bpf: Support __kptr to local kptrs
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34 30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 31#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 34#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
35#include <linux/bpf_types.h>
36#undef BPF_PROG_TYPE
37#undef BPF_MAP_TYPE
f2e10bff 38#undef BPF_LINK_TYPE
00176a34
JK
39};
40
51580e79
AS
41/* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
8fb33b60 52 * Since it's analyzing all paths through the program, the length of the
eba38a96 53 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
f1174f77 81 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 82 * means the register has some value, but it's not a valid pointer.
f1174f77 83 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
84 *
85 * When verifier sees load or store instructions the type of base register
c64b7983
JS
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
51580e79
AS
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 137 * returns either pointer to map value or NULL.
51580e79
AS
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
164 */
165
17a52670 166/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 167struct bpf_verifier_stack_elem {
17a52670
AS
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
58e2af8b 172 struct bpf_verifier_state st;
17a52670
AS
173 int insn_idx;
174 int prev_insn_idx;
58e2af8b 175 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
cbd35700
AS
178};
179
b285fcb7 180#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
d2e4c1e6
DB
183#define BPF_MAP_KEY_POISON (1ULL << 63)
184#define BPF_MAP_KEY_SEEN (1ULL << 62)
185
c93552c4
DB
186#define BPF_MAP_PTR_UNPRIV 1UL
187#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
bc34dee6
JK
191static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
6a3cd331 193static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
5d92ddc3 194static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
6a3cd331
DM
195static int ref_set_non_owning(struct bpf_verifier_env *env,
196 struct bpf_reg_state *reg);
bc34dee6 197
c93552c4
DB
198static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
199{
d2e4c1e6 200 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
201}
202
203static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
204{
d2e4c1e6 205 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
206}
207
208static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
209 const struct bpf_map *map, bool unpriv)
210{
211 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
212 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
213 aux->map_ptr_state = (unsigned long)map |
214 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
215}
216
217static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
218{
219 return aux->map_key_state & BPF_MAP_KEY_POISON;
220}
221
222static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
223{
224 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
225}
226
227static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
228{
229 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
230}
231
232static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
233{
234 bool poisoned = bpf_map_key_poisoned(aux);
235
236 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
237 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 238}
fad73a1a 239
23a2d70c
YS
240static bool bpf_pseudo_call(const struct bpf_insn *insn)
241{
242 return insn->code == (BPF_JMP | BPF_CALL) &&
243 insn->src_reg == BPF_PSEUDO_CALL;
244}
245
e6ac2450
MKL
246static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
247{
248 return insn->code == (BPF_JMP | BPF_CALL) &&
249 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
250}
251
33ff9823
DB
252struct bpf_call_arg_meta {
253 struct bpf_map *map_ptr;
435faee1 254 bool raw_mode;
36bbef52 255 bool pkt_access;
8f14852e 256 u8 release_regno;
435faee1
DB
257 int regno;
258 int access_size;
457f4436 259 int mem_size;
10060503 260 u64 msize_max_value;
1b986589 261 int ref_obj_id;
f8064ab9 262 int dynptr_id;
3e8ce298 263 int map_uid;
d83525ca 264 int func_id;
22dc4a0f 265 struct btf *btf;
eaa6bcb7 266 u32 btf_id;
22dc4a0f 267 struct btf *ret_btf;
eaa6bcb7 268 u32 ret_btf_id;
69c087ba 269 u32 subprogno;
aa3496ac 270 struct btf_field *kptr_field;
33ff9823
DB
271};
272
d0e1ac22
AN
273struct bpf_kfunc_call_arg_meta {
274 /* In parameters */
275 struct btf *btf;
276 u32 func_id;
277 u32 kfunc_flags;
278 const struct btf_type *func_proto;
279 const char *func_name;
280 /* Out parameters */
281 u32 ref_obj_id;
282 u8 release_regno;
283 bool r0_rdonly;
284 u32 ret_btf_id;
285 u64 r0_size;
286 u32 subprogno;
287 struct {
288 u64 value;
289 bool found;
290 } arg_constant;
291 struct {
292 struct btf *btf;
293 u32 btf_id;
294 } arg_obj_drop;
295 struct {
296 struct btf_field *field;
297 } arg_list_head;
298 struct {
299 struct btf_field *field;
300 } arg_rbtree_root;
301 struct {
302 enum bpf_dynptr_type type;
303 u32 id;
304 } initialized_dynptr;
06accc87
AN
305 struct {
306 u8 spi;
307 u8 frameno;
308 } iter;
d0e1ac22
AN
309 u64 mem_size;
310};
311
8580ac94
AS
312struct btf *btf_vmlinux;
313
cbd35700
AS
314static DEFINE_MUTEX(bpf_verifier_lock);
315
d9762e84
MKL
316static const struct bpf_line_info *
317find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
318{
319 const struct bpf_line_info *linfo;
320 const struct bpf_prog *prog;
321 u32 i, nr_linfo;
322
323 prog = env->prog;
324 nr_linfo = prog->aux->nr_linfo;
325
326 if (!nr_linfo || insn_off >= prog->len)
327 return NULL;
328
329 linfo = prog->aux->linfo;
330 for (i = 1; i < nr_linfo; i++)
331 if (insn_off < linfo[i].insn_off)
332 break;
333
334 return &linfo[i - 1];
335}
336
77d2e05a
MKL
337void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
338 va_list args)
cbd35700 339{
a2a7d570 340 unsigned int n;
cbd35700 341
a2a7d570 342 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
343
344 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
345 "verifier log line truncated - local buffer too short\n");
346
8580ac94 347 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
348 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
349
350 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
351 return;
352 }
436d404c
HT
353
354 n = min(log->len_total - log->len_used - 1, n);
355 log->kbuf[n] = '\0';
a2a7d570
JK
356 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
357 log->len_used += n;
358 else
359 log->ubuf = NULL;
cbd35700 360}
abe08840 361
6f8a57cc
AN
362static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
363{
364 char zero = 0;
365
366 if (!bpf_verifier_log_needed(log))
367 return;
368
369 log->len_used = new_pos;
370 if (put_user(zero, log->ubuf + new_pos))
371 log->ubuf = NULL;
372}
373
abe08840
JO
374/* log_level controls verbosity level of eBPF verifier.
375 * bpf_verifier_log_write() is used to dump the verification trace to the log,
376 * so the user can figure out what's wrong with the program
430e68d1 377 */
abe08840
JO
378__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
379 const char *fmt, ...)
380{
381 va_list args;
382
77d2e05a
MKL
383 if (!bpf_verifier_log_needed(&env->log))
384 return;
385
abe08840 386 va_start(args, fmt);
77d2e05a 387 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
388 va_end(args);
389}
390EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
391
392__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
393{
77d2e05a 394 struct bpf_verifier_env *env = private_data;
abe08840
JO
395 va_list args;
396
77d2e05a
MKL
397 if (!bpf_verifier_log_needed(&env->log))
398 return;
399
abe08840 400 va_start(args, fmt);
77d2e05a 401 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
402 va_end(args);
403}
cbd35700 404
9e15db66
AS
405__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
406 const char *fmt, ...)
407{
408 va_list args;
409
410 if (!bpf_verifier_log_needed(log))
411 return;
412
413 va_start(args, fmt);
414 bpf_verifier_vlog(log, fmt, args);
415 va_end(args);
416}
84c6ac41 417EXPORT_SYMBOL_GPL(bpf_log);
9e15db66 418
d9762e84
MKL
419static const char *ltrim(const char *s)
420{
421 while (isspace(*s))
422 s++;
423
424 return s;
425}
426
427__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
428 u32 insn_off,
429 const char *prefix_fmt, ...)
430{
431 const struct bpf_line_info *linfo;
432
433 if (!bpf_verifier_log_needed(&env->log))
434 return;
435
436 linfo = find_linfo(env, insn_off);
437 if (!linfo || linfo == env->prev_linfo)
438 return;
439
440 if (prefix_fmt) {
441 va_list args;
442
443 va_start(args, prefix_fmt);
444 bpf_verifier_vlog(&env->log, prefix_fmt, args);
445 va_end(args);
446 }
447
448 verbose(env, "%s\n",
449 ltrim(btf_name_by_offset(env->prog->aux->btf,
450 linfo->line_off)));
451
452 env->prev_linfo = linfo;
453}
454
bc2591d6
YS
455static void verbose_invalid_scalar(struct bpf_verifier_env *env,
456 struct bpf_reg_state *reg,
457 struct tnum *range, const char *ctx,
458 const char *reg_name)
459{
460 char tn_buf[48];
461
462 verbose(env, "At %s the register %s ", ctx, reg_name);
463 if (!tnum_is_unknown(reg->var_off)) {
464 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
465 verbose(env, "has value %s", tn_buf);
466 } else {
467 verbose(env, "has unknown scalar value");
468 }
469 tnum_strn(tn_buf, sizeof(tn_buf), *range);
470 verbose(env, " should have been in %s\n", tn_buf);
471}
472
de8f3a83
DB
473static bool type_is_pkt_pointer(enum bpf_reg_type type)
474{
0c9a7a7e 475 type = base_type(type);
de8f3a83
DB
476 return type == PTR_TO_PACKET ||
477 type == PTR_TO_PACKET_META;
478}
479
46f8bc92
MKL
480static bool type_is_sk_pointer(enum bpf_reg_type type)
481{
482 return type == PTR_TO_SOCKET ||
655a51e5 483 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
484 type == PTR_TO_TCP_SOCK ||
485 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
486}
487
cac616db
JF
488static bool reg_type_not_null(enum bpf_reg_type type)
489{
490 return type == PTR_TO_SOCKET ||
491 type == PTR_TO_TCP_SOCK ||
492 type == PTR_TO_MAP_VALUE ||
69c087ba 493 type == PTR_TO_MAP_KEY ||
d5271c5b
AN
494 type == PTR_TO_SOCK_COMMON ||
495 type == PTR_TO_MEM;
cac616db
JF
496}
497
d8939cb0
DM
498static bool type_is_ptr_alloc_obj(u32 type)
499{
500 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
501}
502
6a3cd331
DM
503static bool type_is_non_owning_ref(u32 type)
504{
505 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
506}
507
4e814da0
KKD
508static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
509{
510 struct btf_record *rec = NULL;
511 struct btf_struct_meta *meta;
512
513 if (reg->type == PTR_TO_MAP_VALUE) {
514 rec = reg->map_ptr->record;
d8939cb0 515 } else if (type_is_ptr_alloc_obj(reg->type)) {
4e814da0
KKD
516 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
517 if (meta)
518 rec = meta->record;
519 }
520 return rec;
521}
522
d83525ca
AS
523static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
524{
4e814da0 525 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
526}
527
20b2aff4
HL
528static bool type_is_rdonly_mem(u32 type)
529{
530 return type & MEM_RDONLY;
cba368c1
MKL
531}
532
48946bd6 533static bool type_may_be_null(u32 type)
fd1b0d60 534{
48946bd6 535 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
536}
537
64d85290
JS
538static bool is_acquire_function(enum bpf_func_id func_id,
539 const struct bpf_map *map)
540{
541 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
542
543 if (func_id == BPF_FUNC_sk_lookup_tcp ||
544 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 545 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
546 func_id == BPF_FUNC_ringbuf_reserve ||
547 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
548 return true;
549
550 if (func_id == BPF_FUNC_map_lookup_elem &&
551 (map_type == BPF_MAP_TYPE_SOCKMAP ||
552 map_type == BPF_MAP_TYPE_SOCKHASH))
553 return true;
554
555 return false;
46f8bc92
MKL
556}
557
1b986589
MKL
558static bool is_ptr_cast_function(enum bpf_func_id func_id)
559{
560 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
561 func_id == BPF_FUNC_sk_fullsock ||
562 func_id == BPF_FUNC_skc_to_tcp_sock ||
563 func_id == BPF_FUNC_skc_to_tcp6_sock ||
564 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 565 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
566 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
567 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
568}
569
88374342 570static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
571{
572 return func_id == BPF_FUNC_dynptr_data;
573}
574
be2ef816
AN
575static bool is_callback_calling_function(enum bpf_func_id func_id)
576{
577 return func_id == BPF_FUNC_for_each_map_elem ||
578 func_id == BPF_FUNC_timer_set_callback ||
579 func_id == BPF_FUNC_find_vma ||
580 func_id == BPF_FUNC_loop ||
581 func_id == BPF_FUNC_user_ringbuf_drain;
582}
583
9bb00b28
YS
584static bool is_storage_get_function(enum bpf_func_id func_id)
585{
586 return func_id == BPF_FUNC_sk_storage_get ||
587 func_id == BPF_FUNC_inode_storage_get ||
588 func_id == BPF_FUNC_task_storage_get ||
589 func_id == BPF_FUNC_cgrp_storage_get;
590}
591
b2d8ef19
DM
592static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
593 const struct bpf_map *map)
594{
595 int ref_obj_uses = 0;
596
597 if (is_ptr_cast_function(func_id))
598 ref_obj_uses++;
599 if (is_acquire_function(func_id, map))
600 ref_obj_uses++;
88374342 601 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
602 ref_obj_uses++;
603
604 return ref_obj_uses > 1;
605}
606
39491867
BJ
607static bool is_cmpxchg_insn(const struct bpf_insn *insn)
608{
609 return BPF_CLASS(insn->code) == BPF_STX &&
610 BPF_MODE(insn->code) == BPF_ATOMIC &&
611 insn->imm == BPF_CMPXCHG;
612}
613
c25b2ae1
HL
614/* string representation of 'enum bpf_reg_type'
615 *
616 * Note that reg_type_str() can not appear more than once in a single verbose()
617 * statement.
618 */
619static const char *reg_type_str(struct bpf_verifier_env *env,
620 enum bpf_reg_type type)
621{
ef66c547 622 char postfix[16] = {0}, prefix[64] = {0};
c25b2ae1
HL
623 static const char * const str[] = {
624 [NOT_INIT] = "?",
7df5072c 625 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
626 [PTR_TO_CTX] = "ctx",
627 [CONST_PTR_TO_MAP] = "map_ptr",
628 [PTR_TO_MAP_VALUE] = "map_value",
629 [PTR_TO_STACK] = "fp",
630 [PTR_TO_PACKET] = "pkt",
631 [PTR_TO_PACKET_META] = "pkt_meta",
632 [PTR_TO_PACKET_END] = "pkt_end",
633 [PTR_TO_FLOW_KEYS] = "flow_keys",
634 [PTR_TO_SOCKET] = "sock",
635 [PTR_TO_SOCK_COMMON] = "sock_common",
636 [PTR_TO_TCP_SOCK] = "tcp_sock",
637 [PTR_TO_TP_BUFFER] = "tp_buffer",
638 [PTR_TO_XDP_SOCK] = "xdp_sock",
639 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 640 [PTR_TO_MEM] = "mem",
20b2aff4 641 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
642 [PTR_TO_FUNC] = "func",
643 [PTR_TO_MAP_KEY] = "map_key",
27060531 644 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
645 };
646
647 if (type & PTR_MAYBE_NULL) {
5844101a 648 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
649 strncpy(postfix, "or_null_", 16);
650 else
651 strncpy(postfix, "_or_null", 16);
652 }
653
9bb00b28 654 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
ef66c547
DV
655 type & MEM_RDONLY ? "rdonly_" : "",
656 type & MEM_RINGBUF ? "ringbuf_" : "",
657 type & MEM_USER ? "user_" : "",
658 type & MEM_PERCPU ? "percpu_" : "",
9bb00b28 659 type & MEM_RCU ? "rcu_" : "",
3f00c523
DV
660 type & PTR_UNTRUSTED ? "untrusted_" : "",
661 type & PTR_TRUSTED ? "trusted_" : ""
ef66c547 662 );
20b2aff4
HL
663
664 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
665 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
666 return env->type_str_buf;
667}
17a52670 668
8efea21d
EC
669static char slot_type_char[] = {
670 [STACK_INVALID] = '?',
671 [STACK_SPILL] = 'r',
672 [STACK_MISC] = 'm',
673 [STACK_ZERO] = '0',
97e03f52 674 [STACK_DYNPTR] = 'd',
06accc87 675 [STACK_ITER] = 'i',
8efea21d
EC
676};
677
4e92024a
AS
678static void print_liveness(struct bpf_verifier_env *env,
679 enum bpf_reg_liveness live)
680{
9242b5f5 681 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
682 verbose(env, "_");
683 if (live & REG_LIVE_READ)
684 verbose(env, "r");
685 if (live & REG_LIVE_WRITTEN)
686 verbose(env, "w");
9242b5f5
AS
687 if (live & REG_LIVE_DONE)
688 verbose(env, "D");
4e92024a
AS
689}
690
79168a66 691static int __get_spi(s32 off)
97e03f52
JK
692{
693 return (-off - 1) / BPF_REG_SIZE;
694}
695
f5b625e5
KKD
696static struct bpf_func_state *func(struct bpf_verifier_env *env,
697 const struct bpf_reg_state *reg)
698{
699 struct bpf_verifier_state *cur = env->cur_state;
700
701 return cur->frame[reg->frameno];
702}
703
97e03f52
JK
704static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
705{
f5b625e5 706 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
97e03f52 707
f5b625e5
KKD
708 /* We need to check that slots between [spi - nr_slots + 1, spi] are
709 * within [0, allocated_stack).
710 *
711 * Please note that the spi grows downwards. For example, a dynptr
712 * takes the size of two stack slots; the first slot will be at
713 * spi and the second slot will be at spi - 1.
714 */
715 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
97e03f52
JK
716}
717
a461f5ad
AN
718static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
719 const char *obj_kind, int nr_slots)
f4d7e40a 720{
79168a66 721 int off, spi;
f4d7e40a 722
79168a66 723 if (!tnum_is_const(reg->var_off)) {
a461f5ad 724 verbose(env, "%s has to be at a constant offset\n", obj_kind);
79168a66
KKD
725 return -EINVAL;
726 }
727
728 off = reg->off + reg->var_off.value;
729 if (off % BPF_REG_SIZE) {
a461f5ad 730 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
731 return -EINVAL;
732 }
733
734 spi = __get_spi(off);
a461f5ad
AN
735 if (spi + 1 < nr_slots) {
736 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
737 return -EINVAL;
738 }
97e03f52 739
a461f5ad 740 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
f5b625e5
KKD
741 return -ERANGE;
742 return spi;
f4d7e40a
AS
743}
744
a461f5ad
AN
745static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
746{
747 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
748}
749
06accc87
AN
750static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
751{
752 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
753}
754
b32a5dae 755static const char *btf_type_name(const struct btf *btf, u32 id)
9e15db66 756{
22dc4a0f 757 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
758}
759
d54e0f6c
AN
760static const char *dynptr_type_str(enum bpf_dynptr_type type)
761{
762 switch (type) {
763 case BPF_DYNPTR_TYPE_LOCAL:
764 return "local";
765 case BPF_DYNPTR_TYPE_RINGBUF:
766 return "ringbuf";
767 case BPF_DYNPTR_TYPE_SKB:
768 return "skb";
769 case BPF_DYNPTR_TYPE_XDP:
770 return "xdp";
771 case BPF_DYNPTR_TYPE_INVALID:
772 return "<invalid>";
773 default:
774 WARN_ONCE(1, "unknown dynptr type %d\n", type);
775 return "<unknown>";
776 }
777}
778
06accc87
AN
779static const char *iter_type_str(const struct btf *btf, u32 btf_id)
780{
781 if (!btf || btf_id == 0)
782 return "<invalid>";
783
784 /* we already validated that type is valid and has conforming name */
b32a5dae 785 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
06accc87
AN
786}
787
788static const char *iter_state_str(enum bpf_iter_state state)
789{
790 switch (state) {
791 case BPF_ITER_STATE_ACTIVE:
792 return "active";
793 case BPF_ITER_STATE_DRAINED:
794 return "drained";
795 case BPF_ITER_STATE_INVALID:
796 return "<invalid>";
797 default:
798 WARN_ONCE(1, "unknown iter state %d\n", state);
799 return "<unknown>";
800 }
801}
802
0f55f9ed
CL
803static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
804{
805 env->scratched_regs |= 1U << regno;
806}
807
808static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
809{
343e5375 810 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
811}
812
813static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
814{
815 return (env->scratched_regs >> regno) & 1;
816}
817
818static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
819{
820 return (env->scratched_stack_slots >> regno) & 1;
821}
822
823static bool verifier_state_scratched(const struct bpf_verifier_env *env)
824{
825 return env->scratched_regs || env->scratched_stack_slots;
826}
827
828static void mark_verifier_state_clean(struct bpf_verifier_env *env)
829{
830 env->scratched_regs = 0U;
343e5375 831 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
832}
833
834/* Used for printing the entire verifier state. */
835static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
836{
837 env->scratched_regs = ~0U;
343e5375 838 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
839}
840
97e03f52
JK
841static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
842{
843 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
844 case DYNPTR_TYPE_LOCAL:
845 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
846 case DYNPTR_TYPE_RINGBUF:
847 return BPF_DYNPTR_TYPE_RINGBUF;
b5964b96
JK
848 case DYNPTR_TYPE_SKB:
849 return BPF_DYNPTR_TYPE_SKB;
05421aec
JK
850 case DYNPTR_TYPE_XDP:
851 return BPF_DYNPTR_TYPE_XDP;
97e03f52
JK
852 default:
853 return BPF_DYNPTR_TYPE_INVALID;
854 }
855}
856
66e3a13e
JK
857static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
858{
859 switch (type) {
860 case BPF_DYNPTR_TYPE_LOCAL:
861 return DYNPTR_TYPE_LOCAL;
862 case BPF_DYNPTR_TYPE_RINGBUF:
863 return DYNPTR_TYPE_RINGBUF;
864 case BPF_DYNPTR_TYPE_SKB:
865 return DYNPTR_TYPE_SKB;
866 case BPF_DYNPTR_TYPE_XDP:
867 return DYNPTR_TYPE_XDP;
868 default:
869 return 0;
870 }
871}
872
bc34dee6
JK
873static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
874{
875 return type == BPF_DYNPTR_TYPE_RINGBUF;
876}
877
27060531
KKD
878static void __mark_dynptr_reg(struct bpf_reg_state *reg,
879 enum bpf_dynptr_type type,
f8064ab9 880 bool first_slot, int dynptr_id);
27060531
KKD
881
882static void __mark_reg_not_init(const struct bpf_verifier_env *env,
883 struct bpf_reg_state *reg);
884
f8064ab9
KKD
885static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
886 struct bpf_reg_state *sreg1,
27060531
KKD
887 struct bpf_reg_state *sreg2,
888 enum bpf_dynptr_type type)
889{
f8064ab9
KKD
890 int id = ++env->id_gen;
891
892 __mark_dynptr_reg(sreg1, type, true, id);
893 __mark_dynptr_reg(sreg2, type, false, id);
27060531
KKD
894}
895
f8064ab9
KKD
896static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
897 struct bpf_reg_state *reg,
27060531
KKD
898 enum bpf_dynptr_type type)
899{
f8064ab9 900 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
27060531
KKD
901}
902
ef8fc7a0
KKD
903static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
904 struct bpf_func_state *state, int spi);
27060531 905
97e03f52
JK
906static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
907 enum bpf_arg_type arg_type, int insn_idx)
908{
909 struct bpf_func_state *state = func(env, reg);
910 enum bpf_dynptr_type type;
379d4ba8 911 int spi, i, id, err;
97e03f52 912
79168a66
KKD
913 spi = dynptr_get_spi(env, reg);
914 if (spi < 0)
915 return spi;
97e03f52 916
379d4ba8
KKD
917 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
918 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
919 * to ensure that for the following example:
920 * [d1][d1][d2][d2]
921 * spi 3 2 1 0
922 * So marking spi = 2 should lead to destruction of both d1 and d2. In
923 * case they do belong to same dynptr, second call won't see slot_type
924 * as STACK_DYNPTR and will simply skip destruction.
925 */
926 err = destroy_if_dynptr_stack_slot(env, state, spi);
927 if (err)
928 return err;
929 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
930 if (err)
931 return err;
97e03f52
JK
932
933 for (i = 0; i < BPF_REG_SIZE; i++) {
934 state->stack[spi].slot_type[i] = STACK_DYNPTR;
935 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
936 }
937
938 type = arg_to_dynptr_type(arg_type);
939 if (type == BPF_DYNPTR_TYPE_INVALID)
940 return -EINVAL;
941
f8064ab9 942 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
27060531 943 &state->stack[spi - 1].spilled_ptr, type);
97e03f52 944
bc34dee6
JK
945 if (dynptr_type_refcounted(type)) {
946 /* The id is used to track proper releasing */
947 id = acquire_reference_state(env, insn_idx);
948 if (id < 0)
949 return id;
950
27060531
KKD
951 state->stack[spi].spilled_ptr.ref_obj_id = id;
952 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
bc34dee6
JK
953 }
954
d6fefa11
KKD
955 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
956 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
957
97e03f52
JK
958 return 0;
959}
960
961static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
962{
963 struct bpf_func_state *state = func(env, reg);
964 int spi, i;
965
79168a66
KKD
966 spi = dynptr_get_spi(env, reg);
967 if (spi < 0)
968 return spi;
97e03f52
JK
969
970 for (i = 0; i < BPF_REG_SIZE; i++) {
971 state->stack[spi].slot_type[i] = STACK_INVALID;
972 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
973 }
974
bc34dee6 975 /* Invalidate any slices associated with this dynptr */
27060531
KKD
976 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
977 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
97e03f52 978
27060531
KKD
979 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
980 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
d6fefa11
KKD
981
982 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
983 *
984 * While we don't allow reading STACK_INVALID, it is still possible to
985 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
986 * helpers or insns can do partial read of that part without failing,
987 * but check_stack_range_initialized, check_stack_read_var_off, and
988 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
989 * the slot conservatively. Hence we need to prevent those liveness
990 * marking walks.
991 *
992 * This was not a problem before because STACK_INVALID is only set by
993 * default (where the default reg state has its reg->parent as NULL), or
994 * in clean_live_states after REG_LIVE_DONE (at which point
995 * mark_reg_read won't walk reg->parent chain), but not randomly during
996 * verifier state exploration (like we did above). Hence, for our case
997 * parentage chain will still be live (i.e. reg->parent may be
998 * non-NULL), while earlier reg->parent was NULL, so we need
999 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
1000 * done later on reads or by mark_dynptr_read as well to unnecessary
1001 * mark registers in verifier state.
1002 */
1003 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1004 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1005
97e03f52
JK
1006 return 0;
1007}
1008
ef8fc7a0
KKD
1009static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1010 struct bpf_reg_state *reg);
1011
dbd8d228
KKD
1012static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1013{
1014 if (!env->allow_ptr_leaks)
1015 __mark_reg_not_init(env, reg);
1016 else
1017 __mark_reg_unknown(env, reg);
1018}
1019
ef8fc7a0
KKD
1020static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1021 struct bpf_func_state *state, int spi)
97e03f52 1022{
f8064ab9
KKD
1023 struct bpf_func_state *fstate;
1024 struct bpf_reg_state *dreg;
1025 int i, dynptr_id;
27060531 1026
ef8fc7a0
KKD
1027 /* We always ensure that STACK_DYNPTR is never set partially,
1028 * hence just checking for slot_type[0] is enough. This is
1029 * different for STACK_SPILL, where it may be only set for
1030 * 1 byte, so code has to use is_spilled_reg.
1031 */
1032 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1033 return 0;
97e03f52 1034
ef8fc7a0
KKD
1035 /* Reposition spi to first slot */
1036 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1037 spi = spi + 1;
1038
1039 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1040 verbose(env, "cannot overwrite referenced dynptr\n");
1041 return -EINVAL;
1042 }
1043
1044 mark_stack_slot_scratched(env, spi);
1045 mark_stack_slot_scratched(env, spi - 1);
97e03f52 1046
ef8fc7a0 1047 /* Writing partially to one dynptr stack slot destroys both. */
97e03f52 1048 for (i = 0; i < BPF_REG_SIZE; i++) {
ef8fc7a0
KKD
1049 state->stack[spi].slot_type[i] = STACK_INVALID;
1050 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
97e03f52
JK
1051 }
1052
f8064ab9
KKD
1053 dynptr_id = state->stack[spi].spilled_ptr.id;
1054 /* Invalidate any slices associated with this dynptr */
1055 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1056 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1057 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1058 continue;
dbd8d228
KKD
1059 if (dreg->dynptr_id == dynptr_id)
1060 mark_reg_invalid(env, dreg);
f8064ab9 1061 }));
ef8fc7a0
KKD
1062
1063 /* Do not release reference state, we are destroying dynptr on stack,
1064 * not using some helper to release it. Just reset register.
1065 */
1066 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1067 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1068
1069 /* Same reason as unmark_stack_slots_dynptr above */
1070 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1071 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1072
1073 return 0;
1074}
1075
7e0dac28 1076static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52 1077{
7e0dac28
JK
1078 int spi;
1079
27060531
KKD
1080 if (reg->type == CONST_PTR_TO_DYNPTR)
1081 return false;
97e03f52 1082
7e0dac28
JK
1083 spi = dynptr_get_spi(env, reg);
1084
1085 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1086 * error because this just means the stack state hasn't been updated yet.
1087 * We will do check_mem_access to check and update stack bounds later.
f5b625e5 1088 */
7e0dac28
JK
1089 if (spi < 0 && spi != -ERANGE)
1090 return false;
1091
1092 /* We don't need to check if the stack slots are marked by previous
1093 * dynptr initializations because we allow overwriting existing unreferenced
1094 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1095 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1096 * touching are completely destructed before we reinitialize them for a new
1097 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1098 * instead of delaying it until the end where the user will get "Unreleased
379d4ba8
KKD
1099 * reference" error.
1100 */
97e03f52
JK
1101 return true;
1102}
1103
7e0dac28 1104static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52
JK
1105{
1106 struct bpf_func_state *state = func(env, reg);
7e0dac28 1107 int i, spi;
97e03f52 1108
7e0dac28
JK
1109 /* This already represents first slot of initialized bpf_dynptr.
1110 *
1111 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1112 * check_func_arg_reg_off's logic, so we don't need to check its
1113 * offset and alignment.
1114 */
27060531
KKD
1115 if (reg->type == CONST_PTR_TO_DYNPTR)
1116 return true;
1117
7e0dac28 1118 spi = dynptr_get_spi(env, reg);
79168a66
KKD
1119 if (spi < 0)
1120 return false;
f5b625e5 1121 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
97e03f52
JK
1122 return false;
1123
1124 for (i = 0; i < BPF_REG_SIZE; i++) {
1125 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1126 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1127 return false;
1128 }
1129
e9e315b4
RS
1130 return true;
1131}
1132
6b75bd3d
KKD
1133static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1134 enum bpf_arg_type arg_type)
e9e315b4
RS
1135{
1136 struct bpf_func_state *state = func(env, reg);
1137 enum bpf_dynptr_type dynptr_type;
27060531 1138 int spi;
e9e315b4 1139
97e03f52
JK
1140 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1141 if (arg_type == ARG_PTR_TO_DYNPTR)
1142 return true;
1143
e9e315b4 1144 dynptr_type = arg_to_dynptr_type(arg_type);
27060531
KKD
1145 if (reg->type == CONST_PTR_TO_DYNPTR) {
1146 return reg->dynptr.type == dynptr_type;
1147 } else {
79168a66
KKD
1148 spi = dynptr_get_spi(env, reg);
1149 if (spi < 0)
1150 return false;
27060531
KKD
1151 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1152 }
97e03f52
JK
1153}
1154
06accc87
AN
1155static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1156
1157static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1158 struct bpf_reg_state *reg, int insn_idx,
1159 struct btf *btf, u32 btf_id, int nr_slots)
1160{
1161 struct bpf_func_state *state = func(env, reg);
1162 int spi, i, j, id;
1163
1164 spi = iter_get_spi(env, reg, nr_slots);
1165 if (spi < 0)
1166 return spi;
1167
1168 id = acquire_reference_state(env, insn_idx);
1169 if (id < 0)
1170 return id;
1171
1172 for (i = 0; i < nr_slots; i++) {
1173 struct bpf_stack_state *slot = &state->stack[spi - i];
1174 struct bpf_reg_state *st = &slot->spilled_ptr;
1175
1176 __mark_reg_known_zero(st);
1177 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1178 st->live |= REG_LIVE_WRITTEN;
1179 st->ref_obj_id = i == 0 ? id : 0;
1180 st->iter.btf = btf;
1181 st->iter.btf_id = btf_id;
1182 st->iter.state = BPF_ITER_STATE_ACTIVE;
1183 st->iter.depth = 0;
1184
1185 for (j = 0; j < BPF_REG_SIZE; j++)
1186 slot->slot_type[j] = STACK_ITER;
1187
1188 mark_stack_slot_scratched(env, spi - i);
1189 }
1190
1191 return 0;
1192}
1193
1194static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1195 struct bpf_reg_state *reg, int nr_slots)
1196{
1197 struct bpf_func_state *state = func(env, reg);
1198 int spi, i, j;
1199
1200 spi = iter_get_spi(env, reg, nr_slots);
1201 if (spi < 0)
1202 return spi;
1203
1204 for (i = 0; i < nr_slots; i++) {
1205 struct bpf_stack_state *slot = &state->stack[spi - i];
1206 struct bpf_reg_state *st = &slot->spilled_ptr;
1207
1208 if (i == 0)
1209 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1210
1211 __mark_reg_not_init(env, st);
1212
1213 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1214 st->live |= REG_LIVE_WRITTEN;
1215
1216 for (j = 0; j < BPF_REG_SIZE; j++)
1217 slot->slot_type[j] = STACK_INVALID;
1218
1219 mark_stack_slot_scratched(env, spi - i);
1220 }
1221
1222 return 0;
1223}
1224
1225static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1226 struct bpf_reg_state *reg, int nr_slots)
1227{
1228 struct bpf_func_state *state = func(env, reg);
1229 int spi, i, j;
1230
1231 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1232 * will do check_mem_access to check and update stack bounds later, so
1233 * return true for that case.
1234 */
1235 spi = iter_get_spi(env, reg, nr_slots);
1236 if (spi == -ERANGE)
1237 return true;
1238 if (spi < 0)
1239 return false;
1240
1241 for (i = 0; i < nr_slots; i++) {
1242 struct bpf_stack_state *slot = &state->stack[spi - i];
1243
1244 for (j = 0; j < BPF_REG_SIZE; j++)
1245 if (slot->slot_type[j] == STACK_ITER)
1246 return false;
1247 }
1248
1249 return true;
1250}
1251
1252static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1253 struct btf *btf, u32 btf_id, int nr_slots)
1254{
1255 struct bpf_func_state *state = func(env, reg);
1256 int spi, i, j;
1257
1258 spi = iter_get_spi(env, reg, nr_slots);
1259 if (spi < 0)
1260 return false;
1261
1262 for (i = 0; i < nr_slots; i++) {
1263 struct bpf_stack_state *slot = &state->stack[spi - i];
1264 struct bpf_reg_state *st = &slot->spilled_ptr;
1265
1266 /* only main (first) slot has ref_obj_id set */
1267 if (i == 0 && !st->ref_obj_id)
1268 return false;
1269 if (i != 0 && st->ref_obj_id)
1270 return false;
1271 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1272 return false;
1273
1274 for (j = 0; j < BPF_REG_SIZE; j++)
1275 if (slot->slot_type[j] != STACK_ITER)
1276 return false;
1277 }
1278
1279 return true;
1280}
1281
1282/* Check if given stack slot is "special":
1283 * - spilled register state (STACK_SPILL);
1284 * - dynptr state (STACK_DYNPTR);
1285 * - iter state (STACK_ITER).
1286 */
1287static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1288{
1289 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1290
1291 switch (type) {
1292 case STACK_SPILL:
1293 case STACK_DYNPTR:
1294 case STACK_ITER:
1295 return true;
1296 case STACK_INVALID:
1297 case STACK_MISC:
1298 case STACK_ZERO:
1299 return false;
1300 default:
1301 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1302 return true;
1303 }
1304}
1305
27113c59
MKL
1306/* The reg state of a pointer or a bounded scalar was saved when
1307 * it was spilled to the stack.
1308 */
1309static bool is_spilled_reg(const struct bpf_stack_state *stack)
1310{
1311 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1312}
1313
354e8f19
MKL
1314static void scrub_spilled_slot(u8 *stype)
1315{
1316 if (*stype != STACK_INVALID)
1317 *stype = STACK_MISC;
1318}
1319
61bd5218 1320static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
1321 const struct bpf_func_state *state,
1322 bool print_all)
17a52670 1323{
f4d7e40a 1324 const struct bpf_reg_state *reg;
17a52670
AS
1325 enum bpf_reg_type t;
1326 int i;
1327
f4d7e40a
AS
1328 if (state->frameno)
1329 verbose(env, " frame%d:", state->frameno);
17a52670 1330 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
1331 reg = &state->regs[i];
1332 t = reg->type;
17a52670
AS
1333 if (t == NOT_INIT)
1334 continue;
0f55f9ed
CL
1335 if (!print_all && !reg_scratched(env, i))
1336 continue;
4e92024a
AS
1337 verbose(env, " R%d", i);
1338 print_liveness(env, reg->live);
7df5072c 1339 verbose(env, "=");
b5dc0163
AS
1340 if (t == SCALAR_VALUE && reg->precise)
1341 verbose(env, "P");
f1174f77
EC
1342 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1343 tnum_is_const(reg->var_off)) {
1344 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 1345 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 1346 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 1347 } else {
7df5072c
ML
1348 const char *sep = "";
1349
1350 verbose(env, "%s", reg_type_str(env, t));
5844101a 1351 if (base_type(t) == PTR_TO_BTF_ID)
b32a5dae 1352 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
7df5072c
ML
1353 verbose(env, "(");
1354/*
1355 * _a stands for append, was shortened to avoid multiline statements below.
1356 * This macro is used to output a comma separated list of attributes.
1357 */
1358#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1359
1360 if (reg->id)
1361 verbose_a("id=%d", reg->id);
a28ace78 1362 if (reg->ref_obj_id)
7df5072c 1363 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
6a3cd331
DM
1364 if (type_is_non_owning_ref(reg->type))
1365 verbose_a("%s", "non_own_ref");
f1174f77 1366 if (t != SCALAR_VALUE)
7df5072c 1367 verbose_a("off=%d", reg->off);
de8f3a83 1368 if (type_is_pkt_pointer(t))
7df5072c 1369 verbose_a("r=%d", reg->range);
c25b2ae1
HL
1370 else if (base_type(t) == CONST_PTR_TO_MAP ||
1371 base_type(t) == PTR_TO_MAP_KEY ||
1372 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
1373 verbose_a("ks=%d,vs=%d",
1374 reg->map_ptr->key_size,
1375 reg->map_ptr->value_size);
7d1238f2
EC
1376 if (tnum_is_const(reg->var_off)) {
1377 /* Typically an immediate SCALAR_VALUE, but
1378 * could be a pointer whose offset is too big
1379 * for reg->off
1380 */
7df5072c 1381 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
1382 } else {
1383 if (reg->smin_value != reg->umin_value &&
1384 reg->smin_value != S64_MIN)
7df5072c 1385 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
1386 if (reg->smax_value != reg->umax_value &&
1387 reg->smax_value != S64_MAX)
7df5072c 1388 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 1389 if (reg->umin_value != 0)
7df5072c 1390 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 1391 if (reg->umax_value != U64_MAX)
7df5072c 1392 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
1393 if (!tnum_is_unknown(reg->var_off)) {
1394 char tn_buf[48];
f1174f77 1395
7d1238f2 1396 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 1397 verbose_a("var_off=%s", tn_buf);
7d1238f2 1398 }
3f50f132
JF
1399 if (reg->s32_min_value != reg->smin_value &&
1400 reg->s32_min_value != S32_MIN)
7df5072c 1401 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
1402 if (reg->s32_max_value != reg->smax_value &&
1403 reg->s32_max_value != S32_MAX)
7df5072c 1404 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
1405 if (reg->u32_min_value != reg->umin_value &&
1406 reg->u32_min_value != U32_MIN)
7df5072c 1407 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
1408 if (reg->u32_max_value != reg->umax_value &&
1409 reg->u32_max_value != U32_MAX)
7df5072c 1410 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 1411 }
7df5072c
ML
1412#undef verbose_a
1413
61bd5218 1414 verbose(env, ")");
f1174f77 1415 }
17a52670 1416 }
638f5b90 1417 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
1418 char types_buf[BPF_REG_SIZE + 1];
1419 bool valid = false;
1420 int j;
1421
1422 for (j = 0; j < BPF_REG_SIZE; j++) {
1423 if (state->stack[i].slot_type[j] != STACK_INVALID)
1424 valid = true;
d54e0f6c 1425 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
8efea21d
EC
1426 }
1427 types_buf[BPF_REG_SIZE] = 0;
1428 if (!valid)
1429 continue;
0f55f9ed
CL
1430 if (!print_all && !stack_slot_scratched(env, i))
1431 continue;
d54e0f6c
AN
1432 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1433 case STACK_SPILL:
b5dc0163
AS
1434 reg = &state->stack[i].spilled_ptr;
1435 t = reg->type;
d54e0f6c
AN
1436
1437 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1438 print_liveness(env, reg->live);
7df5072c 1439 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
1440 if (t == SCALAR_VALUE && reg->precise)
1441 verbose(env, "P");
1442 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1443 verbose(env, "%lld", reg->var_off.value + reg->off);
d54e0f6c
AN
1444 break;
1445 case STACK_DYNPTR:
1446 i += BPF_DYNPTR_NR_SLOTS - 1;
1447 reg = &state->stack[i].spilled_ptr;
1448
1449 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1450 print_liveness(env, reg->live);
1451 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1452 if (reg->ref_obj_id)
1453 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1454 break;
06accc87
AN
1455 case STACK_ITER:
1456 /* only main slot has ref_obj_id set; skip others */
1457 reg = &state->stack[i].spilled_ptr;
1458 if (!reg->ref_obj_id)
1459 continue;
1460
1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 print_liveness(env, reg->live);
1463 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1464 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1465 reg->ref_obj_id, iter_state_str(reg->iter.state),
1466 reg->iter.depth);
1467 break;
d54e0f6c
AN
1468 case STACK_MISC:
1469 case STACK_ZERO:
1470 default:
1471 reg = &state->stack[i].spilled_ptr;
1472
1473 for (j = 0; j < BPF_REG_SIZE; j++)
1474 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1475 types_buf[BPF_REG_SIZE] = 0;
1476
1477 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1478 print_liveness(env, reg->live);
8efea21d 1479 verbose(env, "=%s", types_buf);
d54e0f6c 1480 break;
b5dc0163 1481 }
17a52670 1482 }
fd978bf7
JS
1483 if (state->acquired_refs && state->refs[0].id) {
1484 verbose(env, " refs=%d", state->refs[0].id);
1485 for (i = 1; i < state->acquired_refs; i++)
1486 if (state->refs[i].id)
1487 verbose(env, ",%d", state->refs[i].id);
1488 }
bfc6bb74
AS
1489 if (state->in_callback_fn)
1490 verbose(env, " cb");
1491 if (state->in_async_callback_fn)
1492 verbose(env, " async_cb");
61bd5218 1493 verbose(env, "\n");
0f55f9ed 1494 mark_verifier_state_clean(env);
17a52670
AS
1495}
1496
2e576648
CL
1497static inline u32 vlog_alignment(u32 pos)
1498{
1499 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1500 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1501}
1502
1503static void print_insn_state(struct bpf_verifier_env *env,
1504 const struct bpf_func_state *state)
1505{
1506 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1507 /* remove new line character */
1508 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1509 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1510 } else {
1511 verbose(env, "%d:", env->insn_idx);
1512 }
1513 print_verifier_state(env, state, false);
17a52670
AS
1514}
1515
c69431aa
LB
1516/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1517 * small to hold src. This is different from krealloc since we don't want to preserve
1518 * the contents of dst.
1519 *
1520 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1521 * not be allocated.
638f5b90 1522 */
c69431aa 1523static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1524{
45435d8d
KC
1525 size_t alloc_bytes;
1526 void *orig = dst;
c69431aa
LB
1527 size_t bytes;
1528
1529 if (ZERO_OR_NULL_PTR(src))
1530 goto out;
1531
1532 if (unlikely(check_mul_overflow(n, size, &bytes)))
1533 return NULL;
1534
45435d8d
KC
1535 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1536 dst = krealloc(orig, alloc_bytes, flags);
1537 if (!dst) {
1538 kfree(orig);
1539 return NULL;
c69431aa
LB
1540 }
1541
1542 memcpy(dst, src, bytes);
1543out:
1544 return dst ? dst : ZERO_SIZE_PTR;
1545}
1546
1547/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1548 * small to hold new_n items. new items are zeroed out if the array grows.
1549 *
1550 * Contrary to krealloc_array, does not free arr if new_n is zero.
1551 */
1552static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1553{
ceb35b66 1554 size_t alloc_size;
42378a9c
KC
1555 void *new_arr;
1556
c69431aa
LB
1557 if (!new_n || old_n == new_n)
1558 goto out;
1559
ceb35b66
KC
1560 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1561 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
42378a9c
KC
1562 if (!new_arr) {
1563 kfree(arr);
c69431aa 1564 return NULL;
42378a9c
KC
1565 }
1566 arr = new_arr;
c69431aa
LB
1567
1568 if (new_n > old_n)
1569 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1570
1571out:
1572 return arr ? arr : ZERO_SIZE_PTR;
1573}
1574
1575static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1576{
1577 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1578 sizeof(struct bpf_reference_state), GFP_KERNEL);
1579 if (!dst->refs)
1580 return -ENOMEM;
1581
1582 dst->acquired_refs = src->acquired_refs;
1583 return 0;
1584}
1585
1586static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1587{
1588 size_t n = src->allocated_stack / BPF_REG_SIZE;
1589
1590 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1591 GFP_KERNEL);
1592 if (!dst->stack)
1593 return -ENOMEM;
1594
1595 dst->allocated_stack = src->allocated_stack;
1596 return 0;
1597}
1598
1599static int resize_reference_state(struct bpf_func_state *state, size_t n)
1600{
1601 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1602 sizeof(struct bpf_reference_state));
1603 if (!state->refs)
1604 return -ENOMEM;
1605
1606 state->acquired_refs = n;
1607 return 0;
1608}
1609
1610static int grow_stack_state(struct bpf_func_state *state, int size)
1611{
1612 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1613
1614 if (old_n >= n)
1615 return 0;
1616
1617 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1618 if (!state->stack)
1619 return -ENOMEM;
1620
1621 state->allocated_stack = size;
1622 return 0;
fd978bf7
JS
1623}
1624
1625/* Acquire a pointer id from the env and update the state->refs to include
1626 * this new pointer reference.
1627 * On success, returns a valid pointer id to associate with the register
1628 * On failure, returns a negative errno.
638f5b90 1629 */
fd978bf7 1630static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1631{
fd978bf7
JS
1632 struct bpf_func_state *state = cur_func(env);
1633 int new_ofs = state->acquired_refs;
1634 int id, err;
1635
c69431aa 1636 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1637 if (err)
1638 return err;
1639 id = ++env->id_gen;
1640 state->refs[new_ofs].id = id;
1641 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1642 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1643
fd978bf7
JS
1644 return id;
1645}
1646
1647/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1648static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1649{
1650 int i, last_idx;
1651
fd978bf7
JS
1652 last_idx = state->acquired_refs - 1;
1653 for (i = 0; i < state->acquired_refs; i++) {
1654 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1655 /* Cannot release caller references in callbacks */
1656 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1657 return -EINVAL;
fd978bf7
JS
1658 if (last_idx && i != last_idx)
1659 memcpy(&state->refs[i], &state->refs[last_idx],
1660 sizeof(*state->refs));
1661 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1662 state->acquired_refs--;
638f5b90 1663 return 0;
638f5b90 1664 }
638f5b90 1665 }
46f8bc92 1666 return -EINVAL;
fd978bf7
JS
1667}
1668
f4d7e40a
AS
1669static void free_func_state(struct bpf_func_state *state)
1670{
5896351e
AS
1671 if (!state)
1672 return;
fd978bf7 1673 kfree(state->refs);
f4d7e40a
AS
1674 kfree(state->stack);
1675 kfree(state);
1676}
1677
b5dc0163
AS
1678static void clear_jmp_history(struct bpf_verifier_state *state)
1679{
1680 kfree(state->jmp_history);
1681 state->jmp_history = NULL;
1682 state->jmp_history_cnt = 0;
1683}
1684
1969db47
AS
1685static void free_verifier_state(struct bpf_verifier_state *state,
1686 bool free_self)
638f5b90 1687{
f4d7e40a
AS
1688 int i;
1689
1690 for (i = 0; i <= state->curframe; i++) {
1691 free_func_state(state->frame[i]);
1692 state->frame[i] = NULL;
1693 }
b5dc0163 1694 clear_jmp_history(state);
1969db47
AS
1695 if (free_self)
1696 kfree(state);
638f5b90
AS
1697}
1698
1699/* copy verifier state from src to dst growing dst stack space
1700 * when necessary to accommodate larger src stack
1701 */
f4d7e40a
AS
1702static int copy_func_state(struct bpf_func_state *dst,
1703 const struct bpf_func_state *src)
638f5b90
AS
1704{
1705 int err;
1706
fd978bf7
JS
1707 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1708 err = copy_reference_state(dst, src);
638f5b90
AS
1709 if (err)
1710 return err;
638f5b90
AS
1711 return copy_stack_state(dst, src);
1712}
1713
f4d7e40a
AS
1714static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1715 const struct bpf_verifier_state *src)
1716{
1717 struct bpf_func_state *dst;
1718 int i, err;
1719
06ab6a50
LB
1720 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1721 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1722 GFP_USER);
1723 if (!dst_state->jmp_history)
1724 return -ENOMEM;
b5dc0163
AS
1725 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1726
f4d7e40a
AS
1727 /* if dst has more stack frames then src frame, free them */
1728 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1729 free_func_state(dst_state->frame[i]);
1730 dst_state->frame[i] = NULL;
1731 }
979d63d5 1732 dst_state->speculative = src->speculative;
9bb00b28 1733 dst_state->active_rcu_lock = src->active_rcu_lock;
f4d7e40a 1734 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1735 dst_state->active_lock.ptr = src->active_lock.ptr;
1736 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1737 dst_state->branches = src->branches;
1738 dst_state->parent = src->parent;
b5dc0163
AS
1739 dst_state->first_insn_idx = src->first_insn_idx;
1740 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1741 for (i = 0; i <= src->curframe; i++) {
1742 dst = dst_state->frame[i];
1743 if (!dst) {
1744 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1745 if (!dst)
1746 return -ENOMEM;
1747 dst_state->frame[i] = dst;
1748 }
1749 err = copy_func_state(dst, src->frame[i]);
1750 if (err)
1751 return err;
1752 }
1753 return 0;
1754}
1755
2589726d
AS
1756static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1757{
1758 while (st) {
1759 u32 br = --st->branches;
1760
1761 /* WARN_ON(br > 1) technically makes sense here,
1762 * but see comment in push_stack(), hence:
1763 */
1764 WARN_ONCE((int)br < 0,
1765 "BUG update_branch_counts:branches_to_explore=%d\n",
1766 br);
1767 if (br)
1768 break;
1769 st = st->parent;
1770 }
1771}
1772
638f5b90 1773static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1774 int *insn_idx, bool pop_log)
638f5b90
AS
1775{
1776 struct bpf_verifier_state *cur = env->cur_state;
1777 struct bpf_verifier_stack_elem *elem, *head = env->head;
1778 int err;
17a52670
AS
1779
1780 if (env->head == NULL)
638f5b90 1781 return -ENOENT;
17a52670 1782
638f5b90
AS
1783 if (cur) {
1784 err = copy_verifier_state(cur, &head->st);
1785 if (err)
1786 return err;
1787 }
6f8a57cc
AN
1788 if (pop_log)
1789 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1790 if (insn_idx)
1791 *insn_idx = head->insn_idx;
17a52670 1792 if (prev_insn_idx)
638f5b90
AS
1793 *prev_insn_idx = head->prev_insn_idx;
1794 elem = head->next;
1969db47 1795 free_verifier_state(&head->st, false);
638f5b90 1796 kfree(head);
17a52670
AS
1797 env->head = elem;
1798 env->stack_size--;
638f5b90 1799 return 0;
17a52670
AS
1800}
1801
58e2af8b 1802static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1803 int insn_idx, int prev_insn_idx,
1804 bool speculative)
17a52670 1805{
638f5b90 1806 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1807 struct bpf_verifier_stack_elem *elem;
638f5b90 1808 int err;
17a52670 1809
638f5b90 1810 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1811 if (!elem)
1812 goto err;
1813
17a52670
AS
1814 elem->insn_idx = insn_idx;
1815 elem->prev_insn_idx = prev_insn_idx;
1816 elem->next = env->head;
6f8a57cc 1817 elem->log_pos = env->log.len_used;
17a52670
AS
1818 env->head = elem;
1819 env->stack_size++;
1969db47
AS
1820 err = copy_verifier_state(&elem->st, cur);
1821 if (err)
1822 goto err;
979d63d5 1823 elem->st.speculative |= speculative;
b285fcb7
AS
1824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1825 verbose(env, "The sequence of %d jumps is too complex.\n",
1826 env->stack_size);
17a52670
AS
1827 goto err;
1828 }
2589726d
AS
1829 if (elem->st.parent) {
1830 ++elem->st.parent->branches;
1831 /* WARN_ON(branches > 2) technically makes sense here,
1832 * but
1833 * 1. speculative states will bump 'branches' for non-branch
1834 * instructions
1835 * 2. is_state_visited() heuristics may decide not to create
1836 * a new state for a sequence of branches and all such current
1837 * and cloned states will be pointing to a single parent state
1838 * which might have large 'branches' count.
1839 */
1840 }
17a52670
AS
1841 return &elem->st;
1842err:
5896351e
AS
1843 free_verifier_state(env->cur_state, true);
1844 env->cur_state = NULL;
17a52670 1845 /* pop all elements and return */
6f8a57cc 1846 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1847 return NULL;
1848}
1849
1850#define CALLER_SAVED_REGS 6
1851static const int caller_saved[CALLER_SAVED_REGS] = {
1852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1853};
1854
e688c3db
AS
1855/* This helper doesn't clear reg->id */
1856static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1857{
b03c9f9f
EC
1858 reg->var_off = tnum_const(imm);
1859 reg->smin_value = (s64)imm;
1860 reg->smax_value = (s64)imm;
1861 reg->umin_value = imm;
1862 reg->umax_value = imm;
3f50f132
JF
1863
1864 reg->s32_min_value = (s32)imm;
1865 reg->s32_max_value = (s32)imm;
1866 reg->u32_min_value = (u32)imm;
1867 reg->u32_max_value = (u32)imm;
1868}
1869
e688c3db
AS
1870/* Mark the unknown part of a register (variable offset or scalar value) as
1871 * known to have the value @imm.
1872 */
1873static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1874{
a73bf9f2 1875 /* Clear off and union(map_ptr, range) */
e688c3db
AS
1876 memset(((u8 *)reg) + sizeof(reg->type), 0,
1877 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
a73bf9f2
AN
1878 reg->id = 0;
1879 reg->ref_obj_id = 0;
e688c3db
AS
1880 ___mark_reg_known(reg, imm);
1881}
1882
3f50f132
JF
1883static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1884{
1885 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1886 reg->s32_min_value = (s32)imm;
1887 reg->s32_max_value = (s32)imm;
1888 reg->u32_min_value = (u32)imm;
1889 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1890}
1891
f1174f77
EC
1892/* Mark the 'variable offset' part of a register as zero. This should be
1893 * used only on registers holding a pointer type.
1894 */
1895static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1896{
b03c9f9f 1897 __mark_reg_known(reg, 0);
f1174f77 1898}
a9789ef9 1899
cc2b14d5
AS
1900static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1901{
1902 __mark_reg_known(reg, 0);
cc2b14d5
AS
1903 reg->type = SCALAR_VALUE;
1904}
1905
61bd5218
JK
1906static void mark_reg_known_zero(struct bpf_verifier_env *env,
1907 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1908{
1909 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1910 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1911 /* Something bad happened, let's kill all regs */
1912 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1913 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1914 return;
1915 }
1916 __mark_reg_known_zero(regs + regno);
1917}
1918
27060531 1919static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
f8064ab9 1920 bool first_slot, int dynptr_id)
27060531
KKD
1921{
1922 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1923 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1924 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1925 */
1926 __mark_reg_known_zero(reg);
1927 reg->type = CONST_PTR_TO_DYNPTR;
f8064ab9
KKD
1928 /* Give each dynptr a unique id to uniquely associate slices to it. */
1929 reg->id = dynptr_id;
27060531
KKD
1930 reg->dynptr.type = type;
1931 reg->dynptr.first_slot = first_slot;
1932}
1933
4ddb7416
DB
1934static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1935{
c25b2ae1 1936 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1937 const struct bpf_map *map = reg->map_ptr;
1938
1939 if (map->inner_map_meta) {
1940 reg->type = CONST_PTR_TO_MAP;
1941 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1942 /* transfer reg's id which is unique for every map_lookup_elem
1943 * as UID of the inner map.
1944 */
db559117 1945 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1946 reg->map_uid = reg->id;
4ddb7416
DB
1947 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1948 reg->type = PTR_TO_XDP_SOCK;
1949 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1950 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1951 reg->type = PTR_TO_SOCKET;
1952 } else {
1953 reg->type = PTR_TO_MAP_VALUE;
1954 }
c25b2ae1 1955 return;
4ddb7416 1956 }
c25b2ae1
HL
1957
1958 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1959}
1960
5d92ddc3
DM
1961static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1962 struct btf_field_graph_root *ds_head)
1963{
1964 __mark_reg_known_zero(&regs[regno]);
1965 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1966 regs[regno].btf = ds_head->btf;
1967 regs[regno].btf_id = ds_head->value_btf_id;
1968 regs[regno].off = ds_head->node_offset;
1969}
1970
de8f3a83
DB
1971static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1972{
1973 return type_is_pkt_pointer(reg->type);
1974}
1975
1976static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1977{
1978 return reg_is_pkt_pointer(reg) ||
1979 reg->type == PTR_TO_PACKET_END;
1980}
1981
66e3a13e
JK
1982static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1983{
1984 return base_type(reg->type) == PTR_TO_MEM &&
1985 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1986}
1987
de8f3a83
DB
1988/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1989static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1990 enum bpf_reg_type which)
1991{
1992 /* The register can already have a range from prior markings.
1993 * This is fine as long as it hasn't been advanced from its
1994 * origin.
1995 */
1996 return reg->type == which &&
1997 reg->id == 0 &&
1998 reg->off == 0 &&
1999 tnum_equals_const(reg->var_off, 0);
2000}
2001
3f50f132
JF
2002/* Reset the min/max bounds of a register */
2003static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2004{
2005 reg->smin_value = S64_MIN;
2006 reg->smax_value = S64_MAX;
2007 reg->umin_value = 0;
2008 reg->umax_value = U64_MAX;
2009
2010 reg->s32_min_value = S32_MIN;
2011 reg->s32_max_value = S32_MAX;
2012 reg->u32_min_value = 0;
2013 reg->u32_max_value = U32_MAX;
2014}
2015
2016static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2017{
2018 reg->smin_value = S64_MIN;
2019 reg->smax_value = S64_MAX;
2020 reg->umin_value = 0;
2021 reg->umax_value = U64_MAX;
2022}
2023
2024static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2025{
2026 reg->s32_min_value = S32_MIN;
2027 reg->s32_max_value = S32_MAX;
2028 reg->u32_min_value = 0;
2029 reg->u32_max_value = U32_MAX;
2030}
2031
2032static void __update_reg32_bounds(struct bpf_reg_state *reg)
2033{
2034 struct tnum var32_off = tnum_subreg(reg->var_off);
2035
2036 /* min signed is max(sign bit) | min(other bits) */
2037 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2038 var32_off.value | (var32_off.mask & S32_MIN));
2039 /* max signed is min(sign bit) | max(other bits) */
2040 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2041 var32_off.value | (var32_off.mask & S32_MAX));
2042 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2043 reg->u32_max_value = min(reg->u32_max_value,
2044 (u32)(var32_off.value | var32_off.mask));
2045}
2046
2047static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2048{
2049 /* min signed is max(sign bit) | min(other bits) */
2050 reg->smin_value = max_t(s64, reg->smin_value,
2051 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2052 /* max signed is min(sign bit) | max(other bits) */
2053 reg->smax_value = min_t(s64, reg->smax_value,
2054 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2055 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2056 reg->umax_value = min(reg->umax_value,
2057 reg->var_off.value | reg->var_off.mask);
2058}
2059
3f50f132
JF
2060static void __update_reg_bounds(struct bpf_reg_state *reg)
2061{
2062 __update_reg32_bounds(reg);
2063 __update_reg64_bounds(reg);
2064}
2065
b03c9f9f 2066/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
2067static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2068{
2069 /* Learn sign from signed bounds.
2070 * If we cannot cross the sign boundary, then signed and unsigned bounds
2071 * are the same, so combine. This works even in the negative case, e.g.
2072 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2073 */
2074 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2075 reg->s32_min_value = reg->u32_min_value =
2076 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2077 reg->s32_max_value = reg->u32_max_value =
2078 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2079 return;
2080 }
2081 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2082 * boundary, so we must be careful.
2083 */
2084 if ((s32)reg->u32_max_value >= 0) {
2085 /* Positive. We can't learn anything from the smin, but smax
2086 * is positive, hence safe.
2087 */
2088 reg->s32_min_value = reg->u32_min_value;
2089 reg->s32_max_value = reg->u32_max_value =
2090 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2091 } else if ((s32)reg->u32_min_value < 0) {
2092 /* Negative. We can't learn anything from the smax, but smin
2093 * is negative, hence safe.
2094 */
2095 reg->s32_min_value = reg->u32_min_value =
2096 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2097 reg->s32_max_value = reg->u32_max_value;
2098 }
2099}
2100
2101static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2102{
2103 /* Learn sign from signed bounds.
2104 * If we cannot cross the sign boundary, then signed and unsigned bounds
2105 * are the same, so combine. This works even in the negative case, e.g.
2106 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2107 */
2108 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2109 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2110 reg->umin_value);
2111 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2112 reg->umax_value);
2113 return;
2114 }
2115 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2116 * boundary, so we must be careful.
2117 */
2118 if ((s64)reg->umax_value >= 0) {
2119 /* Positive. We can't learn anything from the smin, but smax
2120 * is positive, hence safe.
2121 */
2122 reg->smin_value = reg->umin_value;
2123 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2124 reg->umax_value);
2125 } else if ((s64)reg->umin_value < 0) {
2126 /* Negative. We can't learn anything from the smax, but smin
2127 * is negative, hence safe.
2128 */
2129 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2130 reg->umin_value);
2131 reg->smax_value = reg->umax_value;
2132 }
2133}
2134
3f50f132
JF
2135static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2136{
2137 __reg32_deduce_bounds(reg);
2138 __reg64_deduce_bounds(reg);
2139}
2140
b03c9f9f
EC
2141/* Attempts to improve var_off based on unsigned min/max information */
2142static void __reg_bound_offset(struct bpf_reg_state *reg)
2143{
3f50f132
JF
2144 struct tnum var64_off = tnum_intersect(reg->var_off,
2145 tnum_range(reg->umin_value,
2146 reg->umax_value));
2147 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
2148 tnum_range(reg->u32_min_value,
2149 reg->u32_max_value));
2150
2151 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
2152}
2153
3844d153
DB
2154static void reg_bounds_sync(struct bpf_reg_state *reg)
2155{
2156 /* We might have learned new bounds from the var_off. */
2157 __update_reg_bounds(reg);
2158 /* We might have learned something about the sign bit. */
2159 __reg_deduce_bounds(reg);
2160 /* We might have learned some bits from the bounds. */
2161 __reg_bound_offset(reg);
2162 /* Intersecting with the old var_off might have improved our bounds
2163 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2164 * then new var_off is (0; 0x7f...fc) which improves our umax.
2165 */
2166 __update_reg_bounds(reg);
2167}
2168
e572ff80
DB
2169static bool __reg32_bound_s64(s32 a)
2170{
2171 return a >= 0 && a <= S32_MAX;
2172}
2173
3f50f132 2174static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 2175{
3f50f132
JF
2176 reg->umin_value = reg->u32_min_value;
2177 reg->umax_value = reg->u32_max_value;
e572ff80
DB
2178
2179 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2180 * be positive otherwise set to worse case bounds and refine later
2181 * from tnum.
3f50f132 2182 */
e572ff80
DB
2183 if (__reg32_bound_s64(reg->s32_min_value) &&
2184 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 2185 reg->smin_value = reg->s32_min_value;
e572ff80
DB
2186 reg->smax_value = reg->s32_max_value;
2187 } else {
3a71dc36 2188 reg->smin_value = 0;
e572ff80
DB
2189 reg->smax_value = U32_MAX;
2190 }
3f50f132
JF
2191}
2192
2193static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2194{
2195 /* special case when 64-bit register has upper 32-bit register
2196 * zeroed. Typically happens after zext or <<32, >>32 sequence
2197 * allowing us to use 32-bit bounds directly,
2198 */
2199 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2200 __reg_assign_32_into_64(reg);
2201 } else {
2202 /* Otherwise the best we can do is push lower 32bit known and
2203 * unknown bits into register (var_off set from jmp logic)
2204 * then learn as much as possible from the 64-bit tnum
2205 * known and unknown bits. The previous smin/smax bounds are
2206 * invalid here because of jmp32 compare so mark them unknown
2207 * so they do not impact tnum bounds calculation.
2208 */
2209 __mark_reg64_unbounded(reg);
3f50f132 2210 }
3844d153 2211 reg_bounds_sync(reg);
3f50f132
JF
2212}
2213
2214static bool __reg64_bound_s32(s64 a)
2215{
388e2c0b 2216 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
2217}
2218
2219static bool __reg64_bound_u32(u64 a)
2220{
b9979db8 2221 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
2222}
2223
2224static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2225{
2226 __mark_reg32_unbounded(reg);
b0270958 2227 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 2228 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 2229 reg->s32_max_value = (s32)reg->smax_value;
b0270958 2230 }
10bf4e83 2231 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 2232 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 2233 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 2234 }
3844d153 2235 reg_bounds_sync(reg);
b03c9f9f
EC
2236}
2237
f1174f77 2238/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
2239static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2240 struct bpf_reg_state *reg)
f1174f77 2241{
a9c676bc 2242 /*
a73bf9f2 2243 * Clear type, off, and union(map_ptr, range) and
a9c676bc
AS
2244 * padding between 'type' and union
2245 */
2246 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 2247 reg->type = SCALAR_VALUE;
a73bf9f2
AN
2248 reg->id = 0;
2249 reg->ref_obj_id = 0;
f1174f77 2250 reg->var_off = tnum_unknown;
f4d7e40a 2251 reg->frameno = 0;
be2ef816 2252 reg->precise = !env->bpf_capable;
b03c9f9f 2253 __mark_reg_unbounded(reg);
f1174f77
EC
2254}
2255
61bd5218
JK
2256static void mark_reg_unknown(struct bpf_verifier_env *env,
2257 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2258{
2259 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2260 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
2261 /* Something bad happened, let's kill all regs except FP */
2262 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2263 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2264 return;
2265 }
f54c7898 2266 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
2267}
2268
f54c7898
DB
2269static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2270 struct bpf_reg_state *reg)
f1174f77 2271{
f54c7898 2272 __mark_reg_unknown(env, reg);
f1174f77
EC
2273 reg->type = NOT_INIT;
2274}
2275
61bd5218
JK
2276static void mark_reg_not_init(struct bpf_verifier_env *env,
2277 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2278{
2279 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2280 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
2281 /* Something bad happened, let's kill all regs except FP */
2282 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2283 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2284 return;
2285 }
f54c7898 2286 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
2287}
2288
41c48f3a
AI
2289static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2290 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 2291 enum bpf_reg_type reg_type,
c6f1bfe8
YS
2292 struct btf *btf, u32 btf_id,
2293 enum bpf_type_flag flag)
41c48f3a
AI
2294{
2295 if (reg_type == SCALAR_VALUE) {
2296 mark_reg_unknown(env, regs, regno);
2297 return;
2298 }
2299 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 2300 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 2301 regs[regno].btf = btf;
41c48f3a
AI
2302 regs[regno].btf_id = btf_id;
2303}
2304
5327ed3d 2305#define DEF_NOT_SUBREG (0)
61bd5218 2306static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 2307 struct bpf_func_state *state)
17a52670 2308{
f4d7e40a 2309 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2310 int i;
2311
dc503a8a 2312 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 2313 mark_reg_not_init(env, regs, i);
dc503a8a 2314 regs[i].live = REG_LIVE_NONE;
679c782d 2315 regs[i].parent = NULL;
5327ed3d 2316 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 2317 }
17a52670
AS
2318
2319 /* frame pointer */
f1174f77 2320 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 2321 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 2322 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
2323}
2324
f4d7e40a
AS
2325#define BPF_MAIN_FUNC (-1)
2326static void init_func_state(struct bpf_verifier_env *env,
2327 struct bpf_func_state *state,
2328 int callsite, int frameno, int subprogno)
2329{
2330 state->callsite = callsite;
2331 state->frameno = frameno;
2332 state->subprogno = subprogno;
1bfe26fb 2333 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 2334 init_reg_state(env, state);
0f55f9ed 2335 mark_verifier_state_scratched(env);
f4d7e40a
AS
2336}
2337
bfc6bb74
AS
2338/* Similar to push_stack(), but for async callbacks */
2339static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2340 int insn_idx, int prev_insn_idx,
2341 int subprog)
2342{
2343 struct bpf_verifier_stack_elem *elem;
2344 struct bpf_func_state *frame;
2345
2346 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2347 if (!elem)
2348 goto err;
2349
2350 elem->insn_idx = insn_idx;
2351 elem->prev_insn_idx = prev_insn_idx;
2352 elem->next = env->head;
2353 elem->log_pos = env->log.len_used;
2354 env->head = elem;
2355 env->stack_size++;
2356 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2357 verbose(env,
2358 "The sequence of %d jumps is too complex for async cb.\n",
2359 env->stack_size);
2360 goto err;
2361 }
2362 /* Unlike push_stack() do not copy_verifier_state().
2363 * The caller state doesn't matter.
2364 * This is async callback. It starts in a fresh stack.
2365 * Initialize it similar to do_check_common().
2366 */
2367 elem->st.branches = 1;
2368 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2369 if (!frame)
2370 goto err;
2371 init_func_state(env, frame,
2372 BPF_MAIN_FUNC /* callsite */,
2373 0 /* frameno within this callchain */,
2374 subprog /* subprog number within this prog */);
2375 elem->st.frame[0] = frame;
2376 return &elem->st;
2377err:
2378 free_verifier_state(env->cur_state, true);
2379 env->cur_state = NULL;
2380 /* pop all elements and return */
2381 while (!pop_stack(env, NULL, NULL, false));
2382 return NULL;
2383}
2384
2385
17a52670
AS
2386enum reg_arg_type {
2387 SRC_OP, /* register is used as source operand */
2388 DST_OP, /* register is used as destination operand */
2389 DST_OP_NO_MARK /* same as above, check only, don't mark */
2390};
2391
cc8b0b92
AS
2392static int cmp_subprogs(const void *a, const void *b)
2393{
9c8105bd
JW
2394 return ((struct bpf_subprog_info *)a)->start -
2395 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
2396}
2397
2398static int find_subprog(struct bpf_verifier_env *env, int off)
2399{
9c8105bd 2400 struct bpf_subprog_info *p;
cc8b0b92 2401
9c8105bd
JW
2402 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2403 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
2404 if (!p)
2405 return -ENOENT;
9c8105bd 2406 return p - env->subprog_info;
cc8b0b92
AS
2407
2408}
2409
2410static int add_subprog(struct bpf_verifier_env *env, int off)
2411{
2412 int insn_cnt = env->prog->len;
2413 int ret;
2414
2415 if (off >= insn_cnt || off < 0) {
2416 verbose(env, "call to invalid destination\n");
2417 return -EINVAL;
2418 }
2419 ret = find_subprog(env, off);
2420 if (ret >= 0)
282a0f46 2421 return ret;
4cb3d99c 2422 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
2423 verbose(env, "too many subprograms\n");
2424 return -E2BIG;
2425 }
e6ac2450 2426 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
2427 env->subprog_info[env->subprog_cnt++].start = off;
2428 sort(env->subprog_info, env->subprog_cnt,
2429 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 2430 return env->subprog_cnt - 1;
cc8b0b92
AS
2431}
2432
2357672c
KKD
2433#define MAX_KFUNC_DESCS 256
2434#define MAX_KFUNC_BTFS 256
2435
e6ac2450
MKL
2436struct bpf_kfunc_desc {
2437 struct btf_func_model func_model;
2438 u32 func_id;
2439 s32 imm;
2357672c
KKD
2440 u16 offset;
2441};
2442
2443struct bpf_kfunc_btf {
2444 struct btf *btf;
2445 struct module *module;
2446 u16 offset;
e6ac2450
MKL
2447};
2448
e6ac2450
MKL
2449struct bpf_kfunc_desc_tab {
2450 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2451 u32 nr_descs;
2452};
2453
2357672c
KKD
2454struct bpf_kfunc_btf_tab {
2455 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2456 u32 nr_descs;
2457};
2458
2459static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
2460{
2461 const struct bpf_kfunc_desc *d0 = a;
2462 const struct bpf_kfunc_desc *d1 = b;
2463
2464 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
2465 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2466}
2467
2468static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2469{
2470 const struct bpf_kfunc_btf *d0 = a;
2471 const struct bpf_kfunc_btf *d1 = b;
2472
2473 return d0->offset - d1->offset;
e6ac2450
MKL
2474}
2475
2476static const struct bpf_kfunc_desc *
2357672c 2477find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
2478{
2479 struct bpf_kfunc_desc desc = {
2480 .func_id = func_id,
2357672c 2481 .offset = offset,
e6ac2450
MKL
2482 };
2483 struct bpf_kfunc_desc_tab *tab;
2484
2485 tab = prog->aux->kfunc_tab;
2486 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
2487 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2488}
2489
2490static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 2491 s16 offset)
2357672c
KKD
2492{
2493 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2494 struct bpf_kfunc_btf_tab *tab;
2495 struct bpf_kfunc_btf *b;
2496 struct module *mod;
2497 struct btf *btf;
2498 int btf_fd;
2499
2500 tab = env->prog->aux->kfunc_btf_tab;
2501 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2502 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2503 if (!b) {
2504 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2505 verbose(env, "too many different module BTFs\n");
2506 return ERR_PTR(-E2BIG);
2507 }
2508
2509 if (bpfptr_is_null(env->fd_array)) {
2510 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2511 return ERR_PTR(-EPROTO);
2512 }
2513
2514 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2515 offset * sizeof(btf_fd),
2516 sizeof(btf_fd)))
2517 return ERR_PTR(-EFAULT);
2518
2519 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
2520 if (IS_ERR(btf)) {
2521 verbose(env, "invalid module BTF fd specified\n");
2357672c 2522 return btf;
588cd7ef 2523 }
2357672c
KKD
2524
2525 if (!btf_is_module(btf)) {
2526 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2527 btf_put(btf);
2528 return ERR_PTR(-EINVAL);
2529 }
2530
2531 mod = btf_try_get_module(btf);
2532 if (!mod) {
2533 btf_put(btf);
2534 return ERR_PTR(-ENXIO);
2535 }
2536
2537 b = &tab->descs[tab->nr_descs++];
2538 b->btf = btf;
2539 b->module = mod;
2540 b->offset = offset;
2541
2542 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2543 kfunc_btf_cmp_by_off, NULL);
2544 }
2357672c 2545 return b->btf;
e6ac2450
MKL
2546}
2547
2357672c
KKD
2548void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2549{
2550 if (!tab)
2551 return;
2552
2553 while (tab->nr_descs--) {
2554 module_put(tab->descs[tab->nr_descs].module);
2555 btf_put(tab->descs[tab->nr_descs].btf);
2556 }
2557 kfree(tab);
2558}
2559
43bf0878 2560static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2561{
2357672c
KKD
2562 if (offset) {
2563 if (offset < 0) {
2564 /* In the future, this can be allowed to increase limit
2565 * of fd index into fd_array, interpreted as u16.
2566 */
2567 verbose(env, "negative offset disallowed for kernel module function call\n");
2568 return ERR_PTR(-EINVAL);
2569 }
2570
b202d844 2571 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2572 }
2573 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2574}
2575
2357672c 2576static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2577{
2578 const struct btf_type *func, *func_proto;
2357672c 2579 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2580 struct bpf_kfunc_desc_tab *tab;
2581 struct bpf_prog_aux *prog_aux;
2582 struct bpf_kfunc_desc *desc;
2583 const char *func_name;
2357672c 2584 struct btf *desc_btf;
8cbf062a 2585 unsigned long call_imm;
e6ac2450
MKL
2586 unsigned long addr;
2587 int err;
2588
2589 prog_aux = env->prog->aux;
2590 tab = prog_aux->kfunc_tab;
2357672c 2591 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2592 if (!tab) {
2593 if (!btf_vmlinux) {
2594 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2595 return -ENOTSUPP;
2596 }
2597
2598 if (!env->prog->jit_requested) {
2599 verbose(env, "JIT is required for calling kernel function\n");
2600 return -ENOTSUPP;
2601 }
2602
2603 if (!bpf_jit_supports_kfunc_call()) {
2604 verbose(env, "JIT does not support calling kernel function\n");
2605 return -ENOTSUPP;
2606 }
2607
2608 if (!env->prog->gpl_compatible) {
2609 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2610 return -EINVAL;
2611 }
2612
2613 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2614 if (!tab)
2615 return -ENOMEM;
2616 prog_aux->kfunc_tab = tab;
2617 }
2618
a5d82727
KKD
2619 /* func_id == 0 is always invalid, but instead of returning an error, be
2620 * conservative and wait until the code elimination pass before returning
2621 * error, so that invalid calls that get pruned out can be in BPF programs
2622 * loaded from userspace. It is also required that offset be untouched
2623 * for such calls.
