEUDO_MAP_FD:
12166 case BPF_PSEUDO_MAP_IDX:
12167 if (insn[1].imm == 0)
12168 break;
12169 fallthrough;
12170 default:
12171 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
12172 return -EINVAL;
12173 }
12174
387544bf
AS
12175 switch (insn[0].src_reg) {
12176 case BPF_PSEUDO_MAP_IDX_VALUE:
12177 case BPF_PSEUDO_MAP_IDX:
12178 if (bpfptr_is_null(env->fd_array)) {
12179 verbose(env, "fd_idx without fd_array is invalid\n");
12180 return -EPROTO;
12181 }
12182 if (copy_from_bpfptr_offset(&fd, env->fd_array,
12183 insn[0].imm * sizeof(fd),
12184 sizeof(fd)))
12185 return -EFAULT;
12186 break;
12187 default:
12188 fd = insn[0].imm;
12189 break;
12190 }
12191
12192 f = fdget(fd);
c2101297 12193 map = __bpf_map_get(f);
0246e64d 12194 if (IS_ERR(map)) {
61bd5218 12195 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 12196 insn[0].imm);
0246e64d
AS
12197 return PTR_ERR(map);
12198 }
12199
61bd5218 12200 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
12201 if (err) {
12202 fdput(f);
12203 return err;
12204 }
12205
d8eca5bb 12206 aux = &env->insn_aux_data[i];
387544bf
AS
12207 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12208 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
12209 addr = (unsigned long)map;
12210 } else {
12211 u32 off = insn[1].imm;
12212
12213 if (off >= BPF_MAX_VAR_OFF) {
12214 verbose(env, "direct value offset of %u is not allowed\n", off);
12215 fdput(f);
12216 return -EINVAL;
12217 }
12218
12219 if (!map->ops->map_direct_value_addr) {
12220 verbose(env, "no direct value access support for this map type\n");
12221 fdput(f);
12222 return -EINVAL;
12223 }
12224
12225 err = map->ops->map_direct_value_addr(map, &addr, off);
12226 if (err) {
12227 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12228 map->value_size, off);
12229 fdput(f);
12230 return err;
12231 }
12232
12233 aux->map_off = off;
12234 addr += off;
12235 }
12236
12237 insn[0].imm = (u32)addr;
12238 insn[1].imm = addr >> 32;
0246e64d
AS
12239
12240 /* check whether we recorded this map already */
d8eca5bb 12241 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 12242 if (env->used_maps[j] == map) {
d8eca5bb 12243 aux->map_index = j;
0246e64d
AS
12244 fdput(f);
12245 goto next_insn;
12246 }
d8eca5bb 12247 }
0246e64d
AS
12248
12249 if (env->used_map_cnt >= MAX_USED_MAPS) {
12250 fdput(f);
12251 return -E2BIG;
12252 }
12253
0246e64d
AS
12254 /* hold the map. If the program is rejected by verifier,
12255 * the map will be released by release_maps() or it
12256 * will be used by the valid program until it's unloaded
ab7f5bf0 12257 * and all maps are released in free_used_maps()
0246e64d 12258 */
1e0bd5a0 12259 bpf_map_inc(map);
d8eca5bb
DB
12260
12261 aux->map_index = env->used_map_cnt;
92117d84
AS
12262 env->used_maps[env->used_map_cnt++] = map;
12263
b741f163 12264 if (bpf_map_is_cgroup_storage(map) &&
e4730423 12265 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 12266 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
12267 fdput(f);
12268 return -EBUSY;
12269 }
12270
0246e64d
AS
12271 fdput(f);
12272next_insn:
12273 insn++;
12274 i++;
5e581dad
DB
12275 continue;
12276 }
12277
12278 /* Basic sanity check before we invest more work here. */
12279 if (!bpf_opcode_in_insntable(insn->code)) {
12280 verbose(env, "unknown opcode %02x\n", insn->code);
12281 return -EINVAL;
0246e64d
AS
12282 }
12283 }
12284
12285 /* now all pseudo BPF_LD_IMM64 instructions load valid
12286 * 'struct bpf_map *' into a register instead of user map_fd.
12287 * These pointers will be used later by verifier to validate map access.
12288 */
12289 return 0;
12290}
12291
12292/* drop refcnt of maps used by the rejected program */
58e2af8b 12293static void release_maps(struct bpf_verifier_env *env)
0246e64d 12294{
a2ea0746
DB
12295 __bpf_free_used_maps(env->prog->aux, env->used_maps,
12296 env->used_map_cnt);
0246e64d
AS
12297}
12298
541c3bad
AN
12299/* drop refcnt of maps used by the rejected program */
12300static void release_btfs(struct bpf_verifier_env *env)
12301{
12302 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12303 env->used_btf_cnt);
12304}
12305
0246e64d 12306/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 12307static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
12308{
12309 struct bpf_insn *insn = env->prog->insnsi;
12310 int insn_cnt = env->prog->len;
12311 int i;
12312
69c087ba
YS
12313 for (i = 0; i < insn_cnt; i++, insn++) {
12314 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12315 continue;
12316 if (insn->src_reg == BPF_PSEUDO_FUNC)
12317 continue;
12318 insn->src_reg = 0;
12319 }
0246e64d
AS
12320}
12321
8041902d
AS
12322/* single env->prog->insni[off] instruction was replaced with the range
12323 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
12324 * [0, off) and [off, end) to new locations, so the patched range stays zero
12325 */
75f0fc7b
HF
12326static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12327 struct bpf_insn_aux_data *new_data,
12328 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 12329{
75f0fc7b 12330 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 12331 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 12332 u32 old_seen = old_data[off].seen;
b325fbca 12333 u32 prog_len;
c131187d 12334 int i;
8041902d 12335
b325fbca
JW
12336 /* aux info at OFF always needs adjustment, no matter fast path
12337 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12338 * original insn at old prog.
12339 */
12340 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12341
8041902d 12342 if (cnt == 1)
75f0fc7b 12343 return;
b325fbca 12344 prog_len = new_prog->len;
75f0fc7b 12345
8041902d
AS
12346 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12347 memcpy(new_data + off + cnt - 1, old_data + off,
12348 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 12349 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
12350 /* Expand insni[off]'s seen count to the patched range. */
12351 new_data[i].seen = old_seen;
b325fbca
JW
12352 new_data[i].zext_dst = insn_has_def32(env, insn + i);
12353 }
8041902d
AS
12354 env->insn_aux_data = new_data;
12355 vfree(old_data);
8041902d
AS
12356}
12357
cc8b0b92
AS
12358static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12359{
12360 int i;
12361
12362 if (len == 1)
12363 return;
4cb3d99c
JW
12364 /* NOTE: fake 'exit' subprog should be updated as well. */
12365 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 12366 if (env->subprog_info[i].start <= off)
cc8b0b92 12367 continue;
9c8105bd 12368 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
12369 }
12370}
12371
7506d211 12372static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
12373{
12374 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12375 int i, sz = prog->aux->size_poke_tab;
12376 struct bpf_jit_poke_descriptor *desc;
12377
12378 for (i = 0; i < sz; i++) {
12379 desc = &tab[i];
7506d211
JF
12380 if (desc->insn_idx <= off)
12381 continue;
a748c697
MF
12382 desc->insn_idx += len - 1;
12383 }
12384}
12385
8041902d
AS
12386static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12387 const struct bpf_insn *patch, u32 len)
12388{
12389 struct bpf_prog *new_prog;
75f0fc7b
HF
12390 struct bpf_insn_aux_data *new_data = NULL;
12391
12392 if (len > 1) {
12393 new_data = vzalloc(array_size(env->prog->len + len - 1,
12394 sizeof(struct bpf_insn_aux_data)));
12395 if (!new_data)
12396 return NULL;
12397 }
8041902d
AS
12398
12399 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
12400 if (IS_ERR(new_prog)) {
12401 if (PTR_ERR(new_prog) == -ERANGE)
12402 verbose(env,
12403 "insn %d cannot be patched due to 16-bit range\n",
12404 env->insn_aux_data[off].orig_idx);
75f0fc7b 12405 vfree(new_data);
8041902d 12406 return NULL;
4f73379e 12407 }
75f0fc7b 12408 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 12409 adjust_subprog_starts(env, off, len);
7506d211 12410 adjust_poke_descs(new_prog, off, len);
8041902d
AS
12411 return new_prog;
12412}
12413
52875a04
JK
12414static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12415 u32 off, u32 cnt)
12416{
12417 int i, j;
12418
12419 /* find first prog starting at or after off (first to remove) */
12420 for (i = 0; i < env->subprog_cnt; i++)
12421 if (env->subprog_info[i].start >= off)
12422 break;
12423 /* find first prog starting at or after off + cnt (first to stay) */
12424 for (j = i; j < env->subprog_cnt; j++)
12425 if (env->subprog_info[j].start >= off + cnt)
12426 break;
12427 /* if j doesn't start exactly at off + cnt, we are just removing
12428 * the front of previous prog
12429 */
12430 if (env->subprog_info[j].start != off + cnt)
12431 j--;
12432
12433 if (j > i) {
12434 struct bpf_prog_aux *aux = env->prog->aux;
12435 int move;
12436
12437 /* move fake 'exit' subprog as well */
12438 move = env->subprog_cnt + 1 - j;
12439
12440 memmove(env->subprog_info + i,
12441 env->subprog_info + j,
12442 sizeof(*env->subprog_info) * move);
12443 env->subprog_cnt -= j - i;
12444
12445 /* remove func_info */
12446 if (aux->func_info) {
12447 move = aux->func_info_cnt - j;
12448
12449 memmove(aux->func_info + i,
12450 aux->func_info + j,
12451 sizeof(*aux->func_info) * move);
12452 aux->func_info_cnt -= j - i;
12453 /* func_info->insn_off is set after all code rewrites,
12454 * in adjust_btf_func() - no need to adjust
12455 */
12456 }
12457 } else {
12458 /* convert i from "first prog to remove" to "first to adjust" */
12459 if (env->subprog_info[i].start == off)
12460 i++;
12461 }
12462
12463 /* update fake 'exit' subprog as well */
12464 for (; i <= env->subprog_cnt; i++)
12465 env->subprog_info[i].start -= cnt;
12466
12467 return 0;
12468}
12469
12470static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12471 u32 cnt)
12472{
12473 struct bpf_prog *prog = env->prog;
12474 u32 i, l_off, l_cnt, nr_linfo;
12475 struct bpf_line_info *linfo;
12476
12477 nr_linfo = prog->aux->nr_linfo;
12478 if (!nr_linfo)
12479 return 0;
12480
12481 linfo = prog->aux->linfo;
12482
12483 /* find first line info to remove, count lines to be removed */
12484 for (i = 0; i < nr_linfo; i++)
12485 if (linfo[i].insn_off >= off)
12486 break;
12487
12488 l_off = i;
12489 l_cnt = 0;
12490 for (; i < nr_linfo; i++)
12491 if (linfo[i].insn_off < off + cnt)
12492 l_cnt++;
12493 else
12494 break;
12495
12496 /* First live insn doesn't match first live linfo, it needs to "inherit"
12497 * last removed linfo. prog is already modified, so prog->len == off
12498 * means no live instructions after (tail of the program was removed).
