bpf: Factor out bpf_spin_lock into helpers.
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
8fb33b60 50 * Since it's analyzing all paths through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 135 * returns either pointer to map value or NULL.
51580e79
AS
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
23a2d70c
YS
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
e6ac2450
MKL
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
69c087ba
YS
243static bool bpf_pseudo_func(const struct bpf_insn *insn)
244{
245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 insn->src_reg == BPF_PSEUDO_FUNC;
247}
248
33ff9823
DB
249struct bpf_call_arg_meta {
250 struct bpf_map *map_ptr;
435faee1 251 bool raw_mode;
36bbef52 252 bool pkt_access;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
d83525ca 258 int func_id;
22dc4a0f 259 struct btf *btf;
eaa6bcb7 260 u32 btf_id;
22dc4a0f 261 struct btf *ret_btf;
eaa6bcb7 262 u32 ret_btf_id;
69c087ba 263 u32 subprogno;
33ff9823
DB
264};
265
8580ac94
AS
266struct btf *btf_vmlinux;
267
cbd35700
AS
268static DEFINE_MUTEX(bpf_verifier_lock);
269
d9762e84
MKL
270static const struct bpf_line_info *
271find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272{
273 const struct bpf_line_info *linfo;
274 const struct bpf_prog *prog;
275 u32 i, nr_linfo;
276
277 prog = env->prog;
278 nr_linfo = prog->aux->nr_linfo;
279
280 if (!nr_linfo || insn_off >= prog->len)
281 return NULL;
282
283 linfo = prog->aux->linfo;
284 for (i = 1; i < nr_linfo; i++)
285 if (insn_off < linfo[i].insn_off)
286 break;
287
288 return &linfo[i - 1];
289}
290
77d2e05a
MKL
291void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 va_list args)
cbd35700 293{
a2a7d570 294 unsigned int n;
cbd35700 295
a2a7d570 296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
297
298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 "verifier log line truncated - local buffer too short\n");
300
301 n = min(log->len_total - log->len_used - 1, n);
302 log->kbuf[n] = '\0';
303
8580ac94
AS
304 if (log->level == BPF_LOG_KERNEL) {
305 pr_err("BPF:%s\n", log->kbuf);
306 return;
307 }
a2a7d570
JK
308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 log->len_used += n;
310 else
311 log->ubuf = NULL;
cbd35700 312}
abe08840 313
6f8a57cc
AN
314static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315{
316 char zero = 0;
317
318 if (!bpf_verifier_log_needed(log))
319 return;
320
321 log->len_used = new_pos;
322 if (put_user(zero, log->ubuf + new_pos))
323 log->ubuf = NULL;
324}
325
abe08840
JO
326/* log_level controls verbosity level of eBPF verifier.
327 * bpf_verifier_log_write() is used to dump the verification trace to the log,
328 * so the user can figure out what's wrong with the program
430e68d1 329 */
abe08840
JO
330__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 const char *fmt, ...)
332{
333 va_list args;
334
77d2e05a
MKL
335 if (!bpf_verifier_log_needed(&env->log))
336 return;
337
abe08840 338 va_start(args, fmt);
77d2e05a 339 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
340 va_end(args);
341}
342EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343
344__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345{
77d2e05a 346 struct bpf_verifier_env *env = private_data;
abe08840
JO
347 va_list args;
348
77d2e05a
MKL
349 if (!bpf_verifier_log_needed(&env->log))
350 return;
351
abe08840 352 va_start(args, fmt);
77d2e05a 353 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
354 va_end(args);
355}
cbd35700 356
9e15db66
AS
357__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 const char *fmt, ...)
359{
360 va_list args;
361
362 if (!bpf_verifier_log_needed(log))
363 return;
364
365 va_start(args, fmt);
366 bpf_verifier_vlog(log, fmt, args);
367 va_end(args);
368}
369
d9762e84
MKL
370static const char *ltrim(const char *s)
371{
372 while (isspace(*s))
373 s++;
374
375 return s;
376}
377
378__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 u32 insn_off,
380 const char *prefix_fmt, ...)
381{
382 const struct bpf_line_info *linfo;
383
384 if (!bpf_verifier_log_needed(&env->log))
385 return;
386
387 linfo = find_linfo(env, insn_off);
388 if (!linfo || linfo == env->prev_linfo)
389 return;
390
391 if (prefix_fmt) {
392 va_list args;
393
394 va_start(args, prefix_fmt);
395 bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 va_end(args);
397 }
398
399 verbose(env, "%s\n",
400 ltrim(btf_name_by_offset(env->prog->aux->btf,
401 linfo->line_off)));
402
403 env->prev_linfo = linfo;
404}
405
bc2591d6
YS
406static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 struct bpf_reg_state *reg,
408 struct tnum *range, const char *ctx,
409 const char *reg_name)
410{
411 char tn_buf[48];
412
413 verbose(env, "At %s the register %s ", ctx, reg_name);
414 if (!tnum_is_unknown(reg->var_off)) {
415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 verbose(env, "has value %s", tn_buf);
417 } else {
418 verbose(env, "has unknown scalar value");
419 }
420 tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 verbose(env, " should have been in %s\n", tn_buf);
422}
423
de8f3a83
DB
424static bool type_is_pkt_pointer(enum bpf_reg_type type)
425{
426 return type == PTR_TO_PACKET ||
427 type == PTR_TO_PACKET_META;
428}
429
46f8bc92
MKL
430static bool type_is_sk_pointer(enum bpf_reg_type type)
431{
432 return type == PTR_TO_SOCKET ||
655a51e5 433 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
434 type == PTR_TO_TCP_SOCK ||
435 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
436}
437
cac616db
JF
438static bool reg_type_not_null(enum bpf_reg_type type)
439{
440 return type == PTR_TO_SOCKET ||
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_MAP_VALUE ||
69c087ba 443 type == PTR_TO_MAP_KEY ||
01c66c48 444 type == PTR_TO_SOCK_COMMON;
cac616db
JF
445}
446
840b9615
JS
447static bool reg_type_may_be_null(enum bpf_reg_type type)
448{
fd978bf7 449 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 450 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 451 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 452 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 453 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
454 type == PTR_TO_MEM_OR_NULL ||
455 type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
457}
458
d83525ca
AS
459static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460{
461 return reg->type == PTR_TO_MAP_VALUE &&
462 map_value_has_spin_lock(reg->map_ptr);
463}
464
cba368c1
MKL
465static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466{
467 return type == PTR_TO_SOCKET ||
468 type == PTR_TO_SOCKET_OR_NULL ||
469 type == PTR_TO_TCP_SOCK ||
457f4436
AN
470 type == PTR_TO_TCP_SOCK_OR_NULL ||
471 type == PTR_TO_MEM ||
472 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
473}
474
1b986589 475static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 476{
1b986589 477 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
478}
479
fd1b0d60
LB
480static bool arg_type_may_be_null(enum bpf_arg_type type)
481{
482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 type == ARG_PTR_TO_MEM_OR_NULL ||
484 type == ARG_PTR_TO_CTX_OR_NULL ||
485 type == ARG_PTR_TO_SOCKET_OR_NULL ||
69c087ba
YS
486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 type == ARG_PTR_TO_STACK_OR_NULL;
fd1b0d60
LB
488}
489
fd978bf7
JS
490/* Determine whether the function releases some resources allocated by another
491 * function call. The first reference type argument will be assumed to be
492 * released by release_reference().
493 */
494static bool is_release_function(enum bpf_func_id func_id)
495{
457f4436
AN
496 return func_id == BPF_FUNC_sk_release ||
497 func_id == BPF_FUNC_ringbuf_submit ||
498 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
499}
500
64d85290 501static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
502{
503 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 504 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 505 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
506 func_id == BPF_FUNC_map_lookup_elem ||
507 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
508}
509
510static bool is_acquire_function(enum bpf_func_id func_id,
511 const struct bpf_map *map)
512{
513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514
515 if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
517 func_id == BPF_FUNC_skc_lookup_tcp ||
518 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
519 return true;
520
521 if (func_id == BPF_FUNC_map_lookup_elem &&
522 (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 map_type == BPF_MAP_TYPE_SOCKHASH))
524 return true;
525
526 return false;
46f8bc92
MKL
527}
528
1b986589
MKL
529static bool is_ptr_cast_function(enum bpf_func_id func_id)
530{
531 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
532 func_id == BPF_FUNC_sk_fullsock ||
533 func_id == BPF_FUNC_skc_to_tcp_sock ||
534 func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 func_id == BPF_FUNC_skc_to_udp6_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
538}
539
39491867
BJ
540static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541{
542 return BPF_CLASS(insn->code) == BPF_STX &&
543 BPF_MODE(insn->code) == BPF_ATOMIC &&
544 insn->imm == BPF_CMPXCHG;
545}
546
17a52670
AS
547/* string representation of 'enum bpf_reg_type' */
548static const char * const reg_type_str[] = {
549 [NOT_INIT] = "?",
f1174f77 550 [SCALAR_VALUE] = "inv",
17a52670
AS
551 [PTR_TO_CTX] = "ctx",
552 [CONST_PTR_TO_MAP] = "map_ptr",
553 [PTR_TO_MAP_VALUE] = "map_value",
554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 555 [PTR_TO_STACK] = "fp",
969bf05e 556 [PTR_TO_PACKET] = "pkt",
de8f3a83 557 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 558 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 559 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
560 [PTR_TO_SOCKET] = "sock",
561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
562 [PTR_TO_SOCK_COMMON] = "sock_common",
563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
564 [PTR_TO_TCP_SOCK] = "tcp_sock",
565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 566 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 567 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 568 [PTR_TO_BTF_ID] = "ptr_",
b121b341 569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
571 [PTR_TO_MEM] = "mem",
572 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
573 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 [PTR_TO_RDWR_BUF] = "rdwr_buf",
576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
577 [PTR_TO_FUNC] = "func",
578 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
579};
580
8efea21d
EC
581static char slot_type_char[] = {
582 [STACK_INVALID] = '?',
583 [STACK_SPILL] = 'r',
584 [STACK_MISC] = 'm',
585 [STACK_ZERO] = '0',
586};
587
4e92024a
AS
588static void print_liveness(struct bpf_verifier_env *env,
589 enum bpf_reg_liveness live)
590{
9242b5f5 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
592 verbose(env, "_");
593 if (live & REG_LIVE_READ)
594 verbose(env, "r");
595 if (live & REG_LIVE_WRITTEN)
596 verbose(env, "w");
9242b5f5
AS
597 if (live & REG_LIVE_DONE)
598 verbose(env, "D");
4e92024a
AS
599}
600
f4d7e40a
AS
601static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 const struct bpf_reg_state *reg)
603{
604 struct bpf_verifier_state *cur = env->cur_state;
605
606 return cur->frame[reg->frameno];
607}
608
22dc4a0f 609static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 610{
22dc4a0f 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
612}
613
61bd5218 614static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 615 const struct bpf_func_state *state)
17a52670 616{
f4d7e40a 617 const struct bpf_reg_state *reg;
17a52670
AS
618 enum bpf_reg_type t;
619 int i;
620
f4d7e40a
AS
621 if (state->frameno)
622 verbose(env, " frame%d:", state->frameno);
17a52670 623 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
624 reg = &state->regs[i];
625 t = reg->type;
17a52670
AS
626 if (t == NOT_INIT)
627 continue;
4e92024a
AS
628 verbose(env, " R%d", i);
629 print_liveness(env, reg->live);
630 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
631 if (t == SCALAR_VALUE && reg->precise)
632 verbose(env, "P");
f1174f77
EC
633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 tnum_is_const(reg->var_off)) {
635 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 636 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 637 } else {
eaa6bcb7
HL
638 if (t == PTR_TO_BTF_ID ||
639 t == PTR_TO_BTF_ID_OR_NULL ||
640 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
642 verbose(env, "(id=%d", reg->id);
643 if (reg_type_may_be_refcounted_or_null(t))
644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 645 if (t != SCALAR_VALUE)
61bd5218 646 verbose(env, ",off=%d", reg->off);
de8f3a83 647 if (type_is_pkt_pointer(t))
61bd5218 648 verbose(env, ",r=%d", reg->range);
f1174f77 649 else if (t == CONST_PTR_TO_MAP ||
69c087ba 650 t == PTR_TO_MAP_KEY ||
f1174f77
EC
651 t == PTR_TO_MAP_VALUE ||
652 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 653 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
654 reg->map_ptr->key_size,
655 reg->map_ptr->value_size);
7d1238f2
EC
656 if (tnum_is_const(reg->var_off)) {
657 /* Typically an immediate SCALAR_VALUE, but
658 * could be a pointer whose offset is too big
659 * for reg->off
660 */
61bd5218 661 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
662 } else {
663 if (reg->smin_value != reg->umin_value &&
664 reg->smin_value != S64_MIN)
61bd5218 665 verbose(env, ",smin_value=%lld",
7d1238f2
EC
666 (long long)reg->smin_value);
667 if (reg->smax_value != reg->umax_value &&
668 reg->smax_value != S64_MAX)
61bd5218 669 verbose(env, ",smax_value=%lld",
7d1238f2
EC
670 (long long)reg->smax_value);
671 if (reg->umin_value != 0)
61bd5218 672 verbose(env, ",umin_value=%llu",
7d1238f2
EC
673 (unsigned long long)reg->umin_value);
674 if (reg->umax_value != U64_MAX)
61bd5218 675 verbose(env, ",umax_value=%llu",
7d1238f2
EC
676 (unsigned long long)reg->umax_value);
677 if (!tnum_is_unknown(reg->var_off)) {
678 char tn_buf[48];
f1174f77 679
7d1238f2 680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 681 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 682 }
3f50f132
JF
683 if (reg->s32_min_value != reg->smin_value &&
684 reg->s32_min_value != S32_MIN)
685 verbose(env, ",s32_min_value=%d",
686 (int)(reg->s32_min_value));
687 if (reg->s32_max_value != reg->smax_value &&
688 reg->s32_max_value != S32_MAX)
689 verbose(env, ",s32_max_value=%d",
690 (int)(reg->s32_max_value));
691 if (reg->u32_min_value != reg->umin_value &&
692 reg->u32_min_value != U32_MIN)
693 verbose(env, ",u32_min_value=%d",
694 (int)(reg->u32_min_value));
695 if (reg->u32_max_value != reg->umax_value &&
696 reg->u32_max_value != U32_MAX)
697 verbose(env, ",u32_max_value=%d",
698 (int)(reg->u32_max_value));
f1174f77 699 }
61bd5218 700 verbose(env, ")");
f1174f77 701 }
17a52670 702 }
638f5b90 703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
704 char types_buf[BPF_REG_SIZE + 1];
705 bool valid = false;
706 int j;
707
708 for (j = 0; j < BPF_REG_SIZE; j++) {
709 if (state->stack[i].slot_type[j] != STACK_INVALID)
710 valid = true;
711 types_buf[j] = slot_type_char[
712 state->stack[i].slot_type[j]];
713 }
714 types_buf[BPF_REG_SIZE] = 0;
715 if (!valid)
716 continue;
717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
719 if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 reg = &state->stack[i].spilled_ptr;
721 t = reg->type;
722 verbose(env, "=%s", reg_type_str[t]);
723 if (t == SCALAR_VALUE && reg->precise)
724 verbose(env, "P");
725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 verbose(env, "%lld", reg->var_off.value + reg->off);
727 } else {
8efea21d 728 verbose(env, "=%s", types_buf);
b5dc0163 729 }
17a52670 730 }
fd978bf7
JS
731 if (state->acquired_refs && state->refs[0].id) {
732 verbose(env, " refs=%d", state->refs[0].id);
733 for (i = 1; i < state->acquired_refs; i++)
734 if (state->refs[i].id)
735 verbose(env, ",%d", state->refs[i].id);
736 }
61bd5218 737 verbose(env, "\n");
17a52670
AS
738}
739
c69431aa
LB
740/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741 * small to hold src. This is different from krealloc since we don't want to preserve
742 * the contents of dst.
743 *
744 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745 * not be allocated.
638f5b90 746 */
c69431aa 747static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 748{
c69431aa
LB
749 size_t bytes;
750
751 if (ZERO_OR_NULL_PTR(src))
752 goto out;
753
754 if (unlikely(check_mul_overflow(n, size, &bytes)))
755 return NULL;
756
757 if (ksize(dst) < bytes) {
758 kfree(dst);
759 dst = kmalloc_track_caller(bytes, flags);
760 if (!dst)
761 return NULL;
762 }
763
764 memcpy(dst, src, bytes);
765out:
766 return dst ? dst : ZERO_SIZE_PTR;
767}
768
769/* resize an array from old_n items to new_n items. the array is reallocated if it's too
770 * small to hold new_n items. new items are zeroed out if the array grows.
771 *
772 * Contrary to krealloc_array, does not free arr if new_n is zero.
773 */
774static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775{
776 if (!new_n || old_n == new_n)
777 goto out;
778
779 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 if (!arr)
781 return NULL;
782
783 if (new_n > old_n)
784 memset(arr + old_n * size, 0, (new_n - old_n) * size);
785
786out:
787 return arr ? arr : ZERO_SIZE_PTR;
788}
789
790static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791{
792 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 sizeof(struct bpf_reference_state), GFP_KERNEL);
794 if (!dst->refs)
795 return -ENOMEM;
796
797 dst->acquired_refs = src->acquired_refs;
798 return 0;
799}
800
801static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802{
803 size_t n = src->allocated_stack / BPF_REG_SIZE;
804
805 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 GFP_KERNEL);
807 if (!dst->stack)
808 return -ENOMEM;
809
810 dst->allocated_stack = src->allocated_stack;
811 return 0;
812}
813
814static int resize_reference_state(struct bpf_func_state *state, size_t n)
815{
816 state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 sizeof(struct bpf_reference_state));
818 if (!state->refs)
819 return -ENOMEM;
820
821 state->acquired_refs = n;
822 return 0;
823}
824
825static int grow_stack_state(struct bpf_func_state *state, int size)
826{
827 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828
829 if (old_n >= n)
830 return 0;
831
832 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 if (!state->stack)
834 return -ENOMEM;
835
836 state->allocated_stack = size;
837 return 0;
fd978bf7
JS
838}
839
840/* Acquire a pointer id from the env and update the state->refs to include
841 * this new pointer reference.
842 * On success, returns a valid pointer id to associate with the register
843 * On failure, returns a negative errno.
638f5b90 844 */
fd978bf7 845static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 846{
fd978bf7
JS
847 struct bpf_func_state *state = cur_func(env);
848 int new_ofs = state->acquired_refs;
849 int id, err;
850
c69431aa 851 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
852 if (err)
853 return err;
854 id = ++env->id_gen;
855 state->refs[new_ofs].id = id;
856 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 857
fd978bf7
JS
858 return id;
859}
860
861/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 862static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
863{
864 int i, last_idx;
865
fd978bf7
JS
866 last_idx = state->acquired_refs - 1;
867 for (i = 0; i < state->acquired_refs; i++) {
868 if (state->refs[i].id == ptr_id) {
869 if (last_idx && i != last_idx)
870 memcpy(&state->refs[i], &state->refs[last_idx],
871 sizeof(*state->refs));
872 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 state->acquired_refs--;
638f5b90 874 return 0;
638f5b90 875 }
638f5b90 876 }
46f8bc92 877 return -EINVAL;
fd978bf7
JS
878}
879
f4d7e40a
AS
880static void free_func_state(struct bpf_func_state *state)
881{
5896351e
AS
882 if (!state)
883 return;
fd978bf7 884 kfree(state->refs);
f4d7e40a
AS
885 kfree(state->stack);
886 kfree(state);
887}
888
b5dc0163
AS
889static void clear_jmp_history(struct bpf_verifier_state *state)
890{
891 kfree(state->jmp_history);
892 state->jmp_history = NULL;
893 state->jmp_history_cnt = 0;
894}
895
1969db47
AS
896static void free_verifier_state(struct bpf_verifier_state *state,
897 bool free_self)
638f5b90 898{
f4d7e40a
AS
899 int i;
900
901 for (i = 0; i <= state->curframe; i++) {
902 free_func_state(state->frame[i]);
903 state->frame[i] = NULL;
904 }
b5dc0163 905 clear_jmp_history(state);
1969db47
AS
906 if (free_self)
907 kfree(state);
638f5b90
AS
908}
909
910/* copy verifier state from src to dst growing dst stack space
911 * when necessary to accommodate larger src stack
912 */
f4d7e40a
AS
913static int copy_func_state(struct bpf_func_state *dst,
914 const struct bpf_func_state *src)
638f5b90
AS
915{
916 int err;
917
fd978bf7
JS
918 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 err = copy_reference_state(dst, src);
638f5b90
AS
920 if (err)
921 return err;
638f5b90
AS
922 return copy_stack_state(dst, src);
923}
924
f4d7e40a
AS
925static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 const struct bpf_verifier_state *src)
927{
928 struct bpf_func_state *dst;
929 int i, err;
930
06ab6a50
LB
931 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 GFP_USER);
934 if (!dst_state->jmp_history)
935 return -ENOMEM;
b5dc0163
AS
936 dst_state->jmp_history_cnt = src->jmp_history_cnt;
937
f4d7e40a
AS
938 /* if dst has more stack frames then src frame, free them */
939 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 free_func_state(dst_state->frame[i]);
941 dst_state->frame[i] = NULL;
942 }
979d63d5 943 dst_state->speculative = src->speculative;
f4d7e40a 944 dst_state->curframe = src->curframe;
d83525ca 945 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
946 dst_state->branches = src->branches;
947 dst_state->parent = src->parent;
b5dc0163
AS
948 dst_state->first_insn_idx = src->first_insn_idx;
949 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
950 for (i = 0; i <= src->curframe; i++) {
951 dst = dst_state->frame[i];
952 if (!dst) {
953 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 if (!dst)
955 return -ENOMEM;
956 dst_state->frame[i] = dst;
957 }
958 err = copy_func_state(dst, src->frame[i]);
959 if (err)
960 return err;
961 }
962 return 0;
963}
964
2589726d
AS
965static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966{
967 while (st) {
968 u32 br = --st->branches;
969
970 /* WARN_ON(br > 1) technically makes sense here,
971 * but see comment in push_stack(), hence:
972 */
973 WARN_ONCE((int)br < 0,
974 "BUG update_branch_counts:branches_to_explore=%d\n",
975 br);
976 if (br)
977 break;
978 st = st->parent;
979 }
980}
981
638f5b90 982static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 983 int *insn_idx, bool pop_log)
638f5b90
AS
984{
985 struct bpf_verifier_state *cur = env->cur_state;
986 struct bpf_verifier_stack_elem *elem, *head = env->head;
987 int err;
17a52670
AS
988
989 if (env->head == NULL)
638f5b90 990 return -ENOENT;
17a52670 991
638f5b90
AS
992 if (cur) {
993 err = copy_verifier_state(cur, &head->st);
994 if (err)
995 return err;
996 }
6f8a57cc
AN
997 if (pop_log)
998 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
999 if (insn_idx)
1000 *insn_idx = head->insn_idx;
17a52670 1001 if (prev_insn_idx)
638f5b90
AS
1002 *prev_insn_idx = head->prev_insn_idx;
1003 elem = head->next;
1969db47 1004 free_verifier_state(&head->st, false);
638f5b90 1005 kfree(head);
17a52670
AS
1006 env->head = elem;
1007 env->stack_size--;
638f5b90 1008 return 0;
17a52670
AS
1009}
1010
58e2af8b 1011static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1012 int insn_idx, int prev_insn_idx,
1013 bool speculative)
17a52670 1014{
638f5b90 1015 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1016 struct bpf_verifier_stack_elem *elem;
638f5b90 1017 int err;
17a52670 1018
638f5b90 1019 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1020 if (!elem)
1021 goto err;
1022
17a52670
AS
1023 elem->insn_idx = insn_idx;
1024 elem->prev_insn_idx = prev_insn_idx;
1025 elem->next = env->head;
6f8a57cc 1026 elem->log_pos = env->log.len_used;
17a52670
AS
1027 env->head = elem;
1028 env->stack_size++;
1969db47
AS
1029 err = copy_verifier_state(&elem->st, cur);
1030 if (err)
1031 goto err;
979d63d5 1032 elem->st.speculative |= speculative;
b285fcb7
AS
1033 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 verbose(env, "The sequence of %d jumps is too complex.\n",
1035 env->stack_size);
17a52670
AS
1036 goto err;
1037 }
2589726d
AS
1038 if (elem->st.parent) {
1039 ++elem->st.parent->branches;
1040 /* WARN_ON(branches > 2) technically makes sense here,
1041 * but
1042 * 1. speculative states will bump 'branches' for non-branch
1043 * instructions
1044 * 2. is_state_visited() heuristics may decide not to create
1045 * a new state for a sequence of branches and all such current
1046 * and cloned states will be pointing to a single parent state
1047 * which might have large 'branches' count.
1048 */
1049 }
17a52670
AS
1050 return &elem->st;
1051err:
5896351e
AS
1052 free_verifier_state(env->cur_state, true);
1053 env->cur_state = NULL;
17a52670 1054 /* pop all elements and return */
6f8a57cc 1055 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1056 return NULL;
1057}
1058
1059#define CALLER_SAVED_REGS 6
1060static const int caller_saved[CALLER_SAVED_REGS] = {
1061 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062};
1063
f54c7898
DB
1064static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 struct bpf_reg_state *reg);
f1174f77 1066
e688c3db
AS
1067/* This helper doesn't clear reg->id */
1068static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1069{
b03c9f9f
EC
1070 reg->var_off = tnum_const(imm);
1071 reg->smin_value = (s64)imm;
1072 reg->smax_value = (s64)imm;
1073 reg->umin_value = imm;
1074 reg->umax_value = imm;
3f50f132
JF
1075
1076 reg->s32_min_value = (s32)imm;
1077 reg->s32_max_value = (s32)imm;
1078 reg->u32_min_value = (u32)imm;
1079 reg->u32_max_value = (u32)imm;
1080}
1081
e688c3db
AS
1082/* Mark the unknown part of a register (variable offset or scalar value) as
1083 * known to have the value @imm.
1084 */
1085static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086{
1087 /* Clear id, off, and union(map_ptr, range) */
1088 memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 ___mark_reg_known(reg, imm);
1091}
1092
3f50f132
JF
1093static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094{
1095 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 reg->s32_min_value = (s32)imm;
1097 reg->s32_max_value = (s32)imm;
1098 reg->u32_min_value = (u32)imm;
1099 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1100}
1101
f1174f77
EC
1102/* Mark the 'variable offset' part of a register as zero. This should be
1103 * used only on registers holding a pointer type.
1104 */
1105static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1106{
b03c9f9f 1107 __mark_reg_known(reg, 0);
f1174f77 1108}
a9789ef9 1109
cc2b14d5
AS
1110static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111{
1112 __mark_reg_known(reg, 0);
cc2b14d5
AS
1113 reg->type = SCALAR_VALUE;
1114}
1115
61bd5218
JK
1116static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1118{
1119 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1120 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1121 /* Something bad happened, let's kill all regs */
1122 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1123 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1124 return;
1125 }
1126 __mark_reg_known_zero(regs + regno);
1127}
1128
4ddb7416
DB
1129static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130{
1131 switch (reg->type) {
1132 case PTR_TO_MAP_VALUE_OR_NULL: {
1133 const struct bpf_map *map = reg->map_ptr;
1134
1135 if (map->inner_map_meta) {
1136 reg->type = CONST_PTR_TO_MAP;
1137 reg->map_ptr = map->inner_map_meta;
1138 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 reg->type = PTR_TO_XDP_SOCK;
1140 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 reg->type = PTR_TO_SOCKET;
1143 } else {
1144 reg->type = PTR_TO_MAP_VALUE;
1145 }
1146 break;
1147 }
1148 case PTR_TO_SOCKET_OR_NULL:
1149 reg->type = PTR_TO_SOCKET;
1150 break;
1151 case PTR_TO_SOCK_COMMON_OR_NULL:
1152 reg->type = PTR_TO_SOCK_COMMON;
1153 break;
1154 case PTR_TO_TCP_SOCK_OR_NULL:
1155 reg->type = PTR_TO_TCP_SOCK;
1156 break;
1157 case PTR_TO_BTF_ID_OR_NULL:
1158 reg->type = PTR_TO_BTF_ID;
1159 break;
1160 case PTR_TO_MEM_OR_NULL:
1161 reg->type = PTR_TO_MEM;
1162 break;
1163 case PTR_TO_RDONLY_BUF_OR_NULL:
1164 reg->type = PTR_TO_RDONLY_BUF;
1165 break;
1166 case PTR_TO_RDWR_BUF_OR_NULL:
1167 reg->type = PTR_TO_RDWR_BUF;
1168 break;
1169 default:
33ccec5f 1170 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1171 }
1172}
1173
de8f3a83
DB
1174static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175{
1176 return type_is_pkt_pointer(reg->type);
1177}
1178
1179static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180{
1181 return reg_is_pkt_pointer(reg) ||
1182 reg->type == PTR_TO_PACKET_END;
1183}
1184
1185/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 enum bpf_reg_type which)
1188{
1189 /* The register can already have a range from prior markings.
1190 * This is fine as long as it hasn't been advanced from its
1191 * origin.
1192 */
1193 return reg->type == which &&
1194 reg->id == 0 &&
1195 reg->off == 0 &&
1196 tnum_equals_const(reg->var_off, 0);
1197}
1198
3f50f132
JF
1199/* Reset the min/max bounds of a register */
1200static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201{
1202 reg->smin_value = S64_MIN;
1203 reg->smax_value = S64_MAX;
1204 reg->umin_value = 0;
1205 reg->umax_value = U64_MAX;
1206
1207 reg->s32_min_value = S32_MIN;
1208 reg->s32_max_value = S32_MAX;
1209 reg->u32_min_value = 0;
1210 reg->u32_max_value = U32_MAX;
1211}
1212
1213static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214{
1215 reg->smin_value = S64_MIN;
1216 reg->smax_value = S64_MAX;
1217 reg->umin_value = 0;
1218 reg->umax_value = U64_MAX;
1219}
1220
1221static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222{
1223 reg->s32_min_value = S32_MIN;
1224 reg->s32_max_value = S32_MAX;
1225 reg->u32_min_value = 0;
1226 reg->u32_max_value = U32_MAX;
1227}
1228
1229static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230{
1231 struct tnum var32_off = tnum_subreg(reg->var_off);
1232
1233 /* min signed is max(sign bit) | min(other bits) */
1234 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 var32_off.value | (var32_off.mask & S32_MIN));
1236 /* max signed is min(sign bit) | max(other bits) */
1237 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 var32_off.value | (var32_off.mask & S32_MAX));
1239 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 reg->u32_max_value = min(reg->u32_max_value,
1241 (u32)(var32_off.value | var32_off.mask));
1242}
1243
1244static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1245{
1246 /* min signed is max(sign bit) | min(other bits) */
1247 reg->smin_value = max_t(s64, reg->smin_value,
1248 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 /* max signed is min(sign bit) | max(other bits) */
1250 reg->smax_value = min_t(s64, reg->smax_value,
1251 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 reg->umax_value = min(reg->umax_value,
1254 reg->var_off.value | reg->var_off.mask);
1255}
1256
3f50f132
JF
1257static void __update_reg_bounds(struct bpf_reg_state *reg)
1258{
1259 __update_reg32_bounds(reg);
1260 __update_reg64_bounds(reg);
1261}
1262
b03c9f9f 1263/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1264static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265{
1266 /* Learn sign from signed bounds.
1267 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 * are the same, so combine. This works even in the negative case, e.g.
1269 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 */
1271 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 reg->s32_min_value = reg->u32_min_value =
1273 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 reg->s32_max_value = reg->u32_max_value =
1275 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 return;
1277 }
1278 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1279 * boundary, so we must be careful.
1280 */
1281 if ((s32)reg->u32_max_value >= 0) {
1282 /* Positive. We can't learn anything from the smin, but smax
1283 * is positive, hence safe.
1284 */
1285 reg->s32_min_value = reg->u32_min_value;
1286 reg->s32_max_value = reg->u32_max_value =
1287 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 } else if ((s32)reg->u32_min_value < 0) {
1289 /* Negative. We can't learn anything from the smax, but smin
1290 * is negative, hence safe.
1291 */
1292 reg->s32_min_value = reg->u32_min_value =
1293 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 reg->s32_max_value = reg->u32_max_value;
1295 }
1296}
1297
1298static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1299{
1300 /* Learn sign from signed bounds.
1301 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 * are the same, so combine. This works even in the negative case, e.g.
1303 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 */
1305 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 reg->umin_value);
1308 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 reg->umax_value);
1310 return;
1311 }
1312 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1313 * boundary, so we must be careful.
1314 */
1315 if ((s64)reg->umax_value >= 0) {
1316 /* Positive. We can't learn anything from the smin, but smax
1317 * is positive, hence safe.
1318 */
1319 reg->smin_value = reg->umin_value;
1320 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 reg->umax_value);
1322 } else if ((s64)reg->umin_value < 0) {
1323 /* Negative. We can't learn anything from the smax, but smin
1324 * is negative, hence safe.
1325 */
1326 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 reg->umin_value);
1328 reg->smax_value = reg->umax_value;
1329 }
1330}
1331
3f50f132
JF
1332static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333{
1334 __reg32_deduce_bounds(reg);
1335 __reg64_deduce_bounds(reg);
1336}
1337
b03c9f9f
EC
1338/* Attempts to improve var_off based on unsigned min/max information */
1339static void __reg_bound_offset(struct bpf_reg_state *reg)
1340{
3f50f132
JF
1341 struct tnum var64_off = tnum_intersect(reg->var_off,
1342 tnum_range(reg->umin_value,
1343 reg->umax_value));
1344 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 tnum_range(reg->u32_min_value,
1346 reg->u32_max_value));
1347
1348 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1349}
1350
3f50f132 1351static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1352{
3f50f132
JF
1353 reg->umin_value = reg->u32_min_value;
1354 reg->umax_value = reg->u32_max_value;
1355 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 * but must be positive otherwise set to worse case bounds
1357 * and refine later from tnum.
1358 */
3a71dc36 1359 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1360 reg->smax_value = reg->s32_max_value;
1361 else
1362 reg->smax_value = U32_MAX;
3a71dc36
JF
1363 if (reg->s32_min_value >= 0)
1364 reg->smin_value = reg->s32_min_value;
1365 else
1366 reg->smin_value = 0;
3f50f132
JF
1367}
1368
1369static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370{
1371 /* special case when 64-bit register has upper 32-bit register
1372 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 * allowing us to use 32-bit bounds directly,
1374 */
1375 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 __reg_assign_32_into_64(reg);
1377 } else {
1378 /* Otherwise the best we can do is push lower 32bit known and
1379 * unknown bits into register (var_off set from jmp logic)
1380 * then learn as much as possible from the 64-bit tnum
1381 * known and unknown bits. The previous smin/smax bounds are
1382 * invalid here because of jmp32 compare so mark them unknown
1383 * so they do not impact tnum bounds calculation.
1384 */
1385 __mark_reg64_unbounded(reg);
1386 __update_reg_bounds(reg);
1387 }
1388
1389 /* Intersecting with the old var_off might have improved our bounds
1390 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 */
1393 __reg_deduce_bounds(reg);
1394 __reg_bound_offset(reg);
1395 __update_reg_bounds(reg);
1396}
1397
1398static bool __reg64_bound_s32(s64 a)
1399{
b0270958 1400 return a > S32_MIN && a < S32_MAX;
3f50f132
JF
1401}
1402
1403static bool __reg64_bound_u32(u64 a)
1404{
10bf4e83 1405 return a > U32_MIN && a < U32_MAX;
3f50f132
JF
1406}
1407
1408static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409{
1410 __mark_reg32_unbounded(reg);
1411
b0270958 1412 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1413 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1414 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1415 }
10bf4e83 1416 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1417 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1418 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1419 }
3f50f132
JF
1420
1421 /* Intersecting with the old var_off might have improved our bounds
1422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 */
1425 __reg_deduce_bounds(reg);
1426 __reg_bound_offset(reg);
1427 __update_reg_bounds(reg);
b03c9f9f
EC
1428}
1429
f1174f77 1430/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1431static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 struct bpf_reg_state *reg)
f1174f77 1433{
a9c676bc
AS
1434 /*
1435 * Clear type, id, off, and union(map_ptr, range) and
1436 * padding between 'type' and union
1437 */
1438 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1439 reg->type = SCALAR_VALUE;
f1174f77 1440 reg->var_off = tnum_unknown;
f4d7e40a 1441 reg->frameno = 0;
2c78ee89 1442 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1443 __mark_reg_unbounded(reg);
f1174f77
EC
1444}
1445
61bd5218
JK
1446static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1448{
1449 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1450 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1451 /* Something bad happened, let's kill all regs except FP */
1452 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1453 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1454 return;
1455 }
f54c7898 1456 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1457}
1458
f54c7898
DB
1459static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 struct bpf_reg_state *reg)
f1174f77 1461{
f54c7898 1462 __mark_reg_unknown(env, reg);
f1174f77
EC
1463 reg->type = NOT_INIT;
1464}
1465
61bd5218
JK
1466static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1468{
1469 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1470 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1471 /* Something bad happened, let's kill all regs except FP */
1472 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1473 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1474 return;
1475 }
f54c7898 1476 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1477}
1478
41c48f3a
AI
1479static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1481 enum bpf_reg_type reg_type,
1482 struct btf *btf, u32 btf_id)
41c48f3a
AI
1483{
1484 if (reg_type == SCALAR_VALUE) {
1485 mark_reg_unknown(env, regs, regno);
1486 return;
1487 }
1488 mark_reg_known_zero(env, regs, regno);
1489 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1490 regs[regno].btf = btf;
41c48f3a
AI
1491 regs[regno].btf_id = btf_id;
1492}
1493
5327ed3d 1494#define DEF_NOT_SUBREG (0)
61bd5218 1495static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1496 struct bpf_func_state *state)
17a52670 1497{
f4d7e40a 1498 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1499 int i;
1500
dc503a8a 1501 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1502 mark_reg_not_init(env, regs, i);
dc503a8a 1503 regs[i].live = REG_LIVE_NONE;
679c782d 1504 regs[i].parent = NULL;
5327ed3d 1505 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1506 }
17a52670
AS
1507
1508 /* frame pointer */
f1174f77 1509 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1510 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1511 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1512}
1513
f4d7e40a
AS
1514#define BPF_MAIN_FUNC (-1)
1515static void init_func_state(struct bpf_verifier_env *env,
1516 struct bpf_func_state *state,
1517 int callsite, int frameno, int subprogno)
1518{
1519 state->callsite = callsite;
1520 state->frameno = frameno;
1521 state->subprogno = subprogno;
1522 init_reg_state(env, state);
1523}
1524
17a52670
AS
1525enum reg_arg_type {
1526 SRC_OP, /* register is used as source operand */
1527 DST_OP, /* register is used as destination operand */
1528 DST_OP_NO_MARK /* same as above, check only, don't mark */
1529};
1530
cc8b0b92
AS
1531static int cmp_subprogs(const void *a, const void *b)
1532{
9c8105bd
JW
1533 return ((struct bpf_subprog_info *)a)->start -
1534 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1535}
1536
1537static int find_subprog(struct bpf_verifier_env *env, int off)
1538{
9c8105bd 1539 struct bpf_subprog_info *p;
cc8b0b92 1540
9c8105bd
JW
1541 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1543 if (!p)
1544 return -ENOENT;
9c8105bd 1545 return p - env->subprog_info;
cc8b0b92
AS
1546
1547}
1548
1549static int add_subprog(struct bpf_verifier_env *env, int off)
1550{
1551 int insn_cnt = env->prog->len;
1552 int ret;
1553
1554 if (off >= insn_cnt || off < 0) {
1555 verbose(env, "call to invalid destination\n");
1556 return -EINVAL;
1557 }
1558 ret = find_subprog(env, off);
1559 if (ret >= 0)
282a0f46 1560 return ret;
4cb3d99c 1561 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1562 verbose(env, "too many subprograms\n");
1563 return -E2BIG;
1564 }
e6ac2450 1565 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1566 env->subprog_info[env->subprog_cnt++].start = off;
1567 sort(env->subprog_info, env->subprog_cnt,
1568 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1569 return env->subprog_cnt - 1;
cc8b0b92
AS
1570}
1571
e6ac2450
MKL
1572struct bpf_kfunc_desc {
1573 struct btf_func_model func_model;
1574 u32 func_id;
1575 s32 imm;
1576};
1577
1578#define MAX_KFUNC_DESCS 256
1579struct bpf_kfunc_desc_tab {
1580 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 u32 nr_descs;
1582};
1583
1584static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585{
1586 const struct bpf_kfunc_desc *d0 = a;
1587 const struct bpf_kfunc_desc *d1 = b;
1588
1589 /* func_id is not greater than BTF_MAX_TYPE */
1590 return d0->func_id - d1->func_id;
1591}
1592
1593static const struct bpf_kfunc_desc *
1594find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595{
1596 struct bpf_kfunc_desc desc = {
1597 .func_id = func_id,
1598 };
1599 struct bpf_kfunc_desc_tab *tab;
1600
1601 tab = prog->aux->kfunc_tab;
1602 return bsearch(&desc, tab->descs, tab->nr_descs,
1603 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604}
1605
1606static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607{
1608 const struct btf_type *func, *func_proto;
1609 struct bpf_kfunc_desc_tab *tab;
1610 struct bpf_prog_aux *prog_aux;
1611 struct bpf_kfunc_desc *desc;
1612 const char *func_name;
1613 unsigned long addr;
1614 int err;
1615
1616 prog_aux = env->prog->aux;
1617 tab = prog_aux->kfunc_tab;
1618 if (!tab) {
1619 if (!btf_vmlinux) {
1620 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 return -ENOTSUPP;
1622 }
1623
1624 if (!env->prog->jit_requested) {
1625 verbose(env, "JIT is required for calling kernel function\n");
1626 return -ENOTSUPP;
1627 }
1628
1629 if (!bpf_jit_supports_kfunc_call()) {
1630 verbose(env, "JIT does not support calling kernel function\n");
1631 return -ENOTSUPP;
1632 }
1633
1634 if (!env->prog->gpl_compatible) {
1635 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 return -EINVAL;
1637 }
1638
1639 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 if (!tab)
1641 return -ENOMEM;
1642 prog_aux->kfunc_tab = tab;
1643 }
1644
1645 if (find_kfunc_desc(env->prog, func_id))
1646 return 0;
1647
1648 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 verbose(env, "too many different kernel function calls\n");
1650 return -E2BIG;
1651 }
1652
1653 func = btf_type_by_id(btf_vmlinux, func_id);
1654 if (!func || !btf_type_is_func(func)) {
1655 verbose(env, "kernel btf_id %u is not a function\n",
1656 func_id);
1657 return -EINVAL;
1658 }
1659 func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 func_id);
1663 return -EINVAL;
1664 }
1665
1666 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 addr = kallsyms_lookup_name(func_name);
1668 if (!addr) {
1669 verbose(env, "cannot find address for kernel function %s\n",
1670 func_name);
1671 return -EINVAL;
1672 }
1673
1674 desc = &tab->descs[tab->nr_descs++];
1675 desc->func_id = func_id;
1676 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 func_proto, func_name,
1679 &desc->func_model);
1680 if (!err)
1681 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 kfunc_desc_cmp_by_id, NULL);
1683 return err;
1684}
1685
1686static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687{
1688 const struct bpf_kfunc_desc *d0 = a;
1689 const struct bpf_kfunc_desc *d1 = b;
1690
1691 if (d0->imm > d1->imm)
1692 return 1;
1693 else if (d0->imm < d1->imm)
1694 return -1;
1695 return 0;
1696}
1697
1698static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699{
1700 struct bpf_kfunc_desc_tab *tab;
1701
1702 tab = prog->aux->kfunc_tab;
1703 if (!tab)
1704 return;
1705
1706 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 kfunc_desc_cmp_by_imm, NULL);
1708}
1709
1710bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711{
1712 return !!prog->aux->kfunc_tab;
1713}
1714
1715const struct btf_func_model *
1716bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 const struct bpf_insn *insn)
1718{
1719 const struct bpf_kfunc_desc desc = {
1720 .imm = insn->imm,
1721 };
1722 const struct bpf_kfunc_desc *res;
1723 struct bpf_kfunc_desc_tab *tab;
1724
1725 tab = prog->aux->kfunc_tab;
1726 res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728
1729 return res ? &res->func_model : NULL;
1730}
1731
1732static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 1733{
9c8105bd 1734 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 1735 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 1736 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 1737
f910cefa
JW
1738 /* Add entry function. */
1739 ret = add_subprog(env, 0);
e6ac2450 1740 if (ret)
f910cefa
JW
1741 return ret;
1742
e6ac2450
MKL
1743 for (i = 0; i < insn_cnt; i++, insn++) {
1744 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 1746 continue;
e6ac2450 1747
2c78ee89 1748 if (!env->bpf_capable) {
e6ac2450 1749 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1750 return -EPERM;
1751 }
e6ac2450
MKL
1752
1753 if (bpf_pseudo_func(insn)) {
1754 ret = add_subprog(env, i + insn->imm + 1);
1755 if (ret >= 0)
1756 /* remember subprog */
1757 insn[1].imm = ret;
1758 } else if (bpf_pseudo_call(insn)) {
1759 ret = add_subprog(env, i + insn->imm + 1);
1760 } else {
1761 ret = add_kfunc_call(env, insn->imm);
1762 }
1763
cc8b0b92
AS
1764 if (ret < 0)
1765 return ret;
1766 }
1767
4cb3d99c
JW
1768 /* Add a fake 'exit' subprog which could simplify subprog iteration
1769 * logic. 'subprog_cnt' should not be increased.
1770 */
1771 subprog[env->subprog_cnt].start = insn_cnt;
1772
06ee7115 1773 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1774 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1775 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 1776
e6ac2450
MKL
1777 return 0;
1778}
1779
1780static int check_subprogs(struct bpf_verifier_env *env)
1781{
1782 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 struct bpf_subprog_info *subprog = env->subprog_info;
1784 struct bpf_insn *insn = env->prog->insnsi;
1785 int insn_cnt = env->prog->len;
1786
cc8b0b92 1787 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1788 subprog_start = subprog[cur_subprog].start;
1789 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1790 for (i = 0; i < insn_cnt; i++) {
1791 u8 code = insn[i].code;
1792
7f6e4312
MF
1793 if (code == (BPF_JMP | BPF_CALL) &&
1794 insn[i].imm == BPF_FUNC_tail_call &&
1795 insn[i].src_reg != BPF_PSEUDO_CALL)
1796 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1797 if (BPF_CLASS(code) == BPF_LD &&
1798 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 subprog[cur_subprog].has_ld_abs = true;
092ed096 1800 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1801 goto next;
1802 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 goto next;
1804 off = i + insn[i].off + 1;
1805 if (off < subprog_start || off >= subprog_end) {
1806 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 return -EINVAL;
1808 }
1809next:
1810 if (i == subprog_end - 1) {
1811 /* to avoid fall-through from one subprog into another
1812 * the last insn of the subprog should be either exit
1813 * or unconditional jump back
1814 */
1815 if (code != (BPF_JMP | BPF_EXIT) &&
1816 code != (BPF_JMP | BPF_JA)) {
1817 verbose(env, "last insn is not an exit or jmp\n");
1818 return -EINVAL;
1819 }
1820 subprog_start = subprog_end;
4cb3d99c
JW
1821 cur_subprog++;
1822 if (cur_subprog < env->subprog_cnt)
9c8105bd 1823 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1824 }
1825 }
1826 return 0;
1827}
1828
679c782d
EC
1829/* Parentage chain of this register (or stack slot) should take care of all
1830 * issues like callee-saved registers, stack slot allocation time, etc.
1831 */
f4d7e40a 1832static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1833 const struct bpf_reg_state *state,
5327ed3d 1834 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1835{
1836 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1837 int cnt = 0;
dc503a8a
EC
1838
1839 while (parent) {
1840 /* if read wasn't screened by an earlier write ... */
679c782d 1841 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1842 break;
9242b5f5
AS
1843 if (parent->live & REG_LIVE_DONE) {
1844 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 reg_type_str[parent->type],
1846 parent->var_off.value, parent->off);
1847 return -EFAULT;
1848 }
5327ed3d
JW
1849 /* The first condition is more likely to be true than the
1850 * second, checked it first.
1851 */
1852 if ((parent->live & REG_LIVE_READ) == flag ||
1853 parent->live & REG_LIVE_READ64)
25af32da
AS
1854 /* The parentage chain never changes and
1855 * this parent was already marked as LIVE_READ.
1856 * There is no need to keep walking the chain again and
1857 * keep re-marking all parents as LIVE_READ.
1858 * This case happens when the same register is read
1859 * multiple times without writes into it in-between.
5327ed3d
JW
1860 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1862 */
1863 break;
dc503a8a 1864 /* ... then we depend on parent's value */
5327ed3d
JW
1865 parent->live |= flag;
1866 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 if (flag == REG_LIVE_READ64)
1868 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1869 state = parent;
1870 parent = state->parent;
f4d7e40a 1871 writes = true;
06ee7115 1872 cnt++;
dc503a8a 1873 }
06ee7115
AS
1874
1875 if (env->longest_mark_read_walk < cnt)
1876 env->longest_mark_read_walk = cnt;
f4d7e40a 1877 return 0;
dc503a8a
EC
1878}
1879
5327ed3d
JW
1880/* This function is supposed to be used by the following 32-bit optimization
1881 * code only. It returns TRUE if the source or destination register operates
1882 * on 64-bit, otherwise return FALSE.
1883 */
1884static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886{
1887 u8 code, class, op;
1888
1889 code = insn->code;
1890 class = BPF_CLASS(code);
1891 op = BPF_OP(code);
1892 if (class == BPF_JMP) {
1893 /* BPF_EXIT for "main" will reach here. Return TRUE
1894 * conservatively.
1895 */
1896 if (op == BPF_EXIT)
1897 return true;
1898 if (op == BPF_CALL) {
1899 /* BPF to BPF call will reach here because of marking
1900 * caller saved clobber with DST_OP_NO_MARK for which we
1901 * don't care the register def because they are anyway
1902 * marked as NOT_INIT already.
1903 */
1904 if (insn->src_reg == BPF_PSEUDO_CALL)
1905 return false;
1906 /* Helper call will reach here because of arg type
1907 * check, conservatively return TRUE.
1908 */
1909 if (t == SRC_OP)
1910 return true;
1911
1912 return false;
1913 }
1914 }
1915
1916 if (class == BPF_ALU64 || class == BPF_JMP ||
1917 /* BPF_END always use BPF_ALU class. */
1918 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 return true;
1920
1921 if (class == BPF_ALU || class == BPF_JMP32)
1922 return false;
1923
1924 if (class == BPF_LDX) {
1925 if (t != SRC_OP)
1926 return BPF_SIZE(code) == BPF_DW;
1927 /* LDX source must be ptr. */
1928 return true;
1929 }
1930
1931 if (class == BPF_STX) {
83a28819
IL
1932 /* BPF_STX (including atomic variants) has multiple source
1933 * operands, one of which is a ptr. Check whether the caller is
1934 * asking about it.
1935 */
1936 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
1937 return true;
1938 return BPF_SIZE(code) == BPF_DW;
1939 }
1940
1941 if (class == BPF_LD) {
1942 u8 mode = BPF_MODE(code);
1943
1944 /* LD_IMM64 */
1945 if (mode == BPF_IMM)
1946 return true;
1947
1948 /* Both LD_IND and LD_ABS return 32-bit data. */
1949 if (t != SRC_OP)
1950 return false;
1951
1952 /* Implicit ctx ptr. */
1953 if (regno == BPF_REG_6)
1954 return true;
1955
1956 /* Explicit source could be any width. */
1957 return true;
1958 }
1959
1960 if (class == BPF_ST)
1961 /* The only source register for BPF_ST is a ptr. */
1962 return true;
1963
1964 /* Conservatively return true at default. */
1965 return true;
1966}
1967
83a28819
IL
1968/* Return the regno defined by the insn, or -1. */
1969static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 1970{
83a28819
IL
1971 switch (BPF_CLASS(insn->code)) {
1972 case BPF_JMP:
1973 case BPF_JMP32:
1974 case BPF_ST:
1975 return -1;
1976 case BPF_STX:
1977 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 (insn->imm & BPF_FETCH)) {
1979 if (insn->imm == BPF_CMPXCHG)
1980 return BPF_REG_0;
1981 else
1982 return insn->src_reg;
1983 } else {
1984 return -1;
1985 }
1986 default:
1987 return insn->dst_reg;
1988 }
b325fbca
JW
1989}
1990
1991/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993{
83a28819
IL
1994 int dst_reg = insn_def_regno(insn);
1995
1996 if (dst_reg == -1)
b325fbca
JW
1997 return false;
1998
83a28819 1999 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2000}
2001
5327ed3d
JW
2002static void mark_insn_zext(struct bpf_verifier_env *env,
2003 struct bpf_reg_state *reg)
2004{
2005 s32 def_idx = reg->subreg_def;
2006
2007 if (def_idx == DEF_NOT_SUBREG)
2008 return;
2009
2010 env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 /* The dst will be zero extended, so won't be sub-register anymore. */
2012 reg->subreg_def = DEF_NOT_SUBREG;
2013}
2014
dc503a8a 2015static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2016 enum reg_arg_type t)
2017{
f4d7e40a
AS
2018 struct bpf_verifier_state *vstate = env->cur_state;
2019 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2020 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2021 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2022 bool rw64;
dc503a8a 2023
17a52670 2024 if (regno >= MAX_BPF_REG) {
61bd5218 2025 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2026 return -EINVAL;
2027 }
2028
c342dc10 2029 reg = &regs[regno];
5327ed3d 2030 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2031 if (t == SRC_OP) {
2032 /* check whether register used as source operand can be read */
c342dc10 2033 if (reg->type == NOT_INIT) {
61bd5218 2034 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2035 return -EACCES;
2036 }
679c782d 2037 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2038 if (regno == BPF_REG_FP)
2039 return 0;
2040
5327ed3d
JW
2041 if (rw64)
2042 mark_insn_zext(env, reg);
2043
2044 return mark_reg_read(env, reg, reg->parent,
2045 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2046 } else {
2047 /* check whether register used as dest operand can be written to */
2048 if (regno == BPF_REG_FP) {
61bd5218 2049 verbose(env, "frame pointer is read only\n");
17a52670
AS
2050 return -EACCES;
2051 }
c342dc10 2052 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2053 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2054 if (t == DST_OP)
61bd5218 2055 mark_reg_unknown(env, regs, regno);
17a52670
AS
2056 }
2057 return 0;
2058}
2059
b5dc0163
AS
2060/* for any branch, call, exit record the history of jmps in the given state */
2061static int push_jmp_history(struct bpf_verifier_env *env,
2062 struct bpf_verifier_state *cur)
2063{
2064 u32 cnt = cur->jmp_history_cnt;
2065 struct bpf_idx_pair *p;
2066
2067 cnt++;
2068 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 if (!p)
2070 return -ENOMEM;
2071 p[cnt - 1].idx = env->insn_idx;
2072 p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 cur->jmp_history = p;
2074 cur->jmp_history_cnt = cnt;
2075 return 0;
2076}
2077
2078/* Backtrack one insn at a time. If idx is not at the top of recorded
2079 * history then previous instruction came from straight line execution.