2624 */
2625 if (!func_id && !offset)
2626 return 0;
2627
2357672c
KKD
2628 if (!btf_tab && offset) {
2629 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2630 if (!btf_tab)
2631 return -ENOMEM;
2632 prog_aux->kfunc_btf_tab = btf_tab;
2633 }
2634
43bf0878 2635 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2636 if (IS_ERR(desc_btf)) {
2637 verbose(env, "failed to find BTF for kernel function\n");
2638 return PTR_ERR(desc_btf);
2639 }
2640
2641 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2642 return 0;
2643
2644 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2645 verbose(env, "too many different kernel function calls\n");
2646 return -E2BIG;
2647 }
2648
2357672c 2649 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2650 if (!func || !btf_type_is_func(func)) {
2651 verbose(env, "kernel btf_id %u is not a function\n",
2652 func_id);
2653 return -EINVAL;
2654 }
2357672c 2655 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2656 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2657 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2658 func_id);
2659 return -EINVAL;
2660 }
2661
2357672c 2662 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2663 addr = kallsyms_lookup_name(func_name);
2664 if (!addr) {
2665 verbose(env, "cannot find address for kernel function %s\n",
2666 func_name);
2667 return -EINVAL;
2668 }
2669
8cbf062a
HT
2670 call_imm = BPF_CALL_IMM(addr);
2671 /* Check whether or not the relative offset overflows desc->imm */
2672 if ((unsigned long)(s32)call_imm != call_imm) {
2673 verbose(env, "address of kernel function %s is out of range\n",
2674 func_name);
2675 return -EINVAL;
2676 }
2677
3d76a4d3
SF
2678 if (bpf_dev_bound_kfunc_id(func_id)) {
2679 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2680 if (err)
2681 return err;
2682 }
2683
e6ac2450
MKL
2684 desc = &tab->descs[tab->nr_descs++];
2685 desc->func_id = func_id;
8cbf062a 2686 desc->imm = call_imm;
2357672c
KKD
2687 desc->offset = offset;
2688 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2689 func_proto, func_name,
2690 &desc->func_model);
2691 if (!err)
2692 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2693 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2694 return err;
2695}
2696
2697static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2698{
2699 const struct bpf_kfunc_desc *d0 = a;
2700 const struct bpf_kfunc_desc *d1 = b;
2701
2702 if (d0->imm > d1->imm)
2703 return 1;
2704 else if (d0->imm < d1->imm)
2705 return -1;
2706 return 0;
2707}
2708
2709static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2710{
2711 struct bpf_kfunc_desc_tab *tab;
2712
2713 tab = prog->aux->kfunc_tab;
2714 if (!tab)
2715 return;
2716
2717 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2718 kfunc_desc_cmp_by_imm, NULL);
2719}
2720
2721bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2722{
2723 return !!prog->aux->kfunc_tab;
2724}
2725
2726const struct btf_func_model *
2727bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2728 const struct bpf_insn *insn)
2729{
2730 const struct bpf_kfunc_desc desc = {
2731 .imm = insn->imm,
2732 };
2733 const struct bpf_kfunc_desc *res;
2734 struct bpf_kfunc_desc_tab *tab;
2735
2736 tab = prog->aux->kfunc_tab;
2737 res = bsearch(&desc, tab->descs, tab->nr_descs,
2738 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2739
2740 return res ? &res->func_model : NULL;
2741}
2742
2743static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2744{
9c8105bd 2745 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2746 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2747 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2748
f910cefa
JW
2749 /* Add entry function. */
2750 ret = add_subprog(env, 0);
e6ac2450 2751 if (ret)
f910cefa
JW
2752 return ret;
2753
e6ac2450
MKL
2754 for (i = 0; i < insn_cnt; i++, insn++) {
2755 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2756 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2757 continue;
e6ac2450 2758
2c78ee89 2759 if (!env->bpf_capable) {
e6ac2450 2760 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2761 return -EPERM;
2762 }
e6ac2450 2763
3990ed4c 2764 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2765 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2766 else
2357672c 2767 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2768
cc8b0b92
AS
2769 if (ret < 0)
2770 return ret;
2771 }
2772
4cb3d99c
JW
2773 /* Add a fake 'exit' subprog which could simplify subprog iteration
2774 * logic. 'subprog_cnt' should not be increased.
2775 */
2776 subprog[env->subprog_cnt].start = insn_cnt;
2777
06ee7115 2778 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2779 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2780 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2781
e6ac2450
MKL
2782 return 0;
2783}
2784
2785static int check_subprogs(struct bpf_verifier_env *env)
2786{
2787 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2788 struct bpf_subprog_info *subprog = env->subprog_info;
2789 struct bpf_insn *insn = env->prog->insnsi;
2790 int insn_cnt = env->prog->len;
2791
cc8b0b92 2792 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2793 subprog_start = subprog[cur_subprog].start;
2794 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2795 for (i = 0; i < insn_cnt; i++) {
2796 u8 code = insn[i].code;
2797
7f6e4312 2798 if (code == (BPF_JMP | BPF_CALL) &&
df2ccc18
IL
2799 insn[i].src_reg == 0 &&
2800 insn[i].imm == BPF_FUNC_tail_call)
7f6e4312 2801 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2802 if (BPF_CLASS(code) == BPF_LD &&
2803 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2804 subprog[cur_subprog].has_ld_abs = true;
092ed096 2805 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2806 goto next;
2807 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2808 goto next;
2809 off = i + insn[i].off + 1;
2810 if (off < subprog_start || off >= subprog_end) {
2811 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2812 return -EINVAL;
2813 }
2814next:
2815 if (i == subprog_end - 1) {
2816 /* to avoid fall-through from one subprog into another
2817 * the last insn of the subprog should be either exit
2818 * or unconditional jump back
2819 */
2820 if (code != (BPF_JMP | BPF_EXIT) &&
2821 code != (BPF_JMP | BPF_JA)) {
2822 verbose(env, "last insn is not an exit or jmp\n");
2823 return -EINVAL;
2824 }
2825 subprog_start = subprog_end;
4cb3d99c
JW
2826 cur_subprog++;
2827 if (cur_subprog < env->subprog_cnt)
9c8105bd 2828 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2829 }
2830 }
2831 return 0;
2832}
2833
679c782d
EC
2834/* Parentage chain of this register (or stack slot) should take care of all
2835 * issues like callee-saved registers, stack slot allocation time, etc.
2836 */
f4d7e40a 2837static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2838 const struct bpf_reg_state *state,
5327ed3d 2839 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2840{
2841 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2842 int cnt = 0;
dc503a8a
EC
2843
2844 while (parent) {
2845 /* if read wasn't screened by an earlier write ... */
679c782d 2846 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2847 break;
9242b5f5
AS
2848 if (parent->live & REG_LIVE_DONE) {
2849 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2850 reg_type_str(env, parent->type),
9242b5f5
AS
2851 parent->var_off.value, parent->off);
2852 return -EFAULT;
2853 }
5327ed3d
JW
2854 /* The first condition is more likely to be true than the
2855 * second, checked it first.
2856 */
2857 if ((parent->live & REG_LIVE_READ) == flag ||
2858 parent->live & REG_LIVE_READ64)
25af32da
AS
2859 /* The parentage chain never changes and
2860 * this parent was already marked as LIVE_READ.
2861 * There is no need to keep walking the chain again and
2862 * keep re-marking all parents as LIVE_READ.
2863 * This case happens when the same register is read
2864 * multiple times without writes into it in-between.
5327ed3d
JW
2865 * Also, if parent has the stronger REG_LIVE_READ64 set,
2866 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2867 */
2868 break;
dc503a8a 2869 /* ... then we depend on parent's value */
5327ed3d
JW
2870 parent->live |= flag;
2871 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2872 if (flag == REG_LIVE_READ64)
2873 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2874 state = parent;
2875 parent = state->parent;
f4d7e40a 2876 writes = true;
06ee7115 2877 cnt++;
dc503a8a 2878 }
06ee7115
AS
2879
2880 if (env->longest_mark_read_walk < cnt)
2881 env->longest_mark_read_walk = cnt;
f4d7e40a 2882 return 0;
dc503a8a
EC
2883}
2884
d6fefa11
KKD
2885static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2886{
2887 struct bpf_func_state *state = func(env, reg);
2888 int spi, ret;
2889
2890 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
2891 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2892 * check_kfunc_call.
2893 */
2894 if (reg->type == CONST_PTR_TO_DYNPTR)
2895 return 0;
79168a66
KKD
2896 spi = dynptr_get_spi(env, reg);
2897 if (spi < 0)
2898 return spi;
d6fefa11
KKD
2899 /* Caller ensures dynptr is valid and initialized, which means spi is in
2900 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2901 * read.
2902 */
2903 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2904 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2905 if (ret)
2906 return ret;
2907 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2908 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2909}
2910
06accc87
AN
2911static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2912 int spi, int nr_slots)
2913{
2914 struct bpf_func_state *state = func(env, reg);
2915 int err, i;
2916
2917 for (i = 0; i < nr_slots; i++) {
2918 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2919
2920 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2921 if (err)
2922 return err;
2923
2924 mark_stack_slot_scratched(env, spi - i);
2925 }
2926
2927 return 0;
2928}
2929
5327ed3d
JW
2930/* This function is supposed to be used by the following 32-bit optimization
2931 * code only. It returns TRUE if the source or destination register operates
2932 * on 64-bit, otherwise return FALSE.
2933 */
2934static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2935 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2936{
2937 u8 code, class, op;
2938
2939 code = insn->code;
2940 class = BPF_CLASS(code);
2941 op = BPF_OP(code);
2942 if (class == BPF_JMP) {
2943 /* BPF_EXIT for "main" will reach here. Return TRUE
2944 * conservatively.
2945 */
2946 if (op == BPF_EXIT)
2947 return true;
2948 if (op == BPF_CALL) {
2949 /* BPF to BPF call will reach here because of marking
2950 * caller saved clobber with DST_OP_NO_MARK for which we
2951 * don't care the register def because they are anyway
2952 * marked as NOT_INIT already.
2953 */
2954 if (insn->src_reg == BPF_PSEUDO_CALL)
2955 return false;
2956 /* Helper call will reach here because of arg type
2957 * check, conservatively return TRUE.
2958 */
2959 if (t == SRC_OP)
2960 return true;
2961
2962 return false;
2963 }
2964 }
2965
2966 if (class == BPF_ALU64 || class == BPF_JMP ||
2967 /* BPF_END always use BPF_ALU class. */
2968 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2969 return true;
2970
2971 if (class == BPF_ALU || class == BPF_JMP32)
2972 return false;
2973
2974 if (class == BPF_LDX) {
2975 if (t != SRC_OP)
2976 return BPF_SIZE(code) == BPF_DW;
2977 /* LDX source must be ptr. */
2978 return true;
2979 }
2980
2981 if (class == BPF_STX) {
83a28819
IL
2982 /* BPF_STX (including atomic variants) has multiple source
2983 * operands, one of which is a ptr. Check whether the caller is
2984 * asking about it.
2985 */
2986 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2987 return true;
2988 return BPF_SIZE(code) == BPF_DW;
2989 }
2990
2991 if (class == BPF_LD) {
2992 u8 mode = BPF_MODE(code);
2993
2994 /* LD_IMM64 */
2995 if (mode == BPF_IMM)
2996 return true;
2997
2998 /* Both LD_IND and LD_ABS return 32-bit data. */
2999 if (t != SRC_OP)
3000 return false;
3001
3002 /* Implicit ctx ptr. */
3003 if (regno == BPF_REG_6)
3004 return true;
3005
3006 /* Explicit source could be any width. */
3007 return true;
3008 }
3009
3010 if (class == BPF_ST)
3011 /* The only source register for BPF_ST is a ptr. */
3012 return true;
3013
3014 /* Conservatively return true at default. */
3015 return true;
3016}
3017
83a28819
IL
3018/* Return the regno defined by the insn, or -1. */
3019static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 3020{
83a28819
IL
3021 switch (BPF_CLASS(insn->code)) {
3022 case BPF_JMP:
3023 case BPF_JMP32:
3024 case BPF_ST:
3025 return -1;
3026 case BPF_STX:
3027 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3028 (insn->imm & BPF_FETCH)) {
3029 if (insn->imm == BPF_CMPXCHG)
3030 return BPF_REG_0;
3031 else
3032 return insn->src_reg;
3033 } else {
3034 return -1;
3035 }
3036 default:
3037 return insn->dst_reg;
3038 }
b325fbca
JW
3039}
3040
3041/* Return TRUE if INSN has defined any 32-bit value explicitly. */
3042static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3043{
83a28819
IL
3044 int dst_reg = insn_def_regno(insn);
3045
3046 if (dst_reg == -1)
b325fbca
JW
3047 return false;
3048
83a28819 3049 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
3050}
3051
5327ed3d
JW
3052static void mark_insn_zext(struct bpf_verifier_env *env,
3053 struct bpf_reg_state *reg)
3054{
3055 s32 def_idx = reg->subreg_def;
3056
3057 if (def_idx == DEF_NOT_SUBREG)
3058 return;
3059
3060 env->insn_aux_data[def_idx - 1].zext_dst = true;
3061 /* The dst will be zero extended, so won't be sub-register anymore. */
3062 reg->subreg_def = DEF_NOT_SUBREG;
3063}
3064
dc503a8a 3065static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
3066 enum reg_arg_type t)
3067{
f4d7e40a
AS
3068 struct bpf_verifier_state *vstate = env->cur_state;
3069 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 3070 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 3071 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 3072 bool rw64;
dc503a8a 3073
17a52670 3074 if (regno >= MAX_BPF_REG) {
61bd5218 3075 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
3076 return -EINVAL;
3077 }
3078
0f55f9ed
CL
3079 mark_reg_scratched(env, regno);
3080
c342dc10 3081 reg = &regs[regno];
5327ed3d 3082 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
3083 if (t == SRC_OP) {
3084 /* check whether register used as source operand can be read */
c342dc10 3085 if (reg->type == NOT_INIT) {
61bd5218 3086 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
3087 return -EACCES;
3088 }
679c782d 3089 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
3090 if (regno == BPF_REG_FP)
3091 return 0;
3092
5327ed3d
JW
3093 if (rw64)
3094 mark_insn_zext(env, reg);
3095
3096 return mark_reg_read(env, reg, reg->parent,
3097 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
3098 } else {
3099 /* check whether register used as dest operand can be written to */
3100 if (regno == BPF_REG_FP) {
61bd5218 3101 verbose(env, "frame pointer is read only\n");
17a52670
AS
3102 return -EACCES;
3103 }
c342dc10 3104 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 3105 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 3106 if (t == DST_OP)
61bd5218 3107 mark_reg_unknown(env, regs, regno);
17a52670
AS
3108 }
3109 return 0;
3110}
3111
bffdeaa8
AN
3112static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3113{
3114 env->insn_aux_data[idx].jmp_point = true;
3115}
3116
3117static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3118{
3119 return env->insn_aux_data[insn_idx].jmp_point;
3120}
3121
b5dc0163
AS
3122/* for any branch, call, exit record the history of jmps in the given state */
3123static int push_jmp_history(struct bpf_verifier_env *env,
3124 struct bpf_verifier_state *cur)
3125{
3126 u32 cnt = cur->jmp_history_cnt;
3127 struct bpf_idx_pair *p;
ceb35b66 3128 size_t alloc_size;
b5dc0163 3129
bffdeaa8
AN
3130 if (!is_jmp_point(env, env->insn_idx))
3131 return 0;
3132
b5dc0163 3133 cnt++;
ceb35b66
KC
3134 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3135 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
b5dc0163
AS
3136 if (!p)
3137 return -ENOMEM;
3138 p[cnt - 1].idx = env->insn_idx;
3139 p[cnt - 1].prev_idx = env->prev_insn_idx;
3140 cur->jmp_history = p;
3141 cur->jmp_history_cnt = cnt;
3142 return 0;
3143}
3144
3145/* Backtrack one insn at a time. If idx is not at the top of recorded
3146 * history then previous instruction came from straight line execution.
3147 */
3148static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3149 u32 *history)
3150{
3151 u32 cnt = *history;
3152
3153 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3154 i = st->jmp_history[cnt - 1].prev_idx;
3155 (*history)--;
3156 } else {
3157 i--;
3158 }
3159 return i;
3160}
3161
e6ac2450
MKL
3162static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3163{
3164 const struct btf_type *func;
2357672c 3165 struct btf *desc_btf;
e6ac2450
MKL
3166
3167 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3168 return NULL;
3169
43bf0878 3170 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
3171 if (IS_ERR(desc_btf))
3172 return "<error>";
3173
3174 func = btf_type_by_id(desc_btf, insn->imm);
3175 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
3176}
3177
b5dc0163
AS
3178/* For given verifier state backtrack_insn() is called from the last insn to
3179 * the first insn. Its purpose is to compute a bitmask of registers and
3180 * stack slots that needs precision in the parent verifier state.
3181 */
3182static int backtrack_insn(struct bpf_verifier_env *env, int idx,
3183 u32 *reg_mask, u64 *stack_mask)
3184{
3185 const struct bpf_insn_cbs cbs = {
e6ac2450 3186 .cb_call = disasm_kfunc_name,
b5dc0163
AS
3187 .cb_print = verbose,
3188 .private_data = env,
3189 };
3190 struct bpf_insn *insn = env->prog->insnsi + idx;
3191 u8 class = BPF_CLASS(insn->code);
3192 u8 opcode = BPF_OP(insn->code);
3193 u8 mode = BPF_MODE(insn->code);
3194 u32 dreg = 1u << insn->dst_reg;
3195 u32 sreg = 1u << insn->src_reg;
3196 u32 spi;
3197
3198 if (insn->code == 0)
3199 return 0;
496f3324 3200 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
3201 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
3202 verbose(env, "%d: ", idx);
3203 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3204 }
3205
3206 if (class == BPF_ALU || class == BPF_ALU64) {
3207 if (!(*reg_mask & dreg))
3208 return 0;
3209 if (opcode == BPF_MOV) {
3210 if (BPF_SRC(insn->code) == BPF_X) {
3211 /* dreg = sreg
3212 * dreg needs precision after this insn
3213 * sreg needs precision before this insn
3214 */
3215 *reg_mask &= ~dreg;
3216 *reg_mask |= sreg;
3217 } else {
3218 /* dreg = K
3219 * dreg needs precision after this insn.
3220 * Corresponding register is already marked
3221 * as precise=true in this verifier state.
3222 * No further markings in parent are necessary
3223 */
3224 *reg_mask &= ~dreg;
3225 }
3226 } else {
3227 if (BPF_SRC(insn->code) == BPF_X) {
3228 /* dreg += sreg
3229 * both dreg and sreg need precision
3230 * before this insn
3231 */
3232 *reg_mask |= sreg;
3233 } /* else dreg += K
3234 * dreg still needs precision before this insn
3235 */
3236 }
3237 } else if (class == BPF_LDX) {
3238 if (!(*reg_mask & dreg))
3239 return 0;
3240 *reg_mask &= ~dreg;
3241
3242 /* scalars can only be spilled into stack w/o losing precision.
3243 * Load from any other memory can be zero extended.
3244 * The desire to keep that precision is already indicated
3245 * by 'precise' mark in corresponding register of this state.
3246 * No further tracking necessary.
3247 */
3248 if (insn->src_reg != BPF_REG_FP)
3249 return 0;
b5dc0163
AS
3250
3251 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3252 * that [fp - off] slot contains scalar that needs to be
3253 * tracked with precision
3254 */
3255 spi = (-insn->off - 1) / BPF_REG_SIZE;
3256 if (spi >= 64) {
3257 verbose(env, "BUG spi %d\n", spi);
3258 WARN_ONCE(1, "verifier backtracking bug");
3259 return -EFAULT;
3260 }
3261 *stack_mask |= 1ull << spi;
b3b50f05 3262 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 3263 if (*reg_mask & dreg)
b3b50f05 3264 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
3265 * to access memory. It means backtracking
3266 * encountered a case of pointer subtraction.
3267 */
3268 return -ENOTSUPP;
3269 /* scalars can only be spilled into stack */
3270 if (insn->dst_reg != BPF_REG_FP)
3271 return 0;
b5dc0163
AS
3272 spi = (-insn->off - 1) / BPF_REG_SIZE;
3273 if (spi >= 64) {
3274 verbose(env, "BUG spi %d\n", spi);
3275 WARN_ONCE(1, "verifier backtracking bug");
3276 return -EFAULT;
3277 }
3278 if (!(*stack_mask & (1ull << spi)))
3279 return 0;
3280 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
3281 if (class == BPF_STX)
3282 *reg_mask |= sreg;
b5dc0163
AS
3283 } else if (class == BPF_JMP || class == BPF_JMP32) {
3284 if (opcode == BPF_CALL) {
3285 if (insn->src_reg == BPF_PSEUDO_CALL)
3286 return -ENOTSUPP;
be2ef816
AN
3287 /* BPF helpers that invoke callback subprogs are
3288 * equivalent to BPF_PSEUDO_CALL above
3289 */
3290 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
3291 return -ENOTSUPP;
d3178e8a
HS
3292 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3293 * catch this error later. Make backtracking conservative
3294 * with ENOTSUPP.
3295 */
3296 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3297 return -ENOTSUPP;
b5dc0163
AS
3298 /* regular helper call sets R0 */
3299 *reg_mask &= ~1;
3300 if (*reg_mask & 0x3f) {
3301 /* if backtracing was looking for registers R1-R5
3302 * they should have been found already.
3303 */
3304 verbose(env, "BUG regs %x\n", *reg_mask);
3305 WARN_ONCE(1, "verifier backtracking bug");
3306 return -EFAULT;
3307 }
3308 } else if (opcode == BPF_EXIT) {
3309 return -ENOTSUPP;
3310 }
3311 } else if (class == BPF_LD) {
3312 if (!(*reg_mask & dreg))
3313 return 0;
3314 *reg_mask &= ~dreg;
3315 /* It's ld_imm64 or ld_abs or ld_ind.
3316 * For ld_imm64 no further tracking of precision
3317 * into parent is necessary
3318 */
3319 if (mode == BPF_IND || mode == BPF_ABS)
3320 /* to be analyzed */
3321 return -ENOTSUPP;
b5dc0163
AS
3322 }
3323 return 0;
3324}
3325
3326/* the scalar precision tracking algorithm:
3327 * . at the start all registers have precise=false.
3328 * . scalar ranges are tracked as normal through alu and jmp insns.
3329 * . once precise value of the scalar register is used in:
3330 * . ptr + scalar alu
3331 * . if (scalar cond K|scalar)
3332 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3333 * backtrack through the verifier states and mark all registers and
3334 * stack slots with spilled constants that these scalar regisers
3335 * should be precise.
3336 * . during state pruning two registers (or spilled stack slots)
3337 * are equivalent if both are not precise.
3338 *
3339 * Note the verifier cannot simply walk register parentage chain,
3340 * since many different registers and stack slots could have been
3341 * used to compute single precise scalar.
3342 *
3343 * The approach of starting with precise=true for all registers and then
3344 * backtrack to mark a register as not precise when the verifier detects
3345 * that program doesn't care about specific value (e.g., when helper
3346 * takes register as ARG_ANYTHING parameter) is not safe.
3347 *
3348 * It's ok to walk single parentage chain of the verifier states.
3349 * It's possible that this backtracking will go all the way till 1st insn.
3350 * All other branches will be explored for needing precision later.
3351 *
3352 * The backtracking needs to deal with cases like:
3353 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3354 * r9 -= r8
3355 * r5 = r9
3356 * if r5 > 0x79f goto pc+7
3357 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3358 * r5 += 1
3359 * ...
3360 * call bpf_perf_event_output#25
3361 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3362 *
3363 * and this case:
3364 * r6 = 1
3365 * call foo // uses callee's r6 inside to compute r0
3366 * r0 += r6
3367 * if r0 == 0 goto
3368 *
3369 * to track above reg_mask/stack_mask needs to be independent for each frame.
3370 *
3371 * Also if parent's curframe > frame where backtracking started,
3372 * the verifier need to mark registers in both frames, otherwise callees
3373 * may incorrectly prune callers. This is similar to
3374 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3375 *
3376 * For now backtracking falls back into conservative marking.
3377 */
3378static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3379 struct bpf_verifier_state *st)
3380{
3381 struct bpf_func_state *func;
3382 struct bpf_reg_state *reg;
3383 int i, j;
3384
3385 /* big hammer: mark all scalars precise in this path.
3386 * pop_stack may still get !precise scalars.
f63181b6
AN
3387 * We also skip current state and go straight to first parent state,
3388 * because precision markings in current non-checkpointed state are
3389 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 3390 */
f63181b6 3391 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
3392 for (i = 0; i <= st->curframe; i++) {
3393 func = st->frame[i];
3394 for (j = 0; j < BPF_REG_FP; j++) {
3395 reg = &func->regs[j];
3396 if (reg->type != SCALAR_VALUE)
3397 continue;
3398 reg->precise = true;
3399 }
3400 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 3401 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
3402 continue;
3403 reg = &func->stack[j].spilled_ptr;
3404 if (reg->type != SCALAR_VALUE)
3405 continue;
3406 reg->precise = true;
3407 }
3408 }
f63181b6 3409 }
b5dc0163
AS
3410}
3411
7a830b53
AN
3412static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3413{
3414 struct bpf_func_state *func;
3415 struct bpf_reg_state *reg;
3416 int i, j;
3417
3418 for (i = 0; i <= st->curframe; i++) {
3419 func = st->frame[i];
3420 for (j = 0; j < BPF_REG_FP; j++) {
3421 reg = &func->regs[j];
3422 if (reg->type != SCALAR_VALUE)
3423 continue;
3424 reg->precise = false;
3425 }
3426 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3427 if (!is_spilled_reg(&func->stack[j]))
3428 continue;
3429 reg = &func->stack[j].spilled_ptr;
3430 if (reg->type != SCALAR_VALUE)
3431 continue;
3432 reg->precise = false;
3433 }
3434 }
3435}
3436
f63181b6
AN
3437/*
3438 * __mark_chain_precision() backtracks BPF program instruction sequence and
3439 * chain of verifier states making sure that register *regno* (if regno >= 0)
3440 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3441 * SCALARS, as well as any other registers and slots that contribute to
3442 * a tracked state of given registers/stack slots, depending on specific BPF
3443 * assembly instructions (see backtrack_insns() for exact instruction handling
3444 * logic). This backtracking relies on recorded jmp_history and is able to
3445 * traverse entire chain of parent states. This process ends only when all the
3446 * necessary registers/slots and their transitive dependencies are marked as
3447 * precise.
3448 *
3449 * One important and subtle aspect is that precise marks *do not matter* in
3450 * the currently verified state (current state). It is important to understand
3451 * why this is the case.
3452 *
3453 * First, note that current state is the state that is not yet "checkpointed",
3454 * i.e., it is not yet put into env->explored_states, and it has no children
3455 * states as well. It's ephemeral, and can end up either a) being discarded if
3456 * compatible explored state is found at some point or BPF_EXIT instruction is
3457 * reached or b) checkpointed and put into env->explored_states, branching out
3458 * into one or more children states.
3459 *
3460 * In the former case, precise markings in current state are completely
3461 * ignored by state comparison code (see regsafe() for details). Only
3462 * checkpointed ("old") state precise markings are important, and if old
3463 * state's register/slot is precise, regsafe() assumes current state's
3464 * register/slot as precise and checks value ranges exactly and precisely. If
3465 * states turn out to be compatible, current state's necessary precise
3466 * markings and any required parent states' precise markings are enforced
3467 * after the fact with propagate_precision() logic, after the fact. But it's
3468 * important to realize that in this case, even after marking current state
3469 * registers/slots as precise, we immediately discard current state. So what
3470 * actually matters is any of the precise markings propagated into current
3471 * state's parent states, which are always checkpointed (due to b) case above).
3472 * As such, for scenario a) it doesn't matter if current state has precise
3473 * markings set or not.
3474 *
3475 * Now, for the scenario b), checkpointing and forking into child(ren)
3476 * state(s). Note that before current state gets to checkpointing step, any
3477 * processed instruction always assumes precise SCALAR register/slot
3478 * knowledge: if precise value or range is useful to prune jump branch, BPF
3479 * verifier takes this opportunity enthusiastically. Similarly, when
3480 * register's value is used to calculate offset or memory address, exact
3481 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3482 * what we mentioned above about state comparison ignoring precise markings
3483 * during state comparison, BPF verifier ignores and also assumes precise
3484 * markings *at will* during instruction verification process. But as verifier
3485 * assumes precision, it also propagates any precision dependencies across
3486 * parent states, which are not yet finalized, so can be further restricted
3487 * based on new knowledge gained from restrictions enforced by their children
3488 * states. This is so that once those parent states are finalized, i.e., when
3489 * they have no more active children state, state comparison logic in
3490 * is_state_visited() would enforce strict and precise SCALAR ranges, if
3491 * required for correctness.
3492 *
3493 * To build a bit more intuition, note also that once a state is checkpointed,
3494 * the path we took to get to that state is not important. This is crucial
3495 * property for state pruning. When state is checkpointed and finalized at
3496 * some instruction index, it can be correctly and safely used to "short
3497 * circuit" any *compatible* state that reaches exactly the same instruction
3498 * index. I.e., if we jumped to that instruction from a completely different
3499 * code path than original finalized state was derived from, it doesn't
3500 * matter, current state can be discarded because from that instruction
3501 * forward having a compatible state will ensure we will safely reach the
3502 * exit. States describe preconditions for further exploration, but completely
3503 * forget the history of how we got here.
3504 *
3505 * This also means that even if we needed precise SCALAR range to get to
3506 * finalized state, but from that point forward *that same* SCALAR register is
3507 * never used in a precise context (i.e., it's precise value is not needed for
3508 * correctness), it's correct and safe to mark such register as "imprecise"
3509 * (i.e., precise marking set to false). This is what we rely on when we do
3510 * not set precise marking in current state. If no child state requires
3511 * precision for any given SCALAR register, it's safe to dictate that it can
3512 * be imprecise. If any child state does require this register to be precise,
3513 * we'll mark it precise later retroactively during precise markings
3514 * propagation from child state to parent states.
7a830b53
AN
3515 *
3516 * Skipping precise marking setting in current state is a mild version of
3517 * relying on the above observation. But we can utilize this property even
3518 * more aggressively by proactively forgetting any precise marking in the
3519 * current state (which we inherited from the parent state), right before we
3520 * checkpoint it and branch off into new child state. This is done by
3521 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3522 * finalized states which help in short circuiting more future states.
f63181b6 3523 */
529409ea 3524static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
a3ce685d 3525 int spi)
b5dc0163
AS
3526{
3527 struct bpf_verifier_state *st = env->cur_state;
3528 int first_idx = st->first_insn_idx;
3529 int last_idx = env->insn_idx;
3530 struct bpf_func_state *func;
3531 struct bpf_reg_state *reg;
a3ce685d
AS
3532 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3533 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 3534 bool skip_first = true;
a3ce685d 3535 bool new_marks = false;
b5dc0163
AS
3536 int i, err;
3537
2c78ee89 3538 if (!env->bpf_capable)
b5dc0163
AS
3539 return 0;
3540
f63181b6
AN
3541 /* Do sanity checks against current state of register and/or stack
3542 * slot, but don't set precise flag in current state, as precision
3543 * tracking in the current state is unnecessary.
3544 */
529409ea 3545 func = st->frame[frame];
a3ce685d
AS
3546 if (regno >= 0) {
3547 reg = &func->regs[regno];
3548 if (reg->type != SCALAR_VALUE) {
3549 WARN_ONCE(1, "backtracing misuse");
3550 return -EFAULT;
3551 }
f63181b6 3552 new_marks = true;
b5dc0163 3553 }
b5dc0163 3554
a3ce685d 3555 while (spi >= 0) {
27113c59 3556 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
3557 stack_mask = 0;
3558 break;
3559 }
3560 reg = &func->stack[spi].spilled_ptr;
3561 if (reg->type != SCALAR_VALUE) {
3562 stack_mask = 0;
3563 break;
3564 }
f63181b6 3565 new_marks = true;
a3ce685d
AS
3566 break;
3567 }
3568
3569 if (!new_marks)
3570 return 0;
3571 if (!reg_mask && !stack_mask)
3572 return 0;
be2ef816 3573
b5dc0163
AS
3574 for (;;) {
3575 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
3576 u32 history = st->jmp_history_cnt;
3577
496f3324 3578 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163 3579 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
be2ef816
AN
3580
3581 if (last_idx < 0) {
3582 /* we are at the entry into subprog, which
3583 * is expected for global funcs, but only if
3584 * requested precise registers are R1-R5
3585 * (which are global func's input arguments)
3586 */
3587 if (st->curframe == 0 &&
3588 st->frame[0]->subprogno > 0 &&
3589 st->frame[0]->callsite == BPF_MAIN_FUNC &&
3590 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3591 bitmap_from_u64(mask, reg_mask);
3592 for_each_set_bit(i, mask, 32) {
3593 reg = &st->frame[0]->regs[i];
3594 if (reg->type != SCALAR_VALUE) {
3595 reg_mask &= ~(1u << i);
3596 continue;
3597 }
3598 reg->precise = true;
3599 }
3600 return 0;
3601 }
3602
3603 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3604 st->frame[0]->subprogno, reg_mask, stack_mask);
3605 WARN_ONCE(1, "verifier backtracking bug");
3606 return -EFAULT;
3607 }
3608
b5dc0163
AS
3609 for (i = last_idx;;) {
3610 if (skip_first) {
3611 err = 0;
3612 skip_first = false;
3613 } else {
3614 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3615 }
3616 if (err == -ENOTSUPP) {
3617 mark_all_scalars_precise(env, st);
3618 return 0;
3619 } else if (err) {
3620 return err;
3621 }
3622 if (!reg_mask && !stack_mask)
3623 /* Found assignment(s) into tracked register in this state.
3624 * Since this state is already marked, just return.
3625 * Nothing to be tracked further in the parent state.
3626 */
3627 return 0;
3628 if (i == first_idx)
3629 break;
3630 i = get_prev_insn_idx(st, i, &history);
3631 if (i >= env->prog->len) {
3632 /* This can happen if backtracking reached insn 0
3633 * and there are still reg_mask or stack_mask
3634 * to backtrack.
3635 * It means the backtracking missed the spot where
3636 * particular register was initialized with a constant.
3637 */
3638 verbose(env, "BUG backtracking idx %d\n", i);
3639 WARN_ONCE(1, "verifier backtracking bug");
3640 return -EFAULT;
3641 }
3642 }
3643 st = st->parent;
3644 if (!st)
3645 break;
3646
a3ce685d 3647 new_marks = false;
529409ea 3648 func = st->frame[frame];
b5dc0163
AS
3649 bitmap_from_u64(mask, reg_mask);
3650 for_each_set_bit(i, mask, 32) {
3651 reg = &func->regs[i];
a3ce685d
AS
3652 if (reg->type != SCALAR_VALUE) {
3653 reg_mask &= ~(1u << i);
b5dc0163 3654 continue;
a3ce685d 3655 }
b5dc0163
AS
3656 if (!reg->precise)
3657 new_marks = true;
3658 reg->precise = true;
3659 }
3660
3661 bitmap_from_u64(mask, stack_mask);
3662 for_each_set_bit(i, mask, 64) {
3663 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
3664 /* the sequence of instructions:
3665 * 2: (bf) r3 = r10
3666 * 3: (7b) *(u64 *)(r3 -8) = r0
3667 * 4: (79) r4 = *(u64 *)(r10 -8)
3668 * doesn't contain jmps. It's backtracked
3669 * as a single block.
3670 * During backtracking insn 3 is not recognized as
3671 * stack access, so at the end of backtracking
3672 * stack slot fp-8 is still marked in stack_mask.
3673 * However the parent state may not have accessed
3674 * fp-8 and it's "unallocated" stack space.
3675 * In such case fallback to conservative.
b5dc0163 3676 */
2339cd6c
AS
3677 mark_all_scalars_precise(env, st);
3678 return 0;
b5dc0163
AS
3679 }
3680
27113c59 3681 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 3682 stack_mask &= ~(1ull << i);
b5dc0163 3683 continue;
a3ce685d 3684 }
b5dc0163 3685 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
3686 if (reg->type != SCALAR_VALUE) {
3687 stack_mask &= ~(1ull << i);
b5dc0163 3688 continue;
a3ce685d 3689 }
b5dc0163
AS
3690 if (!reg->precise)
3691 new_marks = true;
3692 reg->precise = true;
3693 }
496f3324 3694 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 3695 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
3696 new_marks ? "didn't have" : "already had",
3697 reg_mask, stack_mask);
2e576648 3698 print_verifier_state(env, func, true);
b5dc0163
AS
3699 }
3700
a3ce685d
AS
3701 if (!reg_mask && !stack_mask)
3702 break;
b5dc0163
AS
3703 if (!new_marks)
3704 break;
3705
3706 last_idx = st->last_insn_idx;
3707 first_idx = st->first_insn_idx;
3708 }
3709 return 0;
3710}
3711
eb1f7f71 3712int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 3713{
529409ea 3714 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
a3ce685d
AS
3715}
3716
529409ea 3717static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
a3ce685d 3718{
529409ea 3719 return __mark_chain_precision(env, frame, regno, -1);
a3ce685d
AS
3720}
3721
529409ea 3722static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
a3ce685d 3723{
529409ea 3724 return __mark_chain_precision(env, frame, -1, spi);
a3ce685d 3725}
b5dc0163 3726
1be7f75d
AS
3727static bool is_spillable_regtype(enum bpf_reg_type type)
3728{
c25b2ae1 3729 switch (base_type(type)) {
1be7f75d 3730 case PTR_TO_MAP_VALUE:
1be7f75d
AS
3731 case PTR_TO_STACK:
3732 case PTR_TO_CTX:
969bf05e 3733 case PTR_TO_PACKET:
de8f3a83 3734 case PTR_TO_PACKET_META:
969bf05e 3735 case PTR_TO_PACKET_END:
d58e468b 3736 case PTR_TO_FLOW_KEYS:
1be7f75d 3737 case CONST_PTR_TO_MAP:
c64b7983 3738 case PTR_TO_SOCKET:
46f8bc92 3739 case PTR_TO_SOCK_COMMON:
655a51e5 3740 case PTR_TO_TCP_SOCK:
fada7fdc 3741 case PTR_TO_XDP_SOCK:
65726b5b 3742 case PTR_TO_BTF_ID:
20b2aff4 3743 case PTR_TO_BUF:
744ea4e3 3744 case PTR_TO_MEM:
69c087ba
YS
3745 case PTR_TO_FUNC:
3746 case PTR_TO_MAP_KEY:
1be7f75d
AS
3747 return true;
3748 default:
3749 return false;
3750 }
3751}
3752
cc2b14d5
AS
3753/* Does this register contain a constant zero? */
3754static bool register_is_null(struct bpf_reg_state *reg)
3755{
3756 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3757}
3758
f7cf25b2
AS
3759static bool register_is_const(struct bpf_reg_state *reg)
3760{
3761 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3762}
3763
5689d49b
YS
3764static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3765{
3766 return tnum_is_unknown(reg->var_off) &&
3767 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3768 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3769 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3770 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3771}
3772
3773static bool register_is_bounded(struct bpf_reg_state *reg)
3774{
3775 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3776}
3777
6e7e63cb
JH
3778static bool __is_pointer_value(bool allow_ptr_leaks,
3779 const struct bpf_reg_state *reg)
3780{
3781 if (allow_ptr_leaks)
3782 return false;
3783
3784 return reg->type != SCALAR_VALUE;
3785}
3786
71f656a5
EZ
3787/* Copy src state preserving dst->parent and dst->live fields */
3788static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
3789{
3790 struct bpf_reg_state *parent = dst->parent;
3791 enum bpf_reg_liveness live = dst->live;
3792
3793 *dst = *src;
3794 dst->parent = parent;
3795 dst->live = live;
3796}
3797
f7cf25b2 3798static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
3799 int spi, struct bpf_reg_state *reg,
3800 int size)
f7cf25b2
AS
3801{
3802 int i;
3803
71f656a5 3804 copy_register_state(&state->stack[spi].spilled_ptr, reg);
354e8f19
MKL
3805 if (size == BPF_REG_SIZE)
3806 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3807
354e8f19
MKL
3808 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3809 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3810
354e8f19
MKL
3811 /* size < 8 bytes spill */
3812 for (; i; i--)
3813 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3814}
3815
ecdf985d
EZ
3816static bool is_bpf_st_mem(struct bpf_insn *insn)
3817{
3818 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
3819}
3820
01f810ac 3821/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3822 * stack boundary and alignment are checked in check_mem_access()
3823 */
01f810ac
AM
3824static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3825 /* stack frame we're writing to */
3826 struct bpf_func_state *state,
3827 int off, int size, int value_regno,
3828 int insn_idx)
17a52670 3829{
f4d7e40a 3830 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3831 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
ecdf985d 3832 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
f7cf25b2 3833 struct bpf_reg_state *reg = NULL;
ecdf985d 3834 u32 dst_reg = insn->dst_reg;
638f5b90 3835
c69431aa 3836 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3837 if (err)
3838 return err;
9c399760
AS
3839 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3840 * so it's aligned access and [off, off + size) are within stack limits
3841 */
638f5b90
AS
3842 if (!env->allow_ptr_leaks &&
3843 state->stack[spi].slot_type[0] == STACK_SPILL &&
3844 size != BPF_REG_SIZE) {
3845 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3846 return -EACCES;
3847 }
17a52670 3848
f4d7e40a 3849 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3850 if (value_regno >= 0)
3851 reg = &cur->regs[value_regno];
2039f26f
DB
3852 if (!env->bypass_spec_v4) {
3853 bool sanitize = reg && is_spillable_regtype(reg->type);
3854
3855 for (i = 0; i < size; i++) {
e4f4db47
LG
3856 u8 type = state->stack[spi].slot_type[i];
3857
3858 if (type != STACK_MISC && type != STACK_ZERO) {
2039f26f
DB
3859 sanitize = true;
3860 break;
3861 }
3862 }
3863
3864 if (sanitize)
3865 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3866 }
17a52670 3867
ef8fc7a0
KKD
3868 err = destroy_if_dynptr_stack_slot(env, state, spi);
3869 if (err)
3870 return err;
3871
0f55f9ed 3872 mark_stack_slot_scratched(env, spi);
354e8f19 3873 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3874 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3875 if (dst_reg != BPF_REG_FP) {
3876 /* The backtracking logic can only recognize explicit
3877 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3878 * scalar via different register has to be conservative.
b5dc0163
AS
3879 * Backtrack from here and mark all registers as precise
3880 * that contributed into 'reg' being a constant.
3881 */
3882 err = mark_chain_precision(env, value_regno);
3883 if (err)
3884 return err;
3885 }
354e8f19 3886 save_register_state(state, spi, reg, size);
ecdf985d
EZ
3887 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
3888 insn->imm != 0 && env->bpf_capable) {
3889 struct bpf_reg_state fake_reg = {};
3890
3891 __mark_reg_known(&fake_reg, (u32)insn->imm);
3892 fake_reg.type = SCALAR_VALUE;
3893 save_register_state(state, spi, &fake_reg, size);
f7cf25b2 3894 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3895 /* register containing pointer is being spilled into stack */
9c399760 3896 if (size != BPF_REG_SIZE) {
f7cf25b2 3897 verbose_linfo(env, insn_idx, "; ");
61bd5218 3898 verbose(env, "invalid size of register spill\n");
17a52670
AS
3899 return -EACCES;
3900 }
f7cf25b2 3901 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3902 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3903 return -EINVAL;
3904 }
354e8f19 3905 save_register_state(state, spi, reg, size);
9c399760 3906 } else {
cc2b14d5
AS
3907 u8 type = STACK_MISC;
3908
679c782d
EC
3909 /* regular write of data into stack destroys any spilled ptr */
3910 state->stack[spi].spilled_ptr.type = NOT_INIT;
06accc87
AN
3911 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
3912 if (is_stack_slot_special(&state->stack[spi]))
0bae2d4d 3913 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3914 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3915
cc2b14d5
AS
3916 /* only mark the slot as written if all 8 bytes were written
3917 * otherwise read propagation may incorrectly stop too soon
3918 * when stack slots are partially written.
3919 * This heuristic means that read propagation will be
3920 * conservative, since it will add reg_live_read marks
3921 * to stack slots all the way to first state when programs
3922 * writes+reads less than 8 bytes
3923 */
3924 if (size == BPF_REG_SIZE)
3925 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3926
3927 /* when we zero initialize stack slots mark them as such */
ecdf985d
EZ
3928 if ((reg && register_is_null(reg)) ||
3929 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
b5dc0163
AS
3930 /* backtracking doesn't work for STACK_ZERO yet. */
3931 err = mark_chain_precision(env, value_regno);
3932 if (err)
3933 return err;
cc2b14d5 3934 type = STACK_ZERO;
b5dc0163 3935 }
cc2b14d5 3936
0bae2d4d 3937 /* Mark slots affected by this stack write. */
9c399760 3938 for (i = 0; i < size; i++)
638f5b90 3939 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3940 type;
17a52670
AS
3941 }
3942 return 0;
3943}
3944
01f810ac
AM
3945/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3946 * known to contain a variable offset.
3947 * This function checks whether the write is permitted and conservatively
3948 * tracks the effects of the write, considering that each stack slot in the
3949 * dynamic range is potentially written to.
3950 *
3951 * 'off' includes 'regno->off'.
3952 * 'value_regno' can be -1, meaning that an unknown value is being written to
3953 * the stack.
3954 *
3955 * Spilled pointers in range are not marked as written because we don't know
3956 * what's going to be actually written. This means that read propagation for
3957 * future reads cannot be terminated by this write.
3958 *
3959 * For privileged programs, uninitialized stack slots are considered
3960 * initialized by this write (even though we don't know exactly what offsets
3961 * are going to be written to). The idea is that we don't want the verifier to
3962 * reject future reads that access slots written to through variable offsets.
3963 */
3964static int check_stack_write_var_off(struct bpf_verifier_env *env,
3965 /* func where register points to */
3966 struct bpf_func_state *state,
3967 int ptr_regno, int off, int size,
3968 int value_regno, int insn_idx)
3969{
3970 struct bpf_func_state *cur; /* state of the current function */
3971 int min_off, max_off;
3972 int i, err;
3973 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
31ff2135 3974 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
01f810ac
AM
3975 bool writing_zero = false;
3976 /* set if the fact that we're writing a zero is used to let any
3977 * stack slots remain STACK_ZERO
3978 */
3979 bool zero_used = false;
3980
3981 cur = env->cur_state->frame[env->cur_state->curframe];
3982 ptr_reg = &cur->regs[ptr_regno];
3983 min_off = ptr_reg->smin_value + off;
3984 max_off = ptr_reg->smax_value + off + size;
3985 if (value_regno >= 0)
3986 value_reg = &cur->regs[value_regno];
31ff2135
EZ
3987 if ((value_reg && register_is_null(value_reg)) ||
3988 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
01f810ac
AM
3989 writing_zero = true;
3990
c69431aa 3991 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3992 if (err)
3993 return err;
3994
ef8fc7a0
KKD
3995 for (i = min_off; i < max_off; i++) {
3996 int spi;
3997
3998 spi = __get_spi(i);
3999 err = destroy_if_dynptr_stack_slot(env, state, spi);
4000 if (err)
4001 return err;
4002 }
01f810ac
AM
4003
4004 /* Variable offset writes destroy any spilled pointers in range. */
4005 for (i = min_off; i < max_off; i++) {
4006 u8 new_type, *stype;
4007 int slot, spi;
4008
4009 slot = -i - 1;
4010 spi = slot / BPF_REG_SIZE;
4011 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 4012 mark_stack_slot_scratched(env, spi);
01f810ac 4013
f5e477a8
KKD
4014 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4015 /* Reject the write if range we may write to has not
4016 * been initialized beforehand. If we didn't reject
4017 * here, the ptr status would be erased below (even
4018 * though not all slots are actually overwritten),
4019 * possibly opening the door to leaks.
4020 *
4021 * We do however catch STACK_INVALID case below, and
4022 * only allow reading possibly uninitialized memory
4023 * later for CAP_PERFMON, as the write may not happen to
4024 * that slot.
01f810ac
AM
4025 */
4026 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4027 insn_idx, i);
4028 return -EINVAL;
4029 }
4030
4031 /* Erase all spilled pointers. */
4032 state->stack[spi].spilled_ptr.type = NOT_INIT;
4033
4034 /* Update the slot type. */
4035 new_type = STACK_MISC;
4036 if (writing_zero && *stype == STACK_ZERO) {
4037 new_type = STACK_ZERO;
4038 zero_used = true;
4039 }
4040 /* If the slot is STACK_INVALID, we check whether it's OK to
4041 * pretend that it will be initialized by this write. The slot
4042 * might not actually be written to, and so if we mark it as
4043 * initialized future reads might leak uninitialized memory.
4044 * For privileged programs, we will accept such reads to slots
4045 * that may or may not be written because, if we're reject
4046 * them, the error would be too confusing.
4047 */
4048 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4049 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4050 insn_idx, i);
4051 return -EINVAL;
4052 }
4053 *stype = new_type;
4054 }
4055 if (zero_used) {
4056 /* backtracking doesn't work for STACK_ZERO yet. */
4057 err = mark_chain_precision(env, value_regno);
4058 if (err)
4059 return err;
4060 }
4061 return 0;
4062}
4063
4064/* When register 'dst_regno' is assigned some values from stack[min_off,
4065 * max_off), we set the register's type according to the types of the
4066 * respective stack slots. If all the stack values are known to be zeros, then
4067 * so is the destination reg. Otherwise, the register is considered to be
4068 * SCALAR. This function does not deal with register filling; the caller must
4069 * ensure that all spilled registers in the stack range have been marked as
4070 * read.
4071 */
4072static void mark_reg_stack_read(struct bpf_verifier_env *env,
4073 /* func where src register points to */
4074 struct bpf_func_state *ptr_state,
4075 int min_off, int max_off, int dst_regno)
4076{
4077 struct bpf_verifier_state *vstate = env->cur_state;
4078 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4079 int i, slot, spi;
4080 u8 *stype;
4081 int zeros = 0;
4082
4083 for (i = min_off; i < max_off; i++) {
4084 slot = -i - 1;
4085 spi = slot / BPF_REG_SIZE;
4086 stype = ptr_state->stack[spi].slot_type;
4087 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4088 break;
4089 zeros++;
4090 }
4091 if (zeros == max_off - min_off) {
4092 /* any access_size read into register is zero extended,
4093 * so the whole register == const_zero
4094 */
4095 __mark_reg_const_zero(&state->regs[dst_regno]);
4096 /* backtracking doesn't support STACK_ZERO yet,
4097 * so mark it precise here, so that later
4098 * backtracking can stop here.
4099 * Backtracking may not need this if this register
4100 * doesn't participate in pointer adjustment.
4101 * Forward propagation of precise flag is not
4102 * necessary either. This mark is only to stop
4103 * backtracking. Any register that contributed
4104 * to const 0 was marked precise before spill.
4105 */
4106 state->regs[dst_regno].precise = true;
4107 } else {
4108 /* have read misc data from the stack */
4109 mark_reg_unknown(env, state->regs, dst_regno);
4110 }
4111 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4112}
4113
4114/* Read the stack at 'off' and put the results into the register indicated by
4115 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4116 * spilled reg.
4117 *
4118 * 'dst_regno' can be -1, meaning that the read value is not going to a
4119 * register.
4120 *
4121 * The access is assumed to be within the current stack bounds.
4122 */
4123static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4124 /* func where src register points to */
4125 struct bpf_func_state *reg_state,
4126 int off, int size, int dst_regno)
17a52670 4127{
f4d7e40a
AS
4128 struct bpf_verifier_state *vstate = env->cur_state;
4129 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 4130 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 4131 struct bpf_reg_state *reg;
354e8f19 4132 u8 *stype, type;
17a52670 4133
f4d7e40a 4134 stype = reg_state->stack[spi].slot_type;
f7cf25b2 4135 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 4136
27113c59 4137 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
4138 u8 spill_size = 1;
4139
4140 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4141 spill_size++;
354e8f19 4142
f30d4968 4143 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
4144 if (reg->type != SCALAR_VALUE) {
4145 verbose_linfo(env, env->insn_idx, "; ");
4146 verbose(env, "invalid size of register fill\n");
4147 return -EACCES;
4148 }
354e8f19
MKL
4149
4150 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4151 if (dst_regno < 0)
4152 return 0;
4153
f30d4968 4154 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
4155 /* The earlier check_reg_arg() has decided the
4156 * subreg_def for this insn. Save it first.
4157 */
4158 s32 subreg_def = state->regs[dst_regno].subreg_def;
4159
71f656a5 4160 copy_register_state(&state->regs[dst_regno], reg);
354e8f19
MKL
4161 state->regs[dst_regno].subreg_def = subreg_def;
4162 } else {
4163 for (i = 0; i < size; i++) {
4164 type = stype[(slot - i) % BPF_REG_SIZE];
4165 if (type == STACK_SPILL)
4166 continue;
4167 if (type == STACK_MISC)
4168 continue;
6715df8d
EZ
4169 if (type == STACK_INVALID && env->allow_uninit_stack)
4170 continue;
354e8f19
MKL
4171 verbose(env, "invalid read from stack off %d+%d size %d\n",
4172 off, i, size);
4173 return -EACCES;
4174 }
01f810ac 4175 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 4176 }
354e8f19 4177 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 4178 return 0;
17a52670 4179 }
17a52670 4180
01f810ac 4181 if (dst_regno >= 0) {
17a52670 4182 /* restore register state from stack */
71f656a5 4183 copy_register_state(&state->regs[dst_regno], reg);
2f18f62e
AS
4184 /* mark reg as written since spilled pointer state likely
4185 * has its liveness marks cleared by is_state_visited()
4186 * which resets stack/reg liveness for state transitions
4187 */
01f810ac 4188 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 4189 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 4190 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
4191 * it is acceptable to use this value as a SCALAR_VALUE
4192 * (e.g. for XADD).
4193 * We must not allow unprivileged callers to do that
4194 * with spilled pointers.
4195 */
4196 verbose(env, "leaking pointer from stack off %d\n",
4197 off);
4198 return -EACCES;
dc503a8a 4199 }
f7cf25b2 4200 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
4201 } else {
4202 for (i = 0; i < size; i++) {
01f810ac
AM
4203 type = stype[(slot - i) % BPF_REG_SIZE];
4204 if (type == STACK_MISC)
cc2b14d5 4205 continue;
01f810ac 4206 if (type == STACK_ZERO)
cc2b14d5 4207 continue;
6715df8d
EZ
4208 if (type == STACK_INVALID && env->allow_uninit_stack)
4209 continue;
cc2b14d5
AS
4210 verbose(env, "invalid read from stack off %d+%d size %d\n",
4211 off, i, size);
4212 return -EACCES;
4213 }
f7cf25b2 4214 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
4215 if (dst_regno >= 0)
4216 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 4217 }
f7cf25b2 4218 return 0;
17a52670
AS
4219}
4220
61df10c7 4221enum bpf_access_src {
01f810ac
AM
4222 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4223 ACCESS_HELPER = 2, /* the access is performed by a helper */
4224};
4225
4226static int check_stack_range_initialized(struct bpf_verifier_env *env,
4227 int regno, int off, int access_size,
4228 bool zero_size_allowed,
61df10c7 4229 enum bpf_access_src type,
01f810ac
AM
4230 struct bpf_call_arg_meta *meta);
4231
4232static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4233{
4234 return cur_regs(env) + regno;
4235}
4236
4237/* Read the stack at 'ptr_regno + off' and put the result into the register
4238 * 'dst_regno'.
4239 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4240 * but not its variable offset.
4241 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4242 *
4243 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4244 * filling registers (i.e. reads of spilled register cannot be detected when
4245 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4246 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4247 * offset; for a fixed offset check_stack_read_fixed_off should be used
4248 * instead.
4249 */
4250static int check_stack_read_var_off(struct bpf_verifier_env *env,
4251 int ptr_regno, int off, int size, int dst_regno)
e4298d25 4252{
01f810ac
AM
4253 /* The state of the source register. */
4254 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4255 struct bpf_func_state *ptr_state = func(env, reg);
4256 int err;
4257 int min_off, max_off;
4258
4259 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 4260 */
01f810ac
AM
4261 err = check_stack_range_initialized(env, ptr_regno, off, size,
4262 false, ACCESS_DIRECT, NULL);
4263 if (err)
4264 return err;
4265
4266 min_off = reg->smin_value + off;
4267 max_off = reg->smax_value + off;
4268 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4269 return 0;
4270}
4271
4272/* check_stack_read dispatches to check_stack_read_fixed_off or
4273 * check_stack_read_var_off.
4274 *
4275 * The caller must ensure that the offset falls within the allocated stack
4276 * bounds.
4277 *
4278 * 'dst_regno' is a register which will receive the value from the stack. It
4279 * can be -1, meaning that the read value is not going to a register.
4280 */
4281static int check_stack_read(struct bpf_verifier_env *env,
4282 int ptr_regno, int off, int size,
4283 int dst_regno)
4284{
4285 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4286 struct bpf_func_state *state = func(env, reg);
4287 int err;
4288 /* Some accesses are only permitted with a static offset. */
4289 bool var_off = !tnum_is_const(reg->var_off);
4290
4291 /* The offset is required to be static when reads don't go to a
4292 * register, in order to not leak pointers (see
4293 * check_stack_read_fixed_off).
4294 */
4295 if (dst_regno < 0 && var_off) {
e4298d25
DB
4296 char tn_buf[48];
4297
4298 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 4299 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
4300 tn_buf, off, size);
4301 return -EACCES;
4302 }
01f810ac
AM
4303 /* Variable offset is prohibited for unprivileged mode for simplicity
4304 * since it requires corresponding support in Spectre masking for stack
4305 * ALU. See also retrieve_ptr_limit().
4306 */
4307 if (!env->bypass_spec_v1 && var_off) {
4308 char tn_buf[48];
e4298d25 4309
01f810ac
AM
4310 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4311 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
4312 ptr_regno, tn_buf);
e4298d25
DB
4313 return -EACCES;
4314 }
4315
01f810ac
AM
4316 if (!var_off) {
4317 off += reg->var_off.value;
4318 err = check_stack_read_fixed_off(env, state, off, size,
4319 dst_regno);
4320 } else {
4321 /* Variable offset stack reads need more conservative handling
4322 * than fixed offset ones. Note that dst_regno >= 0 on this
4323 * branch.
4324 */
4325 err = check_stack_read_var_off(env, ptr_regno, off, size,
4326 dst_regno);
4327 }
4328 return err;
4329}
4330
4331
4332/* check_stack_write dispatches to check_stack_write_fixed_off or
4333 * check_stack_write_var_off.
4334 *
4335 * 'ptr_regno' is the register used as a pointer into the stack.
4336 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4337 * 'value_regno' is the register whose value we're writing to the stack. It can
4338 * be -1, meaning that we're not writing from a register.
4339 *
4340 * The caller must ensure that the offset falls within the maximum stack size.
4341 */
4342static int check_stack_write(struct bpf_verifier_env *env,
4343 int ptr_regno, int off, int size,
4344 int value_regno, int insn_idx)
4345{
4346 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4347 struct bpf_func_state *state = func(env, reg);
4348 int err;
4349
4350 if (tnum_is_const(reg->var_off)) {
4351 off += reg->var_off.value;
4352 err = check_stack_write_fixed_off(env, state, off, size,
4353 value_regno, insn_idx);
4354 } else {
4355 /* Variable offset stack reads need more conservative handling
4356 * than fixed offset ones.
4357 */
4358 err = check_stack_write_var_off(env, state,
4359 ptr_regno, off, size,
4360 value_regno, insn_idx);
4361 }
4362 return err;
e4298d25
DB
4363}
4364
591fe988
DB
4365static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4366 int off, int size, enum bpf_access_type type)
4367{
4368 struct bpf_reg_state *regs = cur_regs(env);
4369 struct bpf_map *map = regs[regno].map_ptr;
4370 u32 cap = bpf_map_flags_to_cap(map);
4371
4372 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4373 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4374 map->value_size, off, size);
4375 return -EACCES;
4376 }
4377
4378 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4379 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4380 map->value_size, off, size);
4381 return -EACCES;
4382 }
4383
4384 return 0;
4385}
4386
457f4436
AN
4387/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4388static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4389 int off, int size, u32 mem_size,
4390 bool zero_size_allowed)
17a52670 4391{
457f4436
AN
4392 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4393 struct bpf_reg_state *reg;
4394
4395 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4396 return 0;
17a52670 4397
457f4436
AN
4398 reg = &cur_regs(env)[regno];
4399 switch (reg->type) {
69c087ba
YS
4400 case PTR_TO_MAP_KEY:
4401 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4402 mem_size, off, size);
4403 break;
457f4436 4404 case PTR_TO_MAP_VALUE:
61bd5218 4405 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
4406 mem_size, off, size);
4407 break;
4408 case PTR_TO_PACKET:
4409 case PTR_TO_PACKET_META:
4410 case PTR_TO_PACKET_END:
4411 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4412 off, size, regno, reg->id, off, mem_size);
4413 break;
4414 case PTR_TO_MEM:
4415 default:
4416 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4417 mem_size, off, size);
17a52670 4418 }
457f4436
AN
4419
4420 return -EACCES;
17a52670
AS
4421}
4422
457f4436
AN
4423/* check read/write into a memory region with possible variable offset */
4424static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4425 int off, int size, u32 mem_size,
4426 bool zero_size_allowed)
dbcfe5f7 4427{
f4d7e40a
AS
4428 struct bpf_verifier_state *vstate = env->cur_state;
4429 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
4430 struct bpf_reg_state *reg = &state->regs[regno];
4431 int err;
4432
457f4436 4433 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
4434 * need to try adding each of min_value and max_value to off
4435 * to make sure our theoretical access will be safe.
2e576648
CL
4436 *
4437 * The minimum value is only important with signed
dbcfe5f7
GB
4438 * comparisons where we can't assume the floor of a
4439 * value is 0. If we are using signed variables for our
4440 * index'es we need to make sure that whatever we use
4441 * will have a set floor within our range.
4442 */
b7137c4e
DB
4443 if (reg->smin_value < 0 &&
4444 (reg->smin_value == S64_MIN ||
4445 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4446 reg->smin_value + off < 0)) {
61bd5218 4447 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
4448 regno);
4449 return -EACCES;
4450 }
457f4436
AN
4451 err = __check_mem_access(env, regno, reg->smin_value + off, size,
4452 mem_size, zero_size_allowed);
dbcfe5f7 4453 if (err) {
457f4436 4454 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 4455 regno);
dbcfe5f7
GB
4456 return err;
4457 }
4458
b03c9f9f
EC
4459 /* If we haven't set a max value then we need to bail since we can't be
4460 * sure we won't do bad things.
4461 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 4462 */
b03c9f9f 4463 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 4464 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
4465 regno);
4466 return -EACCES;
4467 }
457f4436
AN
4468 err = __check_mem_access(env, regno, reg->umax_value + off, size,
4469 mem_size, zero_size_allowed);
4470 if (err) {
4471 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 4472 regno);
457f4436
AN
4473 return err;
4474 }
4475
4476 return 0;
4477}
d83525ca 4478
e9147b44
KKD
4479static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4480 const struct bpf_reg_state *reg, int regno,
4481 bool fixed_off_ok)
4482{
4483 /* Access to this pointer-typed register or passing it to a helper
4484 * is only allowed in its original, unmodified form.
4485 */
4486
4487 if (reg->off < 0) {
4488 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4489 reg_type_str(env, reg->type), regno, reg->off);
4490 return -EACCES;
4491 }
4492
4493 if (!fixed_off_ok && reg->off) {
4494 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4495 reg_type_str(env, reg->type), regno, reg->off);
4496 return -EACCES;
4497 }
4498
4499 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4500 char tn_buf[48];
4501
4502 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4503 verbose(env, "variable %s access var_off=%s disallowed\n",
4504 reg_type_str(env, reg->type), tn_buf);
4505 return -EACCES;
4506 }
4507
4508 return 0;
4509}
4510
4511int check_ptr_off_reg(struct bpf_verifier_env *env,
4512 const struct bpf_reg_state *reg, int regno)
4513{
4514 return __check_ptr_off_reg(env, reg, regno, false);
4515}
4516
61df10c7 4517static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 4518 struct btf_field *kptr_field,
61df10c7
KKD
4519 struct bpf_reg_state *reg, u32 regno)
4520{
b32a5dae 4521 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
20c09d92 4522 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
61df10c7
KKD
4523 const char *reg_name = "";
4524
6efe152d 4525 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 4526 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
4527 perm_flags |= PTR_UNTRUSTED;
4528
4529 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
4530 goto bad_type;
4531
4532 if (!btf_is_kernel(reg->btf)) {
4533 verbose(env, "R%d must point to kernel BTF\n", regno);
4534 return -EINVAL;
4535 }
4536 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
b32a5dae 4537 reg_name = btf_type_name(reg->btf, reg->btf_id);
61df10c7 4538
c0a5a21c
KKD
4539 /* For ref_ptr case, release function check should ensure we get one
4540 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4541 * normal store of unreferenced kptr, we must ensure var_off is zero.
4542 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4543 * reg->off and reg->ref_obj_id are not needed here.
4544 */
61df10c7
KKD
4545 if (__check_ptr_off_reg(env, reg, regno, true))
4546 return -EACCES;
4547
4548 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
4549 * we also need to take into account the reg->off.
4550 *
4551 * We want to support cases like:
4552 *
4553 * struct foo {
4554 * struct bar br;
4555 * struct baz bz;
4556 * };
4557 *
4558 * struct foo *v;
4559 * v = func(); // PTR_TO_BTF_ID
4560 * val->foo = v; // reg->off is zero, btf and btf_id match type
4561 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4562 * // first member type of struct after comparison fails
4563 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4564 * // to match type
4565 *
4566 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
4567 * is zero. We must also ensure that btf_struct_ids_match does not walk
4568 * the struct to match type against first member of struct, i.e. reject
4569 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4570 * strict mode to true for type match.
61df10c7
KKD
4571 */
4572 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
4573 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4574 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
4575 goto bad_type;
4576 return 0;
4577bad_type:
4578 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4579 reg_type_str(env, reg->type), reg_name);
6efe152d 4580 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 4581 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
4582 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4583 targ_name);
4584 else
4585 verbose(env, "\n");
61df10c7
KKD
4586 return -EINVAL;
4587}
4588
20c09d92
AS
4589/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
4590 * can dereference RCU protected pointers and result is PTR_TRUSTED.
4591 */
4592static bool in_rcu_cs(struct bpf_verifier_env *env)
4593{
4594 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
4595}
4596
4597/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
4598BTF_SET_START(rcu_protected_types)
4599BTF_ID(struct, prog_test_ref_kfunc)
4600BTF_ID(struct, cgroup)
4601BTF_SET_END(rcu_protected_types)
4602
4603static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
4604{
4605 if (!btf_is_kernel(btf))
4606 return false;
4607 return btf_id_set_contains(&rcu_protected_types, btf_id);
4608}
4609
4610static bool rcu_safe_kptr(const struct btf_field *field)
4611{
4612 const struct btf_field_kptr *kptr = &field->kptr;
4613
4614 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
4615}
4616
61df10c7
KKD
4617static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4618 int value_regno, int insn_idx,
aa3496ac 4619 struct btf_field *kptr_field)
61df10c7
KKD
4620{
4621 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4622 int class = BPF_CLASS(insn->code);
4623 struct bpf_reg_state *val_reg;
4624
4625 /* Things we already checked for in check_map_access and caller:
4626 * - Reject cases where variable offset may touch kptr
4627 * - size of access (must be BPF_DW)
4628 * - tnum_is_const(reg->var_off)
aa3496ac 4629 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
4630 */
4631 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4632 if (BPF_MODE(insn->code) != BPF_MEM) {
4633 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4634 return -EACCES;
4635 }
4636
6efe152d
KKD
4637 /* We only allow loading referenced kptr, since it will be marked as
4638 * untrusted, similar to unreferenced kptr.
4639 */
aa3496ac 4640 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 4641 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
4642 return -EACCES;
4643 }
4644
61df10c7
KKD
4645 if (class == BPF_LDX) {
4646 val_reg = reg_state(env, value_regno);
4647 /* We can simply mark the value_regno receiving the pointer
4648 * value from map as PTR_TO_BTF_ID, with the correct type.
4649 */
aa3496ac 4650 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
20c09d92
AS
4651 kptr_field->kptr.btf_id,
4652 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
4653 PTR_MAYBE_NULL | MEM_RCU :
4654 PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
4655 /* For mark_ptr_or_null_reg */
4656 val_reg->id = ++env->id_gen;
4657 } else if (class == BPF_STX) {
4658 val_reg = reg_state(env, value_regno);
4659 if (!register_is_null(val_reg) &&
aa3496ac 4660 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
4661 return -EACCES;
4662 } else if (class == BPF_ST) {
4663 if (insn->imm) {
4664 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 4665 kptr_field->offset);
61df10c7
KKD
4666 return -EACCES;
4667 }
4668 } else {
4669 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4670 return -EACCES;
4671 }
4672 return 0;
4673}
4674
457f4436
AN
4675/* check read/write into a map element with possible variable offset */
4676static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
4677 int off, int size, bool zero_size_allowed,
4678 enum bpf_access_src src)
457f4436
AN
4679{
4680 struct bpf_verifier_state *vstate = env->cur_state;
4681 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4682 struct bpf_reg_state *reg = &state->regs[regno];
4683 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
4684 struct btf_record *rec;
4685 int err, i;
457f4436
AN
4686
4687 err = check_mem_region_access(env, regno, off, size, map->value_size,
4688 zero_size_allowed);
4689 if (err)
4690 return err;
4691
aa3496ac
KKD
4692 if (IS_ERR_OR_NULL(map->record))
4693 return 0;
4694 rec = map->record;
4695 for (i = 0; i < rec->cnt; i++) {
4696 struct btf_field *field = &rec->fields[i];
4697 u32 p = field->offset;
d83525ca 4698
db559117
KKD
4699 /* If any part of a field can be touched by load/store, reject
4700 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
4701 * it is sufficient to check x1 < y2 && y1 < x2.
4702 */
aa3496ac
KKD
4703 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4704 p < reg->umax_value + off + size) {
4705 switch (field->type) {
4706 case BPF_KPTR_UNREF:
4707 case BPF_KPTR_REF:
61df10c7
KKD
4708 if (src != ACCESS_DIRECT) {
4709 verbose(env, "kptr cannot be accessed indirectly by helper\n");
4710 return -EACCES;
4711 }
4712 if (!tnum_is_const(reg->var_off)) {
4713 verbose(env, "kptr access cannot have variable offset\n");
4714 return -EACCES;
4715 }
4716 if (p != off + reg->var_off.value) {
4717 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4718 p, off + reg->var_off.value);
4719 return -EACCES;
4720 }
4721 if (size != bpf_size_to_bytes(BPF_DW)) {
4722 verbose(env, "kptr access size must be BPF_DW\n");
4723 return -EACCES;
4724 }
4725 break;
aa3496ac 4726 default:
db559117
KKD
4727 verbose(env, "%s cannot be accessed directly by load/store\n",
4728 btf_field_type_name(field->type));
aa3496ac 4729 return -EACCES;
61df10c7
KKD
4730 }
4731 }
4732 }
aa3496ac 4733 return 0;
dbcfe5f7
GB
4734}
4735
969bf05e
AS
4736#define MAX_PACKET_OFF 0xffff
4737
58e2af8b 4738static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
4739 const struct bpf_call_arg_meta *meta,
4740 enum bpf_access_type t)
4acf6c0b 4741{
7e40781c
UP
4742 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4743
4744 switch (prog_type) {
5d66fa7d 4745 /* Program types only with direct read access go here! */
3a0af8fd
TG
4746 case BPF_PROG_TYPE_LWT_IN:
4747 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 4748 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 4749 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 4750 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 4751 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
4752 if (t == BPF_WRITE)
4753 return false;
8731745e 4754 fallthrough;
5d66fa7d
DB
4755
4756 /* Program types with direct read + write access go here! */
36bbef52
DB
4757 case BPF_PROG_TYPE_SCHED_CLS:
4758 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 4759 case BPF_PROG_TYPE_XDP:
3a0af8fd 4760 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 4761 case BPF_PROG_TYPE_SK_SKB:
4f738adb 4762 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
4763 if (meta)
4764 return meta->pkt_access;
4765
4766 env->seen_direct_write = true;
4acf6c0b 4767 return true;
0d01da6a
SF
4768
4769 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4770 if (t == BPF_WRITE)
4771 env->seen_direct_write = true;
4772
4773 return true;
4774
4acf6c0b
BB
4775 default:
4776 return false;
4777 }
4778}
4779
f1174f77 4780static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 4781 int size, bool zero_size_allowed)
f1174f77 4782{
638f5b90 4783 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
4784 struct bpf_reg_state *reg = &regs[regno];
4785 int err;
4786
4787 /* We may have added a variable offset to the packet pointer; but any
4788 * reg->range we have comes after that. We are only checking the fixed
4789 * offset.
4790 */
4791
4792 /* We don't allow negative numbers, because we aren't tracking enough
4793 * detail to prove they're safe.
4794 */
b03c9f9f 4795 if (reg->smin_value < 0) {
61bd5218 4796 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
4797 regno);
4798 return -EACCES;
4799 }
6d94e741
AS
4800
4801 err = reg->range < 0 ? -EINVAL :
4802 __check_mem_access(env, regno, off, size, reg->range,
457f4436 4803 zero_size_allowed);
f1174f77 4804 if (err) {
61bd5218 4805 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
4806 return err;
4807 }
e647815a 4808
457f4436 4809 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
4810 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4811 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 4812 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
4813 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4814 */
4815 env->prog->aux->max_pkt_offset =
4816 max_t(u32, env->prog->aux->max_pkt_offset,
4817 off + reg->umax_value + size - 1);
4818
f1174f77
EC
4819 return err;
4820}
4821
4822/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 4823static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 4824 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 4825 struct btf **btf, u32 *btf_id)
17a52670 4826{
f96da094
DB
4827 struct bpf_insn_access_aux info = {
4828 .reg_type = *reg_type,
9e15db66 4829 .log = &env->log,
f96da094 4830 };
31fd8581 4831
4f9218aa 4832 if (env->ops->is_valid_access &&
5e43f899 4833 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
4834 /* A non zero info.ctx_field_size indicates that this field is a
4835 * candidate for later verifier transformation to load the whole
4836 * field and then apply a mask when accessed with a narrower
4837 * access than actual ctx access size. A zero info.ctx_field_size
4838 * will only allow for whole field access and rejects any other
4839 * type of narrower access.
31fd8581 4840 */
23994631 4841 *reg_type = info.reg_type;
31fd8581 4842
c25b2ae1 4843 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4844 *btf = info.btf;
9e15db66 4845 *btf_id = info.btf_id;
22dc4a0f 4846 } else {
9e15db66 4847 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 4848 }
32bbe007
AS
4849 /* remember the offset of last byte accessed in ctx */
4850 if (env->prog->aux->max_ctx_offset < off + size)
4851 env->prog->aux->max_ctx_offset = off + size;
17a52670 4852 return 0;
32bbe007 4853 }
17a52670 4854
61bd5218 4855 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
4856 return -EACCES;
4857}
4858
d58e468b
PP
4859static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4860 int size)
4861{
4862 if (size < 0 || off < 0 ||
4863 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4864 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4865 off, size);
4866 return -EACCES;
4867 }
4868 return 0;
4869}
4870
5f456649
MKL
4871static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4872 u32 regno, int off, int size,
4873 enum bpf_access_type t)
c64b7983
JS
4874{
4875 struct bpf_reg_state *regs = cur_regs(env);
4876 struct bpf_reg_state *reg = &regs[regno];
5f456649 4877 struct bpf_insn_access_aux info = {};
46f8bc92 4878 bool valid;
c64b7983
JS
4879
4880 if (reg->smin_value < 0) {
4881 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4882 regno);
4883 return -EACCES;
4884 }
4885
46f8bc92
MKL
4886 switch (reg->type) {
4887 case PTR_TO_SOCK_COMMON:
4888 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4889 break;
4890 case PTR_TO_SOCKET:
4891 valid = bpf_sock_is_valid_access(off, size, t, &info);
4892 break;
655a51e5
MKL
4893 case PTR_TO_TCP_SOCK:
4894 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4895 break;
fada7fdc
JL
4896 case PTR_TO_XDP_SOCK:
4897 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4898 break;
46f8bc92
MKL
4899 default:
4900 valid = false;
c64b7983
JS
4901 }
4902
5f456649 4903
46f8bc92
MKL
4904 if (valid) {
4905 env->insn_aux_data[insn_idx].ctx_field_size =
4906 info.ctx_field_size;
4907 return 0;
4908 }
4909
4910 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4911 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4912
4913 return -EACCES;
c64b7983
JS
4914}
4915
4cabc5b1
DB
4916static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4917{
2a159c6f 4918 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4919}
4920
f37a8cb8
DB
4921static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4922{
2a159c6f 4923 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4924
46f8bc92
MKL
4925 return reg->type == PTR_TO_CTX;
4926}
4927
4928static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4929{
4930 const struct bpf_reg_state *reg = reg_state(env, regno);
4931
4932 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4933}
4934
ca369602
DB
4935static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4936{
2a159c6f 4937 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4938
4939 return type_is_pkt_pointer(reg->type);
4940}
4941
4b5defde
DB
4942static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4943{
4944 const struct bpf_reg_state *reg = reg_state(env, regno);
4945
4946 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4947 return reg->type == PTR_TO_FLOW_KEYS;
4948}
4949
9bb00b28
YS
4950static bool is_trusted_reg(const struct bpf_reg_state *reg)
4951{
4952 /* A referenced register is always trusted. */
4953 if (reg->ref_obj_id)
4954 return true;
4955
4956 /* If a register is not referenced, it is trusted if it has the
fca1aa75 4957 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
9bb00b28
YS
4958 * other type modifiers may be safe, but we elect to take an opt-in
4959 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4960 * not.