12499 */
12500 if (prog->len != off && l_cnt &&
12501 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12502 l_cnt--;
12503 linfo[--i].insn_off = off + cnt;
12504 }
12505
12506 /* remove the line info which refer to the removed instructions */
12507 if (l_cnt) {
12508 memmove(linfo + l_off, linfo + i,
12509 sizeof(*linfo) * (nr_linfo - i));
12510
12511 prog->aux->nr_linfo -= l_cnt;
12512 nr_linfo = prog->aux->nr_linfo;
12513 }
12514
12515 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12516 for (i = l_off; i < nr_linfo; i++)
12517 linfo[i].insn_off -= cnt;
12518
12519 /* fix up all subprogs (incl. 'exit') which start >= off */
12520 for (i = 0; i <= env->subprog_cnt; i++)
12521 if (env->subprog_info[i].linfo_idx > l_off) {
12522 /* program may have started in the removed region but
12523 * may not be fully removed
12524 */
12525 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12526 env->subprog_info[i].linfo_idx -= l_cnt;
12527 else
12528 env->subprog_info[i].linfo_idx = l_off;
12529 }
12530
12531 return 0;
12532}
12533
12534static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12535{
12536 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12537 unsigned int orig_prog_len = env->prog->len;
12538 int err;
12539
08ca90af
JK
12540 if (bpf_prog_is_dev_bound(env->prog->aux))
12541 bpf_prog_offload_remove_insns(env, off, cnt);
12542
52875a04
JK
12543 err = bpf_remove_insns(env->prog, off, cnt);
12544 if (err)
12545 return err;
12546
12547 err = adjust_subprog_starts_after_remove(env, off, cnt);
12548 if (err)
12549 return err;
12550
12551 err = bpf_adj_linfo_after_remove(env, off, cnt);
12552 if (err)
12553 return err;
12554
12555 memmove(aux_data + off, aux_data + off + cnt,
12556 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12557
12558 return 0;
12559}
12560
2a5418a1
DB
12561/* The verifier does more data flow analysis than llvm and will not
12562 * explore branches that are dead at run time. Malicious programs can
12563 * have dead code too. Therefore replace all dead at-run-time code
12564 * with 'ja -1'.
12565 *
12566 * Just nops are not optimal, e.g. if they would sit at the end of the
12567 * program and through another bug we would manage to jump there, then
12568 * we'd execute beyond program memory otherwise. Returning exception
12569 * code also wouldn't work since we can have subprogs where the dead
12570 * code could be located.
c131187d
AS
12571 */
12572static void sanitize_dead_code(struct bpf_verifier_env *env)
12573{
12574 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 12575 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
12576 struct bpf_insn *insn = env->prog->insnsi;
12577 const int insn_cnt = env->prog->len;
12578 int i;
12579
12580 for (i = 0; i < insn_cnt; i++) {
12581 if (aux_data[i].seen)
12582 continue;
2a5418a1 12583 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 12584 aux_data[i].zext_dst = false;
c131187d
AS
12585 }
12586}
12587
e2ae4ca2
JK
12588static bool insn_is_cond_jump(u8 code)
12589{
12590 u8 op;
12591
092ed096
JW
12592 if (BPF_CLASS(code) == BPF_JMP32)
12593 return true;
12594
e2ae4ca2
JK
12595 if (BPF_CLASS(code) != BPF_JMP)
12596 return false;
12597
12598 op = BPF_OP(code);
12599 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12600}
12601
12602static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12603{
12604 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12605 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12606 struct bpf_insn *insn = env->prog->insnsi;
12607 const int insn_cnt = env->prog->len;
12608 int i;
12609
12610 for (i = 0; i < insn_cnt; i++, insn++) {
12611 if (!insn_is_cond_jump(insn->code))
12612 continue;
12613
12614 if (!aux_data[i + 1].seen)
12615 ja.off = insn->off;
12616 else if (!aux_data[i + 1 + insn->off].seen)
12617 ja.off = 0;
12618 else
12619 continue;
12620
08ca90af
JK
12621 if (bpf_prog_is_dev_bound(env->prog->aux))
12622 bpf_prog_offload_replace_insn(env, i, &ja);
12623
e2ae4ca2
JK
12624 memcpy(insn, &ja, sizeof(ja));
12625 }
12626}
12627
52875a04
JK
12628static int opt_remove_dead_code(struct bpf_verifier_env *env)
12629{
12630 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12631 int insn_cnt = env->prog->len;
12632 int i, err;
12633
12634 for (i = 0; i < insn_cnt; i++) {
12635 int j;
12636
12637 j = 0;
12638 while (i + j < insn_cnt && !aux_data[i + j].seen)
12639 j++;
12640 if (!j)
12641 continue;
12642
12643 err = verifier_remove_insns(env, i, j);
12644 if (err)
12645 return err;
12646 insn_cnt = env->prog->len;
12647 }
12648
12649 return 0;
12650}
12651
a1b14abc
JK
12652static int opt_remove_nops(struct bpf_verifier_env *env)
12653{
12654 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12655 struct bpf_insn *insn = env->prog->insnsi;
12656 int insn_cnt = env->prog->len;
12657 int i, err;
12658
12659 for (i = 0; i < insn_cnt; i++) {
12660 if (memcmp(&insn[i], &ja, sizeof(ja)))
12661 continue;
12662
12663 err = verifier_remove_insns(env, i, 1);
12664 if (err)
12665 return err;
12666 insn_cnt--;
12667 i--;
12668 }
12669
12670 return 0;
12671}
12672
d6c2308c
JW
12673static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12674 const union bpf_attr *attr)
a4b1d3c1 12675{
d6c2308c 12676 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 12677 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 12678 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 12679 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 12680 struct bpf_prog *new_prog;
d6c2308c 12681 bool rnd_hi32;
a4b1d3c1 12682
d6c2308c 12683 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 12684 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
12685 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12686 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12687 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
12688 for (i = 0; i < len; i++) {
12689 int adj_idx = i + delta;
12690 struct bpf_insn insn;
83a28819 12691 int load_reg;
a4b1d3c1 12692
d6c2308c 12693 insn = insns[adj_idx];
83a28819 12694 load_reg = insn_def_regno(&insn);
d6c2308c
JW
12695 if (!aux[adj_idx].zext_dst) {
12696 u8 code, class;
12697 u32 imm_rnd;
12698
12699 if (!rnd_hi32)
12700 continue;
12701
12702 code = insn.code;
12703 class = BPF_CLASS(code);
83a28819 12704 if (load_reg == -1)
d6c2308c
JW
12705 continue;
12706
12707 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
12708 * BPF_STX + SRC_OP, so it is safe to pass NULL
12709 * here.
d6c2308c 12710 */
83a28819 12711 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
12712 if (class == BPF_LD &&
12713 BPF_MODE(code) == BPF_IMM)
12714 i++;
12715 continue;
12716 }
12717
12718 /* ctx load could be transformed into wider load. */
12719 if (class == BPF_LDX &&
12720 aux[adj_idx].ptr_type == PTR_TO_CTX)
12721 continue;
12722
12723 imm_rnd = get_random_int();
12724 rnd_hi32_patch[0] = insn;
12725 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 12726 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
12727 patch = rnd_hi32_patch;
12728 patch_len = 4;
12729 goto apply_patch_buffer;
12730 }
12731
39491867
BJ
12732 /* Add in an zero-extend instruction if a) the JIT has requested
12733 * it or b) it's a CMPXCHG.
12734 *
12735 * The latter is because: BPF_CMPXCHG always loads a value into
12736 * R0, therefore always zero-extends. However some archs'
12737 * equivalent instruction only does this load when the
12738 * comparison is successful. This detail of CMPXCHG is
12739 * orthogonal to the general zero-extension behaviour of the
12740 * CPU, so it's treated independently of bpf_jit_needs_zext.