2080 */
2081static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 u32 *history)
2083{
2084 u32 cnt = *history;
2085
2086 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 i = st->jmp_history[cnt - 1].prev_idx;
2088 (*history)--;
2089 } else {
2090 i--;
2091 }
2092 return i;
2093}
2094
e6ac2450
MKL
2095static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096{
2097 const struct btf_type *func;
2098
2099 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 return NULL;
2101
2102 func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 return btf_name_by_offset(btf_vmlinux, func->name_off);
2104}
2105
b5dc0163
AS
2106/* For given verifier state backtrack_insn() is called from the last insn to
2107 * the first insn. Its purpose is to compute a bitmask of registers and
2108 * stack slots that needs precision in the parent verifier state.
2109 */
2110static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 u32 *reg_mask, u64 *stack_mask)
2112{
2113 const struct bpf_insn_cbs cbs = {
e6ac2450 2114 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2115 .cb_print = verbose,
2116 .private_data = env,
2117 };
2118 struct bpf_insn *insn = env->prog->insnsi + idx;
2119 u8 class = BPF_CLASS(insn->code);
2120 u8 opcode = BPF_OP(insn->code);
2121 u8 mode = BPF_MODE(insn->code);
2122 u32 dreg = 1u << insn->dst_reg;
2123 u32 sreg = 1u << insn->src_reg;
2124 u32 spi;
2125
2126 if (insn->code == 0)
2127 return 0;
2128 if (env->log.level & BPF_LOG_LEVEL) {
2129 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 verbose(env, "%d: ", idx);
2131 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 }
2133
2134 if (class == BPF_ALU || class == BPF_ALU64) {
2135 if (!(*reg_mask & dreg))
2136 return 0;
2137 if (opcode == BPF_MOV) {
2138 if (BPF_SRC(insn->code) == BPF_X) {
2139 /* dreg = sreg
2140 * dreg needs precision after this insn
2141 * sreg needs precision before this insn
2142 */
2143 *reg_mask &= ~dreg;
2144 *reg_mask |= sreg;
2145 } else {
2146 /* dreg = K
2147 * dreg needs precision after this insn.
2148 * Corresponding register is already marked
2149 * as precise=true in this verifier state.
2150 * No further markings in parent are necessary
2151 */
2152 *reg_mask &= ~dreg;
2153 }
2154 } else {
2155 if (BPF_SRC(insn->code) == BPF_X) {
2156 /* dreg += sreg
2157 * both dreg and sreg need precision
2158 * before this insn
2159 */
2160 *reg_mask |= sreg;
2161 } /* else dreg += K
2162 * dreg still needs precision before this insn
2163 */
2164 }
2165 } else if (class == BPF_LDX) {
2166 if (!(*reg_mask & dreg))
2167 return 0;
2168 *reg_mask &= ~dreg;
2169
2170 /* scalars can only be spilled into stack w/o losing precision.
2171 * Load from any other memory can be zero extended.
2172 * The desire to keep that precision is already indicated
2173 * by 'precise' mark in corresponding register of this state.
2174 * No further tracking necessary.
2175 */
2176 if (insn->src_reg != BPF_REG_FP)
2177 return 0;
2178 if (BPF_SIZE(insn->code) != BPF_DW)
2179 return 0;
2180
2181 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 * that [fp - off] slot contains scalar that needs to be
2183 * tracked with precision
2184 */
2185 spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 if (spi >= 64) {
2187 verbose(env, "BUG spi %d\n", spi);
2188 WARN_ONCE(1, "verifier backtracking bug");
2189 return -EFAULT;
2190 }
2191 *stack_mask |= 1ull << spi;
b3b50f05 2192 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2193 if (*reg_mask & dreg)
b3b50f05 2194 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2195 * to access memory. It means backtracking
2196 * encountered a case of pointer subtraction.
2197 */
2198 return -ENOTSUPP;
2199 /* scalars can only be spilled into stack */
2200 if (insn->dst_reg != BPF_REG_FP)
2201 return 0;
2202 if (BPF_SIZE(insn->code) != BPF_DW)
2203 return 0;
2204 spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 if (spi >= 64) {
2206 verbose(env, "BUG spi %d\n", spi);
2207 WARN_ONCE(1, "verifier backtracking bug");
2208 return -EFAULT;
2209 }
2210 if (!(*stack_mask & (1ull << spi)))
2211 return 0;
2212 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2213 if (class == BPF_STX)
2214 *reg_mask |= sreg;
b5dc0163
AS
2215 } else if (class == BPF_JMP || class == BPF_JMP32) {
2216 if (opcode == BPF_CALL) {
2217 if (insn->src_reg == BPF_PSEUDO_CALL)
2218 return -ENOTSUPP;
2219 /* regular helper call sets R0 */
2220 *reg_mask &= ~1;
2221 if (*reg_mask & 0x3f) {
2222 /* if backtracing was looking for registers R1-R5
2223 * they should have been found already.
2224 */
2225 verbose(env, "BUG regs %x\n", *reg_mask);
2226 WARN_ONCE(1, "verifier backtracking bug");
2227 return -EFAULT;
2228 }
2229 } else if (opcode == BPF_EXIT) {
2230 return -ENOTSUPP;
2231 }
2232 } else if (class == BPF_LD) {
2233 if (!(*reg_mask & dreg))
2234 return 0;
2235 *reg_mask &= ~dreg;
2236 /* It's ld_imm64 or ld_abs or ld_ind.
2237 * For ld_imm64 no further tracking of precision
2238 * into parent is necessary
2239 */
2240 if (mode == BPF_IND || mode == BPF_ABS)
2241 /* to be analyzed */
2242 return -ENOTSUPP;
b5dc0163
AS
2243 }
2244 return 0;
2245}
2246
2247/* the scalar precision tracking algorithm:
2248 * . at the start all registers have precise=false.
2249 * . scalar ranges are tracked as normal through alu and jmp insns.
2250 * . once precise value of the scalar register is used in:
2251 * . ptr + scalar alu
2252 * . if (scalar cond K|scalar)
2253 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2254 * backtrack through the verifier states and mark all registers and
2255 * stack slots with spilled constants that these scalar regisers
2256 * should be precise.
2257 * . during state pruning two registers (or spilled stack slots)
2258 * are equivalent if both are not precise.
2259 *
2260 * Note the verifier cannot simply walk register parentage chain,
2261 * since many different registers and stack slots could have been
2262 * used to compute single precise scalar.
2263 *
2264 * The approach of starting with precise=true for all registers and then
2265 * backtrack to mark a register as not precise when the verifier detects
2266 * that program doesn't care about specific value (e.g., when helper
2267 * takes register as ARG_ANYTHING parameter) is not safe.
2268 *
2269 * It's ok to walk single parentage chain of the verifier states.
2270 * It's possible that this backtracking will go all the way till 1st insn.
2271 * All other branches will be explored for needing precision later.
2272 *
2273 * The backtracking needs to deal with cases like:
2274 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275 * r9 -= r8
2276 * r5 = r9
2277 * if r5 > 0x79f goto pc+7
2278 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279 * r5 += 1
2280 * ...
2281 * call bpf_perf_event_output#25
2282 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283 *
2284 * and this case:
2285 * r6 = 1
2286 * call foo // uses callee's r6 inside to compute r0
2287 * r0 += r6
2288 * if r0 == 0 goto
2289 *
2290 * to track above reg_mask/stack_mask needs to be independent for each frame.
2291 *
2292 * Also if parent's curframe > frame where backtracking started,
2293 * the verifier need to mark registers in both frames, otherwise callees
2294 * may incorrectly prune callers. This is similar to
2295 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296 *
2297 * For now backtracking falls back into conservative marking.
2298 */
2299static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 struct bpf_verifier_state *st)
2301{
2302 struct bpf_func_state *func;
2303 struct bpf_reg_state *reg;
2304 int i, j;
2305
2306 /* big hammer: mark all scalars precise in this path.
2307 * pop_stack may still get !precise scalars.
2308 */
2309 for (; st; st = st->parent)
2310 for (i = 0; i <= st->curframe; i++) {
2311 func = st->frame[i];
2312 for (j = 0; j < BPF_REG_FP; j++) {
2313 reg = &func->regs[j];
2314 if (reg->type != SCALAR_VALUE)
2315 continue;
2316 reg->precise = true;
2317 }
2318 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 continue;
2321 reg = &func->stack[j].spilled_ptr;
2322 if (reg->type != SCALAR_VALUE)
2323 continue;
2324 reg->precise = true;
2325 }
2326 }
2327}
2328
a3ce685d
AS
2329static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 int spi)
b5dc0163
AS
2331{
2332 struct bpf_verifier_state *st = env->cur_state;
2333 int first_idx = st->first_insn_idx;
2334 int last_idx = env->insn_idx;
2335 struct bpf_func_state *func;
2336 struct bpf_reg_state *reg;
a3ce685d
AS
2337 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2339 bool skip_first = true;
a3ce685d 2340 bool new_marks = false;
b5dc0163
AS
2341 int i, err;
2342
2c78ee89 2343 if (!env->bpf_capable)
b5dc0163
AS
2344 return 0;
2345
2346 func = st->frame[st->curframe];
a3ce685d
AS
2347 if (regno >= 0) {
2348 reg = &func->regs[regno];
2349 if (reg->type != SCALAR_VALUE) {
2350 WARN_ONCE(1, "backtracing misuse");
2351 return -EFAULT;
2352 }
2353 if (!reg->precise)
2354 new_marks = true;
2355 else
2356 reg_mask = 0;
2357 reg->precise = true;
b5dc0163 2358 }
b5dc0163 2359
a3ce685d
AS
2360 while (spi >= 0) {
2361 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 stack_mask = 0;
2363 break;
2364 }
2365 reg = &func->stack[spi].spilled_ptr;
2366 if (reg->type != SCALAR_VALUE) {
2367 stack_mask = 0;
2368 break;
2369 }
2370 if (!reg->precise)
2371 new_marks = true;
2372 else
2373 stack_mask = 0;
2374 reg->precise = true;
2375 break;
2376 }
2377
2378 if (!new_marks)
2379 return 0;
2380 if (!reg_mask && !stack_mask)
2381 return 0;
b5dc0163
AS
2382 for (;;) {
2383 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2384 u32 history = st->jmp_history_cnt;
2385
2386 if (env->log.level & BPF_LOG_LEVEL)
2387 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 for (i = last_idx;;) {
2389 if (skip_first) {
2390 err = 0;
2391 skip_first = false;
2392 } else {
2393 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394 }
2395 if (err == -ENOTSUPP) {
2396 mark_all_scalars_precise(env, st);
2397 return 0;
2398 } else if (err) {
2399 return err;
2400 }
2401 if (!reg_mask && !stack_mask)
2402 /* Found assignment(s) into tracked register in this state.
2403 * Since this state is already marked, just return.
2404 * Nothing to be tracked further in the parent state.
2405 */
2406 return 0;
2407 if (i == first_idx)
2408 break;
2409 i = get_prev_insn_idx(st, i, &history);
2410 if (i >= env->prog->len) {
2411 /* This can happen if backtracking reached insn 0
2412 * and there are still reg_mask or stack_mask
2413 * to backtrack.
2414 * It means the backtracking missed the spot where
2415 * particular register was initialized with a constant.
2416 */
2417 verbose(env, "BUG backtracking idx %d\n", i);
2418 WARN_ONCE(1, "verifier backtracking bug");
2419 return -EFAULT;
2420 }
2421 }
2422 st = st->parent;
2423 if (!st)
2424 break;
2425
a3ce685d 2426 new_marks = false;
b5dc0163
AS
2427 func = st->frame[st->curframe];
2428 bitmap_from_u64(mask, reg_mask);
2429 for_each_set_bit(i, mask, 32) {
2430 reg = &func->regs[i];
a3ce685d
AS
2431 if (reg->type != SCALAR_VALUE) {
2432 reg_mask &= ~(1u << i);
b5dc0163 2433 continue;
a3ce685d 2434 }
b5dc0163
AS
2435 if (!reg->precise)
2436 new_marks = true;
2437 reg->precise = true;
2438 }
2439
2440 bitmap_from_u64(mask, stack_mask);
2441 for_each_set_bit(i, mask, 64) {
2442 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2443 /* the sequence of instructions:
2444 * 2: (bf) r3 = r10
2445 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 * doesn't contain jmps. It's backtracked
2448 * as a single block.
2449 * During backtracking insn 3 is not recognized as
2450 * stack access, so at the end of backtracking
2451 * stack slot fp-8 is still marked in stack_mask.
2452 * However the parent state may not have accessed
2453 * fp-8 and it's "unallocated" stack space.
2454 * In such case fallback to conservative.
b5dc0163 2455 */
2339cd6c
AS
2456 mark_all_scalars_precise(env, st);
2457 return 0;
b5dc0163
AS
2458 }
2459
a3ce685d
AS
2460 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 stack_mask &= ~(1ull << i);
b5dc0163 2462 continue;
a3ce685d 2463 }
b5dc0163 2464 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2465 if (reg->type != SCALAR_VALUE) {
2466 stack_mask &= ~(1ull << i);
b5dc0163 2467 continue;
a3ce685d 2468 }
b5dc0163
AS
2469 if (!reg->precise)
2470 new_marks = true;
2471 reg->precise = true;
2472 }
2473 if (env->log.level & BPF_LOG_LEVEL) {
2474 print_verifier_state(env, func);
2475 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 new_marks ? "didn't have" : "already had",
2477 reg_mask, stack_mask);
2478 }
2479
a3ce685d
AS
2480 if (!reg_mask && !stack_mask)
2481 break;
b5dc0163
AS
2482 if (!new_marks)
2483 break;
2484
2485 last_idx = st->last_insn_idx;
2486 first_idx = st->first_insn_idx;
2487 }
2488 return 0;
2489}
2490
a3ce685d
AS
2491static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492{
2493 return __mark_chain_precision(env, regno, -1);
2494}
2495
2496static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497{
2498 return __mark_chain_precision(env, -1, spi);
2499}
b5dc0163 2500
1be7f75d
AS
2501static bool is_spillable_regtype(enum bpf_reg_type type)
2502{
2503 switch (type) {
2504 case PTR_TO_MAP_VALUE:
2505 case PTR_TO_MAP_VALUE_OR_NULL:
2506 case PTR_TO_STACK:
2507 case PTR_TO_CTX:
969bf05e 2508 case PTR_TO_PACKET:
de8f3a83 2509 case PTR_TO_PACKET_META:
969bf05e 2510 case PTR_TO_PACKET_END:
d58e468b 2511 case PTR_TO_FLOW_KEYS:
1be7f75d 2512 case CONST_PTR_TO_MAP:
c64b7983
JS
2513 case PTR_TO_SOCKET:
2514 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2515 case PTR_TO_SOCK_COMMON:
2516 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2517 case PTR_TO_TCP_SOCK:
2518 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2519 case PTR_TO_XDP_SOCK:
65726b5b 2520 case PTR_TO_BTF_ID:
b121b341 2521 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2522 case PTR_TO_RDONLY_BUF:
2523 case PTR_TO_RDONLY_BUF_OR_NULL:
2524 case PTR_TO_RDWR_BUF:
2525 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2526 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2527 case PTR_TO_MEM:
2528 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2529 case PTR_TO_FUNC:
2530 case PTR_TO_MAP_KEY:
1be7f75d
AS
2531 return true;
2532 default:
2533 return false;
2534 }
2535}
2536
cc2b14d5
AS
2537/* Does this register contain a constant zero? */
2538static bool register_is_null(struct bpf_reg_state *reg)
2539{
2540 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541}
2542
f7cf25b2
AS
2543static bool register_is_const(struct bpf_reg_state *reg)
2544{
2545 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546}
2547
5689d49b
YS
2548static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549{
2550 return tnum_is_unknown(reg->var_off) &&
2551 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555}
2556
2557static bool register_is_bounded(struct bpf_reg_state *reg)
2558{
2559 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560}
2561
6e7e63cb
JH
2562static bool __is_pointer_value(bool allow_ptr_leaks,
2563 const struct bpf_reg_state *reg)
2564{
2565 if (allow_ptr_leaks)
2566 return false;
2567
2568 return reg->type != SCALAR_VALUE;
2569}
2570
f7cf25b2
AS
2571static void save_register_state(struct bpf_func_state *state,
2572 int spi, struct bpf_reg_state *reg)
2573{
2574 int i;
2575
2576 state->stack[spi].spilled_ptr = *reg;
2577 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578
2579 for (i = 0; i < BPF_REG_SIZE; i++)
2580 state->stack[spi].slot_type[i] = STACK_SPILL;
2581}
2582
01f810ac 2583/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2584 * stack boundary and alignment are checked in check_mem_access()
2585 */
01f810ac
AM
2586static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 /* stack frame we're writing to */
2588 struct bpf_func_state *state,
2589 int off, int size, int value_regno,
2590 int insn_idx)
17a52670 2591{
f4d7e40a 2592 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2593 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2594 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2595 struct bpf_reg_state *reg = NULL;
638f5b90 2596
c69431aa 2597 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2598 if (err)
2599 return err;
9c399760
AS
2600 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 * so it's aligned access and [off, off + size) are within stack limits
2602 */
638f5b90
AS
2603 if (!env->allow_ptr_leaks &&
2604 state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 size != BPF_REG_SIZE) {
2606 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 return -EACCES;
2608 }
17a52670 2609
f4d7e40a 2610 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2611 if (value_regno >= 0)
2612 reg = &cur->regs[value_regno];
17a52670 2613
5689d49b 2614 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2c78ee89 2615 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2616 if (dst_reg != BPF_REG_FP) {
2617 /* The backtracking logic can only recognize explicit
2618 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2619 * scalar via different register has to be conservative.
b5dc0163
AS
2620 * Backtrack from here and mark all registers as precise
2621 * that contributed into 'reg' being a constant.
2622 */
2623 err = mark_chain_precision(env, value_regno);
2624 if (err)
2625 return err;
2626 }
f7cf25b2
AS
2627 save_register_state(state, spi, reg);
2628 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2629 /* register containing pointer is being spilled into stack */
9c399760 2630 if (size != BPF_REG_SIZE) {
f7cf25b2 2631 verbose_linfo(env, insn_idx, "; ");
61bd5218 2632 verbose(env, "invalid size of register spill\n");
17a52670
AS
2633 return -EACCES;
2634 }
2635
f7cf25b2 2636 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2637 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2638 return -EINVAL;
2639 }
2640
2c78ee89 2641 if (!env->bypass_spec_v4) {
f7cf25b2 2642 bool sanitize = false;
17a52670 2643
f7cf25b2
AS
2644 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2645 register_is_const(&state->stack[spi].spilled_ptr))
2646 sanitize = true;
2647 for (i = 0; i < BPF_REG_SIZE; i++)
2648 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2649 sanitize = true;
2650 break;
2651 }
2652 if (sanitize) {
af86ca4e
AS
2653 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2654 int soff = (-spi - 1) * BPF_REG_SIZE;
2655
2656 /* detected reuse of integer stack slot with a pointer
2657 * which means either llvm is reusing stack slot or
2658 * an attacker is trying to exploit CVE-2018-3639
2659 * (speculative store bypass)
2660 * Have to sanitize that slot with preemptive
2661 * store of zero.
2662 */
2663 if (*poff && *poff != soff) {
2664 /* disallow programs where single insn stores
2665 * into two different stack slots, since verifier
2666 * cannot sanitize them
2667 */
2668 verbose(env,
2669 "insn %d cannot access two stack slots fp%d and fp%d",
2670 insn_idx, *poff, soff);
2671 return -EINVAL;
2672 }
2673 *poff = soff;
2674 }
af86ca4e 2675 }
f7cf25b2 2676 save_register_state(state, spi, reg);
9c399760 2677 } else {
cc2b14d5
AS
2678 u8 type = STACK_MISC;
2679
679c782d
EC
2680 /* regular write of data into stack destroys any spilled ptr */
2681 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2682 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2683 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2684 for (i = 0; i < BPF_REG_SIZE; i++)
2685 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2686
cc2b14d5
AS
2687 /* only mark the slot as written if all 8 bytes were written
2688 * otherwise read propagation may incorrectly stop too soon
2689 * when stack slots are partially written.
2690 * This heuristic means that read propagation will be
2691 * conservative, since it will add reg_live_read marks
2692 * to stack slots all the way to first state when programs
2693 * writes+reads less than 8 bytes
2694 */
2695 if (size == BPF_REG_SIZE)
2696 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2697
2698 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2699 if (reg && register_is_null(reg)) {
2700 /* backtracking doesn't work for STACK_ZERO yet. */
2701 err = mark_chain_precision(env, value_regno);
2702 if (err)
2703 return err;
cc2b14d5 2704 type = STACK_ZERO;
b5dc0163 2705 }
cc2b14d5 2706
0bae2d4d 2707 /* Mark slots affected by this stack write. */
9c399760 2708 for (i = 0; i < size; i++)
638f5b90 2709 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2710 type;
17a52670
AS
2711 }
2712 return 0;
2713}
2714
01f810ac
AM
2715/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2716 * known to contain a variable offset.
2717 * This function checks whether the write is permitted and conservatively
2718 * tracks the effects of the write, considering that each stack slot in the
2719 * dynamic range is potentially written to.
2720 *
2721 * 'off' includes 'regno->off'.
2722 * 'value_regno' can be -1, meaning that an unknown value is being written to
2723 * the stack.
2724 *
2725 * Spilled pointers in range are not marked as written because we don't know
2726 * what's going to be actually written. This means that read propagation for
2727 * future reads cannot be terminated by this write.
2728 *
2729 * For privileged programs, uninitialized stack slots are considered
2730 * initialized by this write (even though we don't know exactly what offsets
2731 * are going to be written to). The idea is that we don't want the verifier to
2732 * reject future reads that access slots written to through variable offsets.
2733 */
2734static int check_stack_write_var_off(struct bpf_verifier_env *env,
2735 /* func where register points to */
2736 struct bpf_func_state *state,
2737 int ptr_regno, int off, int size,
2738 int value_regno, int insn_idx)
2739{
2740 struct bpf_func_state *cur; /* state of the current function */
2741 int min_off, max_off;
2742 int i, err;
2743 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2744 bool writing_zero = false;
2745 /* set if the fact that we're writing a zero is used to let any
2746 * stack slots remain STACK_ZERO
2747 */
2748 bool zero_used = false;
2749
2750 cur = env->cur_state->frame[env->cur_state->curframe];
2751 ptr_reg = &cur->regs[ptr_regno];
2752 min_off = ptr_reg->smin_value + off;
2753 max_off = ptr_reg->smax_value + off + size;
2754 if (value_regno >= 0)
2755 value_reg = &cur->regs[value_regno];
2756 if (value_reg && register_is_null(value_reg))
2757 writing_zero = true;
2758
c69431aa 2759 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
2760 if (err)
2761 return err;
2762
2763
2764 /* Variable offset writes destroy any spilled pointers in range. */
2765 for (i = min_off; i < max_off; i++) {
2766 u8 new_type, *stype;
2767 int slot, spi;
2768
2769 slot = -i - 1;
2770 spi = slot / BPF_REG_SIZE;
2771 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2772
2773 if (!env->allow_ptr_leaks
2774 && *stype != NOT_INIT
2775 && *stype != SCALAR_VALUE) {
2776 /* Reject the write if there's are spilled pointers in
2777 * range. If we didn't reject here, the ptr status
2778 * would be erased below (even though not all slots are
2779 * actually overwritten), possibly opening the door to
2780 * leaks.
2781 */
2782 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2783 insn_idx, i);
2784 return -EINVAL;
2785 }
2786
2787 /* Erase all spilled pointers. */
2788 state->stack[spi].spilled_ptr.type = NOT_INIT;
2789
2790 /* Update the slot type. */
2791 new_type = STACK_MISC;
2792 if (writing_zero && *stype == STACK_ZERO) {
2793 new_type = STACK_ZERO;
2794 zero_used = true;
2795 }
2796 /* If the slot is STACK_INVALID, we check whether it's OK to
2797 * pretend that it will be initialized by this write. The slot
2798 * might not actually be written to, and so if we mark it as
2799 * initialized future reads might leak uninitialized memory.
2800 * For privileged programs, we will accept such reads to slots
2801 * that may or may not be written because, if we're reject
2802 * them, the error would be too confusing.
2803 */
2804 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2805 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2806 insn_idx, i);
2807 return -EINVAL;
2808 }
2809 *stype = new_type;
2810 }
2811 if (zero_used) {
2812 /* backtracking doesn't work for STACK_ZERO yet. */
2813 err = mark_chain_precision(env, value_regno);
2814 if (err)
2815 return err;
2816 }
2817 return 0;
2818}
2819
2820/* When register 'dst_regno' is assigned some values from stack[min_off,
2821 * max_off), we set the register's type according to the types of the
2822 * respective stack slots. If all the stack values are known to be zeros, then
2823 * so is the destination reg. Otherwise, the register is considered to be
2824 * SCALAR. This function does not deal with register filling; the caller must
2825 * ensure that all spilled registers in the stack range have been marked as
2826 * read.
2827 */
2828static void mark_reg_stack_read(struct bpf_verifier_env *env,
2829 /* func where src register points to */
2830 struct bpf_func_state *ptr_state,
2831 int min_off, int max_off, int dst_regno)
2832{
2833 struct bpf_verifier_state *vstate = env->cur_state;
2834 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2835 int i, slot, spi;
2836 u8 *stype;
2837 int zeros = 0;
2838
2839 for (i = min_off; i < max_off; i++) {
2840 slot = -i - 1;
2841 spi = slot / BPF_REG_SIZE;
2842 stype = ptr_state->stack[spi].slot_type;
2843 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2844 break;
2845 zeros++;
2846 }
2847 if (zeros == max_off - min_off) {
2848 /* any access_size read into register is zero extended,
2849 * so the whole register == const_zero
2850 */
2851 __mark_reg_const_zero(&state->regs[dst_regno]);
2852 /* backtracking doesn't support STACK_ZERO yet,
2853 * so mark it precise here, so that later
2854 * backtracking can stop here.
2855 * Backtracking may not need this if this register
2856 * doesn't participate in pointer adjustment.
2857 * Forward propagation of precise flag is not
2858 * necessary either. This mark is only to stop
2859 * backtracking. Any register that contributed
2860 * to const 0 was marked precise before spill.
2861 */
2862 state->regs[dst_regno].precise = true;
2863 } else {
2864 /* have read misc data from the stack */
2865 mark_reg_unknown(env, state->regs, dst_regno);
2866 }
2867 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2868}
2869
2870/* Read the stack at 'off' and put the results into the register indicated by
2871 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2872 * spilled reg.
2873 *
2874 * 'dst_regno' can be -1, meaning that the read value is not going to a
2875 * register.
2876 *
2877 * The access is assumed to be within the current stack bounds.
2878 */
2879static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2880 /* func where src register points to */
2881 struct bpf_func_state *reg_state,
2882 int off, int size, int dst_regno)
17a52670 2883{
f4d7e40a
AS
2884 struct bpf_verifier_state *vstate = env->cur_state;
2885 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2886 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2887 struct bpf_reg_state *reg;
638f5b90 2888 u8 *stype;
17a52670 2889
f4d7e40a 2890 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2891 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2892
638f5b90 2893 if (stype[0] == STACK_SPILL) {
9c399760 2894 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2895 if (reg->type != SCALAR_VALUE) {
2896 verbose_linfo(env, env->insn_idx, "; ");
2897 verbose(env, "invalid size of register fill\n");
2898 return -EACCES;
2899 }
01f810ac
AM
2900 if (dst_regno >= 0) {
2901 mark_reg_unknown(env, state->regs, dst_regno);
2902 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2
AS
2903 }
2904 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2905 return 0;
17a52670 2906 }
9c399760 2907 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2908 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2909 verbose(env, "corrupted spill memory\n");
17a52670
AS
2910 return -EACCES;
2911 }
2912 }
2913
01f810ac 2914 if (dst_regno >= 0) {
17a52670 2915 /* restore register state from stack */
01f810ac 2916 state->regs[dst_regno] = *reg;
2f18f62e
AS
2917 /* mark reg as written since spilled pointer state likely
2918 * has its liveness marks cleared by is_state_visited()
2919 * which resets stack/reg liveness for state transitions
2920 */
01f810ac 2921 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 2922 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 2923 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
2924 * it is acceptable to use this value as a SCALAR_VALUE
2925 * (e.g. for XADD).
2926 * We must not allow unprivileged callers to do that
2927 * with spilled pointers.
2928 */
2929 verbose(env, "leaking pointer from stack off %d\n",
2930 off);
2931 return -EACCES;
dc503a8a 2932 }
f7cf25b2 2933 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2934 } else {
01f810ac 2935 u8 type;
cc2b14d5 2936
17a52670 2937 for (i = 0; i < size; i++) {
01f810ac
AM
2938 type = stype[(slot - i) % BPF_REG_SIZE];
2939 if (type == STACK_MISC)
cc2b14d5 2940 continue;
01f810ac 2941 if (type == STACK_ZERO)
cc2b14d5 2942 continue;
cc2b14d5
AS
2943 verbose(env, "invalid read from stack off %d+%d size %d\n",
2944 off, i, size);
2945 return -EACCES;
2946 }
f7cf25b2 2947 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
2948 if (dst_regno >= 0)
2949 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 2950 }
f7cf25b2 2951 return 0;
17a52670
AS
2952}
2953
01f810ac
AM
2954enum stack_access_src {
2955 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2956 ACCESS_HELPER = 2, /* the access is performed by a helper */
2957};
2958
2959static int check_stack_range_initialized(struct bpf_verifier_env *env,
2960 int regno, int off, int access_size,
2961 bool zero_size_allowed,
2962 enum stack_access_src type,
2963 struct bpf_call_arg_meta *meta);
2964
2965static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2966{
2967 return cur_regs(env) + regno;
2968}
2969
2970/* Read the stack at 'ptr_regno + off' and put the result into the register
2971 * 'dst_regno'.
2972 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2973 * but not its variable offset.
2974 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2975 *
2976 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2977 * filling registers (i.e. reads of spilled register cannot be detected when
2978 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2979 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2980 * offset; for a fixed offset check_stack_read_fixed_off should be used
2981 * instead.
2982 */
2983static int check_stack_read_var_off(struct bpf_verifier_env *env,
2984 int ptr_regno, int off, int size, int dst_regno)
e4298d25 2985{
01f810ac
AM
2986 /* The state of the source register. */
2987 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2988 struct bpf_func_state *ptr_state = func(env, reg);
2989 int err;
2990 int min_off, max_off;
2991
2992 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 2993 */
01f810ac
AM
2994 err = check_stack_range_initialized(env, ptr_regno, off, size,
2995 false, ACCESS_DIRECT, NULL);
2996 if (err)
2997 return err;
2998
2999 min_off = reg->smin_value + off;
3000 max_off = reg->smax_value + off;
3001 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3002 return 0;
3003}
3004
3005/* check_stack_read dispatches to check_stack_read_fixed_off or
3006 * check_stack_read_var_off.
3007 *
3008 * The caller must ensure that the offset falls within the allocated stack
3009 * bounds.
3010 *
3011 * 'dst_regno' is a register which will receive the value from the stack. It
3012 * can be -1, meaning that the read value is not going to a register.
3013 */
3014static int check_stack_read(struct bpf_verifier_env *env,
3015 int ptr_regno, int off, int size,
3016 int dst_regno)
3017{
3018 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3019 struct bpf_func_state *state = func(env, reg);
3020 int err;
3021 /* Some accesses are only permitted with a static offset. */
3022 bool var_off = !tnum_is_const(reg->var_off);
3023
3024 /* The offset is required to be static when reads don't go to a
3025 * register, in order to not leak pointers (see
3026 * check_stack_read_fixed_off).
3027 */
3028 if (dst_regno < 0 && var_off) {
e4298d25
DB
3029 char tn_buf[48];
3030
3031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3032 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3033 tn_buf, off, size);
3034 return -EACCES;
3035 }
01f810ac
AM
3036 /* Variable offset is prohibited for unprivileged mode for simplicity
3037 * since it requires corresponding support in Spectre masking for stack
3038 * ALU. See also retrieve_ptr_limit().
3039 */
3040 if (!env->bypass_spec_v1 && var_off) {
3041 char tn_buf[48];
e4298d25 3042
01f810ac
AM
3043 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3044 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3045 ptr_regno, tn_buf);
e4298d25
DB
3046 return -EACCES;
3047 }
3048
01f810ac
AM
3049 if (!var_off) {
3050 off += reg->var_off.value;
3051 err = check_stack_read_fixed_off(env, state, off, size,
3052 dst_regno);
3053 } else {
3054 /* Variable offset stack reads need more conservative handling
3055 * than fixed offset ones. Note that dst_regno >= 0 on this
3056 * branch.
3057 */
3058 err = check_stack_read_var_off(env, ptr_regno, off, size,
3059 dst_regno);
3060 }
3061 return err;
3062}
3063
3064
3065/* check_stack_write dispatches to check_stack_write_fixed_off or
3066 * check_stack_write_var_off.
3067 *
3068 * 'ptr_regno' is the register used as a pointer into the stack.
3069 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3070 * 'value_regno' is the register whose value we're writing to the stack. It can
3071 * be -1, meaning that we're not writing from a register.
3072 *
3073 * The caller must ensure that the offset falls within the maximum stack size.
3074 */
3075static int check_stack_write(struct bpf_verifier_env *env,
3076 int ptr_regno, int off, int size,
3077 int value_regno, int insn_idx)
3078{
3079 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3080 struct bpf_func_state *state = func(env, reg);
3081 int err;
3082
3083 if (tnum_is_const(reg->var_off)) {
3084 off += reg->var_off.value;
3085 err = check_stack_write_fixed_off(env, state, off, size,
3086 value_regno, insn_idx);
3087 } else {
3088 /* Variable offset stack reads need more conservative handling
3089 * than fixed offset ones.
3090 */
3091 err = check_stack_write_var_off(env, state,
3092 ptr_regno, off, size,
3093 value_regno, insn_idx);
3094 }
3095 return err;
e4298d25
DB
3096}
3097
591fe988
DB
3098static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3099 int off, int size, enum bpf_access_type type)
3100{
3101 struct bpf_reg_state *regs = cur_regs(env);
3102 struct bpf_map *map = regs[regno].map_ptr;
3103 u32 cap = bpf_map_flags_to_cap(map);
3104
3105 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3106 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3107 map->value_size, off, size);
3108 return -EACCES;
3109 }
3110
3111 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3112 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3113 map->value_size, off, size);
3114 return -EACCES;
3115 }
3116
3117 return 0;
3118}
3119
457f4436
AN
3120/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3121static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3122 int off, int size, u32 mem_size,
3123 bool zero_size_allowed)
17a52670 3124{
457f4436
AN
3125 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3126 struct bpf_reg_state *reg;
3127
3128 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3129 return 0;
17a52670 3130
457f4436
AN
3131 reg = &cur_regs(env)[regno];
3132 switch (reg->type) {
69c087ba
YS
3133 case PTR_TO_MAP_KEY:
3134 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3135 mem_size, off, size);
3136 break;
457f4436 3137 case PTR_TO_MAP_VALUE:
61bd5218 3138 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3139 mem_size, off, size);
3140 break;
3141 case PTR_TO_PACKET:
3142 case PTR_TO_PACKET_META:
3143 case PTR_TO_PACKET_END:
3144 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3145 off, size, regno, reg->id, off, mem_size);
3146 break;
3147 case PTR_TO_MEM:
3148 default:
3149 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3150 mem_size, off, size);
17a52670 3151 }
457f4436
AN
3152
3153 return -EACCES;
17a52670
AS
3154}
3155
457f4436
AN
3156/* check read/write into a memory region with possible variable offset */
3157static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3158 int off, int size, u32 mem_size,
3159 bool zero_size_allowed)
dbcfe5f7 3160{
f4d7e40a
AS
3161 struct bpf_verifier_state *vstate = env->cur_state;
3162 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3163 struct bpf_reg_state *reg = &state->regs[regno];
3164 int err;
3165
457f4436 3166 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3167 * need to try adding each of min_value and max_value to off
3168 * to make sure our theoretical access will be safe.
dbcfe5f7 3169 */
06ee7115 3170 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 3171 print_verifier_state(env, state);
b7137c4e 3172
dbcfe5f7
GB
3173 /* The minimum value is only important with signed
3174 * comparisons where we can't assume the floor of a
3175 * value is 0. If we are using signed variables for our
3176 * index'es we need to make sure that whatever we use
3177 * will have a set floor within our range.
3178 */
b7137c4e
DB
3179 if (reg->smin_value < 0 &&
3180 (reg->smin_value == S64_MIN ||
3181 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3182 reg->smin_value + off < 0)) {
61bd5218 3183 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3184 regno);
3185 return -EACCES;
3186 }
457f4436
AN
3187 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3188 mem_size, zero_size_allowed);
dbcfe5f7 3189 if (err) {
457f4436 3190 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3191 regno);
dbcfe5f7
GB
3192 return err;
3193 }
3194
b03c9f9f
EC
3195 /* If we haven't set a max value then we need to bail since we can't be
3196 * sure we won't do bad things.
3197 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3198 */
b03c9f9f 3199 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3200 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3201 regno);
3202 return -EACCES;
3203 }
457f4436
AN
3204 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3205 mem_size, zero_size_allowed);
3206 if (err) {
3207 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3208 regno);
457f4436
AN
3209 return err;
3210 }
3211
3212 return 0;
3213}
d83525ca 3214
457f4436
AN
3215/* check read/write into a map element with possible variable offset */
3216static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3217 int off, int size, bool zero_size_allowed)
3218{
3219 struct bpf_verifier_state *vstate = env->cur_state;
3220 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3221 struct bpf_reg_state *reg = &state->regs[regno];
3222 struct bpf_map *map = reg->map_ptr;
3223 int err;
3224
3225 err = check_mem_region_access(env, regno, off, size, map->value_size,
3226 zero_size_allowed);
3227 if (err)
3228 return err;
3229
3230 if (map_value_has_spin_lock(map)) {
3231 u32 lock = map->spin_lock_off;
d83525ca
AS
3232
3233 /* if any part of struct bpf_spin_lock can be touched by
3234 * load/store reject this program.
3235 * To check that [x1, x2) overlaps with [y1, y2)
3236 * it is sufficient to check x1 < y2 && y1 < x2.
3237 */
3238 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3239 lock < reg->umax_value + off + size) {
3240 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3241 return -EACCES;
3242 }
3243 }
f1174f77 3244 return err;
dbcfe5f7
GB
3245}
3246
969bf05e
AS
3247#define MAX_PACKET_OFF 0xffff
3248
7e40781c
UP
3249static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3250{
3aac1ead 3251 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3252}
3253
58e2af8b 3254static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3255 const struct bpf_call_arg_meta *meta,
3256 enum bpf_access_type t)
4acf6c0b 3257{
7e40781c
UP
3258 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3259
3260 switch (prog_type) {
5d66fa7d 3261 /* Program types only with direct read access go here! */
3a0af8fd
TG
3262 case BPF_PROG_TYPE_LWT_IN:
3263 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3264 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3265 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3266 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3267 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3268 if (t == BPF_WRITE)
3269 return false;
8731745e 3270 fallthrough;
5d66fa7d
DB
3271
3272 /* Program types with direct read + write access go here! */
36bbef52
DB
3273 case BPF_PROG_TYPE_SCHED_CLS:
3274 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3275 case BPF_PROG_TYPE_XDP:
3a0af8fd 3276 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3277 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3278 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3279 if (meta)
3280 return meta->pkt_access;
3281
3282 env->seen_direct_write = true;
4acf6c0b 3283 return true;
0d01da6a
SF
3284
3285 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3286 if (t == BPF_WRITE)
3287 env->seen_direct_write = true;
3288
3289 return true;
3290
4acf6c0b
BB
3291 default:
3292 return false;
3293 }
3294}
3295
f1174f77 3296static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3297 int size, bool zero_size_allowed)
f1174f77 3298{
638f5b90 3299 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3300 struct bpf_reg_state *reg = &regs[regno];
3301 int err;
3302
3303 /* We may have added a variable offset to the packet pointer; but any
3304 * reg->range we have comes after that. We are only checking the fixed
3305 * offset.
3306 */
3307
3308 /* We don't allow negative numbers, because we aren't tracking enough
3309 * detail to prove they're safe.
3310 */
b03c9f9f 3311 if (reg->smin_value < 0) {
61bd5218 3312 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3313 regno);
3314 return -EACCES;
3315 }
6d94e741
AS
3316
3317 err = reg->range < 0 ? -EINVAL :
3318 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3319 zero_size_allowed);
f1174f77 3320 if (err) {
61bd5218 3321 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3322 return err;
3323 }
e647815a 3324
457f4436 3325 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3326 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3327 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3328 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3329 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3330 */
3331 env->prog->aux->max_pkt_offset =
3332 max_t(u32, env->prog->aux->max_pkt_offset,
3333 off + reg->umax_value + size - 1);
3334
f1174f77
EC
3335 return err;
3336}
3337
3338/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3339static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3340 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3341 struct btf **btf, u32 *btf_id)
17a52670 3342{
f96da094
DB
3343 struct bpf_insn_access_aux info = {
3344 .reg_type = *reg_type,
9e15db66 3345 .log = &env->log,
f96da094 3346 };
31fd8581 3347
4f9218aa 3348 if (env->ops->is_valid_access &&
5e43f899 3349 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3350 /* A non zero info.ctx_field_size indicates that this field is a
3351 * candidate for later verifier transformation to load the whole
3352 * field and then apply a mask when accessed with a narrower
3353 * access than actual ctx access size. A zero info.ctx_field_size
3354 * will only allow for whole field access and rejects any other
3355 * type of narrower access.
31fd8581 3356 */
23994631 3357 *reg_type = info.reg_type;
31fd8581 3358
22dc4a0f
AN
3359 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3360 *btf = info.btf;
9e15db66 3361 *btf_id = info.btf_id;
22dc4a0f 3362 } else {
9e15db66 3363 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3364 }
32bbe007
AS
3365 /* remember the offset of last byte accessed in ctx */
3366 if (env->prog->aux->max_ctx_offset < off + size)
3367 env->prog->aux->max_ctx_offset = off + size;
17a52670 3368 return 0;
32bbe007 3369 }
17a52670 3370
61bd5218 3371 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3372 return -EACCES;
3373}
3374
d58e468b
PP
3375static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3376 int size)
3377{
3378 if (size < 0 || off < 0 ||
3379 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3380 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3381 off, size);
3382 return -EACCES;
3383 }
3384 return 0;
3385}
3386
5f456649
MKL
3387static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3388 u32 regno, int off, int size,
3389 enum bpf_access_type t)
c64b7983
JS
3390{
3391 struct bpf_reg_state *regs = cur_regs(env);
3392 struct bpf_reg_state *reg = &regs[regno];
5f456649 3393 struct bpf_insn_access_aux info = {};
46f8bc92 3394 bool valid;
c64b7983
JS
3395
3396 if (reg->smin_value < 0) {
3397 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3398 regno);
3399 return -EACCES;
3400 }
3401
46f8bc92
MKL
3402 switch (reg->type) {
3403 case PTR_TO_SOCK_COMMON:
3404 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3405 break;
3406 case PTR_TO_SOCKET:
3407 valid = bpf_sock_is_valid_access(off, size, t, &info);
3408 break;
655a51e5
MKL
3409 case PTR_TO_TCP_SOCK:
3410 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3411 break;
fada7fdc
JL
3412 case PTR_TO_XDP_SOCK:
3413 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3414 break;
46f8bc92
MKL
3415 default:
3416 valid = false;
c64b7983
JS
3417 }
3418
5f456649 3419
46f8bc92
MKL
3420 if (valid) {
3421 env->insn_aux_data[insn_idx].ctx_field_size =
3422 info.ctx_field_size;
3423 return 0;
3424 }
3425
3426 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3427 regno, reg_type_str[reg->type], off, size);
3428
3429 return -EACCES;
c64b7983
JS
3430}
3431
4cabc5b1
DB
3432static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3433{
2a159c6f 3434 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3435}
3436
f37a8cb8
DB
3437static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3438{
2a159c6f 3439 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3440
46f8bc92
MKL
3441 return reg->type == PTR_TO_CTX;
3442}
3443
3444static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3445{
3446 const struct bpf_reg_state *reg = reg_state(env, regno);
3447
3448 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3449}
3450
ca369602
DB
3451static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3452{
2a159c6f 3453 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3454
3455 return type_is_pkt_pointer(reg->type);
3456}
3457
4b5defde
DB
3458static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3459{
3460 const struct bpf_reg_state *reg = reg_state(env, regno);
3461
3462 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3463 return reg->type == PTR_TO_FLOW_KEYS;
3464}
3465
61bd5218
JK
3466static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3467 const struct bpf_reg_state *reg,
d1174416 3468 int off, int size, bool strict)
969bf05e 3469{
f1174f77 3470 struct tnum reg_off;
e07b98d9 3471 int ip_align;
d1174416
DM
3472
3473 /* Byte size accesses are always allowed. */
3474 if (!strict || size == 1)
3475 return 0;
3476
e4eda884
DM
3477 /* For platforms that do not have a Kconfig enabling
3478 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3479 * NET_IP_ALIGN is universally set to '2'. And on platforms
3480 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3481 * to this code only in strict mode where we want to emulate
3482 * the NET_IP_ALIGN==2 checking. Therefore use an
3483 * unconditional IP align value of '2'.
e07b98d9 3484 */
e4eda884 3485 ip_align = 2;
f1174f77
EC
3486
3487 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3488 if (!tnum_is_aligned(reg_off, size)) {
3489 char tn_buf[48];
3490
3491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3492 verbose(env,
3493 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3494 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3495 return -EACCES;
3496 }
79adffcd 3497
969bf05e
AS
3498 return 0;
3499}
3500
61bd5218
JK
3501static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3502 const struct bpf_reg_state *reg,
f1174f77
EC
3503 const char *pointer_desc,
3504 int off, int size, bool strict)
79adffcd 3505{
f1174f77
EC
3506 struct tnum reg_off;
3507
3508 /* Byte size accesses are always allowed. */
3509 if (!strict || size == 1)
3510 return 0;
3511
3512 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3513 if (!tnum_is_aligned(reg_off, size)) {
3514 char tn_buf[48];
3515
3516 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3517 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3518 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3519 return -EACCES;
3520 }
3521
969bf05e
AS
3522 return 0;
3523}
3524
e07b98d9 3525static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3526 const struct bpf_reg_state *reg, int off,
3527 int size, bool strict_alignment_once)
79adffcd 3528{
ca369602 3529 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3530 const char *pointer_desc = "";
d1174416 3531
79adffcd
DB
3532 switch (reg->type) {
3533 case PTR_TO_PACKET:
de8f3a83
DB
3534 case PTR_TO_PACKET_META:
3535 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3536 * right in front, treat it the very same way.
3537 */
61bd5218 3538 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3539 case PTR_TO_FLOW_KEYS:
3540 pointer_desc = "flow keys ";
3541 break;
69c087ba
YS
3542 case PTR_TO_MAP_KEY:
3543 pointer_desc = "key ";
3544 break;
f1174f77
EC
3545 case PTR_TO_MAP_VALUE:
3546 pointer_desc = "value ";
3547 break;
3548 case PTR_TO_CTX:
3549 pointer_desc = "context ";
3550 break;
3551 case PTR_TO_STACK:
3552 pointer_desc = "stack ";
01f810ac
AM
3553 /* The stack spill tracking logic in check_stack_write_fixed_off()
3554 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3555 * aligned.
3556 */
3557 strict = true;
f1174f77 3558 break;
c64b7983
JS
3559 case PTR_TO_SOCKET:
3560 pointer_desc = "sock ";
3561 break;
46f8bc92
MKL
3562 case PTR_TO_SOCK_COMMON:
3563 pointer_desc = "sock_common ";
3564 break;
655a51e5
MKL
3565 case PTR_TO_TCP_SOCK:
3566 pointer_desc = "tcp_sock ";
3567 break;
fada7fdc
JL
3568 case PTR_TO_XDP_SOCK:
3569 pointer_desc = "xdp_sock ";
3570 break;
79adffcd 3571 default:
f1174f77 3572 break;
79adffcd 3573 }
61bd5218
JK
3574 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3575 strict);
79adffcd
DB
3576}
3577
f4d7e40a
AS
3578static int update_stack_depth(struct bpf_verifier_env *env,
3579 const struct bpf_func_state *func,
3580 int off)
3581{
9c8105bd 3582 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3583
3584 if (stack >= -off)
3585 return 0;
3586
3587 /* update known max for given subprogram */
9c8105bd 3588 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3589 return 0;
3590}
f4d7e40a 3591
70a87ffe
AS
3592/* starting from main bpf function walk all instructions of the function
3593 * and recursively walk all callees that given function can call.
3594 * Ignore jump and exit insns.
3595 * Since recursion is prevented by check_cfg() this algorithm
3596 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3597 */
3598static int check_max_stack_depth(struct bpf_verifier_env *env)
3599{
9c8105bd
JW
3600 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3601 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3602 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3603 bool tail_call_reachable = false;
70a87ffe
AS
3604 int ret_insn[MAX_CALL_FRAMES];
3605 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3606 int j;
f4d7e40a 3607
70a87ffe 3608process_func:
7f6e4312
MF
3609 /* protect against potential stack overflow that might happen when
3610 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3611 * depth for such case down to 256 so that the worst case scenario
3612 * would result in 8k stack size (32 which is tailcall limit * 256 =
3613 * 8k).
3614 *
3615 * To get the idea what might happen, see an example:
3616 * func1 -> sub rsp, 128
3617 * subfunc1 -> sub rsp, 256
3618 * tailcall1 -> add rsp, 256
3619 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3620 * subfunc2 -> sub rsp, 64
3621 * subfunc22 -> sub rsp, 128
3622 * tailcall2 -> add rsp, 128
3623 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3624 *
3625 * tailcall will unwind the current stack frame but it will not get rid
3626 * of caller's stack as shown on the example above.
3627 */
3628 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3629 verbose(env,
3630 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3631 depth);
3632 return -EACCES;
3633 }
70a87ffe
AS
3634 /* round up to 32-bytes, since this is granularity
3635 * of interpreter stack size
3636 */
9c8105bd 3637 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3638 if (depth > MAX_BPF_STACK) {
f4d7e40a 3639 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3640 frame + 1, depth);
f4d7e40a
AS
3641 return -EACCES;
3642 }
70a87ffe 3643continue_func:
4cb3d99c 3644 subprog_end = subprog[idx + 1].start;
70a87ffe 3645 for (; i < subprog_end; i++) {
69c087ba 3646 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3647 continue;
3648 /* remember insn and function to return to */
3649 ret_insn[frame] = i + 1;
9c8105bd 3650 ret_prog[frame] = idx;
70a87ffe
AS
3651
3652 /* find the callee */
3653 i = i + insn[i].imm + 1;
9c8105bd
JW
3654 idx = find_subprog(env, i);
3655 if (idx < 0) {
70a87ffe
AS
3656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3657 i);
3658 return -EFAULT;
3659 }
ebf7d1f5
MF
3660
3661 if (subprog[idx].has_tail_call)
3662 tail_call_reachable = true;
3663
70a87ffe
AS
3664 frame++;
3665 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3666 verbose(env, "the call stack of %d frames is too deep !\n",
3667 frame);
3668 return -E2BIG;
70a87ffe
AS
3669 }
3670 goto process_func;
3671 }
ebf7d1f5
MF
3672 /* if tail call got detected across bpf2bpf calls then mark each of the
3673 * currently present subprog frames as tail call reachable subprogs;
3674 * this info will be utilized by JIT so that we will be preserving the
3675 * tail call counter throughout bpf2bpf calls combined with tailcalls
3676 */
3677 if (tail_call_reachable)
3678 for (j = 0; j < frame; j++)
3679 subprog[ret_prog[j]].tail_call_reachable = true;
3680
70a87ffe
AS
3681 /* end of for() loop means the last insn of the 'subprog'
3682 * was reached. Doesn't matter whether it was JA or EXIT
3683 */
3684 if (frame == 0)
3685 return 0;
9c8105bd 3686 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3687 frame--;
3688 i = ret_insn[frame];
9c8105bd 3689 idx = ret_prog[frame];
70a87ffe 3690 goto continue_func;
f4d7e40a
AS
3691}
3692
19d28fbd 3693#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3694static int get_callee_stack_depth(struct bpf_verifier_env *env,
3695 const struct bpf_insn *insn, int idx)
3696{
3697 int start = idx + insn->imm + 1, subprog;
3698
3699 subprog = find_subprog(env, start);
3700 if (subprog < 0) {
3701 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3702 start);
3703 return -EFAULT;
3704 }
9c8105bd 3705 return env->subprog_info[subprog].stack_depth;
1ea47e01 3706}
19d28fbd 3707#endif
1ea47e01 3708
51c39bb1
AS
3709int check_ctx_reg(struct bpf_verifier_env *env,
3710 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3711{
3712 /* Access to ctx or passing it to a helper is only allowed in
3713 * its original, unmodified form.