4961 *
4962 * Eventually, we should make PTR_TRUSTED the single source of truth
4963 * for whether a register is trusted.
4964 */
4965 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4966 !bpf_type_has_unsafe_modifiers(reg->type);
4967}
4968
fca1aa75
YS
4969static bool is_rcu_reg(const struct bpf_reg_state *reg)
4970{
4971 return reg->type & MEM_RCU;
4972}
4973
61bd5218
JK
4974static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4975 const struct bpf_reg_state *reg,
d1174416 4976 int off, int size, bool strict)
969bf05e 4977{
f1174f77 4978 struct tnum reg_off;
e07b98d9 4979 int ip_align;
d1174416
DM
4980
4981 /* Byte size accesses are always allowed. */
4982 if (!strict || size == 1)
4983 return 0;
4984
e4eda884
DM
4985 /* For platforms that do not have a Kconfig enabling
4986 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4987 * NET_IP_ALIGN is universally set to '2'. And on platforms
4988 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4989 * to this code only in strict mode where we want to emulate
4990 * the NET_IP_ALIGN==2 checking. Therefore use an
4991 * unconditional IP align value of '2'.
e07b98d9 4992 */
e4eda884 4993 ip_align = 2;
f1174f77
EC
4994
4995 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4996 if (!tnum_is_aligned(reg_off, size)) {
4997 char tn_buf[48];
4998
4999 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
5000 verbose(env,
5001 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 5002 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
5003 return -EACCES;
5004 }
79adffcd 5005
969bf05e
AS
5006 return 0;
5007}
5008
61bd5218
JK
5009static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5010 const struct bpf_reg_state *reg,
f1174f77
EC
5011 const char *pointer_desc,
5012 int off, int size, bool strict)
79adffcd 5013{
f1174f77
EC
5014 struct tnum reg_off;
5015
5016 /* Byte size accesses are always allowed. */
5017 if (!strict || size == 1)
5018 return 0;
5019
5020 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5021 if (!tnum_is_aligned(reg_off, size)) {
5022 char tn_buf[48];
5023
5024 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5025 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 5026 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
5027 return -EACCES;
5028 }
5029
969bf05e
AS
5030 return 0;
5031}
5032
e07b98d9 5033static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
5034 const struct bpf_reg_state *reg, int off,
5035 int size, bool strict_alignment_once)
79adffcd 5036{
ca369602 5037 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 5038 const char *pointer_desc = "";
d1174416 5039
79adffcd
DB
5040 switch (reg->type) {
5041 case PTR_TO_PACKET:
de8f3a83
DB
5042 case PTR_TO_PACKET_META:
5043 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5044 * right in front, treat it the very same way.
5045 */
61bd5218 5046 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
5047 case PTR_TO_FLOW_KEYS:
5048 pointer_desc = "flow keys ";
5049 break;
69c087ba
YS
5050 case PTR_TO_MAP_KEY:
5051 pointer_desc = "key ";
5052 break;
f1174f77
EC
5053 case PTR_TO_MAP_VALUE:
5054 pointer_desc = "value ";
5055 break;
5056 case PTR_TO_CTX:
5057 pointer_desc = "context ";
5058 break;
5059 case PTR_TO_STACK:
5060 pointer_desc = "stack ";
01f810ac
AM
5061 /* The stack spill tracking logic in check_stack_write_fixed_off()
5062 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
5063 * aligned.
5064 */
5065 strict = true;
f1174f77 5066 break;
c64b7983
JS
5067 case PTR_TO_SOCKET:
5068 pointer_desc = "sock ";
5069 break;
46f8bc92
MKL
5070 case PTR_TO_SOCK_COMMON:
5071 pointer_desc = "sock_common ";
5072 break;
655a51e5
MKL
5073 case PTR_TO_TCP_SOCK:
5074 pointer_desc = "tcp_sock ";
5075 break;
fada7fdc
JL
5076 case PTR_TO_XDP_SOCK:
5077 pointer_desc = "xdp_sock ";
5078 break;
79adffcd 5079 default:
f1174f77 5080 break;
79adffcd 5081 }
61bd5218
JK
5082 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5083 strict);
79adffcd
DB
5084}
5085
f4d7e40a
AS
5086static int update_stack_depth(struct bpf_verifier_env *env,
5087 const struct bpf_func_state *func,
5088 int off)
5089{
9c8105bd 5090 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
5091
5092 if (stack >= -off)
5093 return 0;
5094
5095 /* update known max for given subprogram */
9c8105bd 5096 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
5097 return 0;
5098}
f4d7e40a 5099
70a87ffe
AS
5100/* starting from main bpf function walk all instructions of the function
5101 * and recursively walk all callees that given function can call.
5102 * Ignore jump and exit insns.
5103 * Since recursion is prevented by check_cfg() this algorithm
5104 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5105 */
5106static int check_max_stack_depth(struct bpf_verifier_env *env)
5107{
9c8105bd
JW
5108 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
5109 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 5110 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 5111 bool tail_call_reachable = false;
70a87ffe
AS
5112 int ret_insn[MAX_CALL_FRAMES];
5113 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 5114 int j;
f4d7e40a 5115
70a87ffe 5116process_func:
7f6e4312
MF
5117 /* protect against potential stack overflow that might happen when
5118 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5119 * depth for such case down to 256 so that the worst case scenario
5120 * would result in 8k stack size (32 which is tailcall limit * 256 =
5121 * 8k).
5122 *
5123 * To get the idea what might happen, see an example:
5124 * func1 -> sub rsp, 128
5125 * subfunc1 -> sub rsp, 256
5126 * tailcall1 -> add rsp, 256
5127 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5128 * subfunc2 -> sub rsp, 64
5129 * subfunc22 -> sub rsp, 128
5130 * tailcall2 -> add rsp, 128
5131 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5132 *
5133 * tailcall will unwind the current stack frame but it will not get rid
5134 * of caller's stack as shown on the example above.
5135 */
5136 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5137 verbose(env,
5138 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5139 depth);
5140 return -EACCES;
5141 }
70a87ffe
AS
5142 /* round up to 32-bytes, since this is granularity
5143 * of interpreter stack size
5144 */
9c8105bd 5145 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 5146 if (depth > MAX_BPF_STACK) {
f4d7e40a 5147 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 5148 frame + 1, depth);
f4d7e40a
AS
5149 return -EACCES;
5150 }
70a87ffe 5151continue_func:
4cb3d99c 5152 subprog_end = subprog[idx + 1].start;
70a87ffe 5153 for (; i < subprog_end; i++) {
7ddc80a4
AS
5154 int next_insn;
5155
69c087ba 5156 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
5157 continue;
5158 /* remember insn and function to return to */
5159 ret_insn[frame] = i + 1;
9c8105bd 5160 ret_prog[frame] = idx;
70a87ffe
AS
5161
5162 /* find the callee */
7ddc80a4
AS
5163 next_insn = i + insn[i].imm + 1;
5164 idx = find_subprog(env, next_insn);
9c8105bd 5165 if (idx < 0) {
70a87ffe 5166 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 5167 next_insn);
70a87ffe
AS
5168 return -EFAULT;
5169 }
7ddc80a4
AS
5170 if (subprog[idx].is_async_cb) {
5171 if (subprog[idx].has_tail_call) {
5172 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5173 return -EFAULT;
5174 }
5175 /* async callbacks don't increase bpf prog stack size */
5176 continue;
5177 }
5178 i = next_insn;
ebf7d1f5
MF
5179
5180 if (subprog[idx].has_tail_call)
5181 tail_call_reachable = true;
5182
70a87ffe
AS
5183 frame++;
5184 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
5185 verbose(env, "the call stack of %d frames is too deep !\n",
5186 frame);
5187 return -E2BIG;
70a87ffe
AS
5188 }
5189 goto process_func;
5190 }
ebf7d1f5
MF
5191 /* if tail call got detected across bpf2bpf calls then mark each of the
5192 * currently present subprog frames as tail call reachable subprogs;
5193 * this info will be utilized by JIT so that we will be preserving the
5194 * tail call counter throughout bpf2bpf calls combined with tailcalls
5195 */
5196 if (tail_call_reachable)
5197 for (j = 0; j < frame; j++)
5198 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
5199 if (subprog[0].tail_call_reachable)
5200 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 5201
70a87ffe
AS
5202 /* end of for() loop means the last insn of the 'subprog'
5203 * was reached. Doesn't matter whether it was JA or EXIT
5204 */
5205 if (frame == 0)
5206 return 0;
9c8105bd 5207 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
5208 frame--;
5209 i = ret_insn[frame];
9c8105bd 5210 idx = ret_prog[frame];
70a87ffe 5211 goto continue_func;
f4d7e40a
AS
5212}
5213
19d28fbd 5214#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5215static int get_callee_stack_depth(struct bpf_verifier_env *env,
5216 const struct bpf_insn *insn, int idx)
5217{
5218 int start = idx + insn->imm + 1, subprog;
5219
5220 subprog = find_subprog(env, start);
5221 if (subprog < 0) {
5222 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5223 start);
5224 return -EFAULT;
5225 }
9c8105bd 5226 return env->subprog_info[subprog].stack_depth;
1ea47e01 5227}
19d28fbd 5228#endif
1ea47e01 5229
afbf21dc
YS
5230static int __check_buffer_access(struct bpf_verifier_env *env,
5231 const char *buf_info,
5232 const struct bpf_reg_state *reg,
5233 int regno, int off, int size)
9df1c28b
MM
5234{
5235 if (off < 0) {
5236 verbose(env,
4fc00b79 5237 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 5238 regno, buf_info, off, size);
9df1c28b
MM
5239 return -EACCES;
5240 }
5241 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5242 char tn_buf[48];
5243
5244 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5245 verbose(env,
4fc00b79 5246 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
5247 regno, off, tn_buf);
5248 return -EACCES;
5249 }
afbf21dc
YS
5250
5251 return 0;
5252}
5253
5254static int check_tp_buffer_access(struct bpf_verifier_env *env,
5255 const struct bpf_reg_state *reg,
5256 int regno, int off, int size)
5257{
5258 int err;
5259
5260 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5261 if (err)
5262 return err;
5263
9df1c28b
MM
5264 if (off + size > env->prog->aux->max_tp_access)
5265 env->prog->aux->max_tp_access = off + size;
5266
5267 return 0;
5268}
5269
afbf21dc
YS
5270static int check_buffer_access(struct bpf_verifier_env *env,
5271 const struct bpf_reg_state *reg,
5272 int regno, int off, int size,
5273 bool zero_size_allowed,
afbf21dc
YS
5274 u32 *max_access)
5275{
44e9a741 5276 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
5277 int err;
5278
5279 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5280 if (err)
5281 return err;
5282
5283 if (off + size > *max_access)
5284 *max_access = off + size;
5285
5286 return 0;
5287}
5288
3f50f132
JF
5289/* BPF architecture zero extends alu32 ops into 64-bit registesr */
5290static void zext_32_to_64(struct bpf_reg_state *reg)
5291{
5292 reg->var_off = tnum_subreg(reg->var_off);
5293 __reg_assign_32_into_64(reg);
5294}
9df1c28b 5295
0c17d1d2
JH
5296/* truncate register to smaller size (in bytes)
5297 * must be called with size < BPF_REG_SIZE
5298 */
5299static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5300{
5301 u64 mask;
5302
5303 /* clear high bits in bit representation */
5304 reg->var_off = tnum_cast(reg->var_off, size);
5305
5306 /* fix arithmetic bounds */
5307 mask = ((u64)1 << (size * 8)) - 1;
5308 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5309 reg->umin_value &= mask;
5310 reg->umax_value &= mask;
5311 } else {
5312 reg->umin_value = 0;
5313 reg->umax_value = mask;
5314 }
5315 reg->smin_value = reg->umin_value;
5316 reg->smax_value = reg->umax_value;
3f50f132
JF
5317
5318 /* If size is smaller than 32bit register the 32bit register
5319 * values are also truncated so we push 64-bit bounds into
5320 * 32-bit bounds. Above were truncated < 32-bits already.
5321 */
5322 if (size >= 4)
5323 return;
5324 __reg_combine_64_into_32(reg);
0c17d1d2
JH
5325}
5326
a23740ec
AN
5327static bool bpf_map_is_rdonly(const struct bpf_map *map)
5328{
353050be
DB
5329 /* A map is considered read-only if the following condition are true:
5330 *
5331 * 1) BPF program side cannot change any of the map content. The
5332 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5333 * and was set at map creation time.
5334 * 2) The map value(s) have been initialized from user space by a
5335 * loader and then "frozen", such that no new map update/delete
5336 * operations from syscall side are possible for the rest of
5337 * the map's lifetime from that point onwards.
5338 * 3) Any parallel/pending map update/delete operations from syscall
5339 * side have been completed. Only after that point, it's safe to
5340 * assume that map value(s) are immutable.
5341 */
5342 return (map->map_flags & BPF_F_RDONLY_PROG) &&
5343 READ_ONCE(map->frozen) &&
5344 !bpf_map_write_active(map);
a23740ec
AN
5345}
5346
5347static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5348{
5349 void *ptr;
5350 u64 addr;
5351 int err;
5352
5353 err = map->ops->map_direct_value_addr(map, &addr, off);
5354 if (err)
5355 return err;
2dedd7d2 5356 ptr = (void *)(long)addr + off;
a23740ec
AN
5357
5358 switch (size) {
5359 case sizeof(u8):
5360 *val = (u64)*(u8 *)ptr;
5361 break;
5362 case sizeof(u16):
5363 *val = (u64)*(u16 *)ptr;
5364 break;
5365 case sizeof(u32):
5366 *val = (u64)*(u32 *)ptr;
5367 break;
5368 case sizeof(u64):
5369 *val = *(u64 *)ptr;
5370 break;
5371 default:
5372 return -EINVAL;
5373 }
5374 return 0;
5375}
5376
6fcd486b
AS
5377#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
5378#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
57539b1c 5379
6fcd486b
AS
5380/*
5381 * Allow list few fields as RCU trusted or full trusted.
5382 * This logic doesn't allow mix tagging and will be removed once GCC supports
5383 * btf_type_tag.
5384 */
5385
5386/* RCU trusted: these fields are trusted in RCU CS and never NULL */
5387BTF_TYPE_SAFE_RCU(struct task_struct) {
57539b1c 5388 const cpumask_t *cpus_ptr;
8d093b4e 5389 struct css_set __rcu *cgroups;
6fcd486b
AS
5390 struct task_struct __rcu *real_parent;
5391 struct task_struct *group_leader;
8d093b4e
AS
5392};
5393
6fcd486b 5394BTF_TYPE_SAFE_RCU(struct css_set) {
8d093b4e 5395 struct cgroup *dfl_cgrp;
57539b1c
DV
5396};
5397
6fcd486b
AS
5398/* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5399BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
5400 __bpf_md_ptr(struct seq_file *, seq);
5401};
5402
5403BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
5404 __bpf_md_ptr(struct bpf_iter_meta *, meta);
5405 __bpf_md_ptr(struct task_struct *, task);
5406};
5407
5408BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5409 struct file *file;
5410};
5411
5412BTF_TYPE_SAFE_TRUSTED(struct file) {
5413 struct inode *f_inode;
5414};
5415
5416BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5417 /* no negative dentry-s in places where bpf can see it */
5418 struct inode *d_inode;
5419};
5420
5421BTF_TYPE_SAFE_TRUSTED(struct socket) {
5422 struct sock *sk;
5423};
5424
5425static bool type_is_rcu(struct bpf_verifier_env *env,
5426 struct bpf_reg_state *reg,
5427 int off)
57539b1c 5428{
6fcd486b
AS
5429 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
5430 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
57539b1c 5431
6fcd486b
AS
5432 return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_rcu");
5433}
57539b1c 5434
6fcd486b
AS
5435static bool type_is_trusted(struct bpf_verifier_env *env,
5436 struct bpf_reg_state *reg,
5437 int off)
5438{
5439 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5440 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5441 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5442 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5443 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5444 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5445
5446 return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_trusted");
57539b1c
DV
5447}
5448
9e15db66
AS
5449static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5450 struct bpf_reg_state *regs,
5451 int regno, int off, int size,
5452 enum bpf_access_type atype,
5453 int value_regno)
5454{
5455 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
5456 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5457 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 5458 enum bpf_type_flag flag = 0;
9e15db66
AS
5459 u32 btf_id;
5460 int ret;
5461
c67cae55
AS
5462 if (!env->allow_ptr_leaks) {
5463 verbose(env,
5464 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5465 tname);
5466 return -EPERM;
5467 }
5468 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5469 verbose(env,
5470 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5471 tname);
5472 return -EINVAL;
5473 }
9e15db66
AS
5474 if (off < 0) {
5475 verbose(env,
5476 "R%d is ptr_%s invalid negative access: off=%d\n",
5477 regno, tname, off);
5478 return -EACCES;
5479 }
5480 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5481 char tn_buf[48];
5482
5483 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5484 verbose(env,
5485 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5486 regno, tname, off, tn_buf);
5487 return -EACCES;
5488 }
5489
c6f1bfe8
YS
5490 if (reg->type & MEM_USER) {
5491 verbose(env,
5492 "R%d is ptr_%s access user memory: off=%d\n",
5493 regno, tname, off);
5494 return -EACCES;
5495 }
5496
5844101a
HL
5497 if (reg->type & MEM_PERCPU) {
5498 verbose(env,
5499 "R%d is ptr_%s access percpu memory: off=%d\n",
5500 regno, tname, off);
5501 return -EACCES;
5502 }
5503
282de143
KKD
5504 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
5505 if (!btf_is_kernel(reg->btf)) {
5506 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5507 return -EFAULT;
5508 }
6728aea7 5509 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997 5510 } else {
282de143
KKD
5511 /* Writes are permitted with default btf_struct_access for
5512 * program allocated objects (which always have ref_obj_id > 0),
5513 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5514 */
5515 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
27ae7997
MKL
5516 verbose(env, "only read is supported\n");
5517 return -EACCES;
5518 }
5519
6a3cd331
DM
5520 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
5521 !reg->ref_obj_id) {
282de143
KKD
5522 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5523 return -EFAULT;
5524 }
5525
6728aea7 5526 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997
MKL
5527 }
5528
9e15db66
AS
5529 if (ret < 0)
5530 return ret;
5531
6fcd486b
AS
5532 if (ret != PTR_TO_BTF_ID) {
5533 /* just mark; */
6efe152d 5534
6fcd486b
AS
5535 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
5536 /* If this is an untrusted pointer, all pointers formed by walking it
5537 * also inherit the untrusted flag.
5538 */
5539 flag = PTR_UNTRUSTED;
5540
5541 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
5542 /* By default any pointer obtained from walking a trusted pointer is no
5543 * longer trusted, unless the field being accessed has explicitly been
5544 * marked as inheriting its parent's state of trust (either full or RCU).
5545 * For example:
5546 * 'cgroups' pointer is untrusted if task->cgroups dereference
5547 * happened in a sleepable program outside of bpf_rcu_read_lock()
5548 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
5549 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
5550 *
5551 * A regular RCU-protected pointer with __rcu tag can also be deemed
5552 * trusted if we are in an RCU CS. Such pointer can be NULL.
20c09d92 5553 */
6fcd486b
AS
5554 if (type_is_trusted(env, reg, off)) {
5555 flag |= PTR_TRUSTED;
5556 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
5557 if (type_is_rcu(env, reg, off)) {
5558 /* ignore __rcu tag and mark it MEM_RCU */
5559 flag |= MEM_RCU;
5560 } else if (flag & MEM_RCU) {
5561 /* __rcu tagged pointers can be NULL */
5562 flag |= PTR_MAYBE_NULL;
5563 } else if (flag & (MEM_PERCPU | MEM_USER)) {
5564 /* keep as-is */
5565 } else {
5566 /* walking unknown pointers yields untrusted pointer */
5567 flag = PTR_UNTRUSTED;
5568 }
5569 } else {
5570 /*
5571 * If not in RCU CS or MEM_RCU pointer can be NULL then
5572 * aggressively mark as untrusted otherwise such
5573 * pointers will be plain PTR_TO_BTF_ID without flags
5574 * and will be allowed to be passed into helpers for
5575 * compat reasons.
5576 */
5577 flag = PTR_UNTRUSTED;
5578 }
20c09d92 5579 } else {
6fcd486b 5580 /* Old compat. Deprecated */
57539b1c 5581 flag &= ~PTR_TRUSTED;
20c09d92 5582 }
3f00c523 5583
41c48f3a 5584 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 5585 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
5586
5587 return 0;
5588}
5589
5590static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5591 struct bpf_reg_state *regs,
5592 int regno, int off, int size,
5593 enum bpf_access_type atype,
5594 int value_regno)
5595{
5596 struct bpf_reg_state *reg = regs + regno;
5597 struct bpf_map *map = reg->map_ptr;
6728aea7 5598 struct bpf_reg_state map_reg;
c6f1bfe8 5599 enum bpf_type_flag flag = 0;
41c48f3a
AI
5600 const struct btf_type *t;
5601 const char *tname;
5602 u32 btf_id;
5603 int ret;
5604
5605 if (!btf_vmlinux) {
5606 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5607 return -ENOTSUPP;
5608 }
5609
5610 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5611 verbose(env, "map_ptr access not supported for map type %d\n",
5612 map->map_type);
5613 return -ENOTSUPP;
5614 }
5615
5616 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5617 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5618
c67cae55 5619 if (!env->allow_ptr_leaks) {
41c48f3a 5620 verbose(env,
c67cae55 5621 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
41c48f3a
AI
5622 tname);
5623 return -EPERM;
9e15db66 5624 }
27ae7997 5625
41c48f3a
AI
5626 if (off < 0) {
5627 verbose(env, "R%d is %s invalid negative access: off=%d\n",
5628 regno, tname, off);
5629 return -EACCES;
5630 }
5631
5632 if (atype != BPF_READ) {
5633 verbose(env, "only read from %s is supported\n", tname);
5634 return -EACCES;
5635 }
5636
6728aea7
KKD
5637 /* Simulate access to a PTR_TO_BTF_ID */
5638 memset(&map_reg, 0, sizeof(map_reg));
5639 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
5640 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
41c48f3a
AI
5641 if (ret < 0)
5642 return ret;
5643
5644 if (value_regno >= 0)
c6f1bfe8 5645 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 5646
9e15db66
AS
5647 return 0;
5648}
5649
01f810ac
AM
5650/* Check that the stack access at the given offset is within bounds. The
5651 * maximum valid offset is -1.
5652 *
5653 * The minimum valid offset is -MAX_BPF_STACK for writes, and
5654 * -state->allocated_stack for reads.
5655 */
5656static int check_stack_slot_within_bounds(int off,
5657 struct bpf_func_state *state,
5658 enum bpf_access_type t)
5659{
5660 int min_valid_off;
5661
5662 if (t == BPF_WRITE)
5663 min_valid_off = -MAX_BPF_STACK;
5664 else
5665 min_valid_off = -state->allocated_stack;
5666
5667 if (off < min_valid_off || off > -1)
5668 return -EACCES;
5669 return 0;
5670}
5671
5672/* Check that the stack access at 'regno + off' falls within the maximum stack
5673 * bounds.
5674 *
5675 * 'off' includes `regno->offset`, but not its dynamic part (if any).
5676 */
5677static int check_stack_access_within_bounds(
5678 struct bpf_verifier_env *env,
5679 int regno, int off, int access_size,
61df10c7 5680 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
5681{
5682 struct bpf_reg_state *regs = cur_regs(env);
5683 struct bpf_reg_state *reg = regs + regno;
5684 struct bpf_func_state *state = func(env, reg);
5685 int min_off, max_off;
5686 int err;
5687 char *err_extra;
5688
5689 if (src == ACCESS_HELPER)
5690 /* We don't know if helpers are reading or writing (or both). */
5691 err_extra = " indirect access to";
5692 else if (type == BPF_READ)
5693 err_extra = " read from";
5694 else
5695 err_extra = " write to";
5696
5697 if (tnum_is_const(reg->var_off)) {
5698 min_off = reg->var_off.value + off;
5699 if (access_size > 0)
5700 max_off = min_off + access_size - 1;
5701 else
5702 max_off = min_off;
5703 } else {
5704 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5705 reg->smin_value <= -BPF_MAX_VAR_OFF) {
5706 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5707 err_extra, regno);
5708 return -EACCES;
5709 }
5710 min_off = reg->smin_value + off;
5711 if (access_size > 0)
5712 max_off = reg->smax_value + off + access_size - 1;
5713 else
5714 max_off = min_off;
5715 }
5716
5717 err = check_stack_slot_within_bounds(min_off, state, type);
5718 if (!err)
5719 err = check_stack_slot_within_bounds(max_off, state, type);
5720
5721 if (err) {
5722 if (tnum_is_const(reg->var_off)) {
5723 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5724 err_extra, regno, off, access_size);
5725 } else {
5726 char tn_buf[48];
5727
5728 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5729 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5730 err_extra, regno, tn_buf, access_size);
5731 }
5732 }
5733 return err;
5734}
41c48f3a 5735
17a52670
AS
5736/* check whether memory at (regno + off) is accessible for t = (read | write)
5737 * if t==write, value_regno is a register which value is stored into memory
5738 * if t==read, value_regno is a register which will receive the value from memory
5739 * if t==write && value_regno==-1, some unknown value is stored into memory
5740 * if t==read && value_regno==-1, don't care what we read from memory
5741 */
ca369602
DB
5742static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5743 int off, int bpf_size, enum bpf_access_type t,
5744 int value_regno, bool strict_alignment_once)
17a52670 5745{
638f5b90
AS
5746 struct bpf_reg_state *regs = cur_regs(env);
5747 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 5748 struct bpf_func_state *state;
17a52670
AS
5749 int size, err = 0;
5750
5751 size = bpf_size_to_bytes(bpf_size);
5752 if (size < 0)
5753 return size;
5754
f1174f77 5755 /* alignment checks will add in reg->off themselves */
ca369602 5756 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
5757 if (err)
5758 return err;
17a52670 5759
f1174f77
EC
5760 /* for access checks, reg->off is just part of off */
5761 off += reg->off;
5762
69c087ba
YS
5763 if (reg->type == PTR_TO_MAP_KEY) {
5764 if (t == BPF_WRITE) {
5765 verbose(env, "write to change key R%d not allowed\n", regno);
5766 return -EACCES;
5767 }
5768
5769 err = check_mem_region_access(env, regno, off, size,
5770 reg->map_ptr->key_size, false);
5771 if (err)
5772 return err;
5773 if (value_regno >= 0)
5774 mark_reg_unknown(env, regs, value_regno);
5775 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 5776 struct btf_field *kptr_field = NULL;
61df10c7 5777
1be7f75d
AS
5778 if (t == BPF_WRITE && value_regno >= 0 &&
5779 is_pointer_value(env, value_regno)) {
61bd5218 5780 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
5781 return -EACCES;
5782 }
591fe988
DB
5783 err = check_map_access_type(env, regno, off, size, t);
5784 if (err)
5785 return err;
61df10c7
KKD
5786 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5787 if (err)
5788 return err;
5789 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
5790 kptr_field = btf_record_find(reg->map_ptr->record,
5791 off + reg->var_off.value, BPF_KPTR);
5792 if (kptr_field) {
5793 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 5794 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
5795 struct bpf_map *map = reg->map_ptr;
5796
5797 /* if map is read-only, track its contents as scalars */
5798 if (tnum_is_const(reg->var_off) &&
5799 bpf_map_is_rdonly(map) &&
5800 map->ops->map_direct_value_addr) {
5801 int map_off = off + reg->var_off.value;
5802 u64 val = 0;
5803
5804 err = bpf_map_direct_read(map, map_off, size,
5805 &val);
5806 if (err)
5807 return err;
5808
5809 regs[value_regno].type = SCALAR_VALUE;
5810 __mark_reg_known(&regs[value_regno], val);
5811 } else {
5812 mark_reg_unknown(env, regs, value_regno);
5813 }
5814 }
34d3a78c
HL
5815 } else if (base_type(reg->type) == PTR_TO_MEM) {
5816 bool rdonly_mem = type_is_rdonly_mem(reg->type);
5817
5818 if (type_may_be_null(reg->type)) {
5819 verbose(env, "R%d invalid mem access '%s'\n", regno,
5820 reg_type_str(env, reg->type));
5821 return -EACCES;
5822 }
5823
5824 if (t == BPF_WRITE && rdonly_mem) {
5825 verbose(env, "R%d cannot write into %s\n",
5826 regno, reg_type_str(env, reg->type));
5827 return -EACCES;
5828 }
5829
457f4436
AN
5830 if (t == BPF_WRITE && value_regno >= 0 &&
5831 is_pointer_value(env, value_regno)) {
5832 verbose(env, "R%d leaks addr into mem\n", value_regno);
5833 return -EACCES;
5834 }
34d3a78c 5835
457f4436
AN
5836 err = check_mem_region_access(env, regno, off, size,
5837 reg->mem_size, false);
34d3a78c 5838 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 5839 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 5840 } else if (reg->type == PTR_TO_CTX) {
f1174f77 5841 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 5842 struct btf *btf = NULL;
9e15db66 5843 u32 btf_id = 0;
19de99f7 5844
1be7f75d
AS
5845 if (t == BPF_WRITE && value_regno >= 0 &&
5846 is_pointer_value(env, value_regno)) {
61bd5218 5847 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
5848 return -EACCES;
5849 }
f1174f77 5850
be80a1d3 5851 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
5852 if (err < 0)
5853 return err;
5854
c6f1bfe8
YS
5855 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5856 &btf_id);
9e15db66
AS
5857 if (err)
5858 verbose_linfo(env, insn_idx, "; ");
969bf05e 5859 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 5860 /* ctx access returns either a scalar, or a
de8f3a83
DB
5861 * PTR_TO_PACKET[_META,_END]. In the latter
5862 * case, we know the offset is zero.
f1174f77 5863 */
46f8bc92 5864 if (reg_type == SCALAR_VALUE) {
638f5b90 5865 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5866 } else {
638f5b90 5867 mark_reg_known_zero(env, regs,
61bd5218 5868 value_regno);
c25b2ae1 5869 if (type_may_be_null(reg_type))
46f8bc92 5870 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
5871 /* A load of ctx field could have different
5872 * actual load size with the one encoded in the
5873 * insn. When the dst is PTR, it is for sure not
5874 * a sub-register.
5875 */
5876 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 5877 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5878 regs[value_regno].btf = btf;
9e15db66 5879 regs[value_regno].btf_id = btf_id;
22dc4a0f 5880 }
46f8bc92 5881 }
638f5b90 5882 regs[value_regno].type = reg_type;
969bf05e 5883 }
17a52670 5884
f1174f77 5885 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
5886 /* Basic bounds checks. */
5887 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
5888 if (err)
5889 return err;
8726679a 5890
f4d7e40a
AS
5891 state = func(env, reg);
5892 err = update_stack_depth(env, state, off);
5893 if (err)
5894 return err;
8726679a 5895
01f810ac
AM
5896 if (t == BPF_READ)
5897 err = check_stack_read(env, regno, off, size,
61bd5218 5898 value_regno);
01f810ac
AM
5899 else
5900 err = check_stack_write(env, regno, off, size,
5901 value_regno, insn_idx);
de8f3a83 5902 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 5903 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 5904 verbose(env, "cannot write into packet\n");
969bf05e
AS
5905 return -EACCES;
5906 }
4acf6c0b
BB
5907 if (t == BPF_WRITE && value_regno >= 0 &&
5908 is_pointer_value(env, value_regno)) {
61bd5218
JK
5909 verbose(env, "R%d leaks addr into packet\n",
5910 value_regno);
4acf6c0b
BB
5911 return -EACCES;
5912 }
9fd29c08 5913 err = check_packet_access(env, regno, off, size, false);
969bf05e 5914 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 5915 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
5916 } else if (reg->type == PTR_TO_FLOW_KEYS) {
5917 if (t == BPF_WRITE && value_regno >= 0 &&
5918 is_pointer_value(env, value_regno)) {
5919 verbose(env, "R%d leaks addr into flow keys\n",
5920 value_regno);
5921 return -EACCES;
5922 }
5923
5924 err = check_flow_keys_access(env, off, size);
5925 if (!err && t == BPF_READ && value_regno >= 0)
5926 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5927 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 5928 if (t == BPF_WRITE) {
46f8bc92 5929 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 5930 regno, reg_type_str(env, reg->type));
c64b7983
JS
5931 return -EACCES;
5932 }
5f456649 5933 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
5934 if (!err && value_regno >= 0)
5935 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
5936 } else if (reg->type == PTR_TO_TP_BUFFER) {
5937 err = check_tp_buffer_access(env, reg, regno, off, size);
5938 if (!err && t == BPF_READ && value_regno >= 0)
5939 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
5940 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5941 !type_may_be_null(reg->type)) {
9e15db66
AS
5942 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5943 value_regno);
41c48f3a
AI
5944 } else if (reg->type == CONST_PTR_TO_MAP) {
5945 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5946 value_regno);
20b2aff4
HL
5947 } else if (base_type(reg->type) == PTR_TO_BUF) {
5948 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
5949 u32 *max_access;
5950
5951 if (rdonly_mem) {
5952 if (t == BPF_WRITE) {
5953 verbose(env, "R%d cannot write into %s\n",
5954 regno, reg_type_str(env, reg->type));
5955 return -EACCES;
5956 }
20b2aff4
HL
5957 max_access = &env->prog->aux->max_rdonly_access;
5958 } else {
20b2aff4 5959 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 5960 }
20b2aff4 5961
f6dfbe31 5962 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 5963 max_access);
20b2aff4
HL
5964
5965 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 5966 mark_reg_unknown(env, regs, value_regno);
17a52670 5967 } else {
61bd5218 5968 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 5969 reg_type_str(env, reg->type));
17a52670
AS
5970 return -EACCES;
5971 }
969bf05e 5972
f1174f77 5973 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 5974 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 5975 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 5976 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 5977 }
17a52670
AS
5978 return err;
5979}
5980
91c960b0 5981static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 5982{
5ffa2550 5983 int load_reg;
17a52670
AS
5984 int err;
5985
5ca419f2
BJ
5986 switch (insn->imm) {
5987 case BPF_ADD:
5988 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
5989 case BPF_AND:
5990 case BPF_AND | BPF_FETCH:
5991 case BPF_OR:
5992 case BPF_OR | BPF_FETCH:
5993 case BPF_XOR:
5994 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
5995 case BPF_XCHG:
5996 case BPF_CMPXCHG:
5ca419f2
BJ
5997 break;
5998 default:
91c960b0
BJ
5999 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6000 return -EINVAL;
6001 }
6002
6003 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6004 verbose(env, "invalid atomic operand size\n");
17a52670
AS
6005 return -EINVAL;
6006 }
6007
6008 /* check src1 operand */
dc503a8a 6009 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6010 if (err)
6011 return err;
6012
6013 /* check src2 operand */
dc503a8a 6014 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6015 if (err)
6016 return err;
6017
5ffa2550
BJ
6018 if (insn->imm == BPF_CMPXCHG) {
6019 /* Check comparison of R0 with memory location */
a82fe085
DB
6020 const u32 aux_reg = BPF_REG_0;
6021
6022 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
6023 if (err)
6024 return err;
a82fe085
DB
6025
6026 if (is_pointer_value(env, aux_reg)) {
6027 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6028 return -EACCES;
6029 }
5ffa2550
BJ
6030 }
6031
6bdf6abc 6032 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6033 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
6034 return -EACCES;
6035 }
6036
ca369602 6037 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 6038 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
6039 is_flow_key_reg(env, insn->dst_reg) ||
6040 is_sk_reg(env, insn->dst_reg)) {
91c960b0 6041 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 6042 insn->dst_reg,
c25b2ae1 6043 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
6044 return -EACCES;
6045 }
6046
37086bfd
BJ
6047 if (insn->imm & BPF_FETCH) {
6048 if (insn->imm == BPF_CMPXCHG)
6049 load_reg = BPF_REG_0;
6050 else
6051 load_reg = insn->src_reg;
6052
6053 /* check and record load of old value */
6054 err = check_reg_arg(env, load_reg, DST_OP);
6055 if (err)
6056 return err;
6057 } else {
6058 /* This instruction accesses a memory location but doesn't
6059 * actually load it into a register.
6060 */
6061 load_reg = -1;
6062 }
6063
7d3baf0a
DB
6064 /* Check whether we can read the memory, with second call for fetch
6065 * case to simulate the register fill.
6066 */
31fd8581 6067 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
6068 BPF_SIZE(insn->code), BPF_READ, -1, true);
6069 if (!err && load_reg >= 0)
6070 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6071 BPF_SIZE(insn->code), BPF_READ, load_reg,
6072 true);
17a52670
AS
6073 if (err)
6074 return err;
6075
7d3baf0a 6076 /* Check whether we can write into the same memory. */
5ca419f2
BJ
6077 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6078 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6079 if (err)
6080 return err;
6081
5ca419f2 6082 return 0;
17a52670
AS
6083}
6084
01f810ac
AM
6085/* When register 'regno' is used to read the stack (either directly or through
6086 * a helper function) make sure that it's within stack boundary and, depending
6087 * on the access type, that all elements of the stack are initialized.
6088 *
6089 * 'off' includes 'regno->off', but not its dynamic part (if any).
6090 *
6091 * All registers that have been spilled on the stack in the slots within the
6092 * read offsets are marked as read.
6093 */
6094static int check_stack_range_initialized(
6095 struct bpf_verifier_env *env, int regno, int off,
6096 int access_size, bool zero_size_allowed,
61df10c7 6097 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
6098{
6099 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
6100 struct bpf_func_state *state = func(env, reg);
6101 int err, min_off, max_off, i, j, slot, spi;
6102 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6103 enum bpf_access_type bounds_check_type;
6104 /* Some accesses can write anything into the stack, others are
6105 * read-only.
6106 */
6107 bool clobber = false;
2011fccf 6108
01f810ac
AM
6109 if (access_size == 0 && !zero_size_allowed) {
6110 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
6111 return -EACCES;
6112 }
2011fccf 6113
01f810ac
AM
6114 if (type == ACCESS_HELPER) {
6115 /* The bounds checks for writes are more permissive than for
6116 * reads. However, if raw_mode is not set, we'll do extra
6117 * checks below.
6118 */
6119 bounds_check_type = BPF_WRITE;
6120 clobber = true;
6121 } else {
6122 bounds_check_type = BPF_READ;
6123 }
6124 err = check_stack_access_within_bounds(env, regno, off, access_size,
6125 type, bounds_check_type);
6126 if (err)
6127 return err;
6128
17a52670 6129
2011fccf 6130 if (tnum_is_const(reg->var_off)) {
01f810ac 6131 min_off = max_off = reg->var_off.value + off;
2011fccf 6132 } else {
088ec26d
AI
6133 /* Variable offset is prohibited for unprivileged mode for
6134 * simplicity since it requires corresponding support in
6135 * Spectre masking for stack ALU.
6136 * See also retrieve_ptr_limit().
6137 */
2c78ee89 6138 if (!env->bypass_spec_v1) {
088ec26d 6139 char tn_buf[48];
f1174f77 6140
088ec26d 6141 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6142 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6143 regno, err_extra, tn_buf);
088ec26d
AI
6144 return -EACCES;
6145 }
f2bcd05e
AI
6146 /* Only initialized buffer on stack is allowed to be accessed
6147 * with variable offset. With uninitialized buffer it's hard to
6148 * guarantee that whole memory is marked as initialized on
6149 * helper return since specific bounds are unknown what may
6150 * cause uninitialized stack leaking.
6151 */
6152 if (meta && meta->raw_mode)
6153 meta = NULL;
6154
01f810ac
AM
6155 min_off = reg->smin_value + off;
6156 max_off = reg->smax_value + off;
17a52670
AS
6157 }
6158
435faee1 6159 if (meta && meta->raw_mode) {
ef8fc7a0
KKD
6160 /* Ensure we won't be overwriting dynptrs when simulating byte
6161 * by byte access in check_helper_call using meta.access_size.
6162 * This would be a problem if we have a helper in the future
6163 * which takes:
6164 *
6165 * helper(uninit_mem, len, dynptr)
6166 *
6167 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6168 * may end up writing to dynptr itself when touching memory from
6169 * arg 1. This can be relaxed on a case by case basis for known
6170 * safe cases, but reject due to the possibilitiy of aliasing by
6171 * default.
6172 */
6173 for (i = min_off; i < max_off + access_size; i++) {
6174 int stack_off = -i - 1;
6175
6176 spi = __get_spi(i);
6177 /* raw_mode may write past allocated_stack */
6178 if (state->allocated_stack <= stack_off)
6179 continue;
6180 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6181 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6182 return -EACCES;
6183 }
6184 }
435faee1
DB
6185 meta->access_size = access_size;
6186 meta->regno = regno;
6187 return 0;
6188 }
6189
2011fccf 6190 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
6191 u8 *stype;
6192
2011fccf 6193 slot = -i - 1;
638f5b90 6194 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
6195 if (state->allocated_stack <= slot)
6196 goto err;
6197 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6198 if (*stype == STACK_MISC)
6199 goto mark;
6715df8d
EZ
6200 if ((*stype == STACK_ZERO) ||
6201 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
01f810ac
AM
6202 if (clobber) {
6203 /* helper can write anything into the stack */
6204 *stype = STACK_MISC;
6205 }
cc2b14d5 6206 goto mark;
17a52670 6207 }
1d68f22b 6208
27113c59 6209 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
6210 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6211 env->allow_ptr_leaks)) {
01f810ac
AM
6212 if (clobber) {
6213 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6214 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 6215 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 6216 }
f7cf25b2
AS
6217 goto mark;
6218 }
6219
cc2b14d5 6220err:
2011fccf 6221 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
6222 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6223 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
6224 } else {
6225 char tn_buf[48];
6226
6227 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6228 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6229 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 6230 }
cc2b14d5
AS
6231 return -EACCES;
6232mark:
6233 /* reading any byte out of 8-byte 'spill_slot' will cause
6234 * the whole slot to be marked as 'read'
6235 */
679c782d 6236 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
6237 state->stack[spi].spilled_ptr.parent,
6238 REG_LIVE_READ64);
261f4664
KKD
6239 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6240 * be sure that whether stack slot is written to or not. Hence,
6241 * we must still conservatively propagate reads upwards even if
6242 * helper may write to the entire memory range.
6243 */
17a52670 6244 }
2011fccf 6245 return update_stack_depth(env, state, min_off);
17a52670
AS
6246}
6247
06c1c049
GB
6248static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6249 int access_size, bool zero_size_allowed,
6250 struct bpf_call_arg_meta *meta)
6251{
638f5b90 6252 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 6253 u32 *max_access;
06c1c049 6254
20b2aff4 6255 switch (base_type(reg->type)) {
06c1c049 6256 case PTR_TO_PACKET:
de8f3a83 6257 case PTR_TO_PACKET_META:
9fd29c08
YS
6258 return check_packet_access(env, regno, reg->off, access_size,
6259 zero_size_allowed);
69c087ba 6260 case PTR_TO_MAP_KEY:
7b3552d3
KKD
6261 if (meta && meta->raw_mode) {
6262 verbose(env, "R%d cannot write into %s\n", regno,
6263 reg_type_str(env, reg->type));
6264 return -EACCES;
6265 }
69c087ba
YS
6266 return check_mem_region_access(env, regno, reg->off, access_size,
6267 reg->map_ptr->key_size, false);
06c1c049 6268 case PTR_TO_MAP_VALUE:
591fe988
DB
6269 if (check_map_access_type(env, regno, reg->off, access_size,
6270 meta && meta->raw_mode ? BPF_WRITE :
6271 BPF_READ))
6272 return -EACCES;
9fd29c08 6273 return check_map_access(env, regno, reg->off, access_size,
61df10c7 6274 zero_size_allowed, ACCESS_HELPER);
457f4436 6275 case PTR_TO_MEM:
97e6d7da
KKD
6276 if (type_is_rdonly_mem(reg->type)) {
6277 if (meta && meta->raw_mode) {
6278 verbose(env, "R%d cannot write into %s\n", regno,
6279 reg_type_str(env, reg->type));
6280 return -EACCES;
6281 }
6282 }
457f4436
AN
6283 return check_mem_region_access(env, regno, reg->off,
6284 access_size, reg->mem_size,
6285 zero_size_allowed);
20b2aff4
HL
6286 case PTR_TO_BUF:
6287 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
6288 if (meta && meta->raw_mode) {
6289 verbose(env, "R%d cannot write into %s\n", regno,
6290 reg_type_str(env, reg->type));
20b2aff4 6291 return -EACCES;
97e6d7da 6292 }
20b2aff4 6293
20b2aff4
HL
6294 max_access = &env->prog->aux->max_rdonly_access;
6295 } else {
20b2aff4
HL
6296 max_access = &env->prog->aux->max_rdwr_access;
6297 }
afbf21dc
YS
6298 return check_buffer_access(env, reg, regno, reg->off,
6299 access_size, zero_size_allowed,
44e9a741 6300 max_access);
0d004c02 6301 case PTR_TO_STACK:
01f810ac
AM
6302 return check_stack_range_initialized(
6303 env,
6304 regno, reg->off, access_size,
6305 zero_size_allowed, ACCESS_HELPER, meta);
15baa55f
BT
6306 case PTR_TO_CTX:
6307 /* in case the function doesn't know how to access the context,
6308 * (because we are in a program of type SYSCALL for example), we
6309 * can not statically check its size.
6310 * Dynamically check it now.
6311 */
6312 if (!env->ops->convert_ctx_access) {
6313 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6314 int offset = access_size - 1;
6315
6316 /* Allow zero-byte read from PTR_TO_CTX */
6317 if (access_size == 0)
6318 return zero_size_allowed ? 0 : -EACCES;
6319
6320 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6321 atype, -1, false);
6322 }
6323
6324 fallthrough;
0d004c02
LB
6325 default: /* scalar_value or invalid ptr */
6326 /* Allow zero-byte read from NULL, regardless of pointer type */
6327 if (zero_size_allowed && access_size == 0 &&
6328 register_is_null(reg))
6329 return 0;
6330
c25b2ae1
HL
6331 verbose(env, "R%d type=%s ", regno,
6332 reg_type_str(env, reg->type));
6333 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 6334 return -EACCES;
06c1c049
GB
6335 }
6336}
6337
d583691c
KKD
6338static int check_mem_size_reg(struct bpf_verifier_env *env,
6339 struct bpf_reg_state *reg, u32 regno,
6340 bool zero_size_allowed,
6341 struct bpf_call_arg_meta *meta)
6342{
6343 int err;
6344
6345 /* This is used to refine r0 return value bounds for helpers
6346 * that enforce this value as an upper bound on return values.
6347 * See do_refine_retval_range() for helpers that can refine
6348 * the return value. C type of helper is u32 so we pull register
6349 * bound from umax_value however, if negative verifier errors
6350 * out. Only upper bounds can be learned because retval is an
6351 * int type and negative retvals are allowed.
6352 */
be77354a 6353 meta->msize_max_value = reg->umax_value;
d583691c
KKD
6354
6355 /* The register is SCALAR_VALUE; the access check
6356 * happens using its boundaries.
6357 */
6358 if (!tnum_is_const(reg->var_off))
6359 /* For unprivileged variable accesses, disable raw
6360 * mode so that the program is required to
6361 * initialize all the memory that the helper could
6362 * just partially fill up.
6363 */
6364 meta = NULL;
6365
6366 if (reg->smin_value < 0) {
6367 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6368 regno);
6369 return -EACCES;
6370 }
6371
6372 if (reg->umin_value == 0) {
6373 err = check_helper_mem_access(env, regno - 1, 0,
6374 zero_size_allowed,
6375 meta);
6376 if (err)
6377 return err;
6378 }
6379
6380 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6381 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6382 regno);
6383 return -EACCES;
6384 }
6385 err = check_helper_mem_access(env, regno - 1,
6386 reg->umax_value,
6387 zero_size_allowed, meta);
6388 if (!err)
6389 err = mark_chain_precision(env, regno);
6390 return err;
6391}
6392
e5069b9c
DB
6393int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6394 u32 regno, u32 mem_size)
6395{
be77354a
KKD
6396 bool may_be_null = type_may_be_null(reg->type);
6397 struct bpf_reg_state saved_reg;
6398 struct bpf_call_arg_meta meta;
6399 int err;
6400
e5069b9c
DB
6401 if (register_is_null(reg))
6402 return 0;
6403
be77354a
KKD
6404 memset(&meta, 0, sizeof(meta));
6405 /* Assuming that the register contains a value check if the memory
6406 * access is safe. Temporarily save and restore the register's state as
6407 * the conversion shouldn't be visible to a caller.
6408 */
6409 if (may_be_null) {
6410 saved_reg = *reg;
e5069b9c 6411 mark_ptr_not_null_reg(reg);
e5069b9c
DB
6412 }
6413
be77354a
KKD
6414 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6415 /* Check access for BPF_WRITE */
6416 meta.raw_mode = true;
6417 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6418
6419 if (may_be_null)
6420 *reg = saved_reg;
6421
6422 return err;
e5069b9c
DB
6423}
6424
00b85860
KKD
6425static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6426 u32 regno)
d583691c
KKD
6427{
6428 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6429 bool may_be_null = type_may_be_null(mem_reg->type);
6430 struct bpf_reg_state saved_reg;
be77354a 6431 struct bpf_call_arg_meta meta;
d583691c
KKD
6432 int err;
6433
6434 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6435
be77354a
KKD
6436 memset(&meta, 0, sizeof(meta));
6437
d583691c
KKD
6438 if (may_be_null) {
6439 saved_reg = *mem_reg;
6440 mark_ptr_not_null_reg(mem_reg);
6441 }
6442
be77354a
KKD
6443 err = check_mem_size_reg(env, reg, regno, true, &meta);
6444 /* Check access for BPF_WRITE */
6445 meta.raw_mode = true;
6446 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
6447
6448 if (may_be_null)
6449 *mem_reg = saved_reg;
6450 return err;
6451}
6452
d83525ca 6453/* Implementation details:
4e814da0
KKD
6454 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6455 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 6456 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
6457 * Two separate bpf_obj_new will also have different reg->id.
6458 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6459 * clears reg->id after value_or_null->value transition, since the verifier only
6460 * cares about the range of access to valid map value pointer and doesn't care
6461 * about actual address of the map element.
d83525ca
AS
6462 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6463 * reg->id > 0 after value_or_null->value transition. By doing so
6464 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
6465 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6466 * returned from bpf_obj_new.
d83525ca
AS
6467 * The verifier allows taking only one bpf_spin_lock at a time to avoid
6468 * dead-locks.
6469 * Since only one bpf_spin_lock is allowed the checks are simpler than
6470 * reg_is_refcounted() logic. The verifier needs to remember only
6471 * one spin_lock instead of array of acquired_refs.
d0d78c1d 6472 * cur_state->active_lock remembers which map value element or allocated
4e814da0 6473 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
6474 */
6475static int process_spin_lock(struct bpf_verifier_env *env, int regno,
6476 bool is_lock)
6477{
6478 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6479 struct bpf_verifier_state *cur = env->cur_state;
6480 bool is_const = tnum_is_const(reg->var_off);
d83525ca 6481 u64 val = reg->var_off.value;
4e814da0
KKD
6482 struct bpf_map *map = NULL;
6483 struct btf *btf = NULL;
6484 struct btf_record *rec;
d83525ca 6485
d83525ca
AS
6486 if (!is_const) {
6487 verbose(env,
6488 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
6489 regno);
6490 return -EINVAL;
6491 }
4e814da0
KKD
6492 if (reg->type == PTR_TO_MAP_VALUE) {
6493 map = reg->map_ptr;
6494 if (!map->btf) {
6495 verbose(env,
6496 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
6497 map->name);
6498 return -EINVAL;
6499 }
6500 } else {
6501 btf = reg->btf;
d83525ca 6502 }
4e814da0
KKD
6503
6504 rec = reg_btf_record(reg);
6505 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6506 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6507 map ? map->name : "kptr");
d83525ca
AS
6508 return -EINVAL;
6509 }
4e814da0 6510 if (rec->spin_lock_off != val + reg->off) {
db559117 6511 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 6512 val + reg->off, rec->spin_lock_off);
d83525ca
AS
6513 return -EINVAL;
6514 }
6515 if (is_lock) {
d0d78c1d 6516 if (cur->active_lock.ptr) {
d83525ca
AS
6517 verbose(env,
6518 "Locking two bpf_spin_locks are not allowed\n");
6519 return -EINVAL;
6520 }
d0d78c1d
KKD
6521 if (map)
6522 cur->active_lock.ptr = map;
6523 else
6524 cur->active_lock.ptr = btf;
6525 cur->active_lock.id = reg->id;
d83525ca 6526 } else {
d0d78c1d
KKD
6527 void *ptr;
6528
6529 if (map)
6530 ptr = map;
6531 else
6532 ptr = btf;
6533
6534 if (!cur->active_lock.ptr) {
d83525ca
AS
6535 verbose(env, "bpf_spin_unlock without taking a lock\n");
6536 return -EINVAL;
6537 }
d0d78c1d
KKD
6538 if (cur->active_lock.ptr != ptr ||
6539 cur->active_lock.id != reg->id) {
d83525ca
AS
6540 verbose(env, "bpf_spin_unlock of different lock\n");
6541 return -EINVAL;
6542 }
534e86bc 6543
6a3cd331 6544 invalidate_non_owning_refs(env);
534e86bc 6545
6a3cd331
DM
6546 cur->active_lock.ptr = NULL;
6547 cur->active_lock.id = 0;
d83525ca
AS
6548 }
6549 return 0;
6550}
6551
b00628b1
AS
6552static int process_timer_func(struct bpf_verifier_env *env, int regno,
6553 struct bpf_call_arg_meta *meta)
6554{
6555 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6556 bool is_const = tnum_is_const(reg->var_off);
6557 struct bpf_map *map = reg->map_ptr;
6558 u64 val = reg->var_off.value;
6559
6560 if (!is_const) {
6561 verbose(env,
6562 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6563 regno);
6564 return -EINVAL;
6565 }
6566 if (!map->btf) {
6567 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6568 map->name);
6569 return -EINVAL;
6570 }
db559117
KKD
6571 if (!btf_record_has_field(map->record, BPF_TIMER)) {
6572 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
6573 return -EINVAL;
6574 }
db559117 6575 if (map->record->timer_off != val + reg->off) {
68134668 6576 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 6577 val + reg->off, map->record->timer_off);
b00628b1
AS
6578 return -EINVAL;
6579 }
6580 if (meta->map_ptr) {
6581 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6582 return -EFAULT;
6583 }
3e8ce298 6584 meta->map_uid = reg->map_uid;
b00628b1
AS
6585 meta->map_ptr = map;
6586 return 0;
6587}
6588
c0a5a21c
KKD
6589static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6590 struct bpf_call_arg_meta *meta)
6591{
6592 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 6593 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 6594 struct btf_field *kptr_field;
c0a5a21c 6595 u32 kptr_off;
c0a5a21c
KKD
6596
6597 if (!tnum_is_const(reg->var_off)) {
6598 verbose(env,
6599 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6600 regno);
6601 return -EINVAL;
6602 }
6603 if (!map_ptr->btf) {
6604 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6605 map_ptr->name);
6606 return -EINVAL;
6607 }
aa3496ac
KKD
6608 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6609 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
6610 return -EINVAL;
6611 }
6612
6613 meta->map_ptr = map_ptr;
6614 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
6615 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6616 if (!kptr_field) {
c0a5a21c
KKD
6617 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6618 return -EACCES;
6619 }
aa3496ac 6620 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
6621 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6622 return -EACCES;
6623 }
aa3496ac 6624 meta->kptr_field = kptr_field;
c0a5a21c
KKD
6625 return 0;
6626}
6627
27060531
KKD
6628/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6629 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6630 *
6631 * In both cases we deal with the first 8 bytes, but need to mark the next 8
6632 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6633 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6634 *
6635 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6636 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6637 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6638 * mutate the view of the dynptr and also possibly destroy it. In the latter
6639 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6640 * memory that dynptr points to.
6641 *
6642 * The verifier will keep track both levels of mutation (bpf_dynptr's in
6643 * reg->type and the memory's in reg->dynptr.type), but there is no support for
6644 * readonly dynptr view yet, hence only the first case is tracked and checked.
6645 *
6646 * This is consistent with how C applies the const modifier to a struct object,
6647 * where the pointer itself inside bpf_dynptr becomes const but not what it
6648 * points to.
6649 *
6650 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6651 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6652 */
1d18feb2
JK
6653static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
6654 enum bpf_arg_type arg_type)
6b75bd3d
KKD
6655{
6656 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1d18feb2 6657 int err;
6b75bd3d 6658
27060531
KKD
6659 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6660 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6661 */
6662 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6663 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6664 return -EFAULT;
6665 }
79168a66 6666
27060531
KKD
6667 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
6668 * constructing a mutable bpf_dynptr object.
6669 *
6670 * Currently, this is only possible with PTR_TO_STACK
6671 * pointing to a region of at least 16 bytes which doesn't
6672 * contain an existing bpf_dynptr.
6673 *
6674 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6675 * mutated or destroyed. However, the memory it points to
6676 * may be mutated.
6677 *
6678 * None - Points to a initialized dynptr that can be mutated and
6679 * destroyed, including mutation of the memory it points
6680 * to.
6b75bd3d 6681 */
6b75bd3d 6682 if (arg_type & MEM_UNINIT) {
1d18feb2
JK
6683 int i;
6684
7e0dac28 6685 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6b75bd3d
KKD
6686 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6687 return -EINVAL;
6688 }
6689
1d18feb2
JK
6690 /* we write BPF_DW bits (8 bytes) at a time */
6691 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
6692 err = check_mem_access(env, insn_idx, regno,
6693 i, BPF_DW, BPF_WRITE, -1, false);
6694 if (err)
6695 return err;
6b75bd3d
KKD
6696 }
6697
1d18feb2 6698 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx);
27060531
KKD
6699 } else /* MEM_RDONLY and None case from above */ {
6700 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6701 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6702 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6703 return -EINVAL;
6704 }
6705
7e0dac28 6706 if (!is_dynptr_reg_valid_init(env, reg)) {
6b75bd3d
KKD
6707 verbose(env,
6708 "Expected an initialized dynptr as arg #%d\n",
6709 regno);
6710 return -EINVAL;
6711 }
6712
27060531
KKD
6713 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6714 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6b75bd3d
KKD
6715 verbose(env,
6716 "Expected a dynptr of type %s as arg #%d\n",
d54e0f6c 6717 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
6b75bd3d
KKD
6718 return -EINVAL;
6719 }
d6fefa11
KKD
6720
6721 err = mark_dynptr_read(env, reg);
6b75bd3d 6722 }
1d18feb2 6723 return err;
6b75bd3d
KKD
6724}
6725
06accc87
AN
6726static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
6727{
6728 struct bpf_func_state *state = func(env, reg);
6729
6730 return state->stack[spi].spilled_ptr.ref_obj_id;
6731}
6732
6733static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6734{
6735 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
6736}
6737
6738static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6739{
6740 return meta->kfunc_flags & KF_ITER_NEW;
6741}
6742
6743static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6744{
6745 return meta->kfunc_flags & KF_ITER_NEXT;
6746}
6747
6748static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6749{
6750 return meta->kfunc_flags & KF_ITER_DESTROY;
6751}
6752
6753static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
6754{
6755 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
6756 * kfunc is iter state pointer
6757 */
6758 return arg == 0 && is_iter_kfunc(meta);
6759}
6760
6761static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
6762 struct bpf_kfunc_call_arg_meta *meta)
6763{
6764 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6765 const struct btf_type *t;
6766 const struct btf_param *arg;
6767 int spi, err, i, nr_slots;
6768 u32 btf_id;
6769
6770 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
6771 arg = &btf_params(meta->func_proto)[0];
6772 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
6773 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
6774 nr_slots = t->size / BPF_REG_SIZE;
6775
6776 spi = iter_get_spi(env, reg, nr_slots);
6777 if (spi < 0 && spi != -ERANGE)
6778 return spi;
6779
6780 meta->iter.spi = spi;
6781 meta->iter.frameno = reg->frameno;
6782
6783 if (is_iter_new_kfunc(meta)) {
6784 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
6785 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
6786 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
6787 iter_type_str(meta->btf, btf_id), regno);
6788 return -EINVAL;
6789 }
6790
6791 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
6792 err = check_mem_access(env, insn_idx, regno,
6793 i, BPF_DW, BPF_WRITE, -1, false);
6794 if (err)
6795 return err;
6796 }
6797
6798 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
6799 if (err)
6800 return err;
6801 } else {
6802 /* iter_next() or iter_destroy() expect initialized iter state*/
6803 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
6804 verbose(env, "expected an initialized iter_%s as arg #%d\n",
6805 iter_type_str(meta->btf, btf_id), regno);
6806 return -EINVAL;
6807 }
6808
6809 err = mark_iter_read(env, reg, spi, nr_slots);
6810 if (err)
6811 return err;
6812
6813 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
6814
6815 if (is_iter_destroy_kfunc(meta)) {
6816 err = unmark_stack_slots_iter(env, reg, nr_slots);
6817 if (err)
6818 return err;
6819 }
6820 }
6821
6822 return 0;
6823}
6824
6825/* process_iter_next_call() is called when verifier gets to iterator's next
6826 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
6827 * to it as just "iter_next()" in comments below.
6828 *
6829 * BPF verifier relies on a crucial contract for any iter_next()
6830 * implementation: it should *eventually* return NULL, and once that happens
6831 * it should keep returning NULL. That is, once iterator exhausts elements to
6832 * iterate, it should never reset or spuriously return new elements.
6833 *
6834 * With the assumption of such contract, process_iter_next_call() simulates
6835 * a fork in the verifier state to validate loop logic correctness and safety
6836 * without having to simulate infinite amount of iterations.
6837 *
6838 * In current state, we first assume that iter_next() returned NULL and
6839 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
6840 * conditions we should not form an infinite loop and should eventually reach
6841 * exit.
6842 *
6843 * Besides that, we also fork current state and enqueue it for later
6844 * verification. In a forked state we keep iterator state as ACTIVE
6845 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
6846 * also bump iteration depth to prevent erroneous infinite loop detection
6847 * later on (see iter_active_depths_differ() comment for details). In this
6848 * state we assume that we'll eventually loop back to another iter_next()
6849 * calls (it could be in exactly same location or in some other instruction,
6850 * it doesn't matter, we don't make any unnecessary assumptions about this,
6851 * everything revolves around iterator state in a stack slot, not which
6852 * instruction is calling iter_next()). When that happens, we either will come
6853 * to iter_next() with equivalent state and can conclude that next iteration
6854 * will proceed in exactly the same way as we just verified, so it's safe to
6855 * assume that loop converges. If not, we'll go on another iteration
6856 * simulation with a different input state, until all possible starting states
6857 * are validated or we reach maximum number of instructions limit.
6858 *
6859 * This way, we will either exhaustively discover all possible input states
6860 * that iterator loop can start with and eventually will converge, or we'll
6861 * effectively regress into bounded loop simulation logic and either reach
6862 * maximum number of instructions if loop is not provably convergent, or there
6863 * is some statically known limit on number of iterations (e.g., if there is
6864 * an explicit `if n > 100 then break;` statement somewhere in the loop).
6865 *
6866 * One very subtle but very important aspect is that we *always* simulate NULL
6867 * condition first (as the current state) before we simulate non-NULL case.
6868 * This has to do with intricacies of scalar precision tracking. By simulating
6869 * "exit condition" of iter_next() returning NULL first, we make sure all the
6870 * relevant precision marks *that will be set **after** we exit iterator loop*
6871 * are propagated backwards to common parent state of NULL and non-NULL
6872 * branches. Thanks to that, state equivalence checks done later in forked
6873 * state, when reaching iter_next() for ACTIVE iterator, can assume that
6874 * precision marks are finalized and won't change. Because simulating another
6875 * ACTIVE iterator iteration won't change them (because given same input
6876 * states we'll end up with exactly same output states which we are currently
6877 * comparing; and verification after the loop already propagated back what
6878 * needs to be **additionally** tracked as precise). It's subtle, grok
6879 * precision tracking for more intuitive understanding.
6880 */
6881static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
6882 struct bpf_kfunc_call_arg_meta *meta)
6883{
6884 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
6885 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
6886 struct bpf_reg_state *cur_iter, *queued_iter;
6887 int iter_frameno = meta->iter.frameno;
6888 int iter_spi = meta->iter.spi;
6889
6890 BTF_TYPE_EMIT(struct bpf_iter);
6891
6892 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6893
6894 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
6895 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
6896 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
6897 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
6898 return -EFAULT;
6899 }
6900
6901 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
6902 /* branch out active iter state */
6903 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
6904 if (!queued_st)
6905 return -ENOMEM;
6906
6907 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6908 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
6909 queued_iter->iter.depth++;
6910
6911 queued_fr = queued_st->frame[queued_st->curframe];
6912 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
6913 }
6914
6915 /* switch to DRAINED state, but keep the depth unchanged */
6916 /* mark current iter state as drained and assume returned NULL */
6917 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
6918 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
6919
6920 return 0;
6921}
6922
90133415
DB
6923static bool arg_type_is_mem_size(enum bpf_arg_type type)
6924{
6925 return type == ARG_CONST_SIZE ||
6926 type == ARG_CONST_SIZE_OR_ZERO;
6927}
6928
8f14852e
KKD
6929static bool arg_type_is_release(enum bpf_arg_type type)
6930{
6931 return type & OBJ_RELEASE;
6932}
6933
97e03f52
JK
6934static bool arg_type_is_dynptr(enum bpf_arg_type type)
6935{
6936 return base_type(type) == ARG_PTR_TO_DYNPTR;
6937}
6938
57c3bb72
AI
6939static int int_ptr_type_to_size(enum bpf_arg_type type)
6940{
6941 if (type == ARG_PTR_TO_INT)
6942 return sizeof(u32);
6943 else if (type == ARG_PTR_TO_LONG)
6944 return sizeof(u64);
6945
6946 return -EINVAL;
6947}
6948
912f442c
LB
6949static int resolve_map_arg_type(struct bpf_verifier_env *env,
6950 const struct bpf_call_arg_meta *meta,
6951 enum bpf_arg_type *arg_type)
6952{
6953 if (!meta->map_ptr) {
6954 /* kernel subsystem misconfigured verifier */
6955 verbose(env, "invalid map_ptr to access map->type\n");
6956 return -EACCES;
6957 }
6958
6959 switch (meta->map_ptr->map_type) {
6960 case BPF_MAP_TYPE_SOCKMAP:
6961 case BPF_MAP_TYPE_SOCKHASH:
6962 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 6963 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
6964 } else {
6965 verbose(env, "invalid arg_type for sockmap/sockhash\n");
6966 return -EINVAL;
6967 }
6968 break;
9330986c
JK
6969 case BPF_MAP_TYPE_BLOOM_FILTER:
6970 if (meta->func_id == BPF_FUNC_map_peek_elem)
6971 *arg_type = ARG_PTR_TO_MAP_VALUE;
6972 break;
912f442c
LB
6973 default:
6974 break;
6975 }
6976 return 0;
6977}
6978
f79e7ea5
LB
6979struct bpf_reg_types {
6980 const enum bpf_reg_type types[10];
1df8f55a 6981 u32 *btf_id;
f79e7ea5
LB
6982};
6983
f79e7ea5
LB
6984static const struct bpf_reg_types sock_types = {
6985 .types = {
6986 PTR_TO_SOCK_COMMON,
6987 PTR_TO_SOCKET,
6988 PTR_TO_TCP_SOCK,
6989 PTR_TO_XDP_SOCK,
6990 },
6991};
6992
49a2a4d4 6993#ifdef CONFIG_NET
1df8f55a
MKL
6994static const struct bpf_reg_types btf_id_sock_common_types = {
6995 .types = {
6996 PTR_TO_SOCK_COMMON,
6997 PTR_TO_SOCKET,
6998 PTR_TO_TCP_SOCK,
6999 PTR_TO_XDP_SOCK,
7000 PTR_TO_BTF_ID,
3f00c523 7001 PTR_TO_BTF_ID | PTR_TRUSTED,
1df8f55a
MKL
7002 },
7003 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7004};
49a2a4d4 7005#endif
1df8f55a 7006
f79e7ea5
LB
7007static const struct bpf_reg_types mem_types = {
7008 .types = {
7009 PTR_TO_STACK,
7010 PTR_TO_PACKET,
7011 PTR_TO_PACKET_META,
69c087ba 7012 PTR_TO_MAP_KEY,
f79e7ea5
LB
7013 PTR_TO_MAP_VALUE,
7014 PTR_TO_MEM,
894f2a8b 7015 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 7016 PTR_TO_BUF,
f79e7ea5
LB
7017 },
7018};
7019
7020static const struct bpf_reg_types int_ptr_types = {
7021 .types = {
7022 PTR_TO_STACK,
7023 PTR_TO_PACKET,
7024 PTR_TO_PACKET_META,
69c087ba 7025 PTR_TO_MAP_KEY,
f79e7ea5
LB
7026 PTR_TO_MAP_VALUE,
7027 },
7028};
7029
4e814da0
KKD
7030static const struct bpf_reg_types spin_lock_types = {
7031 .types = {
7032 PTR_TO_MAP_VALUE,
7033 PTR_TO_BTF_ID | MEM_ALLOC,
7034 }
7035};
7036
f79e7ea5
LB
7037static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7038static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7039static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 7040static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5 7041static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
3f00c523
DV
7042static const struct bpf_reg_types btf_ptr_types = {
7043 .types = {
7044 PTR_TO_BTF_ID,
7045 PTR_TO_BTF_ID | PTR_TRUSTED,
fca1aa75 7046 PTR_TO_BTF_ID | MEM_RCU,
3f00c523
DV
7047 },
7048};
7049static const struct bpf_reg_types percpu_btf_ptr_types = {
7050 .types = {
7051 PTR_TO_BTF_ID | MEM_PERCPU,
7052 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7053 }
7054};
69c087ba
YS
7055static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7056static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 7057static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 7058static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 7059static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
7060static const struct bpf_reg_types dynptr_types = {
7061 .types = {
7062 PTR_TO_STACK,
27060531 7063 CONST_PTR_TO_DYNPTR,
20571567
DV
7064 }
7065};
f79e7ea5 7066
0789e13b 7067static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
7068 [ARG_PTR_TO_MAP_KEY] = &mem_types,
7069 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
7070 [ARG_CONST_SIZE] = &scalar_types,
7071 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
7072 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
7073 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
7074 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 7075 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 7076#ifdef CONFIG_NET
1df8f55a 7077 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 7078#endif
f79e7ea5 7079 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
7080 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
7081 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
7082 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 7083 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
7084 [ARG_PTR_TO_INT] = &int_ptr_types,
7085 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 7086 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 7087 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 7088 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 7089 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 7090 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 7091 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 7092 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
7093};
7094
7095static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 7096 enum bpf_arg_type arg_type,
c0a5a21c
KKD
7097 const u32 *arg_btf_id,
7098 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
7099{
7100 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7101 enum bpf_reg_type expected, type = reg->type;
a968d5e2 7102 const struct bpf_reg_types *compatible;
f79e7ea5
LB
7103 int i, j;
7104
48946bd6 7105 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
7106 if (!compatible) {
7107 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7108 return -EFAULT;
7109 }
7110
216e3cd2
HL
7111 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7112 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7113 *
7114 * Same for MAYBE_NULL:
7115 *
7116 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7117 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7118 *
7119 * Therefore we fold these flags depending on the arg_type before comparison.
7120 */
7121 if (arg_type & MEM_RDONLY)
7122 type &= ~MEM_RDONLY;
7123 if (arg_type & PTR_MAYBE_NULL)
7124 type &= ~PTR_MAYBE_NULL;
7125
f79e7ea5
LB
7126 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7127 expected = compatible->types[i];
7128 if (expected == NOT_INIT)
7129 break;
7130
7131 if (type == expected)
a968d5e2 7132 goto found;
f79e7ea5
LB
7133 }
7134
216e3cd2 7135 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 7136 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
7137 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7138 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 7139 return -EACCES;
a968d5e2
MKL
7140
7141found:
da03e43a
KKD
7142 if (base_type(reg->type) != PTR_TO_BTF_ID)
7143 return 0;
7144
7145 switch ((int)reg->type) {
7146 case PTR_TO_BTF_ID:
7147 case PTR_TO_BTF_ID | PTR_TRUSTED:
7148 case PTR_TO_BTF_ID | MEM_RCU:
7149 {
2ab3b380
KKD
7150 /* For bpf_sk_release, it needs to match against first member
7151 * 'struct sock_common', hence make an exception for it. This
7152 * allows bpf_sk_release to work for multiple socket types.
7153 */
7154 bool strict_type_match = arg_type_is_release(arg_type) &&
7155 meta->func_id != BPF_FUNC_sk_release;
7156
1df8f55a
MKL
7157 if (!arg_btf_id) {
7158 if (!compatible->btf_id) {
7159 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7160 return -EFAULT;
7161 }
7162 arg_btf_id = compatible->btf_id;
7163 }
7164
c0a5a21c 7165 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 7166 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 7167 return -EACCES;
47e34cb7
DM
7168 } else {
7169 if (arg_btf_id == BPF_PTR_POISON) {
7170 verbose(env, "verifier internal error:");
7171 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7172 regno);
7173 return -EACCES;
7174 }
7175
7176 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7177 btf_vmlinux, *arg_btf_id,
7178 strict_type_match)) {
7179 verbose(env, "R%d is of type %s but %s is expected\n",
b32a5dae
DM
7180 regno, btf_type_name(reg->btf, reg->btf_id),
7181 btf_type_name(btf_vmlinux, *arg_btf_id));
47e34cb7
DM
7182 return -EACCES;
7183 }
a968d5e2 7184 }
da03e43a
KKD
7185 break;
7186 }
7187 case PTR_TO_BTF_ID | MEM_ALLOC:
4e814da0
KKD
7188 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
7189 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7190 return -EFAULT;
7191 }
da03e43a
KKD
7192 /* Handled by helper specific checks */
7193 break;
7194 case PTR_TO_BTF_ID | MEM_PERCPU:
7195 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7196 /* Handled by helper specific checks */
7197 break;
7198 default:
7199 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7200 return -EFAULT;
a968d5e2 7201 }
a968d5e2 7202 return 0;
f79e7ea5
LB
7203}
7204
6a3cd331
DM
7205static struct btf_field *
7206reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7207{
7208 struct btf_field *field;
7209 struct btf_record *rec;
7210
7211 rec = reg_btf_record(reg);
7212 if (!rec)
7213 return NULL;
7214
7215 field = btf_record_find(rec, off, fields);
7216 if (!field)
7217 return NULL;
7218
7219 return field;
7220}
7221
25b35dd2
KKD
7222int check_func_arg_reg_off(struct bpf_verifier_env *env,
7223 const struct bpf_reg_state *reg, int regno,
8f14852e 7224 enum bpf_arg_type arg_type)
25b35dd2 7225{
184c9bdb 7226 u32 type = reg->type;
25b35dd2 7227
184c9bdb
KKD
7228 /* When referenced register is passed to release function, its fixed
7229 * offset must be 0.
7230 *
7231 * We will check arg_type_is_release reg has ref_obj_id when storing
7232 * meta->release_regno.
7233 */
7234 if (arg_type_is_release(arg_type)) {
7235 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7236 * may not directly point to the object being released, but to
7237 * dynptr pointing to such object, which might be at some offset
7238 * on the stack. In that case, we simply to fallback to the
7239 * default handling.
7240 */
7241 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7242 return 0;
6a3cd331
DM
7243
7244 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7245 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7246 return __check_ptr_off_reg(env, reg, regno, true);
7247
7248 verbose(env, "R%d must have zero offset when passed to release func\n",
7249 regno);
7250 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
b32a5dae 7251 btf_type_name(reg->btf, reg->btf_id), reg->off);
6a3cd331
DM
7252 return -EINVAL;
7253 }
7254
184c9bdb
KKD
7255 /* Doing check_ptr_off_reg check for the offset will catch this
7256 * because fixed_off_ok is false, but checking here allows us
7257 * to give the user a better error message.
7258 */
7259 if (reg->off) {
7260 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7261 regno);
7262 return -EINVAL;
7263 }
7264 return __check_ptr_off_reg(env, reg, regno, false);
7265 }
7266
7267 switch (type) {
7268 /* Pointer types where both fixed and variable offset is explicitly allowed: */
97e03f52 7269 case PTR_TO_STACK:
25b35dd2
KKD
7270 case PTR_TO_PACKET:
7271 case PTR_TO_PACKET_META:
7272 case PTR_TO_MAP_KEY:
7273 case PTR_TO_MAP_VALUE:
7274 case PTR_TO_MEM:
7275 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 7276 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
7277 case PTR_TO_BUF:
7278 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 7279 case SCALAR_VALUE:
184c9bdb 7280 return 0;
25b35dd2
KKD
7281 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7282 * fixed offset.
7283 */
7284 case PTR_TO_BTF_ID:
282de143 7285 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 7286 case PTR_TO_BTF_ID | PTR_TRUSTED:
fca1aa75 7287 case PTR_TO_BTF_ID | MEM_RCU:
6a3cd331 7288 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
24d5bb80 7289 /* When referenced PTR_TO_BTF_ID is passed to release function,
184c9bdb
KKD
7290 * its fixed offset must be 0. In the other cases, fixed offset
7291 * can be non-zero. This was already checked above. So pass
7292 * fixed_off_ok as true to allow fixed offset for all other
7293 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7294 * still need to do checks instead of returning.