12741 */
12742 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
12743 continue;
12744
83a28819
IL
12745 if (WARN_ON(load_reg == -1)) {
12746 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12747 return -EFAULT;
b2e37a71
IL
12748 }
12749
a4b1d3c1 12750 zext_patch[0] = insn;
b2e37a71
IL
12751 zext_patch[1].dst_reg = load_reg;
12752 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
12753 patch = zext_patch;
12754 patch_len = 2;
12755apply_patch_buffer:
12756 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
12757 if (!new_prog)
12758 return -ENOMEM;
12759 env->prog = new_prog;
12760 insns = new_prog->insnsi;
12761 aux = env->insn_aux_data;
d6c2308c 12762 delta += patch_len - 1;
a4b1d3c1
JW
12763 }
12764
12765 return 0;
12766}
12767
c64b7983
JS
12768/* convert load instructions that access fields of a context type into a
12769 * sequence of instructions that access fields of the underlying structure:
12770 * struct __sk_buff -> struct sk_buff
12771 * struct bpf_sock_ops -> struct sock
9bac3d6d 12772 */
58e2af8b 12773static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 12774{
00176a34 12775 const struct bpf_verifier_ops *ops = env->ops;
f96da094 12776 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 12777 const int insn_cnt = env->prog->len;
36bbef52 12778 struct bpf_insn insn_buf[16], *insn;
46f53a65 12779 u32 target_size, size_default, off;
9bac3d6d 12780 struct bpf_prog *new_prog;
d691f9e8 12781 enum bpf_access_type type;
f96da094 12782 bool is_narrower_load;
9bac3d6d 12783
b09928b9
DB
12784 if (ops->gen_prologue || env->seen_direct_write) {
12785 if (!ops->gen_prologue) {
12786 verbose(env, "bpf verifier is misconfigured\n");
12787 return -EINVAL;
12788 }
36bbef52
DB
12789 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12790 env->prog);
12791 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 12792 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
12793 return -EINVAL;
12794 } else if (cnt) {
8041902d 12795 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
12796 if (!new_prog)
12797 return -ENOMEM;
8041902d 12798
36bbef52 12799 env->prog = new_prog;
3df126f3 12800 delta += cnt - 1;
36bbef52
DB
12801 }
12802 }
12803
c64b7983 12804 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
12805 return 0;
12806
3df126f3 12807 insn = env->prog->insnsi + delta;
36bbef52 12808
9bac3d6d 12809 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 12810 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 12811 bool ctx_access;
c64b7983 12812
62c7989b
DB
12813 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12814 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12815 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 12816 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 12817 type = BPF_READ;
2039f26f
DB
12818 ctx_access = true;
12819 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12820 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12821 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12822 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12823 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12824 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12825 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12826 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 12827 type = BPF_WRITE;
2039f26f
DB
12828 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12829 } else {
9bac3d6d 12830 continue;
2039f26f 12831 }
9bac3d6d 12832
af86ca4e 12833 if (type == BPF_WRITE &&
2039f26f 12834 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 12835 struct bpf_insn patch[] = {
af86ca4e 12836 *insn,
2039f26f 12837 BPF_ST_NOSPEC(),
af86ca4e
AS
12838 };
12839
12840 cnt = ARRAY_SIZE(patch);
12841 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12842 if (!new_prog)
12843 return -ENOMEM;
12844
12845 delta += cnt - 1;
12846 env->prog = new_prog;
12847 insn = new_prog->insnsi + i + delta;
12848 continue;
12849 }
12850
2039f26f
DB
12851 if (!ctx_access)
12852 continue;
12853
c64b7983
JS
12854 switch (env->insn_aux_data[i + delta].ptr_type) {
12855 case PTR_TO_CTX:
12856 if (!ops->convert_ctx_access)
12857 continue;
12858 convert_ctx_access = ops->convert_ctx_access;
12859 break;
12860 case PTR_TO_SOCKET:
46f8bc92 12861 case PTR_TO_SOCK_COMMON:
c64b7983
JS
12862 convert_ctx_access = bpf_sock_convert_ctx_access;
12863 break;
655a51e5
MKL
12864 case PTR_TO_TCP_SOCK:
12865 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12866 break;
fada7fdc
JL
12867 case PTR_TO_XDP_SOCK:
12868 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12869 break;
2a02759e 12870 case PTR_TO_BTF_ID:
27ae7997
MKL
12871 if (type == BPF_READ) {
12872 insn->code = BPF_LDX | BPF_PROBE_MEM |
12873 BPF_SIZE((insn)->code);
12874 env->prog->aux->num_exentries++;
7e40781c 12875 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
12876 verbose(env, "Writes through BTF pointers are not allowed\n");
12877 return -EINVAL;
12878 }
2a02759e 12879 continue;
c64b7983 12880 default:
9bac3d6d 12881 continue;
c64b7983 12882 }
9bac3d6d 12883
31fd8581 12884 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 12885 size = BPF_LDST_BYTES(insn);
31fd8581
YS
12886
12887 /* If the read access is a narrower load of the field,
12888 * convert to a 4/8-byte load, to minimum program type specific
12889 * convert_ctx_access changes. If conversion is successful,
12890 * we will apply proper mask to the result.
12891 */
f96da094 12892 is_narrower_load = size < ctx_field_size;
46f53a65
AI
12893 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12894 off = insn->off;
31fd8581 12895 if (is_narrower_load) {
f96da094
DB
12896 u8 size_code;
12897
12898 if (type == BPF_WRITE) {
61bd5218 12899 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12900 return -EINVAL;
12901 }
31fd8581 12902
f96da094 12903 size_code = BPF_H;
31fd8581
YS
12904 if (ctx_field_size == 4)
12905 size_code = BPF_W;
12906 else if (ctx_field_size == 8)
12907 size_code = BPF_DW;
f96da094 12908
bc23105c 12909 insn->off = off & ~(size_default - 1);
31fd8581
YS
12910 insn->code = BPF_LDX | BPF_MEM | size_code;
12911 }
f96da094
DB
12912
12913 target_size = 0;
c64b7983
JS
12914 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12915 &target_size);
f96da094
DB
12916 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12917 (ctx_field_size && !target_size)) {
61bd5218 12918 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12919 return -EINVAL;
12920 }
f96da094
DB
12921
12922 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12923 u8 shift = bpf_ctx_narrow_access_offset(
12924 off, size, size_default) * 8;
d7af7e49
AI
12925 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12926 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12927 return -EINVAL;
12928 }
46f53a65
AI
12929 if (ctx_field_size <= 4) {
12930 if (shift)
12931 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12932 insn->dst_reg,
12933 shift);
31fd8581 12934 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12935 (1 << size * 8) - 1);
46f53a65
AI
12936 } else {
12937 if (shift)
12938 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12939 insn->dst_reg,
12940 shift);
31fd8581 12941 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12942 (1ULL << size * 8) - 1);
46f53a65 12943 }
31fd8581 12944 }
9bac3d6d 12945
8041902d 12946 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12947 if (!new_prog)
12948 return -ENOMEM;
12949
3df126f3 12950 delta += cnt - 1;
9bac3d6d
AS
12951
12952 /* keep walking new program and skip insns we just inserted */
12953 env->prog = new_prog;
3df126f3 12954 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12955 }
12956
12957 return 0;
12958}
12959
1c2a088a
AS
12960static int jit_subprogs(struct bpf_verifier_env *env)
12961{
12962 struct bpf_prog *prog = env->prog, **func, *tmp;
12963 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12964 struct bpf_map *map_ptr;
7105e828 12965 struct bpf_insn *insn;
1c2a088a 12966 void *old_bpf_func;
c4c0bdc0 12967 int err, num_exentries;
1c2a088a 12968
f910cefa 12969 if (env->subprog_cnt <= 1)
1c2a088a
AS
12970 return 0;
12971
7105e828 12972 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 12973 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 12974 continue;
69c087ba 12975
c7a89784
DB
12976 /* Upon error here we cannot fall back to interpreter but
12977 * need a hard reject of the program. Thus -EFAULT is
12978 * propagated in any case.
12979 */
1c2a088a
AS
12980 subprog = find_subprog(env, i + insn->imm + 1);
12981 if (subprog < 0) {
12982 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12983 i + insn->imm + 1);
12984 return -EFAULT;
12985 }
12986 /* temporarily remember subprog id inside insn instead of
12987 * aux_data, since next loop will split up all insns into funcs
12988 */
f910cefa 12989 insn->off = subprog;
1c2a088a
AS
12990 /* remember original imm in case JIT fails and fallback
12991 * to interpreter will be needed
12992 */
12993 env->insn_aux_data[i].call_imm = insn->imm;
12994 /* point imm to __bpf_call_base+1 from JITs point of view */
12995 insn->imm = 1;
3990ed4c
MKL
12996 if (bpf_pseudo_func(insn))
12997 /* jit (e.g. x86_64) may emit fewer instructions
12998 * if it learns a u32 imm is the same as a u64 imm.
12999 * Force a non zero here.
13000 */
13001 insn[1].imm = 1;
1c2a088a
AS
13002 }
13003
c454a46b
MKL
13004 err = bpf_prog_alloc_jited_linfo(prog);
13005 if (err)
13006 goto out_undo_insn;
13007
13008 err = -ENOMEM;
6396bb22 13009 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 13010 if (!func)
c7a89784 13011 goto out_undo_insn;
1c2a088a 13012
f910cefa 13013 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 13014 subprog_start = subprog_end;
4cb3d99c 13015 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
13016
13017 len = subprog_end - subprog_start;
fb7dd8bc 13018 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
13019 * hence main prog stats include the runtime of subprogs.
13020 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 13021 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
13022 */
13023 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
13024 if (!func[i])
13025 goto out_free;
13026 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13027 len * sizeof(struct bpf_insn));
4f74d809 13028 func[i]->type = prog->type;
1c2a088a 13029 func[i]->len = len;
4f74d809
DB
13030 if (bpf_prog_calc_tag(func[i]))
13031 goto out_free;
1c2a088a 13032 func[i]->is_func = 1;
ba64e7d8 13033 func[i]->aux->func_idx = i;
f263a814 13034 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
13035 func[i]->aux->btf = prog->aux->btf;
13036 func[i]->aux->func_info = prog->aux->func_info;
f263a814
JF
13037 func[i]->aux->poke_tab = prog->aux->poke_tab;
13038 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 13039
a748c697 13040 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 13041 struct bpf_jit_poke_descriptor *poke;
a748c697 13042
f263a814
JF
13043 poke = &prog->aux->poke_tab[j];
13044 if (poke->insn_idx < subprog_end &&
13045 poke->insn_idx >= subprog_start)
13046 poke->aux = func[i]->aux;
a748c697
MF
13047 }
13048
1c2a088a
AS
13049 /* Use bpf_prog_F_tag to indicate functions in stack traces.
13050 * Long term would need debug info to populate names
13051 */
13052 func[i]->aux->name[0] = 'F';
9c8105bd 13053 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 13054 func[i]->jit_requested = 1;
d2a3b7c5 13055 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 13056 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 13057 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
13058 func[i]->aux->linfo = prog->aux->linfo;
13059 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13060 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13061 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
13062 num_exentries = 0;
13063 insn = func[i]->insnsi;
13064 for (j = 0; j < func[i]->len; j++, insn++) {
13065 if (BPF_CLASS(insn->code) == BPF_LDX &&
13066 BPF_MODE(insn->code) == BPF_PROBE_MEM)
13067 num_exentries++;
13068 }
13069 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 13070 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
13071 func[i] = bpf_int_jit_compile(func[i]);
13072 if (!func[i]->jited) {
13073 err = -ENOTSUPP;
13074 goto out_free;
13075 }
13076 cond_resched();
13077 }
a748c697 13078
1c2a088a
AS
13079 /* at this point all bpf functions were successfully JITed
13080 * now populate all bpf_calls with correct addresses and
13081 * run last pass of JIT
13082 */
f910cefa 13083 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
13084 insn = func[i]->insnsi;
13085 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 13086 if (bpf_pseudo_func(insn)) {
3990ed4c 13087 subprog = insn->off;
69c087ba
YS
13088 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13089 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13090 continue;
13091 }
23a2d70c 13092 if (!bpf_pseudo_call(insn))
1c2a088a
AS
13093 continue;
13094 subprog = insn->off;
3d717fad 13095 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 13096 }
2162fed4
SD
13097
13098 /* we use the aux data to keep a list of the start addresses
13099 * of the JITed images for each function in the program
13100 *
13101 * for some architectures, such as powerpc64, the imm field
13102 * might not be large enough to hold the offset of the start
13103 * address of the callee's JITed image from __bpf_call_base
13104 *
13105 * in such cases, we can lookup the start address of a callee
13106 * by using its subprog id, available from the off field of
13107 * the call instruction, as an index for this list
13108 */
13109 func[i]->aux->func = func;
13110 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 13111 }
f910cefa 13112 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
13113 old_bpf_func = func[i]->bpf_func;
13114 tmp = bpf_int_jit_compile(func[i]);
13115 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13116 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 13117 err = -ENOTSUPP;
1c2a088a
AS
13118 goto out_free;
13119 }
13120 cond_resched();
13121 }
13122
13123 /* finally lock prog and jit images for all functions and
13124 * populate kallsysm
13125 */
f910cefa 13126 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
13127 bpf_prog_lock_ro(func[i]);
13128 bpf_prog_kallsyms_add(func[i]);
13129 }
7105e828
DB
13130
13131 /* Last step: make now unused interpreter insns from main
13132 * prog consistent for later dump requests, so they can
13133 * later look the same as if they were interpreted only.