3714 */
3715
3716 if (reg->off) {
3717 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3718 regno, reg->off);
3719 return -EACCES;
3720 }
3721
3722 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 char tn_buf[48];
3724
3725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3727 return -EACCES;
3728 }
3729
3730 return 0;
3731}
3732
afbf21dc
YS
3733static int __check_buffer_access(struct bpf_verifier_env *env,
3734 const char *buf_info,
3735 const struct bpf_reg_state *reg,
3736 int regno, int off, int size)
9df1c28b
MM
3737{
3738 if (off < 0) {
3739 verbose(env,
4fc00b79 3740 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3741 regno, buf_info, off, size);
9df1c28b
MM
3742 return -EACCES;
3743 }
3744 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3745 char tn_buf[48];
3746
3747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3748 verbose(env,
4fc00b79 3749 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3750 regno, off, tn_buf);
3751 return -EACCES;
3752 }
afbf21dc
YS
3753
3754 return 0;
3755}
3756
3757static int check_tp_buffer_access(struct bpf_verifier_env *env,
3758 const struct bpf_reg_state *reg,
3759 int regno, int off, int size)
3760{
3761 int err;
3762
3763 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3764 if (err)
3765 return err;
3766
9df1c28b
MM
3767 if (off + size > env->prog->aux->max_tp_access)
3768 env->prog->aux->max_tp_access = off + size;
3769
3770 return 0;
3771}
3772
afbf21dc
YS
3773static int check_buffer_access(struct bpf_verifier_env *env,
3774 const struct bpf_reg_state *reg,
3775 int regno, int off, int size,
3776 bool zero_size_allowed,
3777 const char *buf_info,
3778 u32 *max_access)
3779{
3780 int err;
3781
3782 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3783 if (err)
3784 return err;
3785
3786 if (off + size > *max_access)
3787 *max_access = off + size;
3788
3789 return 0;
3790}
3791
3f50f132
JF
3792/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3793static void zext_32_to_64(struct bpf_reg_state *reg)
3794{
3795 reg->var_off = tnum_subreg(reg->var_off);
3796 __reg_assign_32_into_64(reg);
3797}
9df1c28b 3798
0c17d1d2
JH
3799/* truncate register to smaller size (in bytes)
3800 * must be called with size < BPF_REG_SIZE
3801 */
3802static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3803{
3804 u64 mask;
3805
3806 /* clear high bits in bit representation */
3807 reg->var_off = tnum_cast(reg->var_off, size);
3808
3809 /* fix arithmetic bounds */
3810 mask = ((u64)1 << (size * 8)) - 1;
3811 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3812 reg->umin_value &= mask;
3813 reg->umax_value &= mask;
3814 } else {
3815 reg->umin_value = 0;
3816 reg->umax_value = mask;
3817 }
3818 reg->smin_value = reg->umin_value;
3819 reg->smax_value = reg->umax_value;
3f50f132
JF
3820
3821 /* If size is smaller than 32bit register the 32bit register
3822 * values are also truncated so we push 64-bit bounds into
3823 * 32-bit bounds. Above were truncated < 32-bits already.
3824 */
3825 if (size >= 4)
3826 return;
3827 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3828}
3829
a23740ec
AN
3830static bool bpf_map_is_rdonly(const struct bpf_map *map)
3831{
3832 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3833}
3834
3835static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3836{
3837 void *ptr;
3838 u64 addr;
3839 int err;
3840
3841 err = map->ops->map_direct_value_addr(map, &addr, off);
3842 if (err)
3843 return err;
2dedd7d2 3844 ptr = (void *)(long)addr + off;
a23740ec
AN
3845
3846 switch (size) {
3847 case sizeof(u8):
3848 *val = (u64)*(u8 *)ptr;
3849 break;
3850 case sizeof(u16):
3851 *val = (u64)*(u16 *)ptr;
3852 break;
3853 case sizeof(u32):
3854 *val = (u64)*(u32 *)ptr;
3855 break;
3856 case sizeof(u64):
3857 *val = *(u64 *)ptr;
3858 break;
3859 default:
3860 return -EINVAL;
3861 }
3862 return 0;
3863}
3864
9e15db66
AS
3865static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3866 struct bpf_reg_state *regs,
3867 int regno, int off, int size,
3868 enum bpf_access_type atype,
3869 int value_regno)
3870{
3871 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
3872 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3873 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
3874 u32 btf_id;
3875 int ret;
3876
9e15db66
AS
3877 if (off < 0) {
3878 verbose(env,
3879 "R%d is ptr_%s invalid negative access: off=%d\n",
3880 regno, tname, off);
3881 return -EACCES;
3882 }
3883 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3884 char tn_buf[48];
3885
3886 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3887 verbose(env,
3888 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3889 regno, tname, off, tn_buf);
3890 return -EACCES;
3891 }
3892
27ae7997 3893 if (env->ops->btf_struct_access) {
22dc4a0f
AN
3894 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3895 off, size, atype, &btf_id);
27ae7997
MKL
3896 } else {
3897 if (atype != BPF_READ) {
3898 verbose(env, "only read is supported\n");
3899 return -EACCES;
3900 }
3901
22dc4a0f
AN
3902 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3903 atype, &btf_id);
27ae7997
MKL
3904 }
3905
9e15db66
AS
3906 if (ret < 0)
3907 return ret;
3908
41c48f3a 3909 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 3910 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
3911
3912 return 0;
3913}
3914
3915static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3916 struct bpf_reg_state *regs,
3917 int regno, int off, int size,
3918 enum bpf_access_type atype,
3919 int value_regno)
3920{
3921 struct bpf_reg_state *reg = regs + regno;
3922 struct bpf_map *map = reg->map_ptr;
3923 const struct btf_type *t;
3924 const char *tname;
3925 u32 btf_id;
3926 int ret;
3927
3928 if (!btf_vmlinux) {
3929 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3930 return -ENOTSUPP;
3931 }
3932
3933 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3934 verbose(env, "map_ptr access not supported for map type %d\n",
3935 map->map_type);
3936 return -ENOTSUPP;
3937 }
3938
3939 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3940 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3941
3942 if (!env->allow_ptr_to_map_access) {
3943 verbose(env,
3944 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3945 tname);
3946 return -EPERM;
9e15db66 3947 }
27ae7997 3948
41c48f3a
AI
3949 if (off < 0) {
3950 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3951 regno, tname, off);
3952 return -EACCES;
3953 }
3954
3955 if (atype != BPF_READ) {
3956 verbose(env, "only read from %s is supported\n", tname);
3957 return -EACCES;
3958 }
3959
22dc4a0f 3960 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
3961 if (ret < 0)
3962 return ret;
3963
3964 if (value_regno >= 0)
22dc4a0f 3965 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 3966
9e15db66
AS
3967 return 0;
3968}
3969
01f810ac
AM
3970/* Check that the stack access at the given offset is within bounds. The
3971 * maximum valid offset is -1.
3972 *
3973 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3974 * -state->allocated_stack for reads.
3975 */
3976static int check_stack_slot_within_bounds(int off,
3977 struct bpf_func_state *state,
3978 enum bpf_access_type t)
3979{
3980 int min_valid_off;
3981
3982 if (t == BPF_WRITE)
3983 min_valid_off = -MAX_BPF_STACK;
3984 else
3985 min_valid_off = -state->allocated_stack;
3986
3987 if (off < min_valid_off || off > -1)
3988 return -EACCES;
3989 return 0;
3990}
3991
3992/* Check that the stack access at 'regno + off' falls within the maximum stack
3993 * bounds.
3994 *
3995 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3996 */
3997static int check_stack_access_within_bounds(
3998 struct bpf_verifier_env *env,
3999 int regno, int off, int access_size,
4000 enum stack_access_src src, enum bpf_access_type type)
4001{
4002 struct bpf_reg_state *regs = cur_regs(env);
4003 struct bpf_reg_state *reg = regs + regno;
4004 struct bpf_func_state *state = func(env, reg);
4005 int min_off, max_off;
4006 int err;
4007 char *err_extra;
4008
4009 if (src == ACCESS_HELPER)
4010 /* We don't know if helpers are reading or writing (or both). */
4011 err_extra = " indirect access to";
4012 else if (type == BPF_READ)
4013 err_extra = " read from";
4014 else
4015 err_extra = " write to";
4016
4017 if (tnum_is_const(reg->var_off)) {
4018 min_off = reg->var_off.value + off;
4019 if (access_size > 0)
4020 max_off = min_off + access_size - 1;
4021 else
4022 max_off = min_off;
4023 } else {
4024 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4025 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4026 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4027 err_extra, regno);
4028 return -EACCES;
4029 }
4030 min_off = reg->smin_value + off;
4031 if (access_size > 0)
4032 max_off = reg->smax_value + off + access_size - 1;
4033 else
4034 max_off = min_off;
4035 }
4036
4037 err = check_stack_slot_within_bounds(min_off, state, type);
4038 if (!err)
4039 err = check_stack_slot_within_bounds(max_off, state, type);
4040
4041 if (err) {
4042 if (tnum_is_const(reg->var_off)) {
4043 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4044 err_extra, regno, off, access_size);
4045 } else {
4046 char tn_buf[48];
4047
4048 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4049 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4050 err_extra, regno, tn_buf, access_size);
4051 }
4052 }
4053 return err;
4054}
41c48f3a 4055
17a52670
AS
4056/* check whether memory at (regno + off) is accessible for t = (read | write)
4057 * if t==write, value_regno is a register which value is stored into memory
4058 * if t==read, value_regno is a register which will receive the value from memory
4059 * if t==write && value_regno==-1, some unknown value is stored into memory
4060 * if t==read && value_regno==-1, don't care what we read from memory
4061 */
ca369602
DB
4062static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4063 int off, int bpf_size, enum bpf_access_type t,
4064 int value_regno, bool strict_alignment_once)
17a52670 4065{
638f5b90
AS
4066 struct bpf_reg_state *regs = cur_regs(env);
4067 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4068 struct bpf_func_state *state;
17a52670
AS
4069 int size, err = 0;
4070
4071 size = bpf_size_to_bytes(bpf_size);
4072 if (size < 0)
4073 return size;
4074
f1174f77 4075 /* alignment checks will add in reg->off themselves */
ca369602 4076 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4077 if (err)
4078 return err;
17a52670 4079
f1174f77
EC
4080 /* for access checks, reg->off is just part of off */
4081 off += reg->off;
4082
69c087ba
YS
4083 if (reg->type == PTR_TO_MAP_KEY) {
4084 if (t == BPF_WRITE) {
4085 verbose(env, "write to change key R%d not allowed\n", regno);
4086 return -EACCES;
4087 }
4088
4089 err = check_mem_region_access(env, regno, off, size,
4090 reg->map_ptr->key_size, false);
4091 if (err)
4092 return err;
4093 if (value_regno >= 0)
4094 mark_reg_unknown(env, regs, value_regno);
4095 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4096 if (t == BPF_WRITE && value_regno >= 0 &&
4097 is_pointer_value(env, value_regno)) {
61bd5218 4098 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4099 return -EACCES;
4100 }
591fe988
DB
4101 err = check_map_access_type(env, regno, off, size, t);
4102 if (err)
4103 return err;
9fd29c08 4104 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4105 if (!err && t == BPF_READ && value_regno >= 0) {
4106 struct bpf_map *map = reg->map_ptr;
4107
4108 /* if map is read-only, track its contents as scalars */
4109 if (tnum_is_const(reg->var_off) &&
4110 bpf_map_is_rdonly(map) &&
4111 map->ops->map_direct_value_addr) {
4112 int map_off = off + reg->var_off.value;
4113 u64 val = 0;
4114
4115 err = bpf_map_direct_read(map, map_off, size,
4116 &val);
4117 if (err)
4118 return err;
4119
4120 regs[value_regno].type = SCALAR_VALUE;
4121 __mark_reg_known(&regs[value_regno], val);
4122 } else {
4123 mark_reg_unknown(env, regs, value_regno);
4124 }
4125 }
457f4436
AN
4126 } else if (reg->type == PTR_TO_MEM) {
4127 if (t == BPF_WRITE && value_regno >= 0 &&
4128 is_pointer_value(env, value_regno)) {
4129 verbose(env, "R%d leaks addr into mem\n", value_regno);
4130 return -EACCES;
4131 }
4132 err = check_mem_region_access(env, regno, off, size,
4133 reg->mem_size, false);
4134 if (!err && t == BPF_READ && value_regno >= 0)
4135 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4136 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4137 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4138 struct btf *btf = NULL;
9e15db66 4139 u32 btf_id = 0;
19de99f7 4140
1be7f75d
AS
4141 if (t == BPF_WRITE && value_regno >= 0 &&
4142 is_pointer_value(env, value_regno)) {
61bd5218 4143 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4144 return -EACCES;
4145 }
f1174f77 4146
58990d1f
DB
4147 err = check_ctx_reg(env, reg, regno);
4148 if (err < 0)
4149 return err;
4150
22dc4a0f 4151 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4152 if (err)
4153 verbose_linfo(env, insn_idx, "; ");
969bf05e 4154 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4155 /* ctx access returns either a scalar, or a
de8f3a83
DB
4156 * PTR_TO_PACKET[_META,_END]. In the latter
4157 * case, we know the offset is zero.
f1174f77 4158 */
46f8bc92 4159 if (reg_type == SCALAR_VALUE) {
638f5b90 4160 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4161 } else {
638f5b90 4162 mark_reg_known_zero(env, regs,
61bd5218 4163 value_regno);
46f8bc92
MKL
4164 if (reg_type_may_be_null(reg_type))
4165 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4166 /* A load of ctx field could have different
4167 * actual load size with the one encoded in the
4168 * insn. When the dst is PTR, it is for sure not
4169 * a sub-register.
4170 */
4171 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4172 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4173 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4174 regs[value_regno].btf = btf;
9e15db66 4175 regs[value_regno].btf_id = btf_id;
22dc4a0f 4176 }
46f8bc92 4177 }
638f5b90 4178 regs[value_regno].type = reg_type;
969bf05e 4179 }
17a52670 4180
f1174f77 4181 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4182 /* Basic bounds checks. */
4183 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4184 if (err)
4185 return err;
8726679a 4186
f4d7e40a
AS
4187 state = func(env, reg);
4188 err = update_stack_depth(env, state, off);
4189 if (err)
4190 return err;
8726679a 4191
01f810ac
AM
4192 if (t == BPF_READ)
4193 err = check_stack_read(env, regno, off, size,
61bd5218 4194 value_regno);
01f810ac
AM
4195 else
4196 err = check_stack_write(env, regno, off, size,
4197 value_regno, insn_idx);
de8f3a83 4198 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4199 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4200 verbose(env, "cannot write into packet\n");
969bf05e
AS
4201 return -EACCES;
4202 }
4acf6c0b
BB
4203 if (t == BPF_WRITE && value_regno >= 0 &&
4204 is_pointer_value(env, value_regno)) {
61bd5218
JK
4205 verbose(env, "R%d leaks addr into packet\n",
4206 value_regno);
4acf6c0b
BB
4207 return -EACCES;
4208 }
9fd29c08 4209 err = check_packet_access(env, regno, off, size, false);
969bf05e 4210 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4211 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4212 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4213 if (t == BPF_WRITE && value_regno >= 0 &&
4214 is_pointer_value(env, value_regno)) {
4215 verbose(env, "R%d leaks addr into flow keys\n",
4216 value_regno);
4217 return -EACCES;
4218 }
4219
4220 err = check_flow_keys_access(env, off, size);
4221 if (!err && t == BPF_READ && value_regno >= 0)
4222 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4223 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4224 if (t == BPF_WRITE) {
46f8bc92
MKL
4225 verbose(env, "R%d cannot write into %s\n",
4226 regno, reg_type_str[reg->type]);
c64b7983
JS
4227 return -EACCES;
4228 }
5f456649 4229 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4230 if (!err && value_regno >= 0)
4231 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4232 } else if (reg->type == PTR_TO_TP_BUFFER) {
4233 err = check_tp_buffer_access(env, reg, regno, off, size);
4234 if (!err && t == BPF_READ && value_regno >= 0)
4235 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4236 } else if (reg->type == PTR_TO_BTF_ID) {
4237 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4238 value_regno);
41c48f3a
AI
4239 } else if (reg->type == CONST_PTR_TO_MAP) {
4240 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4241 value_regno);
afbf21dc
YS
4242 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4243 if (t == BPF_WRITE) {
4244 verbose(env, "R%d cannot write into %s\n",
4245 regno, reg_type_str[reg->type]);
4246 return -EACCES;
4247 }
f6dfbe31
CIK
4248 err = check_buffer_access(env, reg, regno, off, size, false,
4249 "rdonly",
afbf21dc
YS
4250 &env->prog->aux->max_rdonly_access);
4251 if (!err && value_regno >= 0)
4252 mark_reg_unknown(env, regs, value_regno);
4253 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4254 err = check_buffer_access(env, reg, regno, off, size, false,
4255 "rdwr",
afbf21dc
YS
4256 &env->prog->aux->max_rdwr_access);
4257 if (!err && t == BPF_READ && value_regno >= 0)
4258 mark_reg_unknown(env, regs, value_regno);
17a52670 4259 } else {
61bd5218
JK
4260 verbose(env, "R%d invalid mem access '%s'\n", regno,
4261 reg_type_str[reg->type]);
17a52670
AS
4262 return -EACCES;
4263 }
969bf05e 4264
f1174f77 4265 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4266 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4267 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4268 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4269 }
17a52670
AS
4270 return err;
4271}
4272
91c960b0 4273static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4274{
5ffa2550 4275 int load_reg;
17a52670
AS
4276 int err;
4277
5ca419f2
BJ
4278 switch (insn->imm) {
4279 case BPF_ADD:
4280 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4281 case BPF_AND:
4282 case BPF_AND | BPF_FETCH:
4283 case BPF_OR:
4284 case BPF_OR | BPF_FETCH:
4285 case BPF_XOR:
4286 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4287 case BPF_XCHG:
4288 case BPF_CMPXCHG:
5ca419f2
BJ
4289 break;
4290 default:
91c960b0
BJ
4291 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4292 return -EINVAL;
4293 }
4294
4295 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4296 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4297 return -EINVAL;
4298 }
4299
4300 /* check src1 operand */
dc503a8a 4301 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4302 if (err)
4303 return err;
4304
4305 /* check src2 operand */
dc503a8a 4306 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4307 if (err)
4308 return err;
4309
5ffa2550
BJ
4310 if (insn->imm == BPF_CMPXCHG) {
4311 /* Check comparison of R0 with memory location */
4312 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4313 if (err)
4314 return err;
4315 }
4316
6bdf6abc 4317 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4318 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4319 return -EACCES;
4320 }
4321
ca369602 4322 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4323 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4324 is_flow_key_reg(env, insn->dst_reg) ||
4325 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4326 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4327 insn->dst_reg,
4328 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4329 return -EACCES;
4330 }
4331
37086bfd
BJ
4332 if (insn->imm & BPF_FETCH) {
4333 if (insn->imm == BPF_CMPXCHG)
4334 load_reg = BPF_REG_0;
4335 else
4336 load_reg = insn->src_reg;
4337
4338 /* check and record load of old value */
4339 err = check_reg_arg(env, load_reg, DST_OP);
4340 if (err)
4341 return err;
4342 } else {
4343 /* This instruction accesses a memory location but doesn't
4344 * actually load it into a register.
4345 */
4346 load_reg = -1;
4347 }
4348
91c960b0 4349 /* check whether we can read the memory */
31fd8581 4350 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4351 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4352 if (err)
4353 return err;
4354
91c960b0 4355 /* check whether we can write into the same memory */
5ca419f2
BJ
4356 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4357 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4358 if (err)
4359 return err;
4360
5ca419f2 4361 return 0;
17a52670
AS
4362}
4363
01f810ac
AM
4364/* When register 'regno' is used to read the stack (either directly or through
4365 * a helper function) make sure that it's within stack boundary and, depending
4366 * on the access type, that all elements of the stack are initialized.
4367 *
4368 * 'off' includes 'regno->off', but not its dynamic part (if any).
4369 *
4370 * All registers that have been spilled on the stack in the slots within the
4371 * read offsets are marked as read.
4372 */
4373static int check_stack_range_initialized(
4374 struct bpf_verifier_env *env, int regno, int off,
4375 int access_size, bool zero_size_allowed,
4376 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4377{
4378 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4379 struct bpf_func_state *state = func(env, reg);
4380 int err, min_off, max_off, i, j, slot, spi;
4381 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4382 enum bpf_access_type bounds_check_type;
4383 /* Some accesses can write anything into the stack, others are
4384 * read-only.
4385 */
4386 bool clobber = false;
2011fccf 4387
01f810ac
AM
4388 if (access_size == 0 && !zero_size_allowed) {
4389 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4390 return -EACCES;
4391 }
2011fccf 4392
01f810ac
AM
4393 if (type == ACCESS_HELPER) {
4394 /* The bounds checks for writes are more permissive than for
4395 * reads. However, if raw_mode is not set, we'll do extra
4396 * checks below.
4397 */
4398 bounds_check_type = BPF_WRITE;
4399 clobber = true;
4400 } else {
4401 bounds_check_type = BPF_READ;
4402 }
4403 err = check_stack_access_within_bounds(env, regno, off, access_size,
4404 type, bounds_check_type);
4405 if (err)
4406 return err;
4407
17a52670 4408
2011fccf 4409 if (tnum_is_const(reg->var_off)) {
01f810ac 4410 min_off = max_off = reg->var_off.value + off;
2011fccf 4411 } else {
088ec26d
AI
4412 /* Variable offset is prohibited for unprivileged mode for
4413 * simplicity since it requires corresponding support in
4414 * Spectre masking for stack ALU.
4415 * See also retrieve_ptr_limit().
4416 */
2c78ee89 4417 if (!env->bypass_spec_v1) {
088ec26d 4418 char tn_buf[48];
f1174f77 4419
088ec26d 4420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4421 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4422 regno, err_extra, tn_buf);
088ec26d
AI
4423 return -EACCES;
4424 }
f2bcd05e
AI
4425 /* Only initialized buffer on stack is allowed to be accessed
4426 * with variable offset. With uninitialized buffer it's hard to
4427 * guarantee that whole memory is marked as initialized on
4428 * helper return since specific bounds are unknown what may
4429 * cause uninitialized stack leaking.
4430 */
4431 if (meta && meta->raw_mode)
4432 meta = NULL;
4433
01f810ac
AM
4434 min_off = reg->smin_value + off;
4435 max_off = reg->smax_value + off;
17a52670
AS
4436 }
4437
435faee1
DB
4438 if (meta && meta->raw_mode) {
4439 meta->access_size = access_size;
4440 meta->regno = regno;
4441 return 0;
4442 }
4443
2011fccf 4444 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4445 u8 *stype;
4446
2011fccf 4447 slot = -i - 1;
638f5b90 4448 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4449 if (state->allocated_stack <= slot)
4450 goto err;
4451 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4452 if (*stype == STACK_MISC)
4453 goto mark;
4454 if (*stype == STACK_ZERO) {
01f810ac
AM
4455 if (clobber) {
4456 /* helper can write anything into the stack */
4457 *stype = STACK_MISC;
4458 }
cc2b14d5 4459 goto mark;
17a52670 4460 }
1d68f22b
YS
4461
4462 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4463 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4464 goto mark;
4465
f7cf25b2 4466 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
cd17d38f
YS
4467 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4468 env->allow_ptr_leaks)) {
01f810ac
AM
4469 if (clobber) {
4470 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4471 for (j = 0; j < BPF_REG_SIZE; j++)
4472 state->stack[spi].slot_type[j] = STACK_MISC;
4473 }
f7cf25b2
AS
4474 goto mark;
4475 }
4476
cc2b14d5 4477err:
2011fccf 4478 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4479 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4480 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4481 } else {
4482 char tn_buf[48];
4483
4484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4485 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4486 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4487 }
cc2b14d5
AS
4488 return -EACCES;
4489mark:
4490 /* reading any byte out of 8-byte 'spill_slot' will cause
4491 * the whole slot to be marked as 'read'
4492 */
679c782d 4493 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4494 state->stack[spi].spilled_ptr.parent,
4495 REG_LIVE_READ64);
17a52670 4496 }
2011fccf 4497 return update_stack_depth(env, state, min_off);
17a52670
AS
4498}
4499
06c1c049
GB
4500static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4501 int access_size, bool zero_size_allowed,
4502 struct bpf_call_arg_meta *meta)
4503{
638f5b90 4504 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4505
f1174f77 4506 switch (reg->type) {
06c1c049 4507 case PTR_TO_PACKET:
de8f3a83 4508 case PTR_TO_PACKET_META:
9fd29c08
YS
4509 return check_packet_access(env, regno, reg->off, access_size,
4510 zero_size_allowed);
69c087ba
YS
4511 case PTR_TO_MAP_KEY:
4512 return check_mem_region_access(env, regno, reg->off, access_size,
4513 reg->map_ptr->key_size, false);
06c1c049 4514 case PTR_TO_MAP_VALUE:
591fe988
DB
4515 if (check_map_access_type(env, regno, reg->off, access_size,
4516 meta && meta->raw_mode ? BPF_WRITE :
4517 BPF_READ))
4518 return -EACCES;
9fd29c08
YS
4519 return check_map_access(env, regno, reg->off, access_size,
4520 zero_size_allowed);
457f4436
AN
4521 case PTR_TO_MEM:
4522 return check_mem_region_access(env, regno, reg->off,
4523 access_size, reg->mem_size,
4524 zero_size_allowed);
afbf21dc
YS
4525 case PTR_TO_RDONLY_BUF:
4526 if (meta && meta->raw_mode)
4527 return -EACCES;
4528 return check_buffer_access(env, reg, regno, reg->off,
4529 access_size, zero_size_allowed,
4530 "rdonly",
4531 &env->prog->aux->max_rdonly_access);
4532 case PTR_TO_RDWR_BUF:
4533 return check_buffer_access(env, reg, regno, reg->off,
4534 access_size, zero_size_allowed,
4535 "rdwr",
4536 &env->prog->aux->max_rdwr_access);
0d004c02 4537 case PTR_TO_STACK:
01f810ac
AM
4538 return check_stack_range_initialized(
4539 env,
4540 regno, reg->off, access_size,
4541 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4542 default: /* scalar_value or invalid ptr */
4543 /* Allow zero-byte read from NULL, regardless of pointer type */
4544 if (zero_size_allowed && access_size == 0 &&
4545 register_is_null(reg))
4546 return 0;
4547
4548 verbose(env, "R%d type=%s expected=%s\n", regno,
4549 reg_type_str[reg->type],
4550 reg_type_str[PTR_TO_STACK]);
4551 return -EACCES;
06c1c049
GB
4552 }
4553}
4554
e5069b9c
DB
4555int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4556 u32 regno, u32 mem_size)
4557{
4558 if (register_is_null(reg))
4559 return 0;
4560
4561 if (reg_type_may_be_null(reg->type)) {
4562 /* Assuming that the register contains a value check if the memory
4563 * access is safe. Temporarily save and restore the register's state as
4564 * the conversion shouldn't be visible to a caller.
4565 */
4566 const struct bpf_reg_state saved_reg = *reg;
4567 int rv;
4568
4569 mark_ptr_not_null_reg(reg);
4570 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4571 *reg = saved_reg;
4572 return rv;
4573 }
4574
4575 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4576}
4577
d83525ca
AS
4578/* Implementation details:
4579 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4580 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4581 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4582 * value_or_null->value transition, since the verifier only cares about
4583 * the range of access to valid map value pointer and doesn't care about actual
4584 * address of the map element.
4585 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4586 * reg->id > 0 after value_or_null->value transition. By doing so
4587 * two bpf_map_lookups will be considered two different pointers that
4588 * point to different bpf_spin_locks.
4589 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4590 * dead-locks.
4591 * Since only one bpf_spin_lock is allowed the checks are simpler than
4592 * reg_is_refcounted() logic. The verifier needs to remember only
4593 * one spin_lock instead of array of acquired_refs.
4594 * cur_state->active_spin_lock remembers which map value element got locked
4595 * and clears it after bpf_spin_unlock.
4596 */
4597static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4598 bool is_lock)
4599{
4600 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4601 struct bpf_verifier_state *cur = env->cur_state;
4602 bool is_const = tnum_is_const(reg->var_off);
4603 struct bpf_map *map = reg->map_ptr;
4604 u64 val = reg->var_off.value;
4605
d83525ca
AS
4606 if (!is_const) {
4607 verbose(env,
4608 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4609 regno);
4610 return -EINVAL;
4611 }
4612 if (!map->btf) {
4613 verbose(env,
4614 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4615 map->name);
4616 return -EINVAL;
4617 }
4618 if (!map_value_has_spin_lock(map)) {
4619 if (map->spin_lock_off == -E2BIG)
4620 verbose(env,
4621 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4622 map->name);
4623 else if (map->spin_lock_off == -ENOENT)
4624 verbose(env,
4625 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4626 map->name);
4627 else
4628 verbose(env,
4629 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4630 map->name);
4631 return -EINVAL;
4632 }
4633 if (map->spin_lock_off != val + reg->off) {
4634 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4635 val + reg->off);
4636 return -EINVAL;
4637 }
4638 if (is_lock) {
4639 if (cur->active_spin_lock) {
4640 verbose(env,
4641 "Locking two bpf_spin_locks are not allowed\n");
4642 return -EINVAL;
4643 }
4644 cur->active_spin_lock = reg->id;
4645 } else {
4646 if (!cur->active_spin_lock) {
4647 verbose(env, "bpf_spin_unlock without taking a lock\n");
4648 return -EINVAL;
4649 }
4650 if (cur->active_spin_lock != reg->id) {
4651 verbose(env, "bpf_spin_unlock of different lock\n");
4652 return -EINVAL;
4653 }
4654 cur->active_spin_lock = 0;
4655 }
4656 return 0;
4657}
4658
90133415
DB
4659static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4660{
4661 return type == ARG_PTR_TO_MEM ||
4662 type == ARG_PTR_TO_MEM_OR_NULL ||
4663 type == ARG_PTR_TO_UNINIT_MEM;
4664}
4665
4666static bool arg_type_is_mem_size(enum bpf_arg_type type)
4667{
4668 return type == ARG_CONST_SIZE ||
4669 type == ARG_CONST_SIZE_OR_ZERO;
4670}
4671
457f4436
AN
4672static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4673{
4674 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4675}
4676
57c3bb72
AI
4677static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4678{
4679 return type == ARG_PTR_TO_INT ||
4680 type == ARG_PTR_TO_LONG;
4681}
4682
4683static int int_ptr_type_to_size(enum bpf_arg_type type)
4684{
4685 if (type == ARG_PTR_TO_INT)
4686 return sizeof(u32);
4687 else if (type == ARG_PTR_TO_LONG)
4688 return sizeof(u64);
4689
4690 return -EINVAL;
4691}
4692
912f442c
LB
4693static int resolve_map_arg_type(struct bpf_verifier_env *env,
4694 const struct bpf_call_arg_meta *meta,
4695 enum bpf_arg_type *arg_type)
4696{
4697 if (!meta->map_ptr) {
4698 /* kernel subsystem misconfigured verifier */
4699 verbose(env, "invalid map_ptr to access map->type\n");
4700 return -EACCES;
4701 }
4702
4703 switch (meta->map_ptr->map_type) {
4704 case BPF_MAP_TYPE_SOCKMAP:
4705 case BPF_MAP_TYPE_SOCKHASH:
4706 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 4707 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
4708 } else {
4709 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4710 return -EINVAL;
4711 }
4712 break;
4713
4714 default:
4715 break;
4716 }
4717 return 0;
4718}
4719
f79e7ea5
LB
4720struct bpf_reg_types {
4721 const enum bpf_reg_type types[10];
1df8f55a 4722 u32 *btf_id;
f79e7ea5
LB
4723};
4724
4725static const struct bpf_reg_types map_key_value_types = {
4726 .types = {
4727 PTR_TO_STACK,
4728 PTR_TO_PACKET,
4729 PTR_TO_PACKET_META,
69c087ba 4730 PTR_TO_MAP_KEY,
f79e7ea5
LB
4731 PTR_TO_MAP_VALUE,
4732 },
4733};
4734
4735static const struct bpf_reg_types sock_types = {
4736 .types = {
4737 PTR_TO_SOCK_COMMON,
4738 PTR_TO_SOCKET,
4739 PTR_TO_TCP_SOCK,
4740 PTR_TO_XDP_SOCK,
4741 },
4742};
4743
49a2a4d4 4744#ifdef CONFIG_NET
1df8f55a
MKL
4745static const struct bpf_reg_types btf_id_sock_common_types = {
4746 .types = {
4747 PTR_TO_SOCK_COMMON,
4748 PTR_TO_SOCKET,
4749 PTR_TO_TCP_SOCK,
4750 PTR_TO_XDP_SOCK,
4751 PTR_TO_BTF_ID,
4752 },
4753 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4754};
49a2a4d4 4755#endif
1df8f55a 4756
f79e7ea5
LB
4757static const struct bpf_reg_types mem_types = {
4758 .types = {
4759 PTR_TO_STACK,
4760 PTR_TO_PACKET,
4761 PTR_TO_PACKET_META,
69c087ba 4762 PTR_TO_MAP_KEY,
f79e7ea5
LB
4763 PTR_TO_MAP_VALUE,
4764 PTR_TO_MEM,
4765 PTR_TO_RDONLY_BUF,
4766 PTR_TO_RDWR_BUF,
4767 },
4768};
4769
4770static const struct bpf_reg_types int_ptr_types = {
4771 .types = {
4772 PTR_TO_STACK,
4773 PTR_TO_PACKET,
4774 PTR_TO_PACKET_META,
69c087ba 4775 PTR_TO_MAP_KEY,
f79e7ea5
LB
4776 PTR_TO_MAP_VALUE,
4777 },
4778};
4779
4780static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4781static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4782static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4783static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4784static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4785static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4786static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 4787static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
4788static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4789static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 4790static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 4791
0789e13b 4792static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4793 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4794 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4795 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4796 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4797 [ARG_CONST_SIZE] = &scalar_types,
4798 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4799 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4800 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4801 [ARG_PTR_TO_CTX] = &context_types,
4802 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4803 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 4804#ifdef CONFIG_NET
1df8f55a 4805 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 4806#endif
f79e7ea5
LB
4807 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4808 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4809 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4810 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4811 [ARG_PTR_TO_MEM] = &mem_types,
4812 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4813 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4814 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4815 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4816 [ARG_PTR_TO_INT] = &int_ptr_types,
4817 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 4818 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba
YS
4819 [ARG_PTR_TO_FUNC] = &func_ptr_types,
4820 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
fff13c4b 4821 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
f79e7ea5
LB
4822};
4823
4824static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4825 enum bpf_arg_type arg_type,
4826 const u32 *arg_btf_id)
f79e7ea5
LB
4827{
4828 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4829 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4830 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4831 int i, j;
4832
a968d5e2
MKL
4833 compatible = compatible_reg_types[arg_type];
4834 if (!compatible) {
4835 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4836 return -EFAULT;
4837 }
4838
f79e7ea5
LB
4839 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4840 expected = compatible->types[i];
4841 if (expected == NOT_INIT)
4842 break;
4843
4844 if (type == expected)
a968d5e2 4845 goto found;
f79e7ea5
LB
4846 }
4847
4848 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4849 for (j = 0; j + 1 < i; j++)
4850 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4851 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4852 return -EACCES;
a968d5e2
MKL
4853
4854found:
4855 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4856 if (!arg_btf_id) {
4857 if (!compatible->btf_id) {
4858 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4859 return -EFAULT;
4860 }
4861 arg_btf_id = compatible->btf_id;
4862 }
4863
22dc4a0f
AN
4864 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4865 btf_vmlinux, *arg_btf_id)) {
a968d5e2 4866 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
4867 regno, kernel_type_name(reg->btf, reg->btf_id),
4868 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
4869 return -EACCES;
4870 }
4871
4872 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4873 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4874 regno);
4875 return -EACCES;
4876 }
4877 }
4878
4879 return 0;
f79e7ea5
LB
4880}
4881
af7ec138
YS
4882static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4883 struct bpf_call_arg_meta *meta,
4884 const struct bpf_func_proto *fn)
17a52670 4885{
af7ec138 4886 u32 regno = BPF_REG_1 + arg;
638f5b90 4887 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4888 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4889 enum bpf_reg_type type = reg->type;
17a52670
AS
4890 int err = 0;
4891
80f1d68c 4892 if (arg_type == ARG_DONTCARE)
17a52670
AS
4893 return 0;
4894
dc503a8a
EC
4895 err = check_reg_arg(env, regno, SRC_OP);
4896 if (err)
4897 return err;
17a52670 4898
1be7f75d
AS
4899 if (arg_type == ARG_ANYTHING) {
4900 if (is_pointer_value(env, regno)) {
61bd5218
JK
4901 verbose(env, "R%d leaks addr into helper function\n",
4902 regno);
1be7f75d
AS
4903 return -EACCES;
4904 }
80f1d68c 4905 return 0;
1be7f75d 4906 }
80f1d68c 4907
de8f3a83 4908 if (type_is_pkt_pointer(type) &&
3a0af8fd 4909 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4910 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4911 return -EACCES;
4912 }
4913
912f442c
LB
4914 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4915 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4916 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4917 err = resolve_map_arg_type(env, meta, &arg_type);
4918 if (err)
4919 return err;
4920 }
4921
fd1b0d60
LB
4922 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4923 /* A NULL register has a SCALAR_VALUE type, so skip
4924 * type checking.
4925 */
4926 goto skip_type_check;
4927
a968d5e2 4928 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4929 if (err)
4930 return err;
4931
a968d5e2 4932 if (type == PTR_TO_CTX) {
feec7040
LB
4933 err = check_ctx_reg(env, reg, regno);
4934 if (err < 0)
4935 return err;
d7b9454a
LB
4936 }
4937
fd1b0d60 4938skip_type_check:
02f7c958 4939 if (reg->ref_obj_id) {
457f4436
AN
4940 if (meta->ref_obj_id) {
4941 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4942 regno, reg->ref_obj_id,
4943 meta->ref_obj_id);
4944 return -EFAULT;
4945 }
4946 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4947 }
4948
17a52670
AS
4949 if (arg_type == ARG_CONST_MAP_PTR) {
4950 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4951 meta->map_ptr = reg->map_ptr;
17a52670
AS
4952 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4953 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4954 * check that [key, key + map->key_size) are within
4955 * stack limits and initialized
4956 */
33ff9823 4957 if (!meta->map_ptr) {
17a52670
AS
4958 /* in function declaration map_ptr must come before
4959 * map_key, so that it's verified and known before
4960 * we have to check map_key here. Otherwise it means
4961 * that kernel subsystem misconfigured verifier
4962 */
61bd5218 4963 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4964 return -EACCES;
4965 }
d71962f3
PC
4966 err = check_helper_mem_access(env, regno,
4967 meta->map_ptr->key_size, false,
4968 NULL);
2ea864c5 4969 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4970 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4971 !register_is_null(reg)) ||
2ea864c5 4972 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4973 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4974 * check [value, value + map->value_size) validity
4975 */
33ff9823 4976 if (!meta->map_ptr) {
17a52670 4977 /* kernel subsystem misconfigured verifier */
61bd5218 4978 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4979 return -EACCES;
4980 }
2ea864c5 4981 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4982 err = check_helper_mem_access(env, regno,
4983 meta->map_ptr->value_size, false,
2ea864c5 4984 meta);
eaa6bcb7
HL
4985 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4986 if (!reg->btf_id) {
4987 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4988 return -EACCES;
4989 }
22dc4a0f 4990 meta->ret_btf = reg->btf;
eaa6bcb7 4991 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
4992 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4993 if (meta->func_id == BPF_FUNC_spin_lock) {
4994 if (process_spin_lock(env, regno, true))
4995 return -EACCES;
4996 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4997 if (process_spin_lock(env, regno, false))
4998 return -EACCES;
4999 } else {
5000 verbose(env, "verifier internal error\n");
5001 return -EFAULT;
5002 }
69c087ba
YS
5003 } else if (arg_type == ARG_PTR_TO_FUNC) {
5004 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5005 } else if (arg_type_is_mem_ptr(arg_type)) {
5006 /* The access to this pointer is only checked when we hit the
5007 * next is_mem_size argument below.
5008 */
5009 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5010 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5011 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5012
10060503
JF
5013 /* This is used to refine r0 return value bounds for helpers
5014 * that enforce this value as an upper bound on return values.
5015 * See do_refine_retval_range() for helpers that can refine
5016 * the return value. C type of helper is u32 so we pull register
5017 * bound from umax_value however, if negative verifier errors
5018 * out. Only upper bounds can be learned because retval is an
5019 * int type and negative retvals are allowed.
849fa506 5020 */
10060503 5021 meta->msize_max_value = reg->umax_value;
849fa506 5022
f1174f77
EC
5023 /* The register is SCALAR_VALUE; the access check
5024 * happens using its boundaries.
06c1c049 5025 */
f1174f77 5026 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5027 /* For unprivileged variable accesses, disable raw
5028 * mode so that the program is required to
5029 * initialize all the memory that the helper could
5030 * just partially fill up.
5031 */
5032 meta = NULL;
5033
b03c9f9f 5034 if (reg->smin_value < 0) {
61bd5218 5035 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5036 regno);
5037 return -EACCES;
5038 }
06c1c049 5039
b03c9f9f 5040 if (reg->umin_value == 0) {
f1174f77
EC
5041 err = check_helper_mem_access(env, regno - 1, 0,
5042 zero_size_allowed,
5043 meta);
06c1c049
GB
5044 if (err)
5045 return err;
06c1c049 5046 }
f1174f77 5047
b03c9f9f 5048 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5049 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5050 regno);
5051 return -EACCES;
5052 }
5053 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5054 reg->umax_value,
f1174f77 5055 zero_size_allowed, meta);
b5dc0163
AS
5056 if (!err)
5057 err = mark_chain_precision(env, regno);
457f4436
AN
5058 } else if (arg_type_is_alloc_size(arg_type)) {
5059 if (!tnum_is_const(reg->var_off)) {
28a8add6 5060 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5061 regno);
5062 return -EACCES;
5063 }
5064 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5065 } else if (arg_type_is_int_ptr(arg_type)) {
5066 int size = int_ptr_type_to_size(arg_type);
5067
5068 err = check_helper_mem_access(env, regno, size, false, meta);
5069 if (err)
5070 return err;
5071 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5072 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5073 struct bpf_map *map = reg->map_ptr;
5074 int map_off;
5075 u64 map_addr;
5076 char *str_ptr;
5077
a8fad73e 5078 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5079 verbose(env, "R%d does not point to a readonly map'\n", regno);
5080 return -EACCES;
5081 }
5082
5083 if (!tnum_is_const(reg->var_off)) {
5084 verbose(env, "R%d is not a constant address'\n", regno);
5085 return -EACCES;
5086 }
5087
5088 if (!map->ops->map_direct_value_addr) {
5089 verbose(env, "no direct value access support for this map type\n");
5090 return -EACCES;
5091 }
5092
5093 err = check_map_access(env, regno, reg->off,
5094 map->value_size - reg->off, false);
5095 if (err)
5096 return err;
5097
5098 map_off = reg->off + reg->var_off.value;
5099 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5100 if (err) {
5101 verbose(env, "direct value access on string failed\n");
5102 return err;
5103 }
5104
5105 str_ptr = (char *)(long)(map_addr);
5106 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5107 verbose(env, "string is not zero-terminated\n");
5108 return -EINVAL;
5109 }
17a52670
AS
5110 }
5111
5112 return err;
5113}
5114
0126240f
LB
5115static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5116{
5117 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5118 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5119
5120 if (func_id != BPF_FUNC_map_update_elem)
5121 return false;
5122
5123 /* It's not possible to get access to a locked struct sock in these
5124 * contexts, so updating is safe.
5125 */
5126 switch (type) {
5127 case BPF_PROG_TYPE_TRACING:
5128 if (eatype == BPF_TRACE_ITER)
5129 return true;
5130 break;
5131 case BPF_PROG_TYPE_SOCKET_FILTER:
5132 case BPF_PROG_TYPE_SCHED_CLS:
5133 case BPF_PROG_TYPE_SCHED_ACT:
5134 case BPF_PROG_TYPE_XDP:
5135 case BPF_PROG_TYPE_SK_REUSEPORT:
5136 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5137 case BPF_PROG_TYPE_SK_LOOKUP:
5138 return true;
5139 default:
5140 break;
5141 }
5142
5143 verbose(env, "cannot update sockmap in this context\n");
5144 return false;
5145}
5146
e411901c
MF
5147static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5148{
5149 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5150}
5151
61bd5218
JK
5152static int check_map_func_compatibility(struct bpf_verifier_env *env,
5153 struct bpf_map *map, int func_id)
35578d79 5154{
35578d79
KX
5155 if (!map)
5156 return 0;
5157
6aff67c8
AS
5158 /* We need a two way check, first is from map perspective ... */
5159 switch (map->map_type) {
5160 case BPF_MAP_TYPE_PROG_ARRAY:
5161 if (func_id != BPF_FUNC_tail_call)
5162 goto error;
5163 break;
5164 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5165 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5166 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5167 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5168 func_id != BPF_FUNC_perf_event_read_value &&
5169 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5170 goto error;
5171 break;
457f4436
AN
5172 case BPF_MAP_TYPE_RINGBUF:
5173 if (func_id != BPF_FUNC_ringbuf_output &&
5174 func_id != BPF_FUNC_ringbuf_reserve &&
5175 func_id != BPF_FUNC_ringbuf_submit &&
5176 func_id != BPF_FUNC_ringbuf_discard &&
5177 func_id != BPF_FUNC_ringbuf_query)
5178 goto error;
5179 break;
6aff67c8
AS
5180 case BPF_MAP_TYPE_STACK_TRACE:
5181 if (func_id != BPF_FUNC_get_stackid)
5182 goto error;
5183 break;
4ed8ec52 5184 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5185 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5186 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5187 goto error;
5188 break;
cd339431 5189 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5190 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5191 if (func_id != BPF_FUNC_get_local_storage)
5192 goto error;
5193 break;
546ac1ff 5194 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5195 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5196 if (func_id != BPF_FUNC_redirect_map &&
5197 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5198 goto error;
5199 break;
fbfc504a
BT
5200 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5201 * appear.
5202 */
6710e112
JDB
5203 case BPF_MAP_TYPE_CPUMAP:
5204 if (func_id != BPF_FUNC_redirect_map)
5205 goto error;
5206 break;
fada7fdc
JL
5207 case BPF_MAP_TYPE_XSKMAP:
5208 if (func_id != BPF_FUNC_redirect_map &&
5209 func_id != BPF_FUNC_map_lookup_elem)
5210 goto error;
5211 break;
56f668df 5212 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5213 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5214 if (func_id != BPF_FUNC_map_lookup_elem)
5215 goto error;
16a43625 5216 break;
174a79ff
JF
5217 case BPF_MAP_TYPE_SOCKMAP:
5218 if (func_id != BPF_FUNC_sk_redirect_map &&
5219 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5220 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5221 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5222 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5223 func_id != BPF_FUNC_map_lookup_elem &&
5224 !may_update_sockmap(env, func_id))
174a79ff
JF
5225 goto error;
5226 break;
81110384
JF
5227 case BPF_MAP_TYPE_SOCKHASH:
5228 if (func_id != BPF_FUNC_sk_redirect_hash &&
5229 func_id != BPF_FUNC_sock_hash_update &&
5230 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5231 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5232 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5233 func_id != BPF_FUNC_map_lookup_elem &&
5234 !may_update_sockmap(env, func_id))
81110384
JF
5235 goto error;
5236 break;
2dbb9b9e
MKL
5237 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5238 if (func_id != BPF_FUNC_sk_select_reuseport)
5239 goto error;
5240 break;
f1a2e44a
MV
5241 case BPF_MAP_TYPE_QUEUE:
5242 case BPF_MAP_TYPE_STACK:
5243 if (func_id != BPF_FUNC_map_peek_elem &&
5244 func_id != BPF_FUNC_map_pop_elem &&
5245 func_id != BPF_FUNC_map_push_elem)
5246 goto error;
5247 break;
6ac99e8f
MKL
5248 case BPF_MAP_TYPE_SK_STORAGE:
5249 if (func_id != BPF_FUNC_sk_storage_get &&
5250 func_id != BPF_FUNC_sk_storage_delete)
5251 goto error;
5252 break;
8ea63684
KS
5253 case BPF_MAP_TYPE_INODE_STORAGE:
5254 if (func_id != BPF_FUNC_inode_storage_get &&
5255 func_id != BPF_FUNC_inode_storage_delete)
5256 goto error;
5257 break;
4cf1bc1f
KS
5258 case BPF_MAP_TYPE_TASK_STORAGE:
5259 if (func_id != BPF_FUNC_task_storage_get &&
5260 func_id != BPF_FUNC_task_storage_delete)
5261 goto error;
5262 break;
6aff67c8
AS
5263 default:
5264 break;
5265 }
5266
5267 /* ... and second from the function itself. */
5268 switch (func_id) {
5269 case BPF_FUNC_tail_call:
5270 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5271 goto error;
e411901c
MF
5272 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5273 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5274 return -EINVAL;
5275 }
6aff67c8
AS
5276 break;
5277 case BPF_FUNC_perf_event_read:
5278 case BPF_FUNC_perf_event_output:
908432ca 5279 case BPF_FUNC_perf_event_read_value:
a7658e1a 5280 case BPF_FUNC_skb_output:
d831ee84 5281 case BPF_FUNC_xdp_output:
6aff67c8
AS
5282 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5283 goto error;
5284 break;
5285 case BPF_FUNC_get_stackid:
5286 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5287 goto error;
5288 break;
60d20f91 5289 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5290 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5291 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5292 goto error;
5293 break;
97f91a7c 5294 case BPF_FUNC_redirect_map:
9c270af3 5295 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5296 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5297 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5298 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5299 goto error;
5300 break;
174a79ff 5301 case BPF_FUNC_sk_redirect_map:
4f738adb 5302 case BPF_FUNC_msg_redirect_map:
81110384 5303 case BPF_FUNC_sock_map_update:
174a79ff
JF
5304 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5305 goto error;
5306 break;
81110384
JF
5307 case BPF_FUNC_sk_redirect_hash:
5308 case BPF_FUNC_msg_redirect_hash:
5309 case BPF_FUNC_sock_hash_update:
5310 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5311 goto error;
5312 break;
cd339431 5313 case BPF_FUNC_get_local_storage:
b741f163
RG
5314 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5315 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5316 goto error;
5317 break;
2dbb9b9e 5318 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5319 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5320 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5321 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5322 goto error;
5323 break;
f1a2e44a
MV
5324 case BPF_FUNC_map_peek_elem:
5325 case BPF_FUNC_map_pop_elem:
5326 case BPF_FUNC_map_push_elem:
5327 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5328 map->map_type != BPF_MAP_TYPE_STACK)
5329 goto error;
5330 break;
6ac99e8f
MKL
5331 case BPF_FUNC_sk_storage_get:
5332 case BPF_FUNC_sk_storage_delete:
5333 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5334 goto error;
5335 break;
8ea63684
KS
5336 case BPF_FUNC_inode_storage_get:
5337 case BPF_FUNC_inode_storage_delete:
5338 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5339 goto error;
5340 break;
4cf1bc1f
KS
5341 case BPF_FUNC_task_storage_get:
5342 case BPF_FUNC_task_storage_delete:
5343 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5344 goto error;
5345 break;
6aff67c8
AS
5346 default:
5347 break;
35578d79
KX
5348 }
5349
5350 return 0;
6aff67c8 5351error:
61bd5218 5352 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5353 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5354 return -EINVAL;
35578d79
KX
5355}
5356
90133415 5357static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5358{
5359 int count = 0;
5360
39f19ebb 5361 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5362 count++;
39f19ebb 5363 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5364 count++;
39f19ebb 5365 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5366 count++;
39f19ebb 5367 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5368 count++;
39f19ebb 5369 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5370 count++;
5371
90133415
DB
5372 /* We only support one arg being in raw mode at the moment,
5373 * which is sufficient for the helper functions we have
5374 * right now.
5375 */
5376 return count <= 1;
5377}
5378
5379static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5380 enum bpf_arg_type arg_next)
5381{
5382 return (arg_type_is_mem_ptr(arg_curr) &&
5383 !arg_type_is_mem_size(arg_next)) ||
5384 (!arg_type_is_mem_ptr(arg_curr) &&
5385 arg_type_is_mem_size(arg_next));
5386}
5387
5388static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5389{
5390 /* bpf_xxx(..., buf, len) call will access 'len'
5391 * bytes from memory 'buf'. Both arg types need
5392 * to be paired, so make sure there's no buggy
5393 * helper function specification.
