libbpf: Perform map fd cleanup for gen_loader in case of error
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
8fb33b60 50 * Since it's analyzing all paths through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 135 * returns either pointer to map value or NULL.
51580e79
AS
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
23a2d70c
YS
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
e6ac2450
MKL
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
33ff9823
DB
243struct bpf_call_arg_meta {
244 struct bpf_map *map_ptr;
435faee1 245 bool raw_mode;
36bbef52 246 bool pkt_access;
435faee1
DB
247 int regno;
248 int access_size;
457f4436 249 int mem_size;
10060503 250 u64 msize_max_value;
1b986589 251 int ref_obj_id;
3e8ce298 252 int map_uid;
d83525ca 253 int func_id;
22dc4a0f 254 struct btf *btf;
eaa6bcb7 255 u32 btf_id;
22dc4a0f 256 struct btf *ret_btf;
eaa6bcb7 257 u32 ret_btf_id;
69c087ba 258 u32 subprogno;
33ff9823
DB
259};
260
8580ac94
AS
261struct btf *btf_vmlinux;
262
cbd35700
AS
263static DEFINE_MUTEX(bpf_verifier_lock);
264
d9762e84
MKL
265static const struct bpf_line_info *
266find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267{
268 const struct bpf_line_info *linfo;
269 const struct bpf_prog *prog;
270 u32 i, nr_linfo;
271
272 prog = env->prog;
273 nr_linfo = prog->aux->nr_linfo;
274
275 if (!nr_linfo || insn_off >= prog->len)
276 return NULL;
277
278 linfo = prog->aux->linfo;
279 for (i = 1; i < nr_linfo; i++)
280 if (insn_off < linfo[i].insn_off)
281 break;
282
283 return &linfo[i - 1];
284}
285
77d2e05a
MKL
286void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 va_list args)
cbd35700 288{
a2a7d570 289 unsigned int n;
cbd35700 290
a2a7d570 291 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
292
293 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 "verifier log line truncated - local buffer too short\n");
295
296 n = min(log->len_total - log->len_used - 1, n);
297 log->kbuf[n] = '\0';
298
8580ac94
AS
299 if (log->level == BPF_LOG_KERNEL) {
300 pr_err("BPF:%s\n", log->kbuf);
301 return;
302 }
a2a7d570
JK
303 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
304 log->len_used += n;
305 else
306 log->ubuf = NULL;
cbd35700 307}
abe08840 308
6f8a57cc
AN
309static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
310{
311 char zero = 0;
312
313 if (!bpf_verifier_log_needed(log))
314 return;
315
316 log->len_used = new_pos;
317 if (put_user(zero, log->ubuf + new_pos))
318 log->ubuf = NULL;
319}
320
abe08840
JO
321/* log_level controls verbosity level of eBPF verifier.
322 * bpf_verifier_log_write() is used to dump the verification trace to the log,
323 * so the user can figure out what's wrong with the program
430e68d1 324 */
abe08840
JO
325__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
326 const char *fmt, ...)
327{
328 va_list args;
329
77d2e05a
MKL
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
abe08840 333 va_start(args, fmt);
77d2e05a 334 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
335 va_end(args);
336}
337EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
338
339__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
340{
77d2e05a 341 struct bpf_verifier_env *env = private_data;
abe08840
JO
342 va_list args;
343
77d2e05a
MKL
344 if (!bpf_verifier_log_needed(&env->log))
345 return;
346
abe08840 347 va_start(args, fmt);
77d2e05a 348 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
349 va_end(args);
350}
cbd35700 351
9e15db66
AS
352__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
353 const char *fmt, ...)
354{
355 va_list args;
356
357 if (!bpf_verifier_log_needed(log))
358 return;
359
360 va_start(args, fmt);
361 bpf_verifier_vlog(log, fmt, args);
362 va_end(args);
363}
364
d9762e84
MKL
365static const char *ltrim(const char *s)
366{
367 while (isspace(*s))
368 s++;
369
370 return s;
371}
372
373__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 u32 insn_off,
375 const char *prefix_fmt, ...)
376{
377 const struct bpf_line_info *linfo;
378
379 if (!bpf_verifier_log_needed(&env->log))
380 return;
381
382 linfo = find_linfo(env, insn_off);
383 if (!linfo || linfo == env->prev_linfo)
384 return;
385
386 if (prefix_fmt) {
387 va_list args;
388
389 va_start(args, prefix_fmt);
390 bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 va_end(args);
392 }
393
394 verbose(env, "%s\n",
395 ltrim(btf_name_by_offset(env->prog->aux->btf,
396 linfo->line_off)));
397
398 env->prev_linfo = linfo;
399}
400
bc2591d6
YS
401static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 struct bpf_reg_state *reg,
403 struct tnum *range, const char *ctx,
404 const char *reg_name)
405{
406 char tn_buf[48];
407
408 verbose(env, "At %s the register %s ", ctx, reg_name);
409 if (!tnum_is_unknown(reg->var_off)) {
410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 verbose(env, "has value %s", tn_buf);
412 } else {
413 verbose(env, "has unknown scalar value");
414 }
415 tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 verbose(env, " should have been in %s\n", tn_buf);
417}
418
de8f3a83
DB
419static bool type_is_pkt_pointer(enum bpf_reg_type type)
420{
421 return type == PTR_TO_PACKET ||
422 type == PTR_TO_PACKET_META;
423}
424
46f8bc92
MKL
425static bool type_is_sk_pointer(enum bpf_reg_type type)
426{
427 return type == PTR_TO_SOCKET ||
655a51e5 428 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
429 type == PTR_TO_TCP_SOCK ||
430 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
431}
432
cac616db
JF
433static bool reg_type_not_null(enum bpf_reg_type type)
434{
435 return type == PTR_TO_SOCKET ||
436 type == PTR_TO_TCP_SOCK ||
437 type == PTR_TO_MAP_VALUE ||
69c087ba 438 type == PTR_TO_MAP_KEY ||
01c66c48 439 type == PTR_TO_SOCK_COMMON;
cac616db
JF
440}
441
840b9615
JS
442static bool reg_type_may_be_null(enum bpf_reg_type type)
443{
fd978bf7 444 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 445 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 446 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 447 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 448 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
449 type == PTR_TO_MEM_OR_NULL ||
450 type == PTR_TO_RDONLY_BUF_OR_NULL ||
451 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
452}
453
d83525ca
AS
454static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455{
456 return reg->type == PTR_TO_MAP_VALUE &&
457 map_value_has_spin_lock(reg->map_ptr);
458}
459
cba368c1
MKL
460static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461{
462 return type == PTR_TO_SOCKET ||
463 type == PTR_TO_SOCKET_OR_NULL ||
464 type == PTR_TO_TCP_SOCK ||
457f4436
AN
465 type == PTR_TO_TCP_SOCK_OR_NULL ||
466 type == PTR_TO_MEM ||
467 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
468}
469
1b986589 470static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 471{
1b986589 472 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
473}
474
fd1b0d60
LB
475static bool arg_type_may_be_null(enum bpf_arg_type type)
476{
477 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
478 type == ARG_PTR_TO_MEM_OR_NULL ||
479 type == ARG_PTR_TO_CTX_OR_NULL ||
480 type == ARG_PTR_TO_SOCKET_OR_NULL ||
69c087ba
YS
481 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
482 type == ARG_PTR_TO_STACK_OR_NULL;
fd1b0d60
LB
483}
484
fd978bf7
JS
485/* Determine whether the function releases some resources allocated by another
486 * function call. The first reference type argument will be assumed to be
487 * released by release_reference().
488 */
489static bool is_release_function(enum bpf_func_id func_id)
490{
457f4436
AN
491 return func_id == BPF_FUNC_sk_release ||
492 func_id == BPF_FUNC_ringbuf_submit ||
493 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
494}
495
64d85290 496static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
497{
498 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 499 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 500 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
501 func_id == BPF_FUNC_map_lookup_elem ||
502 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
503}
504
505static bool is_acquire_function(enum bpf_func_id func_id,
506 const struct bpf_map *map)
507{
508 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
509
510 if (func_id == BPF_FUNC_sk_lookup_tcp ||
511 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
512 func_id == BPF_FUNC_skc_lookup_tcp ||
513 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
514 return true;
515
516 if (func_id == BPF_FUNC_map_lookup_elem &&
517 (map_type == BPF_MAP_TYPE_SOCKMAP ||
518 map_type == BPF_MAP_TYPE_SOCKHASH))
519 return true;
520
521 return false;
46f8bc92
MKL
522}
523
1b986589
MKL
524static bool is_ptr_cast_function(enum bpf_func_id func_id)
525{
526 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
527 func_id == BPF_FUNC_sk_fullsock ||
528 func_id == BPF_FUNC_skc_to_tcp_sock ||
529 func_id == BPF_FUNC_skc_to_tcp6_sock ||
530 func_id == BPF_FUNC_skc_to_udp6_sock ||
531 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
532 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
533}
534
39491867
BJ
535static bool is_cmpxchg_insn(const struct bpf_insn *insn)
536{
537 return BPF_CLASS(insn->code) == BPF_STX &&
538 BPF_MODE(insn->code) == BPF_ATOMIC &&
539 insn->imm == BPF_CMPXCHG;
540}
541
17a52670
AS
542/* string representation of 'enum bpf_reg_type' */
543static const char * const reg_type_str[] = {
544 [NOT_INIT] = "?",
f1174f77 545 [SCALAR_VALUE] = "inv",
17a52670
AS
546 [PTR_TO_CTX] = "ctx",
547 [CONST_PTR_TO_MAP] = "map_ptr",
548 [PTR_TO_MAP_VALUE] = "map_value",
549 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 550 [PTR_TO_STACK] = "fp",
969bf05e 551 [PTR_TO_PACKET] = "pkt",
de8f3a83 552 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 553 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 554 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
555 [PTR_TO_SOCKET] = "sock",
556 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
557 [PTR_TO_SOCK_COMMON] = "sock_common",
558 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
559 [PTR_TO_TCP_SOCK] = "tcp_sock",
560 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 561 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 562 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 563 [PTR_TO_BTF_ID] = "ptr_",
b121b341 564 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 565 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
566 [PTR_TO_MEM] = "mem",
567 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
568 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
569 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
570 [PTR_TO_RDWR_BUF] = "rdwr_buf",
571 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
572 [PTR_TO_FUNC] = "func",
573 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
574};
575
8efea21d
EC
576static char slot_type_char[] = {
577 [STACK_INVALID] = '?',
578 [STACK_SPILL] = 'r',
579 [STACK_MISC] = 'm',
580 [STACK_ZERO] = '0',
581};
582
4e92024a
AS
583static void print_liveness(struct bpf_verifier_env *env,
584 enum bpf_reg_liveness live)
585{
9242b5f5 586 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
587 verbose(env, "_");
588 if (live & REG_LIVE_READ)
589 verbose(env, "r");
590 if (live & REG_LIVE_WRITTEN)
591 verbose(env, "w");
9242b5f5
AS
592 if (live & REG_LIVE_DONE)
593 verbose(env, "D");
4e92024a
AS
594}
595
f4d7e40a
AS
596static struct bpf_func_state *func(struct bpf_verifier_env *env,
597 const struct bpf_reg_state *reg)
598{
599 struct bpf_verifier_state *cur = env->cur_state;
600
601 return cur->frame[reg->frameno];
602}
603
22dc4a0f 604static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 605{
22dc4a0f 606 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
607}
608
27113c59
MKL
609/* The reg state of a pointer or a bounded scalar was saved when
610 * it was spilled to the stack.
611 */
612static bool is_spilled_reg(const struct bpf_stack_state *stack)
613{
614 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
615}
616
354e8f19
MKL
617static void scrub_spilled_slot(u8 *stype)
618{
619 if (*stype != STACK_INVALID)
620 *stype = STACK_MISC;
621}
622
61bd5218 623static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 624 const struct bpf_func_state *state)
17a52670 625{
f4d7e40a 626 const struct bpf_reg_state *reg;
17a52670
AS
627 enum bpf_reg_type t;
628 int i;
629
f4d7e40a
AS
630 if (state->frameno)
631 verbose(env, " frame%d:", state->frameno);
17a52670 632 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
633 reg = &state->regs[i];
634 t = reg->type;
17a52670
AS
635 if (t == NOT_INIT)
636 continue;
4e92024a
AS
637 verbose(env, " R%d", i);
638 print_liveness(env, reg->live);
639 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
640 if (t == SCALAR_VALUE && reg->precise)
641 verbose(env, "P");
f1174f77
EC
642 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
643 tnum_is_const(reg->var_off)) {
644 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 645 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 646 } else {
eaa6bcb7
HL
647 if (t == PTR_TO_BTF_ID ||
648 t == PTR_TO_BTF_ID_OR_NULL ||
649 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 650 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
651 verbose(env, "(id=%d", reg->id);
652 if (reg_type_may_be_refcounted_or_null(t))
653 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 654 if (t != SCALAR_VALUE)
61bd5218 655 verbose(env, ",off=%d", reg->off);
de8f3a83 656 if (type_is_pkt_pointer(t))
61bd5218 657 verbose(env, ",r=%d", reg->range);
f1174f77 658 else if (t == CONST_PTR_TO_MAP ||
69c087ba 659 t == PTR_TO_MAP_KEY ||
f1174f77
EC
660 t == PTR_TO_MAP_VALUE ||
661 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 662 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
663 reg->map_ptr->key_size,
664 reg->map_ptr->value_size);
7d1238f2
EC
665 if (tnum_is_const(reg->var_off)) {
666 /* Typically an immediate SCALAR_VALUE, but
667 * could be a pointer whose offset is too big
668 * for reg->off
669 */
61bd5218 670 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
671 } else {
672 if (reg->smin_value != reg->umin_value &&
673 reg->smin_value != S64_MIN)
61bd5218 674 verbose(env, ",smin_value=%lld",
7d1238f2
EC
675 (long long)reg->smin_value);
676 if (reg->smax_value != reg->umax_value &&
677 reg->smax_value != S64_MAX)
61bd5218 678 verbose(env, ",smax_value=%lld",
7d1238f2
EC
679 (long long)reg->smax_value);
680 if (reg->umin_value != 0)
61bd5218 681 verbose(env, ",umin_value=%llu",
7d1238f2
EC
682 (unsigned long long)reg->umin_value);
683 if (reg->umax_value != U64_MAX)
61bd5218 684 verbose(env, ",umax_value=%llu",
7d1238f2
EC
685 (unsigned long long)reg->umax_value);
686 if (!tnum_is_unknown(reg->var_off)) {
687 char tn_buf[48];
f1174f77 688
7d1238f2 689 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 690 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 691 }
3f50f132
JF
692 if (reg->s32_min_value != reg->smin_value &&
693 reg->s32_min_value != S32_MIN)
694 verbose(env, ",s32_min_value=%d",
695 (int)(reg->s32_min_value));
696 if (reg->s32_max_value != reg->smax_value &&
697 reg->s32_max_value != S32_MAX)
698 verbose(env, ",s32_max_value=%d",
699 (int)(reg->s32_max_value));
700 if (reg->u32_min_value != reg->umin_value &&
701 reg->u32_min_value != U32_MIN)
702 verbose(env, ",u32_min_value=%d",
703 (int)(reg->u32_min_value));
704 if (reg->u32_max_value != reg->umax_value &&
705 reg->u32_max_value != U32_MAX)
706 verbose(env, ",u32_max_value=%d",
707 (int)(reg->u32_max_value));
f1174f77 708 }
61bd5218 709 verbose(env, ")");
f1174f77 710 }
17a52670 711 }
638f5b90 712 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
713 char types_buf[BPF_REG_SIZE + 1];
714 bool valid = false;
715 int j;
716
717 for (j = 0; j < BPF_REG_SIZE; j++) {
718 if (state->stack[i].slot_type[j] != STACK_INVALID)
719 valid = true;
720 types_buf[j] = slot_type_char[
721 state->stack[i].slot_type[j]];
722 }
723 types_buf[BPF_REG_SIZE] = 0;
724 if (!valid)
725 continue;
726 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
727 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 728 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
729 reg = &state->stack[i].spilled_ptr;
730 t = reg->type;
731 verbose(env, "=%s", reg_type_str[t]);
732 if (t == SCALAR_VALUE && reg->precise)
733 verbose(env, "P");
734 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
735 verbose(env, "%lld", reg->var_off.value + reg->off);
736 } else {
8efea21d 737 verbose(env, "=%s", types_buf);
b5dc0163 738 }
17a52670 739 }
fd978bf7
JS
740 if (state->acquired_refs && state->refs[0].id) {
741 verbose(env, " refs=%d", state->refs[0].id);
742 for (i = 1; i < state->acquired_refs; i++)
743 if (state->refs[i].id)
744 verbose(env, ",%d", state->refs[i].id);
745 }
bfc6bb74
AS
746 if (state->in_callback_fn)
747 verbose(env, " cb");
748 if (state->in_async_callback_fn)
749 verbose(env, " async_cb");
61bd5218 750 verbose(env, "\n");
17a52670
AS
751}
752
c69431aa
LB
753/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
754 * small to hold src. This is different from krealloc since we don't want to preserve
755 * the contents of dst.
756 *
757 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
758 * not be allocated.
638f5b90 759 */
c69431aa 760static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 761{
c69431aa
LB
762 size_t bytes;
763
764 if (ZERO_OR_NULL_PTR(src))
765 goto out;
766
767 if (unlikely(check_mul_overflow(n, size, &bytes)))
768 return NULL;
769
770 if (ksize(dst) < bytes) {
771 kfree(dst);
772 dst = kmalloc_track_caller(bytes, flags);
773 if (!dst)
774 return NULL;
775 }
776
777 memcpy(dst, src, bytes);
778out:
779 return dst ? dst : ZERO_SIZE_PTR;
780}
781
782/* resize an array from old_n items to new_n items. the array is reallocated if it's too
783 * small to hold new_n items. new items are zeroed out if the array grows.
784 *
785 * Contrary to krealloc_array, does not free arr if new_n is zero.
786 */
787static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
788{
789 if (!new_n || old_n == new_n)
790 goto out;
791
792 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
793 if (!arr)
794 return NULL;
795
796 if (new_n > old_n)
797 memset(arr + old_n * size, 0, (new_n - old_n) * size);
798
799out:
800 return arr ? arr : ZERO_SIZE_PTR;
801}
802
803static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
804{
805 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
806 sizeof(struct bpf_reference_state), GFP_KERNEL);
807 if (!dst->refs)
808 return -ENOMEM;
809
810 dst->acquired_refs = src->acquired_refs;
811 return 0;
812}
813
814static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
815{
816 size_t n = src->allocated_stack / BPF_REG_SIZE;
817
818 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
819 GFP_KERNEL);
820 if (!dst->stack)
821 return -ENOMEM;
822
823 dst->allocated_stack = src->allocated_stack;
824 return 0;
825}
826
827static int resize_reference_state(struct bpf_func_state *state, size_t n)
828{
829 state->refs = realloc_array(state->refs, state->acquired_refs, n,
830 sizeof(struct bpf_reference_state));
831 if (!state->refs)
832 return -ENOMEM;
833
834 state->acquired_refs = n;
835 return 0;
836}
837
838static int grow_stack_state(struct bpf_func_state *state, int size)
839{
840 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
841
842 if (old_n >= n)
843 return 0;
844
845 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
846 if (!state->stack)
847 return -ENOMEM;
848
849 state->allocated_stack = size;
850 return 0;
fd978bf7
JS
851}
852
853/* Acquire a pointer id from the env and update the state->refs to include
854 * this new pointer reference.
855 * On success, returns a valid pointer id to associate with the register
856 * On failure, returns a negative errno.
638f5b90 857 */
fd978bf7 858static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 859{
fd978bf7
JS
860 struct bpf_func_state *state = cur_func(env);
861 int new_ofs = state->acquired_refs;
862 int id, err;
863
c69431aa 864 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
865 if (err)
866 return err;
867 id = ++env->id_gen;
868 state->refs[new_ofs].id = id;
869 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 870
fd978bf7
JS
871 return id;
872}
873
874/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 875static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
876{
877 int i, last_idx;
878
fd978bf7
JS
879 last_idx = state->acquired_refs - 1;
880 for (i = 0; i < state->acquired_refs; i++) {
881 if (state->refs[i].id == ptr_id) {
882 if (last_idx && i != last_idx)
883 memcpy(&state->refs[i], &state->refs[last_idx],
884 sizeof(*state->refs));
885 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
886 state->acquired_refs--;
638f5b90 887 return 0;
638f5b90 888 }
638f5b90 889 }
46f8bc92 890 return -EINVAL;
fd978bf7
JS
891}
892
f4d7e40a
AS
893static void free_func_state(struct bpf_func_state *state)
894{
5896351e
AS
895 if (!state)
896 return;
fd978bf7 897 kfree(state->refs);
f4d7e40a
AS
898 kfree(state->stack);
899 kfree(state);
900}
901
b5dc0163
AS
902static void clear_jmp_history(struct bpf_verifier_state *state)
903{
904 kfree(state->jmp_history);
905 state->jmp_history = NULL;
906 state->jmp_history_cnt = 0;
907}
908
1969db47
AS
909static void free_verifier_state(struct bpf_verifier_state *state,
910 bool free_self)
638f5b90 911{
f4d7e40a
AS
912 int i;
913
914 for (i = 0; i <= state->curframe; i++) {
915 free_func_state(state->frame[i]);
916 state->frame[i] = NULL;
917 }
b5dc0163 918 clear_jmp_history(state);
1969db47
AS
919 if (free_self)
920 kfree(state);
638f5b90
AS
921}
922
923/* copy verifier state from src to dst growing dst stack space
924 * when necessary to accommodate larger src stack
925 */
f4d7e40a
AS
926static int copy_func_state(struct bpf_func_state *dst,
927 const struct bpf_func_state *src)
638f5b90
AS
928{
929 int err;
930
fd978bf7
JS
931 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
932 err = copy_reference_state(dst, src);
638f5b90
AS
933 if (err)
934 return err;
638f5b90
AS
935 return copy_stack_state(dst, src);
936}
937
f4d7e40a
AS
938static int copy_verifier_state(struct bpf_verifier_state *dst_state,
939 const struct bpf_verifier_state *src)
940{
941 struct bpf_func_state *dst;
942 int i, err;
943
06ab6a50
LB
944 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
945 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
946 GFP_USER);
947 if (!dst_state->jmp_history)
948 return -ENOMEM;
b5dc0163
AS
949 dst_state->jmp_history_cnt = src->jmp_history_cnt;
950
f4d7e40a
AS
951 /* if dst has more stack frames then src frame, free them */
952 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
953 free_func_state(dst_state->frame[i]);
954 dst_state->frame[i] = NULL;
955 }
979d63d5 956 dst_state->speculative = src->speculative;
f4d7e40a 957 dst_state->curframe = src->curframe;
d83525ca 958 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
959 dst_state->branches = src->branches;
960 dst_state->parent = src->parent;
b5dc0163
AS
961 dst_state->first_insn_idx = src->first_insn_idx;
962 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
963 for (i = 0; i <= src->curframe; i++) {
964 dst = dst_state->frame[i];
965 if (!dst) {
966 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
967 if (!dst)
968 return -ENOMEM;
969 dst_state->frame[i] = dst;
970 }
971 err = copy_func_state(dst, src->frame[i]);
972 if (err)
973 return err;
974 }
975 return 0;
976}
977
2589726d
AS
978static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
979{
980 while (st) {
981 u32 br = --st->branches;
982
983 /* WARN_ON(br > 1) technically makes sense here,
984 * but see comment in push_stack(), hence:
985 */
986 WARN_ONCE((int)br < 0,
987 "BUG update_branch_counts:branches_to_explore=%d\n",
988 br);
989 if (br)
990 break;
991 st = st->parent;
992 }
993}
994
638f5b90 995static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 996 int *insn_idx, bool pop_log)
638f5b90
AS
997{
998 struct bpf_verifier_state *cur = env->cur_state;
999 struct bpf_verifier_stack_elem *elem, *head = env->head;
1000 int err;
17a52670
AS
1001
1002 if (env->head == NULL)
638f5b90 1003 return -ENOENT;
17a52670 1004
638f5b90
AS
1005 if (cur) {
1006 err = copy_verifier_state(cur, &head->st);
1007 if (err)
1008 return err;
1009 }
6f8a57cc
AN
1010 if (pop_log)
1011 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1012 if (insn_idx)
1013 *insn_idx = head->insn_idx;
17a52670 1014 if (prev_insn_idx)
638f5b90
AS
1015 *prev_insn_idx = head->prev_insn_idx;
1016 elem = head->next;
1969db47 1017 free_verifier_state(&head->st, false);
638f5b90 1018 kfree(head);
17a52670
AS
1019 env->head = elem;
1020 env->stack_size--;
638f5b90 1021 return 0;
17a52670
AS
1022}
1023
58e2af8b 1024static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1025 int insn_idx, int prev_insn_idx,
1026 bool speculative)
17a52670 1027{
638f5b90 1028 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1029 struct bpf_verifier_stack_elem *elem;
638f5b90 1030 int err;
17a52670 1031
638f5b90 1032 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1033 if (!elem)
1034 goto err;
1035
17a52670
AS
1036 elem->insn_idx = insn_idx;
1037 elem->prev_insn_idx = prev_insn_idx;
1038 elem->next = env->head;
6f8a57cc 1039 elem->log_pos = env->log.len_used;
17a52670
AS
1040 env->head = elem;
1041 env->stack_size++;
1969db47
AS
1042 err = copy_verifier_state(&elem->st, cur);
1043 if (err)
1044 goto err;
979d63d5 1045 elem->st.speculative |= speculative;
b285fcb7
AS
1046 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1047 verbose(env, "The sequence of %d jumps is too complex.\n",
1048 env->stack_size);
17a52670
AS
1049 goto err;
1050 }
2589726d
AS
1051 if (elem->st.parent) {
1052 ++elem->st.parent->branches;
1053 /* WARN_ON(branches > 2) technically makes sense here,
1054 * but
1055 * 1. speculative states will bump 'branches' for non-branch
1056 * instructions
1057 * 2. is_state_visited() heuristics may decide not to create
1058 * a new state for a sequence of branches and all such current
1059 * and cloned states will be pointing to a single parent state
1060 * which might have large 'branches' count.
1061 */
1062 }
17a52670
AS
1063 return &elem->st;
1064err:
5896351e
AS
1065 free_verifier_state(env->cur_state, true);
1066 env->cur_state = NULL;
17a52670 1067 /* pop all elements and return */
6f8a57cc 1068 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1069 return NULL;
1070}
1071
1072#define CALLER_SAVED_REGS 6
1073static const int caller_saved[CALLER_SAVED_REGS] = {
1074 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1075};
1076
f54c7898
DB
1077static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1078 struct bpf_reg_state *reg);
f1174f77 1079
e688c3db
AS
1080/* This helper doesn't clear reg->id */
1081static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1082{
b03c9f9f
EC
1083 reg->var_off = tnum_const(imm);
1084 reg->smin_value = (s64)imm;
1085 reg->smax_value = (s64)imm;
1086 reg->umin_value = imm;
1087 reg->umax_value = imm;
3f50f132
JF
1088
1089 reg->s32_min_value = (s32)imm;
1090 reg->s32_max_value = (s32)imm;
1091 reg->u32_min_value = (u32)imm;
1092 reg->u32_max_value = (u32)imm;
1093}
1094
e688c3db
AS
1095/* Mark the unknown part of a register (variable offset or scalar value) as
1096 * known to have the value @imm.
1097 */
1098static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1099{
1100 /* Clear id, off, and union(map_ptr, range) */
1101 memset(((u8 *)reg) + sizeof(reg->type), 0,
1102 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1103 ___mark_reg_known(reg, imm);
1104}
1105
3f50f132
JF
1106static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1107{
1108 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1109 reg->s32_min_value = (s32)imm;
1110 reg->s32_max_value = (s32)imm;
1111 reg->u32_min_value = (u32)imm;
1112 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1113}
1114
f1174f77
EC
1115/* Mark the 'variable offset' part of a register as zero. This should be
1116 * used only on registers holding a pointer type.
1117 */
1118static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1119{
b03c9f9f 1120 __mark_reg_known(reg, 0);
f1174f77 1121}
a9789ef9 1122
cc2b14d5
AS
1123static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1124{
1125 __mark_reg_known(reg, 0);
cc2b14d5
AS
1126 reg->type = SCALAR_VALUE;
1127}
1128
61bd5218
JK
1129static void mark_reg_known_zero(struct bpf_verifier_env *env,
1130 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1131{
1132 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1133 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1134 /* Something bad happened, let's kill all regs */
1135 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1136 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1137 return;
1138 }
1139 __mark_reg_known_zero(regs + regno);
1140}
1141
4ddb7416
DB
1142static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1143{
1144 switch (reg->type) {
1145 case PTR_TO_MAP_VALUE_OR_NULL: {
1146 const struct bpf_map *map = reg->map_ptr;
1147
1148 if (map->inner_map_meta) {
1149 reg->type = CONST_PTR_TO_MAP;
1150 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1151 /* transfer reg's id which is unique for every map_lookup_elem
1152 * as UID of the inner map.
1153 */
34d11a44
AS
1154 if (map_value_has_timer(map->inner_map_meta))
1155 reg->map_uid = reg->id;
4ddb7416
DB
1156 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1157 reg->type = PTR_TO_XDP_SOCK;
1158 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1159 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1160 reg->type = PTR_TO_SOCKET;
1161 } else {
1162 reg->type = PTR_TO_MAP_VALUE;
1163 }
1164 break;
1165 }
1166 case PTR_TO_SOCKET_OR_NULL:
1167 reg->type = PTR_TO_SOCKET;
1168 break;
1169 case PTR_TO_SOCK_COMMON_OR_NULL:
1170 reg->type = PTR_TO_SOCK_COMMON;
1171 break;
1172 case PTR_TO_TCP_SOCK_OR_NULL:
1173 reg->type = PTR_TO_TCP_SOCK;
1174 break;
1175 case PTR_TO_BTF_ID_OR_NULL:
1176 reg->type = PTR_TO_BTF_ID;
1177 break;
1178 case PTR_TO_MEM_OR_NULL:
1179 reg->type = PTR_TO_MEM;
1180 break;
1181 case PTR_TO_RDONLY_BUF_OR_NULL:
1182 reg->type = PTR_TO_RDONLY_BUF;
1183 break;
1184 case PTR_TO_RDWR_BUF_OR_NULL:
1185 reg->type = PTR_TO_RDWR_BUF;
1186 break;
1187 default:
33ccec5f 1188 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1189 }
1190}
1191
de8f3a83
DB
1192static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1193{
1194 return type_is_pkt_pointer(reg->type);
1195}
1196
1197static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1198{
1199 return reg_is_pkt_pointer(reg) ||
1200 reg->type == PTR_TO_PACKET_END;
1201}
1202
1203/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1204static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1205 enum bpf_reg_type which)
1206{
1207 /* The register can already have a range from prior markings.
1208 * This is fine as long as it hasn't been advanced from its
1209 * origin.
1210 */
1211 return reg->type == which &&
1212 reg->id == 0 &&
1213 reg->off == 0 &&
1214 tnum_equals_const(reg->var_off, 0);
1215}
1216
3f50f132
JF
1217/* Reset the min/max bounds of a register */
1218static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1219{
1220 reg->smin_value = S64_MIN;
1221 reg->smax_value = S64_MAX;
1222 reg->umin_value = 0;
1223 reg->umax_value = U64_MAX;
1224
1225 reg->s32_min_value = S32_MIN;
1226 reg->s32_max_value = S32_MAX;
1227 reg->u32_min_value = 0;
1228 reg->u32_max_value = U32_MAX;
1229}
1230
1231static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1232{
1233 reg->smin_value = S64_MIN;
1234 reg->smax_value = S64_MAX;
1235 reg->umin_value = 0;
1236 reg->umax_value = U64_MAX;
1237}
1238
1239static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1240{
1241 reg->s32_min_value = S32_MIN;
1242 reg->s32_max_value = S32_MAX;
1243 reg->u32_min_value = 0;
1244 reg->u32_max_value = U32_MAX;
1245}
1246
1247static void __update_reg32_bounds(struct bpf_reg_state *reg)
1248{
1249 struct tnum var32_off = tnum_subreg(reg->var_off);
1250
1251 /* min signed is max(sign bit) | min(other bits) */
1252 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1253 var32_off.value | (var32_off.mask & S32_MIN));
1254 /* max signed is min(sign bit) | max(other bits) */
1255 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1256 var32_off.value | (var32_off.mask & S32_MAX));
1257 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1258 reg->u32_max_value = min(reg->u32_max_value,
1259 (u32)(var32_off.value | var32_off.mask));
1260}
1261
1262static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1263{
1264 /* min signed is max(sign bit) | min(other bits) */
1265 reg->smin_value = max_t(s64, reg->smin_value,
1266 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1267 /* max signed is min(sign bit) | max(other bits) */
1268 reg->smax_value = min_t(s64, reg->smax_value,
1269 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1270 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1271 reg->umax_value = min(reg->umax_value,
1272 reg->var_off.value | reg->var_off.mask);
1273}
1274
3f50f132
JF
1275static void __update_reg_bounds(struct bpf_reg_state *reg)
1276{
1277 __update_reg32_bounds(reg);
1278 __update_reg64_bounds(reg);
1279}
1280
b03c9f9f 1281/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1282static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1283{
1284 /* Learn sign from signed bounds.
1285 * If we cannot cross the sign boundary, then signed and unsigned bounds
1286 * are the same, so combine. This works even in the negative case, e.g.
1287 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1288 */
1289 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1290 reg->s32_min_value = reg->u32_min_value =
1291 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1292 reg->s32_max_value = reg->u32_max_value =
1293 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1294 return;
1295 }
1296 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1297 * boundary, so we must be careful.
1298 */
1299 if ((s32)reg->u32_max_value >= 0) {
1300 /* Positive. We can't learn anything from the smin, but smax
1301 * is positive, hence safe.
1302 */
1303 reg->s32_min_value = reg->u32_min_value;
1304 reg->s32_max_value = reg->u32_max_value =
1305 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1306 } else if ((s32)reg->u32_min_value < 0) {
1307 /* Negative. We can't learn anything from the smax, but smin
1308 * is negative, hence safe.
1309 */
1310 reg->s32_min_value = reg->u32_min_value =
1311 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1312 reg->s32_max_value = reg->u32_max_value;
1313 }
1314}
1315
1316static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1317{
1318 /* Learn sign from signed bounds.
1319 * If we cannot cross the sign boundary, then signed and unsigned bounds
1320 * are the same, so combine. This works even in the negative case, e.g.
1321 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1322 */
1323 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1324 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1325 reg->umin_value);
1326 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1327 reg->umax_value);
1328 return;
1329 }
1330 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1331 * boundary, so we must be careful.
1332 */
1333 if ((s64)reg->umax_value >= 0) {
1334 /* Positive. We can't learn anything from the smin, but smax
1335 * is positive, hence safe.
1336 */
1337 reg->smin_value = reg->umin_value;
1338 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1339 reg->umax_value);
1340 } else if ((s64)reg->umin_value < 0) {
1341 /* Negative. We can't learn anything from the smax, but smin
1342 * is negative, hence safe.
1343 */
1344 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1345 reg->umin_value);
1346 reg->smax_value = reg->umax_value;
1347 }
1348}
1349
3f50f132
JF
1350static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1351{
1352 __reg32_deduce_bounds(reg);
1353 __reg64_deduce_bounds(reg);
1354}
1355
b03c9f9f
EC
1356/* Attempts to improve var_off based on unsigned min/max information */
1357static void __reg_bound_offset(struct bpf_reg_state *reg)
1358{
3f50f132
JF
1359 struct tnum var64_off = tnum_intersect(reg->var_off,
1360 tnum_range(reg->umin_value,
1361 reg->umax_value));
1362 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1363 tnum_range(reg->u32_min_value,
1364 reg->u32_max_value));
1365
1366 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1367}
1368
3f50f132 1369static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1370{
3f50f132
JF
1371 reg->umin_value = reg->u32_min_value;
1372 reg->umax_value = reg->u32_max_value;
1373 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1374 * but must be positive otherwise set to worse case bounds
1375 * and refine later from tnum.
1376 */
3a71dc36 1377 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1378 reg->smax_value = reg->s32_max_value;
1379 else
1380 reg->smax_value = U32_MAX;
3a71dc36
JF
1381 if (reg->s32_min_value >= 0)
1382 reg->smin_value = reg->s32_min_value;
1383 else
1384 reg->smin_value = 0;
3f50f132
JF
1385}
1386
1387static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1388{
1389 /* special case when 64-bit register has upper 32-bit register
1390 * zeroed. Typically happens after zext or <<32, >>32 sequence
1391 * allowing us to use 32-bit bounds directly,
1392 */
1393 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1394 __reg_assign_32_into_64(reg);
1395 } else {
1396 /* Otherwise the best we can do is push lower 32bit known and
1397 * unknown bits into register (var_off set from jmp logic)
1398 * then learn as much as possible from the 64-bit tnum
1399 * known and unknown bits. The previous smin/smax bounds are
1400 * invalid here because of jmp32 compare so mark them unknown
1401 * so they do not impact tnum bounds calculation.
1402 */
1403 __mark_reg64_unbounded(reg);
1404 __update_reg_bounds(reg);
1405 }
1406
1407 /* Intersecting with the old var_off might have improved our bounds
1408 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1409 * then new var_off is (0; 0x7f...fc) which improves our umax.
1410 */
1411 __reg_deduce_bounds(reg);
1412 __reg_bound_offset(reg);
1413 __update_reg_bounds(reg);
1414}
1415
1416static bool __reg64_bound_s32(s64 a)
1417{
388e2c0b 1418 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1419}
1420
1421static bool __reg64_bound_u32(u64 a)
1422{
b9979db8 1423 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1424}
1425
1426static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1427{
1428 __mark_reg32_unbounded(reg);
1429
b0270958 1430 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1431 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1432 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1433 }
10bf4e83 1434 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1435 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1436 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1437 }
3f50f132
JF
1438
1439 /* Intersecting with the old var_off might have improved our bounds
1440 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1441 * then new var_off is (0; 0x7f...fc) which improves our umax.