13134 */
13135 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
13136 if (bpf_pseudo_func(insn)) {
13137 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
13138 insn[1].imm = insn->off;
13139 insn->off = 0;
69c087ba
YS
13140 continue;
13141 }
23a2d70c 13142 if (!bpf_pseudo_call(insn))
7105e828
DB
13143 continue;
13144 insn->off = env->insn_aux_data[i].call_imm;
13145 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 13146 insn->imm = subprog;
7105e828
DB
13147 }
13148
1c2a088a
AS
13149 prog->jited = 1;
13150 prog->bpf_func = func[0]->bpf_func;
d00c6473 13151 prog->jited_len = func[0]->jited_len;
1c2a088a 13152 prog->aux->func = func;
f910cefa 13153 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 13154 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
13155 return 0;
13156out_free:
f263a814
JF
13157 /* We failed JIT'ing, so at this point we need to unregister poke
13158 * descriptors from subprogs, so that kernel is not attempting to
13159 * patch it anymore as we're freeing the subprog JIT memory.
13160 */
13161 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13162 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13163 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13164 }
13165 /* At this point we're guaranteed that poke descriptors are not
13166 * live anymore. We can just unlink its descriptor table as it's
13167 * released with the main prog.
13168 */
a748c697
MF
13169 for (i = 0; i < env->subprog_cnt; i++) {
13170 if (!func[i])
13171 continue;
f263a814 13172 func[i]->aux->poke_tab = NULL;
a748c697
MF
13173 bpf_jit_free(func[i]);
13174 }
1c2a088a 13175 kfree(func);
c7a89784 13176out_undo_insn:
1c2a088a
AS
13177 /* cleanup main prog to be interpreted */
13178 prog->jit_requested = 0;
d2a3b7c5 13179 prog->blinding_requested = 0;
1c2a088a 13180 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 13181 if (!bpf_pseudo_call(insn))
1c2a088a
AS
13182 continue;
13183 insn->off = 0;
13184 insn->imm = env->insn_aux_data[i].call_imm;
13185 }
e16301fb 13186 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
13187 return err;
13188}
13189
1ea47e01
AS
13190static int fixup_call_args(struct bpf_verifier_env *env)
13191{
19d28fbd 13192#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
13193 struct bpf_prog *prog = env->prog;
13194 struct bpf_insn *insn = prog->insnsi;
e6ac2450 13195 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 13196 int i, depth;
19d28fbd 13197#endif
e4052d06 13198 int err = 0;
1ea47e01 13199
e4052d06
QM
13200 if (env->prog->jit_requested &&
13201 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
13202 err = jit_subprogs(env);
13203 if (err == 0)
1c2a088a 13204 return 0;
c7a89784
DB
13205 if (err == -EFAULT)
13206 return err;
19d28fbd
DM
13207 }
13208#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
13209 if (has_kfunc_call) {
13210 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13211 return -EINVAL;
13212 }
e411901c
MF
13213 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13214 /* When JIT fails the progs with bpf2bpf calls and tail_calls
13215 * have to be rejected, since interpreter doesn't support them yet.
13216 */
13217 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13218 return -EINVAL;
13219 }
1ea47e01 13220 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
13221 if (bpf_pseudo_func(insn)) {
13222 /* When JIT fails the progs with callback calls
13223 * have to be rejected, since interpreter doesn't support them yet.
13224 */
13225 verbose(env, "callbacks are not allowed in non-JITed programs\n");
13226 return -EINVAL;
13227 }
13228
23a2d70c 13229 if (!bpf_pseudo_call(insn))
1ea47e01
AS
13230 continue;
13231 depth = get_callee_stack_depth(env, insn, i);
13232 if (depth < 0)
13233 return depth;
13234 bpf_patch_call_args(insn, depth);
13235 }
19d28fbd
DM
13236 err = 0;
13237#endif
13238 return err;
1ea47e01
AS
13239}
13240
e6ac2450
MKL
13241static int fixup_kfunc_call(struct bpf_verifier_env *env,
13242 struct bpf_insn *insn)
13243{
13244 const struct bpf_kfunc_desc *desc;
13245
a5d82727
KKD
13246 if (!insn->imm) {
13247 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13248 return -EINVAL;
13249 }
13250
e6ac2450
MKL
13251 /* insn->imm has the btf func_id. Replace it with
13252 * an address (relative to __bpf_base_call).
13253 */
2357672c 13254 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
13255 if (!desc) {
13256 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13257 insn->imm);
13258 return -EFAULT;
13259 }
13260
13261 insn->imm = desc->imm;
13262
13263 return 0;
13264}
13265
e6ac5933
BJ
13266/* Do various post-verification rewrites in a single program pass.
13267 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 13268 */
e6ac5933 13269static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 13270{
79741b3b 13271 struct bpf_prog *prog = env->prog;
f92c1e18 13272 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 13273 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 13274 struct bpf_insn *insn = prog->insnsi;
e245c5c6 13275 const struct bpf_func_proto *fn;
79741b3b 13276 const int insn_cnt = prog->len;
09772d92 13277 const struct bpf_map_ops *ops;
c93552c4 13278 struct bpf_insn_aux_data *aux;
81ed18ab
AS
13279 struct bpf_insn insn_buf[16];
13280 struct bpf_prog *new_prog;
13281 struct bpf_map *map_ptr;
d2e4c1e6 13282 int i, ret, cnt, delta = 0;
e245c5c6 13283
79741b3b 13284 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 13285 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
13286 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13287 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13288 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 13289 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 13290 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
13291 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13292 struct bpf_insn *patchlet;
13293 struct bpf_insn chk_and_div[] = {
9b00f1b7 13294 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
13295 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13296 BPF_JNE | BPF_K, insn->src_reg,
13297 0, 2, 0),
f6b1b3bf
DB
13298 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13299 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13300 *insn,
13301 };
e88b2c6e 13302 struct bpf_insn chk_and_mod[] = {
9b00f1b7 13303 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
13304 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13305 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 13306 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 13307 *insn,
9b00f1b7
DB
13308 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13309 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 13310 };
f6b1b3bf 13311
e88b2c6e
DB
13312 patchlet = isdiv ? chk_and_div : chk_and_mod;
13313 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 13314 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
13315
13316 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
13317 if (!new_prog)
13318 return -ENOMEM;
13319
13320 delta += cnt - 1;
13321 env->prog = prog = new_prog;
13322 insn = new_prog->insnsi + i + delta;
13323 continue;
13324 }
13325
e6ac5933 13326 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
13327 if (BPF_CLASS(insn->code) == BPF_LD &&
13328 (BPF_MODE(insn->code) == BPF_ABS ||
13329 BPF_MODE(insn->code) == BPF_IND)) {
13330 cnt = env->ops->gen_ld_abs(insn, insn_buf);
13331 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13332 verbose(env, "bpf verifier is misconfigured\n");
13333 return -EINVAL;
13334 }
13335
13336 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13337 if (!new_prog)
13338 return -ENOMEM;
13339
13340 delta += cnt - 1;
13341 env->prog = prog = new_prog;
13342 insn = new_prog->insnsi + i + delta;
13343 continue;
13344 }
13345
e6ac5933 13346 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
13347 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13348 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13349 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13350 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 13351 struct bpf_insn *patch = &insn_buf[0];
801c6058 13352 bool issrc, isneg, isimm;
979d63d5
DB
13353 u32 off_reg;
13354
13355 aux = &env->insn_aux_data[i + delta];
3612af78
DB
13356 if (!aux->alu_state ||
13357 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
13358 continue;
13359
13360 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13361 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13362 BPF_ALU_SANITIZE_SRC;
801c6058 13363 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
13364
13365 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
13366 if (isimm) {
13367 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13368 } else {
13369 if (isneg)
13370 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13371 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13372 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13373 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13374 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13375 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13376 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13377 }
b9b34ddb
DB
13378 if (!issrc)
13379 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13380 insn->src_reg = BPF_REG_AX;
979d63d5
DB
13381 if (isneg)
13382 insn->code = insn->code == code_add ?
13383 code_sub : code_add;
13384 *patch++ = *insn;
801c6058 13385 if (issrc && isneg && !isimm)
979d63d5
DB
13386 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13387 cnt = patch - insn_buf;
13388
13389 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13390 if (!new_prog)
13391 return -ENOMEM;
13392
13393 delta += cnt - 1;
13394 env->prog = prog = new_prog;
13395 insn = new_prog->insnsi + i + delta;
13396 continue;
13397 }
13398
79741b3b
AS
13399 if (insn->code != (BPF_JMP | BPF_CALL))
13400 continue;
cc8b0b92
AS
13401 if (insn->src_reg == BPF_PSEUDO_CALL)
13402 continue;
e6ac2450
MKL
13403 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13404 ret = fixup_kfunc_call(env, insn);
13405 if (ret)
13406 return ret;
13407 continue;
13408 }
e245c5c6 13409
79741b3b
AS
13410 if (insn->imm == BPF_FUNC_get_route_realm)
13411 prog->dst_needed = 1;
13412 if (insn->imm == BPF_FUNC_get_prandom_u32)
13413 bpf_user_rnd_init_once();
9802d865
JB
13414 if (insn->imm == BPF_FUNC_override_return)
13415 prog->kprobe_override = 1;
79741b3b 13416 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
13417 /* If we tail call into other programs, we
13418 * cannot make any assumptions since they can
13419 * be replaced dynamically during runtime in
13420 * the program array.