24d5bb80 7295 */
184c9bdb 7296 return __check_ptr_off_reg(env, reg, regno, true);
25b35dd2 7297 default:
184c9bdb 7298 return __check_ptr_off_reg(env, reg, regno, false);
25b35dd2 7299 }
25b35dd2
KKD
7300}
7301
485ec51e
JK
7302static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7303 const struct bpf_func_proto *fn,
7304 struct bpf_reg_state *regs)
7305{
7306 struct bpf_reg_state *state = NULL;
7307 int i;
7308
7309 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7310 if (arg_type_is_dynptr(fn->arg_type[i])) {
7311 if (state) {
7312 verbose(env, "verifier internal error: multiple dynptr args\n");
7313 return NULL;
7314 }
7315 state = &regs[BPF_REG_1 + i];
7316 }
7317
7318 if (!state)
7319 verbose(env, "verifier internal error: no dynptr arg found\n");
7320
7321 return state;
7322}
7323
f8064ab9 7324static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
7325{
7326 struct bpf_func_state *state = func(env, reg);
27060531 7327 int spi;
34d4ef57 7328
27060531 7329 if (reg->type == CONST_PTR_TO_DYNPTR)
f8064ab9
KKD
7330 return reg->id;
7331 spi = dynptr_get_spi(env, reg);
7332 if (spi < 0)
7333 return spi;
7334 return state->stack[spi].spilled_ptr.id;
7335}
7336
79168a66 7337static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
7338{
7339 struct bpf_func_state *state = func(env, reg);
27060531 7340 int spi;
27060531 7341
27060531
KKD
7342 if (reg->type == CONST_PTR_TO_DYNPTR)
7343 return reg->ref_obj_id;
79168a66
KKD
7344 spi = dynptr_get_spi(env, reg);
7345 if (spi < 0)
7346 return spi;
27060531 7347 return state->stack[spi].spilled_ptr.ref_obj_id;
34d4ef57
JK
7348}
7349
b5964b96
JK
7350static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7351 struct bpf_reg_state *reg)
7352{
7353 struct bpf_func_state *state = func(env, reg);
7354 int spi;
7355
7356 if (reg->type == CONST_PTR_TO_DYNPTR)
7357 return reg->dynptr.type;
7358
7359 spi = __get_spi(reg->off);
7360 if (spi < 0) {
7361 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7362 return BPF_DYNPTR_TYPE_INVALID;
7363 }
7364
7365 return state->stack[spi].spilled_ptr.dynptr.type;
7366}
7367
af7ec138
YS
7368static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7369 struct bpf_call_arg_meta *meta,
1d18feb2
JK
7370 const struct bpf_func_proto *fn,
7371 int insn_idx)
17a52670 7372{
af7ec138 7373 u32 regno = BPF_REG_1 + arg;
638f5b90 7374 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 7375 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 7376 enum bpf_reg_type type = reg->type;
508362ac 7377 u32 *arg_btf_id = NULL;
17a52670
AS
7378 int err = 0;
7379
80f1d68c 7380 if (arg_type == ARG_DONTCARE)
17a52670
AS
7381 return 0;
7382
dc503a8a
EC
7383 err = check_reg_arg(env, regno, SRC_OP);
7384 if (err)
7385 return err;
17a52670 7386
1be7f75d
AS
7387 if (arg_type == ARG_ANYTHING) {
7388 if (is_pointer_value(env, regno)) {
61bd5218
JK
7389 verbose(env, "R%d leaks addr into helper function\n",
7390 regno);
1be7f75d
AS
7391 return -EACCES;
7392 }
80f1d68c 7393 return 0;
1be7f75d 7394 }
80f1d68c 7395
de8f3a83 7396 if (type_is_pkt_pointer(type) &&
3a0af8fd 7397 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 7398 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
7399 return -EACCES;
7400 }
7401
16d1e00c 7402 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
7403 err = resolve_map_arg_type(env, meta, &arg_type);
7404 if (err)
7405 return err;
7406 }
7407
48946bd6 7408 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
7409 /* A NULL register has a SCALAR_VALUE type, so skip
7410 * type checking.
7411 */
7412 goto skip_type_check;
7413
508362ac 7414 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
7415 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7416 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
7417 arg_btf_id = fn->arg_btf_id[arg];
7418
7419 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
7420 if (err)
7421 return err;
7422
8f14852e 7423 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
7424 if (err)
7425 return err;
d7b9454a 7426
fd1b0d60 7427skip_type_check:
8f14852e 7428 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
7429 if (arg_type_is_dynptr(arg_type)) {
7430 struct bpf_func_state *state = func(env, reg);
27060531 7431 int spi;
bc34dee6 7432
27060531
KKD
7433 /* Only dynptr created on stack can be released, thus
7434 * the get_spi and stack state checks for spilled_ptr
7435 * should only be done before process_dynptr_func for
7436 * PTR_TO_STACK.
7437 */
7438 if (reg->type == PTR_TO_STACK) {
79168a66 7439 spi = dynptr_get_spi(env, reg);
f5b625e5 7440 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
27060531
KKD
7441 verbose(env, "arg %d is an unacquired reference\n", regno);
7442 return -EINVAL;
7443 }
7444 } else {
7445 verbose(env, "cannot release unowned const bpf_dynptr\n");
bc34dee6
JK
7446 return -EINVAL;
7447 }
7448 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
7449 verbose(env, "R%d must be referenced when passed to release function\n",
7450 regno);
7451 return -EINVAL;
7452 }
7453 if (meta->release_regno) {
7454 verbose(env, "verifier internal error: more than one release argument\n");
7455 return -EFAULT;
7456 }
7457 meta->release_regno = regno;
7458 }
7459
02f7c958 7460 if (reg->ref_obj_id) {
457f4436
AN
7461 if (meta->ref_obj_id) {
7462 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
7463 regno, reg->ref_obj_id,
7464 meta->ref_obj_id);
7465 return -EFAULT;
7466 }
7467 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
7468 }
7469
8ab4cdcf
JK
7470 switch (base_type(arg_type)) {
7471 case ARG_CONST_MAP_PTR:
17a52670 7472 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
7473 if (meta->map_ptr) {
7474 /* Use map_uid (which is unique id of inner map) to reject:
7475 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
7476 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
7477 * if (inner_map1 && inner_map2) {
7478 * timer = bpf_map_lookup_elem(inner_map1);
7479 * if (timer)
7480 * // mismatch would have been allowed
7481 * bpf_timer_init(timer, inner_map2);
7482 * }
7483 *
7484 * Comparing map_ptr is enough to distinguish normal and outer maps.
7485 */
7486 if (meta->map_ptr != reg->map_ptr ||
7487 meta->map_uid != reg->map_uid) {
7488 verbose(env,
7489 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
7490 meta->map_uid, reg->map_uid);
7491 return -EINVAL;
7492 }
b00628b1 7493 }
33ff9823 7494 meta->map_ptr = reg->map_ptr;
3e8ce298 7495 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
7496 break;
7497 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
7498 /* bpf_map_xxx(..., map_ptr, ..., key) call:
7499 * check that [key, key + map->key_size) are within
7500 * stack limits and initialized
7501 */
33ff9823 7502 if (!meta->map_ptr) {
17a52670
AS
7503 /* in function declaration map_ptr must come before
7504 * map_key, so that it's verified and known before
7505 * we have to check map_key here. Otherwise it means
7506 * that kernel subsystem misconfigured verifier
7507 */
61bd5218 7508 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
7509 return -EACCES;
7510 }
d71962f3
PC
7511 err = check_helper_mem_access(env, regno,
7512 meta->map_ptr->key_size, false,
7513 NULL);
8ab4cdcf
JK
7514 break;
7515 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
7516 if (type_may_be_null(arg_type) && register_is_null(reg))
7517 return 0;
7518
17a52670
AS
7519 /* bpf_map_xxx(..., map_ptr, ..., value) call:
7520 * check [value, value + map->value_size) validity
7521 */
33ff9823 7522 if (!meta->map_ptr) {
17a52670 7523 /* kernel subsystem misconfigured verifier */
61bd5218 7524 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
7525 return -EACCES;
7526 }
16d1e00c 7527 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
7528 err = check_helper_mem_access(env, regno,
7529 meta->map_ptr->value_size, false,
2ea864c5 7530 meta);
8ab4cdcf
JK
7531 break;
7532 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
7533 if (!reg->btf_id) {
7534 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
7535 return -EACCES;
7536 }
22dc4a0f 7537 meta->ret_btf = reg->btf;
eaa6bcb7 7538 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
7539 break;
7540 case ARG_PTR_TO_SPIN_LOCK:
5d92ddc3
DM
7541 if (in_rbtree_lock_required_cb(env)) {
7542 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
7543 return -EACCES;
7544 }
c18f0b6a 7545 if (meta->func_id == BPF_FUNC_spin_lock) {
ac50fe51
KKD
7546 err = process_spin_lock(env, regno, true);
7547 if (err)
7548 return err;
c18f0b6a 7549 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
ac50fe51
KKD
7550 err = process_spin_lock(env, regno, false);
7551 if (err)
7552 return err;
c18f0b6a
LB
7553 } else {
7554 verbose(env, "verifier internal error\n");
7555 return -EFAULT;
7556 }
8ab4cdcf
JK
7557 break;
7558 case ARG_PTR_TO_TIMER:
ac50fe51
KKD
7559 err = process_timer_func(env, regno, meta);
7560 if (err)
7561 return err;
8ab4cdcf
JK
7562 break;
7563 case ARG_PTR_TO_FUNC:
69c087ba 7564 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
7565 break;
7566 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
7567 /* The access to this pointer is only checked when we hit the
7568 * next is_mem_size argument below.
7569 */
16d1e00c 7570 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
7571 if (arg_type & MEM_FIXED_SIZE) {
7572 err = check_helper_mem_access(env, regno,
7573 fn->arg_size[arg], false,
7574 meta);
7575 }
8ab4cdcf
JK
7576 break;
7577 case ARG_CONST_SIZE:
7578 err = check_mem_size_reg(env, reg, regno, false, meta);
7579 break;
7580 case ARG_CONST_SIZE_OR_ZERO:
7581 err = check_mem_size_reg(env, reg, regno, true, meta);
7582 break;
7583 case ARG_PTR_TO_DYNPTR:
1d18feb2 7584 err = process_dynptr_func(env, regno, insn_idx, arg_type);
ac50fe51
KKD
7585 if (err)
7586 return err;
8ab4cdcf
JK
7587 break;
7588 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 7589 if (!tnum_is_const(reg->var_off)) {
28a8add6 7590 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
7591 regno);
7592 return -EACCES;
7593 }
7594 meta->mem_size = reg->var_off.value;
2fc31465
KKD
7595 err = mark_chain_precision(env, regno);
7596 if (err)
7597 return err;
8ab4cdcf
JK
7598 break;
7599 case ARG_PTR_TO_INT:
7600 case ARG_PTR_TO_LONG:
7601 {
57c3bb72
AI
7602 int size = int_ptr_type_to_size(arg_type);
7603
7604 err = check_helper_mem_access(env, regno, size, false, meta);
7605 if (err)
7606 return err;
7607 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
7608 break;
7609 }
7610 case ARG_PTR_TO_CONST_STR:
7611 {
fff13c4b
FR
7612 struct bpf_map *map = reg->map_ptr;
7613 int map_off;
7614 u64 map_addr;
7615 char *str_ptr;
7616
a8fad73e 7617 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
7618 verbose(env, "R%d does not point to a readonly map'\n", regno);
7619 return -EACCES;
7620 }
7621
7622 if (!tnum_is_const(reg->var_off)) {
7623 verbose(env, "R%d is not a constant address'\n", regno);
7624 return -EACCES;
7625 }
7626
7627 if (!map->ops->map_direct_value_addr) {
7628 verbose(env, "no direct value access support for this map type\n");
7629 return -EACCES;
7630 }
7631
7632 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
7633 map->value_size - reg->off, false,
7634 ACCESS_HELPER);
fff13c4b
FR
7635 if (err)
7636 return err;
7637
7638 map_off = reg->off + reg->var_off.value;
7639 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
7640 if (err) {
7641 verbose(env, "direct value access on string failed\n");
7642 return err;
7643 }
7644
7645 str_ptr = (char *)(long)(map_addr);
7646 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
7647 verbose(env, "string is not zero-terminated\n");
7648 return -EINVAL;
7649 }
8ab4cdcf
JK
7650 break;
7651 }
7652 case ARG_PTR_TO_KPTR:
ac50fe51
KKD
7653 err = process_kptr_func(env, regno, meta);
7654 if (err)
7655 return err;
8ab4cdcf 7656 break;
17a52670
AS
7657 }
7658
7659 return err;
7660}
7661
0126240f
LB
7662static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
7663{
7664 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 7665 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
7666
7667 if (func_id != BPF_FUNC_map_update_elem)
7668 return false;
7669
7670 /* It's not possible to get access to a locked struct sock in these
7671 * contexts, so updating is safe.
7672 */
7673 switch (type) {
7674 case BPF_PROG_TYPE_TRACING:
7675 if (eatype == BPF_TRACE_ITER)
7676 return true;
7677 break;
7678 case BPF_PROG_TYPE_SOCKET_FILTER:
7679 case BPF_PROG_TYPE_SCHED_CLS:
7680 case BPF_PROG_TYPE_SCHED_ACT:
7681 case BPF_PROG_TYPE_XDP:
7682 case BPF_PROG_TYPE_SK_REUSEPORT:
7683 case BPF_PROG_TYPE_FLOW_DISSECTOR:
7684 case BPF_PROG_TYPE_SK_LOOKUP:
7685 return true;
7686 default:
7687 break;
7688 }
7689
7690 verbose(env, "cannot update sockmap in this context\n");
7691 return false;
7692}
7693
e411901c
MF
7694static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
7695{
95acd881
TA
7696 return env->prog->jit_requested &&
7697 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
7698}
7699
61bd5218
JK
7700static int check_map_func_compatibility(struct bpf_verifier_env *env,
7701 struct bpf_map *map, int func_id)
35578d79 7702{
35578d79
KX
7703 if (!map)
7704 return 0;
7705
6aff67c8
AS
7706 /* We need a two way check, first is from map perspective ... */
7707 switch (map->map_type) {
7708 case BPF_MAP_TYPE_PROG_ARRAY:
7709 if (func_id != BPF_FUNC_tail_call)
7710 goto error;
7711 break;
7712 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
7713 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 7714 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 7715 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
7716 func_id != BPF_FUNC_perf_event_read_value &&
7717 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
7718 goto error;
7719 break;
457f4436
AN
7720 case BPF_MAP_TYPE_RINGBUF:
7721 if (func_id != BPF_FUNC_ringbuf_output &&
7722 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
7723 func_id != BPF_FUNC_ringbuf_query &&
7724 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
7725 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
7726 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
7727 goto error;
7728 break;
583c1f42 7729 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
7730 if (func_id != BPF_FUNC_user_ringbuf_drain)
7731 goto error;
7732 break;
6aff67c8
AS
7733 case BPF_MAP_TYPE_STACK_TRACE:
7734 if (func_id != BPF_FUNC_get_stackid)
7735 goto error;
7736 break;
4ed8ec52 7737 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 7738 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 7739 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
7740 goto error;
7741 break;
cd339431 7742 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 7743 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
7744 if (func_id != BPF_FUNC_get_local_storage)
7745 goto error;
7746 break;
546ac1ff 7747 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 7748 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
7749 if (func_id != BPF_FUNC_redirect_map &&
7750 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
7751 goto error;
7752 break;
fbfc504a
BT
7753 /* Restrict bpf side of cpumap and xskmap, open when use-cases
7754 * appear.
7755 */
6710e112
JDB
7756 case BPF_MAP_TYPE_CPUMAP:
7757 if (func_id != BPF_FUNC_redirect_map)
7758 goto error;
7759 break;
fada7fdc
JL
7760 case BPF_MAP_TYPE_XSKMAP:
7761 if (func_id != BPF_FUNC_redirect_map &&
7762 func_id != BPF_FUNC_map_lookup_elem)
7763 goto error;
7764 break;
56f668df 7765 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 7766 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
7767 if (func_id != BPF_FUNC_map_lookup_elem)
7768 goto error;
16a43625 7769 break;
174a79ff
JF
7770 case BPF_MAP_TYPE_SOCKMAP:
7771 if (func_id != BPF_FUNC_sk_redirect_map &&
7772 func_id != BPF_FUNC_sock_map_update &&
4f738adb 7773 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 7774 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 7775 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
7776 func_id != BPF_FUNC_map_lookup_elem &&
7777 !may_update_sockmap(env, func_id))
174a79ff
JF
7778 goto error;
7779 break;
81110384
JF
7780 case BPF_MAP_TYPE_SOCKHASH:
7781 if (func_id != BPF_FUNC_sk_redirect_hash &&
7782 func_id != BPF_FUNC_sock_hash_update &&
7783 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 7784 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 7785 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
7786 func_id != BPF_FUNC_map_lookup_elem &&
7787 !may_update_sockmap(env, func_id))
81110384
JF
7788 goto error;
7789 break;
2dbb9b9e
MKL
7790 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7791 if (func_id != BPF_FUNC_sk_select_reuseport)
7792 goto error;
7793 break;
f1a2e44a
MV
7794 case BPF_MAP_TYPE_QUEUE:
7795 case BPF_MAP_TYPE_STACK:
7796 if (func_id != BPF_FUNC_map_peek_elem &&
7797 func_id != BPF_FUNC_map_pop_elem &&
7798 func_id != BPF_FUNC_map_push_elem)
7799 goto error;
7800 break;
6ac99e8f
MKL
7801 case BPF_MAP_TYPE_SK_STORAGE:
7802 if (func_id != BPF_FUNC_sk_storage_get &&
9db44fdd
KKD
7803 func_id != BPF_FUNC_sk_storage_delete &&
7804 func_id != BPF_FUNC_kptr_xchg)
6ac99e8f
MKL
7805 goto error;
7806 break;
8ea63684
KS
7807 case BPF_MAP_TYPE_INODE_STORAGE:
7808 if (func_id != BPF_FUNC_inode_storage_get &&
9db44fdd
KKD
7809 func_id != BPF_FUNC_inode_storage_delete &&
7810 func_id != BPF_FUNC_kptr_xchg)
8ea63684
KS
7811 goto error;
7812 break;
4cf1bc1f
KS
7813 case BPF_MAP_TYPE_TASK_STORAGE:
7814 if (func_id != BPF_FUNC_task_storage_get &&
9db44fdd
KKD
7815 func_id != BPF_FUNC_task_storage_delete &&
7816 func_id != BPF_FUNC_kptr_xchg)
4cf1bc1f
KS
7817 goto error;
7818 break;
c4bcfb38
YS
7819 case BPF_MAP_TYPE_CGRP_STORAGE:
7820 if (func_id != BPF_FUNC_cgrp_storage_get &&
9db44fdd
KKD
7821 func_id != BPF_FUNC_cgrp_storage_delete &&
7822 func_id != BPF_FUNC_kptr_xchg)
c4bcfb38
YS
7823 goto error;
7824 break;
9330986c
JK
7825 case BPF_MAP_TYPE_BLOOM_FILTER:
7826 if (func_id != BPF_FUNC_map_peek_elem &&
7827 func_id != BPF_FUNC_map_push_elem)
7828 goto error;
7829 break;
6aff67c8
AS
7830 default:
7831 break;
7832 }
7833
7834 /* ... and second from the function itself. */
7835 switch (func_id) {
7836 case BPF_FUNC_tail_call:
7837 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7838 goto error;
e411901c
MF
7839 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7840 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
7841 return -EINVAL;
7842 }
6aff67c8
AS
7843 break;
7844 case BPF_FUNC_perf_event_read:
7845 case BPF_FUNC_perf_event_output:
908432ca 7846 case BPF_FUNC_perf_event_read_value:
a7658e1a 7847 case BPF_FUNC_skb_output:
d831ee84 7848 case BPF_FUNC_xdp_output:
6aff67c8
AS
7849 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7850 goto error;
7851 break;
5b029a32
DB
7852 case BPF_FUNC_ringbuf_output:
7853 case BPF_FUNC_ringbuf_reserve:
7854 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
7855 case BPF_FUNC_ringbuf_reserve_dynptr:
7856 case BPF_FUNC_ringbuf_submit_dynptr:
7857 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
7858 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7859 goto error;
7860 break;
20571567
DV
7861 case BPF_FUNC_user_ringbuf_drain:
7862 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7863 goto error;
7864 break;
6aff67c8
AS
7865 case BPF_FUNC_get_stackid:
7866 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7867 goto error;
7868 break;
60d20f91 7869 case BPF_FUNC_current_task_under_cgroup:
747ea55e 7870 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
7871 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7872 goto error;
7873 break;
97f91a7c 7874 case BPF_FUNC_redirect_map:
9c270af3 7875 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 7876 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
7877 map->map_type != BPF_MAP_TYPE_CPUMAP &&
7878 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
7879 goto error;
7880 break;
174a79ff 7881 case BPF_FUNC_sk_redirect_map:
4f738adb 7882 case BPF_FUNC_msg_redirect_map:
81110384 7883 case BPF_FUNC_sock_map_update:
174a79ff
JF
7884 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7885 goto error;
7886 break;
81110384
JF
7887 case BPF_FUNC_sk_redirect_hash:
7888 case BPF_FUNC_msg_redirect_hash:
7889 case BPF_FUNC_sock_hash_update:
7890 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
7891 goto error;
7892 break;
cd339431 7893 case BPF_FUNC_get_local_storage:
b741f163
RG
7894 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7895 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
7896 goto error;
7897 break;
2dbb9b9e 7898 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
7899 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7900 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7901 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
7902 goto error;
7903 break;
f1a2e44a 7904 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
7905 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7906 map->map_type != BPF_MAP_TYPE_STACK)
7907 goto error;
7908 break;
9330986c
JK
7909 case BPF_FUNC_map_peek_elem:
7910 case BPF_FUNC_map_push_elem:
7911 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7912 map->map_type != BPF_MAP_TYPE_STACK &&
7913 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
7914 goto error;
7915 break;
07343110
FZ
7916 case BPF_FUNC_map_lookup_percpu_elem:
7917 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
7918 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7919 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
7920 goto error;
7921 break;
6ac99e8f
MKL
7922 case BPF_FUNC_sk_storage_get:
7923 case BPF_FUNC_sk_storage_delete:
7924 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
7925 goto error;
7926 break;
8ea63684
KS
7927 case BPF_FUNC_inode_storage_get:
7928 case BPF_FUNC_inode_storage_delete:
7929 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
7930 goto error;
7931 break;
4cf1bc1f
KS
7932 case BPF_FUNC_task_storage_get:
7933 case BPF_FUNC_task_storage_delete:
7934 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
7935 goto error;
7936 break;
c4bcfb38
YS
7937 case BPF_FUNC_cgrp_storage_get:
7938 case BPF_FUNC_cgrp_storage_delete:
7939 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
7940 goto error;
7941 break;
6aff67c8
AS
7942 default:
7943 break;
35578d79
KX
7944 }
7945
7946 return 0;
6aff67c8 7947error:
61bd5218 7948 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 7949 map->map_type, func_id_name(func_id), func_id);
6aff67c8 7950 return -EINVAL;
35578d79
KX
7951}
7952
90133415 7953static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
7954{
7955 int count = 0;
7956
39f19ebb 7957 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7958 count++;
39f19ebb 7959 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7960 count++;
39f19ebb 7961 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7962 count++;
39f19ebb 7963 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7964 count++;
39f19ebb 7965 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
7966 count++;
7967
90133415
DB
7968 /* We only support one arg being in raw mode at the moment,
7969 * which is sufficient for the helper functions we have
7970 * right now.
7971 */
7972 return count <= 1;
7973}
7974
508362ac 7975static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 7976{
508362ac
MM
7977 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
7978 bool has_size = fn->arg_size[arg] != 0;
7979 bool is_next_size = false;
7980
7981 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
7982 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
7983
7984 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
7985 return is_next_size;
7986
7987 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
7988}
7989
7990static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
7991{
7992 /* bpf_xxx(..., buf, len) call will access 'len'
7993 * bytes from memory 'buf'. Both arg types need
7994 * to be paired, so make sure there's no buggy
7995 * helper function specification.
7996 */
7997 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
7998 check_args_pair_invalid(fn, 0) ||
7999 check_args_pair_invalid(fn, 1) ||
8000 check_args_pair_invalid(fn, 2) ||
8001 check_args_pair_invalid(fn, 3) ||
8002 check_args_pair_invalid(fn, 4))
90133415
DB
8003 return false;
8004
8005 return true;
8006}
8007
9436ef6e
LB
8008static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8009{
8010 int i;
8011
1df8f55a 8012 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
8013 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8014 return !!fn->arg_btf_id[i];
8015 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8016 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
8017 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8018 /* arg_btf_id and arg_size are in a union. */
8019 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8020 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
8021 return false;
8022 }
8023
9436ef6e
LB
8024 return true;
8025}
8026
0c9a7a7e 8027static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
8028{
8029 return check_raw_mode_ok(fn) &&
fd978bf7 8030 check_arg_pair_ok(fn) &&
b2d8ef19 8031 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
8032}
8033
de8f3a83
DB
8034/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8035 * are now invalid, so turn them into unknown SCALAR_VALUE.
66e3a13e
JK
8036 *
8037 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8038 * since these slices point to packet data.
f1174f77 8039 */
b239da34 8040static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 8041{
b239da34
KKD
8042 struct bpf_func_state *state;
8043 struct bpf_reg_state *reg;
969bf05e 8044
b239da34 8045 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
66e3a13e 8046 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
dbd8d228 8047 mark_reg_invalid(env, reg);
b239da34 8048 }));
f4d7e40a
AS
8049}
8050
6d94e741
AS
8051enum {
8052 AT_PKT_END = -1,
8053 BEYOND_PKT_END = -2,
8054};
8055
8056static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8057{
8058 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8059 struct bpf_reg_state *reg = &state->regs[regn];
8060
8061 if (reg->type != PTR_TO_PACKET)
8062 /* PTR_TO_PACKET_META is not supported yet */
8063 return;
8064
8065 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8066 * How far beyond pkt_end it goes is unknown.
8067 * if (!range_open) it's the case of pkt >= pkt_end
8068 * if (range_open) it's the case of pkt > pkt_end
8069 * hence this pointer is at least 1 byte bigger than pkt_end
8070 */
8071 if (range_open)
8072 reg->range = BEYOND_PKT_END;
8073 else
8074 reg->range = AT_PKT_END;
8075}
8076
fd978bf7
JS
8077/* The pointer with the specified id has released its reference to kernel
8078 * resources. Identify all copies of the same pointer and clear the reference.
8079 */
8080static int release_reference(struct bpf_verifier_env *env,
1b986589 8081 int ref_obj_id)
fd978bf7 8082{
b239da34
KKD
8083 struct bpf_func_state *state;
8084 struct bpf_reg_state *reg;
1b986589 8085 int err;
fd978bf7 8086
1b986589
MKL
8087 err = release_reference_state(cur_func(env), ref_obj_id);
8088 if (err)
8089 return err;
8090
b239da34 8091 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
dbd8d228
KKD
8092 if (reg->ref_obj_id == ref_obj_id)
8093 mark_reg_invalid(env, reg);
b239da34 8094 }));
fd978bf7 8095
1b986589 8096 return 0;
fd978bf7
JS
8097}
8098
6a3cd331
DM
8099static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8100{
8101 struct bpf_func_state *unused;
8102 struct bpf_reg_state *reg;
8103
8104 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8105 if (type_is_non_owning_ref(reg->type))
dbd8d228 8106 mark_reg_invalid(env, reg);
6a3cd331
DM
8107 }));
8108}
8109
51c39bb1
AS
8110static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8111 struct bpf_reg_state *regs)
8112{
8113 int i;
8114
8115 /* after the call registers r0 - r5 were scratched */
8116 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8117 mark_reg_not_init(env, regs, caller_saved[i]);
8118 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8119 }
8120}
8121
14351375
YS
8122typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8123 struct bpf_func_state *caller,
8124 struct bpf_func_state *callee,
8125 int insn_idx);
8126
be2ef816
AN
8127static int set_callee_state(struct bpf_verifier_env *env,
8128 struct bpf_func_state *caller,
8129 struct bpf_func_state *callee, int insn_idx);
8130
5d92ddc3
DM
8131static bool is_callback_calling_kfunc(u32 btf_id);
8132
14351375
YS
8133static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8134 int *insn_idx, int subprog,
8135 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
8136{
8137 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 8138 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 8139 struct bpf_func_state *caller, *callee;
14351375 8140 int err;
51c39bb1 8141 bool is_global = false;
f4d7e40a 8142
aada9ce6 8143 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 8144 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 8145 state->curframe + 2);
f4d7e40a
AS
8146 return -E2BIG;
8147 }
8148
f4d7e40a
AS
8149 caller = state->frame[state->curframe];
8150 if (state->frame[state->curframe + 1]) {
8151 verbose(env, "verifier bug. Frame %d already allocated\n",
8152 state->curframe + 1);
8153 return -EFAULT;
8154 }
8155
51c39bb1
AS
8156 func_info_aux = env->prog->aux->func_info_aux;
8157 if (func_info_aux)
8158 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 8159 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
8160 if (err == -EFAULT)
8161 return err;
8162 if (is_global) {
8163 if (err) {
8164 verbose(env, "Caller passes invalid args into func#%d\n",
8165 subprog);
8166 return err;
8167 } else {
8168 if (env->log.level & BPF_LOG_LEVEL)
8169 verbose(env,
8170 "Func#%d is global and valid. Skipping.\n",
8171 subprog);
8172 clear_caller_saved_regs(env, caller->regs);
8173
45159b27 8174 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 8175 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 8176 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
8177
8178 /* continue with next insn after call */
8179 return 0;
8180 }
8181 }
8182
be2ef816
AN
8183 /* set_callee_state is used for direct subprog calls, but we are
8184 * interested in validating only BPF helpers that can call subprogs as
8185 * callbacks
8186 */
5d92ddc3
DM
8187 if (set_callee_state_cb != set_callee_state) {
8188 if (bpf_pseudo_kfunc_call(insn) &&
8189 !is_callback_calling_kfunc(insn->imm)) {
8190 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8191 func_id_name(insn->imm), insn->imm);
8192 return -EFAULT;
8193 } else if (!bpf_pseudo_kfunc_call(insn) &&
8194 !is_callback_calling_function(insn->imm)) { /* helper */
8195 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8196 func_id_name(insn->imm), insn->imm);
8197 return -EFAULT;
8198 }
be2ef816
AN
8199 }
8200
bfc6bb74 8201 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 8202 insn->src_reg == 0 &&
bfc6bb74
AS
8203 insn->imm == BPF_FUNC_timer_set_callback) {
8204 struct bpf_verifier_state *async_cb;
8205
8206 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 8207 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
8208 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8209 *insn_idx, subprog);
8210 if (!async_cb)
8211 return -EFAULT;
8212 callee = async_cb->frame[0];
8213 callee->async_entry_cnt = caller->async_entry_cnt + 1;
8214
8215 /* Convert bpf_timer_set_callback() args into timer callback args */
8216 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8217 if (err)
8218 return err;
8219
8220 clear_caller_saved_regs(env, caller->regs);
8221 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8222 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8223 /* continue with next insn after call */
8224 return 0;
8225 }
8226
f4d7e40a
AS
8227 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8228 if (!callee)
8229 return -ENOMEM;
8230 state->frame[state->curframe + 1] = callee;
8231
8232 /* callee cannot access r0, r6 - r9 for reading and has to write
8233 * into its own stack before reading from it.
8234 * callee can read/write into caller's stack
8235 */
8236 init_func_state(env, callee,
8237 /* remember the callsite, it will be used by bpf_exit */
8238 *insn_idx /* callsite */,
8239 state->curframe + 1 /* frameno within this callchain */,
f910cefa 8240 subprog /* subprog number within this prog */);
f4d7e40a 8241
fd978bf7 8242 /* Transfer references to the callee */
c69431aa 8243 err = copy_reference_state(callee, caller);
fd978bf7 8244 if (err)
eb86559a 8245 goto err_out;
fd978bf7 8246
14351375
YS
8247 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8248 if (err)
eb86559a 8249 goto err_out;
f4d7e40a 8250
51c39bb1 8251 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
8252
8253 /* only increment it after check_reg_arg() finished */
8254 state->curframe++;
8255
8256 /* and go analyze first insn of the callee */
14351375 8257 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 8258
06ee7115 8259 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8260 verbose(env, "caller:\n");
0f55f9ed 8261 print_verifier_state(env, caller, true);
f4d7e40a 8262 verbose(env, "callee:\n");
0f55f9ed 8263 print_verifier_state(env, callee, true);
f4d7e40a
AS
8264 }
8265 return 0;
eb86559a
WY
8266
8267err_out:
8268 free_func_state(callee);
8269 state->frame[state->curframe + 1] = NULL;
8270 return err;
f4d7e40a
AS
8271}
8272
314ee05e
YS
8273int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8274 struct bpf_func_state *caller,
8275 struct bpf_func_state *callee)
8276{
8277 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8278 * void *callback_ctx, u64 flags);
8279 * callback_fn(struct bpf_map *map, void *key, void *value,
8280 * void *callback_ctx);
8281 */
8282 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8283
8284 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8285 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8286 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8287
8288 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8289 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8290 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8291
8292 /* pointer to stack or null */
8293 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8294
8295 /* unused */
8296 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8297 return 0;
8298}
8299
14351375
YS
8300static int set_callee_state(struct bpf_verifier_env *env,
8301 struct bpf_func_state *caller,
8302 struct bpf_func_state *callee, int insn_idx)
8303{
8304 int i;
8305
8306 /* copy r1 - r5 args that callee can access. The copy includes parent
8307 * pointers, which connects us up to the liveness chain
8308 */
8309 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8310 callee->regs[i] = caller->regs[i];
8311 return 0;
8312}
8313
8314static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8315 int *insn_idx)
8316{
8317 int subprog, target_insn;
8318
8319 target_insn = *insn_idx + insn->imm + 1;
8320 subprog = find_subprog(env, target_insn);
8321 if (subprog < 0) {
8322 verbose(env, "verifier bug. No program starts at insn %d\n",
8323 target_insn);
8324 return -EFAULT;
8325 }
8326
8327 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8328}
8329
69c087ba
YS
8330static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8331 struct bpf_func_state *caller,
8332 struct bpf_func_state *callee,
8333 int insn_idx)
8334{
8335 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8336 struct bpf_map *map;
8337 int err;
8338
8339 if (bpf_map_ptr_poisoned(insn_aux)) {
8340 verbose(env, "tail_call abusing map_ptr\n");
8341 return -EINVAL;
8342 }
8343
8344 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8345 if (!map->ops->map_set_for_each_callback_args ||
8346 !map->ops->map_for_each_callback) {
8347 verbose(env, "callback function not allowed for map\n");
8348 return -ENOTSUPP;
8349 }
8350
8351 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8352 if (err)
8353 return err;
8354
8355 callee->in_callback_fn = true;
1bfe26fb 8356 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
8357 return 0;
8358}
8359
e6f2dd0f
JK
8360static int set_loop_callback_state(struct bpf_verifier_env *env,
8361 struct bpf_func_state *caller,
8362 struct bpf_func_state *callee,
8363 int insn_idx)
8364{
8365 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8366 * u64 flags);
8367 * callback_fn(u32 index, void *callback_ctx);
8368 */
8369 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8370 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8371
8372 /* unused */
8373 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8374 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8375 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8376
8377 callee->in_callback_fn = true;
1bfe26fb 8378 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
8379 return 0;
8380}
8381
b00628b1
AS
8382static int set_timer_callback_state(struct bpf_verifier_env *env,
8383 struct bpf_func_state *caller,
8384 struct bpf_func_state *callee,
8385 int insn_idx)
8386{
8387 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8388
8389 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8390 * callback_fn(struct bpf_map *map, void *key, void *value);
8391 */
8392 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8393 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8394 callee->regs[BPF_REG_1].map_ptr = map_ptr;
8395
8396 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8397 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8398 callee->regs[BPF_REG_2].map_ptr = map_ptr;
8399
8400 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8401 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8402 callee->regs[BPF_REG_3].map_ptr = map_ptr;
8403
8404 /* unused */
8405 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8406 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 8407 callee->in_async_callback_fn = true;
1bfe26fb 8408 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
8409 return 0;
8410}
8411
7c7e3d31
SL
8412static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8413 struct bpf_func_state *caller,
8414 struct bpf_func_state *callee,
8415 int insn_idx)
8416{
8417 /* bpf_find_vma(struct task_struct *task, u64 addr,
8418 * void *callback_fn, void *callback_ctx, u64 flags)
8419 * (callback_fn)(struct task_struct *task,
8420 * struct vm_area_struct *vma, void *callback_ctx);
8421 */
8422 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8423
8424 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8425 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8426 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 8427 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
8428
8429 /* pointer to stack or null */
8430 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8431
8432 /* unused */
8433 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8434 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8435 callee->in_callback_fn = true;
1bfe26fb 8436 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
8437 return 0;
8438}
8439
20571567
DV
8440static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8441 struct bpf_func_state *caller,
8442 struct bpf_func_state *callee,
8443 int insn_idx)
8444{
8445 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8446 * callback_ctx, u64 flags);
27060531 8447 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
20571567
DV
8448 */
8449 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
f8064ab9 8450 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
20571567
DV
8451 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8452
8453 /* unused */
8454 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8455 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8456 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8457
8458 callee->in_callback_fn = true;
c92a7a52 8459 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
8460 return 0;
8461}
8462
5d92ddc3
DM
8463static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
8464 struct bpf_func_state *caller,
8465 struct bpf_func_state *callee,
8466 int insn_idx)
8467{
8468 /* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
8469 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
8470 *
8471 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset
8472 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
8473 * by this point, so look at 'root'
8474 */
8475 struct btf_field *field;
8476
8477 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
8478 BPF_RB_ROOT);
8479 if (!field || !field->graph_root.value_btf_id)
8480 return -EFAULT;
8481
8482 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
8483 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
8484 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
8485 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
8486
8487 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8488 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8489 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8490 callee->in_callback_fn = true;
8491 callee->callback_ret_range = tnum_range(0, 1);
8492 return 0;
8493}
8494
8495static bool is_rbtree_lock_required_kfunc(u32 btf_id);
8496
8497/* Are we currently verifying the callback for a rbtree helper that must
8498 * be called with lock held? If so, no need to complain about unreleased
8499 * lock
8500 */
8501static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
8502{
8503 struct bpf_verifier_state *state = env->cur_state;
8504 struct bpf_insn *insn = env->prog->insnsi;
8505 struct bpf_func_state *callee;
8506 int kfunc_btf_id;
8507
8508 if (!state->curframe)
8509 return false;
8510
8511 callee = state->frame[state->curframe];
8512
8513 if (!callee->in_callback_fn)
8514 return false;
8515
8516 kfunc_btf_id = insn[callee->callsite].imm;
8517 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
8518}
8519
f4d7e40a
AS
8520static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
8521{
8522 struct bpf_verifier_state *state = env->cur_state;
8523 struct bpf_func_state *caller, *callee;
8524 struct bpf_reg_state *r0;
fd978bf7 8525 int err;
f4d7e40a
AS
8526
8527 callee = state->frame[state->curframe];
8528 r0 = &callee->regs[BPF_REG_0];
8529 if (r0->type == PTR_TO_STACK) {
8530 /* technically it's ok to return caller's stack pointer
8531 * (or caller's caller's pointer) back to the caller,
8532 * since these pointers are valid. Only current stack
8533 * pointer will be invalid as soon as function exits,
8534 * but let's be conservative
8535 */
8536 verbose(env, "cannot return stack pointer to the caller\n");
8537 return -EINVAL;
8538 }
8539
eb86559a 8540 caller = state->frame[state->curframe - 1];
69c087ba
YS
8541 if (callee->in_callback_fn) {
8542 /* enforce R0 return value range [0, 1]. */
1bfe26fb 8543 struct tnum range = callee->callback_ret_range;
69c087ba
YS
8544
8545 if (r0->type != SCALAR_VALUE) {
8546 verbose(env, "R0 not a scalar value\n");
8547 return -EACCES;
8548 }
8549 if (!tnum_in(range, r0->var_off)) {
8550 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
8551 return -EINVAL;
8552 }
8553 } else {
8554 /* return to the caller whatever r0 had in the callee */
8555 caller->regs[BPF_REG_0] = *r0;
8556 }
f4d7e40a 8557
9d9d00ac
KKD
8558 /* callback_fn frame should have released its own additions to parent's
8559 * reference state at this point, or check_reference_leak would
8560 * complain, hence it must be the same as the caller. There is no need
8561 * to copy it back.
8562 */
8563 if (!callee->in_callback_fn) {
8564 /* Transfer references to the caller */
8565 err = copy_reference_state(caller, callee);
8566 if (err)
8567 return err;
8568 }
fd978bf7 8569
f4d7e40a 8570 *insn_idx = callee->callsite + 1;
06ee7115 8571 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8572 verbose(env, "returning from callee:\n");
0f55f9ed 8573 print_verifier_state(env, callee, true);
f4d7e40a 8574 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 8575 print_verifier_state(env, caller, true);
f4d7e40a
AS
8576 }
8577 /* clear everything in the callee */
8578 free_func_state(callee);
eb86559a 8579 state->frame[state->curframe--] = NULL;
f4d7e40a
AS
8580 return 0;
8581}
8582
849fa506
YS
8583static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
8584 int func_id,
8585 struct bpf_call_arg_meta *meta)
8586{
8587 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
8588
8589 if (ret_type != RET_INTEGER ||
8590 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 8591 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
8592 func_id != BPF_FUNC_probe_read_str &&
8593 func_id != BPF_FUNC_probe_read_kernel_str &&
8594 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
8595 return;
8596
10060503 8597 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 8598 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
8599 ret_reg->smin_value = -MAX_ERRNO;
8600 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 8601 reg_bounds_sync(ret_reg);
849fa506
YS
8602}
8603
c93552c4
DB
8604static int
8605record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8606 int func_id, int insn_idx)
8607{
8608 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 8609 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
8610
8611 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
8612 func_id != BPF_FUNC_map_lookup_elem &&
8613 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
8614 func_id != BPF_FUNC_map_delete_elem &&
8615 func_id != BPF_FUNC_map_push_elem &&
8616 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 8617 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 8618 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
8619 func_id != BPF_FUNC_redirect_map &&
8620 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 8621 return 0;
09772d92 8622
591fe988 8623 if (map == NULL) {
c93552c4
DB
8624 verbose(env, "kernel subsystem misconfigured verifier\n");
8625 return -EINVAL;
8626 }
8627
591fe988
DB
8628 /* In case of read-only, some additional restrictions
8629 * need to be applied in order to prevent altering the
8630 * state of the map from program side.
8631 */
8632 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
8633 (func_id == BPF_FUNC_map_delete_elem ||
8634 func_id == BPF_FUNC_map_update_elem ||
8635 func_id == BPF_FUNC_map_push_elem ||
8636 func_id == BPF_FUNC_map_pop_elem)) {
8637 verbose(env, "write into map forbidden\n");
8638 return -EACCES;
8639 }
8640
d2e4c1e6 8641 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 8642 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 8643 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 8644 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 8645 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 8646 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
8647 return 0;
8648}
8649
d2e4c1e6
DB
8650static int
8651record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8652 int func_id, int insn_idx)
8653{
8654 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8655 struct bpf_reg_state *regs = cur_regs(env), *reg;
8656 struct bpf_map *map = meta->map_ptr;
a657182a 8657 u64 val, max;
cc52d914 8658 int err;
d2e4c1e6
DB
8659
8660 if (func_id != BPF_FUNC_tail_call)
8661 return 0;
8662 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
8663 verbose(env, "kernel subsystem misconfigured verifier\n");
8664 return -EINVAL;
8665 }
8666
d2e4c1e6 8667 reg = &regs[BPF_REG_3];
a657182a
DB
8668 val = reg->var_off.value;
8669 max = map->max_entries;
d2e4c1e6 8670
a657182a 8671 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
8672 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8673 return 0;
8674 }
8675
cc52d914
DB
8676 err = mark_chain_precision(env, BPF_REG_3);
8677 if (err)
8678 return err;
d2e4c1e6
DB
8679 if (bpf_map_key_unseen(aux))
8680 bpf_map_key_store(aux, val);
8681 else if (!bpf_map_key_poisoned(aux) &&
8682 bpf_map_key_immediate(aux) != val)
8683 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8684 return 0;
8685}
8686
fd978bf7
JS
8687static int check_reference_leak(struct bpf_verifier_env *env)
8688{
8689 struct bpf_func_state *state = cur_func(env);
9d9d00ac 8690 bool refs_lingering = false;
fd978bf7
JS
8691 int i;
8692
9d9d00ac
KKD
8693 if (state->frameno && !state->in_callback_fn)
8694 return 0;
8695
fd978bf7 8696 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
8697 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
8698 continue;
fd978bf7
JS
8699 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
8700 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 8701 refs_lingering = true;
fd978bf7 8702 }
9d9d00ac 8703 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
8704}
8705
7b15523a
FR
8706static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
8707 struct bpf_reg_state *regs)
8708{
8709 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
8710 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
8711 struct bpf_map *fmt_map = fmt_reg->map_ptr;
78aa1cc9 8712 struct bpf_bprintf_data data = {};
7b15523a
FR
8713 int err, fmt_map_off, num_args;
8714 u64 fmt_addr;
8715 char *fmt;
8716
8717 /* data must be an array of u64 */
8718 if (data_len_reg->var_off.value % 8)
8719 return -EINVAL;
8720 num_args = data_len_reg->var_off.value / 8;
8721
8722 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
8723 * and map_direct_value_addr is set.
8724 */
8725 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
8726 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
8727 fmt_map_off);
8e8ee109
FR
8728 if (err) {
8729 verbose(env, "verifier bug\n");
8730 return -EFAULT;
8731 }
7b15523a
FR
8732 fmt = (char *)(long)fmt_addr + fmt_map_off;
8733
8734 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
8735 * can focus on validating the format specifiers.
8736 */
78aa1cc9 8737 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7b15523a
FR
8738 if (err < 0)
8739 verbose(env, "Invalid format string\n");
8740
8741 return err;
8742}
8743
9b99edca
JO
8744static int check_get_func_ip(struct bpf_verifier_env *env)
8745{
9b99edca
JO
8746 enum bpf_prog_type type = resolve_prog_type(env->prog);
8747 int func_id = BPF_FUNC_get_func_ip;
8748
8749 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 8750 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
8751 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
8752 func_id_name(func_id), func_id);
8753 return -ENOTSUPP;
8754 }
8755 return 0;
9ffd9f3f
JO
8756 } else if (type == BPF_PROG_TYPE_KPROBE) {
8757 return 0;
9b99edca
JO
8758 }
8759
8760 verbose(env, "func %s#%d not supported for program type %d\n",
8761 func_id_name(func_id), func_id, type);
8762 return -ENOTSUPP;
8763}
8764
1ade2371
EZ
8765static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
8766{
8767 return &env->insn_aux_data[env->insn_idx];
8768}
8769
8770static bool loop_flag_is_zero(struct bpf_verifier_env *env)
8771{
8772 struct bpf_reg_state *regs = cur_regs(env);
8773 struct bpf_reg_state *reg = &regs[BPF_REG_4];
8774 bool reg_is_null = register_is_null(reg);
8775
8776 if (reg_is_null)
8777 mark_chain_precision(env, BPF_REG_4);
8778
8779 return reg_is_null;
8780}
8781
8782static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
8783{
8784 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
8785
8786 if (!state->initialized) {
8787 state->initialized = 1;
8788 state->fit_for_inline = loop_flag_is_zero(env);
8789 state->callback_subprogno = subprogno;
8790 return;
8791 }
8792
8793 if (!state->fit_for_inline)
8794 return;
8795
8796 state->fit_for_inline = (loop_flag_is_zero(env) &&
8797 state->callback_subprogno == subprogno);
8798}
8799
69c087ba
YS
8800static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8801 int *insn_idx_p)
17a52670 8802{
aef9d4a3 8803 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 8804 const struct bpf_func_proto *fn = NULL;
3c480732 8805 enum bpf_return_type ret_type;
c25b2ae1 8806 enum bpf_type_flag ret_flag;
638f5b90 8807 struct bpf_reg_state *regs;
33ff9823 8808 struct bpf_call_arg_meta meta;
69c087ba 8809 int insn_idx = *insn_idx_p;
969bf05e 8810 bool changes_data;
69c087ba 8811 int i, err, func_id;
17a52670
AS
8812
8813 /* find function prototype */
69c087ba 8814 func_id = insn->imm;
17a52670 8815 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
8816 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
8817 func_id);
17a52670
AS
8818 return -EINVAL;
8819 }
8820
00176a34 8821 if (env->ops->get_func_proto)
5e43f899 8822 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 8823 if (!fn) {
61bd5218
JK
8824 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
8825 func_id);
17a52670
AS
8826 return -EINVAL;
8827 }
8828
8829 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 8830 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 8831 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
8832 return -EINVAL;
8833 }
8834
eae2e83e
JO
8835 if (fn->allowed && !fn->allowed(env->prog)) {
8836 verbose(env, "helper call is not allowed in probe\n");
8837 return -EINVAL;
8838 }
8839
01685c5b
YS
8840 if (!env->prog->aux->sleepable && fn->might_sleep) {
8841 verbose(env, "helper call might sleep in a non-sleepable prog\n");
8842 return -EINVAL;
8843 }
8844
04514d13 8845 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 8846 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
8847 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
8848 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
8849 func_id_name(func_id), func_id);
8850 return -EINVAL;
8851 }
969bf05e 8852
33ff9823 8853 memset(&meta, 0, sizeof(meta));
36bbef52 8854 meta.pkt_access = fn->pkt_access;
33ff9823 8855
0c9a7a7e 8856 err = check_func_proto(fn, func_id);
435faee1 8857 if (err) {
61bd5218 8858 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 8859 func_id_name(func_id), func_id);
435faee1
DB
8860 return err;
8861 }
8862
9bb00b28
YS
8863 if (env->cur_state->active_rcu_lock) {
8864 if (fn->might_sleep) {
8865 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8866 func_id_name(func_id), func_id);
8867 return -EINVAL;
8868 }
8869
8870 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8871 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8872 }
8873
d83525ca 8874 meta.func_id = func_id;
17a52670 8875 /* check args */
523a4cf4 8876 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
1d18feb2 8877 err = check_func_arg(env, i, &meta, fn, insn_idx);
a7658e1a
AS
8878 if (err)
8879 return err;
8880 }
17a52670 8881
c93552c4
DB
8882 err = record_func_map(env, &meta, func_id, insn_idx);
8883 if (err)
8884 return err;
8885
d2e4c1e6
DB
8886 err = record_func_key(env, &meta, func_id, insn_idx);
8887 if (err)
8888 return err;
8889
435faee1
DB
8890 /* Mark slots with STACK_MISC in case of raw mode, stack offset
8891 * is inferred from register state.
8892 */
8893 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
8894 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8895 BPF_WRITE, -1, false);
435faee1
DB
8896 if (err)
8897 return err;
8898 }
8899
8f14852e
KKD
8900 regs = cur_regs(env);
8901
8902 if (meta.release_regno) {
8903 err = -EINVAL;
27060531
KKD
8904 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8905 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8906 * is safe to do directly.
8907 */
8908 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
8909 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
8910 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
8911 return -EFAULT;
8912 }
97e03f52 8913 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
27060531 8914 } else if (meta.ref_obj_id) {
8f14852e 8915 err = release_reference(env, meta.ref_obj_id);
27060531
KKD
8916 } else if (register_is_null(&regs[meta.release_regno])) {
8917 /* meta.ref_obj_id can only be 0 if register that is meant to be
8918 * released is NULL, which must be > R0.
8919 */
8f14852e 8920 err = 0;
27060531 8921 }
46f8bc92
MKL
8922 if (err) {
8923 verbose(env, "func %s#%d reference has not been acquired before\n",
8924 func_id_name(func_id), func_id);
fd978bf7 8925 return err;
46f8bc92 8926 }
fd978bf7
JS
8927 }
8928
e6f2dd0f
JK
8929 switch (func_id) {
8930 case BPF_FUNC_tail_call:
8931 err = check_reference_leak(env);
8932 if (err) {
8933 verbose(env, "tail_call would lead to reference leak\n");
8934 return err;
8935 }
8936 break;
8937 case BPF_FUNC_get_local_storage:
8938 /* check that flags argument in get_local_storage(map, flags) is 0,
8939 * this is required because get_local_storage() can't return an error.
8940 */
8941 if (!register_is_null(&regs[BPF_REG_2])) {
8942 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
8943 return -EINVAL;
8944 }
8945 break;
8946 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
8947 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8948 set_map_elem_callback_state);
e6f2dd0f
JK
8949 break;
8950 case BPF_FUNC_timer_set_callback:
b00628b1
AS
8951 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8952 set_timer_callback_state);
e6f2dd0f
JK
8953 break;
8954 case BPF_FUNC_find_vma:
7c7e3d31
SL
8955 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8956 set_find_vma_callback_state);
e6f2dd0f
JK
8957 break;
8958 case BPF_FUNC_snprintf:
7b15523a 8959 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
8960 break;
8961 case BPF_FUNC_loop:
1ade2371 8962 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
8963 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8964 set_loop_callback_state);
8965 break;
263ae152
JK
8966 case BPF_FUNC_dynptr_from_mem:
8967 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
8968 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
8969 reg_type_str(env, regs[BPF_REG_1].type));
8970 return -EACCES;
8971 }
69fd337a
SF
8972 break;
8973 case BPF_FUNC_set_retval:
aef9d4a3
SF
8974 if (prog_type == BPF_PROG_TYPE_LSM &&
8975 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
8976 if (!env->prog->aux->attach_func_proto->type) {
8977 /* Make sure programs that attach to void
8978 * hooks don't try to modify return value.
8979 */
8980 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
8981 return -EINVAL;
8982 }
8983 }
8984 break;
88374342 8985 case BPF_FUNC_dynptr_data:
485ec51e
JK
8986 {
8987 struct bpf_reg_state *reg;
8988 int id, ref_obj_id;
20571567 8989
485ec51e
JK
8990 reg = get_dynptr_arg_reg(env, fn, regs);
8991 if (!reg)
8992 return -EFAULT;
f8064ab9 8993
f8064ab9 8994
485ec51e
JK
8995 if (meta.dynptr_id) {
8996 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
8997 return -EFAULT;
88374342 8998 }
485ec51e
JK
8999 if (meta.ref_obj_id) {
9000 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
88374342
JK
9001 return -EFAULT;
9002 }
485ec51e
JK
9003
9004 id = dynptr_id(env, reg);
9005 if (id < 0) {
9006 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9007 return id;
9008 }
9009
9010 ref_obj_id = dynptr_ref_obj_id(env, reg);
9011 if (ref_obj_id < 0) {
9012 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9013 return ref_obj_id;
9014 }
9015
9016 meta.dynptr_id = id;
9017 meta.ref_obj_id = ref_obj_id;
9018
88374342 9019 break;
485ec51e 9020 }
b5964b96
JK
9021 case BPF_FUNC_dynptr_write:
9022 {
9023 enum bpf_dynptr_type dynptr_type;
9024 struct bpf_reg_state *reg;
9025
9026 reg = get_dynptr_arg_reg(env, fn, regs);
9027 if (!reg)
9028 return -EFAULT;
9029
9030 dynptr_type = dynptr_get_type(env, reg);
9031 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9032 return -EFAULT;
9033
9034 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9035 /* this will trigger clear_all_pkt_pointers(), which will
9036 * invalidate all dynptr slices associated with the skb
9037 */
9038 changes_data = true;
9039
9040 break;
9041 }
20571567
DV
9042 case BPF_FUNC_user_ringbuf_drain:
9043 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9044 set_user_ringbuf_callback_state);
9045 break;
7b15523a
FR
9046 }
9047
e6f2dd0f
JK
9048 if (err)
9049 return err;
9050
17a52670 9051 /* reset caller saved regs */
dc503a8a 9052 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9053 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9054 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9055 }
17a52670 9056
5327ed3d
JW
9057 /* helper call returns 64-bit value. */
9058 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9059
dc503a8a 9060 /* update return register (already marked as written above) */
3c480732 9061 ret_type = fn->ret_type;
0c9a7a7e
JK
9062 ret_flag = type_flag(ret_type);
9063
9064 switch (base_type(ret_type)) {
9065 case RET_INTEGER:
f1174f77 9066 /* sets type to SCALAR_VALUE */
61bd5218 9067 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
9068 break;
9069 case RET_VOID:
17a52670 9070 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
9071 break;
9072 case RET_PTR_TO_MAP_VALUE:
f1174f77 9073 /* There is no offset yet applied, variable or fixed */
61bd5218 9074 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
9075 /* remember map_ptr, so that check_map_access()
9076 * can check 'value_size' boundary of memory access
9077 * to map element returned from bpf_map_lookup_elem()
9078 */
33ff9823 9079 if (meta.map_ptr == NULL) {
61bd5218
JK
9080 verbose(env,
9081 "kernel subsystem misconfigured verifier\n");
17a52670
AS
9082 return -EINVAL;
9083 }
33ff9823 9084 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 9085 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
9086 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9087 if (!type_may_be_null(ret_type) &&
db559117 9088 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 9089 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 9090 }
0c9a7a7e
JK
9091 break;
9092 case RET_PTR_TO_SOCKET:
c64b7983 9093 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9094 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
9095 break;
9096 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 9097 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9098 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
9099 break;
9100 case RET_PTR_TO_TCP_SOCK:
655a51e5 9101 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9102 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 9103 break;
2de2669b 9104 case RET_PTR_TO_MEM:
457f4436 9105 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9106 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 9107 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
9108 break;
9109 case RET_PTR_TO_MEM_OR_BTF_ID:
9110 {
eaa6bcb7
HL
9111 const struct btf_type *t;
9112
9113 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 9114 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
9115 if (!btf_type_is_struct(t)) {
9116 u32 tsize;
9117 const struct btf_type *ret;
9118 const char *tname;
9119
9120 /* resolve the type size of ksym. */
22dc4a0f 9121 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 9122 if (IS_ERR(ret)) {
22dc4a0f 9123 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
9124 verbose(env, "unable to resolve the size of type '%s': %ld\n",
9125 tname, PTR_ERR(ret));
9126 return -EINVAL;
9127 }
c25b2ae1 9128 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
9129 regs[BPF_REG_0].mem_size = tsize;
9130 } else {
34d3a78c
HL
9131 /* MEM_RDONLY may be carried from ret_flag, but it
9132 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9133 * it will confuse the check of PTR_TO_BTF_ID in
9134 * check_mem_access().
9135 */
9136 ret_flag &= ~MEM_RDONLY;
9137
c25b2ae1 9138 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 9139 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
9140 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9141 }
0c9a7a7e
JK
9142 break;
9143 }
9144 case RET_PTR_TO_BTF_ID:
9145 {
c0a5a21c 9146 struct btf *ret_btf;
af7ec138
YS
9147 int ret_btf_id;
9148
9149 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9150 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 9151 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
9152 ret_btf = meta.kptr_field->kptr.btf;
9153 ret_btf_id = meta.kptr_field->kptr.btf_id;
c0a5a21c 9154 } else {
47e34cb7
DM
9155 if (fn->ret_btf_id == BPF_PTR_POISON) {
9156 verbose(env, "verifier internal error:");
9157 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9158 func_id_name(func_id));
9159 return -EINVAL;
9160 }
c0a5a21c
KKD
9161 ret_btf = btf_vmlinux;
9162 ret_btf_id = *fn->ret_btf_id;
9163 }
af7ec138 9164 if (ret_btf_id == 0) {
3c480732
HL
9165 verbose(env, "invalid return type %u of func %s#%d\n",
9166 base_type(ret_type), func_id_name(func_id),
9167 func_id);
af7ec138
YS
9168 return -EINVAL;
9169 }
c0a5a21c 9170 regs[BPF_REG_0].btf = ret_btf;
af7ec138 9171 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
9172 break;
9173 }
9174 default:
3c480732
HL
9175 verbose(env, "unknown return type %u of func %s#%d\n",
9176 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
9177 return -EINVAL;
9178 }
04fd61ab 9179
c25b2ae1 9180 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
9181 regs[BPF_REG_0].id = ++env->id_gen;
9182
b2d8ef19
DM
9183 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9184 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9185 func_id_name(func_id), func_id);
9186 return -EFAULT;
9187 }
9188
f8064ab9
KKD
9189 if (is_dynptr_ref_function(func_id))
9190 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9191
88374342 9192 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
9193 /* For release_reference() */
9194 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 9195 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
9196 int id = acquire_reference_state(env, insn_idx);
9197
9198 if (id < 0)
9199 return id;
9200 /* For mark_ptr_or_null_reg() */
9201 regs[BPF_REG_0].id = id;
9202 /* For release_reference() */
9203 regs[BPF_REG_0].ref_obj_id = id;
9204 }
1b986589 9205
849fa506
YS
9206 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9207
61bd5218 9208 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
9209 if (err)
9210 return err;
04fd61ab 9211
fa28dcb8
SL
9212 if ((func_id == BPF_FUNC_get_stack ||
9213 func_id == BPF_FUNC_get_task_stack) &&
9214 !env->prog->has_callchain_buf) {
c195651e
YS
9215 const char *err_str;
9216
9217#ifdef CONFIG_PERF_EVENTS
9218 err = get_callchain_buffers(sysctl_perf_event_max_stack);
9219 err_str = "cannot get callchain buffer for func %s#%d\n";
9220#else
9221 err = -ENOTSUPP;
9222 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9223#endif
9224 if (err) {
9225 verbose(env, err_str, func_id_name(func_id), func_id);
9226 return err;
9227 }
9228
9229 env->prog->has_callchain_buf = true;
9230 }
9231
5d99cb2c
SL
9232 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9233 env->prog->call_get_stack = true;
9234
9b99edca
JO
9235 if (func_id == BPF_FUNC_get_func_ip) {
9236 if (check_get_func_ip(env))
9237 return -ENOTSUPP;
9238 env->prog->call_get_func_ip = true;
9239 }
9240
969bf05e
AS
9241 if (changes_data)
9242 clear_all_pkt_pointers(env);
9243 return 0;
9244}
9245
e6ac2450
MKL
9246/* mark_btf_func_reg_size() is used when the reg size is determined by
9247 * the BTF func_proto's return value size and argument.
9248 */
9249static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9250 size_t reg_size)
9251{
9252 struct bpf_reg_state *reg = &cur_regs(env)[regno];
9253
9254 if (regno == BPF_REG_0) {
9255 /* Function return value */
9256 reg->live |= REG_LIVE_WRITTEN;
9257 reg->subreg_def = reg_size == sizeof(u64) ?
9258 DEF_NOT_SUBREG : env->insn_idx + 1;
9259 } else {
9260 /* Function argument */
9261 if (reg_size == sizeof(u64)) {
9262 mark_insn_zext(env, reg);
9263 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9264 } else {
9265 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9266 }
9267 }
9268}
9269
00b85860
KKD
9270static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9271{
9272 return meta->kfunc_flags & KF_ACQUIRE;
9273}
a5d82727 9274
00b85860
KKD
9275static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
9276{
9277 return meta->kfunc_flags & KF_RET_NULL;
9278}
2357672c 9279
00b85860
KKD
9280static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9281{
9282 return meta->kfunc_flags & KF_RELEASE;
9283}
e6ac2450 9284
00b85860
KKD
9285static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9286{
9287 return meta->kfunc_flags & KF_TRUSTED_ARGS;
9288}
4dd48c6f 9289
00b85860
KKD
9290static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9291{
9292 return meta->kfunc_flags & KF_SLEEPABLE;
9293}
5c073f26 9294
00b85860
KKD
9295static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9296{
9297 return meta->kfunc_flags & KF_DESTRUCTIVE;
9298}
eb1f7f71 9299
fca1aa75
YS
9300static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9301{
9302 return meta->kfunc_flags & KF_RCU;
9303}
9304
00b85860
KKD
9305static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
9306{
9307 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
9308}
e6ac2450 9309
a50388db
KKD
9310static bool __kfunc_param_match_suffix(const struct btf *btf,
9311 const struct btf_param *arg,
9312 const char *suffix)
00b85860 9313{
a50388db 9314 int suffix_len = strlen(suffix), len;
00b85860 9315 const char *param_name;
e6ac2450 9316
00b85860
KKD
9317 /* In the future, this can be ported to use BTF tagging */
9318 param_name = btf_name_by_offset(btf, arg->name_off);
9319 if (str_is_empty(param_name))
9320 return false;
9321 len = strlen(param_name);
a50388db 9322 if (len < suffix_len)
00b85860 9323 return false;
a50388db
KKD
9324 param_name += len - suffix_len;
9325 return !strncmp(param_name, suffix, suffix_len);
9326}
5c073f26 9327
a50388db
KKD
9328static bool is_kfunc_arg_mem_size(const struct btf *btf,
9329 const struct btf_param *arg,
9330 const struct bpf_reg_state *reg)
9331{
9332 const struct btf_type *t;
5c073f26 9333
a50388db
KKD
9334 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9335 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860 9336 return false;
eb1f7f71 9337
a50388db
KKD
9338 return __kfunc_param_match_suffix(btf, arg, "__sz");
9339}
eb1f7f71 9340
66e3a13e
JK
9341static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9342 const struct btf_param *arg,
9343 const struct bpf_reg_state *reg)
9344{
9345 const struct btf_type *t;
9346
9347 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9348 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9349 return false;
9350
9351 return __kfunc_param_match_suffix(btf, arg, "__szk");
9352}
9353
a50388db
KKD
9354static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9355{
9356 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860 9357}
eb1f7f71 9358
958cf2e2
KKD
9359static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9360{
9361 return __kfunc_param_match_suffix(btf, arg, "__ign");
9362}
5c073f26 9363
ac9f0605
KKD
9364static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9365{
9366 return __kfunc_param_match_suffix(btf, arg, "__alloc");
9367}
e6ac2450 9368
d96d937d
JK
9369static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9370{
9371 return __kfunc_param_match_suffix(btf, arg, "__uninit");
9372}
9373
00b85860
KKD
9374static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9375 const struct btf_param *arg,
9376 const char *name)
9377{
9378 int len, target_len = strlen(name);
9379 const char *param_name;
e6ac2450 9380
00b85860
KKD
9381 param_name = btf_name_by_offset(btf, arg->name_off);
9382 if (str_is_empty(param_name))
9383 return false;
9384 len = strlen(param_name);
9385 if (len != target_len)
9386 return false;
9387 if (strcmp(param_name, name))
9388 return false;
e6ac2450 9389
00b85860 9390 return true;
e6ac2450
MKL
9391}
9392
00b85860
KKD
9393enum {
9394 KF_ARG_DYNPTR_ID,
8cab76ec
KKD
9395 KF_ARG_LIST_HEAD_ID,
9396 KF_ARG_LIST_NODE_ID,
cd6791b4
DM
9397 KF_ARG_RB_ROOT_ID,
9398 KF_ARG_RB_NODE_ID,
00b85860 9399};
b03c9f9f 9400
00b85860
KKD
9401BTF_ID_LIST(kf_arg_btf_ids)
9402BTF_ID(struct, bpf_dynptr_kern)
8cab76ec
KKD
9403BTF_ID(struct, bpf_list_head)
9404BTF_ID(struct, bpf_list_node)
bd1279ae
DM
9405BTF_ID(struct, bpf_rb_root)
9406BTF_ID(struct, bpf_rb_node)
b03c9f9f 9407
8cab76ec
KKD
9408static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9409 const struct btf_param *arg, int type)
3f50f132 9410{
00b85860
KKD
9411 const struct btf_type *t;
9412 u32 res_id;
3f50f132 9413
00b85860
KKD
9414 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9415 if (!t)
9416 return false;
9417 if (!btf_type_is_ptr(t))
9418 return false;
9419 t = btf_type_skip_modifiers(btf, t->type, &res_id);
9420 if (!t)
9421 return false;
8cab76ec 9422 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
3f50f132
JF
9423}
9424
8cab76ec 9425static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
b03c9f9f 9426{
8cab76ec 9427 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
969bf05e
AS
9428}
9429
8cab76ec 9430static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
3f50f132 9431{
8cab76ec 9432 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
3f50f132
JF
9433}
9434
8cab76ec 9435static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
bb7f0f98 9436{
8cab76ec 9437 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
00b85860
KKD
9438}
9439
cd6791b4
DM
9440static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9441{
9442 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9443}
9444
9445static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9446{
9447 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9448}
9449
5d92ddc3
DM
9450static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
9451 const struct btf_param *arg)
9452{
9453 const struct btf_type *t;
9454
9455 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
9456 if (!t)
9457 return false;
9458
9459 return true;
9460}
9461
00b85860
KKD
9462/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
9463static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
9464 const struct btf *btf,
9465 const struct btf_type *t, int rec)
9466{
9467 const struct btf_type *member_type;
9468 const struct btf_member *member;
9469 u32 i;
9470
9471 if (!btf_type_is_struct(t))
9472 return false;
9473
9474 for_each_member(i, t, member) {
9475 const struct btf_array *array;
9476
9477 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
9478 if (btf_type_is_struct(member_type)) {
9479 if (rec >= 3) {
9480 verbose(env, "max struct nesting depth exceeded\n");
9481 return false;
9482 }
9483 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
9484 return false;
9485 continue;
9486 }
9487 if (btf_type_is_array(member_type)) {
9488 array = btf_array(member_type);
9489 if (!array->nelems)
9490 return false;
9491 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
9492 if (!btf_type_is_scalar(member_type))
9493 return false;
9494 continue;
9495 }
9496 if (!btf_type_is_scalar(member_type))
9497 return false;
9498 }
9499 return true;
9500}
9501
9502
9503static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
9504#ifdef CONFIG_NET
9505 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
9506 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9507 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9508#endif
9509};
9510
9511enum kfunc_ptr_arg_type {
9512 KF_ARG_PTR_TO_CTX,
ac9f0605 9513 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
00b85860
KKD
9514 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */
9515 KF_ARG_PTR_TO_DYNPTR,
06accc87 9516 KF_ARG_PTR_TO_ITER,
8cab76ec
KKD
9517 KF_ARG_PTR_TO_LIST_HEAD,
9518 KF_ARG_PTR_TO_LIST_NODE,
00b85860
KKD
9519 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
9520 KF_ARG_PTR_TO_MEM,
9521 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
5d92ddc3 9522 KF_ARG_PTR_TO_CALLBACK,
cd6791b4
DM
9523 KF_ARG_PTR_TO_RB_ROOT,
9524 KF_ARG_PTR_TO_RB_NODE,
00b85860
KKD
9525};
9526
ac9f0605
KKD
9527enum special_kfunc_type {
9528 KF_bpf_obj_new_impl,
9529 KF_bpf_obj_drop_impl,
8cab76ec
KKD
9530 KF_bpf_list_push_front,
9531 KF_bpf_list_push_back,
9532 KF_bpf_list_pop_front,
9533 KF_bpf_list_pop_back,
fd264ca0 9534 KF_bpf_cast_to_kern_ctx,
a35b9af4 9535 KF_bpf_rdonly_cast,
9bb00b28
YS
9536 KF_bpf_rcu_read_lock,
9537 KF_bpf_rcu_read_unlock,
bd1279ae
DM
9538 KF_bpf_rbtree_remove,
9539 KF_bpf_rbtree_add,
9540 KF_bpf_rbtree_first,
b5964b96 9541 KF_bpf_dynptr_from_skb,
05421aec 9542 KF_bpf_dynptr_from_xdp,
66e3a13e
JK
9543 KF_bpf_dynptr_slice,
9544 KF_bpf_dynptr_slice_rdwr,
ac9f0605
KKD
9545};
9546
9547BTF_SET_START(special_kfunc_set)
9548BTF_ID(func, bpf_obj_new_impl)
9549BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
9550BTF_ID(func, bpf_list_push_front)
9551BTF_ID(func, bpf_list_push_back)
9552BTF_ID(func, bpf_list_pop_front)
9553BTF_ID(func, bpf_list_pop_back)
fd264ca0 9554BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 9555BTF_ID(func, bpf_rdonly_cast)
bd1279ae
DM
9556BTF_ID(func, bpf_rbtree_remove)
9557BTF_ID(func, bpf_rbtree_add)
9558BTF_ID(func, bpf_rbtree_first)
b5964b96 9559BTF_ID(func, bpf_dynptr_from_skb)
05421aec 9560BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
9561BTF_ID(func, bpf_dynptr_slice)
9562BTF_ID(func, bpf_dynptr_slice_rdwr)
ac9f0605
KKD
9563BTF_SET_END(special_kfunc_set)
9564
9565BTF_ID_LIST(special_kfunc_list)
9566BTF_ID(func, bpf_obj_new_impl)
9567BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
9568BTF_ID(func, bpf_list_push_front)
9569BTF_ID(func, bpf_list_push_back)
9570BTF_ID(func, bpf_list_pop_front)
9571BTF_ID(func, bpf_list_pop_back)
fd264ca0 9572BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 9573BTF_ID(func, bpf_rdonly_cast)
9bb00b28
YS
9574BTF_ID(func, bpf_rcu_read_lock)
9575BTF_ID(func, bpf_rcu_read_unlock)
bd1279ae
DM
9576BTF_ID(func, bpf_rbtree_remove)
9577BTF_ID(func, bpf_rbtree_add)
9578BTF_ID(func, bpf_rbtree_first)
b5964b96 9579BTF_ID(func, bpf_dynptr_from_skb)
05421aec 9580BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
9581BTF_ID(func, bpf_dynptr_slice)
9582BTF_ID(func, bpf_dynptr_slice_rdwr)
9bb00b28
YS
9583
9584static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
9585{
9586 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
9587}
9588
9589static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
9590{
9591 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
9592}
ac9f0605 9593
00b85860
KKD
9594static enum kfunc_ptr_arg_type
9595get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
9596 struct bpf_kfunc_call_arg_meta *meta,
9597 const struct btf_type *t, const struct btf_type *ref_t,
9598 const char *ref_tname, const struct btf_param *args,
9599 int argno, int nargs)
9600{
9601 u32 regno = argno + 1;
9602 struct bpf_reg_state *regs = cur_regs(env);
9603 struct bpf_reg_state *reg = &regs[regno];
9604 bool arg_mem_size = false;
9605
fd264ca0
YS
9606 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
9607 return KF_ARG_PTR_TO_CTX;
9608
00b85860
KKD
9609 /* In this function, we verify the kfunc's BTF as per the argument type,
9610 * leaving the rest of the verification with respect to the register
9611 * type to our caller. When a set of conditions hold in the BTF type of
9612 * arguments, we resolve it to a known kfunc_ptr_arg_type.
9613 */
9614 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
9615 return KF_ARG_PTR_TO_CTX;
9616
ac9f0605
KKD
9617 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
9618 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
9619
00b85860
KKD
9620 if (is_kfunc_arg_kptr_get(meta, argno)) {
9621 if (!btf_type_is_ptr(ref_t)) {
9622 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
9623 return -EINVAL;
9624 }
9625 ref_t = btf_type_by_id(meta->btf, ref_t->type);
9626 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
9627 if (!btf_type_is_struct(ref_t)) {
9628 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
9629 meta->func_name, btf_type_str(ref_t), ref_tname);
9630 return -EINVAL;
9631 }
9632 return KF_ARG_PTR_TO_KPTR;
9633 }
9634
9635 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
9636 return KF_ARG_PTR_TO_DYNPTR;
9637
06accc87
AN
9638 if (is_kfunc_arg_iter(meta, argno))
9639 return KF_ARG_PTR_TO_ITER;
9640
8cab76ec
KKD
9641 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
9642 return KF_ARG_PTR_TO_LIST_HEAD;
9643
9644 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
9645 return KF_ARG_PTR_TO_LIST_NODE;
9646
cd6791b4
DM
9647 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
9648 return KF_ARG_PTR_TO_RB_ROOT;
9649
9650 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
9651 return KF_ARG_PTR_TO_RB_NODE;
9652
00b85860
KKD
9653 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
9654 if (!btf_type_is_struct(ref_t)) {
9655 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
9656 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9657 return -EINVAL;
9658 }
9659 return KF_ARG_PTR_TO_BTF_ID;
9660 }
9661
5d92ddc3
DM
9662 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
9663 return KF_ARG_PTR_TO_CALLBACK;
9664
66e3a13e
JK
9665
9666 if (argno + 1 < nargs &&
9667 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
9668 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
00b85860
KKD
9669 arg_mem_size = true;
9670
9671 /* This is the catch all argument type of register types supported by
9672 * check_helper_mem_access. However, we only allow when argument type is
9673 * pointer to scalar, or struct composed (recursively) of scalars. When
9674 * arg_mem_size is true, the pointer can be void *.
9675 */
9676 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
9677 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
9678 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
9679 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
9680 return -EINVAL;
9681 }
9682 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
9683}
9684
9685static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
9686 struct bpf_reg_state *reg,
9687 const struct btf_type *ref_t,
9688 const char *ref_tname, u32 ref_id,
9689 struct bpf_kfunc_call_arg_meta *meta,
9690 int argno)
9691{
9692 const struct btf_type *reg_ref_t;
9693 bool strict_type_match = false;
9694 const struct btf *reg_btf;
9695 const char *reg_ref_tname;
9696 u32 reg_ref_id;
9697
3f00c523 9698 if (base_type(reg->type) == PTR_TO_BTF_ID) {
00b85860
KKD
9699 reg_btf = reg->btf;
9700 reg_ref_id = reg->btf_id;
9701 } else {
9702 reg_btf = btf_vmlinux;
9703 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
9704 }
9705
b613d335
DV
9706 /* Enforce strict type matching for calls to kfuncs that are acquiring
9707 * or releasing a reference, or are no-cast aliases. We do _not_
9708 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
9709 * as we want to enable BPF programs to pass types that are bitwise
9710 * equivalent without forcing them to explicitly cast with something
9711 * like bpf_cast_to_kern_ctx().