1442 */
1443 __reg_deduce_bounds(reg);
1444 __reg_bound_offset(reg);
1445 __update_reg_bounds(reg);
b03c9f9f
EC
1446}
1447
f1174f77 1448/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1449static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1450 struct bpf_reg_state *reg)
f1174f77 1451{
a9c676bc
AS
1452 /*
1453 * Clear type, id, off, and union(map_ptr, range) and
1454 * padding between 'type' and union
1455 */
1456 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1457 reg->type = SCALAR_VALUE;
f1174f77 1458 reg->var_off = tnum_unknown;
f4d7e40a 1459 reg->frameno = 0;
2c78ee89 1460 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1461 __mark_reg_unbounded(reg);
f1174f77
EC
1462}
1463
61bd5218
JK
1464static void mark_reg_unknown(struct bpf_verifier_env *env,
1465 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1466{
1467 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1468 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1469 /* Something bad happened, let's kill all regs except FP */
1470 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1471 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1472 return;
1473 }
f54c7898 1474 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1475}
1476
f54c7898
DB
1477static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1478 struct bpf_reg_state *reg)
f1174f77 1479{
f54c7898 1480 __mark_reg_unknown(env, reg);
f1174f77
EC
1481 reg->type = NOT_INIT;
1482}
1483
61bd5218
JK
1484static void mark_reg_not_init(struct bpf_verifier_env *env,
1485 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1486{
1487 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1488 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1489 /* Something bad happened, let's kill all regs except FP */
1490 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1491 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1492 return;
1493 }
f54c7898 1494 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1495}
1496
41c48f3a
AI
1497static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1498 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1499 enum bpf_reg_type reg_type,
1500 struct btf *btf, u32 btf_id)
41c48f3a
AI
1501{
1502 if (reg_type == SCALAR_VALUE) {
1503 mark_reg_unknown(env, regs, regno);
1504 return;
1505 }
1506 mark_reg_known_zero(env, regs, regno);
1507 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1508 regs[regno].btf = btf;
41c48f3a
AI
1509 regs[regno].btf_id = btf_id;
1510}
1511
5327ed3d 1512#define DEF_NOT_SUBREG (0)
61bd5218 1513static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1514 struct bpf_func_state *state)
17a52670 1515{
f4d7e40a 1516 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1517 int i;
1518
dc503a8a 1519 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1520 mark_reg_not_init(env, regs, i);
dc503a8a 1521 regs[i].live = REG_LIVE_NONE;
679c782d 1522 regs[i].parent = NULL;
5327ed3d 1523 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1524 }
17a52670
AS
1525
1526 /* frame pointer */
f1174f77 1527 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1528 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1529 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1530}
1531
f4d7e40a
AS
1532#define BPF_MAIN_FUNC (-1)
1533static void init_func_state(struct bpf_verifier_env *env,
1534 struct bpf_func_state *state,
1535 int callsite, int frameno, int subprogno)
1536{
1537 state->callsite = callsite;
1538 state->frameno = frameno;
1539 state->subprogno = subprogno;
1540 init_reg_state(env, state);
1541}
1542
bfc6bb74
AS
1543/* Similar to push_stack(), but for async callbacks */
1544static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1545 int insn_idx, int prev_insn_idx,
1546 int subprog)
1547{
1548 struct bpf_verifier_stack_elem *elem;
1549 struct bpf_func_state *frame;
1550
1551 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1552 if (!elem)
1553 goto err;
1554
1555 elem->insn_idx = insn_idx;
1556 elem->prev_insn_idx = prev_insn_idx;
1557 elem->next = env->head;
1558 elem->log_pos = env->log.len_used;
1559 env->head = elem;
1560 env->stack_size++;
1561 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1562 verbose(env,
1563 "The sequence of %d jumps is too complex for async cb.\n",
1564 env->stack_size);
1565 goto err;
1566 }
1567 /* Unlike push_stack() do not copy_verifier_state().
1568 * The caller state doesn't matter.
1569 * This is async callback. It starts in a fresh stack.
1570 * Initialize it similar to do_check_common().
1571 */
1572 elem->st.branches = 1;
1573 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1574 if (!frame)
1575 goto err;
1576 init_func_state(env, frame,
1577 BPF_MAIN_FUNC /* callsite */,
1578 0 /* frameno within this callchain */,
1579 subprog /* subprog number within this prog */);
1580 elem->st.frame[0] = frame;
1581 return &elem->st;
1582err:
1583 free_verifier_state(env->cur_state, true);
1584 env->cur_state = NULL;
1585 /* pop all elements and return */
1586 while (!pop_stack(env, NULL, NULL, false));
1587 return NULL;
1588}
1589
1590
17a52670
AS
1591enum reg_arg_type {
1592 SRC_OP, /* register is used as source operand */
1593 DST_OP, /* register is used as destination operand */
1594 DST_OP_NO_MARK /* same as above, check only, don't mark */
1595};
1596
cc8b0b92
AS
1597static int cmp_subprogs(const void *a, const void *b)
1598{
9c8105bd
JW
1599 return ((struct bpf_subprog_info *)a)->start -
1600 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1601}
1602
1603static int find_subprog(struct bpf_verifier_env *env, int off)
1604{
9c8105bd 1605 struct bpf_subprog_info *p;
cc8b0b92 1606
9c8105bd
JW
1607 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1608 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1609 if (!p)
1610 return -ENOENT;
9c8105bd 1611 return p - env->subprog_info;
cc8b0b92
AS
1612
1613}
1614
1615static int add_subprog(struct bpf_verifier_env *env, int off)
1616{
1617 int insn_cnt = env->prog->len;
1618 int ret;
1619
1620 if (off >= insn_cnt || off < 0) {
1621 verbose(env, "call to invalid destination\n");
1622 return -EINVAL;
1623 }
1624 ret = find_subprog(env, off);
1625 if (ret >= 0)
282a0f46 1626 return ret;
4cb3d99c 1627 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1628 verbose(env, "too many subprograms\n");
1629 return -E2BIG;
1630 }
e6ac2450 1631 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1632 env->subprog_info[env->subprog_cnt++].start = off;
1633 sort(env->subprog_info, env->subprog_cnt,
1634 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1635 return env->subprog_cnt - 1;
cc8b0b92
AS
1636}
1637
2357672c
KKD
1638#define MAX_KFUNC_DESCS 256
1639#define MAX_KFUNC_BTFS 256
1640
e6ac2450
MKL
1641struct bpf_kfunc_desc {
1642 struct btf_func_model func_model;
1643 u32 func_id;
1644 s32 imm;
2357672c
KKD
1645 u16 offset;
1646};
1647
1648struct bpf_kfunc_btf {
1649 struct btf *btf;
1650 struct module *module;
1651 u16 offset;
e6ac2450
MKL
1652};
1653
e6ac2450
MKL
1654struct bpf_kfunc_desc_tab {
1655 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1656 u32 nr_descs;
1657};
1658
2357672c
KKD
1659struct bpf_kfunc_btf_tab {
1660 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1661 u32 nr_descs;
1662};
1663
1664static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1665{
1666 const struct bpf_kfunc_desc *d0 = a;
1667 const struct bpf_kfunc_desc *d1 = b;
1668
1669 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1670 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1671}
1672
1673static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1674{
1675 const struct bpf_kfunc_btf *d0 = a;
1676 const struct bpf_kfunc_btf *d1 = b;
1677
1678 return d0->offset - d1->offset;
e6ac2450
MKL
1679}
1680
1681static const struct bpf_kfunc_desc *
2357672c 1682find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1683{
1684 struct bpf_kfunc_desc desc = {
1685 .func_id = func_id,
2357672c 1686 .offset = offset,
e6ac2450
MKL
1687 };
1688 struct bpf_kfunc_desc_tab *tab;
1689
1690 tab = prog->aux->kfunc_tab;
1691 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1692 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1693}
1694
1695static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1696 s16 offset, struct module **btf_modp)
1697{
1698 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1699 struct bpf_kfunc_btf_tab *tab;
1700 struct bpf_kfunc_btf *b;
1701 struct module *mod;
1702 struct btf *btf;
1703 int btf_fd;
1704
1705 tab = env->prog->aux->kfunc_btf_tab;
1706 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1707 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1708 if (!b) {
1709 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1710 verbose(env, "too many different module BTFs\n");
1711 return ERR_PTR(-E2BIG);
1712 }
1713
1714 if (bpfptr_is_null(env->fd_array)) {
1715 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1716 return ERR_PTR(-EPROTO);
1717 }
1718
1719 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1720 offset * sizeof(btf_fd),
1721 sizeof(btf_fd)))
1722 return ERR_PTR(-EFAULT);
1723
1724 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1725 if (IS_ERR(btf)) {
1726 verbose(env, "invalid module BTF fd specified\n");
2357672c 1727 return btf;
588cd7ef 1728 }
2357672c
KKD
1729
1730 if (!btf_is_module(btf)) {
1731 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1732 btf_put(btf);
1733 return ERR_PTR(-EINVAL);
1734 }
1735
1736 mod = btf_try_get_module(btf);
1737 if (!mod) {
1738 btf_put(btf);
1739 return ERR_PTR(-ENXIO);
1740 }
1741
1742 b = &tab->descs[tab->nr_descs++];
1743 b->btf = btf;
1744 b->module = mod;
1745 b->offset = offset;
1746
1747 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1748 kfunc_btf_cmp_by_off, NULL);
1749 }
1750 if (btf_modp)
1751 *btf_modp = b->module;
1752 return b->btf;
e6ac2450
MKL
1753}
1754
2357672c
KKD
1755void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1756{
1757 if (!tab)
1758 return;
1759
1760 while (tab->nr_descs--) {
1761 module_put(tab->descs[tab->nr_descs].module);
1762 btf_put(tab->descs[tab->nr_descs].btf);
1763 }
1764 kfree(tab);
1765}
1766
1767static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1768 u32 func_id, s16 offset,
1769 struct module **btf_modp)
1770{
2357672c
KKD
1771 if (offset) {
1772 if (offset < 0) {
1773 /* In the future, this can be allowed to increase limit
1774 * of fd index into fd_array, interpreted as u16.
1775 */
1776 verbose(env, "negative offset disallowed for kernel module function call\n");
1777 return ERR_PTR(-EINVAL);
1778 }
1779
588cd7ef 1780 return __find_kfunc_desc_btf(env, offset, btf_modp);
2357672c
KKD
1781 }
1782 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
1783}
1784
2357672c 1785static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
1786{
1787 const struct btf_type *func, *func_proto;
2357672c 1788 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
1789 struct bpf_kfunc_desc_tab *tab;
1790 struct bpf_prog_aux *prog_aux;
1791 struct bpf_kfunc_desc *desc;
1792 const char *func_name;
2357672c 1793 struct btf *desc_btf;
e6ac2450
MKL
1794 unsigned long addr;
1795 int err;
1796
1797 prog_aux = env->prog->aux;
1798 tab = prog_aux->kfunc_tab;
2357672c 1799 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
1800 if (!tab) {
1801 if (!btf_vmlinux) {
1802 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1803 return -ENOTSUPP;
1804 }
1805
1806 if (!env->prog->jit_requested) {
1807 verbose(env, "JIT is required for calling kernel function\n");
1808 return -ENOTSUPP;
1809 }
1810
1811 if (!bpf_jit_supports_kfunc_call()) {
1812 verbose(env, "JIT does not support calling kernel function\n");
1813 return -ENOTSUPP;
1814 }
1815
1816 if (!env->prog->gpl_compatible) {
1817 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1818 return -EINVAL;
1819 }
1820
1821 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1822 if (!tab)
1823 return -ENOMEM;
1824 prog_aux->kfunc_tab = tab;
1825 }
1826
a5d82727
KKD
1827 /* func_id == 0 is always invalid, but instead of returning an error, be
1828 * conservative and wait until the code elimination pass before returning
1829 * error, so that invalid calls that get pruned out can be in BPF programs
1830 * loaded from userspace. It is also required that offset be untouched
1831 * for such calls.
1832 */
1833 if (!func_id && !offset)
1834 return 0;
1835
2357672c
KKD
1836 if (!btf_tab && offset) {
1837 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1838 if (!btf_tab)
1839 return -ENOMEM;
1840 prog_aux->kfunc_btf_tab = btf_tab;
1841 }
1842
1843 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1844 if (IS_ERR(desc_btf)) {
1845 verbose(env, "failed to find BTF for kernel function\n");
1846 return PTR_ERR(desc_btf);
1847 }
1848
1849 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
1850 return 0;
1851
1852 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1853 verbose(env, "too many different kernel function calls\n");
1854 return -E2BIG;
1855 }
1856
2357672c 1857 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
1858 if (!func || !btf_type_is_func(func)) {
1859 verbose(env, "kernel btf_id %u is not a function\n",
1860 func_id);
1861 return -EINVAL;
1862 }
2357672c 1863 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
1864 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1865 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1866 func_id);
1867 return -EINVAL;
1868 }
1869
2357672c 1870 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
1871 addr = kallsyms_lookup_name(func_name);
1872 if (!addr) {
1873 verbose(env, "cannot find address for kernel function %s\n",
1874 func_name);
1875 return -EINVAL;
1876 }
1877
1878 desc = &tab->descs[tab->nr_descs++];
1879 desc->func_id = func_id;
3d717fad 1880 desc->imm = BPF_CALL_IMM(addr);
2357672c
KKD
1881 desc->offset = offset;
1882 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
1883 func_proto, func_name,
1884 &desc->func_model);
1885 if (!err)
1886 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 1887 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
1888 return err;
1889}
1890
1891static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1892{
1893 const struct bpf_kfunc_desc *d0 = a;
1894 const struct bpf_kfunc_desc *d1 = b;
1895
1896 if (d0->imm > d1->imm)
1897 return 1;
1898 else if (d0->imm < d1->imm)
1899 return -1;
1900 return 0;
1901}
1902
1903static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1904{
1905 struct bpf_kfunc_desc_tab *tab;
1906
1907 tab = prog->aux->kfunc_tab;
1908 if (!tab)
1909 return;
1910
1911 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1912 kfunc_desc_cmp_by_imm, NULL);
1913}
1914
1915bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1916{
1917 return !!prog->aux->kfunc_tab;
1918}
1919
1920const struct btf_func_model *
1921bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1922 const struct bpf_insn *insn)
1923{
1924 const struct bpf_kfunc_desc desc = {
1925 .imm = insn->imm,
1926 };
1927 const struct bpf_kfunc_desc *res;
1928 struct bpf_kfunc_desc_tab *tab;
1929
1930 tab = prog->aux->kfunc_tab;
1931 res = bsearch(&desc, tab->descs, tab->nr_descs,
1932 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1933
1934 return res ? &res->func_model : NULL;
1935}
1936
1937static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 1938{
9c8105bd 1939 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 1940 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 1941 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 1942
f910cefa
JW
1943 /* Add entry function. */
1944 ret = add_subprog(env, 0);
e6ac2450 1945 if (ret)
f910cefa
JW
1946 return ret;
1947
e6ac2450
MKL
1948 for (i = 0; i < insn_cnt; i++, insn++) {
1949 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1950 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 1951 continue;
e6ac2450 1952
2c78ee89 1953 if (!env->bpf_capable) {
e6ac2450 1954 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1955 return -EPERM;
1956 }
e6ac2450 1957
3990ed4c 1958 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 1959 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 1960 else
2357672c 1961 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 1962
cc8b0b92
AS
1963 if (ret < 0)
1964 return ret;
1965 }
1966
4cb3d99c
JW
1967 /* Add a fake 'exit' subprog which could simplify subprog iteration
1968 * logic. 'subprog_cnt' should not be increased.
1969 */
1970 subprog[env->subprog_cnt].start = insn_cnt;
1971
06ee7115 1972 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1973 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1974 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 1975
e6ac2450
MKL
1976 return 0;
1977}
1978
1979static int check_subprogs(struct bpf_verifier_env *env)
1980{
1981 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1982 struct bpf_subprog_info *subprog = env->subprog_info;
1983 struct bpf_insn *insn = env->prog->insnsi;
1984 int insn_cnt = env->prog->len;
1985
cc8b0b92 1986 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1987 subprog_start = subprog[cur_subprog].start;
1988 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1989 for (i = 0; i < insn_cnt; i++) {
1990 u8 code = insn[i].code;
1991
7f6e4312
MF
1992 if (code == (BPF_JMP | BPF_CALL) &&
1993 insn[i].imm == BPF_FUNC_tail_call &&
1994 insn[i].src_reg != BPF_PSEUDO_CALL)
1995 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1996 if (BPF_CLASS(code) == BPF_LD &&
1997 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1998 subprog[cur_subprog].has_ld_abs = true;
092ed096 1999 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2000 goto next;
2001 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2002 goto next;
2003 off = i + insn[i].off + 1;
2004 if (off < subprog_start || off >= subprog_end) {
2005 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2006 return -EINVAL;
2007 }
2008next:
2009 if (i == subprog_end - 1) {
2010 /* to avoid fall-through from one subprog into another
2011 * the last insn of the subprog should be either exit
2012 * or unconditional jump back
2013 */
2014 if (code != (BPF_JMP | BPF_EXIT) &&
2015 code != (BPF_JMP | BPF_JA)) {
2016 verbose(env, "last insn is not an exit or jmp\n");
2017 return -EINVAL;
2018 }
2019 subprog_start = subprog_end;
4cb3d99c
JW
2020 cur_subprog++;
2021 if (cur_subprog < env->subprog_cnt)
9c8105bd 2022 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2023 }
2024 }
2025 return 0;
2026}
2027
679c782d
EC
2028/* Parentage chain of this register (or stack slot) should take care of all
2029 * issues like callee-saved registers, stack slot allocation time, etc.
2030 */
f4d7e40a 2031static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2032 const struct bpf_reg_state *state,
5327ed3d 2033 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2034{
2035 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2036 int cnt = 0;
dc503a8a
EC
2037
2038 while (parent) {
2039 /* if read wasn't screened by an earlier write ... */
679c782d 2040 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2041 break;
9242b5f5
AS
2042 if (parent->live & REG_LIVE_DONE) {
2043 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2044 reg_type_str[parent->type],
2045 parent->var_off.value, parent->off);
2046 return -EFAULT;
2047 }
5327ed3d
JW
2048 /* The first condition is more likely to be true than the
2049 * second, checked it first.
2050 */
2051 if ((parent->live & REG_LIVE_READ) == flag ||
2052 parent->live & REG_LIVE_READ64)
25af32da
AS
2053 /* The parentage chain never changes and
2054 * this parent was already marked as LIVE_READ.
2055 * There is no need to keep walking the chain again and
2056 * keep re-marking all parents as LIVE_READ.
2057 * This case happens when the same register is read
2058 * multiple times without writes into it in-between.
5327ed3d
JW
2059 * Also, if parent has the stronger REG_LIVE_READ64 set,
2060 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2061 */
2062 break;
dc503a8a 2063 /* ... then we depend on parent's value */
5327ed3d
JW
2064 parent->live |= flag;
2065 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2066 if (flag == REG_LIVE_READ64)
2067 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2068 state = parent;
2069 parent = state->parent;
f4d7e40a 2070 writes = true;
06ee7115 2071 cnt++;
dc503a8a 2072 }
06ee7115
AS
2073
2074 if (env->longest_mark_read_walk < cnt)
2075 env->longest_mark_read_walk = cnt;
f4d7e40a 2076 return 0;
dc503a8a
EC
2077}
2078
5327ed3d
JW
2079/* This function is supposed to be used by the following 32-bit optimization
2080 * code only. It returns TRUE if the source or destination register operates
2081 * on 64-bit, otherwise return FALSE.
2082 */
2083static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2084 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2085{
2086 u8 code, class, op;
2087
2088 code = insn->code;
2089 class = BPF_CLASS(code);
2090 op = BPF_OP(code);
2091 if (class == BPF_JMP) {
2092 /* BPF_EXIT for "main" will reach here. Return TRUE
2093 * conservatively.
2094 */
2095 if (op == BPF_EXIT)
2096 return true;
2097 if (op == BPF_CALL) {
2098 /* BPF to BPF call will reach here because of marking
2099 * caller saved clobber with DST_OP_NO_MARK for which we
2100 * don't care the register def because they are anyway
2101 * marked as NOT_INIT already.
2102 */
2103 if (insn->src_reg == BPF_PSEUDO_CALL)
2104 return false;
2105 /* Helper call will reach here because of arg type
2106 * check, conservatively return TRUE.
2107 */
2108 if (t == SRC_OP)
2109 return true;
2110
2111 return false;
2112 }
2113 }
2114
2115 if (class == BPF_ALU64 || class == BPF_JMP ||
2116 /* BPF_END always use BPF_ALU class. */
2117 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2118 return true;
2119
2120 if (class == BPF_ALU || class == BPF_JMP32)
2121 return false;
2122
2123 if (class == BPF_LDX) {
2124 if (t != SRC_OP)
2125 return BPF_SIZE(code) == BPF_DW;
2126 /* LDX source must be ptr. */
2127 return true;
2128 }
2129
2130 if (class == BPF_STX) {
83a28819
IL
2131 /* BPF_STX (including atomic variants) has multiple source
2132 * operands, one of which is a ptr. Check whether the caller is
2133 * asking about it.
2134 */
2135 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2136 return true;
2137 return BPF_SIZE(code) == BPF_DW;
2138 }
2139
2140 if (class == BPF_LD) {
2141 u8 mode = BPF_MODE(code);
2142
2143 /* LD_IMM64 */
2144 if (mode == BPF_IMM)
2145 return true;
2146
2147 /* Both LD_IND and LD_ABS return 32-bit data. */
2148 if (t != SRC_OP)
2149 return false;
2150
2151 /* Implicit ctx ptr. */
2152 if (regno == BPF_REG_6)
2153 return true;
2154
2155 /* Explicit source could be any width. */
2156 return true;
2157 }
2158
2159 if (class == BPF_ST)
2160 /* The only source register for BPF_ST is a ptr. */
2161 return true;
2162
2163 /* Conservatively return true at default. */
2164 return true;
2165}
2166
83a28819
IL
2167/* Return the regno defined by the insn, or -1. */
2168static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2169{
83a28819
IL
2170 switch (BPF_CLASS(insn->code)) {
2171 case BPF_JMP:
2172 case BPF_JMP32:
2173 case BPF_ST:
2174 return -1;
2175 case BPF_STX:
2176 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2177 (insn->imm & BPF_FETCH)) {
2178 if (insn->imm == BPF_CMPXCHG)
2179 return BPF_REG_0;
2180 else
2181 return insn->src_reg;
2182 } else {
2183 return -1;
2184 }
2185 default:
2186 return insn->dst_reg;
2187 }
b325fbca
JW
2188}
2189
2190/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2191static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2192{
83a28819
IL
2193 int dst_reg = insn_def_regno(insn);
2194
2195 if (dst_reg == -1)
b325fbca
JW
2196 return false;
2197
83a28819 2198 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2199}
2200
5327ed3d
JW
2201static void mark_insn_zext(struct bpf_verifier_env *env,
2202 struct bpf_reg_state *reg)
2203{
2204 s32 def_idx = reg->subreg_def;
2205
2206 if (def_idx == DEF_NOT_SUBREG)
2207 return;
2208
2209 env->insn_aux_data[def_idx - 1].zext_dst = true;
2210 /* The dst will be zero extended, so won't be sub-register anymore. */
2211 reg->subreg_def = DEF_NOT_SUBREG;
2212}
2213
dc503a8a 2214static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2215 enum reg_arg_type t)
2216{
f4d7e40a
AS
2217 struct bpf_verifier_state *vstate = env->cur_state;
2218 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2219 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2220 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2221 bool rw64;
dc503a8a 2222
17a52670 2223 if (regno >= MAX_BPF_REG) {
61bd5218 2224 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2225 return -EINVAL;
2226 }
2227
c342dc10 2228 reg = &regs[regno];
5327ed3d 2229 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2230 if (t == SRC_OP) {
2231 /* check whether register used as source operand can be read */
c342dc10 2232 if (reg->type == NOT_INIT) {
61bd5218 2233 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2234 return -EACCES;
2235 }
679c782d 2236 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2237 if (regno == BPF_REG_FP)
2238 return 0;
2239
5327ed3d
JW
2240 if (rw64)
2241 mark_insn_zext(env, reg);
2242
2243 return mark_reg_read(env, reg, reg->parent,
2244 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2245 } else {
2246 /* check whether register used as dest operand can be written to */
2247 if (regno == BPF_REG_FP) {
61bd5218 2248 verbose(env, "frame pointer is read only\n");
17a52670
AS
2249 return -EACCES;
2250 }
c342dc10 2251 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2252 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2253 if (t == DST_OP)
61bd5218 2254 mark_reg_unknown(env, regs, regno);
17a52670
AS
2255 }
2256 return 0;
2257}
2258
b5dc0163
AS
2259/* for any branch, call, exit record the history of jmps in the given state */
2260static int push_jmp_history(struct bpf_verifier_env *env,
2261 struct bpf_verifier_state *cur)
2262{
2263 u32 cnt = cur->jmp_history_cnt;
2264 struct bpf_idx_pair *p;
2265
2266 cnt++;
2267 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2268 if (!p)
2269 return -ENOMEM;
2270 p[cnt - 1].idx = env->insn_idx;
2271 p[cnt - 1].prev_idx = env->prev_insn_idx;
2272 cur->jmp_history = p;
2273 cur->jmp_history_cnt = cnt;
2274 return 0;
2275}
2276
2277/* Backtrack one insn at a time. If idx is not at the top of recorded
2278 * history then previous instruction came from straight line execution.
2279 */
2280static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2281 u32 *history)
2282{
2283 u32 cnt = *history;
2284
2285 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2286 i = st->jmp_history[cnt - 1].prev_idx;
2287 (*history)--;
2288 } else {
2289 i--;
2290 }
2291 return i;
2292}
2293
e6ac2450
MKL
2294static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2295{
2296 const struct btf_type *func;
2357672c 2297 struct btf *desc_btf;
e6ac2450
MKL
2298
2299 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2300 return NULL;
2301
2357672c
KKD
2302 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2303 if (IS_ERR(desc_btf))
2304 return "<error>";
2305
2306 func = btf_type_by_id(desc_btf, insn->imm);
2307 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2308}
2309
b5dc0163
AS
2310/* For given verifier state backtrack_insn() is called from the last insn to
2311 * the first insn. Its purpose is to compute a bitmask of registers and
2312 * stack slots that needs precision in the parent verifier state.
2313 */
2314static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2315 u32 *reg_mask, u64 *stack_mask)
2316{
2317 const struct bpf_insn_cbs cbs = {
e6ac2450 2318 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2319 .cb_print = verbose,
2320 .private_data = env,
2321 };
2322 struct bpf_insn *insn = env->prog->insnsi + idx;
2323 u8 class = BPF_CLASS(insn->code);
2324 u8 opcode = BPF_OP(insn->code);
2325 u8 mode = BPF_MODE(insn->code);
2326 u32 dreg = 1u << insn->dst_reg;
2327 u32 sreg = 1u << insn->src_reg;
2328 u32 spi;
2329
2330 if (insn->code == 0)
2331 return 0;
2332 if (env->log.level & BPF_LOG_LEVEL) {
2333 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2334 verbose(env, "%d: ", idx);
2335 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2336 }
2337
2338 if (class == BPF_ALU || class == BPF_ALU64) {
2339 if (!(*reg_mask & dreg))
2340 return 0;
2341 if (opcode == BPF_MOV) {
2342 if (BPF_SRC(insn->code) == BPF_X) {
2343 /* dreg = sreg
2344 * dreg needs precision after this insn
2345 * sreg needs precision before this insn
2346 */
2347 *reg_mask &= ~dreg;
2348 *reg_mask |= sreg;
2349 } else {
2350 /* dreg = K
2351 * dreg needs precision after this insn.
2352 * Corresponding register is already marked
2353 * as precise=true in this verifier state.
2354 * No further markings in parent are necessary
2355 */
2356 *reg_mask &= ~dreg;
2357 }
2358 } else {
2359 if (BPF_SRC(insn->code) == BPF_X) {
2360 /* dreg += sreg
2361 * both dreg and sreg need precision
2362 * before this insn
2363 */
2364 *reg_mask |= sreg;
2365 } /* else dreg += K
2366 * dreg still needs precision before this insn
2367 */
2368 }
2369 } else if (class == BPF_LDX) {
2370 if (!(*reg_mask & dreg))
2371 return 0;
2372 *reg_mask &= ~dreg;
2373
2374 /* scalars can only be spilled into stack w/o losing precision.
2375 * Load from any other memory can be zero extended.
2376 * The desire to keep that precision is already indicated
2377 * by 'precise' mark in corresponding register of this state.
2378 * No further tracking necessary.
2379 */
2380 if (insn->src_reg != BPF_REG_FP)
2381 return 0;
2382 if (BPF_SIZE(insn->code) != BPF_DW)
2383 return 0;
2384
2385 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2386 * that [fp - off] slot contains scalar that needs to be
2387 * tracked with precision
2388 */
2389 spi = (-insn->off - 1) / BPF_REG_SIZE;
2390 if (spi >= 64) {
2391 verbose(env, "BUG spi %d\n", spi);
2392 WARN_ONCE(1, "verifier backtracking bug");
2393 return -EFAULT;
2394 }
2395 *stack_mask |= 1ull << spi;
b3b50f05 2396 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2397 if (*reg_mask & dreg)
b3b50f05 2398 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2399 * to access memory. It means backtracking
2400 * encountered a case of pointer subtraction.
2401 */
2402 return -ENOTSUPP;
2403 /* scalars can only be spilled into stack */
2404 if (insn->dst_reg != BPF_REG_FP)
2405 return 0;
2406 if (BPF_SIZE(insn->code) != BPF_DW)
2407 return 0;
2408 spi = (-insn->off - 1) / BPF_REG_SIZE;
2409 if (spi >= 64) {
2410 verbose(env, "BUG spi %d\n", spi);
2411 WARN_ONCE(1, "verifier backtracking bug");
2412 return -EFAULT;
2413 }
2414 if (!(*stack_mask & (1ull << spi)))
2415 return 0;
2416 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2417 if (class == BPF_STX)
2418 *reg_mask |= sreg;
b5dc0163
AS
2419 } else if (class == BPF_JMP || class == BPF_JMP32) {
2420 if (opcode == BPF_CALL) {
2421 if (insn->src_reg == BPF_PSEUDO_CALL)
2422 return -ENOTSUPP;
2423 /* regular helper call sets R0 */
2424 *reg_mask &= ~1;
2425 if (*reg_mask & 0x3f) {
2426 /* if backtracing was looking for registers R1-R5
2427 * they should have been found already.
2428 */
2429 verbose(env, "BUG regs %x\n", *reg_mask);
2430 WARN_ONCE(1, "verifier backtracking bug");
2431 return -EFAULT;
2432 }
2433 } else if (opcode == BPF_EXIT) {
2434 return -ENOTSUPP;
2435 }
2436 } else if (class == BPF_LD) {
2437 if (!(*reg_mask & dreg))
2438 return 0;
2439 *reg_mask &= ~dreg;
2440 /* It's ld_imm64 or ld_abs or ld_ind.
2441 * For ld_imm64 no further tracking of precision
2442 * into parent is necessary
2443 */
2444 if (mode == BPF_IND || mode == BPF_ABS)
2445 /* to be analyzed */
2446 return -ENOTSUPP;
b5dc0163
AS
2447 }
2448 return 0;
2449}
2450
2451/* the scalar precision tracking algorithm:
2452 * . at the start all registers have precise=false.
2453 * . scalar ranges are tracked as normal through alu and jmp insns.
2454 * . once precise value of the scalar register is used in:
2455 * . ptr + scalar alu
2456 * . if (scalar cond K|scalar)
2457 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2458 * backtrack through the verifier states and mark all registers and
2459 * stack slots with spilled constants that these scalar regisers
2460 * should be precise.
2461 * . during state pruning two registers (or spilled stack slots)
2462 * are equivalent if both are not precise.
2463 *
2464 * Note the verifier cannot simply walk register parentage chain,
2465 * since many different registers and stack slots could have been
2466 * used to compute single precise scalar.
2467 *
2468 * The approach of starting with precise=true for all registers and then
2469 * backtrack to mark a register as not precise when the verifier detects
2470 * that program doesn't care about specific value (e.g., when helper
2471 * takes register as ARG_ANYTHING parameter) is not safe.
2472 *
2473 * It's ok to walk single parentage chain of the verifier states.
2474 * It's possible that this backtracking will go all the way till 1st insn.
2475 * All other branches will be explored for needing precision later.
2476 *
2477 * The backtracking needs to deal with cases like:
2478 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2479 * r9 -= r8
2480 * r5 = r9
2481 * if r5 > 0x79f goto pc+7
2482 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2483 * r5 += 1
2484 * ...
2485 * call bpf_perf_event_output#25
2486 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2487 *
2488 * and this case:
2489 * r6 = 1
2490 * call foo // uses callee's r6 inside to compute r0
2491 * r0 += r6
2492 * if r0 == 0 goto
2493 *
2494 * to track above reg_mask/stack_mask needs to be independent for each frame.
2495 *
2496 * Also if parent's curframe > frame where backtracking started,
2497 * the verifier need to mark registers in both frames, otherwise callees
2498 * may incorrectly prune callers. This is similar to
2499 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2500 *
2501 * For now backtracking falls back into conservative marking.
2502 */
2503static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2504 struct bpf_verifier_state *st)
2505{
2506 struct bpf_func_state *func;
2507 struct bpf_reg_state *reg;
2508 int i, j;
2509
2510 /* big hammer: mark all scalars precise in this path.
2511 * pop_stack may still get !precise scalars.
2512 */
2513 for (; st; st = st->parent)
2514 for (i = 0; i <= st->curframe; i++) {
2515 func = st->frame[i];
2516 for (j = 0; j < BPF_REG_FP; j++) {
2517 reg = &func->regs[j];
2518 if (reg->type != SCALAR_VALUE)
2519 continue;
2520 reg->precise = true;
2521 }
2522 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2523 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2524 continue;
2525 reg = &func->stack[j].spilled_ptr;
2526 if (reg->type != SCALAR_VALUE)
2527 continue;
2528 reg->precise = true;
2529 }
2530 }
2531}
2532
a3ce685d
AS
2533static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2534 int spi)
b5dc0163
AS
2535{
2536 struct bpf_verifier_state *st = env->cur_state;
2537 int first_idx = st->first_insn_idx;
2538 int last_idx = env->insn_idx;
2539 struct bpf_func_state *func;
2540 struct bpf_reg_state *reg;
a3ce685d
AS
2541 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2542 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2543 bool skip_first = true;
a3ce685d 2544 bool new_marks = false;
b5dc0163
AS
2545 int i, err;
2546
2c78ee89 2547 if (!env->bpf_capable)
b5dc0163
AS
2548 return 0;
2549
2550 func = st->frame[st->curframe];
a3ce685d
AS
2551 if (regno >= 0) {
2552 reg = &func->regs[regno];
2553 if (reg->type != SCALAR_VALUE) {
2554 WARN_ONCE(1, "backtracing misuse");
2555 return -EFAULT;
2556 }
2557 if (!reg->precise)
2558 new_marks = true;
2559 else
2560 reg_mask = 0;
2561 reg->precise = true;
b5dc0163 2562 }
b5dc0163 2563
a3ce685d 2564 while (spi >= 0) {
27113c59 2565 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2566 stack_mask = 0;
2567 break;
2568 }
2569 reg = &func->stack[spi].spilled_ptr;
2570 if (reg->type != SCALAR_VALUE) {
2571 stack_mask = 0;
2572 break;
2573 }
2574 if (!reg->precise)
2575 new_marks = true;
2576 else
2577 stack_mask = 0;
2578 reg->precise = true;
2579 break;
2580 }
2581
2582 if (!new_marks)
2583 return 0;
2584 if (!reg_mask && !stack_mask)
2585 return 0;
b5dc0163
AS
2586 for (;;) {
2587 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2588 u32 history = st->jmp_history_cnt;
2589
2590 if (env->log.level & BPF_LOG_LEVEL)
2591 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2592 for (i = last_idx;;) {
2593 if (skip_first) {
2594 err = 0;
2595 skip_first = false;
2596 } else {
2597 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2598 }
2599 if (err == -ENOTSUPP) {
2600 mark_all_scalars_precise(env, st);
2601 return 0;
2602 } else if (err) {
2603 return err;
2604 }
2605 if (!reg_mask && !stack_mask)
2606 /* Found assignment(s) into tracked register in this state.
2607 * Since this state is already marked, just return.
2608 * Nothing to be tracked further in the parent state.
2609 */
2610 return 0;
2611 if (i == first_idx)
2612 break;
2613 i = get_prev_insn_idx(st, i, &history);
2614 if (i >= env->prog->len) {
2615 /* This can happen if backtracking reached insn 0
2616 * and there are still reg_mask or stack_mask
2617 * to backtrack.
2618 * It means the backtracking missed the spot where
2619 * particular register was initialized with a constant.
2620 */
2621 verbose(env, "BUG backtracking idx %d\n", i);
2622 WARN_ONCE(1, "verifier backtracking bug");
2623 return -EFAULT;
2624 }
2625 }
2626 st = st->parent;
2627 if (!st)
2628 break;
2629
a3ce685d 2630 new_marks = false;
b5dc0163
AS
2631 func = st->frame[st->curframe];
2632 bitmap_from_u64(mask, reg_mask);
2633 for_each_set_bit(i, mask, 32) {
2634 reg = &func->regs[i];
a3ce685d
AS
2635 if (reg->type != SCALAR_VALUE) {
2636 reg_mask &= ~(1u << i);
b5dc0163 2637 continue;
a3ce685d 2638 }
b5dc0163
AS
2639 if (!reg->precise)
2640 new_marks = true;
2641 reg->precise = true;
2642 }
2643
2644 bitmap_from_u64(mask, stack_mask);
2645 for_each_set_bit(i, mask, 64) {
2646 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2647 /* the sequence of instructions:
2648 * 2: (bf) r3 = r10
2649 * 3: (7b) *(u64 *)(r3 -8) = r0
2650 * 4: (79) r4 = *(u64 *)(r10 -8)
2651 * doesn't contain jmps. It's backtracked
2652 * as a single block.
2653 * During backtracking insn 3 is not recognized as
2654 * stack access, so at the end of backtracking
2655 * stack slot fp-8 is still marked in stack_mask.
2656 * However the parent state may not have accessed
2657 * fp-8 and it's "unallocated" stack space.