13421 */
13422 prog->cb_access = 1;
e411901c
MF
13423 if (!allow_tail_call_in_subprogs(env))
13424 prog->aux->stack_depth = MAX_BPF_STACK;
13425 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 13426
79741b3b 13427 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 13428 * conditional branch in the interpreter for every normal
79741b3b
AS
13429 * call and to prevent accidental JITing by JIT compiler
13430 * that doesn't support bpf_tail_call yet
e245c5c6 13431 */
79741b3b 13432 insn->imm = 0;
71189fa9 13433 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 13434
c93552c4 13435 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 13436 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 13437 prog->jit_requested &&
d2e4c1e6
DB
13438 !bpf_map_key_poisoned(aux) &&
13439 !bpf_map_ptr_poisoned(aux) &&
13440 !bpf_map_ptr_unpriv(aux)) {
13441 struct bpf_jit_poke_descriptor desc = {
13442 .reason = BPF_POKE_REASON_TAIL_CALL,
13443 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13444 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 13445 .insn_idx = i + delta,
d2e4c1e6
DB
13446 };
13447
13448 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13449 if (ret < 0) {
13450 verbose(env, "adding tail call poke descriptor failed\n");
13451 return ret;
13452 }
13453
13454 insn->imm = ret + 1;
13455 continue;
13456 }
13457
c93552c4
DB
13458 if (!bpf_map_ptr_unpriv(aux))
13459 continue;
13460
b2157399
AS
13461 /* instead of changing every JIT dealing with tail_call
13462 * emit two extra insns:
13463 * if (index >= max_entries) goto out;
13464 * index &= array->index_mask;
13465 * to avoid out-of-bounds cpu speculation
13466 */
c93552c4 13467 if (bpf_map_ptr_poisoned(aux)) {
40950343 13468 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
13469 return -EINVAL;
13470 }
c93552c4 13471
d2e4c1e6 13472 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
13473 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13474 map_ptr->max_entries, 2);
13475 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13476 container_of(map_ptr,
13477 struct bpf_array,
13478 map)->index_mask);
13479 insn_buf[2] = *insn;
13480 cnt = 3;
13481 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13482 if (!new_prog)
13483 return -ENOMEM;
13484
13485 delta += cnt - 1;
13486 env->prog = prog = new_prog;
13487 insn = new_prog->insnsi + i + delta;
79741b3b
AS
13488 continue;
13489 }
e245c5c6 13490
b00628b1
AS
13491 if (insn->imm == BPF_FUNC_timer_set_callback) {
13492 /* The verifier will process callback_fn as many times as necessary
13493 * with different maps and the register states prepared by
13494 * set_timer_callback_state will be accurate.
13495 *
13496 * The following use case is valid:
13497 * map1 is shared by prog1, prog2, prog3.
13498 * prog1 calls bpf_timer_init for some map1 elements
13499 * prog2 calls bpf_timer_set_callback for some map1 elements.
13500 * Those that were not bpf_timer_init-ed will return -EINVAL.
13501 * prog3 calls bpf_timer_start for some map1 elements.
13502 * Those that were not both bpf_timer_init-ed and
13503 * bpf_timer_set_callback-ed will return -EINVAL.
13504 */
13505 struct bpf_insn ld_addrs[2] = {
13506 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13507 };
13508
13509 insn_buf[0] = ld_addrs[0];
13510 insn_buf[1] = ld_addrs[1];
13511 insn_buf[2] = *insn;
13512 cnt = 3;
13513
13514 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13515 if (!new_prog)
13516 return -ENOMEM;
13517
13518 delta += cnt - 1;
13519 env->prog = prog = new_prog;
13520 insn = new_prog->insnsi + i + delta;
13521 goto patch_call_imm;
13522 }
13523
b00fa38a
JK
13524 if (insn->imm == BPF_FUNC_task_storage_get ||
13525 insn->imm == BPF_FUNC_sk_storage_get ||
13526 insn->imm == BPF_FUNC_inode_storage_get) {
13527 if (env->prog->aux->sleepable)
d56c9fe6 13528 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a 13529 else
d56c9fe6 13530 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
b00fa38a
JK
13531 insn_buf[1] = *insn;
13532 cnt = 2;
13533
13534 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13535 if (!new_prog)
13536 return -ENOMEM;
13537
13538 delta += cnt - 1;
13539 env->prog = prog = new_prog;
13540 insn = new_prog->insnsi + i + delta;
13541 goto patch_call_imm;
13542 }
13543
89c63074 13544 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
13545 * and other inlining handlers are currently limited to 64 bit
13546 * only.
89c63074 13547 */
60b58afc 13548 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
13549 (insn->imm == BPF_FUNC_map_lookup_elem ||
13550 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
13551 insn->imm == BPF_FUNC_map_delete_elem ||
13552 insn->imm == BPF_FUNC_map_push_elem ||
13553 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 13554 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c
AI
13555 insn->imm == BPF_FUNC_redirect_map ||
13556 insn->imm == BPF_FUNC_for_each_map_elem)) {
c93552c4
DB
13557 aux = &env->insn_aux_data[i + delta];
13558 if (bpf_map_ptr_poisoned(aux))
13559 goto patch_call_imm;
13560
d2e4c1e6 13561 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
13562 ops = map_ptr->ops;
13563 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13564 ops->map_gen_lookup) {
13565 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
13566 if (cnt == -EOPNOTSUPP)
13567 goto patch_map_ops_generic;
13568 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
13569 verbose(env, "bpf verifier is misconfigured\n");
13570 return -EINVAL;
13571 }
81ed18ab 13572
09772d92
DB
13573 new_prog = bpf_patch_insn_data(env, i + delta,
13574 insn_buf, cnt);
13575 if (!new_prog)
13576 return -ENOMEM;
81ed18ab 13577
09772d92
DB
13578 delta += cnt - 1;
13579 env->prog = prog = new_prog;
13580 insn = new_prog->insnsi + i + delta;
13581 continue;
13582 }
81ed18ab 13583
09772d92
DB
13584 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13585 (void *(*)(struct bpf_map *map, void *key))NULL));
13586 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13587 (int (*)(struct bpf_map *map, void *key))NULL));
13588 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13589 (int (*)(struct bpf_map *map, void *key, void *value,
13590 u64 flags))NULL));
84430d42
DB
13591 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13592 (int (*)(struct bpf_map *map, void *value,
13593 u64 flags))NULL));
13594 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13595 (int (*)(struct bpf_map *map, void *value))NULL));
13596 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13597 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
13598 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13599 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
0640c77c
AI
13600 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13601 (int (*)(struct bpf_map *map,
13602 bpf_callback_t callback_fn,
13603 void *callback_ctx,
13604 u64 flags))NULL));
e6a4750f 13605
4a8f87e6 13606patch_map_ops_generic:
09772d92
DB
13607 switch (insn->imm) {
13608 case BPF_FUNC_map_lookup_elem:
3d717fad 13609 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
13610 continue;
13611 case BPF_FUNC_map_update_elem:
3d717fad 13612 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
13613 continue;
13614 case BPF_FUNC_map_delete_elem:
3d717fad 13615 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 13616 continue;
84430d42 13617 case BPF_FUNC_map_push_elem:
3d717fad 13618 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
13619 continue;
13620 case BPF_FUNC_map_pop_elem:
3d717fad 13621 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
13622 continue;
13623 case BPF_FUNC_map_peek_elem:
3d717fad 13624 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 13625 continue;
e6a4750f 13626 case BPF_FUNC_redirect_map:
3d717fad 13627 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 13628 continue;
0640c77c
AI
13629 case BPF_FUNC_for_each_map_elem:
13630 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 13631 continue;
09772d92 13632 }
81ed18ab 13633
09772d92 13634 goto patch_call_imm;
81ed18ab
AS
13635 }
13636
e6ac5933 13637 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
13638 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13639 insn->imm == BPF_FUNC_jiffies64) {
13640 struct bpf_insn ld_jiffies_addr[2] = {
13641 BPF_LD_IMM64(BPF_REG_0,
13642 (unsigned long)&jiffies),
13643 };
13644
13645 insn_buf[0] = ld_jiffies_addr[0];
13646 insn_buf[1] = ld_jiffies_addr[1];
13647 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13648 BPF_REG_0, 0);
13649 cnt = 3;
13650
13651 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13652 cnt);
13653 if (!new_prog)
13654 return -ENOMEM;
13655
13656 delta += cnt - 1;
13657 env->prog = prog = new_prog;
13658 insn = new_prog->insnsi + i + delta;
13659 continue;
13660 }
13661
f92c1e18
JO
13662 /* Implement bpf_get_func_arg inline. */
13663 if (prog_type == BPF_PROG_TYPE_TRACING &&
13664 insn->imm == BPF_FUNC_get_func_arg) {
13665 /* Load nr_args from ctx - 8 */
13666 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13667 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
13668 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
13669 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
13670 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
13671 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13672 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
13673 insn_buf[7] = BPF_JMP_A(1);
13674 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
13675 cnt = 9;
13676
13677 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13678 if (!new_prog)
13679 return -ENOMEM;
13680
13681 delta += cnt - 1;
13682 env->prog = prog = new_prog;
13683 insn = new_prog->insnsi + i + delta;
13684 continue;
13685 }
13686
13687 /* Implement bpf_get_func_ret inline. */
13688 if (prog_type == BPF_PROG_TYPE_TRACING &&
13689 insn->imm == BPF_FUNC_get_func_ret) {
13690 if (eatype == BPF_TRACE_FEXIT ||
13691 eatype == BPF_MODIFY_RETURN) {
13692 /* Load nr_args from ctx - 8 */
13693 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13694 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
13695 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
13696 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13697 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
13698 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
13699 cnt = 6;
13700 } else {
13701 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
13702 cnt = 1;
13703 }
13704
13705 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13706 if (!new_prog)