9712 *
9713 * For example, say we had a type like the following:
9714 *
9715 * struct bpf_cpumask {
9716 * cpumask_t cpumask;
9717 * refcount_t usage;
9718 * };
9719 *
9720 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
9721 * to a struct cpumask, so it would be safe to pass a struct
9722 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
9723 *
9724 * The philosophy here is similar to how we allow scalars of different
9725 * types to be passed to kfuncs as long as the size is the same. The
9726 * only difference here is that we're simply allowing
9727 * btf_struct_ids_match() to walk the struct at the 0th offset, and
9728 * resolve types.
9729 */
9730 if (is_kfunc_acquire(meta) ||
9731 (is_kfunc_release(meta) && reg->ref_obj_id) ||
9732 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
00b85860
KKD
9733 strict_type_match = true;
9734
b613d335
DV
9735 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
9736
00b85860
KKD
9737 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
9738 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
9739 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
9740 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
9741 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
9742 btf_type_str(reg_ref_t), reg_ref_tname);
9743 return -EINVAL;
9744 }
9745 return 0;
9746}
9747
9748static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
9749 struct bpf_reg_state *reg,
9750 const struct btf_type *ref_t,
9751 const char *ref_tname,
9752 struct bpf_kfunc_call_arg_meta *meta,
9753 int argno)
9754{
9755 struct btf_field *kptr_field;
9756
9757 /* check_func_arg_reg_off allows var_off for
9758 * PTR_TO_MAP_VALUE, but we need fixed offset to find
9759 * off_desc.
9760 */
9761 if (!tnum_is_const(reg->var_off)) {
9762 verbose(env, "arg#0 must have constant offset\n");
9763 return -EINVAL;
9764 }
9765
9766 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
9767 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
9768 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
9769 reg->off + reg->var_off.value);
9770 return -EINVAL;
9771 }
9772
9773 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
9774 kptr_field->kptr.btf_id, true)) {
9775 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
9776 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9777 return -EINVAL;
9778 }
9779 return 0;
9780}
9781
6a3cd331 9782static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
534e86bc 9783{
6a3cd331
DM
9784 struct bpf_verifier_state *state = env->cur_state;
9785
9786 if (!state->active_lock.ptr) {
9787 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
9788 return -EFAULT;
9789 }
9790
9791 if (type_flag(reg->type) & NON_OWN_REF) {
9792 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
9793 return -EFAULT;
9794 }
9795
9796 reg->type |= NON_OWN_REF;
9797 return 0;
9798}
9799
9800static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
9801{
9802 struct bpf_func_state *state, *unused;
534e86bc
KKD
9803 struct bpf_reg_state *reg;
9804 int i;
9805
6a3cd331
DM
9806 state = cur_func(env);
9807
534e86bc 9808 if (!ref_obj_id) {
6a3cd331
DM
9809 verbose(env, "verifier internal error: ref_obj_id is zero for "
9810 "owning -> non-owning conversion\n");
534e86bc
KKD
9811 return -EFAULT;
9812 }
6a3cd331 9813
534e86bc 9814 for (i = 0; i < state->acquired_refs; i++) {
6a3cd331
DM
9815 if (state->refs[i].id != ref_obj_id)
9816 continue;
9817
9818 /* Clear ref_obj_id here so release_reference doesn't clobber
9819 * the whole reg
9820 */
9821 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9822 if (reg->ref_obj_id == ref_obj_id) {
9823 reg->ref_obj_id = 0;
9824 ref_set_non_owning(env, reg);
534e86bc 9825 }
6a3cd331
DM
9826 }));
9827 return 0;
534e86bc 9828 }
6a3cd331 9829
534e86bc
KKD
9830 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
9831 return -EFAULT;
9832}
9833
8cab76ec
KKD
9834/* Implementation details:
9835 *
9836 * Each register points to some region of memory, which we define as an
9837 * allocation. Each allocation may embed a bpf_spin_lock which protects any
9838 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
9839 * allocation. The lock and the data it protects are colocated in the same
9840 * memory region.
9841 *
9842 * Hence, everytime a register holds a pointer value pointing to such
9843 * allocation, the verifier preserves a unique reg->id for it.
9844 *
9845 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
9846 * bpf_spin_lock is called.
9847 *
9848 * To enable this, lock state in the verifier captures two values:
9849 * active_lock.ptr = Register's type specific pointer
9850 * active_lock.id = A unique ID for each register pointer value
9851 *
9852 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
9853 * supported register types.
9854 *
9855 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
9856 * allocated objects is the reg->btf pointer.
9857 *
9858 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
9859 * can establish the provenance of the map value statically for each distinct
9860 * lookup into such maps. They always contain a single map value hence unique
9861 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
9862 *
9863 * So, in case of global variables, they use array maps with max_entries = 1,
9864 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
9865 * into the same map value as max_entries is 1, as described above).
9866 *
9867 * In case of inner map lookups, the inner map pointer has same map_ptr as the
9868 * outer map pointer (in verifier context), but each lookup into an inner map
9869 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
9870 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
9871 * will get different reg->id assigned to each lookup, hence different
9872 * active_lock.id.
9873 *
9874 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
9875 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
9876 * returned from bpf_obj_new. Each allocation receives a new reg->id.
9877 */
9878static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9879{
9880 void *ptr;
9881 u32 id;
9882
9883 switch ((int)reg->type) {
9884 case PTR_TO_MAP_VALUE:
9885 ptr = reg->map_ptr;
9886 break;
9887 case PTR_TO_BTF_ID | MEM_ALLOC:
9888 ptr = reg->btf;
9889 break;
9890 default:
9891 verbose(env, "verifier internal error: unknown reg type for lock check\n");
9892 return -EFAULT;
9893 }
9894 id = reg->id;
9895
9896 if (!env->cur_state->active_lock.ptr)
9897 return -EINVAL;
9898 if (env->cur_state->active_lock.ptr != ptr ||
9899 env->cur_state->active_lock.id != id) {
9900 verbose(env, "held lock and object are not in the same allocation\n");
9901 return -EINVAL;
9902 }
9903 return 0;
9904}
9905
9906static bool is_bpf_list_api_kfunc(u32 btf_id)
9907{
9908 return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9909 btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
9910 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9911 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
9912}
9913
cd6791b4
DM
9914static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
9915{
9916 return btf_id == special_kfunc_list[KF_bpf_rbtree_add] ||
9917 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9918 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
9919}
9920
9921static bool is_bpf_graph_api_kfunc(u32 btf_id)
9922{
9923 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id);
9924}
9925
5d92ddc3
DM
9926static bool is_callback_calling_kfunc(u32 btf_id)
9927{
9928 return btf_id == special_kfunc_list[KF_bpf_rbtree_add];
9929}
9930
9931static bool is_rbtree_lock_required_kfunc(u32 btf_id)
9932{
9933 return is_bpf_rbtree_api_kfunc(btf_id);
9934}
9935
cd6791b4
DM
9936static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
9937 enum btf_field_type head_field_type,
9938 u32 kfunc_btf_id)
9939{
9940 bool ret;
9941
9942 switch (head_field_type) {
9943 case BPF_LIST_HEAD:
9944 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
9945 break;
9946 case BPF_RB_ROOT:
9947 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
9948 break;
9949 default:
9950 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
9951 btf_field_type_name(head_field_type));
9952 return false;
9953 }
9954
9955 if (!ret)
9956 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
9957 btf_field_type_name(head_field_type));
9958 return ret;
9959}
9960
9961static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
9962 enum btf_field_type node_field_type,
9963 u32 kfunc_btf_id)
8cab76ec 9964{
cd6791b4
DM
9965 bool ret;
9966
9967 switch (node_field_type) {
9968 case BPF_LIST_NODE:
9969 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9970 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]);
9971 break;
9972 case BPF_RB_NODE:
9973 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9974 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]);
9975 break;
9976 default:
9977 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
9978 btf_field_type_name(node_field_type));
9979 return false;
9980 }
9981
9982 if (!ret)
9983 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
9984 btf_field_type_name(node_field_type));
9985 return ret;
9986}
9987
9988static int
9989__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
9990 struct bpf_reg_state *reg, u32 regno,
9991 struct bpf_kfunc_call_arg_meta *meta,
9992 enum btf_field_type head_field_type,
9993 struct btf_field **head_field)
9994{
9995 const char *head_type_name;
8cab76ec
KKD
9996 struct btf_field *field;
9997 struct btf_record *rec;
cd6791b4 9998 u32 head_off;
8cab76ec 9999
cd6791b4
DM
10000 if (meta->btf != btf_vmlinux) {
10001 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10002 return -EFAULT;
10003 }
10004
cd6791b4
DM
10005 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10006 return -EFAULT;
10007
10008 head_type_name = btf_field_type_name(head_field_type);
8cab76ec
KKD
10009 if (!tnum_is_const(reg->var_off)) {
10010 verbose(env,
cd6791b4
DM
10011 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10012 regno, head_type_name);
8cab76ec
KKD
10013 return -EINVAL;
10014 }
10015
10016 rec = reg_btf_record(reg);
cd6791b4
DM
10017 head_off = reg->off + reg->var_off.value;
10018 field = btf_record_find(rec, head_off, head_field_type);
8cab76ec 10019 if (!field) {
cd6791b4 10020 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
8cab76ec
KKD
10021 return -EINVAL;
10022 }
10023
10024 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10025 if (check_reg_allocation_locked(env, reg)) {
cd6791b4
DM
10026 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10027 rec->spin_lock_off, head_type_name);
8cab76ec
KKD
10028 return -EINVAL;
10029 }
10030
cd6791b4
DM
10031 if (*head_field) {
10032 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
8cab76ec
KKD
10033 return -EFAULT;
10034 }
cd6791b4 10035 *head_field = field;
8cab76ec
KKD
10036 return 0;
10037}
10038
cd6791b4 10039static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8cab76ec
KKD
10040 struct bpf_reg_state *reg, u32 regno,
10041 struct bpf_kfunc_call_arg_meta *meta)
10042{
cd6791b4
DM
10043 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10044 &meta->arg_list_head.field);
10045}
10046
10047static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10048 struct bpf_reg_state *reg, u32 regno,
10049 struct bpf_kfunc_call_arg_meta *meta)
10050{
10051 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10052 &meta->arg_rbtree_root.field);
10053}
10054
10055static int
10056__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10057 struct bpf_reg_state *reg, u32 regno,
10058 struct bpf_kfunc_call_arg_meta *meta,
10059 enum btf_field_type head_field_type,
10060 enum btf_field_type node_field_type,
10061 struct btf_field **node_field)
10062{
10063 const char *node_type_name;
8cab76ec
KKD
10064 const struct btf_type *et, *t;
10065 struct btf_field *field;
cd6791b4 10066 u32 node_off;
8cab76ec 10067
cd6791b4
DM
10068 if (meta->btf != btf_vmlinux) {
10069 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10070 return -EFAULT;
10071 }
10072
cd6791b4
DM
10073 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10074 return -EFAULT;
10075
10076 node_type_name = btf_field_type_name(node_field_type);
8cab76ec
KKD
10077 if (!tnum_is_const(reg->var_off)) {
10078 verbose(env,
cd6791b4
DM
10079 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10080 regno, node_type_name);
8cab76ec
KKD
10081 return -EINVAL;
10082 }
10083
cd6791b4
DM
10084 node_off = reg->off + reg->var_off.value;
10085 field = reg_find_field_offset(reg, node_off, node_field_type);
10086 if (!field || field->offset != node_off) {
10087 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
8cab76ec
KKD
10088 return -EINVAL;
10089 }
10090
cd6791b4 10091 field = *node_field;
8cab76ec 10092
30465003 10093 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
8cab76ec 10094 t = btf_type_by_id(reg->btf, reg->btf_id);
30465003
DM
10095 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10096 field->graph_root.value_btf_id, true)) {
cd6791b4 10097 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
8cab76ec 10098 "in struct %s, but arg is at offset=%d in struct %s\n",
cd6791b4
DM
10099 btf_field_type_name(head_field_type),
10100 btf_field_type_name(node_field_type),
30465003
DM
10101 field->graph_root.node_offset,
10102 btf_name_by_offset(field->graph_root.btf, et->name_off),
cd6791b4 10103 node_off, btf_name_by_offset(reg->btf, t->name_off));
8cab76ec
KKD
10104 return -EINVAL;
10105 }
10106
cd6791b4
DM
10107 if (node_off != field->graph_root.node_offset) {
10108 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10109 node_off, btf_field_type_name(node_field_type),
10110 field->graph_root.node_offset,
30465003 10111 btf_name_by_offset(field->graph_root.btf, et->name_off));
8cab76ec
KKD
10112 return -EINVAL;
10113 }
6a3cd331
DM
10114
10115 return 0;
8cab76ec
KKD
10116}
10117
cd6791b4
DM
10118static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10119 struct bpf_reg_state *reg, u32 regno,
10120 struct bpf_kfunc_call_arg_meta *meta)
10121{
10122 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10123 BPF_LIST_HEAD, BPF_LIST_NODE,
10124 &meta->arg_list_head.field);
10125}
10126
10127static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10128 struct bpf_reg_state *reg, u32 regno,
10129 struct bpf_kfunc_call_arg_meta *meta)
10130{
10131 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10132 BPF_RB_ROOT, BPF_RB_NODE,
10133 &meta->arg_rbtree_root.field);
10134}
10135
1d18feb2
JK
10136static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10137 int insn_idx)
00b85860
KKD
10138{
10139 const char *func_name = meta->func_name, *ref_tname;
10140 const struct btf *btf = meta->btf;
10141 const struct btf_param *args;
10142 u32 i, nargs;
10143 int ret;
10144
10145 args = (const struct btf_param *)(meta->func_proto + 1);
10146 nargs = btf_type_vlen(meta->func_proto);
10147 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10148 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10149 MAX_BPF_FUNC_REG_ARGS);
10150 return -EINVAL;
10151 }
10152
10153 /* Check that BTF function arguments match actual types that the
10154 * verifier sees.
10155 */
10156 for (i = 0; i < nargs; i++) {
10157 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10158 const struct btf_type *t, *ref_t, *resolve_ret;
10159 enum bpf_arg_type arg_type = ARG_DONTCARE;
10160 u32 regno = i + 1, ref_id, type_size;
10161 bool is_ret_buf_sz = false;
10162 int kf_arg_type;
10163
10164 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
10165
10166 if (is_kfunc_arg_ignore(btf, &args[i]))
10167 continue;
10168
00b85860
KKD
10169 if (btf_type_is_scalar(t)) {
10170 if (reg->type != SCALAR_VALUE) {
10171 verbose(env, "R%d is not a scalar\n", regno);
10172 return -EINVAL;
10173 }
a50388db
KKD
10174
10175 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10176 if (meta->arg_constant.found) {
10177 verbose(env, "verifier internal error: only one constant argument permitted\n");
10178 return -EFAULT;
10179 }
10180 if (!tnum_is_const(reg->var_off)) {
10181 verbose(env, "R%d must be a known constant\n", regno);
10182 return -EINVAL;
10183 }
10184 ret = mark_chain_precision(env, regno);
10185 if (ret < 0)
10186 return ret;
10187 meta->arg_constant.found = true;
10188 meta->arg_constant.value = reg->var_off.value;
10189 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
10190 meta->r0_rdonly = true;
10191 is_ret_buf_sz = true;
10192 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10193 is_ret_buf_sz = true;
10194 }
10195
10196 if (is_ret_buf_sz) {
10197 if (meta->r0_size) {
10198 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10199 return -EINVAL;
10200 }
10201
10202 if (!tnum_is_const(reg->var_off)) {
10203 verbose(env, "R%d is not a const\n", regno);
10204 return -EINVAL;
10205 }
10206
10207 meta->r0_size = reg->var_off.value;
10208 ret = mark_chain_precision(env, regno);
10209 if (ret)
10210 return ret;
10211 }
10212 continue;
10213 }
10214
10215 if (!btf_type_is_ptr(t)) {
10216 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10217 return -EINVAL;
10218 }
10219
20c09d92 10220 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
caf713c3
DV
10221 (register_is_null(reg) || type_may_be_null(reg->type))) {
10222 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10223 return -EACCES;
10224 }
10225
00b85860
KKD
10226 if (reg->ref_obj_id) {
10227 if (is_kfunc_release(meta) && meta->ref_obj_id) {
10228 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10229 regno, reg->ref_obj_id,
10230 meta->ref_obj_id);
10231 return -EFAULT;
10232 }
10233 meta->ref_obj_id = reg->ref_obj_id;
10234 if (is_kfunc_release(meta))
10235 meta->release_regno = regno;
10236 }
10237
10238 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10239 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10240
10241 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10242 if (kf_arg_type < 0)
10243 return kf_arg_type;
10244
10245 switch (kf_arg_type) {
ac9f0605 10246 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860 10247 case KF_ARG_PTR_TO_BTF_ID:
fca1aa75 10248 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
00b85860 10249 break;
3f00c523
DV
10250
10251 if (!is_trusted_reg(reg)) {
fca1aa75
YS
10252 if (!is_kfunc_rcu(meta)) {
10253 verbose(env, "R%d must be referenced or trusted\n", regno);
10254 return -EINVAL;
10255 }
10256 if (!is_rcu_reg(reg)) {
10257 verbose(env, "R%d must be a rcu pointer\n", regno);
10258 return -EINVAL;
10259 }
00b85860 10260 }
fca1aa75 10261
00b85860
KKD
10262 fallthrough;
10263 case KF_ARG_PTR_TO_CTX:
10264 /* Trusted arguments have the same offset checks as release arguments */
10265 arg_type |= OBJ_RELEASE;
10266 break;
10267 case KF_ARG_PTR_TO_KPTR:
10268 case KF_ARG_PTR_TO_DYNPTR:
06accc87 10269 case KF_ARG_PTR_TO_ITER:
8cab76ec
KKD
10270 case KF_ARG_PTR_TO_LIST_HEAD:
10271 case KF_ARG_PTR_TO_LIST_NODE:
cd6791b4
DM
10272 case KF_ARG_PTR_TO_RB_ROOT:
10273 case KF_ARG_PTR_TO_RB_NODE:
00b85860
KKD
10274 case KF_ARG_PTR_TO_MEM:
10275 case KF_ARG_PTR_TO_MEM_SIZE:
5d92ddc3 10276 case KF_ARG_PTR_TO_CALLBACK:
00b85860
KKD
10277 /* Trusted by default */
10278 break;
10279 default:
10280 WARN_ON_ONCE(1);
10281 return -EFAULT;
10282 }
10283
10284 if (is_kfunc_release(meta) && reg->ref_obj_id)
10285 arg_type |= OBJ_RELEASE;
10286 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10287 if (ret < 0)
10288 return ret;
10289
10290 switch (kf_arg_type) {
10291 case KF_ARG_PTR_TO_CTX:
10292 if (reg->type != PTR_TO_CTX) {
10293 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10294 return -EINVAL;
10295 }
fd264ca0
YS
10296
10297 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10298 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10299 if (ret < 0)
10300 return -EINVAL;
10301 meta->ret_btf_id = ret;
10302 }
00b85860 10303 break;
ac9f0605
KKD
10304 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10305 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10306 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10307 return -EINVAL;
10308 }
10309 if (!reg->ref_obj_id) {
10310 verbose(env, "allocated object must be referenced\n");
10311 return -EINVAL;
10312 }
10313 if (meta->btf == btf_vmlinux &&
10314 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10315 meta->arg_obj_drop.btf = reg->btf;
10316 meta->arg_obj_drop.btf_id = reg->btf_id;
10317 }
10318 break;
00b85860
KKD
10319 case KF_ARG_PTR_TO_KPTR:
10320 if (reg->type != PTR_TO_MAP_VALUE) {
10321 verbose(env, "arg#0 expected pointer to map value\n");
10322 return -EINVAL;
10323 }
10324 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
10325 if (ret < 0)
10326 return ret;
10327 break;
10328 case KF_ARG_PTR_TO_DYNPTR:
d96d937d
JK
10329 {
10330 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
10331
6b75bd3d 10332 if (reg->type != PTR_TO_STACK &&
27060531 10333 reg->type != CONST_PTR_TO_DYNPTR) {
6b75bd3d 10334 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
00b85860
KKD
10335 return -EINVAL;
10336 }
10337
d96d937d
JK
10338 if (reg->type == CONST_PTR_TO_DYNPTR)
10339 dynptr_arg_type |= MEM_RDONLY;
10340
10341 if (is_kfunc_arg_uninit(btf, &args[i]))
10342 dynptr_arg_type |= MEM_UNINIT;
10343
b5964b96
JK
10344 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb])
10345 dynptr_arg_type |= DYNPTR_TYPE_SKB;
05421aec
JK
10346 else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp])
10347 dynptr_arg_type |= DYNPTR_TYPE_XDP;
b5964b96 10348
d96d937d 10349 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type);
6b75bd3d
KKD
10350 if (ret < 0)
10351 return ret;
66e3a13e
JK
10352
10353 if (!(dynptr_arg_type & MEM_UNINIT)) {
10354 int id = dynptr_id(env, reg);
10355
10356 if (id < 0) {
10357 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10358 return id;
10359 }
10360 meta->initialized_dynptr.id = id;
10361 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
10362 }
10363
00b85860 10364 break;
d96d937d 10365 }
06accc87
AN
10366 case KF_ARG_PTR_TO_ITER:
10367 ret = process_iter_arg(env, regno, insn_idx, meta);
10368 if (ret < 0)
10369 return ret;
10370 break;
8cab76ec
KKD
10371 case KF_ARG_PTR_TO_LIST_HEAD:
10372 if (reg->type != PTR_TO_MAP_VALUE &&
10373 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10374 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10375 return -EINVAL;
10376 }
10377 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10378 verbose(env, "allocated object must be referenced\n");
10379 return -EINVAL;
10380 }
10381 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10382 if (ret < 0)
10383 return ret;
10384 break;
cd6791b4
DM
10385 case KF_ARG_PTR_TO_RB_ROOT:
10386 if (reg->type != PTR_TO_MAP_VALUE &&
10387 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10388 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10389 return -EINVAL;
10390 }
10391 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10392 verbose(env, "allocated object must be referenced\n");
10393 return -EINVAL;
10394 }
10395 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10396 if (ret < 0)
10397 return ret;
10398 break;
8cab76ec
KKD
10399 case KF_ARG_PTR_TO_LIST_NODE:
10400 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10401 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10402 return -EINVAL;
10403 }
10404 if (!reg->ref_obj_id) {
10405 verbose(env, "allocated object must be referenced\n");
10406 return -EINVAL;
10407 }
10408 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10409 if (ret < 0)
10410 return ret;
10411 break;
cd6791b4 10412 case KF_ARG_PTR_TO_RB_NODE:
a40d3632
DM
10413 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10414 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10415 verbose(env, "rbtree_remove node input must be non-owning ref\n");
10416 return -EINVAL;
10417 }
10418 if (in_rbtree_lock_required_cb(env)) {
10419 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10420 return -EINVAL;
10421 }
10422 } else {
10423 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10424 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10425 return -EINVAL;
10426 }
10427 if (!reg->ref_obj_id) {
10428 verbose(env, "allocated object must be referenced\n");
10429 return -EINVAL;
10430 }
cd6791b4 10431 }
a40d3632 10432
cd6791b4
DM
10433 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10434 if (ret < 0)
10435 return ret;
10436 break;
00b85860
KKD
10437 case KF_ARG_PTR_TO_BTF_ID:
10438 /* Only base_type is checked, further checks are done here */
3f00c523 10439 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
fca1aa75 10440 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
3f00c523
DV
10441 !reg2btf_ids[base_type(reg->type)]) {
10442 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10443 verbose(env, "expected %s or socket\n",
10444 reg_type_str(env, base_type(reg->type) |
10445 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
00b85860
KKD
10446 return -EINVAL;
10447 }
10448 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10449 if (ret < 0)
10450 return ret;
10451 break;
10452 case KF_ARG_PTR_TO_MEM:
10453 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10454 if (IS_ERR(resolve_ret)) {
10455 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10456 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10457 return -EINVAL;
10458 }
10459 ret = check_mem_reg(env, reg, regno, type_size);
10460 if (ret < 0)
10461 return ret;
10462 break;
10463 case KF_ARG_PTR_TO_MEM_SIZE:
66e3a13e
JK
10464 {
10465 struct bpf_reg_state *size_reg = &regs[regno + 1];
10466 const struct btf_param *size_arg = &args[i + 1];
10467
10468 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
00b85860
KKD
10469 if (ret < 0) {
10470 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
10471 return ret;
10472 }
66e3a13e
JK
10473
10474 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
10475 if (meta->arg_constant.found) {
10476 verbose(env, "verifier internal error: only one constant argument permitted\n");
10477 return -EFAULT;
10478 }
10479 if (!tnum_is_const(size_reg->var_off)) {
10480 verbose(env, "R%d must be a known constant\n", regno + 1);
10481 return -EINVAL;
10482 }
10483 meta->arg_constant.found = true;
10484 meta->arg_constant.value = size_reg->var_off.value;
10485 }
10486
10487 /* Skip next '__sz' or '__szk' argument */
00b85860
KKD
10488 i++;
10489 break;
66e3a13e 10490 }
5d92ddc3
DM
10491 case KF_ARG_PTR_TO_CALLBACK:
10492 meta->subprogno = reg->subprogno;
10493 break;
00b85860
KKD
10494 }
10495 }
10496
10497 if (is_kfunc_release(meta) && !meta->release_regno) {
10498 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
10499 func_name);
10500 return -EINVAL;
10501 }
10502
10503 return 0;
10504}
10505
07236eab
AN
10506static int fetch_kfunc_meta(struct bpf_verifier_env *env,
10507 struct bpf_insn *insn,
10508 struct bpf_kfunc_call_arg_meta *meta,
10509 const char **kfunc_name)
e6ac2450 10510{
07236eab
AN
10511 const struct btf_type *func, *func_proto;
10512 u32 func_id, *kfunc_flags;
10513 const char *func_name;
2357672c 10514 struct btf *desc_btf;
e6ac2450 10515
07236eab
AN
10516 if (kfunc_name)
10517 *kfunc_name = NULL;
10518
a5d82727 10519 if (!insn->imm)
07236eab 10520 return -EINVAL;
a5d82727 10521
43bf0878 10522 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
10523 if (IS_ERR(desc_btf))
10524 return PTR_ERR(desc_btf);
10525
e6ac2450 10526 func_id = insn->imm;
2357672c
KKD
10527 func = btf_type_by_id(desc_btf, func_id);
10528 func_name = btf_name_by_offset(desc_btf, func->name_off);
07236eab
AN
10529 if (kfunc_name)
10530 *kfunc_name = func_name;
2357672c 10531 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 10532
a4703e31
KKD
10533 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
10534 if (!kfunc_flags) {
e6ac2450
MKL
10535 return -EACCES;
10536 }
00b85860 10537
07236eab
AN
10538 memset(meta, 0, sizeof(*meta));
10539 meta->btf = desc_btf;
10540 meta->func_id = func_id;
10541 meta->kfunc_flags = *kfunc_flags;
10542 meta->func_proto = func_proto;
10543 meta->func_name = func_name;
10544
10545 return 0;
10546}
10547
10548static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10549 int *insn_idx_p)
10550{
10551 const struct btf_type *t, *ptr_type;
10552 u32 i, nargs, ptr_type_id, release_ref_obj_id;
10553 struct bpf_reg_state *regs = cur_regs(env);
10554 const char *func_name, *ptr_type_name;
10555 bool sleepable, rcu_lock, rcu_unlock;
10556 struct bpf_kfunc_call_arg_meta meta;
10557 struct bpf_insn_aux_data *insn_aux;
10558 int err, insn_idx = *insn_idx_p;
10559 const struct btf_param *args;
10560 const struct btf_type *ret_t;
10561 struct btf *desc_btf;
10562
10563 /* skip for now, but return error when we find this in fixup_kfunc_call */
10564 if (!insn->imm)
10565 return 0;
10566
10567 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
10568 if (err == -EACCES && func_name)
10569 verbose(env, "calling kernel function %s is not allowed\n", func_name);
10570 if (err)
10571 return err;
10572 desc_btf = meta.btf;
10573 insn_aux = &env->insn_aux_data[insn_idx];
00b85860 10574
06accc87
AN
10575 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
10576
00b85860
KKD
10577 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
10578 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
10579 return -EACCES;
10580 }
10581
9bb00b28
YS
10582 sleepable = is_kfunc_sleepable(&meta);
10583 if (sleepable && !env->prog->aux->sleepable) {
00b85860
KKD
10584 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
10585 return -EACCES;
10586 }
eb1f7f71 10587
9bb00b28
YS
10588 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
10589 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9bb00b28
YS
10590
10591 if (env->cur_state->active_rcu_lock) {
10592 struct bpf_func_state *state;
10593 struct bpf_reg_state *reg;
10594
10595 if (rcu_lock) {
10596 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
10597 return -EINVAL;
10598 } else if (rcu_unlock) {
10599 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10600 if (reg->type & MEM_RCU) {
fca1aa75 10601 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9bb00b28
YS
10602 reg->type |= PTR_UNTRUSTED;
10603 }
10604 }));
10605 env->cur_state->active_rcu_lock = false;
10606 } else if (sleepable) {
10607 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
10608 return -EACCES;
10609 }
10610 } else if (rcu_lock) {
10611 env->cur_state->active_rcu_lock = true;
10612 } else if (rcu_unlock) {
10613 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
10614 return -EINVAL;
10615 }
10616
e6ac2450 10617 /* Check the arguments */
1d18feb2 10618 err = check_kfunc_args(env, &meta, insn_idx);
5c073f26 10619 if (err < 0)
e6ac2450 10620 return err;
5c073f26 10621 /* In case of release function, we get register number of refcounted
00b85860 10622 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 10623 */
00b85860
KKD
10624 if (meta.release_regno) {
10625 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
10626 if (err) {
10627 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 10628 func_name, meta.func_id);
5c073f26
KKD
10629 return err;
10630 }
10631 }
e6ac2450 10632
6a3cd331 10633 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] ||
bd1279ae
DM
10634 meta.func_id == special_kfunc_list[KF_bpf_list_push_back] ||
10635 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
6a3cd331
DM
10636 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
10637 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
10638 if (err) {
10639 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
07236eab 10640 func_name, meta.func_id);
6a3cd331
DM
10641 return err;
10642 }
10643
10644 err = release_reference(env, release_ref_obj_id);
10645 if (err) {
10646 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 10647 func_name, meta.func_id);
6a3cd331
DM
10648 return err;
10649 }
10650 }
10651
5d92ddc3
DM
10652 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
10653 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10654 set_rbtree_add_callback_state);
10655 if (err) {
10656 verbose(env, "kfunc %s#%d failed callback verification\n",
07236eab 10657 func_name, meta.func_id);
5d92ddc3
DM
10658 return err;
10659 }
10660 }
10661
e6ac2450
MKL
10662 for (i = 0; i < CALLER_SAVED_REGS; i++)
10663 mark_reg_not_init(env, regs, caller_saved[i]);
10664
10665 /* Check return type */
07236eab 10666 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
5c073f26 10667
00b85860 10668 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2
KKD
10669 /* Only exception is bpf_obj_new_impl */
10670 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
10671 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
10672 return -EINVAL;
10673 }
5c073f26
KKD
10674 }
10675
e6ac2450
MKL
10676 if (btf_type_is_scalar(t)) {
10677 mark_reg_unknown(env, regs, BPF_REG_0);
10678 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
10679 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
10680 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
10681
10682 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10683 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
958cf2e2
KKD
10684 struct btf *ret_btf;
10685 u32 ret_btf_id;
10686
e181d3f1
KKD
10687 if (unlikely(!bpf_global_ma_set))
10688 return -ENOMEM;
10689
958cf2e2
KKD
10690 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
10691 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
10692 return -EINVAL;
10693 }
10694
10695 ret_btf = env->prog->aux->btf;
10696 ret_btf_id = meta.arg_constant.value;
10697
10698 /* This may be NULL due to user not supplying a BTF */
10699 if (!ret_btf) {
10700 verbose(env, "bpf_obj_new requires prog BTF\n");
10701 return -EINVAL;
10702 }
10703
10704 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
10705 if (!ret_t || !__btf_type_is_struct(ret_t)) {
10706 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
10707 return -EINVAL;
10708 }
10709
10710 mark_reg_known_zero(env, regs, BPF_REG_0);
10711 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
10712 regs[BPF_REG_0].btf = ret_btf;
10713 regs[BPF_REG_0].btf_id = ret_btf_id;
10714
07236eab
AN
10715 insn_aux->obj_new_size = ret_t->size;
10716 insn_aux->kptr_struct_meta =
958cf2e2 10717 btf_find_struct_meta(ret_btf, ret_btf_id);
ac9f0605 10718 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
07236eab 10719 insn_aux->kptr_struct_meta =
ac9f0605
KKD
10720 btf_find_struct_meta(meta.arg_obj_drop.btf,
10721 meta.arg_obj_drop.btf_id);
8cab76ec
KKD
10722 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10723 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
10724 struct btf_field *field = meta.arg_list_head.field;
10725
a40d3632
DM
10726 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10727 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10728 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10729 struct btf_field *field = meta.arg_rbtree_root.field;
10730
10731 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
fd264ca0
YS
10732 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10733 mark_reg_known_zero(env, regs, BPF_REG_0);
10734 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
10735 regs[BPF_REG_0].btf = desc_btf;
10736 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
a35b9af4
YS
10737 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
10738 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
10739 if (!ret_t || !btf_type_is_struct(ret_t)) {
10740 verbose(env,
10741 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
10742 return -EINVAL;
10743 }
10744
10745 mark_reg_known_zero(env, regs, BPF_REG_0);
10746 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
10747 regs[BPF_REG_0].btf = desc_btf;
10748 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
66e3a13e
JK
10749 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
10750 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
10751 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
10752
10753 mark_reg_known_zero(env, regs, BPF_REG_0);
10754
10755 if (!meta.arg_constant.found) {
10756 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
10757 return -EFAULT;
10758 }
10759
10760 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
10761
10762 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
10763 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
10764
10765 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
10766 regs[BPF_REG_0].type |= MEM_RDONLY;
10767 } else {
10768 /* this will set env->seen_direct_write to true */
10769 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
10770 verbose(env, "the prog does not allow writes to packet data\n");
10771 return -EINVAL;
10772 }
10773 }
10774
10775 if (!meta.initialized_dynptr.id) {
10776 verbose(env, "verifier internal error: no dynptr id\n");
10777 return -EFAULT;
10778 }
10779 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
10780
10781 /* we don't need to set BPF_REG_0's ref obj id
10782 * because packet slices are not refcounted (see
10783 * dynptr_type_refcounted)
10784 */
958cf2e2
KKD
10785 } else {
10786 verbose(env, "kernel function %s unhandled dynamic return type\n",
10787 meta.func_name);
10788 return -EFAULT;
10789 }
10790 } else if (!__btf_type_is_struct(ptr_type)) {
f4b4eee6
AN
10791 if (!meta.r0_size) {
10792 __u32 sz;
10793
10794 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
10795 meta.r0_size = sz;
10796 meta.r0_rdonly = true;
10797 }
10798 }
eb1f7f71
BT
10799 if (!meta.r0_size) {
10800 ptr_type_name = btf_name_by_offset(desc_btf,
10801 ptr_type->name_off);
10802 verbose(env,
10803 "kernel function %s returns pointer type %s %s is not supported\n",
10804 func_name,
10805 btf_type_str(ptr_type),
10806 ptr_type_name);
10807 return -EINVAL;
10808 }
10809
10810 mark_reg_known_zero(env, regs, BPF_REG_0);
10811 regs[BPF_REG_0].type = PTR_TO_MEM;
10812 regs[BPF_REG_0].mem_size = meta.r0_size;
10813
10814 if (meta.r0_rdonly)
10815 regs[BPF_REG_0].type |= MEM_RDONLY;
10816
10817 /* Ensures we don't access the memory after a release_reference() */
10818 if (meta.ref_obj_id)
10819 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10820 } else {
10821 mark_reg_known_zero(env, regs, BPF_REG_0);
10822 regs[BPF_REG_0].btf = desc_btf;
10823 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
10824 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 10825 }
958cf2e2 10826
00b85860 10827 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
10828 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
10829 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
10830 regs[BPF_REG_0].id = ++env->id_gen;
10831 }
e6ac2450 10832 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 10833 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
10834 int id = acquire_reference_state(env, insn_idx);
10835
10836 if (id < 0)
10837 return id;
00b85860
KKD
10838 if (is_kfunc_ret_null(&meta))
10839 regs[BPF_REG_0].id = id;
5c073f26 10840 regs[BPF_REG_0].ref_obj_id = id;
a40d3632
DM
10841 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10842 ref_set_non_owning(env, &regs[BPF_REG_0]);
5c073f26 10843 }
a40d3632
DM
10844
10845 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove])
10846 invalidate_non_owning_refs(env);
10847
00b85860
KKD
10848 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
10849 regs[BPF_REG_0].id = ++env->id_gen;
e6ac2450
MKL
10850 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
10851
07236eab
AN
10852 nargs = btf_type_vlen(meta.func_proto);
10853 args = (const struct btf_param *)(meta.func_proto + 1);
e6ac2450
MKL
10854 for (i = 0; i < nargs; i++) {
10855 u32 regno = i + 1;
10856
2357672c 10857 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
10858 if (btf_type_is_ptr(t))
10859 mark_btf_func_reg_size(env, regno, sizeof(void *));
10860 else
10861 /* scalar. ensured by btf_check_kfunc_arg_match() */
10862 mark_btf_func_reg_size(env, regno, t->size);
10863 }
10864
06accc87
AN
10865 if (is_iter_next_kfunc(&meta)) {
10866 err = process_iter_next_call(env, insn_idx, &meta);
10867 if (err)
10868 return err;
10869 }
10870
e6ac2450
MKL
10871 return 0;
10872}
10873
b03c9f9f
EC
10874static bool signed_add_overflows(s64 a, s64 b)
10875{
10876 /* Do the add in u64, where overflow is well-defined */
10877 s64 res = (s64)((u64)a + (u64)b);
10878
10879 if (b < 0)
10880 return res > a;
10881 return res < a;
10882}
10883
bc895e8b 10884static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
10885{
10886 /* Do the add in u32, where overflow is well-defined */
10887 s32 res = (s32)((u32)a + (u32)b);
10888
10889 if (b < 0)
10890 return res > a;
10891 return res < a;
10892}
10893
bc895e8b 10894static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
10895{
10896 /* Do the sub in u64, where overflow is well-defined */
10897 s64 res = (s64)((u64)a - (u64)b);
10898
10899 if (b < 0)
10900 return res < a;
10901 return res > a;
969bf05e
AS
10902}
10903
3f50f132
JF
10904static bool signed_sub32_overflows(s32 a, s32 b)
10905{
bc895e8b 10906 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
10907 s32 res = (s32)((u32)a - (u32)b);
10908
10909 if (b < 0)
10910 return res < a;
10911 return res > a;
10912}
10913
bb7f0f98
AS
10914static bool check_reg_sane_offset(struct bpf_verifier_env *env,
10915 const struct bpf_reg_state *reg,
10916 enum bpf_reg_type type)
10917{
10918 bool known = tnum_is_const(reg->var_off);
10919 s64 val = reg->var_off.value;
10920 s64 smin = reg->smin_value;
10921
10922 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
10923 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 10924 reg_type_str(env, type), val);
bb7f0f98
AS
10925 return false;
10926 }
10927
10928 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
10929 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 10930 reg_type_str(env, type), reg->off);
bb7f0f98
AS
10931 return false;
10932 }
10933
10934 if (smin == S64_MIN) {
10935 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 10936 reg_type_str(env, type));
bb7f0f98
AS
10937 return false;
10938 }
10939
10940 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
10941 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 10942 smin, reg_type_str(env, type));
bb7f0f98
AS
10943 return false;
10944 }
10945
10946 return true;
10947}
10948
a6aaece0
DB
10949enum {
10950 REASON_BOUNDS = -1,
10951 REASON_TYPE = -2,
10952 REASON_PATHS = -3,
10953 REASON_LIMIT = -4,
10954 REASON_STACK = -5,
10955};
10956
979d63d5 10957static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 10958 u32 *alu_limit, bool mask_to_left)
979d63d5 10959{
7fedb63a 10960 u32 max = 0, ptr_limit = 0;
979d63d5
DB
10961
10962 switch (ptr_reg->type) {
10963 case PTR_TO_STACK:
1b1597e6 10964 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
10965 * left direction, see BPF_REG_FP. Also, unknown scalar
10966 * offset where we would need to deal with min/max bounds is
10967 * currently prohibited for unprivileged.
1b1597e6
PK
10968 */
10969 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 10970 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 10971 break;
979d63d5 10972 case PTR_TO_MAP_VALUE:
1b1597e6 10973 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
10974 ptr_limit = (mask_to_left ?
10975 ptr_reg->smin_value :
10976 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 10977 break;
979d63d5 10978 default:
a6aaece0 10979 return REASON_TYPE;
979d63d5 10980 }
b658bbb8
DB
10981
10982 if (ptr_limit >= max)
a6aaece0 10983 return REASON_LIMIT;
b658bbb8
DB
10984 *alu_limit = ptr_limit;
10985 return 0;
979d63d5
DB
10986}
10987
d3bd7413
DB
10988static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
10989 const struct bpf_insn *insn)
10990{
2c78ee89 10991 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
10992}
10993
10994static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
10995 u32 alu_state, u32 alu_limit)
10996{
10997 /* If we arrived here from different branches with different
10998 * state or limits to sanitize, then this won't work.
10999 */
11000 if (aux->alu_state &&
11001 (aux->alu_state != alu_state ||
11002 aux->alu_limit != alu_limit))
a6aaece0 11003 return REASON_PATHS;
d3bd7413 11004
e6ac5933 11005 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
11006 aux->alu_state = alu_state;
11007 aux->alu_limit = alu_limit;
11008 return 0;
11009}
11010
11011static int sanitize_val_alu(struct bpf_verifier_env *env,
11012 struct bpf_insn *insn)
11013{
11014 struct bpf_insn_aux_data *aux = cur_aux(env);
11015
11016 if (can_skip_alu_sanitation(env, insn))
11017 return 0;
11018
11019 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11020}
11021
f5288193
DB
11022static bool sanitize_needed(u8 opcode)
11023{
11024 return opcode == BPF_ADD || opcode == BPF_SUB;
11025}
11026
3d0220f6
DB
11027struct bpf_sanitize_info {
11028 struct bpf_insn_aux_data aux;
bb01a1bb 11029 bool mask_to_left;
3d0220f6
DB
11030};
11031
9183671a
DB
11032static struct bpf_verifier_state *
11033sanitize_speculative_path(struct bpf_verifier_env *env,
11034 const struct bpf_insn *insn,
11035 u32 next_idx, u32 curr_idx)
11036{
11037 struct bpf_verifier_state *branch;
11038 struct bpf_reg_state *regs;
11039
11040 branch = push_stack(env, next_idx, curr_idx, true);
11041 if (branch && insn) {
11042 regs = branch->frame[branch->curframe]->regs;
11043 if (BPF_SRC(insn->code) == BPF_K) {
11044 mark_reg_unknown(env, regs, insn->dst_reg);
11045 } else if (BPF_SRC(insn->code) == BPF_X) {
11046 mark_reg_unknown(env, regs, insn->dst_reg);
11047 mark_reg_unknown(env, regs, insn->src_reg);
11048 }
11049 }
11050 return branch;
11051}
11052
979d63d5
DB
11053static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11054 struct bpf_insn *insn,
11055 const struct bpf_reg_state *ptr_reg,
6f55b2f2 11056 const struct bpf_reg_state *off_reg,
979d63d5 11057 struct bpf_reg_state *dst_reg,
3d0220f6 11058 struct bpf_sanitize_info *info,
7fedb63a 11059 const bool commit_window)
979d63d5 11060{
3d0220f6 11061 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 11062 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 11063 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 11064 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
11065 bool ptr_is_dst_reg = ptr_reg == dst_reg;
11066 u8 opcode = BPF_OP(insn->code);
11067 u32 alu_state, alu_limit;
11068 struct bpf_reg_state tmp;
11069 bool ret;
f232326f 11070 int err;
979d63d5 11071
d3bd7413 11072 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
11073 return 0;
11074
11075 /* We already marked aux for masking from non-speculative
11076 * paths, thus we got here in the first place. We only care
11077 * to explore bad access from here.
11078 */
11079 if (vstate->speculative)
11080 goto do_sim;
11081
bb01a1bb
DB
11082 if (!commit_window) {
11083 if (!tnum_is_const(off_reg->var_off) &&
11084 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11085 return REASON_BOUNDS;
11086
11087 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
11088 (opcode == BPF_SUB && !off_is_neg);
11089 }
11090
11091 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
11092 if (err < 0)
11093 return err;
11094
7fedb63a
DB
11095 if (commit_window) {
11096 /* In commit phase we narrow the masking window based on
11097 * the observed pointer move after the simulated operation.
11098 */
3d0220f6
DB
11099 alu_state = info->aux.alu_state;
11100 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
11101 } else {
11102 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 11103 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
11104 alu_state |= ptr_is_dst_reg ?
11105 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
11106
11107 /* Limit pruning on unknown scalars to enable deep search for
11108 * potential masking differences from other program paths.
11109 */
11110 if (!off_is_imm)
11111 env->explore_alu_limits = true;
7fedb63a
DB
11112 }
11113
f232326f
PK
11114 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11115 if (err < 0)
11116 return err;
979d63d5 11117do_sim:
7fedb63a
DB
11118 /* If we're in commit phase, we're done here given we already
11119 * pushed the truncated dst_reg into the speculative verification
11120 * stack.
a7036191
DB
11121 *
11122 * Also, when register is a known constant, we rewrite register-based
11123 * operation to immediate-based, and thus do not need masking (and as
11124 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 11125 */
a7036191 11126 if (commit_window || off_is_imm)
7fedb63a
DB
11127 return 0;
11128
979d63d5
DB
11129 /* Simulate and find potential out-of-bounds access under
11130 * speculative execution from truncation as a result of
11131 * masking when off was not within expected range. If off
11132 * sits in dst, then we temporarily need to move ptr there
11133 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11134 * for cases where we use K-based arithmetic in one direction
11135 * and truncated reg-based in the other in order to explore
11136 * bad access.
11137 */
11138 if (!ptr_is_dst_reg) {
11139 tmp = *dst_reg;
71f656a5 11140 copy_register_state(dst_reg, ptr_reg);
979d63d5 11141 }
9183671a
DB
11142 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11143 env->insn_idx);
0803278b 11144 if (!ptr_is_dst_reg && ret)
979d63d5 11145 *dst_reg = tmp;
a6aaece0
DB
11146 return !ret ? REASON_STACK : 0;
11147}
11148
fe9a5ca7
DB
11149static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11150{
11151 struct bpf_verifier_state *vstate = env->cur_state;
11152
11153 /* If we simulate paths under speculation, we don't update the
11154 * insn as 'seen' such that when we verify unreachable paths in
11155 * the non-speculative domain, sanitize_dead_code() can still
11156 * rewrite/sanitize them.
11157 */
11158 if (!vstate->speculative)
11159 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11160}
11161
a6aaece0
DB
11162static int sanitize_err(struct bpf_verifier_env *env,
11163 const struct bpf_insn *insn, int reason,
11164 const struct bpf_reg_state *off_reg,
11165 const struct bpf_reg_state *dst_reg)
11166{
11167 static const char *err = "pointer arithmetic with it prohibited for !root";
11168 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11169 u32 dst = insn->dst_reg, src = insn->src_reg;
11170
11171 switch (reason) {
11172 case REASON_BOUNDS:
11173 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11174 off_reg == dst_reg ? dst : src, err);
11175 break;
11176 case REASON_TYPE:
11177 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11178 off_reg == dst_reg ? src : dst, err);
11179 break;
11180 case REASON_PATHS:
11181 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11182 dst, op, err);
11183 break;
11184 case REASON_LIMIT:
11185 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11186 dst, op, err);
11187 break;
11188 case REASON_STACK:
11189 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11190 dst, err);
11191 break;
11192 default:
11193 verbose(env, "verifier internal error: unknown reason (%d)\n",
11194 reason);
11195 break;
11196 }
11197
11198 return -EACCES;
979d63d5
DB
11199}
11200
01f810ac
AM
11201/* check that stack access falls within stack limits and that 'reg' doesn't
11202 * have a variable offset.
11203 *
11204 * Variable offset is prohibited for unprivileged mode for simplicity since it
11205 * requires corresponding support in Spectre masking for stack ALU. See also
11206 * retrieve_ptr_limit().
11207 *
11208 *
11209 * 'off' includes 'reg->off'.
11210 */
11211static int check_stack_access_for_ptr_arithmetic(
11212 struct bpf_verifier_env *env,
11213 int regno,
11214 const struct bpf_reg_state *reg,
11215 int off)
11216{
11217 if (!tnum_is_const(reg->var_off)) {
11218 char tn_buf[48];
11219
11220 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11221 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11222 regno, tn_buf, off);
11223 return -EACCES;
11224 }
11225
11226 if (off >= 0 || off < -MAX_BPF_STACK) {
11227 verbose(env, "R%d stack pointer arithmetic goes out of range, "
11228 "prohibited for !root; off=%d\n", regno, off);
11229 return -EACCES;
11230 }
11231
11232 return 0;
11233}
11234
073815b7
DB
11235static int sanitize_check_bounds(struct bpf_verifier_env *env,
11236 const struct bpf_insn *insn,
11237 const struct bpf_reg_state *dst_reg)
11238{
11239 u32 dst = insn->dst_reg;
11240
11241 /* For unprivileged we require that resulting offset must be in bounds
11242 * in order to be able to sanitize access later on.
11243 */
11244 if (env->bypass_spec_v1)
11245 return 0;
11246
11247 switch (dst_reg->type) {
11248 case PTR_TO_STACK:
11249 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11250 dst_reg->off + dst_reg->var_off.value))
11251 return -EACCES;
11252 break;
11253 case PTR_TO_MAP_VALUE:
61df10c7 11254 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
11255 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11256 "prohibited for !root\n", dst);
11257 return -EACCES;
11258 }
11259 break;
11260 default:
11261 break;
11262 }
11263
11264 return 0;
11265}
01f810ac 11266
f1174f77 11267/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
11268 * Caller should also handle BPF_MOV case separately.
11269 * If we return -EACCES, caller may want to try again treating pointer as a
11270 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
11271 */
11272static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11273 struct bpf_insn *insn,
11274 const struct bpf_reg_state *ptr_reg,
11275 const struct bpf_reg_state *off_reg)
969bf05e 11276{
f4d7e40a
AS
11277 struct bpf_verifier_state *vstate = env->cur_state;
11278 struct bpf_func_state *state = vstate->frame[vstate->curframe];
11279 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 11280 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
11281 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11282 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11283 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11284 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 11285 struct bpf_sanitize_info info = {};
969bf05e 11286 u8 opcode = BPF_OP(insn->code);
24c109bb 11287 u32 dst = insn->dst_reg;
979d63d5 11288 int ret;
969bf05e 11289
f1174f77 11290 dst_reg = &regs[dst];
969bf05e 11291
6f16101e
DB
11292 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11293 smin_val > smax_val || umin_val > umax_val) {
11294 /* Taint dst register if offset had invalid bounds derived from
11295 * e.g. dead branches.
11296 */
f54c7898 11297 __mark_reg_unknown(env, dst_reg);
6f16101e 11298 return 0;
f1174f77
EC
11299 }
11300
11301 if (BPF_CLASS(insn->code) != BPF_ALU64) {
11302 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
11303 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11304 __mark_reg_unknown(env, dst_reg);
11305 return 0;
11306 }
11307
82abbf8d
AS
11308 verbose(env,
11309 "R%d 32-bit pointer arithmetic prohibited\n",
11310 dst);
f1174f77 11311 return -EACCES;
969bf05e
AS
11312 }
11313
c25b2ae1 11314 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 11315 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 11316 dst, reg_type_str(env, ptr_reg->type));
f1174f77 11317 return -EACCES;
c25b2ae1
HL
11318 }
11319
11320 switch (base_type(ptr_reg->type)) {
aad2eeaf 11321 case CONST_PTR_TO_MAP:
7c696732
YS
11322 /* smin_val represents the known value */
11323 if (known && smin_val == 0 && opcode == BPF_ADD)
11324 break;
8731745e 11325 fallthrough;
aad2eeaf 11326 case PTR_TO_PACKET_END:
c64b7983 11327 case PTR_TO_SOCKET:
46f8bc92 11328 case PTR_TO_SOCK_COMMON:
655a51e5 11329 case PTR_TO_TCP_SOCK:
fada7fdc 11330 case PTR_TO_XDP_SOCK:
aad2eeaf 11331 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 11332 dst, reg_type_str(env, ptr_reg->type));
f1174f77 11333 return -EACCES;
aad2eeaf
JS
11334 default:
11335 break;
f1174f77
EC
11336 }
11337
11338 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11339 * The id may be overwritten later if we create a new variable offset.
969bf05e 11340 */
f1174f77
EC
11341 dst_reg->type = ptr_reg->type;
11342 dst_reg->id = ptr_reg->id;
969bf05e 11343
bb7f0f98
AS
11344 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11345 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11346 return -EINVAL;
11347
3f50f132
JF
11348 /* pointer types do not carry 32-bit bounds at the moment. */
11349 __mark_reg32_unbounded(dst_reg);
11350
7fedb63a
DB
11351 if (sanitize_needed(opcode)) {
11352 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 11353 &info, false);
a6aaece0
DB
11354 if (ret < 0)
11355 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 11356 }
a6aaece0 11357
f1174f77
EC
11358 switch (opcode) {
11359 case BPF_ADD:
11360 /* We can take a fixed offset as long as it doesn't overflow
11361 * the s32 'off' field
969bf05e 11362 */
b03c9f9f
EC
11363 if (known && (ptr_reg->off + smin_val ==
11364 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 11365 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
11366 dst_reg->smin_value = smin_ptr;
11367 dst_reg->smax_value = smax_ptr;
11368 dst_reg->umin_value = umin_ptr;
11369 dst_reg->umax_value = umax_ptr;
f1174f77 11370 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 11371 dst_reg->off = ptr_reg->off + smin_val;
0962590e 11372 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
11373 break;
11374 }
f1174f77
EC
11375 /* A new variable offset is created. Note that off_reg->off
11376 * == 0, since it's a scalar.
11377 * dst_reg gets the pointer type and since some positive
11378 * integer value was added to the pointer, give it a new 'id'
11379 * if it's a PTR_TO_PACKET.
11380 * this creates a new 'base' pointer, off_reg (variable) gets
11381 * added into the variable offset, and we copy the fixed offset
11382 * from ptr_reg.
969bf05e 11383 */
b03c9f9f
EC
11384 if (signed_add_overflows(smin_ptr, smin_val) ||
11385 signed_add_overflows(smax_ptr, smax_val)) {
11386 dst_reg->smin_value = S64_MIN;
11387 dst_reg->smax_value = S64_MAX;
11388 } else {
11389 dst_reg->smin_value = smin_ptr + smin_val;
11390 dst_reg->smax_value = smax_ptr + smax_val;
11391 }
11392 if (umin_ptr + umin_val < umin_ptr ||
11393 umax_ptr + umax_val < umax_ptr) {
11394 dst_reg->umin_value = 0;
11395 dst_reg->umax_value = U64_MAX;
11396 } else {
11397 dst_reg->umin_value = umin_ptr + umin_val;
11398 dst_reg->umax_value = umax_ptr + umax_val;
11399 }
f1174f77
EC
11400 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11401 dst_reg->off = ptr_reg->off;
0962590e 11402 dst_reg->raw = ptr_reg->raw;
de8f3a83 11403 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
11404 dst_reg->id = ++env->id_gen;
11405 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 11406 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
11407 }
11408 break;
11409 case BPF_SUB:
11410 if (dst_reg == off_reg) {
11411 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
11412 verbose(env, "R%d tried to subtract pointer from scalar\n",
11413 dst);
f1174f77
EC
11414 return -EACCES;
11415 }
11416 /* We don't allow subtraction from FP, because (according to
11417 * test_verifier.c test "invalid fp arithmetic", JITs might not
11418 * be able to deal with it.
969bf05e 11419 */
f1174f77 11420 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
11421 verbose(env, "R%d subtraction from stack pointer prohibited\n",
11422 dst);
f1174f77
EC
11423 return -EACCES;
11424 }
b03c9f9f
EC
11425 if (known && (ptr_reg->off - smin_val ==
11426 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 11427 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
11428 dst_reg->smin_value = smin_ptr;
11429 dst_reg->smax_value = smax_ptr;
11430 dst_reg->umin_value = umin_ptr;
11431 dst_reg->umax_value = umax_ptr;
f1174f77
EC
11432 dst_reg->var_off = ptr_reg->var_off;
11433 dst_reg->id = ptr_reg->id;
b03c9f9f 11434 dst_reg->off = ptr_reg->off - smin_val;
0962590e 11435 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
11436 break;
11437 }
f1174f77
EC
11438 /* A new variable offset is created. If the subtrahend is known
11439 * nonnegative, then any reg->range we had before is still good.
969bf05e 11440 */
b03c9f9f
EC
11441 if (signed_sub_overflows(smin_ptr, smax_val) ||
11442 signed_sub_overflows(smax_ptr, smin_val)) {
11443 /* Overflow possible, we know nothing */
11444 dst_reg->smin_value = S64_MIN;
11445 dst_reg->smax_value = S64_MAX;
11446 } else {
11447 dst_reg->smin_value = smin_ptr - smax_val;
11448 dst_reg->smax_value = smax_ptr - smin_val;
11449 }
11450 if (umin_ptr < umax_val) {
11451 /* Overflow possible, we know nothing */
11452 dst_reg->umin_value = 0;
11453 dst_reg->umax_value = U64_MAX;
11454 } else {
11455 /* Cannot overflow (as long as bounds are consistent) */
11456 dst_reg->umin_value = umin_ptr - umax_val;
11457 dst_reg->umax_value = umax_ptr - umin_val;
11458 }
f1174f77
EC
11459 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
11460 dst_reg->off = ptr_reg->off;
0962590e 11461 dst_reg->raw = ptr_reg->raw;
de8f3a83 11462 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
11463 dst_reg->id = ++env->id_gen;
11464 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 11465 if (smin_val < 0)
22dc4a0f 11466 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 11467 }
f1174f77
EC
11468 break;
11469 case BPF_AND:
11470 case BPF_OR:
11471 case BPF_XOR:
82abbf8d
AS
11472 /* bitwise ops on pointers are troublesome, prohibit. */
11473 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
11474 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
11475 return -EACCES;
11476 default:
11477 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
11478 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
11479 dst, bpf_alu_string[opcode >> 4]);
f1174f77 11480 return -EACCES;
43188702
JF
11481 }
11482
bb7f0f98
AS
11483 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
11484 return -EINVAL;
3844d153 11485 reg_bounds_sync(dst_reg);
073815b7
DB
11486 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
11487 return -EACCES;
7fedb63a
DB
11488 if (sanitize_needed(opcode)) {
11489 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 11490 &info, true);
7fedb63a
DB
11491 if (ret < 0)
11492 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
11493 }
11494
43188702
JF
11495 return 0;
11496}
11497
3f50f132
JF
11498static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
11499 struct bpf_reg_state *src_reg)
11500{
11501 s32 smin_val = src_reg->s32_min_value;
11502 s32 smax_val = src_reg->s32_max_value;
11503 u32 umin_val = src_reg->u32_min_value;
11504 u32 umax_val = src_reg->u32_max_value;
11505
11506 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
11507 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
11508 dst_reg->s32_min_value = S32_MIN;
11509 dst_reg->s32_max_value = S32_MAX;
11510 } else {
11511 dst_reg->s32_min_value += smin_val;
11512 dst_reg->s32_max_value += smax_val;
11513 }
11514 if (dst_reg->u32_min_value + umin_val < umin_val ||
11515 dst_reg->u32_max_value + umax_val < umax_val) {
11516 dst_reg->u32_min_value = 0;
11517 dst_reg->u32_max_value = U32_MAX;
11518 } else {
11519 dst_reg->u32_min_value += umin_val;
11520 dst_reg->u32_max_value += umax_val;
11521 }
11522}
11523
07cd2631
JF
11524static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
11525 struct bpf_reg_state *src_reg)
11526{
11527 s64 smin_val = src_reg->smin_value;
11528 s64 smax_val = src_reg->smax_value;
11529 u64 umin_val = src_reg->umin_value;
11530 u64 umax_val = src_reg->umax_value;
11531
11532 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
11533 signed_add_overflows(dst_reg->smax_value, smax_val)) {
11534 dst_reg->smin_value = S64_MIN;
11535 dst_reg->smax_value = S64_MAX;
11536 } else {
11537 dst_reg->smin_value += smin_val;
11538 dst_reg->smax_value += smax_val;
11539 }
11540 if (dst_reg->umin_value + umin_val < umin_val ||
11541 dst_reg->umax_value + umax_val < umax_val) {
11542 dst_reg->umin_value = 0;
11543 dst_reg->umax_value = U64_MAX;
11544 } else {
11545 dst_reg->umin_value += umin_val;
11546 dst_reg->umax_value += umax_val;
11547 }
3f50f132
JF
11548}
11549
11550static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
11551 struct bpf_reg_state *src_reg)
11552{
11553 s32 smin_val = src_reg->s32_min_value;
11554 s32 smax_val = src_reg->s32_max_value;
11555 u32 umin_val = src_reg->u32_min_value;
11556 u32 umax_val = src_reg->u32_max_value;
11557
11558 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
11559 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
11560 /* Overflow possible, we know nothing */
11561 dst_reg->s32_min_value = S32_MIN;
11562 dst_reg->s32_max_value = S32_MAX;
11563 } else {
11564 dst_reg->s32_min_value -= smax_val;
11565 dst_reg->s32_max_value -= smin_val;
11566 }
11567 if (dst_reg->u32_min_value < umax_val) {
11568 /* Overflow possible, we know nothing */
11569 dst_reg->u32_min_value = 0;
11570 dst_reg->u32_max_value = U32_MAX;
11571 } else {
11572 /* Cannot overflow (as long as bounds are consistent) */
11573 dst_reg->u32_min_value -= umax_val;
11574 dst_reg->u32_max_value -= umin_val;
11575 }
07cd2631
JF
11576}
11577
11578static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
11579 struct bpf_reg_state *src_reg)
11580{
11581 s64 smin_val = src_reg->smin_value;
11582 s64 smax_val = src_reg->smax_value;
11583 u64 umin_val = src_reg->umin_value;
11584 u64 umax_val = src_reg->umax_value;
11585
11586 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
11587 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
11588 /* Overflow possible, we know nothing */
11589 dst_reg->smin_value = S64_MIN;
11590 dst_reg->smax_value = S64_MAX;
11591 } else {
11592 dst_reg->smin_value -= smax_val;
11593 dst_reg->smax_value -= smin_val;
11594 }
11595 if (dst_reg->umin_value < umax_val) {
11596 /* Overflow possible, we know nothing */
11597 dst_reg->umin_value = 0;
11598 dst_reg->umax_value = U64_MAX;
11599 } else {
11600 /* Cannot overflow (as long as bounds are consistent) */
11601 dst_reg->umin_value -= umax_val;
11602 dst_reg->umax_value -= umin_val;
11603 }
3f50f132
JF
11604}
11605
11606static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
11607 struct bpf_reg_state *src_reg)
11608{
11609 s32 smin_val = src_reg->s32_min_value;
11610 u32 umin_val = src_reg->u32_min_value;
11611 u32 umax_val = src_reg->u32_max_value;
11612
11613 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
11614 /* Ain't nobody got time to multiply that sign */
11615 __mark_reg32_unbounded(dst_reg);
11616 return;
11617 }
11618 /* Both values are positive, so we can work with unsigned and
11619 * copy the result to signed (unless it exceeds S32_MAX).
11620 */
11621 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
11622 /* Potential overflow, we know nothing */
11623 __mark_reg32_unbounded(dst_reg);
11624 return;
11625 }
11626 dst_reg->u32_min_value *= umin_val;
11627 dst_reg->u32_max_value *= umax_val;
11628 if (dst_reg->u32_max_value > S32_MAX) {
11629 /* Overflow possible, we know nothing */
11630 dst_reg->s32_min_value = S32_MIN;
11631 dst_reg->s32_max_value = S32_MAX;
11632 } else {
11633 dst_reg->s32_min_value = dst_reg->u32_min_value;
11634 dst_reg->s32_max_value = dst_reg->u32_max_value;
11635 }
07cd2631
JF
11636}
11637
11638static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
11639 struct bpf_reg_state *src_reg)
11640{
11641 s64 smin_val = src_reg->smin_value;
11642 u64 umin_val = src_reg->umin_value;
11643 u64 umax_val = src_reg->umax_value;
11644
07cd2631
JF
11645 if (smin_val < 0 || dst_reg->smin_value < 0) {
11646 /* Ain't nobody got time to multiply that sign */
3f50f132 11647 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
11648 return;
11649 }
11650 /* Both values are positive, so we can work with unsigned and
11651 * copy the result to signed (unless it exceeds S64_MAX).
11652 */
11653 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
11654 /* Potential overflow, we know nothing */
3f50f132 11655 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
11656 return;
11657 }
11658 dst_reg->umin_value *= umin_val;
11659 dst_reg->umax_value *= umax_val;
11660 if (dst_reg->umax_value > S64_MAX) {
11661 /* Overflow possible, we know nothing */
11662 dst_reg->smin_value = S64_MIN;
11663 dst_reg->smax_value = S64_MAX;
11664 } else {
11665 dst_reg->smin_value = dst_reg->umin_value;
11666 dst_reg->smax_value = dst_reg->umax_value;
11667 }
11668}
11669
3f50f132
JF
11670static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
11671 struct bpf_reg_state *src_reg)
11672{
11673 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11674 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11675 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11676 s32 smin_val = src_reg->s32_min_value;
11677 u32 umax_val = src_reg->u32_max_value;
11678
049c4e13
DB
11679 if (src_known && dst_known) {
11680 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 11681 return;
049c4e13 11682 }
3f50f132
JF
11683
11684 /* We get our minimum from the var_off, since that's inherently
11685 * bitwise. Our maximum is the minimum of the operands' maxima.
11686 */
11687 dst_reg->u32_min_value = var32_off.value;
11688 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
11689 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11690 /* Lose signed bounds when ANDing negative numbers,
11691 * ain't nobody got time for that.
11692 */
11693 dst_reg->s32_min_value = S32_MIN;
11694 dst_reg->s32_max_value = S32_MAX;
11695 } else {
11696 /* ANDing two positives gives a positive, so safe to
11697 * cast result into s64.
11698 */
11699 dst_reg->s32_min_value = dst_reg->u32_min_value;
11700 dst_reg->s32_max_value = dst_reg->u32_max_value;
11701 }
3f50f132
JF
11702}
11703
07cd2631
JF
11704static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
11705 struct bpf_reg_state *src_reg)
11706{
3f50f132
JF
11707 bool src_known = tnum_is_const(src_reg->var_off);
11708 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
11709 s64 smin_val = src_reg->smin_value;
11710 u64 umax_val = src_reg->umax_value;
11711
3f50f132 11712 if (src_known && dst_known) {
4fbb38a3 11713 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
11714 return;
11715 }
11716
07cd2631
JF
11717 /* We get our minimum from the var_off, since that's inherently
11718 * bitwise. Our maximum is the minimum of the operands' maxima.
11719 */
07cd2631
JF
11720 dst_reg->umin_value = dst_reg->var_off.value;
11721 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
11722 if (dst_reg->smin_value < 0 || smin_val < 0) {
11723 /* Lose signed bounds when ANDing negative numbers,
11724 * ain't nobody got time for that.
11725 */
11726 dst_reg->smin_value = S64_MIN;
11727 dst_reg->smax_value = S64_MAX;
11728 } else {
11729 /* ANDing two positives gives a positive, so safe to
11730 * cast result into s64.
11731 */
11732 dst_reg->smin_value = dst_reg->umin_value;
11733 dst_reg->smax_value = dst_reg->umax_value;
11734 }
11735 /* We may learn something more from the var_off */
11736 __update_reg_bounds(dst_reg);
11737}
11738
3f50f132
JF
11739static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
11740 struct bpf_reg_state *src_reg)
11741{
11742 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11743 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11744 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
11745 s32 smin_val = src_reg->s32_min_value;
11746 u32 umin_val = src_reg->u32_min_value;
3f50f132 11747
049c4e13
DB
11748 if (src_known && dst_known) {
11749 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 11750 return;
049c4e13 11751 }
3f50f132
JF
11752
11753 /* We get our maximum from the var_off, and our minimum is the
11754 * maximum of the operands' minima
11755 */
11756 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
11757 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11758 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11759 /* Lose signed bounds when ORing negative numbers,
11760 * ain't nobody got time for that.
11761 */
11762 dst_reg->s32_min_value = S32_MIN;
11763 dst_reg->s32_max_value = S32_MAX;
11764 } else {
11765 /* ORing two positives gives a positive, so safe to
11766 * cast result into s64.
11767 */
5b9fbeb7
DB
11768 dst_reg->s32_min_value = dst_reg->u32_min_value;
11769 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
11770 }
11771}
11772
07cd2631
JF
11773static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
11774 struct bpf_reg_state *src_reg)
11775{
3f50f132
JF
11776 bool src_known = tnum_is_const(src_reg->var_off);
11777 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
11778 s64 smin_val = src_reg->smin_value;
11779 u64 umin_val = src_reg->umin_value;
11780
3f50f132 11781 if (src_known && dst_known) {
4fbb38a3 11782 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
11783 return;
11784 }
11785
07cd2631
JF
11786 /* We get our maximum from the var_off, and our minimum is the
11787 * maximum of the operands' minima
11788 */
07cd2631
JF
11789 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
11790 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11791 if (dst_reg->smin_value < 0 || smin_val < 0) {
11792 /* Lose signed bounds when ORing negative numbers,
11793 * ain't nobody got time for that.
11794 */
11795 dst_reg->smin_value = S64_MIN;
11796 dst_reg->smax_value = S64_MAX;
11797 } else {
11798 /* ORing two positives gives a positive, so safe to
11799 * cast result into s64.
11800 */
11801 dst_reg->smin_value = dst_reg->umin_value;
11802 dst_reg->smax_value = dst_reg->umax_value;
11803 }
11804 /* We may learn something more from the var_off */
11805 __update_reg_bounds(dst_reg);
11806}
11807
2921c90d
YS
11808static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
11809 struct bpf_reg_state *src_reg)
11810{
11811 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11812 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11813 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11814 s32 smin_val = src_reg->s32_min_value;
11815
049c4e13
DB
11816 if (src_known && dst_known) {
11817 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 11818 return;
049c4e13 11819 }
2921c90d
YS
11820
11821 /* We get both minimum and maximum from the var32_off. */
11822 dst_reg->u32_min_value = var32_off.value;
11823 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11824
11825 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
11826 /* XORing two positive sign numbers gives a positive,
11827 * so safe to cast u32 result into s32.
11828 */
11829 dst_reg->s32_min_value = dst_reg->u32_min_value;
11830 dst_reg->s32_max_value = dst_reg->u32_max_value;
11831 } else {
11832 dst_reg->s32_min_value = S32_MIN;
11833 dst_reg->s32_max_value = S32_MAX;
11834 }
11835}
11836
11837static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
11838 struct bpf_reg_state *src_reg)
11839{
11840 bool src_known = tnum_is_const(src_reg->var_off);
11841 bool dst_known = tnum_is_const(dst_reg->var_off);
11842 s64 smin_val = src_reg->smin_value;
11843
11844 if (src_known && dst_known) {
11845 /* dst_reg->var_off.value has been updated earlier */
11846 __mark_reg_known(dst_reg, dst_reg->var_off.value);
11847 return;
11848 }
11849
11850 /* We get both minimum and maximum from the var_off. */
11851 dst_reg->umin_value = dst_reg->var_off.value;
11852 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11853
11854 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
11855 /* XORing two positive sign numbers gives a positive,
11856 * so safe to cast u64 result into s64.
11857 */
11858 dst_reg->smin_value = dst_reg->umin_value;
11859 dst_reg->smax_value = dst_reg->umax_value;
11860 } else {
11861 dst_reg->smin_value = S64_MIN;
11862 dst_reg->smax_value = S64_MAX;
11863 }
11864
11865 __update_reg_bounds(dst_reg);
11866}
11867
3f50f132
JF
11868static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11869 u64 umin_val, u64 umax_val)
07cd2631 11870{
07cd2631
JF
11871 /* We lose all sign bit information (except what we can pick
11872 * up from var_off)
11873 */
3f50f132
JF
11874 dst_reg->s32_min_value = S32_MIN;
11875 dst_reg->s32_max_value = S32_MAX;
11876 /* If we might shift our top bit out, then we know nothing */
11877 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
11878 dst_reg->u32_min_value = 0;
11879 dst_reg->u32_max_value = U32_MAX;
11880 } else {
11881 dst_reg->u32_min_value <<= umin_val;
11882 dst_reg->u32_max_value <<= umax_val;
11883 }
11884}
11885
11886static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11887 struct bpf_reg_state *src_reg)
11888{
11889 u32 umax_val = src_reg->u32_max_value;
11890 u32 umin_val = src_reg->u32_min_value;
11891 /* u32 alu operation will zext upper bits */
11892 struct tnum subreg = tnum_subreg(dst_reg->var_off);
11893
11894 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11895 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
11896 /* Not required but being careful mark reg64 bounds as unknown so
11897 * that we are forced to pick them up from tnum and zext later and
11898 * if some path skips this step we are still safe.
11899 */
11900 __mark_reg64_unbounded(dst_reg);
11901 __update_reg32_bounds(dst_reg);
11902}
11903
11904static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
11905 u64 umin_val, u64 umax_val)
11906{
11907 /* Special case <<32 because it is a common compiler pattern to sign
11908 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
11909 * positive we know this shift will also be positive so we can track
11910 * bounds correctly. Otherwise we lose all sign bit information except
11911 * what we can pick up from var_off. Perhaps we can generalize this
11912 * later to shifts of any length.
11913 */
11914 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
11915 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
11916 else
11917 dst_reg->smax_value = S64_MAX;
11918
11919 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
11920 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
11921 else
11922 dst_reg->smin_value = S64_MIN;
11923
07cd2631
JF
11924 /* If we might shift our top bit out, then we know nothing */
11925 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
11926 dst_reg->umin_value = 0;
11927 dst_reg->umax_value = U64_MAX;
11928 } else {
11929 dst_reg->umin_value <<= umin_val;
11930 dst_reg->umax_value <<= umax_val;
11931 }
3f50f132
JF
11932}
11933
11934static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
11935 struct bpf_reg_state *src_reg)
11936{
11937 u64 umax_val = src_reg->umax_value;
11938 u64 umin_val = src_reg->umin_value;
11939
11940 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
11941 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
11942 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11943
07cd2631
JF
11944 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
11945 /* We may learn something more from the var_off */
11946 __update_reg_bounds(dst_reg);
11947}
11948
3f50f132
JF
11949static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
11950 struct bpf_reg_state *src_reg)
11951{
11952 struct tnum subreg = tnum_subreg(dst_reg->var_off);
11953 u32 umax_val = src_reg->u32_max_value;
11954 u32 umin_val = src_reg->u32_min_value;
11955
11956 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
11957 * be negative, then either:
11958 * 1) src_reg might be zero, so the sign bit of the result is
11959 * unknown, so we lose our signed bounds
11960 * 2) it's known negative, thus the unsigned bounds capture the
11961 * signed bounds
11962 * 3) the signed bounds cross zero, so they tell us nothing
11963 * about the result
11964 * If the value in dst_reg is known nonnegative, then again the
18b24d78 11965 * unsigned bounds capture the signed bounds.
3f50f132
JF
11966 * Thus, in all cases it suffices to blow away our signed bounds
11967 * and rely on inferring new ones from the unsigned bounds and
11968 * var_off of the result.
11969 */
11970 dst_reg->s32_min_value = S32_MIN;
11971 dst_reg->s32_max_value = S32_MAX;
11972
11973 dst_reg->var_off = tnum_rshift(subreg, umin_val);
11974 dst_reg->u32_min_value >>= umax_val;
11975 dst_reg->u32_max_value >>= umin_val;
11976
11977 __mark_reg64_unbounded(dst_reg);
11978 __update_reg32_bounds(dst_reg);
11979}
11980
07cd2631
JF
11981static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
11982 struct bpf_reg_state *src_reg)
11983{
11984 u64 umax_val = src_reg->umax_value;
11985 u64 umin_val = src_reg->umin_value;
11986
11987 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
11988 * be negative, then either:
11989 * 1) src_reg might be zero, so the sign bit of the result is
11990 * unknown, so we lose our signed bounds
11991 * 2) it's known negative, thus the unsigned bounds capture the
11992 * signed bounds
11993 * 3) the signed bounds cross zero, so they tell us nothing
11994 * about the result
11995 * If the value in dst_reg is known nonnegative, then again the
18b24d78 11996 * unsigned bounds capture the signed bounds.
07cd2631
JF
11997 * Thus, in all cases it suffices to blow away our signed bounds
11998 * and rely on inferring new ones from the unsigned bounds and
11999 * var_off of the result.
12000 */
12001 dst_reg->smin_value = S64_MIN;
12002 dst_reg->smax_value = S64_MAX;
12003 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12004 dst_reg->umin_value >>= umax_val;
12005 dst_reg->umax_value >>= umin_val;
3f50f132
JF
12006
12007 /* Its not easy to operate on alu32 bounds here because it depends
12008 * on bits being shifted in. Take easy way out and mark unbounded
12009 * so we can recalculate later from tnum.