5394 */
5395 if (arg_type_is_mem_size(fn->arg1_type) ||
5396 arg_type_is_mem_ptr(fn->arg5_type) ||
5397 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5398 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5399 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5400 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5401 return false;
5402
5403 return true;
5404}
5405
1b986589 5406static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5407{
5408 int count = 0;
5409
1b986589 5410 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5411 count++;
1b986589 5412 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5413 count++;
1b986589 5414 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5415 count++;
1b986589 5416 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5417 count++;
1b986589 5418 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5419 count++;
5420
1b986589
MKL
5421 /* A reference acquiring function cannot acquire
5422 * another refcounted ptr.
5423 */
64d85290 5424 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5425 return false;
5426
fd978bf7
JS
5427 /* We only support one arg being unreferenced at the moment,
5428 * which is sufficient for the helper functions we have right now.
5429 */
5430 return count <= 1;
5431}
5432
9436ef6e
LB
5433static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5434{
5435 int i;
5436
1df8f55a 5437 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5438 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5439 return false;
5440
1df8f55a
MKL
5441 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5442 return false;
5443 }
5444
9436ef6e
LB
5445 return true;
5446}
5447
1b986589 5448static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5449{
5450 return check_raw_mode_ok(fn) &&
fd978bf7 5451 check_arg_pair_ok(fn) &&
9436ef6e 5452 check_btf_id_ok(fn) &&
1b986589 5453 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5454}
5455
de8f3a83
DB
5456/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5457 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5458 */
f4d7e40a
AS
5459static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5460 struct bpf_func_state *state)
969bf05e 5461{
58e2af8b 5462 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5463 int i;
5464
5465 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5466 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5467 mark_reg_unknown(env, regs, i);
969bf05e 5468
f3709f69
JS
5469 bpf_for_each_spilled_reg(i, state, reg) {
5470 if (!reg)
969bf05e 5471 continue;
de8f3a83 5472 if (reg_is_pkt_pointer_any(reg))
f54c7898 5473 __mark_reg_unknown(env, reg);
969bf05e
AS
5474 }
5475}
5476
f4d7e40a
AS
5477static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5478{
5479 struct bpf_verifier_state *vstate = env->cur_state;
5480 int i;
5481
5482 for (i = 0; i <= vstate->curframe; i++)
5483 __clear_all_pkt_pointers(env, vstate->frame[i]);
5484}
5485
6d94e741
AS
5486enum {
5487 AT_PKT_END = -1,
5488 BEYOND_PKT_END = -2,
5489};
5490
5491static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5492{
5493 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5494 struct bpf_reg_state *reg = &state->regs[regn];
5495
5496 if (reg->type != PTR_TO_PACKET)
5497 /* PTR_TO_PACKET_META is not supported yet */
5498 return;
5499
5500 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5501 * How far beyond pkt_end it goes is unknown.
5502 * if (!range_open) it's the case of pkt >= pkt_end
5503 * if (range_open) it's the case of pkt > pkt_end
5504 * hence this pointer is at least 1 byte bigger than pkt_end
5505 */
5506 if (range_open)
5507 reg->range = BEYOND_PKT_END;
5508 else
5509 reg->range = AT_PKT_END;
5510}
5511
fd978bf7 5512static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5513 struct bpf_func_state *state,
5514 int ref_obj_id)
fd978bf7
JS
5515{
5516 struct bpf_reg_state *regs = state->regs, *reg;
5517 int i;
5518
5519 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5520 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5521 mark_reg_unknown(env, regs, i);
5522
5523 bpf_for_each_spilled_reg(i, state, reg) {
5524 if (!reg)
5525 continue;
1b986589 5526 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5527 __mark_reg_unknown(env, reg);
fd978bf7
JS
5528 }
5529}
5530
5531/* The pointer with the specified id has released its reference to kernel
5532 * resources. Identify all copies of the same pointer and clear the reference.
5533 */
5534static int release_reference(struct bpf_verifier_env *env,
1b986589 5535 int ref_obj_id)
fd978bf7
JS
5536{
5537 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5538 int err;
fd978bf7
JS
5539 int i;
5540
1b986589
MKL
5541 err = release_reference_state(cur_func(env), ref_obj_id);
5542 if (err)
5543 return err;
5544
fd978bf7 5545 for (i = 0; i <= vstate->curframe; i++)
1b986589 5546 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5547
1b986589 5548 return 0;
fd978bf7
JS
5549}
5550
51c39bb1
AS
5551static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5552 struct bpf_reg_state *regs)
5553{
5554 int i;
5555
5556 /* after the call registers r0 - r5 were scratched */
5557 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5558 mark_reg_not_init(env, regs, caller_saved[i]);
5559 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5560 }
5561}
5562
14351375
YS
5563typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5564 struct bpf_func_state *caller,
5565 struct bpf_func_state *callee,
5566 int insn_idx);
5567
5568static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5569 int *insn_idx, int subprog,
5570 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5571{
5572 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5573 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5574 struct bpf_func_state *caller, *callee;
14351375 5575 int err;
51c39bb1 5576 bool is_global = false;
f4d7e40a 5577
aada9ce6 5578 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5579 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5580 state->curframe + 2);
f4d7e40a
AS
5581 return -E2BIG;
5582 }
5583
f4d7e40a
AS
5584 caller = state->frame[state->curframe];
5585 if (state->frame[state->curframe + 1]) {
5586 verbose(env, "verifier bug. Frame %d already allocated\n",
5587 state->curframe + 1);
5588 return -EFAULT;
5589 }
5590
51c39bb1
AS
5591 func_info_aux = env->prog->aux->func_info_aux;
5592 if (func_info_aux)
5593 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5594 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5595 if (err == -EFAULT)
5596 return err;
5597 if (is_global) {
5598 if (err) {
5599 verbose(env, "Caller passes invalid args into func#%d\n",
5600 subprog);
5601 return err;
5602 } else {
5603 if (env->log.level & BPF_LOG_LEVEL)
5604 verbose(env,
5605 "Func#%d is global and valid. Skipping.\n",
5606 subprog);
5607 clear_caller_saved_regs(env, caller->regs);
5608
45159b27 5609 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 5610 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 5611 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
5612
5613 /* continue with next insn after call */
5614 return 0;
5615 }
5616 }
5617
f4d7e40a
AS
5618 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5619 if (!callee)
5620 return -ENOMEM;
5621 state->frame[state->curframe + 1] = callee;
5622
5623 /* callee cannot access r0, r6 - r9 for reading and has to write
5624 * into its own stack before reading from it.
5625 * callee can read/write into caller's stack
5626 */
5627 init_func_state(env, callee,
5628 /* remember the callsite, it will be used by bpf_exit */
5629 *insn_idx /* callsite */,
5630 state->curframe + 1 /* frameno within this callchain */,
f910cefa 5631 subprog /* subprog number within this prog */);
f4d7e40a 5632
fd978bf7 5633 /* Transfer references to the callee */
c69431aa 5634 err = copy_reference_state(callee, caller);
fd978bf7
JS
5635 if (err)
5636 return err;
5637
14351375
YS
5638 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5639 if (err)
5640 return err;
f4d7e40a 5641
51c39bb1 5642 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
5643
5644 /* only increment it after check_reg_arg() finished */
5645 state->curframe++;
5646
5647 /* and go analyze first insn of the callee */
14351375 5648 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 5649
06ee7115 5650 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
5651 verbose(env, "caller:\n");
5652 print_verifier_state(env, caller);
5653 verbose(env, "callee:\n");
5654 print_verifier_state(env, callee);
5655 }
5656 return 0;
5657}
5658
314ee05e
YS
5659int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5660 struct bpf_func_state *caller,
5661 struct bpf_func_state *callee)
5662{
5663 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5664 * void *callback_ctx, u64 flags);
5665 * callback_fn(struct bpf_map *map, void *key, void *value,
5666 * void *callback_ctx);
5667 */
5668 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5669
5670 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5671 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5672 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5673
5674 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5675 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5676 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5677
5678 /* pointer to stack or null */
5679 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5680
5681 /* unused */
5682 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5683 return 0;
5684}
5685
14351375
YS
5686static int set_callee_state(struct bpf_verifier_env *env,
5687 struct bpf_func_state *caller,
5688 struct bpf_func_state *callee, int insn_idx)
5689{
5690 int i;
5691
5692 /* copy r1 - r5 args that callee can access. The copy includes parent
5693 * pointers, which connects us up to the liveness chain
5694 */
5695 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5696 callee->regs[i] = caller->regs[i];
5697 return 0;
5698}
5699
5700static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5701 int *insn_idx)
5702{
5703 int subprog, target_insn;
5704
5705 target_insn = *insn_idx + insn->imm + 1;
5706 subprog = find_subprog(env, target_insn);
5707 if (subprog < 0) {
5708 verbose(env, "verifier bug. No program starts at insn %d\n",
5709 target_insn);
5710 return -EFAULT;
5711 }
5712
5713 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5714}
5715
69c087ba
YS
5716static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5717 struct bpf_func_state *caller,
5718 struct bpf_func_state *callee,
5719 int insn_idx)
5720{
5721 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5722 struct bpf_map *map;
5723 int err;
5724
5725 if (bpf_map_ptr_poisoned(insn_aux)) {
5726 verbose(env, "tail_call abusing map_ptr\n");
5727 return -EINVAL;
5728 }
5729
5730 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5731 if (!map->ops->map_set_for_each_callback_args ||
5732 !map->ops->map_for_each_callback) {
5733 verbose(env, "callback function not allowed for map\n");
5734 return -ENOTSUPP;
5735 }
5736
5737 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5738 if (err)
5739 return err;
5740
5741 callee->in_callback_fn = true;
5742 return 0;
5743}
5744
f4d7e40a
AS
5745static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5746{
5747 struct bpf_verifier_state *state = env->cur_state;
5748 struct bpf_func_state *caller, *callee;
5749 struct bpf_reg_state *r0;
fd978bf7 5750 int err;
f4d7e40a
AS
5751
5752 callee = state->frame[state->curframe];
5753 r0 = &callee->regs[BPF_REG_0];
5754 if (r0->type == PTR_TO_STACK) {
5755 /* technically it's ok to return caller's stack pointer
5756 * (or caller's caller's pointer) back to the caller,
5757 * since these pointers are valid. Only current stack
5758 * pointer will be invalid as soon as function exits,
5759 * but let's be conservative
5760 */
5761 verbose(env, "cannot return stack pointer to the caller\n");
5762 return -EINVAL;
5763 }
5764
5765 state->curframe--;
5766 caller = state->frame[state->curframe];
69c087ba
YS
5767 if (callee->in_callback_fn) {
5768 /* enforce R0 return value range [0, 1]. */
5769 struct tnum range = tnum_range(0, 1);
5770
5771 if (r0->type != SCALAR_VALUE) {
5772 verbose(env, "R0 not a scalar value\n");
5773 return -EACCES;
5774 }
5775 if (!tnum_in(range, r0->var_off)) {
5776 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5777 return -EINVAL;
5778 }
5779 } else {
5780 /* return to the caller whatever r0 had in the callee */
5781 caller->regs[BPF_REG_0] = *r0;
5782 }
f4d7e40a 5783
fd978bf7 5784 /* Transfer references to the caller */
c69431aa 5785 err = copy_reference_state(caller, callee);
fd978bf7
JS
5786 if (err)
5787 return err;
5788
f4d7e40a 5789 *insn_idx = callee->callsite + 1;
06ee7115 5790 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
5791 verbose(env, "returning from callee:\n");
5792 print_verifier_state(env, callee);
5793 verbose(env, "to caller at %d:\n", *insn_idx);
5794 print_verifier_state(env, caller);
5795 }
5796 /* clear everything in the callee */
5797 free_func_state(callee);
5798 state->frame[state->curframe + 1] = NULL;
5799 return 0;
5800}
5801
849fa506
YS
5802static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5803 int func_id,
5804 struct bpf_call_arg_meta *meta)
5805{
5806 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5807
5808 if (ret_type != RET_INTEGER ||
5809 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 5810 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
5811 func_id != BPF_FUNC_probe_read_str &&
5812 func_id != BPF_FUNC_probe_read_kernel_str &&
5813 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
5814 return;
5815
10060503 5816 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 5817 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
5818 ret_reg->smin_value = -MAX_ERRNO;
5819 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
5820 __reg_deduce_bounds(ret_reg);
5821 __reg_bound_offset(ret_reg);
10060503 5822 __update_reg_bounds(ret_reg);
849fa506
YS
5823}
5824
c93552c4
DB
5825static int
5826record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5827 int func_id, int insn_idx)
5828{
5829 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 5830 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
5831
5832 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
5833 func_id != BPF_FUNC_map_lookup_elem &&
5834 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
5835 func_id != BPF_FUNC_map_delete_elem &&
5836 func_id != BPF_FUNC_map_push_elem &&
5837 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 5838 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
5839 func_id != BPF_FUNC_for_each_map_elem &&
5840 func_id != BPF_FUNC_redirect_map)
c93552c4 5841 return 0;
09772d92 5842
591fe988 5843 if (map == NULL) {
c93552c4
DB
5844 verbose(env, "kernel subsystem misconfigured verifier\n");
5845 return -EINVAL;
5846 }
5847
591fe988
DB
5848 /* In case of read-only, some additional restrictions
5849 * need to be applied in order to prevent altering the
5850 * state of the map from program side.
5851 */
5852 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5853 (func_id == BPF_FUNC_map_delete_elem ||
5854 func_id == BPF_FUNC_map_update_elem ||
5855 func_id == BPF_FUNC_map_push_elem ||
5856 func_id == BPF_FUNC_map_pop_elem)) {
5857 verbose(env, "write into map forbidden\n");
5858 return -EACCES;
5859 }
5860
d2e4c1e6 5861 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 5862 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 5863 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 5864 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 5865 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 5866 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
5867 return 0;
5868}
5869
d2e4c1e6
DB
5870static int
5871record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5872 int func_id, int insn_idx)
5873{
5874 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5875 struct bpf_reg_state *regs = cur_regs(env), *reg;
5876 struct bpf_map *map = meta->map_ptr;
5877 struct tnum range;
5878 u64 val;
cc52d914 5879 int err;
d2e4c1e6
DB
5880
5881 if (func_id != BPF_FUNC_tail_call)
5882 return 0;
5883 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5884 verbose(env, "kernel subsystem misconfigured verifier\n");
5885 return -EINVAL;
5886 }
5887
5888 range = tnum_range(0, map->max_entries - 1);
5889 reg = &regs[BPF_REG_3];
5890
5891 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5892 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5893 return 0;
5894 }
5895
cc52d914
DB
5896 err = mark_chain_precision(env, BPF_REG_3);
5897 if (err)
5898 return err;
5899
d2e4c1e6
DB
5900 val = reg->var_off.value;
5901 if (bpf_map_key_unseen(aux))
5902 bpf_map_key_store(aux, val);
5903 else if (!bpf_map_key_poisoned(aux) &&
5904 bpf_map_key_immediate(aux) != val)
5905 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5906 return 0;
5907}
5908
fd978bf7
JS
5909static int check_reference_leak(struct bpf_verifier_env *env)
5910{
5911 struct bpf_func_state *state = cur_func(env);
5912 int i;
5913
5914 for (i = 0; i < state->acquired_refs; i++) {
5915 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5916 state->refs[i].id, state->refs[i].insn_idx);
5917 }
5918 return state->acquired_refs ? -EINVAL : 0;
5919}
5920
7b15523a
FR
5921static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5922 struct bpf_reg_state *regs)
5923{
5924 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5925 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5926 struct bpf_map *fmt_map = fmt_reg->map_ptr;
5927 int err, fmt_map_off, num_args;
5928 u64 fmt_addr;
5929 char *fmt;
5930
5931 /* data must be an array of u64 */
5932 if (data_len_reg->var_off.value % 8)
5933 return -EINVAL;
5934 num_args = data_len_reg->var_off.value / 8;
5935
5936 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5937 * and map_direct_value_addr is set.
5938 */
5939 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5940 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5941 fmt_map_off);
8e8ee109
FR
5942 if (err) {
5943 verbose(env, "verifier bug\n");
5944 return -EFAULT;
5945 }
7b15523a
FR
5946 fmt = (char *)(long)fmt_addr + fmt_map_off;
5947
5948 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5949 * can focus on validating the format specifiers.
5950 */
48cac3f4 5951 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
5952 if (err < 0)
5953 verbose(env, "Invalid format string\n");
5954
5955 return err;
5956}
5957
69c087ba
YS
5958static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5959 int *insn_idx_p)
17a52670 5960{
17a52670 5961 const struct bpf_func_proto *fn = NULL;
638f5b90 5962 struct bpf_reg_state *regs;
33ff9823 5963 struct bpf_call_arg_meta meta;
69c087ba 5964 int insn_idx = *insn_idx_p;
969bf05e 5965 bool changes_data;
69c087ba 5966 int i, err, func_id;
17a52670
AS
5967
5968 /* find function prototype */
69c087ba 5969 func_id = insn->imm;
17a52670 5970 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
5971 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5972 func_id);
17a52670
AS
5973 return -EINVAL;
5974 }
5975
00176a34 5976 if (env->ops->get_func_proto)
5e43f899 5977 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 5978 if (!fn) {
61bd5218
JK
5979 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5980 func_id);
17a52670
AS
5981 return -EINVAL;
5982 }
5983
5984 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 5985 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 5986 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
5987 return -EINVAL;
5988 }
5989
eae2e83e
JO
5990 if (fn->allowed && !fn->allowed(env->prog)) {
5991 verbose(env, "helper call is not allowed in probe\n");
5992 return -EINVAL;
5993 }
5994
04514d13 5995 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 5996 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
5997 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5998 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5999 func_id_name(func_id), func_id);
6000 return -EINVAL;
6001 }
969bf05e 6002
33ff9823 6003 memset(&meta, 0, sizeof(meta));
36bbef52 6004 meta.pkt_access = fn->pkt_access;
33ff9823 6005
1b986589 6006 err = check_func_proto(fn, func_id);
435faee1 6007 if (err) {
61bd5218 6008 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6009 func_id_name(func_id), func_id);
435faee1
DB
6010 return err;
6011 }
6012
d83525ca 6013 meta.func_id = func_id;
17a52670 6014 /* check args */
523a4cf4 6015 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6016 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6017 if (err)
6018 return err;
6019 }
17a52670 6020
c93552c4
DB
6021 err = record_func_map(env, &meta, func_id, insn_idx);
6022 if (err)
6023 return err;
6024
d2e4c1e6
DB
6025 err = record_func_key(env, &meta, func_id, insn_idx);
6026 if (err)
6027 return err;
6028
435faee1
DB
6029 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6030 * is inferred from register state.
6031 */
6032 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6033 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6034 BPF_WRITE, -1, false);
435faee1
DB
6035 if (err)
6036 return err;
6037 }
6038
fd978bf7
JS
6039 if (func_id == BPF_FUNC_tail_call) {
6040 err = check_reference_leak(env);
6041 if (err) {
6042 verbose(env, "tail_call would lead to reference leak\n");
6043 return err;
6044 }
6045 } else if (is_release_function(func_id)) {
1b986589 6046 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6047 if (err) {
6048 verbose(env, "func %s#%d reference has not been acquired before\n",
6049 func_id_name(func_id), func_id);
fd978bf7 6050 return err;
46f8bc92 6051 }
fd978bf7
JS
6052 }
6053
638f5b90 6054 regs = cur_regs(env);
cd339431
RG
6055
6056 /* check that flags argument in get_local_storage(map, flags) is 0,
6057 * this is required because get_local_storage() can't return an error.
6058 */
6059 if (func_id == BPF_FUNC_get_local_storage &&
6060 !register_is_null(&regs[BPF_REG_2])) {
6061 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6062 return -EINVAL;
6063 }
6064
69c087ba
YS
6065 if (func_id == BPF_FUNC_for_each_map_elem) {
6066 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6067 set_map_elem_callback_state);
6068 if (err < 0)
6069 return -EINVAL;
6070 }
6071
7b15523a
FR
6072 if (func_id == BPF_FUNC_snprintf) {
6073 err = check_bpf_snprintf_call(env, regs);
6074 if (err < 0)
6075 return err;
6076 }
6077
17a52670 6078 /* reset caller saved regs */
dc503a8a 6079 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6080 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6081 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6082 }
17a52670 6083
5327ed3d
JW
6084 /* helper call returns 64-bit value. */
6085 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6086
dc503a8a 6087 /* update return register (already marked as written above) */
17a52670 6088 if (fn->ret_type == RET_INTEGER) {
f1174f77 6089 /* sets type to SCALAR_VALUE */
61bd5218 6090 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6091 } else if (fn->ret_type == RET_VOID) {
6092 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6093 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6094 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6095 /* There is no offset yet applied, variable or fixed */
61bd5218 6096 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6097 /* remember map_ptr, so that check_map_access()
6098 * can check 'value_size' boundary of memory access
6099 * to map element returned from bpf_map_lookup_elem()
6100 */
33ff9823 6101 if (meta.map_ptr == NULL) {
61bd5218
JK
6102 verbose(env,
6103 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6104 return -EINVAL;
6105 }
33ff9823 6106 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
6107 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6108 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6109 if (map_value_has_spin_lock(meta.map_ptr))
6110 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6111 } else {
6112 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6113 }
c64b7983
JS
6114 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6115 mark_reg_known_zero(env, regs, BPF_REG_0);
6116 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6117 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6118 mark_reg_known_zero(env, regs, BPF_REG_0);
6119 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6120 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6121 mark_reg_known_zero(env, regs, BPF_REG_0);
6122 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6123 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6124 mark_reg_known_zero(env, regs, BPF_REG_0);
6125 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6126 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6127 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6128 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6129 const struct btf_type *t;
6130
6131 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6132 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6133 if (!btf_type_is_struct(t)) {
6134 u32 tsize;
6135 const struct btf_type *ret;
6136 const char *tname;
6137
6138 /* resolve the type size of ksym. */
22dc4a0f 6139 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6140 if (IS_ERR(ret)) {
22dc4a0f 6141 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6142 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6143 tname, PTR_ERR(ret));
6144 return -EINVAL;
6145 }
63d9b80d
HL
6146 regs[BPF_REG_0].type =
6147 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6148 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6149 regs[BPF_REG_0].mem_size = tsize;
6150 } else {
63d9b80d
HL
6151 regs[BPF_REG_0].type =
6152 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6153 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6154 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6155 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6156 }
3ca1032a
KS
6157 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6158 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6159 int ret_btf_id;
6160
6161 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6162 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6163 PTR_TO_BTF_ID :
6164 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6165 ret_btf_id = *fn->ret_btf_id;
6166 if (ret_btf_id == 0) {
6167 verbose(env, "invalid return type %d of func %s#%d\n",
6168 fn->ret_type, func_id_name(func_id), func_id);
6169 return -EINVAL;
6170 }
22dc4a0f
AN
6171 /* current BPF helper definitions are only coming from
6172 * built-in code with type IDs from vmlinux BTF
6173 */
6174 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6175 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6176 } else {
61bd5218 6177 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6178 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6179 return -EINVAL;
6180 }
04fd61ab 6181
93c230e3
MKL
6182 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6183 regs[BPF_REG_0].id = ++env->id_gen;
6184
0f3adc28 6185 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6186 /* For release_reference() */
6187 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6188 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6189 int id = acquire_reference_state(env, insn_idx);
6190
6191 if (id < 0)
6192 return id;
6193 /* For mark_ptr_or_null_reg() */
6194 regs[BPF_REG_0].id = id;
6195 /* For release_reference() */
6196 regs[BPF_REG_0].ref_obj_id = id;
6197 }
1b986589 6198
849fa506
YS
6199 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6200
61bd5218 6201 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6202 if (err)
6203 return err;
04fd61ab 6204
fa28dcb8
SL
6205 if ((func_id == BPF_FUNC_get_stack ||
6206 func_id == BPF_FUNC_get_task_stack) &&
6207 !env->prog->has_callchain_buf) {
c195651e
YS
6208 const char *err_str;
6209
6210#ifdef CONFIG_PERF_EVENTS
6211 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6212 err_str = "cannot get callchain buffer for func %s#%d\n";
6213#else
6214 err = -ENOTSUPP;
6215 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6216#endif
6217 if (err) {
6218 verbose(env, err_str, func_id_name(func_id), func_id);
6219 return err;
6220 }
6221
6222 env->prog->has_callchain_buf = true;
6223 }
6224
5d99cb2c
SL
6225 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6226 env->prog->call_get_stack = true;
6227
969bf05e
AS
6228 if (changes_data)
6229 clear_all_pkt_pointers(env);
6230 return 0;
6231}
6232
e6ac2450
MKL
6233/* mark_btf_func_reg_size() is used when the reg size is determined by
6234 * the BTF func_proto's return value size and argument.
6235 */
6236static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6237 size_t reg_size)
6238{
6239 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6240
6241 if (regno == BPF_REG_0) {
6242 /* Function return value */
6243 reg->live |= REG_LIVE_WRITTEN;
6244 reg->subreg_def = reg_size == sizeof(u64) ?
6245 DEF_NOT_SUBREG : env->insn_idx + 1;
6246 } else {
6247 /* Function argument */
6248 if (reg_size == sizeof(u64)) {
6249 mark_insn_zext(env, reg);
6250 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6251 } else {
6252 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6253 }
6254 }
6255}
6256
6257static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6258{
6259 const struct btf_type *t, *func, *func_proto, *ptr_type;
6260 struct bpf_reg_state *regs = cur_regs(env);
6261 const char *func_name, *ptr_type_name;
6262 u32 i, nargs, func_id, ptr_type_id;
6263 const struct btf_param *args;
6264 int err;
6265
6266 func_id = insn->imm;
6267 func = btf_type_by_id(btf_vmlinux, func_id);
6268 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6269 func_proto = btf_type_by_id(btf_vmlinux, func->type);
6270
6271 if (!env->ops->check_kfunc_call ||
6272 !env->ops->check_kfunc_call(func_id)) {
6273 verbose(env, "calling kernel function %s is not allowed\n",
6274 func_name);
6275 return -EACCES;
6276 }
6277
6278 /* Check the arguments */
6279 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6280 if (err)
6281 return err;
6282
6283 for (i = 0; i < CALLER_SAVED_REGS; i++)
6284 mark_reg_not_init(env, regs, caller_saved[i]);
6285
6286 /* Check return type */
6287 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6288 if (btf_type_is_scalar(t)) {
6289 mark_reg_unknown(env, regs, BPF_REG_0);
6290 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6291 } else if (btf_type_is_ptr(t)) {
6292 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6293 &ptr_type_id);
6294 if (!btf_type_is_struct(ptr_type)) {
6295 ptr_type_name = btf_name_by_offset(btf_vmlinux,
6296 ptr_type->name_off);
6297 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6298 func_name, btf_type_str(ptr_type),
6299 ptr_type_name);
6300 return -EINVAL;
6301 }
6302 mark_reg_known_zero(env, regs, BPF_REG_0);
6303 regs[BPF_REG_0].btf = btf_vmlinux;
6304 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6305 regs[BPF_REG_0].btf_id = ptr_type_id;
6306 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6307 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6308
6309 nargs = btf_type_vlen(func_proto);
6310 args = (const struct btf_param *)(func_proto + 1);
6311 for (i = 0; i < nargs; i++) {
6312 u32 regno = i + 1;
6313
6314 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6315 if (btf_type_is_ptr(t))
6316 mark_btf_func_reg_size(env, regno, sizeof(void *));
6317 else
6318 /* scalar. ensured by btf_check_kfunc_arg_match() */
6319 mark_btf_func_reg_size(env, regno, t->size);
6320 }
6321
6322 return 0;
6323}
6324
b03c9f9f
EC
6325static bool signed_add_overflows(s64 a, s64 b)
6326{
6327 /* Do the add in u64, where overflow is well-defined */
6328 s64 res = (s64)((u64)a + (u64)b);
6329
6330 if (b < 0)
6331 return res > a;
6332 return res < a;
6333}
6334
bc895e8b 6335static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6336{
6337 /* Do the add in u32, where overflow is well-defined */
6338 s32 res = (s32)((u32)a + (u32)b);
6339
6340 if (b < 0)
6341 return res > a;
6342 return res < a;
6343}
6344
bc895e8b 6345static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6346{
6347 /* Do the sub in u64, where overflow is well-defined */
6348 s64 res = (s64)((u64)a - (u64)b);
6349
6350 if (b < 0)
6351 return res < a;
6352 return res > a;
969bf05e
AS
6353}
6354
3f50f132
JF
6355static bool signed_sub32_overflows(s32 a, s32 b)
6356{
bc895e8b 6357 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6358 s32 res = (s32)((u32)a - (u32)b);
6359
6360 if (b < 0)
6361 return res < a;
6362 return res > a;
6363}
6364
bb7f0f98
AS
6365static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6366 const struct bpf_reg_state *reg,
6367 enum bpf_reg_type type)
6368{
6369 bool known = tnum_is_const(reg->var_off);
6370 s64 val = reg->var_off.value;
6371 s64 smin = reg->smin_value;
6372
6373 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6374 verbose(env, "math between %s pointer and %lld is not allowed\n",
6375 reg_type_str[type], val);
6376 return false;
6377 }
6378
6379 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6380 verbose(env, "%s pointer offset %d is not allowed\n",
6381 reg_type_str[type], reg->off);
6382 return false;
6383 }
6384
6385 if (smin == S64_MIN) {
6386 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6387 reg_type_str[type]);
6388 return false;
6389 }
6390
6391 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6392 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6393 smin, reg_type_str[type]);
6394 return false;
6395 }
6396
6397 return true;
6398}
6399
979d63d5
DB
6400static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6401{
6402 return &env->insn_aux_data[env->insn_idx];
6403}
6404
a6aaece0
DB
6405enum {
6406 REASON_BOUNDS = -1,
6407 REASON_TYPE = -2,
6408 REASON_PATHS = -3,
6409 REASON_LIMIT = -4,
6410 REASON_STACK = -5,
6411};
6412
979d63d5 6413static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 6414 u32 *alu_limit, bool mask_to_left)
979d63d5 6415{
7fedb63a 6416 u32 max = 0, ptr_limit = 0;
979d63d5
DB
6417
6418 switch (ptr_reg->type) {
6419 case PTR_TO_STACK:
1b1597e6 6420 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
6421 * left direction, see BPF_REG_FP. Also, unknown scalar
6422 * offset where we would need to deal with min/max bounds is
6423 * currently prohibited for unprivileged.
1b1597e6
PK
6424 */
6425 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 6426 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 6427 break;
979d63d5 6428 case PTR_TO_MAP_VALUE:
1b1597e6 6429 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
6430 ptr_limit = (mask_to_left ?
6431 ptr_reg->smin_value :
6432 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 6433 break;
979d63d5 6434 default:
a6aaece0 6435 return REASON_TYPE;
979d63d5 6436 }
b658bbb8
DB
6437
6438 if (ptr_limit >= max)
a6aaece0 6439 return REASON_LIMIT;
b658bbb8
DB
6440 *alu_limit = ptr_limit;
6441 return 0;
979d63d5
DB
6442}
6443
d3bd7413
DB
6444static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6445 const struct bpf_insn *insn)
6446{
2c78ee89 6447 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6448}
6449
6450static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6451 u32 alu_state, u32 alu_limit)
6452{
6453 /* If we arrived here from different branches with different
6454 * state or limits to sanitize, then this won't work.
6455 */
6456 if (aux->alu_state &&
6457 (aux->alu_state != alu_state ||
6458 aux->alu_limit != alu_limit))
a6aaece0 6459 return REASON_PATHS;
d3bd7413 6460
e6ac5933 6461 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
6462 aux->alu_state = alu_state;
6463 aux->alu_limit = alu_limit;
6464 return 0;
6465}
6466
6467static int sanitize_val_alu(struct bpf_verifier_env *env,
6468 struct bpf_insn *insn)
6469{
6470 struct bpf_insn_aux_data *aux = cur_aux(env);
6471
6472 if (can_skip_alu_sanitation(env, insn))
6473 return 0;
6474
6475 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6476}
6477
f5288193
DB
6478static bool sanitize_needed(u8 opcode)
6479{
6480 return opcode == BPF_ADD || opcode == BPF_SUB;
6481}
6482
3d0220f6
DB
6483struct bpf_sanitize_info {
6484 struct bpf_insn_aux_data aux;
bb01a1bb 6485 bool mask_to_left;
3d0220f6
DB
6486};
6487
9183671a
DB
6488static struct bpf_verifier_state *
6489sanitize_speculative_path(struct bpf_verifier_env *env,
6490 const struct bpf_insn *insn,
6491 u32 next_idx, u32 curr_idx)
6492{
6493 struct bpf_verifier_state *branch;
6494 struct bpf_reg_state *regs;
6495
6496 branch = push_stack(env, next_idx, curr_idx, true);
6497 if (branch && insn) {
6498 regs = branch->frame[branch->curframe]->regs;
6499 if (BPF_SRC(insn->code) == BPF_K) {
6500 mark_reg_unknown(env, regs, insn->dst_reg);
6501 } else if (BPF_SRC(insn->code) == BPF_X) {
6502 mark_reg_unknown(env, regs, insn->dst_reg);
6503 mark_reg_unknown(env, regs, insn->src_reg);
6504 }
6505 }
6506 return branch;
6507}
6508
979d63d5
DB
6509static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6510 struct bpf_insn *insn,
6511 const struct bpf_reg_state *ptr_reg,
6f55b2f2 6512 const struct bpf_reg_state *off_reg,
979d63d5 6513 struct bpf_reg_state *dst_reg,
3d0220f6 6514 struct bpf_sanitize_info *info,
7fedb63a 6515 const bool commit_window)
979d63d5 6516{
3d0220f6 6517 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 6518 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 6519 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 6520 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
6521 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6522 u8 opcode = BPF_OP(insn->code);
6523 u32 alu_state, alu_limit;
6524 struct bpf_reg_state tmp;
6525 bool ret;
f232326f 6526 int err;
979d63d5 6527
d3bd7413 6528 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
6529 return 0;
6530
6531 /* We already marked aux for masking from non-speculative
6532 * paths, thus we got here in the first place. We only care
6533 * to explore bad access from here.
6534 */
6535 if (vstate->speculative)
6536 goto do_sim;
6537
bb01a1bb
DB
6538 if (!commit_window) {
6539 if (!tnum_is_const(off_reg->var_off) &&
6540 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6541 return REASON_BOUNDS;
6542
6543 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6544 (opcode == BPF_SUB && !off_is_neg);
6545 }
6546
6547 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
6548 if (err < 0)
6549 return err;
6550
7fedb63a
DB
6551 if (commit_window) {
6552 /* In commit phase we narrow the masking window based on
6553 * the observed pointer move after the simulated operation.
6554 */
3d0220f6
DB
6555 alu_state = info->aux.alu_state;
6556 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
6557 } else {
6558 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 6559 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
6560 alu_state |= ptr_is_dst_reg ?
6561 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6562 }
6563
f232326f
PK
6564 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6565 if (err < 0)
6566 return err;
979d63d5 6567do_sim:
7fedb63a
DB
6568 /* If we're in commit phase, we're done here given we already
6569 * pushed the truncated dst_reg into the speculative verification
6570 * stack.
a7036191
DB
6571 *
6572 * Also, when register is a known constant, we rewrite register-based
6573 * operation to immediate-based, and thus do not need masking (and as
6574 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 6575 */
a7036191 6576 if (commit_window || off_is_imm)
7fedb63a
DB
6577 return 0;
6578
979d63d5
DB
6579 /* Simulate and find potential out-of-bounds access under
6580 * speculative execution from truncation as a result of
6581 * masking when off was not within expected range. If off
6582 * sits in dst, then we temporarily need to move ptr there
6583 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6584 * for cases where we use K-based arithmetic in one direction
6585 * and truncated reg-based in the other in order to explore
6586 * bad access.
6587 */
6588 if (!ptr_is_dst_reg) {
6589 tmp = *dst_reg;
6590 *dst_reg = *ptr_reg;
6591 }
9183671a
DB
6592 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6593 env->insn_idx);
0803278b 6594 if (!ptr_is_dst_reg && ret)
979d63d5 6595 *dst_reg = tmp;
a6aaece0
DB
6596 return !ret ? REASON_STACK : 0;
6597}
6598
fe9a5ca7
DB
6599static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6600{
6601 struct bpf_verifier_state *vstate = env->cur_state;
6602
6603 /* If we simulate paths under speculation, we don't update the
6604 * insn as 'seen' such that when we verify unreachable paths in
6605 * the non-speculative domain, sanitize_dead_code() can still
6606 * rewrite/sanitize them.
6607 */
6608 if (!vstate->speculative)
6609 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6610}
6611
a6aaece0
DB
6612static int sanitize_err(struct bpf_verifier_env *env,
6613 const struct bpf_insn *insn, int reason,
6614 const struct bpf_reg_state *off_reg,
6615 const struct bpf_reg_state *dst_reg)
6616{
6617 static const char *err = "pointer arithmetic with it prohibited for !root";
6618 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6619 u32 dst = insn->dst_reg, src = insn->src_reg;
6620
6621 switch (reason) {
6622 case REASON_BOUNDS:
6623 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6624 off_reg == dst_reg ? dst : src, err);
6625 break;
6626 case REASON_TYPE:
6627 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6628 off_reg == dst_reg ? src : dst, err);
6629 break;
6630 case REASON_PATHS:
6631 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6632 dst, op, err);
6633 break;
6634 case REASON_LIMIT:
6635 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6636 dst, op, err);
6637 break;
6638 case REASON_STACK:
6639 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6640 dst, err);
6641 break;
6642 default:
6643 verbose(env, "verifier internal error: unknown reason (%d)\n",
6644 reason);
6645 break;
6646 }
6647
6648 return -EACCES;
979d63d5
DB
6649}
6650
01f810ac
AM
6651/* check that stack access falls within stack limits and that 'reg' doesn't
6652 * have a variable offset.
6653 *
6654 * Variable offset is prohibited for unprivileged mode for simplicity since it
6655 * requires corresponding support in Spectre masking for stack ALU. See also
6656 * retrieve_ptr_limit().
6657 *
6658 *
6659 * 'off' includes 'reg->off'.
6660 */
6661static int check_stack_access_for_ptr_arithmetic(
6662 struct bpf_verifier_env *env,
6663 int regno,
6664 const struct bpf_reg_state *reg,
6665 int off)
6666{
6667 if (!tnum_is_const(reg->var_off)) {
6668 char tn_buf[48];
6669
6670 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6671 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6672 regno, tn_buf, off);
6673 return -EACCES;
6674 }
6675
6676 if (off >= 0 || off < -MAX_BPF_STACK) {
6677 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6678 "prohibited for !root; off=%d\n", regno, off);
6679 return -EACCES;
6680 }
6681
6682 return 0;
6683}
6684
073815b7
DB
6685static int sanitize_check_bounds(struct bpf_verifier_env *env,
6686 const struct bpf_insn *insn,
6687 const struct bpf_reg_state *dst_reg)
6688{
6689 u32 dst = insn->dst_reg;
6690
6691 /* For unprivileged we require that resulting offset must be in bounds
6692 * in order to be able to sanitize access later on.
6693 */
6694 if (env->bypass_spec_v1)
6695 return 0;
6696
6697 switch (dst_reg->type) {
6698 case PTR_TO_STACK:
6699 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6700 dst_reg->off + dst_reg->var_off.value))
6701 return -EACCES;
6702 break;
6703 case PTR_TO_MAP_VALUE:
6704 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6705 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6706 "prohibited for !root\n", dst);
6707 return -EACCES;
6708 }
6709 break;
6710 default:
6711 break;
6712 }
6713
6714 return 0;
6715}
01f810ac 6716
f1174f77 6717/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
6718 * Caller should also handle BPF_MOV case separately.
6719 * If we return -EACCES, caller may want to try again treating pointer as a
6720 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6721 */
6722static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6723 struct bpf_insn *insn,
6724 const struct bpf_reg_state *ptr_reg,
6725 const struct bpf_reg_state *off_reg)
969bf05e 6726{
f4d7e40a
AS
6727 struct bpf_verifier_state *vstate = env->cur_state;
6728 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6729 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 6730 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
6731 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6732 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6733 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6734 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 6735 struct bpf_sanitize_info info = {};
969bf05e 6736 u8 opcode = BPF_OP(insn->code);
24c109bb 6737 u32 dst = insn->dst_reg;
979d63d5 6738 int ret;
969bf05e 6739
f1174f77 6740 dst_reg = &regs[dst];
969bf05e 6741
6f16101e
DB
6742 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6743 smin_val > smax_val || umin_val > umax_val) {
6744 /* Taint dst register if offset had invalid bounds derived from
6745 * e.g. dead branches.
6746 */
f54c7898 6747 __mark_reg_unknown(env, dst_reg);
6f16101e 6748 return 0;
f1174f77
EC
6749 }
6750
6751 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6752 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
6753 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6754 __mark_reg_unknown(env, dst_reg);
6755 return 0;
6756 }
6757
82abbf8d
AS
6758 verbose(env,
6759 "R%d 32-bit pointer arithmetic prohibited\n",
6760 dst);
f1174f77 6761 return -EACCES;
969bf05e
AS
6762 }
6763
aad2eeaf
JS
6764 switch (ptr_reg->type) {
6765 case PTR_TO_MAP_VALUE_OR_NULL:
6766 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6767 dst, reg_type_str[ptr_reg->type]);
f1174f77 6768 return -EACCES;
aad2eeaf 6769 case CONST_PTR_TO_MAP:
7c696732
YS
6770 /* smin_val represents the known value */
6771 if (known && smin_val == 0 && opcode == BPF_ADD)
6772 break;
8731745e 6773 fallthrough;
aad2eeaf 6774 case PTR_TO_PACKET_END:
c64b7983
JS
6775 case PTR_TO_SOCKET:
6776 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6777 case PTR_TO_SOCK_COMMON:
6778 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6779 case PTR_TO_TCP_SOCK:
6780 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6781 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
6782 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6783 dst, reg_type_str[ptr_reg->type]);
f1174f77 6784 return -EACCES;
aad2eeaf
JS
6785 default:
6786 break;
f1174f77
EC
6787 }
6788
6789 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6790 * The id may be overwritten later if we create a new variable offset.
969bf05e 6791 */
f1174f77
EC
6792 dst_reg->type = ptr_reg->type;
6793 dst_reg->id = ptr_reg->id;
969bf05e 6794
bb7f0f98
AS
6795 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6796 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6797 return -EINVAL;
6798
3f50f132
JF
6799 /* pointer types do not carry 32-bit bounds at the moment. */
6800 __mark_reg32_unbounded(dst_reg);
6801
7fedb63a
DB
6802 if (sanitize_needed(opcode)) {
6803 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 6804 &info, false);
a6aaece0
DB
6805 if (ret < 0)
6806 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 6807 }
a6aaece0 6808
f1174f77
EC
6809 switch (opcode) {
6810 case BPF_ADD:
6811 /* We can take a fixed offset as long as it doesn't overflow
6812 * the s32 'off' field
969bf05e 6813 */
b03c9f9f
EC
6814 if (known && (ptr_reg->off + smin_val ==
6815 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 6816 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
6817 dst_reg->smin_value = smin_ptr;
6818 dst_reg->smax_value = smax_ptr;
6819 dst_reg->umin_value = umin_ptr;
6820 dst_reg->umax_value = umax_ptr;
f1174f77 6821 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 6822 dst_reg->off = ptr_reg->off + smin_val;
0962590e 6823 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
6824 break;
6825 }
f1174f77
EC
6826 /* A new variable offset is created. Note that off_reg->off
6827 * == 0, since it's a scalar.
6828 * dst_reg gets the pointer type and since some positive
6829 * integer value was added to the pointer, give it a new 'id'
6830 * if it's a PTR_TO_PACKET.
6831 * this creates a new 'base' pointer, off_reg (variable) gets
6832 * added into the variable offset, and we copy the fixed offset
6833 * from ptr_reg.
969bf05e 6834 */
b03c9f9f
EC
6835 if (signed_add_overflows(smin_ptr, smin_val) ||
6836 signed_add_overflows(smax_ptr, smax_val)) {
6837 dst_reg->smin_value = S64_MIN;
6838 dst_reg->smax_value = S64_MAX;
6839 } else {
6840 dst_reg->smin_value = smin_ptr + smin_val;
6841 dst_reg->smax_value = smax_ptr + smax_val;
6842 }
6843 if (umin_ptr + umin_val < umin_ptr ||
6844 umax_ptr + umax_val < umax_ptr) {
6845 dst_reg->umin_value = 0;
6846 dst_reg->umax_value = U64_MAX;
6847 } else {
6848 dst_reg->umin_value = umin_ptr + umin_val;
6849 dst_reg->umax_value = umax_ptr + umax_val;
6850 }
f1174f77
EC
6851 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6852 dst_reg->off = ptr_reg->off;
0962590e 6853 dst_reg->raw = ptr_reg->raw;
de8f3a83 6854 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
6855 dst_reg->id = ++env->id_gen;
6856 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 6857 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
6858 }
6859 break;
6860 case BPF_SUB:
6861 if (dst_reg == off_reg) {
6862 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
6863 verbose(env, "R%d tried to subtract pointer from scalar\n",
6864 dst);
f1174f77
EC
6865 return -EACCES;
6866 }
6867 /* We don't allow subtraction from FP, because (according to
6868 * test_verifier.c test "invalid fp arithmetic", JITs might not
6869 * be able to deal with it.
969bf05e 6870 */
f1174f77 6871 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
6872 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6873 dst);
f1174f77
EC
6874 return -EACCES;
6875 }
b03c9f9f
EC
6876 if (known && (ptr_reg->off - smin_val ==
6877 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 6878 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
6879 dst_reg->smin_value = smin_ptr;
6880 dst_reg->smax_value = smax_ptr;
6881 dst_reg->umin_value = umin_ptr;
6882 dst_reg->umax_value = umax_ptr;
f1174f77
EC
6883 dst_reg->var_off = ptr_reg->var_off;
6884 dst_reg->id = ptr_reg->id;
b03c9f9f 6885 dst_reg->off = ptr_reg->off - smin_val;
0962590e 6886 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
6887 break;
6888 }
f1174f77
EC
6889 /* A new variable offset is created. If the subtrahend is known
6890 * nonnegative, then any reg->range we had before is still good.
969bf05e 6891 */
b03c9f9f
EC
6892 if (signed_sub_overflows(smin_ptr, smax_val) ||
6893 signed_sub_overflows(smax_ptr, smin_val)) {
6894 /* Overflow possible, we know nothing */
6895 dst_reg->smin_value = S64_MIN;
6896 dst_reg->smax_value = S64_MAX;
6897 } else {
6898 dst_reg->smin_value = smin_ptr - smax_val;
6899 dst_reg->smax_value = smax_ptr - smin_val;
6900 }
6901 if (umin_ptr < umax_val) {
6902 /* Overflow possible, we know nothing */
6903 dst_reg->umin_value = 0;
6904 dst_reg->umax_value = U64_MAX;
6905 } else {
6906 /* Cannot overflow (as long as bounds are consistent) */
6907 dst_reg->umin_value = umin_ptr - umax_val;
6908 dst_reg->umax_value = umax_ptr - umin_val;
6909 }
f1174f77
EC
6910 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6911 dst_reg->off = ptr_reg->off;
0962590e 6912 dst_reg->raw = ptr_reg->raw;
de8f3a83 6913 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
6914 dst_reg->id = ++env->id_gen;
6915 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 6916 if (smin_val < 0)
22dc4a0f 6917 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 6918 }
f1174f77
EC
6919 break;
6920 case BPF_AND:
6921 case BPF_OR:
6922 case BPF_XOR:
82abbf8d
AS
6923 /* bitwise ops on pointers are troublesome, prohibit. */
6924 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6925 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
6926 return -EACCES;
6927 default:
6928 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
6929 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6930 dst, bpf_alu_string[opcode >> 4]);
f1174f77 6931 return -EACCES;
43188702
JF
6932 }
6933
bb7f0f98
AS
6934 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6935 return -EINVAL;
6936
b03c9f9f
EC
6937 __update_reg_bounds(dst_reg);
6938 __reg_deduce_bounds(dst_reg);
6939 __reg_bound_offset(dst_reg);
0d6303db 6940
073815b7
DB
6941 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6942 return -EACCES;
7fedb63a
DB
6943 if (sanitize_needed(opcode)) {
6944 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 6945 &info, true);
7fedb63a
DB
6946 if (ret < 0)
6947 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
6948 }
6949
43188702
JF
6950 return 0;
6951}
6952
3f50f132
JF
6953static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6954 struct bpf_reg_state *src_reg)
6955{
6956 s32 smin_val = src_reg->s32_min_value;
6957 s32 smax_val = src_reg->s32_max_value;
6958 u32 umin_val = src_reg->u32_min_value;
6959 u32 umax_val = src_reg->u32_max_value;
6960
6961 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6962 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6963 dst_reg->s32_min_value = S32_MIN;
6964 dst_reg->s32_max_value = S32_MAX;
6965 } else {
6966 dst_reg->s32_min_value += smin_val;
6967 dst_reg->s32_max_value += smax_val;
6968 }
6969 if (dst_reg->u32_min_value + umin_val < umin_val ||
6970 dst_reg->u32_max_value + umax_val < umax_val) {
6971 dst_reg->u32_min_value = 0;
6972 dst_reg->u32_max_value = U32_MAX;
6973 } else {
6974 dst_reg->u32_min_value += umin_val;
6975 dst_reg->u32_max_value += umax_val;
6976 }
6977}
6978
07cd2631
JF
6979static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6980 struct bpf_reg_state *src_reg)
6981{
6982 s64 smin_val = src_reg->smin_value;
6983 s64 smax_val = src_reg->smax_value;
6984 u64 umin_val = src_reg->umin_value;
6985 u64 umax_val = src_reg->umax_value;
6986
6987 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6988 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6989 dst_reg->smin_value = S64_MIN;
6990 dst_reg->smax_value = S64_MAX;
6991 } else {
6992 dst_reg->smin_value += smin_val;
6993 dst_reg->smax_value += smax_val;
6994 }
6995 if (dst_reg->umin_value + umin_val < umin_val ||
6996 dst_reg->umax_value + umax_val < umax_val) {
6997 dst_reg->umin_value = 0;
6998 dst_reg->umax_value = U64_MAX;
6999 } else {
7000 dst_reg->umin_value += umin_val;
7001 dst_reg->umax_value += umax_val;
7002 }
3f50f132
JF
7003}
7004
7005static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7006 struct bpf_reg_state *src_reg)
7007{
7008 s32 smin_val = src_reg->s32_min_value;
7009 s32 smax_val = src_reg->s32_max_value;
7010 u32 umin_val = src_reg->u32_min_value;
7011 u32 umax_val = src_reg->u32_max_value;
7012
7013 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7014 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7015 /* Overflow possible, we know nothing */
7016 dst_reg->s32_min_value = S32_MIN;
7017 dst_reg->s32_max_value = S32_MAX;
7018 } else {
7019 dst_reg->s32_min_value -= smax_val;
7020 dst_reg->s32_max_value -= smin_val;
7021 }
7022 if (dst_reg->u32_min_value < umax_val) {
7023 /* Overflow possible, we know nothing */
7024 dst_reg->u32_min_value = 0;
7025 dst_reg->u32_max_value = U32_MAX;
7026 } else {
7027 /* Cannot overflow (as long as bounds are consistent) */
7028 dst_reg->u32_min_value -= umax_val;
7029 dst_reg->u32_max_value -= umin_val;
7030 }
07cd2631
JF
7031}
7032
7033static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7034 struct bpf_reg_state *src_reg)
7035{
7036 s64 smin_val = src_reg->smin_value;
7037 s64 smax_val = src_reg->smax_value;
7038 u64 umin_val = src_reg->umin_value;
7039 u64 umax_val = src_reg->umax_value;
7040
7041 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7042 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7043 /* Overflow possible, we know nothing */
7044 dst_reg->smin_value = S64_MIN;
7045 dst_reg->smax_value = S64_MAX;
7046 } else {
7047 dst_reg->smin_value -= smax_val;
7048 dst_reg->smax_value -= smin_val;
7049 }
7050 if (dst_reg->umin_value < umax_val) {
7051 /* Overflow possible, we know nothing */
7052 dst_reg->umin_value = 0;
7053 dst_reg->umax_value = U64_MAX;
7054 } else {
7055 /* Cannot overflow (as long as bounds are consistent) */
7056 dst_reg->umin_value -= umax_val;
7057 dst_reg->umax_value -= umin_val;
7058 }
3f50f132
JF
7059}
7060
7061static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7062 struct bpf_reg_state *src_reg)
7063{
7064 s32 smin_val = src_reg->s32_min_value;
7065 u32 umin_val = src_reg->u32_min_value;
7066 u32 umax_val = src_reg->u32_max_value;
7067
7068 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7069 /* Ain't nobody got time to multiply that sign */
7070 __mark_reg32_unbounded(dst_reg);
7071 return;
7072 }
7073 /* Both values are positive, so we can work with unsigned and
7074 * copy the result to signed (unless it exceeds S32_MAX).