13707 return -ENOMEM;
13708
13709 delta += cnt - 1;
13710 env->prog = prog = new_prog;
13711 insn = new_prog->insnsi + i + delta;
13712 continue;
13713 }
13714
13715 /* Implement get_func_arg_cnt inline. */
13716 if (prog_type == BPF_PROG_TYPE_TRACING &&
13717 insn->imm == BPF_FUNC_get_func_arg_cnt) {
13718 /* Load nr_args from ctx - 8 */
13719 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13720
13721 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13722 if (!new_prog)
13723 return -ENOMEM;
13724
13725 env->prog = prog = new_prog;
13726 insn = new_prog->insnsi + i + delta;
13727 continue;
13728 }
13729
f705ec76 13730 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
13731 if (prog_type == BPF_PROG_TYPE_TRACING &&
13732 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
13733 /* Load IP address from ctx - 16 */
13734 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
13735
13736 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13737 if (!new_prog)
13738 return -ENOMEM;
13739
13740 env->prog = prog = new_prog;
13741 insn = new_prog->insnsi + i + delta;
13742 continue;
13743 }
13744
81ed18ab 13745patch_call_imm:
5e43f899 13746 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
13747 /* all functions that have prototype and verifier allowed
13748 * programs to call them, must be real in-kernel functions
13749 */
13750 if (!fn->func) {
61bd5218
JK
13751 verbose(env,
13752 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
13753 func_id_name(insn->imm), insn->imm);
13754 return -EFAULT;
e245c5c6 13755 }
79741b3b 13756 insn->imm = fn->func - __bpf_call_base;
e245c5c6 13757 }
e245c5c6 13758
d2e4c1e6
DB
13759 /* Since poke tab is now finalized, publish aux to tracker. */
13760 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13761 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13762 if (!map_ptr->ops->map_poke_track ||
13763 !map_ptr->ops->map_poke_untrack ||
13764 !map_ptr->ops->map_poke_run) {
13765 verbose(env, "bpf verifier is misconfigured\n");
13766 return -EINVAL;
13767 }
13768
13769 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13770 if (ret < 0) {
13771 verbose(env, "tracking tail call prog failed\n");
13772 return ret;
13773 }
13774 }
13775
e6ac2450
MKL
13776 sort_kfunc_descs_by_imm(env->prog);
13777
79741b3b
AS
13778 return 0;
13779}
e245c5c6 13780
58e2af8b 13781static void free_states(struct bpf_verifier_env *env)
f1bca824 13782{
58e2af8b 13783 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
13784 int i;
13785
9f4686c4
AS
13786 sl = env->free_list;
13787 while (sl) {
13788 sln = sl->next;
13789 free_verifier_state(&sl->state, false);
13790 kfree(sl);
13791 sl = sln;
13792 }
51c39bb1 13793 env->free_list = NULL;
9f4686c4 13794
f1bca824
AS
13795 if (!env->explored_states)
13796 return;
13797
dc2a4ebc 13798 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
13799 sl = env->explored_states[i];
13800
a8f500af
AS
13801 while (sl) {
13802 sln = sl->next;
13803 free_verifier_state(&sl->state, false);
13804 kfree(sl);
13805 sl = sln;
13806 }
51c39bb1 13807 env->explored_states[i] = NULL;
f1bca824 13808 }
51c39bb1 13809}
f1bca824 13810
51c39bb1
AS
13811static int do_check_common(struct bpf_verifier_env *env, int subprog)
13812{
6f8a57cc 13813 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
13814 struct bpf_verifier_state *state;
13815 struct bpf_reg_state *regs;
13816 int ret, i;
13817
13818 env->prev_linfo = NULL;
13819 env->pass_cnt++;
13820
13821 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13822 if (!state)
13823 return -ENOMEM;
13824 state->curframe = 0;
13825 state->speculative = false;
13826 state->branches = 1;
13827 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13828 if (!state->frame[0]) {
13829 kfree(state);
13830 return -ENOMEM;
13831 }
13832 env->cur_state = state;
13833 init_func_state(env, state->frame[0],
13834 BPF_MAIN_FUNC /* callsite */,
13835 0 /* frameno */,
13836 subprog);
13837
13838 regs = state->frame[state->curframe]->regs;
be8704ff 13839 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
13840 ret = btf_prepare_func_args(env, subprog, regs);
13841 if (ret)
13842 goto out;
13843 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13844 if (regs[i].type == PTR_TO_CTX)
13845 mark_reg_known_zero(env, regs, i);
13846 else if (regs[i].type == SCALAR_VALUE)
13847 mark_reg_unknown(env, regs, i);
cf9f2f8d 13848 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
13849 const u32 mem_size = regs[i].mem_size;
13850
13851 mark_reg_known_zero(env, regs, i);
13852 regs[i].mem_size = mem_size;
13853 regs[i].id = ++env->id_gen;
13854 }
51c39bb1
AS
13855 }
13856 } else {
13857 /* 1st arg to a function */
13858 regs[BPF_REG_1].type = PTR_TO_CTX;
13859 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 13860 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
13861 if (ret == -EFAULT)
13862 /* unlikely verifier bug. abort.
13863 * ret == 0 and ret < 0 are sadly acceptable for
13864 * main() function due to backward compatibility.
13865 * Like socket filter program may be written as:
13866 * int bpf_prog(struct pt_regs *ctx)
13867 * and never dereference that ctx in the program.
13868 * 'struct pt_regs' is a type mismatch for socket
13869 * filter that should be using 'struct __sk_buff'.
13870 */
13871 goto out;
13872 }
13873
13874 ret = do_check(env);
13875out:
f59bbfc2
AS
13876 /* check for NULL is necessary, since cur_state can be freed inside
13877 * do_check() under memory pressure.
13878 */
13879 if (env->cur_state) {
13880 free_verifier_state(env->cur_state, true);
13881 env->cur_state = NULL;
13882 }
6f8a57cc
AN
13883 while (!pop_stack(env, NULL, NULL, false));
13884 if (!ret && pop_log)
13885 bpf_vlog_reset(&env->log, 0);
51c39bb1 13886 free_states(env);
51c39bb1
AS
13887 return ret;
13888}
13889
13890/* Verify all global functions in a BPF program one by one based on their BTF.
13891 * All global functions must pass verification. Otherwise the whole program is rejected.
13892 * Consider:
13893 * int bar(int);
13894 * int foo(int f)
13895 * {
13896 * return bar(f);
13897 * }
13898 * int bar(int b)
13899 * {
13900 * ...
13901 * }
13902 * foo() will be verified first for R1=any_scalar_value. During verification it
13903 * will be assumed that bar() already verified successfully and call to bar()
13904 * from foo() will be checked for type match only. Later bar() will be verified
13905 * independently to check that it's safe for R1=any_scalar_value.
13906 */
13907static int do_check_subprogs(struct bpf_verifier_env *env)
13908{
13909 struct bpf_prog_aux *aux = env->prog->aux;
13910 int i, ret;
13911
13912 if (!aux->func_info)
13913 return 0;
13914
13915 for (i = 1; i < env->subprog_cnt; i++) {
13916 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13917 continue;
13918 env->insn_idx = env->subprog_info[i].start;
13919 WARN_ON_ONCE(env->insn_idx == 0);
13920 ret = do_check_common(env, i);
13921 if (ret) {
13922 return ret;
13923 } else if (env->log.level & BPF_LOG_LEVEL) {
13924 verbose(env,
13925 "Func#%d is safe for any args that match its prototype\n",
13926 i);
13927 }
13928 }
13929 return 0;
13930}
13931
13932static int do_check_main(struct bpf_verifier_env *env)
13933{
13934 int ret;
13935
13936 env->insn_idx = 0;
13937 ret = do_check_common(env, 0);
13938 if (!ret)
13939 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13940 return ret;
13941}
13942
13943
06ee7115
AS
13944static void print_verification_stats(struct bpf_verifier_env *env)
13945{
13946 int i;
13947
13948 if (env->log.level & BPF_LOG_STATS) {
13949 verbose(env, "verification time %lld usec\n",
13950 div_u64(env->verification_time, 1000));
13951 verbose(env, "stack depth ");
13952 for (i = 0; i < env->subprog_cnt; i++) {
13953 u32 depth = env->subprog_info[i].stack_depth;
13954
13955 verbose(env, "%d", depth);
13956 if (i + 1 < env->subprog_cnt)
13957 verbose(env, "+");
13958 }
13959 verbose(env, "\n");
13960 }
13961 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13962 "total_states %d peak_states %d mark_read %d\n",
13963 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13964 env->max_states_per_insn, env->total_states,
13965 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
13966}
13967
27ae7997
MKL
13968static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13969{
13970 const struct btf_type *t, *func_proto;
13971 const struct bpf_struct_ops *st_ops;
13972 const struct btf_member *member;
13973 struct bpf_prog *prog = env->prog;
13974 u32 btf_id, member_idx;
13975 const char *mname;
13976
12aa8a94
THJ
13977 if (!prog->gpl_compatible) {
13978 verbose(env, "struct ops programs must have a GPL compatible license\n");
13979 return -EINVAL;
13980 }
13981
27ae7997
MKL
13982 btf_id = prog->aux->attach_btf_id;
13983 st_ops = bpf_struct_ops_find(btf_id);
13984 if (!st_ops) {
13985 verbose(env, "attach_btf_id %u is not a supported struct\n",
13986 btf_id);
13987 return -ENOTSUPP;
13988 }
13989
13990 t = st_ops->type;
13991 member_idx = prog->expected_attach_type;
13992 if (member_idx >= btf_type_vlen(t)) {
13993 verbose(env, "attach to invalid member idx %u of struct %s\n",
13994 member_idx, st_ops->name);
13995 return -EINVAL;
13996 }
13997
13998 member = &btf_type_member(t)[member_idx];
13999 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14000 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14001 NULL);
14002 if (!func_proto) {
14003 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14004 mname, member_idx, st_ops->name);
14005 return -EINVAL;
14006 }
14007
14008 if (st_ops->check_member) {
14009 int err = st_ops->check_member(t, member);
14010
14011 if (err) {
14012 verbose(env, "attach to unsupported member %s of struct %s\n",
14013 mname, st_ops->name);
14014 return err;
14015 }
14016 }
14017
14018 prog->aux->attach_func_proto = func_proto;
14019 prog->aux->attach_func_name = mname;
14020 env->ops = st_ops->verifier_ops;
14021
14022 return 0;
14023}
6ba43b76
KS
14024#define SECURITY_PREFIX "security_"
14025
f7b12b6f 14026static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 14027{
69191754 14028 if (within_error_injection_list(addr) ||
f7b12b6f 14029 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 14030 return 0;
6ba43b76 14031
6ba43b76
KS
14032 return -EINVAL;
14033}
27ae7997 14034
1e6c62a8
AS
14035/* list of non-sleepable functions that are otherwise on
14036 * ALLOW_ERROR_INJECTION list
14037 */
14038BTF_SET_START(btf_non_sleepable_error_inject)
14039/* Three functions below can be called from sleepable and non-sleepable context.