2658 * In such case fallback to conservative.
b5dc0163 2659 */
2339cd6c
AS
2660 mark_all_scalars_precise(env, st);
2661 return 0;
b5dc0163
AS
2662 }
2663
27113c59 2664 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2665 stack_mask &= ~(1ull << i);
b5dc0163 2666 continue;
a3ce685d 2667 }
b5dc0163 2668 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2669 if (reg->type != SCALAR_VALUE) {
2670 stack_mask &= ~(1ull << i);
b5dc0163 2671 continue;
a3ce685d 2672 }
b5dc0163
AS
2673 if (!reg->precise)
2674 new_marks = true;
2675 reg->precise = true;
2676 }
2677 if (env->log.level & BPF_LOG_LEVEL) {
2678 print_verifier_state(env, func);
2679 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2680 new_marks ? "didn't have" : "already had",
2681 reg_mask, stack_mask);
2682 }
2683
a3ce685d
AS
2684 if (!reg_mask && !stack_mask)
2685 break;
b5dc0163
AS
2686 if (!new_marks)
2687 break;
2688
2689 last_idx = st->last_insn_idx;
2690 first_idx = st->first_insn_idx;
2691 }
2692 return 0;
2693}
2694
a3ce685d
AS
2695static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2696{
2697 return __mark_chain_precision(env, regno, -1);
2698}
2699
2700static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2701{
2702 return __mark_chain_precision(env, -1, spi);
2703}
b5dc0163 2704
1be7f75d
AS
2705static bool is_spillable_regtype(enum bpf_reg_type type)
2706{
2707 switch (type) {
2708 case PTR_TO_MAP_VALUE:
2709 case PTR_TO_MAP_VALUE_OR_NULL:
2710 case PTR_TO_STACK:
2711 case PTR_TO_CTX:
969bf05e 2712 case PTR_TO_PACKET:
de8f3a83 2713 case PTR_TO_PACKET_META:
969bf05e 2714 case PTR_TO_PACKET_END:
d58e468b 2715 case PTR_TO_FLOW_KEYS:
1be7f75d 2716 case CONST_PTR_TO_MAP:
c64b7983
JS
2717 case PTR_TO_SOCKET:
2718 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2719 case PTR_TO_SOCK_COMMON:
2720 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2721 case PTR_TO_TCP_SOCK:
2722 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2723 case PTR_TO_XDP_SOCK:
65726b5b 2724 case PTR_TO_BTF_ID:
b121b341 2725 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2726 case PTR_TO_RDONLY_BUF:
2727 case PTR_TO_RDONLY_BUF_OR_NULL:
2728 case PTR_TO_RDWR_BUF:
2729 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2730 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2731 case PTR_TO_MEM:
2732 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2733 case PTR_TO_FUNC:
2734 case PTR_TO_MAP_KEY:
1be7f75d
AS
2735 return true;
2736 default:
2737 return false;
2738 }
2739}
2740
cc2b14d5
AS
2741/* Does this register contain a constant zero? */
2742static bool register_is_null(struct bpf_reg_state *reg)
2743{
2744 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2745}
2746
f7cf25b2
AS
2747static bool register_is_const(struct bpf_reg_state *reg)
2748{
2749 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2750}
2751
5689d49b
YS
2752static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2753{
2754 return tnum_is_unknown(reg->var_off) &&
2755 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2756 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2757 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2758 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2759}
2760
2761static bool register_is_bounded(struct bpf_reg_state *reg)
2762{
2763 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2764}
2765
6e7e63cb
JH
2766static bool __is_pointer_value(bool allow_ptr_leaks,
2767 const struct bpf_reg_state *reg)
2768{
2769 if (allow_ptr_leaks)
2770 return false;
2771
2772 return reg->type != SCALAR_VALUE;
2773}
2774
f7cf25b2 2775static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2776 int spi, struct bpf_reg_state *reg,
2777 int size)
f7cf25b2
AS
2778{
2779 int i;
2780
2781 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2782 if (size == BPF_REG_SIZE)
2783 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 2784
354e8f19
MKL
2785 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2786 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 2787
354e8f19
MKL
2788 /* size < 8 bytes spill */
2789 for (; i; i--)
2790 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
2791}
2792
01f810ac 2793/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2794 * stack boundary and alignment are checked in check_mem_access()
2795 */
01f810ac
AM
2796static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2797 /* stack frame we're writing to */
2798 struct bpf_func_state *state,
2799 int off, int size, int value_regno,
2800 int insn_idx)
17a52670 2801{
f4d7e40a 2802 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2803 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2804 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2805 struct bpf_reg_state *reg = NULL;
638f5b90 2806
c69431aa 2807 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2808 if (err)
2809 return err;
9c399760
AS
2810 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2811 * so it's aligned access and [off, off + size) are within stack limits
2812 */
638f5b90
AS
2813 if (!env->allow_ptr_leaks &&
2814 state->stack[spi].slot_type[0] == STACK_SPILL &&
2815 size != BPF_REG_SIZE) {
2816 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2817 return -EACCES;
2818 }
17a52670 2819
f4d7e40a 2820 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2821 if (value_regno >= 0)
2822 reg = &cur->regs[value_regno];
2039f26f
DB
2823 if (!env->bypass_spec_v4) {
2824 bool sanitize = reg && is_spillable_regtype(reg->type);
2825
2826 for (i = 0; i < size; i++) {
2827 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2828 sanitize = true;
2829 break;
2830 }
2831 }
2832
2833 if (sanitize)
2834 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2835 }
17a52670 2836
354e8f19 2837 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 2838 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2839 if (dst_reg != BPF_REG_FP) {
2840 /* The backtracking logic can only recognize explicit
2841 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2842 * scalar via different register has to be conservative.
b5dc0163
AS
2843 * Backtrack from here and mark all registers as precise
2844 * that contributed into 'reg' being a constant.
2845 */
2846 err = mark_chain_precision(env, value_regno);
2847 if (err)
2848 return err;
2849 }
354e8f19 2850 save_register_state(state, spi, reg, size);
f7cf25b2 2851 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2852 /* register containing pointer is being spilled into stack */
9c399760 2853 if (size != BPF_REG_SIZE) {
f7cf25b2 2854 verbose_linfo(env, insn_idx, "; ");
61bd5218 2855 verbose(env, "invalid size of register spill\n");
17a52670
AS
2856 return -EACCES;
2857 }
f7cf25b2 2858 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2859 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2860 return -EINVAL;
2861 }
354e8f19 2862 save_register_state(state, spi, reg, size);
9c399760 2863 } else {
cc2b14d5
AS
2864 u8 type = STACK_MISC;
2865
679c782d
EC
2866 /* regular write of data into stack destroys any spilled ptr */
2867 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 2868 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 2869 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 2870 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 2871 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 2872
cc2b14d5
AS
2873 /* only mark the slot as written if all 8 bytes were written
2874 * otherwise read propagation may incorrectly stop too soon
2875 * when stack slots are partially written.
2876 * This heuristic means that read propagation will be
2877 * conservative, since it will add reg_live_read marks
2878 * to stack slots all the way to first state when programs
2879 * writes+reads less than 8 bytes
2880 */
2881 if (size == BPF_REG_SIZE)
2882 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2883
2884 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2885 if (reg && register_is_null(reg)) {
2886 /* backtracking doesn't work for STACK_ZERO yet. */
2887 err = mark_chain_precision(env, value_regno);
2888 if (err)
2889 return err;
cc2b14d5 2890 type = STACK_ZERO;
b5dc0163 2891 }
cc2b14d5 2892
0bae2d4d 2893 /* Mark slots affected by this stack write. */
9c399760 2894 for (i = 0; i < size; i++)
638f5b90 2895 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2896 type;
17a52670
AS
2897 }
2898 return 0;
2899}
2900
01f810ac
AM
2901/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2902 * known to contain a variable offset.
2903 * This function checks whether the write is permitted and conservatively
2904 * tracks the effects of the write, considering that each stack slot in the
2905 * dynamic range is potentially written to.
2906 *
2907 * 'off' includes 'regno->off'.
2908 * 'value_regno' can be -1, meaning that an unknown value is being written to
2909 * the stack.
2910 *
2911 * Spilled pointers in range are not marked as written because we don't know
2912 * what's going to be actually written. This means that read propagation for
2913 * future reads cannot be terminated by this write.
2914 *
2915 * For privileged programs, uninitialized stack slots are considered
2916 * initialized by this write (even though we don't know exactly what offsets
2917 * are going to be written to). The idea is that we don't want the verifier to
2918 * reject future reads that access slots written to through variable offsets.
2919 */
2920static int check_stack_write_var_off(struct bpf_verifier_env *env,
2921 /* func where register points to */
2922 struct bpf_func_state *state,
2923 int ptr_regno, int off, int size,
2924 int value_regno, int insn_idx)
2925{
2926 struct bpf_func_state *cur; /* state of the current function */
2927 int min_off, max_off;
2928 int i, err;
2929 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2930 bool writing_zero = false;
2931 /* set if the fact that we're writing a zero is used to let any
2932 * stack slots remain STACK_ZERO
2933 */
2934 bool zero_used = false;
2935
2936 cur = env->cur_state->frame[env->cur_state->curframe];
2937 ptr_reg = &cur->regs[ptr_regno];
2938 min_off = ptr_reg->smin_value + off;
2939 max_off = ptr_reg->smax_value + off + size;
2940 if (value_regno >= 0)
2941 value_reg = &cur->regs[value_regno];
2942 if (value_reg && register_is_null(value_reg))
2943 writing_zero = true;
2944
c69431aa 2945 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
2946 if (err)
2947 return err;
2948
2949
2950 /* Variable offset writes destroy any spilled pointers in range. */
2951 for (i = min_off; i < max_off; i++) {
2952 u8 new_type, *stype;
2953 int slot, spi;
2954
2955 slot = -i - 1;
2956 spi = slot / BPF_REG_SIZE;
2957 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2958
2959 if (!env->allow_ptr_leaks
2960 && *stype != NOT_INIT
2961 && *stype != SCALAR_VALUE) {
2962 /* Reject the write if there's are spilled pointers in
2963 * range. If we didn't reject here, the ptr status
2964 * would be erased below (even though not all slots are
2965 * actually overwritten), possibly opening the door to
2966 * leaks.
2967 */
2968 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2969 insn_idx, i);
2970 return -EINVAL;
2971 }
2972
2973 /* Erase all spilled pointers. */
2974 state->stack[spi].spilled_ptr.type = NOT_INIT;
2975
2976 /* Update the slot type. */
2977 new_type = STACK_MISC;
2978 if (writing_zero && *stype == STACK_ZERO) {
2979 new_type = STACK_ZERO;
2980 zero_used = true;
2981 }
2982 /* If the slot is STACK_INVALID, we check whether it's OK to
2983 * pretend that it will be initialized by this write. The slot
2984 * might not actually be written to, and so if we mark it as
2985 * initialized future reads might leak uninitialized memory.
2986 * For privileged programs, we will accept such reads to slots
2987 * that may or may not be written because, if we're reject
2988 * them, the error would be too confusing.
2989 */
2990 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2991 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2992 insn_idx, i);
2993 return -EINVAL;
2994 }
2995 *stype = new_type;
2996 }
2997 if (zero_used) {
2998 /* backtracking doesn't work for STACK_ZERO yet. */
2999 err = mark_chain_precision(env, value_regno);
3000 if (err)
3001 return err;
3002 }
3003 return 0;
3004}
3005
3006/* When register 'dst_regno' is assigned some values from stack[min_off,
3007 * max_off), we set the register's type according to the types of the
3008 * respective stack slots. If all the stack values are known to be zeros, then
3009 * so is the destination reg. Otherwise, the register is considered to be
3010 * SCALAR. This function does not deal with register filling; the caller must
3011 * ensure that all spilled registers in the stack range have been marked as
3012 * read.
3013 */
3014static void mark_reg_stack_read(struct bpf_verifier_env *env,
3015 /* func where src register points to */
3016 struct bpf_func_state *ptr_state,
3017 int min_off, int max_off, int dst_regno)
3018{
3019 struct bpf_verifier_state *vstate = env->cur_state;
3020 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3021 int i, slot, spi;
3022 u8 *stype;
3023 int zeros = 0;
3024
3025 for (i = min_off; i < max_off; i++) {
3026 slot = -i - 1;
3027 spi = slot / BPF_REG_SIZE;
3028 stype = ptr_state->stack[spi].slot_type;
3029 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3030 break;
3031 zeros++;
3032 }
3033 if (zeros == max_off - min_off) {
3034 /* any access_size read into register is zero extended,
3035 * so the whole register == const_zero
3036 */
3037 __mark_reg_const_zero(&state->regs[dst_regno]);
3038 /* backtracking doesn't support STACK_ZERO yet,
3039 * so mark it precise here, so that later
3040 * backtracking can stop here.
3041 * Backtracking may not need this if this register
3042 * doesn't participate in pointer adjustment.
3043 * Forward propagation of precise flag is not
3044 * necessary either. This mark is only to stop
3045 * backtracking. Any register that contributed
3046 * to const 0 was marked precise before spill.
3047 */
3048 state->regs[dst_regno].precise = true;
3049 } else {
3050 /* have read misc data from the stack */
3051 mark_reg_unknown(env, state->regs, dst_regno);
3052 }
3053 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3054}
3055
3056/* Read the stack at 'off' and put the results into the register indicated by
3057 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3058 * spilled reg.
3059 *
3060 * 'dst_regno' can be -1, meaning that the read value is not going to a
3061 * register.
3062 *
3063 * The access is assumed to be within the current stack bounds.
3064 */
3065static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3066 /* func where src register points to */
3067 struct bpf_func_state *reg_state,
3068 int off, int size, int dst_regno)
17a52670 3069{
f4d7e40a
AS
3070 struct bpf_verifier_state *vstate = env->cur_state;
3071 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3072 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3073 struct bpf_reg_state *reg;
354e8f19 3074 u8 *stype, type;
17a52670 3075
f4d7e40a 3076 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3077 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3078
27113c59 3079 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3080 u8 spill_size = 1;
3081
3082 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3083 spill_size++;
354e8f19 3084
f30d4968 3085 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3086 if (reg->type != SCALAR_VALUE) {
3087 verbose_linfo(env, env->insn_idx, "; ");
3088 verbose(env, "invalid size of register fill\n");
3089 return -EACCES;
3090 }
354e8f19
MKL
3091
3092 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3093 if (dst_regno < 0)
3094 return 0;
3095
f30d4968 3096 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3097 /* The earlier check_reg_arg() has decided the
3098 * subreg_def for this insn. Save it first.
3099 */
3100 s32 subreg_def = state->regs[dst_regno].subreg_def;
3101
3102 state->regs[dst_regno] = *reg;
3103 state->regs[dst_regno].subreg_def = subreg_def;
3104 } else {
3105 for (i = 0; i < size; i++) {
3106 type = stype[(slot - i) % BPF_REG_SIZE];
3107 if (type == STACK_SPILL)
3108 continue;
3109 if (type == STACK_MISC)
3110 continue;
3111 verbose(env, "invalid read from stack off %d+%d size %d\n",
3112 off, i, size);
3113 return -EACCES;
3114 }
01f810ac 3115 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3116 }
354e8f19 3117 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3118 return 0;
17a52670 3119 }
17a52670 3120
01f810ac 3121 if (dst_regno >= 0) {
17a52670 3122 /* restore register state from stack */
01f810ac 3123 state->regs[dst_regno] = *reg;
2f18f62e
AS
3124 /* mark reg as written since spilled pointer state likely
3125 * has its liveness marks cleared by is_state_visited()
3126 * which resets stack/reg liveness for state transitions
3127 */
01f810ac 3128 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3129 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3130 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3131 * it is acceptable to use this value as a SCALAR_VALUE
3132 * (e.g. for XADD).
3133 * We must not allow unprivileged callers to do that
3134 * with spilled pointers.
3135 */
3136 verbose(env, "leaking pointer from stack off %d\n",
3137 off);
3138 return -EACCES;
dc503a8a 3139 }
f7cf25b2 3140 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3141 } else {
3142 for (i = 0; i < size; i++) {
01f810ac
AM
3143 type = stype[(slot - i) % BPF_REG_SIZE];
3144 if (type == STACK_MISC)
cc2b14d5 3145 continue;
01f810ac 3146 if (type == STACK_ZERO)
cc2b14d5 3147 continue;
cc2b14d5
AS
3148 verbose(env, "invalid read from stack off %d+%d size %d\n",
3149 off, i, size);
3150 return -EACCES;
3151 }
f7cf25b2 3152 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3153 if (dst_regno >= 0)
3154 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3155 }
f7cf25b2 3156 return 0;
17a52670
AS
3157}
3158
01f810ac
AM
3159enum stack_access_src {
3160 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3161 ACCESS_HELPER = 2, /* the access is performed by a helper */
3162};
3163
3164static int check_stack_range_initialized(struct bpf_verifier_env *env,
3165 int regno, int off, int access_size,
3166 bool zero_size_allowed,
3167 enum stack_access_src type,
3168 struct bpf_call_arg_meta *meta);
3169
3170static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3171{
3172 return cur_regs(env) + regno;
3173}
3174
3175/* Read the stack at 'ptr_regno + off' and put the result into the register
3176 * 'dst_regno'.
3177 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3178 * but not its variable offset.
3179 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3180 *
3181 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3182 * filling registers (i.e. reads of spilled register cannot be detected when
3183 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3184 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3185 * offset; for a fixed offset check_stack_read_fixed_off should be used
3186 * instead.
3187 */
3188static int check_stack_read_var_off(struct bpf_verifier_env *env,
3189 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3190{
01f810ac
AM
3191 /* The state of the source register. */
3192 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3193 struct bpf_func_state *ptr_state = func(env, reg);
3194 int err;
3195 int min_off, max_off;
3196
3197 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3198 */
01f810ac
AM
3199 err = check_stack_range_initialized(env, ptr_regno, off, size,
3200 false, ACCESS_DIRECT, NULL);
3201 if (err)
3202 return err;
3203
3204 min_off = reg->smin_value + off;
3205 max_off = reg->smax_value + off;
3206 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3207 return 0;
3208}
3209
3210/* check_stack_read dispatches to check_stack_read_fixed_off or
3211 * check_stack_read_var_off.
3212 *
3213 * The caller must ensure that the offset falls within the allocated stack
3214 * bounds.
3215 *
3216 * 'dst_regno' is a register which will receive the value from the stack. It
3217 * can be -1, meaning that the read value is not going to a register.
3218 */
3219static int check_stack_read(struct bpf_verifier_env *env,
3220 int ptr_regno, int off, int size,
3221 int dst_regno)
3222{
3223 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3224 struct bpf_func_state *state = func(env, reg);
3225 int err;
3226 /* Some accesses are only permitted with a static offset. */
3227 bool var_off = !tnum_is_const(reg->var_off);
3228
3229 /* The offset is required to be static when reads don't go to a
3230 * register, in order to not leak pointers (see
3231 * check_stack_read_fixed_off).
3232 */
3233 if (dst_regno < 0 && var_off) {
e4298d25
DB
3234 char tn_buf[48];
3235
3236 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3237 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3238 tn_buf, off, size);
3239 return -EACCES;
3240 }
01f810ac
AM
3241 /* Variable offset is prohibited for unprivileged mode for simplicity
3242 * since it requires corresponding support in Spectre masking for stack
3243 * ALU. See also retrieve_ptr_limit().
3244 */
3245 if (!env->bypass_spec_v1 && var_off) {
3246 char tn_buf[48];
e4298d25 3247
01f810ac
AM
3248 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3249 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3250 ptr_regno, tn_buf);
e4298d25
DB
3251 return -EACCES;
3252 }
3253
01f810ac
AM
3254 if (!var_off) {
3255 off += reg->var_off.value;
3256 err = check_stack_read_fixed_off(env, state, off, size,
3257 dst_regno);
3258 } else {
3259 /* Variable offset stack reads need more conservative handling
3260 * than fixed offset ones. Note that dst_regno >= 0 on this
3261 * branch.
3262 */
3263 err = check_stack_read_var_off(env, ptr_regno, off, size,
3264 dst_regno);
3265 }
3266 return err;
3267}
3268
3269
3270/* check_stack_write dispatches to check_stack_write_fixed_off or
3271 * check_stack_write_var_off.
3272 *
3273 * 'ptr_regno' is the register used as a pointer into the stack.
3274 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3275 * 'value_regno' is the register whose value we're writing to the stack. It can
3276 * be -1, meaning that we're not writing from a register.
3277 *
3278 * The caller must ensure that the offset falls within the maximum stack size.
3279 */
3280static int check_stack_write(struct bpf_verifier_env *env,
3281 int ptr_regno, int off, int size,
3282 int value_regno, int insn_idx)
3283{
3284 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3285 struct bpf_func_state *state = func(env, reg);
3286 int err;
3287
3288 if (tnum_is_const(reg->var_off)) {
3289 off += reg->var_off.value;
3290 err = check_stack_write_fixed_off(env, state, off, size,
3291 value_regno, insn_idx);
3292 } else {
3293 /* Variable offset stack reads need more conservative handling
3294 * than fixed offset ones.
3295 */
3296 err = check_stack_write_var_off(env, state,
3297 ptr_regno, off, size,
3298 value_regno, insn_idx);
3299 }
3300 return err;
e4298d25
DB
3301}
3302
591fe988
DB
3303static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3304 int off, int size, enum bpf_access_type type)
3305{
3306 struct bpf_reg_state *regs = cur_regs(env);
3307 struct bpf_map *map = regs[regno].map_ptr;
3308 u32 cap = bpf_map_flags_to_cap(map);
3309
3310 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3311 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3312 map->value_size, off, size);
3313 return -EACCES;
3314 }
3315
3316 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3317 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3318 map->value_size, off, size);
3319 return -EACCES;
3320 }
3321
3322 return 0;
3323}
3324
457f4436
AN
3325/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3326static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3327 int off, int size, u32 mem_size,
3328 bool zero_size_allowed)
17a52670 3329{
457f4436
AN
3330 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3331 struct bpf_reg_state *reg;
3332
3333 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3334 return 0;
17a52670 3335
457f4436
AN
3336 reg = &cur_regs(env)[regno];
3337 switch (reg->type) {
69c087ba
YS
3338 case PTR_TO_MAP_KEY:
3339 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3340 mem_size, off, size);
3341 break;
457f4436 3342 case PTR_TO_MAP_VALUE:
61bd5218 3343 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3344 mem_size, off, size);
3345 break;
3346 case PTR_TO_PACKET:
3347 case PTR_TO_PACKET_META:
3348 case PTR_TO_PACKET_END:
3349 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3350 off, size, regno, reg->id, off, mem_size);
3351 break;
3352 case PTR_TO_MEM:
3353 default:
3354 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3355 mem_size, off, size);
17a52670 3356 }
457f4436
AN
3357
3358 return -EACCES;
17a52670
AS
3359}
3360
457f4436
AN
3361/* check read/write into a memory region with possible variable offset */
3362static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3363 int off, int size, u32 mem_size,
3364 bool zero_size_allowed)
dbcfe5f7 3365{
f4d7e40a
AS
3366 struct bpf_verifier_state *vstate = env->cur_state;
3367 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3368 struct bpf_reg_state *reg = &state->regs[regno];
3369 int err;
3370
457f4436 3371 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3372 * need to try adding each of min_value and max_value to off
3373 * to make sure our theoretical access will be safe.
dbcfe5f7 3374 */
06ee7115 3375 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 3376 print_verifier_state(env, state);
b7137c4e 3377
dbcfe5f7
GB
3378 /* The minimum value is only important with signed
3379 * comparisons where we can't assume the floor of a
3380 * value is 0. If we are using signed variables for our
3381 * index'es we need to make sure that whatever we use
3382 * will have a set floor within our range.
3383 */
b7137c4e
DB
3384 if (reg->smin_value < 0 &&
3385 (reg->smin_value == S64_MIN ||
3386 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3387 reg->smin_value + off < 0)) {
61bd5218 3388 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3389 regno);
3390 return -EACCES;
3391 }
457f4436
AN
3392 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3393 mem_size, zero_size_allowed);
dbcfe5f7 3394 if (err) {
457f4436 3395 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3396 regno);
dbcfe5f7
GB
3397 return err;
3398 }
3399
b03c9f9f
EC
3400 /* If we haven't set a max value then we need to bail since we can't be
3401 * sure we won't do bad things.
3402 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3403 */
b03c9f9f 3404 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3405 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3406 regno);
3407 return -EACCES;
3408 }
457f4436
AN
3409 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3410 mem_size, zero_size_allowed);
3411 if (err) {
3412 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3413 regno);
457f4436
AN
3414 return err;
3415 }
3416
3417 return 0;
3418}
d83525ca 3419
457f4436
AN
3420/* check read/write into a map element with possible variable offset */
3421static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3422 int off, int size, bool zero_size_allowed)
3423{
3424 struct bpf_verifier_state *vstate = env->cur_state;
3425 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3426 struct bpf_reg_state *reg = &state->regs[regno];
3427 struct bpf_map *map = reg->map_ptr;
3428 int err;
3429
3430 err = check_mem_region_access(env, regno, off, size, map->value_size,
3431 zero_size_allowed);
3432 if (err)
3433 return err;
3434
3435 if (map_value_has_spin_lock(map)) {
3436 u32 lock = map->spin_lock_off;
d83525ca
AS
3437
3438 /* if any part of struct bpf_spin_lock can be touched by
3439 * load/store reject this program.
3440 * To check that [x1, x2) overlaps with [y1, y2)
3441 * it is sufficient to check x1 < y2 && y1 < x2.
3442 */
3443 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3444 lock < reg->umax_value + off + size) {
3445 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3446 return -EACCES;
3447 }
3448 }
68134668
AS
3449 if (map_value_has_timer(map)) {
3450 u32 t = map->timer_off;
3451
3452 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3453 t < reg->umax_value + off + size) {
3454 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3455 return -EACCES;
3456 }
3457 }
f1174f77 3458 return err;
dbcfe5f7
GB
3459}
3460
969bf05e
AS
3461#define MAX_PACKET_OFF 0xffff
3462
7e40781c
UP
3463static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3464{
3aac1ead 3465 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3466}
3467
58e2af8b 3468static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3469 const struct bpf_call_arg_meta *meta,
3470 enum bpf_access_type t)
4acf6c0b 3471{
7e40781c
UP
3472 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3473
3474 switch (prog_type) {
5d66fa7d 3475 /* Program types only with direct read access go here! */
3a0af8fd
TG
3476 case BPF_PROG_TYPE_LWT_IN:
3477 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3478 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3479 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3480 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3481 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3482 if (t == BPF_WRITE)
3483 return false;
8731745e 3484 fallthrough;
5d66fa7d
DB
3485
3486 /* Program types with direct read + write access go here! */
36bbef52
DB
3487 case BPF_PROG_TYPE_SCHED_CLS:
3488 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3489 case BPF_PROG_TYPE_XDP:
3a0af8fd 3490 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3491 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3492 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3493 if (meta)
3494 return meta->pkt_access;
3495
3496 env->seen_direct_write = true;
4acf6c0b 3497 return true;
0d01da6a
SF
3498
3499 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3500 if (t == BPF_WRITE)
3501 env->seen_direct_write = true;
3502
3503 return true;
3504
4acf6c0b
BB
3505 default:
3506 return false;
3507 }
3508}
3509
f1174f77 3510static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3511 int size, bool zero_size_allowed)
f1174f77 3512{
638f5b90 3513 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3514 struct bpf_reg_state *reg = &regs[regno];
3515 int err;
3516
3517 /* We may have added a variable offset to the packet pointer; but any
3518 * reg->range we have comes after that. We are only checking the fixed
3519 * offset.
3520 */
3521
3522 /* We don't allow negative numbers, because we aren't tracking enough
3523 * detail to prove they're safe.
3524 */
b03c9f9f 3525 if (reg->smin_value < 0) {
61bd5218 3526 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3527 regno);
3528 return -EACCES;
3529 }
6d94e741
AS
3530
3531 err = reg->range < 0 ? -EINVAL :
3532 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3533 zero_size_allowed);
f1174f77 3534 if (err) {
61bd5218 3535 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3536 return err;
3537 }
e647815a 3538
457f4436 3539 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3540 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3541 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3542 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3543 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3544 */
3545 env->prog->aux->max_pkt_offset =
3546 max_t(u32, env->prog->aux->max_pkt_offset,
3547 off + reg->umax_value + size - 1);
3548
f1174f77
EC
3549 return err;
3550}
3551
3552/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3553static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3554 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3555 struct btf **btf, u32 *btf_id)
17a52670 3556{
f96da094
DB
3557 struct bpf_insn_access_aux info = {
3558 .reg_type = *reg_type,
9e15db66 3559 .log = &env->log,
f96da094 3560 };
31fd8581 3561
4f9218aa 3562 if (env->ops->is_valid_access &&
5e43f899 3563 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3564 /* A non zero info.ctx_field_size indicates that this field is a
3565 * candidate for later verifier transformation to load the whole
3566 * field and then apply a mask when accessed with a narrower
3567 * access than actual ctx access size. A zero info.ctx_field_size
3568 * will only allow for whole field access and rejects any other
3569 * type of narrower access.
31fd8581 3570 */
23994631 3571 *reg_type = info.reg_type;
31fd8581 3572
22dc4a0f
AN
3573 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3574 *btf = info.btf;
9e15db66 3575 *btf_id = info.btf_id;
22dc4a0f 3576 } else {
9e15db66 3577 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3578 }
32bbe007
AS
3579 /* remember the offset of last byte accessed in ctx */
3580 if (env->prog->aux->max_ctx_offset < off + size)
3581 env->prog->aux->max_ctx_offset = off + size;
17a52670 3582 return 0;
32bbe007 3583 }
17a52670 3584
61bd5218 3585 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3586 return -EACCES;
3587}
3588
d58e468b
PP
3589static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3590 int size)
3591{
3592 if (size < 0 || off < 0 ||
3593 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3594 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3595 off, size);
3596 return -EACCES;
3597 }
3598 return 0;
3599}
3600
5f456649
MKL
3601static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3602 u32 regno, int off, int size,
3603 enum bpf_access_type t)
c64b7983
JS
3604{
3605 struct bpf_reg_state *regs = cur_regs(env);
3606 struct bpf_reg_state *reg = &regs[regno];
5f456649 3607 struct bpf_insn_access_aux info = {};
46f8bc92 3608 bool valid;
c64b7983
JS
3609
3610 if (reg->smin_value < 0) {
3611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3612 regno);
3613 return -EACCES;
3614 }
3615
46f8bc92
MKL
3616 switch (reg->type) {
3617 case PTR_TO_SOCK_COMMON:
3618 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3619 break;
3620 case PTR_TO_SOCKET:
3621 valid = bpf_sock_is_valid_access(off, size, t, &info);
3622 break;
655a51e5
MKL
3623 case PTR_TO_TCP_SOCK:
3624 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3625 break;
fada7fdc
JL
3626 case PTR_TO_XDP_SOCK:
3627 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3628 break;
46f8bc92
MKL
3629 default:
3630 valid = false;
c64b7983
JS
3631 }
3632
5f456649 3633
46f8bc92
MKL
3634 if (valid) {
3635 env->insn_aux_data[insn_idx].ctx_field_size =
3636 info.ctx_field_size;
3637 return 0;
3638 }
3639
3640 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3641 regno, reg_type_str[reg->type], off, size);
3642
3643 return -EACCES;
c64b7983
JS
3644}
3645
4cabc5b1
DB
3646static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3647{
2a159c6f 3648 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3649}
3650
f37a8cb8
DB
3651static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3652{
2a159c6f 3653 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3654
46f8bc92
MKL
3655 return reg->type == PTR_TO_CTX;
3656}
3657
3658static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3659{
3660 const struct bpf_reg_state *reg = reg_state(env, regno);
3661
3662 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3663}
3664
ca369602
DB
3665static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3666{
2a159c6f 3667 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3668
3669 return type_is_pkt_pointer(reg->type);
3670}
3671
4b5defde
DB
3672static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3673{
3674 const struct bpf_reg_state *reg = reg_state(env, regno);
3675
3676 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3677 return reg->type == PTR_TO_FLOW_KEYS;
3678}
3679
61bd5218
JK
3680static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3681 const struct bpf_reg_state *reg,
d1174416 3682 int off, int size, bool strict)
969bf05e 3683{
f1174f77 3684 struct tnum reg_off;
e07b98d9 3685 int ip_align;
d1174416
DM
3686
3687 /* Byte size accesses are always allowed. */
3688 if (!strict || size == 1)
3689 return 0;
3690
e4eda884
DM
3691 /* For platforms that do not have a Kconfig enabling
3692 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3693 * NET_IP_ALIGN is universally set to '2'. And on platforms
3694 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3695 * to this code only in strict mode where we want to emulate
3696 * the NET_IP_ALIGN==2 checking. Therefore use an
3697 * unconditional IP align value of '2'.
e07b98d9 3698 */
e4eda884 3699 ip_align = 2;
f1174f77
EC
3700
3701 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3702 if (!tnum_is_aligned(reg_off, size)) {
3703 char tn_buf[48];
3704
3705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3706 verbose(env,
3707 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3708 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3709 return -EACCES;
3710 }
79adffcd 3711
969bf05e
AS
3712 return 0;
3713}
3714
61bd5218
JK
3715static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3716 const struct bpf_reg_state *reg,
f1174f77
EC
3717 const char *pointer_desc,
3718 int off, int size, bool strict)
79adffcd 3719{
f1174f77
EC
3720 struct tnum reg_off;
3721
3722 /* Byte size accesses are always allowed. */
3723 if (!strict || size == 1)
3724 return 0;
3725
3726 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3727 if (!tnum_is_aligned(reg_off, size)) {
3728 char tn_buf[48];
3729
3730 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3731 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3732 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3733 return -EACCES;
3734 }
3735
969bf05e
AS
3736 return 0;
3737}
3738
e07b98d9 3739static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3740 const struct bpf_reg_state *reg, int off,
3741 int size, bool strict_alignment_once)
79adffcd 3742{
ca369602 3743 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3744 const char *pointer_desc = "";
d1174416 3745
79adffcd
DB
3746 switch (reg->type) {
3747 case PTR_TO_PACKET:
de8f3a83
DB
3748 case PTR_TO_PACKET_META:
3749 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3750 * right in front, treat it the very same way.
3751 */
61bd5218 3752 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3753 case PTR_TO_FLOW_KEYS:
3754 pointer_desc = "flow keys ";
3755 break;
69c087ba
YS
3756 case PTR_TO_MAP_KEY:
3757 pointer_desc = "key ";
3758 break;
f1174f77
EC
3759 case PTR_TO_MAP_VALUE:
3760 pointer_desc = "value ";
3761 break;
3762 case PTR_TO_CTX:
3763 pointer_desc = "context ";
3764 break;
3765 case PTR_TO_STACK:
3766 pointer_desc = "stack ";
01f810ac
AM
3767 /* The stack spill tracking logic in check_stack_write_fixed_off()
3768 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3769 * aligned.
3770 */
3771 strict = true;
f1174f77 3772 break;
c64b7983
JS
3773 case PTR_TO_SOCKET:
3774 pointer_desc = "sock ";
3775 break;
46f8bc92
MKL
3776 case PTR_TO_SOCK_COMMON:
3777 pointer_desc = "sock_common ";
3778 break;
655a51e5
MKL
3779 case PTR_TO_TCP_SOCK:
3780 pointer_desc = "tcp_sock ";
3781 break;
fada7fdc
JL
3782 case PTR_TO_XDP_SOCK:
3783 pointer_desc = "xdp_sock ";
3784 break;
79adffcd 3785 default:
f1174f77 3786 break;
79adffcd 3787 }
61bd5218
JK
3788 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3789 strict);
79adffcd
DB
3790}
3791
f4d7e40a
AS
3792static int update_stack_depth(struct bpf_verifier_env *env,
3793 const struct bpf_func_state *func,
3794 int off)
3795{
9c8105bd 3796 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3797
3798 if (stack >= -off)
3799 return 0;
3800
3801 /* update known max for given subprogram */
9c8105bd 3802 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3803 return 0;
3804}
f4d7e40a 3805
70a87ffe
AS
3806/* starting from main bpf function walk all instructions of the function
3807 * and recursively walk all callees that given function can call.
3808 * Ignore jump and exit insns.
3809 * Since recursion is prevented by check_cfg() this algorithm
3810 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3811 */
3812static int check_max_stack_depth(struct bpf_verifier_env *env)
3813{
9c8105bd
JW
3814 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3815 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3816 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3817 bool tail_call_reachable = false;
70a87ffe
AS
3818 int ret_insn[MAX_CALL_FRAMES];
3819 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3820 int j;
f4d7e40a 3821
70a87ffe 3822process_func:
7f6e4312
MF
3823 /* protect against potential stack overflow that might happen when
3824 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3825 * depth for such case down to 256 so that the worst case scenario
3826 * would result in 8k stack size (32 which is tailcall limit * 256 =
3827 * 8k).
3828 *
3829 * To get the idea what might happen, see an example:
3830 * func1 -> sub rsp, 128
3831 * subfunc1 -> sub rsp, 256
3832 * tailcall1 -> add rsp, 256
3833 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3834 * subfunc2 -> sub rsp, 64
3835 * subfunc22 -> sub rsp, 128
3836 * tailcall2 -> add rsp, 128
3837 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3838 *
3839 * tailcall will unwind the current stack frame but it will not get rid
3840 * of caller's stack as shown on the example above.