7075 */
7076 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7077 /* Potential overflow, we know nothing */
7078 __mark_reg32_unbounded(dst_reg);
7079 return;
7080 }
7081 dst_reg->u32_min_value *= umin_val;
7082 dst_reg->u32_max_value *= umax_val;
7083 if (dst_reg->u32_max_value > S32_MAX) {
7084 /* Overflow possible, we know nothing */
7085 dst_reg->s32_min_value = S32_MIN;
7086 dst_reg->s32_max_value = S32_MAX;
7087 } else {
7088 dst_reg->s32_min_value = dst_reg->u32_min_value;
7089 dst_reg->s32_max_value = dst_reg->u32_max_value;
7090 }
07cd2631
JF
7091}
7092
7093static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7094 struct bpf_reg_state *src_reg)
7095{
7096 s64 smin_val = src_reg->smin_value;
7097 u64 umin_val = src_reg->umin_value;
7098 u64 umax_val = src_reg->umax_value;
7099
07cd2631
JF
7100 if (smin_val < 0 || dst_reg->smin_value < 0) {
7101 /* Ain't nobody got time to multiply that sign */
3f50f132 7102 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7103 return;
7104 }
7105 /* Both values are positive, so we can work with unsigned and
7106 * copy the result to signed (unless it exceeds S64_MAX).
7107 */
7108 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7109 /* Potential overflow, we know nothing */
3f50f132 7110 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7111 return;
7112 }
7113 dst_reg->umin_value *= umin_val;
7114 dst_reg->umax_value *= umax_val;
7115 if (dst_reg->umax_value > S64_MAX) {
7116 /* Overflow possible, we know nothing */
7117 dst_reg->smin_value = S64_MIN;
7118 dst_reg->smax_value = S64_MAX;
7119 } else {
7120 dst_reg->smin_value = dst_reg->umin_value;
7121 dst_reg->smax_value = dst_reg->umax_value;
7122 }
7123}
7124
3f50f132
JF
7125static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7126 struct bpf_reg_state *src_reg)
7127{
7128 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7129 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7130 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7131 s32 smin_val = src_reg->s32_min_value;
7132 u32 umax_val = src_reg->u32_max_value;
7133
049c4e13
DB
7134 if (src_known && dst_known) {
7135 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7136 return;
049c4e13 7137 }
3f50f132
JF
7138
7139 /* We get our minimum from the var_off, since that's inherently
7140 * bitwise. Our maximum is the minimum of the operands' maxima.
7141 */
7142 dst_reg->u32_min_value = var32_off.value;
7143 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7144 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7145 /* Lose signed bounds when ANDing negative numbers,
7146 * ain't nobody got time for that.
7147 */
7148 dst_reg->s32_min_value = S32_MIN;
7149 dst_reg->s32_max_value = S32_MAX;
7150 } else {
7151 /* ANDing two positives gives a positive, so safe to
7152 * cast result into s64.
7153 */
7154 dst_reg->s32_min_value = dst_reg->u32_min_value;
7155 dst_reg->s32_max_value = dst_reg->u32_max_value;
7156 }
3f50f132
JF
7157}
7158
07cd2631
JF
7159static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7160 struct bpf_reg_state *src_reg)
7161{
3f50f132
JF
7162 bool src_known = tnum_is_const(src_reg->var_off);
7163 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7164 s64 smin_val = src_reg->smin_value;
7165 u64 umax_val = src_reg->umax_value;
7166
3f50f132 7167 if (src_known && dst_known) {
4fbb38a3 7168 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7169 return;
7170 }
7171
07cd2631
JF
7172 /* We get our minimum from the var_off, since that's inherently
7173 * bitwise. Our maximum is the minimum of the operands' maxima.
7174 */
07cd2631
JF
7175 dst_reg->umin_value = dst_reg->var_off.value;
7176 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7177 if (dst_reg->smin_value < 0 || smin_val < 0) {
7178 /* Lose signed bounds when ANDing negative numbers,
7179 * ain't nobody got time for that.
7180 */
7181 dst_reg->smin_value = S64_MIN;
7182 dst_reg->smax_value = S64_MAX;
7183 } else {
7184 /* ANDing two positives gives a positive, so safe to
7185 * cast result into s64.
7186 */
7187 dst_reg->smin_value = dst_reg->umin_value;
7188 dst_reg->smax_value = dst_reg->umax_value;
7189 }
7190 /* We may learn something more from the var_off */
7191 __update_reg_bounds(dst_reg);
7192}
7193
3f50f132
JF
7194static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7195 struct bpf_reg_state *src_reg)
7196{
7197 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7198 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7199 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7200 s32 smin_val = src_reg->s32_min_value;
7201 u32 umin_val = src_reg->u32_min_value;
3f50f132 7202
049c4e13
DB
7203 if (src_known && dst_known) {
7204 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7205 return;
049c4e13 7206 }
3f50f132
JF
7207
7208 /* We get our maximum from the var_off, and our minimum is the
7209 * maximum of the operands' minima
7210 */
7211 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7212 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7213 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7214 /* Lose signed bounds when ORing negative numbers,
7215 * ain't nobody got time for that.
7216 */
7217 dst_reg->s32_min_value = S32_MIN;
7218 dst_reg->s32_max_value = S32_MAX;
7219 } else {
7220 /* ORing two positives gives a positive, so safe to
7221 * cast result into s64.
7222 */
5b9fbeb7
DB
7223 dst_reg->s32_min_value = dst_reg->u32_min_value;
7224 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7225 }
7226}
7227
07cd2631
JF
7228static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7229 struct bpf_reg_state *src_reg)
7230{
3f50f132
JF
7231 bool src_known = tnum_is_const(src_reg->var_off);
7232 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7233 s64 smin_val = src_reg->smin_value;
7234 u64 umin_val = src_reg->umin_value;
7235
3f50f132 7236 if (src_known && dst_known) {
4fbb38a3 7237 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7238 return;
7239 }
7240
07cd2631
JF
7241 /* We get our maximum from the var_off, and our minimum is the
7242 * maximum of the operands' minima
7243 */
07cd2631
JF
7244 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7245 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7246 if (dst_reg->smin_value < 0 || smin_val < 0) {
7247 /* Lose signed bounds when ORing negative numbers,
7248 * ain't nobody got time for that.
7249 */
7250 dst_reg->smin_value = S64_MIN;
7251 dst_reg->smax_value = S64_MAX;
7252 } else {
7253 /* ORing two positives gives a positive, so safe to
7254 * cast result into s64.
7255 */
7256 dst_reg->smin_value = dst_reg->umin_value;
7257 dst_reg->smax_value = dst_reg->umax_value;
7258 }
7259 /* We may learn something more from the var_off */
7260 __update_reg_bounds(dst_reg);
7261}
7262
2921c90d
YS
7263static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7264 struct bpf_reg_state *src_reg)
7265{
7266 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7267 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7268 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7269 s32 smin_val = src_reg->s32_min_value;
7270
049c4e13
DB
7271 if (src_known && dst_known) {
7272 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 7273 return;
049c4e13 7274 }
2921c90d
YS
7275
7276 /* We get both minimum and maximum from the var32_off. */
7277 dst_reg->u32_min_value = var32_off.value;
7278 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7279
7280 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7281 /* XORing two positive sign numbers gives a positive,
7282 * so safe to cast u32 result into s32.
7283 */
7284 dst_reg->s32_min_value = dst_reg->u32_min_value;
7285 dst_reg->s32_max_value = dst_reg->u32_max_value;
7286 } else {
7287 dst_reg->s32_min_value = S32_MIN;
7288 dst_reg->s32_max_value = S32_MAX;
7289 }
7290}
7291
7292static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7293 struct bpf_reg_state *src_reg)
7294{
7295 bool src_known = tnum_is_const(src_reg->var_off);
7296 bool dst_known = tnum_is_const(dst_reg->var_off);
7297 s64 smin_val = src_reg->smin_value;
7298
7299 if (src_known && dst_known) {
7300 /* dst_reg->var_off.value has been updated earlier */
7301 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7302 return;
7303 }
7304
7305 /* We get both minimum and maximum from the var_off. */
7306 dst_reg->umin_value = dst_reg->var_off.value;
7307 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7308
7309 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7310 /* XORing two positive sign numbers gives a positive,
7311 * so safe to cast u64 result into s64.
7312 */
7313 dst_reg->smin_value = dst_reg->umin_value;
7314 dst_reg->smax_value = dst_reg->umax_value;
7315 } else {
7316 dst_reg->smin_value = S64_MIN;
7317 dst_reg->smax_value = S64_MAX;
7318 }
7319
7320 __update_reg_bounds(dst_reg);
7321}
7322
3f50f132
JF
7323static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7324 u64 umin_val, u64 umax_val)
07cd2631 7325{
07cd2631
JF
7326 /* We lose all sign bit information (except what we can pick
7327 * up from var_off)
7328 */
3f50f132
JF
7329 dst_reg->s32_min_value = S32_MIN;
7330 dst_reg->s32_max_value = S32_MAX;
7331 /* If we might shift our top bit out, then we know nothing */
7332 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7333 dst_reg->u32_min_value = 0;
7334 dst_reg->u32_max_value = U32_MAX;
7335 } else {
7336 dst_reg->u32_min_value <<= umin_val;
7337 dst_reg->u32_max_value <<= umax_val;
7338 }
7339}
7340
7341static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7342 struct bpf_reg_state *src_reg)
7343{
7344 u32 umax_val = src_reg->u32_max_value;
7345 u32 umin_val = src_reg->u32_min_value;
7346 /* u32 alu operation will zext upper bits */
7347 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7348
7349 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7350 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7351 /* Not required but being careful mark reg64 bounds as unknown so
7352 * that we are forced to pick them up from tnum and zext later and
7353 * if some path skips this step we are still safe.
7354 */
7355 __mark_reg64_unbounded(dst_reg);
7356 __update_reg32_bounds(dst_reg);
7357}
7358
7359static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7360 u64 umin_val, u64 umax_val)
7361{
7362 /* Special case <<32 because it is a common compiler pattern to sign
7363 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7364 * positive we know this shift will also be positive so we can track
7365 * bounds correctly. Otherwise we lose all sign bit information except
7366 * what we can pick up from var_off. Perhaps we can generalize this
7367 * later to shifts of any length.
7368 */
7369 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7370 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7371 else
7372 dst_reg->smax_value = S64_MAX;
7373
7374 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7375 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7376 else
7377 dst_reg->smin_value = S64_MIN;
7378
07cd2631
JF
7379 /* If we might shift our top bit out, then we know nothing */
7380 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7381 dst_reg->umin_value = 0;
7382 dst_reg->umax_value = U64_MAX;
7383 } else {
7384 dst_reg->umin_value <<= umin_val;
7385 dst_reg->umax_value <<= umax_val;
7386 }
3f50f132
JF
7387}
7388
7389static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7390 struct bpf_reg_state *src_reg)
7391{
7392 u64 umax_val = src_reg->umax_value;
7393 u64 umin_val = src_reg->umin_value;
7394
7395 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7396 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7397 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7398
07cd2631
JF
7399 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7400 /* We may learn something more from the var_off */
7401 __update_reg_bounds(dst_reg);
7402}
7403
3f50f132
JF
7404static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7405 struct bpf_reg_state *src_reg)
7406{
7407 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7408 u32 umax_val = src_reg->u32_max_value;
7409 u32 umin_val = src_reg->u32_min_value;
7410
7411 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7412 * be negative, then either:
7413 * 1) src_reg might be zero, so the sign bit of the result is
7414 * unknown, so we lose our signed bounds
7415 * 2) it's known negative, thus the unsigned bounds capture the
7416 * signed bounds
7417 * 3) the signed bounds cross zero, so they tell us nothing
7418 * about the result
7419 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7420 * unsigned bounds capture the signed bounds.
3f50f132
JF
7421 * Thus, in all cases it suffices to blow away our signed bounds
7422 * and rely on inferring new ones from the unsigned bounds and
7423 * var_off of the result.
7424 */
7425 dst_reg->s32_min_value = S32_MIN;
7426 dst_reg->s32_max_value = S32_MAX;
7427
7428 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7429 dst_reg->u32_min_value >>= umax_val;
7430 dst_reg->u32_max_value >>= umin_val;
7431
7432 __mark_reg64_unbounded(dst_reg);
7433 __update_reg32_bounds(dst_reg);
7434}
7435
07cd2631
JF
7436static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7437 struct bpf_reg_state *src_reg)
7438{
7439 u64 umax_val = src_reg->umax_value;
7440 u64 umin_val = src_reg->umin_value;
7441
7442 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7443 * be negative, then either:
7444 * 1) src_reg might be zero, so the sign bit of the result is
7445 * unknown, so we lose our signed bounds
7446 * 2) it's known negative, thus the unsigned bounds capture the
7447 * signed bounds
7448 * 3) the signed bounds cross zero, so they tell us nothing
7449 * about the result
7450 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7451 * unsigned bounds capture the signed bounds.
07cd2631
JF
7452 * Thus, in all cases it suffices to blow away our signed bounds
7453 * and rely on inferring new ones from the unsigned bounds and
7454 * var_off of the result.
7455 */
7456 dst_reg->smin_value = S64_MIN;
7457 dst_reg->smax_value = S64_MAX;
7458 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7459 dst_reg->umin_value >>= umax_val;
7460 dst_reg->umax_value >>= umin_val;
3f50f132
JF
7461
7462 /* Its not easy to operate on alu32 bounds here because it depends
7463 * on bits being shifted in. Take easy way out and mark unbounded
7464 * so we can recalculate later from tnum.
7465 */
7466 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7467 __update_reg_bounds(dst_reg);
7468}
7469
3f50f132
JF
7470static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7471 struct bpf_reg_state *src_reg)
07cd2631 7472{
3f50f132 7473 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
7474
7475 /* Upon reaching here, src_known is true and
7476 * umax_val is equal to umin_val.
7477 */
3f50f132
JF
7478 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7479 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 7480
3f50f132
JF
7481 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7482
7483 /* blow away the dst_reg umin_value/umax_value and rely on
7484 * dst_reg var_off to refine the result.
7485 */
7486 dst_reg->u32_min_value = 0;
7487 dst_reg->u32_max_value = U32_MAX;
7488
7489 __mark_reg64_unbounded(dst_reg);
7490 __update_reg32_bounds(dst_reg);
7491}
7492
7493static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7494 struct bpf_reg_state *src_reg)
7495{
7496 u64 umin_val = src_reg->umin_value;
7497
7498 /* Upon reaching here, src_known is true and umax_val is equal
7499 * to umin_val.
7500 */
7501 dst_reg->smin_value >>= umin_val;
7502 dst_reg->smax_value >>= umin_val;
7503
7504 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
7505
7506 /* blow away the dst_reg umin_value/umax_value and rely on
7507 * dst_reg var_off to refine the result.
7508 */
7509 dst_reg->umin_value = 0;
7510 dst_reg->umax_value = U64_MAX;
3f50f132
JF
7511
7512 /* Its not easy to operate on alu32 bounds here because it depends
7513 * on bits being shifted in from upper 32-bits. Take easy way out
7514 * and mark unbounded so we can recalculate later from tnum.
7515 */
7516 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7517 __update_reg_bounds(dst_reg);
7518}
7519
468f6eaf
JH
7520/* WARNING: This function does calculations on 64-bit values, but the actual
7521 * execution may occur on 32-bit values. Therefore, things like bitshifts
7522 * need extra checks in the 32-bit case.
7523 */
f1174f77
EC
7524static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7525 struct bpf_insn *insn,
7526 struct bpf_reg_state *dst_reg,
7527 struct bpf_reg_state src_reg)
969bf05e 7528{
638f5b90 7529 struct bpf_reg_state *regs = cur_regs(env);
48461135 7530 u8 opcode = BPF_OP(insn->code);
b0b3fb67 7531 bool src_known;
b03c9f9f
EC
7532 s64 smin_val, smax_val;
7533 u64 umin_val, umax_val;
3f50f132
JF
7534 s32 s32_min_val, s32_max_val;
7535 u32 u32_min_val, u32_max_val;
468f6eaf 7536 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 7537 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 7538 int ret;
b799207e 7539
b03c9f9f
EC
7540 smin_val = src_reg.smin_value;
7541 smax_val = src_reg.smax_value;
7542 umin_val = src_reg.umin_value;
7543 umax_val = src_reg.umax_value;
f23cc643 7544
3f50f132
JF
7545 s32_min_val = src_reg.s32_min_value;
7546 s32_max_val = src_reg.s32_max_value;
7547 u32_min_val = src_reg.u32_min_value;
7548 u32_max_val = src_reg.u32_max_value;
7549
7550 if (alu32) {
7551 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
7552 if ((src_known &&
7553 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7554 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7555 /* Taint dst register if offset had invalid bounds
7556 * derived from e.g. dead branches.
7557 */
7558 __mark_reg_unknown(env, dst_reg);
7559 return 0;
7560 }
7561 } else {
7562 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
7563 if ((src_known &&
7564 (smin_val != smax_val || umin_val != umax_val)) ||
7565 smin_val > smax_val || umin_val > umax_val) {
7566 /* Taint dst register if offset had invalid bounds
7567 * derived from e.g. dead branches.
7568 */
7569 __mark_reg_unknown(env, dst_reg);
7570 return 0;
7571 }
6f16101e
DB
7572 }
7573
bb7f0f98
AS
7574 if (!src_known &&
7575 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 7576 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
7577 return 0;
7578 }
7579
f5288193
DB
7580 if (sanitize_needed(opcode)) {
7581 ret = sanitize_val_alu(env, insn);
7582 if (ret < 0)
7583 return sanitize_err(env, insn, ret, NULL, NULL);
7584 }
7585
3f50f132
JF
7586 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7587 * There are two classes of instructions: The first class we track both
7588 * alu32 and alu64 sign/unsigned bounds independently this provides the
7589 * greatest amount of precision when alu operations are mixed with jmp32
7590 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7591 * and BPF_OR. This is possible because these ops have fairly easy to
7592 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7593 * See alu32 verifier tests for examples. The second class of
7594 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7595 * with regards to tracking sign/unsigned bounds because the bits may
7596 * cross subreg boundaries in the alu64 case. When this happens we mark
7597 * the reg unbounded in the subreg bound space and use the resulting
7598 * tnum to calculate an approximation of the sign/unsigned bounds.
7599 */
48461135
JB
7600 switch (opcode) {
7601 case BPF_ADD:
3f50f132 7602 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 7603 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 7604 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
7605 break;
7606 case BPF_SUB:
3f50f132 7607 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 7608 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 7609 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
7610 break;
7611 case BPF_MUL:
3f50f132
JF
7612 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7613 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 7614 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
7615 break;
7616 case BPF_AND:
3f50f132
JF
7617 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7618 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 7619 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
7620 break;
7621 case BPF_OR:
3f50f132
JF
7622 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7623 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 7624 scalar_min_max_or(dst_reg, &src_reg);
48461135 7625 break;
2921c90d
YS
7626 case BPF_XOR:
7627 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7628 scalar32_min_max_xor(dst_reg, &src_reg);
7629 scalar_min_max_xor(dst_reg, &src_reg);
7630 break;
48461135 7631 case BPF_LSH:
468f6eaf
JH
7632 if (umax_val >= insn_bitness) {
7633 /* Shifts greater than 31 or 63 are undefined.
7634 * This includes shifts by a negative number.
b03c9f9f 7635 */
61bd5218 7636 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
7637 break;
7638 }
3f50f132
JF
7639 if (alu32)
7640 scalar32_min_max_lsh(dst_reg, &src_reg);
7641 else
7642 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
7643 break;
7644 case BPF_RSH:
468f6eaf
JH
7645 if (umax_val >= insn_bitness) {
7646 /* Shifts greater than 31 or 63 are undefined.
7647 * This includes shifts by a negative number.
b03c9f9f 7648 */
61bd5218 7649 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
7650 break;
7651 }
3f50f132
JF
7652 if (alu32)
7653 scalar32_min_max_rsh(dst_reg, &src_reg);
7654 else
7655 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 7656 break;
9cbe1f5a
YS
7657 case BPF_ARSH:
7658 if (umax_val >= insn_bitness) {
7659 /* Shifts greater than 31 or 63 are undefined.
7660 * This includes shifts by a negative number.
7661 */
7662 mark_reg_unknown(env, regs, insn->dst_reg);
7663 break;
7664 }
3f50f132
JF
7665 if (alu32)
7666 scalar32_min_max_arsh(dst_reg, &src_reg);
7667 else
7668 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 7669 break;
48461135 7670 default:
61bd5218 7671 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
7672 break;
7673 }
7674
3f50f132
JF
7675 /* ALU32 ops are zero extended into 64bit register */
7676 if (alu32)
7677 zext_32_to_64(dst_reg);
468f6eaf 7678
294f2fc6 7679 __update_reg_bounds(dst_reg);
b03c9f9f
EC
7680 __reg_deduce_bounds(dst_reg);
7681 __reg_bound_offset(dst_reg);
f1174f77
EC
7682 return 0;
7683}
7684
7685/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7686 * and var_off.
7687 */
7688static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7689 struct bpf_insn *insn)
7690{
f4d7e40a
AS
7691 struct bpf_verifier_state *vstate = env->cur_state;
7692 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7693 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
7694 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7695 u8 opcode = BPF_OP(insn->code);
b5dc0163 7696 int err;
f1174f77
EC
7697
7698 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
7699 src_reg = NULL;
7700 if (dst_reg->type != SCALAR_VALUE)
7701 ptr_reg = dst_reg;
75748837
AS
7702 else
7703 /* Make sure ID is cleared otherwise dst_reg min/max could be
7704 * incorrectly propagated into other registers by find_equal_scalars()
7705 */
7706 dst_reg->id = 0;
f1174f77
EC
7707 if (BPF_SRC(insn->code) == BPF_X) {
7708 src_reg = &regs[insn->src_reg];
f1174f77
EC
7709 if (src_reg->type != SCALAR_VALUE) {
7710 if (dst_reg->type != SCALAR_VALUE) {
7711 /* Combining two pointers by any ALU op yields
82abbf8d
AS
7712 * an arbitrary scalar. Disallow all math except
7713 * pointer subtraction
f1174f77 7714 */
dd066823 7715 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
7716 mark_reg_unknown(env, regs, insn->dst_reg);
7717 return 0;
f1174f77 7718 }
82abbf8d
AS
7719 verbose(env, "R%d pointer %s pointer prohibited\n",
7720 insn->dst_reg,
7721 bpf_alu_string[opcode >> 4]);
7722 return -EACCES;
f1174f77
EC
7723 } else {
7724 /* scalar += pointer
7725 * This is legal, but we have to reverse our
7726 * src/dest handling in computing the range
7727 */
b5dc0163
AS
7728 err = mark_chain_precision(env, insn->dst_reg);
7729 if (err)
7730 return err;
82abbf8d
AS
7731 return adjust_ptr_min_max_vals(env, insn,
7732 src_reg, dst_reg);
f1174f77
EC
7733 }
7734 } else if (ptr_reg) {
7735 /* pointer += scalar */
b5dc0163
AS
7736 err = mark_chain_precision(env, insn->src_reg);
7737 if (err)
7738 return err;
82abbf8d
AS
7739 return adjust_ptr_min_max_vals(env, insn,
7740 dst_reg, src_reg);
f1174f77
EC
7741 }
7742 } else {
7743 /* Pretend the src is a reg with a known value, since we only
7744 * need to be able to read from this state.
7745 */
7746 off_reg.type = SCALAR_VALUE;
b03c9f9f 7747 __mark_reg_known(&off_reg, insn->imm);
f1174f77 7748 src_reg = &off_reg;
82abbf8d
AS
7749 if (ptr_reg) /* pointer += K */
7750 return adjust_ptr_min_max_vals(env, insn,
7751 ptr_reg, src_reg);
f1174f77
EC
7752 }
7753
7754 /* Got here implies adding two SCALAR_VALUEs */
7755 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 7756 print_verifier_state(env, state);
61bd5218 7757 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
7758 return -EINVAL;
7759 }
7760 if (WARN_ON(!src_reg)) {
f4d7e40a 7761 print_verifier_state(env, state);
61bd5218 7762 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
7763 return -EINVAL;
7764 }
7765 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
7766}
7767
17a52670 7768/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 7769static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7770{
638f5b90 7771 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
7772 u8 opcode = BPF_OP(insn->code);
7773 int err;
7774
7775 if (opcode == BPF_END || opcode == BPF_NEG) {
7776 if (opcode == BPF_NEG) {
7777 if (BPF_SRC(insn->code) != 0 ||
7778 insn->src_reg != BPF_REG_0 ||
7779 insn->off != 0 || insn->imm != 0) {
61bd5218 7780 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
7781 return -EINVAL;
7782 }
7783 } else {
7784 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
7785 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7786 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 7787 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
7788 return -EINVAL;
7789 }
7790 }
7791
7792 /* check src operand */
dc503a8a 7793 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7794 if (err)
7795 return err;
7796
1be7f75d 7797 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 7798 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
7799 insn->dst_reg);
7800 return -EACCES;
7801 }
7802
17a52670 7803 /* check dest operand */
dc503a8a 7804 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7805 if (err)
7806 return err;
7807
7808 } else if (opcode == BPF_MOV) {
7809
7810 if (BPF_SRC(insn->code) == BPF_X) {
7811 if (insn->imm != 0 || insn->off != 0) {
61bd5218 7812 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
7813 return -EINVAL;
7814 }
7815
7816 /* check src operand */
dc503a8a 7817 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7818 if (err)
7819 return err;
7820 } else {
7821 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 7822 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
7823 return -EINVAL;
7824 }
7825 }
7826
fbeb1603
AF
7827 /* check dest operand, mark as required later */
7828 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7829 if (err)
7830 return err;
7831
7832 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
7833 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7834 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7835
17a52670
AS
7836 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7837 /* case: R1 = R2
7838 * copy register state to dest reg
7839 */
75748837
AS
7840 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7841 /* Assign src and dst registers the same ID
7842 * that will be used by find_equal_scalars()
7843 * to propagate min/max range.
7844 */
7845 src_reg->id = ++env->id_gen;
e434b8cd
JW
7846 *dst_reg = *src_reg;
7847 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 7848 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 7849 } else {
f1174f77 7850 /* R1 = (u32) R2 */
1be7f75d 7851 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
7852 verbose(env,
7853 "R%d partial copy of pointer\n",
1be7f75d
AS
7854 insn->src_reg);
7855 return -EACCES;
e434b8cd
JW
7856 } else if (src_reg->type == SCALAR_VALUE) {
7857 *dst_reg = *src_reg;
75748837
AS
7858 /* Make sure ID is cleared otherwise
7859 * dst_reg min/max could be incorrectly
7860 * propagated into src_reg by find_equal_scalars()
7861 */
7862 dst_reg->id = 0;
e434b8cd 7863 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 7864 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
7865 } else {
7866 mark_reg_unknown(env, regs,
7867 insn->dst_reg);
1be7f75d 7868 }
3f50f132 7869 zext_32_to_64(dst_reg);
17a52670
AS
7870 }
7871 } else {
7872 /* case: R = imm
7873 * remember the value we stored into this reg
7874 */
fbeb1603
AF
7875 /* clear any state __mark_reg_known doesn't set */
7876 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 7877 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
7878 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7879 __mark_reg_known(regs + insn->dst_reg,
7880 insn->imm);
7881 } else {
7882 __mark_reg_known(regs + insn->dst_reg,
7883 (u32)insn->imm);
7884 }
17a52670
AS
7885 }
7886
7887 } else if (opcode > BPF_END) {
61bd5218 7888 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
7889 return -EINVAL;
7890
7891 } else { /* all other ALU ops: and, sub, xor, add, ... */
7892
17a52670
AS
7893 if (BPF_SRC(insn->code) == BPF_X) {
7894 if (insn->imm != 0 || insn->off != 0) {
61bd5218 7895 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
7896 return -EINVAL;
7897 }
7898 /* check src1 operand */
dc503a8a 7899 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7900 if (err)
7901 return err;
7902 } else {
7903 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 7904 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
7905 return -EINVAL;
7906 }
7907 }
7908
7909 /* check src2 operand */
dc503a8a 7910 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7911 if (err)
7912 return err;
7913
7914 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7915 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 7916 verbose(env, "div by zero\n");
17a52670
AS
7917 return -EINVAL;
7918 }
7919
229394e8
RV
7920 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7921 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7922 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7923
7924 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 7925 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
7926 return -EINVAL;
7927 }
7928 }
7929
1a0dc1ac 7930 /* check dest operand */
dc503a8a 7931 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
7932 if (err)
7933 return err;
7934
f1174f77 7935 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
7936 }
7937
7938 return 0;
7939}
7940
c6a9efa1
PC
7941static void __find_good_pkt_pointers(struct bpf_func_state *state,
7942 struct bpf_reg_state *dst_reg,
6d94e741 7943 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
7944{
7945 struct bpf_reg_state *reg;
7946 int i;
7947
7948 for (i = 0; i < MAX_BPF_REG; i++) {
7949 reg = &state->regs[i];
7950 if (reg->type == type && reg->id == dst_reg->id)
7951 /* keep the maximum range already checked */
7952 reg->range = max(reg->range, new_range);
7953 }
7954
7955 bpf_for_each_spilled_reg(i, state, reg) {
7956 if (!reg)
7957 continue;
7958 if (reg->type == type && reg->id == dst_reg->id)
7959 reg->range = max(reg->range, new_range);
7960 }
7961}
7962
f4d7e40a 7963static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 7964 struct bpf_reg_state *dst_reg,
f8ddadc4 7965 enum bpf_reg_type type,
fb2a311a 7966 bool range_right_open)
969bf05e 7967{
6d94e741 7968 int new_range, i;
2d2be8ca 7969
fb2a311a
DB
7970 if (dst_reg->off < 0 ||
7971 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
7972 /* This doesn't give us any range */
7973 return;
7974
b03c9f9f
EC
7975 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7976 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
7977 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7978 * than pkt_end, but that's because it's also less than pkt.
7979 */
7980 return;
7981
fb2a311a
DB
7982 new_range = dst_reg->off;
7983 if (range_right_open)
7984 new_range--;
7985
7986 /* Examples for register markings:
2d2be8ca 7987 *
fb2a311a 7988 * pkt_data in dst register:
2d2be8ca
DB
7989 *
7990 * r2 = r3;
7991 * r2 += 8;
7992 * if (r2 > pkt_end) goto <handle exception>
7993 * <access okay>
7994 *
b4e432f1
DB
7995 * r2 = r3;
7996 * r2 += 8;
7997 * if (r2 < pkt_end) goto <access okay>
7998 * <handle exception>
7999 *
2d2be8ca
DB
8000 * Where:
8001 * r2 == dst_reg, pkt_end == src_reg
8002 * r2=pkt(id=n,off=8,r=0)
8003 * r3=pkt(id=n,off=0,r=0)
8004 *
fb2a311a 8005 * pkt_data in src register:
2d2be8ca
DB
8006 *
8007 * r2 = r3;
8008 * r2 += 8;
8009 * if (pkt_end >= r2) goto <access okay>
8010 * <handle exception>
8011 *
b4e432f1
DB
8012 * r2 = r3;
8013 * r2 += 8;
8014 * if (pkt_end <= r2) goto <handle exception>
8015 * <access okay>
8016 *
2d2be8ca
DB
8017 * Where:
8018 * pkt_end == dst_reg, r2 == src_reg
8019 * r2=pkt(id=n,off=8,r=0)
8020 * r3=pkt(id=n,off=0,r=0)
8021 *
8022 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8023 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8024 * and [r3, r3 + 8-1) respectively is safe to access depending on
8025 * the check.
969bf05e 8026 */
2d2be8ca 8027
f1174f77
EC
8028 /* If our ids match, then we must have the same max_value. And we
8029 * don't care about the other reg's fixed offset, since if it's too big
8030 * the range won't allow anything.
8031 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8032 */
c6a9efa1
PC
8033 for (i = 0; i <= vstate->curframe; i++)
8034 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8035 new_range);
969bf05e
AS
8036}
8037
3f50f132 8038static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8039{
3f50f132
JF
8040 struct tnum subreg = tnum_subreg(reg->var_off);
8041 s32 sval = (s32)val;
a72dafaf 8042
3f50f132
JF
8043 switch (opcode) {
8044 case BPF_JEQ:
8045 if (tnum_is_const(subreg))
8046 return !!tnum_equals_const(subreg, val);
8047 break;
8048 case BPF_JNE:
8049 if (tnum_is_const(subreg))
8050 return !tnum_equals_const(subreg, val);
8051 break;
8052 case BPF_JSET:
8053 if ((~subreg.mask & subreg.value) & val)
8054 return 1;
8055 if (!((subreg.mask | subreg.value) & val))
8056 return 0;
8057 break;
8058 case BPF_JGT:
8059 if (reg->u32_min_value > val)
8060 return 1;
8061 else if (reg->u32_max_value <= val)
8062 return 0;
8063 break;
8064 case BPF_JSGT:
8065 if (reg->s32_min_value > sval)
8066 return 1;
ee114dd6 8067 else if (reg->s32_max_value <= sval)
3f50f132
JF
8068 return 0;
8069 break;
8070 case BPF_JLT:
8071 if (reg->u32_max_value < val)
8072 return 1;
8073 else if (reg->u32_min_value >= val)
8074 return 0;
8075 break;
8076 case BPF_JSLT:
8077 if (reg->s32_max_value < sval)
8078 return 1;
8079 else if (reg->s32_min_value >= sval)
8080 return 0;
8081 break;
8082 case BPF_JGE:
8083 if (reg->u32_min_value >= val)
8084 return 1;
8085 else if (reg->u32_max_value < val)
8086 return 0;
8087 break;
8088 case BPF_JSGE:
8089 if (reg->s32_min_value >= sval)
8090 return 1;
8091 else if (reg->s32_max_value < sval)
8092 return 0;
8093 break;
8094 case BPF_JLE:
8095 if (reg->u32_max_value <= val)
8096 return 1;
8097 else if (reg->u32_min_value > val)
8098 return 0;
8099 break;
8100 case BPF_JSLE:
8101 if (reg->s32_max_value <= sval)
8102 return 1;
8103 else if (reg->s32_min_value > sval)
8104 return 0;
8105 break;
8106 }
4f7b3e82 8107
3f50f132
JF
8108 return -1;
8109}
092ed096 8110
3f50f132
JF
8111
8112static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8113{
8114 s64 sval = (s64)val;
a72dafaf 8115
4f7b3e82
AS
8116 switch (opcode) {
8117 case BPF_JEQ:
8118 if (tnum_is_const(reg->var_off))
8119 return !!tnum_equals_const(reg->var_off, val);
8120 break;
8121 case BPF_JNE:
8122 if (tnum_is_const(reg->var_off))
8123 return !tnum_equals_const(reg->var_off, val);
8124 break;
960ea056
JK
8125 case BPF_JSET:
8126 if ((~reg->var_off.mask & reg->var_off.value) & val)
8127 return 1;
8128 if (!((reg->var_off.mask | reg->var_off.value) & val))
8129 return 0;
8130 break;
4f7b3e82
AS
8131 case BPF_JGT:
8132 if (reg->umin_value > val)
8133 return 1;
8134 else if (reg->umax_value <= val)
8135 return 0;
8136 break;
8137 case BPF_JSGT:
a72dafaf 8138 if (reg->smin_value > sval)
4f7b3e82 8139 return 1;
ee114dd6 8140 else if (reg->smax_value <= sval)
4f7b3e82
AS
8141 return 0;
8142 break;
8143 case BPF_JLT:
8144 if (reg->umax_value < val)
8145 return 1;
8146 else if (reg->umin_value >= val)
8147 return 0;
8148 break;
8149 case BPF_JSLT:
a72dafaf 8150 if (reg->smax_value < sval)
4f7b3e82 8151 return 1;
a72dafaf 8152 else if (reg->smin_value >= sval)
4f7b3e82
AS
8153 return 0;
8154 break;
8155 case BPF_JGE:
8156 if (reg->umin_value >= val)
8157 return 1;
8158 else if (reg->umax_value < val)
8159 return 0;
8160 break;
8161 case BPF_JSGE:
a72dafaf 8162 if (reg->smin_value >= sval)
4f7b3e82 8163 return 1;
a72dafaf 8164 else if (reg->smax_value < sval)
4f7b3e82
AS
8165 return 0;
8166 break;
8167 case BPF_JLE:
8168 if (reg->umax_value <= val)
8169 return 1;
8170 else if (reg->umin_value > val)
8171 return 0;
8172 break;
8173 case BPF_JSLE:
a72dafaf 8174 if (reg->smax_value <= sval)
4f7b3e82 8175 return 1;
a72dafaf 8176 else if (reg->smin_value > sval)
4f7b3e82
AS
8177 return 0;
8178 break;
8179 }
8180
8181 return -1;
8182}
8183
3f50f132
JF
8184/* compute branch direction of the expression "if (reg opcode val) goto target;"
8185 * and return:
8186 * 1 - branch will be taken and "goto target" will be executed
8187 * 0 - branch will not be taken and fall-through to next insn
8188 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8189 * range [0,10]
604dca5e 8190 */
3f50f132
JF
8191static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8192 bool is_jmp32)
604dca5e 8193{
cac616db
JF
8194 if (__is_pointer_value(false, reg)) {
8195 if (!reg_type_not_null(reg->type))
8196 return -1;
8197
8198 /* If pointer is valid tests against zero will fail so we can
8199 * use this to direct branch taken.
8200 */
8201 if (val != 0)
8202 return -1;
8203
8204 switch (opcode) {
8205 case BPF_JEQ:
8206 return 0;
8207 case BPF_JNE:
8208 return 1;
8209 default:
8210 return -1;
8211 }
8212 }
604dca5e 8213
3f50f132
JF
8214 if (is_jmp32)
8215 return is_branch32_taken(reg, val, opcode);
8216 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8217}
8218
6d94e741
AS
8219static int flip_opcode(u32 opcode)
8220{
8221 /* How can we transform "a <op> b" into "b <op> a"? */
8222 static const u8 opcode_flip[16] = {
8223 /* these stay the same */
8224 [BPF_JEQ >> 4] = BPF_JEQ,
8225 [BPF_JNE >> 4] = BPF_JNE,
8226 [BPF_JSET >> 4] = BPF_JSET,
8227 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8228 [BPF_JGE >> 4] = BPF_JLE,
8229 [BPF_JGT >> 4] = BPF_JLT,
8230 [BPF_JLE >> 4] = BPF_JGE,
8231 [BPF_JLT >> 4] = BPF_JGT,
8232 [BPF_JSGE >> 4] = BPF_JSLE,
8233 [BPF_JSGT >> 4] = BPF_JSLT,
8234 [BPF_JSLE >> 4] = BPF_JSGE,
8235 [BPF_JSLT >> 4] = BPF_JSGT
8236 };
8237 return opcode_flip[opcode >> 4];
8238}
8239
8240static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8241 struct bpf_reg_state *src_reg,
8242 u8 opcode)
8243{
8244 struct bpf_reg_state *pkt;
8245
8246 if (src_reg->type == PTR_TO_PACKET_END) {
8247 pkt = dst_reg;
8248 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8249 pkt = src_reg;
8250 opcode = flip_opcode(opcode);
8251 } else {
8252 return -1;
8253 }
8254
8255 if (pkt->range >= 0)
8256 return -1;
8257
8258 switch (opcode) {
8259 case BPF_JLE:
8260 /* pkt <= pkt_end */
8261 fallthrough;
8262 case BPF_JGT:
8263 /* pkt > pkt_end */
8264 if (pkt->range == BEYOND_PKT_END)
8265 /* pkt has at last one extra byte beyond pkt_end */
8266 return opcode == BPF_JGT;
8267 break;
8268 case BPF_JLT:
8269 /* pkt < pkt_end */
8270 fallthrough;
8271 case BPF_JGE:
8272 /* pkt >= pkt_end */
8273 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8274 return opcode == BPF_JGE;
8275 break;
8276 }
8277 return -1;
8278}
8279
48461135
JB
8280/* Adjusts the register min/max values in the case that the dst_reg is the
8281 * variable register that we are working on, and src_reg is a constant or we're
8282 * simply doing a BPF_K check.
f1174f77 8283 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8284 */
8285static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8286 struct bpf_reg_state *false_reg,
8287 u64 val, u32 val32,
092ed096 8288 u8 opcode, bool is_jmp32)
48461135 8289{
3f50f132
JF
8290 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8291 struct tnum false_64off = false_reg->var_off;
8292 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8293 struct tnum true_64off = true_reg->var_off;
8294 s64 sval = (s64)val;
8295 s32 sval32 = (s32)val32;
a72dafaf 8296
f1174f77
EC
8297 /* If the dst_reg is a pointer, we can't learn anything about its
8298 * variable offset from the compare (unless src_reg were a pointer into
8299 * the same object, but we don't bother with that.
8300 * Since false_reg and true_reg have the same type by construction, we
8301 * only need to check one of them for pointerness.
8302 */
8303 if (__is_pointer_value(false, false_reg))
8304 return;
4cabc5b1 8305
48461135
JB
8306 switch (opcode) {
8307 case BPF_JEQ:
48461135 8308 case BPF_JNE:
a72dafaf
JW
8309 {
8310 struct bpf_reg_state *reg =
8311 opcode == BPF_JEQ ? true_reg : false_reg;
8312
e688c3db
AS
8313 /* JEQ/JNE comparison doesn't change the register equivalence.
8314 * r1 = r2;
8315 * if (r1 == 42) goto label;
8316 * ...
8317 * label: // here both r1 and r2 are known to be 42.
8318 *
8319 * Hence when marking register as known preserve it's ID.
48461135 8320 */
3f50f132
JF
8321 if (is_jmp32)
8322 __mark_reg32_known(reg, val32);
8323 else
e688c3db 8324 ___mark_reg_known(reg, val);
48461135 8325 break;
a72dafaf 8326 }
960ea056 8327 case BPF_JSET:
3f50f132
JF
8328 if (is_jmp32) {
8329 false_32off = tnum_and(false_32off, tnum_const(~val32));
8330 if (is_power_of_2(val32))
8331 true_32off = tnum_or(true_32off,
8332 tnum_const(val32));
8333 } else {
8334 false_64off = tnum_and(false_64off, tnum_const(~val));
8335 if (is_power_of_2(val))
8336 true_64off = tnum_or(true_64off,
8337 tnum_const(val));
8338 }
960ea056 8339 break;
48461135 8340 case BPF_JGE:
a72dafaf
JW
8341 case BPF_JGT:
8342 {
3f50f132
JF
8343 if (is_jmp32) {
8344 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8345 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8346
8347 false_reg->u32_max_value = min(false_reg->u32_max_value,
8348 false_umax);
8349 true_reg->u32_min_value = max(true_reg->u32_min_value,
8350 true_umin);
8351 } else {
8352 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8353 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8354
8355 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8356 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8357 }
b03c9f9f 8358 break;
a72dafaf 8359 }
48461135 8360 case BPF_JSGE:
a72dafaf
JW
8361 case BPF_JSGT:
8362 {
3f50f132
JF
8363 if (is_jmp32) {
8364 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8365 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8366
3f50f132
JF
8367 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8368 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8369 } else {
8370 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8371 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8372
8373 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8374 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8375 }
48461135 8376 break;
a72dafaf 8377 }
b4e432f1 8378 case BPF_JLE:
a72dafaf
JW
8379 case BPF_JLT:
8380 {
3f50f132
JF
8381 if (is_jmp32) {
8382 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8383 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8384
8385 false_reg->u32_min_value = max(false_reg->u32_min_value,
8386 false_umin);
8387 true_reg->u32_max_value = min(true_reg->u32_max_value,
8388 true_umax);
8389 } else {
8390 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8391 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8392
8393 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8394 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8395 }
b4e432f1 8396 break;
a72dafaf 8397 }
b4e432f1 8398 case BPF_JSLE:
a72dafaf
JW
8399 case BPF_JSLT:
8400 {
3f50f132
JF
8401 if (is_jmp32) {
8402 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8403 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8404
3f50f132
JF
8405 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8406 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8407 } else {
8408 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8409 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8410
8411 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8412 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8413 }
b4e432f1 8414 break;
a72dafaf 8415 }
48461135 8416 default:
0fc31b10 8417 return;
48461135
JB
8418 }
8419
3f50f132
JF
8420 if (is_jmp32) {
8421 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8422 tnum_subreg(false_32off));
8423 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8424 tnum_subreg(true_32off));
8425 __reg_combine_32_into_64(false_reg);
8426 __reg_combine_32_into_64(true_reg);
8427 } else {
8428 false_reg->var_off = false_64off;
8429 true_reg->var_off = true_64off;
8430 __reg_combine_64_into_32(false_reg);
8431 __reg_combine_64_into_32(true_reg);
8432 }
48461135
JB
8433}
8434
f1174f77
EC
8435/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8436 * the variable reg.
48461135
JB
8437 */
8438static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8439 struct bpf_reg_state *false_reg,
8440 u64 val, u32 val32,
092ed096 8441 u8 opcode, bool is_jmp32)
48461135 8442{
6d94e741 8443 opcode = flip_opcode(opcode);
0fc31b10
JH
8444 /* This uses zero as "not present in table"; luckily the zero opcode,
8445 * BPF_JA, can't get here.
b03c9f9f 8446 */
0fc31b10 8447 if (opcode)
3f50f132 8448 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8449}
8450
8451/* Regs are known to be equal, so intersect their min/max/var_off */
8452static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8453 struct bpf_reg_state *dst_reg)
8454{
b03c9f9f
EC
8455 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8456 dst_reg->umin_value);
8457 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8458 dst_reg->umax_value);
8459 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8460 dst_reg->smin_value);
8461 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8462 dst_reg->smax_value);
f1174f77
EC
8463 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8464 dst_reg->var_off);
b03c9f9f
EC
8465 /* We might have learned new bounds from the var_off. */
8466 __update_reg_bounds(src_reg);
8467 __update_reg_bounds(dst_reg);
8468 /* We might have learned something about the sign bit. */
8469 __reg_deduce_bounds(src_reg);
8470 __reg_deduce_bounds(dst_reg);
8471 /* We might have learned some bits from the bounds. */
8472 __reg_bound_offset(src_reg);
8473 __reg_bound_offset(dst_reg);
8474 /* Intersecting with the old var_off might have improved our bounds
8475 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8476 * then new var_off is (0; 0x7f...fc) which improves our umax.
8477 */
8478 __update_reg_bounds(src_reg);
8479 __update_reg_bounds(dst_reg);
f1174f77
EC
8480}
8481
8482static void reg_combine_min_max(struct bpf_reg_state *true_src,
8483 struct bpf_reg_state *true_dst,
8484 struct bpf_reg_state *false_src,
8485 struct bpf_reg_state *false_dst,
8486 u8 opcode)
8487{
8488 switch (opcode) {
8489 case BPF_JEQ:
8490 __reg_combine_min_max(true_src, true_dst);
8491 break;
8492 case BPF_JNE:
8493 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 8494 break;
4cabc5b1 8495 }
48461135
JB
8496}
8497
fd978bf7
JS
8498static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8499 struct bpf_reg_state *reg, u32 id,
840b9615 8500 bool is_null)
57a09bf0 8501{
93c230e3
MKL
8502 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8503 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
8504 /* Old offset (both fixed and variable parts) should
8505 * have been known-zero, because we don't allow pointer
8506 * arithmetic on pointers that might be NULL.
8507 */
b03c9f9f
EC
8508 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8509 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 8510 reg->off)) {
b03c9f9f
EC
8511 __mark_reg_known_zero(reg);
8512 reg->off = 0;
f1174f77
EC
8513 }
8514 if (is_null) {
8515 reg->type = SCALAR_VALUE;
1b986589
MKL
8516 /* We don't need id and ref_obj_id from this point
8517 * onwards anymore, thus we should better reset it,
8518 * so that state pruning has chances to take effect.
8519 */
8520 reg->id = 0;
8521 reg->ref_obj_id = 0;
4ddb7416
DB
8522
8523 return;
8524 }
8525
8526 mark_ptr_not_null_reg(reg);
8527
8528 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
8529 /* For not-NULL ptr, reg->ref_obj_id will be reset
8530 * in release_reg_references().
8531 *
8532 * reg->id is still used by spin_lock ptr. Other
8533 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
8534 */
8535 reg->id = 0;
56f668df 8536 }
57a09bf0
TG
8537 }
8538}
8539
c6a9efa1
PC
8540static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8541 bool is_null)
8542{
8543 struct bpf_reg_state *reg;
8544 int i;
8545
8546 for (i = 0; i < MAX_BPF_REG; i++)
8547 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8548
8549 bpf_for_each_spilled_reg(i, state, reg) {
8550 if (!reg)
8551 continue;
8552 mark_ptr_or_null_reg(state, reg, id, is_null);
8553 }
8554}
8555
57a09bf0
TG
8556/* The logic is similar to find_good_pkt_pointers(), both could eventually
8557 * be folded together at some point.
8558 */
840b9615
JS
8559static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8560 bool is_null)
57a09bf0 8561{
f4d7e40a 8562 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 8563 struct bpf_reg_state *regs = state->regs;
1b986589 8564 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 8565 u32 id = regs[regno].id;
c6a9efa1 8566 int i;
57a09bf0 8567
1b986589
MKL
8568 if (ref_obj_id && ref_obj_id == id && is_null)
8569 /* regs[regno] is in the " == NULL" branch.
8570 * No one could have freed the reference state before
8571 * doing the NULL check.
8572 */
8573 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 8574
c6a9efa1
PC
8575 for (i = 0; i <= vstate->curframe; i++)
8576 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
8577}
8578
5beca081
DB
8579static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8580 struct bpf_reg_state *dst_reg,
8581 struct bpf_reg_state *src_reg,
8582 struct bpf_verifier_state *this_branch,
8583 struct bpf_verifier_state *other_branch)
8584{
8585 if (BPF_SRC(insn->code) != BPF_X)
8586 return false;
8587
092ed096
JW
8588 /* Pointers are always 64-bit. */
8589 if (BPF_CLASS(insn->code) == BPF_JMP32)
8590 return false;
8591
5beca081
DB
8592 switch (BPF_OP(insn->code)) {
8593 case BPF_JGT:
8594 if ((dst_reg->type == PTR_TO_PACKET &&
8595 src_reg->type == PTR_TO_PACKET_END) ||
8596 (dst_reg->type == PTR_TO_PACKET_META &&
8597 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8598 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8599 find_good_pkt_pointers(this_branch, dst_reg,
8600 dst_reg->type, false);
6d94e741 8601 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
8602 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8603 src_reg->type == PTR_TO_PACKET) ||
8604 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8605 src_reg->type == PTR_TO_PACKET_META)) {
8606 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8607 find_good_pkt_pointers(other_branch, src_reg,
8608 src_reg->type, true);
6d94e741 8609 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
8610 } else {
8611 return false;
8612 }
8613 break;
8614 case BPF_JLT:
8615 if ((dst_reg->type == PTR_TO_PACKET &&
8616 src_reg->type == PTR_TO_PACKET_END) ||
8617 (dst_reg->type == PTR_TO_PACKET_META &&
8618 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8619 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8620 find_good_pkt_pointers(other_branch, dst_reg,
8621 dst_reg->type, true);
6d94e741 8622 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
8623 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8624 src_reg->type == PTR_TO_PACKET) ||
8625 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8626 src_reg->type == PTR_TO_PACKET_META)) {
8627 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8628 find_good_pkt_pointers(this_branch, src_reg,
8629 src_reg->type, false);
6d94e741 8630 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
8631 } else {
8632 return false;
8633 }
8634 break;
8635 case BPF_JGE:
8636 if ((dst_reg->type == PTR_TO_PACKET &&
8637 src_reg->type == PTR_TO_PACKET_END) ||
8638 (dst_reg->type == PTR_TO_PACKET_META &&
8639 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8640 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8641 find_good_pkt_pointers(this_branch, dst_reg,
8642 dst_reg->type, true);
6d94e741 8643 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
8644 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8645 src_reg->type == PTR_TO_PACKET) ||
8646 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8647 src_reg->type == PTR_TO_PACKET_META)) {
8648 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8649 find_good_pkt_pointers(other_branch, src_reg,
8650 src_reg->type, false);
6d94e741 8651 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
8652 } else {
8653 return false;
8654 }
8655 break;
8656 case BPF_JLE:
8657 if ((dst_reg->type == PTR_TO_PACKET &&
8658 src_reg->type == PTR_TO_PACKET_END) ||
8659 (dst_reg->type == PTR_TO_PACKET_META &&
8660 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8661 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8662 find_good_pkt_pointers(other_branch, dst_reg,
8663 dst_reg->type, false);
6d94e741 8664 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
8665 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8666 src_reg->type == PTR_TO_PACKET) ||
8667 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8668 src_reg->type == PTR_TO_PACKET_META)) {
8669 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8670 find_good_pkt_pointers(this_branch, src_reg,
8671 src_reg->type, true);
6d94e741 8672 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
8673 } else {
8674 return false;
8675 }
8676 break;
8677 default:
8678 return false;
8679 }
8680
8681 return true;
8682}
8683
75748837
AS
8684static void find_equal_scalars(struct bpf_verifier_state *vstate,
8685 struct bpf_reg_state *known_reg)
8686{
8687 struct bpf_func_state *state;
8688 struct bpf_reg_state *reg;
8689 int i, j;
8690
8691 for (i = 0; i <= vstate->curframe; i++) {
8692 state = vstate->frame[i];
8693 for (j = 0; j < MAX_BPF_REG; j++) {
8694 reg = &state->regs[j];
8695 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8696 *reg = *known_reg;
8697 }
8698
8699 bpf_for_each_spilled_reg(j, state, reg) {
8700 if (!reg)
8701 continue;
8702 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8703 *reg = *known_reg;
8704 }
8705 }
8706}
8707
58e2af8b 8708static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
8709 struct bpf_insn *insn, int *insn_idx)
8710{
f4d7e40a
AS
8711 struct bpf_verifier_state *this_branch = env->cur_state;
8712 struct bpf_verifier_state *other_branch;
8713 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 8714 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 8715 u8 opcode = BPF_OP(insn->code);
092ed096 8716 bool is_jmp32;
fb8d251e 8717 int pred = -1;
17a52670
AS
8718 int err;
8719
092ed096
JW
8720 /* Only conditional jumps are expected to reach here. */
8721 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8722 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
8723 return -EINVAL;
8724 }
8725
8726 if (BPF_SRC(insn->code) == BPF_X) {
8727 if (insn->imm != 0) {
092ed096 8728 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
8729 return -EINVAL;
8730 }
8731
8732 /* check src1 operand */
dc503a8a 8733 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8734 if (err)
8735 return err;
1be7f75d
AS
8736
8737 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 8738 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
8739 insn->src_reg);
8740 return -EACCES;
8741 }
fb8d251e 8742 src_reg = &regs[insn->src_reg];
17a52670
AS
8743 } else {
8744 if (insn->src_reg != BPF_REG_0) {
092ed096 8745 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
8746 return -EINVAL;
8747 }
8748 }
8749
8750 /* check src2 operand */
dc503a8a 8751 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8752 if (err)
8753 return err;
8754
1a0dc1ac 8755 dst_reg = &regs[insn->dst_reg];
092ed096 8756 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 8757
3f50f132
JF
8758 if (BPF_SRC(insn->code) == BPF_K) {
8759 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8760 } else if (src_reg->type == SCALAR_VALUE &&
8761 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8762 pred = is_branch_taken(dst_reg,
8763 tnum_subreg(src_reg->var_off).value,
8764 opcode,
8765 is_jmp32);
8766 } else if (src_reg->type == SCALAR_VALUE &&
8767 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8768 pred = is_branch_taken(dst_reg,
8769 src_reg->var_off.value,
8770 opcode,
8771 is_jmp32);
6d94e741
AS
8772 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8773 reg_is_pkt_pointer_any(src_reg) &&
8774 !is_jmp32) {
8775 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
8776 }
8777
b5dc0163 8778 if (pred >= 0) {
cac616db
JF
8779 /* If we get here with a dst_reg pointer type it is because
8780 * above is_branch_taken() special cased the 0 comparison.
