bpf: Add PTR_TO_SOCKET verifier type
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
cc8b0b92
AS
23#include <linux/bsearch.h>
24#include <linux/sort.h>
c195651e 25#include <linux/perf_event.h>
51580e79 26
f4ac7e0b
JK
27#include "disasm.h"
28
00176a34
JK
29static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30#define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32#define BPF_MAP_TYPE(_id, _ops)
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
c64b7983
JS
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84 * four pointer types recognized by check_mem_access() function.
51580e79
AS
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
143 */
144
17a52670 145/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 146struct bpf_verifier_stack_elem {
17a52670
AS
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
150 */
58e2af8b 151 struct bpf_verifier_state st;
17a52670
AS
152 int insn_idx;
153 int prev_insn_idx;
58e2af8b 154 struct bpf_verifier_stack_elem *next;
cbd35700
AS
155};
156
8e17c1b1 157#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
158#define BPF_COMPLEXITY_LIMIT_STACK 1024
159
c93552c4
DB
160#define BPF_MAP_PTR_UNPRIV 1UL
161#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
162 POISON_POINTER_DELTA))
163#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
164
165static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
166{
167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
168}
169
170static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
171{
172 return aux->map_state & BPF_MAP_PTR_UNPRIV;
173}
174
175static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
176 const struct bpf_map *map, bool unpriv)
177{
178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
179 unpriv |= bpf_map_ptr_unpriv(aux);
180 aux->map_state = (unsigned long)map |
181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
182}
fad73a1a 183
33ff9823
DB
184struct bpf_call_arg_meta {
185 struct bpf_map *map_ptr;
435faee1 186 bool raw_mode;
36bbef52 187 bool pkt_access;
435faee1
DB
188 int regno;
189 int access_size;
849fa506
YS
190 s64 msize_smax_value;
191 u64 msize_umax_value;
33ff9823
DB
192};
193
cbd35700
AS
194static DEFINE_MUTEX(bpf_verifier_lock);
195
77d2e05a
MKL
196void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
197 va_list args)
cbd35700 198{
a2a7d570 199 unsigned int n;
cbd35700 200
a2a7d570 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
202
203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
204 "verifier log line truncated - local buffer too short\n");
205
206 n = min(log->len_total - log->len_used - 1, n);
207 log->kbuf[n] = '\0';
208
209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
210 log->len_used += n;
211 else
212 log->ubuf = NULL;
cbd35700 213}
abe08840
JO
214
215/* log_level controls verbosity level of eBPF verifier.
216 * bpf_verifier_log_write() is used to dump the verification trace to the log,
217 * so the user can figure out what's wrong with the program
430e68d1 218 */
abe08840
JO
219__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
220 const char *fmt, ...)
221{
222 va_list args;
223
77d2e05a
MKL
224 if (!bpf_verifier_log_needed(&env->log))
225 return;
226
abe08840 227 va_start(args, fmt);
77d2e05a 228 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
229 va_end(args);
230}
231EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
232
233__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
234{
77d2e05a 235 struct bpf_verifier_env *env = private_data;
abe08840
JO
236 va_list args;
237
77d2e05a
MKL
238 if (!bpf_verifier_log_needed(&env->log))
239 return;
240
abe08840 241 va_start(args, fmt);
77d2e05a 242 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
243 va_end(args);
244}
cbd35700 245
de8f3a83
DB
246static bool type_is_pkt_pointer(enum bpf_reg_type type)
247{
248 return type == PTR_TO_PACKET ||
249 type == PTR_TO_PACKET_META;
250}
251
840b9615
JS
252static bool reg_type_may_be_null(enum bpf_reg_type type)
253{
254 return type == PTR_TO_MAP_VALUE_OR_NULL;
255}
256
17a52670
AS
257/* string representation of 'enum bpf_reg_type' */
258static const char * const reg_type_str[] = {
259 [NOT_INIT] = "?",
f1174f77 260 [SCALAR_VALUE] = "inv",
17a52670
AS
261 [PTR_TO_CTX] = "ctx",
262 [CONST_PTR_TO_MAP] = "map_ptr",
263 [PTR_TO_MAP_VALUE] = "map_value",
264 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 265 [PTR_TO_STACK] = "fp",
969bf05e 266 [PTR_TO_PACKET] = "pkt",
de8f3a83 267 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 268 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 269 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
270 [PTR_TO_SOCKET] = "sock",
271 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
272};
273
8efea21d
EC
274static char slot_type_char[] = {
275 [STACK_INVALID] = '?',
276 [STACK_SPILL] = 'r',
277 [STACK_MISC] = 'm',
278 [STACK_ZERO] = '0',
279};
280
4e92024a
AS
281static void print_liveness(struct bpf_verifier_env *env,
282 enum bpf_reg_liveness live)
283{
284 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
285 verbose(env, "_");
286 if (live & REG_LIVE_READ)
287 verbose(env, "r");
288 if (live & REG_LIVE_WRITTEN)
289 verbose(env, "w");
290}
291
f4d7e40a
AS
292static struct bpf_func_state *func(struct bpf_verifier_env *env,
293 const struct bpf_reg_state *reg)
294{
295 struct bpf_verifier_state *cur = env->cur_state;
296
297 return cur->frame[reg->frameno];
298}
299
61bd5218 300static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 301 const struct bpf_func_state *state)
17a52670 302{
f4d7e40a 303 const struct bpf_reg_state *reg;
17a52670
AS
304 enum bpf_reg_type t;
305 int i;
306
f4d7e40a
AS
307 if (state->frameno)
308 verbose(env, " frame%d:", state->frameno);
17a52670 309 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
310 reg = &state->regs[i];
311 t = reg->type;
17a52670
AS
312 if (t == NOT_INIT)
313 continue;
4e92024a
AS
314 verbose(env, " R%d", i);
315 print_liveness(env, reg->live);
316 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
317 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
318 tnum_is_const(reg->var_off)) {
319 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 320 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
321 if (t == PTR_TO_STACK)
322 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 323 } else {
61bd5218 324 verbose(env, "(id=%d", reg->id);
f1174f77 325 if (t != SCALAR_VALUE)
61bd5218 326 verbose(env, ",off=%d", reg->off);
de8f3a83 327 if (type_is_pkt_pointer(t))
61bd5218 328 verbose(env, ",r=%d", reg->range);
f1174f77
EC
329 else if (t == CONST_PTR_TO_MAP ||
330 t == PTR_TO_MAP_VALUE ||
331 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 332 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
333 reg->map_ptr->key_size,
334 reg->map_ptr->value_size);
7d1238f2
EC
335 if (tnum_is_const(reg->var_off)) {
336 /* Typically an immediate SCALAR_VALUE, but
337 * could be a pointer whose offset is too big
338 * for reg->off
339 */
61bd5218 340 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
341 } else {
342 if (reg->smin_value != reg->umin_value &&
343 reg->smin_value != S64_MIN)
61bd5218 344 verbose(env, ",smin_value=%lld",
7d1238f2
EC
345 (long long)reg->smin_value);
346 if (reg->smax_value != reg->umax_value &&
347 reg->smax_value != S64_MAX)
61bd5218 348 verbose(env, ",smax_value=%lld",
7d1238f2
EC
349 (long long)reg->smax_value);
350 if (reg->umin_value != 0)
61bd5218 351 verbose(env, ",umin_value=%llu",
7d1238f2
EC
352 (unsigned long long)reg->umin_value);
353 if (reg->umax_value != U64_MAX)
61bd5218 354 verbose(env, ",umax_value=%llu",
7d1238f2
EC
355 (unsigned long long)reg->umax_value);
356 if (!tnum_is_unknown(reg->var_off)) {
357 char tn_buf[48];
f1174f77 358
7d1238f2 359 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 360 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 361 }
f1174f77 362 }
61bd5218 363 verbose(env, ")");
f1174f77 364 }
17a52670 365 }
638f5b90 366 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
367 char types_buf[BPF_REG_SIZE + 1];
368 bool valid = false;
369 int j;
370
371 for (j = 0; j < BPF_REG_SIZE; j++) {
372 if (state->stack[i].slot_type[j] != STACK_INVALID)
373 valid = true;
374 types_buf[j] = slot_type_char[
375 state->stack[i].slot_type[j]];
376 }
377 types_buf[BPF_REG_SIZE] = 0;
378 if (!valid)
379 continue;
380 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
381 print_liveness(env, state->stack[i].spilled_ptr.live);
382 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 383 verbose(env, "=%s",
638f5b90 384 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
385 else
386 verbose(env, "=%s", types_buf);
17a52670 387 }
61bd5218 388 verbose(env, "\n");
17a52670
AS
389}
390
f4d7e40a
AS
391static int copy_stack_state(struct bpf_func_state *dst,
392 const struct bpf_func_state *src)
17a52670 393{
638f5b90
AS
394 if (!src->stack)
395 return 0;
396 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
397 /* internal bug, make state invalid to reject the program */
398 memset(dst, 0, sizeof(*dst));
399 return -EFAULT;
400 }
401 memcpy(dst->stack, src->stack,
402 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
403 return 0;
404}
405
406/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
407 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 408 * the program calls into realloc_func_state() to grow the stack size.
679c782d
EC
409 * Note there is a non-zero parent pointer inside each reg of bpf_verifier_state
410 * which this function copies over. It points to corresponding reg in previous
411 * bpf_verifier_state which is never reallocated
638f5b90 412 */
f4d7e40a
AS
413static int realloc_func_state(struct bpf_func_state *state, int size,
414 bool copy_old)
638f5b90
AS
415{
416 u32 old_size = state->allocated_stack;
417 struct bpf_stack_state *new_stack;
418 int slot = size / BPF_REG_SIZE;
419
420 if (size <= old_size || !size) {
421 if (copy_old)
422 return 0;
423 state->allocated_stack = slot * BPF_REG_SIZE;
424 if (!size && old_size) {
425 kfree(state->stack);
426 state->stack = NULL;
427 }
428 return 0;
429 }
430 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
431 GFP_KERNEL);
432 if (!new_stack)
433 return -ENOMEM;
434 if (copy_old) {
435 if (state->stack)
436 memcpy(new_stack, state->stack,
437 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
438 memset(new_stack + old_size / BPF_REG_SIZE, 0,
439 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
440 }
441 state->allocated_stack = slot * BPF_REG_SIZE;
442 kfree(state->stack);
443 state->stack = new_stack;
444 return 0;
445}
446
f4d7e40a
AS
447static void free_func_state(struct bpf_func_state *state)
448{
5896351e
AS
449 if (!state)
450 return;
f4d7e40a
AS
451 kfree(state->stack);
452 kfree(state);
453}
454
1969db47
AS
455static void free_verifier_state(struct bpf_verifier_state *state,
456 bool free_self)
638f5b90 457{
f4d7e40a
AS
458 int i;
459
460 for (i = 0; i <= state->curframe; i++) {
461 free_func_state(state->frame[i]);
462 state->frame[i] = NULL;
463 }
1969db47
AS
464 if (free_self)
465 kfree(state);
638f5b90
AS
466}
467
468/* copy verifier state from src to dst growing dst stack space
469 * when necessary to accommodate larger src stack
470 */
f4d7e40a
AS
471static int copy_func_state(struct bpf_func_state *dst,
472 const struct bpf_func_state *src)
638f5b90
AS
473{
474 int err;
475
f4d7e40a 476 err = realloc_func_state(dst, src->allocated_stack, false);
638f5b90
AS
477 if (err)
478 return err;
f4d7e40a 479 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
638f5b90
AS
480 return copy_stack_state(dst, src);
481}
482
f4d7e40a
AS
483static int copy_verifier_state(struct bpf_verifier_state *dst_state,
484 const struct bpf_verifier_state *src)
485{
486 struct bpf_func_state *dst;
487 int i, err;
488
489 /* if dst has more stack frames then src frame, free them */
490 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
491 free_func_state(dst_state->frame[i]);
492 dst_state->frame[i] = NULL;
493 }
494 dst_state->curframe = src->curframe;
f4d7e40a
AS
495 for (i = 0; i <= src->curframe; i++) {
496 dst = dst_state->frame[i];
497 if (!dst) {
498 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
499 if (!dst)
500 return -ENOMEM;
501 dst_state->frame[i] = dst;
502 }
503 err = copy_func_state(dst, src->frame[i]);
504 if (err)
505 return err;
506 }
507 return 0;
508}
509
638f5b90
AS
510static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
511 int *insn_idx)
512{
513 struct bpf_verifier_state *cur = env->cur_state;
514 struct bpf_verifier_stack_elem *elem, *head = env->head;
515 int err;
17a52670
AS
516
517 if (env->head == NULL)
638f5b90 518 return -ENOENT;
17a52670 519
638f5b90
AS
520 if (cur) {
521 err = copy_verifier_state(cur, &head->st);
522 if (err)
523 return err;
524 }
525 if (insn_idx)
526 *insn_idx = head->insn_idx;
17a52670 527 if (prev_insn_idx)
638f5b90
AS
528 *prev_insn_idx = head->prev_insn_idx;
529 elem = head->next;
1969db47 530 free_verifier_state(&head->st, false);
638f5b90 531 kfree(head);
17a52670
AS
532 env->head = elem;
533 env->stack_size--;
638f5b90 534 return 0;
17a52670
AS
535}
536
58e2af8b
JK
537static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
538 int insn_idx, int prev_insn_idx)
17a52670 539{
638f5b90 540 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 541 struct bpf_verifier_stack_elem *elem;
638f5b90 542 int err;
17a52670 543
638f5b90 544 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
545 if (!elem)
546 goto err;
547
17a52670
AS
548 elem->insn_idx = insn_idx;
549 elem->prev_insn_idx = prev_insn_idx;
550 elem->next = env->head;
551 env->head = elem;
552 env->stack_size++;
1969db47
AS
553 err = copy_verifier_state(&elem->st, cur);
554 if (err)
555 goto err;
07016151 556 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 557 verbose(env, "BPF program is too complex\n");
17a52670
AS
558 goto err;
559 }
560 return &elem->st;
561err:
5896351e
AS
562 free_verifier_state(env->cur_state, true);
563 env->cur_state = NULL;
17a52670 564 /* pop all elements and return */
638f5b90 565 while (!pop_stack(env, NULL, NULL));
17a52670
AS
566 return NULL;
567}
568
569#define CALLER_SAVED_REGS 6
570static const int caller_saved[CALLER_SAVED_REGS] = {
571 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
572};
573
f1174f77
EC
574static void __mark_reg_not_init(struct bpf_reg_state *reg);
575
b03c9f9f
EC
576/* Mark the unknown part of a register (variable offset or scalar value) as
577 * known to have the value @imm.
578 */
579static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
580{
a9c676bc
AS
581 /* Clear id, off, and union(map_ptr, range) */
582 memset(((u8 *)reg) + sizeof(reg->type), 0,
583 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
584 reg->var_off = tnum_const(imm);
585 reg->smin_value = (s64)imm;
586 reg->smax_value = (s64)imm;
587 reg->umin_value = imm;
588 reg->umax_value = imm;
589}
590
f1174f77
EC
591/* Mark the 'variable offset' part of a register as zero. This should be
592 * used only on registers holding a pointer type.
593 */
594static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 595{
b03c9f9f 596 __mark_reg_known(reg, 0);
f1174f77 597}
a9789ef9 598
cc2b14d5
AS
599static void __mark_reg_const_zero(struct bpf_reg_state *reg)
600{
601 __mark_reg_known(reg, 0);
cc2b14d5
AS
602 reg->type = SCALAR_VALUE;
603}
604
61bd5218
JK
605static void mark_reg_known_zero(struct bpf_verifier_env *env,
606 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
607{
608 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 609 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
610 /* Something bad happened, let's kill all regs */
611 for (regno = 0; regno < MAX_BPF_REG; regno++)
612 __mark_reg_not_init(regs + regno);
613 return;
614 }
615 __mark_reg_known_zero(regs + regno);
616}
617
de8f3a83
DB
618static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
619{
620 return type_is_pkt_pointer(reg->type);
621}
622
623static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
624{
625 return reg_is_pkt_pointer(reg) ||
626 reg->type == PTR_TO_PACKET_END;
627}
628
629/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
630static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
631 enum bpf_reg_type which)
632{
633 /* The register can already have a range from prior markings.
634 * This is fine as long as it hasn't been advanced from its
635 * origin.
636 */
637 return reg->type == which &&
638 reg->id == 0 &&
639 reg->off == 0 &&
640 tnum_equals_const(reg->var_off, 0);
641}
642
b03c9f9f
EC
643/* Attempts to improve min/max values based on var_off information */
644static void __update_reg_bounds(struct bpf_reg_state *reg)
645{
646 /* min signed is max(sign bit) | min(other bits) */
647 reg->smin_value = max_t(s64, reg->smin_value,
648 reg->var_off.value | (reg->var_off.mask & S64_MIN));
649 /* max signed is min(sign bit) | max(other bits) */
650 reg->smax_value = min_t(s64, reg->smax_value,
651 reg->var_off.value | (reg->var_off.mask & S64_MAX));
652 reg->umin_value = max(reg->umin_value, reg->var_off.value);
653 reg->umax_value = min(reg->umax_value,
654 reg->var_off.value | reg->var_off.mask);
655}
656
657/* Uses signed min/max values to inform unsigned, and vice-versa */
658static void __reg_deduce_bounds(struct bpf_reg_state *reg)
659{
660 /* Learn sign from signed bounds.
661 * If we cannot cross the sign boundary, then signed and unsigned bounds
662 * are the same, so combine. This works even in the negative case, e.g.
663 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
664 */
665 if (reg->smin_value >= 0 || reg->smax_value < 0) {
666 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
667 reg->umin_value);
668 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
669 reg->umax_value);
670 return;
671 }
672 /* Learn sign from unsigned bounds. Signed bounds cross the sign
673 * boundary, so we must be careful.
674 */
675 if ((s64)reg->umax_value >= 0) {
676 /* Positive. We can't learn anything from the smin, but smax
677 * is positive, hence safe.
678 */
679 reg->smin_value = reg->umin_value;
680 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
681 reg->umax_value);
682 } else if ((s64)reg->umin_value < 0) {
683 /* Negative. We can't learn anything from the smax, but smin
684 * is negative, hence safe.
685 */
686 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
687 reg->umin_value);
688 reg->smax_value = reg->umax_value;
689 }
690}
691
692/* Attempts to improve var_off based on unsigned min/max information */
693static void __reg_bound_offset(struct bpf_reg_state *reg)
694{
695 reg->var_off = tnum_intersect(reg->var_off,
696 tnum_range(reg->umin_value,
697 reg->umax_value));
698}
699
700/* Reset the min/max bounds of a register */
701static void __mark_reg_unbounded(struct bpf_reg_state *reg)
702{
703 reg->smin_value = S64_MIN;
704 reg->smax_value = S64_MAX;
705 reg->umin_value = 0;
706 reg->umax_value = U64_MAX;
707}
708
f1174f77
EC
709/* Mark a register as having a completely unknown (scalar) value. */
710static void __mark_reg_unknown(struct bpf_reg_state *reg)
711{
a9c676bc
AS
712 /*
713 * Clear type, id, off, and union(map_ptr, range) and
714 * padding between 'type' and union
715 */
716 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 717 reg->type = SCALAR_VALUE;
f1174f77 718 reg->var_off = tnum_unknown;
f4d7e40a 719 reg->frameno = 0;
b03c9f9f 720 __mark_reg_unbounded(reg);
f1174f77
EC
721}
722
61bd5218
JK
723static void mark_reg_unknown(struct bpf_verifier_env *env,
724 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
725{
726 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 727 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
728 /* Something bad happened, let's kill all regs except FP */
729 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
730 __mark_reg_not_init(regs + regno);
731 return;
732 }
733 __mark_reg_unknown(regs + regno);
734}
735
736static void __mark_reg_not_init(struct bpf_reg_state *reg)
737{
738 __mark_reg_unknown(reg);
739 reg->type = NOT_INIT;
740}
741
61bd5218
JK
742static void mark_reg_not_init(struct bpf_verifier_env *env,
743 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
744{
745 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 746 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
747 /* Something bad happened, let's kill all regs except FP */
748 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
749 __mark_reg_not_init(regs + regno);
750 return;
751 }
752 __mark_reg_not_init(regs + regno);
a9789ef9
DB
753}
754
61bd5218 755static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 756 struct bpf_func_state *state)
17a52670 757{
f4d7e40a 758 struct bpf_reg_state *regs = state->regs;
17a52670
AS
759 int i;
760
dc503a8a 761 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 762 mark_reg_not_init(env, regs, i);
dc503a8a 763 regs[i].live = REG_LIVE_NONE;
679c782d 764 regs[i].parent = NULL;
dc503a8a 765 }
17a52670
AS
766
767 /* frame pointer */
f1174f77 768 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 769 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 770 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
771
772 /* 1st arg to a function */
773 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 774 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
775}
776
f4d7e40a
AS
777#define BPF_MAIN_FUNC (-1)
778static void init_func_state(struct bpf_verifier_env *env,
779 struct bpf_func_state *state,
780 int callsite, int frameno, int subprogno)
781{
782 state->callsite = callsite;
783 state->frameno = frameno;
784 state->subprogno = subprogno;
785 init_reg_state(env, state);
786}
787
17a52670
AS
788enum reg_arg_type {
789 SRC_OP, /* register is used as source operand */
790 DST_OP, /* register is used as destination operand */
791 DST_OP_NO_MARK /* same as above, check only, don't mark */
792};
793
cc8b0b92
AS
794static int cmp_subprogs(const void *a, const void *b)
795{
9c8105bd
JW
796 return ((struct bpf_subprog_info *)a)->start -
797 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
798}
799
800static int find_subprog(struct bpf_verifier_env *env, int off)
801{
9c8105bd 802 struct bpf_subprog_info *p;
cc8b0b92 803
9c8105bd
JW
804 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
805 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
806 if (!p)
807 return -ENOENT;
9c8105bd 808 return p - env->subprog_info;
cc8b0b92
AS
809
810}
811
812static int add_subprog(struct bpf_verifier_env *env, int off)
813{
814 int insn_cnt = env->prog->len;
815 int ret;
816
817 if (off >= insn_cnt || off < 0) {
818 verbose(env, "call to invalid destination\n");
819 return -EINVAL;
820 }
821 ret = find_subprog(env, off);
822 if (ret >= 0)
823 return 0;
4cb3d99c 824 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
825 verbose(env, "too many subprograms\n");
826 return -E2BIG;
827 }
9c8105bd
JW
828 env->subprog_info[env->subprog_cnt++].start = off;
829 sort(env->subprog_info, env->subprog_cnt,
830 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
831 return 0;
832}
833
834static int check_subprogs(struct bpf_verifier_env *env)
835{
836 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 837 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
838 struct bpf_insn *insn = env->prog->insnsi;
839 int insn_cnt = env->prog->len;
840
f910cefa
JW
841 /* Add entry function. */
842 ret = add_subprog(env, 0);
843 if (ret < 0)
844 return ret;
845
cc8b0b92
AS
846 /* determine subprog starts. The end is one before the next starts */
847 for (i = 0; i < insn_cnt; i++) {
848 if (insn[i].code != (BPF_JMP | BPF_CALL))
849 continue;
850 if (insn[i].src_reg != BPF_PSEUDO_CALL)
851 continue;
852 if (!env->allow_ptr_leaks) {
853 verbose(env, "function calls to other bpf functions are allowed for root only\n");
854 return -EPERM;
855 }
856 if (bpf_prog_is_dev_bound(env->prog->aux)) {
e90004d5 857 verbose(env, "function calls in offloaded programs are not supported yet\n");
cc8b0b92
AS
858 return -EINVAL;
859 }
860 ret = add_subprog(env, i + insn[i].imm + 1);
861 if (ret < 0)
862 return ret;
863 }
864
4cb3d99c
JW
865 /* Add a fake 'exit' subprog which could simplify subprog iteration
866 * logic. 'subprog_cnt' should not be increased.