3841 */
3842 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3843 verbose(env,
3844 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3845 depth);
3846 return -EACCES;
3847 }
70a87ffe
AS
3848 /* round up to 32-bytes, since this is granularity
3849 * of interpreter stack size
3850 */
9c8105bd 3851 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3852 if (depth > MAX_BPF_STACK) {
f4d7e40a 3853 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3854 frame + 1, depth);
f4d7e40a
AS
3855 return -EACCES;
3856 }
70a87ffe 3857continue_func:
4cb3d99c 3858 subprog_end = subprog[idx + 1].start;
70a87ffe 3859 for (; i < subprog_end; i++) {
7ddc80a4
AS
3860 int next_insn;
3861
69c087ba 3862 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3863 continue;
3864 /* remember insn and function to return to */
3865 ret_insn[frame] = i + 1;
9c8105bd 3866 ret_prog[frame] = idx;
70a87ffe
AS
3867
3868 /* find the callee */
7ddc80a4
AS
3869 next_insn = i + insn[i].imm + 1;
3870 idx = find_subprog(env, next_insn);
9c8105bd 3871 if (idx < 0) {
70a87ffe 3872 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 3873 next_insn);
70a87ffe
AS
3874 return -EFAULT;
3875 }
7ddc80a4
AS
3876 if (subprog[idx].is_async_cb) {
3877 if (subprog[idx].has_tail_call) {
3878 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3879 return -EFAULT;
3880 }
3881 /* async callbacks don't increase bpf prog stack size */
3882 continue;
3883 }
3884 i = next_insn;
ebf7d1f5
MF
3885
3886 if (subprog[idx].has_tail_call)
3887 tail_call_reachable = true;
3888
70a87ffe
AS
3889 frame++;
3890 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3891 verbose(env, "the call stack of %d frames is too deep !\n",
3892 frame);
3893 return -E2BIG;
70a87ffe
AS
3894 }
3895 goto process_func;
3896 }
ebf7d1f5
MF
3897 /* if tail call got detected across bpf2bpf calls then mark each of the
3898 * currently present subprog frames as tail call reachable subprogs;
3899 * this info will be utilized by JIT so that we will be preserving the
3900 * tail call counter throughout bpf2bpf calls combined with tailcalls
3901 */
3902 if (tail_call_reachable)
3903 for (j = 0; j < frame; j++)
3904 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
3905 if (subprog[0].tail_call_reachable)
3906 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 3907
70a87ffe
AS
3908 /* end of for() loop means the last insn of the 'subprog'
3909 * was reached. Doesn't matter whether it was JA or EXIT
3910 */
3911 if (frame == 0)
3912 return 0;
9c8105bd 3913 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3914 frame--;
3915 i = ret_insn[frame];
9c8105bd 3916 idx = ret_prog[frame];
70a87ffe 3917 goto continue_func;
f4d7e40a
AS
3918}
3919
19d28fbd 3920#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3921static int get_callee_stack_depth(struct bpf_verifier_env *env,
3922 const struct bpf_insn *insn, int idx)
3923{
3924 int start = idx + insn->imm + 1, subprog;
3925
3926 subprog = find_subprog(env, start);
3927 if (subprog < 0) {
3928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3929 start);
3930 return -EFAULT;
3931 }
9c8105bd 3932 return env->subprog_info[subprog].stack_depth;
1ea47e01 3933}
19d28fbd 3934#endif
1ea47e01 3935
51c39bb1
AS
3936int check_ctx_reg(struct bpf_verifier_env *env,
3937 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3938{
3939 /* Access to ctx or passing it to a helper is only allowed in
3940 * its original, unmodified form.
3941 */
3942
3943 if (reg->off) {
3944 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3945 regno, reg->off);
3946 return -EACCES;
3947 }
3948
3949 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3950 char tn_buf[48];
3951
3952 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3953 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3954 return -EACCES;
3955 }
3956
3957 return 0;
3958}
3959
afbf21dc
YS
3960static int __check_buffer_access(struct bpf_verifier_env *env,
3961 const char *buf_info,
3962 const struct bpf_reg_state *reg,
3963 int regno, int off, int size)
9df1c28b
MM
3964{
3965 if (off < 0) {
3966 verbose(env,
4fc00b79 3967 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3968 regno, buf_info, off, size);
9df1c28b
MM
3969 return -EACCES;
3970 }
3971 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3972 char tn_buf[48];
3973
3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975 verbose(env,
4fc00b79 3976 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3977 regno, off, tn_buf);
3978 return -EACCES;
3979 }
afbf21dc
YS
3980
3981 return 0;
3982}
3983
3984static int check_tp_buffer_access(struct bpf_verifier_env *env,
3985 const struct bpf_reg_state *reg,
3986 int regno, int off, int size)
3987{
3988 int err;
3989
3990 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3991 if (err)
3992 return err;
3993
9df1c28b
MM
3994 if (off + size > env->prog->aux->max_tp_access)
3995 env->prog->aux->max_tp_access = off + size;
3996
3997 return 0;
3998}
3999
afbf21dc
YS
4000static int check_buffer_access(struct bpf_verifier_env *env,
4001 const struct bpf_reg_state *reg,
4002 int regno, int off, int size,
4003 bool zero_size_allowed,
4004 const char *buf_info,
4005 u32 *max_access)
4006{
4007 int err;
4008
4009 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4010 if (err)
4011 return err;
4012
4013 if (off + size > *max_access)
4014 *max_access = off + size;
4015
4016 return 0;
4017}
4018
3f50f132
JF
4019/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4020static void zext_32_to_64(struct bpf_reg_state *reg)
4021{
4022 reg->var_off = tnum_subreg(reg->var_off);
4023 __reg_assign_32_into_64(reg);
4024}
9df1c28b 4025
0c17d1d2
JH
4026/* truncate register to smaller size (in bytes)
4027 * must be called with size < BPF_REG_SIZE
4028 */
4029static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4030{
4031 u64 mask;
4032
4033 /* clear high bits in bit representation */
4034 reg->var_off = tnum_cast(reg->var_off, size);
4035
4036 /* fix arithmetic bounds */
4037 mask = ((u64)1 << (size * 8)) - 1;
4038 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4039 reg->umin_value &= mask;
4040 reg->umax_value &= mask;
4041 } else {
4042 reg->umin_value = 0;
4043 reg->umax_value = mask;
4044 }
4045 reg->smin_value = reg->umin_value;
4046 reg->smax_value = reg->umax_value;
3f50f132
JF
4047
4048 /* If size is smaller than 32bit register the 32bit register
4049 * values are also truncated so we push 64-bit bounds into
4050 * 32-bit bounds. Above were truncated < 32-bits already.
4051 */
4052 if (size >= 4)
4053 return;
4054 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4055}
4056
a23740ec
AN
4057static bool bpf_map_is_rdonly(const struct bpf_map *map)
4058{
4059 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
4060}
4061
4062static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4063{
4064 void *ptr;
4065 u64 addr;
4066 int err;
4067
4068 err = map->ops->map_direct_value_addr(map, &addr, off);
4069 if (err)
4070 return err;
2dedd7d2 4071 ptr = (void *)(long)addr + off;
a23740ec
AN
4072
4073 switch (size) {
4074 case sizeof(u8):
4075 *val = (u64)*(u8 *)ptr;
4076 break;
4077 case sizeof(u16):
4078 *val = (u64)*(u16 *)ptr;
4079 break;
4080 case sizeof(u32):
4081 *val = (u64)*(u32 *)ptr;
4082 break;
4083 case sizeof(u64):
4084 *val = *(u64 *)ptr;
4085 break;
4086 default:
4087 return -EINVAL;
4088 }
4089 return 0;
4090}
4091
9e15db66
AS
4092static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4093 struct bpf_reg_state *regs,
4094 int regno, int off, int size,
4095 enum bpf_access_type atype,
4096 int value_regno)
4097{
4098 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4099 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4100 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
4101 u32 btf_id;
4102 int ret;
4103
9e15db66
AS
4104 if (off < 0) {
4105 verbose(env,
4106 "R%d is ptr_%s invalid negative access: off=%d\n",
4107 regno, tname, off);
4108 return -EACCES;
4109 }
4110 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4111 char tn_buf[48];
4112
4113 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4114 verbose(env,
4115 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4116 regno, tname, off, tn_buf);
4117 return -EACCES;
4118 }
4119
27ae7997 4120 if (env->ops->btf_struct_access) {
22dc4a0f
AN
4121 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4122 off, size, atype, &btf_id);
27ae7997
MKL
4123 } else {
4124 if (atype != BPF_READ) {
4125 verbose(env, "only read is supported\n");
4126 return -EACCES;
4127 }
4128
22dc4a0f
AN
4129 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4130 atype, &btf_id);
27ae7997
MKL
4131 }
4132
9e15db66
AS
4133 if (ret < 0)
4134 return ret;
4135
41c48f3a 4136 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 4137 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
4138
4139 return 0;
4140}
4141
4142static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4143 struct bpf_reg_state *regs,
4144 int regno, int off, int size,
4145 enum bpf_access_type atype,
4146 int value_regno)
4147{
4148 struct bpf_reg_state *reg = regs + regno;
4149 struct bpf_map *map = reg->map_ptr;
4150 const struct btf_type *t;
4151 const char *tname;
4152 u32 btf_id;
4153 int ret;
4154
4155 if (!btf_vmlinux) {
4156 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4157 return -ENOTSUPP;
4158 }
4159
4160 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4161 verbose(env, "map_ptr access not supported for map type %d\n",
4162 map->map_type);
4163 return -ENOTSUPP;
4164 }
4165
4166 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4167 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4168
4169 if (!env->allow_ptr_to_map_access) {
4170 verbose(env,
4171 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4172 tname);
4173 return -EPERM;
9e15db66 4174 }
27ae7997 4175
41c48f3a
AI
4176 if (off < 0) {
4177 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4178 regno, tname, off);
4179 return -EACCES;
4180 }
4181
4182 if (atype != BPF_READ) {
4183 verbose(env, "only read from %s is supported\n", tname);
4184 return -EACCES;
4185 }
4186
22dc4a0f 4187 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
4188 if (ret < 0)
4189 return ret;
4190
4191 if (value_regno >= 0)
22dc4a0f 4192 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 4193
9e15db66
AS
4194 return 0;
4195}
4196
01f810ac
AM
4197/* Check that the stack access at the given offset is within bounds. The
4198 * maximum valid offset is -1.
4199 *
4200 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4201 * -state->allocated_stack for reads.
4202 */
4203static int check_stack_slot_within_bounds(int off,
4204 struct bpf_func_state *state,
4205 enum bpf_access_type t)
4206{
4207 int min_valid_off;
4208
4209 if (t == BPF_WRITE)
4210 min_valid_off = -MAX_BPF_STACK;
4211 else
4212 min_valid_off = -state->allocated_stack;
4213
4214 if (off < min_valid_off || off > -1)
4215 return -EACCES;
4216 return 0;
4217}
4218
4219/* Check that the stack access at 'regno + off' falls within the maximum stack
4220 * bounds.
4221 *
4222 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4223 */
4224static int check_stack_access_within_bounds(
4225 struct bpf_verifier_env *env,
4226 int regno, int off, int access_size,
4227 enum stack_access_src src, enum bpf_access_type type)
4228{
4229 struct bpf_reg_state *regs = cur_regs(env);
4230 struct bpf_reg_state *reg = regs + regno;
4231 struct bpf_func_state *state = func(env, reg);
4232 int min_off, max_off;
4233 int err;
4234 char *err_extra;
4235
4236 if (src == ACCESS_HELPER)
4237 /* We don't know if helpers are reading or writing (or both). */
4238 err_extra = " indirect access to";
4239 else if (type == BPF_READ)
4240 err_extra = " read from";
4241 else
4242 err_extra = " write to";
4243
4244 if (tnum_is_const(reg->var_off)) {
4245 min_off = reg->var_off.value + off;
4246 if (access_size > 0)
4247 max_off = min_off + access_size - 1;
4248 else
4249 max_off = min_off;
4250 } else {
4251 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4252 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4253 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4254 err_extra, regno);
4255 return -EACCES;
4256 }
4257 min_off = reg->smin_value + off;
4258 if (access_size > 0)
4259 max_off = reg->smax_value + off + access_size - 1;
4260 else
4261 max_off = min_off;
4262 }
4263
4264 err = check_stack_slot_within_bounds(min_off, state, type);
4265 if (!err)
4266 err = check_stack_slot_within_bounds(max_off, state, type);
4267
4268 if (err) {
4269 if (tnum_is_const(reg->var_off)) {
4270 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4271 err_extra, regno, off, access_size);
4272 } else {
4273 char tn_buf[48];
4274
4275 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4276 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4277 err_extra, regno, tn_buf, access_size);
4278 }
4279 }
4280 return err;
4281}
41c48f3a 4282
17a52670
AS
4283/* check whether memory at (regno + off) is accessible for t = (read | write)
4284 * if t==write, value_regno is a register which value is stored into memory
4285 * if t==read, value_regno is a register which will receive the value from memory
4286 * if t==write && value_regno==-1, some unknown value is stored into memory
4287 * if t==read && value_regno==-1, don't care what we read from memory
4288 */
ca369602
DB
4289static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4290 int off, int bpf_size, enum bpf_access_type t,
4291 int value_regno, bool strict_alignment_once)
17a52670 4292{
638f5b90
AS
4293 struct bpf_reg_state *regs = cur_regs(env);
4294 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4295 struct bpf_func_state *state;
17a52670
AS
4296 int size, err = 0;
4297
4298 size = bpf_size_to_bytes(bpf_size);
4299 if (size < 0)
4300 return size;
4301
f1174f77 4302 /* alignment checks will add in reg->off themselves */
ca369602 4303 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4304 if (err)
4305 return err;
17a52670 4306
f1174f77
EC
4307 /* for access checks, reg->off is just part of off */
4308 off += reg->off;
4309
69c087ba
YS
4310 if (reg->type == PTR_TO_MAP_KEY) {
4311 if (t == BPF_WRITE) {
4312 verbose(env, "write to change key R%d not allowed\n", regno);
4313 return -EACCES;
4314 }
4315
4316 err = check_mem_region_access(env, regno, off, size,
4317 reg->map_ptr->key_size, false);
4318 if (err)
4319 return err;
4320 if (value_regno >= 0)
4321 mark_reg_unknown(env, regs, value_regno);
4322 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4323 if (t == BPF_WRITE && value_regno >= 0 &&
4324 is_pointer_value(env, value_regno)) {
61bd5218 4325 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4326 return -EACCES;
4327 }
591fe988
DB
4328 err = check_map_access_type(env, regno, off, size, t);
4329 if (err)
4330 return err;
9fd29c08 4331 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4332 if (!err && t == BPF_READ && value_regno >= 0) {
4333 struct bpf_map *map = reg->map_ptr;
4334
4335 /* if map is read-only, track its contents as scalars */
4336 if (tnum_is_const(reg->var_off) &&
4337 bpf_map_is_rdonly(map) &&
4338 map->ops->map_direct_value_addr) {
4339 int map_off = off + reg->var_off.value;
4340 u64 val = 0;
4341
4342 err = bpf_map_direct_read(map, map_off, size,
4343 &val);
4344 if (err)
4345 return err;
4346
4347 regs[value_regno].type = SCALAR_VALUE;
4348 __mark_reg_known(&regs[value_regno], val);
4349 } else {
4350 mark_reg_unknown(env, regs, value_regno);
4351 }
4352 }
457f4436
AN
4353 } else if (reg->type == PTR_TO_MEM) {
4354 if (t == BPF_WRITE && value_regno >= 0 &&
4355 is_pointer_value(env, value_regno)) {
4356 verbose(env, "R%d leaks addr into mem\n", value_regno);
4357 return -EACCES;
4358 }
4359 err = check_mem_region_access(env, regno, off, size,
4360 reg->mem_size, false);
4361 if (!err && t == BPF_READ && value_regno >= 0)
4362 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4363 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4364 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4365 struct btf *btf = NULL;
9e15db66 4366 u32 btf_id = 0;
19de99f7 4367
1be7f75d
AS
4368 if (t == BPF_WRITE && value_regno >= 0 &&
4369 is_pointer_value(env, value_regno)) {
61bd5218 4370 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4371 return -EACCES;
4372 }
f1174f77 4373
58990d1f
DB
4374 err = check_ctx_reg(env, reg, regno);
4375 if (err < 0)
4376 return err;
4377
22dc4a0f 4378 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4379 if (err)
4380 verbose_linfo(env, insn_idx, "; ");
969bf05e 4381 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4382 /* ctx access returns either a scalar, or a
de8f3a83
DB
4383 * PTR_TO_PACKET[_META,_END]. In the latter
4384 * case, we know the offset is zero.
f1174f77 4385 */
46f8bc92 4386 if (reg_type == SCALAR_VALUE) {
638f5b90 4387 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4388 } else {
638f5b90 4389 mark_reg_known_zero(env, regs,
61bd5218 4390 value_regno);
46f8bc92
MKL
4391 if (reg_type_may_be_null(reg_type))
4392 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4393 /* A load of ctx field could have different
4394 * actual load size with the one encoded in the
4395 * insn. When the dst is PTR, it is for sure not
4396 * a sub-register.
4397 */
4398 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4399 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4400 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4401 regs[value_regno].btf = btf;
9e15db66 4402 regs[value_regno].btf_id = btf_id;
22dc4a0f 4403 }
46f8bc92 4404 }
638f5b90 4405 regs[value_regno].type = reg_type;
969bf05e 4406 }
17a52670 4407
f1174f77 4408 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4409 /* Basic bounds checks. */
4410 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4411 if (err)
4412 return err;
8726679a 4413
f4d7e40a
AS
4414 state = func(env, reg);
4415 err = update_stack_depth(env, state, off);
4416 if (err)
4417 return err;
8726679a 4418
01f810ac
AM
4419 if (t == BPF_READ)
4420 err = check_stack_read(env, regno, off, size,
61bd5218 4421 value_regno);
01f810ac
AM
4422 else
4423 err = check_stack_write(env, regno, off, size,
4424 value_regno, insn_idx);
de8f3a83 4425 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4426 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4427 verbose(env, "cannot write into packet\n");
969bf05e
AS
4428 return -EACCES;
4429 }
4acf6c0b
BB
4430 if (t == BPF_WRITE && value_regno >= 0 &&
4431 is_pointer_value(env, value_regno)) {
61bd5218
JK
4432 verbose(env, "R%d leaks addr into packet\n",
4433 value_regno);
4acf6c0b
BB
4434 return -EACCES;
4435 }
9fd29c08 4436 err = check_packet_access(env, regno, off, size, false);
969bf05e 4437 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4438 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4439 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4440 if (t == BPF_WRITE && value_regno >= 0 &&
4441 is_pointer_value(env, value_regno)) {
4442 verbose(env, "R%d leaks addr into flow keys\n",
4443 value_regno);
4444 return -EACCES;
4445 }
4446
4447 err = check_flow_keys_access(env, off, size);
4448 if (!err && t == BPF_READ && value_regno >= 0)
4449 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4450 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4451 if (t == BPF_WRITE) {
46f8bc92
MKL
4452 verbose(env, "R%d cannot write into %s\n",
4453 regno, reg_type_str[reg->type]);
c64b7983
JS
4454 return -EACCES;
4455 }
5f456649 4456 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4457 if (!err && value_regno >= 0)
4458 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4459 } else if (reg->type == PTR_TO_TP_BUFFER) {
4460 err = check_tp_buffer_access(env, reg, regno, off, size);
4461 if (!err && t == BPF_READ && value_regno >= 0)
4462 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4463 } else if (reg->type == PTR_TO_BTF_ID) {
4464 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4465 value_regno);
41c48f3a
AI
4466 } else if (reg->type == CONST_PTR_TO_MAP) {
4467 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4468 value_regno);
afbf21dc
YS
4469 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4470 if (t == BPF_WRITE) {
4471 verbose(env, "R%d cannot write into %s\n",
4472 regno, reg_type_str[reg->type]);
4473 return -EACCES;
4474 }
f6dfbe31
CIK
4475 err = check_buffer_access(env, reg, regno, off, size, false,
4476 "rdonly",
afbf21dc
YS
4477 &env->prog->aux->max_rdonly_access);
4478 if (!err && value_regno >= 0)
4479 mark_reg_unknown(env, regs, value_regno);
4480 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4481 err = check_buffer_access(env, reg, regno, off, size, false,
4482 "rdwr",
afbf21dc
YS
4483 &env->prog->aux->max_rdwr_access);
4484 if (!err && t == BPF_READ && value_regno >= 0)
4485 mark_reg_unknown(env, regs, value_regno);
17a52670 4486 } else {
61bd5218
JK
4487 verbose(env, "R%d invalid mem access '%s'\n", regno,
4488 reg_type_str[reg->type]);
17a52670
AS
4489 return -EACCES;
4490 }
969bf05e 4491
f1174f77 4492 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4493 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4494 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4495 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4496 }
17a52670
AS
4497 return err;
4498}
4499
91c960b0 4500static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4501{
5ffa2550 4502 int load_reg;
17a52670
AS
4503 int err;
4504
5ca419f2
BJ
4505 switch (insn->imm) {
4506 case BPF_ADD:
4507 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4508 case BPF_AND:
4509 case BPF_AND | BPF_FETCH:
4510 case BPF_OR:
4511 case BPF_OR | BPF_FETCH:
4512 case BPF_XOR:
4513 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4514 case BPF_XCHG:
4515 case BPF_CMPXCHG:
5ca419f2
BJ
4516 break;
4517 default:
91c960b0
BJ
4518 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4519 return -EINVAL;
4520 }
4521
4522 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4523 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4524 return -EINVAL;
4525 }
4526
4527 /* check src1 operand */
dc503a8a 4528 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4529 if (err)
4530 return err;
4531
4532 /* check src2 operand */
dc503a8a 4533 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4534 if (err)
4535 return err;
4536
5ffa2550
BJ
4537 if (insn->imm == BPF_CMPXCHG) {
4538 /* Check comparison of R0 with memory location */
4539 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4540 if (err)
4541 return err;
4542 }
4543
6bdf6abc 4544 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4545 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4546 return -EACCES;
4547 }
4548
ca369602 4549 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4550 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4551 is_flow_key_reg(env, insn->dst_reg) ||
4552 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4553 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4554 insn->dst_reg,
4555 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4556 return -EACCES;
4557 }
4558
37086bfd
BJ
4559 if (insn->imm & BPF_FETCH) {
4560 if (insn->imm == BPF_CMPXCHG)
4561 load_reg = BPF_REG_0;
4562 else
4563 load_reg = insn->src_reg;
4564
4565 /* check and record load of old value */
4566 err = check_reg_arg(env, load_reg, DST_OP);
4567 if (err)
4568 return err;
4569 } else {
4570 /* This instruction accesses a memory location but doesn't
4571 * actually load it into a register.
4572 */
4573 load_reg = -1;
4574 }
4575
91c960b0 4576 /* check whether we can read the memory */
31fd8581 4577 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4578 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4579 if (err)
4580 return err;
4581
91c960b0 4582 /* check whether we can write into the same memory */
5ca419f2
BJ
4583 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4584 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4585 if (err)
4586 return err;
4587
5ca419f2 4588 return 0;
17a52670
AS
4589}
4590
01f810ac
AM
4591/* When register 'regno' is used to read the stack (either directly or through
4592 * a helper function) make sure that it's within stack boundary and, depending
4593 * on the access type, that all elements of the stack are initialized.
4594 *
4595 * 'off' includes 'regno->off', but not its dynamic part (if any).
4596 *
4597 * All registers that have been spilled on the stack in the slots within the
4598 * read offsets are marked as read.
4599 */
4600static int check_stack_range_initialized(
4601 struct bpf_verifier_env *env, int regno, int off,
4602 int access_size, bool zero_size_allowed,
4603 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4604{
4605 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4606 struct bpf_func_state *state = func(env, reg);
4607 int err, min_off, max_off, i, j, slot, spi;
4608 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4609 enum bpf_access_type bounds_check_type;
4610 /* Some accesses can write anything into the stack, others are
4611 * read-only.
4612 */
4613 bool clobber = false;
2011fccf 4614
01f810ac
AM
4615 if (access_size == 0 && !zero_size_allowed) {
4616 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4617 return -EACCES;
4618 }
2011fccf 4619
01f810ac
AM
4620 if (type == ACCESS_HELPER) {
4621 /* The bounds checks for writes are more permissive than for
4622 * reads. However, if raw_mode is not set, we'll do extra
4623 * checks below.
4624 */
4625 bounds_check_type = BPF_WRITE;
4626 clobber = true;
4627 } else {
4628 bounds_check_type = BPF_READ;
4629 }
4630 err = check_stack_access_within_bounds(env, regno, off, access_size,
4631 type, bounds_check_type);
4632 if (err)
4633 return err;
4634
17a52670 4635
2011fccf 4636 if (tnum_is_const(reg->var_off)) {
01f810ac 4637 min_off = max_off = reg->var_off.value + off;
2011fccf 4638 } else {
088ec26d
AI
4639 /* Variable offset is prohibited for unprivileged mode for
4640 * simplicity since it requires corresponding support in
4641 * Spectre masking for stack ALU.
4642 * See also retrieve_ptr_limit().
4643 */
2c78ee89 4644 if (!env->bypass_spec_v1) {
088ec26d 4645 char tn_buf[48];
f1174f77 4646
088ec26d 4647 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4648 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4649 regno, err_extra, tn_buf);
088ec26d
AI
4650 return -EACCES;
4651 }
f2bcd05e
AI
4652 /* Only initialized buffer on stack is allowed to be accessed
4653 * with variable offset. With uninitialized buffer it's hard to
4654 * guarantee that whole memory is marked as initialized on
4655 * helper return since specific bounds are unknown what may
4656 * cause uninitialized stack leaking.
4657 */
4658 if (meta && meta->raw_mode)
4659 meta = NULL;
4660
01f810ac
AM
4661 min_off = reg->smin_value + off;
4662 max_off = reg->smax_value + off;
17a52670
AS
4663 }
4664
435faee1
DB
4665 if (meta && meta->raw_mode) {
4666 meta->access_size = access_size;
4667 meta->regno = regno;
4668 return 0;
4669 }
4670
2011fccf 4671 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4672 u8 *stype;
4673
2011fccf 4674 slot = -i - 1;
638f5b90 4675 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4676 if (state->allocated_stack <= slot)
4677 goto err;
4678 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4679 if (*stype == STACK_MISC)
4680 goto mark;
4681 if (*stype == STACK_ZERO) {
01f810ac
AM
4682 if (clobber) {
4683 /* helper can write anything into the stack */
4684 *stype = STACK_MISC;
4685 }
cc2b14d5 4686 goto mark;
17a52670 4687 }
1d68f22b 4688
27113c59 4689 if (is_spilled_reg(&state->stack[spi]) &&
1d68f22b
YS
4690 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4691 goto mark;
4692
27113c59 4693 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
4694 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4695 env->allow_ptr_leaks)) {
01f810ac
AM
4696 if (clobber) {
4697 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4698 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 4699 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 4700 }
f7cf25b2
AS
4701 goto mark;
4702 }
4703
cc2b14d5 4704err:
2011fccf 4705 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4706 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4707 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4708 } else {
4709 char tn_buf[48];
4710
4711 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4712 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4713 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4714 }
cc2b14d5
AS
4715 return -EACCES;
4716mark:
4717 /* reading any byte out of 8-byte 'spill_slot' will cause
4718 * the whole slot to be marked as 'read'
4719 */
679c782d 4720 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4721 state->stack[spi].spilled_ptr.parent,
4722 REG_LIVE_READ64);
17a52670 4723 }
2011fccf 4724 return update_stack_depth(env, state, min_off);
17a52670
AS
4725}
4726
06c1c049
GB
4727static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4728 int access_size, bool zero_size_allowed,
4729 struct bpf_call_arg_meta *meta)
4730{
638f5b90 4731 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4732
f1174f77 4733 switch (reg->type) {
06c1c049 4734 case PTR_TO_PACKET:
de8f3a83 4735 case PTR_TO_PACKET_META:
9fd29c08
YS
4736 return check_packet_access(env, regno, reg->off, access_size,
4737 zero_size_allowed);
69c087ba
YS
4738 case PTR_TO_MAP_KEY:
4739 return check_mem_region_access(env, regno, reg->off, access_size,
4740 reg->map_ptr->key_size, false);
06c1c049 4741 case PTR_TO_MAP_VALUE:
591fe988
DB
4742 if (check_map_access_type(env, regno, reg->off, access_size,
4743 meta && meta->raw_mode ? BPF_WRITE :
4744 BPF_READ))
4745 return -EACCES;
9fd29c08
YS
4746 return check_map_access(env, regno, reg->off, access_size,
4747 zero_size_allowed);
457f4436
AN
4748 case PTR_TO_MEM:
4749 return check_mem_region_access(env, regno, reg->off,
4750 access_size, reg->mem_size,
4751 zero_size_allowed);
afbf21dc
YS
4752 case PTR_TO_RDONLY_BUF:
4753 if (meta && meta->raw_mode)
4754 return -EACCES;
4755 return check_buffer_access(env, reg, regno, reg->off,
4756 access_size, zero_size_allowed,
4757 "rdonly",
4758 &env->prog->aux->max_rdonly_access);
4759 case PTR_TO_RDWR_BUF:
4760 return check_buffer_access(env, reg, regno, reg->off,
4761 access_size, zero_size_allowed,
4762 "rdwr",
4763 &env->prog->aux->max_rdwr_access);
0d004c02 4764 case PTR_TO_STACK:
01f810ac
AM
4765 return check_stack_range_initialized(
4766 env,
4767 regno, reg->off, access_size,
4768 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4769 default: /* scalar_value or invalid ptr */
4770 /* Allow zero-byte read from NULL, regardless of pointer type */
4771 if (zero_size_allowed && access_size == 0 &&
4772 register_is_null(reg))
4773 return 0;
4774
4775 verbose(env, "R%d type=%s expected=%s\n", regno,
4776 reg_type_str[reg->type],
4777 reg_type_str[PTR_TO_STACK]);
4778 return -EACCES;
06c1c049
GB
4779 }
4780}
4781
e5069b9c
DB
4782int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4783 u32 regno, u32 mem_size)
4784{
4785 if (register_is_null(reg))
4786 return 0;
4787
4788 if (reg_type_may_be_null(reg->type)) {
4789 /* Assuming that the register contains a value check if the memory
4790 * access is safe. Temporarily save and restore the register's state as
4791 * the conversion shouldn't be visible to a caller.
4792 */
4793 const struct bpf_reg_state saved_reg = *reg;
4794 int rv;
4795
4796 mark_ptr_not_null_reg(reg);
4797 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4798 *reg = saved_reg;
4799 return rv;
4800 }
4801
4802 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4803}
4804
d83525ca
AS
4805/* Implementation details:
4806 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4807 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4808 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4809 * value_or_null->value transition, since the verifier only cares about
4810 * the range of access to valid map value pointer and doesn't care about actual
4811 * address of the map element.
4812 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4813 * reg->id > 0 after value_or_null->value transition. By doing so
4814 * two bpf_map_lookups will be considered two different pointers that
4815 * point to different bpf_spin_locks.
4816 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4817 * dead-locks.
4818 * Since only one bpf_spin_lock is allowed the checks are simpler than
4819 * reg_is_refcounted() logic. The verifier needs to remember only
4820 * one spin_lock instead of array of acquired_refs.
4821 * cur_state->active_spin_lock remembers which map value element got locked
4822 * and clears it after bpf_spin_unlock.
4823 */
4824static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4825 bool is_lock)
4826{
4827 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4828 struct bpf_verifier_state *cur = env->cur_state;
4829 bool is_const = tnum_is_const(reg->var_off);
4830 struct bpf_map *map = reg->map_ptr;
4831 u64 val = reg->var_off.value;
4832
d83525ca
AS
4833 if (!is_const) {
4834 verbose(env,
4835 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4836 regno);
4837 return -EINVAL;
4838 }
4839 if (!map->btf) {
4840 verbose(env,
4841 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4842 map->name);
4843 return -EINVAL;
4844 }
4845 if (!map_value_has_spin_lock(map)) {
4846 if (map->spin_lock_off == -E2BIG)
4847 verbose(env,
4848 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4849 map->name);
4850 else if (map->spin_lock_off == -ENOENT)
4851 verbose(env,
4852 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4853 map->name);
4854 else
4855 verbose(env,
4856 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4857 map->name);
4858 return -EINVAL;
4859 }
4860 if (map->spin_lock_off != val + reg->off) {
4861 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4862 val + reg->off);
4863 return -EINVAL;
4864 }
4865 if (is_lock) {
4866 if (cur->active_spin_lock) {
4867 verbose(env,
4868 "Locking two bpf_spin_locks are not allowed\n");
4869 return -EINVAL;
4870 }
4871 cur->active_spin_lock = reg->id;
4872 } else {
4873 if (!cur->active_spin_lock) {
4874 verbose(env, "bpf_spin_unlock without taking a lock\n");
4875 return -EINVAL;
4876 }
4877 if (cur->active_spin_lock != reg->id) {
4878 verbose(env, "bpf_spin_unlock of different lock\n");
4879 return -EINVAL;
4880 }
4881 cur->active_spin_lock = 0;
4882 }
4883 return 0;
4884}
4885
b00628b1
AS
4886static int process_timer_func(struct bpf_verifier_env *env, int regno,
4887 struct bpf_call_arg_meta *meta)
4888{
4889 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4890 bool is_const = tnum_is_const(reg->var_off);
4891 struct bpf_map *map = reg->map_ptr;
4892 u64 val = reg->var_off.value;
4893
4894 if (!is_const) {
4895 verbose(env,
4896 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4897 regno);
4898 return -EINVAL;
4899 }
4900 if (!map->btf) {
4901 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4902 map->name);
4903 return -EINVAL;
4904 }
68134668
AS
4905 if (!map_value_has_timer(map)) {
4906 if (map->timer_off == -E2BIG)
4907 verbose(env,
4908 "map '%s' has more than one 'struct bpf_timer'\n",
4909 map->name);
4910 else if (map->timer_off == -ENOENT)
4911 verbose(env,
4912 "map '%s' doesn't have 'struct bpf_timer'\n",
4913 map->name);
4914 else
4915 verbose(env,
4916 "map '%s' is not a struct type or bpf_timer is mangled\n",
4917 map->name);
4918 return -EINVAL;
4919 }
4920 if (map->timer_off != val + reg->off) {
4921 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4922 val + reg->off, map->timer_off);
b00628b1
AS
4923 return -EINVAL;
4924 }
4925 if (meta->map_ptr) {
4926 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4927 return -EFAULT;
4928 }
3e8ce298 4929 meta->map_uid = reg->map_uid;
b00628b1
AS
4930 meta->map_ptr = map;
4931 return 0;
4932}
4933
90133415
DB
4934static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4935{
4936 return type == ARG_PTR_TO_MEM ||
4937 type == ARG_PTR_TO_MEM_OR_NULL ||
4938 type == ARG_PTR_TO_UNINIT_MEM;
4939}
4940
4941static bool arg_type_is_mem_size(enum bpf_arg_type type)
4942{
4943 return type == ARG_CONST_SIZE ||
4944 type == ARG_CONST_SIZE_OR_ZERO;
4945}
4946
457f4436
AN
4947static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4948{
4949 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4950}
4951
57c3bb72
AI
4952static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4953{
4954 return type == ARG_PTR_TO_INT ||
4955 type == ARG_PTR_TO_LONG;
4956}
4957
4958static int int_ptr_type_to_size(enum bpf_arg_type type)
4959{
4960 if (type == ARG_PTR_TO_INT)
4961 return sizeof(u32);
4962 else if (type == ARG_PTR_TO_LONG)
4963 return sizeof(u64);
4964
4965 return -EINVAL;
4966}
4967
912f442c
LB
4968static int resolve_map_arg_type(struct bpf_verifier_env *env,
4969 const struct bpf_call_arg_meta *meta,
4970 enum bpf_arg_type *arg_type)
4971{
4972 if (!meta->map_ptr) {
4973 /* kernel subsystem misconfigured verifier */
4974 verbose(env, "invalid map_ptr to access map->type\n");
4975 return -EACCES;
4976 }
4977
4978 switch (meta->map_ptr->map_type) {
4979 case BPF_MAP_TYPE_SOCKMAP:
4980 case BPF_MAP_TYPE_SOCKHASH:
4981 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 4982 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
4983 } else {
4984 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4985 return -EINVAL;
4986 }
4987 break;
9330986c
JK
4988 case BPF_MAP_TYPE_BLOOM_FILTER:
4989 if (meta->func_id == BPF_FUNC_map_peek_elem)
4990 *arg_type = ARG_PTR_TO_MAP_VALUE;
4991 break;
912f442c
LB
4992 default:
4993 break;
4994 }
4995 return 0;
4996}
4997
f79e7ea5
LB
4998struct bpf_reg_types {
4999 const enum bpf_reg_type types[10];
1df8f55a 5000 u32 *btf_id;
f79e7ea5
LB
5001};
5002
5003static const struct bpf_reg_types map_key_value_types = {
5004 .types = {
5005 PTR_TO_STACK,
5006 PTR_TO_PACKET,
5007 PTR_TO_PACKET_META,
69c087ba 5008 PTR_TO_MAP_KEY,
f79e7ea5
LB
5009 PTR_TO_MAP_VALUE,
5010 },
5011};
5012
5013static const struct bpf_reg_types sock_types = {
5014 .types = {
5015 PTR_TO_SOCK_COMMON,
5016 PTR_TO_SOCKET,
5017 PTR_TO_TCP_SOCK,
5018 PTR_TO_XDP_SOCK,
5019 },
5020};
5021
49a2a4d4 5022#ifdef CONFIG_NET
1df8f55a
MKL
5023static const struct bpf_reg_types btf_id_sock_common_types = {
5024 .types = {
5025 PTR_TO_SOCK_COMMON,
5026 PTR_TO_SOCKET,
5027 PTR_TO_TCP_SOCK,
5028 PTR_TO_XDP_SOCK,
5029 PTR_TO_BTF_ID,
5030 },
5031 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5032};
49a2a4d4 5033#endif
1df8f55a 5034
f79e7ea5
LB
5035static const struct bpf_reg_types mem_types = {
5036 .types = {
5037 PTR_TO_STACK,
5038 PTR_TO_PACKET,
5039 PTR_TO_PACKET_META,
69c087ba 5040 PTR_TO_MAP_KEY,
f79e7ea5
LB
5041 PTR_TO_MAP_VALUE,
5042 PTR_TO_MEM,
5043 PTR_TO_RDONLY_BUF,
5044 PTR_TO_RDWR_BUF,
5045 },
5046};
5047
5048static const struct bpf_reg_types int_ptr_types = {
5049 .types = {
5050 PTR_TO_STACK,
5051 PTR_TO_PACKET,
5052 PTR_TO_PACKET_META,
69c087ba 5053 PTR_TO_MAP_KEY,
f79e7ea5
LB
5054 PTR_TO_MAP_VALUE,
5055 },
5056};
5057
5058static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5059static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5060static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5061static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5062static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5063static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5064static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 5065static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
5066static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5067static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5068static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5069static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 5070
0789e13b 5071static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
5072 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5073 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5074 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
5075 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
5076 [ARG_CONST_SIZE] = &scalar_types,
5077 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5078 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5079 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5080 [ARG_PTR_TO_CTX] = &context_types,
5081 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
5082 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5083#ifdef CONFIG_NET
1df8f55a 5084 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5085#endif
f79e7ea5
LB
5086 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5087 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
5088 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5089 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5090 [ARG_PTR_TO_MEM] = &mem_types,
5091 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
5092 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5093 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5094 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
5095 [ARG_PTR_TO_INT] = &int_ptr_types,
5096 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5097 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba
YS
5098 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5099 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
fff13c4b 5100 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5101 [ARG_PTR_TO_TIMER] = &timer_types,
f79e7ea5
LB
5102};
5103
5104static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
5105 enum bpf_arg_type arg_type,
5106 const u32 *arg_btf_id)
f79e7ea5
LB
5107{
5108 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5109 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5110 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5111 int i, j;
5112
a968d5e2
MKL
5113 compatible = compatible_reg_types[arg_type];
5114 if (!compatible) {
5115 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5116 return -EFAULT;
5117 }
5118
f79e7ea5
LB
5119 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5120 expected = compatible->types[i];
5121 if (expected == NOT_INIT)
5122 break;
5123
5124 if (type == expected)
a968d5e2 5125 goto found;
f79e7ea5
LB
5126 }
5127
5128 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5129 for (j = 0; j + 1 < i; j++)
5130 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5131 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5132 return -EACCES;
a968d5e2
MKL
5133
5134found:
5135 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
5136 if (!arg_btf_id) {
5137 if (!compatible->btf_id) {
5138 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5139 return -EFAULT;
5140 }
5141 arg_btf_id = compatible->btf_id;
5142 }
5143
22dc4a0f
AN
5144 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5145 btf_vmlinux, *arg_btf_id)) {
a968d5e2 5146 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
5147 regno, kernel_type_name(reg->btf, reg->btf_id),
5148 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
5149 return -EACCES;
5150 }
5151
5152 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5153 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5154 regno);
5155 return -EACCES;
5156 }
5157 }
5158
5159 return 0;
f79e7ea5
LB
5160}
5161
af7ec138
YS
5162static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5163 struct bpf_call_arg_meta *meta,
5164 const struct bpf_func_proto *fn)
17a52670 5165{
af7ec138 5166 u32 regno = BPF_REG_1 + arg;
638f5b90 5167 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5168 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5169 enum bpf_reg_type type = reg->type;
17a52670
AS
5170 int err = 0;
5171
80f1d68c 5172 if (arg_type == ARG_DONTCARE)
17a52670
AS
5173 return 0;
5174
dc503a8a
EC
5175 err = check_reg_arg(env, regno, SRC_OP);
5176 if (err)
5177 return err;
17a52670 5178
1be7f75d
AS
5179 if (arg_type == ARG_ANYTHING) {
5180 if (is_pointer_value(env, regno)) {
61bd5218
JK
5181 verbose(env, "R%d leaks addr into helper function\n",
5182 regno);
1be7f75d
AS
5183 return -EACCES;
5184 }
80f1d68c 5185 return 0;
1be7f75d 5186 }
80f1d68c 5187
de8f3a83 5188 if (type_is_pkt_pointer(type) &&
3a0af8fd 5189 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5190 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5191 return -EACCES;
5192 }
5193
912f442c
LB
5194 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5195 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5196 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5197 err = resolve_map_arg_type(env, meta, &arg_type);
5198 if (err)
5199 return err;
5200 }
5201
fd1b0d60
LB
5202 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5203 /* A NULL register has a SCALAR_VALUE type, so skip
5204 * type checking.