8781 */
8782 if (!__is_pointer_value(false, dst_reg))
8783 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
8784 if (BPF_SRC(insn->code) == BPF_X && !err &&
8785 !__is_pointer_value(false, src_reg))
b5dc0163
AS
8786 err = mark_chain_precision(env, insn->src_reg);
8787 if (err)
8788 return err;
8789 }
9183671a 8790
fb8d251e 8791 if (pred == 1) {
9183671a
DB
8792 /* Only follow the goto, ignore fall-through. If needed, push
8793 * the fall-through branch for simulation under speculative
8794 * execution.
8795 */
8796 if (!env->bypass_spec_v1 &&
8797 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8798 *insn_idx))
8799 return -EFAULT;
fb8d251e
AS
8800 *insn_idx += insn->off;
8801 return 0;
8802 } else if (pred == 0) {
9183671a
DB
8803 /* Only follow the fall-through branch, since that's where the
8804 * program will go. If needed, push the goto branch for
8805 * simulation under speculative execution.
fb8d251e 8806 */
9183671a
DB
8807 if (!env->bypass_spec_v1 &&
8808 !sanitize_speculative_path(env, insn,
8809 *insn_idx + insn->off + 1,
8810 *insn_idx))
8811 return -EFAULT;
fb8d251e 8812 return 0;
17a52670
AS
8813 }
8814
979d63d5
DB
8815 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8816 false);
17a52670
AS
8817 if (!other_branch)
8818 return -EFAULT;
f4d7e40a 8819 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 8820
48461135
JB
8821 /* detect if we are comparing against a constant value so we can adjust
8822 * our min/max values for our dst register.
f1174f77
EC
8823 * this is only legit if both are scalars (or pointers to the same
8824 * object, I suppose, but we don't support that right now), because
8825 * otherwise the different base pointers mean the offsets aren't
8826 * comparable.
48461135
JB
8827 */
8828 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 8829 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 8830
f1174f77 8831 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
8832 src_reg->type == SCALAR_VALUE) {
8833 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
8834 (is_jmp32 &&
8835 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 8836 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 8837 dst_reg,
3f50f132
JF
8838 src_reg->var_off.value,
8839 tnum_subreg(src_reg->var_off).value,
092ed096
JW
8840 opcode, is_jmp32);
8841 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
8842 (is_jmp32 &&
8843 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 8844 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 8845 src_reg,
3f50f132
JF
8846 dst_reg->var_off.value,
8847 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
8848 opcode, is_jmp32);
8849 else if (!is_jmp32 &&
8850 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 8851 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
8852 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8853 &other_branch_regs[insn->dst_reg],
092ed096 8854 src_reg, dst_reg, opcode);
e688c3db
AS
8855 if (src_reg->id &&
8856 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
8857 find_equal_scalars(this_branch, src_reg);
8858 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8859 }
8860
f1174f77
EC
8861 }
8862 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 8863 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
8864 dst_reg, insn->imm, (u32)insn->imm,
8865 opcode, is_jmp32);
48461135
JB
8866 }
8867
e688c3db
AS
8868 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8869 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
8870 find_equal_scalars(this_branch, dst_reg);
8871 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8872 }
8873
092ed096
JW
8874 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8875 * NOTE: these optimizations below are related with pointer comparison
8876 * which will never be JMP32.
8877 */
8878 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 8879 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
8880 reg_type_may_be_null(dst_reg->type)) {
8881 /* Mark all identical registers in each branch as either
57a09bf0
TG
8882 * safe or unknown depending R == 0 or R != 0 conditional.
8883 */
840b9615
JS
8884 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8885 opcode == BPF_JNE);
8886 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8887 opcode == BPF_JEQ);
5beca081
DB
8888 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8889 this_branch, other_branch) &&
8890 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
8891 verbose(env, "R%d pointer comparison prohibited\n",
8892 insn->dst_reg);
1be7f75d 8893 return -EACCES;
17a52670 8894 }
06ee7115 8895 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 8896 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
8897 return 0;
8898}
8899
17a52670 8900/* verify BPF_LD_IMM64 instruction */
58e2af8b 8901static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8902{
d8eca5bb 8903 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 8904 struct bpf_reg_state *regs = cur_regs(env);
4976b718 8905 struct bpf_reg_state *dst_reg;
d8eca5bb 8906 struct bpf_map *map;
17a52670
AS
8907 int err;
8908
8909 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 8910 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
8911 return -EINVAL;
8912 }
8913 if (insn->off != 0) {
61bd5218 8914 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
8915 return -EINVAL;
8916 }
8917
dc503a8a 8918 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8919 if (err)
8920 return err;
8921
4976b718 8922 dst_reg = &regs[insn->dst_reg];
6b173873 8923 if (insn->src_reg == 0) {
6b173873
JK
8924 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8925
4976b718 8926 dst_reg->type = SCALAR_VALUE;
b03c9f9f 8927 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 8928 return 0;
6b173873 8929 }
17a52670 8930
4976b718
HL
8931 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8932 mark_reg_known_zero(env, regs, insn->dst_reg);
8933
8934 dst_reg->type = aux->btf_var.reg_type;
8935 switch (dst_reg->type) {
8936 case PTR_TO_MEM:
8937 dst_reg->mem_size = aux->btf_var.mem_size;
8938 break;
8939 case PTR_TO_BTF_ID:
eaa6bcb7 8940 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 8941 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
8942 dst_reg->btf_id = aux->btf_var.btf_id;
8943 break;
8944 default:
8945 verbose(env, "bpf verifier is misconfigured\n");
8946 return -EFAULT;
8947 }
8948 return 0;
8949 }
8950
69c087ba
YS
8951 if (insn->src_reg == BPF_PSEUDO_FUNC) {
8952 struct bpf_prog_aux *aux = env->prog->aux;
8953 u32 subprogno = insn[1].imm;
8954
8955 if (!aux->func_info) {
8956 verbose(env, "missing btf func_info\n");
8957 return -EINVAL;
8958 }
8959 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8960 verbose(env, "callback function not static\n");
8961 return -EINVAL;
8962 }
8963
8964 dst_reg->type = PTR_TO_FUNC;
8965 dst_reg->subprogno = subprogno;
8966 return 0;
8967 }
8968
d8eca5bb
DB
8969 map = env->used_maps[aux->map_index];
8970 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 8971 dst_reg->map_ptr = map;
d8eca5bb 8972
387544bf
AS
8973 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8974 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
8975 dst_reg->type = PTR_TO_MAP_VALUE;
8976 dst_reg->off = aux->map_off;
d8eca5bb 8977 if (map_value_has_spin_lock(map))
4976b718 8978 dst_reg->id = ++env->id_gen;
387544bf
AS
8979 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8980 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 8981 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
8982 } else {
8983 verbose(env, "bpf verifier is misconfigured\n");
8984 return -EINVAL;
8985 }
17a52670 8986
17a52670
AS
8987 return 0;
8988}
8989
96be4325
DB
8990static bool may_access_skb(enum bpf_prog_type type)
8991{
8992 switch (type) {
8993 case BPF_PROG_TYPE_SOCKET_FILTER:
8994 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 8995 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
8996 return true;
8997 default:
8998 return false;
8999 }
9000}
9001
ddd872bc
AS
9002/* verify safety of LD_ABS|LD_IND instructions:
9003 * - they can only appear in the programs where ctx == skb
9004 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9005 * preserve R6-R9, and store return value into R0
9006 *
9007 * Implicit input:
9008 * ctx == skb == R6 == CTX
9009 *
9010 * Explicit input:
9011 * SRC == any register
9012 * IMM == 32-bit immediate
9013 *
9014 * Output:
9015 * R0 - 8/16/32-bit skb data converted to cpu endianness
9016 */
58e2af8b 9017static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9018{
638f5b90 9019 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9020 static const int ctx_reg = BPF_REG_6;
ddd872bc 9021 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9022 int i, err;
9023
7e40781c 9024 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9025 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9026 return -EINVAL;
9027 }
9028
e0cea7ce
DB
9029 if (!env->ops->gen_ld_abs) {
9030 verbose(env, "bpf verifier is misconfigured\n");
9031 return -EINVAL;
9032 }
9033
ddd872bc 9034 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9035 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9036 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9037 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9038 return -EINVAL;
9039 }
9040
9041 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9042 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9043 if (err)
9044 return err;
9045
fd978bf7
JS
9046 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9047 * gen_ld_abs() may terminate the program at runtime, leading to
9048 * reference leak.
9049 */
9050 err = check_reference_leak(env);
9051 if (err) {
9052 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9053 return err;
9054 }
9055
d83525ca
AS
9056 if (env->cur_state->active_spin_lock) {
9057 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9058 return -EINVAL;
9059 }
9060
6d4f151a 9061 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9062 verbose(env,
9063 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9064 return -EINVAL;
9065 }
9066
9067 if (mode == BPF_IND) {
9068 /* check explicit source operand */
dc503a8a 9069 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9070 if (err)
9071 return err;
9072 }
9073
6d4f151a
DB
9074 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9075 if (err < 0)
9076 return err;
9077
ddd872bc 9078 /* reset caller saved regs to unreadable */
dc503a8a 9079 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9080 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9081 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9082 }
ddd872bc
AS
9083
9084 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9085 * the value fetched from the packet.
9086 * Already marked as written above.
ddd872bc 9087 */
61bd5218 9088 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9089 /* ld_abs load up to 32-bit skb data. */
9090 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9091 return 0;
9092}
9093
390ee7e2
AS
9094static int check_return_code(struct bpf_verifier_env *env)
9095{
5cf1e914 9096 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9097 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9098 struct bpf_reg_state *reg;
9099 struct tnum range = tnum_range(0, 1);
7e40781c 9100 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9101 int err;
f782e2c3 9102 const bool is_subprog = env->cur_state->frame[0]->subprogno;
27ae7997 9103
9e4e01df 9104 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9105 if (!is_subprog &&
9106 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9107 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9108 !prog->aux->attach_func_proto->type)
9109 return 0;
9110
8fb33b60 9111 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9112 * to return the value from eBPF program.
9113 * Make sure that it's readable at this time
9114 * of bpf_exit, which means that program wrote
9115 * something into it earlier
9116 */
9117 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9118 if (err)
9119 return err;
9120
9121 if (is_pointer_value(env, BPF_REG_0)) {
9122 verbose(env, "R0 leaks addr as return value\n");
9123 return -EACCES;
9124 }
390ee7e2 9125
f782e2c3
DB
9126 reg = cur_regs(env) + BPF_REG_0;
9127 if (is_subprog) {
9128 if (reg->type != SCALAR_VALUE) {
9129 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9130 reg_type_str[reg->type]);
9131 return -EINVAL;
9132 }
9133 return 0;
9134 }
9135
7e40781c 9136 switch (prog_type) {
983695fa
DB
9137 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9138 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9139 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9140 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9141 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9142 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9143 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9144 range = tnum_range(1, 1);
77241217
SF
9145 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9146 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9147 range = tnum_range(0, 3);
ed4ed404 9148 break;
390ee7e2 9149 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9150 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9151 range = tnum_range(0, 3);
9152 enforce_attach_type_range = tnum_range(2, 3);
9153 }
ed4ed404 9154 break;
390ee7e2
AS
9155 case BPF_PROG_TYPE_CGROUP_SOCK:
9156 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9157 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9158 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9159 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9160 break;
15ab09bd
AS
9161 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9162 if (!env->prog->aux->attach_btf_id)
9163 return 0;
9164 range = tnum_const(0);
9165 break;
15d83c4d 9166 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9167 switch (env->prog->expected_attach_type) {
9168 case BPF_TRACE_FENTRY:
9169 case BPF_TRACE_FEXIT:
9170 range = tnum_const(0);
9171 break;
9172 case BPF_TRACE_RAW_TP:
9173 case BPF_MODIFY_RETURN:
15d83c4d 9174 return 0;
2ec0616e
DB
9175 case BPF_TRACE_ITER:
9176 break;
e92888c7
YS
9177 default:
9178 return -ENOTSUPP;
9179 }
15d83c4d 9180 break;
e9ddbb77
JS
9181 case BPF_PROG_TYPE_SK_LOOKUP:
9182 range = tnum_range(SK_DROP, SK_PASS);
9183 break;
e92888c7
YS
9184 case BPF_PROG_TYPE_EXT:
9185 /* freplace program can return anything as its return value
9186 * depends on the to-be-replaced kernel func or bpf program.
9187 */
390ee7e2
AS
9188 default:
9189 return 0;
9190 }
9191
390ee7e2 9192 if (reg->type != SCALAR_VALUE) {
61bd5218 9193 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9194 reg_type_str[reg->type]);
9195 return -EINVAL;
9196 }
9197
9198 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9199 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9200 return -EINVAL;
9201 }
5cf1e914 9202
9203 if (!tnum_is_unknown(enforce_attach_type_range) &&
9204 tnum_in(enforce_attach_type_range, reg->var_off))
9205 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9206 return 0;
9207}
9208
475fb78f
AS
9209/* non-recursive DFS pseudo code
9210 * 1 procedure DFS-iterative(G,v):
9211 * 2 label v as discovered
9212 * 3 let S be a stack
9213 * 4 S.push(v)
9214 * 5 while S is not empty
9215 * 6 t <- S.pop()
9216 * 7 if t is what we're looking for:
9217 * 8 return t
9218 * 9 for all edges e in G.adjacentEdges(t) do
9219 * 10 if edge e is already labelled
9220 * 11 continue with the next edge
9221 * 12 w <- G.adjacentVertex(t,e)
9222 * 13 if vertex w is not discovered and not explored
9223 * 14 label e as tree-edge
9224 * 15 label w as discovered
9225 * 16 S.push(w)
9226 * 17 continue at 5
9227 * 18 else if vertex w is discovered
9228 * 19 label e as back-edge
9229 * 20 else
9230 * 21 // vertex w is explored
9231 * 22 label e as forward- or cross-edge
9232 * 23 label t as explored
9233 * 24 S.pop()
9234 *
9235 * convention:
9236 * 0x10 - discovered
9237 * 0x11 - discovered and fall-through edge labelled
9238 * 0x12 - discovered and fall-through and branch edges labelled
9239 * 0x20 - explored
9240 */
9241
9242enum {
9243 DISCOVERED = 0x10,
9244 EXPLORED = 0x20,
9245 FALLTHROUGH = 1,
9246 BRANCH = 2,
9247};
9248
dc2a4ebc
AS
9249static u32 state_htab_size(struct bpf_verifier_env *env)
9250{
9251 return env->prog->len;
9252}
9253
5d839021
AS
9254static struct bpf_verifier_state_list **explored_state(
9255 struct bpf_verifier_env *env,
9256 int idx)
9257{
dc2a4ebc
AS
9258 struct bpf_verifier_state *cur = env->cur_state;
9259 struct bpf_func_state *state = cur->frame[cur->curframe];
9260
9261 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9262}
9263
9264static void init_explored_state(struct bpf_verifier_env *env, int idx)
9265{
a8f500af 9266 env->insn_aux_data[idx].prune_point = true;
5d839021 9267}
f1bca824 9268
59e2e27d
WAF
9269enum {
9270 DONE_EXPLORING = 0,
9271 KEEP_EXPLORING = 1,
9272};
9273
475fb78f
AS
9274/* t, w, e - match pseudo-code above:
9275 * t - index of current instruction
9276 * w - next instruction
9277 * e - edge
9278 */
2589726d
AS
9279static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9280 bool loop_ok)
475fb78f 9281{
7df737e9
AS
9282 int *insn_stack = env->cfg.insn_stack;
9283 int *insn_state = env->cfg.insn_state;
9284
475fb78f 9285 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9286 return DONE_EXPLORING;
475fb78f
AS
9287
9288 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9289 return DONE_EXPLORING;
475fb78f
AS
9290
9291 if (w < 0 || w >= env->prog->len) {
d9762e84 9292 verbose_linfo(env, t, "%d: ", t);
61bd5218 9293 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9294 return -EINVAL;
9295 }
9296
f1bca824
AS
9297 if (e == BRANCH)
9298 /* mark branch target for state pruning */
5d839021 9299 init_explored_state(env, w);
f1bca824 9300
475fb78f
AS
9301 if (insn_state[w] == 0) {
9302 /* tree-edge */
9303 insn_state[t] = DISCOVERED | e;
9304 insn_state[w] = DISCOVERED;
7df737e9 9305 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9306 return -E2BIG;
7df737e9 9307 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9308 return KEEP_EXPLORING;
475fb78f 9309 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9310 if (loop_ok && env->bpf_capable)
59e2e27d 9311 return DONE_EXPLORING;
d9762e84
MKL
9312 verbose_linfo(env, t, "%d: ", t);
9313 verbose_linfo(env, w, "%d: ", w);
61bd5218 9314 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9315 return -EINVAL;
9316 } else if (insn_state[w] == EXPLORED) {
9317 /* forward- or cross-edge */
9318 insn_state[t] = DISCOVERED | e;
9319 } else {
61bd5218 9320 verbose(env, "insn state internal bug\n");
475fb78f
AS
9321 return -EFAULT;
9322 }
59e2e27d
WAF
9323 return DONE_EXPLORING;
9324}
9325
efdb22de
YS
9326static int visit_func_call_insn(int t, int insn_cnt,
9327 struct bpf_insn *insns,
9328 struct bpf_verifier_env *env,
9329 bool visit_callee)
9330{
9331 int ret;
9332
9333 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9334 if (ret)
9335 return ret;
9336
9337 if (t + 1 < insn_cnt)
9338 init_explored_state(env, t + 1);
9339 if (visit_callee) {
9340 init_explored_state(env, t);
9341 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9342 env, false);
9343 }
9344 return ret;
9345}
9346
59e2e27d
WAF
9347/* Visits the instruction at index t and returns one of the following:
9348 * < 0 - an error occurred
9349 * DONE_EXPLORING - the instruction was fully explored
9350 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9351 */
9352static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9353{
9354 struct bpf_insn *insns = env->prog->insnsi;
9355 int ret;
9356
69c087ba
YS
9357 if (bpf_pseudo_func(insns + t))
9358 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9359
59e2e27d
WAF
9360 /* All non-branch instructions have a single fall-through edge. */
9361 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9362 BPF_CLASS(insns[t].code) != BPF_JMP32)
9363 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9364
9365 switch (BPF_OP(insns[t].code)) {
9366 case BPF_EXIT:
9367 return DONE_EXPLORING;
9368
9369 case BPF_CALL:
efdb22de
YS
9370 return visit_func_call_insn(t, insn_cnt, insns, env,
9371 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9372
9373 case BPF_JA:
9374 if (BPF_SRC(insns[t].code) != BPF_K)
9375 return -EINVAL;
9376
9377 /* unconditional jump with single edge */
9378 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9379 true);
9380 if (ret)
9381 return ret;
9382
9383 /* unconditional jmp is not a good pruning point,
9384 * but it's marked, since backtracking needs
9385 * to record jmp history in is_state_visited().
9386 */
9387 init_explored_state(env, t + insns[t].off + 1);
9388 /* tell verifier to check for equivalent states
9389 * after every call and jump
9390 */
9391 if (t + 1 < insn_cnt)
9392 init_explored_state(env, t + 1);
9393
9394 return ret;
9395
9396 default:
9397 /* conditional jump with two edges */
9398 init_explored_state(env, t);
9399 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9400 if (ret)
9401 return ret;
9402
9403 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9404 }
475fb78f
AS
9405}
9406
9407/* non-recursive depth-first-search to detect loops in BPF program
9408 * loop == back-edge in directed graph
9409 */
58e2af8b 9410static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9411{
475fb78f 9412 int insn_cnt = env->prog->len;
7df737e9 9413 int *insn_stack, *insn_state;
475fb78f 9414 int ret = 0;
59e2e27d 9415 int i;
475fb78f 9416
7df737e9 9417 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9418 if (!insn_state)
9419 return -ENOMEM;
9420
7df737e9 9421 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 9422 if (!insn_stack) {
71dde681 9423 kvfree(insn_state);
475fb78f
AS
9424 return -ENOMEM;
9425 }
9426
9427 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9428 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 9429 env->cfg.cur_stack = 1;
475fb78f 9430
59e2e27d
WAF
9431 while (env->cfg.cur_stack > 0) {
9432 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 9433
59e2e27d
WAF
9434 ret = visit_insn(t, insn_cnt, env);
9435 switch (ret) {
9436 case DONE_EXPLORING:
9437 insn_state[t] = EXPLORED;
9438 env->cfg.cur_stack--;
9439 break;
9440 case KEEP_EXPLORING:
9441 break;
9442 default:
9443 if (ret > 0) {
9444 verbose(env, "visit_insn internal bug\n");
9445 ret = -EFAULT;
475fb78f 9446 }
475fb78f 9447 goto err_free;
59e2e27d 9448 }
475fb78f
AS
9449 }
9450
59e2e27d 9451 if (env->cfg.cur_stack < 0) {
61bd5218 9452 verbose(env, "pop stack internal bug\n");
475fb78f
AS
9453 ret = -EFAULT;
9454 goto err_free;
9455 }
475fb78f 9456
475fb78f
AS
9457 for (i = 0; i < insn_cnt; i++) {
9458 if (insn_state[i] != EXPLORED) {
61bd5218 9459 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
9460 ret = -EINVAL;
9461 goto err_free;
9462 }
9463 }
9464 ret = 0; /* cfg looks good */
9465
9466err_free:
71dde681
AS
9467 kvfree(insn_state);
9468 kvfree(insn_stack);
7df737e9 9469 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
9470 return ret;
9471}
9472
09b28d76
AS
9473static int check_abnormal_return(struct bpf_verifier_env *env)
9474{
9475 int i;
9476
9477 for (i = 1; i < env->subprog_cnt; i++) {
9478 if (env->subprog_info[i].has_ld_abs) {
9479 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9480 return -EINVAL;
9481 }
9482 if (env->subprog_info[i].has_tail_call) {
9483 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9484 return -EINVAL;
9485 }
9486 }
9487 return 0;
9488}
9489
838e9690
YS
9490/* The minimum supported BTF func info size */
9491#define MIN_BPF_FUNCINFO_SIZE 8
9492#define MAX_FUNCINFO_REC_SIZE 252
9493
c454a46b
MKL
9494static int check_btf_func(struct bpf_verifier_env *env,
9495 const union bpf_attr *attr,
af2ac3e1 9496 bpfptr_t uattr)
838e9690 9497{
09b28d76 9498 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 9499 u32 i, nfuncs, urec_size, min_size;
838e9690 9500 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 9501 struct bpf_func_info *krecord;
8c1b6e69 9502 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
9503 struct bpf_prog *prog;
9504 const struct btf *btf;
af2ac3e1 9505 bpfptr_t urecord;
d0b2818e 9506 u32 prev_offset = 0;
09b28d76 9507 bool scalar_return;
e7ed83d6 9508 int ret = -ENOMEM;
838e9690
YS
9509
9510 nfuncs = attr->func_info_cnt;
09b28d76
AS
9511 if (!nfuncs) {
9512 if (check_abnormal_return(env))
9513 return -EINVAL;
838e9690 9514 return 0;
09b28d76 9515 }
838e9690
YS
9516
9517 if (nfuncs != env->subprog_cnt) {
9518 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9519 return -EINVAL;
9520 }
9521
9522 urec_size = attr->func_info_rec_size;
9523 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9524 urec_size > MAX_FUNCINFO_REC_SIZE ||
9525 urec_size % sizeof(u32)) {
9526 verbose(env, "invalid func info rec size %u\n", urec_size);
9527 return -EINVAL;
9528 }
9529
c454a46b
MKL
9530 prog = env->prog;
9531 btf = prog->aux->btf;
838e9690 9532
af2ac3e1 9533 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
9534 min_size = min_t(u32, krec_size, urec_size);
9535
ba64e7d8 9536 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
9537 if (!krecord)
9538 return -ENOMEM;
8c1b6e69
AS
9539 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9540 if (!info_aux)
9541 goto err_free;
ba64e7d8 9542
838e9690
YS
9543 for (i = 0; i < nfuncs; i++) {
9544 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9545 if (ret) {
9546 if (ret == -E2BIG) {
9547 verbose(env, "nonzero tailing record in func info");
9548 /* set the size kernel expects so loader can zero
9549 * out the rest of the record.
9550 */
af2ac3e1
AS
9551 if (copy_to_bpfptr_offset(uattr,
9552 offsetof(union bpf_attr, func_info_rec_size),
9553 &min_size, sizeof(min_size)))
838e9690
YS
9554 ret = -EFAULT;
9555 }
c454a46b 9556 goto err_free;
838e9690
YS
9557 }
9558
af2ac3e1 9559 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 9560 ret = -EFAULT;
c454a46b 9561 goto err_free;
838e9690
YS
9562 }
9563
d30d42e0 9564 /* check insn_off */
09b28d76 9565 ret = -EINVAL;
838e9690 9566 if (i == 0) {
d30d42e0 9567 if (krecord[i].insn_off) {
838e9690 9568 verbose(env,
d30d42e0
MKL
9569 "nonzero insn_off %u for the first func info record",
9570 krecord[i].insn_off);
c454a46b 9571 goto err_free;
838e9690 9572 }
d30d42e0 9573 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
9574 verbose(env,
9575 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 9576 krecord[i].insn_off, prev_offset);
c454a46b 9577 goto err_free;
838e9690
YS
9578 }
9579
d30d42e0 9580 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 9581 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 9582 goto err_free;
838e9690
YS
9583 }
9584
9585 /* check type_id */
ba64e7d8 9586 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 9587 if (!type || !btf_type_is_func(type)) {
838e9690 9588 verbose(env, "invalid type id %d in func info",
ba64e7d8 9589 krecord[i].type_id);
c454a46b 9590 goto err_free;
838e9690 9591 }
51c39bb1 9592 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
9593
9594 func_proto = btf_type_by_id(btf, type->type);
9595 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9596 /* btf_func_check() already verified it during BTF load */
9597 goto err_free;
9598 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9599 scalar_return =
9600 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9601 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9602 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9603 goto err_free;
9604 }
9605 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9606 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9607 goto err_free;
9608 }
9609
d30d42e0 9610 prev_offset = krecord[i].insn_off;
af2ac3e1 9611 bpfptr_add(&urecord, urec_size);
838e9690
YS
9612 }
9613
ba64e7d8
YS
9614 prog->aux->func_info = krecord;
9615 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 9616 prog->aux->func_info_aux = info_aux;
838e9690
YS
9617 return 0;
9618
c454a46b 9619err_free:
ba64e7d8 9620 kvfree(krecord);
8c1b6e69 9621 kfree(info_aux);
838e9690
YS
9622 return ret;
9623}
9624
ba64e7d8
YS
9625static void adjust_btf_func(struct bpf_verifier_env *env)
9626{
8c1b6e69 9627 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
9628 int i;
9629
8c1b6e69 9630 if (!aux->func_info)
ba64e7d8
YS
9631 return;
9632
9633 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 9634 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
9635}
9636
c454a46b
MKL
9637#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
9638 sizeof(((struct bpf_line_info *)(0))->line_col))
9639#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
9640
9641static int check_btf_line(struct bpf_verifier_env *env,
9642 const union bpf_attr *attr,
af2ac3e1 9643 bpfptr_t uattr)
c454a46b
MKL
9644{
9645 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9646 struct bpf_subprog_info *sub;
9647 struct bpf_line_info *linfo;
9648 struct bpf_prog *prog;
9649 const struct btf *btf;
af2ac3e1 9650 bpfptr_t ulinfo;
c454a46b
MKL
9651 int err;
9652
9653 nr_linfo = attr->line_info_cnt;
9654 if (!nr_linfo)
9655 return 0;
9656
9657 rec_size = attr->line_info_rec_size;
9658 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9659 rec_size > MAX_LINEINFO_REC_SIZE ||
9660 rec_size & (sizeof(u32) - 1))
9661 return -EINVAL;
9662
9663 /* Need to zero it in case the userspace may
9664 * pass in a smaller bpf_line_info object.
9665 */
9666 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9667 GFP_KERNEL | __GFP_NOWARN);
9668 if (!linfo)
9669 return -ENOMEM;
9670
9671 prog = env->prog;
9672 btf = prog->aux->btf;
9673
9674 s = 0;
9675 sub = env->subprog_info;
af2ac3e1 9676 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
9677 expected_size = sizeof(struct bpf_line_info);
9678 ncopy = min_t(u32, expected_size, rec_size);
9679 for (i = 0; i < nr_linfo; i++) {
9680 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9681 if (err) {
9682 if (err == -E2BIG) {
9683 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
9684 if (copy_to_bpfptr_offset(uattr,
9685 offsetof(union bpf_attr, line_info_rec_size),
9686 &expected_size, sizeof(expected_size)))
c454a46b
MKL
9687 err = -EFAULT;
9688 }
9689 goto err_free;
9690 }
9691
af2ac3e1 9692 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
9693 err = -EFAULT;
9694 goto err_free;
9695 }
9696
9697 /*
9698 * Check insn_off to ensure
9699 * 1) strictly increasing AND
9700 * 2) bounded by prog->len
9701 *
9702 * The linfo[0].insn_off == 0 check logically falls into
9703 * the later "missing bpf_line_info for func..." case
9704 * because the first linfo[0].insn_off must be the
9705 * first sub also and the first sub must have
9706 * subprog_info[0].start == 0.
9707 */
9708 if ((i && linfo[i].insn_off <= prev_offset) ||
9709 linfo[i].insn_off >= prog->len) {
9710 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9711 i, linfo[i].insn_off, prev_offset,
9712 prog->len);
9713 err = -EINVAL;
9714 goto err_free;
9715 }
9716
fdbaa0be
MKL
9717 if (!prog->insnsi[linfo[i].insn_off].code) {
9718 verbose(env,
9719 "Invalid insn code at line_info[%u].insn_off\n",
9720 i);
9721 err = -EINVAL;
9722 goto err_free;
9723 }
9724
23127b33
MKL
9725 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9726 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
9727 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9728 err = -EINVAL;
9729 goto err_free;
9730 }
9731
9732 if (s != env->subprog_cnt) {
9733 if (linfo[i].insn_off == sub[s].start) {
9734 sub[s].linfo_idx = i;
9735 s++;
9736 } else if (sub[s].start < linfo[i].insn_off) {
9737 verbose(env, "missing bpf_line_info for func#%u\n", s);
9738 err = -EINVAL;
9739 goto err_free;
9740 }
9741 }
9742
9743 prev_offset = linfo[i].insn_off;
af2ac3e1 9744 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
9745 }
9746
9747 if (s != env->subprog_cnt) {
9748 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9749 env->subprog_cnt - s, s);
9750 err = -EINVAL;
9751 goto err_free;
9752 }
9753
9754 prog->aux->linfo = linfo;
9755 prog->aux->nr_linfo = nr_linfo;
9756
9757 return 0;
9758
9759err_free:
9760 kvfree(linfo);
9761 return err;
9762}
9763
9764static int check_btf_info(struct bpf_verifier_env *env,
9765 const union bpf_attr *attr,
af2ac3e1 9766 bpfptr_t uattr)
c454a46b
MKL
9767{
9768 struct btf *btf;
9769 int err;
9770
09b28d76
AS
9771 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9772 if (check_abnormal_return(env))
9773 return -EINVAL;
c454a46b 9774 return 0;
09b28d76 9775 }
c454a46b
MKL
9776
9777 btf = btf_get_by_fd(attr->prog_btf_fd);
9778 if (IS_ERR(btf))
9779 return PTR_ERR(btf);
350a5c4d
AS
9780 if (btf_is_kernel(btf)) {
9781 btf_put(btf);
9782 return -EACCES;
9783 }
c454a46b
MKL
9784 env->prog->aux->btf = btf;
9785
9786 err = check_btf_func(env, attr, uattr);
9787 if (err)
9788 return err;
9789
9790 err = check_btf_line(env, attr, uattr);
9791 if (err)
9792 return err;
9793
9794 return 0;
ba64e7d8
YS
9795}
9796
f1174f77
EC
9797/* check %cur's range satisfies %old's */
9798static bool range_within(struct bpf_reg_state *old,
9799 struct bpf_reg_state *cur)
9800{
b03c9f9f
EC
9801 return old->umin_value <= cur->umin_value &&
9802 old->umax_value >= cur->umax_value &&
9803 old->smin_value <= cur->smin_value &&
fd675184
DB
9804 old->smax_value >= cur->smax_value &&
9805 old->u32_min_value <= cur->u32_min_value &&
9806 old->u32_max_value >= cur->u32_max_value &&
9807 old->s32_min_value <= cur->s32_min_value &&
9808 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
9809}
9810
f1174f77
EC
9811/* If in the old state two registers had the same id, then they need to have
9812 * the same id in the new state as well. But that id could be different from
9813 * the old state, so we need to track the mapping from old to new ids.
9814 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9815 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9816 * regs with a different old id could still have new id 9, we don't care about
9817 * that.
9818 * So we look through our idmap to see if this old id has been seen before. If
9819 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 9820 */
c9e73e3d 9821static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 9822{
f1174f77 9823 unsigned int i;
969bf05e 9824
c9e73e3d 9825 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
9826 if (!idmap[i].old) {
9827 /* Reached an empty slot; haven't seen this id before */
9828 idmap[i].old = old_id;
9829 idmap[i].cur = cur_id;
9830 return true;
9831 }
9832 if (idmap[i].old == old_id)
9833 return idmap[i].cur == cur_id;
9834 }
9835 /* We ran out of idmap slots, which should be impossible */
9836 WARN_ON_ONCE(1);
9837 return false;
9838}
9839
9242b5f5
AS
9840static void clean_func_state(struct bpf_verifier_env *env,
9841 struct bpf_func_state *st)
9842{
9843 enum bpf_reg_liveness live;
9844 int i, j;
9845
9846 for (i = 0; i < BPF_REG_FP; i++) {
9847 live = st->regs[i].live;
9848 /* liveness must not touch this register anymore */
9849 st->regs[i].live |= REG_LIVE_DONE;
9850 if (!(live & REG_LIVE_READ))
9851 /* since the register is unused, clear its state
9852 * to make further comparison simpler
9853 */
f54c7898 9854 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
9855 }
9856
9857 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9858 live = st->stack[i].spilled_ptr.live;
9859 /* liveness must not touch this stack slot anymore */
9860 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9861 if (!(live & REG_LIVE_READ)) {
f54c7898 9862 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
9863 for (j = 0; j < BPF_REG_SIZE; j++)
9864 st->stack[i].slot_type[j] = STACK_INVALID;
9865 }
9866 }
9867}
9868
9869static void clean_verifier_state(struct bpf_verifier_env *env,
9870 struct bpf_verifier_state *st)
9871{
9872 int i;
9873
9874 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9875 /* all regs in this state in all frames were already marked */
9876 return;
9877
9878 for (i = 0; i <= st->curframe; i++)
9879 clean_func_state(env, st->frame[i]);
9880}
9881
9882/* the parentage chains form a tree.
9883 * the verifier states are added to state lists at given insn and
9884 * pushed into state stack for future exploration.
9885 * when the verifier reaches bpf_exit insn some of the verifer states
9886 * stored in the state lists have their final liveness state already,
9887 * but a lot of states will get revised from liveness point of view when
9888 * the verifier explores other branches.
9889 * Example:
9890 * 1: r0 = 1
9891 * 2: if r1 == 100 goto pc+1
9892 * 3: r0 = 2
9893 * 4: exit
9894 * when the verifier reaches exit insn the register r0 in the state list of
9895 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9896 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9897 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9898 *
9899 * Since the verifier pushes the branch states as it sees them while exploring
9900 * the program the condition of walking the branch instruction for the second
9901 * time means that all states below this branch were already explored and
8fb33b60 9902 * their final liveness marks are already propagated.
9242b5f5
AS
9903 * Hence when the verifier completes the search of state list in is_state_visited()
9904 * we can call this clean_live_states() function to mark all liveness states
9905 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9906 * will not be used.
9907 * This function also clears the registers and stack for states that !READ
9908 * to simplify state merging.
9909 *
9910 * Important note here that walking the same branch instruction in the callee
9911 * doesn't meant that the states are DONE. The verifier has to compare
9912 * the callsites
9913 */
9914static void clean_live_states(struct bpf_verifier_env *env, int insn,
9915 struct bpf_verifier_state *cur)
9916{
9917 struct bpf_verifier_state_list *sl;
9918 int i;
9919
5d839021 9920 sl = *explored_state(env, insn);
a8f500af 9921 while (sl) {
2589726d
AS
9922 if (sl->state.branches)
9923 goto next;
dc2a4ebc
AS
9924 if (sl->state.insn_idx != insn ||
9925 sl->state.curframe != cur->curframe)
9242b5f5
AS
9926 goto next;
9927 for (i = 0; i <= cur->curframe; i++)
9928 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9929 goto next;
9930 clean_verifier_state(env, &sl->state);
9931next:
9932 sl = sl->next;
9933 }
9934}
9935
f1174f77 9936/* Returns true if (rold safe implies rcur safe) */
1b688a19 9937static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
c9e73e3d 9938 struct bpf_id_pair *idmap)
f1174f77 9939{
f4d7e40a
AS
9940 bool equal;
9941
dc503a8a
EC
9942 if (!(rold->live & REG_LIVE_READ))
9943 /* explored state didn't use this */
9944 return true;
9945
679c782d 9946 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
9947
9948 if (rold->type == PTR_TO_STACK)
9949 /* two stack pointers are equal only if they're pointing to
9950 * the same stack frame, since fp-8 in foo != fp-8 in bar
9951 */
9952 return equal && rold->frameno == rcur->frameno;
9953
9954 if (equal)
969bf05e
AS
9955 return true;
9956
f1174f77
EC
9957 if (rold->type == NOT_INIT)
9958 /* explored state can't have used this */
969bf05e 9959 return true;
f1174f77
EC
9960 if (rcur->type == NOT_INIT)
9961 return false;
9962 switch (rold->type) {
9963 case SCALAR_VALUE:
9964 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
9965 if (!rold->precise && !rcur->precise)
9966 return true;
f1174f77
EC
9967 /* new val must satisfy old val knowledge */
9968 return range_within(rold, rcur) &&
9969 tnum_in(rold->var_off, rcur->var_off);
9970 } else {
179d1c56
JH
9971 /* We're trying to use a pointer in place of a scalar.
9972 * Even if the scalar was unbounded, this could lead to
9973 * pointer leaks because scalars are allowed to leak
9974 * while pointers are not. We could make this safe in
9975 * special cases if root is calling us, but it's
9976 * probably not worth the hassle.
f1174f77 9977 */
179d1c56 9978 return false;
f1174f77 9979 }
69c087ba 9980 case PTR_TO_MAP_KEY:
f1174f77 9981 case PTR_TO_MAP_VALUE:
1b688a19
EC
9982 /* If the new min/max/var_off satisfy the old ones and
9983 * everything else matches, we are OK.
d83525ca
AS
9984 * 'id' is not compared, since it's only used for maps with
9985 * bpf_spin_lock inside map element and in such cases if
9986 * the rest of the prog is valid for one map element then
9987 * it's valid for all map elements regardless of the key
9988 * used in bpf_map_lookup()
1b688a19
EC
9989 */
9990 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9991 range_within(rold, rcur) &&
9992 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
9993 case PTR_TO_MAP_VALUE_OR_NULL:
9994 /* a PTR_TO_MAP_VALUE could be safe to use as a
9995 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9996 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9997 * checked, doing so could have affected others with the same
9998 * id, and we can't check for that because we lost the id when
9999 * we converted to a PTR_TO_MAP_VALUE.
10000 */
10001 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10002 return false;
10003 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10004 return false;
10005 /* Check our ids match any regs they're supposed to */
10006 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 10007 case PTR_TO_PACKET_META:
f1174f77 10008 case PTR_TO_PACKET:
de8f3a83 10009 if (rcur->type != rold->type)
f1174f77
EC
10010 return false;
10011 /* We must have at least as much range as the old ptr
10012 * did, so that any accesses which were safe before are
10013 * still safe. This is true even if old range < old off,
10014 * since someone could have accessed through (ptr - k), or
10015 * even done ptr -= k in a register, to get a safe access.
10016 */
10017 if (rold->range > rcur->range)
10018 return false;
10019 /* If the offsets don't match, we can't trust our alignment;
10020 * nor can we be sure that we won't fall out of range.
10021 */
10022 if (rold->off != rcur->off)
10023 return false;
10024 /* id relations must be preserved */
10025 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10026 return false;
10027 /* new val must satisfy old val knowledge */
10028 return range_within(rold, rcur) &&
10029 tnum_in(rold->var_off, rcur->var_off);
10030 case PTR_TO_CTX:
10031 case CONST_PTR_TO_MAP:
f1174f77 10032 case PTR_TO_PACKET_END:
d58e468b 10033 case PTR_TO_FLOW_KEYS:
c64b7983
JS
10034 case PTR_TO_SOCKET:
10035 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10036 case PTR_TO_SOCK_COMMON:
10037 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10038 case PTR_TO_TCP_SOCK:
10039 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10040 case PTR_TO_XDP_SOCK:
f1174f77
EC
10041 /* Only valid matches are exact, which memcmp() above
10042 * would have accepted
10043 */
10044 default:
10045 /* Don't know what's going on, just say it's not safe */
10046 return false;
10047 }
969bf05e 10048
f1174f77
EC
10049 /* Shouldn't get here; if we do, say it's not safe */
10050 WARN_ON_ONCE(1);
969bf05e
AS
10051 return false;
10052}
10053
f4d7e40a
AS
10054static bool stacksafe(struct bpf_func_state *old,
10055 struct bpf_func_state *cur,
c9e73e3d 10056 struct bpf_id_pair *idmap)
638f5b90
AS
10057{
10058 int i, spi;
10059
638f5b90
AS
10060 /* walk slots of the explored stack and ignore any additional
10061 * slots in the current stack, since explored(safe) state
10062 * didn't use them
10063 */
10064 for (i = 0; i < old->allocated_stack; i++) {
10065 spi = i / BPF_REG_SIZE;
10066
b233920c
AS
10067 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10068 i += BPF_REG_SIZE - 1;
cc2b14d5 10069 /* explored state didn't use this */
fd05e57b 10070 continue;
b233920c 10071 }
cc2b14d5 10072
638f5b90
AS
10073 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10074 continue;
19e2dbb7
AS
10075
10076 /* explored stack has more populated slots than current stack
10077 * and these slots were used
10078 */
10079 if (i >= cur->allocated_stack)
10080 return false;
10081
cc2b14d5
AS
10082 /* if old state was safe with misc data in the stack
10083 * it will be safe with zero-initialized stack.
10084 * The opposite is not true
10085 */
10086 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10087 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10088 continue;
638f5b90
AS
10089 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10090 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10091 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10092 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10093 * this verifier states are not equivalent,
10094 * return false to continue verification of this path
10095 */
10096 return false;
10097 if (i % BPF_REG_SIZE)
10098 continue;
10099 if (old->stack[spi].slot_type[0] != STACK_SPILL)
10100 continue;
10101 if (!regsafe(&old->stack[spi].spilled_ptr,
10102 &cur->stack[spi].spilled_ptr,
10103 idmap))
10104 /* when explored and current stack slot are both storing
10105 * spilled registers, check that stored pointers types
10106 * are the same as well.
10107 * Ex: explored safe path could have stored
10108 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10109 * but current path has stored:
10110 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10111 * such verifier states are not equivalent.
10112 * return false to continue verification of this path
10113 */
10114 return false;
10115 }
10116 return true;
10117}
10118
fd978bf7
JS
10119static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10120{
10121 if (old->acquired_refs != cur->acquired_refs)
10122 return false;
10123 return !memcmp(old->refs, cur->refs,
10124 sizeof(*old->refs) * old->acquired_refs);
10125}
10126
f1bca824
AS
10127/* compare two verifier states
10128 *
10129 * all states stored in state_list are known to be valid, since
10130 * verifier reached 'bpf_exit' instruction through them
10131 *
10132 * this function is called when verifier exploring different branches of
10133 * execution popped from the state stack. If it sees an old state that has
10134 * more strict register state and more strict stack state then this execution
10135 * branch doesn't need to be explored further, since verifier already
10136 * concluded that more strict state leads to valid finish.
10137 *
10138 * Therefore two states are equivalent if register state is more conservative
10139 * and explored stack state is more conservative than the current one.
10140 * Example:
10141 * explored current
10142 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10143 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10144 *
10145 * In other words if current stack state (one being explored) has more
10146 * valid slots than old one that already passed validation, it means
10147 * the verifier can stop exploring and conclude that current state is valid too
10148 *
10149 * Similarly with registers. If explored state has register type as invalid
10150 * whereas register type in current state is meaningful, it means that
10151 * the current state will reach 'bpf_exit' instruction safely
10152 */
c9e73e3d 10153static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 10154 struct bpf_func_state *cur)
f1bca824
AS
10155{
10156 int i;
10157
c9e73e3d
LB
10158 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10159 for (i = 0; i < MAX_BPF_REG; i++)
10160 if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch))
10161 return false;
f1bca824 10162
c9e73e3d
LB
10163 if (!stacksafe(old, cur, env->idmap_scratch))
10164 return false;
fd978bf7
JS
10165
10166 if (!refsafe(old, cur))
c9e73e3d
LB
10167 return false;
10168
10169 return true;
f1bca824
AS
10170}
10171
f4d7e40a
AS
10172static bool states_equal(struct bpf_verifier_env *env,
10173 struct bpf_verifier_state *old,
10174 struct bpf_verifier_state *cur)
10175{
10176 int i;
10177
10178 if (old->curframe != cur->curframe)
10179 return false;
10180
979d63d5
DB
10181 /* Verification state from speculative execution simulation
10182 * must never prune a non-speculative execution one.
10183 */
10184 if (old->speculative && !cur->speculative)
10185 return false;
10186
d83525ca
AS
10187 if (old->active_spin_lock != cur->active_spin_lock)
10188 return false;
10189
f4d7e40a
AS
10190 /* for states to be equal callsites have to be the same
10191 * and all frame states need to be equivalent
10192 */
10193 for (i = 0; i <= old->curframe; i++) {
10194 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10195 return false;
c9e73e3d 10196 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
10197 return false;
10198 }
10199 return true;
10200}
10201
5327ed3d
JW
10202/* Return 0 if no propagation happened. Return negative error code if error
10203 * happened. Otherwise, return the propagated bit.
10204 */
55e7f3b5
JW
10205static int propagate_liveness_reg(struct bpf_verifier_env *env,
10206 struct bpf_reg_state *reg,
10207 struct bpf_reg_state *parent_reg)
10208{
5327ed3d
JW
10209 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10210 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10211 int err;
10212
5327ed3d
JW
10213 /* When comes here, read flags of PARENT_REG or REG could be any of
10214 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10215 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10216 */
10217 if (parent_flag == REG_LIVE_READ64 ||
10218 /* Or if there is no read flag from REG. */
10219 !flag ||
10220 /* Or if the read flag from REG is the same as PARENT_REG. */
10221 parent_flag == flag)
55e7f3b5
JW
10222 return 0;
10223
5327ed3d 10224 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10225 if (err)
10226 return err;
10227
5327ed3d 10228 return flag;
55e7f3b5
JW
10229}
10230
8e9cd9ce 10231/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10232 * straight-line code between a state and its parent. When we arrive at an
10233 * equivalent state (jump target or such) we didn't arrive by the straight-line
10234 * code, so read marks in the state must propagate to the parent regardless
10235 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10236 * in mark_reg_read() is for.
8e9cd9ce 10237 */
f4d7e40a
AS
10238static int propagate_liveness(struct bpf_verifier_env *env,
10239 const struct bpf_verifier_state *vstate,
10240 struct bpf_verifier_state *vparent)
dc503a8a 10241{
3f8cafa4 10242 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10243 struct bpf_func_state *state, *parent;
3f8cafa4 10244 int i, frame, err = 0;
dc503a8a 10245
f4d7e40a
AS
10246 if (vparent->curframe != vstate->curframe) {
10247 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10248 vparent->curframe, vstate->curframe);
10249 return -EFAULT;
10250 }
dc503a8a
EC
10251 /* Propagate read liveness of registers... */
10252 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10253 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10254 parent = vparent->frame[frame];
10255 state = vstate->frame[frame];
10256 parent_reg = parent->regs;
10257 state_reg = state->regs;
83d16312
JK
10258 /* We don't need to worry about FP liveness, it's read-only */
10259 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10260 err = propagate_liveness_reg(env, &state_reg[i],
10261 &parent_reg[i]);
5327ed3d 10262 if (err < 0)
3f8cafa4 10263 return err;
5327ed3d
JW
10264 if (err == REG_LIVE_READ64)
10265 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10266 }
f4d7e40a 10267
1b04aee7 10268 /* Propagate stack slots. */
f4d7e40a
AS
10269 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10270 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10271 parent_reg = &parent->stack[i].spilled_ptr;
10272 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10273 err = propagate_liveness_reg(env, state_reg,
10274 parent_reg);
5327ed3d 10275 if (err < 0)
3f8cafa4 10276 return err;
dc503a8a
EC
10277 }
10278 }
5327ed3d 10279 return 0;
dc503a8a
EC
10280}
10281
a3ce685d
AS
10282/* find precise scalars in the previous equivalent state and
10283 * propagate them into the current state
10284 */
10285static int propagate_precision(struct bpf_verifier_env *env,
10286 const struct bpf_verifier_state *old)
10287{
10288 struct bpf_reg_state *state_reg;
10289 struct bpf_func_state *state;
10290 int i, err = 0;
10291
10292 state = old->frame[old->curframe];
10293 state_reg = state->regs;
10294 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10295 if (state_reg->type != SCALAR_VALUE ||
10296 !state_reg->precise)
10297 continue;
10298 if (env->log.level & BPF_LOG_LEVEL2)
10299 verbose(env, "propagating r%d\n", i);
10300 err = mark_chain_precision(env, i);
10301 if (err < 0)
10302 return err;
10303 }
10304
10305 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10306 if (state->stack[i].slot_type[0] != STACK_SPILL)
10307 continue;
10308 state_reg = &state->stack[i].spilled_ptr;
10309 if (state_reg->type != SCALAR_VALUE ||
10310 !state_reg->precise)
10311 continue;
10312 if (env->log.level & BPF_LOG_LEVEL2)
10313 verbose(env, "propagating fp%d\n",
10314 (-i - 1) * BPF_REG_SIZE);
10315 err = mark_chain_precision_stack(env, i);
10316 if (err < 0)
10317 return err;
10318 }
10319 return 0;
10320}
10321
2589726d
AS
10322static bool states_maybe_looping(struct bpf_verifier_state *old,
10323 struct bpf_verifier_state *cur)
10324{
10325 struct bpf_func_state *fold, *fcur;
10326 int i, fr = cur->curframe;
10327
10328 if (old->curframe != fr)
10329 return false;
10330
10331 fold = old->frame[fr];
10332 fcur = cur->frame[fr];
10333 for (i = 0; i < MAX_BPF_REG; i++)
10334 if (memcmp(&fold->regs[i], &fcur->regs[i],
10335 offsetof(struct bpf_reg_state, parent)))
10336 return false;
10337 return true;
10338}
10339
10340
58e2af8b 10341static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 10342{
58e2af8b 10343 struct bpf_verifier_state_list *new_sl;
9f4686c4 10344 struct bpf_verifier_state_list *sl, **pprev;
679c782d 10345 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 10346 int i, j, err, states_cnt = 0;
10d274e8 10347 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 10348
b5dc0163 10349 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 10350 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
10351 /* this 'insn_idx' instruction wasn't marked, so we will not
10352 * be doing state search here
10353 */
10354 return 0;
10355
2589726d
AS
10356 /* bpf progs typically have pruning point every 4 instructions
10357 * http://vger.kernel.org/bpfconf2019.html#session-1
10358 * Do not add new state for future pruning if the verifier hasn't seen
10359 * at least 2 jumps and at least 8 instructions.