867 */
868 subprog[env->subprog_cnt].start = insn_cnt;
869
cc8b0b92
AS
870 if (env->log.level > 1)
871 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 872 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
873
874 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
875 subprog_start = subprog[cur_subprog].start;
876 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
877 for (i = 0; i < insn_cnt; i++) {
878 u8 code = insn[i].code;
879
880 if (BPF_CLASS(code) != BPF_JMP)
881 goto next;
882 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
883 goto next;
884 off = i + insn[i].off + 1;
885 if (off < subprog_start || off >= subprog_end) {
886 verbose(env, "jump out of range from insn %d to %d\n", i, off);
887 return -EINVAL;
888 }
889next:
890 if (i == subprog_end - 1) {
891 /* to avoid fall-through from one subprog into another
892 * the last insn of the subprog should be either exit
893 * or unconditional jump back
894 */
895 if (code != (BPF_JMP | BPF_EXIT) &&
896 code != (BPF_JMP | BPF_JA)) {
897 verbose(env, "last insn is not an exit or jmp\n");
898 return -EINVAL;
899 }
900 subprog_start = subprog_end;
4cb3d99c
JW
901 cur_subprog++;
902 if (cur_subprog < env->subprog_cnt)
9c8105bd 903 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
904 }
905 }
906 return 0;
907}
908
679c782d
EC
909/* Parentage chain of this register (or stack slot) should take care of all
910 * issues like callee-saved registers, stack slot allocation time, etc.
911 */
f4d7e40a 912static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
913 const struct bpf_reg_state *state,
914 struct bpf_reg_state *parent)
f4d7e40a
AS
915{
916 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
917
918 while (parent) {
919 /* if read wasn't screened by an earlier write ... */
679c782d 920 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a
EC
921 break;
922 /* ... then we depend on parent's value */
679c782d 923 parent->live |= REG_LIVE_READ;
dc503a8a
EC
924 state = parent;
925 parent = state->parent;
f4d7e40a 926 writes = true;
dc503a8a 927 }
f4d7e40a 928 return 0;
dc503a8a
EC
929}
930
931static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
932 enum reg_arg_type t)
933{
f4d7e40a
AS
934 struct bpf_verifier_state *vstate = env->cur_state;
935 struct bpf_func_state *state = vstate->frame[vstate->curframe];
936 struct bpf_reg_state *regs = state->regs;
dc503a8a 937
17a52670 938 if (regno >= MAX_BPF_REG) {
61bd5218 939 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
940 return -EINVAL;
941 }
942
943 if (t == SRC_OP) {
944 /* check whether register used as source operand can be read */
945 if (regs[regno].type == NOT_INIT) {
61bd5218 946 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
947 return -EACCES;
948 }
679c782d
EC
949 /* We don't need to worry about FP liveness because it's read-only */
950 if (regno != BPF_REG_FP)
951 return mark_reg_read(env, &regs[regno],
952 regs[regno].parent);
17a52670
AS
953 } else {
954 /* check whether register used as dest operand can be written to */
955 if (regno == BPF_REG_FP) {
61bd5218 956 verbose(env, "frame pointer is read only\n");
17a52670
AS
957 return -EACCES;
958 }
dc503a8a 959 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 960 if (t == DST_OP)
61bd5218 961 mark_reg_unknown(env, regs, regno);
17a52670
AS
962 }
963 return 0;
964}
965
1be7f75d
AS
966static bool is_spillable_regtype(enum bpf_reg_type type)
967{
968 switch (type) {
969 case PTR_TO_MAP_VALUE:
970 case PTR_TO_MAP_VALUE_OR_NULL:
971 case PTR_TO_STACK:
972 case PTR_TO_CTX:
969bf05e 973 case PTR_TO_PACKET:
de8f3a83 974 case PTR_TO_PACKET_META:
969bf05e 975 case PTR_TO_PACKET_END:
d58e468b 976 case PTR_TO_FLOW_KEYS:
1be7f75d 977 case CONST_PTR_TO_MAP:
c64b7983
JS
978 case PTR_TO_SOCKET:
979 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
980 return true;
981 default:
982 return false;
983 }
984}
985
cc2b14d5
AS
986/* Does this register contain a constant zero? */
987static bool register_is_null(struct bpf_reg_state *reg)
988{
989 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
990}
991
17a52670
AS
992/* check_stack_read/write functions track spill/fill of registers,
993 * stack boundary and alignment are checked in check_mem_access()
994 */
61bd5218 995static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 996 struct bpf_func_state *state, /* func where register points to */
af86ca4e 997 int off, int size, int value_regno, int insn_idx)
17a52670 998{
f4d7e40a 999 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1000 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1001 enum bpf_reg_type type;
638f5b90 1002
f4d7e40a
AS
1003 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1004 true);
638f5b90
AS
1005 if (err)
1006 return err;
9c399760
AS
1007 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1008 * so it's aligned access and [off, off + size) are within stack limits
1009 */
638f5b90
AS
1010 if (!env->allow_ptr_leaks &&
1011 state->stack[spi].slot_type[0] == STACK_SPILL &&
1012 size != BPF_REG_SIZE) {
1013 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1014 return -EACCES;
1015 }
17a52670 1016
f4d7e40a 1017 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1018 if (value_regno >= 0 &&
f4d7e40a 1019 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1020
1021 /* register containing pointer is being spilled into stack */
9c399760 1022 if (size != BPF_REG_SIZE) {
61bd5218 1023 verbose(env, "invalid size of register spill\n");
17a52670
AS
1024 return -EACCES;
1025 }
1026
f4d7e40a
AS
1027 if (state != cur && type == PTR_TO_STACK) {
1028 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1029 return -EINVAL;
1030 }
1031
17a52670 1032 /* save register state */
f4d7e40a 1033 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1034 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1035
af86ca4e
AS
1036 for (i = 0; i < BPF_REG_SIZE; i++) {
1037 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1038 !env->allow_ptr_leaks) {
1039 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1040 int soff = (-spi - 1) * BPF_REG_SIZE;
1041
1042 /* detected reuse of integer stack slot with a pointer
1043 * which means either llvm is reusing stack slot or
1044 * an attacker is trying to exploit CVE-2018-3639
1045 * (speculative store bypass)
1046 * Have to sanitize that slot with preemptive
1047 * store of zero.
1048 */
1049 if (*poff && *poff != soff) {
1050 /* disallow programs where single insn stores
1051 * into two different stack slots, since verifier
1052 * cannot sanitize them
1053 */
1054 verbose(env,
1055 "insn %d cannot access two stack slots fp%d and fp%d",
1056 insn_idx, *poff, soff);
1057 return -EINVAL;
1058 }
1059 *poff = soff;
1060 }
638f5b90 1061 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1062 }
9c399760 1063 } else {
cc2b14d5
AS
1064 u8 type = STACK_MISC;
1065
679c782d
EC
1066 /* regular write of data into stack destroys any spilled ptr */
1067 state->stack[spi].spilled_ptr.type = NOT_INIT;
9c399760 1068
cc2b14d5
AS
1069 /* only mark the slot as written if all 8 bytes were written
1070 * otherwise read propagation may incorrectly stop too soon
1071 * when stack slots are partially written.
1072 * This heuristic means that read propagation will be
1073 * conservative, since it will add reg_live_read marks
1074 * to stack slots all the way to first state when programs
1075 * writes+reads less than 8 bytes
1076 */
1077 if (size == BPF_REG_SIZE)
1078 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1079
1080 /* when we zero initialize stack slots mark them as such */
1081 if (value_regno >= 0 &&
1082 register_is_null(&cur->regs[value_regno]))
1083 type = STACK_ZERO;
1084
9c399760 1085 for (i = 0; i < size; i++)
638f5b90 1086 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1087 type;
17a52670
AS
1088 }
1089 return 0;
1090}
1091
61bd5218 1092static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1093 struct bpf_func_state *reg_state /* func where register points to */,
1094 int off, int size, int value_regno)
17a52670 1095{
f4d7e40a
AS
1096 struct bpf_verifier_state *vstate = env->cur_state;
1097 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1098 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1099 u8 *stype;
17a52670 1100
f4d7e40a 1101 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1102 verbose(env, "invalid read from stack off %d+0 size %d\n",
1103 off, size);
1104 return -EACCES;
1105 }
f4d7e40a 1106 stype = reg_state->stack[spi].slot_type;
17a52670 1107
638f5b90 1108 if (stype[0] == STACK_SPILL) {
9c399760 1109 if (size != BPF_REG_SIZE) {
61bd5218 1110 verbose(env, "invalid size of register spill\n");
17a52670
AS
1111 return -EACCES;
1112 }
9c399760 1113 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1114 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1115 verbose(env, "corrupted spill memory\n");
17a52670
AS
1116 return -EACCES;
1117 }
1118 }
1119
dc503a8a 1120 if (value_regno >= 0) {
17a52670 1121 /* restore register state from stack */
f4d7e40a 1122 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1123 /* mark reg as written since spilled pointer state likely
1124 * has its liveness marks cleared by is_state_visited()
1125 * which resets stack/reg liveness for state transitions
1126 */
1127 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1128 }
679c782d
EC
1129 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1130 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1131 return 0;
1132 } else {
cc2b14d5
AS
1133 int zeros = 0;
1134
17a52670 1135 for (i = 0; i < size; i++) {
cc2b14d5
AS
1136 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1137 continue;
1138 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1139 zeros++;
1140 continue;
17a52670 1141 }
cc2b14d5
AS
1142 verbose(env, "invalid read from stack off %d+%d size %d\n",
1143 off, i, size);
1144 return -EACCES;
1145 }
679c782d
EC
1146 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1147 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1148 if (value_regno >= 0) {
1149 if (zeros == size) {
1150 /* any size read into register is zero extended,
1151 * so the whole register == const_zero
1152 */
1153 __mark_reg_const_zero(&state->regs[value_regno]);
1154 } else {
1155 /* have read misc data from the stack */
1156 mark_reg_unknown(env, state->regs, value_regno);
1157 }
1158 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1159 }
17a52670
AS
1160 return 0;
1161 }
1162}
1163
1164/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1165static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1166 int size, bool zero_size_allowed)
17a52670 1167{
638f5b90
AS
1168 struct bpf_reg_state *regs = cur_regs(env);
1169 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1170
9fd29c08
YS
1171 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1172 off + size > map->value_size) {
61bd5218 1173 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1174 map->value_size, off, size);
1175 return -EACCES;
1176 }
1177 return 0;
1178}
1179
f1174f77
EC
1180/* check read/write into a map element with possible variable offset */
1181static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1182 int off, int size, bool zero_size_allowed)
dbcfe5f7 1183{
f4d7e40a
AS
1184 struct bpf_verifier_state *vstate = env->cur_state;
1185 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1186 struct bpf_reg_state *reg = &state->regs[regno];
1187 int err;
1188
f1174f77
EC
1189 /* We may have adjusted the register to this map value, so we
1190 * need to try adding each of min_value and max_value to off
1191 * to make sure our theoretical access will be safe.
dbcfe5f7 1192 */
61bd5218
JK
1193 if (env->log.level)
1194 print_verifier_state(env, state);
dbcfe5f7
GB
1195 /* The minimum value is only important with signed
1196 * comparisons where we can't assume the floor of a
1197 * value is 0. If we are using signed variables for our
1198 * index'es we need to make sure that whatever we use
1199 * will have a set floor within our range.
1200 */
b03c9f9f 1201 if (reg->smin_value < 0) {
61bd5218 1202 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1203 regno);
1204 return -EACCES;
1205 }
9fd29c08
YS
1206 err = __check_map_access(env, regno, reg->smin_value + off, size,
1207 zero_size_allowed);
dbcfe5f7 1208 if (err) {
61bd5218
JK
1209 verbose(env, "R%d min value is outside of the array range\n",
1210 regno);
dbcfe5f7
GB
1211 return err;
1212 }
1213
b03c9f9f
EC
1214 /* If we haven't set a max value then we need to bail since we can't be
1215 * sure we won't do bad things.
1216 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1217 */
b03c9f9f 1218 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1219 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1220 regno);
1221 return -EACCES;
1222 }
9fd29c08
YS
1223 err = __check_map_access(env, regno, reg->umax_value + off, size,
1224 zero_size_allowed);
f1174f77 1225 if (err)
61bd5218
JK
1226 verbose(env, "R%d max value is outside of the array range\n",
1227 regno);
f1174f77 1228 return err;
dbcfe5f7
GB
1229}
1230
969bf05e
AS
1231#define MAX_PACKET_OFF 0xffff
1232
58e2af8b 1233static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1234 const struct bpf_call_arg_meta *meta,
1235 enum bpf_access_type t)
4acf6c0b 1236{
36bbef52 1237 switch (env->prog->type) {
3a0af8fd
TG
1238 case BPF_PROG_TYPE_LWT_IN:
1239 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1240 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1241 case BPF_PROG_TYPE_SK_REUSEPORT:
3a0af8fd
TG
1242 /* dst_input() and dst_output() can't write for now */
1243 if (t == BPF_WRITE)
1244 return false;
7e57fbb2 1245 /* fallthrough */
36bbef52
DB
1246 case BPF_PROG_TYPE_SCHED_CLS:
1247 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1248 case BPF_PROG_TYPE_XDP:
3a0af8fd 1249 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1250 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1251 case BPF_PROG_TYPE_SK_MSG:
d58e468b 1252 case BPF_PROG_TYPE_FLOW_DISSECTOR:
36bbef52
DB
1253 if (meta)
1254 return meta->pkt_access;
1255
1256 env->seen_direct_write = true;
4acf6c0b
BB
1257 return true;
1258 default:
1259 return false;
1260 }
1261}
1262
f1174f77 1263static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1264 int off, int size, bool zero_size_allowed)
969bf05e 1265{
638f5b90 1266 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1267 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1268
9fd29c08
YS
1269 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1270 (u64)off + size > reg->range) {
61bd5218 1271 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1272 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1273 return -EACCES;
1274 }
1275 return 0;
1276}
1277
f1174f77 1278static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1279 int size, bool zero_size_allowed)
f1174f77 1280{
638f5b90 1281 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1282 struct bpf_reg_state *reg = &regs[regno];
1283 int err;
1284
1285 /* We may have added a variable offset to the packet pointer; but any
1286 * reg->range we have comes after that. We are only checking the fixed
1287 * offset.
1288 */
1289
1290 /* We don't allow negative numbers, because we aren't tracking enough
1291 * detail to prove they're safe.
1292 */
b03c9f9f 1293 if (reg->smin_value < 0) {
61bd5218 1294 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1295 regno);
1296 return -EACCES;
1297 }
9fd29c08 1298 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1299 if (err) {
61bd5218 1300 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1301 return err;
1302 }
1303 return err;
1304}
1305
1306/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1307static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1308 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1309{
f96da094
DB
1310 struct bpf_insn_access_aux info = {
1311 .reg_type = *reg_type,
1312 };
31fd8581 1313
4f9218aa 1314 if (env->ops->is_valid_access &&
5e43f899 1315 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1316 /* A non zero info.ctx_field_size indicates that this field is a
1317 * candidate for later verifier transformation to load the whole
1318 * field and then apply a mask when accessed with a narrower
1319 * access than actual ctx access size. A zero info.ctx_field_size
1320 * will only allow for whole field access and rejects any other
1321 * type of narrower access.
31fd8581 1322 */
23994631 1323 *reg_type = info.reg_type;
31fd8581 1324
4f9218aa 1325 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1326 /* remember the offset of last byte accessed in ctx */
1327 if (env->prog->aux->max_ctx_offset < off + size)
1328 env->prog->aux->max_ctx_offset = off + size;
17a52670 1329 return 0;
32bbe007 1330 }
17a52670 1331
61bd5218 1332 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1333 return -EACCES;
1334}
1335
d58e468b
PP
1336static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1337 int size)
1338{
1339 if (size < 0 || off < 0 ||
1340 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1341 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1342 off, size);
1343 return -EACCES;
1344 }
1345 return 0;
1346}
1347
c64b7983
JS
1348static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1349 int size, enum bpf_access_type t)
1350{
1351 struct bpf_reg_state *regs = cur_regs(env);
1352 struct bpf_reg_state *reg = &regs[regno];
1353 struct bpf_insn_access_aux info;
1354
1355 if (reg->smin_value < 0) {
1356 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1357 regno);
1358 return -EACCES;
1359 }
1360
1361 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1362 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1363 off, size);
1364 return -EACCES;
1365 }
1366
1367 return 0;
1368}
1369
4cabc5b1
DB
1370static bool __is_pointer_value(bool allow_ptr_leaks,
1371 const struct bpf_reg_state *reg)
1be7f75d 1372{
4cabc5b1 1373 if (allow_ptr_leaks)
1be7f75d
AS
1374 return false;
1375
f1174f77 1376 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1377}
1378
4cabc5b1
DB
1379static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1380{
638f5b90 1381 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1382}
1383
f37a8cb8
DB
1384static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1385{
1386 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1387
1388 return reg->type == PTR_TO_CTX;
1389}
1390
ca369602
DB
1391static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1392{
1393 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1394
1395 return type_is_pkt_pointer(reg->type);
1396}
1397
61bd5218
JK
1398static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1399 const struct bpf_reg_state *reg,
d1174416 1400 int off, int size, bool strict)
969bf05e 1401{
f1174f77 1402 struct tnum reg_off;
e07b98d9 1403 int ip_align;
d1174416
DM
1404
1405 /* Byte size accesses are always allowed. */
1406 if (!strict || size == 1)
1407 return 0;
1408
e4eda884
DM
1409 /* For platforms that do not have a Kconfig enabling
1410 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1411 * NET_IP_ALIGN is universally set to '2'. And on platforms
1412 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1413 * to this code only in strict mode where we want to emulate
1414 * the NET_IP_ALIGN==2 checking. Therefore use an
1415 * unconditional IP align value of '2'.
e07b98d9 1416 */
e4eda884 1417 ip_align = 2;
f1174f77
EC
1418
1419 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1420 if (!tnum_is_aligned(reg_off, size)) {
1421 char tn_buf[48];
1422
1423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1424 verbose(env,
1425 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1426 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1427 return -EACCES;
1428 }
79adffcd 1429
969bf05e
AS
1430 return 0;
1431}
1432
61bd5218
JK
1433static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1434 const struct bpf_reg_state *reg,
f1174f77
EC
1435 const char *pointer_desc,
1436 int off, int size, bool strict)
79adffcd 1437{
f1174f77
EC
1438 struct tnum reg_off;
1439
1440 /* Byte size accesses are always allowed. */
1441 if (!strict || size == 1)
1442 return 0;
1443
1444 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1445 if (!tnum_is_aligned(reg_off, size)) {
1446 char tn_buf[48];
1447
1448 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1449 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1450 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1451 return -EACCES;
1452 }
1453
969bf05e
AS
1454 return 0;
1455}
1456
e07b98d9 1457static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1458 const struct bpf_reg_state *reg, int off,
1459 int size, bool strict_alignment_once)
79adffcd 1460{
ca369602 1461 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1462 const char *pointer_desc = "";
d1174416 1463
79adffcd
DB
1464 switch (reg->type) {
1465 case PTR_TO_PACKET:
de8f3a83
DB
1466 case PTR_TO_PACKET_META:
1467 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1468 * right in front, treat it the very same way.
1469 */
61bd5218 1470 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1471 case PTR_TO_FLOW_KEYS:
1472 pointer_desc = "flow keys ";
1473 break;
f1174f77
EC
1474 case PTR_TO_MAP_VALUE:
1475 pointer_desc = "value ";
1476 break;
1477 case PTR_TO_CTX:
1478 pointer_desc = "context ";
1479 break;
1480 case PTR_TO_STACK:
1481 pointer_desc = "stack ";
a5ec6ae1
JH
1482 /* The stack spill tracking logic in check_stack_write()
1483 * and check_stack_read() relies on stack accesses being
1484 * aligned.
1485 */
1486 strict = true;
f1174f77 1487 break;
c64b7983
JS
1488 case PTR_TO_SOCKET:
1489 pointer_desc = "sock ";
1490 break;
79adffcd 1491 default:
f1174f77 1492 break;
79adffcd 1493 }
61bd5218
JK
1494 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1495 strict);
79adffcd
DB
1496}
1497
f4d7e40a
AS
1498static int update_stack_depth(struct bpf_verifier_env *env,
1499 const struct bpf_func_state *func,
1500 int off)
1501{
9c8105bd 1502 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1503
1504 if (stack >= -off)
1505 return 0;
1506
1507 /* update known max for given subprogram */
9c8105bd 1508 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1509 return 0;
1510}
f4d7e40a 1511
70a87ffe
AS
1512/* starting from main bpf function walk all instructions of the function
1513 * and recursively walk all callees that given function can call.
1514 * Ignore jump and exit insns.
1515 * Since recursion is prevented by check_cfg() this algorithm
1516 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1517 */
1518static int check_max_stack_depth(struct bpf_verifier_env *env)
1519{
9c8105bd
JW
1520 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1521 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1522 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1523 int ret_insn[MAX_CALL_FRAMES];
1524 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1525
70a87ffe
AS
1526process_func:
1527 /* round up to 32-bytes, since this is granularity
1528 * of interpreter stack size
1529 */
9c8105bd 1530 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1531 if (depth > MAX_BPF_STACK) {
f4d7e40a 1532 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1533 frame + 1, depth);
f4d7e40a
AS
1534 return -EACCES;
1535 }
70a87ffe 1536continue_func:
4cb3d99c 1537 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1538 for (; i < subprog_end; i++) {
1539 if (insn[i].code != (BPF_JMP | BPF_CALL))
1540 continue;
1541 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1542 continue;
1543 /* remember insn and function to return to */
1544 ret_insn[frame] = i + 1;
9c8105bd 1545 ret_prog[frame] = idx;
70a87ffe
AS
1546
1547 /* find the callee */
1548 i = i + insn[i].imm + 1;
9c8105bd
JW
1549 idx = find_subprog(env, i);
1550 if (idx < 0) {
70a87ffe
AS
1551 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1552 i);
1553 return -EFAULT;
1554 }
70a87ffe
AS
1555 frame++;
1556 if (frame >= MAX_CALL_FRAMES) {
1557 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1558 return -EFAULT;
1559 }
1560 goto process_func;
1561 }
1562 /* end of for() loop means the last insn of the 'subprog'
1563 * was reached. Doesn't matter whether it was JA or EXIT
1564 */
1565 if (frame == 0)
1566 return 0;
9c8105bd 1567 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1568 frame--;
1569 i = ret_insn[frame];
9c8105bd 1570 idx = ret_prog[frame];
70a87ffe 1571 goto continue_func;
f4d7e40a
AS
1572}
1573
19d28fbd 1574#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1575static int get_callee_stack_depth(struct bpf_verifier_env *env,
1576 const struct bpf_insn *insn, int idx)
1577{
1578 int start = idx + insn->imm + 1, subprog;
1579
1580 subprog = find_subprog(env, start);
1581 if (subprog < 0) {
1582 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1583 start);
1584 return -EFAULT;
1585 }
9c8105bd 1586 return env->subprog_info[subprog].stack_depth;
1ea47e01 1587}
19d28fbd 1588#endif
1ea47e01 1589
58990d1f
DB
1590static int check_ctx_reg(struct bpf_verifier_env *env,
1591 const struct bpf_reg_state *reg, int regno)
1592{
1593 /* Access to ctx or passing it to a helper is only allowed in
1594 * its original, unmodified form.