14040 * Assume non-sleepable from bpf safety point of view.
14041 */
9dd3d069 14042BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
14043BTF_ID(func, should_fail_alloc_page)
14044BTF_ID(func, should_failslab)
14045BTF_SET_END(btf_non_sleepable_error_inject)
14046
14047static int check_non_sleepable_error_inject(u32 btf_id)
14048{
14049 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14050}
14051
f7b12b6f
THJ
14052int bpf_check_attach_target(struct bpf_verifier_log *log,
14053 const struct bpf_prog *prog,
14054 const struct bpf_prog *tgt_prog,
14055 u32 btf_id,
14056 struct bpf_attach_target_info *tgt_info)
38207291 14057{
be8704ff 14058 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 14059 const char prefix[] = "btf_trace_";
5b92a28a 14060 int ret = 0, subprog = -1, i;
38207291 14061 const struct btf_type *t;
5b92a28a 14062 bool conservative = true;
38207291 14063 const char *tname;
5b92a28a 14064 struct btf *btf;
f7b12b6f 14065 long addr = 0;
38207291 14066
f1b9509c 14067 if (!btf_id) {
efc68158 14068 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
14069 return -EINVAL;
14070 }
22dc4a0f 14071 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 14072 if (!btf) {
efc68158 14073 bpf_log(log,
5b92a28a
AS
14074 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14075 return -EINVAL;
14076 }
14077 t = btf_type_by_id(btf, btf_id);
f1b9509c 14078 if (!t) {
efc68158 14079 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
14080 return -EINVAL;
14081 }
5b92a28a 14082 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 14083 if (!tname) {
efc68158 14084 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
14085 return -EINVAL;
14086 }
5b92a28a
AS
14087 if (tgt_prog) {
14088 struct bpf_prog_aux *aux = tgt_prog->aux;
14089
14090 for (i = 0; i < aux->func_info_cnt; i++)
14091 if (aux->func_info[i].type_id == btf_id) {
14092 subprog = i;
14093 break;
14094 }
14095 if (subprog == -1) {
efc68158 14096 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
14097 return -EINVAL;
14098 }
14099 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
14100 if (prog_extension) {
14101 if (conservative) {
efc68158 14102 bpf_log(log,
be8704ff
AS
14103 "Cannot replace static functions\n");
14104 return -EINVAL;
14105 }
14106 if (!prog->jit_requested) {
efc68158 14107 bpf_log(log,
be8704ff
AS
14108 "Extension programs should be JITed\n");
14109 return -EINVAL;
14110 }
be8704ff
AS
14111 }
14112 if (!tgt_prog->jited) {
efc68158 14113 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
14114 return -EINVAL;
14115 }
14116 if (tgt_prog->type == prog->type) {
14117 /* Cannot fentry/fexit another fentry/fexit program.
14118 * Cannot attach program extension to another extension.
14119 * It's ok to attach fentry/fexit to extension program.
14120 */
efc68158 14121 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
14122 return -EINVAL;
14123 }
14124 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14125 prog_extension &&
14126 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14127 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14128 /* Program extensions can extend all program types
14129 * except fentry/fexit. The reason is the following.
14130 * The fentry/fexit programs are used for performance
14131 * analysis, stats and can be attached to any program
14132 * type except themselves. When extension program is
14133 * replacing XDP function it is necessary to allow
14134 * performance analysis of all functions. Both original
14135 * XDP program and its program extension. Hence
14136 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14137 * allowed. If extending of fentry/fexit was allowed it
14138 * would be possible to create long call chain
14139 * fentry->extension->fentry->extension beyond
14140 * reasonable stack size. Hence extending fentry is not
14141 * allowed.
14142 */
efc68158 14143 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
14144 return -EINVAL;
14145 }
5b92a28a 14146 } else {
be8704ff 14147 if (prog_extension) {
efc68158 14148 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
14149 return -EINVAL;
14150 }
5b92a28a 14151 }
f1b9509c
AS
14152
14153 switch (prog->expected_attach_type) {
14154 case BPF_TRACE_RAW_TP:
5b92a28a 14155 if (tgt_prog) {
efc68158 14156 bpf_log(log,
5b92a28a
AS
14157 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14158 return -EINVAL;
14159 }
38207291 14160 if (!btf_type_is_typedef(t)) {
efc68158 14161 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
14162 btf_id);
14163 return -EINVAL;
14164 }
f1b9509c 14165 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 14166 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
14167 btf_id, tname);
14168 return -EINVAL;
14169 }
14170 tname += sizeof(prefix) - 1;
5b92a28a 14171 t = btf_type_by_id(btf, t->type);
38207291
MKL
14172 if (!btf_type_is_ptr(t))
14173 /* should never happen in valid vmlinux build */
14174 return -EINVAL;
5b92a28a 14175 t = btf_type_by_id(btf, t->type);
38207291
MKL
14176 if (!btf_type_is_func_proto(t))
14177 /* should never happen in valid vmlinux build */
14178 return -EINVAL;
14179
f7b12b6f 14180 break;
15d83c4d
YS
14181 case BPF_TRACE_ITER:
14182 if (!btf_type_is_func(t)) {
efc68158 14183 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
14184 btf_id);
14185 return -EINVAL;
14186 }
14187 t = btf_type_by_id(btf, t->type);
14188 if (!btf_type_is_func_proto(t))
14189 return -EINVAL;
f7b12b6f
THJ
14190 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14191 if (ret)
14192 return ret;
14193 break;
be8704ff
AS
14194 default:
14195 if (!prog_extension)
14196 return -EINVAL;
df561f66 14197 fallthrough;
ae240823 14198 case BPF_MODIFY_RETURN:
9e4e01df 14199 case BPF_LSM_MAC:
fec56f58
AS
14200 case BPF_TRACE_FENTRY:
14201 case BPF_TRACE_FEXIT:
14202 if (!btf_type_is_func(t)) {
efc68158 14203 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
14204 btf_id);
14205 return -EINVAL;
14206 }
be8704ff 14207 if (prog_extension &&
efc68158 14208 btf_check_type_match(log, prog, btf, t))
be8704ff 14209 return -EINVAL;
5b92a28a 14210 t = btf_type_by_id(btf, t->type);
fec56f58
AS
14211 if (!btf_type_is_func_proto(t))
14212 return -EINVAL;
f7b12b6f 14213
4a1e7c0c
THJ
14214 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14215 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14216 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14217 return -EINVAL;
14218
f7b12b6f 14219 if (tgt_prog && conservative)
5b92a28a 14220 t = NULL;
f7b12b6f
THJ
14221
14222 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 14223 if (ret < 0)
f7b12b6f
THJ
14224 return ret;
14225
5b92a28a 14226 if (tgt_prog) {
e9eeec58
YS
14227 if (subprog == 0)
14228 addr = (long) tgt_prog->bpf_func;
14229 else
14230 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
14231 } else {
14232 addr = kallsyms_lookup_name(tname);
14233 if (!addr) {
efc68158 14234 bpf_log(log,
5b92a28a
AS
14235 "The address of function %s cannot be found\n",
14236 tname);
f7b12b6f 14237 return -ENOENT;
5b92a28a 14238 }
fec56f58 14239 }
18644cec 14240
1e6c62a8
AS
14241 if (prog->aux->sleepable) {
14242 ret = -EINVAL;
14243 switch (prog->type) {
14244 case BPF_PROG_TYPE_TRACING:
14245 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
14246 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14247 */
14248 if (!check_non_sleepable_error_inject(btf_id) &&
14249 within_error_injection_list(addr))
14250 ret = 0;
14251 break;
14252 case BPF_PROG_TYPE_LSM:
14253 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
14254 * Only some of them are sleepable.