5205 */
5206 goto skip_type_check;
5207
a968d5e2 5208 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
5209 if (err)
5210 return err;
5211
a968d5e2 5212 if (type == PTR_TO_CTX) {
feec7040
LB
5213 err = check_ctx_reg(env, reg, regno);
5214 if (err < 0)
5215 return err;
d7b9454a
LB
5216 }
5217
fd1b0d60 5218skip_type_check:
02f7c958 5219 if (reg->ref_obj_id) {
457f4436
AN
5220 if (meta->ref_obj_id) {
5221 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5222 regno, reg->ref_obj_id,
5223 meta->ref_obj_id);
5224 return -EFAULT;
5225 }
5226 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5227 }
5228
17a52670
AS
5229 if (arg_type == ARG_CONST_MAP_PTR) {
5230 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5231 if (meta->map_ptr) {
5232 /* Use map_uid (which is unique id of inner map) to reject:
5233 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5234 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5235 * if (inner_map1 && inner_map2) {
5236 * timer = bpf_map_lookup_elem(inner_map1);
5237 * if (timer)
5238 * // mismatch would have been allowed
5239 * bpf_timer_init(timer, inner_map2);
5240 * }
5241 *
5242 * Comparing map_ptr is enough to distinguish normal and outer maps.
5243 */
5244 if (meta->map_ptr != reg->map_ptr ||
5245 meta->map_uid != reg->map_uid) {
5246 verbose(env,
5247 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5248 meta->map_uid, reg->map_uid);
5249 return -EINVAL;
5250 }
b00628b1 5251 }
33ff9823 5252 meta->map_ptr = reg->map_ptr;
3e8ce298 5253 meta->map_uid = reg->map_uid;
17a52670
AS
5254 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5255 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5256 * check that [key, key + map->key_size) are within
5257 * stack limits and initialized
5258 */
33ff9823 5259 if (!meta->map_ptr) {
17a52670
AS
5260 /* in function declaration map_ptr must come before
5261 * map_key, so that it's verified and known before
5262 * we have to check map_key here. Otherwise it means
5263 * that kernel subsystem misconfigured verifier
5264 */
61bd5218 5265 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5266 return -EACCES;
5267 }
d71962f3
PC
5268 err = check_helper_mem_access(env, regno,
5269 meta->map_ptr->key_size, false,
5270 NULL);
2ea864c5 5271 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
5272 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5273 !register_is_null(reg)) ||
2ea864c5 5274 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
5275 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5276 * check [value, value + map->value_size) validity
5277 */
33ff9823 5278 if (!meta->map_ptr) {
17a52670 5279 /* kernel subsystem misconfigured verifier */
61bd5218 5280 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5281 return -EACCES;
5282 }
2ea864c5 5283 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
5284 err = check_helper_mem_access(env, regno,
5285 meta->map_ptr->value_size, false,
2ea864c5 5286 meta);
eaa6bcb7
HL
5287 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5288 if (!reg->btf_id) {
5289 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5290 return -EACCES;
5291 }
22dc4a0f 5292 meta->ret_btf = reg->btf;
eaa6bcb7 5293 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
5294 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5295 if (meta->func_id == BPF_FUNC_spin_lock) {
5296 if (process_spin_lock(env, regno, true))
5297 return -EACCES;
5298 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5299 if (process_spin_lock(env, regno, false))
5300 return -EACCES;
5301 } else {
5302 verbose(env, "verifier internal error\n");
5303 return -EFAULT;
5304 }
b00628b1
AS
5305 } else if (arg_type == ARG_PTR_TO_TIMER) {
5306 if (process_timer_func(env, regno, meta))
5307 return -EACCES;
69c087ba
YS
5308 } else if (arg_type == ARG_PTR_TO_FUNC) {
5309 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5310 } else if (arg_type_is_mem_ptr(arg_type)) {
5311 /* The access to this pointer is only checked when we hit the
5312 * next is_mem_size argument below.
5313 */
5314 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5315 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5316 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5317
10060503
JF
5318 /* This is used to refine r0 return value bounds for helpers
5319 * that enforce this value as an upper bound on return values.
5320 * See do_refine_retval_range() for helpers that can refine
5321 * the return value. C type of helper is u32 so we pull register
5322 * bound from umax_value however, if negative verifier errors
5323 * out. Only upper bounds can be learned because retval is an
5324 * int type and negative retvals are allowed.
849fa506 5325 */
10060503 5326 meta->msize_max_value = reg->umax_value;
849fa506 5327
f1174f77
EC
5328 /* The register is SCALAR_VALUE; the access check
5329 * happens using its boundaries.
06c1c049 5330 */
f1174f77 5331 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5332 /* For unprivileged variable accesses, disable raw
5333 * mode so that the program is required to
5334 * initialize all the memory that the helper could
5335 * just partially fill up.
5336 */
5337 meta = NULL;
5338
b03c9f9f 5339 if (reg->smin_value < 0) {
61bd5218 5340 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5341 regno);
5342 return -EACCES;
5343 }
06c1c049 5344
b03c9f9f 5345 if (reg->umin_value == 0) {
f1174f77
EC
5346 err = check_helper_mem_access(env, regno - 1, 0,
5347 zero_size_allowed,
5348 meta);
06c1c049
GB
5349 if (err)
5350 return err;
06c1c049 5351 }
f1174f77 5352
b03c9f9f 5353 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5354 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5355 regno);
5356 return -EACCES;
5357 }
5358 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5359 reg->umax_value,
f1174f77 5360 zero_size_allowed, meta);
b5dc0163
AS
5361 if (!err)
5362 err = mark_chain_precision(env, regno);
457f4436
AN
5363 } else if (arg_type_is_alloc_size(arg_type)) {
5364 if (!tnum_is_const(reg->var_off)) {
28a8add6 5365 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5366 regno);
5367 return -EACCES;
5368 }
5369 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5370 } else if (arg_type_is_int_ptr(arg_type)) {
5371 int size = int_ptr_type_to_size(arg_type);
5372
5373 err = check_helper_mem_access(env, regno, size, false, meta);
5374 if (err)
5375 return err;
5376 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5377 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5378 struct bpf_map *map = reg->map_ptr;
5379 int map_off;
5380 u64 map_addr;
5381 char *str_ptr;
5382
a8fad73e 5383 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5384 verbose(env, "R%d does not point to a readonly map'\n", regno);
5385 return -EACCES;
5386 }
5387
5388 if (!tnum_is_const(reg->var_off)) {
5389 verbose(env, "R%d is not a constant address'\n", regno);
5390 return -EACCES;
5391 }
5392
5393 if (!map->ops->map_direct_value_addr) {
5394 verbose(env, "no direct value access support for this map type\n");
5395 return -EACCES;
5396 }
5397
5398 err = check_map_access(env, regno, reg->off,
5399 map->value_size - reg->off, false);
5400 if (err)
5401 return err;
5402
5403 map_off = reg->off + reg->var_off.value;
5404 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5405 if (err) {
5406 verbose(env, "direct value access on string failed\n");
5407 return err;
5408 }
5409
5410 str_ptr = (char *)(long)(map_addr);
5411 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5412 verbose(env, "string is not zero-terminated\n");
5413 return -EINVAL;
5414 }
17a52670
AS
5415 }
5416
5417 return err;
5418}
5419
0126240f
LB
5420static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5421{
5422 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5423 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5424
5425 if (func_id != BPF_FUNC_map_update_elem)
5426 return false;
5427
5428 /* It's not possible to get access to a locked struct sock in these
5429 * contexts, so updating is safe.
5430 */
5431 switch (type) {
5432 case BPF_PROG_TYPE_TRACING:
5433 if (eatype == BPF_TRACE_ITER)
5434 return true;
5435 break;
5436 case BPF_PROG_TYPE_SOCKET_FILTER:
5437 case BPF_PROG_TYPE_SCHED_CLS:
5438 case BPF_PROG_TYPE_SCHED_ACT:
5439 case BPF_PROG_TYPE_XDP:
5440 case BPF_PROG_TYPE_SK_REUSEPORT:
5441 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5442 case BPF_PROG_TYPE_SK_LOOKUP:
5443 return true;
5444 default:
5445 break;
5446 }
5447
5448 verbose(env, "cannot update sockmap in this context\n");
5449 return false;
5450}
5451
e411901c
MF
5452static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5453{
5454 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5455}
5456
61bd5218
JK
5457static int check_map_func_compatibility(struct bpf_verifier_env *env,
5458 struct bpf_map *map, int func_id)
35578d79 5459{
35578d79
KX
5460 if (!map)
5461 return 0;
5462
6aff67c8
AS
5463 /* We need a two way check, first is from map perspective ... */
5464 switch (map->map_type) {
5465 case BPF_MAP_TYPE_PROG_ARRAY:
5466 if (func_id != BPF_FUNC_tail_call)
5467 goto error;
5468 break;
5469 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5470 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5471 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5472 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5473 func_id != BPF_FUNC_perf_event_read_value &&
5474 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5475 goto error;
5476 break;
457f4436
AN
5477 case BPF_MAP_TYPE_RINGBUF:
5478 if (func_id != BPF_FUNC_ringbuf_output &&
5479 func_id != BPF_FUNC_ringbuf_reserve &&
457f4436
AN
5480 func_id != BPF_FUNC_ringbuf_query)
5481 goto error;
5482 break;
6aff67c8
AS
5483 case BPF_MAP_TYPE_STACK_TRACE:
5484 if (func_id != BPF_FUNC_get_stackid)
5485 goto error;
5486 break;
4ed8ec52 5487 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5488 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5489 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5490 goto error;
5491 break;
cd339431 5492 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5493 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5494 if (func_id != BPF_FUNC_get_local_storage)
5495 goto error;
5496 break;
546ac1ff 5497 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5498 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5499 if (func_id != BPF_FUNC_redirect_map &&
5500 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5501 goto error;
5502 break;
fbfc504a
BT
5503 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5504 * appear.
5505 */
6710e112
JDB
5506 case BPF_MAP_TYPE_CPUMAP:
5507 if (func_id != BPF_FUNC_redirect_map)
5508 goto error;
5509 break;
fada7fdc
JL
5510 case BPF_MAP_TYPE_XSKMAP:
5511 if (func_id != BPF_FUNC_redirect_map &&
5512 func_id != BPF_FUNC_map_lookup_elem)
5513 goto error;
5514 break;
56f668df 5515 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5516 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5517 if (func_id != BPF_FUNC_map_lookup_elem)
5518 goto error;
16a43625 5519 break;
174a79ff
JF
5520 case BPF_MAP_TYPE_SOCKMAP:
5521 if (func_id != BPF_FUNC_sk_redirect_map &&
5522 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5523 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5524 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5525 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5526 func_id != BPF_FUNC_map_lookup_elem &&
5527 !may_update_sockmap(env, func_id))
174a79ff
JF
5528 goto error;
5529 break;
81110384
JF
5530 case BPF_MAP_TYPE_SOCKHASH:
5531 if (func_id != BPF_FUNC_sk_redirect_hash &&
5532 func_id != BPF_FUNC_sock_hash_update &&
5533 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5534 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5535 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5536 func_id != BPF_FUNC_map_lookup_elem &&
5537 !may_update_sockmap(env, func_id))
81110384
JF
5538 goto error;
5539 break;
2dbb9b9e
MKL
5540 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5541 if (func_id != BPF_FUNC_sk_select_reuseport)
5542 goto error;
5543 break;
f1a2e44a
MV
5544 case BPF_MAP_TYPE_QUEUE:
5545 case BPF_MAP_TYPE_STACK:
5546 if (func_id != BPF_FUNC_map_peek_elem &&
5547 func_id != BPF_FUNC_map_pop_elem &&
5548 func_id != BPF_FUNC_map_push_elem)
5549 goto error;
5550 break;
6ac99e8f
MKL
5551 case BPF_MAP_TYPE_SK_STORAGE:
5552 if (func_id != BPF_FUNC_sk_storage_get &&
5553 func_id != BPF_FUNC_sk_storage_delete)
5554 goto error;
5555 break;
8ea63684
KS
5556 case BPF_MAP_TYPE_INODE_STORAGE:
5557 if (func_id != BPF_FUNC_inode_storage_get &&
5558 func_id != BPF_FUNC_inode_storage_delete)
5559 goto error;
5560 break;
4cf1bc1f
KS
5561 case BPF_MAP_TYPE_TASK_STORAGE:
5562 if (func_id != BPF_FUNC_task_storage_get &&
5563 func_id != BPF_FUNC_task_storage_delete)
5564 goto error;
5565 break;
9330986c
JK
5566 case BPF_MAP_TYPE_BLOOM_FILTER:
5567 if (func_id != BPF_FUNC_map_peek_elem &&
5568 func_id != BPF_FUNC_map_push_elem)
5569 goto error;
5570 break;
6aff67c8
AS
5571 default:
5572 break;
5573 }
5574
5575 /* ... and second from the function itself. */
5576 switch (func_id) {
5577 case BPF_FUNC_tail_call:
5578 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5579 goto error;
e411901c
MF
5580 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5581 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5582 return -EINVAL;
5583 }
6aff67c8
AS
5584 break;
5585 case BPF_FUNC_perf_event_read:
5586 case BPF_FUNC_perf_event_output:
908432ca 5587 case BPF_FUNC_perf_event_read_value:
a7658e1a 5588 case BPF_FUNC_skb_output:
d831ee84 5589 case BPF_FUNC_xdp_output:
6aff67c8
AS
5590 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5591 goto error;
5592 break;
5b029a32
DB
5593 case BPF_FUNC_ringbuf_output:
5594 case BPF_FUNC_ringbuf_reserve:
5595 case BPF_FUNC_ringbuf_query:
5596 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5597 goto error;
5598 break;
6aff67c8
AS
5599 case BPF_FUNC_get_stackid:
5600 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5601 goto error;
5602 break;
60d20f91 5603 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5604 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5605 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5606 goto error;
5607 break;
97f91a7c 5608 case BPF_FUNC_redirect_map:
9c270af3 5609 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5610 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5611 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5612 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5613 goto error;
5614 break;
174a79ff 5615 case BPF_FUNC_sk_redirect_map:
4f738adb 5616 case BPF_FUNC_msg_redirect_map:
81110384 5617 case BPF_FUNC_sock_map_update:
174a79ff
JF
5618 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5619 goto error;
5620 break;
81110384
JF
5621 case BPF_FUNC_sk_redirect_hash:
5622 case BPF_FUNC_msg_redirect_hash:
5623 case BPF_FUNC_sock_hash_update:
5624 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5625 goto error;
5626 break;
cd339431 5627 case BPF_FUNC_get_local_storage:
b741f163
RG
5628 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5629 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5630 goto error;
5631 break;
2dbb9b9e 5632 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5633 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5634 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5635 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5636 goto error;
5637 break;
f1a2e44a 5638 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
5639 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5640 map->map_type != BPF_MAP_TYPE_STACK)
5641 goto error;
5642 break;
9330986c
JK
5643 case BPF_FUNC_map_peek_elem:
5644 case BPF_FUNC_map_push_elem:
5645 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5646 map->map_type != BPF_MAP_TYPE_STACK &&
5647 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5648 goto error;
5649 break;
6ac99e8f
MKL
5650 case BPF_FUNC_sk_storage_get:
5651 case BPF_FUNC_sk_storage_delete:
5652 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5653 goto error;
5654 break;
8ea63684
KS
5655 case BPF_FUNC_inode_storage_get:
5656 case BPF_FUNC_inode_storage_delete:
5657 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5658 goto error;
5659 break;
4cf1bc1f
KS
5660 case BPF_FUNC_task_storage_get:
5661 case BPF_FUNC_task_storage_delete:
5662 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5663 goto error;
5664 break;
6aff67c8
AS
5665 default:
5666 break;
35578d79
KX
5667 }
5668
5669 return 0;
6aff67c8 5670error:
61bd5218 5671 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5672 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5673 return -EINVAL;
35578d79
KX
5674}
5675
90133415 5676static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5677{
5678 int count = 0;
5679
39f19ebb 5680 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5681 count++;
39f19ebb 5682 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5683 count++;
39f19ebb 5684 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5685 count++;
39f19ebb 5686 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5687 count++;
39f19ebb 5688 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5689 count++;
5690
90133415
DB
5691 /* We only support one arg being in raw mode at the moment,
5692 * which is sufficient for the helper functions we have
5693 * right now.
5694 */
5695 return count <= 1;
5696}
5697
5698static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5699 enum bpf_arg_type arg_next)
5700{
5701 return (arg_type_is_mem_ptr(arg_curr) &&
5702 !arg_type_is_mem_size(arg_next)) ||
5703 (!arg_type_is_mem_ptr(arg_curr) &&
5704 arg_type_is_mem_size(arg_next));
5705}
5706
5707static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5708{
5709 /* bpf_xxx(..., buf, len) call will access 'len'
5710 * bytes from memory 'buf'. Both arg types need
5711 * to be paired, so make sure there's no buggy
5712 * helper function specification.
5713 */
5714 if (arg_type_is_mem_size(fn->arg1_type) ||
5715 arg_type_is_mem_ptr(fn->arg5_type) ||
5716 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5717 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5718 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5719 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5720 return false;
5721
5722 return true;
5723}
5724
1b986589 5725static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5726{
5727 int count = 0;
5728
1b986589 5729 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5730 count++;
1b986589 5731 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5732 count++;
1b986589 5733 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5734 count++;
1b986589 5735 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5736 count++;
1b986589 5737 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5738 count++;
5739
1b986589
MKL
5740 /* A reference acquiring function cannot acquire
5741 * another refcounted ptr.
5742 */
64d85290 5743 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5744 return false;
5745
fd978bf7
JS
5746 /* We only support one arg being unreferenced at the moment,
5747 * which is sufficient for the helper functions we have right now.
5748 */
5749 return count <= 1;
5750}
5751
9436ef6e
LB
5752static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5753{
5754 int i;
5755
1df8f55a 5756 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5757 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5758 return false;
5759
1df8f55a
MKL
5760 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5761 return false;
5762 }
5763
9436ef6e
LB
5764 return true;
5765}
5766
1b986589 5767static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5768{
5769 return check_raw_mode_ok(fn) &&
fd978bf7 5770 check_arg_pair_ok(fn) &&
9436ef6e 5771 check_btf_id_ok(fn) &&
1b986589 5772 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5773}
5774
de8f3a83
DB
5775/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5776 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5777 */
f4d7e40a
AS
5778static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5779 struct bpf_func_state *state)
969bf05e 5780{
58e2af8b 5781 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5782 int i;
5783
5784 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5785 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5786 mark_reg_unknown(env, regs, i);
969bf05e 5787
f3709f69
JS
5788 bpf_for_each_spilled_reg(i, state, reg) {
5789 if (!reg)
969bf05e 5790 continue;
de8f3a83 5791 if (reg_is_pkt_pointer_any(reg))
f54c7898 5792 __mark_reg_unknown(env, reg);
969bf05e
AS
5793 }
5794}
5795
f4d7e40a
AS
5796static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5797{
5798 struct bpf_verifier_state *vstate = env->cur_state;
5799 int i;
5800
5801 for (i = 0; i <= vstate->curframe; i++)
5802 __clear_all_pkt_pointers(env, vstate->frame[i]);
5803}
5804
6d94e741
AS
5805enum {
5806 AT_PKT_END = -1,
5807 BEYOND_PKT_END = -2,
5808};
5809
5810static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5811{
5812 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5813 struct bpf_reg_state *reg = &state->regs[regn];
5814
5815 if (reg->type != PTR_TO_PACKET)
5816 /* PTR_TO_PACKET_META is not supported yet */
5817 return;
5818
5819 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5820 * How far beyond pkt_end it goes is unknown.
5821 * if (!range_open) it's the case of pkt >= pkt_end
5822 * if (range_open) it's the case of pkt > pkt_end
5823 * hence this pointer is at least 1 byte bigger than pkt_end
5824 */
5825 if (range_open)
5826 reg->range = BEYOND_PKT_END;
5827 else
5828 reg->range = AT_PKT_END;
5829}
5830
fd978bf7 5831static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5832 struct bpf_func_state *state,
5833 int ref_obj_id)
fd978bf7
JS
5834{
5835 struct bpf_reg_state *regs = state->regs, *reg;
5836 int i;
5837
5838 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5839 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5840 mark_reg_unknown(env, regs, i);
5841
5842 bpf_for_each_spilled_reg(i, state, reg) {
5843 if (!reg)
5844 continue;
1b986589 5845 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5846 __mark_reg_unknown(env, reg);
fd978bf7
JS
5847 }
5848}
5849
5850/* The pointer with the specified id has released its reference to kernel
5851 * resources. Identify all copies of the same pointer and clear the reference.
5852 */
5853static int release_reference(struct bpf_verifier_env *env,
1b986589 5854 int ref_obj_id)
fd978bf7
JS
5855{
5856 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5857 int err;
fd978bf7
JS
5858 int i;
5859
1b986589
MKL
5860 err = release_reference_state(cur_func(env), ref_obj_id);
5861 if (err)
5862 return err;
5863
fd978bf7 5864 for (i = 0; i <= vstate->curframe; i++)
1b986589 5865 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5866
1b986589 5867 return 0;
fd978bf7
JS
5868}
5869
51c39bb1
AS
5870static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5871 struct bpf_reg_state *regs)
5872{
5873 int i;
5874
5875 /* after the call registers r0 - r5 were scratched */
5876 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5877 mark_reg_not_init(env, regs, caller_saved[i]);
5878 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5879 }
5880}
5881
14351375
YS
5882typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5883 struct bpf_func_state *caller,
5884 struct bpf_func_state *callee,
5885 int insn_idx);
5886
5887static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5888 int *insn_idx, int subprog,
5889 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5890{
5891 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5892 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5893 struct bpf_func_state *caller, *callee;
14351375 5894 int err;
51c39bb1 5895 bool is_global = false;
f4d7e40a 5896
aada9ce6 5897 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5898 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5899 state->curframe + 2);
f4d7e40a
AS
5900 return -E2BIG;
5901 }
5902
f4d7e40a
AS
5903 caller = state->frame[state->curframe];
5904 if (state->frame[state->curframe + 1]) {
5905 verbose(env, "verifier bug. Frame %d already allocated\n",
5906 state->curframe + 1);
5907 return -EFAULT;
5908 }
5909
51c39bb1
AS
5910 func_info_aux = env->prog->aux->func_info_aux;
5911 if (func_info_aux)
5912 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5913 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5914 if (err == -EFAULT)
5915 return err;
5916 if (is_global) {
5917 if (err) {
5918 verbose(env, "Caller passes invalid args into func#%d\n",
5919 subprog);
5920 return err;
5921 } else {
5922 if (env->log.level & BPF_LOG_LEVEL)
5923 verbose(env,
5924 "Func#%d is global and valid. Skipping.\n",
5925 subprog);
5926 clear_caller_saved_regs(env, caller->regs);
5927
45159b27 5928 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 5929 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 5930 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
5931
5932 /* continue with next insn after call */
5933 return 0;
5934 }
5935 }
5936
bfc6bb74
AS
5937 if (insn->code == (BPF_JMP | BPF_CALL) &&
5938 insn->imm == BPF_FUNC_timer_set_callback) {
5939 struct bpf_verifier_state *async_cb;
5940
5941 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 5942 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
5943 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5944 *insn_idx, subprog);
5945 if (!async_cb)
5946 return -EFAULT;
5947 callee = async_cb->frame[0];
5948 callee->async_entry_cnt = caller->async_entry_cnt + 1;
5949
5950 /* Convert bpf_timer_set_callback() args into timer callback args */
5951 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5952 if (err)
5953 return err;
5954
5955 clear_caller_saved_regs(env, caller->regs);
5956 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5957 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5958 /* continue with next insn after call */
5959 return 0;
5960 }
5961
f4d7e40a
AS
5962 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5963 if (!callee)
5964 return -ENOMEM;
5965 state->frame[state->curframe + 1] = callee;
5966
5967 /* callee cannot access r0, r6 - r9 for reading and has to write
5968 * into its own stack before reading from it.
5969 * callee can read/write into caller's stack
5970 */
5971 init_func_state(env, callee,
5972 /* remember the callsite, it will be used by bpf_exit */
5973 *insn_idx /* callsite */,
5974 state->curframe + 1 /* frameno within this callchain */,
f910cefa 5975 subprog /* subprog number within this prog */);
f4d7e40a 5976
fd978bf7 5977 /* Transfer references to the callee */
c69431aa 5978 err = copy_reference_state(callee, caller);
fd978bf7
JS
5979 if (err)
5980 return err;
5981
14351375
YS
5982 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5983 if (err)
5984 return err;
f4d7e40a 5985
51c39bb1 5986 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
5987
5988 /* only increment it after check_reg_arg() finished */
5989 state->curframe++;
5990
5991 /* and go analyze first insn of the callee */
14351375 5992 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 5993
06ee7115 5994 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
5995 verbose(env, "caller:\n");
5996 print_verifier_state(env, caller);
5997 verbose(env, "callee:\n");
5998 print_verifier_state(env, callee);
5999 }
6000 return 0;
6001}
6002
314ee05e
YS
6003int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6004 struct bpf_func_state *caller,
6005 struct bpf_func_state *callee)
6006{
6007 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6008 * void *callback_ctx, u64 flags);
6009 * callback_fn(struct bpf_map *map, void *key, void *value,
6010 * void *callback_ctx);
6011 */
6012 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6013
6014 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6015 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6016 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6017
6018 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6019 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6020 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6021
6022 /* pointer to stack or null */
6023 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6024
6025 /* unused */
6026 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6027 return 0;
6028}
6029
14351375
YS
6030static int set_callee_state(struct bpf_verifier_env *env,
6031 struct bpf_func_state *caller,
6032 struct bpf_func_state *callee, int insn_idx)
6033{
6034 int i;
6035
6036 /* copy r1 - r5 args that callee can access. The copy includes parent
6037 * pointers, which connects us up to the liveness chain
6038 */
6039 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6040 callee->regs[i] = caller->regs[i];
6041 return 0;
6042}
6043
6044static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6045 int *insn_idx)
6046{
6047 int subprog, target_insn;
6048
6049 target_insn = *insn_idx + insn->imm + 1;
6050 subprog = find_subprog(env, target_insn);
6051 if (subprog < 0) {
6052 verbose(env, "verifier bug. No program starts at insn %d\n",
6053 target_insn);
6054 return -EFAULT;
6055 }
6056
6057 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6058}
6059
69c087ba
YS
6060static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6061 struct bpf_func_state *caller,
6062 struct bpf_func_state *callee,
6063 int insn_idx)
6064{
6065 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6066 struct bpf_map *map;
6067 int err;
6068
6069 if (bpf_map_ptr_poisoned(insn_aux)) {
6070 verbose(env, "tail_call abusing map_ptr\n");
6071 return -EINVAL;
6072 }
6073
6074 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6075 if (!map->ops->map_set_for_each_callback_args ||
6076 !map->ops->map_for_each_callback) {
6077 verbose(env, "callback function not allowed for map\n");
6078 return -ENOTSUPP;
6079 }
6080
6081 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6082 if (err)
6083 return err;
6084
6085 callee->in_callback_fn = true;
6086 return 0;
6087}
6088
b00628b1
AS
6089static int set_timer_callback_state(struct bpf_verifier_env *env,
6090 struct bpf_func_state *caller,
6091 struct bpf_func_state *callee,
6092 int insn_idx)
6093{
6094 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6095
6096 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6097 * callback_fn(struct bpf_map *map, void *key, void *value);
6098 */
6099 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6100 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6101 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6102
6103 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6104 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6105 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6106
6107 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6108 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6109 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6110
6111 /* unused */
6112 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6113 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6114 callee->in_async_callback_fn = true;
b00628b1
AS
6115 return 0;
6116}
6117
f4d7e40a
AS
6118static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6119{
6120 struct bpf_verifier_state *state = env->cur_state;
6121 struct bpf_func_state *caller, *callee;
6122 struct bpf_reg_state *r0;
fd978bf7 6123 int err;
f4d7e40a
AS
6124
6125 callee = state->frame[state->curframe];
6126 r0 = &callee->regs[BPF_REG_0];
6127 if (r0->type == PTR_TO_STACK) {
6128 /* technically it's ok to return caller's stack pointer
6129 * (or caller's caller's pointer) back to the caller,
6130 * since these pointers are valid. Only current stack
6131 * pointer will be invalid as soon as function exits,
6132 * but let's be conservative
6133 */
6134 verbose(env, "cannot return stack pointer to the caller\n");
6135 return -EINVAL;
6136 }
6137
6138 state->curframe--;
6139 caller = state->frame[state->curframe];
69c087ba
YS
6140 if (callee->in_callback_fn) {
6141 /* enforce R0 return value range [0, 1]. */
6142 struct tnum range = tnum_range(0, 1);
6143
6144 if (r0->type != SCALAR_VALUE) {
6145 verbose(env, "R0 not a scalar value\n");
6146 return -EACCES;
6147 }
6148 if (!tnum_in(range, r0->var_off)) {
6149 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6150 return -EINVAL;
6151 }
6152 } else {
6153 /* return to the caller whatever r0 had in the callee */
6154 caller->regs[BPF_REG_0] = *r0;
6155 }
f4d7e40a 6156
fd978bf7 6157 /* Transfer references to the caller */
c69431aa 6158 err = copy_reference_state(caller, callee);
fd978bf7
JS
6159 if (err)
6160 return err;
6161
f4d7e40a 6162 *insn_idx = callee->callsite + 1;
06ee7115 6163 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6164 verbose(env, "returning from callee:\n");
6165 print_verifier_state(env, callee);
6166 verbose(env, "to caller at %d:\n", *insn_idx);
6167 print_verifier_state(env, caller);
6168 }
6169 /* clear everything in the callee */
6170 free_func_state(callee);
6171 state->frame[state->curframe + 1] = NULL;
6172 return 0;
6173}
6174
849fa506
YS
6175static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6176 int func_id,
6177 struct bpf_call_arg_meta *meta)
6178{
6179 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6180
6181 if (ret_type != RET_INTEGER ||
6182 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6183 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6184 func_id != BPF_FUNC_probe_read_str &&
6185 func_id != BPF_FUNC_probe_read_kernel_str &&
6186 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6187 return;
6188
10060503 6189 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6190 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6191 ret_reg->smin_value = -MAX_ERRNO;
6192 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
6193 __reg_deduce_bounds(ret_reg);
6194 __reg_bound_offset(ret_reg);
10060503 6195 __update_reg_bounds(ret_reg);
849fa506
YS
6196}
6197
c93552c4
DB
6198static int
6199record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6200 int func_id, int insn_idx)
6201{
6202 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6203 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6204
6205 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
6206 func_id != BPF_FUNC_map_lookup_elem &&
6207 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
6208 func_id != BPF_FUNC_map_delete_elem &&
6209 func_id != BPF_FUNC_map_push_elem &&
6210 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 6211 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
6212 func_id != BPF_FUNC_for_each_map_elem &&
6213 func_id != BPF_FUNC_redirect_map)
c93552c4 6214 return 0;
09772d92 6215
591fe988 6216 if (map == NULL) {
c93552c4
DB
6217 verbose(env, "kernel subsystem misconfigured verifier\n");
6218 return -EINVAL;
6219 }
6220
591fe988
DB
6221 /* In case of read-only, some additional restrictions
6222 * need to be applied in order to prevent altering the
6223 * state of the map from program side.
6224 */
6225 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6226 (func_id == BPF_FUNC_map_delete_elem ||
6227 func_id == BPF_FUNC_map_update_elem ||
6228 func_id == BPF_FUNC_map_push_elem ||
6229 func_id == BPF_FUNC_map_pop_elem)) {
6230 verbose(env, "write into map forbidden\n");
6231 return -EACCES;
6232 }
6233
d2e4c1e6 6234 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 6235 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 6236 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 6237 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 6238 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 6239 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
6240 return 0;
6241}
6242
d2e4c1e6
DB
6243static int
6244record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6245 int func_id, int insn_idx)
6246{
6247 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6248 struct bpf_reg_state *regs = cur_regs(env), *reg;
6249 struct bpf_map *map = meta->map_ptr;
6250 struct tnum range;
6251 u64 val;
cc52d914 6252 int err;
d2e4c1e6
DB
6253
6254 if (func_id != BPF_FUNC_tail_call)
6255 return 0;
6256 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6257 verbose(env, "kernel subsystem misconfigured verifier\n");
6258 return -EINVAL;
6259 }
6260
6261 range = tnum_range(0, map->max_entries - 1);
6262 reg = &regs[BPF_REG_3];
6263
6264 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6265 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6266 return 0;
6267 }
6268
cc52d914
DB
6269 err = mark_chain_precision(env, BPF_REG_3);
6270 if (err)
6271 return err;
6272
d2e4c1e6
DB
6273 val = reg->var_off.value;
6274 if (bpf_map_key_unseen(aux))
6275 bpf_map_key_store(aux, val);
6276 else if (!bpf_map_key_poisoned(aux) &&
6277 bpf_map_key_immediate(aux) != val)
6278 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6279 return 0;
6280}
6281
fd978bf7
JS
6282static int check_reference_leak(struct bpf_verifier_env *env)
6283{
6284 struct bpf_func_state *state = cur_func(env);
6285 int i;
6286
6287 for (i = 0; i < state->acquired_refs; i++) {
6288 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6289 state->refs[i].id, state->refs[i].insn_idx);
6290 }
6291 return state->acquired_refs ? -EINVAL : 0;
6292}
6293
7b15523a
FR
6294static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6295 struct bpf_reg_state *regs)
6296{
6297 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6298 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6299 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6300 int err, fmt_map_off, num_args;
6301 u64 fmt_addr;
6302 char *fmt;
6303
6304 /* data must be an array of u64 */
6305 if (data_len_reg->var_off.value % 8)
6306 return -EINVAL;
6307 num_args = data_len_reg->var_off.value / 8;
6308
6309 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6310 * and map_direct_value_addr is set.
6311 */
6312 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6313 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6314 fmt_map_off);
8e8ee109
FR
6315 if (err) {
6316 verbose(env, "verifier bug\n");
6317 return -EFAULT;
6318 }
7b15523a
FR
6319 fmt = (char *)(long)fmt_addr + fmt_map_off;
6320
6321 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6322 * can focus on validating the format specifiers.
6323 */
48cac3f4 6324 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
6325 if (err < 0)
6326 verbose(env, "Invalid format string\n");
6327
6328 return err;
6329}
6330
9b99edca
JO
6331static int check_get_func_ip(struct bpf_verifier_env *env)
6332{
6333 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6334 enum bpf_prog_type type = resolve_prog_type(env->prog);
6335 int func_id = BPF_FUNC_get_func_ip;
6336
6337 if (type == BPF_PROG_TYPE_TRACING) {
6338 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6339 eatype != BPF_MODIFY_RETURN) {
6340 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6341 func_id_name(func_id), func_id);
6342 return -ENOTSUPP;
6343 }
6344 return 0;
9ffd9f3f
JO
6345 } else if (type == BPF_PROG_TYPE_KPROBE) {
6346 return 0;
9b99edca
JO
6347 }
6348
6349 verbose(env, "func %s#%d not supported for program type %d\n",
6350 func_id_name(func_id), func_id, type);
6351 return -ENOTSUPP;
6352}
6353
69c087ba
YS
6354static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6355 int *insn_idx_p)
17a52670 6356{
17a52670 6357 const struct bpf_func_proto *fn = NULL;
638f5b90 6358 struct bpf_reg_state *regs;
33ff9823 6359 struct bpf_call_arg_meta meta;
69c087ba 6360 int insn_idx = *insn_idx_p;
969bf05e 6361 bool changes_data;
69c087ba 6362 int i, err, func_id;
17a52670
AS
6363
6364 /* find function prototype */
69c087ba 6365 func_id = insn->imm;
17a52670 6366 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
6367 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6368 func_id);
17a52670
AS
6369 return -EINVAL;
6370 }
6371
00176a34 6372 if (env->ops->get_func_proto)
5e43f899 6373 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 6374 if (!fn) {
61bd5218
JK
6375 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6376 func_id);
17a52670
AS
6377 return -EINVAL;
6378 }
6379
6380 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 6381 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 6382 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
6383 return -EINVAL;
6384 }
6385
eae2e83e
JO
6386 if (fn->allowed && !fn->allowed(env->prog)) {
6387 verbose(env, "helper call is not allowed in probe\n");
6388 return -EINVAL;
6389 }
6390
04514d13 6391 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 6392 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
6393 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6394 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6395 func_id_name(func_id), func_id);
6396 return -EINVAL;
6397 }
969bf05e 6398
33ff9823 6399 memset(&meta, 0, sizeof(meta));
36bbef52 6400 meta.pkt_access = fn->pkt_access;
33ff9823 6401
1b986589 6402 err = check_func_proto(fn, func_id);
435faee1 6403 if (err) {
61bd5218 6404 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6405 func_id_name(func_id), func_id);
435faee1
DB
6406 return err;
6407 }
6408
d83525ca 6409 meta.func_id = func_id;
17a52670 6410 /* check args */
523a4cf4 6411 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6412 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6413 if (err)
6414 return err;
6415 }
17a52670 6416
c93552c4
DB
6417 err = record_func_map(env, &meta, func_id, insn_idx);
6418 if (err)
6419 return err;
6420
d2e4c1e6
DB
6421 err = record_func_key(env, &meta, func_id, insn_idx);
6422 if (err)
6423 return err;
6424
435faee1
DB
6425 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6426 * is inferred from register state.