1595 */
1596
1597 if (reg->off) {
1598 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1599 regno, reg->off);
1600 return -EACCES;
1601 }
1602
1603 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1604 char tn_buf[48];
1605
1606 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1607 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1608 return -EACCES;
1609 }
1610
1611 return 0;
1612}
1613
0c17d1d2
JH
1614/* truncate register to smaller size (in bytes)
1615 * must be called with size < BPF_REG_SIZE
1616 */
1617static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1618{
1619 u64 mask;
1620
1621 /* clear high bits in bit representation */
1622 reg->var_off = tnum_cast(reg->var_off, size);
1623
1624 /* fix arithmetic bounds */
1625 mask = ((u64)1 << (size * 8)) - 1;
1626 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1627 reg->umin_value &= mask;
1628 reg->umax_value &= mask;
1629 } else {
1630 reg->umin_value = 0;
1631 reg->umax_value = mask;
1632 }
1633 reg->smin_value = reg->umin_value;
1634 reg->smax_value = reg->umax_value;
1635}
1636
17a52670
AS
1637/* check whether memory at (regno + off) is accessible for t = (read | write)
1638 * if t==write, value_regno is a register which value is stored into memory
1639 * if t==read, value_regno is a register which will receive the value from memory
1640 * if t==write && value_regno==-1, some unknown value is stored into memory
1641 * if t==read && value_regno==-1, don't care what we read from memory
1642 */
ca369602
DB
1643static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1644 int off, int bpf_size, enum bpf_access_type t,
1645 int value_regno, bool strict_alignment_once)
17a52670 1646{
638f5b90
AS
1647 struct bpf_reg_state *regs = cur_regs(env);
1648 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1649 struct bpf_func_state *state;
17a52670
AS
1650 int size, err = 0;
1651
1652 size = bpf_size_to_bytes(bpf_size);
1653 if (size < 0)
1654 return size;
1655
f1174f77 1656 /* alignment checks will add in reg->off themselves */
ca369602 1657 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1658 if (err)
1659 return err;
17a52670 1660
f1174f77
EC
1661 /* for access checks, reg->off is just part of off */
1662 off += reg->off;
1663
1664 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1665 if (t == BPF_WRITE && value_regno >= 0 &&
1666 is_pointer_value(env, value_regno)) {
61bd5218 1667 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1668 return -EACCES;
1669 }
48461135 1670
9fd29c08 1671 err = check_map_access(env, regno, off, size, false);
17a52670 1672 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1673 mark_reg_unknown(env, regs, value_regno);
17a52670 1674
1a0dc1ac 1675 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1676 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1677
1be7f75d
AS
1678 if (t == BPF_WRITE && value_regno >= 0 &&
1679 is_pointer_value(env, value_regno)) {
61bd5218 1680 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1681 return -EACCES;
1682 }
f1174f77 1683
58990d1f
DB
1684 err = check_ctx_reg(env, reg, regno);
1685 if (err < 0)
1686 return err;
1687
31fd8581 1688 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1689 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1690 /* ctx access returns either a scalar, or a
de8f3a83
DB
1691 * PTR_TO_PACKET[_META,_END]. In the latter
1692 * case, we know the offset is zero.
f1174f77
EC
1693 */
1694 if (reg_type == SCALAR_VALUE)
638f5b90 1695 mark_reg_unknown(env, regs, value_regno);
f1174f77 1696 else
638f5b90 1697 mark_reg_known_zero(env, regs,
61bd5218 1698 value_regno);
638f5b90 1699 regs[value_regno].type = reg_type;
969bf05e 1700 }
17a52670 1701
f1174f77
EC
1702 } else if (reg->type == PTR_TO_STACK) {
1703 /* stack accesses must be at a fixed offset, so that we can
1704 * determine what type of data were returned.
1705 * See check_stack_read().
1706 */
1707 if (!tnum_is_const(reg->var_off)) {
1708 char tn_buf[48];
1709
1710 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1711 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1712 tn_buf, off, size);
1713 return -EACCES;
1714 }
1715 off += reg->var_off.value;
17a52670 1716 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1717 verbose(env, "invalid stack off=%d size=%d\n", off,
1718 size);
17a52670
AS
1719 return -EACCES;
1720 }
8726679a 1721
f4d7e40a
AS
1722 state = func(env, reg);
1723 err = update_stack_depth(env, state, off);
1724 if (err)
1725 return err;
8726679a 1726
638f5b90 1727 if (t == BPF_WRITE)
61bd5218 1728 err = check_stack_write(env, state, off, size,
af86ca4e 1729 value_regno, insn_idx);
638f5b90 1730 else
61bd5218
JK
1731 err = check_stack_read(env, state, off, size,
1732 value_regno);
de8f3a83 1733 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1734 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1735 verbose(env, "cannot write into packet\n");
969bf05e
AS
1736 return -EACCES;
1737 }
4acf6c0b
BB
1738 if (t == BPF_WRITE && value_regno >= 0 &&
1739 is_pointer_value(env, value_regno)) {
61bd5218
JK
1740 verbose(env, "R%d leaks addr into packet\n",
1741 value_regno);
4acf6c0b
BB
1742 return -EACCES;
1743 }
9fd29c08 1744 err = check_packet_access(env, regno, off, size, false);
969bf05e 1745 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1746 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
1747 } else if (reg->type == PTR_TO_FLOW_KEYS) {
1748 if (t == BPF_WRITE && value_regno >= 0 &&
1749 is_pointer_value(env, value_regno)) {
1750 verbose(env, "R%d leaks addr into flow keys\n",
1751 value_regno);
1752 return -EACCES;
1753 }
1754
1755 err = check_flow_keys_access(env, off, size);
1756 if (!err && t == BPF_READ && value_regno >= 0)
1757 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
1758 } else if (reg->type == PTR_TO_SOCKET) {
1759 if (t == BPF_WRITE) {
1760 verbose(env, "cannot write into socket\n");
1761 return -EACCES;
1762 }
1763 err = check_sock_access(env, regno, off, size, t);
1764 if (!err && value_regno >= 0)
1765 mark_reg_unknown(env, regs, value_regno);
17a52670 1766 } else {
61bd5218
JK
1767 verbose(env, "R%d invalid mem access '%s'\n", regno,
1768 reg_type_str[reg->type]);
17a52670
AS
1769 return -EACCES;
1770 }
969bf05e 1771
f1174f77 1772 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1773 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1774 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1775 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1776 }
17a52670
AS
1777 return err;
1778}
1779
31fd8581 1780static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1781{
17a52670
AS
1782 int err;
1783
1784 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1785 insn->imm != 0) {
61bd5218 1786 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1787 return -EINVAL;
1788 }
1789
1790 /* check src1 operand */
dc503a8a 1791 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1792 if (err)
1793 return err;
1794
1795 /* check src2 operand */
dc503a8a 1796 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1797 if (err)
1798 return err;
1799
6bdf6abc 1800 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1801 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1802 return -EACCES;
1803 }
1804
ca369602
DB
1805 if (is_ctx_reg(env, insn->dst_reg) ||
1806 is_pkt_reg(env, insn->dst_reg)) {
1807 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
9d2be44a 1808 insn->dst_reg, reg_type_str[insn->dst_reg]);
f37a8cb8
DB
1809 return -EACCES;
1810 }
1811
17a52670 1812 /* check whether atomic_add can read the memory */
31fd8581 1813 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1814 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1815 if (err)
1816 return err;
1817
1818 /* check whether atomic_add can write into the same memory */
31fd8581 1819 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1820 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1821}
1822
1823/* when register 'regno' is passed into function that will read 'access_size'
1824 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1825 * and all elements of stack are initialized.
1826 * Unlike most pointer bounds-checking functions, this one doesn't take an
1827 * 'off' argument, so it has to add in reg->off itself.
17a52670 1828 */
58e2af8b 1829static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1830 int access_size, bool zero_size_allowed,
1831 struct bpf_call_arg_meta *meta)
17a52670 1832{
914cb781 1833 struct bpf_reg_state *reg = cur_regs(env) + regno;
f4d7e40a 1834 struct bpf_func_state *state = func(env, reg);
638f5b90 1835 int off, i, slot, spi;
17a52670 1836
914cb781 1837 if (reg->type != PTR_TO_STACK) {
f1174f77 1838 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1839 if (zero_size_allowed && access_size == 0 &&
914cb781 1840 register_is_null(reg))
8e2fe1d9
DB
1841 return 0;
1842
61bd5218 1843 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 1844 reg_type_str[reg->type],
8e2fe1d9 1845 reg_type_str[PTR_TO_STACK]);
17a52670 1846 return -EACCES;
8e2fe1d9 1847 }
17a52670 1848
f1174f77 1849 /* Only allow fixed-offset stack reads */
914cb781 1850 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
1851 char tn_buf[48];
1852
914cb781 1853 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1854 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1855 regno, tn_buf);
ea25f914 1856 return -EACCES;
f1174f77 1857 }
914cb781 1858 off = reg->off + reg->var_off.value;
17a52670 1859 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1860 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1861 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1862 regno, off, access_size);
1863 return -EACCES;
1864 }
1865
435faee1
DB
1866 if (meta && meta->raw_mode) {
1867 meta->access_size = access_size;
1868 meta->regno = regno;
1869 return 0;
1870 }
1871
17a52670 1872 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
1873 u8 *stype;
1874
638f5b90
AS
1875 slot = -(off + i) - 1;
1876 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
1877 if (state->allocated_stack <= slot)
1878 goto err;
1879 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1880 if (*stype == STACK_MISC)
1881 goto mark;
1882 if (*stype == STACK_ZERO) {
1883 /* helper can write anything into the stack */
1884 *stype = STACK_MISC;
1885 goto mark;
17a52670 1886 }
cc2b14d5
AS
1887err:
1888 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1889 off, i, access_size);
1890 return -EACCES;
1891mark:
1892 /* reading any byte out of 8-byte 'spill_slot' will cause
1893 * the whole slot to be marked as 'read'
1894 */
679c782d
EC
1895 mark_reg_read(env, &state->stack[spi].spilled_ptr,
1896 state->stack[spi].spilled_ptr.parent);
17a52670 1897 }
f4d7e40a 1898 return update_stack_depth(env, state, off);
17a52670
AS
1899}
1900
06c1c049
GB
1901static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1902 int access_size, bool zero_size_allowed,
1903 struct bpf_call_arg_meta *meta)
1904{
638f5b90 1905 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1906
f1174f77 1907 switch (reg->type) {
06c1c049 1908 case PTR_TO_PACKET:
de8f3a83 1909 case PTR_TO_PACKET_META:
9fd29c08
YS
1910 return check_packet_access(env, regno, reg->off, access_size,
1911 zero_size_allowed);
d58e468b
PP
1912 case PTR_TO_FLOW_KEYS:
1913 return check_flow_keys_access(env, reg->off, access_size);
06c1c049 1914 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1915 return check_map_access(env, regno, reg->off, access_size,
1916 zero_size_allowed);
f1174f77 1917 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1918 return check_stack_boundary(env, regno, access_size,
1919 zero_size_allowed, meta);
1920 }
1921}
1922
90133415
DB
1923static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1924{
1925 return type == ARG_PTR_TO_MEM ||
1926 type == ARG_PTR_TO_MEM_OR_NULL ||
1927 type == ARG_PTR_TO_UNINIT_MEM;
1928}
1929
1930static bool arg_type_is_mem_size(enum bpf_arg_type type)
1931{
1932 return type == ARG_CONST_SIZE ||
1933 type == ARG_CONST_SIZE_OR_ZERO;
1934}
1935
58e2af8b 1936static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1937 enum bpf_arg_type arg_type,
1938 struct bpf_call_arg_meta *meta)
17a52670 1939{
638f5b90 1940 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1941 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1942 int err = 0;
1943
80f1d68c 1944 if (arg_type == ARG_DONTCARE)
17a52670
AS
1945 return 0;
1946
dc503a8a
EC
1947 err = check_reg_arg(env, regno, SRC_OP);
1948 if (err)
1949 return err;
17a52670 1950
1be7f75d
AS
1951 if (arg_type == ARG_ANYTHING) {
1952 if (is_pointer_value(env, regno)) {
61bd5218
JK
1953 verbose(env, "R%d leaks addr into helper function\n",
1954 regno);
1be7f75d
AS
1955 return -EACCES;
1956 }
80f1d68c 1957 return 0;
1be7f75d 1958 }
80f1d68c 1959
de8f3a83 1960 if (type_is_pkt_pointer(type) &&
3a0af8fd 1961 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1962 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1963 return -EACCES;
1964 }
1965
8e2fe1d9 1966 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1967 arg_type == ARG_PTR_TO_MAP_VALUE) {
1968 expected_type = PTR_TO_STACK;
d71962f3 1969 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 1970 type != expected_type)
6841de8b 1971 goto err_type;
39f19ebb
AS
1972 } else if (arg_type == ARG_CONST_SIZE ||
1973 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1974 expected_type = SCALAR_VALUE;
1975 if (type != expected_type)
6841de8b 1976 goto err_type;
17a52670
AS
1977 } else if (arg_type == ARG_CONST_MAP_PTR) {
1978 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1979 if (type != expected_type)
1980 goto err_type;
608cd71a
AS
1981 } else if (arg_type == ARG_PTR_TO_CTX) {
1982 expected_type = PTR_TO_CTX;
6841de8b
AS
1983 if (type != expected_type)
1984 goto err_type;
58990d1f
DB
1985 err = check_ctx_reg(env, reg, regno);
1986 if (err < 0)
1987 return err;
c64b7983
JS
1988 } else if (arg_type == ARG_PTR_TO_SOCKET) {
1989 expected_type = PTR_TO_SOCKET;
1990 if (type != expected_type)
1991 goto err_type;
90133415 1992 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
1993 expected_type = PTR_TO_STACK;
1994 /* One exception here. In case function allows for NULL to be
f1174f77 1995 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1996 * happens during stack boundary checking.
1997 */
914cb781 1998 if (register_is_null(reg) &&
db1ac496 1999 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2000 /* final test in check_stack_boundary() */;
de8f3a83
DB
2001 else if (!type_is_pkt_pointer(type) &&
2002 type != PTR_TO_MAP_VALUE &&
f1174f77 2003 type != expected_type)
6841de8b 2004 goto err_type;
39f19ebb 2005 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2006 } else {
61bd5218 2007 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2008 return -EFAULT;
2009 }
2010
17a52670
AS
2011 if (arg_type == ARG_CONST_MAP_PTR) {
2012 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2013 meta->map_ptr = reg->map_ptr;
17a52670
AS
2014 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2015 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2016 * check that [key, key + map->key_size) are within
2017 * stack limits and initialized
2018 */
33ff9823 2019 if (!meta->map_ptr) {
17a52670
AS
2020 /* in function declaration map_ptr must come before
2021 * map_key, so that it's verified and known before
2022 * we have to check map_key here. Otherwise it means
2023 * that kernel subsystem misconfigured verifier
2024 */
61bd5218 2025 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2026 return -EACCES;
2027 }
d71962f3
PC
2028 err = check_helper_mem_access(env, regno,
2029 meta->map_ptr->key_size, false,
2030 NULL);
17a52670
AS
2031 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2032 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2033 * check [value, value + map->value_size) validity
2034 */
33ff9823 2035 if (!meta->map_ptr) {
17a52670 2036 /* kernel subsystem misconfigured verifier */
61bd5218 2037 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2038 return -EACCES;
2039 }
d71962f3
PC
2040 err = check_helper_mem_access(env, regno,
2041 meta->map_ptr->value_size, false,
2042 NULL);
90133415 2043 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2044 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2045
849fa506
YS
2046 /* remember the mem_size which may be used later
2047 * to refine return values.
2048 */
2049 meta->msize_smax_value = reg->smax_value;
2050 meta->msize_umax_value = reg->umax_value;
2051
f1174f77
EC
2052 /* The register is SCALAR_VALUE; the access check
2053 * happens using its boundaries.
06c1c049 2054 */
f1174f77 2055 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2056 /* For unprivileged variable accesses, disable raw
2057 * mode so that the program is required to
2058 * initialize all the memory that the helper could
2059 * just partially fill up.
2060 */
2061 meta = NULL;
2062
b03c9f9f 2063 if (reg->smin_value < 0) {
61bd5218 2064 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2065 regno);
2066 return -EACCES;
2067 }
06c1c049 2068
b03c9f9f 2069 if (reg->umin_value == 0) {
f1174f77
EC
2070 err = check_helper_mem_access(env, regno - 1, 0,
2071 zero_size_allowed,
2072 meta);
06c1c049
GB
2073 if (err)
2074 return err;
06c1c049 2075 }
f1174f77 2076
b03c9f9f 2077 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2078 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2079 regno);
2080 return -EACCES;
2081 }
2082 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2083 reg->umax_value,
f1174f77 2084 zero_size_allowed, meta);
17a52670
AS
2085 }
2086
2087 return err;
6841de8b 2088err_type:
61bd5218 2089 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2090 reg_type_str[type], reg_type_str[expected_type]);
2091 return -EACCES;
17a52670
AS
2092}
2093
61bd5218
JK
2094static int check_map_func_compatibility(struct bpf_verifier_env *env,
2095 struct bpf_map *map, int func_id)
35578d79 2096{
35578d79
KX
2097 if (!map)
2098 return 0;
2099
6aff67c8
AS
2100 /* We need a two way check, first is from map perspective ... */
2101 switch (map->map_type) {
2102 case BPF_MAP_TYPE_PROG_ARRAY:
2103 if (func_id != BPF_FUNC_tail_call)
2104 goto error;
2105 break;
2106 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2107 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2108 func_id != BPF_FUNC_perf_event_output &&
2109 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2110 goto error;
2111 break;
2112 case BPF_MAP_TYPE_STACK_TRACE:
2113 if (func_id != BPF_FUNC_get_stackid)
2114 goto error;
2115 break;
4ed8ec52 2116 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2117 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2118 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2119 goto error;
2120 break;
cd339431 2121 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2122 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2123 if (func_id != BPF_FUNC_get_local_storage)
2124 goto error;
2125 break;
546ac1ff
JF
2126 /* devmap returns a pointer to a live net_device ifindex that we cannot
2127 * allow to be modified from bpf side. So do not allow lookup elements
2128 * for now.
2129 */
2130 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2131 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2132 goto error;
2133 break;
fbfc504a
BT
2134 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2135 * appear.
2136 */
6710e112 2137 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2138 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2139 if (func_id != BPF_FUNC_redirect_map)
2140 goto error;
2141 break;
56f668df 2142 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2143 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2144 if (func_id != BPF_FUNC_map_lookup_elem)
2145 goto error;
16a43625 2146 break;
174a79ff
JF
2147 case BPF_MAP_TYPE_SOCKMAP:
2148 if (func_id != BPF_FUNC_sk_redirect_map &&
2149 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2150 func_id != BPF_FUNC_map_delete_elem &&
2151 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2152 goto error;
2153 break;
81110384
JF
2154 case BPF_MAP_TYPE_SOCKHASH:
2155 if (func_id != BPF_FUNC_sk_redirect_hash &&
2156 func_id != BPF_FUNC_sock_hash_update &&
2157 func_id != BPF_FUNC_map_delete_elem &&
2158 func_id != BPF_FUNC_msg_redirect_hash)
2159 goto error;
2160 break;
2dbb9b9e
MKL
2161 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2162 if (func_id != BPF_FUNC_sk_select_reuseport)
2163 goto error;
2164 break;
6aff67c8
AS
2165 default:
2166 break;
2167 }
2168
2169 /* ... and second from the function itself. */
2170 switch (func_id) {
2171 case BPF_FUNC_tail_call:
2172 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2173 goto error;
f910cefa 2174 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2175 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2176 return -EINVAL;
2177 }
6aff67c8
AS
2178 break;
2179 case BPF_FUNC_perf_event_read:
2180 case BPF_FUNC_perf_event_output:
908432ca 2181 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2182 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2183 goto error;
2184 break;
2185 case BPF_FUNC_get_stackid:
2186 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2187 goto error;
2188 break;
60d20f91 2189 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2190 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2191 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2192 goto error;
2193 break;
97f91a7c 2194 case BPF_FUNC_redirect_map:
9c270af3 2195 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2196 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2197 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2198 goto error;
2199 break;
174a79ff 2200 case BPF_FUNC_sk_redirect_map:
4f738adb 2201 case BPF_FUNC_msg_redirect_map:
81110384 2202 case BPF_FUNC_sock_map_update:
174a79ff
JF
2203 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2204 goto error;
2205 break;
81110384
JF
2206 case BPF_FUNC_sk_redirect_hash:
2207 case BPF_FUNC_msg_redirect_hash:
2208 case BPF_FUNC_sock_hash_update:
2209 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2210 goto error;
2211 break;
cd339431 2212 case BPF_FUNC_get_local_storage:
b741f163
RG
2213 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2214 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2215 goto error;
2216 break;
2dbb9b9e
MKL
2217 case BPF_FUNC_sk_select_reuseport:
2218 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2219 goto error;
2220 break;
6aff67c8
AS
2221 default:
2222 break;
35578d79
KX
2223 }
2224
2225 return 0;
6aff67c8 2226error:
61bd5218 2227 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2228 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2229 return -EINVAL;
35578d79
KX
2230}
2231
90133415 2232static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2233{
2234 int count = 0;
2235
39f19ebb 2236 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2237 count++;
39f19ebb 2238 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2239 count++;
39f19ebb 2240 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2241 count++;
39f19ebb 2242 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2243 count++;
39f19ebb 2244 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2245 count++;
2246
90133415
DB
2247 /* We only support one arg being in raw mode at the moment,
2248 * which is sufficient for the helper functions we have
2249 * right now.
2250 */
2251 return count <= 1;
2252}
2253
2254static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2255 enum bpf_arg_type arg_next)
2256{
2257 return (arg_type_is_mem_ptr(arg_curr) &&
2258 !arg_type_is_mem_size(arg_next)) ||
2259 (!arg_type_is_mem_ptr(arg_curr) &&
2260 arg_type_is_mem_size(arg_next));
2261}
2262
2263static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2264{
2265 /* bpf_xxx(..., buf, len) call will access 'len'
2266 * bytes from memory 'buf'. Both arg types need
2267 * to be paired, so make sure there's no buggy
2268 * helper function specification.
2269 */
2270 if (arg_type_is_mem_size(fn->arg1_type) ||
2271 arg_type_is_mem_ptr(fn->arg5_type) ||
2272 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2273 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2274 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2275 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2276 return false;
2277
2278 return true;
2279}
2280
2281static int check_func_proto(const struct bpf_func_proto *fn)
2282{
2283 return check_raw_mode_ok(fn) &&
2284 check_arg_pair_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2285}
2286
de8f3a83
DB
2287/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2288 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2289 */
f4d7e40a
AS
2290static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2291 struct bpf_func_state *state)
969bf05e 2292{
58e2af8b 2293 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2294 int i;
2295
2296 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2297 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2298 mark_reg_unknown(env, regs, i);
969bf05e 2299
f3709f69
JS
2300 bpf_for_each_spilled_reg(i, state, reg) {
2301 if (!reg)
969bf05e 2302 continue;
de8f3a83
DB
2303 if (reg_is_pkt_pointer_any(reg))
2304 __mark_reg_unknown(reg);
969bf05e
AS
2305 }
2306}
2307
f4d7e40a
AS
2308static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2309{
2310 struct bpf_verifier_state *vstate = env->cur_state;
2311 int i;
2312
2313 for (i = 0; i <= vstate->curframe; i++)
2314 __clear_all_pkt_pointers(env, vstate->frame[i]);
2315}
2316
2317static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2318 int *insn_idx)
2319{
2320 struct bpf_verifier_state *state = env->cur_state;
2321 struct bpf_func_state *caller, *callee;
2322 int i, subprog, target_insn;
2323
aada9ce6 2324 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2325 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2326 state->curframe + 2);
f4d7e40a
AS
2327 return -E2BIG;
2328 }
2329
2330 target_insn = *insn_idx + insn->imm;
2331 subprog = find_subprog(env, target_insn + 1);
2332 if (subprog < 0) {
2333 verbose(env, "verifier bug. No program starts at insn %d\n",
2334 target_insn + 1);
2335 return -EFAULT;
2336 }
2337
2338 caller = state->frame[state->curframe];
2339 if (state->frame[state->curframe + 1]) {
2340 verbose(env, "verifier bug. Frame %d already allocated\n",
2341 state->curframe + 1);
2342 return -EFAULT;
2343 }
2344
2345 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2346 if (!callee)
2347 return -ENOMEM;
2348 state->frame[state->curframe + 1] = callee;
2349
2350 /* callee cannot access r0, r6 - r9 for reading and has to write
2351 * into its own stack before reading from it.