10360 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10361 * In tests that amounts to up to 50% reduction into total verifier
10362 * memory consumption and 20% verifier time speedup.
10363 */
10364 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10365 env->insn_processed - env->prev_insn_processed >= 8)
10366 add_new_state = true;
10367
a8f500af
AS
10368 pprev = explored_state(env, insn_idx);
10369 sl = *pprev;
10370
9242b5f5
AS
10371 clean_live_states(env, insn_idx, cur);
10372
a8f500af 10373 while (sl) {
dc2a4ebc
AS
10374 states_cnt++;
10375 if (sl->state.insn_idx != insn_idx)
10376 goto next;
2589726d
AS
10377 if (sl->state.branches) {
10378 if (states_maybe_looping(&sl->state, cur) &&
10379 states_equal(env, &sl->state, cur)) {
10380 verbose_linfo(env, insn_idx, "; ");
10381 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10382 return -EINVAL;
10383 }
10384 /* if the verifier is processing a loop, avoid adding new state
10385 * too often, since different loop iterations have distinct
10386 * states and may not help future pruning.
10387 * This threshold shouldn't be too low to make sure that
10388 * a loop with large bound will be rejected quickly.
10389 * The most abusive loop will be:
10390 * r1 += 1
10391 * if r1 < 1000000 goto pc-2
10392 * 1M insn_procssed limit / 100 == 10k peak states.
10393 * This threshold shouldn't be too high either, since states
10394 * at the end of the loop are likely to be useful in pruning.
10395 */
10396 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10397 env->insn_processed - env->prev_insn_processed < 100)
10398 add_new_state = false;
10399 goto miss;
10400 }
638f5b90 10401 if (states_equal(env, &sl->state, cur)) {
9f4686c4 10402 sl->hit_cnt++;
f1bca824 10403 /* reached equivalent register/stack state,
dc503a8a
EC
10404 * prune the search.
10405 * Registers read by the continuation are read by us.
8e9cd9ce
EC
10406 * If we have any write marks in env->cur_state, they
10407 * will prevent corresponding reads in the continuation
10408 * from reaching our parent (an explored_state). Our
10409 * own state will get the read marks recorded, but
10410 * they'll be immediately forgotten as we're pruning
10411 * this state and will pop a new one.
f1bca824 10412 */
f4d7e40a 10413 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
10414
10415 /* if previous state reached the exit with precision and
10416 * current state is equivalent to it (except precsion marks)
10417 * the precision needs to be propagated back in
10418 * the current state.
10419 */
10420 err = err ? : push_jmp_history(env, cur);
10421 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
10422 if (err)
10423 return err;
f1bca824 10424 return 1;
dc503a8a 10425 }
2589726d
AS
10426miss:
10427 /* when new state is not going to be added do not increase miss count.
10428 * Otherwise several loop iterations will remove the state
10429 * recorded earlier. The goal of these heuristics is to have
10430 * states from some iterations of the loop (some in the beginning
10431 * and some at the end) to help pruning.
10432 */
10433 if (add_new_state)
10434 sl->miss_cnt++;
9f4686c4
AS
10435 /* heuristic to determine whether this state is beneficial
10436 * to keep checking from state equivalence point of view.
10437 * Higher numbers increase max_states_per_insn and verification time,
10438 * but do not meaningfully decrease insn_processed.
10439 */
10440 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10441 /* the state is unlikely to be useful. Remove it to
10442 * speed up verification
10443 */
10444 *pprev = sl->next;
10445 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
10446 u32 br = sl->state.branches;
10447
10448 WARN_ONCE(br,
10449 "BUG live_done but branches_to_explore %d\n",
10450 br);
9f4686c4
AS
10451 free_verifier_state(&sl->state, false);
10452 kfree(sl);
10453 env->peak_states--;
10454 } else {
10455 /* cannot free this state, since parentage chain may
10456 * walk it later. Add it for free_list instead to
10457 * be freed at the end of verification
10458 */
10459 sl->next = env->free_list;
10460 env->free_list = sl;
10461 }
10462 sl = *pprev;
10463 continue;
10464 }
dc2a4ebc 10465next:
9f4686c4
AS
10466 pprev = &sl->next;
10467 sl = *pprev;
f1bca824
AS
10468 }
10469
06ee7115
AS
10470 if (env->max_states_per_insn < states_cnt)
10471 env->max_states_per_insn = states_cnt;
10472
2c78ee89 10473 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 10474 return push_jmp_history(env, cur);
ceefbc96 10475
2589726d 10476 if (!add_new_state)
b5dc0163 10477 return push_jmp_history(env, cur);
ceefbc96 10478
2589726d
AS
10479 /* There were no equivalent states, remember the current one.
10480 * Technically the current state is not proven to be safe yet,
f4d7e40a 10481 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 10482 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 10483 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
10484 * again on the way to bpf_exit.
10485 * When looping the sl->state.branches will be > 0 and this state
10486 * will not be considered for equivalence until branches == 0.
f1bca824 10487 */
638f5b90 10488 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
10489 if (!new_sl)
10490 return -ENOMEM;
06ee7115
AS
10491 env->total_states++;
10492 env->peak_states++;
2589726d
AS
10493 env->prev_jmps_processed = env->jmps_processed;
10494 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
10495
10496 /* add new state to the head of linked list */
679c782d
EC
10497 new = &new_sl->state;
10498 err = copy_verifier_state(new, cur);
1969db47 10499 if (err) {
679c782d 10500 free_verifier_state(new, false);
1969db47
AS
10501 kfree(new_sl);
10502 return err;
10503 }
dc2a4ebc 10504 new->insn_idx = insn_idx;
2589726d
AS
10505 WARN_ONCE(new->branches != 1,
10506 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 10507
2589726d 10508 cur->parent = new;
b5dc0163
AS
10509 cur->first_insn_idx = insn_idx;
10510 clear_jmp_history(cur);
5d839021
AS
10511 new_sl->next = *explored_state(env, insn_idx);
10512 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
10513 /* connect new state to parentage chain. Current frame needs all
10514 * registers connected. Only r6 - r9 of the callers are alive (pushed
10515 * to the stack implicitly by JITs) so in callers' frames connect just
10516 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10517 * the state of the call instruction (with WRITTEN set), and r0 comes
10518 * from callee with its full parentage chain, anyway.
10519 */
8e9cd9ce
EC
10520 /* clear write marks in current state: the writes we did are not writes
10521 * our child did, so they don't screen off its reads from us.
10522 * (There are no read marks in current state, because reads always mark
10523 * their parent and current state never has children yet. Only
10524 * explored_states can get read marks.)
10525 */
eea1c227
AS
10526 for (j = 0; j <= cur->curframe; j++) {
10527 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10528 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10529 for (i = 0; i < BPF_REG_FP; i++)
10530 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10531 }
f4d7e40a
AS
10532
10533 /* all stack frames are accessible from callee, clear them all */
10534 for (j = 0; j <= cur->curframe; j++) {
10535 struct bpf_func_state *frame = cur->frame[j];
679c782d 10536 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 10537
679c782d 10538 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 10539 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
10540 frame->stack[i].spilled_ptr.parent =
10541 &newframe->stack[i].spilled_ptr;
10542 }
f4d7e40a 10543 }
f1bca824
AS
10544 return 0;
10545}
10546
c64b7983
JS
10547/* Return true if it's OK to have the same insn return a different type. */
10548static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10549{
10550 switch (type) {
10551 case PTR_TO_CTX:
10552 case PTR_TO_SOCKET:
10553 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10554 case PTR_TO_SOCK_COMMON:
10555 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10556 case PTR_TO_TCP_SOCK:
10557 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10558 case PTR_TO_XDP_SOCK:
2a02759e 10559 case PTR_TO_BTF_ID:
b121b341 10560 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
10561 return false;
10562 default:
10563 return true;
10564 }
10565}
10566
10567/* If an instruction was previously used with particular pointer types, then we
10568 * need to be careful to avoid cases such as the below, where it may be ok
10569 * for one branch accessing the pointer, but not ok for the other branch:
10570 *
10571 * R1 = sock_ptr
10572 * goto X;
10573 * ...
10574 * R1 = some_other_valid_ptr;
10575 * goto X;
10576 * ...
10577 * R2 = *(u32 *)(R1 + 0);
10578 */
10579static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10580{
10581 return src != prev && (!reg_type_mismatch_ok(src) ||
10582 !reg_type_mismatch_ok(prev));
10583}
10584
58e2af8b 10585static int do_check(struct bpf_verifier_env *env)
17a52670 10586{
6f8a57cc 10587 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 10588 struct bpf_verifier_state *state = env->cur_state;
17a52670 10589 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 10590 struct bpf_reg_state *regs;
06ee7115 10591 int insn_cnt = env->prog->len;
17a52670 10592 bool do_print_state = false;
b5dc0163 10593 int prev_insn_idx = -1;
17a52670 10594
17a52670
AS
10595 for (;;) {
10596 struct bpf_insn *insn;
10597 u8 class;
10598 int err;
10599
b5dc0163 10600 env->prev_insn_idx = prev_insn_idx;
c08435ec 10601 if (env->insn_idx >= insn_cnt) {
61bd5218 10602 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 10603 env->insn_idx, insn_cnt);
17a52670
AS
10604 return -EFAULT;
10605 }
10606
c08435ec 10607 insn = &insns[env->insn_idx];
17a52670
AS
10608 class = BPF_CLASS(insn->code);
10609
06ee7115 10610 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
10611 verbose(env,
10612 "BPF program is too large. Processed %d insn\n",
06ee7115 10613 env->insn_processed);
17a52670
AS
10614 return -E2BIG;
10615 }
10616
c08435ec 10617 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
10618 if (err < 0)
10619 return err;
10620 if (err == 1) {
10621 /* found equivalent state, can prune the search */
06ee7115 10622 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 10623 if (do_print_state)
979d63d5
DB
10624 verbose(env, "\nfrom %d to %d%s: safe\n",
10625 env->prev_insn_idx, env->insn_idx,
10626 env->cur_state->speculative ?
10627 " (speculative execution)" : "");
f1bca824 10628 else
c08435ec 10629 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
10630 }
10631 goto process_bpf_exit;
10632 }
10633
c3494801
AS
10634 if (signal_pending(current))
10635 return -EAGAIN;
10636
3c2ce60b
DB
10637 if (need_resched())
10638 cond_resched();
10639
06ee7115
AS
10640 if (env->log.level & BPF_LOG_LEVEL2 ||
10641 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10642 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 10643 verbose(env, "%d:", env->insn_idx);
c5fc9692 10644 else
979d63d5
DB
10645 verbose(env, "\nfrom %d to %d%s:",
10646 env->prev_insn_idx, env->insn_idx,
10647 env->cur_state->speculative ?
10648 " (speculative execution)" : "");
f4d7e40a 10649 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
10650 do_print_state = false;
10651 }
10652
06ee7115 10653 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 10654 const struct bpf_insn_cbs cbs = {
e6ac2450 10655 .cb_call = disasm_kfunc_name,
7105e828 10656 .cb_print = verbose,
abe08840 10657 .private_data = env,
7105e828
DB
10658 };
10659
c08435ec
DB
10660 verbose_linfo(env, env->insn_idx, "; ");
10661 verbose(env, "%d: ", env->insn_idx);
abe08840 10662 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
10663 }
10664
cae1927c 10665 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
10666 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10667 env->prev_insn_idx);
cae1927c
JK
10668 if (err)
10669 return err;
10670 }
13a27dfc 10671
638f5b90 10672 regs = cur_regs(env);
fe9a5ca7 10673 sanitize_mark_insn_seen(env);
b5dc0163 10674 prev_insn_idx = env->insn_idx;
fd978bf7 10675
17a52670 10676 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 10677 err = check_alu_op(env, insn);
17a52670
AS
10678 if (err)
10679 return err;
10680
10681 } else if (class == BPF_LDX) {
3df126f3 10682 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
10683
10684 /* check for reserved fields is already done */
10685
17a52670 10686 /* check src operand */
dc503a8a 10687 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10688 if (err)
10689 return err;
10690
dc503a8a 10691 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
10692 if (err)
10693 return err;
10694
725f9dcd
AS
10695 src_reg_type = regs[insn->src_reg].type;
10696
17a52670
AS
10697 /* check that memory (src_reg + off) is readable,
10698 * the state of dst_reg will be updated by this func
10699 */
c08435ec
DB
10700 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10701 insn->off, BPF_SIZE(insn->code),
10702 BPF_READ, insn->dst_reg, false);
17a52670
AS
10703 if (err)
10704 return err;
10705
c08435ec 10706 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
10707
10708 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
10709 /* saw a valid insn
10710 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 10711 * save type to validate intersecting paths
9bac3d6d 10712 */
3df126f3 10713 *prev_src_type = src_reg_type;
9bac3d6d 10714
c64b7983 10715 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
10716 /* ABuser program is trying to use the same insn
10717 * dst_reg = *(u32*) (src_reg + off)
10718 * with different pointer types:
10719 * src_reg == ctx in one branch and
10720 * src_reg == stack|map in some other branch.
10721 * Reject it.
10722 */
61bd5218 10723 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
10724 return -EINVAL;
10725 }
10726
17a52670 10727 } else if (class == BPF_STX) {
3df126f3 10728 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 10729
91c960b0
BJ
10730 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10731 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
10732 if (err)
10733 return err;
c08435ec 10734 env->insn_idx++;
17a52670
AS
10735 continue;
10736 }
10737
5ca419f2
BJ
10738 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10739 verbose(env, "BPF_STX uses reserved fields\n");
10740 return -EINVAL;
10741 }
10742
17a52670 10743 /* check src1 operand */
dc503a8a 10744 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10745 if (err)
10746 return err;
10747 /* check src2 operand */
dc503a8a 10748 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10749 if (err)
10750 return err;
10751
d691f9e8
AS
10752 dst_reg_type = regs[insn->dst_reg].type;
10753
17a52670 10754 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
10755 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10756 insn->off, BPF_SIZE(insn->code),
10757 BPF_WRITE, insn->src_reg, false);
17a52670
AS
10758 if (err)
10759 return err;
10760
c08435ec 10761 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
10762
10763 if (*prev_dst_type == NOT_INIT) {
10764 *prev_dst_type = dst_reg_type;
c64b7983 10765 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 10766 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
10767 return -EINVAL;
10768 }
10769
17a52670
AS
10770 } else if (class == BPF_ST) {
10771 if (BPF_MODE(insn->code) != BPF_MEM ||
10772 insn->src_reg != BPF_REG_0) {
61bd5218 10773 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
10774 return -EINVAL;
10775 }
10776 /* check src operand */
dc503a8a 10777 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10778 if (err)
10779 return err;
10780
f37a8cb8 10781 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 10782 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
10783 insn->dst_reg,
10784 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
10785 return -EACCES;
10786 }
10787
17a52670 10788 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
10789 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10790 insn->off, BPF_SIZE(insn->code),
10791 BPF_WRITE, -1, false);
17a52670
AS
10792 if (err)
10793 return err;
10794
092ed096 10795 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
10796 u8 opcode = BPF_OP(insn->code);
10797
2589726d 10798 env->jmps_processed++;
17a52670
AS
10799 if (opcode == BPF_CALL) {
10800 if (BPF_SRC(insn->code) != BPF_K ||
10801 insn->off != 0 ||
f4d7e40a 10802 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
10803 insn->src_reg != BPF_PSEUDO_CALL &&
10804 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
10805 insn->dst_reg != BPF_REG_0 ||
10806 class == BPF_JMP32) {
61bd5218 10807 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
10808 return -EINVAL;
10809 }
10810
d83525ca
AS
10811 if (env->cur_state->active_spin_lock &&
10812 (insn->src_reg == BPF_PSEUDO_CALL ||
10813 insn->imm != BPF_FUNC_spin_unlock)) {
10814 verbose(env, "function calls are not allowed while holding a lock\n");
10815 return -EINVAL;
10816 }
f4d7e40a 10817 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 10818 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
10819 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10820 err = check_kfunc_call(env, insn);
f4d7e40a 10821 else
69c087ba 10822 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
10823 if (err)
10824 return err;
17a52670
AS
10825 } else if (opcode == BPF_JA) {
10826 if (BPF_SRC(insn->code) != BPF_K ||
10827 insn->imm != 0 ||
10828 insn->src_reg != BPF_REG_0 ||
092ed096
JW
10829 insn->dst_reg != BPF_REG_0 ||
10830 class == BPF_JMP32) {
61bd5218 10831 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
10832 return -EINVAL;
10833 }
10834
c08435ec 10835 env->insn_idx += insn->off + 1;
17a52670
AS
10836 continue;
10837
10838 } else if (opcode == BPF_EXIT) {
10839 if (BPF_SRC(insn->code) != BPF_K ||
10840 insn->imm != 0 ||
10841 insn->src_reg != BPF_REG_0 ||
092ed096
JW
10842 insn->dst_reg != BPF_REG_0 ||
10843 class == BPF_JMP32) {
61bd5218 10844 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
10845 return -EINVAL;
10846 }
10847
d83525ca
AS
10848 if (env->cur_state->active_spin_lock) {
10849 verbose(env, "bpf_spin_unlock is missing\n");
10850 return -EINVAL;
10851 }
10852
f4d7e40a
AS
10853 if (state->curframe) {
10854 /* exit from nested function */
c08435ec 10855 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
10856 if (err)
10857 return err;
10858 do_print_state = true;
10859 continue;
10860 }
10861
fd978bf7
JS
10862 err = check_reference_leak(env);
10863 if (err)
10864 return err;
10865
390ee7e2
AS
10866 err = check_return_code(env);
10867 if (err)
10868 return err;
f1bca824 10869process_bpf_exit:
2589726d 10870 update_branch_counts(env, env->cur_state);
b5dc0163 10871 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 10872 &env->insn_idx, pop_log);
638f5b90
AS
10873 if (err < 0) {
10874 if (err != -ENOENT)
10875 return err;
17a52670
AS
10876 break;
10877 } else {
10878 do_print_state = true;
10879 continue;
10880 }
10881 } else {
c08435ec 10882 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
10883 if (err)
10884 return err;
10885 }
10886 } else if (class == BPF_LD) {
10887 u8 mode = BPF_MODE(insn->code);
10888
10889 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
10890 err = check_ld_abs(env, insn);
10891 if (err)
10892 return err;
10893
17a52670
AS
10894 } else if (mode == BPF_IMM) {
10895 err = check_ld_imm(env, insn);
10896 if (err)
10897 return err;
10898
c08435ec 10899 env->insn_idx++;
fe9a5ca7 10900 sanitize_mark_insn_seen(env);
17a52670 10901 } else {
61bd5218 10902 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
10903 return -EINVAL;
10904 }
10905 } else {
61bd5218 10906 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
10907 return -EINVAL;
10908 }
10909
c08435ec 10910 env->insn_idx++;
17a52670
AS
10911 }
10912
10913 return 0;
10914}
10915
541c3bad
AN
10916static int find_btf_percpu_datasec(struct btf *btf)
10917{
10918 const struct btf_type *t;
10919 const char *tname;
10920 int i, n;
10921
10922 /*
10923 * Both vmlinux and module each have their own ".data..percpu"
10924 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10925 * types to look at only module's own BTF types.
10926 */
10927 n = btf_nr_types(btf);
10928 if (btf_is_module(btf))
10929 i = btf_nr_types(btf_vmlinux);
10930 else
10931 i = 1;
10932
10933 for(; i < n; i++) {
10934 t = btf_type_by_id(btf, i);
10935 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10936 continue;
10937
10938 tname = btf_name_by_offset(btf, t->name_off);
10939 if (!strcmp(tname, ".data..percpu"))
10940 return i;
10941 }
10942
10943 return -ENOENT;
10944}
10945
4976b718
HL
10946/* replace pseudo btf_id with kernel symbol address */
10947static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10948 struct bpf_insn *insn,
10949 struct bpf_insn_aux_data *aux)
10950{
eaa6bcb7
HL
10951 const struct btf_var_secinfo *vsi;
10952 const struct btf_type *datasec;
541c3bad 10953 struct btf_mod_pair *btf_mod;
4976b718
HL
10954 const struct btf_type *t;
10955 const char *sym_name;
eaa6bcb7 10956 bool percpu = false;
f16e6313 10957 u32 type, id = insn->imm;
541c3bad 10958 struct btf *btf;
f16e6313 10959 s32 datasec_id;
4976b718 10960 u64 addr;
541c3bad 10961 int i, btf_fd, err;
4976b718 10962
541c3bad
AN
10963 btf_fd = insn[1].imm;
10964 if (btf_fd) {
10965 btf = btf_get_by_fd(btf_fd);
10966 if (IS_ERR(btf)) {
10967 verbose(env, "invalid module BTF object FD specified.\n");
10968 return -EINVAL;
10969 }
10970 } else {
10971 if (!btf_vmlinux) {
10972 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10973 return -EINVAL;
10974 }
10975 btf = btf_vmlinux;
10976 btf_get(btf);
4976b718
HL
10977 }
10978
541c3bad 10979 t = btf_type_by_id(btf, id);
4976b718
HL
10980 if (!t) {
10981 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
10982 err = -ENOENT;
10983 goto err_put;
4976b718
HL
10984 }
10985
10986 if (!btf_type_is_var(t)) {
541c3bad
AN
10987 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10988 err = -EINVAL;
10989 goto err_put;
4976b718
HL
10990 }
10991
541c3bad 10992 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
10993 addr = kallsyms_lookup_name(sym_name);
10994 if (!addr) {
10995 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10996 sym_name);
541c3bad
AN
10997 err = -ENOENT;
10998 goto err_put;
4976b718
HL
10999 }
11000
541c3bad 11001 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11002 if (datasec_id > 0) {
541c3bad 11003 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11004 for_each_vsi(i, datasec, vsi) {
11005 if (vsi->type == id) {
11006 percpu = true;
11007 break;
11008 }
11009 }
11010 }
11011
4976b718
HL
11012 insn[0].imm = (u32)addr;
11013 insn[1].imm = addr >> 32;
11014
11015 type = t->type;
541c3bad 11016 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
11017 if (percpu) {
11018 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 11019 aux->btf_var.btf = btf;
eaa6bcb7
HL
11020 aux->btf_var.btf_id = type;
11021 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11022 const struct btf_type *ret;
11023 const char *tname;
11024 u32 tsize;
11025
11026 /* resolve the type size of ksym. */
541c3bad 11027 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11028 if (IS_ERR(ret)) {
541c3bad 11029 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11030 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11031 tname, PTR_ERR(ret));
541c3bad
AN
11032 err = -EINVAL;
11033 goto err_put;
4976b718
HL
11034 }
11035 aux->btf_var.reg_type = PTR_TO_MEM;
11036 aux->btf_var.mem_size = tsize;
11037 } else {
11038 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11039 aux->btf_var.btf = btf;
4976b718
HL
11040 aux->btf_var.btf_id = type;
11041 }
541c3bad
AN
11042
11043 /* check whether we recorded this BTF (and maybe module) already */
11044 for (i = 0; i < env->used_btf_cnt; i++) {
11045 if (env->used_btfs[i].btf == btf) {
11046 btf_put(btf);
11047 return 0;
11048 }
11049 }
11050
11051 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11052 err = -E2BIG;
11053 goto err_put;
11054 }
11055
11056 btf_mod = &env->used_btfs[env->used_btf_cnt];
11057 btf_mod->btf = btf;
11058 btf_mod->module = NULL;
11059
11060 /* if we reference variables from kernel module, bump its refcount */
11061 if (btf_is_module(btf)) {
11062 btf_mod->module = btf_try_get_module(btf);
11063 if (!btf_mod->module) {
11064 err = -ENXIO;
11065 goto err_put;
11066 }
11067 }
11068
11069 env->used_btf_cnt++;
11070
4976b718 11071 return 0;
541c3bad
AN
11072err_put:
11073 btf_put(btf);
11074 return err;
4976b718
HL
11075}
11076
56f668df
MKL
11077static int check_map_prealloc(struct bpf_map *map)
11078{
11079 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11080 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11081 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11082 !(map->map_flags & BPF_F_NO_PREALLOC);
11083}
11084
d83525ca
AS
11085static bool is_tracing_prog_type(enum bpf_prog_type type)
11086{
11087 switch (type) {
11088 case BPF_PROG_TYPE_KPROBE:
11089 case BPF_PROG_TYPE_TRACEPOINT:
11090 case BPF_PROG_TYPE_PERF_EVENT:
11091 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11092 return true;
11093 default:
11094 return false;
11095 }
11096}
11097
94dacdbd
TG
11098static bool is_preallocated_map(struct bpf_map *map)
11099{
11100 if (!check_map_prealloc(map))
11101 return false;
11102 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11103 return false;
11104 return true;
11105}
11106
61bd5218
JK
11107static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11108 struct bpf_map *map,
fdc15d38
AS
11109 struct bpf_prog *prog)
11110
11111{
7e40781c 11112 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
11113 /*
11114 * Validate that trace type programs use preallocated hash maps.
11115 *
11116 * For programs attached to PERF events this is mandatory as the
11117 * perf NMI can hit any arbitrary code sequence.
11118 *
11119 * All other trace types using preallocated hash maps are unsafe as
11120 * well because tracepoint or kprobes can be inside locked regions
11121 * of the memory allocator or at a place where a recursion into the
11122 * memory allocator would see inconsistent state.
11123 *
2ed905c5
TG
11124 * On RT enabled kernels run-time allocation of all trace type
11125 * programs is strictly prohibited due to lock type constraints. On
11126 * !RT kernels it is allowed for backwards compatibility reasons for
11127 * now, but warnings are emitted so developers are made aware of
11128 * the unsafety and can fix their programs before this is enforced.
56f668df 11129 */
7e40781c
UP
11130 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11131 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11132 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11133 return -EINVAL;
11134 }
2ed905c5
TG
11135 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11136 verbose(env, "trace type programs can only use preallocated hash map\n");
11137 return -EINVAL;
11138 }
94dacdbd
TG
11139 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11140 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11141 }
a3884572 11142
9e7a4d98
KS
11143 if (map_value_has_spin_lock(map)) {
11144 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11145 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11146 return -EINVAL;
11147 }
11148
11149 if (is_tracing_prog_type(prog_type)) {
11150 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11151 return -EINVAL;
11152 }
11153
11154 if (prog->aux->sleepable) {
11155 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11156 return -EINVAL;
11157 }
d83525ca
AS
11158 }
11159
a3884572 11160 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11161 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11162 verbose(env, "offload device mismatch between prog and map\n");
11163 return -EINVAL;
11164 }
11165
85d33df3
MKL
11166 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11167 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11168 return -EINVAL;
11169 }
11170
1e6c62a8
AS
11171 if (prog->aux->sleepable)
11172 switch (map->map_type) {
11173 case BPF_MAP_TYPE_HASH:
11174 case BPF_MAP_TYPE_LRU_HASH:
11175 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11176 case BPF_MAP_TYPE_PERCPU_HASH:
11177 case BPF_MAP_TYPE_PERCPU_ARRAY:
11178 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11179 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11180 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11181 if (!is_preallocated_map(map)) {
11182 verbose(env,
638e4b82 11183 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11184 return -EINVAL;
11185 }
11186 break;
ba90c2cc
KS
11187 case BPF_MAP_TYPE_RINGBUF:
11188 break;
1e6c62a8
AS
11189 default:
11190 verbose(env,
ba90c2cc 11191 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11192 return -EINVAL;
11193 }
11194
fdc15d38
AS
11195 return 0;
11196}
11197
b741f163
RG
11198static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11199{
11200 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11201 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11202}
11203
4976b718
HL
11204/* find and rewrite pseudo imm in ld_imm64 instructions:
11205 *
11206 * 1. if it accesses map FD, replace it with actual map pointer.
11207 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11208 *
11209 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11210 */
4976b718 11211static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11212{
11213 struct bpf_insn *insn = env->prog->insnsi;
11214 int insn_cnt = env->prog->len;
fdc15d38 11215 int i, j, err;
0246e64d 11216
f1f7714e 11217 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11218 if (err)
11219 return err;
11220
0246e64d 11221 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11222 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11223 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11224 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11225 return -EINVAL;
11226 }
11227
0246e64d 11228 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11229 struct bpf_insn_aux_data *aux;
0246e64d
AS
11230 struct bpf_map *map;
11231 struct fd f;
d8eca5bb 11232 u64 addr;
387544bf 11233 u32 fd;
0246e64d
AS
11234
11235 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11236 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11237 insn[1].off != 0) {
61bd5218 11238 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11239 return -EINVAL;
11240 }
11241
d8eca5bb 11242 if (insn[0].src_reg == 0)
0246e64d
AS
11243 /* valid generic load 64-bit imm */
11244 goto next_insn;
11245
4976b718
HL
11246 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11247 aux = &env->insn_aux_data[i];
11248 err = check_pseudo_btf_id(env, insn, aux);
11249 if (err)
11250 return err;
11251 goto next_insn;
11252 }
11253
69c087ba
YS
11254 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11255 aux = &env->insn_aux_data[i];
11256 aux->ptr_type = PTR_TO_FUNC;
11257 goto next_insn;
11258 }
11259
d8eca5bb
DB
11260 /* In final convert_pseudo_ld_imm64() step, this is
11261 * converted into regular 64-bit imm load insn.
11262 */
387544bf
AS
11263 switch (insn[0].src_reg) {
11264 case BPF_PSEUDO_MAP_VALUE:
11265 case BPF_PSEUDO_MAP_IDX_VALUE:
11266 break;
11267 case BPF_PSEUDO_MAP_FD:
11268 case BPF_PSEUDO_MAP_IDX:
11269 if (insn[1].imm == 0)
11270 break;
11271 fallthrough;
11272 default:
11273 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11274 return -EINVAL;
11275 }
11276
387544bf
AS
11277 switch (insn[0].src_reg) {
11278 case BPF_PSEUDO_MAP_IDX_VALUE:
11279 case BPF_PSEUDO_MAP_IDX:
11280 if (bpfptr_is_null(env->fd_array)) {
11281 verbose(env, "fd_idx without fd_array is invalid\n");
11282 return -EPROTO;
11283 }
11284 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11285 insn[0].imm * sizeof(fd),
11286 sizeof(fd)))
11287 return -EFAULT;
11288 break;
11289 default:
11290 fd = insn[0].imm;
11291 break;
11292 }
11293
11294 f = fdget(fd);
c2101297 11295 map = __bpf_map_get(f);
0246e64d 11296 if (IS_ERR(map)) {
61bd5218 11297 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11298 insn[0].imm);
0246e64d
AS
11299 return PTR_ERR(map);
11300 }
11301
61bd5218 11302 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11303 if (err) {
11304 fdput(f);
11305 return err;
11306 }
11307
d8eca5bb 11308 aux = &env->insn_aux_data[i];
387544bf
AS
11309 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11310 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
11311 addr = (unsigned long)map;
11312 } else {
11313 u32 off = insn[1].imm;
11314
11315 if (off >= BPF_MAX_VAR_OFF) {
11316 verbose(env, "direct value offset of %u is not allowed\n", off);
11317 fdput(f);
11318 return -EINVAL;
11319 }
11320
11321 if (!map->ops->map_direct_value_addr) {
11322 verbose(env, "no direct value access support for this map type\n");
11323 fdput(f);
11324 return -EINVAL;
11325 }
11326
11327 err = map->ops->map_direct_value_addr(map, &addr, off);
11328 if (err) {
11329 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11330 map->value_size, off);
11331 fdput(f);
11332 return err;
11333 }
11334
11335 aux->map_off = off;
11336 addr += off;
11337 }
11338
11339 insn[0].imm = (u32)addr;
11340 insn[1].imm = addr >> 32;
0246e64d
AS
11341
11342 /* check whether we recorded this map already */
d8eca5bb 11343 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 11344 if (env->used_maps[j] == map) {
d8eca5bb 11345 aux->map_index = j;
0246e64d
AS
11346 fdput(f);
11347 goto next_insn;
11348 }
d8eca5bb 11349 }
0246e64d
AS
11350
11351 if (env->used_map_cnt >= MAX_USED_MAPS) {
11352 fdput(f);
11353 return -E2BIG;
11354 }
11355
0246e64d
AS
11356 /* hold the map. If the program is rejected by verifier,
11357 * the map will be released by release_maps() or it
11358 * will be used by the valid program until it's unloaded
ab7f5bf0 11359 * and all maps are released in free_used_maps()
0246e64d 11360 */
1e0bd5a0 11361 bpf_map_inc(map);
d8eca5bb
DB
11362
11363 aux->map_index = env->used_map_cnt;
92117d84
AS
11364 env->used_maps[env->used_map_cnt++] = map;
11365
b741f163 11366 if (bpf_map_is_cgroup_storage(map) &&
e4730423 11367 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 11368 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
11369 fdput(f);
11370 return -EBUSY;
11371 }
11372
0246e64d
AS
11373 fdput(f);
11374next_insn:
11375 insn++;
11376 i++;
5e581dad
DB
11377 continue;
11378 }
11379
11380 /* Basic sanity check before we invest more work here. */
11381 if (!bpf_opcode_in_insntable(insn->code)) {
11382 verbose(env, "unknown opcode %02x\n", insn->code);
11383 return -EINVAL;
0246e64d
AS
11384 }
11385 }
11386
11387 /* now all pseudo BPF_LD_IMM64 instructions load valid
11388 * 'struct bpf_map *' into a register instead of user map_fd.
11389 * These pointers will be used later by verifier to validate map access.
11390 */
11391 return 0;
11392}
11393
11394/* drop refcnt of maps used by the rejected program */
58e2af8b 11395static void release_maps(struct bpf_verifier_env *env)
0246e64d 11396{
a2ea0746
DB
11397 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11398 env->used_map_cnt);
0246e64d
AS
11399}
11400
541c3bad
AN
11401/* drop refcnt of maps used by the rejected program */
11402static void release_btfs(struct bpf_verifier_env *env)
11403{
11404 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11405 env->used_btf_cnt);
11406}
11407
0246e64d 11408/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 11409static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
11410{
11411 struct bpf_insn *insn = env->prog->insnsi;
11412 int insn_cnt = env->prog->len;
11413 int i;
11414
69c087ba
YS
11415 for (i = 0; i < insn_cnt; i++, insn++) {
11416 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11417 continue;
11418 if (insn->src_reg == BPF_PSEUDO_FUNC)
11419 continue;
11420 insn->src_reg = 0;
11421 }
0246e64d
AS
11422}
11423
8041902d
AS
11424/* single env->prog->insni[off] instruction was replaced with the range
11425 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11426 * [0, off) and [off, end) to new locations, so the patched range stays zero
11427 */
75f0fc7b
HF
11428static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11429 struct bpf_insn_aux_data *new_data,
11430 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 11431{
75f0fc7b 11432 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 11433 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 11434 u32 old_seen = old_data[off].seen;
b325fbca 11435 u32 prog_len;
c131187d 11436 int i;
8041902d 11437
b325fbca
JW
11438 /* aux info at OFF always needs adjustment, no matter fast path
11439 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11440 * original insn at old prog.
11441 */
11442 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11443
8041902d 11444 if (cnt == 1)
75f0fc7b 11445 return;
b325fbca 11446 prog_len = new_prog->len;
75f0fc7b 11447
8041902d
AS
11448 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11449 memcpy(new_data + off + cnt - 1, old_data + off,
11450 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 11451 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
11452 /* Expand insni[off]'s seen count to the patched range. */
11453 new_data[i].seen = old_seen;
b325fbca
JW
11454 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11455 }
8041902d
AS
11456 env->insn_aux_data = new_data;
11457 vfree(old_data);
8041902d
AS
11458}
11459
cc8b0b92
AS
11460static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11461{
11462 int i;
11463
11464 if (len == 1)
11465 return;
4cb3d99c
JW
11466 /* NOTE: fake 'exit' subprog should be updated as well. */
11467 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 11468 if (env->subprog_info[i].start <= off)
cc8b0b92 11469 continue;
9c8105bd 11470 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
11471 }
11472}
11473
7506d211 11474static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
11475{
11476 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11477 int i, sz = prog->aux->size_poke_tab;
11478 struct bpf_jit_poke_descriptor *desc;
11479
11480 for (i = 0; i < sz; i++) {
11481 desc = &tab[i];
7506d211
JF
11482 if (desc->insn_idx <= off)
11483 continue;
a748c697
MF
11484 desc->insn_idx += len - 1;
11485 }
11486}
11487
8041902d
AS
11488static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11489 const struct bpf_insn *patch, u32 len)
11490{
11491 struct bpf_prog *new_prog;
75f0fc7b
HF
11492 struct bpf_insn_aux_data *new_data = NULL;
11493
11494 if (len > 1) {
11495 new_data = vzalloc(array_size(env->prog->len + len - 1,
11496 sizeof(struct bpf_insn_aux_data)));
11497 if (!new_data)
11498 return NULL;
11499 }
8041902d
AS
11500
11501 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
11502 if (IS_ERR(new_prog)) {
11503 if (PTR_ERR(new_prog) == -ERANGE)
11504 verbose(env,
11505 "insn %d cannot be patched due to 16-bit range\n",
11506 env->insn_aux_data[off].orig_idx);
75f0fc7b 11507 vfree(new_data);
8041902d 11508 return NULL;
4f73379e 11509 }
75f0fc7b 11510 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 11511 adjust_subprog_starts(env, off, len);
7506d211 11512 adjust_poke_descs(new_prog, off, len);
8041902d
AS
11513 return new_prog;
11514}
11515
52875a04
JK
11516static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11517 u32 off, u32 cnt)
11518{
11519 int i, j;
11520
11521 /* find first prog starting at or after off (first to remove) */
11522 for (i = 0; i < env->subprog_cnt; i++)
11523 if (env->subprog_info[i].start >= off)
11524 break;
11525 /* find first prog starting at or after off + cnt (first to stay) */
11526 for (j = i; j < env->subprog_cnt; j++)
11527 if (env->subprog_info[j].start >= off + cnt)
11528 break;
11529 /* if j doesn't start exactly at off + cnt, we are just removing
11530 * the front of previous prog
11531 */
11532 if (env->subprog_info[j].start != off + cnt)
11533 j--;
11534
11535 if (j > i) {
11536 struct bpf_prog_aux *aux = env->prog->aux;
11537 int move;
11538
11539 /* move fake 'exit' subprog as well */
11540 move = env->subprog_cnt + 1 - j;
11541
11542 memmove(env->subprog_info + i,
11543 env->subprog_info + j,
11544 sizeof(*env->subprog_info) * move);
11545 env->subprog_cnt -= j - i;
11546
11547 /* remove func_info */
11548 if (aux->func_info) {
11549 move = aux->func_info_cnt - j;
11550
11551 memmove(aux->func_info + i,
11552 aux->func_info + j,
11553 sizeof(*aux->func_info) * move);
11554 aux->func_info_cnt -= j - i;
11555 /* func_info->insn_off is set after all code rewrites,
11556 * in adjust_btf_func() - no need to adjust
11557 */
11558 }
11559 } else {
11560 /* convert i from "first prog to remove" to "first to adjust" */
11561 if (env->subprog_info[i].start == off)
11562 i++;
11563 }
11564
11565 /* update fake 'exit' subprog as well */
11566 for (; i <= env->subprog_cnt; i++)
11567 env->subprog_info[i].start -= cnt;
11568
11569 return 0;
11570}
11571
11572static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11573 u32 cnt)
11574{
11575 struct bpf_prog *prog = env->prog;
11576 u32 i, l_off, l_cnt, nr_linfo;
11577 struct bpf_line_info *linfo;
11578
11579 nr_linfo = prog->aux->nr_linfo;
11580 if (!nr_linfo)
11581 return 0;
11582
11583 linfo = prog->aux->linfo;
11584
11585 /* find first line info to remove, count lines to be removed */
11586 for (i = 0; i < nr_linfo; i++)
11587 if (linfo[i].insn_off >= off)
11588 break;
11589
11590 l_off = i;
11591 l_cnt = 0;
11592 for (; i < nr_linfo; i++)
11593 if (linfo[i].insn_off < off + cnt)
11594 l_cnt++;
11595 else
11596 break;
11597
11598 /* First live insn doesn't match first live linfo, it needs to "inherit"
11599 * last removed linfo. prog is already modified, so prog->len == off
11600 * means no live instructions after (tail of the program was removed).
11601 */
11602 if (prog->len != off && l_cnt &&
11603 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11604 l_cnt--;
11605 linfo[--i].insn_off = off + cnt;
11606 }
11607
11608 /* remove the line info which refer to the removed instructions */
11609 if (l_cnt) {
11610 memmove(linfo + l_off, linfo + i,
11611 sizeof(*linfo) * (nr_linfo - i));
11612
11613 prog->aux->nr_linfo -= l_cnt;
11614 nr_linfo = prog->aux->nr_linfo;
11615 }
11616
11617 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
11618 for (i = l_off; i < nr_linfo; i++)
11619 linfo[i].insn_off -= cnt;
11620
11621 /* fix up all subprogs (incl. 'exit') which start >= off */
11622 for (i = 0; i <= env->subprog_cnt; i++)
11623 if (env->subprog_info[i].linfo_idx > l_off) {
11624 /* program may have started in the removed region but
11625 * may not be fully removed
11626 */
11627 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11628 env->subprog_info[i].linfo_idx -= l_cnt;
11629 else
11630 env->subprog_info[i].linfo_idx = l_off;
11631 }
11632
11633 return 0;
11634}
11635
11636static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11637{
11638 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11639 unsigned int orig_prog_len = env->prog->len;
11640 int err;
11641
08ca90af
JK
11642 if (bpf_prog_is_dev_bound(env->prog->aux))
11643 bpf_prog_offload_remove_insns(env, off, cnt);
11644
52875a04
JK
11645 err = bpf_remove_insns(env->prog, off, cnt);
11646 if (err)
11647 return err;
11648
11649 err = adjust_subprog_starts_after_remove(env, off, cnt);
11650 if (err)
11651 return err;
11652
11653 err = bpf_adj_linfo_after_remove(env, off, cnt);
11654 if (err)
11655 return err;
11656
11657 memmove(aux_data + off, aux_data + off + cnt,
11658 sizeof(*aux_data) * (orig_prog_len - off - cnt));
11659
11660 return 0;
11661}
11662
2a5418a1
DB
11663/* The verifier does more data flow analysis than llvm and will not
11664 * explore branches that are dead at run time. Malicious programs can
11665 * have dead code too. Therefore replace all dead at-run-time code
11666 * with 'ja -1'.
11667 *
11668 * Just nops are not optimal, e.g. if they would sit at the end of the
11669 * program and through another bug we would manage to jump there, then
11670 * we'd execute beyond program memory otherwise. Returning exception
11671 * code also wouldn't work since we can have subprogs where the dead
11672 * code could be located.
c131187d
AS
11673 */
11674static void sanitize_dead_code(struct bpf_verifier_env *env)
11675{
11676 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 11677 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
11678 struct bpf_insn *insn = env->prog->insnsi;
11679 const int insn_cnt = env->prog->len;
11680 int i;
11681
11682 for (i = 0; i < insn_cnt; i++) {
11683 if (aux_data[i].seen)
11684 continue;
2a5418a1 11685 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
11686 }
11687}
11688
e2ae4ca2
JK
11689static bool insn_is_cond_jump(u8 code)
11690{
11691 u8 op;
11692
092ed096
JW
11693 if (BPF_CLASS(code) == BPF_JMP32)
11694 return true;
11695
e2ae4ca2
JK
11696 if (BPF_CLASS(code) != BPF_JMP)
11697 return false;
11698
11699 op = BPF_OP(code);
11700 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11701}
11702
11703static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11704{
11705 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11706 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11707 struct bpf_insn *insn = env->prog->insnsi;
11708 const int insn_cnt = env->prog->len;
11709 int i;
11710
11711 for (i = 0; i < insn_cnt; i++, insn++) {
11712 if (!insn_is_cond_jump(insn->code))
11713 continue;
11714
11715 if (!aux_data[i + 1].seen)
11716 ja.off = insn->off;
11717 else if (!aux_data[i + 1 + insn->off].seen)
11718 ja.off = 0;
11719 else
11720 continue;
11721
08ca90af
JK
11722 if (bpf_prog_is_dev_bound(env->prog->aux))
11723 bpf_prog_offload_replace_insn(env, i, &ja);
11724
e2ae4ca2
JK
11725 memcpy(insn, &ja, sizeof(ja));
11726 }
11727}
11728
52875a04
JK
11729static int opt_remove_dead_code(struct bpf_verifier_env *env)
11730{
11731 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11732 int insn_cnt = env->prog->len;
11733 int i, err;
11734
11735 for (i = 0; i < insn_cnt; i++) {
11736 int j;
11737
11738 j = 0;
11739 while (i + j < insn_cnt && !aux_data[i + j].seen)
11740 j++;
11741 if (!j)
11742 continue;
11743
11744 err = verifier_remove_insns(env, i, j);
11745 if (err)
11746 return err;
11747 insn_cnt = env->prog->len;
11748 }
11749
11750 return 0;
11751}
11752
a1b14abc
JK
11753static int opt_remove_nops(struct bpf_verifier_env *env)
11754{
11755 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11756 struct bpf_insn *insn = env->prog->insnsi;
11757 int insn_cnt = env->prog->len;
11758 int i, err;
11759
11760 for (i = 0; i < insn_cnt; i++) {
11761 if (memcmp(&insn[i], &ja, sizeof(ja)))
11762 continue;
11763
11764 err = verifier_remove_insns(env, i, 1);
11765 if (err)
11766 return err;
11767 insn_cnt--;
11768 i--;
11769 }
11770
11771 return 0;
11772}
11773
d6c2308c
JW
11774static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11775 const union bpf_attr *attr)
a4b1d3c1 11776{
d6c2308c 11777 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 11778 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 11779 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 11780 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 11781 struct bpf_prog *new_prog;
d6c2308c 11782 bool rnd_hi32;
a4b1d3c1 11783
d6c2308c 11784 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 11785 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
11786 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11787 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11788 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
11789 for (i = 0; i < len; i++) {
11790 int adj_idx = i + delta;
11791 struct bpf_insn insn;
83a28819 11792 int load_reg;
a4b1d3c1 11793
d6c2308c 11794 insn = insns[adj_idx];
83a28819 11795 load_reg = insn_def_regno(&insn);
d6c2308c
JW
11796 if (!aux[adj_idx].zext_dst) {
11797 u8 code, class;
11798 u32 imm_rnd;
11799
11800 if (!rnd_hi32)
11801 continue;
11802
11803 code = insn.code;
11804 class = BPF_CLASS(code);
83a28819 11805 if (load_reg == -1)
d6c2308c
JW
11806 continue;
11807
11808 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
11809 * BPF_STX + SRC_OP, so it is safe to pass NULL
11810 * here.
d6c2308c 11811 */
83a28819 11812 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
11813 if (class == BPF_LD &&
11814 BPF_MODE(code) == BPF_IMM)
11815 i++;
11816 continue;
11817 }
11818
11819 /* ctx load could be transformed into wider load. */
11820 if (class == BPF_LDX &&
11821 aux[adj_idx].ptr_type == PTR_TO_CTX)
11822 continue;
11823
11824 imm_rnd = get_random_int();
11825 rnd_hi32_patch[0] = insn;
11826 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 11827 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
11828 patch = rnd_hi32_patch;
11829 patch_len = 4;
11830 goto apply_patch_buffer;
11831 }
11832
39491867
BJ
11833 /* Add in an zero-extend instruction if a) the JIT has requested
11834 * it or b) it's a CMPXCHG.
11835 *
11836 * The latter is because: BPF_CMPXCHG always loads a value into
11837 * R0, therefore always zero-extends. However some archs'
11838 * equivalent instruction only does this load when the
11839 * comparison is successful. This detail of CMPXCHG is
11840 * orthogonal to the general zero-extension behaviour of the
11841 * CPU, so it's treated independently of bpf_jit_needs_zext.
11842 */
11843 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
11844 continue;
11845
83a28819
IL
11846 if (WARN_ON(load_reg == -1)) {
11847 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11848 return -EFAULT;
b2e37a71
IL
11849 }
11850
a4b1d3c1 11851 zext_patch[0] = insn;
b2e37a71
IL
11852 zext_patch[1].dst_reg = load_reg;
11853 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
11854 patch = zext_patch;
11855 patch_len = 2;
11856apply_patch_buffer:
11857 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
11858 if (!new_prog)
11859 return -ENOMEM;
11860 env->prog = new_prog;
11861 insns = new_prog->insnsi;
11862 aux = env->insn_aux_data;
d6c2308c 11863 delta += patch_len - 1;
a4b1d3c1
JW
11864 }
11865
11866 return 0;
11867}
11868
c64b7983
JS
11869/* convert load instructions that access fields of a context type into a
11870 * sequence of instructions that access fields of the underlying structure:
11871 * struct __sk_buff -> struct sk_buff
11872 * struct bpf_sock_ops -> struct sock
9bac3d6d 11873 */
58e2af8b 11874static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 11875{
00176a34 11876 const struct bpf_verifier_ops *ops = env->ops;
f96da094 11877 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 11878 const int insn_cnt = env->prog->len;
36bbef52 11879 struct bpf_insn insn_buf[16], *insn;
46f53a65 11880 u32 target_size, size_default, off;
9bac3d6d 11881 struct bpf_prog *new_prog;
d691f9e8 11882 enum bpf_access_type type;
f96da094 11883 bool is_narrower_load;
9bac3d6d 11884
b09928b9
DB
11885 if (ops->gen_prologue || env->seen_direct_write) {
11886 if (!ops->gen_prologue) {
11887 verbose(env, "bpf verifier is misconfigured\n");
11888 return -EINVAL;
11889 }
36bbef52
DB
11890 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11891 env->prog);
11892 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 11893 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
11894 return -EINVAL;
11895 } else if (cnt) {
8041902d 11896 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
11897 if (!new_prog)
11898 return -ENOMEM;
8041902d 11899
36bbef52 11900 env->prog = new_prog;
3df126f3 11901 delta += cnt - 1;
36bbef52
DB
11902 }
11903 }
11904
c64b7983 11905 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
11906 return 0;
11907
3df126f3 11908 insn = env->prog->insnsi + delta;
36bbef52 11909
9bac3d6d 11910 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
11911 bpf_convert_ctx_access_t convert_ctx_access;
11912
62c7989b
DB
11913 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11914 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11915 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 11916 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 11917 type = BPF_READ;
62c7989b
DB
11918 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11919 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11920 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 11921 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
11922 type = BPF_WRITE;
11923 else
9bac3d6d
AS
11924 continue;
11925
af86ca4e
AS
11926 if (type == BPF_WRITE &&
11927 env->insn_aux_data[i + delta].sanitize_stack_off) {
11928 struct bpf_insn patch[] = {
11929 /* Sanitize suspicious stack slot with zero.
11930 * There are no memory dependencies for this store,
11931 * since it's only using frame pointer and immediate
11932 * constant of zero
11933 */
11934 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11935 env->insn_aux_data[i + delta].sanitize_stack_off,
11936 0),
11937 /* the original STX instruction will immediately
11938 * overwrite the same stack slot with appropriate value
11939 */
11940 *insn,
11941 };
11942
11943 cnt = ARRAY_SIZE(patch);
11944 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11945 if (!new_prog)
11946 return -ENOMEM;
11947
11948 delta += cnt - 1;
11949 env->prog = new_prog;
11950 insn = new_prog->insnsi + i + delta;
11951 continue;
11952 }
11953
c64b7983
JS
11954 switch (env->insn_aux_data[i + delta].ptr_type) {
11955 case PTR_TO_CTX:
11956 if (!ops->convert_ctx_access)
11957 continue;
11958 convert_ctx_access = ops->convert_ctx_access;
11959 break;
11960 case PTR_TO_SOCKET:
46f8bc92 11961 case PTR_TO_SOCK_COMMON:
c64b7983
JS
11962 convert_ctx_access = bpf_sock_convert_ctx_access;
11963 break;
655a51e5
MKL
11964 case PTR_TO_TCP_SOCK:
11965 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11966 break;
fada7fdc
JL
11967 case PTR_TO_XDP_SOCK:
11968 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11969 break;
2a02759e 11970 case PTR_TO_BTF_ID:
27ae7997
MKL
11971 if (type == BPF_READ) {
11972 insn->code = BPF_LDX | BPF_PROBE_MEM |
11973 BPF_SIZE((insn)->code);
11974 env->prog->aux->num_exentries++;
7e40781c 11975 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
11976 verbose(env, "Writes through BTF pointers are not allowed\n");
11977 return -EINVAL;
11978 }
2a02759e 11979 continue;
c64b7983 11980 default:
9bac3d6d 11981 continue;
c64b7983 11982 }
9bac3d6d 11983
31fd8581 11984 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 11985 size = BPF_LDST_BYTES(insn);
31fd8581
YS
11986
11987 /* If the read access is a narrower load of the field,
11988 * convert to a 4/8-byte load, to minimum program type specific
11989 * convert_ctx_access changes. If conversion is successful,
11990 * we will apply proper mask to the result.