12010 */
12011 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12012 __update_reg_bounds(dst_reg);
12013}
12014
3f50f132
JF
12015static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12016 struct bpf_reg_state *src_reg)
07cd2631 12017{
3f50f132 12018 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
12019
12020 /* Upon reaching here, src_known is true and
12021 * umax_val is equal to umin_val.
12022 */
3f50f132
JF
12023 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12024 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 12025
3f50f132
JF
12026 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12027
12028 /* blow away the dst_reg umin_value/umax_value and rely on
12029 * dst_reg var_off to refine the result.
12030 */
12031 dst_reg->u32_min_value = 0;
12032 dst_reg->u32_max_value = U32_MAX;
12033
12034 __mark_reg64_unbounded(dst_reg);
12035 __update_reg32_bounds(dst_reg);
12036}
12037
12038static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12039 struct bpf_reg_state *src_reg)
12040{
12041 u64 umin_val = src_reg->umin_value;
12042
12043 /* Upon reaching here, src_known is true and umax_val is equal
12044 * to umin_val.
12045 */
12046 dst_reg->smin_value >>= umin_val;
12047 dst_reg->smax_value >>= umin_val;
12048
12049 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
12050
12051 /* blow away the dst_reg umin_value/umax_value and rely on
12052 * dst_reg var_off to refine the result.
12053 */
12054 dst_reg->umin_value = 0;
12055 dst_reg->umax_value = U64_MAX;
3f50f132
JF
12056
12057 /* Its not easy to operate on alu32 bounds here because it depends
12058 * on bits being shifted in from upper 32-bits. Take easy way out
12059 * and mark unbounded so we can recalculate later from tnum.
12060 */
12061 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12062 __update_reg_bounds(dst_reg);
12063}
12064
468f6eaf
JH
12065/* WARNING: This function does calculations on 64-bit values, but the actual
12066 * execution may occur on 32-bit values. Therefore, things like bitshifts
12067 * need extra checks in the 32-bit case.
12068 */
f1174f77
EC
12069static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12070 struct bpf_insn *insn,
12071 struct bpf_reg_state *dst_reg,
12072 struct bpf_reg_state src_reg)
969bf05e 12073{
638f5b90 12074 struct bpf_reg_state *regs = cur_regs(env);
48461135 12075 u8 opcode = BPF_OP(insn->code);
b0b3fb67 12076 bool src_known;
b03c9f9f
EC
12077 s64 smin_val, smax_val;
12078 u64 umin_val, umax_val;
3f50f132
JF
12079 s32 s32_min_val, s32_max_val;
12080 u32 u32_min_val, u32_max_val;
468f6eaf 12081 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 12082 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 12083 int ret;
b799207e 12084
b03c9f9f
EC
12085 smin_val = src_reg.smin_value;
12086 smax_val = src_reg.smax_value;
12087 umin_val = src_reg.umin_value;
12088 umax_val = src_reg.umax_value;
f23cc643 12089
3f50f132
JF
12090 s32_min_val = src_reg.s32_min_value;
12091 s32_max_val = src_reg.s32_max_value;
12092 u32_min_val = src_reg.u32_min_value;
12093 u32_max_val = src_reg.u32_max_value;
12094
12095 if (alu32) {
12096 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
12097 if ((src_known &&
12098 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12099 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12100 /* Taint dst register if offset had invalid bounds
12101 * derived from e.g. dead branches.
12102 */
12103 __mark_reg_unknown(env, dst_reg);
12104 return 0;
12105 }
12106 } else {
12107 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
12108 if ((src_known &&
12109 (smin_val != smax_val || umin_val != umax_val)) ||
12110 smin_val > smax_val || umin_val > umax_val) {
12111 /* Taint dst register if offset had invalid bounds
12112 * derived from e.g. dead branches.
12113 */
12114 __mark_reg_unknown(env, dst_reg);
12115 return 0;
12116 }
6f16101e
DB
12117 }
12118
bb7f0f98
AS
12119 if (!src_known &&
12120 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 12121 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
12122 return 0;
12123 }
12124
f5288193
DB
12125 if (sanitize_needed(opcode)) {
12126 ret = sanitize_val_alu(env, insn);
12127 if (ret < 0)
12128 return sanitize_err(env, insn, ret, NULL, NULL);
12129 }
12130
3f50f132
JF
12131 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12132 * There are two classes of instructions: The first class we track both
12133 * alu32 and alu64 sign/unsigned bounds independently this provides the
12134 * greatest amount of precision when alu operations are mixed with jmp32
12135 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12136 * and BPF_OR. This is possible because these ops have fairly easy to
12137 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12138 * See alu32 verifier tests for examples. The second class of
12139 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12140 * with regards to tracking sign/unsigned bounds because the bits may
12141 * cross subreg boundaries in the alu64 case. When this happens we mark
12142 * the reg unbounded in the subreg bound space and use the resulting
12143 * tnum to calculate an approximation of the sign/unsigned bounds.
12144 */
48461135
JB
12145 switch (opcode) {
12146 case BPF_ADD:
3f50f132 12147 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 12148 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 12149 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
12150 break;
12151 case BPF_SUB:
3f50f132 12152 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 12153 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 12154 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
12155 break;
12156 case BPF_MUL:
3f50f132
JF
12157 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12158 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 12159 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
12160 break;
12161 case BPF_AND:
3f50f132
JF
12162 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12163 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 12164 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
12165 break;
12166 case BPF_OR:
3f50f132
JF
12167 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12168 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 12169 scalar_min_max_or(dst_reg, &src_reg);
48461135 12170 break;
2921c90d
YS
12171 case BPF_XOR:
12172 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12173 scalar32_min_max_xor(dst_reg, &src_reg);
12174 scalar_min_max_xor(dst_reg, &src_reg);
12175 break;
48461135 12176 case BPF_LSH:
468f6eaf
JH
12177 if (umax_val >= insn_bitness) {
12178 /* Shifts greater than 31 or 63 are undefined.
12179 * This includes shifts by a negative number.
b03c9f9f 12180 */
61bd5218 12181 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12182 break;
12183 }
3f50f132
JF
12184 if (alu32)
12185 scalar32_min_max_lsh(dst_reg, &src_reg);
12186 else
12187 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
12188 break;
12189 case BPF_RSH:
468f6eaf
JH
12190 if (umax_val >= insn_bitness) {
12191 /* Shifts greater than 31 or 63 are undefined.
12192 * This includes shifts by a negative number.
b03c9f9f 12193 */
61bd5218 12194 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12195 break;
12196 }
3f50f132
JF
12197 if (alu32)
12198 scalar32_min_max_rsh(dst_reg, &src_reg);
12199 else
12200 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 12201 break;
9cbe1f5a
YS
12202 case BPF_ARSH:
12203 if (umax_val >= insn_bitness) {
12204 /* Shifts greater than 31 or 63 are undefined.
12205 * This includes shifts by a negative number.
12206 */
12207 mark_reg_unknown(env, regs, insn->dst_reg);
12208 break;
12209 }
3f50f132
JF
12210 if (alu32)
12211 scalar32_min_max_arsh(dst_reg, &src_reg);
12212 else
12213 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 12214 break;
48461135 12215 default:
61bd5218 12216 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
12217 break;
12218 }
12219
3f50f132
JF
12220 /* ALU32 ops are zero extended into 64bit register */
12221 if (alu32)
12222 zext_32_to_64(dst_reg);
3844d153 12223 reg_bounds_sync(dst_reg);
f1174f77
EC
12224 return 0;
12225}
12226
12227/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12228 * and var_off.
12229 */
12230static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12231 struct bpf_insn *insn)
12232{
f4d7e40a
AS
12233 struct bpf_verifier_state *vstate = env->cur_state;
12234 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12235 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
12236 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12237 u8 opcode = BPF_OP(insn->code);
b5dc0163 12238 int err;
f1174f77
EC
12239
12240 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
12241 src_reg = NULL;
12242 if (dst_reg->type != SCALAR_VALUE)
12243 ptr_reg = dst_reg;
75748837
AS
12244 else
12245 /* Make sure ID is cleared otherwise dst_reg min/max could be
12246 * incorrectly propagated into other registers by find_equal_scalars()
12247 */
12248 dst_reg->id = 0;
f1174f77
EC
12249 if (BPF_SRC(insn->code) == BPF_X) {
12250 src_reg = &regs[insn->src_reg];
f1174f77
EC
12251 if (src_reg->type != SCALAR_VALUE) {
12252 if (dst_reg->type != SCALAR_VALUE) {
12253 /* Combining two pointers by any ALU op yields
82abbf8d
AS
12254 * an arbitrary scalar. Disallow all math except
12255 * pointer subtraction
f1174f77 12256 */
dd066823 12257 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
12258 mark_reg_unknown(env, regs, insn->dst_reg);
12259 return 0;
f1174f77 12260 }
82abbf8d
AS
12261 verbose(env, "R%d pointer %s pointer prohibited\n",
12262 insn->dst_reg,
12263 bpf_alu_string[opcode >> 4]);
12264 return -EACCES;
f1174f77
EC
12265 } else {
12266 /* scalar += pointer
12267 * This is legal, but we have to reverse our
12268 * src/dest handling in computing the range
12269 */
b5dc0163
AS
12270 err = mark_chain_precision(env, insn->dst_reg);
12271 if (err)
12272 return err;
82abbf8d
AS
12273 return adjust_ptr_min_max_vals(env, insn,
12274 src_reg, dst_reg);
f1174f77
EC
12275 }
12276 } else if (ptr_reg) {
12277 /* pointer += scalar */
b5dc0163
AS
12278 err = mark_chain_precision(env, insn->src_reg);
12279 if (err)
12280 return err;
82abbf8d
AS
12281 return adjust_ptr_min_max_vals(env, insn,
12282 dst_reg, src_reg);
a3b666bf
AN
12283 } else if (dst_reg->precise) {
12284 /* if dst_reg is precise, src_reg should be precise as well */
12285 err = mark_chain_precision(env, insn->src_reg);
12286 if (err)
12287 return err;
f1174f77
EC
12288 }
12289 } else {
12290 /* Pretend the src is a reg with a known value, since we only
12291 * need to be able to read from this state.
12292 */
12293 off_reg.type = SCALAR_VALUE;
b03c9f9f 12294 __mark_reg_known(&off_reg, insn->imm);
f1174f77 12295 src_reg = &off_reg;
82abbf8d
AS
12296 if (ptr_reg) /* pointer += K */
12297 return adjust_ptr_min_max_vals(env, insn,
12298 ptr_reg, src_reg);
f1174f77
EC
12299 }
12300
12301 /* Got here implies adding two SCALAR_VALUEs */
12302 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 12303 print_verifier_state(env, state, true);
61bd5218 12304 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
12305 return -EINVAL;
12306 }
12307 if (WARN_ON(!src_reg)) {
0f55f9ed 12308 print_verifier_state(env, state, true);
61bd5218 12309 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
12310 return -EINVAL;
12311 }
12312 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
12313}
12314
17a52670 12315/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 12316static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 12317{
638f5b90 12318 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
12319 u8 opcode = BPF_OP(insn->code);
12320 int err;
12321
12322 if (opcode == BPF_END || opcode == BPF_NEG) {
12323 if (opcode == BPF_NEG) {
395e942d 12324 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
12325 insn->src_reg != BPF_REG_0 ||
12326 insn->off != 0 || insn->imm != 0) {
61bd5218 12327 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
12328 return -EINVAL;
12329 }
12330 } else {
12331 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
12332 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12333 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 12334 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
12335 return -EINVAL;
12336 }
12337 }
12338
12339 /* check src operand */
dc503a8a 12340 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12341 if (err)
12342 return err;
12343
1be7f75d 12344 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 12345 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
12346 insn->dst_reg);
12347 return -EACCES;
12348 }
12349
17a52670 12350 /* check dest operand */
dc503a8a 12351 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
12352 if (err)
12353 return err;
12354
12355 } else if (opcode == BPF_MOV) {
12356
12357 if (BPF_SRC(insn->code) == BPF_X) {
12358 if (insn->imm != 0 || insn->off != 0) {
61bd5218 12359 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
12360 return -EINVAL;
12361 }
12362
12363 /* check src operand */
dc503a8a 12364 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12365 if (err)
12366 return err;
12367 } else {
12368 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 12369 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
12370 return -EINVAL;
12371 }
12372 }
12373
fbeb1603
AF
12374 /* check dest operand, mark as required later */
12375 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
12376 if (err)
12377 return err;
12378
12379 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
12380 struct bpf_reg_state *src_reg = regs + insn->src_reg;
12381 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12382
17a52670
AS
12383 if (BPF_CLASS(insn->code) == BPF_ALU64) {
12384 /* case: R1 = R2
12385 * copy register state to dest reg
12386 */
75748837
AS
12387 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
12388 /* Assign src and dst registers the same ID
12389 * that will be used by find_equal_scalars()
12390 * to propagate min/max range.
12391 */
12392 src_reg->id = ++env->id_gen;
71f656a5 12393 copy_register_state(dst_reg, src_reg);
e434b8cd 12394 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 12395 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 12396 } else {
f1174f77 12397 /* R1 = (u32) R2 */
1be7f75d 12398 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
12399 verbose(env,
12400 "R%d partial copy of pointer\n",
1be7f75d
AS
12401 insn->src_reg);
12402 return -EACCES;
e434b8cd 12403 } else if (src_reg->type == SCALAR_VALUE) {
71f656a5 12404 copy_register_state(dst_reg, src_reg);
75748837
AS
12405 /* Make sure ID is cleared otherwise
12406 * dst_reg min/max could be incorrectly
12407 * propagated into src_reg by find_equal_scalars()
12408 */
12409 dst_reg->id = 0;
e434b8cd 12410 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 12411 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
12412 } else {
12413 mark_reg_unknown(env, regs,
12414 insn->dst_reg);
1be7f75d 12415 }
3f50f132 12416 zext_32_to_64(dst_reg);
3844d153 12417 reg_bounds_sync(dst_reg);
17a52670
AS
12418 }
12419 } else {
12420 /* case: R = imm
12421 * remember the value we stored into this reg
12422 */
fbeb1603
AF
12423 /* clear any state __mark_reg_known doesn't set */
12424 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 12425 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
12426 if (BPF_CLASS(insn->code) == BPF_ALU64) {
12427 __mark_reg_known(regs + insn->dst_reg,
12428 insn->imm);
12429 } else {
12430 __mark_reg_known(regs + insn->dst_reg,
12431 (u32)insn->imm);
12432 }
17a52670
AS
12433 }
12434
12435 } else if (opcode > BPF_END) {
61bd5218 12436 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
12437 return -EINVAL;
12438
12439 } else { /* all other ALU ops: and, sub, xor, add, ... */
12440
17a52670
AS
12441 if (BPF_SRC(insn->code) == BPF_X) {
12442 if (insn->imm != 0 || insn->off != 0) {
61bd5218 12443 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
12444 return -EINVAL;
12445 }
12446 /* check src1 operand */
dc503a8a 12447 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12448 if (err)
12449 return err;
12450 } else {
12451 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 12452 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
12453 return -EINVAL;
12454 }
12455 }
12456
12457 /* check src2 operand */
dc503a8a 12458 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12459 if (err)
12460 return err;
12461
12462 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
12463 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 12464 verbose(env, "div by zero\n");
17a52670
AS
12465 return -EINVAL;
12466 }
12467
229394e8
RV
12468 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
12469 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
12470 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
12471
12472 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 12473 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
12474 return -EINVAL;
12475 }
12476 }
12477
1a0dc1ac 12478 /* check dest operand */
dc503a8a 12479 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
12480 if (err)
12481 return err;
12482
f1174f77 12483 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
12484 }
12485
12486 return 0;
12487}
12488
f4d7e40a 12489static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 12490 struct bpf_reg_state *dst_reg,
f8ddadc4 12491 enum bpf_reg_type type,
fb2a311a 12492 bool range_right_open)
969bf05e 12493{
b239da34
KKD
12494 struct bpf_func_state *state;
12495 struct bpf_reg_state *reg;
12496 int new_range;
2d2be8ca 12497
fb2a311a
DB
12498 if (dst_reg->off < 0 ||
12499 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
12500 /* This doesn't give us any range */
12501 return;
12502
b03c9f9f
EC
12503 if (dst_reg->umax_value > MAX_PACKET_OFF ||
12504 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
12505 /* Risk of overflow. For instance, ptr + (1<<63) may be less
12506 * than pkt_end, but that's because it's also less than pkt.
12507 */
12508 return;
12509
fb2a311a
DB
12510 new_range = dst_reg->off;
12511 if (range_right_open)
2fa7d94a 12512 new_range++;
fb2a311a
DB
12513
12514 /* Examples for register markings:
2d2be8ca 12515 *
fb2a311a 12516 * pkt_data in dst register:
2d2be8ca
DB
12517 *
12518 * r2 = r3;
12519 * r2 += 8;
12520 * if (r2 > pkt_end) goto <handle exception>
12521 * <access okay>
12522 *
b4e432f1
DB
12523 * r2 = r3;
12524 * r2 += 8;
12525 * if (r2 < pkt_end) goto <access okay>
12526 * <handle exception>
12527 *
2d2be8ca
DB
12528 * Where:
12529 * r2 == dst_reg, pkt_end == src_reg
12530 * r2=pkt(id=n,off=8,r=0)
12531 * r3=pkt(id=n,off=0,r=0)
12532 *
fb2a311a 12533 * pkt_data in src register:
2d2be8ca
DB
12534 *
12535 * r2 = r3;
12536 * r2 += 8;
12537 * if (pkt_end >= r2) goto <access okay>
12538 * <handle exception>
12539 *
b4e432f1
DB
12540 * r2 = r3;
12541 * r2 += 8;
12542 * if (pkt_end <= r2) goto <handle exception>
12543 * <access okay>
12544 *
2d2be8ca
DB
12545 * Where:
12546 * pkt_end == dst_reg, r2 == src_reg
12547 * r2=pkt(id=n,off=8,r=0)
12548 * r3=pkt(id=n,off=0,r=0)
12549 *
12550 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
12551 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
12552 * and [r3, r3 + 8-1) respectively is safe to access depending on
12553 * the check.
969bf05e 12554 */
2d2be8ca 12555
f1174f77
EC
12556 /* If our ids match, then we must have the same max_value. And we
12557 * don't care about the other reg's fixed offset, since if it's too big
12558 * the range won't allow anything.
12559 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
12560 */
b239da34
KKD
12561 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
12562 if (reg->type == type && reg->id == dst_reg->id)
12563 /* keep the maximum range already checked */
12564 reg->range = max(reg->range, new_range);
12565 }));
969bf05e
AS
12566}
12567
3f50f132 12568static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 12569{
3f50f132
JF
12570 struct tnum subreg = tnum_subreg(reg->var_off);
12571 s32 sval = (s32)val;
a72dafaf 12572
3f50f132
JF
12573 switch (opcode) {
12574 case BPF_JEQ:
12575 if (tnum_is_const(subreg))
12576 return !!tnum_equals_const(subreg, val);
12577 break;
12578 case BPF_JNE:
12579 if (tnum_is_const(subreg))
12580 return !tnum_equals_const(subreg, val);
12581 break;
12582 case BPF_JSET:
12583 if ((~subreg.mask & subreg.value) & val)
12584 return 1;
12585 if (!((subreg.mask | subreg.value) & val))
12586 return 0;
12587 break;
12588 case BPF_JGT:
12589 if (reg->u32_min_value > val)
12590 return 1;
12591 else if (reg->u32_max_value <= val)
12592 return 0;
12593 break;
12594 case BPF_JSGT:
12595 if (reg->s32_min_value > sval)
12596 return 1;
ee114dd6 12597 else if (reg->s32_max_value <= sval)
3f50f132
JF
12598 return 0;
12599 break;
12600 case BPF_JLT:
12601 if (reg->u32_max_value < val)
12602 return 1;
12603 else if (reg->u32_min_value >= val)
12604 return 0;
12605 break;
12606 case BPF_JSLT:
12607 if (reg->s32_max_value < sval)
12608 return 1;
12609 else if (reg->s32_min_value >= sval)
12610 return 0;
12611 break;
12612 case BPF_JGE:
12613 if (reg->u32_min_value >= val)
12614 return 1;
12615 else if (reg->u32_max_value < val)
12616 return 0;
12617 break;
12618 case BPF_JSGE:
12619 if (reg->s32_min_value >= sval)
12620 return 1;
12621 else if (reg->s32_max_value < sval)
12622 return 0;
12623 break;
12624 case BPF_JLE:
12625 if (reg->u32_max_value <= val)
12626 return 1;
12627 else if (reg->u32_min_value > val)
12628 return 0;
12629 break;
12630 case BPF_JSLE:
12631 if (reg->s32_max_value <= sval)
12632 return 1;
12633 else if (reg->s32_min_value > sval)
12634 return 0;
12635 break;
12636 }
4f7b3e82 12637
3f50f132
JF
12638 return -1;
12639}
092ed096 12640
3f50f132
JF
12641
12642static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
12643{
12644 s64 sval = (s64)val;
a72dafaf 12645
4f7b3e82
AS
12646 switch (opcode) {
12647 case BPF_JEQ:
12648 if (tnum_is_const(reg->var_off))
12649 return !!tnum_equals_const(reg->var_off, val);
12650 break;
12651 case BPF_JNE:
12652 if (tnum_is_const(reg->var_off))
12653 return !tnum_equals_const(reg->var_off, val);
12654 break;
960ea056
JK
12655 case BPF_JSET:
12656 if ((~reg->var_off.mask & reg->var_off.value) & val)
12657 return 1;
12658 if (!((reg->var_off.mask | reg->var_off.value) & val))
12659 return 0;
12660 break;
4f7b3e82
AS
12661 case BPF_JGT:
12662 if (reg->umin_value > val)
12663 return 1;
12664 else if (reg->umax_value <= val)
12665 return 0;
12666 break;
12667 case BPF_JSGT:
a72dafaf 12668 if (reg->smin_value > sval)
4f7b3e82 12669 return 1;
ee114dd6 12670 else if (reg->smax_value <= sval)
4f7b3e82
AS
12671 return 0;
12672 break;
12673 case BPF_JLT:
12674 if (reg->umax_value < val)
12675 return 1;
12676 else if (reg->umin_value >= val)
12677 return 0;
12678 break;
12679 case BPF_JSLT:
a72dafaf 12680 if (reg->smax_value < sval)
4f7b3e82 12681 return 1;
a72dafaf 12682 else if (reg->smin_value >= sval)
4f7b3e82
AS
12683 return 0;
12684 break;
12685 case BPF_JGE:
12686 if (reg->umin_value >= val)
12687 return 1;
12688 else if (reg->umax_value < val)
12689 return 0;
12690 break;
12691 case BPF_JSGE:
a72dafaf 12692 if (reg->smin_value >= sval)
4f7b3e82 12693 return 1;
a72dafaf 12694 else if (reg->smax_value < sval)
4f7b3e82
AS
12695 return 0;
12696 break;
12697 case BPF_JLE:
12698 if (reg->umax_value <= val)
12699 return 1;
12700 else if (reg->umin_value > val)
12701 return 0;
12702 break;
12703 case BPF_JSLE:
a72dafaf 12704 if (reg->smax_value <= sval)
4f7b3e82 12705 return 1;
a72dafaf 12706 else if (reg->smin_value > sval)
4f7b3e82
AS
12707 return 0;
12708 break;
12709 }
12710
12711 return -1;
12712}
12713
3f50f132
JF
12714/* compute branch direction of the expression "if (reg opcode val) goto target;"
12715 * and return:
12716 * 1 - branch will be taken and "goto target" will be executed
12717 * 0 - branch will not be taken and fall-through to next insn
12718 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
12719 * range [0,10]
604dca5e 12720 */
3f50f132
JF
12721static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
12722 bool is_jmp32)
604dca5e 12723{
cac616db
JF
12724 if (__is_pointer_value(false, reg)) {
12725 if (!reg_type_not_null(reg->type))
12726 return -1;
12727
12728 /* If pointer is valid tests against zero will fail so we can
12729 * use this to direct branch taken.
12730 */
12731 if (val != 0)
12732 return -1;
12733
12734 switch (opcode) {
12735 case BPF_JEQ:
12736 return 0;
12737 case BPF_JNE:
12738 return 1;
12739 default:
12740 return -1;
12741 }
12742 }
604dca5e 12743
3f50f132
JF
12744 if (is_jmp32)
12745 return is_branch32_taken(reg, val, opcode);
12746 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
12747}
12748
6d94e741
AS
12749static int flip_opcode(u32 opcode)
12750{
12751 /* How can we transform "a <op> b" into "b <op> a"? */
12752 static const u8 opcode_flip[16] = {
12753 /* these stay the same */
12754 [BPF_JEQ >> 4] = BPF_JEQ,
12755 [BPF_JNE >> 4] = BPF_JNE,
12756 [BPF_JSET >> 4] = BPF_JSET,
12757 /* these swap "lesser" and "greater" (L and G in the opcodes) */
12758 [BPF_JGE >> 4] = BPF_JLE,
12759 [BPF_JGT >> 4] = BPF_JLT,
12760 [BPF_JLE >> 4] = BPF_JGE,
12761 [BPF_JLT >> 4] = BPF_JGT,
12762 [BPF_JSGE >> 4] = BPF_JSLE,
12763 [BPF_JSGT >> 4] = BPF_JSLT,
12764 [BPF_JSLE >> 4] = BPF_JSGE,
12765 [BPF_JSLT >> 4] = BPF_JSGT
12766 };
12767 return opcode_flip[opcode >> 4];
12768}
12769
12770static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
12771 struct bpf_reg_state *src_reg,
12772 u8 opcode)
12773{
12774 struct bpf_reg_state *pkt;
12775
12776 if (src_reg->type == PTR_TO_PACKET_END) {
12777 pkt = dst_reg;
12778 } else if (dst_reg->type == PTR_TO_PACKET_END) {
12779 pkt = src_reg;
12780 opcode = flip_opcode(opcode);
12781 } else {
12782 return -1;
12783 }
12784
12785 if (pkt->range >= 0)
12786 return -1;
12787
12788 switch (opcode) {
12789 case BPF_JLE:
12790 /* pkt <= pkt_end */
12791 fallthrough;
12792 case BPF_JGT:
12793 /* pkt > pkt_end */
12794 if (pkt->range == BEYOND_PKT_END)
12795 /* pkt has at last one extra byte beyond pkt_end */
12796 return opcode == BPF_JGT;
12797 break;
12798 case BPF_JLT:
12799 /* pkt < pkt_end */
12800 fallthrough;
12801 case BPF_JGE:
12802 /* pkt >= pkt_end */
12803 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
12804 return opcode == BPF_JGE;
12805 break;
12806 }
12807 return -1;
12808}
12809
48461135
JB
12810/* Adjusts the register min/max values in the case that the dst_reg is the
12811 * variable register that we are working on, and src_reg is a constant or we're
12812 * simply doing a BPF_K check.
f1174f77 12813 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
12814 */
12815static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
12816 struct bpf_reg_state *false_reg,
12817 u64 val, u32 val32,
092ed096 12818 u8 opcode, bool is_jmp32)
48461135 12819{
3f50f132
JF
12820 struct tnum false_32off = tnum_subreg(false_reg->var_off);
12821 struct tnum false_64off = false_reg->var_off;
12822 struct tnum true_32off = tnum_subreg(true_reg->var_off);
12823 struct tnum true_64off = true_reg->var_off;
12824 s64 sval = (s64)val;
12825 s32 sval32 = (s32)val32;
a72dafaf 12826
f1174f77
EC
12827 /* If the dst_reg is a pointer, we can't learn anything about its
12828 * variable offset from the compare (unless src_reg were a pointer into
12829 * the same object, but we don't bother with that.
12830 * Since false_reg and true_reg have the same type by construction, we
12831 * only need to check one of them for pointerness.
12832 */
12833 if (__is_pointer_value(false, false_reg))
12834 return;
4cabc5b1 12835
48461135 12836 switch (opcode) {
a12ca627
DB
12837 /* JEQ/JNE comparison doesn't change the register equivalence.
12838 *
12839 * r1 = r2;
12840 * if (r1 == 42) goto label;
12841 * ...
12842 * label: // here both r1 and r2 are known to be 42.
12843 *
12844 * Hence when marking register as known preserve it's ID.
12845 */
48461135 12846 case BPF_JEQ:
a12ca627
DB
12847 if (is_jmp32) {
12848 __mark_reg32_known(true_reg, val32);
12849 true_32off = tnum_subreg(true_reg->var_off);
12850 } else {
12851 ___mark_reg_known(true_reg, val);
12852 true_64off = true_reg->var_off;
12853 }
12854 break;
48461135 12855 case BPF_JNE:
a12ca627
DB
12856 if (is_jmp32) {
12857 __mark_reg32_known(false_reg, val32);
12858 false_32off = tnum_subreg(false_reg->var_off);
12859 } else {
12860 ___mark_reg_known(false_reg, val);
12861 false_64off = false_reg->var_off;
12862 }
48461135 12863 break;
960ea056 12864 case BPF_JSET:
3f50f132
JF
12865 if (is_jmp32) {
12866 false_32off = tnum_and(false_32off, tnum_const(~val32));
12867 if (is_power_of_2(val32))
12868 true_32off = tnum_or(true_32off,
12869 tnum_const(val32));
12870 } else {
12871 false_64off = tnum_and(false_64off, tnum_const(~val));
12872 if (is_power_of_2(val))
12873 true_64off = tnum_or(true_64off,
12874 tnum_const(val));
12875 }
960ea056 12876 break;
48461135 12877 case BPF_JGE:
a72dafaf
JW
12878 case BPF_JGT:
12879 {
3f50f132
JF
12880 if (is_jmp32) {
12881 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
12882 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
12883
12884 false_reg->u32_max_value = min(false_reg->u32_max_value,
12885 false_umax);
12886 true_reg->u32_min_value = max(true_reg->u32_min_value,
12887 true_umin);
12888 } else {
12889 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
12890 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
12891
12892 false_reg->umax_value = min(false_reg->umax_value, false_umax);
12893 true_reg->umin_value = max(true_reg->umin_value, true_umin);
12894 }
b03c9f9f 12895 break;
a72dafaf 12896 }
48461135 12897 case BPF_JSGE:
a72dafaf
JW
12898 case BPF_JSGT:
12899 {
3f50f132
JF
12900 if (is_jmp32) {
12901 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
12902 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 12903
3f50f132
JF
12904 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
12905 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
12906 } else {
12907 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
12908 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
12909
12910 false_reg->smax_value = min(false_reg->smax_value, false_smax);
12911 true_reg->smin_value = max(true_reg->smin_value, true_smin);
12912 }
48461135 12913 break;
a72dafaf 12914 }
b4e432f1 12915 case BPF_JLE:
a72dafaf
JW
12916 case BPF_JLT:
12917 {
3f50f132
JF
12918 if (is_jmp32) {
12919 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
12920 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
12921
12922 false_reg->u32_min_value = max(false_reg->u32_min_value,
12923 false_umin);
12924 true_reg->u32_max_value = min(true_reg->u32_max_value,
12925 true_umax);
12926 } else {
12927 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
12928 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
12929
12930 false_reg->umin_value = max(false_reg->umin_value, false_umin);
12931 true_reg->umax_value = min(true_reg->umax_value, true_umax);
12932 }
b4e432f1 12933 break;
a72dafaf 12934 }
b4e432f1 12935 case BPF_JSLE:
a72dafaf
JW
12936 case BPF_JSLT:
12937 {
3f50f132
JF
12938 if (is_jmp32) {
12939 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
12940 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 12941
3f50f132
JF
12942 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
12943 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
12944 } else {
12945 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
12946 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
12947
12948 false_reg->smin_value = max(false_reg->smin_value, false_smin);
12949 true_reg->smax_value = min(true_reg->smax_value, true_smax);
12950 }
b4e432f1 12951 break;
a72dafaf 12952 }
48461135 12953 default:
0fc31b10 12954 return;
48461135
JB
12955 }
12956
3f50f132
JF
12957 if (is_jmp32) {
12958 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
12959 tnum_subreg(false_32off));
12960 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
12961 tnum_subreg(true_32off));
12962 __reg_combine_32_into_64(false_reg);
12963 __reg_combine_32_into_64(true_reg);
12964 } else {
12965 false_reg->var_off = false_64off;
12966 true_reg->var_off = true_64off;
12967 __reg_combine_64_into_32(false_reg);
12968 __reg_combine_64_into_32(true_reg);
12969 }
48461135
JB
12970}
12971
f1174f77
EC
12972/* Same as above, but for the case that dst_reg holds a constant and src_reg is
12973 * the variable reg.
48461135
JB
12974 */
12975static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
12976 struct bpf_reg_state *false_reg,
12977 u64 val, u32 val32,
092ed096 12978 u8 opcode, bool is_jmp32)
48461135 12979{
6d94e741 12980 opcode = flip_opcode(opcode);
0fc31b10
JH
12981 /* This uses zero as "not present in table"; luckily the zero opcode,
12982 * BPF_JA, can't get here.
b03c9f9f 12983 */
0fc31b10 12984 if (opcode)
3f50f132 12985 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
12986}
12987
12988/* Regs are known to be equal, so intersect their min/max/var_off */
12989static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
12990 struct bpf_reg_state *dst_reg)
12991{
b03c9f9f
EC
12992 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
12993 dst_reg->umin_value);
12994 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
12995 dst_reg->umax_value);
12996 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
12997 dst_reg->smin_value);
12998 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
12999 dst_reg->smax_value);
f1174f77
EC
13000 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13001 dst_reg->var_off);
3844d153
DB
13002 reg_bounds_sync(src_reg);
13003 reg_bounds_sync(dst_reg);
f1174f77
EC
13004}
13005
13006static void reg_combine_min_max(struct bpf_reg_state *true_src,
13007 struct bpf_reg_state *true_dst,
13008 struct bpf_reg_state *false_src,
13009 struct bpf_reg_state *false_dst,
13010 u8 opcode)
13011{
13012 switch (opcode) {
13013 case BPF_JEQ:
13014 __reg_combine_min_max(true_src, true_dst);
13015 break;
13016 case BPF_JNE:
13017 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 13018 break;
4cabc5b1 13019 }
48461135
JB
13020}
13021
fd978bf7
JS
13022static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13023 struct bpf_reg_state *reg, u32 id,
840b9615 13024 bool is_null)
57a09bf0 13025{
c25b2ae1 13026 if (type_may_be_null(reg->type) && reg->id == id &&
fca1aa75 13027 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
df57f38a
KKD
13028 /* Old offset (both fixed and variable parts) should have been
13029 * known-zero, because we don't allow pointer arithmetic on
13030 * pointers that might be NULL. If we see this happening, don't
13031 * convert the register.
13032 *
13033 * But in some cases, some helpers that return local kptrs
13034 * advance offset for the returned pointer. In those cases, it
13035 * is fine to expect to see reg->off.
13036 */
13037 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13038 return;
6a3cd331
DM
13039 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13040 WARN_ON_ONCE(reg->off))
e60b0d12 13041 return;
6a3cd331 13042
f1174f77
EC
13043 if (is_null) {
13044 reg->type = SCALAR_VALUE;
1b986589
MKL
13045 /* We don't need id and ref_obj_id from this point
13046 * onwards anymore, thus we should better reset it,
13047 * so that state pruning has chances to take effect.
13048 */
13049 reg->id = 0;
13050 reg->ref_obj_id = 0;
4ddb7416
DB
13051
13052 return;
13053 }
13054
13055 mark_ptr_not_null_reg(reg);
13056
13057 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 13058 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 13059 * in release_reference().
1b986589
MKL
13060 *
13061 * reg->id is still used by spin_lock ptr. Other
13062 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
13063 */
13064 reg->id = 0;
56f668df 13065 }
57a09bf0
TG
13066 }
13067}
13068
13069/* The logic is similar to find_good_pkt_pointers(), both could eventually
13070 * be folded together at some point.
13071 */
840b9615
JS
13072static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13073 bool is_null)
57a09bf0 13074{
f4d7e40a 13075 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 13076 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 13077 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 13078 u32 id = regs[regno].id;
57a09bf0 13079
1b986589
MKL
13080 if (ref_obj_id && ref_obj_id == id && is_null)
13081 /* regs[regno] is in the " == NULL" branch.
13082 * No one could have freed the reference state before
13083 * doing the NULL check.
13084 */
13085 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 13086
b239da34
KKD
13087 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13088 mark_ptr_or_null_reg(state, reg, id, is_null);
13089 }));
57a09bf0
TG
13090}
13091
5beca081
DB
13092static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13093 struct bpf_reg_state *dst_reg,
13094 struct bpf_reg_state *src_reg,
13095 struct bpf_verifier_state *this_branch,
13096 struct bpf_verifier_state *other_branch)
13097{
13098 if (BPF_SRC(insn->code) != BPF_X)
13099 return false;
13100
092ed096
JW
13101 /* Pointers are always 64-bit. */
13102 if (BPF_CLASS(insn->code) == BPF_JMP32)
13103 return false;
13104
5beca081
DB
13105 switch (BPF_OP(insn->code)) {
13106 case BPF_JGT:
13107 if ((dst_reg->type == PTR_TO_PACKET &&
13108 src_reg->type == PTR_TO_PACKET_END) ||
13109 (dst_reg->type == PTR_TO_PACKET_META &&
13110 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13111 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13112 find_good_pkt_pointers(this_branch, dst_reg,
13113 dst_reg->type, false);
6d94e741 13114 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
13115 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13116 src_reg->type == PTR_TO_PACKET) ||
13117 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13118 src_reg->type == PTR_TO_PACKET_META)) {
13119 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
13120 find_good_pkt_pointers(other_branch, src_reg,
13121 src_reg->type, true);
6d94e741 13122 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
13123 } else {
13124 return false;
13125 }
13126 break;
13127 case BPF_JLT:
13128 if ((dst_reg->type == PTR_TO_PACKET &&
13129 src_reg->type == PTR_TO_PACKET_END) ||
13130 (dst_reg->type == PTR_TO_PACKET_META &&
13131 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13132 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13133 find_good_pkt_pointers(other_branch, dst_reg,
13134 dst_reg->type, true);
6d94e741 13135 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
13136 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13137 src_reg->type == PTR_TO_PACKET) ||
13138 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13139 src_reg->type == PTR_TO_PACKET_META)) {
13140 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
13141 find_good_pkt_pointers(this_branch, src_reg,
13142 src_reg->type, false);
6d94e741 13143 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
13144 } else {
13145 return false;
13146 }
13147 break;
13148 case BPF_JGE:
13149 if ((dst_reg->type == PTR_TO_PACKET &&
13150 src_reg->type == PTR_TO_PACKET_END) ||
13151 (dst_reg->type == PTR_TO_PACKET_META &&
13152 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13153 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13154 find_good_pkt_pointers(this_branch, dst_reg,
13155 dst_reg->type, true);
6d94e741 13156 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
13157 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13158 src_reg->type == PTR_TO_PACKET) ||
13159 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13160 src_reg->type == PTR_TO_PACKET_META)) {
13161 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13162 find_good_pkt_pointers(other_branch, src_reg,
13163 src_reg->type, false);
6d94e741 13164 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
13165 } else {
13166 return false;
13167 }
13168 break;
13169 case BPF_JLE:
13170 if ((dst_reg->type == PTR_TO_PACKET &&
13171 src_reg->type == PTR_TO_PACKET_END) ||
13172 (dst_reg->type == PTR_TO_PACKET_META &&
13173 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13174 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13175 find_good_pkt_pointers(other_branch, dst_reg,
13176 dst_reg->type, false);
6d94e741 13177 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
13178 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13179 src_reg->type == PTR_TO_PACKET) ||
13180 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13181 src_reg->type == PTR_TO_PACKET_META)) {
13182 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13183 find_good_pkt_pointers(this_branch, src_reg,
13184 src_reg->type, true);
6d94e741 13185 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
13186 } else {
13187 return false;
13188 }
13189 break;
13190 default:
13191 return false;
13192 }
13193
13194 return true;
13195}
13196
75748837
AS
13197static void find_equal_scalars(struct bpf_verifier_state *vstate,
13198 struct bpf_reg_state *known_reg)
13199{
13200 struct bpf_func_state *state;
13201 struct bpf_reg_state *reg;
75748837 13202
b239da34
KKD
13203 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13204 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
71f656a5 13205 copy_register_state(reg, known_reg);
b239da34 13206 }));
75748837
AS
13207}
13208
58e2af8b 13209static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
13210 struct bpf_insn *insn, int *insn_idx)
13211{
f4d7e40a
AS
13212 struct bpf_verifier_state *this_branch = env->cur_state;
13213 struct bpf_verifier_state *other_branch;
13214 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 13215 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 13216 struct bpf_reg_state *eq_branch_regs;
17a52670 13217 u8 opcode = BPF_OP(insn->code);
092ed096 13218 bool is_jmp32;
fb8d251e 13219 int pred = -1;
17a52670
AS
13220 int err;
13221
092ed096
JW
13222 /* Only conditional jumps are expected to reach here. */
13223 if (opcode == BPF_JA || opcode > BPF_JSLE) {
13224 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
13225 return -EINVAL;
13226 }
13227
13228 if (BPF_SRC(insn->code) == BPF_X) {
13229 if (insn->imm != 0) {
092ed096 13230 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
13231 return -EINVAL;
13232 }
13233
13234 /* check src1 operand */
dc503a8a 13235 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13236 if (err)
13237 return err;
1be7f75d
AS
13238
13239 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 13240 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
13241 insn->src_reg);
13242 return -EACCES;
13243 }
fb8d251e 13244 src_reg = &regs[insn->src_reg];
17a52670
AS
13245 } else {
13246 if (insn->src_reg != BPF_REG_0) {
092ed096 13247 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
13248 return -EINVAL;
13249 }
13250 }
13251
13252 /* check src2 operand */
dc503a8a 13253 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13254 if (err)
13255 return err;
13256
1a0dc1ac 13257 dst_reg = &regs[insn->dst_reg];
092ed096 13258 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 13259
3f50f132
JF
13260 if (BPF_SRC(insn->code) == BPF_K) {
13261 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13262 } else if (src_reg->type == SCALAR_VALUE &&
13263 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13264 pred = is_branch_taken(dst_reg,
13265 tnum_subreg(src_reg->var_off).value,
13266 opcode,
13267 is_jmp32);
13268 } else if (src_reg->type == SCALAR_VALUE &&
13269 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13270 pred = is_branch_taken(dst_reg,
13271 src_reg->var_off.value,
13272 opcode,
13273 is_jmp32);
6d94e741
AS
13274 } else if (reg_is_pkt_pointer_any(dst_reg) &&
13275 reg_is_pkt_pointer_any(src_reg) &&
13276 !is_jmp32) {
13277 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
13278 }
13279
b5dc0163 13280 if (pred >= 0) {
cac616db
JF
13281 /* If we get here with a dst_reg pointer type it is because
13282 * above is_branch_taken() special cased the 0 comparison.
13283 */
13284 if (!__is_pointer_value(false, dst_reg))
13285 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
13286 if (BPF_SRC(insn->code) == BPF_X && !err &&
13287 !__is_pointer_value(false, src_reg))
b5dc0163
AS
13288 err = mark_chain_precision(env, insn->src_reg);
13289 if (err)
13290 return err;
13291 }
9183671a 13292
fb8d251e 13293 if (pred == 1) {
9183671a
DB
13294 /* Only follow the goto, ignore fall-through. If needed, push
13295 * the fall-through branch for simulation under speculative
13296 * execution.
13297 */
13298 if (!env->bypass_spec_v1 &&
13299 !sanitize_speculative_path(env, insn, *insn_idx + 1,
13300 *insn_idx))
13301 return -EFAULT;
fb8d251e
AS
13302 *insn_idx += insn->off;
13303 return 0;
13304 } else if (pred == 0) {
9183671a
DB
13305 /* Only follow the fall-through branch, since that's where the
13306 * program will go. If needed, push the goto branch for
13307 * simulation under speculative execution.
fb8d251e 13308 */
9183671a
DB
13309 if (!env->bypass_spec_v1 &&
13310 !sanitize_speculative_path(env, insn,
13311 *insn_idx + insn->off + 1,
13312 *insn_idx))
13313 return -EFAULT;
fb8d251e 13314 return 0;
17a52670
AS
13315 }
13316
979d63d5
DB
13317 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13318 false);
17a52670
AS
13319 if (!other_branch)
13320 return -EFAULT;
f4d7e40a 13321 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 13322
48461135
JB
13323 /* detect if we are comparing against a constant value so we can adjust
13324 * our min/max values for our dst register.
f1174f77 13325 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
13326 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13327 * because otherwise the different base pointers mean the offsets aren't
f1174f77 13328 * comparable.
48461135
JB
13329 */
13330 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 13331 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 13332
f1174f77 13333 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
13334 src_reg->type == SCALAR_VALUE) {
13335 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
13336 (is_jmp32 &&
13337 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 13338 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 13339 dst_reg,
3f50f132
JF
13340 src_reg->var_off.value,
13341 tnum_subreg(src_reg->var_off).value,
092ed096
JW
13342 opcode, is_jmp32);
13343 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
13344 (is_jmp32 &&
13345 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 13346 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 13347 src_reg,
3f50f132
JF
13348 dst_reg->var_off.value,
13349 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
13350 opcode, is_jmp32);
13351 else if (!is_jmp32 &&
13352 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 13353 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
13354 reg_combine_min_max(&other_branch_regs[insn->src_reg],
13355 &other_branch_regs[insn->dst_reg],
092ed096 13356 src_reg, dst_reg, opcode);
e688c3db
AS
13357 if (src_reg->id &&
13358 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
13359 find_equal_scalars(this_branch, src_reg);
13360 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13361 }
13362
f1174f77
EC
13363 }
13364 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 13365 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
13366 dst_reg, insn->imm, (u32)insn->imm,
13367 opcode, is_jmp32);
48461135
JB
13368 }
13369
e688c3db
AS
13370 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13371 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
13372 find_equal_scalars(this_branch, dst_reg);
13373 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13374 }
13375
befae758
EZ
13376 /* if one pointer register is compared to another pointer
13377 * register check if PTR_MAYBE_NULL could be lifted.
13378 * E.g. register A - maybe null
13379 * register B - not null
13380 * for JNE A, B, ... - A is not null in the false branch;
13381 * for JEQ A, B, ... - A is not null in the true branch.
8374bfd5
HS
13382 *
13383 * Since PTR_TO_BTF_ID points to a kernel struct that does
13384 * not need to be null checked by the BPF program, i.e.,
13385 * could be null even without PTR_MAYBE_NULL marking, so
13386 * only propagate nullness when neither reg is that type.
befae758
EZ
13387 */
13388 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13389 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
8374bfd5
HS
13390 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13391 base_type(src_reg->type) != PTR_TO_BTF_ID &&
13392 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
befae758
EZ
13393 eq_branch_regs = NULL;
13394 switch (opcode) {
13395 case BPF_JEQ:
13396 eq_branch_regs = other_branch_regs;
13397 break;
13398 case BPF_JNE:
13399 eq_branch_regs = regs;
13400 break;
13401 default:
13402 /* do nothing */
13403 break;
13404 }
13405 if (eq_branch_regs) {
13406 if (type_may_be_null(src_reg->type))
13407 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
13408 else
13409 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
13410 }
13411 }
13412
092ed096
JW
13413 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
13414 * NOTE: these optimizations below are related with pointer comparison
13415 * which will never be JMP32.
13416 */
13417 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 13418 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 13419 type_may_be_null(dst_reg->type)) {
840b9615 13420 /* Mark all identical registers in each branch as either
57a09bf0
TG
13421 * safe or unknown depending R == 0 or R != 0 conditional.
13422 */
840b9615
JS
13423 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
13424 opcode == BPF_JNE);
13425 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
13426 opcode == BPF_JEQ);
5beca081
DB
13427 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
13428 this_branch, other_branch) &&
13429 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
13430 verbose(env, "R%d pointer comparison prohibited\n",
13431 insn->dst_reg);
1be7f75d 13432 return -EACCES;
17a52670 13433 }
06ee7115 13434 if (env->log.level & BPF_LOG_LEVEL)
2e576648 13435 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
13436 return 0;
13437}
13438
17a52670 13439/* verify BPF_LD_IMM64 instruction */
58e2af8b 13440static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 13441{
d8eca5bb 13442 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 13443 struct bpf_reg_state *regs = cur_regs(env);
4976b718 13444 struct bpf_reg_state *dst_reg;
d8eca5bb 13445 struct bpf_map *map;
17a52670
AS
13446 int err;
13447
13448 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 13449 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
13450 return -EINVAL;
13451 }
13452 if (insn->off != 0) {
61bd5218 13453 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
13454 return -EINVAL;
13455 }
13456
dc503a8a 13457 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
13458 if (err)
13459 return err;
13460
4976b718 13461 dst_reg = &regs[insn->dst_reg];
6b173873 13462 if (insn->src_reg == 0) {
6b173873
JK
13463 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
13464
4976b718 13465 dst_reg->type = SCALAR_VALUE;
b03c9f9f 13466 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 13467 return 0;
6b173873 13468 }
17a52670 13469
d400a6cf
DB
13470 /* All special src_reg cases are listed below. From this point onwards
13471 * we either succeed and assign a corresponding dst_reg->type after
13472 * zeroing the offset, or fail and reject the program.
13473 */
13474 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 13475
d400a6cf 13476 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 13477 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 13478 switch (base_type(dst_reg->type)) {
4976b718
HL
13479 case PTR_TO_MEM:
13480 dst_reg->mem_size = aux->btf_var.mem_size;
13481 break;
13482 case PTR_TO_BTF_ID:
22dc4a0f 13483 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
13484 dst_reg->btf_id = aux->btf_var.btf_id;
13485 break;
13486 default:
13487 verbose(env, "bpf verifier is misconfigured\n");
13488 return -EFAULT;
13489 }
13490 return 0;
13491 }
13492
69c087ba
YS
13493 if (insn->src_reg == BPF_PSEUDO_FUNC) {
13494 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
13495 u32 subprogno = find_subprog(env,
13496 env->insn_idx + insn->imm + 1);
69c087ba
YS
13497
13498 if (!aux->func_info) {
13499 verbose(env, "missing btf func_info\n");
13500 return -EINVAL;
13501 }
13502 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
13503 verbose(env, "callback function not static\n");
13504 return -EINVAL;
13505 }
13506
13507 dst_reg->type = PTR_TO_FUNC;
13508 dst_reg->subprogno = subprogno;
13509 return 0;
13510 }
13511
d8eca5bb 13512 map = env->used_maps[aux->map_index];
4976b718 13513 dst_reg->map_ptr = map;
d8eca5bb 13514
387544bf
AS
13515 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
13516 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
13517 dst_reg->type = PTR_TO_MAP_VALUE;
13518 dst_reg->off = aux->map_off;
d0d78c1d
KKD
13519 WARN_ON_ONCE(map->max_entries != 1);
13520 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
13521 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
13522 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 13523 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
13524 } else {
13525 verbose(env, "bpf verifier is misconfigured\n");
13526 return -EINVAL;
13527 }
17a52670 13528
17a52670
AS
13529 return 0;
13530}
13531
96be4325
DB
13532static bool may_access_skb(enum bpf_prog_type type)
13533{
13534 switch (type) {
13535 case BPF_PROG_TYPE_SOCKET_FILTER:
13536 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 13537 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
13538 return true;
13539 default:
13540 return false;
13541 }
13542}
13543
ddd872bc
AS
13544/* verify safety of LD_ABS|LD_IND instructions:
13545 * - they can only appear in the programs where ctx == skb
13546 * - since they are wrappers of function calls, they scratch R1-R5 registers,
13547 * preserve R6-R9, and store return value into R0
13548 *
13549 * Implicit input:
13550 * ctx == skb == R6 == CTX
13551 *
13552 * Explicit input:
13553 * SRC == any register
13554 * IMM == 32-bit immediate
13555 *
13556 * Output:
13557 * R0 - 8/16/32-bit skb data converted to cpu endianness
13558 */
58e2af8b 13559static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 13560{
638f5b90 13561 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 13562 static const int ctx_reg = BPF_REG_6;
ddd872bc 13563 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
13564 int i, err;
13565
7e40781c 13566 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 13567 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
13568 return -EINVAL;
13569 }
13570
e0cea7ce
DB
13571 if (!env->ops->gen_ld_abs) {
13572 verbose(env, "bpf verifier is misconfigured\n");
13573 return -EINVAL;
13574 }
13575
ddd872bc 13576 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 13577 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 13578 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 13579 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
13580 return -EINVAL;
13581 }
13582
13583 /* check whether implicit source operand (register R6) is readable */
6d4f151a 13584 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
13585 if (err)
13586 return err;
13587
fd978bf7
JS
13588 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
13589 * gen_ld_abs() may terminate the program at runtime, leading to
13590 * reference leak.
13591 */
13592 err = check_reference_leak(env);
13593 if (err) {
13594 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
13595 return err;
13596 }
13597
d0d78c1d 13598 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
13599 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
13600 return -EINVAL;
13601 }
13602
9bb00b28
YS
13603 if (env->cur_state->active_rcu_lock) {
13604 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
13605 return -EINVAL;
13606 }
13607
6d4f151a 13608 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
13609 verbose(env,
13610 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
13611 return -EINVAL;
13612 }
13613
13614 if (mode == BPF_IND) {
13615 /* check explicit source operand */
dc503a8a 13616 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
13617 if (err)
13618 return err;
13619 }
13620
be80a1d3 13621 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
13622 if (err < 0)
13623 return err;
13624
ddd872bc 13625 /* reset caller saved regs to unreadable */
dc503a8a 13626 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 13627 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
13628 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
13629 }
ddd872bc
AS
13630
13631 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
13632 * the value fetched from the packet.
13633 * Already marked as written above.
ddd872bc 13634 */
61bd5218 13635 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
13636 /* ld_abs load up to 32-bit skb data. */
13637 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
13638 return 0;
13639}
13640
390ee7e2
AS
13641static int check_return_code(struct bpf_verifier_env *env)
13642{
5cf1e914 13643 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 13644 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
13645 struct bpf_reg_state *reg;
13646 struct tnum range = tnum_range(0, 1);
7e40781c 13647 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 13648 int err;
bfc6bb74
AS
13649 struct bpf_func_state *frame = env->cur_state->frame[0];
13650 const bool is_subprog = frame->subprogno;
27ae7997 13651
9e4e01df 13652 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
13653 if (!is_subprog) {
13654 switch (prog_type) {
13655 case BPF_PROG_TYPE_LSM:
13656 if (prog->expected_attach_type == BPF_LSM_CGROUP)
13657 /* See below, can be 0 or 0-1 depending on hook. */
13658 break;
13659 fallthrough;
13660 case BPF_PROG_TYPE_STRUCT_OPS:
13661 if (!prog->aux->attach_func_proto->type)
13662 return 0;
13663 break;
13664 default:
13665 break;
13666 }
13667 }
27ae7997 13668
8fb33b60 13669 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
13670 * to return the value from eBPF program.
13671 * Make sure that it's readable at this time
13672 * of bpf_exit, which means that program wrote
13673 * something into it earlier
13674 */
13675 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
13676 if (err)
13677 return err;
13678
13679 if (is_pointer_value(env, BPF_REG_0)) {
13680 verbose(env, "R0 leaks addr as return value\n");
13681 return -EACCES;
13682 }
390ee7e2 13683
f782e2c3 13684 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
13685
13686 if (frame->in_async_callback_fn) {
13687 /* enforce return zero from async callbacks like timer */
13688 if (reg->type != SCALAR_VALUE) {
13689 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 13690 reg_type_str(env, reg->type));
bfc6bb74
AS
13691 return -EINVAL;
13692 }
13693
13694 if (!tnum_in(tnum_const(0), reg->var_off)) {
13695 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
13696 return -EINVAL;
13697 }
13698 return 0;
13699 }
13700
f782e2c3
DB
13701 if (is_subprog) {
13702 if (reg->type != SCALAR_VALUE) {
13703 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 13704 reg_type_str(env, reg->type));
f782e2c3
DB
13705 return -EINVAL;
13706 }
13707 return 0;
13708 }
13709
7e40781c 13710 switch (prog_type) {
983695fa
DB
13711 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
13712 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
13713 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
13714 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
13715 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
13716 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
13717 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 13718 range = tnum_range(1, 1);
77241217
SF
13719 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
13720 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
13721 range = tnum_range(0, 3);
ed4ed404 13722 break;
390ee7e2 13723 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 13724 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
13725 range = tnum_range(0, 3);
13726 enforce_attach_type_range = tnum_range(2, 3);
13727 }
ed4ed404 13728 break;
390ee7e2
AS
13729 case BPF_PROG_TYPE_CGROUP_SOCK:
13730 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 13731 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 13732 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 13733 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 13734 break;
15ab09bd
AS
13735 case BPF_PROG_TYPE_RAW_TRACEPOINT:
13736 if (!env->prog->aux->attach_btf_id)
13737 return 0;
13738 range = tnum_const(0);
13739 break;
15d83c4d 13740 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
13741 switch (env->prog->expected_attach_type) {
13742 case BPF_TRACE_FENTRY:
13743 case BPF_TRACE_FEXIT:
13744 range = tnum_const(0);
13745 break;
13746 case BPF_TRACE_RAW_TP:
13747 case BPF_MODIFY_RETURN:
15d83c4d 13748 return 0;
2ec0616e
DB
13749 case BPF_TRACE_ITER:
13750 break;
e92888c7
YS
13751 default:
13752 return -ENOTSUPP;
13753 }
15d83c4d 13754 break;
e9ddbb77
JS
13755 case BPF_PROG_TYPE_SK_LOOKUP:
13756 range = tnum_range(SK_DROP, SK_PASS);
13757 break;
69fd337a
SF
13758
13759 case BPF_PROG_TYPE_LSM:
13760 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
13761 /* Regular BPF_PROG_TYPE_LSM programs can return
13762 * any value.
13763 */
13764 return 0;
13765 }
13766 if (!env->prog->aux->attach_func_proto->type) {
13767 /* Make sure programs that attach to void
13768 * hooks don't try to modify return value.
13769 */
13770 range = tnum_range(1, 1);
13771 }
13772 break;
13773
e92888c7
YS
13774 case BPF_PROG_TYPE_EXT:
13775 /* freplace program can return anything as its return value
13776 * depends on the to-be-replaced kernel func or bpf program.
13777 */
390ee7e2
AS
13778 default:
13779 return 0;
13780 }
13781
390ee7e2 13782 if (reg->type != SCALAR_VALUE) {
61bd5218 13783 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 13784 reg_type_str(env, reg->type));
390ee7e2
AS
13785 return -EINVAL;
13786 }
13787
13788 if (!tnum_in(range, reg->var_off)) {
bc2591d6 13789 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 13790 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 13791 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
13792 !prog->aux->attach_func_proto->type)
13793 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
13794 return -EINVAL;
13795 }
5cf1e914 13796
13797 if (!tnum_is_unknown(enforce_attach_type_range) &&
13798 tnum_in(enforce_attach_type_range, reg->var_off))
13799 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
13800 return 0;
13801}
13802
475fb78f
AS
13803/* non-recursive DFS pseudo code
13804 * 1 procedure DFS-iterative(G,v):
13805 * 2 label v as discovered
13806 * 3 let S be a stack
13807 * 4 S.push(v)
13808 * 5 while S is not empty
b6d20799 13809 * 6 t <- S.peek()
475fb78f
AS
13810 * 7 if t is what we're looking for:
13811 * 8 return t
13812 * 9 for all edges e in G.adjacentEdges(t) do
13813 * 10 if edge e is already labelled
13814 * 11 continue with the next edge
13815 * 12 w <- G.adjacentVertex(t,e)
13816 * 13 if vertex w is not discovered and not explored
13817 * 14 label e as tree-edge
13818 * 15 label w as discovered
13819 * 16 S.push(w)
13820 * 17 continue at 5
13821 * 18 else if vertex w is discovered
13822 * 19 label e as back-edge
13823 * 20 else
13824 * 21 // vertex w is explored
13825 * 22 label e as forward- or cross-edge
13826 * 23 label t as explored
13827 * 24 S.pop()
13828 *
13829 * convention:
13830 * 0x10 - discovered
13831 * 0x11 - discovered and fall-through edge labelled
13832 * 0x12 - discovered and fall-through and branch edges labelled
13833 * 0x20 - explored
13834 */
13835
13836enum {
13837 DISCOVERED = 0x10,
13838 EXPLORED = 0x20,
13839 FALLTHROUGH = 1,
13840 BRANCH = 2,
13841};
13842
dc2a4ebc
AS
13843static u32 state_htab_size(struct bpf_verifier_env *env)
13844{
13845 return env->prog->len;
13846}
13847
5d839021
AS
13848static struct bpf_verifier_state_list **explored_state(
13849 struct bpf_verifier_env *env,
13850 int idx)
13851{
dc2a4ebc
AS
13852 struct bpf_verifier_state *cur = env->cur_state;
13853 struct bpf_func_state *state = cur->frame[cur->curframe];
13854
13855 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
13856}
13857
bffdeaa8 13858static void mark_prune_point(struct bpf_verifier_env *env, int idx)
5d839021 13859{
a8f500af 13860 env->insn_aux_data[idx].prune_point = true;
5d839021 13861}
f1bca824 13862
bffdeaa8
AN
13863static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
13864{
13865 return env->insn_aux_data[insn_idx].prune_point;
13866}
13867
4b5ce570
AN
13868static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
13869{
13870 env->insn_aux_data[idx].force_checkpoint = true;
13871}
13872
13873static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
13874{
13875 return env->insn_aux_data[insn_idx].force_checkpoint;
13876}
13877
13878
59e2e27d
WAF
13879enum {
13880 DONE_EXPLORING = 0,
13881 KEEP_EXPLORING = 1,
13882};
13883
475fb78f
AS
13884/* t, w, e - match pseudo-code above:
13885 * t - index of current instruction
13886 * w - next instruction
13887 * e - edge
13888 */
2589726d
AS
13889static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
13890 bool loop_ok)
475fb78f 13891{
7df737e9
AS
13892 int *insn_stack = env->cfg.insn_stack;
13893 int *insn_state = env->cfg.insn_state;
13894
475fb78f 13895 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 13896 return DONE_EXPLORING;
475fb78f
AS
13897
13898 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 13899 return DONE_EXPLORING;
475fb78f
AS
13900
13901 if (w < 0 || w >= env->prog->len) {
d9762e84 13902 verbose_linfo(env, t, "%d: ", t);
61bd5218 13903 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
13904 return -EINVAL;
13905 }
13906
bffdeaa8 13907 if (e == BRANCH) {
f1bca824 13908 /* mark branch target for state pruning */
bffdeaa8
AN
13909 mark_prune_point(env, w);
13910 mark_jmp_point(env, w);
13911 }
f1bca824 13912
475fb78f
AS
13913 if (insn_state[w] == 0) {
13914 /* tree-edge */
13915 insn_state[t] = DISCOVERED | e;
13916 insn_state[w] = DISCOVERED;
7df737e9 13917 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 13918 return -E2BIG;
7df737e9 13919 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 13920 return KEEP_EXPLORING;
475fb78f 13921 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 13922 if (loop_ok && env->bpf_capable)
59e2e27d 13923 return DONE_EXPLORING;
d9762e84
MKL
13924 verbose_linfo(env, t, "%d: ", t);
13925 verbose_linfo(env, w, "%d: ", w);
61bd5218 13926 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
13927 return -EINVAL;
13928 } else if (insn_state[w] == EXPLORED) {
13929 /* forward- or cross-edge */
13930 insn_state[t] = DISCOVERED | e;
13931 } else {
61bd5218 13932 verbose(env, "insn state internal bug\n");
475fb78f
AS
13933 return -EFAULT;
13934 }
59e2e27d
WAF
13935 return DONE_EXPLORING;
13936}
13937
dcb2288b 13938static int visit_func_call_insn(int t, struct bpf_insn *insns,
efdb22de
YS
13939 struct bpf_verifier_env *env,
13940 bool visit_callee)
13941{
13942 int ret;
13943
13944 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
13945 if (ret)
13946 return ret;
13947
618945fb
AN
13948 mark_prune_point(env, t + 1);
13949 /* when we exit from subprog, we need to record non-linear history */
13950 mark_jmp_point(env, t + 1);
13951
efdb22de 13952 if (visit_callee) {
bffdeaa8 13953 mark_prune_point(env, t);
86fc6ee6
AS
13954 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
13955 /* It's ok to allow recursion from CFG point of
13956 * view. __check_func_call() will do the actual
13957 * check.
13958 */
13959 bpf_pseudo_func(insns + t));
efdb22de
YS
13960 }
13961 return ret;
13962}
13963
59e2e27d
WAF
13964/* Visits the instruction at index t and returns one of the following:
13965 * < 0 - an error occurred
13966 * DONE_EXPLORING - the instruction was fully explored
13967 * KEEP_EXPLORING - there is still work to be done before it is fully explored
13968 */
dcb2288b 13969static int visit_insn(int t, struct bpf_verifier_env *env)
59e2e27d 13970{
653ae3a8 13971 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
59e2e27d
WAF
13972 int ret;
13973
653ae3a8 13974 if (bpf_pseudo_func(insn))
dcb2288b 13975 return visit_func_call_insn(t, insns, env, true);
69c087ba 13976
59e2e27d 13977 /* All non-branch instructions have a single fall-through edge. */
653ae3a8
AN
13978 if (BPF_CLASS(insn->code) != BPF_JMP &&
13979 BPF_CLASS(insn->code) != BPF_JMP32)
59e2e27d
WAF
13980 return push_insn(t, t + 1, FALLTHROUGH, env, false);
13981
653ae3a8 13982 switch (BPF_OP(insn->code)) {
59e2e27d
WAF
13983 case BPF_EXIT:
13984 return DONE_EXPLORING;
13985
13986 case BPF_CALL:
c1ee85a9 13987 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
618945fb
AN
13988 /* Mark this call insn as a prune point to trigger
13989 * is_state_visited() check before call itself is
13990 * processed by __check_func_call(). Otherwise new
13991 * async state will be pushed for further exploration.
bfc6bb74 13992 */
bffdeaa8 13993 mark_prune_point(env, t);
06accc87
AN
13994 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13995 struct bpf_kfunc_call_arg_meta meta;
13996
13997 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
4b5ce570 13998 if (ret == 0 && is_iter_next_kfunc(&meta)) {
06accc87 13999 mark_prune_point(env, t);
4b5ce570
AN
14000 /* Checking and saving state checkpoints at iter_next() call
14001 * is crucial for fast convergence of open-coded iterator loop
14002 * logic, so we need to force it. If we don't do that,
14003 * is_state_visited() might skip saving a checkpoint, causing
14004 * unnecessarily long sequence of not checkpointed
14005 * instructions and jumps, leading to exhaustion of jump
14006 * history buffer, and potentially other undesired outcomes.
14007 * It is expected that with correct open-coded iterators
14008 * convergence will happen quickly, so we don't run a risk of
14009 * exhausting memory.
14010 */
14011 mark_force_checkpoint(env, t);
14012 }
06accc87 14013 }
653ae3a8 14014 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
14015
14016 case BPF_JA:
653ae3a8 14017 if (BPF_SRC(insn->code) != BPF_K)
59e2e27d
WAF
14018 return -EINVAL;
14019
14020 /* unconditional jump with single edge */
653ae3a8 14021 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
59e2e27d
WAF
14022 true);
14023 if (ret)
14024 return ret;
14025
653ae3a8
AN
14026 mark_prune_point(env, t + insn->off + 1);
14027 mark_jmp_point(env, t + insn->off + 1);
59e2e27d
WAF
14028
14029 return ret;
14030
14031 default:
14032 /* conditional jump with two edges */
bffdeaa8 14033 mark_prune_point(env, t);
618945fb 14034
59e2e27d
WAF
14035 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14036 if (ret)
14037 return ret;
14038
653ae3a8 14039 return push_insn(t, t + insn->off + 1, BRANCH, env, true);
59e2e27d 14040 }
475fb78f
AS
14041}
14042
14043/* non-recursive depth-first-search to detect loops in BPF program
14044 * loop == back-edge in directed graph
14045 */
58e2af8b 14046static int check_cfg(struct bpf_verifier_env *env)
475fb78f 14047{
475fb78f 14048 int insn_cnt = env->prog->len;
7df737e9 14049 int *insn_stack, *insn_state;
475fb78f 14050 int ret = 0;
59e2e27d 14051 int i;
475fb78f 14052
7df737e9 14053 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
14054 if (!insn_state)
14055 return -ENOMEM;
14056
7df737e9 14057 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 14058 if (!insn_stack) {
71dde681 14059 kvfree(insn_state);
475fb78f
AS
14060 return -ENOMEM;
14061 }
14062
14063 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14064 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 14065 env->cfg.cur_stack = 1;
475fb78f 14066
59e2e27d
WAF
14067 while (env->cfg.cur_stack > 0) {
14068 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 14069
dcb2288b 14070 ret = visit_insn(t, env);
59e2e27d
WAF
14071 switch (ret) {
14072 case DONE_EXPLORING:
14073 insn_state[t] = EXPLORED;
14074 env->cfg.cur_stack--;
14075 break;
14076 case KEEP_EXPLORING:
14077 break;
14078 default:
14079 if (ret > 0) {
14080 verbose(env, "visit_insn internal bug\n");
14081 ret = -EFAULT;
475fb78f 14082 }
475fb78f 14083 goto err_free;
59e2e27d 14084 }
475fb78f
AS
14085 }
14086
59e2e27d 14087 if (env->cfg.cur_stack < 0) {
61bd5218 14088 verbose(env, "pop stack internal bug\n");
475fb78f
AS
14089 ret = -EFAULT;
14090 goto err_free;
14091 }
475fb78f 14092
475fb78f
AS
14093 for (i = 0; i < insn_cnt; i++) {
14094 if (insn_state[i] != EXPLORED) {
61bd5218 14095 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
14096 ret = -EINVAL;
14097 goto err_free;
14098 }
14099 }
14100 ret = 0; /* cfg looks good */
14101
14102err_free:
71dde681
AS
14103 kvfree(insn_state);
14104 kvfree(insn_stack);
7df737e9 14105 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
14106 return ret;
14107}
14108
09b28d76
AS
14109static int check_abnormal_return(struct bpf_verifier_env *env)
14110{
14111 int i;
14112
14113 for (i = 1; i < env->subprog_cnt; i++) {
14114 if (env->subprog_info[i].has_ld_abs) {
14115 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14116 return -EINVAL;
14117 }
14118 if (env->subprog_info[i].has_tail_call) {
14119 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14120 return -EINVAL;
14121 }
14122 }
14123 return 0;
14124}
14125
838e9690
YS
14126/* The minimum supported BTF func info size */
14127#define MIN_BPF_FUNCINFO_SIZE 8
14128#define MAX_FUNCINFO_REC_SIZE 252
14129
c454a46b
MKL
14130static int check_btf_func(struct bpf_verifier_env *env,
14131 const union bpf_attr *attr,
af2ac3e1 14132 bpfptr_t uattr)
838e9690 14133{
09b28d76 14134 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 14135 u32 i, nfuncs, urec_size, min_size;
838e9690 14136 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 14137 struct bpf_func_info *krecord;
8c1b6e69 14138 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
14139 struct bpf_prog *prog;
14140 const struct btf *btf;
af2ac3e1 14141 bpfptr_t urecord;
d0b2818e 14142 u32 prev_offset = 0;
09b28d76 14143 bool scalar_return;
e7ed83d6 14144 int ret = -ENOMEM;
838e9690
YS
14145
14146 nfuncs = attr->func_info_cnt;
09b28d76
AS
14147 if (!nfuncs) {
14148 if (check_abnormal_return(env))
14149 return -EINVAL;
838e9690 14150 return 0;
09b28d76 14151 }
838e9690
YS
14152
14153 if (nfuncs != env->subprog_cnt) {
14154 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14155 return -EINVAL;
14156 }
14157
14158 urec_size = attr->func_info_rec_size;
14159 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14160 urec_size > MAX_FUNCINFO_REC_SIZE ||
14161 urec_size % sizeof(u32)) {
14162 verbose(env, "invalid func info rec size %u\n", urec_size);
14163 return -EINVAL;
14164 }
14165
c454a46b
MKL
14166 prog = env->prog;
14167 btf = prog->aux->btf;
838e9690 14168
af2ac3e1 14169 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
14170 min_size = min_t(u32, krec_size, urec_size);
14171
ba64e7d8 14172 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
14173 if (!krecord)
14174 return -ENOMEM;
8c1b6e69
AS
14175 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14176 if (!info_aux)
14177 goto err_free;
ba64e7d8 14178
838e9690
YS
14179 for (i = 0; i < nfuncs; i++) {
14180 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14181 if (ret) {
14182 if (ret == -E2BIG) {
14183 verbose(env, "nonzero tailing record in func info");
14184 /* set the size kernel expects so loader can zero
14185 * out the rest of the record.
14186 */
af2ac3e1
AS
14187 if (copy_to_bpfptr_offset(uattr,
14188 offsetof(union bpf_attr, func_info_rec_size),
14189 &min_size, sizeof(min_size)))
838e9690
YS
14190 ret = -EFAULT;
14191 }
c454a46b 14192 goto err_free;
838e9690
YS
14193 }
14194
af2ac3e1 14195 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 14196 ret = -EFAULT;
c454a46b 14197 goto err_free;
838e9690
YS
14198 }
14199
d30d42e0 14200 /* check insn_off */
09b28d76 14201 ret = -EINVAL;
838e9690 14202 if (i == 0) {
d30d42e0 14203 if (krecord[i].insn_off) {
838e9690 14204 verbose(env,
d30d42e0
MKL
14205 "nonzero insn_off %u for the first func info record",
14206 krecord[i].insn_off);
c454a46b 14207 goto err_free;
838e9690 14208 }
d30d42e0 14209 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
14210 verbose(env,
14211 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 14212 krecord[i].insn_off, prev_offset);
c454a46b 14213 goto err_free;
838e9690
YS
14214 }
14215
d30d42e0 14216 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 14217 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 14218 goto err_free;
838e9690
YS
14219 }
14220
14221 /* check type_id */
ba64e7d8 14222 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 14223 if (!type || !btf_type_is_func(type)) {
838e9690 14224 verbose(env, "invalid type id %d in func info",
ba64e7d8 14225 krecord[i].type_id);
c454a46b 14226 goto err_free;
838e9690 14227 }
51c39bb1 14228 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
14229
14230 func_proto = btf_type_by_id(btf, type->type);
14231 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14232 /* btf_func_check() already verified it during BTF load */
14233 goto err_free;
14234 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14235 scalar_return =
6089fb32 14236 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
14237 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14238 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14239 goto err_free;
14240 }
14241 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14242 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14243 goto err_free;
14244 }
14245
d30d42e0 14246 prev_offset = krecord[i].insn_off;
af2ac3e1 14247 bpfptr_add(&urecord, urec_size);
838e9690
YS
14248 }
14249
ba64e7d8
YS
14250 prog->aux->func_info = krecord;
14251 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 14252 prog->aux->func_info_aux = info_aux;
838e9690
YS
14253 return 0;
14254
c454a46b 14255err_free:
ba64e7d8 14256 kvfree(krecord);
8c1b6e69 14257 kfree(info_aux);
838e9690
YS
14258 return ret;
14259}
14260
ba64e7d8
YS
14261static void adjust_btf_func(struct bpf_verifier_env *env)
14262{
8c1b6e69 14263 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
14264 int i;
14265
8c1b6e69 14266 if (!aux->func_info)
ba64e7d8
YS
14267 return;
14268
14269 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 14270 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
14271}
14272
1b773d00 14273#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
14274#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
14275
14276static int check_btf_line(struct bpf_verifier_env *env,
14277 const union bpf_attr *attr,
af2ac3e1 14278 bpfptr_t uattr)
c454a46b
MKL
14279{
14280 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14281 struct bpf_subprog_info *sub;
14282 struct bpf_line_info *linfo;
14283 struct bpf_prog *prog;
14284 const struct btf *btf;
af2ac3e1 14285 bpfptr_t ulinfo;
c454a46b
MKL
14286 int err;
14287
14288 nr_linfo = attr->line_info_cnt;
14289 if (!nr_linfo)
14290 return 0;
0e6491b5
BC
14291 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14292 return -EINVAL;
c454a46b
MKL
14293
14294 rec_size = attr->line_info_rec_size;
14295 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14296 rec_size > MAX_LINEINFO_REC_SIZE ||
14297 rec_size & (sizeof(u32) - 1))
14298 return -EINVAL;
14299
14300 /* Need to zero it in case the userspace may
14301 * pass in a smaller bpf_line_info object.
14302 */
14303 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14304 GFP_KERNEL | __GFP_NOWARN);
14305 if (!linfo)
14306 return -ENOMEM;
14307
14308 prog = env->prog;
14309 btf = prog->aux->btf;
14310
14311 s = 0;
14312 sub = env->subprog_info;
af2ac3e1 14313 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
14314 expected_size = sizeof(struct bpf_line_info);
14315 ncopy = min_t(u32, expected_size, rec_size);
14316 for (i = 0; i < nr_linfo; i++) {
14317 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14318 if (err) {
14319 if (err == -E2BIG) {
14320 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
14321 if (copy_to_bpfptr_offset(uattr,
14322 offsetof(union bpf_attr, line_info_rec_size),
14323 &expected_size, sizeof(expected_size)))
c454a46b
MKL
14324 err = -EFAULT;
14325 }
14326 goto err_free;
14327 }
14328
af2ac3e1 14329 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
14330 err = -EFAULT;
14331 goto err_free;
14332 }
14333
14334 /*
14335 * Check insn_off to ensure
14336 * 1) strictly increasing AND
14337 * 2) bounded by prog->len
14338 *
14339 * The linfo[0].insn_off == 0 check logically falls into
14340 * the later "missing bpf_line_info for func..." case
14341 * because the first linfo[0].insn_off must be the
14342 * first sub also and the first sub must have
14343 * subprog_info[0].start == 0.