2352 * callee can read/write into caller's stack
2353 */
2354 init_func_state(env, callee,
2355 /* remember the callsite, it will be used by bpf_exit */
2356 *insn_idx /* callsite */,
2357 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2358 subprog /* subprog number within this prog */);
f4d7e40a 2359
679c782d
EC
2360 /* copy r1 - r5 args that callee can access. The copy includes parent
2361 * pointers, which connects us up to the liveness chain
2362 */
f4d7e40a
AS
2363 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2364 callee->regs[i] = caller->regs[i];
2365
679c782d 2366 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2367 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2368 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2369 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2370 }
2371
2372 /* only increment it after check_reg_arg() finished */
2373 state->curframe++;
2374
2375 /* and go analyze first insn of the callee */
2376 *insn_idx = target_insn;
2377
2378 if (env->log.level) {
2379 verbose(env, "caller:\n");
2380 print_verifier_state(env, caller);
2381 verbose(env, "callee:\n");
2382 print_verifier_state(env, callee);
2383 }
2384 return 0;
2385}
2386
2387static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2388{
2389 struct bpf_verifier_state *state = env->cur_state;
2390 struct bpf_func_state *caller, *callee;
2391 struct bpf_reg_state *r0;
2392
2393 callee = state->frame[state->curframe];
2394 r0 = &callee->regs[BPF_REG_0];
2395 if (r0->type == PTR_TO_STACK) {
2396 /* technically it's ok to return caller's stack pointer
2397 * (or caller's caller's pointer) back to the caller,
2398 * since these pointers are valid. Only current stack
2399 * pointer will be invalid as soon as function exits,
2400 * but let's be conservative
2401 */
2402 verbose(env, "cannot return stack pointer to the caller\n");
2403 return -EINVAL;
2404 }
2405
2406 state->curframe--;
2407 caller = state->frame[state->curframe];
2408 /* return to the caller whatever r0 had in the callee */
2409 caller->regs[BPF_REG_0] = *r0;
2410
2411 *insn_idx = callee->callsite + 1;
2412 if (env->log.level) {
2413 verbose(env, "returning from callee:\n");
2414 print_verifier_state(env, callee);
2415 verbose(env, "to caller at %d:\n", *insn_idx);
2416 print_verifier_state(env, caller);
2417 }
2418 /* clear everything in the callee */
2419 free_func_state(callee);
2420 state->frame[state->curframe + 1] = NULL;
2421 return 0;
2422}
2423
849fa506
YS
2424static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2425 int func_id,
2426 struct bpf_call_arg_meta *meta)
2427{
2428 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2429
2430 if (ret_type != RET_INTEGER ||
2431 (func_id != BPF_FUNC_get_stack &&
2432 func_id != BPF_FUNC_probe_read_str))
2433 return;
2434
2435 ret_reg->smax_value = meta->msize_smax_value;
2436 ret_reg->umax_value = meta->msize_umax_value;
2437 __reg_deduce_bounds(ret_reg);
2438 __reg_bound_offset(ret_reg);
2439}
2440
c93552c4
DB
2441static int
2442record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2443 int func_id, int insn_idx)
2444{
2445 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2446
2447 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2448 func_id != BPF_FUNC_map_lookup_elem &&
2449 func_id != BPF_FUNC_map_update_elem &&
2450 func_id != BPF_FUNC_map_delete_elem)
c93552c4 2451 return 0;
09772d92 2452
c93552c4
DB
2453 if (meta->map_ptr == NULL) {
2454 verbose(env, "kernel subsystem misconfigured verifier\n");
2455 return -EINVAL;
2456 }
2457
2458 if (!BPF_MAP_PTR(aux->map_state))
2459 bpf_map_ptr_store(aux, meta->map_ptr,
2460 meta->map_ptr->unpriv_array);
2461 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2462 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2463 meta->map_ptr->unpriv_array);
2464 return 0;
2465}
2466
f4d7e40a 2467static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2468{
17a52670 2469 const struct bpf_func_proto *fn = NULL;
638f5b90 2470 struct bpf_reg_state *regs;
33ff9823 2471 struct bpf_call_arg_meta meta;
969bf05e 2472 bool changes_data;
17a52670
AS
2473 int i, err;
2474
2475 /* find function prototype */
2476 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2477 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2478 func_id);
17a52670
AS
2479 return -EINVAL;
2480 }
2481
00176a34 2482 if (env->ops->get_func_proto)
5e43f899 2483 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2484 if (!fn) {
61bd5218
JK
2485 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2486 func_id);
17a52670
AS
2487 return -EINVAL;
2488 }
2489
2490 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2491 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2492 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2493 return -EINVAL;
2494 }
2495
04514d13 2496 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2497 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2498 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2499 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2500 func_id_name(func_id), func_id);
2501 return -EINVAL;
2502 }
969bf05e 2503
33ff9823 2504 memset(&meta, 0, sizeof(meta));
36bbef52 2505 meta.pkt_access = fn->pkt_access;
33ff9823 2506
90133415 2507 err = check_func_proto(fn);
435faee1 2508 if (err) {
61bd5218 2509 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2510 func_id_name(func_id), func_id);
435faee1
DB
2511 return err;
2512 }
2513
17a52670 2514 /* check args */
33ff9823 2515 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2516 if (err)
2517 return err;
33ff9823 2518 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2519 if (err)
2520 return err;
33ff9823 2521 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2522 if (err)
2523 return err;
33ff9823 2524 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2525 if (err)
2526 return err;
33ff9823 2527 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2528 if (err)
2529 return err;
2530
c93552c4
DB
2531 err = record_func_map(env, &meta, func_id, insn_idx);
2532 if (err)
2533 return err;
2534
435faee1
DB
2535 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2536 * is inferred from register state.
2537 */
2538 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2539 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2540 BPF_WRITE, -1, false);
435faee1
DB
2541 if (err)
2542 return err;
2543 }
2544
638f5b90 2545 regs = cur_regs(env);
cd339431
RG
2546
2547 /* check that flags argument in get_local_storage(map, flags) is 0,
2548 * this is required because get_local_storage() can't return an error.
2549 */
2550 if (func_id == BPF_FUNC_get_local_storage &&
2551 !register_is_null(&regs[BPF_REG_2])) {
2552 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2553 return -EINVAL;
2554 }
2555
17a52670 2556 /* reset caller saved regs */
dc503a8a 2557 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2558 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2559 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2560 }
17a52670 2561
dc503a8a 2562 /* update return register (already marked as written above) */
17a52670 2563 if (fn->ret_type == RET_INTEGER) {
f1174f77 2564 /* sets type to SCALAR_VALUE */
61bd5218 2565 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2566 } else if (fn->ret_type == RET_VOID) {
2567 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2568 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2569 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2570 if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
2571 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2572 else
2573 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 2574 /* There is no offset yet applied, variable or fixed */
61bd5218 2575 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2576 /* remember map_ptr, so that check_map_access()
2577 * can check 'value_size' boundary of memory access
2578 * to map element returned from bpf_map_lookup_elem()
2579 */
33ff9823 2580 if (meta.map_ptr == NULL) {
61bd5218
JK
2581 verbose(env,
2582 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2583 return -EINVAL;
2584 }
33ff9823 2585 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 2586 regs[BPF_REG_0].id = ++env->id_gen;
c64b7983
JS
2587 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2588 mark_reg_known_zero(env, regs, BPF_REG_0);
2589 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2590 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 2591 } else {
61bd5218 2592 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2593 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2594 return -EINVAL;
2595 }
04fd61ab 2596
849fa506
YS
2597 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2598
61bd5218 2599 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2600 if (err)
2601 return err;
04fd61ab 2602
c195651e
YS
2603 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2604 const char *err_str;
2605
2606#ifdef CONFIG_PERF_EVENTS
2607 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2608 err_str = "cannot get callchain buffer for func %s#%d\n";
2609#else
2610 err = -ENOTSUPP;
2611 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2612#endif
2613 if (err) {
2614 verbose(env, err_str, func_id_name(func_id), func_id);
2615 return err;
2616 }
2617
2618 env->prog->has_callchain_buf = true;
2619 }
2620
969bf05e
AS
2621 if (changes_data)
2622 clear_all_pkt_pointers(env);
2623 return 0;
2624}
2625
b03c9f9f
EC
2626static bool signed_add_overflows(s64 a, s64 b)
2627{
2628 /* Do the add in u64, where overflow is well-defined */
2629 s64 res = (s64)((u64)a + (u64)b);
2630
2631 if (b < 0)
2632 return res > a;
2633 return res < a;
2634}
2635
2636static bool signed_sub_overflows(s64 a, s64 b)
2637{
2638 /* Do the sub in u64, where overflow is well-defined */
2639 s64 res = (s64)((u64)a - (u64)b);
2640
2641 if (b < 0)
2642 return res < a;
2643 return res > a;
969bf05e
AS
2644}
2645
bb7f0f98
AS
2646static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2647 const struct bpf_reg_state *reg,
2648 enum bpf_reg_type type)
2649{
2650 bool known = tnum_is_const(reg->var_off);
2651 s64 val = reg->var_off.value;
2652 s64 smin = reg->smin_value;
2653
2654 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2655 verbose(env, "math between %s pointer and %lld is not allowed\n",
2656 reg_type_str[type], val);
2657 return false;
2658 }
2659
2660 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2661 verbose(env, "%s pointer offset %d is not allowed\n",
2662 reg_type_str[type], reg->off);
2663 return false;
2664 }
2665
2666 if (smin == S64_MIN) {
2667 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2668 reg_type_str[type]);
2669 return false;
2670 }
2671
2672 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2673 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2674 smin, reg_type_str[type]);
2675 return false;
2676 }
2677
2678 return true;
2679}
2680
f1174f77 2681/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2682 * Caller should also handle BPF_MOV case separately.
2683 * If we return -EACCES, caller may want to try again treating pointer as a
2684 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2685 */
2686static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2687 struct bpf_insn *insn,
2688 const struct bpf_reg_state *ptr_reg,
2689 const struct bpf_reg_state *off_reg)
969bf05e 2690{
f4d7e40a
AS
2691 struct bpf_verifier_state *vstate = env->cur_state;
2692 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2693 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2694 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2695 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2696 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2697 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2698 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2699 u8 opcode = BPF_OP(insn->code);
f1174f77 2700 u32 dst = insn->dst_reg;
969bf05e 2701
f1174f77 2702 dst_reg = &regs[dst];
969bf05e 2703
6f16101e
DB
2704 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2705 smin_val > smax_val || umin_val > umax_val) {
2706 /* Taint dst register if offset had invalid bounds derived from
2707 * e.g. dead branches.
2708 */
2709 __mark_reg_unknown(dst_reg);
2710 return 0;
f1174f77
EC
2711 }
2712
2713 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2714 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
2715 verbose(env,
2716 "R%d 32-bit pointer arithmetic prohibited\n",
2717 dst);
f1174f77 2718 return -EACCES;
969bf05e
AS
2719 }
2720
aad2eeaf
JS
2721 switch (ptr_reg->type) {
2722 case PTR_TO_MAP_VALUE_OR_NULL:
2723 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
2724 dst, reg_type_str[ptr_reg->type]);
f1174f77 2725 return -EACCES;
aad2eeaf
JS
2726 case CONST_PTR_TO_MAP:
2727 case PTR_TO_PACKET_END:
c64b7983
JS
2728 case PTR_TO_SOCKET:
2729 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
2730 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
2731 dst, reg_type_str[ptr_reg->type]);
f1174f77 2732 return -EACCES;
aad2eeaf
JS
2733 default:
2734 break;
f1174f77
EC
2735 }
2736
2737 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2738 * The id may be overwritten later if we create a new variable offset.
969bf05e 2739 */
f1174f77
EC
2740 dst_reg->type = ptr_reg->type;
2741 dst_reg->id = ptr_reg->id;
969bf05e 2742
bb7f0f98
AS
2743 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2744 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2745 return -EINVAL;
2746
f1174f77
EC
2747 switch (opcode) {
2748 case BPF_ADD:
2749 /* We can take a fixed offset as long as it doesn't overflow
2750 * the s32 'off' field
969bf05e 2751 */
b03c9f9f
EC
2752 if (known && (ptr_reg->off + smin_val ==
2753 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 2754 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
2755 dst_reg->smin_value = smin_ptr;
2756 dst_reg->smax_value = smax_ptr;
2757 dst_reg->umin_value = umin_ptr;
2758 dst_reg->umax_value = umax_ptr;
f1174f77 2759 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 2760 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
2761 dst_reg->range = ptr_reg->range;
2762 break;
2763 }
f1174f77
EC
2764 /* A new variable offset is created. Note that off_reg->off
2765 * == 0, since it's a scalar.
2766 * dst_reg gets the pointer type and since some positive
2767 * integer value was added to the pointer, give it a new 'id'
2768 * if it's a PTR_TO_PACKET.
2769 * this creates a new 'base' pointer, off_reg (variable) gets
2770 * added into the variable offset, and we copy the fixed offset
2771 * from ptr_reg.
969bf05e 2772 */
b03c9f9f
EC
2773 if (signed_add_overflows(smin_ptr, smin_val) ||
2774 signed_add_overflows(smax_ptr, smax_val)) {
2775 dst_reg->smin_value = S64_MIN;
2776 dst_reg->smax_value = S64_MAX;
2777 } else {
2778 dst_reg->smin_value = smin_ptr + smin_val;
2779 dst_reg->smax_value = smax_ptr + smax_val;
2780 }
2781 if (umin_ptr + umin_val < umin_ptr ||
2782 umax_ptr + umax_val < umax_ptr) {
2783 dst_reg->umin_value = 0;
2784 dst_reg->umax_value = U64_MAX;
2785 } else {
2786 dst_reg->umin_value = umin_ptr + umin_val;
2787 dst_reg->umax_value = umax_ptr + umax_val;
2788 }
f1174f77
EC
2789 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2790 dst_reg->off = ptr_reg->off;
de8f3a83 2791 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2792 dst_reg->id = ++env->id_gen;
2793 /* something was added to pkt_ptr, set range to zero */
2794 dst_reg->range = 0;
2795 }
2796 break;
2797 case BPF_SUB:
2798 if (dst_reg == off_reg) {
2799 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2800 verbose(env, "R%d tried to subtract pointer from scalar\n",
2801 dst);
f1174f77
EC
2802 return -EACCES;
2803 }
2804 /* We don't allow subtraction from FP, because (according to
2805 * test_verifier.c test "invalid fp arithmetic", JITs might not
2806 * be able to deal with it.
969bf05e 2807 */
f1174f77 2808 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2809 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2810 dst);
f1174f77
EC
2811 return -EACCES;
2812 }
b03c9f9f
EC
2813 if (known && (ptr_reg->off - smin_val ==
2814 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2815 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2816 dst_reg->smin_value = smin_ptr;
2817 dst_reg->smax_value = smax_ptr;
2818 dst_reg->umin_value = umin_ptr;
2819 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2820 dst_reg->var_off = ptr_reg->var_off;
2821 dst_reg->id = ptr_reg->id;
b03c9f9f 2822 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2823 dst_reg->range = ptr_reg->range;
2824 break;
2825 }
f1174f77
EC
2826 /* A new variable offset is created. If the subtrahend is known
2827 * nonnegative, then any reg->range we had before is still good.
969bf05e 2828 */
b03c9f9f
EC
2829 if (signed_sub_overflows(smin_ptr, smax_val) ||
2830 signed_sub_overflows(smax_ptr, smin_val)) {
2831 /* Overflow possible, we know nothing */
2832 dst_reg->smin_value = S64_MIN;
2833 dst_reg->smax_value = S64_MAX;
2834 } else {
2835 dst_reg->smin_value = smin_ptr - smax_val;
2836 dst_reg->smax_value = smax_ptr - smin_val;
2837 }
2838 if (umin_ptr < umax_val) {
2839 /* Overflow possible, we know nothing */
2840 dst_reg->umin_value = 0;
2841 dst_reg->umax_value = U64_MAX;
2842 } else {
2843 /* Cannot overflow (as long as bounds are consistent) */
2844 dst_reg->umin_value = umin_ptr - umax_val;
2845 dst_reg->umax_value = umax_ptr - umin_val;
2846 }
f1174f77
EC
2847 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2848 dst_reg->off = ptr_reg->off;
de8f3a83 2849 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2850 dst_reg->id = ++env->id_gen;
2851 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2852 if (smin_val < 0)
f1174f77 2853 dst_reg->range = 0;
43188702 2854 }
f1174f77
EC
2855 break;
2856 case BPF_AND:
2857 case BPF_OR:
2858 case BPF_XOR:
82abbf8d
AS
2859 /* bitwise ops on pointers are troublesome, prohibit. */
2860 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2861 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2862 return -EACCES;
2863 default:
2864 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2865 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2866 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2867 return -EACCES;
43188702
JF
2868 }
2869
bb7f0f98
AS
2870 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2871 return -EINVAL;
2872
b03c9f9f
EC
2873 __update_reg_bounds(dst_reg);
2874 __reg_deduce_bounds(dst_reg);
2875 __reg_bound_offset(dst_reg);
43188702
JF
2876 return 0;
2877}
2878
468f6eaf
JH
2879/* WARNING: This function does calculations on 64-bit values, but the actual
2880 * execution may occur on 32-bit values. Therefore, things like bitshifts
2881 * need extra checks in the 32-bit case.
2882 */
f1174f77
EC
2883static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2884 struct bpf_insn *insn,
2885 struct bpf_reg_state *dst_reg,
2886 struct bpf_reg_state src_reg)
969bf05e 2887{
638f5b90 2888 struct bpf_reg_state *regs = cur_regs(env);
48461135 2889 u8 opcode = BPF_OP(insn->code);
f1174f77 2890 bool src_known, dst_known;
b03c9f9f
EC
2891 s64 smin_val, smax_val;
2892 u64 umin_val, umax_val;
468f6eaf 2893 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2894
b03c9f9f
EC
2895 smin_val = src_reg.smin_value;
2896 smax_val = src_reg.smax_value;
2897 umin_val = src_reg.umin_value;
2898 umax_val = src_reg.umax_value;
f1174f77
EC
2899 src_known = tnum_is_const(src_reg.var_off);
2900 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2901
6f16101e
DB
2902 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2903 smin_val > smax_val || umin_val > umax_val) {
2904 /* Taint dst register if offset had invalid bounds derived from
2905 * e.g. dead branches.
2906 */
2907 __mark_reg_unknown(dst_reg);
2908 return 0;
2909 }
2910
bb7f0f98
AS
2911 if (!src_known &&
2912 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2913 __mark_reg_unknown(dst_reg);
2914 return 0;
2915 }
2916
48461135
JB
2917 switch (opcode) {
2918 case BPF_ADD:
b03c9f9f
EC
2919 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2920 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2921 dst_reg->smin_value = S64_MIN;
2922 dst_reg->smax_value = S64_MAX;
2923 } else {
2924 dst_reg->smin_value += smin_val;
2925 dst_reg->smax_value += smax_val;
2926 }
2927 if (dst_reg->umin_value + umin_val < umin_val ||
2928 dst_reg->umax_value + umax_val < umax_val) {
2929 dst_reg->umin_value = 0;
2930 dst_reg->umax_value = U64_MAX;
2931 } else {
2932 dst_reg->umin_value += umin_val;
2933 dst_reg->umax_value += umax_val;
2934 }
f1174f77 2935 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2936 break;
2937 case BPF_SUB:
b03c9f9f
EC
2938 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2939 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2940 /* Overflow possible, we know nothing */
2941 dst_reg->smin_value = S64_MIN;
2942 dst_reg->smax_value = S64_MAX;
2943 } else {
2944 dst_reg->smin_value -= smax_val;
2945 dst_reg->smax_value -= smin_val;
2946 }
2947 if (dst_reg->umin_value < umax_val) {
2948 /* Overflow possible, we know nothing */
2949 dst_reg->umin_value = 0;
2950 dst_reg->umax_value = U64_MAX;
2951 } else {
2952 /* Cannot overflow (as long as bounds are consistent) */
2953 dst_reg->umin_value -= umax_val;
2954 dst_reg->umax_value -= umin_val;
2955 }
f1174f77 2956 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2957 break;
2958 case BPF_MUL:
b03c9f9f
EC
2959 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2960 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2961 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2962 __mark_reg_unbounded(dst_reg);
2963 __update_reg_bounds(dst_reg);
f1174f77
EC
2964 break;
2965 }
b03c9f9f
EC
2966 /* Both values are positive, so we can work with unsigned and
2967 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2968 */
b03c9f9f
EC
2969 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2970 /* Potential overflow, we know nothing */
2971 __mark_reg_unbounded(dst_reg);
2972 /* (except what we can learn from the var_off) */
2973 __update_reg_bounds(dst_reg);
2974 break;
2975 }
2976 dst_reg->umin_value *= umin_val;
2977 dst_reg->umax_value *= umax_val;
2978 if (dst_reg->umax_value > S64_MAX) {
2979 /* Overflow possible, we know nothing */
2980 dst_reg->smin_value = S64_MIN;
2981 dst_reg->smax_value = S64_MAX;
2982 } else {
2983 dst_reg->smin_value = dst_reg->umin_value;
2984 dst_reg->smax_value = dst_reg->umax_value;
2985 }
48461135
JB
2986 break;
2987 case BPF_AND:
f1174f77 2988 if (src_known && dst_known) {
b03c9f9f
EC
2989 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2990 src_reg.var_off.value);
f1174f77
EC
2991 break;
2992 }
b03c9f9f
EC
2993 /* We get our minimum from the var_off, since that's inherently
2994 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2995 */
f1174f77 2996 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2997 dst_reg->umin_value = dst_reg->var_off.value;
2998 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2999 if (dst_reg->smin_value < 0 || smin_val < 0) {
3000 /* Lose signed bounds when ANDing negative numbers,
3001 * ain't nobody got time for that.
3002 */
3003 dst_reg->smin_value = S64_MIN;
3004 dst_reg->smax_value = S64_MAX;
3005 } else {
3006 /* ANDing two positives gives a positive, so safe to
3007 * cast result into s64.
3008 */
3009 dst_reg->smin_value = dst_reg->umin_value;
3010 dst_reg->smax_value = dst_reg->umax_value;
3011 }
3012 /* We may learn something more from the var_off */
3013 __update_reg_bounds(dst_reg);
f1174f77
EC
3014 break;
3015 case BPF_OR:
3016 if (src_known && dst_known) {
b03c9f9f
EC
3017 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3018 src_reg.var_off.value);
f1174f77
EC
3019 break;
3020 }
b03c9f9f
EC
3021 /* We get our maximum from the var_off, and our minimum is the
3022 * maximum of the operands' minima
f1174f77
EC
3023 */
3024 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3025 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3026 dst_reg->umax_value = dst_reg->var_off.value |
3027 dst_reg->var_off.mask;
3028 if (dst_reg->smin_value < 0 || smin_val < 0) {
3029 /* Lose signed bounds when ORing negative numbers,
3030 * ain't nobody got time for that.
3031 */
3032 dst_reg->smin_value = S64_MIN;
3033 dst_reg->smax_value = S64_MAX;
f1174f77 3034 } else {
b03c9f9f
EC
3035 /* ORing two positives gives a positive, so safe to
3036 * cast result into s64.
3037 */
3038 dst_reg->smin_value = dst_reg->umin_value;
3039 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3040 }
b03c9f9f
EC
3041 /* We may learn something more from the var_off */
3042 __update_reg_bounds(dst_reg);
48461135
JB
3043 break;
3044 case BPF_LSH:
468f6eaf
JH
3045 if (umax_val >= insn_bitness) {
3046 /* Shifts greater than 31 or 63 are undefined.
3047 * This includes shifts by a negative number.
b03c9f9f 3048 */
61bd5218 3049 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3050 break;
3051 }
b03c9f9f
EC
3052 /* We lose all sign bit information (except what we can pick
3053 * up from var_off)
48461135 3054 */
b03c9f9f
EC
3055 dst_reg->smin_value = S64_MIN;
3056 dst_reg->smax_value = S64_MAX;
3057 /* If we might shift our top bit out, then we know nothing */
3058 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3059 dst_reg->umin_value = 0;
3060 dst_reg->umax_value = U64_MAX;
d1174416 3061 } else {
b03c9f9f
EC
3062 dst_reg->umin_value <<= umin_val;
3063 dst_reg->umax_value <<= umax_val;
d1174416 3064 }
afbe1a5b 3065 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3066 /* We may learn something more from the var_off */
3067 __update_reg_bounds(dst_reg);
48461135
JB
3068 break;
3069 case BPF_RSH:
468f6eaf
JH
3070 if (umax_val >= insn_bitness) {
3071 /* Shifts greater than 31 or 63 are undefined.