14255 */
423f1610 14256 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
14257 ret = 0;
14258 break;
14259 default:
14260 break;
14261 }
f7b12b6f
THJ
14262 if (ret) {
14263 bpf_log(log, "%s is not sleepable\n", tname);
14264 return ret;
14265 }
1e6c62a8 14266 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 14267 if (tgt_prog) {
efc68158 14268 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
14269 return -EINVAL;
14270 }
14271 ret = check_attach_modify_return(addr, tname);
14272 if (ret) {
14273 bpf_log(log, "%s() is not modifiable\n", tname);
14274 return ret;
1af9270e 14275 }
18644cec 14276 }
f7b12b6f
THJ
14277
14278 break;
14279 }
14280 tgt_info->tgt_addr = addr;
14281 tgt_info->tgt_name = tname;
14282 tgt_info->tgt_type = t;
14283 return 0;
14284}
14285
35e3815f
JO
14286BTF_SET_START(btf_id_deny)
14287BTF_ID_UNUSED
14288#ifdef CONFIG_SMP
14289BTF_ID(func, migrate_disable)
14290BTF_ID(func, migrate_enable)
14291#endif
14292#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
14293BTF_ID(func, rcu_read_unlock_strict)
14294#endif
14295BTF_SET_END(btf_id_deny)
14296
f7b12b6f
THJ
14297static int check_attach_btf_id(struct bpf_verifier_env *env)
14298{
14299 struct bpf_prog *prog = env->prog;
3aac1ead 14300 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
14301 struct bpf_attach_target_info tgt_info = {};
14302 u32 btf_id = prog->aux->attach_btf_id;
14303 struct bpf_trampoline *tr;
14304 int ret;
14305 u64 key;
14306
79a7f8bd
AS
14307 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
14308 if (prog->aux->sleepable)
14309 /* attach_btf_id checked to be zero already */
14310 return 0;
14311 verbose(env, "Syscall programs can only be sleepable\n");
14312 return -EINVAL;
14313 }
14314
f7b12b6f
THJ
14315 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
14316 prog->type != BPF_PROG_TYPE_LSM) {
14317 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
14318 return -EINVAL;
14319 }
14320
14321 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
14322 return check_struct_ops_btf_id(env);
14323
14324 if (prog->type != BPF_PROG_TYPE_TRACING &&
14325 prog->type != BPF_PROG_TYPE_LSM &&
14326 prog->type != BPF_PROG_TYPE_EXT)
14327 return 0;
14328
14329 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
14330 if (ret)
fec56f58 14331 return ret;
f7b12b6f
THJ
14332
14333 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
14334 /* to make freplace equivalent to their targets, they need to
14335 * inherit env->ops and expected_attach_type for the rest of the
14336 * verification
14337 */
f7b12b6f
THJ
14338 env->ops = bpf_verifier_ops[tgt_prog->type];
14339 prog->expected_attach_type = tgt_prog->expected_attach_type;
14340 }
14341
14342 /* store info about the attachment target that will be used later */
14343 prog->aux->attach_func_proto = tgt_info.tgt_type;
14344 prog->aux->attach_func_name = tgt_info.tgt_name;
14345
4a1e7c0c
THJ
14346 if (tgt_prog) {
14347 prog->aux->saved_dst_prog_type = tgt_prog->type;
14348 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
14349 }
14350
f7b12b6f
THJ
14351 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
14352 prog->aux->attach_btf_trace = true;
14353 return 0;
14354 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
14355 if (!bpf_iter_prog_supported(prog))
14356 return -EINVAL;
14357 return 0;
14358 }
14359
14360 if (prog->type == BPF_PROG_TYPE_LSM) {
14361 ret = bpf_lsm_verify_prog(&env->log, prog);
14362 if (ret < 0)
14363 return ret;
35e3815f
JO
14364 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
14365 btf_id_set_contains(&btf_id_deny, btf_id)) {
14366 return -EINVAL;
38207291 14367 }
f7b12b6f 14368
22dc4a0f 14369 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
14370 tr = bpf_trampoline_get(key, &tgt_info);
14371 if (!tr)
14372 return -ENOMEM;
14373
3aac1ead 14374 prog->aux->dst_trampoline = tr;
f7b12b6f 14375 return 0;
38207291
MKL
14376}
14377
76654e67
AM
14378struct btf *bpf_get_btf_vmlinux(void)
14379{
14380 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
14381 mutex_lock(&bpf_verifier_lock);
14382 if (!btf_vmlinux)
14383 btf_vmlinux = btf_parse_vmlinux();
14384 mutex_unlock(&bpf_verifier_lock);
14385 }
14386 return btf_vmlinux;
14387}
14388
af2ac3e1 14389int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 14390{
06ee7115 14391 u64 start_time = ktime_get_ns();
58e2af8b 14392 struct bpf_verifier_env *env;
b9193c1b 14393 struct bpf_verifier_log *log;
9e4c24e7 14394 int i, len, ret = -EINVAL;
e2ae4ca2 14395 bool is_priv;
51580e79 14396
eba0c929
AB
14397 /* no program is valid */
14398 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
14399 return -EINVAL;
14400
58e2af8b 14401 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
14402 * allocate/free it every time bpf_check() is called
14403 */
58e2af8b 14404 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
14405 if (!env)
14406 return -ENOMEM;
61bd5218 14407 log = &env->log;
cbd35700 14408
9e4c24e7 14409 len = (*prog)->len;
fad953ce 14410 env->insn_aux_data =
9e4c24e7 14411 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
14412 ret = -ENOMEM;
14413 if (!env->insn_aux_data)
14414 goto err_free_env;
9e4c24e7
JK
14415 for (i = 0; i < len; i++)
14416 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 14417 env->prog = *prog;
00176a34 14418 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 14419 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 14420 is_priv = bpf_capable();
0246e64d 14421
76654e67 14422 bpf_get_btf_vmlinux();
8580ac94 14423
cbd35700 14424 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
14425 if (!is_priv)
14426 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
14427
14428 if (attr->log_level || attr->log_buf || attr->log_size) {
14429 /* user requested verbose verifier output
14430 * and supplied buffer to store the verification trace
14431 */
e7bf8249
JK
14432 log->level = attr->log_level;
14433 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
14434 log->len_total = attr->log_size;
cbd35700 14435
e7bf8249 14436 /* log attributes have to be sane */
866de407
HT
14437 if (!bpf_verifier_log_attr_valid(log)) {
14438 ret = -EINVAL;
3df126f3 14439 goto err_unlock;
866de407 14440 }
cbd35700 14441 }
1ad2f583 14442
0f55f9ed
CL
14443 mark_verifier_state_clean(env);
14444
8580ac94
AS
14445 if (IS_ERR(btf_vmlinux)) {
14446 /* Either gcc or pahole or kernel are broken. */
14447 verbose(env, "in-kernel BTF is malformed\n");
14448 ret = PTR_ERR(btf_vmlinux);
38207291 14449 goto skip_full_check;
8580ac94
AS
14450 }
14451
1ad2f583
DB
14452 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14453 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 14454 env->strict_alignment = true;
e9ee9efc
DM
14455 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14456 env->strict_alignment = false;
cbd35700 14457
2c78ee89 14458 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 14459 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 14460 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
14461 env->bypass_spec_v1 = bpf_bypass_spec_v1();
14462 env->bypass_spec_v4 = bpf_bypass_spec_v4();
14463 env->bpf_capable = bpf_capable();
e2ae4ca2 14464
10d274e8
AS
14465 if (is_priv)
14466 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14467
dc2a4ebc 14468 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 14469 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
14470 GFP_USER);
14471 ret = -ENOMEM;
14472 if (!env->explored_states)
14473 goto skip_full_check;
14474
e6ac2450
MKL
14475 ret = add_subprog_and_kfunc(env);
14476 if (ret < 0)
14477 goto skip_full_check;
14478
d9762e84 14479 ret = check_subprogs(env);
475fb78f
AS
14480 if (ret < 0)
14481 goto skip_full_check;
14482
c454a46b 14483 ret = check_btf_info(env, attr, uattr);
838e9690
YS
14484 if (ret < 0)
14485 goto skip_full_check;
14486
be8704ff
AS
14487 ret = check_attach_btf_id(env);
14488 if (ret)
14489 goto skip_full_check;
14490
4976b718
HL
14491 ret = resolve_pseudo_ldimm64(env);
14492 if (ret < 0)
14493 goto skip_full_check;
14494
ceb11679
YZ
14495 if (bpf_prog_is_dev_bound(env->prog->aux)) {
14496 ret = bpf_prog_offload_verifier_prep(env->prog);
14497 if (ret)
14498 goto skip_full_check;
14499 }
14500
d9762e84
MKL
14501 ret = check_cfg(env);
14502 if (ret < 0)
14503 goto skip_full_check;
14504
51c39bb1
AS
14505 ret = do_check_subprogs(env);
14506 ret = ret ?: do_check_main(env);
cbd35700 14507
c941ce9c
QM
14508 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14509 ret = bpf_prog_offload_finalize(env);
14510
0246e64d 14511skip_full_check:
51c39bb1 14512 kvfree(env->explored_states);
0246e64d 14513
c131187d 14514 if (ret == 0)
9b38c405 14515 ret = check_max_stack_depth(env);
c131187d 14516
9b38c405 14517 /* instruction rewrites happen after this point */
e2ae4ca2
JK
14518 if (is_priv) {
14519 if (ret == 0)
14520 opt_hard_wire_dead_code_branches(env);
52875a04
JK
14521 if (ret == 0)
14522 ret = opt_remove_dead_code(env);
a1b14abc
JK
14523 if (ret == 0)
14524 ret = opt_remove_nops(env);
52875a04
JK
14525 } else {
14526 if (ret == 0)
14527 sanitize_dead_code(env);
e2ae4ca2
JK
14528 }
14529
9bac3d6d
AS
14530 if (ret == 0)
14531 /* program is valid, convert *(u32*)(ctx + off) accesses */
14532 ret = convert_ctx_accesses(env);
14533
e245c5c6 14534 if (ret == 0)
e6ac5933 14535 ret = do_misc_fixups(env);
e245c5c6 14536
a4b1d3c1
JW
14537 /* do 32-bit optimization after insn patching has done so those patched
14538 * insns could be handled correctly.
14539 */
d6c2308c
JW
14540 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14541 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14542 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14543 : false;
a4b1d3c1
JW
14544 }
14545
1ea47e01
AS
14546 if (ret == 0)
14547 ret = fixup_call_args(env);
14548
06ee7115
AS
14549 env->verification_time = ktime_get_ns() - start_time;
14550 print_verification_stats(env);
aba64c7d 14551 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 14552
a2a7d570 14553 if (log->level && bpf_verifier_log_full(log))
cbd35700 14554 ret = -ENOSPC;
a2a7d570 14555 if (log->level && !log->ubuf) {
cbd35700 14556 ret = -EFAULT;
a2a7d570 14557 goto err_release_maps;
cbd35700
AS
14558 }
14559
541c3bad
AN
14560 if (ret)
14561 goto err_release_maps;
14562
14563 if (env->used_map_cnt) {
0246e64d 14564 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
14565 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14566 sizeof(env->used_maps[0]),
14567 GFP_KERNEL);
0246e64d 14568
9bac3d6d 14569 if (!env->prog->aux->used_maps) {
0246e64d 14570 ret = -ENOMEM;
a2a7d570 14571 goto err_release_maps;
0246e64d
AS
14572 }
14573
9bac3d6d 14574 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 14575 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 14576 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
14577 }
14578 if (env->used_btf_cnt) {
14579 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14580 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14581 sizeof(env->used_btfs[0]),
14582 GFP_KERNEL);
14583 if (!env->prog->aux->used_btfs) {
14584 ret = -ENOMEM;
14585 goto err_release_maps;
14586 }
0246e64d 14587
541c3bad
AN
14588 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14589 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14590 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14591 }
14592 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
14593 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14594 * bpf_ld_imm64 instructions
14595 */
14596 convert_pseudo_ld_imm64(env);
14597 }
cbd35700 14598
541c3bad 14599 adjust_btf_func(env);
ba64e7d8 14600
a2a7d570 14601err_release_maps:
9bac3d6d 14602 if (!env->prog->aux->used_maps)
0246e64d 14603 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 14604 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
14605 */
14606 release_maps(env);
541c3bad
AN
14607 if (!env->prog->aux->used_btfs)
14608 release_btfs(env);
03f87c0b
THJ
14609
14610 /* extension progs temporarily inherit the attach_type of their targets
14611 for verification purposes, so set it back to zero before returning
14612 */
14613 if (env->prog->type == BPF_PROG_TYPE_EXT)
14614 env->prog->expected_attach_type = 0;
14615
9bac3d6d 14616 *prog = env->prog;
3df126f3 14617err_unlock:
45a73c17
AS
14618 if (!is_priv)
14619 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
14620 vfree(env->insn_aux_data);
14621err_free_env:
14622 kfree(env);
51580e79
AS
14623 return ret;
14624}