6427 */
6428 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6429 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6430 BPF_WRITE, -1, false);
435faee1
DB
6431 if (err)
6432 return err;
6433 }
6434
fd978bf7
JS
6435 if (func_id == BPF_FUNC_tail_call) {
6436 err = check_reference_leak(env);
6437 if (err) {
6438 verbose(env, "tail_call would lead to reference leak\n");
6439 return err;
6440 }
6441 } else if (is_release_function(func_id)) {
1b986589 6442 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6443 if (err) {
6444 verbose(env, "func %s#%d reference has not been acquired before\n",
6445 func_id_name(func_id), func_id);
fd978bf7 6446 return err;
46f8bc92 6447 }
fd978bf7
JS
6448 }
6449
638f5b90 6450 regs = cur_regs(env);
cd339431
RG
6451
6452 /* check that flags argument in get_local_storage(map, flags) is 0,
6453 * this is required because get_local_storage() can't return an error.
6454 */
6455 if (func_id == BPF_FUNC_get_local_storage &&
6456 !register_is_null(&regs[BPF_REG_2])) {
6457 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6458 return -EINVAL;
6459 }
6460
69c087ba
YS
6461 if (func_id == BPF_FUNC_for_each_map_elem) {
6462 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6463 set_map_elem_callback_state);
6464 if (err < 0)
6465 return -EINVAL;
6466 }
6467
b00628b1
AS
6468 if (func_id == BPF_FUNC_timer_set_callback) {
6469 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6470 set_timer_callback_state);
6471 if (err < 0)
6472 return -EINVAL;
6473 }
6474
7b15523a
FR
6475 if (func_id == BPF_FUNC_snprintf) {
6476 err = check_bpf_snprintf_call(env, regs);
6477 if (err < 0)
6478 return err;
6479 }
6480
17a52670 6481 /* reset caller saved regs */
dc503a8a 6482 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6483 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6484 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6485 }
17a52670 6486
5327ed3d
JW
6487 /* helper call returns 64-bit value. */
6488 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6489
dc503a8a 6490 /* update return register (already marked as written above) */
17a52670 6491 if (fn->ret_type == RET_INTEGER) {
f1174f77 6492 /* sets type to SCALAR_VALUE */
61bd5218 6493 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6494 } else if (fn->ret_type == RET_VOID) {
6495 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6496 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6497 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6498 /* There is no offset yet applied, variable or fixed */
61bd5218 6499 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6500 /* remember map_ptr, so that check_map_access()
6501 * can check 'value_size' boundary of memory access
6502 * to map element returned from bpf_map_lookup_elem()
6503 */
33ff9823 6504 if (meta.map_ptr == NULL) {
61bd5218
JK
6505 verbose(env,
6506 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6507 return -EINVAL;
6508 }
33ff9823 6509 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 6510 regs[BPF_REG_0].map_uid = meta.map_uid;
4d31f301
DB
6511 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6512 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6513 if (map_value_has_spin_lock(meta.map_ptr))
6514 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6515 } else {
6516 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6517 }
c64b7983
JS
6518 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6519 mark_reg_known_zero(env, regs, BPF_REG_0);
6520 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6521 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6522 mark_reg_known_zero(env, regs, BPF_REG_0);
6523 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6524 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6525 mark_reg_known_zero(env, regs, BPF_REG_0);
6526 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6527 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6528 mark_reg_known_zero(env, regs, BPF_REG_0);
6529 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6530 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6531 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6532 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6533 const struct btf_type *t;
6534
6535 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6536 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6537 if (!btf_type_is_struct(t)) {
6538 u32 tsize;
6539 const struct btf_type *ret;
6540 const char *tname;
6541
6542 /* resolve the type size of ksym. */
22dc4a0f 6543 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6544 if (IS_ERR(ret)) {
22dc4a0f 6545 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6546 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6547 tname, PTR_ERR(ret));
6548 return -EINVAL;
6549 }
63d9b80d
HL
6550 regs[BPF_REG_0].type =
6551 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6552 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6553 regs[BPF_REG_0].mem_size = tsize;
6554 } else {
63d9b80d
HL
6555 regs[BPF_REG_0].type =
6556 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6557 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6558 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6559 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6560 }
3ca1032a
KS
6561 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6562 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6563 int ret_btf_id;
6564
6565 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6566 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6567 PTR_TO_BTF_ID :
6568 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6569 ret_btf_id = *fn->ret_btf_id;
6570 if (ret_btf_id == 0) {
6571 verbose(env, "invalid return type %d of func %s#%d\n",
6572 fn->ret_type, func_id_name(func_id), func_id);
6573 return -EINVAL;
6574 }
22dc4a0f
AN
6575 /* current BPF helper definitions are only coming from
6576 * built-in code with type IDs from vmlinux BTF
6577 */
6578 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6579 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6580 } else {
61bd5218 6581 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6582 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6583 return -EINVAL;
6584 }
04fd61ab 6585
93c230e3
MKL
6586 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6587 regs[BPF_REG_0].id = ++env->id_gen;
6588
0f3adc28 6589 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6590 /* For release_reference() */
6591 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6592 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6593 int id = acquire_reference_state(env, insn_idx);
6594
6595 if (id < 0)
6596 return id;
6597 /* For mark_ptr_or_null_reg() */
6598 regs[BPF_REG_0].id = id;
6599 /* For release_reference() */
6600 regs[BPF_REG_0].ref_obj_id = id;
6601 }
1b986589 6602
849fa506
YS
6603 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6604
61bd5218 6605 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6606 if (err)
6607 return err;
04fd61ab 6608
fa28dcb8
SL
6609 if ((func_id == BPF_FUNC_get_stack ||
6610 func_id == BPF_FUNC_get_task_stack) &&
6611 !env->prog->has_callchain_buf) {
c195651e
YS
6612 const char *err_str;
6613
6614#ifdef CONFIG_PERF_EVENTS
6615 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6616 err_str = "cannot get callchain buffer for func %s#%d\n";
6617#else
6618 err = -ENOTSUPP;
6619 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6620#endif
6621 if (err) {
6622 verbose(env, err_str, func_id_name(func_id), func_id);
6623 return err;
6624 }
6625
6626 env->prog->has_callchain_buf = true;
6627 }
6628
5d99cb2c
SL
6629 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6630 env->prog->call_get_stack = true;
6631
9b99edca
JO
6632 if (func_id == BPF_FUNC_get_func_ip) {
6633 if (check_get_func_ip(env))
6634 return -ENOTSUPP;
6635 env->prog->call_get_func_ip = true;
6636 }
6637
969bf05e
AS
6638 if (changes_data)
6639 clear_all_pkt_pointers(env);
6640 return 0;
6641}
6642
e6ac2450
MKL
6643/* mark_btf_func_reg_size() is used when the reg size is determined by
6644 * the BTF func_proto's return value size and argument.
6645 */
6646static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6647 size_t reg_size)
6648{
6649 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6650
6651 if (regno == BPF_REG_0) {
6652 /* Function return value */
6653 reg->live |= REG_LIVE_WRITTEN;
6654 reg->subreg_def = reg_size == sizeof(u64) ?
6655 DEF_NOT_SUBREG : env->insn_idx + 1;
6656 } else {
6657 /* Function argument */
6658 if (reg_size == sizeof(u64)) {
6659 mark_insn_zext(env, reg);
6660 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6661 } else {
6662 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6663 }
6664 }
6665}
6666
6667static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6668{
6669 const struct btf_type *t, *func, *func_proto, *ptr_type;
6670 struct bpf_reg_state *regs = cur_regs(env);
6671 const char *func_name, *ptr_type_name;
6672 u32 i, nargs, func_id, ptr_type_id;
2357672c 6673 struct module *btf_mod = NULL;
e6ac2450 6674 const struct btf_param *args;
2357672c 6675 struct btf *desc_btf;
e6ac2450
MKL
6676 int err;
6677
a5d82727
KKD
6678 /* skip for now, but return error when we find this in fixup_kfunc_call */
6679 if (!insn->imm)
6680 return 0;
6681
2357672c
KKD
6682 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6683 if (IS_ERR(desc_btf))
6684 return PTR_ERR(desc_btf);
6685
e6ac2450 6686 func_id = insn->imm;
2357672c
KKD
6687 func = btf_type_by_id(desc_btf, func_id);
6688 func_name = btf_name_by_offset(desc_btf, func->name_off);
6689 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
6690
6691 if (!env->ops->check_kfunc_call ||
2357672c 6692 !env->ops->check_kfunc_call(func_id, btf_mod)) {
e6ac2450
MKL
6693 verbose(env, "calling kernel function %s is not allowed\n",
6694 func_name);
6695 return -EACCES;
6696 }
6697
6698 /* Check the arguments */
2357672c 6699 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
e6ac2450
MKL
6700 if (err)
6701 return err;
6702
6703 for (i = 0; i < CALLER_SAVED_REGS; i++)
6704 mark_reg_not_init(env, regs, caller_saved[i]);
6705
6706 /* Check return type */
2357672c 6707 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
e6ac2450
MKL
6708 if (btf_type_is_scalar(t)) {
6709 mark_reg_unknown(env, regs, BPF_REG_0);
6710 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6711 } else if (btf_type_is_ptr(t)) {
2357672c 6712 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
6713 &ptr_type_id);
6714 if (!btf_type_is_struct(ptr_type)) {
2357672c 6715 ptr_type_name = btf_name_by_offset(desc_btf,
e6ac2450
MKL
6716 ptr_type->name_off);
6717 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6718 func_name, btf_type_str(ptr_type),
6719 ptr_type_name);
6720 return -EINVAL;
6721 }
6722 mark_reg_known_zero(env, regs, BPF_REG_0);
2357672c 6723 regs[BPF_REG_0].btf = desc_btf;
e6ac2450
MKL
6724 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6725 regs[BPF_REG_0].btf_id = ptr_type_id;
6726 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6727 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6728
6729 nargs = btf_type_vlen(func_proto);
6730 args = (const struct btf_param *)(func_proto + 1);
6731 for (i = 0; i < nargs; i++) {
6732 u32 regno = i + 1;
6733
2357672c 6734 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
6735 if (btf_type_is_ptr(t))
6736 mark_btf_func_reg_size(env, regno, sizeof(void *));
6737 else
6738 /* scalar. ensured by btf_check_kfunc_arg_match() */
6739 mark_btf_func_reg_size(env, regno, t->size);
6740 }
6741
6742 return 0;
6743}
6744
b03c9f9f
EC
6745static bool signed_add_overflows(s64 a, s64 b)
6746{
6747 /* Do the add in u64, where overflow is well-defined */
6748 s64 res = (s64)((u64)a + (u64)b);
6749
6750 if (b < 0)
6751 return res > a;
6752 return res < a;
6753}
6754
bc895e8b 6755static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6756{
6757 /* Do the add in u32, where overflow is well-defined */
6758 s32 res = (s32)((u32)a + (u32)b);
6759
6760 if (b < 0)
6761 return res > a;
6762 return res < a;
6763}
6764
bc895e8b 6765static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6766{
6767 /* Do the sub in u64, where overflow is well-defined */
6768 s64 res = (s64)((u64)a - (u64)b);
6769
6770 if (b < 0)
6771 return res < a;
6772 return res > a;
969bf05e
AS
6773}
6774
3f50f132
JF
6775static bool signed_sub32_overflows(s32 a, s32 b)
6776{
bc895e8b 6777 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6778 s32 res = (s32)((u32)a - (u32)b);
6779
6780 if (b < 0)
6781 return res < a;
6782 return res > a;
6783}
6784
bb7f0f98
AS
6785static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6786 const struct bpf_reg_state *reg,
6787 enum bpf_reg_type type)
6788{
6789 bool known = tnum_is_const(reg->var_off);
6790 s64 val = reg->var_off.value;
6791 s64 smin = reg->smin_value;
6792
6793 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6794 verbose(env, "math between %s pointer and %lld is not allowed\n",
6795 reg_type_str[type], val);
6796 return false;
6797 }
6798
6799 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6800 verbose(env, "%s pointer offset %d is not allowed\n",
6801 reg_type_str[type], reg->off);
6802 return false;
6803 }
6804
6805 if (smin == S64_MIN) {
6806 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6807 reg_type_str[type]);
6808 return false;
6809 }
6810
6811 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6812 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6813 smin, reg_type_str[type]);
6814 return false;
6815 }
6816
6817 return true;
6818}
6819
979d63d5
DB
6820static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6821{
6822 return &env->insn_aux_data[env->insn_idx];
6823}
6824
a6aaece0
DB
6825enum {
6826 REASON_BOUNDS = -1,
6827 REASON_TYPE = -2,
6828 REASON_PATHS = -3,
6829 REASON_LIMIT = -4,
6830 REASON_STACK = -5,
6831};
6832
979d63d5 6833static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 6834 u32 *alu_limit, bool mask_to_left)
979d63d5 6835{
7fedb63a 6836 u32 max = 0, ptr_limit = 0;
979d63d5
DB
6837
6838 switch (ptr_reg->type) {
6839 case PTR_TO_STACK:
1b1597e6 6840 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
6841 * left direction, see BPF_REG_FP. Also, unknown scalar
6842 * offset where we would need to deal with min/max bounds is
6843 * currently prohibited for unprivileged.
1b1597e6
PK
6844 */
6845 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 6846 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 6847 break;
979d63d5 6848 case PTR_TO_MAP_VALUE:
1b1597e6 6849 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
6850 ptr_limit = (mask_to_left ?
6851 ptr_reg->smin_value :
6852 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 6853 break;
979d63d5 6854 default:
a6aaece0 6855 return REASON_TYPE;
979d63d5 6856 }
b658bbb8
DB
6857
6858 if (ptr_limit >= max)
a6aaece0 6859 return REASON_LIMIT;
b658bbb8
DB
6860 *alu_limit = ptr_limit;
6861 return 0;
979d63d5
DB
6862}
6863
d3bd7413
DB
6864static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6865 const struct bpf_insn *insn)
6866{
2c78ee89 6867 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6868}
6869
6870static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6871 u32 alu_state, u32 alu_limit)
6872{
6873 /* If we arrived here from different branches with different
6874 * state or limits to sanitize, then this won't work.
6875 */
6876 if (aux->alu_state &&
6877 (aux->alu_state != alu_state ||
6878 aux->alu_limit != alu_limit))
a6aaece0 6879 return REASON_PATHS;
d3bd7413 6880
e6ac5933 6881 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
6882 aux->alu_state = alu_state;
6883 aux->alu_limit = alu_limit;
6884 return 0;
6885}
6886
6887static int sanitize_val_alu(struct bpf_verifier_env *env,
6888 struct bpf_insn *insn)
6889{
6890 struct bpf_insn_aux_data *aux = cur_aux(env);
6891
6892 if (can_skip_alu_sanitation(env, insn))
6893 return 0;
6894
6895 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6896}
6897
f5288193
DB
6898static bool sanitize_needed(u8 opcode)
6899{
6900 return opcode == BPF_ADD || opcode == BPF_SUB;
6901}
6902
3d0220f6
DB
6903struct bpf_sanitize_info {
6904 struct bpf_insn_aux_data aux;
bb01a1bb 6905 bool mask_to_left;
3d0220f6
DB
6906};
6907
9183671a
DB
6908static struct bpf_verifier_state *
6909sanitize_speculative_path(struct bpf_verifier_env *env,
6910 const struct bpf_insn *insn,
6911 u32 next_idx, u32 curr_idx)
6912{
6913 struct bpf_verifier_state *branch;
6914 struct bpf_reg_state *regs;
6915
6916 branch = push_stack(env, next_idx, curr_idx, true);
6917 if (branch && insn) {
6918 regs = branch->frame[branch->curframe]->regs;
6919 if (BPF_SRC(insn->code) == BPF_K) {
6920 mark_reg_unknown(env, regs, insn->dst_reg);
6921 } else if (BPF_SRC(insn->code) == BPF_X) {
6922 mark_reg_unknown(env, regs, insn->dst_reg);
6923 mark_reg_unknown(env, regs, insn->src_reg);
6924 }
6925 }
6926 return branch;
6927}
6928
979d63d5
DB
6929static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6930 struct bpf_insn *insn,
6931 const struct bpf_reg_state *ptr_reg,
6f55b2f2 6932 const struct bpf_reg_state *off_reg,
979d63d5 6933 struct bpf_reg_state *dst_reg,
3d0220f6 6934 struct bpf_sanitize_info *info,
7fedb63a 6935 const bool commit_window)
979d63d5 6936{
3d0220f6 6937 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 6938 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 6939 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 6940 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
6941 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6942 u8 opcode = BPF_OP(insn->code);
6943 u32 alu_state, alu_limit;
6944 struct bpf_reg_state tmp;
6945 bool ret;
f232326f 6946 int err;
979d63d5 6947
d3bd7413 6948 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
6949 return 0;
6950
6951 /* We already marked aux for masking from non-speculative
6952 * paths, thus we got here in the first place. We only care
6953 * to explore bad access from here.
6954 */
6955 if (vstate->speculative)
6956 goto do_sim;
6957
bb01a1bb
DB
6958 if (!commit_window) {
6959 if (!tnum_is_const(off_reg->var_off) &&
6960 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6961 return REASON_BOUNDS;
6962
6963 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6964 (opcode == BPF_SUB && !off_is_neg);
6965 }
6966
6967 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
6968 if (err < 0)
6969 return err;
6970
7fedb63a
DB
6971 if (commit_window) {
6972 /* In commit phase we narrow the masking window based on
6973 * the observed pointer move after the simulated operation.
6974 */
3d0220f6
DB
6975 alu_state = info->aux.alu_state;
6976 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
6977 } else {
6978 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 6979 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
6980 alu_state |= ptr_is_dst_reg ?
6981 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
6982
6983 /* Limit pruning on unknown scalars to enable deep search for
6984 * potential masking differences from other program paths.
6985 */
6986 if (!off_is_imm)
6987 env->explore_alu_limits = true;
7fedb63a
DB
6988 }
6989
f232326f
PK
6990 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6991 if (err < 0)
6992 return err;
979d63d5 6993do_sim:
7fedb63a
DB
6994 /* If we're in commit phase, we're done here given we already
6995 * pushed the truncated dst_reg into the speculative verification
6996 * stack.
a7036191
DB
6997 *
6998 * Also, when register is a known constant, we rewrite register-based
6999 * operation to immediate-based, and thus do not need masking (and as
7000 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7001 */
a7036191 7002 if (commit_window || off_is_imm)
7fedb63a
DB
7003 return 0;
7004
979d63d5
DB
7005 /* Simulate and find potential out-of-bounds access under
7006 * speculative execution from truncation as a result of
7007 * masking when off was not within expected range. If off
7008 * sits in dst, then we temporarily need to move ptr there
7009 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7010 * for cases where we use K-based arithmetic in one direction
7011 * and truncated reg-based in the other in order to explore
7012 * bad access.
7013 */
7014 if (!ptr_is_dst_reg) {
7015 tmp = *dst_reg;
7016 *dst_reg = *ptr_reg;
7017 }
9183671a
DB
7018 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7019 env->insn_idx);
0803278b 7020 if (!ptr_is_dst_reg && ret)
979d63d5 7021 *dst_reg = tmp;
a6aaece0
DB
7022 return !ret ? REASON_STACK : 0;
7023}
7024
fe9a5ca7
DB
7025static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7026{
7027 struct bpf_verifier_state *vstate = env->cur_state;
7028
7029 /* If we simulate paths under speculation, we don't update the
7030 * insn as 'seen' such that when we verify unreachable paths in
7031 * the non-speculative domain, sanitize_dead_code() can still
7032 * rewrite/sanitize them.
7033 */
7034 if (!vstate->speculative)
7035 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7036}
7037
a6aaece0
DB
7038static int sanitize_err(struct bpf_verifier_env *env,
7039 const struct bpf_insn *insn, int reason,
7040 const struct bpf_reg_state *off_reg,
7041 const struct bpf_reg_state *dst_reg)
7042{
7043 static const char *err = "pointer arithmetic with it prohibited for !root";
7044 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7045 u32 dst = insn->dst_reg, src = insn->src_reg;
7046
7047 switch (reason) {
7048 case REASON_BOUNDS:
7049 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7050 off_reg == dst_reg ? dst : src, err);
7051 break;
7052 case REASON_TYPE:
7053 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7054 off_reg == dst_reg ? src : dst, err);
7055 break;
7056 case REASON_PATHS:
7057 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7058 dst, op, err);
7059 break;
7060 case REASON_LIMIT:
7061 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7062 dst, op, err);
7063 break;
7064 case REASON_STACK:
7065 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7066 dst, err);
7067 break;
7068 default:
7069 verbose(env, "verifier internal error: unknown reason (%d)\n",
7070 reason);
7071 break;
7072 }
7073
7074 return -EACCES;
979d63d5
DB
7075}
7076
01f810ac
AM
7077/* check that stack access falls within stack limits and that 'reg' doesn't
7078 * have a variable offset.
7079 *
7080 * Variable offset is prohibited for unprivileged mode for simplicity since it
7081 * requires corresponding support in Spectre masking for stack ALU. See also
7082 * retrieve_ptr_limit().
7083 *
7084 *
7085 * 'off' includes 'reg->off'.
7086 */
7087static int check_stack_access_for_ptr_arithmetic(
7088 struct bpf_verifier_env *env,
7089 int regno,
7090 const struct bpf_reg_state *reg,
7091 int off)
7092{
7093 if (!tnum_is_const(reg->var_off)) {
7094 char tn_buf[48];
7095
7096 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7097 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7098 regno, tn_buf, off);
7099 return -EACCES;
7100 }
7101
7102 if (off >= 0 || off < -MAX_BPF_STACK) {
7103 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7104 "prohibited for !root; off=%d\n", regno, off);
7105 return -EACCES;
7106 }
7107
7108 return 0;
7109}
7110
073815b7
DB
7111static int sanitize_check_bounds(struct bpf_verifier_env *env,
7112 const struct bpf_insn *insn,
7113 const struct bpf_reg_state *dst_reg)
7114{
7115 u32 dst = insn->dst_reg;
7116
7117 /* For unprivileged we require that resulting offset must be in bounds
7118 * in order to be able to sanitize access later on.
7119 */
7120 if (env->bypass_spec_v1)
7121 return 0;
7122
7123 switch (dst_reg->type) {
7124 case PTR_TO_STACK:
7125 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7126 dst_reg->off + dst_reg->var_off.value))
7127 return -EACCES;
7128 break;
7129 case PTR_TO_MAP_VALUE:
7130 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7131 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7132 "prohibited for !root\n", dst);
7133 return -EACCES;
7134 }
7135 break;
7136 default:
7137 break;
7138 }
7139
7140 return 0;
7141}
01f810ac 7142
f1174f77 7143/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
7144 * Caller should also handle BPF_MOV case separately.
7145 * If we return -EACCES, caller may want to try again treating pointer as a
7146 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7147 */
7148static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7149 struct bpf_insn *insn,
7150 const struct bpf_reg_state *ptr_reg,
7151 const struct bpf_reg_state *off_reg)
969bf05e 7152{
f4d7e40a
AS
7153 struct bpf_verifier_state *vstate = env->cur_state;
7154 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7155 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 7156 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
7157 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7158 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7159 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7160 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 7161 struct bpf_sanitize_info info = {};
969bf05e 7162 u8 opcode = BPF_OP(insn->code);
24c109bb 7163 u32 dst = insn->dst_reg;
979d63d5 7164 int ret;
969bf05e 7165
f1174f77 7166 dst_reg = &regs[dst];
969bf05e 7167
6f16101e
DB
7168 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7169 smin_val > smax_val || umin_val > umax_val) {
7170 /* Taint dst register if offset had invalid bounds derived from
7171 * e.g. dead branches.
7172 */
f54c7898 7173 __mark_reg_unknown(env, dst_reg);
6f16101e 7174 return 0;
f1174f77
EC
7175 }
7176
7177 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7178 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
7179 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7180 __mark_reg_unknown(env, dst_reg);
7181 return 0;
7182 }
7183
82abbf8d
AS
7184 verbose(env,
7185 "R%d 32-bit pointer arithmetic prohibited\n",
7186 dst);
f1174f77 7187 return -EACCES;
969bf05e
AS
7188 }
7189
aad2eeaf
JS
7190 switch (ptr_reg->type) {
7191 case PTR_TO_MAP_VALUE_OR_NULL:
7192 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7193 dst, reg_type_str[ptr_reg->type]);
f1174f77 7194 return -EACCES;
aad2eeaf 7195 case CONST_PTR_TO_MAP:
7c696732
YS
7196 /* smin_val represents the known value */
7197 if (known && smin_val == 0 && opcode == BPF_ADD)
7198 break;
8731745e 7199 fallthrough;
aad2eeaf 7200 case PTR_TO_PACKET_END:
c64b7983
JS
7201 case PTR_TO_SOCKET:
7202 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7203 case PTR_TO_SOCK_COMMON:
7204 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7205 case PTR_TO_TCP_SOCK:
7206 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7207 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
7208 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7209 dst, reg_type_str[ptr_reg->type]);
f1174f77 7210 return -EACCES;
aad2eeaf
JS
7211 default:
7212 break;
f1174f77
EC
7213 }
7214
7215 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7216 * The id may be overwritten later if we create a new variable offset.
969bf05e 7217 */
f1174f77
EC
7218 dst_reg->type = ptr_reg->type;
7219 dst_reg->id = ptr_reg->id;
969bf05e 7220
bb7f0f98
AS
7221 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7222 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7223 return -EINVAL;
7224
3f50f132
JF
7225 /* pointer types do not carry 32-bit bounds at the moment. */
7226 __mark_reg32_unbounded(dst_reg);
7227
7fedb63a
DB
7228 if (sanitize_needed(opcode)) {
7229 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 7230 &info, false);
a6aaece0
DB
7231 if (ret < 0)
7232 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 7233 }
a6aaece0 7234
f1174f77
EC
7235 switch (opcode) {
7236 case BPF_ADD:
7237 /* We can take a fixed offset as long as it doesn't overflow
7238 * the s32 'off' field
969bf05e 7239 */
b03c9f9f
EC
7240 if (known && (ptr_reg->off + smin_val ==
7241 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 7242 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
7243 dst_reg->smin_value = smin_ptr;
7244 dst_reg->smax_value = smax_ptr;
7245 dst_reg->umin_value = umin_ptr;
7246 dst_reg->umax_value = umax_ptr;
f1174f77 7247 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 7248 dst_reg->off = ptr_reg->off + smin_val;
0962590e 7249 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7250 break;
7251 }
f1174f77
EC
7252 /* A new variable offset is created. Note that off_reg->off
7253 * == 0, since it's a scalar.
7254 * dst_reg gets the pointer type and since some positive
7255 * integer value was added to the pointer, give it a new 'id'
7256 * if it's a PTR_TO_PACKET.
7257 * this creates a new 'base' pointer, off_reg (variable) gets
7258 * added into the variable offset, and we copy the fixed offset
7259 * from ptr_reg.
969bf05e 7260 */
b03c9f9f
EC
7261 if (signed_add_overflows(smin_ptr, smin_val) ||
7262 signed_add_overflows(smax_ptr, smax_val)) {
7263 dst_reg->smin_value = S64_MIN;
7264 dst_reg->smax_value = S64_MAX;
7265 } else {
7266 dst_reg->smin_value = smin_ptr + smin_val;
7267 dst_reg->smax_value = smax_ptr + smax_val;
7268 }
7269 if (umin_ptr + umin_val < umin_ptr ||
7270 umax_ptr + umax_val < umax_ptr) {
7271 dst_reg->umin_value = 0;
7272 dst_reg->umax_value = U64_MAX;
7273 } else {
7274 dst_reg->umin_value = umin_ptr + umin_val;
7275 dst_reg->umax_value = umax_ptr + umax_val;
7276 }
f1174f77
EC
7277 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7278 dst_reg->off = ptr_reg->off;
0962590e 7279 dst_reg->raw = ptr_reg->raw;
de8f3a83 7280 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7281 dst_reg->id = ++env->id_gen;
7282 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 7283 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
7284 }
7285 break;
7286 case BPF_SUB:
7287 if (dst_reg == off_reg) {
7288 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
7289 verbose(env, "R%d tried to subtract pointer from scalar\n",
7290 dst);
f1174f77
EC
7291 return -EACCES;
7292 }
7293 /* We don't allow subtraction from FP, because (according to
7294 * test_verifier.c test "invalid fp arithmetic", JITs might not
7295 * be able to deal with it.
969bf05e 7296 */
f1174f77 7297 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
7298 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7299 dst);
f1174f77
EC
7300 return -EACCES;
7301 }
b03c9f9f
EC
7302 if (known && (ptr_reg->off - smin_val ==
7303 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 7304 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
7305 dst_reg->smin_value = smin_ptr;
7306 dst_reg->smax_value = smax_ptr;
7307 dst_reg->umin_value = umin_ptr;
7308 dst_reg->umax_value = umax_ptr;
f1174f77
EC
7309 dst_reg->var_off = ptr_reg->var_off;
7310 dst_reg->id = ptr_reg->id;
b03c9f9f 7311 dst_reg->off = ptr_reg->off - smin_val;
0962590e 7312 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7313 break;
7314 }
f1174f77
EC
7315 /* A new variable offset is created. If the subtrahend is known
7316 * nonnegative, then any reg->range we had before is still good.
969bf05e 7317 */
b03c9f9f
EC
7318 if (signed_sub_overflows(smin_ptr, smax_val) ||
7319 signed_sub_overflows(smax_ptr, smin_val)) {
7320 /* Overflow possible, we know nothing */
7321 dst_reg->smin_value = S64_MIN;
7322 dst_reg->smax_value = S64_MAX;
7323 } else {
7324 dst_reg->smin_value = smin_ptr - smax_val;
7325 dst_reg->smax_value = smax_ptr - smin_val;
7326 }
7327 if (umin_ptr < umax_val) {
7328 /* Overflow possible, we know nothing */
7329 dst_reg->umin_value = 0;
7330 dst_reg->umax_value = U64_MAX;
7331 } else {
7332 /* Cannot overflow (as long as bounds are consistent) */
7333 dst_reg->umin_value = umin_ptr - umax_val;
7334 dst_reg->umax_value = umax_ptr - umin_val;
7335 }
f1174f77
EC
7336 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7337 dst_reg->off = ptr_reg->off;
0962590e 7338 dst_reg->raw = ptr_reg->raw;
de8f3a83 7339 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7340 dst_reg->id = ++env->id_gen;
7341 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 7342 if (smin_val < 0)
22dc4a0f 7343 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 7344 }
f1174f77
EC
7345 break;
7346 case BPF_AND:
7347 case BPF_OR:
7348 case BPF_XOR:
82abbf8d
AS
7349 /* bitwise ops on pointers are troublesome, prohibit. */
7350 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7351 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
7352 return -EACCES;
7353 default:
7354 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
7355 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7356 dst, bpf_alu_string[opcode >> 4]);
f1174f77 7357 return -EACCES;
43188702
JF
7358 }
7359
bb7f0f98
AS
7360 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7361 return -EINVAL;
7362
b03c9f9f
EC
7363 __update_reg_bounds(dst_reg);
7364 __reg_deduce_bounds(dst_reg);
7365 __reg_bound_offset(dst_reg);
0d6303db 7366
073815b7
DB
7367 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7368 return -EACCES;
7fedb63a
DB
7369 if (sanitize_needed(opcode)) {
7370 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 7371 &info, true);
7fedb63a
DB
7372 if (ret < 0)
7373 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
7374 }
7375
43188702
JF
7376 return 0;
7377}
7378
3f50f132
JF
7379static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7380 struct bpf_reg_state *src_reg)
7381{
7382 s32 smin_val = src_reg->s32_min_value;
7383 s32 smax_val = src_reg->s32_max_value;
7384 u32 umin_val = src_reg->u32_min_value;
7385 u32 umax_val = src_reg->u32_max_value;
7386
7387 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7388 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7389 dst_reg->s32_min_value = S32_MIN;
7390 dst_reg->s32_max_value = S32_MAX;
7391 } else {
7392 dst_reg->s32_min_value += smin_val;
7393 dst_reg->s32_max_value += smax_val;
7394 }
7395 if (dst_reg->u32_min_value + umin_val < umin_val ||
7396 dst_reg->u32_max_value + umax_val < umax_val) {
7397 dst_reg->u32_min_value = 0;
7398 dst_reg->u32_max_value = U32_MAX;
7399 } else {
7400 dst_reg->u32_min_value += umin_val;
7401 dst_reg->u32_max_value += umax_val;
7402 }
7403}
7404
07cd2631
JF
7405static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7406 struct bpf_reg_state *src_reg)
7407{
7408 s64 smin_val = src_reg->smin_value;
7409 s64 smax_val = src_reg->smax_value;
7410 u64 umin_val = src_reg->umin_value;
7411 u64 umax_val = src_reg->umax_value;
7412
7413 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7414 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7415 dst_reg->smin_value = S64_MIN;
7416 dst_reg->smax_value = S64_MAX;
7417 } else {
7418 dst_reg->smin_value += smin_val;
7419 dst_reg->smax_value += smax_val;
7420 }
7421 if (dst_reg->umin_value + umin_val < umin_val ||
7422 dst_reg->umax_value + umax_val < umax_val) {
7423 dst_reg->umin_value = 0;
7424 dst_reg->umax_value = U64_MAX;
7425 } else {
7426 dst_reg->umin_value += umin_val;
7427 dst_reg->umax_value += umax_val;
7428 }
3f50f132
JF
7429}
7430
7431static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7432 struct bpf_reg_state *src_reg)
7433{
7434 s32 smin_val = src_reg->s32_min_value;
7435 s32 smax_val = src_reg->s32_max_value;
7436 u32 umin_val = src_reg->u32_min_value;
7437 u32 umax_val = src_reg->u32_max_value;
7438
7439 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7440 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7441 /* Overflow possible, we know nothing */
7442 dst_reg->s32_min_value = S32_MIN;
7443 dst_reg->s32_max_value = S32_MAX;
7444 } else {
7445 dst_reg->s32_min_value -= smax_val;
7446 dst_reg->s32_max_value -= smin_val;
7447 }
7448 if (dst_reg->u32_min_value < umax_val) {
7449 /* Overflow possible, we know nothing */
7450 dst_reg->u32_min_value = 0;
7451 dst_reg->u32_max_value = U32_MAX;
7452 } else {
7453 /* Cannot overflow (as long as bounds are consistent) */
7454 dst_reg->u32_min_value -= umax_val;
7455 dst_reg->u32_max_value -= umin_val;
7456 }
07cd2631
JF
7457}
7458
7459static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7460 struct bpf_reg_state *src_reg)
7461{
7462 s64 smin_val = src_reg->smin_value;
7463 s64 smax_val = src_reg->smax_value;
7464 u64 umin_val = src_reg->umin_value;
7465 u64 umax_val = src_reg->umax_value;
7466
7467 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7468 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7469 /* Overflow possible, we know nothing */
7470 dst_reg->smin_value = S64_MIN;
7471 dst_reg->smax_value = S64_MAX;
7472 } else {
7473 dst_reg->smin_value -= smax_val;
7474 dst_reg->smax_value -= smin_val;
7475 }
7476 if (dst_reg->umin_value < umax_val) {
7477 /* Overflow possible, we know nothing */
7478 dst_reg->umin_value = 0;
7479 dst_reg->umax_value = U64_MAX;
7480 } else {
7481 /* Cannot overflow (as long as bounds are consistent) */
7482 dst_reg->umin_value -= umax_val;
7483 dst_reg->umax_value -= umin_val;
7484 }
3f50f132
JF
7485}
7486
7487static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7488 struct bpf_reg_state *src_reg)
7489{
7490 s32 smin_val = src_reg->s32_min_value;
7491 u32 umin_val = src_reg->u32_min_value;
7492 u32 umax_val = src_reg->u32_max_value;
7493
7494 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7495 /* Ain't nobody got time to multiply that sign */
7496 __mark_reg32_unbounded(dst_reg);
7497 return;
7498 }
7499 /* Both values are positive, so we can work with unsigned and
7500 * copy the result to signed (unless it exceeds S32_MAX).
7501 */
7502 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7503 /* Potential overflow, we know nothing */
7504 __mark_reg32_unbounded(dst_reg);
7505 return;
7506 }
7507 dst_reg->u32_min_value *= umin_val;
7508 dst_reg->u32_max_value *= umax_val;
7509 if (dst_reg->u32_max_value > S32_MAX) {
7510 /* Overflow possible, we know nothing */
7511 dst_reg->s32_min_value = S32_MIN;
7512 dst_reg->s32_max_value = S32_MAX;
7513 } else {
7514 dst_reg->s32_min_value = dst_reg->u32_min_value;
7515 dst_reg->s32_max_value = dst_reg->u32_max_value;
7516 }
07cd2631
JF
7517}
7518
7519static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7520 struct bpf_reg_state *src_reg)
7521{
7522 s64 smin_val = src_reg->smin_value;
7523 u64 umin_val = src_reg->umin_value;
7524 u64 umax_val = src_reg->umax_value;
7525
07cd2631
JF
7526 if (smin_val < 0 || dst_reg->smin_value < 0) {
7527 /* Ain't nobody got time to multiply that sign */
3f50f132 7528 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7529 return;
7530 }
7531 /* Both values are positive, so we can work with unsigned and
7532 * copy the result to signed (unless it exceeds S64_MAX).