3072 * This includes shifts by a negative number.
b03c9f9f 3073 */
61bd5218 3074 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3075 break;
3076 }
4374f256
EC
3077 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3078 * be negative, then either:
3079 * 1) src_reg might be zero, so the sign bit of the result is
3080 * unknown, so we lose our signed bounds
3081 * 2) it's known negative, thus the unsigned bounds capture the
3082 * signed bounds
3083 * 3) the signed bounds cross zero, so they tell us nothing
3084 * about the result
3085 * If the value in dst_reg is known nonnegative, then again the
3086 * unsigned bounts capture the signed bounds.
3087 * Thus, in all cases it suffices to blow away our signed bounds
3088 * and rely on inferring new ones from the unsigned bounds and
3089 * var_off of the result.
3090 */
3091 dst_reg->smin_value = S64_MIN;
3092 dst_reg->smax_value = S64_MAX;
afbe1a5b 3093 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3094 dst_reg->umin_value >>= umax_val;
3095 dst_reg->umax_value >>= umin_val;
3096 /* We may learn something more from the var_off */
3097 __update_reg_bounds(dst_reg);
48461135 3098 break;
9cbe1f5a
YS
3099 case BPF_ARSH:
3100 if (umax_val >= insn_bitness) {
3101 /* Shifts greater than 31 or 63 are undefined.
3102 * This includes shifts by a negative number.
3103 */
3104 mark_reg_unknown(env, regs, insn->dst_reg);
3105 break;
3106 }
3107
3108 /* Upon reaching here, src_known is true and
3109 * umax_val is equal to umin_val.
3110 */
3111 dst_reg->smin_value >>= umin_val;
3112 dst_reg->smax_value >>= umin_val;
3113 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3114
3115 /* blow away the dst_reg umin_value/umax_value and rely on
3116 * dst_reg var_off to refine the result.
3117 */
3118 dst_reg->umin_value = 0;
3119 dst_reg->umax_value = U64_MAX;
3120 __update_reg_bounds(dst_reg);
3121 break;
48461135 3122 default:
61bd5218 3123 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3124 break;
3125 }
3126
468f6eaf
JH
3127 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3128 /* 32-bit ALU ops are (32,32)->32 */
3129 coerce_reg_to_size(dst_reg, 4);
3130 coerce_reg_to_size(&src_reg, 4);
3131 }
3132
b03c9f9f
EC
3133 __reg_deduce_bounds(dst_reg);
3134 __reg_bound_offset(dst_reg);
f1174f77
EC
3135 return 0;
3136}
3137
3138/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3139 * and var_off.
3140 */
3141static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3142 struct bpf_insn *insn)
3143{
f4d7e40a
AS
3144 struct bpf_verifier_state *vstate = env->cur_state;
3145 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3146 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3147 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3148 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3149
3150 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3151 src_reg = NULL;
3152 if (dst_reg->type != SCALAR_VALUE)
3153 ptr_reg = dst_reg;
3154 if (BPF_SRC(insn->code) == BPF_X) {
3155 src_reg = &regs[insn->src_reg];
f1174f77
EC
3156 if (src_reg->type != SCALAR_VALUE) {
3157 if (dst_reg->type != SCALAR_VALUE) {
3158 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3159 * an arbitrary scalar. Disallow all math except
3160 * pointer subtraction
f1174f77 3161 */
dd066823 3162 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3163 mark_reg_unknown(env, regs, insn->dst_reg);
3164 return 0;
f1174f77 3165 }
82abbf8d
AS
3166 verbose(env, "R%d pointer %s pointer prohibited\n",
3167 insn->dst_reg,
3168 bpf_alu_string[opcode >> 4]);
3169 return -EACCES;
f1174f77
EC
3170 } else {
3171 /* scalar += pointer
3172 * This is legal, but we have to reverse our
3173 * src/dest handling in computing the range
3174 */
82abbf8d
AS
3175 return adjust_ptr_min_max_vals(env, insn,
3176 src_reg, dst_reg);
f1174f77
EC
3177 }
3178 } else if (ptr_reg) {
3179 /* pointer += scalar */
82abbf8d
AS
3180 return adjust_ptr_min_max_vals(env, insn,
3181 dst_reg, src_reg);
f1174f77
EC
3182 }
3183 } else {
3184 /* Pretend the src is a reg with a known value, since we only
3185 * need to be able to read from this state.
3186 */
3187 off_reg.type = SCALAR_VALUE;
b03c9f9f 3188 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3189 src_reg = &off_reg;
82abbf8d
AS
3190 if (ptr_reg) /* pointer += K */
3191 return adjust_ptr_min_max_vals(env, insn,
3192 ptr_reg, src_reg);
f1174f77
EC
3193 }
3194
3195 /* Got here implies adding two SCALAR_VALUEs */
3196 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3197 print_verifier_state(env, state);
61bd5218 3198 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3199 return -EINVAL;
3200 }
3201 if (WARN_ON(!src_reg)) {
f4d7e40a 3202 print_verifier_state(env, state);
61bd5218 3203 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3204 return -EINVAL;
3205 }
3206 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3207}
3208
17a52670 3209/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3210static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3211{
638f5b90 3212 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3213 u8 opcode = BPF_OP(insn->code);
3214 int err;
3215
3216 if (opcode == BPF_END || opcode == BPF_NEG) {
3217 if (opcode == BPF_NEG) {
3218 if (BPF_SRC(insn->code) != 0 ||
3219 insn->src_reg != BPF_REG_0 ||
3220 insn->off != 0 || insn->imm != 0) {
61bd5218 3221 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3222 return -EINVAL;
3223 }
3224 } else {
3225 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3226 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3227 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3228 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3229 return -EINVAL;
3230 }
3231 }
3232
3233 /* check src operand */
dc503a8a 3234 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3235 if (err)
3236 return err;
3237
1be7f75d 3238 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3239 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3240 insn->dst_reg);
3241 return -EACCES;
3242 }
3243
17a52670 3244 /* check dest operand */
dc503a8a 3245 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3246 if (err)
3247 return err;
3248
3249 } else if (opcode == BPF_MOV) {
3250
3251 if (BPF_SRC(insn->code) == BPF_X) {
3252 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3253 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3254 return -EINVAL;
3255 }
3256
3257 /* check src operand */
dc503a8a 3258 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3259 if (err)
3260 return err;
3261 } else {
3262 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3263 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3264 return -EINVAL;
3265 }
3266 }
3267
fbeb1603
AF
3268 /* check dest operand, mark as required later */
3269 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3270 if (err)
3271 return err;
3272
3273 if (BPF_SRC(insn->code) == BPF_X) {
3274 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3275 /* case: R1 = R2
3276 * copy register state to dest reg
3277 */
3278 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3279 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3280 } else {
f1174f77 3281 /* R1 = (u32) R2 */
1be7f75d 3282 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3283 verbose(env,
3284 "R%d partial copy of pointer\n",
1be7f75d
AS
3285 insn->src_reg);
3286 return -EACCES;
3287 }
61bd5218 3288 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3289 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3290 }
3291 } else {
3292 /* case: R = imm
3293 * remember the value we stored into this reg
3294 */
fbeb1603
AF
3295 /* clear any state __mark_reg_known doesn't set */
3296 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3297 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3298 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3299 __mark_reg_known(regs + insn->dst_reg,
3300 insn->imm);
3301 } else {
3302 __mark_reg_known(regs + insn->dst_reg,
3303 (u32)insn->imm);
3304 }
17a52670
AS
3305 }
3306
3307 } else if (opcode > BPF_END) {
61bd5218 3308 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3309 return -EINVAL;
3310
3311 } else { /* all other ALU ops: and, sub, xor, add, ... */
3312
17a52670
AS
3313 if (BPF_SRC(insn->code) == BPF_X) {
3314 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3315 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3316 return -EINVAL;
3317 }
3318 /* check src1 operand */
dc503a8a 3319 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3320 if (err)
3321 return err;
3322 } else {
3323 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3324 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3325 return -EINVAL;
3326 }
3327 }
3328
3329 /* check src2 operand */
dc503a8a 3330 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3331 if (err)
3332 return err;
3333
3334 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3335 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3336 verbose(env, "div by zero\n");
17a52670
AS
3337 return -EINVAL;
3338 }
3339
7891a87e
DB
3340 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3341 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3342 return -EINVAL;
3343 }
3344
229394e8
RV
3345 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3346 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3347 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3348
3349 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3350 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3351 return -EINVAL;
3352 }
3353 }
3354
1a0dc1ac 3355 /* check dest operand */
dc503a8a 3356 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3357 if (err)
3358 return err;
3359
f1174f77 3360 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3361 }
3362
3363 return 0;
3364}
3365
f4d7e40a 3366static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3367 struct bpf_reg_state *dst_reg,
f8ddadc4 3368 enum bpf_reg_type type,
fb2a311a 3369 bool range_right_open)
969bf05e 3370{
f4d7e40a 3371 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3372 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3373 u16 new_range;
f4d7e40a 3374 int i, j;
2d2be8ca 3375
fb2a311a
DB
3376 if (dst_reg->off < 0 ||
3377 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3378 /* This doesn't give us any range */
3379 return;
3380
b03c9f9f
EC
3381 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3382 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3383 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3384 * than pkt_end, but that's because it's also less than pkt.
3385 */
3386 return;
3387
fb2a311a
DB
3388 new_range = dst_reg->off;
3389 if (range_right_open)
3390 new_range--;
3391
3392 /* Examples for register markings:
2d2be8ca 3393 *
fb2a311a 3394 * pkt_data in dst register:
2d2be8ca
DB
3395 *
3396 * r2 = r3;
3397 * r2 += 8;
3398 * if (r2 > pkt_end) goto <handle exception>
3399 * <access okay>
3400 *
b4e432f1
DB
3401 * r2 = r3;
3402 * r2 += 8;
3403 * if (r2 < pkt_end) goto <access okay>
3404 * <handle exception>
3405 *
2d2be8ca
DB
3406 * Where:
3407 * r2 == dst_reg, pkt_end == src_reg
3408 * r2=pkt(id=n,off=8,r=0)
3409 * r3=pkt(id=n,off=0,r=0)
3410 *
fb2a311a 3411 * pkt_data in src register:
2d2be8ca
DB
3412 *
3413 * r2 = r3;
3414 * r2 += 8;
3415 * if (pkt_end >= r2) goto <access okay>
3416 * <handle exception>
3417 *
b4e432f1
DB
3418 * r2 = r3;
3419 * r2 += 8;
3420 * if (pkt_end <= r2) goto <handle exception>
3421 * <access okay>
3422 *
2d2be8ca
DB
3423 * Where:
3424 * pkt_end == dst_reg, r2 == src_reg
3425 * r2=pkt(id=n,off=8,r=0)
3426 * r3=pkt(id=n,off=0,r=0)
3427 *
3428 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3429 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3430 * and [r3, r3 + 8-1) respectively is safe to access depending on
3431 * the check.
969bf05e 3432 */
2d2be8ca 3433
f1174f77
EC
3434 /* If our ids match, then we must have the same max_value. And we
3435 * don't care about the other reg's fixed offset, since if it's too big
3436 * the range won't allow anything.
3437 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3438 */
969bf05e 3439 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3440 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3441 /* keep the maximum range already checked */
fb2a311a 3442 regs[i].range = max(regs[i].range, new_range);
969bf05e 3443
f4d7e40a
AS
3444 for (j = 0; j <= vstate->curframe; j++) {
3445 state = vstate->frame[j];
f3709f69
JS
3446 bpf_for_each_spilled_reg(i, state, reg) {
3447 if (!reg)
f4d7e40a 3448 continue;
f4d7e40a
AS
3449 if (reg->type == type && reg->id == dst_reg->id)
3450 reg->range = max(reg->range, new_range);
3451 }
969bf05e
AS
3452 }
3453}
3454
48461135
JB
3455/* Adjusts the register min/max values in the case that the dst_reg is the
3456 * variable register that we are working on, and src_reg is a constant or we're
3457 * simply doing a BPF_K check.
f1174f77 3458 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3459 */
3460static void reg_set_min_max(struct bpf_reg_state *true_reg,
3461 struct bpf_reg_state *false_reg, u64 val,
3462 u8 opcode)
3463{
f1174f77
EC
3464 /* If the dst_reg is a pointer, we can't learn anything about its
3465 * variable offset from the compare (unless src_reg were a pointer into
3466 * the same object, but we don't bother with that.
3467 * Since false_reg and true_reg have the same type by construction, we
3468 * only need to check one of them for pointerness.
3469 */
3470 if (__is_pointer_value(false, false_reg))
3471 return;
4cabc5b1 3472
48461135
JB
3473 switch (opcode) {
3474 case BPF_JEQ:
3475 /* If this is false then we know nothing Jon Snow, but if it is
3476 * true then we know for sure.
3477 */
b03c9f9f 3478 __mark_reg_known(true_reg, val);
48461135
JB
3479 break;
3480 case BPF_JNE:
3481 /* If this is true we know nothing Jon Snow, but if it is false
3482 * we know the value for sure;
3483 */
b03c9f9f 3484 __mark_reg_known(false_reg, val);
48461135
JB
3485 break;
3486 case BPF_JGT:
b03c9f9f
EC
3487 false_reg->umax_value = min(false_reg->umax_value, val);
3488 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3489 break;
48461135 3490 case BPF_JSGT:
b03c9f9f
EC
3491 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3492 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3493 break;
b4e432f1
DB
3494 case BPF_JLT:
3495 false_reg->umin_value = max(false_reg->umin_value, val);
3496 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3497 break;
3498 case BPF_JSLT:
3499 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3500 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3501 break;
48461135 3502 case BPF_JGE:
b03c9f9f
EC
3503 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3504 true_reg->umin_value = max(true_reg->umin_value, val);
3505 break;
48461135 3506 case BPF_JSGE:
b03c9f9f
EC
3507 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3508 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3509 break;
b4e432f1
DB
3510 case BPF_JLE:
3511 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3512 true_reg->umax_value = min(true_reg->umax_value, val);
3513 break;
3514 case BPF_JSLE:
3515 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3516 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3517 break;
48461135
JB
3518 default:
3519 break;
3520 }
3521
b03c9f9f
EC
3522 __reg_deduce_bounds(false_reg);
3523 __reg_deduce_bounds(true_reg);
3524 /* We might have learned some bits from the bounds. */
3525 __reg_bound_offset(false_reg);
3526 __reg_bound_offset(true_reg);
3527 /* Intersecting with the old var_off might have improved our bounds
3528 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3529 * then new var_off is (0; 0x7f...fc) which improves our umax.
3530 */
3531 __update_reg_bounds(false_reg);
3532 __update_reg_bounds(true_reg);
48461135
JB
3533}
3534
f1174f77
EC
3535/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3536 * the variable reg.
48461135
JB
3537 */
3538static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3539 struct bpf_reg_state *false_reg, u64 val,
3540 u8 opcode)
3541{
f1174f77
EC
3542 if (__is_pointer_value(false, false_reg))
3543 return;
4cabc5b1 3544
48461135
JB
3545 switch (opcode) {
3546 case BPF_JEQ:
3547 /* If this is false then we know nothing Jon Snow, but if it is
3548 * true then we know for sure.
3549 */
b03c9f9f 3550 __mark_reg_known(true_reg, val);
48461135
JB
3551 break;
3552 case BPF_JNE:
3553 /* If this is true we know nothing Jon Snow, but if it is false
3554 * we know the value for sure;
3555 */
b03c9f9f 3556 __mark_reg_known(false_reg, val);
48461135
JB
3557 break;
3558 case BPF_JGT:
b03c9f9f
EC
3559 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3560 false_reg->umin_value = max(false_reg->umin_value, val);
3561 break;
48461135 3562 case BPF_JSGT:
b03c9f9f
EC
3563 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3564 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3565 break;
b4e432f1
DB
3566 case BPF_JLT:
3567 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3568 false_reg->umax_value = min(false_reg->umax_value, val);
3569 break;
3570 case BPF_JSLT:
3571 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3572 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3573 break;
48461135 3574 case BPF_JGE:
b03c9f9f
EC
3575 true_reg->umax_value = min(true_reg->umax_value, val);
3576 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3577 break;
48461135 3578 case BPF_JSGE:
b03c9f9f
EC
3579 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3580 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3581 break;
b4e432f1
DB
3582 case BPF_JLE:
3583 true_reg->umin_value = max(true_reg->umin_value, val);
3584 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3585 break;
3586 case BPF_JSLE:
3587 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3588 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3589 break;
48461135
JB
3590 default:
3591 break;
3592 }
3593
b03c9f9f
EC
3594 __reg_deduce_bounds(false_reg);
3595 __reg_deduce_bounds(true_reg);
3596 /* We might have learned some bits from the bounds. */
3597 __reg_bound_offset(false_reg);
3598 __reg_bound_offset(true_reg);
3599 /* Intersecting with the old var_off might have improved our bounds
3600 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3601 * then new var_off is (0; 0x7f...fc) which improves our umax.
3602 */
3603 __update_reg_bounds(false_reg);
3604 __update_reg_bounds(true_reg);
f1174f77
EC
3605}
3606
3607/* Regs are known to be equal, so intersect their min/max/var_off */
3608static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3609 struct bpf_reg_state *dst_reg)
3610{
b03c9f9f
EC
3611 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3612 dst_reg->umin_value);
3613 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3614 dst_reg->umax_value);
3615 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3616 dst_reg->smin_value);
3617 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3618 dst_reg->smax_value);
f1174f77
EC
3619 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3620 dst_reg->var_off);
b03c9f9f
EC
3621 /* We might have learned new bounds from the var_off. */
3622 __update_reg_bounds(src_reg);
3623 __update_reg_bounds(dst_reg);
3624 /* We might have learned something about the sign bit. */
3625 __reg_deduce_bounds(src_reg);
3626 __reg_deduce_bounds(dst_reg);
3627 /* We might have learned some bits from the bounds. */
3628 __reg_bound_offset(src_reg);
3629 __reg_bound_offset(dst_reg);
3630 /* Intersecting with the old var_off might have improved our bounds
3631 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3632 * then new var_off is (0; 0x7f...fc) which improves our umax.
3633 */
3634 __update_reg_bounds(src_reg);
3635 __update_reg_bounds(dst_reg);
f1174f77
EC
3636}
3637
3638static void reg_combine_min_max(struct bpf_reg_state *true_src,
3639 struct bpf_reg_state *true_dst,
3640 struct bpf_reg_state *false_src,
3641 struct bpf_reg_state *false_dst,
3642 u8 opcode)
3643{
3644 switch (opcode) {
3645 case BPF_JEQ:
3646 __reg_combine_min_max(true_src, true_dst);
3647 break;
3648 case BPF_JNE:
3649 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3650 break;
4cabc5b1 3651 }
48461135
JB
3652}
3653
840b9615
JS
3654static void mark_ptr_or_null_reg(struct bpf_reg_state *reg, u32 id,
3655 bool is_null)
57a09bf0 3656{
840b9615 3657 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
3658 /* Old offset (both fixed and variable parts) should
3659 * have been known-zero, because we don't allow pointer
3660 * arithmetic on pointers that might be NULL.
3661 */
b03c9f9f
EC
3662 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3663 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3664 reg->off)) {
b03c9f9f
EC
3665 __mark_reg_known_zero(reg);
3666 reg->off = 0;
f1174f77
EC
3667 }
3668 if (is_null) {
3669 reg->type = SCALAR_VALUE;
840b9615
JS
3670 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3671 if (reg->map_ptr->inner_map_meta) {
3672 reg->type = CONST_PTR_TO_MAP;
3673 reg->map_ptr = reg->map_ptr->inner_map_meta;
3674 } else {
3675 reg->type = PTR_TO_MAP_VALUE;
3676 }
c64b7983
JS
3677 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3678 reg->type = PTR_TO_SOCKET;
56f668df 3679 }
a08dd0da
DB
3680 /* We don't need id from this point onwards anymore, thus we
3681 * should better reset it, so that state pruning has chances
3682 * to take effect.
3683 */
3684 reg->id = 0;
57a09bf0
TG
3685 }
3686}
3687
3688/* The logic is similar to find_good_pkt_pointers(), both could eventually
3689 * be folded together at some point.
3690 */
840b9615
JS
3691static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
3692 bool is_null)
57a09bf0 3693{
f4d7e40a 3694 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 3695 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 3696 u32 id = regs[regno].id;
f4d7e40a 3697 int i, j;
57a09bf0
TG
3698
3699 for (i = 0; i < MAX_BPF_REG; i++)
840b9615 3700 mark_ptr_or_null_reg(&regs[i], id, is_null);
57a09bf0 3701
f4d7e40a
AS
3702 for (j = 0; j <= vstate->curframe; j++) {
3703 state = vstate->frame[j];
f3709f69
JS
3704 bpf_for_each_spilled_reg(i, state, reg) {
3705 if (!reg)
f4d7e40a 3706 continue;
840b9615 3707 mark_ptr_or_null_reg(reg, id, is_null);
f4d7e40a 3708 }
57a09bf0
TG
3709 }
3710}
3711
5beca081
DB
3712static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3713 struct bpf_reg_state *dst_reg,
3714 struct bpf_reg_state *src_reg,
3715 struct bpf_verifier_state *this_branch,
3716 struct bpf_verifier_state *other_branch)
3717{
3718 if (BPF_SRC(insn->code) != BPF_X)
3719 return false;
3720
3721 switch (BPF_OP(insn->code)) {
3722 case BPF_JGT:
3723 if ((dst_reg->type == PTR_TO_PACKET &&
3724 src_reg->type == PTR_TO_PACKET_END) ||
3725 (dst_reg->type == PTR_TO_PACKET_META &&
3726 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3727 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3728 find_good_pkt_pointers(this_branch, dst_reg,
3729 dst_reg->type, false);
3730 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3731 src_reg->type == PTR_TO_PACKET) ||
3732 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3733 src_reg->type == PTR_TO_PACKET_META)) {
3734 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3735 find_good_pkt_pointers(other_branch, src_reg,
3736 src_reg->type, true);
3737 } else {
3738 return false;
3739 }
3740 break;
3741 case BPF_JLT:
3742 if ((dst_reg->type == PTR_TO_PACKET &&
3743 src_reg->type == PTR_TO_PACKET_END) ||
3744 (dst_reg->type == PTR_TO_PACKET_META &&
3745 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3746 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3747 find_good_pkt_pointers(other_branch, dst_reg,
3748 dst_reg->type, true);
3749 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3750 src_reg->type == PTR_TO_PACKET) ||
3751 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3752 src_reg->type == PTR_TO_PACKET_META)) {
3753 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3754 find_good_pkt_pointers(this_branch, src_reg,
3755 src_reg->type, false);
3756 } else {
3757 return false;
3758 }
3759 break;
3760 case BPF_JGE:
3761 if ((dst_reg->type == PTR_TO_PACKET &&
3762 src_reg->type == PTR_TO_PACKET_END) ||
3763 (dst_reg->type == PTR_TO_PACKET_META &&
3764 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3765 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3766 find_good_pkt_pointers(this_branch, dst_reg,
3767 dst_reg->type, true);
3768 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3769 src_reg->type == PTR_TO_PACKET) ||
3770 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3771 src_reg->type == PTR_TO_PACKET_META)) {
3772 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3773 find_good_pkt_pointers(other_branch, src_reg,
3774 src_reg->type, false);
3775 } else {
3776 return false;
3777 }
3778 break;
3779 case BPF_JLE:
3780 if ((dst_reg->type == PTR_TO_PACKET &&
3781 src_reg->type == PTR_TO_PACKET_END) ||
3782 (dst_reg->type == PTR_TO_PACKET_META &&
3783 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3784 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3785 find_good_pkt_pointers(other_branch, dst_reg,
3786 dst_reg->type, false);
3787 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3788 src_reg->type == PTR_TO_PACKET) ||
3789 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3790 src_reg->type == PTR_TO_PACKET_META)) {
3791 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3792 find_good_pkt_pointers(this_branch, src_reg,
3793 src_reg->type, true);
3794 } else {
3795 return false;
3796 }
3797 break;
3798 default:
3799 return false;
3800 }
3801
3802 return true;
3803}
3804
58e2af8b 3805static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3806 struct bpf_insn *insn, int *insn_idx)
3807{
f4d7e40a
AS
3808 struct bpf_verifier_state *this_branch = env->cur_state;
3809 struct bpf_verifier_state *other_branch;
3810 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3811 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
3812 u8 opcode = BPF_OP(insn->code);
3813 int err;
3814
b4e432f1 3815 if (opcode > BPF_JSLE) {
61bd5218 3816 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3817 return -EINVAL;
3818 }
3819
3820 if (BPF_SRC(insn->code) == BPF_X) {
3821 if (insn->imm != 0) {
61bd5218 3822 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3823 return -EINVAL;
3824 }
3825
3826 /* check src1 operand */
dc503a8a 3827 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3828 if (err)
3829 return err;
1be7f75d
AS
3830
3831 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3832 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3833 insn->src_reg);
3834 return -EACCES;
3835 }
17a52670
AS
3836 } else {
3837 if (insn->src_reg != BPF_REG_0) {
61bd5218 3838 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3839 return -EINVAL;
3840 }
3841 }
3842
3843 /* check src2 operand */
dc503a8a 3844 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3845 if (err)
3846 return err;
3847
1a0dc1ac
AS
3848 dst_reg = &regs[insn->dst_reg];
3849
17a52670
AS
3850 /* detect if R == 0 where R was initialized to zero earlier */
3851 if (BPF_SRC(insn->code) == BPF_K &&
3852 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 3853 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
3854 tnum_is_const(dst_reg->var_off)) {
3855 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3856 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
3857 /* if (imm == imm) goto pc+off;
3858 * only follow the goto, ignore fall-through
3859 */
3860 *insn_idx += insn->off;
3861 return 0;
3862 } else {
3863 /* if (imm != imm) goto pc+off;
3864 * only follow fall-through branch, since
3865 * that's where the program will go
3866 */
3867 return 0;
3868 }
3869 }
3870
3871 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3872 if (!other_branch)
3873 return -EFAULT;
f4d7e40a 3874 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 3875
48461135
JB
3876 /* detect if we are comparing against a constant value so we can adjust
3877 * our min/max values for our dst register.
f1174f77
EC
3878 * this is only legit if both are scalars (or pointers to the same
3879 * object, I suppose, but we don't support that right now), because
3880 * otherwise the different base pointers mean the offsets aren't
3881 * comparable.