14344 */
14345 if ((i && linfo[i].insn_off <= prev_offset) ||
14346 linfo[i].insn_off >= prog->len) {
14347 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14348 i, linfo[i].insn_off, prev_offset,
14349 prog->len);
14350 err = -EINVAL;
14351 goto err_free;
14352 }
14353
fdbaa0be
MKL
14354 if (!prog->insnsi[linfo[i].insn_off].code) {
14355 verbose(env,
14356 "Invalid insn code at line_info[%u].insn_off\n",
14357 i);
14358 err = -EINVAL;
14359 goto err_free;
14360 }
14361
23127b33
MKL
14362 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14363 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
14364 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14365 err = -EINVAL;
14366 goto err_free;
14367 }
14368
14369 if (s != env->subprog_cnt) {
14370 if (linfo[i].insn_off == sub[s].start) {
14371 sub[s].linfo_idx = i;
14372 s++;
14373 } else if (sub[s].start < linfo[i].insn_off) {
14374 verbose(env, "missing bpf_line_info for func#%u\n", s);
14375 err = -EINVAL;
14376 goto err_free;
14377 }
14378 }
14379
14380 prev_offset = linfo[i].insn_off;
af2ac3e1 14381 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
14382 }
14383
14384 if (s != env->subprog_cnt) {
14385 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14386 env->subprog_cnt - s, s);
14387 err = -EINVAL;
14388 goto err_free;
14389 }
14390
14391 prog->aux->linfo = linfo;
14392 prog->aux->nr_linfo = nr_linfo;
14393
14394 return 0;
14395
14396err_free:
14397 kvfree(linfo);
14398 return err;
14399}
14400
fbd94c7a
AS
14401#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
14402#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
14403
14404static int check_core_relo(struct bpf_verifier_env *env,
14405 const union bpf_attr *attr,
14406 bpfptr_t uattr)
14407{
14408 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
14409 struct bpf_core_relo core_relo = {};
14410 struct bpf_prog *prog = env->prog;
14411 const struct btf *btf = prog->aux->btf;
14412 struct bpf_core_ctx ctx = {
14413 .log = &env->log,
14414 .btf = btf,
14415 };
14416 bpfptr_t u_core_relo;
14417 int err;
14418
14419 nr_core_relo = attr->core_relo_cnt;
14420 if (!nr_core_relo)
14421 return 0;
14422 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
14423 return -EINVAL;
14424
14425 rec_size = attr->core_relo_rec_size;
14426 if (rec_size < MIN_CORE_RELO_SIZE ||
14427 rec_size > MAX_CORE_RELO_SIZE ||
14428 rec_size % sizeof(u32))
14429 return -EINVAL;
14430
14431 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
14432 expected_size = sizeof(struct bpf_core_relo);
14433 ncopy = min_t(u32, expected_size, rec_size);
14434
14435 /* Unlike func_info and line_info, copy and apply each CO-RE
14436 * relocation record one at a time.
14437 */
14438 for (i = 0; i < nr_core_relo; i++) {
14439 /* future proofing when sizeof(bpf_core_relo) changes */
14440 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
14441 if (err) {
14442 if (err == -E2BIG) {
14443 verbose(env, "nonzero tailing record in core_relo");
14444 if (copy_to_bpfptr_offset(uattr,
14445 offsetof(union bpf_attr, core_relo_rec_size),
14446 &expected_size, sizeof(expected_size)))
14447 err = -EFAULT;
14448 }
14449 break;
14450 }
14451
14452 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
14453 err = -EFAULT;
14454 break;
14455 }
14456
14457 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
14458 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
14459 i, core_relo.insn_off, prog->len);
14460 err = -EINVAL;
14461 break;
14462 }
14463
14464 err = bpf_core_apply(&ctx, &core_relo, i,
14465 &prog->insnsi[core_relo.insn_off / 8]);
14466 if (err)
14467 break;
14468 bpfptr_add(&u_core_relo, rec_size);
14469 }
14470 return err;
14471}
14472
c454a46b
MKL
14473static int check_btf_info(struct bpf_verifier_env *env,
14474 const union bpf_attr *attr,
af2ac3e1 14475 bpfptr_t uattr)
c454a46b
MKL
14476{
14477 struct btf *btf;
14478 int err;
14479
09b28d76
AS
14480 if (!attr->func_info_cnt && !attr->line_info_cnt) {
14481 if (check_abnormal_return(env))
14482 return -EINVAL;
c454a46b 14483 return 0;
09b28d76 14484 }
c454a46b
MKL
14485
14486 btf = btf_get_by_fd(attr->prog_btf_fd);
14487 if (IS_ERR(btf))
14488 return PTR_ERR(btf);
350a5c4d
AS
14489 if (btf_is_kernel(btf)) {
14490 btf_put(btf);
14491 return -EACCES;
14492 }
c454a46b
MKL
14493 env->prog->aux->btf = btf;
14494
14495 err = check_btf_func(env, attr, uattr);
14496 if (err)
14497 return err;
14498
14499 err = check_btf_line(env, attr, uattr);
14500 if (err)
14501 return err;
14502
fbd94c7a
AS
14503 err = check_core_relo(env, attr, uattr);
14504 if (err)
14505 return err;
14506
c454a46b 14507 return 0;
ba64e7d8
YS
14508}
14509
f1174f77
EC
14510/* check %cur's range satisfies %old's */
14511static bool range_within(struct bpf_reg_state *old,
14512 struct bpf_reg_state *cur)
14513{
b03c9f9f
EC
14514 return old->umin_value <= cur->umin_value &&
14515 old->umax_value >= cur->umax_value &&
14516 old->smin_value <= cur->smin_value &&
fd675184
DB
14517 old->smax_value >= cur->smax_value &&
14518 old->u32_min_value <= cur->u32_min_value &&
14519 old->u32_max_value >= cur->u32_max_value &&
14520 old->s32_min_value <= cur->s32_min_value &&
14521 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
14522}
14523
f1174f77
EC
14524/* If in the old state two registers had the same id, then they need to have
14525 * the same id in the new state as well. But that id could be different from
14526 * the old state, so we need to track the mapping from old to new ids.
14527 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
14528 * regs with old id 5 must also have new id 9 for the new state to be safe. But
14529 * regs with a different old id could still have new id 9, we don't care about
14530 * that.
14531 * So we look through our idmap to see if this old id has been seen before. If
14532 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 14533 */
c9e73e3d 14534static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 14535{
f1174f77 14536 unsigned int i;
969bf05e 14537
4633a006
AN
14538 /* either both IDs should be set or both should be zero */
14539 if (!!old_id != !!cur_id)
14540 return false;
14541
14542 if (old_id == 0) /* cur_id == 0 as well */
14543 return true;
14544
c9e73e3d 14545 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
14546 if (!idmap[i].old) {
14547 /* Reached an empty slot; haven't seen this id before */
14548 idmap[i].old = old_id;
14549 idmap[i].cur = cur_id;
14550 return true;
14551 }
14552 if (idmap[i].old == old_id)
14553 return idmap[i].cur == cur_id;
14554 }
14555 /* We ran out of idmap slots, which should be impossible */
14556 WARN_ON_ONCE(1);
14557 return false;
14558}
14559
9242b5f5
AS
14560static void clean_func_state(struct bpf_verifier_env *env,
14561 struct bpf_func_state *st)
14562{
14563 enum bpf_reg_liveness live;
14564 int i, j;
14565
14566 for (i = 0; i < BPF_REG_FP; i++) {
14567 live = st->regs[i].live;
14568 /* liveness must not touch this register anymore */
14569 st->regs[i].live |= REG_LIVE_DONE;
14570 if (!(live & REG_LIVE_READ))
14571 /* since the register is unused, clear its state
14572 * to make further comparison simpler
14573 */
f54c7898 14574 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
14575 }
14576
14577 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
14578 live = st->stack[i].spilled_ptr.live;
14579 /* liveness must not touch this stack slot anymore */
14580 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
14581 if (!(live & REG_LIVE_READ)) {
f54c7898 14582 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
14583 for (j = 0; j < BPF_REG_SIZE; j++)
14584 st->stack[i].slot_type[j] = STACK_INVALID;
14585 }
14586 }
14587}
14588
14589static void clean_verifier_state(struct bpf_verifier_env *env,
14590 struct bpf_verifier_state *st)
14591{
14592 int i;
14593
14594 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
14595 /* all regs in this state in all frames were already marked */
14596 return;
14597
14598 for (i = 0; i <= st->curframe; i++)
14599 clean_func_state(env, st->frame[i]);
14600}
14601
14602/* the parentage chains form a tree.
14603 * the verifier states are added to state lists at given insn and
14604 * pushed into state stack for future exploration.
14605 * when the verifier reaches bpf_exit insn some of the verifer states
14606 * stored in the state lists have their final liveness state already,
14607 * but a lot of states will get revised from liveness point of view when
14608 * the verifier explores other branches.
14609 * Example:
14610 * 1: r0 = 1
14611 * 2: if r1 == 100 goto pc+1
14612 * 3: r0 = 2
14613 * 4: exit
14614 * when the verifier reaches exit insn the register r0 in the state list of
14615 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
14616 * of insn 2 and goes exploring further. At the insn 4 it will walk the
14617 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
14618 *
14619 * Since the verifier pushes the branch states as it sees them while exploring
14620 * the program the condition of walking the branch instruction for the second
14621 * time means that all states below this branch were already explored and
8fb33b60 14622 * their final liveness marks are already propagated.
9242b5f5
AS
14623 * Hence when the verifier completes the search of state list in is_state_visited()
14624 * we can call this clean_live_states() function to mark all liveness states
14625 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
14626 * will not be used.
14627 * This function also clears the registers and stack for states that !READ
14628 * to simplify state merging.
14629 *
14630 * Important note here that walking the same branch instruction in the callee
14631 * doesn't meant that the states are DONE. The verifier has to compare
14632 * the callsites
14633 */
14634static void clean_live_states(struct bpf_verifier_env *env, int insn,
14635 struct bpf_verifier_state *cur)
14636{
14637 struct bpf_verifier_state_list *sl;
14638 int i;
14639
5d839021 14640 sl = *explored_state(env, insn);
a8f500af 14641 while (sl) {
2589726d
AS
14642 if (sl->state.branches)
14643 goto next;
dc2a4ebc
AS
14644 if (sl->state.insn_idx != insn ||
14645 sl->state.curframe != cur->curframe)
9242b5f5
AS
14646 goto next;
14647 for (i = 0; i <= cur->curframe; i++)
14648 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
14649 goto next;
14650 clean_verifier_state(env, &sl->state);
14651next:
14652 sl = sl->next;
14653 }
14654}
14655
4a95c85c 14656static bool regs_exact(const struct bpf_reg_state *rold,
4633a006
AN
14657 const struct bpf_reg_state *rcur,
14658 struct bpf_id_pair *idmap)
4a95c85c 14659{
4633a006
AN
14660 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
14661 check_ids(rold->id, rcur->id, idmap) &&
14662 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
4a95c85c
AN
14663}
14664
f1174f77 14665/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
14666static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
14667 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 14668{
dc503a8a
EC
14669 if (!(rold->live & REG_LIVE_READ))
14670 /* explored state didn't use this */
14671 return true;
f1174f77
EC
14672 if (rold->type == NOT_INIT)
14673 /* explored state can't have used this */
969bf05e 14674 return true;
f1174f77
EC
14675 if (rcur->type == NOT_INIT)
14676 return false;
7f4ce97c 14677
910f6999
AN
14678 /* Enforce that register types have to match exactly, including their
14679 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
14680 * rule.
14681 *
14682 * One can make a point that using a pointer register as unbounded
14683 * SCALAR would be technically acceptable, but this could lead to
14684 * pointer leaks because scalars are allowed to leak while pointers
14685 * are not. We could make this safe in special cases if root is
14686 * calling us, but it's probably not worth the hassle.
14687 *
14688 * Also, register types that are *not* MAYBE_NULL could technically be
14689 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
14690 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
14691 * to the same map).
7f4ce97c
AN
14692 * However, if the old MAYBE_NULL register then got NULL checked,
14693 * doing so could have affected others with the same id, and we can't
14694 * check for that because we lost the id when we converted to
14695 * a non-MAYBE_NULL variant.
14696 * So, as a general rule we don't allow mixing MAYBE_NULL and
910f6999 14697 * non-MAYBE_NULL registers as well.
7f4ce97c 14698 */
910f6999 14699 if (rold->type != rcur->type)
7f4ce97c
AN
14700 return false;
14701
c25b2ae1 14702 switch (base_type(rold->type)) {
f1174f77 14703 case SCALAR_VALUE:
4633a006 14704 if (regs_exact(rold, rcur, idmap))
7c884339 14705 return true;
e042aa53
DB
14706 if (env->explore_alu_limits)
14707 return false;
910f6999
AN
14708 if (!rold->precise)
14709 return true;
14710 /* new val must satisfy old val knowledge */
14711 return range_within(rold, rcur) &&
14712 tnum_in(rold->var_off, rcur->var_off);
69c087ba 14713 case PTR_TO_MAP_KEY:
f1174f77 14714 case PTR_TO_MAP_VALUE:
567da5d2
AN
14715 case PTR_TO_MEM:
14716 case PTR_TO_BUF:
14717 case PTR_TO_TP_BUFFER:
1b688a19
EC
14718 /* If the new min/max/var_off satisfy the old ones and
14719 * everything else matches, we are OK.
1b688a19 14720 */
a73bf9f2 14721 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
1b688a19 14722 range_within(rold, rcur) &&
4ea2bb15 14723 tnum_in(rold->var_off, rcur->var_off) &&
567da5d2
AN
14724 check_ids(rold->id, rcur->id, idmap) &&
14725 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
de8f3a83 14726 case PTR_TO_PACKET_META:
f1174f77 14727 case PTR_TO_PACKET:
f1174f77
EC
14728 /* We must have at least as much range as the old ptr
14729 * did, so that any accesses which were safe before are
14730 * still safe. This is true even if old range < old off,
14731 * since someone could have accessed through (ptr - k), or
14732 * even done ptr -= k in a register, to get a safe access.
14733 */
14734 if (rold->range > rcur->range)
14735 return false;
14736 /* If the offsets don't match, we can't trust our alignment;
14737 * nor can we be sure that we won't fall out of range.
14738 */
14739 if (rold->off != rcur->off)
14740 return false;
14741 /* id relations must be preserved */
4633a006 14742 if (!check_ids(rold->id, rcur->id, idmap))
f1174f77
EC
14743 return false;
14744 /* new val must satisfy old val knowledge */
14745 return range_within(rold, rcur) &&
14746 tnum_in(rold->var_off, rcur->var_off);
7c884339
EZ
14747 case PTR_TO_STACK:
14748 /* two stack pointers are equal only if they're pointing to
14749 * the same stack frame, since fp-8 in foo != fp-8 in bar
f1174f77 14750 */
4633a006 14751 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
f1174f77 14752 default:
4633a006 14753 return regs_exact(rold, rcur, idmap);
f1174f77 14754 }
969bf05e
AS
14755}
14756
e042aa53
DB
14757static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
14758 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
14759{
14760 int i, spi;
14761
638f5b90
AS
14762 /* walk slots of the explored stack and ignore any additional
14763 * slots in the current stack, since explored(safe) state
14764 * didn't use them
14765 */
14766 for (i = 0; i < old->allocated_stack; i++) {
06accc87
AN
14767 struct bpf_reg_state *old_reg, *cur_reg;
14768
638f5b90
AS
14769 spi = i / BPF_REG_SIZE;
14770
b233920c
AS
14771 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
14772 i += BPF_REG_SIZE - 1;
cc2b14d5 14773 /* explored state didn't use this */
fd05e57b 14774 continue;
b233920c 14775 }
cc2b14d5 14776
638f5b90
AS
14777 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
14778 continue;
19e2dbb7 14779
6715df8d
EZ
14780 if (env->allow_uninit_stack &&
14781 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
14782 continue;
14783
19e2dbb7
AS
14784 /* explored stack has more populated slots than current stack
14785 * and these slots were used
14786 */
14787 if (i >= cur->allocated_stack)
14788 return false;
14789
cc2b14d5
AS
14790 /* if old state was safe with misc data in the stack
14791 * it will be safe with zero-initialized stack.
14792 * The opposite is not true
14793 */
14794 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
14795 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
14796 continue;
638f5b90
AS
14797 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
14798 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
14799 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 14800 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
14801 * this verifier states are not equivalent,
14802 * return false to continue verification of this path
14803 */
14804 return false;
27113c59 14805 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 14806 continue;
d6fefa11
KKD
14807 /* Both old and cur are having same slot_type */
14808 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
14809 case STACK_SPILL:
638f5b90
AS
14810 /* when explored and current stack slot are both storing
14811 * spilled registers, check that stored pointers types
14812 * are the same as well.
14813 * Ex: explored safe path could have stored
14814 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
14815 * but current path has stored:
14816 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
14817 * such verifier states are not equivalent.
14818 * return false to continue verification of this path
14819 */
d6fefa11
KKD
14820 if (!regsafe(env, &old->stack[spi].spilled_ptr,
14821 &cur->stack[spi].spilled_ptr, idmap))
14822 return false;
14823 break;
14824 case STACK_DYNPTR:
d6fefa11
KKD
14825 old_reg = &old->stack[spi].spilled_ptr;
14826 cur_reg = &cur->stack[spi].spilled_ptr;
14827 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
14828 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
14829 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14830 return false;
14831 break;
06accc87
AN
14832 case STACK_ITER:
14833 old_reg = &old->stack[spi].spilled_ptr;
14834 cur_reg = &cur->stack[spi].spilled_ptr;
14835 /* iter.depth is not compared between states as it
14836 * doesn't matter for correctness and would otherwise
14837 * prevent convergence; we maintain it only to prevent
14838 * infinite loop check triggering, see
14839 * iter_active_depths_differ()
14840 */
14841 if (old_reg->iter.btf != cur_reg->iter.btf ||
14842 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
14843 old_reg->iter.state != cur_reg->iter.state ||
14844 /* ignore {old_reg,cur_reg}->iter.depth, see above */
14845 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14846 return false;
14847 break;
d6fefa11
KKD
14848 case STACK_MISC:
14849 case STACK_ZERO:
14850 case STACK_INVALID:
14851 continue;
14852 /* Ensure that new unhandled slot types return false by default */
14853 default:
638f5b90 14854 return false;
d6fefa11 14855 }
638f5b90
AS
14856 }
14857 return true;
14858}
14859
e8f55fcf
AN
14860static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
14861 struct bpf_id_pair *idmap)
fd978bf7 14862{
e8f55fcf
AN
14863 int i;
14864
fd978bf7
JS
14865 if (old->acquired_refs != cur->acquired_refs)
14866 return false;
e8f55fcf
AN
14867
14868 for (i = 0; i < old->acquired_refs; i++) {
14869 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
14870 return false;
14871 }
14872
14873 return true;
fd978bf7
JS
14874}
14875
f1bca824
AS
14876/* compare two verifier states
14877 *
14878 * all states stored in state_list are known to be valid, since
14879 * verifier reached 'bpf_exit' instruction through them
14880 *
14881 * this function is called when verifier exploring different branches of
14882 * execution popped from the state stack. If it sees an old state that has
14883 * more strict register state and more strict stack state then this execution
14884 * branch doesn't need to be explored further, since verifier already
14885 * concluded that more strict state leads to valid finish.
14886 *
14887 * Therefore two states are equivalent if register state is more conservative
14888 * and explored stack state is more conservative than the current one.
14889 * Example:
14890 * explored current
14891 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
14892 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
14893 *
14894 * In other words if current stack state (one being explored) has more
14895 * valid slots than old one that already passed validation, it means
14896 * the verifier can stop exploring and conclude that current state is valid too
14897 *
14898 * Similarly with registers. If explored state has register type as invalid
14899 * whereas register type in current state is meaningful, it means that
14900 * the current state will reach 'bpf_exit' instruction safely
14901 */
c9e73e3d 14902static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 14903 struct bpf_func_state *cur)
f1bca824
AS
14904{
14905 int i;
14906
c9e73e3d 14907 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
14908 if (!regsafe(env, &old->regs[i], &cur->regs[i],
14909 env->idmap_scratch))
c9e73e3d 14910 return false;
f1bca824 14911
e042aa53 14912 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 14913 return false;
fd978bf7 14914
e8f55fcf 14915 if (!refsafe(old, cur, env->idmap_scratch))
c9e73e3d
LB
14916 return false;
14917
14918 return true;
f1bca824
AS
14919}
14920
f4d7e40a
AS
14921static bool states_equal(struct bpf_verifier_env *env,
14922 struct bpf_verifier_state *old,
14923 struct bpf_verifier_state *cur)
14924{
14925 int i;
14926
14927 if (old->curframe != cur->curframe)
14928 return false;
14929
5dd9cdbc
EZ
14930 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
14931
979d63d5
DB
14932 /* Verification state from speculative execution simulation
14933 * must never prune a non-speculative execution one.
14934 */
14935 if (old->speculative && !cur->speculative)
14936 return false;
14937
4ea2bb15
EZ
14938 if (old->active_lock.ptr != cur->active_lock.ptr)
14939 return false;
14940
14941 /* Old and cur active_lock's have to be either both present
14942 * or both absent.
14943 */
14944 if (!!old->active_lock.id != !!cur->active_lock.id)
14945 return false;
14946
14947 if (old->active_lock.id &&
14948 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
d83525ca
AS
14949 return false;
14950
9bb00b28 14951 if (old->active_rcu_lock != cur->active_rcu_lock)
d83525ca
AS
14952 return false;
14953
f4d7e40a
AS
14954 /* for states to be equal callsites have to be the same
14955 * and all frame states need to be equivalent
14956 */
14957 for (i = 0; i <= old->curframe; i++) {
14958 if (old->frame[i]->callsite != cur->frame[i]->callsite)
14959 return false;
c9e73e3d 14960 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
14961 return false;
14962 }
14963 return true;
14964}
14965
5327ed3d
JW
14966/* Return 0 if no propagation happened. Return negative error code if error
14967 * happened. Otherwise, return the propagated bit.
14968 */
55e7f3b5
JW
14969static int propagate_liveness_reg(struct bpf_verifier_env *env,
14970 struct bpf_reg_state *reg,
14971 struct bpf_reg_state *parent_reg)
14972{
5327ed3d
JW
14973 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
14974 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
14975 int err;
14976
5327ed3d
JW
14977 /* When comes here, read flags of PARENT_REG or REG could be any of
14978 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
14979 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
14980 */
14981 if (parent_flag == REG_LIVE_READ64 ||
14982 /* Or if there is no read flag from REG. */
14983 !flag ||
14984 /* Or if the read flag from REG is the same as PARENT_REG. */
14985 parent_flag == flag)
55e7f3b5
JW
14986 return 0;
14987
5327ed3d 14988 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
14989 if (err)
14990 return err;
14991
5327ed3d 14992 return flag;
55e7f3b5
JW
14993}
14994
8e9cd9ce 14995/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
14996 * straight-line code between a state and its parent. When we arrive at an
14997 * equivalent state (jump target or such) we didn't arrive by the straight-line
14998 * code, so read marks in the state must propagate to the parent regardless
14999 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 15000 * in mark_reg_read() is for.
8e9cd9ce 15001 */
f4d7e40a
AS
15002static int propagate_liveness(struct bpf_verifier_env *env,
15003 const struct bpf_verifier_state *vstate,
15004 struct bpf_verifier_state *vparent)
dc503a8a 15005{
3f8cafa4 15006 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 15007 struct bpf_func_state *state, *parent;
3f8cafa4 15008 int i, frame, err = 0;
dc503a8a 15009
f4d7e40a
AS
15010 if (vparent->curframe != vstate->curframe) {
15011 WARN(1, "propagate_live: parent frame %d current frame %d\n",
15012 vparent->curframe, vstate->curframe);
15013 return -EFAULT;
15014 }
dc503a8a
EC
15015 /* Propagate read liveness of registers... */
15016 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 15017 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
15018 parent = vparent->frame[frame];
15019 state = vstate->frame[frame];
15020 parent_reg = parent->regs;
15021 state_reg = state->regs;
83d16312
JK
15022 /* We don't need to worry about FP liveness, it's read-only */
15023 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
15024 err = propagate_liveness_reg(env, &state_reg[i],
15025 &parent_reg[i]);
5327ed3d 15026 if (err < 0)
3f8cafa4 15027 return err;
5327ed3d
JW
15028 if (err == REG_LIVE_READ64)
15029 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 15030 }
f4d7e40a 15031
1b04aee7 15032 /* Propagate stack slots. */
f4d7e40a
AS
15033 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15034 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
15035 parent_reg = &parent->stack[i].spilled_ptr;
15036 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
15037 err = propagate_liveness_reg(env, state_reg,
15038 parent_reg);
5327ed3d 15039 if (err < 0)
3f8cafa4 15040 return err;
dc503a8a
EC
15041 }
15042 }
5327ed3d 15043 return 0;
dc503a8a
EC
15044}
15045
a3ce685d
AS
15046/* find precise scalars in the previous equivalent state and
15047 * propagate them into the current state
15048 */
15049static int propagate_precision(struct bpf_verifier_env *env,
15050 const struct bpf_verifier_state *old)
15051{
15052 struct bpf_reg_state *state_reg;
15053 struct bpf_func_state *state;
529409ea 15054 int i, err = 0, fr;
a3ce685d 15055
529409ea
AN
15056 for (fr = old->curframe; fr >= 0; fr--) {
15057 state = old->frame[fr];
15058 state_reg = state->regs;
15059 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15060 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15061 !state_reg->precise ||
15062 !(state_reg->live & REG_LIVE_READ))
529409ea
AN
15063 continue;
15064 if (env->log.level & BPF_LOG_LEVEL2)
15065 verbose(env, "frame %d: propagating r%d\n", i, fr);
15066 err = mark_chain_precision_frame(env, fr, i);
15067 if (err < 0)
15068 return err;
15069 }
a3ce685d 15070
529409ea
AN
15071 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15072 if (!is_spilled_reg(&state->stack[i]))
15073 continue;
15074 state_reg = &state->stack[i].spilled_ptr;
15075 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15076 !state_reg->precise ||
15077 !(state_reg->live & REG_LIVE_READ))
529409ea
AN
15078 continue;
15079 if (env->log.level & BPF_LOG_LEVEL2)
15080 verbose(env, "frame %d: propagating fp%d\n",
15081 (-i - 1) * BPF_REG_SIZE, fr);
15082 err = mark_chain_precision_stack_frame(env, fr, i);
15083 if (err < 0)
15084 return err;
15085 }
a3ce685d
AS
15086 }
15087 return 0;
15088}
15089
2589726d
AS
15090static bool states_maybe_looping(struct bpf_verifier_state *old,
15091 struct bpf_verifier_state *cur)
15092{
15093 struct bpf_func_state *fold, *fcur;
15094 int i, fr = cur->curframe;
15095
15096 if (old->curframe != fr)
15097 return false;
15098
15099 fold = old->frame[fr];
15100 fcur = cur->frame[fr];
15101 for (i = 0; i < MAX_BPF_REG; i++)
15102 if (memcmp(&fold->regs[i], &fcur->regs[i],
15103 offsetof(struct bpf_reg_state, parent)))
15104 return false;
15105 return true;
15106}
15107
06accc87
AN
15108static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15109{
15110 return env->insn_aux_data[insn_idx].is_iter_next;
15111}
15112
15113/* is_state_visited() handles iter_next() (see process_iter_next_call() for
15114 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15115 * states to match, which otherwise would look like an infinite loop. So while
15116 * iter_next() calls are taken care of, we still need to be careful and
15117 * prevent erroneous and too eager declaration of "ininite loop", when
15118 * iterators are involved.
15119 *
15120 * Here's a situation in pseudo-BPF assembly form:
15121 *
15122 * 0: again: ; set up iter_next() call args
15123 * 1: r1 = &it ; <CHECKPOINT HERE>
15124 * 2: call bpf_iter_num_next ; this is iter_next() call
15125 * 3: if r0 == 0 goto done
15126 * 4: ... something useful here ...
15127 * 5: goto again ; another iteration
15128 * 6: done:
15129 * 7: r1 = &it
15130 * 8: call bpf_iter_num_destroy ; clean up iter state
15131 * 9: exit
15132 *
15133 * This is a typical loop. Let's assume that we have a prune point at 1:,
15134 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15135 * again`, assuming other heuristics don't get in a way).
15136 *
15137 * When we first time come to 1:, let's say we have some state X. We proceed
15138 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15139 * Now we come back to validate that forked ACTIVE state. We proceed through
15140 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15141 * are converging. But the problem is that we don't know that yet, as this
15142 * convergence has to happen at iter_next() call site only. So if nothing is
15143 * done, at 1: verifier will use bounded loop logic and declare infinite
15144 * looping (and would be *technically* correct, if not for iterator's
15145 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15146 * don't want that. So what we do in process_iter_next_call() when we go on
15147 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15148 * a different iteration. So when we suspect an infinite loop, we additionally
15149 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15150 * pretend we are not looping and wait for next iter_next() call.
15151 *
15152 * This only applies to ACTIVE state. In DRAINED state we don't expect to
15153 * loop, because that would actually mean infinite loop, as DRAINED state is
15154 * "sticky", and so we'll keep returning into the same instruction with the
15155 * same state (at least in one of possible code paths).
15156 *
15157 * This approach allows to keep infinite loop heuristic even in the face of
15158 * active iterator. E.g., C snippet below is and will be detected as
15159 * inifintely looping:
15160 *
15161 * struct bpf_iter_num it;
15162 * int *p, x;
15163 *
15164 * bpf_iter_num_new(&it, 0, 10);
15165 * while ((p = bpf_iter_num_next(&t))) {
15166 * x = p;
15167 * while (x--) {} // <<-- infinite loop here
15168 * }
15169 *
15170 */
15171static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15172{
15173 struct bpf_reg_state *slot, *cur_slot;
15174 struct bpf_func_state *state;
15175 int i, fr;
15176
15177 for (fr = old->curframe; fr >= 0; fr--) {
15178 state = old->frame[fr];
15179 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15180 if (state->stack[i].slot_type[0] != STACK_ITER)
15181 continue;
15182
15183 slot = &state->stack[i].spilled_ptr;
15184 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15185 continue;
15186
15187 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15188 if (cur_slot->iter.depth != slot->iter.depth)
15189 return true;
15190 }
15191 }
15192 return false;
15193}
2589726d 15194
58e2af8b 15195static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 15196{
58e2af8b 15197 struct bpf_verifier_state_list *new_sl;
9f4686c4 15198 struct bpf_verifier_state_list *sl, **pprev;
679c782d 15199 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 15200 int i, j, err, states_cnt = 0;
4b5ce570
AN
15201 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15202 bool add_new_state = force_new_state;
f1bca824 15203
2589726d
AS
15204 /* bpf progs typically have pruning point every 4 instructions
15205 * http://vger.kernel.org/bpfconf2019.html#session-1
15206 * Do not add new state for future pruning if the verifier hasn't seen
15207 * at least 2 jumps and at least 8 instructions.
15208 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15209 * In tests that amounts to up to 50% reduction into total verifier
15210 * memory consumption and 20% verifier time speedup.
15211 */
15212 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15213 env->insn_processed - env->prev_insn_processed >= 8)
15214 add_new_state = true;
15215
a8f500af
AS
15216 pprev = explored_state(env, insn_idx);
15217 sl = *pprev;
15218
9242b5f5
AS
15219 clean_live_states(env, insn_idx, cur);
15220
a8f500af 15221 while (sl) {
dc2a4ebc
AS
15222 states_cnt++;
15223 if (sl->state.insn_idx != insn_idx)
15224 goto next;
bfc6bb74 15225
2589726d 15226 if (sl->state.branches) {
bfc6bb74
AS
15227 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15228
15229 if (frame->in_async_callback_fn &&
15230 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15231 /* Different async_entry_cnt means that the verifier is
15232 * processing another entry into async callback.
15233 * Seeing the same state is not an indication of infinite
15234 * loop or infinite recursion.
15235 * But finding the same state doesn't mean that it's safe
15236 * to stop processing the current state. The previous state
15237 * hasn't yet reached bpf_exit, since state.branches > 0.
15238 * Checking in_async_callback_fn alone is not enough either.
15239 * Since the verifier still needs to catch infinite loops
15240 * inside async callbacks.
15241 */
06accc87
AN
15242 goto skip_inf_loop_check;
15243 }
15244 /* BPF open-coded iterators loop detection is special.
15245 * states_maybe_looping() logic is too simplistic in detecting
15246 * states that *might* be equivalent, because it doesn't know
15247 * about ID remapping, so don't even perform it.
15248 * See process_iter_next_call() and iter_active_depths_differ()
15249 * for overview of the logic. When current and one of parent
15250 * states are detected as equivalent, it's a good thing: we prove
15251 * convergence and can stop simulating further iterations.
15252 * It's safe to assume that iterator loop will finish, taking into
15253 * account iter_next() contract of eventually returning
15254 * sticky NULL result.
15255 */
15256 if (is_iter_next_insn(env, insn_idx)) {
15257 if (states_equal(env, &sl->state, cur)) {
15258 struct bpf_func_state *cur_frame;
15259 struct bpf_reg_state *iter_state, *iter_reg;
15260 int spi;
15261
15262 cur_frame = cur->frame[cur->curframe];
15263 /* btf_check_iter_kfuncs() enforces that
15264 * iter state pointer is always the first arg
15265 */
15266 iter_reg = &cur_frame->regs[BPF_REG_1];
15267 /* current state is valid due to states_equal(),
15268 * so we can assume valid iter and reg state,
15269 * no need for extra (re-)validations
15270 */
15271 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15272 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15273 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15274 goto hit;
15275 }
15276 goto skip_inf_loop_check;
15277 }
15278 /* attempt to detect infinite loop to avoid unnecessary doomed work */
15279 if (states_maybe_looping(&sl->state, cur) &&
15280 states_equal(env, &sl->state, cur) &&
15281 !iter_active_depths_differ(&sl->state, cur)) {
2589726d
AS
15282 verbose_linfo(env, insn_idx, "; ");
15283 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15284 return -EINVAL;
15285 }
15286 /* if the verifier is processing a loop, avoid adding new state
15287 * too often, since different loop iterations have distinct
15288 * states and may not help future pruning.
15289 * This threshold shouldn't be too low to make sure that
15290 * a loop with large bound will be rejected quickly.
15291 * The most abusive loop will be:
15292 * r1 += 1
15293 * if r1 < 1000000 goto pc-2
15294 * 1M insn_procssed limit / 100 == 10k peak states.
15295 * This threshold shouldn't be too high either, since states
15296 * at the end of the loop are likely to be useful in pruning.
15297 */
06accc87 15298skip_inf_loop_check:
4b5ce570 15299 if (!force_new_state &&
98ddcf38 15300 env->jmps_processed - env->prev_jmps_processed < 20 &&
2589726d
AS
15301 env->insn_processed - env->prev_insn_processed < 100)
15302 add_new_state = false;
15303 goto miss;
15304 }
638f5b90 15305 if (states_equal(env, &sl->state, cur)) {
06accc87 15306hit:
9f4686c4 15307 sl->hit_cnt++;
f1bca824 15308 /* reached equivalent register/stack state,
dc503a8a
EC
15309 * prune the search.
15310 * Registers read by the continuation are read by us.
8e9cd9ce
EC
15311 * If we have any write marks in env->cur_state, they
15312 * will prevent corresponding reads in the continuation
15313 * from reaching our parent (an explored_state). Our
15314 * own state will get the read marks recorded, but
15315 * they'll be immediately forgotten as we're pruning
15316 * this state and will pop a new one.
f1bca824 15317 */
f4d7e40a 15318 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
15319
15320 /* if previous state reached the exit with precision and
15321 * current state is equivalent to it (except precsion marks)
15322 * the precision needs to be propagated back in
15323 * the current state.
15324 */
15325 err = err ? : push_jmp_history(env, cur);
15326 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
15327 if (err)
15328 return err;
f1bca824 15329 return 1;
dc503a8a 15330 }
2589726d
AS
15331miss:
15332 /* when new state is not going to be added do not increase miss count.
15333 * Otherwise several loop iterations will remove the state
15334 * recorded earlier. The goal of these heuristics is to have
15335 * states from some iterations of the loop (some in the beginning
15336 * and some at the end) to help pruning.
15337 */
15338 if (add_new_state)
15339 sl->miss_cnt++;
9f4686c4
AS
15340 /* heuristic to determine whether this state is beneficial
15341 * to keep checking from state equivalence point of view.
15342 * Higher numbers increase max_states_per_insn and verification time,
15343 * but do not meaningfully decrease insn_processed.
15344 */
15345 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
15346 /* the state is unlikely to be useful. Remove it to
15347 * speed up verification
15348 */
15349 *pprev = sl->next;
15350 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
15351 u32 br = sl->state.branches;
15352
15353 WARN_ONCE(br,
15354 "BUG live_done but branches_to_explore %d\n",
15355 br);
9f4686c4
AS
15356 free_verifier_state(&sl->state, false);
15357 kfree(sl);
15358 env->peak_states--;
15359 } else {
15360 /* cannot free this state, since parentage chain may
15361 * walk it later. Add it for free_list instead to
15362 * be freed at the end of verification
15363 */
15364 sl->next = env->free_list;
15365 env->free_list = sl;
15366 }
15367 sl = *pprev;
15368 continue;
15369 }
dc2a4ebc 15370next:
9f4686c4
AS
15371 pprev = &sl->next;
15372 sl = *pprev;
f1bca824
AS
15373 }
15374
06ee7115
AS
15375 if (env->max_states_per_insn < states_cnt)
15376 env->max_states_per_insn = states_cnt;
15377
2c78ee89 15378 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
a095f421 15379 return 0;
ceefbc96 15380
2589726d 15381 if (!add_new_state)
a095f421 15382 return 0;
ceefbc96 15383
2589726d
AS
15384 /* There were no equivalent states, remember the current one.
15385 * Technically the current state is not proven to be safe yet,
f4d7e40a 15386 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 15387 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 15388 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
15389 * again on the way to bpf_exit.
15390 * When looping the sl->state.branches will be > 0 and this state
15391 * will not be considered for equivalence until branches == 0.
f1bca824 15392 */
638f5b90 15393 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
15394 if (!new_sl)
15395 return -ENOMEM;
06ee7115
AS
15396 env->total_states++;
15397 env->peak_states++;
2589726d
AS
15398 env->prev_jmps_processed = env->jmps_processed;
15399 env->prev_insn_processed = env->insn_processed;
f1bca824 15400
7a830b53
AN
15401 /* forget precise markings we inherited, see __mark_chain_precision */
15402 if (env->bpf_capable)
15403 mark_all_scalars_imprecise(env, cur);
15404
f1bca824 15405 /* add new state to the head of linked list */
679c782d
EC
15406 new = &new_sl->state;
15407 err = copy_verifier_state(new, cur);
1969db47 15408 if (err) {
679c782d 15409 free_verifier_state(new, false);
1969db47
AS
15410 kfree(new_sl);
15411 return err;
15412 }
dc2a4ebc 15413 new->insn_idx = insn_idx;
2589726d
AS
15414 WARN_ONCE(new->branches != 1,
15415 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 15416
2589726d 15417 cur->parent = new;
b5dc0163
AS
15418 cur->first_insn_idx = insn_idx;
15419 clear_jmp_history(cur);
5d839021
AS
15420 new_sl->next = *explored_state(env, insn_idx);
15421 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
15422 /* connect new state to parentage chain. Current frame needs all
15423 * registers connected. Only r6 - r9 of the callers are alive (pushed
15424 * to the stack implicitly by JITs) so in callers' frames connect just
15425 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
15426 * the state of the call instruction (with WRITTEN set), and r0 comes
15427 * from callee with its full parentage chain, anyway.
15428 */
8e9cd9ce
EC
15429 /* clear write marks in current state: the writes we did are not writes
15430 * our child did, so they don't screen off its reads from us.
15431 * (There are no read marks in current state, because reads always mark
15432 * their parent and current state never has children yet. Only
15433 * explored_states can get read marks.)
15434 */
eea1c227
AS
15435 for (j = 0; j <= cur->curframe; j++) {
15436 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
15437 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
15438 for (i = 0; i < BPF_REG_FP; i++)
15439 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
15440 }
f4d7e40a
AS
15441
15442 /* all stack frames are accessible from callee, clear them all */
15443 for (j = 0; j <= cur->curframe; j++) {
15444 struct bpf_func_state *frame = cur->frame[j];
679c782d 15445 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 15446
679c782d 15447 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 15448 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
15449 frame->stack[i].spilled_ptr.parent =
15450 &newframe->stack[i].spilled_ptr;
15451 }
f4d7e40a 15452 }
f1bca824
AS
15453 return 0;
15454}
15455
c64b7983
JS
15456/* Return true if it's OK to have the same insn return a different type. */
15457static bool reg_type_mismatch_ok(enum bpf_reg_type type)
15458{
c25b2ae1 15459 switch (base_type(type)) {
c64b7983
JS
15460 case PTR_TO_CTX:
15461 case PTR_TO_SOCKET:
46f8bc92 15462 case PTR_TO_SOCK_COMMON:
655a51e5 15463 case PTR_TO_TCP_SOCK:
fada7fdc 15464 case PTR_TO_XDP_SOCK:
2a02759e 15465 case PTR_TO_BTF_ID:
c64b7983
JS
15466 return false;
15467 default:
15468 return true;
15469 }
15470}
15471
15472/* If an instruction was previously used with particular pointer types, then we
15473 * need to be careful to avoid cases such as the below, where it may be ok
15474 * for one branch accessing the pointer, but not ok for the other branch:
15475 *
15476 * R1 = sock_ptr
15477 * goto X;
15478 * ...
15479 * R1 = some_other_valid_ptr;
15480 * goto X;
15481 * ...
15482 * R2 = *(u32 *)(R1 + 0);
15483 */
15484static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
15485{
15486 return src != prev && (!reg_type_mismatch_ok(src) ||
15487 !reg_type_mismatch_ok(prev));
15488}
15489
0d80a619
EZ
15490static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
15491 bool allow_trust_missmatch)
15492{
15493 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
15494
15495 if (*prev_type == NOT_INIT) {
15496 /* Saw a valid insn
15497 * dst_reg = *(u32 *)(src_reg + off)
15498 * save type to validate intersecting paths
15499 */
15500 *prev_type = type;
15501 } else if (reg_type_mismatch(type, *prev_type)) {
15502 /* Abuser program is trying to use the same insn
15503 * dst_reg = *(u32*) (src_reg + off)
15504 * with different pointer types:
15505 * src_reg == ctx in one branch and
15506 * src_reg == stack|map in some other branch.
15507 * Reject it.
15508 */
15509 if (allow_trust_missmatch &&
15510 base_type(type) == PTR_TO_BTF_ID &&
15511 base_type(*prev_type) == PTR_TO_BTF_ID) {
15512 /*
15513 * Have to support a use case when one path through
15514 * the program yields TRUSTED pointer while another
15515 * is UNTRUSTED. Fallback to UNTRUSTED to generate
15516 * BPF_PROBE_MEM.
15517 */
15518 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
15519 } else {
15520 verbose(env, "same insn cannot be used with different pointers\n");
15521 return -EINVAL;
15522 }
15523 }
15524
15525 return 0;
15526}
15527
58e2af8b 15528static int do_check(struct bpf_verifier_env *env)
17a52670 15529{
6f8a57cc 15530 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 15531 struct bpf_verifier_state *state = env->cur_state;
17a52670 15532 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 15533 struct bpf_reg_state *regs;
06ee7115 15534 int insn_cnt = env->prog->len;
17a52670 15535 bool do_print_state = false;
b5dc0163 15536 int prev_insn_idx = -1;
17a52670 15537
17a52670
AS
15538 for (;;) {
15539 struct bpf_insn *insn;
15540 u8 class;
15541 int err;
15542
b5dc0163 15543 env->prev_insn_idx = prev_insn_idx;
c08435ec 15544 if (env->insn_idx >= insn_cnt) {
61bd5218 15545 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 15546 env->insn_idx, insn_cnt);
17a52670
AS
15547 return -EFAULT;
15548 }
15549
c08435ec 15550 insn = &insns[env->insn_idx];
17a52670
AS
15551 class = BPF_CLASS(insn->code);
15552
06ee7115 15553 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
15554 verbose(env,
15555 "BPF program is too large. Processed %d insn\n",
06ee7115 15556 env->insn_processed);
17a52670
AS
15557 return -E2BIG;
15558 }
15559
a095f421
AN
15560 state->last_insn_idx = env->prev_insn_idx;
15561
15562 if (is_prune_point(env, env->insn_idx)) {
15563 err = is_state_visited(env, env->insn_idx);
15564 if (err < 0)
15565 return err;
15566 if (err == 1) {
15567 /* found equivalent state, can prune the search */
15568 if (env->log.level & BPF_LOG_LEVEL) {
15569 if (do_print_state)
15570 verbose(env, "\nfrom %d to %d%s: safe\n",
15571 env->prev_insn_idx, env->insn_idx,
15572 env->cur_state->speculative ?
15573 " (speculative execution)" : "");
15574 else
15575 verbose(env, "%d: safe\n", env->insn_idx);
15576 }
15577 goto process_bpf_exit;
f1bca824 15578 }
a095f421
AN
15579 }
15580
15581 if (is_jmp_point(env, env->insn_idx)) {
15582 err = push_jmp_history(env, state);
15583 if (err)
15584 return err;
f1bca824
AS
15585 }
15586
c3494801
AS
15587 if (signal_pending(current))
15588 return -EAGAIN;
15589
3c2ce60b
DB
15590 if (need_resched())
15591 cond_resched();
15592
2e576648
CL
15593 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
15594 verbose(env, "\nfrom %d to %d%s:",
15595 env->prev_insn_idx, env->insn_idx,
15596 env->cur_state->speculative ?
15597 " (speculative execution)" : "");
15598 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
15599 do_print_state = false;
15600 }
15601
06ee7115 15602 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 15603 const struct bpf_insn_cbs cbs = {
e6ac2450 15604 .cb_call = disasm_kfunc_name,
7105e828 15605 .cb_print = verbose,
abe08840 15606 .private_data = env,
7105e828
DB
15607 };
15608
2e576648
CL
15609 if (verifier_state_scratched(env))
15610 print_insn_state(env, state->frame[state->curframe]);
15611
c08435ec 15612 verbose_linfo(env, env->insn_idx, "; ");
2e576648 15613 env->prev_log_len = env->log.len_used;
c08435ec 15614 verbose(env, "%d: ", env->insn_idx);
abe08840 15615 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
15616 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
15617 env->prev_log_len = env->log.len_used;
17a52670
AS
15618 }
15619
9d03ebc7 15620 if (bpf_prog_is_offloaded(env->prog->aux)) {
c08435ec
DB
15621 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
15622 env->prev_insn_idx);
cae1927c
JK
15623 if (err)
15624 return err;
15625 }
13a27dfc 15626
638f5b90 15627 regs = cur_regs(env);
fe9a5ca7 15628 sanitize_mark_insn_seen(env);
b5dc0163 15629 prev_insn_idx = env->insn_idx;
fd978bf7 15630
17a52670 15631 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 15632 err = check_alu_op(env, insn);
17a52670
AS
15633 if (err)
15634 return err;
15635
15636 } else if (class == BPF_LDX) {
0d80a619 15637 enum bpf_reg_type src_reg_type;
9bac3d6d
AS
15638
15639 /* check for reserved fields is already done */
15640
17a52670 15641 /* check src operand */
dc503a8a 15642 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
15643 if (err)
15644 return err;
15645
dc503a8a 15646 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
15647 if (err)
15648 return err;
15649
725f9dcd
AS
15650 src_reg_type = regs[insn->src_reg].type;
15651
17a52670
AS
15652 /* check that memory (src_reg + off) is readable,
15653 * the state of dst_reg will be updated by this func
15654 */
c08435ec
DB
15655 err = check_mem_access(env, env->insn_idx, insn->src_reg,
15656 insn->off, BPF_SIZE(insn->code),
15657 BPF_READ, insn->dst_reg, false);
17a52670
AS
15658 if (err)
15659 return err;
15660
0d80a619
EZ
15661 err = save_aux_ptr_type(env, src_reg_type, true);
15662 if (err)
15663 return err;
17a52670 15664 } else if (class == BPF_STX) {
0d80a619 15665 enum bpf_reg_type dst_reg_type;
d691f9e8 15666
91c960b0
BJ
15667 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
15668 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
15669 if (err)
15670 return err;
c08435ec 15671 env->insn_idx++;
17a52670
AS
15672 continue;
15673 }
15674
5ca419f2
BJ
15675 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
15676 verbose(env, "BPF_STX uses reserved fields\n");
15677 return -EINVAL;
15678 }
15679
17a52670 15680 /* check src1 operand */
dc503a8a 15681 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
15682 if (err)
15683 return err;
15684 /* check src2 operand */
dc503a8a 15685 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
15686 if (err)
15687 return err;
15688
d691f9e8
AS
15689 dst_reg_type = regs[insn->dst_reg].type;
15690
17a52670 15691 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
15692 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15693 insn->off, BPF_SIZE(insn->code),
15694 BPF_WRITE, insn->src_reg, false);
17a52670
AS
15695 if (err)
15696 return err;
15697
0d80a619
EZ
15698 err = save_aux_ptr_type(env, dst_reg_type, false);
15699 if (err)
15700 return err;
17a52670 15701 } else if (class == BPF_ST) {
0d80a619
EZ
15702 enum bpf_reg_type dst_reg_type;
15703
17a52670
AS
15704 if (BPF_MODE(insn->code) != BPF_MEM ||
15705 insn->src_reg != BPF_REG_0) {
61bd5218 15706 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
15707 return -EINVAL;
15708 }
15709 /* check src operand */
dc503a8a 15710 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
15711 if (err)
15712 return err;
15713
0d80a619 15714 dst_reg_type = regs[insn->dst_reg].type;
f37a8cb8 15715
17a52670 15716 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
15717 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15718 insn->off, BPF_SIZE(insn->code),
15719 BPF_WRITE, -1, false);
17a52670
AS
15720 if (err)
15721 return err;
15722
0d80a619
EZ
15723 err = save_aux_ptr_type(env, dst_reg_type, false);
15724 if (err)
15725 return err;
092ed096 15726 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
15727 u8 opcode = BPF_OP(insn->code);
15728
2589726d 15729 env->jmps_processed++;
17a52670
AS
15730 if (opcode == BPF_CALL) {
15731 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
15732 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
15733 && insn->off != 0) ||
f4d7e40a 15734 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
15735 insn->src_reg != BPF_PSEUDO_CALL &&
15736 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
15737 insn->dst_reg != BPF_REG_0 ||
15738 class == BPF_JMP32) {
61bd5218 15739 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
15740 return -EINVAL;
15741 }
15742
8cab76ec
KKD
15743 if (env->cur_state->active_lock.ptr) {
15744 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
15745 (insn->src_reg == BPF_PSEUDO_CALL) ||
15746 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
cd6791b4 15747 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
8cab76ec
KKD
15748 verbose(env, "function calls are not allowed while holding a lock\n");
15749 return -EINVAL;
15750 }
d83525ca 15751 }
f4d7e40a 15752 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 15753 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 15754 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 15755 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 15756 else
69c087ba 15757 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
15758 if (err)
15759 return err;
553a64a8
AN
15760
15761 mark_reg_scratched(env, BPF_REG_0);
17a52670
AS
15762 } else if (opcode == BPF_JA) {
15763 if (BPF_SRC(insn->code) != BPF_K ||
15764 insn->imm != 0 ||
15765 insn->src_reg != BPF_REG_0 ||
092ed096
JW
15766 insn->dst_reg != BPF_REG_0 ||
15767 class == BPF_JMP32) {
61bd5218 15768 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
15769 return -EINVAL;
15770 }
15771
c08435ec 15772 env->insn_idx += insn->off + 1;
17a52670
AS
15773 continue;
15774
15775 } else if (opcode == BPF_EXIT) {
15776 if (BPF_SRC(insn->code) != BPF_K ||
15777 insn->imm != 0 ||
15778 insn->src_reg != BPF_REG_0 ||
092ed096
JW
15779 insn->dst_reg != BPF_REG_0 ||
15780 class == BPF_JMP32) {
61bd5218 15781 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
15782 return -EINVAL;
15783 }
15784
5d92ddc3
DM
15785 if (env->cur_state->active_lock.ptr &&
15786 !in_rbtree_lock_required_cb(env)) {
d83525ca
AS
15787 verbose(env, "bpf_spin_unlock is missing\n");
15788 return -EINVAL;
15789 }
15790
9bb00b28
YS
15791 if (env->cur_state->active_rcu_lock) {
15792 verbose(env, "bpf_rcu_read_unlock is missing\n");
15793 return -EINVAL;
15794 }
15795
9d9d00ac
KKD
15796 /* We must do check_reference_leak here before
15797 * prepare_func_exit to handle the case when
15798 * state->curframe > 0, it may be a callback
15799 * function, for which reference_state must
15800 * match caller reference state when it exits.
15801 */
15802 err = check_reference_leak(env);
15803 if (err)
15804 return err;
15805
f4d7e40a
AS
15806 if (state->curframe) {
15807 /* exit from nested function */
c08435ec 15808 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
15809 if (err)
15810 return err;
15811 do_print_state = true;
15812 continue;
15813 }
15814
390ee7e2
AS
15815 err = check_return_code(env);
15816 if (err)
15817 return err;
f1bca824 15818process_bpf_exit:
0f55f9ed 15819 mark_verifier_state_scratched(env);
2589726d 15820 update_branch_counts(env, env->cur_state);
b5dc0163 15821 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 15822 &env->insn_idx, pop_log);
638f5b90
AS
15823 if (err < 0) {
15824 if (err != -ENOENT)
15825 return err;
17a52670
AS
15826 break;
15827 } else {
15828 do_print_state = true;
15829 continue;
15830 }
15831 } else {
c08435ec 15832 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
15833 if (err)
15834 return err;
15835 }
15836 } else if (class == BPF_LD) {
15837 u8 mode = BPF_MODE(insn->code);
15838
15839 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
15840 err = check_ld_abs(env, insn);
15841 if (err)
15842 return err;
15843
17a52670
AS
15844 } else if (mode == BPF_IMM) {
15845 err = check_ld_imm(env, insn);
15846 if (err)
15847 return err;
15848
c08435ec 15849 env->insn_idx++;
fe9a5ca7 15850 sanitize_mark_insn_seen(env);
17a52670 15851 } else {
61bd5218 15852 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
15853 return -EINVAL;
15854 }
15855 } else {
61bd5218 15856 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
15857 return -EINVAL;
15858 }
15859
c08435ec 15860 env->insn_idx++;
17a52670
AS
15861 }
15862
15863 return 0;
15864}
15865
541c3bad
AN
15866static int find_btf_percpu_datasec(struct btf *btf)
15867{
15868 const struct btf_type *t;
15869 const char *tname;
15870 int i, n;
15871
15872 /*
15873 * Both vmlinux and module each have their own ".data..percpu"
15874 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
15875 * types to look at only module's own BTF types.
15876 */
15877 n = btf_nr_types(btf);
15878 if (btf_is_module(btf))
15879 i = btf_nr_types(btf_vmlinux);
15880 else
15881 i = 1;
15882
15883 for(; i < n; i++) {
15884 t = btf_type_by_id(btf, i);
15885 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
15886 continue;
15887
15888 tname = btf_name_by_offset(btf, t->name_off);
15889 if (!strcmp(tname, ".data..percpu"))
15890 return i;
15891 }
15892
15893 return -ENOENT;
15894}
15895
4976b718
HL
15896/* replace pseudo btf_id with kernel symbol address */
15897static int check_pseudo_btf_id(struct bpf_verifier_env *env,
15898 struct bpf_insn *insn,
15899 struct bpf_insn_aux_data *aux)
15900{
eaa6bcb7
HL
15901 const struct btf_var_secinfo *vsi;
15902 const struct btf_type *datasec;
541c3bad 15903 struct btf_mod_pair *btf_mod;
4976b718
HL
15904 const struct btf_type *t;
15905 const char *sym_name;
eaa6bcb7 15906 bool percpu = false;
f16e6313 15907 u32 type, id = insn->imm;
541c3bad 15908 struct btf *btf;
f16e6313 15909 s32 datasec_id;
4976b718 15910 u64 addr;
541c3bad 15911 int i, btf_fd, err;
4976b718 15912
541c3bad
AN
15913 btf_fd = insn[1].imm;
15914 if (btf_fd) {
15915 btf = btf_get_by_fd(btf_fd);
15916 if (IS_ERR(btf)) {
15917 verbose(env, "invalid module BTF object FD specified.\n");
15918 return -EINVAL;
15919 }
15920 } else {
15921 if (!btf_vmlinux) {
15922 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
15923 return -EINVAL;
15924 }
15925 btf = btf_vmlinux;
15926 btf_get(btf);
4976b718
HL
15927 }
15928
541c3bad 15929 t = btf_type_by_id(btf, id);
4976b718
HL
15930 if (!t) {
15931 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
15932 err = -ENOENT;
15933 goto err_put;
4976b718
HL
15934 }
15935
15936 if (!btf_type_is_var(t)) {
541c3bad
AN
15937 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
15938 err = -EINVAL;
15939 goto err_put;
4976b718
HL
15940 }
15941
541c3bad 15942 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
15943 addr = kallsyms_lookup_name(sym_name);
15944 if (!addr) {
15945 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
15946 sym_name);
541c3bad
AN
15947 err = -ENOENT;
15948 goto err_put;
4976b718
HL
15949 }
15950
541c3bad 15951 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 15952 if (datasec_id > 0) {
541c3bad 15953 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
15954 for_each_vsi(i, datasec, vsi) {
15955 if (vsi->type == id) {
15956 percpu = true;
15957 break;
15958 }
15959 }
15960 }
15961
4976b718
HL
15962 insn[0].imm = (u32)addr;
15963 insn[1].imm = addr >> 32;
15964
15965 type = t->type;
541c3bad 15966 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 15967 if (percpu) {
5844101a 15968 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 15969 aux->btf_var.btf = btf;
eaa6bcb7
HL
15970 aux->btf_var.btf_id = type;
15971 } else if (!btf_type_is_struct(t)) {
4976b718
HL
15972 const struct btf_type *ret;
15973 const char *tname;
15974 u32 tsize;
15975
15976 /* resolve the type size of ksym. */
541c3bad 15977 ret = btf_resolve_size(btf, t, &tsize);
4976b718 15978 if (IS_ERR(ret)) {
541c3bad 15979 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
15980 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
15981 tname, PTR_ERR(ret));
541c3bad
AN
15982 err = -EINVAL;
15983 goto err_put;
4976b718 15984 }
34d3a78c 15985 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
15986 aux->btf_var.mem_size = tsize;
15987 } else {
15988 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 15989 aux->btf_var.btf = btf;
4976b718
HL
15990 aux->btf_var.btf_id = type;
15991 }
541c3bad
AN
15992
15993 /* check whether we recorded this BTF (and maybe module) already */
15994 for (i = 0; i < env->used_btf_cnt; i++) {
15995 if (env->used_btfs[i].btf == btf) {
15996 btf_put(btf);
15997 return 0;
15998 }
15999 }
16000
16001 if (env->used_btf_cnt >= MAX_USED_BTFS) {
16002 err = -E2BIG;
16003 goto err_put;
16004 }
16005
16006 btf_mod = &env->used_btfs[env->used_btf_cnt];
16007 btf_mod->btf = btf;
16008 btf_mod->module = NULL;
16009
16010 /* if we reference variables from kernel module, bump its refcount */
16011 if (btf_is_module(btf)) {
16012 btf_mod->module = btf_try_get_module(btf);
16013 if (!btf_mod->module) {
16014 err = -ENXIO;
16015 goto err_put;
16016 }
16017 }
16018
16019 env->used_btf_cnt++;
16020
4976b718 16021 return 0;
541c3bad
AN
16022err_put:
16023 btf_put(btf);
16024 return err;
4976b718
HL
16025}
16026
d83525ca
AS
16027static bool is_tracing_prog_type(enum bpf_prog_type type)
16028{
16029 switch (type) {
16030 case BPF_PROG_TYPE_KPROBE:
16031 case BPF_PROG_TYPE_TRACEPOINT:
16032 case BPF_PROG_TYPE_PERF_EVENT:
16033 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 16034 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
16035 return true;
16036 default:
16037 return false;
16038 }
16039}
16040
61bd5218
JK
16041static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16042 struct bpf_map *map,
fdc15d38
AS
16043 struct bpf_prog *prog)
16044
16045{
7e40781c 16046 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 16047
9c395c1b
DM
16048 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16049 btf_record_has_field(map->record, BPF_RB_ROOT)) {
f0c5941f 16050 if (is_tracing_prog_type(prog_type)) {
9c395c1b 16051 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
f0c5941f
KKD
16052 return -EINVAL;
16053 }
16054 }
16055
db559117 16056 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
16057 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16058 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16059 return -EINVAL;
16060 }
16061
16062 if (is_tracing_prog_type(prog_type)) {
16063 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16064 return -EINVAL;
16065 }
16066
16067 if (prog->aux->sleepable) {
16068 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16069 return -EINVAL;
16070 }
d83525ca
AS
16071 }
16072
db559117 16073 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
16074 if (is_tracing_prog_type(prog_type)) {
16075 verbose(env, "tracing progs cannot use bpf_timer yet\n");
16076 return -EINVAL;
16077 }
16078 }
16079
9d03ebc7 16080 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
09728266 16081 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
16082 verbose(env, "offload device mismatch between prog and map\n");
16083 return -EINVAL;
16084 }
16085
85d33df3
MKL
16086 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16087 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16088 return -EINVAL;
16089 }
16090
1e6c62a8
AS
16091 if (prog->aux->sleepable)
16092 switch (map->map_type) {
16093 case BPF_MAP_TYPE_HASH:
16094 case BPF_MAP_TYPE_LRU_HASH:
16095 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
16096 case BPF_MAP_TYPE_PERCPU_HASH:
16097 case BPF_MAP_TYPE_PERCPU_ARRAY:
16098 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16099 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16100 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 16101 case BPF_MAP_TYPE_RINGBUF:
583c1f42 16102 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
16103 case BPF_MAP_TYPE_INODE_STORAGE:
16104 case BPF_MAP_TYPE_SK_STORAGE:
16105 case BPF_MAP_TYPE_TASK_STORAGE:
2c40d97d 16106 case BPF_MAP_TYPE_CGRP_STORAGE:
ba90c2cc 16107 break;
1e6c62a8
AS
16108 default:
16109 verbose(env,
2c40d97d 16110 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
1e6c62a8
AS
16111 return -EINVAL;
16112 }
16113
fdc15d38
AS
16114 return 0;
16115}
16116
b741f163
RG
16117static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16118{
16119 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16120 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16121}
16122
4976b718
HL
16123/* find and rewrite pseudo imm in ld_imm64 instructions:
16124 *
16125 * 1. if it accesses map FD, replace it with actual map pointer.
16126 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16127 *
16128 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 16129 */
4976b718 16130static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
16131{
16132 struct bpf_insn *insn = env->prog->insnsi;
16133 int insn_cnt = env->prog->len;
fdc15d38 16134 int i, j, err;
0246e64d 16135
f1f7714e 16136 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
16137 if (err)
16138 return err;
16139
0246e64d 16140 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 16141 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 16142 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 16143 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
16144 return -EINVAL;
16145 }
16146
0246e64d 16147 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 16148 struct bpf_insn_aux_data *aux;
0246e64d
AS
16149 struct bpf_map *map;
16150 struct fd f;
d8eca5bb 16151 u64 addr;
387544bf 16152 u32 fd;
0246e64d
AS
16153
16154 if (i == insn_cnt - 1 || insn[1].code != 0 ||
16155 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16156 insn[1].off != 0) {
61bd5218 16157 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
16158 return -EINVAL;
16159 }
16160
d8eca5bb 16161 if (insn[0].src_reg == 0)
0246e64d
AS
16162 /* valid generic load 64-bit imm */
16163 goto next_insn;
16164
4976b718
HL
16165 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16166 aux = &env->insn_aux_data[i];
16167 err = check_pseudo_btf_id(env, insn, aux);
16168 if (err)
16169 return err;
16170 goto next_insn;
16171 }
16172
69c087ba
YS
16173 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16174 aux = &env->insn_aux_data[i];
16175 aux->ptr_type = PTR_TO_FUNC;
16176 goto next_insn;
16177 }
16178
d8eca5bb
DB
16179 /* In final convert_pseudo_ld_imm64() step, this is
16180 * converted into regular 64-bit imm load insn.
16181 */
387544bf
AS
16182 switch (insn[0].src_reg) {
16183 case BPF_PSEUDO_MAP_VALUE:
16184 case BPF_PSEUDO_MAP_IDX_VALUE:
16185 break;
16186 case BPF_PSEUDO_MAP_FD:
16187 case BPF_PSEUDO_MAP_IDX:
16188 if (insn[1].imm == 0)
16189 break;
16190 fallthrough;
16191 default:
16192 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
16193 return -EINVAL;
16194 }
16195
387544bf
AS
16196 switch (insn[0].src_reg) {
16197 case BPF_PSEUDO_MAP_IDX_VALUE:
16198 case BPF_PSEUDO_MAP_IDX:
16199 if (bpfptr_is_null(env->fd_array)) {
16200 verbose(env, "fd_idx without fd_array is invalid\n");
16201 return -EPROTO;
16202 }
16203 if (copy_from_bpfptr_offset(&fd, env->fd_array,
16204 insn[0].imm * sizeof(fd),
16205 sizeof(fd)))
16206 return -EFAULT;
16207 break;
16208 default:
16209 fd = insn[0].imm;
16210 break;
16211 }
16212
16213 f = fdget(fd);
c2101297 16214 map = __bpf_map_get(f);
0246e64d 16215 if (IS_ERR(map)) {
61bd5218 16216 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 16217 insn[0].imm);
0246e64d
AS
16218 return PTR_ERR(map);
16219 }
16220
61bd5218 16221 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
16222 if (err) {
16223 fdput(f);
16224 return err;
16225 }
16226
d8eca5bb 16227 aux = &env->insn_aux_data[i];
387544bf
AS
16228 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16229 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
16230 addr = (unsigned long)map;
16231 } else {
16232 u32 off = insn[1].imm;
16233
16234 if (off >= BPF_MAX_VAR_OFF) {
16235 verbose(env, "direct value offset of %u is not allowed\n", off);
16236 fdput(f);
16237 return -EINVAL;
16238 }
16239
16240 if (!map->ops->map_direct_value_addr) {
16241 verbose(env, "no direct value access support for this map type\n");
16242 fdput(f);
16243 return -EINVAL;
16244 }
16245
16246 err = map->ops->map_direct_value_addr(map, &addr, off);
16247 if (err) {
16248 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16249 map->value_size, off);
16250 fdput(f);
16251 return err;
16252 }
16253
16254 aux->map_off = off;
16255 addr += off;
16256 }
16257
16258 insn[0].imm = (u32)addr;
16259 insn[1].imm = addr >> 32;
0246e64d
AS
16260
16261 /* check whether we recorded this map already */
d8eca5bb 16262 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 16263 if (env->used_maps[j] == map) {
d8eca5bb 16264 aux->map_index = j;
0246e64d
AS
16265 fdput(f);
16266 goto next_insn;
16267 }
d8eca5bb 16268 }
0246e64d
AS
16269
16270 if (env->used_map_cnt >= MAX_USED_MAPS) {
16271 fdput(f);
16272 return -E2BIG;
16273 }
16274
0246e64d
AS
16275 /* hold the map. If the program is rejected by verifier,
16276 * the map will be released by release_maps() or it
16277 * will be used by the valid program until it's unloaded
ab7f5bf0 16278 * and all maps are released in free_used_maps()
0246e64d 16279 */
1e0bd5a0 16280 bpf_map_inc(map);
d8eca5bb
DB
16281
16282 aux->map_index = env->used_map_cnt;
92117d84
AS
16283 env->used_maps[env->used_map_cnt++] = map;
16284
b741f163 16285 if (bpf_map_is_cgroup_storage(map) &&
e4730423 16286 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 16287 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
16288 fdput(f);
16289 return -EBUSY;
16290 }
16291
0246e64d
AS
16292 fdput(f);
16293next_insn:
16294 insn++;
16295 i++;
5e581dad
DB
16296 continue;
16297 }
16298
16299 /* Basic sanity check before we invest more work here. */
16300 if (!bpf_opcode_in_insntable(insn->code)) {
16301 verbose(env, "unknown opcode %02x\n", insn->code);
16302 return -EINVAL;
0246e64d
AS
16303 }
16304 }
16305
16306 /* now all pseudo BPF_LD_IMM64 instructions load valid
16307 * 'struct bpf_map *' into a register instead of user map_fd.
16308 * These pointers will be used later by verifier to validate map access.
16309 */
16310 return 0;
16311}
16312
16313/* drop refcnt of maps used by the rejected program */
58e2af8b 16314static void release_maps(struct bpf_verifier_env *env)
0246e64d 16315{
a2ea0746
DB
16316 __bpf_free_used_maps(env->prog->aux, env->used_maps,
16317 env->used_map_cnt);
0246e64d
AS
16318}
16319
541c3bad
AN
16320/* drop refcnt of maps used by the rejected program */
16321static void release_btfs(struct bpf_verifier_env *env)
16322{
16323 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16324 env->used_btf_cnt);
16325}
16326
0246e64d 16327/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 16328static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
16329{
16330 struct bpf_insn *insn = env->prog->insnsi;
16331 int insn_cnt = env->prog->len;
16332 int i;
16333
69c087ba
YS
16334 for (i = 0; i < insn_cnt; i++, insn++) {
16335 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
16336 continue;
16337 if (insn->src_reg == BPF_PSEUDO_FUNC)
16338 continue;
16339 insn->src_reg = 0;
16340 }
0246e64d
AS
16341}
16342
8041902d
AS
16343/* single env->prog->insni[off] instruction was replaced with the range
16344 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
16345 * [0, off) and [off, end) to new locations, so the patched range stays zero
16346 */
75f0fc7b
HF
16347static void adjust_insn_aux_data(struct bpf_verifier_env *env,
16348 struct bpf_insn_aux_data *new_data,
16349 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 16350{
75f0fc7b 16351 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 16352 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 16353 u32 old_seen = old_data[off].seen;
b325fbca 16354 u32 prog_len;
c131187d 16355 int i;
8041902d 16356
b325fbca
JW
16357 /* aux info at OFF always needs adjustment, no matter fast path
16358 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
16359 * original insn at old prog.
16360 */
16361 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
16362
8041902d 16363 if (cnt == 1)
75f0fc7b 16364 return;
b325fbca 16365 prog_len = new_prog->len;
75f0fc7b 16366
8041902d
AS
16367 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
16368 memcpy(new_data + off + cnt - 1, old_data + off,
16369 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 16370 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
16371 /* Expand insni[off]'s seen count to the patched range. */
16372 new_data[i].seen = old_seen;
b325fbca
JW
16373 new_data[i].zext_dst = insn_has_def32(env, insn + i);
16374 }
8041902d
AS
16375 env->insn_aux_data = new_data;
16376 vfree(old_data);
8041902d
AS
16377}
16378
cc8b0b92
AS
16379static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
16380{
16381 int i;
16382
16383 if (len == 1)
16384 return;
4cb3d99c
JW
16385 /* NOTE: fake 'exit' subprog should be updated as well. */
16386 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 16387 if (env->subprog_info[i].start <= off)
cc8b0b92 16388 continue;
9c8105bd 16389 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
16390 }
16391}
16392
7506d211 16393static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
16394{
16395 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
16396 int i, sz = prog->aux->size_poke_tab;
16397 struct bpf_jit_poke_descriptor *desc;
16398
16399 for (i = 0; i < sz; i++) {
16400 desc = &tab[i];
7506d211
JF
16401 if (desc->insn_idx <= off)
16402 continue;
a748c697
MF
16403 desc->insn_idx += len - 1;
16404 }
16405}
16406
8041902d
AS
16407static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
16408 const struct bpf_insn *patch, u32 len)
16409{
16410 struct bpf_prog *new_prog;
75f0fc7b
HF
16411 struct bpf_insn_aux_data *new_data = NULL;
16412
16413 if (len > 1) {
16414 new_data = vzalloc(array_size(env->prog->len + len - 1,
16415 sizeof(struct bpf_insn_aux_data)));
16416 if (!new_data)
16417 return NULL;
16418 }
8041902d
AS
16419
16420 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
16421 if (IS_ERR(new_prog)) {
16422 if (PTR_ERR(new_prog) == -ERANGE)
16423 verbose(env,
16424 "insn %d cannot be patched due to 16-bit range\n",
16425 env->insn_aux_data[off].orig_idx);
75f0fc7b 16426 vfree(new_data);
8041902d 16427 return NULL;
4f73379e 16428 }
75f0fc7b 16429 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 16430 adjust_subprog_starts(env, off, len);
7506d211 16431 adjust_poke_descs(new_prog, off, len);
8041902d
AS
16432 return new_prog;
16433}
16434
52875a04
JK
16435static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
16436 u32 off, u32 cnt)
16437{
16438 int i, j;
16439
16440 /* find first prog starting at or after off (first to remove) */
16441 for (i = 0; i < env->subprog_cnt; i++)
16442 if (env->subprog_info[i].start >= off)
16443 break;
16444 /* find first prog starting at or after off + cnt (first to stay) */
16445 for (j = i; j < env->subprog_cnt; j++)
16446 if (env->subprog_info[j].start >= off + cnt)
16447 break;
16448 /* if j doesn't start exactly at off + cnt, we are just removing
16449 * the front of previous prog
16450 */
16451 if (env->subprog_info[j].start != off + cnt)
16452 j--;
16453
16454 if (j > i) {
16455 struct bpf_prog_aux *aux = env->prog->aux;
16456 int move;
16457
16458 /* move fake 'exit' subprog as well */
16459 move = env->subprog_cnt + 1 - j;
16460
16461 memmove(env->subprog_info + i,
16462 env->subprog_info + j,
16463 sizeof(*env->subprog_info) * move);
16464 env->subprog_cnt -= j - i;
16465
16466 /* remove func_info */
16467 if (aux->func_info) {
16468 move = aux->func_info_cnt - j;
16469
16470 memmove(aux->func_info + i,
16471 aux->func_info + j,
16472 sizeof(*aux->func_info) * move);
16473 aux->func_info_cnt -= j - i;
16474 /* func_info->insn_off is set after all code rewrites,
16475 * in adjust_btf_func() - no need to adjust
16476 */
16477 }
16478 } else {
16479 /* convert i from "first prog to remove" to "first to adjust" */
16480 if (env->subprog_info[i].start == off)
16481 i++;
16482 }
16483
16484 /* update fake 'exit' subprog as well */
16485 for (; i <= env->subprog_cnt; i++)
16486 env->subprog_info[i].start -= cnt;
16487
16488 return 0;
16489}
16490
16491static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
16492 u32 cnt)
16493{
16494 struct bpf_prog *prog = env->prog;
16495 u32 i, l_off, l_cnt, nr_linfo;
16496 struct bpf_line_info *linfo;
16497
16498 nr_linfo = prog->aux->nr_linfo;
16499 if (!nr_linfo)
16500 return 0;
16501
16502 linfo = prog->aux->linfo;
16503
16504 /* find first line info to remove, count lines to be removed */
16505 for (i = 0; i < nr_linfo; i++)
16506 if (linfo[i].insn_off >= off)
16507 break;
16508
16509 l_off = i;
16510 l_cnt = 0;
16511 for (; i < nr_linfo; i++)
16512 if (linfo[i].insn_off < off + cnt)
16513 l_cnt++;
16514 else
16515 break;
16516
16517 /* First live insn doesn't match first live linfo, it needs to "inherit"
16518 * last removed linfo. prog is already modified, so prog->len == off
16519 * means no live instructions after (tail of the program was removed).
16520 */
16521 if (prog->len != off && l_cnt &&
16522 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
16523 l_cnt--;
16524 linfo[--i].insn_off = off + cnt;
16525 }
16526
16527 /* remove the line info which refer to the removed instructions */
16528 if (l_cnt) {
16529 memmove(linfo + l_off, linfo + i,
16530 sizeof(*linfo) * (nr_linfo - i));
16531
16532 prog->aux->nr_linfo -= l_cnt;
16533 nr_linfo = prog->aux->nr_linfo;
16534 }
16535
16536 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
16537 for (i = l_off; i < nr_linfo; i++)
16538 linfo[i].insn_off -= cnt;
16539
16540 /* fix up all subprogs (incl. 'exit') which start >= off */
16541 for (i = 0; i <= env->subprog_cnt; i++)
16542 if (env->subprog_info[i].linfo_idx > l_off) {
16543 /* program may have started in the removed region but
16544 * may not be fully removed
16545 */
16546 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
16547 env->subprog_info[i].linfo_idx -= l_cnt;
16548 else
16549 env->subprog_info[i].linfo_idx = l_off;
16550 }
16551
16552 return 0;
16553}
16554
16555static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
16556{
16557 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16558 unsigned int orig_prog_len = env->prog->len;
16559 int err;
16560
9d03ebc7 16561 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
16562 bpf_prog_offload_remove_insns(env, off, cnt);
16563
52875a04
JK
16564 err = bpf_remove_insns(env->prog, off, cnt);
16565 if (err)
16566 return err;
16567
16568 err = adjust_subprog_starts_after_remove(env, off, cnt);
16569 if (err)
16570 return err;
16571
16572 err = bpf_adj_linfo_after_remove(env, off, cnt);
16573 if (err)
16574 return err;
16575
16576 memmove(aux_data + off, aux_data + off + cnt,
16577 sizeof(*aux_data) * (orig_prog_len - off - cnt));
16578
16579 return 0;
16580}
16581
2a5418a1
DB
16582/* The verifier does more data flow analysis than llvm and will not
16583 * explore branches that are dead at run time. Malicious programs can
16584 * have dead code too. Therefore replace all dead at-run-time code
16585 * with 'ja -1'.