7533 */
7534 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7535 /* Potential overflow, we know nothing */
3f50f132 7536 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7537 return;
7538 }
7539 dst_reg->umin_value *= umin_val;
7540 dst_reg->umax_value *= umax_val;
7541 if (dst_reg->umax_value > S64_MAX) {
7542 /* Overflow possible, we know nothing */
7543 dst_reg->smin_value = S64_MIN;
7544 dst_reg->smax_value = S64_MAX;
7545 } else {
7546 dst_reg->smin_value = dst_reg->umin_value;
7547 dst_reg->smax_value = dst_reg->umax_value;
7548 }
7549}
7550
3f50f132
JF
7551static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7552 struct bpf_reg_state *src_reg)
7553{
7554 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7555 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7556 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7557 s32 smin_val = src_reg->s32_min_value;
7558 u32 umax_val = src_reg->u32_max_value;
7559
049c4e13
DB
7560 if (src_known && dst_known) {
7561 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7562 return;
049c4e13 7563 }
3f50f132
JF
7564
7565 /* We get our minimum from the var_off, since that's inherently
7566 * bitwise. Our maximum is the minimum of the operands' maxima.
7567 */
7568 dst_reg->u32_min_value = var32_off.value;
7569 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7570 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7571 /* Lose signed bounds when ANDing negative numbers,
7572 * ain't nobody got time for that.
7573 */
7574 dst_reg->s32_min_value = S32_MIN;
7575 dst_reg->s32_max_value = S32_MAX;
7576 } else {
7577 /* ANDing two positives gives a positive, so safe to
7578 * cast result into s64.
7579 */
7580 dst_reg->s32_min_value = dst_reg->u32_min_value;
7581 dst_reg->s32_max_value = dst_reg->u32_max_value;
7582 }
3f50f132
JF
7583}
7584
07cd2631
JF
7585static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7586 struct bpf_reg_state *src_reg)
7587{
3f50f132
JF
7588 bool src_known = tnum_is_const(src_reg->var_off);
7589 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7590 s64 smin_val = src_reg->smin_value;
7591 u64 umax_val = src_reg->umax_value;
7592
3f50f132 7593 if (src_known && dst_known) {
4fbb38a3 7594 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7595 return;
7596 }
7597
07cd2631
JF
7598 /* We get our minimum from the var_off, since that's inherently
7599 * bitwise. Our maximum is the minimum of the operands' maxima.
7600 */
07cd2631
JF
7601 dst_reg->umin_value = dst_reg->var_off.value;
7602 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7603 if (dst_reg->smin_value < 0 || smin_val < 0) {
7604 /* Lose signed bounds when ANDing negative numbers,
7605 * ain't nobody got time for that.
7606 */
7607 dst_reg->smin_value = S64_MIN;
7608 dst_reg->smax_value = S64_MAX;
7609 } else {
7610 /* ANDing two positives gives a positive, so safe to
7611 * cast result into s64.
7612 */
7613 dst_reg->smin_value = dst_reg->umin_value;
7614 dst_reg->smax_value = dst_reg->umax_value;
7615 }
7616 /* We may learn something more from the var_off */
7617 __update_reg_bounds(dst_reg);
7618}
7619
3f50f132
JF
7620static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7621 struct bpf_reg_state *src_reg)
7622{
7623 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7624 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7625 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7626 s32 smin_val = src_reg->s32_min_value;
7627 u32 umin_val = src_reg->u32_min_value;
3f50f132 7628
049c4e13
DB
7629 if (src_known && dst_known) {
7630 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7631 return;
049c4e13 7632 }
3f50f132
JF
7633
7634 /* We get our maximum from the var_off, and our minimum is the
7635 * maximum of the operands' minima
7636 */
7637 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7638 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7639 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7640 /* Lose signed bounds when ORing negative numbers,
7641 * ain't nobody got time for that.
7642 */
7643 dst_reg->s32_min_value = S32_MIN;
7644 dst_reg->s32_max_value = S32_MAX;
7645 } else {
7646 /* ORing two positives gives a positive, so safe to
7647 * cast result into s64.
7648 */
5b9fbeb7
DB
7649 dst_reg->s32_min_value = dst_reg->u32_min_value;
7650 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7651 }
7652}
7653
07cd2631
JF
7654static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7655 struct bpf_reg_state *src_reg)
7656{
3f50f132
JF
7657 bool src_known = tnum_is_const(src_reg->var_off);
7658 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7659 s64 smin_val = src_reg->smin_value;
7660 u64 umin_val = src_reg->umin_value;
7661
3f50f132 7662 if (src_known && dst_known) {
4fbb38a3 7663 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7664 return;
7665 }
7666
07cd2631
JF
7667 /* We get our maximum from the var_off, and our minimum is the
7668 * maximum of the operands' minima
7669 */
07cd2631
JF
7670 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7671 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7672 if (dst_reg->smin_value < 0 || smin_val < 0) {
7673 /* Lose signed bounds when ORing negative numbers,
7674 * ain't nobody got time for that.
7675 */
7676 dst_reg->smin_value = S64_MIN;
7677 dst_reg->smax_value = S64_MAX;
7678 } else {
7679 /* ORing two positives gives a positive, so safe to
7680 * cast result into s64.
7681 */
7682 dst_reg->smin_value = dst_reg->umin_value;
7683 dst_reg->smax_value = dst_reg->umax_value;
7684 }
7685 /* We may learn something more from the var_off */
7686 __update_reg_bounds(dst_reg);
7687}
7688
2921c90d
YS
7689static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7690 struct bpf_reg_state *src_reg)
7691{
7692 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7693 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7694 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7695 s32 smin_val = src_reg->s32_min_value;
7696
049c4e13
DB
7697 if (src_known && dst_known) {
7698 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 7699 return;
049c4e13 7700 }
2921c90d
YS
7701
7702 /* We get both minimum and maximum from the var32_off. */
7703 dst_reg->u32_min_value = var32_off.value;
7704 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7705
7706 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7707 /* XORing two positive sign numbers gives a positive,
7708 * so safe to cast u32 result into s32.
7709 */
7710 dst_reg->s32_min_value = dst_reg->u32_min_value;
7711 dst_reg->s32_max_value = dst_reg->u32_max_value;
7712 } else {
7713 dst_reg->s32_min_value = S32_MIN;
7714 dst_reg->s32_max_value = S32_MAX;
7715 }
7716}
7717
7718static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7719 struct bpf_reg_state *src_reg)
7720{
7721 bool src_known = tnum_is_const(src_reg->var_off);
7722 bool dst_known = tnum_is_const(dst_reg->var_off);
7723 s64 smin_val = src_reg->smin_value;
7724
7725 if (src_known && dst_known) {
7726 /* dst_reg->var_off.value has been updated earlier */
7727 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7728 return;
7729 }
7730
7731 /* We get both minimum and maximum from the var_off. */
7732 dst_reg->umin_value = dst_reg->var_off.value;
7733 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7734
7735 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7736 /* XORing two positive sign numbers gives a positive,
7737 * so safe to cast u64 result into s64.
7738 */
7739 dst_reg->smin_value = dst_reg->umin_value;
7740 dst_reg->smax_value = dst_reg->umax_value;
7741 } else {
7742 dst_reg->smin_value = S64_MIN;
7743 dst_reg->smax_value = S64_MAX;
7744 }
7745
7746 __update_reg_bounds(dst_reg);
7747}
7748
3f50f132
JF
7749static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7750 u64 umin_val, u64 umax_val)
07cd2631 7751{
07cd2631
JF
7752 /* We lose all sign bit information (except what we can pick
7753 * up from var_off)
7754 */
3f50f132
JF
7755 dst_reg->s32_min_value = S32_MIN;
7756 dst_reg->s32_max_value = S32_MAX;
7757 /* If we might shift our top bit out, then we know nothing */
7758 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7759 dst_reg->u32_min_value = 0;
7760 dst_reg->u32_max_value = U32_MAX;
7761 } else {
7762 dst_reg->u32_min_value <<= umin_val;
7763 dst_reg->u32_max_value <<= umax_val;
7764 }
7765}
7766
7767static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7768 struct bpf_reg_state *src_reg)
7769{
7770 u32 umax_val = src_reg->u32_max_value;
7771 u32 umin_val = src_reg->u32_min_value;
7772 /* u32 alu operation will zext upper bits */
7773 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7774
7775 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7776 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7777 /* Not required but being careful mark reg64 bounds as unknown so
7778 * that we are forced to pick them up from tnum and zext later and
7779 * if some path skips this step we are still safe.
7780 */
7781 __mark_reg64_unbounded(dst_reg);
7782 __update_reg32_bounds(dst_reg);
7783}
7784
7785static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7786 u64 umin_val, u64 umax_val)
7787{
7788 /* Special case <<32 because it is a common compiler pattern to sign
7789 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7790 * positive we know this shift will also be positive so we can track
7791 * bounds correctly. Otherwise we lose all sign bit information except
7792 * what we can pick up from var_off. Perhaps we can generalize this
7793 * later to shifts of any length.
7794 */
7795 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7796 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7797 else
7798 dst_reg->smax_value = S64_MAX;
7799
7800 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7801 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7802 else
7803 dst_reg->smin_value = S64_MIN;
7804
07cd2631
JF
7805 /* If we might shift our top bit out, then we know nothing */
7806 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7807 dst_reg->umin_value = 0;
7808 dst_reg->umax_value = U64_MAX;
7809 } else {
7810 dst_reg->umin_value <<= umin_val;
7811 dst_reg->umax_value <<= umax_val;
7812 }
3f50f132
JF
7813}
7814
7815static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7816 struct bpf_reg_state *src_reg)
7817{
7818 u64 umax_val = src_reg->umax_value;
7819 u64 umin_val = src_reg->umin_value;
7820
7821 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7822 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7823 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7824
07cd2631
JF
7825 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7826 /* We may learn something more from the var_off */
7827 __update_reg_bounds(dst_reg);
7828}
7829
3f50f132
JF
7830static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7831 struct bpf_reg_state *src_reg)
7832{
7833 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7834 u32 umax_val = src_reg->u32_max_value;
7835 u32 umin_val = src_reg->u32_min_value;
7836
7837 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7838 * be negative, then either:
7839 * 1) src_reg might be zero, so the sign bit of the result is
7840 * unknown, so we lose our signed bounds
7841 * 2) it's known negative, thus the unsigned bounds capture the
7842 * signed bounds
7843 * 3) the signed bounds cross zero, so they tell us nothing
7844 * about the result
7845 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7846 * unsigned bounds capture the signed bounds.
3f50f132
JF
7847 * Thus, in all cases it suffices to blow away our signed bounds
7848 * and rely on inferring new ones from the unsigned bounds and
7849 * var_off of the result.
7850 */
7851 dst_reg->s32_min_value = S32_MIN;
7852 dst_reg->s32_max_value = S32_MAX;
7853
7854 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7855 dst_reg->u32_min_value >>= umax_val;
7856 dst_reg->u32_max_value >>= umin_val;
7857
7858 __mark_reg64_unbounded(dst_reg);
7859 __update_reg32_bounds(dst_reg);
7860}
7861
07cd2631
JF
7862static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7863 struct bpf_reg_state *src_reg)
7864{
7865 u64 umax_val = src_reg->umax_value;
7866 u64 umin_val = src_reg->umin_value;
7867
7868 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7869 * be negative, then either:
7870 * 1) src_reg might be zero, so the sign bit of the result is
7871 * unknown, so we lose our signed bounds
7872 * 2) it's known negative, thus the unsigned bounds capture the
7873 * signed bounds
7874 * 3) the signed bounds cross zero, so they tell us nothing
7875 * about the result
7876 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7877 * unsigned bounds capture the signed bounds.
07cd2631
JF
7878 * Thus, in all cases it suffices to blow away our signed bounds
7879 * and rely on inferring new ones from the unsigned bounds and
7880 * var_off of the result.
7881 */
7882 dst_reg->smin_value = S64_MIN;
7883 dst_reg->smax_value = S64_MAX;
7884 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7885 dst_reg->umin_value >>= umax_val;
7886 dst_reg->umax_value >>= umin_val;
3f50f132
JF
7887
7888 /* Its not easy to operate on alu32 bounds here because it depends
7889 * on bits being shifted in. Take easy way out and mark unbounded
7890 * so we can recalculate later from tnum.
7891 */
7892 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7893 __update_reg_bounds(dst_reg);
7894}
7895
3f50f132
JF
7896static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7897 struct bpf_reg_state *src_reg)
07cd2631 7898{
3f50f132 7899 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
7900
7901 /* Upon reaching here, src_known is true and
7902 * umax_val is equal to umin_val.
7903 */
3f50f132
JF
7904 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7905 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 7906
3f50f132
JF
7907 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7908
7909 /* blow away the dst_reg umin_value/umax_value and rely on
7910 * dst_reg var_off to refine the result.
7911 */
7912 dst_reg->u32_min_value = 0;
7913 dst_reg->u32_max_value = U32_MAX;
7914
7915 __mark_reg64_unbounded(dst_reg);
7916 __update_reg32_bounds(dst_reg);
7917}
7918
7919static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7920 struct bpf_reg_state *src_reg)
7921{
7922 u64 umin_val = src_reg->umin_value;
7923
7924 /* Upon reaching here, src_known is true and umax_val is equal
7925 * to umin_val.
7926 */
7927 dst_reg->smin_value >>= umin_val;
7928 dst_reg->smax_value >>= umin_val;
7929
7930 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
7931
7932 /* blow away the dst_reg umin_value/umax_value and rely on
7933 * dst_reg var_off to refine the result.
7934 */
7935 dst_reg->umin_value = 0;
7936 dst_reg->umax_value = U64_MAX;
3f50f132
JF
7937
7938 /* Its not easy to operate on alu32 bounds here because it depends
7939 * on bits being shifted in from upper 32-bits. Take easy way out
7940 * and mark unbounded so we can recalculate later from tnum.
7941 */
7942 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7943 __update_reg_bounds(dst_reg);
7944}
7945
468f6eaf
JH
7946/* WARNING: This function does calculations on 64-bit values, but the actual
7947 * execution may occur on 32-bit values. Therefore, things like bitshifts
7948 * need extra checks in the 32-bit case.
7949 */
f1174f77
EC
7950static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7951 struct bpf_insn *insn,
7952 struct bpf_reg_state *dst_reg,
7953 struct bpf_reg_state src_reg)
969bf05e 7954{
638f5b90 7955 struct bpf_reg_state *regs = cur_regs(env);
48461135 7956 u8 opcode = BPF_OP(insn->code);
b0b3fb67 7957 bool src_known;
b03c9f9f
EC
7958 s64 smin_val, smax_val;
7959 u64 umin_val, umax_val;
3f50f132
JF
7960 s32 s32_min_val, s32_max_val;
7961 u32 u32_min_val, u32_max_val;
468f6eaf 7962 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 7963 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 7964 int ret;
b799207e 7965
b03c9f9f
EC
7966 smin_val = src_reg.smin_value;
7967 smax_val = src_reg.smax_value;
7968 umin_val = src_reg.umin_value;
7969 umax_val = src_reg.umax_value;
f23cc643 7970
3f50f132
JF
7971 s32_min_val = src_reg.s32_min_value;
7972 s32_max_val = src_reg.s32_max_value;
7973 u32_min_val = src_reg.u32_min_value;
7974 u32_max_val = src_reg.u32_max_value;
7975
7976 if (alu32) {
7977 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
7978 if ((src_known &&
7979 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7980 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7981 /* Taint dst register if offset had invalid bounds
7982 * derived from e.g. dead branches.
7983 */
7984 __mark_reg_unknown(env, dst_reg);
7985 return 0;
7986 }
7987 } else {
7988 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
7989 if ((src_known &&
7990 (smin_val != smax_val || umin_val != umax_val)) ||
7991 smin_val > smax_val || umin_val > umax_val) {
7992 /* Taint dst register if offset had invalid bounds
7993 * derived from e.g. dead branches.
7994 */
7995 __mark_reg_unknown(env, dst_reg);
7996 return 0;
7997 }
6f16101e
DB
7998 }
7999
bb7f0f98
AS
8000 if (!src_known &&
8001 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8002 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8003 return 0;
8004 }
8005
f5288193
DB
8006 if (sanitize_needed(opcode)) {
8007 ret = sanitize_val_alu(env, insn);
8008 if (ret < 0)
8009 return sanitize_err(env, insn, ret, NULL, NULL);
8010 }
8011
3f50f132
JF
8012 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8013 * There are two classes of instructions: The first class we track both
8014 * alu32 and alu64 sign/unsigned bounds independently this provides the
8015 * greatest amount of precision when alu operations are mixed with jmp32
8016 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8017 * and BPF_OR. This is possible because these ops have fairly easy to
8018 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8019 * See alu32 verifier tests for examples. The second class of
8020 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8021 * with regards to tracking sign/unsigned bounds because the bits may
8022 * cross subreg boundaries in the alu64 case. When this happens we mark
8023 * the reg unbounded in the subreg bound space and use the resulting
8024 * tnum to calculate an approximation of the sign/unsigned bounds.
8025 */
48461135
JB
8026 switch (opcode) {
8027 case BPF_ADD:
3f50f132 8028 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 8029 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 8030 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
8031 break;
8032 case BPF_SUB:
3f50f132 8033 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 8034 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 8035 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
8036 break;
8037 case BPF_MUL:
3f50f132
JF
8038 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8039 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 8040 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
8041 break;
8042 case BPF_AND:
3f50f132
JF
8043 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8044 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 8045 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
8046 break;
8047 case BPF_OR:
3f50f132
JF
8048 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8049 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 8050 scalar_min_max_or(dst_reg, &src_reg);
48461135 8051 break;
2921c90d
YS
8052 case BPF_XOR:
8053 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8054 scalar32_min_max_xor(dst_reg, &src_reg);
8055 scalar_min_max_xor(dst_reg, &src_reg);
8056 break;
48461135 8057 case BPF_LSH:
468f6eaf
JH
8058 if (umax_val >= insn_bitness) {
8059 /* Shifts greater than 31 or 63 are undefined.
8060 * This includes shifts by a negative number.
b03c9f9f 8061 */
61bd5218 8062 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8063 break;
8064 }
3f50f132
JF
8065 if (alu32)
8066 scalar32_min_max_lsh(dst_reg, &src_reg);
8067 else
8068 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
8069 break;
8070 case BPF_RSH:
468f6eaf
JH
8071 if (umax_val >= insn_bitness) {
8072 /* Shifts greater than 31 or 63 are undefined.
8073 * This includes shifts by a negative number.
b03c9f9f 8074 */
61bd5218 8075 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8076 break;
8077 }
3f50f132
JF
8078 if (alu32)
8079 scalar32_min_max_rsh(dst_reg, &src_reg);
8080 else
8081 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 8082 break;
9cbe1f5a
YS
8083 case BPF_ARSH:
8084 if (umax_val >= insn_bitness) {
8085 /* Shifts greater than 31 or 63 are undefined.
8086 * This includes shifts by a negative number.
8087 */
8088 mark_reg_unknown(env, regs, insn->dst_reg);
8089 break;
8090 }
3f50f132
JF
8091 if (alu32)
8092 scalar32_min_max_arsh(dst_reg, &src_reg);
8093 else
8094 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 8095 break;
48461135 8096 default:
61bd5218 8097 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
8098 break;
8099 }
8100
3f50f132
JF
8101 /* ALU32 ops are zero extended into 64bit register */
8102 if (alu32)
8103 zext_32_to_64(dst_reg);
468f6eaf 8104
294f2fc6 8105 __update_reg_bounds(dst_reg);
b03c9f9f
EC
8106 __reg_deduce_bounds(dst_reg);
8107 __reg_bound_offset(dst_reg);
f1174f77
EC
8108 return 0;
8109}
8110
8111/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8112 * and var_off.
8113 */
8114static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8115 struct bpf_insn *insn)
8116{
f4d7e40a
AS
8117 struct bpf_verifier_state *vstate = env->cur_state;
8118 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8119 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
8120 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8121 u8 opcode = BPF_OP(insn->code);
b5dc0163 8122 int err;
f1174f77
EC
8123
8124 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
8125 src_reg = NULL;
8126 if (dst_reg->type != SCALAR_VALUE)
8127 ptr_reg = dst_reg;
75748837
AS
8128 else
8129 /* Make sure ID is cleared otherwise dst_reg min/max could be
8130 * incorrectly propagated into other registers by find_equal_scalars()
8131 */
8132 dst_reg->id = 0;
f1174f77
EC
8133 if (BPF_SRC(insn->code) == BPF_X) {
8134 src_reg = &regs[insn->src_reg];
f1174f77
EC
8135 if (src_reg->type != SCALAR_VALUE) {
8136 if (dst_reg->type != SCALAR_VALUE) {
8137 /* Combining two pointers by any ALU op yields
82abbf8d
AS
8138 * an arbitrary scalar. Disallow all math except
8139 * pointer subtraction
f1174f77 8140 */
dd066823 8141 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
8142 mark_reg_unknown(env, regs, insn->dst_reg);
8143 return 0;
f1174f77 8144 }
82abbf8d
AS
8145 verbose(env, "R%d pointer %s pointer prohibited\n",
8146 insn->dst_reg,
8147 bpf_alu_string[opcode >> 4]);
8148 return -EACCES;
f1174f77
EC
8149 } else {
8150 /* scalar += pointer
8151 * This is legal, but we have to reverse our
8152 * src/dest handling in computing the range
8153 */
b5dc0163
AS
8154 err = mark_chain_precision(env, insn->dst_reg);
8155 if (err)
8156 return err;
82abbf8d
AS
8157 return adjust_ptr_min_max_vals(env, insn,
8158 src_reg, dst_reg);
f1174f77
EC
8159 }
8160 } else if (ptr_reg) {
8161 /* pointer += scalar */
b5dc0163
AS
8162 err = mark_chain_precision(env, insn->src_reg);
8163 if (err)
8164 return err;
82abbf8d
AS
8165 return adjust_ptr_min_max_vals(env, insn,
8166 dst_reg, src_reg);
f1174f77
EC
8167 }
8168 } else {
8169 /* Pretend the src is a reg with a known value, since we only
8170 * need to be able to read from this state.
8171 */
8172 off_reg.type = SCALAR_VALUE;
b03c9f9f 8173 __mark_reg_known(&off_reg, insn->imm);
f1174f77 8174 src_reg = &off_reg;
82abbf8d
AS
8175 if (ptr_reg) /* pointer += K */
8176 return adjust_ptr_min_max_vals(env, insn,
8177 ptr_reg, src_reg);
f1174f77
EC
8178 }
8179
8180 /* Got here implies adding two SCALAR_VALUEs */
8181 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 8182 print_verifier_state(env, state);
61bd5218 8183 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
8184 return -EINVAL;
8185 }
8186 if (WARN_ON(!src_reg)) {
f4d7e40a 8187 print_verifier_state(env, state);
61bd5218 8188 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
8189 return -EINVAL;
8190 }
8191 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
8192}
8193
17a52670 8194/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 8195static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8196{
638f5b90 8197 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
8198 u8 opcode = BPF_OP(insn->code);
8199 int err;
8200
8201 if (opcode == BPF_END || opcode == BPF_NEG) {
8202 if (opcode == BPF_NEG) {
8203 if (BPF_SRC(insn->code) != 0 ||
8204 insn->src_reg != BPF_REG_0 ||
8205 insn->off != 0 || insn->imm != 0) {
61bd5218 8206 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
8207 return -EINVAL;
8208 }
8209 } else {
8210 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
8211 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8212 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 8213 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
8214 return -EINVAL;
8215 }
8216 }
8217
8218 /* check src operand */
dc503a8a 8219 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8220 if (err)
8221 return err;
8222
1be7f75d 8223 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 8224 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
8225 insn->dst_reg);
8226 return -EACCES;
8227 }
8228
17a52670 8229 /* check dest operand */
dc503a8a 8230 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8231 if (err)
8232 return err;
8233
8234 } else if (opcode == BPF_MOV) {
8235
8236 if (BPF_SRC(insn->code) == BPF_X) {
8237 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8238 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8239 return -EINVAL;
8240 }
8241
8242 /* check src operand */
dc503a8a 8243 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8244 if (err)
8245 return err;
8246 } else {
8247 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8248 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8249 return -EINVAL;
8250 }
8251 }
8252
fbeb1603
AF
8253 /* check dest operand, mark as required later */
8254 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8255 if (err)
8256 return err;
8257
8258 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
8259 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8260 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8261
17a52670
AS
8262 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8263 /* case: R1 = R2
8264 * copy register state to dest reg
8265 */
75748837
AS
8266 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8267 /* Assign src and dst registers the same ID
8268 * that will be used by find_equal_scalars()
8269 * to propagate min/max range.
8270 */
8271 src_reg->id = ++env->id_gen;
e434b8cd
JW
8272 *dst_reg = *src_reg;
8273 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8274 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 8275 } else {
f1174f77 8276 /* R1 = (u32) R2 */
1be7f75d 8277 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
8278 verbose(env,
8279 "R%d partial copy of pointer\n",
1be7f75d
AS
8280 insn->src_reg);
8281 return -EACCES;
e434b8cd
JW
8282 } else if (src_reg->type == SCALAR_VALUE) {
8283 *dst_reg = *src_reg;
75748837
AS
8284 /* Make sure ID is cleared otherwise
8285 * dst_reg min/max could be incorrectly
8286 * propagated into src_reg by find_equal_scalars()
8287 */
8288 dst_reg->id = 0;
e434b8cd 8289 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8290 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
8291 } else {
8292 mark_reg_unknown(env, regs,
8293 insn->dst_reg);
1be7f75d 8294 }
3f50f132 8295 zext_32_to_64(dst_reg);
17a52670
AS
8296 }
8297 } else {
8298 /* case: R = imm
8299 * remember the value we stored into this reg
8300 */
fbeb1603
AF
8301 /* clear any state __mark_reg_known doesn't set */
8302 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 8303 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
8304 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8305 __mark_reg_known(regs + insn->dst_reg,
8306 insn->imm);
8307 } else {
8308 __mark_reg_known(regs + insn->dst_reg,
8309 (u32)insn->imm);
8310 }
17a52670
AS
8311 }
8312
8313 } else if (opcode > BPF_END) {
61bd5218 8314 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
8315 return -EINVAL;
8316
8317 } else { /* all other ALU ops: and, sub, xor, add, ... */
8318
17a52670
AS
8319 if (BPF_SRC(insn->code) == BPF_X) {
8320 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8321 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8322 return -EINVAL;
8323 }
8324 /* check src1 operand */
dc503a8a 8325 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8326 if (err)
8327 return err;
8328 } else {
8329 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8330 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8331 return -EINVAL;
8332 }
8333 }
8334
8335 /* check src2 operand */
dc503a8a 8336 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8337 if (err)
8338 return err;
8339
8340 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8341 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 8342 verbose(env, "div by zero\n");
17a52670
AS
8343 return -EINVAL;
8344 }
8345
229394e8
RV
8346 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8347 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8348 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8349
8350 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 8351 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
8352 return -EINVAL;
8353 }
8354 }
8355
1a0dc1ac 8356 /* check dest operand */
dc503a8a 8357 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
8358 if (err)
8359 return err;
8360
f1174f77 8361 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
8362 }
8363
8364 return 0;
8365}
8366
c6a9efa1
PC
8367static void __find_good_pkt_pointers(struct bpf_func_state *state,
8368 struct bpf_reg_state *dst_reg,
6d94e741 8369 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
8370{
8371 struct bpf_reg_state *reg;
8372 int i;
8373
8374 for (i = 0; i < MAX_BPF_REG; i++) {
8375 reg = &state->regs[i];
8376 if (reg->type == type && reg->id == dst_reg->id)
8377 /* keep the maximum range already checked */
8378 reg->range = max(reg->range, new_range);
8379 }
8380
8381 bpf_for_each_spilled_reg(i, state, reg) {
8382 if (!reg)
8383 continue;
8384 if (reg->type == type && reg->id == dst_reg->id)
8385 reg->range = max(reg->range, new_range);
8386 }
8387}
8388
f4d7e40a 8389static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 8390 struct bpf_reg_state *dst_reg,
f8ddadc4 8391 enum bpf_reg_type type,
fb2a311a 8392 bool range_right_open)
969bf05e 8393{
6d94e741 8394 int new_range, i;
2d2be8ca 8395
fb2a311a
DB
8396 if (dst_reg->off < 0 ||
8397 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
8398 /* This doesn't give us any range */
8399 return;
8400
b03c9f9f
EC
8401 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8402 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
8403 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8404 * than pkt_end, but that's because it's also less than pkt.
8405 */
8406 return;
8407
fb2a311a
DB
8408 new_range = dst_reg->off;
8409 if (range_right_open)
8410 new_range--;
8411
8412 /* Examples for register markings:
2d2be8ca 8413 *
fb2a311a 8414 * pkt_data in dst register:
2d2be8ca
DB
8415 *
8416 * r2 = r3;
8417 * r2 += 8;
8418 * if (r2 > pkt_end) goto <handle exception>
8419 * <access okay>
8420 *
b4e432f1
DB
8421 * r2 = r3;
8422 * r2 += 8;
8423 * if (r2 < pkt_end) goto <access okay>
8424 * <handle exception>
8425 *
2d2be8ca
DB
8426 * Where:
8427 * r2 == dst_reg, pkt_end == src_reg
8428 * r2=pkt(id=n,off=8,r=0)
8429 * r3=pkt(id=n,off=0,r=0)
8430 *
fb2a311a 8431 * pkt_data in src register:
2d2be8ca
DB
8432 *
8433 * r2 = r3;
8434 * r2 += 8;
8435 * if (pkt_end >= r2) goto <access okay>
8436 * <handle exception>
8437 *
b4e432f1
DB
8438 * r2 = r3;
8439 * r2 += 8;
8440 * if (pkt_end <= r2) goto <handle exception>
8441 * <access okay>
8442 *
2d2be8ca
DB
8443 * Where:
8444 * pkt_end == dst_reg, r2 == src_reg
8445 * r2=pkt(id=n,off=8,r=0)
8446 * r3=pkt(id=n,off=0,r=0)
8447 *
8448 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8449 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8450 * and [r3, r3 + 8-1) respectively is safe to access depending on
8451 * the check.
969bf05e 8452 */
2d2be8ca 8453
f1174f77
EC
8454 /* If our ids match, then we must have the same max_value. And we
8455 * don't care about the other reg's fixed offset, since if it's too big
8456 * the range won't allow anything.
8457 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8458 */
c6a9efa1
PC
8459 for (i = 0; i <= vstate->curframe; i++)
8460 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8461 new_range);
969bf05e
AS
8462}
8463
3f50f132 8464static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8465{
3f50f132
JF
8466 struct tnum subreg = tnum_subreg(reg->var_off);
8467 s32 sval = (s32)val;
a72dafaf 8468
3f50f132
JF
8469 switch (opcode) {
8470 case BPF_JEQ:
8471 if (tnum_is_const(subreg))
8472 return !!tnum_equals_const(subreg, val);
8473 break;
8474 case BPF_JNE:
8475 if (tnum_is_const(subreg))
8476 return !tnum_equals_const(subreg, val);
8477 break;
8478 case BPF_JSET:
8479 if ((~subreg.mask & subreg.value) & val)
8480 return 1;
8481 if (!((subreg.mask | subreg.value) & val))
8482 return 0;
8483 break;
8484 case BPF_JGT:
8485 if (reg->u32_min_value > val)
8486 return 1;
8487 else if (reg->u32_max_value <= val)
8488 return 0;
8489 break;
8490 case BPF_JSGT:
8491 if (reg->s32_min_value > sval)
8492 return 1;
ee114dd6 8493 else if (reg->s32_max_value <= sval)
3f50f132
JF
8494 return 0;
8495 break;
8496 case BPF_JLT:
8497 if (reg->u32_max_value < val)
8498 return 1;
8499 else if (reg->u32_min_value >= val)
8500 return 0;
8501 break;
8502 case BPF_JSLT:
8503 if (reg->s32_max_value < sval)
8504 return 1;
8505 else if (reg->s32_min_value >= sval)
8506 return 0;
8507 break;
8508 case BPF_JGE:
8509 if (reg->u32_min_value >= val)
8510 return 1;
8511 else if (reg->u32_max_value < val)
8512 return 0;
8513 break;
8514 case BPF_JSGE:
8515 if (reg->s32_min_value >= sval)
8516 return 1;
8517 else if (reg->s32_max_value < sval)
8518 return 0;
8519 break;
8520 case BPF_JLE:
8521 if (reg->u32_max_value <= val)
8522 return 1;
8523 else if (reg->u32_min_value > val)
8524 return 0;
8525 break;
8526 case BPF_JSLE:
8527 if (reg->s32_max_value <= sval)
8528 return 1;
8529 else if (reg->s32_min_value > sval)
8530 return 0;
8531 break;
8532 }
4f7b3e82 8533
3f50f132
JF
8534 return -1;
8535}
092ed096 8536
3f50f132
JF
8537
8538static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8539{
8540 s64 sval = (s64)val;
a72dafaf 8541
4f7b3e82
AS
8542 switch (opcode) {
8543 case BPF_JEQ:
8544 if (tnum_is_const(reg->var_off))
8545 return !!tnum_equals_const(reg->var_off, val);
8546 break;
8547 case BPF_JNE:
8548 if (tnum_is_const(reg->var_off))
8549 return !tnum_equals_const(reg->var_off, val);
8550 break;
960ea056
JK
8551 case BPF_JSET:
8552 if ((~reg->var_off.mask & reg->var_off.value) & val)
8553 return 1;
8554 if (!((reg->var_off.mask | reg->var_off.value) & val))
8555 return 0;
8556 break;
4f7b3e82
AS
8557 case BPF_JGT:
8558 if (reg->umin_value > val)
8559 return 1;
8560 else if (reg->umax_value <= val)
8561 return 0;
8562 break;
8563 case BPF_JSGT:
a72dafaf 8564 if (reg->smin_value > sval)
4f7b3e82 8565 return 1;
ee114dd6 8566 else if (reg->smax_value <= sval)
4f7b3e82
AS
8567 return 0;
8568 break;
8569 case BPF_JLT:
8570 if (reg->umax_value < val)
8571 return 1;
8572 else if (reg->umin_value >= val)
8573 return 0;
8574 break;
8575 case BPF_JSLT:
a72dafaf 8576 if (reg->smax_value < sval)
4f7b3e82 8577 return 1;
a72dafaf 8578 else if (reg->smin_value >= sval)
4f7b3e82
AS
8579 return 0;
8580 break;
8581 case BPF_JGE:
8582 if (reg->umin_value >= val)
8583 return 1;
8584 else if (reg->umax_value < val)
8585 return 0;
8586 break;
8587 case BPF_JSGE:
a72dafaf 8588 if (reg->smin_value >= sval)
4f7b3e82 8589 return 1;
a72dafaf 8590 else if (reg->smax_value < sval)
4f7b3e82
AS
8591 return 0;
8592 break;
8593 case BPF_JLE:
8594 if (reg->umax_value <= val)
8595 return 1;
8596 else if (reg->umin_value > val)
8597 return 0;
8598 break;
8599 case BPF_JSLE:
a72dafaf 8600 if (reg->smax_value <= sval)
4f7b3e82 8601 return 1;
a72dafaf 8602 else if (reg->smin_value > sval)
4f7b3e82
AS
8603 return 0;
8604 break;
8605 }
8606
8607 return -1;
8608}
8609
3f50f132
JF
8610/* compute branch direction of the expression "if (reg opcode val) goto target;"
8611 * and return:
8612 * 1 - branch will be taken and "goto target" will be executed
8613 * 0 - branch will not be taken and fall-through to next insn
8614 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8615 * range [0,10]
604dca5e 8616 */
3f50f132
JF
8617static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8618 bool is_jmp32)
604dca5e 8619{
cac616db
JF
8620 if (__is_pointer_value(false, reg)) {
8621 if (!reg_type_not_null(reg->type))
8622 return -1;
8623
8624 /* If pointer is valid tests against zero will fail so we can
8625 * use this to direct branch taken.
8626 */
8627 if (val != 0)
8628 return -1;
8629
8630 switch (opcode) {
8631 case BPF_JEQ:
8632 return 0;
8633 case BPF_JNE:
8634 return 1;
8635 default:
8636 return -1;
8637 }
8638 }
604dca5e 8639
3f50f132
JF
8640 if (is_jmp32)
8641 return is_branch32_taken(reg, val, opcode);
8642 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8643}
8644
6d94e741
AS
8645static int flip_opcode(u32 opcode)
8646{
8647 /* How can we transform "a <op> b" into "b <op> a"? */
8648 static const u8 opcode_flip[16] = {
8649 /* these stay the same */
8650 [BPF_JEQ >> 4] = BPF_JEQ,
8651 [BPF_JNE >> 4] = BPF_JNE,
8652 [BPF_JSET >> 4] = BPF_JSET,
8653 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8654 [BPF_JGE >> 4] = BPF_JLE,
8655 [BPF_JGT >> 4] = BPF_JLT,
8656 [BPF_JLE >> 4] = BPF_JGE,
8657 [BPF_JLT >> 4] = BPF_JGT,
8658 [BPF_JSGE >> 4] = BPF_JSLE,
8659 [BPF_JSGT >> 4] = BPF_JSLT,
8660 [BPF_JSLE >> 4] = BPF_JSGE,
8661 [BPF_JSLT >> 4] = BPF_JSGT
8662 };
8663 return opcode_flip[opcode >> 4];
8664}
8665
8666static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8667 struct bpf_reg_state *src_reg,
8668 u8 opcode)
8669{
8670 struct bpf_reg_state *pkt;
8671
8672 if (src_reg->type == PTR_TO_PACKET_END) {
8673 pkt = dst_reg;
8674 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8675 pkt = src_reg;
8676 opcode = flip_opcode(opcode);
8677 } else {
8678 return -1;
8679 }
8680
8681 if (pkt->range >= 0)
8682 return -1;
8683
8684 switch (opcode) {
8685 case BPF_JLE:
8686 /* pkt <= pkt_end */
8687 fallthrough;
8688 case BPF_JGT:
8689 /* pkt > pkt_end */
8690 if (pkt->range == BEYOND_PKT_END)
8691 /* pkt has at last one extra byte beyond pkt_end */
8692 return opcode == BPF_JGT;
8693 break;
8694 case BPF_JLT:
8695 /* pkt < pkt_end */
8696 fallthrough;
8697 case BPF_JGE:
8698 /* pkt >= pkt_end */
8699 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8700 return opcode == BPF_JGE;
8701 break;
8702 }
8703 return -1;
8704}
8705
48461135
JB
8706/* Adjusts the register min/max values in the case that the dst_reg is the
8707 * variable register that we are working on, and src_reg is a constant or we're
8708 * simply doing a BPF_K check.
f1174f77 8709 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8710 */
8711static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8712 struct bpf_reg_state *false_reg,
8713 u64 val, u32 val32,
092ed096 8714 u8 opcode, bool is_jmp32)
48461135 8715{
3f50f132
JF
8716 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8717 struct tnum false_64off = false_reg->var_off;
8718 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8719 struct tnum true_64off = true_reg->var_off;
8720 s64 sval = (s64)val;
8721 s32 sval32 = (s32)val32;
a72dafaf 8722
f1174f77
EC
8723 /* If the dst_reg is a pointer, we can't learn anything about its
8724 * variable offset from the compare (unless src_reg were a pointer into
8725 * the same object, but we don't bother with that.