48461135
JB
3882 */
3883 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3884 if (dst_reg->type == SCALAR_VALUE &&
3885 regs[insn->src_reg].type == SCALAR_VALUE) {
3886 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 3887 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
3888 dst_reg, regs[insn->src_reg].var_off.value,
3889 opcode);
3890 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 3891 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
3892 &regs[insn->src_reg],
3893 dst_reg->var_off.value, opcode);
3894 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3895 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
3896 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3897 &other_branch_regs[insn->dst_reg],
f1174f77
EC
3898 &regs[insn->src_reg],
3899 &regs[insn->dst_reg], opcode);
3900 }
3901 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 3902 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
3903 dst_reg, insn->imm, opcode);
3904 }
3905
58e2af8b 3906 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3907 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 3908 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
3909 reg_type_may_be_null(dst_reg->type)) {
3910 /* Mark all identical registers in each branch as either
57a09bf0
TG
3911 * safe or unknown depending R == 0 or R != 0 conditional.
3912 */
840b9615
JS
3913 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
3914 opcode == BPF_JNE);
3915 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
3916 opcode == BPF_JEQ);
5beca081
DB
3917 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3918 this_branch, other_branch) &&
3919 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3920 verbose(env, "R%d pointer comparison prohibited\n",
3921 insn->dst_reg);
1be7f75d 3922 return -EACCES;
17a52670 3923 }
61bd5218 3924 if (env->log.level)
f4d7e40a 3925 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
3926 return 0;
3927}
3928
0246e64d
AS
3929/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3930static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3931{
3932 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3933
3934 return (struct bpf_map *) (unsigned long) imm64;
3935}
3936
17a52670 3937/* verify BPF_LD_IMM64 instruction */
58e2af8b 3938static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3939{
638f5b90 3940 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3941 int err;
3942
3943 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3944 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3945 return -EINVAL;
3946 }
3947 if (insn->off != 0) {
61bd5218 3948 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3949 return -EINVAL;
3950 }
3951
dc503a8a 3952 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3953 if (err)
3954 return err;
3955
6b173873 3956 if (insn->src_reg == 0) {
6b173873
JK
3957 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3958
f1174f77 3959 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3960 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3961 return 0;
6b173873 3962 }
17a52670
AS
3963
3964 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3965 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3966
3967 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3968 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3969 return 0;
3970}
3971
96be4325
DB
3972static bool may_access_skb(enum bpf_prog_type type)
3973{
3974 switch (type) {
3975 case BPF_PROG_TYPE_SOCKET_FILTER:
3976 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3977 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3978 return true;
3979 default:
3980 return false;
3981 }
3982}
3983
ddd872bc
AS
3984/* verify safety of LD_ABS|LD_IND instructions:
3985 * - they can only appear in the programs where ctx == skb
3986 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3987 * preserve R6-R9, and store return value into R0
3988 *
3989 * Implicit input:
3990 * ctx == skb == R6 == CTX
3991 *
3992 * Explicit input:
3993 * SRC == any register
3994 * IMM == 32-bit immediate
3995 *
3996 * Output:
3997 * R0 - 8/16/32-bit skb data converted to cpu endianness
3998 */
58e2af8b 3999static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4000{
638f5b90 4001 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4002 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4003 int i, err;
4004
24701ece 4005 if (!may_access_skb(env->prog->type)) {
61bd5218 4006 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4007 return -EINVAL;
4008 }
4009
e0cea7ce
DB
4010 if (!env->ops->gen_ld_abs) {
4011 verbose(env, "bpf verifier is misconfigured\n");
4012 return -EINVAL;
4013 }
4014
f910cefa 4015 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4016 /* when program has LD_ABS insn JITs and interpreter assume
4017 * that r1 == ctx == skb which is not the case for callees
4018 * that can have arbitrary arguments. It's problematic
4019 * for main prog as well since JITs would need to analyze
4020 * all functions in order to make proper register save/restore
4021 * decisions in the main prog. Hence disallow LD_ABS with calls
4022 */
4023 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4024 return -EINVAL;
4025 }
4026
ddd872bc 4027 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4028 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4029 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4030 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4031 return -EINVAL;
4032 }
4033
4034 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4035 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4036 if (err)
4037 return err;
4038
4039 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4040 verbose(env,
4041 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4042 return -EINVAL;
4043 }
4044
4045 if (mode == BPF_IND) {
4046 /* check explicit source operand */
dc503a8a 4047 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4048 if (err)
4049 return err;
4050 }
4051
4052 /* reset caller saved regs to unreadable */
dc503a8a 4053 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4054 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4055 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4056 }
ddd872bc
AS
4057
4058 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4059 * the value fetched from the packet.
4060 * Already marked as written above.
ddd872bc 4061 */
61bd5218 4062 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4063 return 0;
4064}
4065
390ee7e2
AS
4066static int check_return_code(struct bpf_verifier_env *env)
4067{
4068 struct bpf_reg_state *reg;
4069 struct tnum range = tnum_range(0, 1);
4070
4071 switch (env->prog->type) {
4072 case BPF_PROG_TYPE_CGROUP_SKB:
4073 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4074 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4075 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4076 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4077 break;
4078 default:
4079 return 0;
4080 }
4081
638f5b90 4082 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4083 if (reg->type != SCALAR_VALUE) {
61bd5218 4084 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4085 reg_type_str[reg->type]);
4086 return -EINVAL;
4087 }
4088
4089 if (!tnum_in(range, reg->var_off)) {
61bd5218 4090 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4091 if (!tnum_is_unknown(reg->var_off)) {
4092 char tn_buf[48];
4093
4094 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4095 verbose(env, "has value %s", tn_buf);
390ee7e2 4096 } else {
61bd5218 4097 verbose(env, "has unknown scalar value");
390ee7e2 4098 }
61bd5218 4099 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4100 return -EINVAL;
4101 }
4102 return 0;
4103}
4104
475fb78f
AS
4105/* non-recursive DFS pseudo code
4106 * 1 procedure DFS-iterative(G,v):
4107 * 2 label v as discovered
4108 * 3 let S be a stack
4109 * 4 S.push(v)
4110 * 5 while S is not empty
4111 * 6 t <- S.pop()
4112 * 7 if t is what we're looking for:
4113 * 8 return t
4114 * 9 for all edges e in G.adjacentEdges(t) do
4115 * 10 if edge e is already labelled
4116 * 11 continue with the next edge
4117 * 12 w <- G.adjacentVertex(t,e)
4118 * 13 if vertex w is not discovered and not explored
4119 * 14 label e as tree-edge
4120 * 15 label w as discovered
4121 * 16 S.push(w)
4122 * 17 continue at 5
4123 * 18 else if vertex w is discovered
4124 * 19 label e as back-edge
4125 * 20 else
4126 * 21 // vertex w is explored
4127 * 22 label e as forward- or cross-edge
4128 * 23 label t as explored
4129 * 24 S.pop()
4130 *
4131 * convention:
4132 * 0x10 - discovered
4133 * 0x11 - discovered and fall-through edge labelled
4134 * 0x12 - discovered and fall-through and branch edges labelled
4135 * 0x20 - explored
4136 */
4137
4138enum {
4139 DISCOVERED = 0x10,
4140 EXPLORED = 0x20,
4141 FALLTHROUGH = 1,
4142 BRANCH = 2,
4143};
4144
58e2af8b 4145#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4146
475fb78f
AS
4147static int *insn_stack; /* stack of insns to process */
4148static int cur_stack; /* current stack index */
4149static int *insn_state;
4150
4151/* t, w, e - match pseudo-code above:
4152 * t - index of current instruction
4153 * w - next instruction
4154 * e - edge
4155 */
58e2af8b 4156static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4157{
4158 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4159 return 0;
4160
4161 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4162 return 0;
4163
4164 if (w < 0 || w >= env->prog->len) {
61bd5218 4165 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4166 return -EINVAL;
4167 }
4168
f1bca824
AS
4169 if (e == BRANCH)
4170 /* mark branch target for state pruning */
4171 env->explored_states[w] = STATE_LIST_MARK;
4172
475fb78f
AS
4173 if (insn_state[w] == 0) {
4174 /* tree-edge */
4175 insn_state[t] = DISCOVERED | e;
4176 insn_state[w] = DISCOVERED;
4177 if (cur_stack >= env->prog->len)
4178 return -E2BIG;
4179 insn_stack[cur_stack++] = w;
4180 return 1;
4181 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4182 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4183 return -EINVAL;
4184 } else if (insn_state[w] == EXPLORED) {
4185 /* forward- or cross-edge */
4186 insn_state[t] = DISCOVERED | e;
4187 } else {
61bd5218 4188 verbose(env, "insn state internal bug\n");
475fb78f
AS
4189 return -EFAULT;
4190 }
4191 return 0;
4192}
4193
4194/* non-recursive depth-first-search to detect loops in BPF program
4195 * loop == back-edge in directed graph
4196 */
58e2af8b 4197static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4198{
4199 struct bpf_insn *insns = env->prog->insnsi;
4200 int insn_cnt = env->prog->len;
4201 int ret = 0;
4202 int i, t;
4203
cc8b0b92
AS
4204 ret = check_subprogs(env);
4205 if (ret < 0)
4206 return ret;
4207
475fb78f
AS
4208 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4209 if (!insn_state)
4210 return -ENOMEM;
4211
4212 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4213 if (!insn_stack) {
4214 kfree(insn_state);
4215 return -ENOMEM;
4216 }
4217
4218 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4219 insn_stack[0] = 0; /* 0 is the first instruction */
4220 cur_stack = 1;
4221
4222peek_stack:
4223 if (cur_stack == 0)
4224 goto check_state;
4225 t = insn_stack[cur_stack - 1];
4226
4227 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4228 u8 opcode = BPF_OP(insns[t].code);
4229
4230 if (opcode == BPF_EXIT) {
4231 goto mark_explored;
4232 } else if (opcode == BPF_CALL) {
4233 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4234 if (ret == 1)
4235 goto peek_stack;
4236 else if (ret < 0)
4237 goto err_free;
07016151
DB
4238 if (t + 1 < insn_cnt)
4239 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4240 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4241 env->explored_states[t] = STATE_LIST_MARK;
4242 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4243 if (ret == 1)
4244 goto peek_stack;
4245 else if (ret < 0)
4246 goto err_free;
4247 }
475fb78f
AS
4248 } else if (opcode == BPF_JA) {
4249 if (BPF_SRC(insns[t].code) != BPF_K) {
4250 ret = -EINVAL;
4251 goto err_free;
4252 }
4253 /* unconditional jump with single edge */
4254 ret = push_insn(t, t + insns[t].off + 1,
4255 FALLTHROUGH, env);
4256 if (ret == 1)
4257 goto peek_stack;
4258 else if (ret < 0)
4259 goto err_free;
f1bca824
AS
4260 /* tell verifier to check for equivalent states
4261 * after every call and jump
4262 */
c3de6317
AS
4263 if (t + 1 < insn_cnt)
4264 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4265 } else {
4266 /* conditional jump with two edges */
3c2ce60b 4267 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4268 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4269 if (ret == 1)
4270 goto peek_stack;
4271 else if (ret < 0)
4272 goto err_free;
4273
4274 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4275 if (ret == 1)
4276 goto peek_stack;
4277 else if (ret < 0)
4278 goto err_free;
4279 }
4280 } else {
4281 /* all other non-branch instructions with single
4282 * fall-through edge
4283 */
4284 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4285 if (ret == 1)
4286 goto peek_stack;
4287 else if (ret < 0)
4288 goto err_free;
4289 }
4290
4291mark_explored:
4292 insn_state[t] = EXPLORED;
4293 if (cur_stack-- <= 0) {
61bd5218 4294 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4295 ret = -EFAULT;
4296 goto err_free;
4297 }
4298 goto peek_stack;
4299
4300check_state:
4301 for (i = 0; i < insn_cnt; i++) {
4302 if (insn_state[i] != EXPLORED) {
61bd5218 4303 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4304 ret = -EINVAL;
4305 goto err_free;
4306 }
4307 }
4308 ret = 0; /* cfg looks good */
4309
4310err_free:
4311 kfree(insn_state);
4312 kfree(insn_stack);
4313 return ret;
4314}
4315
f1174f77
EC
4316/* check %cur's range satisfies %old's */
4317static bool range_within(struct bpf_reg_state *old,
4318 struct bpf_reg_state *cur)
4319{
b03c9f9f
EC
4320 return old->umin_value <= cur->umin_value &&
4321 old->umax_value >= cur->umax_value &&
4322 old->smin_value <= cur->smin_value &&
4323 old->smax_value >= cur->smax_value;
f1174f77
EC
4324}
4325
4326/* Maximum number of register states that can exist at once */
4327#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4328struct idpair {
4329 u32 old;
4330 u32 cur;
4331};
4332
4333/* If in the old state two registers had the same id, then they need to have
4334 * the same id in the new state as well. But that id could be different from
4335 * the old state, so we need to track the mapping from old to new ids.
4336 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4337 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4338 * regs with a different old id could still have new id 9, we don't care about
4339 * that.
4340 * So we look through our idmap to see if this old id has been seen before. If
4341 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4342 */
f1174f77 4343static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4344{
f1174f77 4345 unsigned int i;
969bf05e 4346
f1174f77
EC
4347 for (i = 0; i < ID_MAP_SIZE; i++) {
4348 if (!idmap[i].old) {
4349 /* Reached an empty slot; haven't seen this id before */
4350 idmap[i].old = old_id;
4351 idmap[i].cur = cur_id;
4352 return true;
4353 }
4354 if (idmap[i].old == old_id)
4355 return idmap[i].cur == cur_id;
4356 }
4357 /* We ran out of idmap slots, which should be impossible */
4358 WARN_ON_ONCE(1);
4359 return false;
4360}
4361
4362/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4363static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4364 struct idpair *idmap)
f1174f77 4365{
f4d7e40a
AS
4366 bool equal;
4367
dc503a8a
EC
4368 if (!(rold->live & REG_LIVE_READ))
4369 /* explored state didn't use this */
4370 return true;
4371
679c782d 4372 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
4373
4374 if (rold->type == PTR_TO_STACK)
4375 /* two stack pointers are equal only if they're pointing to
4376 * the same stack frame, since fp-8 in foo != fp-8 in bar
4377 */
4378 return equal && rold->frameno == rcur->frameno;
4379
4380 if (equal)
969bf05e
AS
4381 return true;
4382
f1174f77
EC
4383 if (rold->type == NOT_INIT)
4384 /* explored state can't have used this */
969bf05e 4385 return true;
f1174f77
EC
4386 if (rcur->type == NOT_INIT)
4387 return false;
4388 switch (rold->type) {
4389 case SCALAR_VALUE:
4390 if (rcur->type == SCALAR_VALUE) {
4391 /* new val must satisfy old val knowledge */
4392 return range_within(rold, rcur) &&
4393 tnum_in(rold->var_off, rcur->var_off);
4394 } else {
179d1c56
JH
4395 /* We're trying to use a pointer in place of a scalar.
4396 * Even if the scalar was unbounded, this could lead to
4397 * pointer leaks because scalars are allowed to leak
4398 * while pointers are not. We could make this safe in
4399 * special cases if root is calling us, but it's
4400 * probably not worth the hassle.
f1174f77 4401 */
179d1c56 4402 return false;
f1174f77
EC
4403 }
4404 case PTR_TO_MAP_VALUE:
1b688a19
EC
4405 /* If the new min/max/var_off satisfy the old ones and
4406 * everything else matches, we are OK.
4407 * We don't care about the 'id' value, because nothing
4408 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4409 */
4410 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4411 range_within(rold, rcur) &&
4412 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4413 case PTR_TO_MAP_VALUE_OR_NULL:
4414 /* a PTR_TO_MAP_VALUE could be safe to use as a
4415 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4416 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4417 * checked, doing so could have affected others with the same
4418 * id, and we can't check for that because we lost the id when
4419 * we converted to a PTR_TO_MAP_VALUE.
4420 */
4421 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4422 return false;
4423 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4424 return false;
4425 /* Check our ids match any regs they're supposed to */
4426 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4427 case PTR_TO_PACKET_META:
f1174f77 4428 case PTR_TO_PACKET:
de8f3a83 4429 if (rcur->type != rold->type)
f1174f77
EC
4430 return false;
4431 /* We must have at least as much range as the old ptr
4432 * did, so that any accesses which were safe before are
4433 * still safe. This is true even if old range < old off,
4434 * since someone could have accessed through (ptr - k), or
4435 * even done ptr -= k in a register, to get a safe access.
4436 */
4437 if (rold->range > rcur->range)
4438 return false;
4439 /* If the offsets don't match, we can't trust our alignment;
4440 * nor can we be sure that we won't fall out of range.
4441 */
4442 if (rold->off != rcur->off)
4443 return false;
4444 /* id relations must be preserved */
4445 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4446 return false;
4447 /* new val must satisfy old val knowledge */
4448 return range_within(rold, rcur) &&
4449 tnum_in(rold->var_off, rcur->var_off);
4450 case PTR_TO_CTX:
4451 case CONST_PTR_TO_MAP:
f1174f77 4452 case PTR_TO_PACKET_END:
d58e468b 4453 case PTR_TO_FLOW_KEYS:
c64b7983
JS
4454 case PTR_TO_SOCKET:
4455 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
4456 /* Only valid matches are exact, which memcmp() above
4457 * would have accepted
4458 */
4459 default:
4460 /* Don't know what's going on, just say it's not safe */
4461 return false;
4462 }
969bf05e 4463
f1174f77
EC
4464 /* Shouldn't get here; if we do, say it's not safe */
4465 WARN_ON_ONCE(1);
969bf05e
AS
4466 return false;
4467}
4468
f4d7e40a
AS
4469static bool stacksafe(struct bpf_func_state *old,
4470 struct bpf_func_state *cur,
638f5b90
AS
4471 struct idpair *idmap)
4472{
4473 int i, spi;
4474
4475 /* if explored stack has more populated slots than current stack
4476 * such stacks are not equivalent
4477 */
4478 if (old->allocated_stack > cur->allocated_stack)
4479 return false;
4480
4481 /* walk slots of the explored stack and ignore any additional
4482 * slots in the current stack, since explored(safe) state
4483 * didn't use them
4484 */
4485 for (i = 0; i < old->allocated_stack; i++) {
4486 spi = i / BPF_REG_SIZE;
4487
cc2b14d5
AS
4488 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4489 /* explored state didn't use this */
fd05e57b 4490 continue;
cc2b14d5 4491
638f5b90
AS
4492 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4493 continue;
cc2b14d5
AS
4494 /* if old state was safe with misc data in the stack
4495 * it will be safe with zero-initialized stack.
4496 * The opposite is not true
4497 */
4498 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4499 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4500 continue;
638f5b90
AS
4501 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4502 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4503 /* Ex: old explored (safe) state has STACK_SPILL in
4504 * this stack slot, but current has has STACK_MISC ->
4505 * this verifier states are not equivalent,
4506 * return false to continue verification of this path
4507 */
4508 return false;
4509 if (i % BPF_REG_SIZE)
4510 continue;
4511 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4512 continue;
4513 if (!regsafe(&old->stack[spi].spilled_ptr,
4514 &cur->stack[spi].spilled_ptr,
4515 idmap))
4516 /* when explored and current stack slot are both storing
4517 * spilled registers, check that stored pointers types
4518 * are the same as well.
4519 * Ex: explored safe path could have stored
4520 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4521 * but current path has stored:
4522 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4523 * such verifier states are not equivalent.
4524 * return false to continue verification of this path
4525 */
4526 return false;
4527 }
4528 return true;
4529}
4530
f1bca824
AS
4531/* compare two verifier states
4532 *
4533 * all states stored in state_list are known to be valid, since
4534 * verifier reached 'bpf_exit' instruction through them
4535 *
4536 * this function is called when verifier exploring different branches of
4537 * execution popped from the state stack. If it sees an old state that has
4538 * more strict register state and more strict stack state then this execution
4539 * branch doesn't need to be explored further, since verifier already
4540 * concluded that more strict state leads to valid finish.
4541 *
4542 * Therefore two states are equivalent if register state is more conservative
4543 * and explored stack state is more conservative than the current one.
4544 * Example:
4545 * explored current
4546 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4547 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4548 *
4549 * In other words if current stack state (one being explored) has more
4550 * valid slots than old one that already passed validation, it means
4551 * the verifier can stop exploring and conclude that current state is valid too
4552 *
4553 * Similarly with registers. If explored state has register type as invalid
4554 * whereas register type in current state is meaningful, it means that
4555 * the current state will reach 'bpf_exit' instruction safely
4556 */
f4d7e40a
AS
4557static bool func_states_equal(struct bpf_func_state *old,
4558 struct bpf_func_state *cur)
f1bca824 4559{
f1174f77
EC
4560 struct idpair *idmap;
4561 bool ret = false;
f1bca824
AS
4562 int i;
4563
f1174f77
EC
4564 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4565 /* If we failed to allocate the idmap, just say it's not safe */
4566 if (!idmap)
1a0dc1ac 4567 return false;
f1174f77
EC
4568
4569 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4570 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4571 goto out_free;
f1bca824
AS
4572 }
4573
638f5b90
AS
4574 if (!stacksafe(old, cur, idmap))
4575 goto out_free;
f1174f77
EC
4576 ret = true;
4577out_free:
4578 kfree(idmap);
4579 return ret;
f1bca824
AS
4580}
4581
f4d7e40a
AS
4582static bool states_equal(struct bpf_verifier_env *env,
4583 struct bpf_verifier_state *old,
4584 struct bpf_verifier_state *cur)
4585{
4586 int i;
4587
4588 if (old->curframe != cur->curframe)
4589 return false;
4590
4591 /* for states to be equal callsites have to be the same
4592 * and all frame states need to be equivalent
4593 */
4594 for (i = 0; i <= old->curframe; i++) {
4595 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4596 return false;
4597 if (!func_states_equal(old->frame[i], cur->frame[i]))
4598 return false;
4599 }
4600 return true;
4601}
4602
8e9cd9ce 4603/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4604 * straight-line code between a state and its parent. When we arrive at an
4605 * equivalent state (jump target or such) we didn't arrive by the straight-line
4606 * code, so read marks in the state must propagate to the parent regardless
4607 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 4608 * in mark_reg_read() is for.