11991 */
f96da094 11992 is_narrower_load = size < ctx_field_size;
46f53a65
AI
11993 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11994 off = insn->off;
31fd8581 11995 if (is_narrower_load) {
f96da094
DB
11996 u8 size_code;
11997
11998 if (type == BPF_WRITE) {
61bd5218 11999 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12000 return -EINVAL;
12001 }
31fd8581 12002
f96da094 12003 size_code = BPF_H;
31fd8581
YS
12004 if (ctx_field_size == 4)
12005 size_code = BPF_W;
12006 else if (ctx_field_size == 8)
12007 size_code = BPF_DW;
f96da094 12008
bc23105c 12009 insn->off = off & ~(size_default - 1);
31fd8581
YS
12010 insn->code = BPF_LDX | BPF_MEM | size_code;
12011 }
f96da094
DB
12012
12013 target_size = 0;
c64b7983
JS
12014 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12015 &target_size);
f96da094
DB
12016 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12017 (ctx_field_size && !target_size)) {
61bd5218 12018 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12019 return -EINVAL;
12020 }
f96da094
DB
12021
12022 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12023 u8 shift = bpf_ctx_narrow_access_offset(
12024 off, size, size_default) * 8;
46f53a65
AI
12025 if (ctx_field_size <= 4) {
12026 if (shift)
12027 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12028 insn->dst_reg,
12029 shift);
31fd8581 12030 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12031 (1 << size * 8) - 1);
46f53a65
AI
12032 } else {
12033 if (shift)
12034 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12035 insn->dst_reg,
12036 shift);
31fd8581 12037 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12038 (1ULL << size * 8) - 1);
46f53a65 12039 }
31fd8581 12040 }
9bac3d6d 12041
8041902d 12042 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12043 if (!new_prog)
12044 return -ENOMEM;
12045
3df126f3 12046 delta += cnt - 1;
9bac3d6d
AS
12047
12048 /* keep walking new program and skip insns we just inserted */
12049 env->prog = new_prog;
3df126f3 12050 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12051 }
12052
12053 return 0;
12054}
12055
1c2a088a
AS
12056static int jit_subprogs(struct bpf_verifier_env *env)
12057{
12058 struct bpf_prog *prog = env->prog, **func, *tmp;
12059 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12060 struct bpf_map *map_ptr;
7105e828 12061 struct bpf_insn *insn;
1c2a088a 12062 void *old_bpf_func;
c4c0bdc0 12063 int err, num_exentries;
1c2a088a 12064
f910cefa 12065 if (env->subprog_cnt <= 1)
1c2a088a
AS
12066 return 0;
12067
7105e828 12068 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12069 if (bpf_pseudo_func(insn)) {
12070 env->insn_aux_data[i].call_imm = insn->imm;
12071 /* subprog is encoded in insn[1].imm */
12072 continue;
12073 }
12074
23a2d70c 12075 if (!bpf_pseudo_call(insn))
1c2a088a 12076 continue;
c7a89784
DB
12077 /* Upon error here we cannot fall back to interpreter but
12078 * need a hard reject of the program. Thus -EFAULT is
12079 * propagated in any case.
12080 */
1c2a088a
AS
12081 subprog = find_subprog(env, i + insn->imm + 1);
12082 if (subprog < 0) {
12083 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12084 i + insn->imm + 1);
12085 return -EFAULT;
12086 }
12087 /* temporarily remember subprog id inside insn instead of
12088 * aux_data, since next loop will split up all insns into funcs
12089 */
f910cefa 12090 insn->off = subprog;
1c2a088a
AS
12091 /* remember original imm in case JIT fails and fallback
12092 * to interpreter will be needed
12093 */
12094 env->insn_aux_data[i].call_imm = insn->imm;
12095 /* point imm to __bpf_call_base+1 from JITs point of view */
12096 insn->imm = 1;
12097 }
12098
c454a46b
MKL
12099 err = bpf_prog_alloc_jited_linfo(prog);
12100 if (err)
12101 goto out_undo_insn;
12102
12103 err = -ENOMEM;
6396bb22 12104 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 12105 if (!func)
c7a89784 12106 goto out_undo_insn;
1c2a088a 12107
f910cefa 12108 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 12109 subprog_start = subprog_end;
4cb3d99c 12110 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
12111
12112 len = subprog_end - subprog_start;
492ecee8
AS
12113 /* BPF_PROG_RUN doesn't call subprogs directly,
12114 * hence main prog stats include the runtime of subprogs.
12115 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 12116 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
12117 */
12118 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
12119 if (!func[i])
12120 goto out_free;
12121 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12122 len * sizeof(struct bpf_insn));
4f74d809 12123 func[i]->type = prog->type;
1c2a088a 12124 func[i]->len = len;
4f74d809
DB
12125 if (bpf_prog_calc_tag(func[i]))
12126 goto out_free;
1c2a088a 12127 func[i]->is_func = 1;
ba64e7d8
YS
12128 func[i]->aux->func_idx = i;
12129 /* the btf and func_info will be freed only at prog->aux */
12130 func[i]->aux->btf = prog->aux->btf;
12131 func[i]->aux->func_info = prog->aux->func_info;
12132
a748c697
MF
12133 for (j = 0; j < prog->aux->size_poke_tab; j++) {
12134 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
12135 int ret;
12136
12137 if (!(insn_idx >= subprog_start &&
12138 insn_idx <= subprog_end))
12139 continue;
12140
12141 ret = bpf_jit_add_poke_descriptor(func[i],
12142 &prog->aux->poke_tab[j]);
12143 if (ret < 0) {
12144 verbose(env, "adding tail call poke descriptor failed\n");
12145 goto out_free;
12146 }
12147
12148 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
12149
12150 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
12151 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
12152 if (ret < 0) {
12153 verbose(env, "tracking tail call prog failed\n");
12154 goto out_free;
12155 }
12156 }
12157
1c2a088a
AS
12158 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12159 * Long term would need debug info to populate names
12160 */
12161 func[i]->aux->name[0] = 'F';
9c8105bd 12162 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12163 func[i]->jit_requested = 1;
e6ac2450 12164 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
c454a46b
MKL
12165 func[i]->aux->linfo = prog->aux->linfo;
12166 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12167 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12168 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12169 num_exentries = 0;
12170 insn = func[i]->insnsi;
12171 for (j = 0; j < func[i]->len; j++, insn++) {
12172 if (BPF_CLASS(insn->code) == BPF_LDX &&
12173 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12174 num_exentries++;
12175 }
12176 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12177 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12178 func[i] = bpf_int_jit_compile(func[i]);
12179 if (!func[i]->jited) {
12180 err = -ENOTSUPP;
12181 goto out_free;
12182 }
12183 cond_resched();
12184 }
a748c697
MF
12185
12186 /* Untrack main program's aux structs so that during map_poke_run()
12187 * we will not stumble upon the unfilled poke descriptors; each
12188 * of the main program's poke descs got distributed across subprogs
12189 * and got tracked onto map, so we are sure that none of them will
12190 * be missed after the operation below
12191 */
12192 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12193 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12194
12195 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12196 }
12197
1c2a088a
AS
12198 /* at this point all bpf functions were successfully JITed
12199 * now populate all bpf_calls with correct addresses and
12200 * run last pass of JIT
12201 */
f910cefa 12202 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12203 insn = func[i]->insnsi;
12204 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba
YS
12205 if (bpf_pseudo_func(insn)) {
12206 subprog = insn[1].imm;
12207 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12208 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12209 continue;
12210 }
23a2d70c 12211 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12212 continue;
12213 subprog = insn->off;
0d306c31
PB
12214 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12215 __bpf_call_base;
1c2a088a 12216 }
2162fed4
SD
12217
12218 /* we use the aux data to keep a list of the start addresses
12219 * of the JITed images for each function in the program
12220 *
12221 * for some architectures, such as powerpc64, the imm field
12222 * might not be large enough to hold the offset of the start
12223 * address of the callee's JITed image from __bpf_call_base
12224 *
12225 * in such cases, we can lookup the start address of a callee
12226 * by using its subprog id, available from the off field of
12227 * the call instruction, as an index for this list
12228 */
12229 func[i]->aux->func = func;
12230 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12231 }
f910cefa 12232 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12233 old_bpf_func = func[i]->bpf_func;
12234 tmp = bpf_int_jit_compile(func[i]);
12235 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12236 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12237 err = -ENOTSUPP;
1c2a088a
AS
12238 goto out_free;
12239 }
12240 cond_resched();
12241 }
12242
12243 /* finally lock prog and jit images for all functions and
12244 * populate kallsysm
12245 */
f910cefa 12246 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12247 bpf_prog_lock_ro(func[i]);
12248 bpf_prog_kallsyms_add(func[i]);
12249 }
7105e828
DB
12250
12251 /* Last step: make now unused interpreter insns from main
12252 * prog consistent for later dump requests, so they can
12253 * later look the same as if they were interpreted only.
12254 */
12255 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12256 if (bpf_pseudo_func(insn)) {
12257 insn[0].imm = env->insn_aux_data[i].call_imm;
12258 insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12259 continue;
12260 }
23a2d70c 12261 if (!bpf_pseudo_call(insn))
7105e828
DB
12262 continue;
12263 insn->off = env->insn_aux_data[i].call_imm;
12264 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12265 insn->imm = subprog;
7105e828
DB
12266 }
12267
1c2a088a
AS
12268 prog->jited = 1;
12269 prog->bpf_func = func[0]->bpf_func;
12270 prog->aux->func = func;
f910cefa 12271 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12272 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12273 return 0;
12274out_free:
a748c697
MF
12275 for (i = 0; i < env->subprog_cnt; i++) {
12276 if (!func[i])
12277 continue;
12278
12279 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12280 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12281 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12282 }
12283 bpf_jit_free(func[i]);
12284 }
1c2a088a 12285 kfree(func);
c7a89784 12286out_undo_insn:
1c2a088a
AS
12287 /* cleanup main prog to be interpreted */
12288 prog->jit_requested = 0;
12289 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12290 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12291 continue;
12292 insn->off = 0;
12293 insn->imm = env->insn_aux_data[i].call_imm;
12294 }
e16301fb 12295 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12296 return err;
12297}
12298
1ea47e01
AS
12299static int fixup_call_args(struct bpf_verifier_env *env)
12300{
19d28fbd 12301#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12302 struct bpf_prog *prog = env->prog;
12303 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12304 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12305 int i, depth;
19d28fbd 12306#endif
e4052d06 12307 int err = 0;
1ea47e01 12308
e4052d06
QM
12309 if (env->prog->jit_requested &&
12310 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12311 err = jit_subprogs(env);
12312 if (err == 0)
1c2a088a 12313 return 0;
c7a89784
DB
12314 if (err == -EFAULT)
12315 return err;
19d28fbd
DM
12316 }
12317#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12318 if (has_kfunc_call) {
12319 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12320 return -EINVAL;
12321 }
e411901c
MF
12322 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12323 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12324 * have to be rejected, since interpreter doesn't support them yet.
12325 */
12326 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12327 return -EINVAL;
12328 }
1ea47e01 12329 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
12330 if (bpf_pseudo_func(insn)) {
12331 /* When JIT fails the progs with callback calls
12332 * have to be rejected, since interpreter doesn't support them yet.
12333 */
12334 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12335 return -EINVAL;
12336 }
12337
23a2d70c 12338 if (!bpf_pseudo_call(insn))
1ea47e01
AS
12339 continue;
12340 depth = get_callee_stack_depth(env, insn, i);
12341 if (depth < 0)
12342 return depth;
12343 bpf_patch_call_args(insn, depth);
12344 }
19d28fbd
DM
12345 err = 0;
12346#endif
12347 return err;
1ea47e01
AS
12348}
12349
e6ac2450
MKL
12350static int fixup_kfunc_call(struct bpf_verifier_env *env,
12351 struct bpf_insn *insn)
12352{
12353 const struct bpf_kfunc_desc *desc;
12354
12355 /* insn->imm has the btf func_id. Replace it with
12356 * an address (relative to __bpf_base_call).
12357 */
12358 desc = find_kfunc_desc(env->prog, insn->imm);
12359 if (!desc) {
12360 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12361 insn->imm);
12362 return -EFAULT;
12363 }
12364
12365 insn->imm = desc->imm;
12366
12367 return 0;
12368}
12369
e6ac5933
BJ
12370/* Do various post-verification rewrites in a single program pass.
12371 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 12372 */
e6ac5933 12373static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 12374{
79741b3b 12375 struct bpf_prog *prog = env->prog;
d2e4c1e6 12376 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 12377 struct bpf_insn *insn = prog->insnsi;
e245c5c6 12378 const struct bpf_func_proto *fn;
79741b3b 12379 const int insn_cnt = prog->len;
09772d92 12380 const struct bpf_map_ops *ops;
c93552c4 12381 struct bpf_insn_aux_data *aux;
81ed18ab
AS
12382 struct bpf_insn insn_buf[16];
12383 struct bpf_prog *new_prog;
12384 struct bpf_map *map_ptr;
d2e4c1e6 12385 int i, ret, cnt, delta = 0;
e245c5c6 12386
79741b3b 12387 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 12388 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
12389 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12390 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12391 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 12392 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 12393 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
12394 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12395 struct bpf_insn *patchlet;
12396 struct bpf_insn chk_and_div[] = {
9b00f1b7 12397 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
12398 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12399 BPF_JNE | BPF_K, insn->src_reg,
12400 0, 2, 0),
f6b1b3bf
DB
12401 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12402 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12403 *insn,
12404 };
e88b2c6e 12405 struct bpf_insn chk_and_mod[] = {
9b00f1b7 12406 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
12407 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12408 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 12409 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 12410 *insn,
9b00f1b7
DB
12411 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12412 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 12413 };
f6b1b3bf 12414
e88b2c6e
DB
12415 patchlet = isdiv ? chk_and_div : chk_and_mod;
12416 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 12417 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
12418
12419 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
12420 if (!new_prog)
12421 return -ENOMEM;
12422
12423 delta += cnt - 1;
12424 env->prog = prog = new_prog;
12425 insn = new_prog->insnsi + i + delta;
12426 continue;
12427 }
12428
e6ac5933 12429 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
12430 if (BPF_CLASS(insn->code) == BPF_LD &&
12431 (BPF_MODE(insn->code) == BPF_ABS ||
12432 BPF_MODE(insn->code) == BPF_IND)) {
12433 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12434 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12435 verbose(env, "bpf verifier is misconfigured\n");
12436 return -EINVAL;
12437 }
12438
12439 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12440 if (!new_prog)
12441 return -ENOMEM;
12442
12443 delta += cnt - 1;
12444 env->prog = prog = new_prog;
12445 insn = new_prog->insnsi + i + delta;
12446 continue;
12447 }
12448
e6ac5933 12449 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
12450 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12451 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12452 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12453 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 12454 struct bpf_insn *patch = &insn_buf[0];
801c6058 12455 bool issrc, isneg, isimm;
979d63d5
DB
12456 u32 off_reg;
12457
12458 aux = &env->insn_aux_data[i + delta];
3612af78
DB
12459 if (!aux->alu_state ||
12460 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
12461 continue;
12462
12463 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12464 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12465 BPF_ALU_SANITIZE_SRC;
801c6058 12466 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
12467
12468 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
12469 if (isimm) {
12470 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12471 } else {
12472 if (isneg)
12473 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12474 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12475 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12476 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12477 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12478 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12479 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12480 }
b9b34ddb
DB
12481 if (!issrc)
12482 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12483 insn->src_reg = BPF_REG_AX;
979d63d5
DB
12484 if (isneg)
12485 insn->code = insn->code == code_add ?
12486 code_sub : code_add;
12487 *patch++ = *insn;
801c6058 12488 if (issrc && isneg && !isimm)
979d63d5
DB
12489 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12490 cnt = patch - insn_buf;
12491
12492 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12493 if (!new_prog)
12494 return -ENOMEM;
12495
12496 delta += cnt - 1;
12497 env->prog = prog = new_prog;
12498 insn = new_prog->insnsi + i + delta;
12499 continue;
12500 }
12501
79741b3b
AS
12502 if (insn->code != (BPF_JMP | BPF_CALL))
12503 continue;
cc8b0b92
AS
12504 if (insn->src_reg == BPF_PSEUDO_CALL)
12505 continue;
e6ac2450
MKL
12506 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12507 ret = fixup_kfunc_call(env, insn);
12508 if (ret)
12509 return ret;
12510 continue;
12511 }
e245c5c6 12512
79741b3b
AS
12513 if (insn->imm == BPF_FUNC_get_route_realm)
12514 prog->dst_needed = 1;
12515 if (insn->imm == BPF_FUNC_get_prandom_u32)
12516 bpf_user_rnd_init_once();
9802d865
JB
12517 if (insn->imm == BPF_FUNC_override_return)
12518 prog->kprobe_override = 1;
79741b3b 12519 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
12520 /* If we tail call into other programs, we
12521 * cannot make any assumptions since they can
12522 * be replaced dynamically during runtime in
12523 * the program array.
12524 */
12525 prog->cb_access = 1;
e411901c
MF
12526 if (!allow_tail_call_in_subprogs(env))
12527 prog->aux->stack_depth = MAX_BPF_STACK;
12528 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 12529
79741b3b 12530 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 12531 * conditional branch in the interpreter for every normal
79741b3b
AS
12532 * call and to prevent accidental JITing by JIT compiler
12533 * that doesn't support bpf_tail_call yet
e245c5c6 12534 */
79741b3b 12535 insn->imm = 0;
71189fa9 12536 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 12537
c93552c4 12538 aux = &env->insn_aux_data[i + delta];
2c78ee89 12539 if (env->bpf_capable && !expect_blinding &&
cc52d914 12540 prog->jit_requested &&
d2e4c1e6
DB
12541 !bpf_map_key_poisoned(aux) &&
12542 !bpf_map_ptr_poisoned(aux) &&
12543 !bpf_map_ptr_unpriv(aux)) {
12544 struct bpf_jit_poke_descriptor desc = {
12545 .reason = BPF_POKE_REASON_TAIL_CALL,
12546 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12547 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 12548 .insn_idx = i + delta,
d2e4c1e6
DB
12549 };
12550
12551 ret = bpf_jit_add_poke_descriptor(prog, &desc);
12552 if (ret < 0) {
12553 verbose(env, "adding tail call poke descriptor failed\n");
12554 return ret;
12555 }
12556
12557 insn->imm = ret + 1;
12558 continue;
12559 }
12560
c93552c4
DB
12561 if (!bpf_map_ptr_unpriv(aux))
12562 continue;
12563
b2157399
AS
12564 /* instead of changing every JIT dealing with tail_call
12565 * emit two extra insns:
12566 * if (index >= max_entries) goto out;
12567 * index &= array->index_mask;
12568 * to avoid out-of-bounds cpu speculation
12569 */
c93552c4 12570 if (bpf_map_ptr_poisoned(aux)) {
40950343 12571 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
12572 return -EINVAL;
12573 }
c93552c4 12574
d2e4c1e6 12575 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
12576 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12577 map_ptr->max_entries, 2);
12578 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12579 container_of(map_ptr,
12580 struct bpf_array,
12581 map)->index_mask);
12582 insn_buf[2] = *insn;
12583 cnt = 3;
12584 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12585 if (!new_prog)
12586 return -ENOMEM;
12587
12588 delta += cnt - 1;
12589 env->prog = prog = new_prog;
12590 insn = new_prog->insnsi + i + delta;
79741b3b
AS
12591 continue;
12592 }
e245c5c6 12593
89c63074 12594 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
12595 * and other inlining handlers are currently limited to 64 bit
12596 * only.
89c63074 12597 */
60b58afc 12598 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
12599 (insn->imm == BPF_FUNC_map_lookup_elem ||
12600 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
12601 insn->imm == BPF_FUNC_map_delete_elem ||
12602 insn->imm == BPF_FUNC_map_push_elem ||
12603 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f
BT
12604 insn->imm == BPF_FUNC_map_peek_elem ||
12605 insn->imm == BPF_FUNC_redirect_map)) {
c93552c4
DB
12606 aux = &env->insn_aux_data[i + delta];
12607 if (bpf_map_ptr_poisoned(aux))
12608 goto patch_call_imm;
12609
d2e4c1e6 12610 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
12611 ops = map_ptr->ops;
12612 if (insn->imm == BPF_FUNC_map_lookup_elem &&
12613 ops->map_gen_lookup) {
12614 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
12615 if (cnt == -EOPNOTSUPP)
12616 goto patch_map_ops_generic;
12617 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
12618 verbose(env, "bpf verifier is misconfigured\n");
12619 return -EINVAL;
12620 }
81ed18ab 12621
09772d92
DB
12622 new_prog = bpf_patch_insn_data(env, i + delta,
12623 insn_buf, cnt);
12624 if (!new_prog)
12625 return -ENOMEM;
81ed18ab 12626
09772d92
DB
12627 delta += cnt - 1;
12628 env->prog = prog = new_prog;
12629 insn = new_prog->insnsi + i + delta;
12630 continue;
12631 }
81ed18ab 12632
09772d92
DB
12633 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12634 (void *(*)(struct bpf_map *map, void *key))NULL));
12635 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12636 (int (*)(struct bpf_map *map, void *key))NULL));
12637 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12638 (int (*)(struct bpf_map *map, void *key, void *value,
12639 u64 flags))NULL));
84430d42
DB
12640 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12641 (int (*)(struct bpf_map *map, void *value,
12642 u64 flags))NULL));
12643 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12644 (int (*)(struct bpf_map *map, void *value))NULL));
12645 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12646 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
12647 BUILD_BUG_ON(!__same_type(ops->map_redirect,
12648 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12649
4a8f87e6 12650patch_map_ops_generic:
09772d92
DB
12651 switch (insn->imm) {
12652 case BPF_FUNC_map_lookup_elem:
12653 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12654 __bpf_call_base;
12655 continue;
12656 case BPF_FUNC_map_update_elem:
12657 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12658 __bpf_call_base;
12659 continue;
12660 case BPF_FUNC_map_delete_elem:
12661 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12662 __bpf_call_base;
12663 continue;
84430d42
DB
12664 case BPF_FUNC_map_push_elem:
12665 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12666 __bpf_call_base;
12667 continue;
12668 case BPF_FUNC_map_pop_elem:
12669 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12670 __bpf_call_base;
12671 continue;
12672 case BPF_FUNC_map_peek_elem:
12673 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12674 __bpf_call_base;
12675 continue;
e6a4750f
BT
12676 case BPF_FUNC_redirect_map:
12677 insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12678 __bpf_call_base;
12679 continue;
09772d92 12680 }
81ed18ab 12681
09772d92 12682 goto patch_call_imm;
81ed18ab
AS
12683 }
12684
e6ac5933 12685 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
12686 if (prog->jit_requested && BITS_PER_LONG == 64 &&
12687 insn->imm == BPF_FUNC_jiffies64) {
12688 struct bpf_insn ld_jiffies_addr[2] = {
12689 BPF_LD_IMM64(BPF_REG_0,
12690 (unsigned long)&jiffies),
12691 };
12692
12693 insn_buf[0] = ld_jiffies_addr[0];
12694 insn_buf[1] = ld_jiffies_addr[1];
12695 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12696 BPF_REG_0, 0);
12697 cnt = 3;
12698
12699 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12700 cnt);
12701 if (!new_prog)
12702 return -ENOMEM;
12703
12704 delta += cnt - 1;
12705 env->prog = prog = new_prog;
12706 insn = new_prog->insnsi + i + delta;
12707 continue;
12708 }
12709
81ed18ab 12710patch_call_imm:
5e43f899 12711 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
12712 /* all functions that have prototype and verifier allowed
12713 * programs to call them, must be real in-kernel functions
12714 */
12715 if (!fn->func) {
61bd5218
JK
12716 verbose(env,
12717 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
12718 func_id_name(insn->imm), insn->imm);
12719 return -EFAULT;
e245c5c6 12720 }
79741b3b 12721 insn->imm = fn->func - __bpf_call_base;
e245c5c6 12722 }
e245c5c6 12723
d2e4c1e6
DB
12724 /* Since poke tab is now finalized, publish aux to tracker. */
12725 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12726 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12727 if (!map_ptr->ops->map_poke_track ||
12728 !map_ptr->ops->map_poke_untrack ||
12729 !map_ptr->ops->map_poke_run) {
12730 verbose(env, "bpf verifier is misconfigured\n");
12731 return -EINVAL;
12732 }
12733
12734 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12735 if (ret < 0) {
12736 verbose(env, "tracking tail call prog failed\n");
12737 return ret;
12738 }
12739 }
12740
e6ac2450
MKL
12741 sort_kfunc_descs_by_imm(env->prog);
12742
79741b3b
AS
12743 return 0;
12744}
e245c5c6 12745
58e2af8b 12746static void free_states(struct bpf_verifier_env *env)
f1bca824 12747{
58e2af8b 12748 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
12749 int i;
12750
9f4686c4
AS
12751 sl = env->free_list;
12752 while (sl) {
12753 sln = sl->next;
12754 free_verifier_state(&sl->state, false);
12755 kfree(sl);
12756 sl = sln;
12757 }
51c39bb1 12758 env->free_list = NULL;
9f4686c4 12759
f1bca824
AS
12760 if (!env->explored_states)
12761 return;
12762
dc2a4ebc 12763 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
12764 sl = env->explored_states[i];
12765
a8f500af
AS
12766 while (sl) {
12767 sln = sl->next;
12768 free_verifier_state(&sl->state, false);
12769 kfree(sl);
12770 sl = sln;
12771 }
51c39bb1 12772 env->explored_states[i] = NULL;
f1bca824 12773 }
51c39bb1 12774}
f1bca824 12775
51c39bb1
AS
12776/* The verifier is using insn_aux_data[] to store temporary data during
12777 * verification and to store information for passes that run after the
12778 * verification like dead code sanitization. do_check_common() for subprogram N
12779 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12780 * temporary data after do_check_common() finds that subprogram N cannot be
12781 * verified independently. pass_cnt counts the number of times
12782 * do_check_common() was run and insn->aux->seen tells the pass number
12783 * insn_aux_data was touched. These variables are compared to clear temporary
12784 * data from failed pass. For testing and experiments do_check_common() can be
12785 * run multiple times even when prior attempt to verify is unsuccessful.
fe9a5ca7
DB
12786 *
12787 * Note that special handling is needed on !env->bypass_spec_v1 if this is
12788 * ever called outside of error path with subsequent program rejection.
51c39bb1
AS
12789 */
12790static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12791{
12792 struct bpf_insn *insn = env->prog->insnsi;
12793 struct bpf_insn_aux_data *aux;
12794 int i, class;
12795
12796 for (i = 0; i < env->prog->len; i++) {
12797 class = BPF_CLASS(insn[i].code);
12798 if (class != BPF_LDX && class != BPF_STX)
12799 continue;
12800 aux = &env->insn_aux_data[i];
12801 if (aux->seen != env->pass_cnt)
12802 continue;
12803 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12804 }
f1bca824
AS
12805}
12806
51c39bb1
AS
12807static int do_check_common(struct bpf_verifier_env *env, int subprog)
12808{
6f8a57cc 12809 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
12810 struct bpf_verifier_state *state;
12811 struct bpf_reg_state *regs;
12812 int ret, i;
12813
12814 env->prev_linfo = NULL;
12815 env->pass_cnt++;
12816
12817 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12818 if (!state)
12819 return -ENOMEM;
12820 state->curframe = 0;
12821 state->speculative = false;
12822 state->branches = 1;
12823 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12824 if (!state->frame[0]) {
12825 kfree(state);
12826 return -ENOMEM;
12827 }
12828 env->cur_state = state;
12829 init_func_state(env, state->frame[0],
12830 BPF_MAIN_FUNC /* callsite */,
12831 0 /* frameno */,
12832 subprog);
12833
12834 regs = state->frame[state->curframe]->regs;
be8704ff 12835 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
12836 ret = btf_prepare_func_args(env, subprog, regs);
12837 if (ret)
12838 goto out;
12839 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12840 if (regs[i].type == PTR_TO_CTX)
12841 mark_reg_known_zero(env, regs, i);
12842 else if (regs[i].type == SCALAR_VALUE)
12843 mark_reg_unknown(env, regs, i);
e5069b9c
DB
12844 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12845 const u32 mem_size = regs[i].mem_size;
12846
12847 mark_reg_known_zero(env, regs, i);
12848 regs[i].mem_size = mem_size;
12849 regs[i].id = ++env->id_gen;
12850 }
51c39bb1
AS
12851 }
12852 } else {
12853 /* 1st arg to a function */
12854 regs[BPF_REG_1].type = PTR_TO_CTX;
12855 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 12856 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
12857 if (ret == -EFAULT)
12858 /* unlikely verifier bug. abort.
12859 * ret == 0 and ret < 0 are sadly acceptable for
12860 * main() function due to backward compatibility.
12861 * Like socket filter program may be written as:
12862 * int bpf_prog(struct pt_regs *ctx)
12863 * and never dereference that ctx in the program.
12864 * 'struct pt_regs' is a type mismatch for socket
12865 * filter that should be using 'struct __sk_buff'.
12866 */
12867 goto out;
12868 }
12869
12870 ret = do_check(env);
12871out:
f59bbfc2
AS
12872 /* check for NULL is necessary, since cur_state can be freed inside
12873 * do_check() under memory pressure.
12874 */
12875 if (env->cur_state) {
12876 free_verifier_state(env->cur_state, true);
12877 env->cur_state = NULL;
12878 }
6f8a57cc
AN
12879 while (!pop_stack(env, NULL, NULL, false));
12880 if (!ret && pop_log)
12881 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
12882 free_states(env);
12883 if (ret)
12884 /* clean aux data in case subprog was rejected */
12885 sanitize_insn_aux_data(env);
12886 return ret;
12887}
12888
12889/* Verify all global functions in a BPF program one by one based on their BTF.
12890 * All global functions must pass verification. Otherwise the whole program is rejected.
12891 * Consider:
12892 * int bar(int);
12893 * int foo(int f)
12894 * {
12895 * return bar(f);
12896 * }
12897 * int bar(int b)
12898 * {
12899 * ...
12900 * }
12901 * foo() will be verified first for R1=any_scalar_value. During verification it
12902 * will be assumed that bar() already verified successfully and call to bar()
12903 * from foo() will be checked for type match only. Later bar() will be verified
12904 * independently to check that it's safe for R1=any_scalar_value.
12905 */
12906static int do_check_subprogs(struct bpf_verifier_env *env)
12907{
12908 struct bpf_prog_aux *aux = env->prog->aux;
12909 int i, ret;
12910
12911 if (!aux->func_info)
12912 return 0;
12913
12914 for (i = 1; i < env->subprog_cnt; i++) {
12915 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12916 continue;
12917 env->insn_idx = env->subprog_info[i].start;
12918 WARN_ON_ONCE(env->insn_idx == 0);
12919 ret = do_check_common(env, i);
12920 if (ret) {
12921 return ret;
12922 } else if (env->log.level & BPF_LOG_LEVEL) {
12923 verbose(env,
12924 "Func#%d is safe for any args that match its prototype\n",
12925 i);
12926 }
12927 }
12928 return 0;
12929}
12930
12931static int do_check_main(struct bpf_verifier_env *env)
12932{
12933 int ret;
12934
12935 env->insn_idx = 0;
12936 ret = do_check_common(env, 0);
12937 if (!ret)
12938 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12939 return ret;
12940}
12941
12942
06ee7115
AS
12943static void print_verification_stats(struct bpf_verifier_env *env)
12944{
12945 int i;
12946
12947 if (env->log.level & BPF_LOG_STATS) {
12948 verbose(env, "verification time %lld usec\n",
12949 div_u64(env->verification_time, 1000));
12950 verbose(env, "stack depth ");
12951 for (i = 0; i < env->subprog_cnt; i++) {
12952 u32 depth = env->subprog_info[i].stack_depth;
12953
12954 verbose(env, "%d", depth);
12955 if (i + 1 < env->subprog_cnt)
12956 verbose(env, "+");
12957 }
12958 verbose(env, "\n");
12959 }
12960 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12961 "total_states %d peak_states %d mark_read %d\n",
12962 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12963 env->max_states_per_insn, env->total_states,
12964 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
12965}
12966
27ae7997
MKL
12967static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12968{
12969 const struct btf_type *t, *func_proto;
12970 const struct bpf_struct_ops *st_ops;
12971 const struct btf_member *member;
12972 struct bpf_prog *prog = env->prog;
12973 u32 btf_id, member_idx;
12974 const char *mname;
12975
12aa8a94
THJ
12976 if (!prog->gpl_compatible) {
12977 verbose(env, "struct ops programs must have a GPL compatible license\n");
12978 return -EINVAL;
12979 }
12980
27ae7997
MKL
12981 btf_id = prog->aux->attach_btf_id;
12982 st_ops = bpf_struct_ops_find(btf_id);
12983 if (!st_ops) {
12984 verbose(env, "attach_btf_id %u is not a supported struct\n",
12985 btf_id);
12986 return -ENOTSUPP;
12987 }
12988
12989 t = st_ops->type;
12990 member_idx = prog->expected_attach_type;
12991 if (member_idx >= btf_type_vlen(t)) {
12992 verbose(env, "attach to invalid member idx %u of struct %s\n",
12993 member_idx, st_ops->name);
12994 return -EINVAL;
12995 }
12996
12997 member = &btf_type_member(t)[member_idx];
12998 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12999 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13000 NULL);
13001 if (!func_proto) {
13002 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13003 mname, member_idx, st_ops->name);
13004 return -EINVAL;
13005 }
13006
13007 if (st_ops->check_member) {
13008 int err = st_ops->check_member(t, member);
13009
13010 if (err) {
13011 verbose(env, "attach to unsupported member %s of struct %s\n",
13012 mname, st_ops->name);
13013 return err;
13014 }
13015 }
13016
13017 prog->aux->attach_func_proto = func_proto;
13018 prog->aux->attach_func_name = mname;
13019 env->ops = st_ops->verifier_ops;
13020
13021 return 0;
13022}
6ba43b76
KS
13023#define SECURITY_PREFIX "security_"
13024
f7b12b6f 13025static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 13026{
69191754 13027 if (within_error_injection_list(addr) ||
f7b12b6f 13028 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 13029 return 0;
6ba43b76 13030
6ba43b76
KS
13031 return -EINVAL;
13032}
27ae7997 13033
1e6c62a8
AS
13034/* list of non-sleepable functions that are otherwise on
13035 * ALLOW_ERROR_INJECTION list
13036 */
13037BTF_SET_START(btf_non_sleepable_error_inject)
13038/* Three functions below can be called from sleepable and non-sleepable context.
13039 * Assume non-sleepable from bpf safety point of view.
13040 */
13041BTF_ID(func, __add_to_page_cache_locked)
13042BTF_ID(func, should_fail_alloc_page)
13043BTF_ID(func, should_failslab)
13044BTF_SET_END(btf_non_sleepable_error_inject)
13045
13046static int check_non_sleepable_error_inject(u32 btf_id)
13047{
13048 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13049}
13050
f7b12b6f
THJ
13051int bpf_check_attach_target(struct bpf_verifier_log *log,
13052 const struct bpf_prog *prog,
13053 const struct bpf_prog *tgt_prog,
13054 u32 btf_id,
13055 struct bpf_attach_target_info *tgt_info)
38207291 13056{
be8704ff 13057 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 13058 const char prefix[] = "btf_trace_";
5b92a28a 13059 int ret = 0, subprog = -1, i;
38207291 13060 const struct btf_type *t;
5b92a28a 13061 bool conservative = true;
38207291 13062 const char *tname;
5b92a28a 13063 struct btf *btf;
f7b12b6f 13064 long addr = 0;
38207291 13065
f1b9509c 13066 if (!btf_id) {
efc68158 13067 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
13068 return -EINVAL;
13069 }
22dc4a0f 13070 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 13071 if (!btf) {
efc68158 13072 bpf_log(log,
5b92a28a
AS
13073 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13074 return -EINVAL;
13075 }
13076 t = btf_type_by_id(btf, btf_id);
f1b9509c 13077 if (!t) {
efc68158 13078 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
13079 return -EINVAL;
13080 }
5b92a28a 13081 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 13082 if (!tname) {
efc68158 13083 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
13084 return -EINVAL;
13085 }
5b92a28a
AS
13086 if (tgt_prog) {
13087 struct bpf_prog_aux *aux = tgt_prog->aux;
13088
13089 for (i = 0; i < aux->func_info_cnt; i++)
13090 if (aux->func_info[i].type_id == btf_id) {
13091 subprog = i;
13092 break;
13093 }
13094 if (subprog == -1) {
efc68158 13095 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
13096 return -EINVAL;
13097 }
13098 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
13099 if (prog_extension) {
13100 if (conservative) {
efc68158 13101 bpf_log(log,
be8704ff
AS
13102 "Cannot replace static functions\n");
13103 return -EINVAL;
13104 }
13105 if (!prog->jit_requested) {
efc68158 13106 bpf_log(log,
be8704ff
AS
13107 "Extension programs should be JITed\n");
13108 return -EINVAL;
13109 }
be8704ff
AS
13110 }
13111 if (!tgt_prog->jited) {
efc68158 13112 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
13113 return -EINVAL;
13114 }
13115 if (tgt_prog->type == prog->type) {
13116 /* Cannot fentry/fexit another fentry/fexit program.
13117 * Cannot attach program extension to another extension.
13118 * It's ok to attach fentry/fexit to extension program.
13119 */
efc68158 13120 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
13121 return -EINVAL;
13122 }
13123 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13124 prog_extension &&
13125 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13126 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13127 /* Program extensions can extend all program types
13128 * except fentry/fexit. The reason is the following.
13129 * The fentry/fexit programs are used for performance
13130 * analysis, stats and can be attached to any program
13131 * type except themselves. When extension program is
13132 * replacing XDP function it is necessary to allow
13133 * performance analysis of all functions. Both original
13134 * XDP program and its program extension. Hence
13135 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13136 * allowed. If extending of fentry/fexit was allowed it
13137 * would be possible to create long call chain
13138 * fentry->extension->fentry->extension beyond
13139 * reasonable stack size. Hence extending fentry is not
13140 * allowed.
13141 */
efc68158 13142 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
13143 return -EINVAL;
13144 }
5b92a28a 13145 } else {
be8704ff 13146 if (prog_extension) {
efc68158 13147 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
13148 return -EINVAL;
13149 }
5b92a28a 13150 }
f1b9509c
AS
13151
13152 switch (prog->expected_attach_type) {
13153 case BPF_TRACE_RAW_TP:
5b92a28a 13154 if (tgt_prog) {
efc68158 13155 bpf_log(log,
5b92a28a
AS
13156 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13157 return -EINVAL;
13158 }
38207291 13159 if (!btf_type_is_typedef(t)) {
efc68158 13160 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
13161 btf_id);
13162 return -EINVAL;
13163 }
f1b9509c 13164 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 13165 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
13166 btf_id, tname);
13167 return -EINVAL;
13168 }
13169 tname += sizeof(prefix) - 1;
5b92a28a 13170 t = btf_type_by_id(btf, t->type);
38207291
MKL
13171 if (!btf_type_is_ptr(t))
13172 /* should never happen in valid vmlinux build */
13173 return -EINVAL;
5b92a28a 13174 t = btf_type_by_id(btf, t->type);
38207291
MKL
13175 if (!btf_type_is_func_proto(t))
13176 /* should never happen in valid vmlinux build */
13177 return -EINVAL;
13178
f7b12b6f 13179 break;
15d83c4d
YS
13180 case BPF_TRACE_ITER:
13181 if (!btf_type_is_func(t)) {
efc68158 13182 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13183 btf_id);
13184 return -EINVAL;
13185 }
13186 t = btf_type_by_id(btf, t->type);
13187 if (!btf_type_is_func_proto(t))
13188 return -EINVAL;
f7b12b6f
THJ
13189 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13190 if (ret)
13191 return ret;
13192 break;
be8704ff
AS
13193 default:
13194 if (!prog_extension)
13195 return -EINVAL;
df561f66 13196 fallthrough;
ae240823 13197 case BPF_MODIFY_RETURN:
9e4e01df 13198 case BPF_LSM_MAC:
fec56f58
AS
13199 case BPF_TRACE_FENTRY:
13200 case BPF_TRACE_FEXIT:
13201 if (!btf_type_is_func(t)) {
efc68158 13202 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13203 btf_id);
13204 return -EINVAL;
13205 }
be8704ff 13206 if (prog_extension &&
efc68158 13207 btf_check_type_match(log, prog, btf, t))
be8704ff 13208 return -EINVAL;
5b92a28a 13209 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13210 if (!btf_type_is_func_proto(t))
13211 return -EINVAL;
f7b12b6f 13212
4a1e7c0c
THJ
13213 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13214 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13215 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13216 return -EINVAL;
13217
f7b12b6f 13218 if (tgt_prog && conservative)
5b92a28a 13219 t = NULL;
f7b12b6f
THJ
13220
13221 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13222 if (ret < 0)
f7b12b6f
THJ
13223 return ret;
13224
5b92a28a 13225 if (tgt_prog) {
e9eeec58
YS
13226 if (subprog == 0)
13227 addr = (long) tgt_prog->bpf_func;
13228 else
13229 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13230 } else {
13231 addr = kallsyms_lookup_name(tname);
13232 if (!addr) {
efc68158 13233 bpf_log(log,
5b92a28a
AS
13234 "The address of function %s cannot be found\n",
13235 tname);
f7b12b6f 13236 return -ENOENT;
5b92a28a 13237 }
fec56f58 13238 }
18644cec 13239
1e6c62a8
AS
13240 if (prog->aux->sleepable) {
13241 ret = -EINVAL;
13242 switch (prog->type) {
13243 case BPF_PROG_TYPE_TRACING:
13244 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13245 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13246 */
13247 if (!check_non_sleepable_error_inject(btf_id) &&
13248 within_error_injection_list(addr))
13249 ret = 0;
13250 break;
13251 case BPF_PROG_TYPE_LSM:
13252 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13253 * Only some of them are sleepable.
13254 */
423f1610 13255 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
13256 ret = 0;
13257 break;
13258 default:
13259 break;
13260 }
f7b12b6f
THJ
13261 if (ret) {
13262 bpf_log(log, "%s is not sleepable\n", tname);
13263 return ret;
13264 }
1e6c62a8 13265 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 13266 if (tgt_prog) {
efc68158 13267 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
13268 return -EINVAL;
13269 }
13270 ret = check_attach_modify_return(addr, tname);
13271 if (ret) {
13272 bpf_log(log, "%s() is not modifiable\n", tname);
13273 return ret;
1af9270e 13274 }
18644cec 13275 }
f7b12b6f
THJ
13276
13277 break;
13278 }
13279 tgt_info->tgt_addr = addr;
13280 tgt_info->tgt_name = tname;
13281 tgt_info->tgt_type = t;
13282 return 0;
13283}
13284
35e3815f
JO
13285BTF_SET_START(btf_id_deny)
13286BTF_ID_UNUSED
13287#ifdef CONFIG_SMP
13288BTF_ID(func, migrate_disable)
13289BTF_ID(func, migrate_enable)
13290#endif
13291#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13292BTF_ID(func, rcu_read_unlock_strict)
13293#endif
13294BTF_SET_END(btf_id_deny)
13295
f7b12b6f
THJ
13296static int check_attach_btf_id(struct bpf_verifier_env *env)
13297{
13298 struct bpf_prog *prog = env->prog;
3aac1ead 13299 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
13300 struct bpf_attach_target_info tgt_info = {};
13301 u32 btf_id = prog->aux->attach_btf_id;
13302 struct bpf_trampoline *tr;
13303 int ret;
13304 u64 key;
13305
79a7f8bd
AS
13306 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13307 if (prog->aux->sleepable)
13308 /* attach_btf_id checked to be zero already */
13309 return 0;
13310 verbose(env, "Syscall programs can only be sleepable\n");
13311 return -EINVAL;
13312 }
13313
f7b12b6f
THJ
13314 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13315 prog->type != BPF_PROG_TYPE_LSM) {
13316 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13317 return -EINVAL;
13318 }
13319
13320 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13321 return check_struct_ops_btf_id(env);
13322
13323 if (prog->type != BPF_PROG_TYPE_TRACING &&
13324 prog->type != BPF_PROG_TYPE_LSM &&
13325 prog->type != BPF_PROG_TYPE_EXT)
13326 return 0;
13327
13328 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13329 if (ret)
fec56f58 13330 return ret;
f7b12b6f
THJ
13331
13332 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
13333 /* to make freplace equivalent to their targets, they need to
13334 * inherit env->ops and expected_attach_type for the rest of the
13335 * verification
13336 */
f7b12b6f
THJ
13337 env->ops = bpf_verifier_ops[tgt_prog->type];
13338 prog->expected_attach_type = tgt_prog->expected_attach_type;
13339 }
13340
13341 /* store info about the attachment target that will be used later */
13342 prog->aux->attach_func_proto = tgt_info.tgt_type;
13343 prog->aux->attach_func_name = tgt_info.tgt_name;
13344
4a1e7c0c
THJ
13345 if (tgt_prog) {
13346 prog->aux->saved_dst_prog_type = tgt_prog->type;
13347 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13348 }
13349
f7b12b6f
THJ
13350 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13351 prog->aux->attach_btf_trace = true;
13352 return 0;
13353 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13354 if (!bpf_iter_prog_supported(prog))
13355 return -EINVAL;
13356 return 0;
13357 }
13358
13359 if (prog->type == BPF_PROG_TYPE_LSM) {
13360 ret = bpf_lsm_verify_prog(&env->log, prog);
13361 if (ret < 0)
13362 return ret;
35e3815f
JO
13363 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13364 btf_id_set_contains(&btf_id_deny, btf_id)) {
13365 return -EINVAL;
38207291 13366 }
f7b12b6f 13367
22dc4a0f 13368 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
13369 tr = bpf_trampoline_get(key, &tgt_info);
13370 if (!tr)
13371 return -ENOMEM;
13372
3aac1ead 13373 prog->aux->dst_trampoline = tr;
f7b12b6f 13374 return 0;
38207291
MKL
13375}
13376
76654e67
AM
13377struct btf *bpf_get_btf_vmlinux(void)
13378{
13379 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13380 mutex_lock(&bpf_verifier_lock);
13381 if (!btf_vmlinux)
13382 btf_vmlinux = btf_parse_vmlinux();
13383 mutex_unlock(&bpf_verifier_lock);
13384 }
13385 return btf_vmlinux;
13386}
13387
af2ac3e1 13388int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 13389{
06ee7115 13390 u64 start_time = ktime_get_ns();
58e2af8b 13391 struct bpf_verifier_env *env;
b9193c1b 13392 struct bpf_verifier_log *log;
9e4c24e7 13393 int i, len, ret = -EINVAL;
e2ae4ca2 13394 bool is_priv;
51580e79 13395
eba0c929
AB
13396 /* no program is valid */
13397 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13398 return -EINVAL;
13399
58e2af8b 13400 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
13401 * allocate/free it every time bpf_check() is called
13402 */
58e2af8b 13403 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
13404 if (!env)
13405 return -ENOMEM;
61bd5218 13406 log = &env->log;
cbd35700 13407
9e4c24e7 13408 len = (*prog)->len;
fad953ce 13409 env->insn_aux_data =
9e4c24e7 13410 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
13411 ret = -ENOMEM;
13412 if (!env->insn_aux_data)
13413 goto err_free_env;
9e4c24e7
JK
13414 for (i = 0; i < len; i++)
13415 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 13416 env->prog = *prog;
00176a34 13417 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 13418 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 13419 is_priv = bpf_capable();
0246e64d 13420
76654e67 13421 bpf_get_btf_vmlinux();
8580ac94 13422
cbd35700 13423 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
13424 if (!is_priv)
13425 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
13426
13427 if (attr->log_level || attr->log_buf || attr->log_size) {
13428 /* user requested verbose verifier output
13429 * and supplied buffer to store the verification trace
13430 */
e7bf8249
JK
13431 log->level = attr->log_level;
13432 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13433 log->len_total = attr->log_size;
cbd35700
AS
13434
13435 ret = -EINVAL;
e7bf8249 13436 /* log attributes have to be sane */
7a9f5c65 13437 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 13438 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 13439 goto err_unlock;
cbd35700 13440 }
1ad2f583 13441
8580ac94
AS
13442 if (IS_ERR(btf_vmlinux)) {
13443 /* Either gcc or pahole or kernel are broken. */
13444 verbose(env, "in-kernel BTF is malformed\n");
13445 ret = PTR_ERR(btf_vmlinux);
38207291 13446 goto skip_full_check;
8580ac94
AS
13447 }
13448
1ad2f583
DB
13449 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13450 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 13451 env->strict_alignment = true;
e9ee9efc
DM
13452 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13453 env->strict_alignment = false;
cbd35700 13454
2c78ee89 13455 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 13456 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 13457 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
13458 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13459 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13460 env->bpf_capable = bpf_capable();
e2ae4ca2 13461
10d274e8
AS
13462 if (is_priv)
13463 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13464
dc2a4ebc 13465 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 13466 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
13467 GFP_USER);
13468 ret = -ENOMEM;
13469 if (!env->explored_states)
13470 goto skip_full_check;
13471
e6ac2450
MKL
13472 ret = add_subprog_and_kfunc(env);
13473 if (ret < 0)
13474 goto skip_full_check;
13475
d9762e84 13476 ret = check_subprogs(env);
475fb78f
AS
13477 if (ret < 0)
13478 goto skip_full_check;
13479
c454a46b 13480 ret = check_btf_info(env, attr, uattr);
838e9690
YS
13481 if (ret < 0)
13482 goto skip_full_check;
13483
be8704ff
AS
13484 ret = check_attach_btf_id(env);
13485 if (ret)
13486 goto skip_full_check;
13487
4976b718
HL
13488 ret = resolve_pseudo_ldimm64(env);
13489 if (ret < 0)
13490 goto skip_full_check;
13491
ceb11679
YZ
13492 if (bpf_prog_is_dev_bound(env->prog->aux)) {
13493 ret = bpf_prog_offload_verifier_prep(env->prog);
13494 if (ret)
13495 goto skip_full_check;
13496 }
13497
d9762e84
MKL
13498 ret = check_cfg(env);
13499 if (ret < 0)
13500 goto skip_full_check;
13501
51c39bb1
AS
13502 ret = do_check_subprogs(env);
13503 ret = ret ?: do_check_main(env);
cbd35700 13504
c941ce9c
QM
13505 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13506 ret = bpf_prog_offload_finalize(env);
13507
0246e64d 13508skip_full_check:
51c39bb1 13509 kvfree(env->explored_states);
0246e64d 13510
c131187d 13511 if (ret == 0)
9b38c405 13512 ret = check_max_stack_depth(env);
c131187d 13513
9b38c405 13514 /* instruction rewrites happen after this point */
e2ae4ca2
JK
13515 if (is_priv) {
13516 if (ret == 0)
13517 opt_hard_wire_dead_code_branches(env);
52875a04
JK
13518 if (ret == 0)
13519 ret = opt_remove_dead_code(env);
a1b14abc
JK
13520 if (ret == 0)
13521 ret = opt_remove_nops(env);
52875a04
JK
13522 } else {
13523 if (ret == 0)
13524 sanitize_dead_code(env);
e2ae4ca2
JK
13525 }
13526
9bac3d6d
AS
13527 if (ret == 0)
13528 /* program is valid, convert *(u32*)(ctx + off) accesses */
13529 ret = convert_ctx_accesses(env);
13530
e245c5c6 13531 if (ret == 0)
e6ac5933 13532 ret = do_misc_fixups(env);
e245c5c6 13533
a4b1d3c1
JW
13534 /* do 32-bit optimization after insn patching has done so those patched
13535 * insns could be handled correctly.
13536 */
d6c2308c
JW
13537 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13538 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13539 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13540 : false;
a4b1d3c1
JW
13541 }
13542
1ea47e01
AS
13543 if (ret == 0)
13544 ret = fixup_call_args(env);
13545
06ee7115
AS
13546 env->verification_time = ktime_get_ns() - start_time;
13547 print_verification_stats(env);
13548
a2a7d570 13549 if (log->level && bpf_verifier_log_full(log))
cbd35700 13550 ret = -ENOSPC;
a2a7d570 13551 if (log->level && !log->ubuf) {
cbd35700 13552 ret = -EFAULT;
a2a7d570 13553 goto err_release_maps;
cbd35700
AS
13554 }
13555
541c3bad
AN
13556 if (ret)
13557 goto err_release_maps;
13558
13559 if (env->used_map_cnt) {
0246e64d 13560 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
13561 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13562 sizeof(env->used_maps[0]),
13563 GFP_KERNEL);
0246e64d 13564
9bac3d6d 13565 if (!env->prog->aux->used_maps) {
0246e64d 13566 ret = -ENOMEM;
a2a7d570 13567 goto err_release_maps;
0246e64d
AS
13568 }
13569
9bac3d6d 13570 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 13571 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 13572 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
13573 }
13574 if (env->used_btf_cnt) {
13575 /* if program passed verifier, update used_btfs in bpf_prog_aux */
13576 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13577 sizeof(env->used_btfs[0]),
13578 GFP_KERNEL);
13579 if (!env->prog->aux->used_btfs) {
13580 ret = -ENOMEM;
13581 goto err_release_maps;
13582 }
0246e64d 13583
541c3bad
AN
13584 memcpy(env->prog->aux->used_btfs, env->used_btfs,
13585 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13586 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13587 }
13588 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
13589 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
13590 * bpf_ld_imm64 instructions
13591 */
13592 convert_pseudo_ld_imm64(env);
13593 }
cbd35700 13594
541c3bad 13595 adjust_btf_func(env);
ba64e7d8 13596
a2a7d570 13597err_release_maps:
9bac3d6d 13598 if (!env->prog->aux->used_maps)
0246e64d 13599 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 13600 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
13601 */
13602 release_maps(env);
541c3bad
AN
13603 if (!env->prog->aux->used_btfs)
13604 release_btfs(env);
03f87c0b
THJ
13605
13606 /* extension progs temporarily inherit the attach_type of their targets
13607 for verification purposes, so set it back to zero before returning
13608 */
13609 if (env->prog->type == BPF_PROG_TYPE_EXT)
13610 env->prog->expected_attach_type = 0;
13611
9bac3d6d 13612 *prog = env->prog;
3df126f3 13613err_unlock:
45a73c17
AS
13614 if (!is_priv)
13615 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
13616 vfree(env->insn_aux_data);
13617err_free_env:
13618 kfree(env);
51580e79
AS
13619 return ret;
13620}