16586 *
16587 * Just nops are not optimal, e.g. if they would sit at the end of the
16588 * program and through another bug we would manage to jump there, then
16589 * we'd execute beyond program memory otherwise. Returning exception
16590 * code also wouldn't work since we can have subprogs where the dead
16591 * code could be located.
c131187d
AS
16592 */
16593static void sanitize_dead_code(struct bpf_verifier_env *env)
16594{
16595 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 16596 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
16597 struct bpf_insn *insn = env->prog->insnsi;
16598 const int insn_cnt = env->prog->len;
16599 int i;
16600
16601 for (i = 0; i < insn_cnt; i++) {
16602 if (aux_data[i].seen)
16603 continue;
2a5418a1 16604 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 16605 aux_data[i].zext_dst = false;
c131187d
AS
16606 }
16607}
16608
e2ae4ca2
JK
16609static bool insn_is_cond_jump(u8 code)
16610{
16611 u8 op;
16612
092ed096
JW
16613 if (BPF_CLASS(code) == BPF_JMP32)
16614 return true;
16615
e2ae4ca2
JK
16616 if (BPF_CLASS(code) != BPF_JMP)
16617 return false;
16618
16619 op = BPF_OP(code);
16620 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
16621}
16622
16623static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
16624{
16625 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16626 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16627 struct bpf_insn *insn = env->prog->insnsi;
16628 const int insn_cnt = env->prog->len;
16629 int i;
16630
16631 for (i = 0; i < insn_cnt; i++, insn++) {
16632 if (!insn_is_cond_jump(insn->code))
16633 continue;
16634
16635 if (!aux_data[i + 1].seen)
16636 ja.off = insn->off;
16637 else if (!aux_data[i + 1 + insn->off].seen)
16638 ja.off = 0;
16639 else
16640 continue;
16641
9d03ebc7 16642 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
16643 bpf_prog_offload_replace_insn(env, i, &ja);
16644
e2ae4ca2
JK
16645 memcpy(insn, &ja, sizeof(ja));
16646 }
16647}
16648
52875a04
JK
16649static int opt_remove_dead_code(struct bpf_verifier_env *env)
16650{
16651 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16652 int insn_cnt = env->prog->len;
16653 int i, err;
16654
16655 for (i = 0; i < insn_cnt; i++) {
16656 int j;
16657
16658 j = 0;
16659 while (i + j < insn_cnt && !aux_data[i + j].seen)
16660 j++;
16661 if (!j)
16662 continue;
16663
16664 err = verifier_remove_insns(env, i, j);
16665 if (err)
16666 return err;
16667 insn_cnt = env->prog->len;
16668 }
16669
16670 return 0;
16671}
16672
a1b14abc
JK
16673static int opt_remove_nops(struct bpf_verifier_env *env)
16674{
16675 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16676 struct bpf_insn *insn = env->prog->insnsi;
16677 int insn_cnt = env->prog->len;
16678 int i, err;
16679
16680 for (i = 0; i < insn_cnt; i++) {
16681 if (memcmp(&insn[i], &ja, sizeof(ja)))
16682 continue;
16683
16684 err = verifier_remove_insns(env, i, 1);
16685 if (err)
16686 return err;
16687 insn_cnt--;
16688 i--;
16689 }
16690
16691 return 0;
16692}
16693
d6c2308c
JW
16694static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
16695 const union bpf_attr *attr)
a4b1d3c1 16696{
d6c2308c 16697 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 16698 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 16699 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 16700 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 16701 struct bpf_prog *new_prog;
d6c2308c 16702 bool rnd_hi32;
a4b1d3c1 16703
d6c2308c 16704 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 16705 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
16706 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
16707 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
16708 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
16709 for (i = 0; i < len; i++) {
16710 int adj_idx = i + delta;
16711 struct bpf_insn insn;
83a28819 16712 int load_reg;
a4b1d3c1 16713
d6c2308c 16714 insn = insns[adj_idx];
83a28819 16715 load_reg = insn_def_regno(&insn);
d6c2308c
JW
16716 if (!aux[adj_idx].zext_dst) {
16717 u8 code, class;
16718 u32 imm_rnd;
16719
16720 if (!rnd_hi32)
16721 continue;
16722
16723 code = insn.code;
16724 class = BPF_CLASS(code);
83a28819 16725 if (load_reg == -1)
d6c2308c
JW
16726 continue;
16727
16728 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
16729 * BPF_STX + SRC_OP, so it is safe to pass NULL
16730 * here.
d6c2308c 16731 */
83a28819 16732 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
16733 if (class == BPF_LD &&
16734 BPF_MODE(code) == BPF_IMM)
16735 i++;
16736 continue;
16737 }
16738
16739 /* ctx load could be transformed into wider load. */
16740 if (class == BPF_LDX &&
16741 aux[adj_idx].ptr_type == PTR_TO_CTX)
16742 continue;
16743
a251c17a 16744 imm_rnd = get_random_u32();
d6c2308c
JW
16745 rnd_hi32_patch[0] = insn;
16746 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 16747 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
16748 patch = rnd_hi32_patch;
16749 patch_len = 4;
16750 goto apply_patch_buffer;
16751 }
16752
39491867
BJ
16753 /* Add in an zero-extend instruction if a) the JIT has requested
16754 * it or b) it's a CMPXCHG.
16755 *
16756 * The latter is because: BPF_CMPXCHG always loads a value into
16757 * R0, therefore always zero-extends. However some archs'
16758 * equivalent instruction only does this load when the
16759 * comparison is successful. This detail of CMPXCHG is
16760 * orthogonal to the general zero-extension behaviour of the
16761 * CPU, so it's treated independently of bpf_jit_needs_zext.
16762 */
16763 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
16764 continue;
16765
d35af0a7
BT
16766 /* Zero-extension is done by the caller. */
16767 if (bpf_pseudo_kfunc_call(&insn))
16768 continue;
16769
83a28819
IL
16770 if (WARN_ON(load_reg == -1)) {
16771 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
16772 return -EFAULT;
b2e37a71
IL
16773 }
16774
a4b1d3c1 16775 zext_patch[0] = insn;
b2e37a71
IL
16776 zext_patch[1].dst_reg = load_reg;
16777 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
16778 patch = zext_patch;
16779 patch_len = 2;
16780apply_patch_buffer:
16781 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
16782 if (!new_prog)
16783 return -ENOMEM;
16784 env->prog = new_prog;
16785 insns = new_prog->insnsi;
16786 aux = env->insn_aux_data;
d6c2308c 16787 delta += patch_len - 1;
a4b1d3c1
JW
16788 }
16789
16790 return 0;
16791}
16792
c64b7983
JS
16793/* convert load instructions that access fields of a context type into a
16794 * sequence of instructions that access fields of the underlying structure:
16795 * struct __sk_buff -> struct sk_buff
16796 * struct bpf_sock_ops -> struct sock
9bac3d6d 16797 */
58e2af8b 16798static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 16799{
00176a34 16800 const struct bpf_verifier_ops *ops = env->ops;
f96da094 16801 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 16802 const int insn_cnt = env->prog->len;
36bbef52 16803 struct bpf_insn insn_buf[16], *insn;
46f53a65 16804 u32 target_size, size_default, off;
9bac3d6d 16805 struct bpf_prog *new_prog;
d691f9e8 16806 enum bpf_access_type type;
f96da094 16807 bool is_narrower_load;
9bac3d6d 16808
b09928b9
DB
16809 if (ops->gen_prologue || env->seen_direct_write) {
16810 if (!ops->gen_prologue) {
16811 verbose(env, "bpf verifier is misconfigured\n");
16812 return -EINVAL;
16813 }
36bbef52
DB
16814 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
16815 env->prog);
16816 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 16817 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
16818 return -EINVAL;
16819 } else if (cnt) {
8041902d 16820 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
16821 if (!new_prog)
16822 return -ENOMEM;
8041902d 16823
36bbef52 16824 env->prog = new_prog;
3df126f3 16825 delta += cnt - 1;
36bbef52
DB
16826 }
16827 }
16828
9d03ebc7 16829 if (bpf_prog_is_offloaded(env->prog->aux))
9bac3d6d
AS
16830 return 0;
16831
3df126f3 16832 insn = env->prog->insnsi + delta;
36bbef52 16833
9bac3d6d 16834 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
16835 bpf_convert_ctx_access_t convert_ctx_access;
16836
62c7989b
DB
16837 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
16838 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
16839 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 16840 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 16841 type = BPF_READ;
2039f26f
DB
16842 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
16843 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
16844 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
16845 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
16846 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
16847 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
16848 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
16849 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 16850 type = BPF_WRITE;
2039f26f 16851 } else {
9bac3d6d 16852 continue;
2039f26f 16853 }
9bac3d6d 16854
af86ca4e 16855 if (type == BPF_WRITE &&
2039f26f 16856 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 16857 struct bpf_insn patch[] = {
af86ca4e 16858 *insn,
2039f26f 16859 BPF_ST_NOSPEC(),
af86ca4e
AS
16860 };
16861
16862 cnt = ARRAY_SIZE(patch);
16863 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
16864 if (!new_prog)
16865 return -ENOMEM;
16866
16867 delta += cnt - 1;
16868 env->prog = new_prog;
16869 insn = new_prog->insnsi + i + delta;
16870 continue;
16871 }
16872
6efe152d 16873 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
16874 case PTR_TO_CTX:
16875 if (!ops->convert_ctx_access)
16876 continue;
16877 convert_ctx_access = ops->convert_ctx_access;
16878 break;
16879 case PTR_TO_SOCKET:
46f8bc92 16880 case PTR_TO_SOCK_COMMON:
c64b7983
JS
16881 convert_ctx_access = bpf_sock_convert_ctx_access;
16882 break;
655a51e5
MKL
16883 case PTR_TO_TCP_SOCK:
16884 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
16885 break;
fada7fdc
JL
16886 case PTR_TO_XDP_SOCK:
16887 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
16888 break;
2a02759e 16889 case PTR_TO_BTF_ID:
6efe152d 16890 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
282de143
KKD
16891 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
16892 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
16893 * be said once it is marked PTR_UNTRUSTED, hence we must handle
16894 * any faults for loads into such types. BPF_WRITE is disallowed
16895 * for this case.
16896 */
16897 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
27ae7997
MKL
16898 if (type == BPF_READ) {
16899 insn->code = BPF_LDX | BPF_PROBE_MEM |
16900 BPF_SIZE((insn)->code);
16901 env->prog->aux->num_exentries++;
2a02759e 16902 }
2a02759e 16903 continue;
c64b7983 16904 default:
9bac3d6d 16905 continue;
c64b7983 16906 }
9bac3d6d 16907
31fd8581 16908 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 16909 size = BPF_LDST_BYTES(insn);
31fd8581
YS
16910
16911 /* If the read access is a narrower load of the field,
16912 * convert to a 4/8-byte load, to minimum program type specific
16913 * convert_ctx_access changes. If conversion is successful,
16914 * we will apply proper mask to the result.
16915 */
f96da094 16916 is_narrower_load = size < ctx_field_size;
46f53a65
AI
16917 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
16918 off = insn->off;
31fd8581 16919 if (is_narrower_load) {
f96da094
DB
16920 u8 size_code;
16921
16922 if (type == BPF_WRITE) {
61bd5218 16923 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
16924 return -EINVAL;
16925 }
31fd8581 16926
f96da094 16927 size_code = BPF_H;
31fd8581
YS
16928 if (ctx_field_size == 4)
16929 size_code = BPF_W;
16930 else if (ctx_field_size == 8)
16931 size_code = BPF_DW;
f96da094 16932
bc23105c 16933 insn->off = off & ~(size_default - 1);
31fd8581
YS
16934 insn->code = BPF_LDX | BPF_MEM | size_code;
16935 }
f96da094
DB
16936
16937 target_size = 0;
c64b7983
JS
16938 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
16939 &target_size);
f96da094
DB
16940 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
16941 (ctx_field_size && !target_size)) {
61bd5218 16942 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
16943 return -EINVAL;
16944 }
f96da094
DB
16945
16946 if (is_narrower_load && size < target_size) {
d895a0f1
IL
16947 u8 shift = bpf_ctx_narrow_access_offset(
16948 off, size, size_default) * 8;
d7af7e49
AI
16949 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
16950 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
16951 return -EINVAL;
16952 }
46f53a65
AI
16953 if (ctx_field_size <= 4) {
16954 if (shift)
16955 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
16956 insn->dst_reg,
16957 shift);
31fd8581 16958 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 16959 (1 << size * 8) - 1);
46f53a65
AI
16960 } else {
16961 if (shift)
16962 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
16963 insn->dst_reg,
16964 shift);
31fd8581 16965 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 16966 (1ULL << size * 8) - 1);
46f53a65 16967 }
31fd8581 16968 }
9bac3d6d 16969
8041902d 16970 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
16971 if (!new_prog)
16972 return -ENOMEM;
16973
3df126f3 16974 delta += cnt - 1;
9bac3d6d
AS
16975
16976 /* keep walking new program and skip insns we just inserted */
16977 env->prog = new_prog;
3df126f3 16978 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
16979 }
16980
16981 return 0;
16982}
16983
1c2a088a
AS
16984static int jit_subprogs(struct bpf_verifier_env *env)
16985{
16986 struct bpf_prog *prog = env->prog, **func, *tmp;
16987 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 16988 struct bpf_map *map_ptr;
7105e828 16989 struct bpf_insn *insn;
1c2a088a 16990 void *old_bpf_func;
c4c0bdc0 16991 int err, num_exentries;
1c2a088a 16992
f910cefa 16993 if (env->subprog_cnt <= 1)
1c2a088a
AS
16994 return 0;
16995
7105e828 16996 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 16997 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 16998 continue;
69c087ba 16999
c7a89784
DB
17000 /* Upon error here we cannot fall back to interpreter but
17001 * need a hard reject of the program. Thus -EFAULT is
17002 * propagated in any case.
17003 */
1c2a088a
AS
17004 subprog = find_subprog(env, i + insn->imm + 1);
17005 if (subprog < 0) {
17006 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17007 i + insn->imm + 1);
17008 return -EFAULT;
17009 }
17010 /* temporarily remember subprog id inside insn instead of
17011 * aux_data, since next loop will split up all insns into funcs
17012 */
f910cefa 17013 insn->off = subprog;
1c2a088a
AS
17014 /* remember original imm in case JIT fails and fallback
17015 * to interpreter will be needed
17016 */
17017 env->insn_aux_data[i].call_imm = insn->imm;
17018 /* point imm to __bpf_call_base+1 from JITs point of view */
17019 insn->imm = 1;
3990ed4c
MKL
17020 if (bpf_pseudo_func(insn))
17021 /* jit (e.g. x86_64) may emit fewer instructions
17022 * if it learns a u32 imm is the same as a u64 imm.
17023 * Force a non zero here.
17024 */
17025 insn[1].imm = 1;
1c2a088a
AS
17026 }
17027
c454a46b
MKL
17028 err = bpf_prog_alloc_jited_linfo(prog);
17029 if (err)
17030 goto out_undo_insn;
17031
17032 err = -ENOMEM;
6396bb22 17033 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 17034 if (!func)
c7a89784 17035 goto out_undo_insn;
1c2a088a 17036
f910cefa 17037 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 17038 subprog_start = subprog_end;
4cb3d99c 17039 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
17040
17041 len = subprog_end - subprog_start;
fb7dd8bc 17042 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
17043 * hence main prog stats include the runtime of subprogs.
17044 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 17045 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
17046 */
17047 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
17048 if (!func[i])
17049 goto out_free;
17050 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17051 len * sizeof(struct bpf_insn));
4f74d809 17052 func[i]->type = prog->type;
1c2a088a 17053 func[i]->len = len;
4f74d809
DB
17054 if (bpf_prog_calc_tag(func[i]))
17055 goto out_free;
1c2a088a 17056 func[i]->is_func = 1;
ba64e7d8 17057 func[i]->aux->func_idx = i;
f263a814 17058 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
17059 func[i]->aux->btf = prog->aux->btf;
17060 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 17061 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
17062 func[i]->aux->poke_tab = prog->aux->poke_tab;
17063 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 17064
a748c697 17065 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 17066 struct bpf_jit_poke_descriptor *poke;
a748c697 17067
f263a814
JF
17068 poke = &prog->aux->poke_tab[j];
17069 if (poke->insn_idx < subprog_end &&
17070 poke->insn_idx >= subprog_start)
17071 poke->aux = func[i]->aux;
a748c697
MF
17072 }
17073
1c2a088a 17074 func[i]->aux->name[0] = 'F';
9c8105bd 17075 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 17076 func[i]->jit_requested = 1;
d2a3b7c5 17077 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 17078 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 17079 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
17080 func[i]->aux->linfo = prog->aux->linfo;
17081 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17082 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17083 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
17084 num_exentries = 0;
17085 insn = func[i]->insnsi;
17086 for (j = 0; j < func[i]->len; j++, insn++) {
17087 if (BPF_CLASS(insn->code) == BPF_LDX &&
17088 BPF_MODE(insn->code) == BPF_PROBE_MEM)
17089 num_exentries++;
17090 }
17091 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 17092 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
17093 func[i] = bpf_int_jit_compile(func[i]);
17094 if (!func[i]->jited) {
17095 err = -ENOTSUPP;
17096 goto out_free;
17097 }
17098 cond_resched();
17099 }
a748c697 17100
1c2a088a
AS
17101 /* at this point all bpf functions were successfully JITed
17102 * now populate all bpf_calls with correct addresses and
17103 * run last pass of JIT
17104 */
f910cefa 17105 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17106 insn = func[i]->insnsi;
17107 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 17108 if (bpf_pseudo_func(insn)) {
3990ed4c 17109 subprog = insn->off;
69c087ba
YS
17110 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17111 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17112 continue;
17113 }
23a2d70c 17114 if (!bpf_pseudo_call(insn))
1c2a088a
AS
17115 continue;
17116 subprog = insn->off;
3d717fad 17117 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 17118 }
2162fed4
SD
17119
17120 /* we use the aux data to keep a list of the start addresses
17121 * of the JITed images for each function in the program
17122 *
17123 * for some architectures, such as powerpc64, the imm field
17124 * might not be large enough to hold the offset of the start
17125 * address of the callee's JITed image from __bpf_call_base
17126 *
17127 * in such cases, we can lookup the start address of a callee
17128 * by using its subprog id, available from the off field of
17129 * the call instruction, as an index for this list
17130 */
17131 func[i]->aux->func = func;
17132 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 17133 }
f910cefa 17134 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17135 old_bpf_func = func[i]->bpf_func;
17136 tmp = bpf_int_jit_compile(func[i]);
17137 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17138 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 17139 err = -ENOTSUPP;
1c2a088a
AS
17140 goto out_free;
17141 }
17142 cond_resched();
17143 }
17144
17145 /* finally lock prog and jit images for all functions and
17146 * populate kallsysm
17147 */
f910cefa 17148 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17149 bpf_prog_lock_ro(func[i]);
17150 bpf_prog_kallsyms_add(func[i]);
17151 }
7105e828
DB
17152
17153 /* Last step: make now unused interpreter insns from main
17154 * prog consistent for later dump requests, so they can
17155 * later look the same as if they were interpreted only.
17156 */
17157 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
17158 if (bpf_pseudo_func(insn)) {
17159 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
17160 insn[1].imm = insn->off;
17161 insn->off = 0;
69c087ba
YS
17162 continue;
17163 }
23a2d70c 17164 if (!bpf_pseudo_call(insn))
7105e828
DB
17165 continue;
17166 insn->off = env->insn_aux_data[i].call_imm;
17167 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 17168 insn->imm = subprog;
7105e828
DB
17169 }
17170
1c2a088a
AS
17171 prog->jited = 1;
17172 prog->bpf_func = func[0]->bpf_func;
d00c6473 17173 prog->jited_len = func[0]->jited_len;
1c2a088a 17174 prog->aux->func = func;
f910cefa 17175 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 17176 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
17177 return 0;
17178out_free:
f263a814
JF
17179 /* We failed JIT'ing, so at this point we need to unregister poke
17180 * descriptors from subprogs, so that kernel is not attempting to
17181 * patch it anymore as we're freeing the subprog JIT memory.
17182 */
17183 for (i = 0; i < prog->aux->size_poke_tab; i++) {
17184 map_ptr = prog->aux->poke_tab[i].tail_call.map;
17185 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17186 }
17187 /* At this point we're guaranteed that poke descriptors are not
17188 * live anymore. We can just unlink its descriptor table as it's
17189 * released with the main prog.
17190 */
a748c697
MF
17191 for (i = 0; i < env->subprog_cnt; i++) {
17192 if (!func[i])
17193 continue;
f263a814 17194 func[i]->aux->poke_tab = NULL;
a748c697
MF
17195 bpf_jit_free(func[i]);
17196 }
1c2a088a 17197 kfree(func);
c7a89784 17198out_undo_insn:
1c2a088a
AS
17199 /* cleanup main prog to be interpreted */
17200 prog->jit_requested = 0;
d2a3b7c5 17201 prog->blinding_requested = 0;
1c2a088a 17202 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 17203 if (!bpf_pseudo_call(insn))
1c2a088a
AS
17204 continue;
17205 insn->off = 0;
17206 insn->imm = env->insn_aux_data[i].call_imm;
17207 }
e16301fb 17208 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
17209 return err;
17210}
17211
1ea47e01
AS
17212static int fixup_call_args(struct bpf_verifier_env *env)
17213{
19d28fbd 17214#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
17215 struct bpf_prog *prog = env->prog;
17216 struct bpf_insn *insn = prog->insnsi;
e6ac2450 17217 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 17218 int i, depth;
19d28fbd 17219#endif
e4052d06 17220 int err = 0;
1ea47e01 17221
e4052d06 17222 if (env->prog->jit_requested &&
9d03ebc7 17223 !bpf_prog_is_offloaded(env->prog->aux)) {
19d28fbd
DM
17224 err = jit_subprogs(env);
17225 if (err == 0)
1c2a088a 17226 return 0;
c7a89784
DB
17227 if (err == -EFAULT)
17228 return err;
19d28fbd
DM
17229 }
17230#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
17231 if (has_kfunc_call) {
17232 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17233 return -EINVAL;
17234 }
e411901c
MF
17235 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17236 /* When JIT fails the progs with bpf2bpf calls and tail_calls
17237 * have to be rejected, since interpreter doesn't support them yet.
17238 */
17239 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17240 return -EINVAL;
17241 }
1ea47e01 17242 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
17243 if (bpf_pseudo_func(insn)) {
17244 /* When JIT fails the progs with callback calls
17245 * have to be rejected, since interpreter doesn't support them yet.
17246 */
17247 verbose(env, "callbacks are not allowed in non-JITed programs\n");
17248 return -EINVAL;
17249 }
17250
23a2d70c 17251 if (!bpf_pseudo_call(insn))
1ea47e01
AS
17252 continue;
17253 depth = get_callee_stack_depth(env, insn, i);
17254 if (depth < 0)
17255 return depth;
17256 bpf_patch_call_args(insn, depth);
17257 }
19d28fbd
DM
17258 err = 0;
17259#endif
17260 return err;
1ea47e01
AS
17261}
17262
958cf2e2
KKD
17263static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17264 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
17265{
17266 const struct bpf_kfunc_desc *desc;
3d76a4d3 17267 void *xdp_kfunc;
e6ac2450 17268
a5d82727
KKD
17269 if (!insn->imm) {
17270 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17271 return -EINVAL;
17272 }
17273
3d76a4d3
SF
17274 *cnt = 0;
17275
17276 if (bpf_dev_bound_kfunc_id(insn->imm)) {
17277 xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm);
17278 if (xdp_kfunc) {
17279 insn->imm = BPF_CALL_IMM(xdp_kfunc);
17280 return 0;
17281 }
17282
17283 /* fallback to default kfunc when not supported by netdev */
17284 }
17285
e6ac2450 17286 /* insn->imm has the btf func_id. Replace it with
c2cc0ce7 17287 * an address (relative to __bpf_call_base).
e6ac2450 17288 */
2357672c 17289 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
17290 if (!desc) {
17291 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
17292 insn->imm);
17293 return -EFAULT;
17294 }
17295
17296 insn->imm = desc->imm;
958cf2e2
KKD
17297 if (insn->off)
17298 return 0;
17299 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
17300 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17301 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17302 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 17303
958cf2e2
KKD
17304 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
17305 insn_buf[1] = addr[0];
17306 insn_buf[2] = addr[1];
17307 insn_buf[3] = *insn;
17308 *cnt = 4;
ac9f0605
KKD
17309 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
17310 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17311 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17312
17313 insn_buf[0] = addr[0];
17314 insn_buf[1] = addr[1];
17315 insn_buf[2] = *insn;
17316 *cnt = 3;
a35b9af4
YS
17317 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
17318 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
fd264ca0
YS
17319 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
17320 *cnt = 1;
b5964b96
JK
17321 } else if (desc->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17322 bool seen_direct_write = env->seen_direct_write;
17323 bool is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17324
17325 if (is_rdonly)
17326 insn->imm = BPF_CALL_IMM(bpf_dynptr_from_skb_rdonly);
17327
17328 /* restore env->seen_direct_write to its original value, since
17329 * may_access_direct_pkt_data mutates it
17330 */
17331 env->seen_direct_write = seen_direct_write;
958cf2e2 17332 }
e6ac2450
MKL
17333 return 0;
17334}
17335
e6ac5933
BJ
17336/* Do various post-verification rewrites in a single program pass.
17337 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 17338 */
e6ac5933 17339static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 17340{
79741b3b 17341 struct bpf_prog *prog = env->prog;
f92c1e18 17342 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 17343 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 17344 struct bpf_insn *insn = prog->insnsi;
e245c5c6 17345 const struct bpf_func_proto *fn;
79741b3b 17346 const int insn_cnt = prog->len;
09772d92 17347 const struct bpf_map_ops *ops;
c93552c4 17348 struct bpf_insn_aux_data *aux;
81ed18ab
AS
17349 struct bpf_insn insn_buf[16];
17350 struct bpf_prog *new_prog;
17351 struct bpf_map *map_ptr;
d2e4c1e6 17352 int i, ret, cnt, delta = 0;
e245c5c6 17353
79741b3b 17354 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 17355 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
17356 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
17357 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
17358 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 17359 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 17360 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
17361 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
17362 struct bpf_insn *patchlet;
17363 struct bpf_insn chk_and_div[] = {
9b00f1b7 17364 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
17365 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17366 BPF_JNE | BPF_K, insn->src_reg,
17367 0, 2, 0),
f6b1b3bf
DB
17368 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
17369 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17370 *insn,
17371 };
e88b2c6e 17372 struct bpf_insn chk_and_mod[] = {
9b00f1b7 17373 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
17374 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17375 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 17376 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 17377 *insn,
9b00f1b7
DB
17378 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17379 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 17380 };
f6b1b3bf 17381
e88b2c6e
DB
17382 patchlet = isdiv ? chk_and_div : chk_and_mod;
17383 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 17384 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
17385
17386 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
17387 if (!new_prog)
17388 return -ENOMEM;
17389
17390 delta += cnt - 1;
17391 env->prog = prog = new_prog;
17392 insn = new_prog->insnsi + i + delta;
17393 continue;
17394 }
17395
e6ac5933 17396 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
17397 if (BPF_CLASS(insn->code) == BPF_LD &&
17398 (BPF_MODE(insn->code) == BPF_ABS ||
17399 BPF_MODE(insn->code) == BPF_IND)) {
17400 cnt = env->ops->gen_ld_abs(insn, insn_buf);
17401 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17402 verbose(env, "bpf verifier is misconfigured\n");
17403 return -EINVAL;
17404 }
17405
17406 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17407 if (!new_prog)
17408 return -ENOMEM;
17409
17410 delta += cnt - 1;
17411 env->prog = prog = new_prog;
17412 insn = new_prog->insnsi + i + delta;
17413 continue;
17414 }
17415
e6ac5933 17416 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
17417 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
17418 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
17419 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
17420 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 17421 struct bpf_insn *patch = &insn_buf[0];
801c6058 17422 bool issrc, isneg, isimm;
979d63d5
DB
17423 u32 off_reg;
17424
17425 aux = &env->insn_aux_data[i + delta];
3612af78
DB
17426 if (!aux->alu_state ||
17427 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
17428 continue;
17429
17430 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
17431 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
17432 BPF_ALU_SANITIZE_SRC;
801c6058 17433 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
17434
17435 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
17436 if (isimm) {
17437 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17438 } else {
17439 if (isneg)
17440 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17441 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17442 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
17443 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
17444 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
17445 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
17446 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
17447 }
b9b34ddb
DB
17448 if (!issrc)
17449 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
17450 insn->src_reg = BPF_REG_AX;
979d63d5
DB
17451 if (isneg)
17452 insn->code = insn->code == code_add ?
17453 code_sub : code_add;
17454 *patch++ = *insn;
801c6058 17455 if (issrc && isneg && !isimm)
979d63d5
DB
17456 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17457 cnt = patch - insn_buf;
17458
17459 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17460 if (!new_prog)
17461 return -ENOMEM;
17462
17463 delta += cnt - 1;
17464 env->prog = prog = new_prog;
17465 insn = new_prog->insnsi + i + delta;
17466 continue;
17467 }
17468
79741b3b
AS
17469 if (insn->code != (BPF_JMP | BPF_CALL))
17470 continue;
cc8b0b92
AS
17471 if (insn->src_reg == BPF_PSEUDO_CALL)
17472 continue;
e6ac2450 17473 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 17474 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
17475 if (ret)
17476 return ret;
958cf2e2
KKD
17477 if (cnt == 0)
17478 continue;
17479
17480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17481 if (!new_prog)
17482 return -ENOMEM;
17483
17484 delta += cnt - 1;
17485 env->prog = prog = new_prog;
17486 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
17487 continue;
17488 }
e245c5c6 17489
79741b3b
AS
17490 if (insn->imm == BPF_FUNC_get_route_realm)
17491 prog->dst_needed = 1;
17492 if (insn->imm == BPF_FUNC_get_prandom_u32)
17493 bpf_user_rnd_init_once();
9802d865
JB
17494 if (insn->imm == BPF_FUNC_override_return)
17495 prog->kprobe_override = 1;
79741b3b 17496 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
17497 /* If we tail call into other programs, we
17498 * cannot make any assumptions since they can
17499 * be replaced dynamically during runtime in
17500 * the program array.
17501 */
17502 prog->cb_access = 1;
e411901c
MF
17503 if (!allow_tail_call_in_subprogs(env))
17504 prog->aux->stack_depth = MAX_BPF_STACK;
17505 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 17506
79741b3b 17507 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 17508 * conditional branch in the interpreter for every normal
79741b3b
AS
17509 * call and to prevent accidental JITing by JIT compiler
17510 * that doesn't support bpf_tail_call yet
e245c5c6 17511 */
79741b3b 17512 insn->imm = 0;
71189fa9 17513 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 17514
c93552c4 17515 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 17516 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 17517 prog->jit_requested &&
d2e4c1e6
DB
17518 !bpf_map_key_poisoned(aux) &&
17519 !bpf_map_ptr_poisoned(aux) &&
17520 !bpf_map_ptr_unpriv(aux)) {
17521 struct bpf_jit_poke_descriptor desc = {
17522 .reason = BPF_POKE_REASON_TAIL_CALL,
17523 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
17524 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 17525 .insn_idx = i + delta,
d2e4c1e6
DB
17526 };
17527
17528 ret = bpf_jit_add_poke_descriptor(prog, &desc);
17529 if (ret < 0) {
17530 verbose(env, "adding tail call poke descriptor failed\n");
17531 return ret;
17532 }
17533
17534 insn->imm = ret + 1;
17535 continue;
17536 }
17537
c93552c4
DB
17538 if (!bpf_map_ptr_unpriv(aux))
17539 continue;
17540
b2157399
AS
17541 /* instead of changing every JIT dealing with tail_call
17542 * emit two extra insns:
17543 * if (index >= max_entries) goto out;
17544 * index &= array->index_mask;
17545 * to avoid out-of-bounds cpu speculation
17546 */
c93552c4 17547 if (bpf_map_ptr_poisoned(aux)) {
40950343 17548 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
17549 return -EINVAL;
17550 }
c93552c4 17551
d2e4c1e6 17552 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
17553 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
17554 map_ptr->max_entries, 2);
17555 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
17556 container_of(map_ptr,
17557 struct bpf_array,
17558 map)->index_mask);
17559 insn_buf[2] = *insn;
17560 cnt = 3;
17561 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17562 if (!new_prog)
17563 return -ENOMEM;
17564
17565 delta += cnt - 1;
17566 env->prog = prog = new_prog;
17567 insn = new_prog->insnsi + i + delta;
79741b3b
AS
17568 continue;
17569 }
e245c5c6 17570
b00628b1
AS
17571 if (insn->imm == BPF_FUNC_timer_set_callback) {
17572 /* The verifier will process callback_fn as many times as necessary
17573 * with different maps and the register states prepared by
17574 * set_timer_callback_state will be accurate.
17575 *
17576 * The following use case is valid:
17577 * map1 is shared by prog1, prog2, prog3.
17578 * prog1 calls bpf_timer_init for some map1 elements
17579 * prog2 calls bpf_timer_set_callback for some map1 elements.
17580 * Those that were not bpf_timer_init-ed will return -EINVAL.
17581 * prog3 calls bpf_timer_start for some map1 elements.
17582 * Those that were not both bpf_timer_init-ed and
17583 * bpf_timer_set_callback-ed will return -EINVAL.
17584 */
17585 struct bpf_insn ld_addrs[2] = {
17586 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
17587 };
17588
17589 insn_buf[0] = ld_addrs[0];
17590 insn_buf[1] = ld_addrs[1];
17591 insn_buf[2] = *insn;
17592 cnt = 3;
17593
17594 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17595 if (!new_prog)
17596 return -ENOMEM;
17597
17598 delta += cnt - 1;
17599 env->prog = prog = new_prog;
17600 insn = new_prog->insnsi + i + delta;
17601 goto patch_call_imm;
17602 }
17603
9bb00b28
YS
17604 if (is_storage_get_function(insn->imm)) {
17605 if (!env->prog->aux->sleepable ||
17606 env->insn_aux_data[i + delta].storage_get_func_atomic)
d56c9fe6 17607 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
9bb00b28
YS
17608 else
17609 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a
JK
17610 insn_buf[1] = *insn;
17611 cnt = 2;
17612
17613 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17614 if (!new_prog)
17615 return -ENOMEM;
17616
17617 delta += cnt - 1;
17618 env->prog = prog = new_prog;
17619 insn = new_prog->insnsi + i + delta;
17620 goto patch_call_imm;
17621 }
17622
89c63074 17623 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
17624 * and other inlining handlers are currently limited to 64 bit
17625 * only.
89c63074 17626 */
60b58afc 17627 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
17628 (insn->imm == BPF_FUNC_map_lookup_elem ||
17629 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
17630 insn->imm == BPF_FUNC_map_delete_elem ||
17631 insn->imm == BPF_FUNC_map_push_elem ||
17632 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 17633 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 17634 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
17635 insn->imm == BPF_FUNC_for_each_map_elem ||
17636 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
17637 aux = &env->insn_aux_data[i + delta];
17638 if (bpf_map_ptr_poisoned(aux))
17639 goto patch_call_imm;
17640
d2e4c1e6 17641 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
17642 ops = map_ptr->ops;
17643 if (insn->imm == BPF_FUNC_map_lookup_elem &&
17644 ops->map_gen_lookup) {
17645 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
17646 if (cnt == -EOPNOTSUPP)
17647 goto patch_map_ops_generic;
17648 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
17649 verbose(env, "bpf verifier is misconfigured\n");
17650 return -EINVAL;
17651 }
81ed18ab 17652
09772d92
DB
17653 new_prog = bpf_patch_insn_data(env, i + delta,
17654 insn_buf, cnt);
17655 if (!new_prog)
17656 return -ENOMEM;
81ed18ab 17657
09772d92
DB
17658 delta += cnt - 1;
17659 env->prog = prog = new_prog;
17660 insn = new_prog->insnsi + i + delta;
17661 continue;
17662 }
81ed18ab 17663
09772d92
DB
17664 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
17665 (void *(*)(struct bpf_map *map, void *key))NULL));
17666 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
17667 (int (*)(struct bpf_map *map, void *key))NULL));
17668 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
17669 (int (*)(struct bpf_map *map, void *key, void *value,
17670 u64 flags))NULL));
84430d42
DB
17671 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
17672 (int (*)(struct bpf_map *map, void *value,
17673 u64 flags))NULL));
17674 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
17675 (int (*)(struct bpf_map *map, void *value))NULL));
17676 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
17677 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 17678 BUILD_BUG_ON(!__same_type(ops->map_redirect,
32637e33 17679 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c
AI
17680 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
17681 (int (*)(struct bpf_map *map,
17682 bpf_callback_t callback_fn,
17683 void *callback_ctx,
17684 u64 flags))NULL));
07343110
FZ
17685 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
17686 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 17687
4a8f87e6 17688patch_map_ops_generic:
09772d92
DB
17689 switch (insn->imm) {
17690 case BPF_FUNC_map_lookup_elem:
3d717fad 17691 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
17692 continue;
17693 case BPF_FUNC_map_update_elem:
3d717fad 17694 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
17695 continue;
17696 case BPF_FUNC_map_delete_elem:
3d717fad 17697 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 17698 continue;
84430d42 17699 case BPF_FUNC_map_push_elem:
3d717fad 17700 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
17701 continue;
17702 case BPF_FUNC_map_pop_elem:
3d717fad 17703 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
17704 continue;
17705 case BPF_FUNC_map_peek_elem:
3d717fad 17706 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 17707 continue;
e6a4750f 17708 case BPF_FUNC_redirect_map:
3d717fad 17709 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 17710 continue;
0640c77c
AI
17711 case BPF_FUNC_for_each_map_elem:
17712 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 17713 continue;
07343110
FZ
17714 case BPF_FUNC_map_lookup_percpu_elem:
17715 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
17716 continue;
09772d92 17717 }
81ed18ab 17718
09772d92 17719 goto patch_call_imm;
81ed18ab
AS
17720 }
17721
e6ac5933 17722 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
17723 if (prog->jit_requested && BITS_PER_LONG == 64 &&
17724 insn->imm == BPF_FUNC_jiffies64) {
17725 struct bpf_insn ld_jiffies_addr[2] = {
17726 BPF_LD_IMM64(BPF_REG_0,
17727 (unsigned long)&jiffies),
17728 };
17729
17730 insn_buf[0] = ld_jiffies_addr[0];
17731 insn_buf[1] = ld_jiffies_addr[1];
17732 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
17733 BPF_REG_0, 0);
17734 cnt = 3;
17735
17736 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
17737 cnt);
17738 if (!new_prog)
17739 return -ENOMEM;
17740
17741 delta += cnt - 1;
17742 env->prog = prog = new_prog;
17743 insn = new_prog->insnsi + i + delta;
17744 continue;
17745 }
17746
f92c1e18
JO
17747 /* Implement bpf_get_func_arg inline. */
17748 if (prog_type == BPF_PROG_TYPE_TRACING &&
17749 insn->imm == BPF_FUNC_get_func_arg) {
17750 /* Load nr_args from ctx - 8 */
17751 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17752 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
17753 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
17754 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
17755 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
17756 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17757 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
17758 insn_buf[7] = BPF_JMP_A(1);
17759 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
17760 cnt = 9;
17761
17762 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17763 if (!new_prog)
17764 return -ENOMEM;
17765
17766 delta += cnt - 1;
17767 env->prog = prog = new_prog;
17768 insn = new_prog->insnsi + i + delta;
17769 continue;
17770 }
17771
17772 /* Implement bpf_get_func_ret inline. */
17773 if (prog_type == BPF_PROG_TYPE_TRACING &&
17774 insn->imm == BPF_FUNC_get_func_ret) {
17775 if (eatype == BPF_TRACE_FEXIT ||
17776 eatype == BPF_MODIFY_RETURN) {
17777 /* Load nr_args from ctx - 8 */
17778 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17779 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
17780 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
17781 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17782 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
17783 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
17784 cnt = 6;
17785 } else {
17786 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
17787 cnt = 1;
17788 }
17789
17790 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17791 if (!new_prog)
17792 return -ENOMEM;
17793
17794 delta += cnt - 1;
17795 env->prog = prog = new_prog;
17796 insn = new_prog->insnsi + i + delta;
17797 continue;
17798 }
17799
17800 /* Implement get_func_arg_cnt inline. */
17801 if (prog_type == BPF_PROG_TYPE_TRACING &&
17802 insn->imm == BPF_FUNC_get_func_arg_cnt) {
17803 /* Load nr_args from ctx - 8 */
17804 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17805
17806 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17807 if (!new_prog)
17808 return -ENOMEM;
17809
17810 env->prog = prog = new_prog;
17811 insn = new_prog->insnsi + i + delta;
17812 continue;
17813 }
17814
f705ec76 17815 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
17816 if (prog_type == BPF_PROG_TYPE_TRACING &&
17817 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
17818 /* Load IP address from ctx - 16 */
17819 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
17820
17821 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17822 if (!new_prog)
17823 return -ENOMEM;
17824
17825 env->prog = prog = new_prog;
17826 insn = new_prog->insnsi + i + delta;
17827 continue;
17828 }
17829
81ed18ab 17830patch_call_imm:
5e43f899 17831 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
17832 /* all functions that have prototype and verifier allowed
17833 * programs to call them, must be real in-kernel functions
17834 */
17835 if (!fn->func) {
61bd5218
JK
17836 verbose(env,
17837 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
17838 func_id_name(insn->imm), insn->imm);
17839 return -EFAULT;
e245c5c6 17840 }
79741b3b 17841 insn->imm = fn->func - __bpf_call_base;
e245c5c6 17842 }
e245c5c6 17843
d2e4c1e6
DB
17844 /* Since poke tab is now finalized, publish aux to tracker. */
17845 for (i = 0; i < prog->aux->size_poke_tab; i++) {
17846 map_ptr = prog->aux->poke_tab[i].tail_call.map;
17847 if (!map_ptr->ops->map_poke_track ||
17848 !map_ptr->ops->map_poke_untrack ||
17849 !map_ptr->ops->map_poke_run) {
17850 verbose(env, "bpf verifier is misconfigured\n");
17851 return -EINVAL;
17852 }
17853
17854 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
17855 if (ret < 0) {
17856 verbose(env, "tracking tail call prog failed\n");
17857 return ret;
17858 }
17859 }
17860
e6ac2450
MKL
17861 sort_kfunc_descs_by_imm(env->prog);
17862
79741b3b
AS
17863 return 0;
17864}
e245c5c6 17865
1ade2371
EZ
17866static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
17867 int position,
17868 s32 stack_base,
17869 u32 callback_subprogno,
17870 u32 *cnt)
17871{
17872 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
17873 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
17874 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
17875 int reg_loop_max = BPF_REG_6;
17876 int reg_loop_cnt = BPF_REG_7;
17877 int reg_loop_ctx = BPF_REG_8;
17878
17879 struct bpf_prog *new_prog;
17880 u32 callback_start;
17881 u32 call_insn_offset;
17882 s32 callback_offset;
17883
17884 /* This represents an inlined version of bpf_iter.c:bpf_loop,
17885 * be careful to modify this code in sync.
17886 */
17887 struct bpf_insn insn_buf[] = {
17888 /* Return error and jump to the end of the patch if
17889 * expected number of iterations is too big.
17890 */
17891 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
17892 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
17893 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
17894 /* spill R6, R7, R8 to use these as loop vars */
17895 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
17896 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
17897 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
17898 /* initialize loop vars */
17899 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
17900 BPF_MOV32_IMM(reg_loop_cnt, 0),
17901 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
17902 /* loop header,
17903 * if reg_loop_cnt >= reg_loop_max skip the loop body
17904 */
17905 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
17906 /* callback call,
17907 * correct callback offset would be set after patching
17908 */
17909 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
17910 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
17911 BPF_CALL_REL(0),
17912 /* increment loop counter */
17913 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
17914 /* jump to loop header if callback returned 0 */
17915 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
17916 /* return value of bpf_loop,
17917 * set R0 to the number of iterations
17918 */
17919 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
17920 /* restore original values of R6, R7, R8 */
17921 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
17922 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
17923 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
17924 };
17925
17926 *cnt = ARRAY_SIZE(insn_buf);
17927 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
17928 if (!new_prog)
17929 return new_prog;
17930
17931 /* callback start is known only after patching */
17932 callback_start = env->subprog_info[callback_subprogno].start;
17933 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
17934 call_insn_offset = position + 12;
17935 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 17936 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
17937
17938 return new_prog;
17939}
17940
17941static bool is_bpf_loop_call(struct bpf_insn *insn)
17942{
17943 return insn->code == (BPF_JMP | BPF_CALL) &&
17944 insn->src_reg == 0 &&
17945 insn->imm == BPF_FUNC_loop;
17946}
17947
17948/* For all sub-programs in the program (including main) check
17949 * insn_aux_data to see if there are bpf_loop calls that require
17950 * inlining. If such calls are found the calls are replaced with a
17951 * sequence of instructions produced by `inline_bpf_loop` function and
17952 * subprog stack_depth is increased by the size of 3 registers.
17953 * This stack space is used to spill values of the R6, R7, R8. These
17954 * registers are used to store the loop bound, counter and context
17955 * variables.
17956 */
17957static int optimize_bpf_loop(struct bpf_verifier_env *env)
17958{
17959 struct bpf_subprog_info *subprogs = env->subprog_info;
17960 int i, cur_subprog = 0, cnt, delta = 0;
17961 struct bpf_insn *insn = env->prog->insnsi;
17962 int insn_cnt = env->prog->len;
17963 u16 stack_depth = subprogs[cur_subprog].stack_depth;
17964 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
17965 u16 stack_depth_extra = 0;
17966
17967 for (i = 0; i < insn_cnt; i++, insn++) {
17968 struct bpf_loop_inline_state *inline_state =
17969 &env->insn_aux_data[i + delta].loop_inline_state;
17970
17971 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
17972 struct bpf_prog *new_prog;
17973
17974 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
17975 new_prog = inline_bpf_loop(env,
17976 i + delta,
17977 -(stack_depth + stack_depth_extra),
17978 inline_state->callback_subprogno,
17979 &cnt);
17980 if (!new_prog)
17981 return -ENOMEM;
17982
17983 delta += cnt - 1;
17984 env->prog = new_prog;
17985 insn = new_prog->insnsi + i + delta;
17986 }
17987
17988 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
17989 subprogs[cur_subprog].stack_depth += stack_depth_extra;
17990 cur_subprog++;
17991 stack_depth = subprogs[cur_subprog].stack_depth;
17992 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
17993 stack_depth_extra = 0;
17994 }
17995 }
17996
17997 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17998
17999 return 0;
18000}
18001
58e2af8b 18002static void free_states(struct bpf_verifier_env *env)
f1bca824 18003{
58e2af8b 18004 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
18005 int i;
18006
9f4686c4
AS
18007 sl = env->free_list;
18008 while (sl) {
18009 sln = sl->next;
18010 free_verifier_state(&sl->state, false);
18011 kfree(sl);
18012 sl = sln;
18013 }
51c39bb1 18014 env->free_list = NULL;
9f4686c4 18015
f1bca824
AS
18016 if (!env->explored_states)
18017 return;
18018
dc2a4ebc 18019 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
18020 sl = env->explored_states[i];
18021
a8f500af
AS
18022 while (sl) {
18023 sln = sl->next;
18024 free_verifier_state(&sl->state, false);
18025 kfree(sl);
18026 sl = sln;
18027 }
51c39bb1 18028 env->explored_states[i] = NULL;
f1bca824 18029 }
51c39bb1 18030}
f1bca824 18031
51c39bb1
AS
18032static int do_check_common(struct bpf_verifier_env *env, int subprog)
18033{
6f8a57cc 18034 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
18035 struct bpf_verifier_state *state;
18036 struct bpf_reg_state *regs;
18037 int ret, i;
18038
18039 env->prev_linfo = NULL;
18040 env->pass_cnt++;
18041
18042 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18043 if (!state)
18044 return -ENOMEM;
18045 state->curframe = 0;
18046 state->speculative = false;
18047 state->branches = 1;
18048 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18049 if (!state->frame[0]) {
18050 kfree(state);
18051 return -ENOMEM;
18052 }
18053 env->cur_state = state;
18054 init_func_state(env, state->frame[0],
18055 BPF_MAIN_FUNC /* callsite */,
18056 0 /* frameno */,
18057 subprog);
be2ef816
AN
18058 state->first_insn_idx = env->subprog_info[subprog].start;
18059 state->last_insn_idx = -1;
51c39bb1
AS
18060
18061 regs = state->frame[state->curframe]->regs;
be8704ff 18062 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
18063 ret = btf_prepare_func_args(env, subprog, regs);
18064 if (ret)
18065 goto out;
18066 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18067 if (regs[i].type == PTR_TO_CTX)
18068 mark_reg_known_zero(env, regs, i);
18069 else if (regs[i].type == SCALAR_VALUE)
18070 mark_reg_unknown(env, regs, i);
cf9f2f8d 18071 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
18072 const u32 mem_size = regs[i].mem_size;
18073
18074 mark_reg_known_zero(env, regs, i);
18075 regs[i].mem_size = mem_size;
18076 regs[i].id = ++env->id_gen;
18077 }
51c39bb1
AS
18078 }
18079 } else {
18080 /* 1st arg to a function */
18081 regs[BPF_REG_1].type = PTR_TO_CTX;
18082 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 18083 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
18084 if (ret == -EFAULT)
18085 /* unlikely verifier bug. abort.
18086 * ret == 0 and ret < 0 are sadly acceptable for
18087 * main() function due to backward compatibility.
18088 * Like socket filter program may be written as:
18089 * int bpf_prog(struct pt_regs *ctx)
18090 * and never dereference that ctx in the program.
18091 * 'struct pt_regs' is a type mismatch for socket
18092 * filter that should be using 'struct __sk_buff'.
18093 */
18094 goto out;
18095 }
18096
18097 ret = do_check(env);
18098out:
f59bbfc2
AS
18099 /* check for NULL is necessary, since cur_state can be freed inside
18100 * do_check() under memory pressure.
18101 */
18102 if (env->cur_state) {
18103 free_verifier_state(env->cur_state, true);
18104 env->cur_state = NULL;
18105 }
6f8a57cc
AN
18106 while (!pop_stack(env, NULL, NULL, false));
18107 if (!ret && pop_log)
18108 bpf_vlog_reset(&env->log, 0);
51c39bb1 18109 free_states(env);
51c39bb1
AS
18110 return ret;
18111}
18112
18113/* Verify all global functions in a BPF program one by one based on their BTF.
18114 * All global functions must pass verification. Otherwise the whole program is rejected.
18115 * Consider:
18116 * int bar(int);
18117 * int foo(int f)
18118 * {
18119 * return bar(f);
18120 * }
18121 * int bar(int b)
18122 * {
18123 * ...
18124 * }
18125 * foo() will be verified first for R1=any_scalar_value. During verification it
18126 * will be assumed that bar() already verified successfully and call to bar()
18127 * from foo() will be checked for type match only. Later bar() will be verified
18128 * independently to check that it's safe for R1=any_scalar_value.
18129 */
18130static int do_check_subprogs(struct bpf_verifier_env *env)
18131{
18132 struct bpf_prog_aux *aux = env->prog->aux;
18133 int i, ret;
18134
18135 if (!aux->func_info)
18136 return 0;
18137
18138 for (i = 1; i < env->subprog_cnt; i++) {
18139 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18140 continue;
18141 env->insn_idx = env->subprog_info[i].start;
18142 WARN_ON_ONCE(env->insn_idx == 0);
18143 ret = do_check_common(env, i);
18144 if (ret) {
18145 return ret;
18146 } else if (env->log.level & BPF_LOG_LEVEL) {
18147 verbose(env,
18148 "Func#%d is safe for any args that match its prototype\n",
18149 i);
18150 }
18151 }
18152 return 0;
18153}
18154
18155static int do_check_main(struct bpf_verifier_env *env)
18156{
18157 int ret;
18158
18159 env->insn_idx = 0;
18160 ret = do_check_common(env, 0);
18161 if (!ret)
18162 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18163 return ret;
18164}
18165
18166
06ee7115
AS
18167static void print_verification_stats(struct bpf_verifier_env *env)
18168{
18169 int i;
18170
18171 if (env->log.level & BPF_LOG_STATS) {
18172 verbose(env, "verification time %lld usec\n",
18173 div_u64(env->verification_time, 1000));
18174 verbose(env, "stack depth ");
18175 for (i = 0; i < env->subprog_cnt; i++) {
18176 u32 depth = env->subprog_info[i].stack_depth;
18177
18178 verbose(env, "%d", depth);
18179 if (i + 1 < env->subprog_cnt)
18180 verbose(env, "+");
18181 }
18182 verbose(env, "\n");
18183 }
18184 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18185 "total_states %d peak_states %d mark_read %d\n",
18186 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18187 env->max_states_per_insn, env->total_states,
18188 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
18189}
18190
27ae7997
MKL
18191static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18192{
18193 const struct btf_type *t, *func_proto;
18194 const struct bpf_struct_ops *st_ops;
18195 const struct btf_member *member;
18196 struct bpf_prog *prog = env->prog;
18197 u32 btf_id, member_idx;
18198 const char *mname;
18199
12aa8a94
THJ
18200 if (!prog->gpl_compatible) {
18201 verbose(env, "struct ops programs must have a GPL compatible license\n");
18202 return -EINVAL;
18203 }
18204
27ae7997
MKL
18205 btf_id = prog->aux->attach_btf_id;
18206 st_ops = bpf_struct_ops_find(btf_id);
18207 if (!st_ops) {
18208 verbose(env, "attach_btf_id %u is not a supported struct\n",
18209 btf_id);
18210 return -ENOTSUPP;
18211 }
18212
18213 t = st_ops->type;
18214 member_idx = prog->expected_attach_type;
18215 if (member_idx >= btf_type_vlen(t)) {
18216 verbose(env, "attach to invalid member idx %u of struct %s\n",
18217 member_idx, st_ops->name);
18218 return -EINVAL;
18219 }
18220
18221 member = &btf_type_member(t)[member_idx];
18222 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18223 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18224 NULL);
18225 if (!func_proto) {
18226 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18227 mname, member_idx, st_ops->name);
18228 return -EINVAL;
18229 }
18230
18231 if (st_ops->check_member) {
51a52a29 18232 int err = st_ops->check_member(t, member, prog);
27ae7997
MKL
18233
18234 if (err) {
18235 verbose(env, "attach to unsupported member %s of struct %s\n",
18236 mname, st_ops->name);
18237 return err;
18238 }
18239 }
18240
18241 prog->aux->attach_func_proto = func_proto;
18242 prog->aux->attach_func_name = mname;
18243 env->ops = st_ops->verifier_ops;
18244
18245 return 0;
18246}
6ba43b76
KS
18247#define SECURITY_PREFIX "security_"
18248
f7b12b6f 18249static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 18250{
69191754 18251 if (within_error_injection_list(addr) ||
f7b12b6f 18252 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 18253 return 0;
6ba43b76 18254
6ba43b76
KS
18255 return -EINVAL;
18256}
27ae7997 18257
1e6c62a8
AS
18258/* list of non-sleepable functions that are otherwise on
18259 * ALLOW_ERROR_INJECTION list
18260 */
18261BTF_SET_START(btf_non_sleepable_error_inject)
18262/* Three functions below can be called from sleepable and non-sleepable context.
18263 * Assume non-sleepable from bpf safety point of view.
18264 */
9dd3d069 18265BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
18266BTF_ID(func, should_fail_alloc_page)
18267BTF_ID(func, should_failslab)
18268BTF_SET_END(btf_non_sleepable_error_inject)
18269
18270static int check_non_sleepable_error_inject(u32 btf_id)
18271{
18272 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18273}
18274
f7b12b6f
THJ
18275int bpf_check_attach_target(struct bpf_verifier_log *log,
18276 const struct bpf_prog *prog,
18277 const struct bpf_prog *tgt_prog,
18278 u32 btf_id,
18279 struct bpf_attach_target_info *tgt_info)
38207291 18280{
be8704ff 18281 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 18282 const char prefix[] = "btf_trace_";
5b92a28a 18283 int ret = 0, subprog = -1, i;
38207291 18284 const struct btf_type *t;
5b92a28a 18285 bool conservative = true;
38207291 18286 const char *tname;
5b92a28a 18287 struct btf *btf;
f7b12b6f 18288 long addr = 0;
38207291 18289
f1b9509c 18290 if (!btf_id) {
efc68158 18291 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
18292 return -EINVAL;
18293 }
22dc4a0f 18294 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 18295 if (!btf) {
efc68158 18296 bpf_log(log,
5b92a28a
AS
18297 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
18298 return -EINVAL;
18299 }
18300 t = btf_type_by_id(btf, btf_id);
f1b9509c 18301 if (!t) {
efc68158 18302 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
18303 return -EINVAL;
18304 }
5b92a28a 18305 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 18306 if (!tname) {
efc68158 18307 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
18308 return -EINVAL;
18309 }
5b92a28a
AS
18310 if (tgt_prog) {
18311 struct bpf_prog_aux *aux = tgt_prog->aux;
18312
fd7c211d
THJ
18313 if (bpf_prog_is_dev_bound(prog->aux) &&
18314 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
18315 bpf_log(log, "Target program bound device mismatch");
3d76a4d3
SF
18316 return -EINVAL;
18317 }
18318
5b92a28a
AS
18319 for (i = 0; i < aux->func_info_cnt; i++)
18320 if (aux->func_info[i].type_id == btf_id) {
18321 subprog = i;
18322 break;
18323 }
18324 if (subprog == -1) {
efc68158 18325 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
18326 return -EINVAL;
18327 }
18328 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
18329 if (prog_extension) {
18330 if (conservative) {
efc68158 18331 bpf_log(log,
be8704ff
AS
18332 "Cannot replace static functions\n");
18333 return -EINVAL;
18334 }
18335 if (!prog->jit_requested) {
efc68158 18336 bpf_log(log,
be8704ff
AS
18337 "Extension programs should be JITed\n");
18338 return -EINVAL;
18339 }
be8704ff
AS
18340 }
18341 if (!tgt_prog->jited) {
efc68158 18342 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
18343 return -EINVAL;
18344 }
18345 if (tgt_prog->type == prog->type) {
18346 /* Cannot fentry/fexit another fentry/fexit program.
18347 * Cannot attach program extension to another extension.
18348 * It's ok to attach fentry/fexit to extension program.
18349 */
efc68158 18350 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
18351 return -EINVAL;
18352 }
18353 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
18354 prog_extension &&
18355 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
18356 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
18357 /* Program extensions can extend all program types
18358 * except fentry/fexit. The reason is the following.
18359 * The fentry/fexit programs are used for performance
18360 * analysis, stats and can be attached to any program
18361 * type except themselves. When extension program is
18362 * replacing XDP function it is necessary to allow
18363 * performance analysis of all functions. Both original
18364 * XDP program and its program extension. Hence
18365 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
18366 * allowed. If extending of fentry/fexit was allowed it
18367 * would be possible to create long call chain
18368 * fentry->extension->fentry->extension beyond
18369 * reasonable stack size. Hence extending fentry is not
18370 * allowed.
18371 */
efc68158 18372 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
18373 return -EINVAL;
18374 }
5b92a28a 18375 } else {
be8704ff 18376 if (prog_extension) {
efc68158 18377 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
18378 return -EINVAL;
18379 }
5b92a28a 18380 }
f1b9509c
AS
18381
18382 switch (prog->expected_attach_type) {
18383 case BPF_TRACE_RAW_TP:
5b92a28a 18384 if (tgt_prog) {
efc68158 18385 bpf_log(log,
5b92a28a
AS
18386 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
18387 return -EINVAL;
18388 }
38207291 18389 if (!btf_type_is_typedef(t)) {
efc68158 18390 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
18391 btf_id);
18392 return -EINVAL;
18393 }
f1b9509c 18394 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 18395 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
18396 btf_id, tname);
18397 return -EINVAL;
18398 }
18399 tname += sizeof(prefix) - 1;
5b92a28a 18400 t = btf_type_by_id(btf, t->type);
38207291
MKL
18401 if (!btf_type_is_ptr(t))
18402 /* should never happen in valid vmlinux build */
18403 return -EINVAL;
5b92a28a 18404 t = btf_type_by_id(btf, t->type);
38207291
MKL
18405 if (!btf_type_is_func_proto(t))
18406 /* should never happen in valid vmlinux build */
18407 return -EINVAL;
18408
f7b12b6f 18409 break;
15d83c4d
YS
18410 case BPF_TRACE_ITER:
18411 if (!btf_type_is_func(t)) {
efc68158 18412 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
18413 btf_id);
18414 return -EINVAL;
18415 }
18416 t = btf_type_by_id(btf, t->type);
18417 if (!btf_type_is_func_proto(t))
18418 return -EINVAL;
f7b12b6f
THJ
18419 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18420 if (ret)
18421 return ret;
18422 break;
be8704ff
AS
18423 default:
18424 if (!prog_extension)
18425 return -EINVAL;
df561f66 18426 fallthrough;
ae240823 18427 case BPF_MODIFY_RETURN:
9e4e01df 18428 case BPF_LSM_MAC:
69fd337a 18429 case BPF_LSM_CGROUP:
fec56f58
AS
18430 case BPF_TRACE_FENTRY:
18431 case BPF_TRACE_FEXIT:
18432 if (!btf_type_is_func(t)) {
efc68158 18433 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
18434 btf_id);
18435 return -EINVAL;
18436 }
be8704ff 18437 if (prog_extension &&
efc68158 18438 btf_check_type_match(log, prog, btf, t))
be8704ff 18439 return -EINVAL;
5b92a28a 18440 t = btf_type_by_id(btf, t->type);
fec56f58
AS
18441 if (!btf_type_is_func_proto(t))
18442 return -EINVAL;
f7b12b6f 18443
4a1e7c0c
THJ
18444 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
18445 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
18446 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
18447 return -EINVAL;
18448
f7b12b6f 18449 if (tgt_prog && conservative)
5b92a28a 18450 t = NULL;
f7b12b6f
THJ
18451
18452 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 18453 if (ret < 0)
f7b12b6f
THJ
18454 return ret;
18455
5b92a28a 18456 if (tgt_prog) {
e9eeec58
YS
18457 if (subprog == 0)
18458 addr = (long) tgt_prog->bpf_func;
18459 else
18460 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
18461 } else {
18462 addr = kallsyms_lookup_name(tname);
18463 if (!addr) {
efc68158 18464 bpf_log(log,
5b92a28a
AS
18465 "The address of function %s cannot be found\n",
18466 tname);
f7b12b6f 18467 return -ENOENT;
5b92a28a 18468 }
fec56f58 18469 }
18644cec 18470
1e6c62a8
AS
18471 if (prog->aux->sleepable) {
18472 ret = -EINVAL;
18473 switch (prog->type) {
18474 case BPF_PROG_TYPE_TRACING:
5b481aca
BT
18475
18476 /* fentry/fexit/fmod_ret progs can be sleepable if they are
1e6c62a8
AS
18477 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
18478 */
18479 if (!check_non_sleepable_error_inject(btf_id) &&
18480 within_error_injection_list(addr))
18481 ret = 0;
5b481aca
BT
18482 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
18483 * in the fmodret id set with the KF_SLEEPABLE flag.
18484 */
18485 else {
18486 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
18487
18488 if (flags && (*flags & KF_SLEEPABLE))
18489 ret = 0;
18490 }
1e6c62a8
AS
18491 break;
18492 case BPF_PROG_TYPE_LSM:
18493 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
18494 * Only some of them are sleepable.
18495 */
423f1610 18496 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
18497 ret = 0;
18498 break;
18499 default:
18500 break;
18501 }
f7b12b6f
THJ
18502 if (ret) {
18503 bpf_log(log, "%s is not sleepable\n", tname);
18504 return ret;
18505 }
1e6c62a8 18506 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 18507 if (tgt_prog) {
efc68158 18508 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
18509 return -EINVAL;
18510 }
5b481aca
BT
18511 ret = -EINVAL;
18512 if (btf_kfunc_is_modify_return(btf, btf_id) ||
18513 !check_attach_modify_return(addr, tname))
18514 ret = 0;
f7b12b6f
THJ
18515 if (ret) {
18516 bpf_log(log, "%s() is not modifiable\n", tname);
18517 return ret;
1af9270e 18518 }
18644cec 18519 }
f7b12b6f
THJ
18520
18521 break;
18522 }
18523 tgt_info->tgt_addr = addr;
18524 tgt_info->tgt_name = tname;
18525 tgt_info->tgt_type = t;
18526 return 0;
18527}
18528
35e3815f
JO
18529BTF_SET_START(btf_id_deny)
18530BTF_ID_UNUSED
18531#ifdef CONFIG_SMP
18532BTF_ID(func, migrate_disable)
18533BTF_ID(func, migrate_enable)
18534#endif
18535#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
18536BTF_ID(func, rcu_read_unlock_strict)
18537#endif
18538BTF_SET_END(btf_id_deny)
18539
700e6f85
JO
18540static bool can_be_sleepable(struct bpf_prog *prog)
18541{
18542 if (prog->type == BPF_PROG_TYPE_TRACING) {
18543 switch (prog->expected_attach_type) {
18544 case BPF_TRACE_FENTRY:
18545 case BPF_TRACE_FEXIT:
18546 case BPF_MODIFY_RETURN:
18547 case BPF_TRACE_ITER:
18548 return true;
18549 default:
18550 return false;
18551 }
18552 }
18553 return prog->type == BPF_PROG_TYPE_LSM ||
1e12d3ef
DV
18554 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
18555 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
700e6f85
JO
18556}
18557
f7b12b6f
THJ
18558static int check_attach_btf_id(struct bpf_verifier_env *env)
18559{
18560 struct bpf_prog *prog = env->prog;
3aac1ead 18561 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
18562 struct bpf_attach_target_info tgt_info = {};
18563 u32 btf_id = prog->aux->attach_btf_id;
18564 struct bpf_trampoline *tr;
18565 int ret;
18566 u64 key;
18567
79a7f8bd
AS
18568 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
18569 if (prog->aux->sleepable)
18570 /* attach_btf_id checked to be zero already */
18571 return 0;
18572 verbose(env, "Syscall programs can only be sleepable\n");
18573 return -EINVAL;
18574 }
18575
700e6f85 18576 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
1e12d3ef 18577 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
f7b12b6f
THJ
18578 return -EINVAL;
18579 }
18580
18581 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
18582 return check_struct_ops_btf_id(env);
18583
18584 if (prog->type != BPF_PROG_TYPE_TRACING &&
18585 prog->type != BPF_PROG_TYPE_LSM &&
18586 prog->type != BPF_PROG_TYPE_EXT)
18587 return 0;
18588
18589 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
18590 if (ret)
fec56f58 18591 return ret;
f7b12b6f
THJ
18592
18593 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
18594 /* to make freplace equivalent to their targets, they need to
18595 * inherit env->ops and expected_attach_type for the rest of the
18596 * verification
18597 */
f7b12b6f
THJ
18598 env->ops = bpf_verifier_ops[tgt_prog->type];
18599 prog->expected_attach_type = tgt_prog->expected_attach_type;
18600 }
18601
18602 /* store info about the attachment target that will be used later */
18603 prog->aux->attach_func_proto = tgt_info.tgt_type;
18604 prog->aux->attach_func_name = tgt_info.tgt_name;
18605
4a1e7c0c
THJ
18606 if (tgt_prog) {
18607 prog->aux->saved_dst_prog_type = tgt_prog->type;
18608 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
18609 }
18610
f7b12b6f
THJ
18611 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
18612 prog->aux->attach_btf_trace = true;
18613 return 0;
18614 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
18615 if (!bpf_iter_prog_supported(prog))
18616 return -EINVAL;
18617 return 0;
18618 }
18619
18620 if (prog->type == BPF_PROG_TYPE_LSM) {
18621 ret = bpf_lsm_verify_prog(&env->log, prog);
18622 if (ret < 0)
18623 return ret;
35e3815f
JO
18624 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
18625 btf_id_set_contains(&btf_id_deny, btf_id)) {
18626 return -EINVAL;
38207291 18627 }
f7b12b6f 18628
22dc4a0f 18629 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
18630 tr = bpf_trampoline_get(key, &tgt_info);
18631 if (!tr)
18632 return -ENOMEM;
18633
3aac1ead 18634 prog->aux->dst_trampoline = tr;
f7b12b6f 18635 return 0;
38207291
MKL
18636}
18637
76654e67
AM
18638struct btf *bpf_get_btf_vmlinux(void)
18639{
18640 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
18641 mutex_lock(&bpf_verifier_lock);
18642 if (!btf_vmlinux)
18643 btf_vmlinux = btf_parse_vmlinux();
18644 mutex_unlock(&bpf_verifier_lock);
18645 }
18646 return btf_vmlinux;
18647}
18648
af2ac3e1 18649int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 18650{
06ee7115 18651 u64 start_time = ktime_get_ns();
58e2af8b 18652 struct bpf_verifier_env *env;
b9193c1b 18653 struct bpf_verifier_log *log;
9e4c24e7 18654 int i, len, ret = -EINVAL;
e2ae4ca2 18655 bool is_priv;
51580e79 18656
eba0c929
AB
18657 /* no program is valid */
18658 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
18659 return -EINVAL;
18660
58e2af8b 18661 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
18662 * allocate/free it every time bpf_check() is called
18663 */
58e2af8b 18664 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
18665 if (!env)
18666 return -ENOMEM;
61bd5218 18667 log = &env->log;
cbd35700 18668
9e4c24e7 18669 len = (*prog)->len;
fad953ce 18670 env->insn_aux_data =
9e4c24e7 18671 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
18672 ret = -ENOMEM;
18673 if (!env->insn_aux_data)
18674 goto err_free_env;
9e4c24e7
JK
18675 for (i = 0; i < len; i++)
18676 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 18677 env->prog = *prog;
00176a34 18678 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 18679 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 18680 is_priv = bpf_capable();
0246e64d 18681
76654e67 18682 bpf_get_btf_vmlinux();
8580ac94 18683
cbd35700 18684 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
18685 if (!is_priv)
18686 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
18687
18688 if (attr->log_level || attr->log_buf || attr->log_size) {
18689 /* user requested verbose verifier output
18690 * and supplied buffer to store the verification trace
18691 */
e7bf8249
JK
18692 log->level = attr->log_level;
18693 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
18694 log->len_total = attr->log_size;
cbd35700 18695
e7bf8249 18696 /* log attributes have to be sane */
866de407
HT
18697 if (!bpf_verifier_log_attr_valid(log)) {
18698 ret = -EINVAL;
3df126f3 18699 goto err_unlock;
866de407 18700 }
cbd35700 18701 }
1ad2f583 18702
0f55f9ed
CL
18703 mark_verifier_state_clean(env);
18704
8580ac94
AS
18705 if (IS_ERR(btf_vmlinux)) {
18706 /* Either gcc or pahole or kernel are broken. */
18707 verbose(env, "in-kernel BTF is malformed\n");
18708 ret = PTR_ERR(btf_vmlinux);
38207291 18709 goto skip_full_check;
8580ac94
AS
18710 }
18711
1ad2f583
DB
18712 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
18713 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 18714 env->strict_alignment = true;
e9ee9efc
DM
18715 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
18716 env->strict_alignment = false;
cbd35700 18717
2c78ee89 18718 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 18719 env->allow_uninit_stack = bpf_allow_uninit_stack();
2c78ee89
AS
18720 env->bypass_spec_v1 = bpf_bypass_spec_v1();
18721 env->bypass_spec_v4 = bpf_bypass_spec_v4();
18722 env->bpf_capable = bpf_capable();
e2ae4ca2 18723
10d274e8
AS
18724 if (is_priv)
18725 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
18726
dc2a4ebc 18727 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 18728 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
18729 GFP_USER);
18730 ret = -ENOMEM;
18731 if (!env->explored_states)
18732 goto skip_full_check;
18733
e6ac2450
MKL
18734 ret = add_subprog_and_kfunc(env);
18735 if (ret < 0)
18736 goto skip_full_check;
18737
d9762e84 18738 ret = check_subprogs(env);
475fb78f
AS
18739 if (ret < 0)
18740 goto skip_full_check;
18741
c454a46b 18742 ret = check_btf_info(env, attr, uattr);
838e9690
YS
18743 if (ret < 0)
18744 goto skip_full_check;
18745
be8704ff
AS
18746 ret = check_attach_btf_id(env);
18747 if (ret)
18748 goto skip_full_check;
18749
4976b718
HL
18750 ret = resolve_pseudo_ldimm64(env);
18751 if (ret < 0)
18752 goto skip_full_check;
18753
9d03ebc7 18754 if (bpf_prog_is_offloaded(env->prog->aux)) {
ceb11679
YZ
18755 ret = bpf_prog_offload_verifier_prep(env->prog);
18756 if (ret)
18757 goto skip_full_check;
18758 }
18759
d9762e84
MKL
18760 ret = check_cfg(env);
18761 if (ret < 0)
18762 goto skip_full_check;
18763
51c39bb1
AS
18764 ret = do_check_subprogs(env);
18765 ret = ret ?: do_check_main(env);
cbd35700 18766
9d03ebc7 18767 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
c941ce9c
QM
18768 ret = bpf_prog_offload_finalize(env);
18769
0246e64d 18770skip_full_check:
51c39bb1 18771 kvfree(env->explored_states);
0246e64d 18772
c131187d 18773 if (ret == 0)
9b38c405 18774 ret = check_max_stack_depth(env);
c131187d 18775
9b38c405 18776 /* instruction rewrites happen after this point */
1ade2371
EZ
18777 if (ret == 0)
18778 ret = optimize_bpf_loop(env);
18779
e2ae4ca2
JK
18780 if (is_priv) {
18781 if (ret == 0)
18782 opt_hard_wire_dead_code_branches(env);
52875a04
JK
18783 if (ret == 0)
18784 ret = opt_remove_dead_code(env);
a1b14abc
JK
18785 if (ret == 0)
18786 ret = opt_remove_nops(env);
52875a04
JK
18787 } else {
18788 if (ret == 0)
18789 sanitize_dead_code(env);
e2ae4ca2
JK
18790 }
18791
9bac3d6d
AS
18792 if (ret == 0)
18793 /* program is valid, convert *(u32*)(ctx + off) accesses */
18794 ret = convert_ctx_accesses(env);
18795
e245c5c6 18796 if (ret == 0)
e6ac5933 18797 ret = do_misc_fixups(env);
e245c5c6 18798
a4b1d3c1
JW
18799 /* do 32-bit optimization after insn patching has done so those patched
18800 * insns could be handled correctly.
18801 */
9d03ebc7 18802 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
d6c2308c
JW
18803 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
18804 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
18805 : false;
a4b1d3c1
JW
18806 }
18807
1ea47e01
AS
18808 if (ret == 0)
18809 ret = fixup_call_args(env);
18810
06ee7115
AS
18811 env->verification_time = ktime_get_ns() - start_time;
18812 print_verification_stats(env);
aba64c7d 18813 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 18814
a2a7d570 18815 if (log->level && bpf_verifier_log_full(log))
cbd35700 18816 ret = -ENOSPC;
a2a7d570 18817 if (log->level && !log->ubuf) {
cbd35700 18818 ret = -EFAULT;
a2a7d570 18819 goto err_release_maps;
cbd35700
AS
18820 }
18821
541c3bad
AN
18822 if (ret)
18823 goto err_release_maps;
18824
18825 if (env->used_map_cnt) {
0246e64d 18826 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
18827 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
18828 sizeof(env->used_maps[0]),
18829 GFP_KERNEL);
0246e64d 18830
9bac3d6d 18831 if (!env->prog->aux->used_maps) {
0246e64d 18832 ret = -ENOMEM;
a2a7d570 18833 goto err_release_maps;
0246e64d
AS
18834 }
18835
9bac3d6d 18836 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 18837 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 18838 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
18839 }
18840 if (env->used_btf_cnt) {
18841 /* if program passed verifier, update used_btfs in bpf_prog_aux */
18842 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
18843 sizeof(env->used_btfs[0]),
18844 GFP_KERNEL);
18845 if (!env->prog->aux->used_btfs) {
18846 ret = -ENOMEM;
18847 goto err_release_maps;
18848 }
0246e64d 18849
541c3bad
AN
18850 memcpy(env->prog->aux->used_btfs, env->used_btfs,
18851 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
18852 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
18853 }
18854 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
18855 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
18856 * bpf_ld_imm64 instructions
18857 */
18858 convert_pseudo_ld_imm64(env);
18859 }
cbd35700 18860
541c3bad 18861 adjust_btf_func(env);
ba64e7d8 18862
a2a7d570 18863err_release_maps:
9bac3d6d 18864 if (!env->prog->aux->used_maps)
0246e64d 18865 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 18866 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
18867 */
18868 release_maps(env);
541c3bad
AN
18869 if (!env->prog->aux->used_btfs)
18870 release_btfs(env);
03f87c0b
THJ
18871
18872 /* extension progs temporarily inherit the attach_type of their targets
18873 for verification purposes, so set it back to zero before returning
18874 */
18875 if (env->prog->type == BPF_PROG_TYPE_EXT)
18876 env->prog->expected_attach_type = 0;
18877
9bac3d6d 18878 *prog = env->prog;
3df126f3 18879err_unlock:
45a73c17
AS
18880 if (!is_priv)
18881 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
18882 vfree(env->insn_aux_data);
18883err_free_env:
18884 kfree(env);
51580e79
AS
18885 return ret;
18886}