8e9cd9ce 4609 */
f4d7e40a
AS
4610static int propagate_liveness(struct bpf_verifier_env *env,
4611 const struct bpf_verifier_state *vstate,
4612 struct bpf_verifier_state *vparent)
dc503a8a 4613{
f4d7e40a
AS
4614 int i, frame, err = 0;
4615 struct bpf_func_state *state, *parent;
dc503a8a 4616
f4d7e40a
AS
4617 if (vparent->curframe != vstate->curframe) {
4618 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4619 vparent->curframe, vstate->curframe);
4620 return -EFAULT;
4621 }
dc503a8a
EC
4622 /* Propagate read liveness of registers... */
4623 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4624 /* We don't need to worry about FP liveness because it's read-only */
4625 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4626 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4627 continue;
f4d7e40a 4628 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
4629 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4630 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
4631 if (err)
4632 return err;
dc503a8a
EC
4633 }
4634 }
f4d7e40a 4635
dc503a8a 4636 /* ... and stack slots */
f4d7e40a
AS
4637 for (frame = 0; frame <= vstate->curframe; frame++) {
4638 state = vstate->frame[frame];
4639 parent = vparent->frame[frame];
4640 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4641 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4642 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4643 continue;
4644 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
4645 mark_reg_read(env, &state->stack[i].spilled_ptr,
4646 &parent->stack[i].spilled_ptr);
dc503a8a
EC
4647 }
4648 }
f4d7e40a 4649 return err;
dc503a8a
EC
4650}
4651
58e2af8b 4652static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4653{
58e2af8b
JK
4654 struct bpf_verifier_state_list *new_sl;
4655 struct bpf_verifier_state_list *sl;
679c782d 4656 struct bpf_verifier_state *cur = env->cur_state, *new;
f4d7e40a 4657 int i, j, err;
f1bca824
AS
4658
4659 sl = env->explored_states[insn_idx];
4660 if (!sl)
4661 /* this 'insn_idx' instruction wasn't marked, so we will not
4662 * be doing state search here
4663 */
4664 return 0;
4665
4666 while (sl != STATE_LIST_MARK) {
638f5b90 4667 if (states_equal(env, &sl->state, cur)) {
f1bca824 4668 /* reached equivalent register/stack state,
dc503a8a
EC
4669 * prune the search.
4670 * Registers read by the continuation are read by us.
8e9cd9ce
EC
4671 * If we have any write marks in env->cur_state, they
4672 * will prevent corresponding reads in the continuation
4673 * from reaching our parent (an explored_state). Our
4674 * own state will get the read marks recorded, but
4675 * they'll be immediately forgotten as we're pruning
4676 * this state and will pop a new one.
f1bca824 4677 */
f4d7e40a
AS
4678 err = propagate_liveness(env, &sl->state, cur);
4679 if (err)
4680 return err;
f1bca824 4681 return 1;
dc503a8a 4682 }
f1bca824
AS
4683 sl = sl->next;
4684 }
4685
4686 /* there were no equivalent states, remember current one.
4687 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
4688 * but it will either reach outer most bpf_exit (which means it's safe)
4689 * or it will be rejected. Since there are no loops, we won't be
4690 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4691 * again on the way to bpf_exit
f1bca824 4692 */
638f5b90 4693 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
4694 if (!new_sl)
4695 return -ENOMEM;
4696
4697 /* add new state to the head of linked list */
679c782d
EC
4698 new = &new_sl->state;
4699 err = copy_verifier_state(new, cur);
1969db47 4700 if (err) {
679c782d 4701 free_verifier_state(new, false);
1969db47
AS
4702 kfree(new_sl);
4703 return err;
4704 }
f1bca824
AS
4705 new_sl->next = env->explored_states[insn_idx];
4706 env->explored_states[insn_idx] = new_sl;
dc503a8a 4707 /* connect new state to parentage chain */
679c782d
EC
4708 for (i = 0; i < BPF_REG_FP; i++)
4709 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
8e9cd9ce
EC
4710 /* clear write marks in current state: the writes we did are not writes
4711 * our child did, so they don't screen off its reads from us.
4712 * (There are no read marks in current state, because reads always mark
4713 * their parent and current state never has children yet. Only
4714 * explored_states can get read marks.)
4715 */
dc503a8a 4716 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
4717 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4718
4719 /* all stack frames are accessible from callee, clear them all */
4720 for (j = 0; j <= cur->curframe; j++) {
4721 struct bpf_func_state *frame = cur->frame[j];
679c782d 4722 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 4723
679c782d 4724 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 4725 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
4726 frame->stack[i].spilled_ptr.parent =
4727 &newframe->stack[i].spilled_ptr;
4728 }
f4d7e40a 4729 }
f1bca824
AS
4730 return 0;
4731}
4732
c64b7983
JS
4733/* Return true if it's OK to have the same insn return a different type. */
4734static bool reg_type_mismatch_ok(enum bpf_reg_type type)
4735{
4736 switch (type) {
4737 case PTR_TO_CTX:
4738 case PTR_TO_SOCKET:
4739 case PTR_TO_SOCKET_OR_NULL:
4740 return false;
4741 default:
4742 return true;
4743 }
4744}
4745
4746/* If an instruction was previously used with particular pointer types, then we
4747 * need to be careful to avoid cases such as the below, where it may be ok
4748 * for one branch accessing the pointer, but not ok for the other branch:
4749 *
4750 * R1 = sock_ptr
4751 * goto X;
4752 * ...
4753 * R1 = some_other_valid_ptr;
4754 * goto X;
4755 * ...
4756 * R2 = *(u32 *)(R1 + 0);
4757 */
4758static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
4759{
4760 return src != prev && (!reg_type_mismatch_ok(src) ||
4761 !reg_type_mismatch_ok(prev));
4762}
4763
58e2af8b 4764static int do_check(struct bpf_verifier_env *env)
17a52670 4765{
638f5b90 4766 struct bpf_verifier_state *state;
17a52670 4767 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 4768 struct bpf_reg_state *regs;
f4d7e40a 4769 int insn_cnt = env->prog->len, i;
17a52670
AS
4770 int insn_idx, prev_insn_idx = 0;
4771 int insn_processed = 0;
4772 bool do_print_state = false;
4773
638f5b90
AS
4774 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4775 if (!state)
4776 return -ENOMEM;
f4d7e40a 4777 state->curframe = 0;
f4d7e40a
AS
4778 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4779 if (!state->frame[0]) {
4780 kfree(state);
4781 return -ENOMEM;
4782 }
4783 env->cur_state = state;
4784 init_func_state(env, state->frame[0],
4785 BPF_MAIN_FUNC /* callsite */,
4786 0 /* frameno */,
4787 0 /* subprogno, zero == main subprog */);
17a52670
AS
4788 insn_idx = 0;
4789 for (;;) {
4790 struct bpf_insn *insn;
4791 u8 class;
4792 int err;
4793
4794 if (insn_idx >= insn_cnt) {
61bd5218 4795 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
4796 insn_idx, insn_cnt);
4797 return -EFAULT;
4798 }
4799
4800 insn = &insns[insn_idx];
4801 class = BPF_CLASS(insn->code);
4802
07016151 4803 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
4804 verbose(env,
4805 "BPF program is too large. Processed %d insn\n",
17a52670
AS
4806 insn_processed);
4807 return -E2BIG;
4808 }
4809
f1bca824
AS
4810 err = is_state_visited(env, insn_idx);
4811 if (err < 0)
4812 return err;
4813 if (err == 1) {
4814 /* found equivalent state, can prune the search */
61bd5218 4815 if (env->log.level) {
f1bca824 4816 if (do_print_state)
61bd5218 4817 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
4818 prev_insn_idx, insn_idx);
4819 else
61bd5218 4820 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
4821 }
4822 goto process_bpf_exit;
4823 }
4824
3c2ce60b
DB
4825 if (need_resched())
4826 cond_resched();
4827
61bd5218
JK
4828 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4829 if (env->log.level > 1)
4830 verbose(env, "%d:", insn_idx);
c5fc9692 4831 else
61bd5218 4832 verbose(env, "\nfrom %d to %d:",
c5fc9692 4833 prev_insn_idx, insn_idx);
f4d7e40a 4834 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
4835 do_print_state = false;
4836 }
4837
61bd5218 4838 if (env->log.level) {
7105e828
DB
4839 const struct bpf_insn_cbs cbs = {
4840 .cb_print = verbose,
abe08840 4841 .private_data = env,
7105e828
DB
4842 };
4843
61bd5218 4844 verbose(env, "%d: ", insn_idx);
abe08840 4845 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
4846 }
4847
cae1927c
JK
4848 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4849 err = bpf_prog_offload_verify_insn(env, insn_idx,
4850 prev_insn_idx);
4851 if (err)
4852 return err;
4853 }
13a27dfc 4854
638f5b90 4855 regs = cur_regs(env);
c131187d 4856 env->insn_aux_data[insn_idx].seen = true;
17a52670 4857 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 4858 err = check_alu_op(env, insn);
17a52670
AS
4859 if (err)
4860 return err;
4861
4862 } else if (class == BPF_LDX) {
3df126f3 4863 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
4864
4865 /* check for reserved fields is already done */
4866
17a52670 4867 /* check src operand */
dc503a8a 4868 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4869 if (err)
4870 return err;
4871
dc503a8a 4872 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4873 if (err)
4874 return err;
4875
725f9dcd
AS
4876 src_reg_type = regs[insn->src_reg].type;
4877
17a52670
AS
4878 /* check that memory (src_reg + off) is readable,
4879 * the state of dst_reg will be updated by this func
4880 */
31fd8581 4881 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 4882 BPF_SIZE(insn->code), BPF_READ,
ca369602 4883 insn->dst_reg, false);
17a52670
AS
4884 if (err)
4885 return err;
4886
3df126f3
JK
4887 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4888
4889 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
4890 /* saw a valid insn
4891 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 4892 * save type to validate intersecting paths
9bac3d6d 4893 */
3df126f3 4894 *prev_src_type = src_reg_type;
9bac3d6d 4895
c64b7983 4896 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
4897 /* ABuser program is trying to use the same insn
4898 * dst_reg = *(u32*) (src_reg + off)
4899 * with different pointer types:
4900 * src_reg == ctx in one branch and
4901 * src_reg == stack|map in some other branch.
4902 * Reject it.
4903 */
61bd5218 4904 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
4905 return -EINVAL;
4906 }
4907
17a52670 4908 } else if (class == BPF_STX) {
3df126f3 4909 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4910
17a52670 4911 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4912 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4913 if (err)
4914 return err;
4915 insn_idx++;
4916 continue;
4917 }
4918
17a52670 4919 /* check src1 operand */
dc503a8a 4920 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4921 if (err)
4922 return err;
4923 /* check src2 operand */
dc503a8a 4924 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4925 if (err)
4926 return err;
4927
d691f9e8
AS
4928 dst_reg_type = regs[insn->dst_reg].type;
4929
17a52670 4930 /* check that memory (dst_reg + off) is writeable */
31fd8581 4931 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4932 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4933 insn->src_reg, false);
17a52670
AS
4934 if (err)
4935 return err;
4936
3df126f3
JK
4937 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4938
4939 if (*prev_dst_type == NOT_INIT) {
4940 *prev_dst_type = dst_reg_type;
c64b7983 4941 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 4942 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4943 return -EINVAL;
4944 }
4945
17a52670
AS
4946 } else if (class == BPF_ST) {
4947 if (BPF_MODE(insn->code) != BPF_MEM ||
4948 insn->src_reg != BPF_REG_0) {
61bd5218 4949 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4950 return -EINVAL;
4951 }
4952 /* check src operand */
dc503a8a 4953 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4954 if (err)
4955 return err;
4956
f37a8cb8 4957 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a
JS
4958 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
4959 insn->dst_reg, reg_type_str[insn->dst_reg]);
f37a8cb8
DB
4960 return -EACCES;
4961 }
4962
17a52670 4963 /* check that memory (dst_reg + off) is writeable */
31fd8581 4964 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4965 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4966 -1, false);
17a52670
AS
4967 if (err)
4968 return err;
4969
4970 } else if (class == BPF_JMP) {
4971 u8 opcode = BPF_OP(insn->code);
4972
4973 if (opcode == BPF_CALL) {
4974 if (BPF_SRC(insn->code) != BPF_K ||
4975 insn->off != 0 ||
f4d7e40a
AS
4976 (insn->src_reg != BPF_REG_0 &&
4977 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 4978 insn->dst_reg != BPF_REG_0) {
61bd5218 4979 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4980 return -EINVAL;
4981 }
4982
f4d7e40a
AS
4983 if (insn->src_reg == BPF_PSEUDO_CALL)
4984 err = check_func_call(env, insn, &insn_idx);
4985 else
4986 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
4987 if (err)
4988 return err;
4989
4990 } else if (opcode == BPF_JA) {
4991 if (BPF_SRC(insn->code) != BPF_K ||
4992 insn->imm != 0 ||
4993 insn->src_reg != BPF_REG_0 ||
4994 insn->dst_reg != BPF_REG_0) {
61bd5218 4995 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4996 return -EINVAL;
4997 }
4998
4999 insn_idx += insn->off + 1;
5000 continue;
5001
5002 } else if (opcode == BPF_EXIT) {
5003 if (BPF_SRC(insn->code) != BPF_K ||
5004 insn->imm != 0 ||
5005 insn->src_reg != BPF_REG_0 ||
5006 insn->dst_reg != BPF_REG_0) {
61bd5218 5007 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5008 return -EINVAL;
5009 }
5010
f4d7e40a
AS
5011 if (state->curframe) {
5012 /* exit from nested function */
5013 prev_insn_idx = insn_idx;
5014 err = prepare_func_exit(env, &insn_idx);
5015 if (err)
5016 return err;
5017 do_print_state = true;
5018 continue;
5019 }
5020
17a52670
AS
5021 /* eBPF calling convetion is such that R0 is used
5022 * to return the value from eBPF program.
5023 * Make sure that it's readable at this time
5024 * of bpf_exit, which means that program wrote
5025 * something into it earlier
5026 */
dc503a8a 5027 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5028 if (err)
5029 return err;
5030
1be7f75d 5031 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5032 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5033 return -EACCES;
5034 }
5035
390ee7e2
AS
5036 err = check_return_code(env);
5037 if (err)
5038 return err;
f1bca824 5039process_bpf_exit:
638f5b90
AS
5040 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5041 if (err < 0) {
5042 if (err != -ENOENT)
5043 return err;
17a52670
AS
5044 break;
5045 } else {
5046 do_print_state = true;
5047 continue;
5048 }
5049 } else {
5050 err = check_cond_jmp_op(env, insn, &insn_idx);
5051 if (err)
5052 return err;
5053 }
5054 } else if (class == BPF_LD) {
5055 u8 mode = BPF_MODE(insn->code);
5056
5057 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5058 err = check_ld_abs(env, insn);
5059 if (err)
5060 return err;
5061
17a52670
AS
5062 } else if (mode == BPF_IMM) {
5063 err = check_ld_imm(env, insn);
5064 if (err)
5065 return err;
5066
5067 insn_idx++;
c131187d 5068 env->insn_aux_data[insn_idx].seen = true;
17a52670 5069 } else {
61bd5218 5070 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5071 return -EINVAL;
5072 }
5073 } else {
61bd5218 5074 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5075 return -EINVAL;
5076 }
5077
5078 insn_idx++;
5079 }
5080
4bd95f4b
DB
5081 verbose(env, "processed %d insns (limit %d), stack depth ",
5082 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5083 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5084 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5085
5086 verbose(env, "%d", depth);
f910cefa 5087 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5088 verbose(env, "+");
5089 }
5090 verbose(env, "\n");
9c8105bd 5091 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5092 return 0;
5093}
5094
56f668df
MKL
5095static int check_map_prealloc(struct bpf_map *map)
5096{
5097 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5098 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5099 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5100 !(map->map_flags & BPF_F_NO_PREALLOC);
5101}
5102
61bd5218
JK
5103static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5104 struct bpf_map *map,
fdc15d38
AS
5105 struct bpf_prog *prog)
5106
5107{
56f668df
MKL
5108 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5109 * preallocated hash maps, since doing memory allocation
5110 * in overflow_handler can crash depending on where nmi got
5111 * triggered.
5112 */
5113 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5114 if (!check_map_prealloc(map)) {
61bd5218 5115 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
5116 return -EINVAL;
5117 }
5118 if (map->inner_map_meta &&
5119 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 5120 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
5121 return -EINVAL;
5122 }
fdc15d38 5123 }
a3884572
JK
5124
5125 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 5126 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
5127 verbose(env, "offload device mismatch between prog and map\n");
5128 return -EINVAL;
5129 }
5130
fdc15d38
AS
5131 return 0;
5132}
5133
b741f163
RG
5134static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5135{
5136 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5137 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5138}
5139
0246e64d
AS
5140/* look for pseudo eBPF instructions that access map FDs and
5141 * replace them with actual map pointers
5142 */
58e2af8b 5143static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
5144{
5145 struct bpf_insn *insn = env->prog->insnsi;
5146 int insn_cnt = env->prog->len;
fdc15d38 5147 int i, j, err;
0246e64d 5148
f1f7714e 5149 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
5150 if (err)
5151 return err;
5152
0246e64d 5153 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5154 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5155 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5156 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5157 return -EINVAL;
5158 }
5159
d691f9e8
AS
5160 if (BPF_CLASS(insn->code) == BPF_STX &&
5161 ((BPF_MODE(insn->code) != BPF_MEM &&
5162 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5163 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5164 return -EINVAL;
5165 }
5166
0246e64d
AS
5167 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5168 struct bpf_map *map;
5169 struct fd f;
5170
5171 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5172 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5173 insn[1].off != 0) {
61bd5218 5174 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5175 return -EINVAL;
5176 }
5177
5178 if (insn->src_reg == 0)
5179 /* valid generic load 64-bit imm */
5180 goto next_insn;
5181
5182 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5183 verbose(env,
5184 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5185 return -EINVAL;
5186 }
5187
5188 f = fdget(insn->imm);
c2101297 5189 map = __bpf_map_get(f);
0246e64d 5190 if (IS_ERR(map)) {
61bd5218 5191 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5192 insn->imm);
0246e64d
AS
5193 return PTR_ERR(map);
5194 }
5195
61bd5218 5196 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5197 if (err) {
5198 fdput(f);
5199 return err;
5200 }
5201
0246e64d
AS
5202 /* store map pointer inside BPF_LD_IMM64 instruction */
5203 insn[0].imm = (u32) (unsigned long) map;
5204 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5205
5206 /* check whether we recorded this map already */
5207 for (j = 0; j < env->used_map_cnt; j++)
5208 if (env->used_maps[j] == map) {
5209 fdput(f);
5210 goto next_insn;
5211 }
5212
5213 if (env->used_map_cnt >= MAX_USED_MAPS) {
5214 fdput(f);
5215 return -E2BIG;
5216 }
5217
0246e64d
AS
5218 /* hold the map. If the program is rejected by verifier,
5219 * the map will be released by release_maps() or it
5220 * will be used by the valid program until it's unloaded
ab7f5bf0 5221 * and all maps are released in free_used_maps()
0246e64d 5222 */
92117d84
AS
5223 map = bpf_map_inc(map, false);
5224 if (IS_ERR(map)) {
5225 fdput(f);
5226 return PTR_ERR(map);
5227 }
5228 env->used_maps[env->used_map_cnt++] = map;
5229
b741f163 5230 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 5231 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 5232 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
5233 fdput(f);
5234 return -EBUSY;
5235 }
5236
0246e64d
AS
5237 fdput(f);
5238next_insn:
5239 insn++;
5240 i++;
5e581dad
DB
5241 continue;
5242 }
5243
5244 /* Basic sanity check before we invest more work here. */
5245 if (!bpf_opcode_in_insntable(insn->code)) {
5246 verbose(env, "unknown opcode %02x\n", insn->code);
5247 return -EINVAL;
0246e64d
AS
5248 }
5249 }
5250
5251 /* now all pseudo BPF_LD_IMM64 instructions load valid
5252 * 'struct bpf_map *' into a register instead of user map_fd.
5253 * These pointers will be used later by verifier to validate map access.
5254 */
5255 return 0;
5256}
5257
5258/* drop refcnt of maps used by the rejected program */
58e2af8b 5259static void release_maps(struct bpf_verifier_env *env)
0246e64d 5260{
8bad74f9 5261 enum bpf_cgroup_storage_type stype;
0246e64d
AS
5262 int i;
5263
8bad74f9
RG
5264 for_each_cgroup_storage_type(stype) {
5265 if (!env->prog->aux->cgroup_storage[stype])
5266 continue;
de9cbbaa 5267 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
5268 env->prog->aux->cgroup_storage[stype]);
5269 }
de9cbbaa 5270
0246e64d
AS
5271 for (i = 0; i < env->used_map_cnt; i++)
5272 bpf_map_put(env->used_maps[i]);
5273}
5274
5275/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5276static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5277{
5278 struct bpf_insn *insn = env->prog->insnsi;
5279 int insn_cnt = env->prog->len;
5280 int i;
5281
5282 for (i = 0; i < insn_cnt; i++, insn++)
5283 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5284 insn->src_reg = 0;
5285}
5286
8041902d
AS
5287/* single env->prog->insni[off] instruction was replaced with the range
5288 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5289 * [0, off) and [off, end) to new locations, so the patched range stays zero
5290 */
5291static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5292 u32 off, u32 cnt)
5293{
5294 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5295 int i;
8041902d
AS
5296
5297 if (cnt == 1)
5298 return 0;
fad953ce
KC
5299 new_data = vzalloc(array_size(prog_len,
5300 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
5301 if (!new_data)
5302 return -ENOMEM;
5303 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5304 memcpy(new_data + off + cnt - 1, old_data + off,
5305 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5306 for (i = off; i < off + cnt - 1; i++)
5307 new_data[i].seen = true;
8041902d
AS
5308 env->insn_aux_data = new_data;
5309 vfree(old_data);
5310 return 0;
5311}
5312
cc8b0b92
AS
5313static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5314{
5315 int i;
5316
5317 if (len == 1)
5318 return;
4cb3d99c
JW
5319 /* NOTE: fake 'exit' subprog should be updated as well. */
5320 for (i = 0; i <= env->subprog_cnt; i++) {
9c8105bd 5321 if (env->subprog_info[i].start < off)
cc8b0b92 5322 continue;
9c8105bd 5323 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5324 }
5325}
5326
8041902d
AS
5327static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5328 const struct bpf_insn *patch, u32 len)
5329{
5330 struct bpf_prog *new_prog;
5331
5332 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5333 if (!new_prog)
5334 return NULL;
5335 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5336 return NULL;
cc8b0b92 5337 adjust_subprog_starts(env, off, len);
8041902d
AS
5338 return new_prog;
5339}
5340
2a5418a1
DB
5341/* The verifier does more data flow analysis than llvm and will not
5342 * explore branches that are dead at run time. Malicious programs can
5343 * have dead code too. Therefore replace all dead at-run-time code
5344 * with 'ja -1'.
5345 *
5346 * Just nops are not optimal, e.g. if they would sit at the end of the
5347 * program and through another bug we would manage to jump there, then
5348 * we'd execute beyond program memory otherwise. Returning exception
5349 * code also wouldn't work since we can have subprogs where the dead
5350 * code could be located.
c131187d
AS
5351 */
5352static void sanitize_dead_code(struct bpf_verifier_env *env)
5353{
5354 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5355 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5356 struct bpf_insn *insn = env->prog->insnsi;
5357 const int insn_cnt = env->prog->len;
5358 int i;
5359
5360 for (i = 0; i < insn_cnt; i++) {
5361 if (aux_data[i].seen)
5362 continue;
2a5418a1 5363 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5364 }
5365}
5366
c64b7983
JS
5367/* convert load instructions that access fields of a context type into a
5368 * sequence of instructions that access fields of the underlying structure:
5369 * struct __sk_buff -> struct sk_buff
5370 * struct bpf_sock_ops -> struct sock
9bac3d6d 5371 */
58e2af8b 5372static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5373{
00176a34 5374 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5375 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5376 const int insn_cnt = env->prog->len;
36bbef52 5377 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5378 struct bpf_prog *new_prog;
d691f9e8 5379 enum bpf_access_type type;
f96da094
DB
5380 bool is_narrower_load;
5381 u32 target_size;
9bac3d6d 5382
36bbef52
DB
5383 if (ops->gen_prologue) {
5384 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5385 env->prog);
5386 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5387 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5388 return -EINVAL;
5389 } else if (cnt) {
8041902d 5390 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5391 if (!new_prog)
5392 return -ENOMEM;
8041902d 5393
36bbef52 5394 env->prog = new_prog;
3df126f3 5395 delta += cnt - 1;
36bbef52
DB
5396 }
5397 }
5398
c64b7983 5399 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5400 return 0;
5401
3df126f3 5402 insn = env->prog->insnsi + delta;
36bbef52 5403
9bac3d6d 5404 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
5405 bpf_convert_ctx_access_t convert_ctx_access;
5406
62c7989b
DB
5407 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5408 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5409 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5410 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5411 type = BPF_READ;
62c7989b
DB
5412 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5413 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5414 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5415 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5416 type = BPF_WRITE;
5417 else
9bac3d6d
AS
5418 continue;
5419
af86ca4e
AS
5420 if (type == BPF_WRITE &&
5421 env->insn_aux_data[i + delta].sanitize_stack_off) {
5422 struct bpf_insn patch[] = {
5423 /* Sanitize suspicious stack slot with zero.
5424 * There are no memory dependencies for this store,
5425 * since it's only using frame pointer and immediate
5426 * constant of zero
5427 */
5428 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5429 env->insn_aux_data[i + delta].sanitize_stack_off,
5430 0),
5431 /* the original STX instruction will immediately
5432 * overwrite the same stack slot with appropriate value
5433 */
5434 *insn,
5435 };
5436
5437 cnt = ARRAY_SIZE(patch);
5438 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5439 if (!new_prog)
5440 return -ENOMEM;
5441
5442 delta += cnt - 1;
5443 env->prog = new_prog;
5444 insn = new_prog->insnsi + i + delta;
5445 continue;
5446 }
5447
c64b7983
JS
5448 switch (env->insn_aux_data[i + delta].ptr_type) {
5449 case PTR_TO_CTX:
5450 if (!ops->convert_ctx_access)
5451 continue;
5452 convert_ctx_access = ops->convert_ctx_access;
5453 break;
5454 case PTR_TO_SOCKET:
5455 convert_ctx_access = bpf_sock_convert_ctx_access;
5456 break;
5457 default:
9bac3d6d 5458 continue;
c64b7983 5459 }
9bac3d6d 5460
31fd8581 5461 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5462 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5463
5464 /* If the read access is a narrower load of the field,
5465 * convert to a 4/8-byte load, to minimum program type specific
5466 * convert_ctx_access changes. If conversion is successful,
5467 * we will apply proper mask to the result.
5468 */
f96da094 5469 is_narrower_load = size < ctx_field_size;
31fd8581 5470 if (is_narrower_load) {
bc23105c 5471 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
f96da094
DB
5472 u32 off = insn->off;
5473 u8 size_code;
5474
5475 if (type == BPF_WRITE) {
61bd5218 5476 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5477 return -EINVAL;
5478 }
31fd8581 5479
f96da094 5480 size_code = BPF_H;
31fd8581
YS
5481 if (ctx_field_size == 4)
5482 size_code = BPF_W;
5483 else if (ctx_field_size == 8)
5484 size_code = BPF_DW;
f96da094 5485
bc23105c 5486 insn->off = off & ~(size_default - 1);
31fd8581
YS
5487 insn->code = BPF_LDX | BPF_MEM | size_code;
5488 }
f96da094
DB
5489
5490 target_size = 0;
c64b7983
JS
5491 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5492 &target_size);
f96da094
DB
5493 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5494 (ctx_field_size && !target_size)) {
61bd5218 5495 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5496 return -EINVAL;
5497 }
f96da094
DB
5498
5499 if (is_narrower_load && size < target_size) {
31fd8581
YS
5500 if (ctx_field_size <= 4)
5501 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5502 (1 << size * 8) - 1);
31fd8581
YS
5503 else
5504 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5505 (1 << size * 8) - 1);
31fd8581 5506 }
9bac3d6d 5507
8041902d 5508 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5509 if (!new_prog)
5510 return -ENOMEM;
5511
3df126f3 5512 delta += cnt - 1;
9bac3d6d
AS
5513
5514 /* keep walking new program and skip insns we just inserted */
5515 env->prog = new_prog;
3df126f3 5516 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5517 }
5518
5519 return 0;
5520}
5521
1c2a088a
AS
5522static int jit_subprogs(struct bpf_verifier_env *env)
5523{
5524 struct bpf_prog *prog = env->prog, **func, *tmp;
5525 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5526 struct bpf_insn *insn;
1c2a088a
AS
5527 void *old_bpf_func;
5528 int err = -ENOMEM;
5529
f910cefa 5530 if (env->subprog_cnt <= 1)
1c2a088a
AS
5531 return 0;
5532
7105e828 5533 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5534 if (insn->code != (BPF_JMP | BPF_CALL) ||
5535 insn->src_reg != BPF_PSEUDO_CALL)
5536 continue;
c7a89784
DB
5537 /* Upon error here we cannot fall back to interpreter but
5538 * need a hard reject of the program. Thus -EFAULT is
5539 * propagated in any case.
5540 */
1c2a088a
AS
5541 subprog = find_subprog(env, i + insn->imm + 1);
5542 if (subprog < 0) {
5543 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5544 i + insn->imm + 1);
5545 return -EFAULT;
5546 }
5547 /* temporarily remember subprog id inside insn instead of
5548 * aux_data, since next loop will split up all insns into funcs
5549 */
f910cefa 5550 insn->off = subprog;
1c2a088a
AS
5551 /* remember original imm in case JIT fails and fallback
5552 * to interpreter will be needed
5553 */
5554 env->insn_aux_data[i].call_imm = insn->imm;
5555 /* point imm to __bpf_call_base+1 from JITs point of view */
5556 insn->imm = 1;
5557 }
5558
6396bb22 5559 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 5560 if (!func)
c7a89784 5561 goto out_undo_insn;
1c2a088a 5562
f910cefa 5563 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5564 subprog_start = subprog_end;
4cb3d99c 5565 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5566
5567 len = subprog_end - subprog_start;
5568 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5569 if (!func[i])
5570 goto out_free;
5571 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5572 len * sizeof(struct bpf_insn));
4f74d809 5573 func[i]->type = prog->type;
1c2a088a 5574 func[i]->len = len;
4f74d809
DB
5575 if (bpf_prog_calc_tag(func[i]))
5576 goto out_free;
1c2a088a
AS
5577 func[i]->is_func = 1;
5578 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5579 * Long term would need debug info to populate names
5580 */
5581 func[i]->aux->name[0] = 'F';
9c8105bd 5582 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5583 func[i]->jit_requested = 1;
5584 func[i] = bpf_int_jit_compile(func[i]);
5585 if (!func[i]->jited) {
5586 err = -ENOTSUPP;
5587 goto out_free;
5588 }
5589 cond_resched();
5590 }
5591 /* at this point all bpf functions were successfully JITed
5592 * now populate all bpf_calls with correct addresses and
5593 * run last pass of JIT
5594 */
f910cefa 5595 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5596 insn = func[i]->insnsi;
5597 for (j = 0; j < func[i]->len; j++, insn++) {
5598 if (insn->code != (BPF_JMP | BPF_CALL) ||
5599 insn->src_reg != BPF_PSEUDO_CALL)
5600 continue;
5601 subprog = insn->off;
1c2a088a
AS
5602 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5603 func[subprog]->bpf_func -
5604 __bpf_call_base;
5605 }
2162fed4
SD
5606
5607 /* we use the aux data to keep a list of the start addresses
5608 * of the JITed images for each function in the program
5609 *
5610 * for some architectures, such as powerpc64, the imm field
5611 * might not be large enough to hold the offset of the start
5612 * address of the callee's JITed image from __bpf_call_base
5613 *
5614 * in such cases, we can lookup the start address of a callee
5615 * by using its subprog id, available from the off field of
5616 * the call instruction, as an index for this list
5617 */
5618 func[i]->aux->func = func;
5619 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 5620 }
f910cefa 5621 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5622 old_bpf_func = func[i]->bpf_func;
5623 tmp = bpf_int_jit_compile(func[i]);
5624 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5625 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 5626 err = -ENOTSUPP;
1c2a088a
AS
5627 goto out_free;
5628 }
5629 cond_resched();
5630 }
5631
5632 /* finally lock prog and jit images for all functions and
5633 * populate kallsysm
5634 */
f910cefa 5635 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5636 bpf_prog_lock_ro(func[i]);
5637 bpf_prog_kallsyms_add(func[i]);
5638 }
7105e828
DB
5639
5640 /* Last step: make now unused interpreter insns from main
5641 * prog consistent for later dump requests, so they can
5642 * later look the same as if they were interpreted only.
5643 */
5644 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
5645 if (insn->code != (BPF_JMP | BPF_CALL) ||
5646 insn->src_reg != BPF_PSEUDO_CALL)
5647 continue;
5648 insn->off = env->insn_aux_data[i].call_imm;
5649 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 5650 insn->imm = subprog;
7105e828
DB
5651 }
5652
1c2a088a
AS
5653 prog->jited = 1;
5654 prog->bpf_func = func[0]->bpf_func;
5655 prog->aux->func = func;
f910cefa 5656 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
5657 return 0;
5658out_free:
f910cefa 5659 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
5660 if (func[i])
5661 bpf_jit_free(func[i]);
5662 kfree(func);
c7a89784 5663out_undo_insn:
1c2a088a
AS
5664 /* cleanup main prog to be interpreted */
5665 prog->jit_requested = 0;
5666 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5667 if (insn->code != (BPF_JMP | BPF_CALL) ||
5668 insn->src_reg != BPF_PSEUDO_CALL)
5669 continue;
5670 insn->off = 0;
5671 insn->imm = env->insn_aux_data[i].call_imm;
5672 }
5673 return err;
5674}
5675
1ea47e01
AS
5676static int fixup_call_args(struct bpf_verifier_env *env)
5677{
19d28fbd 5678#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5679 struct bpf_prog *prog = env->prog;
5680 struct bpf_insn *insn = prog->insnsi;
5681 int i, depth;
19d28fbd
DM
5682#endif
5683 int err;
1ea47e01 5684
19d28fbd
DM
5685 err = 0;
5686 if (env->prog->jit_requested) {
5687 err = jit_subprogs(env);
5688 if (err == 0)
1c2a088a 5689 return 0;
c7a89784
DB
5690 if (err == -EFAULT)
5691 return err;
19d28fbd
DM
5692 }
5693#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5694 for (i = 0; i < prog->len; i++, insn++) {
5695 if (insn->code != (BPF_JMP | BPF_CALL) ||
5696 insn->src_reg != BPF_PSEUDO_CALL)
5697 continue;
5698 depth = get_callee_stack_depth(env, insn, i);
5699 if (depth < 0)
5700 return depth;
5701 bpf_patch_call_args(insn, depth);
5702 }
19d28fbd
DM
5703 err = 0;
5704#endif
5705 return err;
1ea47e01
AS
5706}
5707
79741b3b 5708/* fixup insn->imm field of bpf_call instructions
81ed18ab 5709 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
5710 *
5711 * this function is called after eBPF program passed verification
5712 */
79741b3b 5713static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 5714{
79741b3b
AS
5715 struct bpf_prog *prog = env->prog;
5716 struct bpf_insn *insn = prog->insnsi;
e245c5c6 5717 const struct bpf_func_proto *fn;
79741b3b 5718 const int insn_cnt = prog->len;
09772d92 5719 const struct bpf_map_ops *ops;
c93552c4 5720 struct bpf_insn_aux_data *aux;
81ed18ab
AS
5721 struct bpf_insn insn_buf[16];
5722 struct bpf_prog *new_prog;
5723 struct bpf_map *map_ptr;
5724 int i, cnt, delta = 0;
e245c5c6 5725
79741b3b 5726 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
5727 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5728 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5729 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 5730 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
5731 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5732 struct bpf_insn mask_and_div[] = {
5733 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5734 /* Rx div 0 -> 0 */
5735 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5736 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5737 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5738 *insn,
5739 };
5740 struct bpf_insn mask_and_mod[] = {
5741 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5742 /* Rx mod 0 -> Rx */
5743 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5744 *insn,
5745 };
5746 struct bpf_insn *patchlet;
5747
5748 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5749 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5750 patchlet = mask_and_div + (is64 ? 1 : 0);
5751 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5752 } else {
5753 patchlet = mask_and_mod + (is64 ? 1 : 0);
5754 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5755 }
5756
5757 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
5758 if (!new_prog)
5759 return -ENOMEM;
5760
5761 delta += cnt - 1;
5762 env->prog = prog = new_prog;
5763 insn = new_prog->insnsi + i + delta;
5764 continue;
5765 }
5766
e0cea7ce
DB
5767 if (BPF_CLASS(insn->code) == BPF_LD &&
5768 (BPF_MODE(insn->code) == BPF_ABS ||
5769 BPF_MODE(insn->code) == BPF_IND)) {
5770 cnt = env->ops->gen_ld_abs(insn, insn_buf);
5771 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5772 verbose(env, "bpf verifier is misconfigured\n");
5773 return -EINVAL;
5774 }
5775
5776 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5777 if (!new_prog)
5778 return -ENOMEM;
5779
5780 delta += cnt - 1;
5781 env->prog = prog = new_prog;
5782 insn = new_prog->insnsi + i + delta;
5783 continue;
5784 }
5785
79741b3b
AS
5786 if (insn->code != (BPF_JMP | BPF_CALL))
5787 continue;
cc8b0b92
AS
5788 if (insn->src_reg == BPF_PSEUDO_CALL)
5789 continue;
e245c5c6 5790
79741b3b
AS
5791 if (insn->imm == BPF_FUNC_get_route_realm)
5792 prog->dst_needed = 1;
5793 if (insn->imm == BPF_FUNC_get_prandom_u32)
5794 bpf_user_rnd_init_once();
9802d865
JB
5795 if (insn->imm == BPF_FUNC_override_return)
5796 prog->kprobe_override = 1;
79741b3b 5797 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
5798 /* If we tail call into other programs, we
5799 * cannot make any assumptions since they can
5800 * be replaced dynamically during runtime in
5801 * the program array.
5802 */
5803 prog->cb_access = 1;
80a58d02 5804 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 5805
79741b3b
AS
5806 /* mark bpf_tail_call as different opcode to avoid
5807 * conditional branch in the interpeter for every normal
5808 * call and to prevent accidental JITing by JIT compiler
5809 * that doesn't support bpf_tail_call yet
e245c5c6 5810 */
79741b3b 5811 insn->imm = 0;
71189fa9 5812 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 5813
c93552c4
DB
5814 aux = &env->insn_aux_data[i + delta];
5815 if (!bpf_map_ptr_unpriv(aux))
5816 continue;
5817
b2157399
AS
5818 /* instead of changing every JIT dealing with tail_call
5819 * emit two extra insns:
5820 * if (index >= max_entries) goto out;
5821 * index &= array->index_mask;
5822 * to avoid out-of-bounds cpu speculation
5823 */
c93552c4 5824 if (bpf_map_ptr_poisoned(aux)) {
40950343 5825 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
5826 return -EINVAL;
5827 }
c93552c4
DB
5828
5829 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
5830 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5831 map_ptr->max_entries, 2);
5832 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5833 container_of(map_ptr,
5834 struct bpf_array,
5835 map)->index_mask);
5836 insn_buf[2] = *insn;
5837 cnt = 3;
5838 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5839 if (!new_prog)
5840 return -ENOMEM;
5841
5842 delta += cnt - 1;
5843 env->prog = prog = new_prog;
5844 insn = new_prog->insnsi + i + delta;
79741b3b
AS
5845 continue;
5846 }
e245c5c6 5847
89c63074 5848 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
5849 * and other inlining handlers are currently limited to 64 bit
5850 * only.
89c63074 5851 */
60b58afc 5852 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
5853 (insn->imm == BPF_FUNC_map_lookup_elem ||
5854 insn->imm == BPF_FUNC_map_update_elem ||
5855 insn->imm == BPF_FUNC_map_delete_elem)) {
c93552c4
DB
5856 aux = &env->insn_aux_data[i + delta];
5857 if (bpf_map_ptr_poisoned(aux))
5858 goto patch_call_imm;
5859
5860 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
5861 ops = map_ptr->ops;
5862 if (insn->imm == BPF_FUNC_map_lookup_elem &&
5863 ops->map_gen_lookup) {
5864 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
5865 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5866 verbose(env, "bpf verifier is misconfigured\n");
5867 return -EINVAL;
5868 }
81ed18ab 5869
09772d92
DB
5870 new_prog = bpf_patch_insn_data(env, i + delta,
5871 insn_buf, cnt);
5872 if (!new_prog)
5873 return -ENOMEM;
81ed18ab 5874
09772d92
DB
5875 delta += cnt - 1;
5876 env->prog = prog = new_prog;
5877 insn = new_prog->insnsi + i + delta;
5878 continue;
5879 }
81ed18ab 5880
09772d92
DB
5881 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
5882 (void *(*)(struct bpf_map *map, void *key))NULL));
5883 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
5884 (int (*)(struct bpf_map *map, void *key))NULL));
5885 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
5886 (int (*)(struct bpf_map *map, void *key, void *value,
5887 u64 flags))NULL));
5888 switch (insn->imm) {
5889 case BPF_FUNC_map_lookup_elem:
5890 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
5891 __bpf_call_base;
5892 continue;
5893 case BPF_FUNC_map_update_elem:
5894 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
5895 __bpf_call_base;
5896 continue;
5897 case BPF_FUNC_map_delete_elem:
5898 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
5899 __bpf_call_base;
5900 continue;
5901 }
81ed18ab 5902
09772d92 5903 goto patch_call_imm;
81ed18ab
AS
5904 }
5905
5906patch_call_imm:
5e43f899 5907 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
5908 /* all functions that have prototype and verifier allowed
5909 * programs to call them, must be real in-kernel functions
5910 */
5911 if (!fn->func) {
61bd5218
JK
5912 verbose(env,
5913 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
5914 func_id_name(insn->imm), insn->imm);
5915 return -EFAULT;
e245c5c6 5916 }
79741b3b 5917 insn->imm = fn->func - __bpf_call_base;
e245c5c6 5918 }
e245c5c6 5919
79741b3b
AS
5920 return 0;
5921}
e245c5c6 5922
58e2af8b 5923static void free_states(struct bpf_verifier_env *env)
f1bca824 5924{
58e2af8b 5925 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
5926 int i;
5927
5928 if (!env->explored_states)
5929 return;
5930
5931 for (i = 0; i < env->prog->len; i++) {
5932 sl = env->explored_states[i];
5933
5934 if (sl)
5935 while (sl != STATE_LIST_MARK) {
5936 sln = sl->next;
1969db47 5937 free_verifier_state(&sl->state, false);
f1bca824
AS
5938 kfree(sl);
5939 sl = sln;
5940 }
5941 }
5942
5943 kfree(env->explored_states);
5944}
5945
9bac3d6d 5946int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 5947{
58e2af8b 5948 struct bpf_verifier_env *env;
b9193c1b 5949 struct bpf_verifier_log *log;
51580e79
AS
5950 int ret = -EINVAL;
5951
eba0c929
AB
5952 /* no program is valid */
5953 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5954 return -EINVAL;
5955
58e2af8b 5956 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
5957 * allocate/free it every time bpf_check() is called
5958 */
58e2af8b 5959 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
5960 if (!env)
5961 return -ENOMEM;
61bd5218 5962 log = &env->log;
cbd35700 5963
fad953ce
KC
5964 env->insn_aux_data =
5965 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
5966 (*prog)->len));
3df126f3
JK
5967 ret = -ENOMEM;
5968 if (!env->insn_aux_data)
5969 goto err_free_env;
9bac3d6d 5970 env->prog = *prog;
00176a34 5971 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 5972
cbd35700
AS
5973 /* grab the mutex to protect few globals used by verifier */
5974 mutex_lock(&bpf_verifier_lock);
5975
5976 if (attr->log_level || attr->log_buf || attr->log_size) {
5977 /* user requested verbose verifier output
5978 * and supplied buffer to store the verification trace
5979 */
e7bf8249
JK
5980 log->level = attr->log_level;
5981 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5982 log->len_total = attr->log_size;
cbd35700
AS
5983
5984 ret = -EINVAL;
e7bf8249
JK
5985 /* log attributes have to be sane */
5986 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5987 !log->level || !log->ubuf)
3df126f3 5988 goto err_unlock;
cbd35700 5989 }
1ad2f583
DB
5990
5991 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5992 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 5993 env->strict_alignment = true;
cbd35700 5994
f4e3ec0d
JK
5995 ret = replace_map_fd_with_map_ptr(env);
5996 if (ret < 0)
5997 goto skip_full_check;
5998
cae1927c 5999 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
6000 ret = bpf_prog_offload_verifier_prep(env);
6001 if (ret)
f4e3ec0d 6002 goto skip_full_check;
ab3f0063
JK
6003 }
6004
9bac3d6d 6005 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6006 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6007 GFP_USER);
6008 ret = -ENOMEM;
6009 if (!env->explored_states)
6010 goto skip_full_check;
6011
cc8b0b92
AS
6012 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6013
475fb78f
AS
6014 ret = check_cfg(env);
6015 if (ret < 0)
6016 goto skip_full_check;
6017
17a52670 6018 ret = do_check(env);
8c01c4f8
CG
6019 if (env->cur_state) {
6020 free_verifier_state(env->cur_state, true);
6021 env->cur_state = NULL;
6022 }
cbd35700 6023
0246e64d 6024skip_full_check:
638f5b90 6025 while (!pop_stack(env, NULL, NULL));
f1bca824 6026 free_states(env);
0246e64d 6027
c131187d
AS
6028 if (ret == 0)
6029 sanitize_dead_code(env);
6030
70a87ffe
AS
6031 if (ret == 0)
6032 ret = check_max_stack_depth(env);
6033
9bac3d6d
AS
6034 if (ret == 0)
6035 /* program is valid, convert *(u32*)(ctx + off) accesses */
6036 ret = convert_ctx_accesses(env);
6037
e245c5c6 6038 if (ret == 0)
79741b3b 6039 ret = fixup_bpf_calls(env);
e245c5c6 6040
1ea47e01
AS
6041 if (ret == 0)
6042 ret = fixup_call_args(env);
6043
a2a7d570 6044 if (log->level && bpf_verifier_log_full(log))
cbd35700 6045 ret = -ENOSPC;
a2a7d570 6046 if (log->level && !log->ubuf) {
cbd35700 6047 ret = -EFAULT;
a2a7d570 6048 goto err_release_maps;
cbd35700
AS
6049 }
6050
0246e64d
AS
6051 if (ret == 0 && env->used_map_cnt) {
6052 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
6053 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6054 sizeof(env->used_maps[0]),
6055 GFP_KERNEL);
0246e64d 6056
9bac3d6d 6057 if (!env->prog->aux->used_maps) {
0246e64d 6058 ret = -ENOMEM;
a2a7d570 6059 goto err_release_maps;
0246e64d
AS
6060 }
6061
9bac3d6d 6062 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 6063 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 6064 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
6065
6066 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
6067 * bpf_ld_imm64 instructions
6068 */
6069 convert_pseudo_ld_imm64(env);
6070 }
cbd35700 6071
a2a7d570 6072err_release_maps:
9bac3d6d 6073 if (!env->prog->aux->used_maps)
0246e64d 6074 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 6075 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
6076 */
6077 release_maps(env);
9bac3d6d 6078 *prog = env->prog;
3df126f3 6079err_unlock:
cbd35700 6080 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
6081 vfree(env->insn_aux_data);
6082err_free_env:
6083 kfree(env);
51580e79
AS
6084 return ret;
6085}