8726 * Since false_reg and true_reg have the same type by construction, we
8727 * only need to check one of them for pointerness.
8728 */
8729 if (__is_pointer_value(false, false_reg))
8730 return;
4cabc5b1 8731
48461135
JB
8732 switch (opcode) {
8733 case BPF_JEQ:
48461135 8734 case BPF_JNE:
a72dafaf
JW
8735 {
8736 struct bpf_reg_state *reg =
8737 opcode == BPF_JEQ ? true_reg : false_reg;
8738
e688c3db
AS
8739 /* JEQ/JNE comparison doesn't change the register equivalence.
8740 * r1 = r2;
8741 * if (r1 == 42) goto label;
8742 * ...
8743 * label: // here both r1 and r2 are known to be 42.
8744 *
8745 * Hence when marking register as known preserve it's ID.
48461135 8746 */
3f50f132
JF
8747 if (is_jmp32)
8748 __mark_reg32_known(reg, val32);
8749 else
e688c3db 8750 ___mark_reg_known(reg, val);
48461135 8751 break;
a72dafaf 8752 }
960ea056 8753 case BPF_JSET:
3f50f132
JF
8754 if (is_jmp32) {
8755 false_32off = tnum_and(false_32off, tnum_const(~val32));
8756 if (is_power_of_2(val32))
8757 true_32off = tnum_or(true_32off,
8758 tnum_const(val32));
8759 } else {
8760 false_64off = tnum_and(false_64off, tnum_const(~val));
8761 if (is_power_of_2(val))
8762 true_64off = tnum_or(true_64off,
8763 tnum_const(val));
8764 }
960ea056 8765 break;
48461135 8766 case BPF_JGE:
a72dafaf
JW
8767 case BPF_JGT:
8768 {
3f50f132
JF
8769 if (is_jmp32) {
8770 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8771 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8772
8773 false_reg->u32_max_value = min(false_reg->u32_max_value,
8774 false_umax);
8775 true_reg->u32_min_value = max(true_reg->u32_min_value,
8776 true_umin);
8777 } else {
8778 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8779 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8780
8781 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8782 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8783 }
b03c9f9f 8784 break;
a72dafaf 8785 }
48461135 8786 case BPF_JSGE:
a72dafaf
JW
8787 case BPF_JSGT:
8788 {
3f50f132
JF
8789 if (is_jmp32) {
8790 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8791 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8792
3f50f132
JF
8793 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8794 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8795 } else {
8796 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8797 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8798
8799 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8800 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8801 }
48461135 8802 break;
a72dafaf 8803 }
b4e432f1 8804 case BPF_JLE:
a72dafaf
JW
8805 case BPF_JLT:
8806 {
3f50f132
JF
8807 if (is_jmp32) {
8808 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8809 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8810
8811 false_reg->u32_min_value = max(false_reg->u32_min_value,
8812 false_umin);
8813 true_reg->u32_max_value = min(true_reg->u32_max_value,
8814 true_umax);
8815 } else {
8816 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8817 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8818
8819 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8820 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8821 }
b4e432f1 8822 break;
a72dafaf 8823 }
b4e432f1 8824 case BPF_JSLE:
a72dafaf
JW
8825 case BPF_JSLT:
8826 {
3f50f132
JF
8827 if (is_jmp32) {
8828 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8829 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8830
3f50f132
JF
8831 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8832 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8833 } else {
8834 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8835 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8836
8837 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8838 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8839 }
b4e432f1 8840 break;
a72dafaf 8841 }
48461135 8842 default:
0fc31b10 8843 return;
48461135
JB
8844 }
8845
3f50f132
JF
8846 if (is_jmp32) {
8847 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8848 tnum_subreg(false_32off));
8849 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8850 tnum_subreg(true_32off));
8851 __reg_combine_32_into_64(false_reg);
8852 __reg_combine_32_into_64(true_reg);
8853 } else {
8854 false_reg->var_off = false_64off;
8855 true_reg->var_off = true_64off;
8856 __reg_combine_64_into_32(false_reg);
8857 __reg_combine_64_into_32(true_reg);
8858 }
48461135
JB
8859}
8860
f1174f77
EC
8861/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8862 * the variable reg.
48461135
JB
8863 */
8864static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8865 struct bpf_reg_state *false_reg,
8866 u64 val, u32 val32,
092ed096 8867 u8 opcode, bool is_jmp32)
48461135 8868{
6d94e741 8869 opcode = flip_opcode(opcode);
0fc31b10
JH
8870 /* This uses zero as "not present in table"; luckily the zero opcode,
8871 * BPF_JA, can't get here.
b03c9f9f 8872 */
0fc31b10 8873 if (opcode)
3f50f132 8874 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8875}
8876
8877/* Regs are known to be equal, so intersect their min/max/var_off */
8878static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8879 struct bpf_reg_state *dst_reg)
8880{
b03c9f9f
EC
8881 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8882 dst_reg->umin_value);
8883 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8884 dst_reg->umax_value);
8885 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8886 dst_reg->smin_value);
8887 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8888 dst_reg->smax_value);
f1174f77
EC
8889 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8890 dst_reg->var_off);
b03c9f9f
EC
8891 /* We might have learned new bounds from the var_off. */
8892 __update_reg_bounds(src_reg);
8893 __update_reg_bounds(dst_reg);
8894 /* We might have learned something about the sign bit. */
8895 __reg_deduce_bounds(src_reg);
8896 __reg_deduce_bounds(dst_reg);
8897 /* We might have learned some bits from the bounds. */
8898 __reg_bound_offset(src_reg);
8899 __reg_bound_offset(dst_reg);
8900 /* Intersecting with the old var_off might have improved our bounds
8901 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8902 * then new var_off is (0; 0x7f...fc) which improves our umax.
8903 */
8904 __update_reg_bounds(src_reg);
8905 __update_reg_bounds(dst_reg);
f1174f77
EC
8906}
8907
8908static void reg_combine_min_max(struct bpf_reg_state *true_src,
8909 struct bpf_reg_state *true_dst,
8910 struct bpf_reg_state *false_src,
8911 struct bpf_reg_state *false_dst,
8912 u8 opcode)
8913{
8914 switch (opcode) {
8915 case BPF_JEQ:
8916 __reg_combine_min_max(true_src, true_dst);
8917 break;
8918 case BPF_JNE:
8919 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 8920 break;
4cabc5b1 8921 }
48461135
JB
8922}
8923
fd978bf7
JS
8924static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8925 struct bpf_reg_state *reg, u32 id,
840b9615 8926 bool is_null)
57a09bf0 8927{
93c230e3
MKL
8928 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8929 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
8930 /* Old offset (both fixed and variable parts) should
8931 * have been known-zero, because we don't allow pointer
8932 * arithmetic on pointers that might be NULL.
8933 */
b03c9f9f
EC
8934 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8935 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 8936 reg->off)) {
b03c9f9f
EC
8937 __mark_reg_known_zero(reg);
8938 reg->off = 0;
f1174f77
EC
8939 }
8940 if (is_null) {
8941 reg->type = SCALAR_VALUE;
1b986589
MKL
8942 /* We don't need id and ref_obj_id from this point
8943 * onwards anymore, thus we should better reset it,
8944 * so that state pruning has chances to take effect.
8945 */
8946 reg->id = 0;
8947 reg->ref_obj_id = 0;
4ddb7416
DB
8948
8949 return;
8950 }
8951
8952 mark_ptr_not_null_reg(reg);
8953
8954 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
8955 /* For not-NULL ptr, reg->ref_obj_id will be reset
8956 * in release_reg_references().
8957 *
8958 * reg->id is still used by spin_lock ptr. Other
8959 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
8960 */
8961 reg->id = 0;
56f668df 8962 }
57a09bf0
TG
8963 }
8964}
8965
c6a9efa1
PC
8966static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8967 bool is_null)
8968{
8969 struct bpf_reg_state *reg;
8970 int i;
8971
8972 for (i = 0; i < MAX_BPF_REG; i++)
8973 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8974
8975 bpf_for_each_spilled_reg(i, state, reg) {
8976 if (!reg)
8977 continue;
8978 mark_ptr_or_null_reg(state, reg, id, is_null);
8979 }
8980}
8981
57a09bf0
TG
8982/* The logic is similar to find_good_pkt_pointers(), both could eventually
8983 * be folded together at some point.
8984 */
840b9615
JS
8985static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8986 bool is_null)
57a09bf0 8987{
f4d7e40a 8988 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 8989 struct bpf_reg_state *regs = state->regs;
1b986589 8990 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 8991 u32 id = regs[regno].id;
c6a9efa1 8992 int i;
57a09bf0 8993
1b986589
MKL
8994 if (ref_obj_id && ref_obj_id == id && is_null)
8995 /* regs[regno] is in the " == NULL" branch.
8996 * No one could have freed the reference state before
8997 * doing the NULL check.
8998 */
8999 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9000
c6a9efa1
PC
9001 for (i = 0; i <= vstate->curframe; i++)
9002 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
9003}
9004
5beca081
DB
9005static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9006 struct bpf_reg_state *dst_reg,
9007 struct bpf_reg_state *src_reg,
9008 struct bpf_verifier_state *this_branch,
9009 struct bpf_verifier_state *other_branch)
9010{
9011 if (BPF_SRC(insn->code) != BPF_X)
9012 return false;
9013
092ed096
JW
9014 /* Pointers are always 64-bit. */
9015 if (BPF_CLASS(insn->code) == BPF_JMP32)
9016 return false;
9017
5beca081
DB
9018 switch (BPF_OP(insn->code)) {
9019 case BPF_JGT:
9020 if ((dst_reg->type == PTR_TO_PACKET &&
9021 src_reg->type == PTR_TO_PACKET_END) ||
9022 (dst_reg->type == PTR_TO_PACKET_META &&
9023 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9024 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9025 find_good_pkt_pointers(this_branch, dst_reg,
9026 dst_reg->type, false);
6d94e741 9027 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9028 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9029 src_reg->type == PTR_TO_PACKET) ||
9030 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9031 src_reg->type == PTR_TO_PACKET_META)) {
9032 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9033 find_good_pkt_pointers(other_branch, src_reg,
9034 src_reg->type, true);
6d94e741 9035 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9036 } else {
9037 return false;
9038 }
9039 break;
9040 case BPF_JLT:
9041 if ((dst_reg->type == PTR_TO_PACKET &&
9042 src_reg->type == PTR_TO_PACKET_END) ||
9043 (dst_reg->type == PTR_TO_PACKET_META &&
9044 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9045 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9046 find_good_pkt_pointers(other_branch, dst_reg,
9047 dst_reg->type, true);
6d94e741 9048 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
9049 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9050 src_reg->type == PTR_TO_PACKET) ||
9051 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9052 src_reg->type == PTR_TO_PACKET_META)) {
9053 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9054 find_good_pkt_pointers(this_branch, src_reg,
9055 src_reg->type, false);
6d94e741 9056 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
9057 } else {
9058 return false;
9059 }
9060 break;
9061 case BPF_JGE:
9062 if ((dst_reg->type == PTR_TO_PACKET &&
9063 src_reg->type == PTR_TO_PACKET_END) ||
9064 (dst_reg->type == PTR_TO_PACKET_META &&
9065 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9066 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9067 find_good_pkt_pointers(this_branch, dst_reg,
9068 dst_reg->type, true);
6d94e741 9069 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
9070 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9071 src_reg->type == PTR_TO_PACKET) ||
9072 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9073 src_reg->type == PTR_TO_PACKET_META)) {
9074 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9075 find_good_pkt_pointers(other_branch, src_reg,
9076 src_reg->type, false);
6d94e741 9077 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
9078 } else {
9079 return false;
9080 }
9081 break;
9082 case BPF_JLE:
9083 if ((dst_reg->type == PTR_TO_PACKET &&
9084 src_reg->type == PTR_TO_PACKET_END) ||
9085 (dst_reg->type == PTR_TO_PACKET_META &&
9086 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9087 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9088 find_good_pkt_pointers(other_branch, dst_reg,
9089 dst_reg->type, false);
6d94e741 9090 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
9091 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9092 src_reg->type == PTR_TO_PACKET) ||
9093 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9094 src_reg->type == PTR_TO_PACKET_META)) {
9095 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9096 find_good_pkt_pointers(this_branch, src_reg,
9097 src_reg->type, true);
6d94e741 9098 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
9099 } else {
9100 return false;
9101 }
9102 break;
9103 default:
9104 return false;
9105 }
9106
9107 return true;
9108}
9109
75748837
AS
9110static void find_equal_scalars(struct bpf_verifier_state *vstate,
9111 struct bpf_reg_state *known_reg)
9112{
9113 struct bpf_func_state *state;
9114 struct bpf_reg_state *reg;
9115 int i, j;
9116
9117 for (i = 0; i <= vstate->curframe; i++) {
9118 state = vstate->frame[i];
9119 for (j = 0; j < MAX_BPF_REG; j++) {
9120 reg = &state->regs[j];
9121 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9122 *reg = *known_reg;
9123 }
9124
9125 bpf_for_each_spilled_reg(j, state, reg) {
9126 if (!reg)
9127 continue;
9128 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9129 *reg = *known_reg;
9130 }
9131 }
9132}
9133
58e2af8b 9134static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
9135 struct bpf_insn *insn, int *insn_idx)
9136{
f4d7e40a
AS
9137 struct bpf_verifier_state *this_branch = env->cur_state;
9138 struct bpf_verifier_state *other_branch;
9139 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 9140 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 9141 u8 opcode = BPF_OP(insn->code);
092ed096 9142 bool is_jmp32;
fb8d251e 9143 int pred = -1;
17a52670
AS
9144 int err;
9145
092ed096
JW
9146 /* Only conditional jumps are expected to reach here. */
9147 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9148 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
9149 return -EINVAL;
9150 }
9151
9152 if (BPF_SRC(insn->code) == BPF_X) {
9153 if (insn->imm != 0) {
092ed096 9154 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9155 return -EINVAL;
9156 }
9157
9158 /* check src1 operand */
dc503a8a 9159 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9160 if (err)
9161 return err;
1be7f75d
AS
9162
9163 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 9164 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
9165 insn->src_reg);
9166 return -EACCES;
9167 }
fb8d251e 9168 src_reg = &regs[insn->src_reg];
17a52670
AS
9169 } else {
9170 if (insn->src_reg != BPF_REG_0) {
092ed096 9171 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9172 return -EINVAL;
9173 }
9174 }
9175
9176 /* check src2 operand */
dc503a8a 9177 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9178 if (err)
9179 return err;
9180
1a0dc1ac 9181 dst_reg = &regs[insn->dst_reg];
092ed096 9182 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 9183
3f50f132
JF
9184 if (BPF_SRC(insn->code) == BPF_K) {
9185 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9186 } else if (src_reg->type == SCALAR_VALUE &&
9187 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9188 pred = is_branch_taken(dst_reg,
9189 tnum_subreg(src_reg->var_off).value,
9190 opcode,
9191 is_jmp32);
9192 } else if (src_reg->type == SCALAR_VALUE &&
9193 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9194 pred = is_branch_taken(dst_reg,
9195 src_reg->var_off.value,
9196 opcode,
9197 is_jmp32);
6d94e741
AS
9198 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9199 reg_is_pkt_pointer_any(src_reg) &&
9200 !is_jmp32) {
9201 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
9202 }
9203
b5dc0163 9204 if (pred >= 0) {
cac616db
JF
9205 /* If we get here with a dst_reg pointer type it is because
9206 * above is_branch_taken() special cased the 0 comparison.
9207 */
9208 if (!__is_pointer_value(false, dst_reg))
9209 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
9210 if (BPF_SRC(insn->code) == BPF_X && !err &&
9211 !__is_pointer_value(false, src_reg))
b5dc0163
AS
9212 err = mark_chain_precision(env, insn->src_reg);
9213 if (err)
9214 return err;
9215 }
9183671a 9216
fb8d251e 9217 if (pred == 1) {
9183671a
DB
9218 /* Only follow the goto, ignore fall-through. If needed, push
9219 * the fall-through branch for simulation under speculative
9220 * execution.
9221 */
9222 if (!env->bypass_spec_v1 &&
9223 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9224 *insn_idx))
9225 return -EFAULT;
fb8d251e
AS
9226 *insn_idx += insn->off;
9227 return 0;
9228 } else if (pred == 0) {
9183671a
DB
9229 /* Only follow the fall-through branch, since that's where the
9230 * program will go. If needed, push the goto branch for
9231 * simulation under speculative execution.
fb8d251e 9232 */
9183671a
DB
9233 if (!env->bypass_spec_v1 &&
9234 !sanitize_speculative_path(env, insn,
9235 *insn_idx + insn->off + 1,
9236 *insn_idx))
9237 return -EFAULT;
fb8d251e 9238 return 0;
17a52670
AS
9239 }
9240
979d63d5
DB
9241 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9242 false);
17a52670
AS
9243 if (!other_branch)
9244 return -EFAULT;
f4d7e40a 9245 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 9246
48461135
JB
9247 /* detect if we are comparing against a constant value so we can adjust
9248 * our min/max values for our dst register.
f1174f77
EC
9249 * this is only legit if both are scalars (or pointers to the same
9250 * object, I suppose, but we don't support that right now), because
9251 * otherwise the different base pointers mean the offsets aren't
9252 * comparable.
48461135
JB
9253 */
9254 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 9255 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 9256
f1174f77 9257 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
9258 src_reg->type == SCALAR_VALUE) {
9259 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
9260 (is_jmp32 &&
9261 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 9262 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 9263 dst_reg,
3f50f132
JF
9264 src_reg->var_off.value,
9265 tnum_subreg(src_reg->var_off).value,
092ed096
JW
9266 opcode, is_jmp32);
9267 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
9268 (is_jmp32 &&
9269 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 9270 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 9271 src_reg,
3f50f132
JF
9272 dst_reg->var_off.value,
9273 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
9274 opcode, is_jmp32);
9275 else if (!is_jmp32 &&
9276 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 9277 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
9278 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9279 &other_branch_regs[insn->dst_reg],
092ed096 9280 src_reg, dst_reg, opcode);
e688c3db
AS
9281 if (src_reg->id &&
9282 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
9283 find_equal_scalars(this_branch, src_reg);
9284 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9285 }
9286
f1174f77
EC
9287 }
9288 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 9289 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
9290 dst_reg, insn->imm, (u32)insn->imm,
9291 opcode, is_jmp32);
48461135
JB
9292 }
9293
e688c3db
AS
9294 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9295 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
9296 find_equal_scalars(this_branch, dst_reg);
9297 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9298 }
9299
092ed096
JW
9300 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9301 * NOTE: these optimizations below are related with pointer comparison
9302 * which will never be JMP32.
9303 */
9304 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 9305 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
9306 reg_type_may_be_null(dst_reg->type)) {
9307 /* Mark all identical registers in each branch as either
57a09bf0
TG
9308 * safe or unknown depending R == 0 or R != 0 conditional.
9309 */
840b9615
JS
9310 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9311 opcode == BPF_JNE);
9312 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9313 opcode == BPF_JEQ);
5beca081
DB
9314 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9315 this_branch, other_branch) &&
9316 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
9317 verbose(env, "R%d pointer comparison prohibited\n",
9318 insn->dst_reg);
1be7f75d 9319 return -EACCES;
17a52670 9320 }
06ee7115 9321 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 9322 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
9323 return 0;
9324}
9325
17a52670 9326/* verify BPF_LD_IMM64 instruction */
58e2af8b 9327static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9328{
d8eca5bb 9329 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 9330 struct bpf_reg_state *regs = cur_regs(env);
4976b718 9331 struct bpf_reg_state *dst_reg;
d8eca5bb 9332 struct bpf_map *map;
17a52670
AS
9333 int err;
9334
9335 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 9336 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
9337 return -EINVAL;
9338 }
9339 if (insn->off != 0) {
61bd5218 9340 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
9341 return -EINVAL;
9342 }
9343
dc503a8a 9344 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9345 if (err)
9346 return err;
9347
4976b718 9348 dst_reg = &regs[insn->dst_reg];
6b173873 9349 if (insn->src_reg == 0) {
6b173873
JK
9350 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9351
4976b718 9352 dst_reg->type = SCALAR_VALUE;
b03c9f9f 9353 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 9354 return 0;
6b173873 9355 }
17a52670 9356
4976b718
HL
9357 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9358 mark_reg_known_zero(env, regs, insn->dst_reg);
9359
9360 dst_reg->type = aux->btf_var.reg_type;
9361 switch (dst_reg->type) {
9362 case PTR_TO_MEM:
9363 dst_reg->mem_size = aux->btf_var.mem_size;
9364 break;
9365 case PTR_TO_BTF_ID:
eaa6bcb7 9366 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 9367 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
9368 dst_reg->btf_id = aux->btf_var.btf_id;
9369 break;
9370 default:
9371 verbose(env, "bpf verifier is misconfigured\n");
9372 return -EFAULT;
9373 }
9374 return 0;
9375 }
9376
69c087ba
YS
9377 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9378 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
9379 u32 subprogno = find_subprog(env,
9380 env->insn_idx + insn->imm + 1);
69c087ba
YS
9381
9382 if (!aux->func_info) {
9383 verbose(env, "missing btf func_info\n");
9384 return -EINVAL;
9385 }
9386 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9387 verbose(env, "callback function not static\n");
9388 return -EINVAL;
9389 }
9390
9391 dst_reg->type = PTR_TO_FUNC;
9392 dst_reg->subprogno = subprogno;
9393 return 0;
9394 }
9395
d8eca5bb
DB
9396 map = env->used_maps[aux->map_index];
9397 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 9398 dst_reg->map_ptr = map;
d8eca5bb 9399
387544bf
AS
9400 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9401 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
9402 dst_reg->type = PTR_TO_MAP_VALUE;
9403 dst_reg->off = aux->map_off;
d8eca5bb 9404 if (map_value_has_spin_lock(map))
4976b718 9405 dst_reg->id = ++env->id_gen;
387544bf
AS
9406 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9407 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 9408 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
9409 } else {
9410 verbose(env, "bpf verifier is misconfigured\n");
9411 return -EINVAL;
9412 }
17a52670 9413
17a52670
AS
9414 return 0;
9415}
9416
96be4325
DB
9417static bool may_access_skb(enum bpf_prog_type type)
9418{
9419 switch (type) {
9420 case BPF_PROG_TYPE_SOCKET_FILTER:
9421 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 9422 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
9423 return true;
9424 default:
9425 return false;
9426 }
9427}
9428
ddd872bc
AS
9429/* verify safety of LD_ABS|LD_IND instructions:
9430 * - they can only appear in the programs where ctx == skb
9431 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9432 * preserve R6-R9, and store return value into R0
9433 *
9434 * Implicit input:
9435 * ctx == skb == R6 == CTX
9436 *
9437 * Explicit input:
9438 * SRC == any register
9439 * IMM == 32-bit immediate
9440 *
9441 * Output:
9442 * R0 - 8/16/32-bit skb data converted to cpu endianness
9443 */
58e2af8b 9444static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9445{
638f5b90 9446 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9447 static const int ctx_reg = BPF_REG_6;
ddd872bc 9448 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9449 int i, err;
9450
7e40781c 9451 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9452 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9453 return -EINVAL;
9454 }
9455
e0cea7ce
DB
9456 if (!env->ops->gen_ld_abs) {
9457 verbose(env, "bpf verifier is misconfigured\n");
9458 return -EINVAL;
9459 }
9460
ddd872bc 9461 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9462 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9463 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9464 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9465 return -EINVAL;
9466 }
9467
9468 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9469 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9470 if (err)
9471 return err;
9472
fd978bf7
JS
9473 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9474 * gen_ld_abs() may terminate the program at runtime, leading to
9475 * reference leak.
9476 */
9477 err = check_reference_leak(env);
9478 if (err) {
9479 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9480 return err;
9481 }
9482
d83525ca
AS
9483 if (env->cur_state->active_spin_lock) {
9484 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9485 return -EINVAL;
9486 }
9487
6d4f151a 9488 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9489 verbose(env,
9490 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9491 return -EINVAL;
9492 }
9493
9494 if (mode == BPF_IND) {
9495 /* check explicit source operand */
dc503a8a 9496 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9497 if (err)
9498 return err;
9499 }
9500
6d4f151a
DB
9501 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9502 if (err < 0)
9503 return err;
9504
ddd872bc 9505 /* reset caller saved regs to unreadable */
dc503a8a 9506 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9507 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9508 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9509 }
ddd872bc
AS
9510
9511 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9512 * the value fetched from the packet.
9513 * Already marked as written above.
ddd872bc 9514 */
61bd5218 9515 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9516 /* ld_abs load up to 32-bit skb data. */
9517 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9518 return 0;
9519}
9520
390ee7e2
AS
9521static int check_return_code(struct bpf_verifier_env *env)
9522{
5cf1e914 9523 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9524 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9525 struct bpf_reg_state *reg;
9526 struct tnum range = tnum_range(0, 1);
7e40781c 9527 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9528 int err;
bfc6bb74
AS
9529 struct bpf_func_state *frame = env->cur_state->frame[0];
9530 const bool is_subprog = frame->subprogno;
27ae7997 9531
9e4e01df 9532 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9533 if (!is_subprog &&
9534 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9535 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9536 !prog->aux->attach_func_proto->type)
9537 return 0;
9538
8fb33b60 9539 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9540 * to return the value from eBPF program.
9541 * Make sure that it's readable at this time
9542 * of bpf_exit, which means that program wrote
9543 * something into it earlier
9544 */
9545 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9546 if (err)
9547 return err;
9548
9549 if (is_pointer_value(env, BPF_REG_0)) {
9550 verbose(env, "R0 leaks addr as return value\n");
9551 return -EACCES;
9552 }
390ee7e2 9553
f782e2c3 9554 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
9555
9556 if (frame->in_async_callback_fn) {
9557 /* enforce return zero from async callbacks like timer */
9558 if (reg->type != SCALAR_VALUE) {
9559 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9560 reg_type_str[reg->type]);
9561 return -EINVAL;
9562 }
9563
9564 if (!tnum_in(tnum_const(0), reg->var_off)) {
9565 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9566 return -EINVAL;
9567 }
9568 return 0;
9569 }
9570
f782e2c3
DB
9571 if (is_subprog) {
9572 if (reg->type != SCALAR_VALUE) {
9573 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9574 reg_type_str[reg->type]);
9575 return -EINVAL;
9576 }
9577 return 0;
9578 }
9579
7e40781c 9580 switch (prog_type) {
983695fa
DB
9581 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9582 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9583 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9584 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9585 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9586 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9587 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9588 range = tnum_range(1, 1);
77241217
SF
9589 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9590 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9591 range = tnum_range(0, 3);
ed4ed404 9592 break;
390ee7e2 9593 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9594 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9595 range = tnum_range(0, 3);
9596 enforce_attach_type_range = tnum_range(2, 3);
9597 }
ed4ed404 9598 break;
390ee7e2
AS
9599 case BPF_PROG_TYPE_CGROUP_SOCK:
9600 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9601 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9602 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9603 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9604 break;
15ab09bd
AS
9605 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9606 if (!env->prog->aux->attach_btf_id)
9607 return 0;
9608 range = tnum_const(0);
9609 break;
15d83c4d 9610 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9611 switch (env->prog->expected_attach_type) {
9612 case BPF_TRACE_FENTRY:
9613 case BPF_TRACE_FEXIT:
9614 range = tnum_const(0);
9615 break;
9616 case BPF_TRACE_RAW_TP:
9617 case BPF_MODIFY_RETURN:
15d83c4d 9618 return 0;
2ec0616e
DB
9619 case BPF_TRACE_ITER:
9620 break;
e92888c7
YS
9621 default:
9622 return -ENOTSUPP;
9623 }
15d83c4d 9624 break;
e9ddbb77
JS
9625 case BPF_PROG_TYPE_SK_LOOKUP:
9626 range = tnum_range(SK_DROP, SK_PASS);
9627 break;
e92888c7
YS
9628 case BPF_PROG_TYPE_EXT:
9629 /* freplace program can return anything as its return value
9630 * depends on the to-be-replaced kernel func or bpf program.
9631 */
390ee7e2
AS
9632 default:
9633 return 0;
9634 }
9635
390ee7e2 9636 if (reg->type != SCALAR_VALUE) {
61bd5218 9637 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9638 reg_type_str[reg->type]);
9639 return -EINVAL;
9640 }
9641
9642 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9643 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9644 return -EINVAL;
9645 }
5cf1e914 9646
9647 if (!tnum_is_unknown(enforce_attach_type_range) &&
9648 tnum_in(enforce_attach_type_range, reg->var_off))
9649 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9650 return 0;
9651}
9652
475fb78f
AS
9653/* non-recursive DFS pseudo code
9654 * 1 procedure DFS-iterative(G,v):
9655 * 2 label v as discovered
9656 * 3 let S be a stack
9657 * 4 S.push(v)
9658 * 5 while S is not empty
9659 * 6 t <- S.pop()
9660 * 7 if t is what we're looking for:
9661 * 8 return t
9662 * 9 for all edges e in G.adjacentEdges(t) do
9663 * 10 if edge e is already labelled
9664 * 11 continue with the next edge
9665 * 12 w <- G.adjacentVertex(t,e)
9666 * 13 if vertex w is not discovered and not explored
9667 * 14 label e as tree-edge
9668 * 15 label w as discovered
9669 * 16 S.push(w)
9670 * 17 continue at 5
9671 * 18 else if vertex w is discovered
9672 * 19 label e as back-edge
9673 * 20 else
9674 * 21 // vertex w is explored
9675 * 22 label e as forward- or cross-edge
9676 * 23 label t as explored
9677 * 24 S.pop()
9678 *
9679 * convention:
9680 * 0x10 - discovered
9681 * 0x11 - discovered and fall-through edge labelled
9682 * 0x12 - discovered and fall-through and branch edges labelled
9683 * 0x20 - explored
9684 */
9685
9686enum {
9687 DISCOVERED = 0x10,
9688 EXPLORED = 0x20,
9689 FALLTHROUGH = 1,
9690 BRANCH = 2,
9691};
9692
dc2a4ebc
AS
9693static u32 state_htab_size(struct bpf_verifier_env *env)
9694{
9695 return env->prog->len;
9696}
9697
5d839021
AS
9698static struct bpf_verifier_state_list **explored_state(
9699 struct bpf_verifier_env *env,
9700 int idx)
9701{
dc2a4ebc
AS
9702 struct bpf_verifier_state *cur = env->cur_state;
9703 struct bpf_func_state *state = cur->frame[cur->curframe];
9704
9705 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9706}
9707
9708static void init_explored_state(struct bpf_verifier_env *env, int idx)
9709{
a8f500af 9710 env->insn_aux_data[idx].prune_point = true;
5d839021 9711}
f1bca824 9712
59e2e27d
WAF
9713enum {
9714 DONE_EXPLORING = 0,
9715 KEEP_EXPLORING = 1,
9716};
9717
475fb78f
AS
9718/* t, w, e - match pseudo-code above:
9719 * t - index of current instruction
9720 * w - next instruction
9721 * e - edge
9722 */
2589726d
AS
9723static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9724 bool loop_ok)
475fb78f 9725{
7df737e9
AS
9726 int *insn_stack = env->cfg.insn_stack;
9727 int *insn_state = env->cfg.insn_state;
9728
475fb78f 9729 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9730 return DONE_EXPLORING;
475fb78f
AS
9731
9732 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9733 return DONE_EXPLORING;
475fb78f
AS
9734
9735 if (w < 0 || w >= env->prog->len) {
d9762e84 9736 verbose_linfo(env, t, "%d: ", t);
61bd5218 9737 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9738 return -EINVAL;
9739 }
9740
f1bca824
AS
9741 if (e == BRANCH)
9742 /* mark branch target for state pruning */
5d839021 9743 init_explored_state(env, w);
f1bca824 9744
475fb78f
AS
9745 if (insn_state[w] == 0) {
9746 /* tree-edge */
9747 insn_state[t] = DISCOVERED | e;
9748 insn_state[w] = DISCOVERED;
7df737e9 9749 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9750 return -E2BIG;
7df737e9 9751 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9752 return KEEP_EXPLORING;
475fb78f 9753 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9754 if (loop_ok && env->bpf_capable)
59e2e27d 9755 return DONE_EXPLORING;
d9762e84
MKL
9756 verbose_linfo(env, t, "%d: ", t);
9757 verbose_linfo(env, w, "%d: ", w);
61bd5218 9758 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9759 return -EINVAL;
9760 } else if (insn_state[w] == EXPLORED) {
9761 /* forward- or cross-edge */
9762 insn_state[t] = DISCOVERED | e;
9763 } else {
61bd5218 9764 verbose(env, "insn state internal bug\n");
475fb78f
AS
9765 return -EFAULT;
9766 }
59e2e27d
WAF
9767 return DONE_EXPLORING;
9768}
9769
efdb22de
YS
9770static int visit_func_call_insn(int t, int insn_cnt,
9771 struct bpf_insn *insns,
9772 struct bpf_verifier_env *env,
9773 bool visit_callee)
9774{
9775 int ret;
9776
9777 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9778 if (ret)
9779 return ret;
9780
9781 if (t + 1 < insn_cnt)
9782 init_explored_state(env, t + 1);
9783 if (visit_callee) {
9784 init_explored_state(env, t);
86fc6ee6
AS
9785 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9786 /* It's ok to allow recursion from CFG point of
9787 * view. __check_func_call() will do the actual
9788 * check.
9789 */
9790 bpf_pseudo_func(insns + t));
efdb22de
YS
9791 }
9792 return ret;
9793}
9794
59e2e27d
WAF
9795/* Visits the instruction at index t and returns one of the following:
9796 * < 0 - an error occurred
9797 * DONE_EXPLORING - the instruction was fully explored
9798 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9799 */
9800static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9801{
9802 struct bpf_insn *insns = env->prog->insnsi;
9803 int ret;
9804
69c087ba
YS
9805 if (bpf_pseudo_func(insns + t))
9806 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9807
59e2e27d
WAF
9808 /* All non-branch instructions have a single fall-through edge. */
9809 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9810 BPF_CLASS(insns[t].code) != BPF_JMP32)
9811 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9812
9813 switch (BPF_OP(insns[t].code)) {
9814 case BPF_EXIT:
9815 return DONE_EXPLORING;
9816
9817 case BPF_CALL:
bfc6bb74
AS
9818 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9819 /* Mark this call insn to trigger is_state_visited() check
9820 * before call itself is processed by __check_func_call().
9821 * Otherwise new async state will be pushed for further
9822 * exploration.
9823 */
9824 init_explored_state(env, t);
efdb22de
YS
9825 return visit_func_call_insn(t, insn_cnt, insns, env,
9826 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9827
9828 case BPF_JA:
9829 if (BPF_SRC(insns[t].code) != BPF_K)
9830 return -EINVAL;
9831
9832 /* unconditional jump with single edge */
9833 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9834 true);
9835 if (ret)
9836 return ret;
9837
9838 /* unconditional jmp is not a good pruning point,
9839 * but it's marked, since backtracking needs
9840 * to record jmp history in is_state_visited().
9841 */
9842 init_explored_state(env, t + insns[t].off + 1);
9843 /* tell verifier to check for equivalent states
9844 * after every call and jump
9845 */
9846 if (t + 1 < insn_cnt)
9847 init_explored_state(env, t + 1);
9848
9849 return ret;
9850
9851 default:
9852 /* conditional jump with two edges */
9853 init_explored_state(env, t);
9854 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9855 if (ret)
9856 return ret;
9857
9858 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9859 }
475fb78f
AS
9860}
9861
9862/* non-recursive depth-first-search to detect loops in BPF program
9863 * loop == back-edge in directed graph
9864 */
58e2af8b 9865static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9866{
475fb78f 9867 int insn_cnt = env->prog->len;
7df737e9 9868 int *insn_stack, *insn_state;
475fb78f 9869 int ret = 0;
59e2e27d 9870 int i;
475fb78f 9871
7df737e9 9872 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9873 if (!insn_state)
9874 return -ENOMEM;
9875
7df737e9 9876 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 9877 if (!insn_stack) {
71dde681 9878 kvfree(insn_state);
475fb78f
AS
9879 return -ENOMEM;
9880 }
9881
9882 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9883 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 9884 env->cfg.cur_stack = 1;
475fb78f 9885
59e2e27d
WAF
9886 while (env->cfg.cur_stack > 0) {
9887 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 9888
59e2e27d
WAF
9889 ret = visit_insn(t, insn_cnt, env);
9890 switch (ret) {
9891 case DONE_EXPLORING:
9892 insn_state[t] = EXPLORED;
9893 env->cfg.cur_stack--;
9894 break;
9895 case KEEP_EXPLORING:
9896 break;
9897 default:
9898 if (ret > 0) {
9899 verbose(env, "visit_insn internal bug\n");
9900 ret = -EFAULT;
475fb78f 9901 }
475fb78f 9902 goto err_free;
59e2e27d 9903 }
475fb78f
AS
9904 }
9905
59e2e27d 9906 if (env->cfg.cur_stack < 0) {
61bd5218 9907 verbose(env, "pop stack internal bug\n");
475fb78f
AS
9908 ret = -EFAULT;
9909 goto err_free;
9910 }
475fb78f 9911
475fb78f
AS
9912 for (i = 0; i < insn_cnt; i++) {
9913 if (insn_state[i] != EXPLORED) {
61bd5218 9914 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
9915 ret = -EINVAL;
9916 goto err_free;
9917 }
9918 }
9919 ret = 0; /* cfg looks good */
9920
9921err_free:
71dde681
AS
9922 kvfree(insn_state);
9923 kvfree(insn_stack);
7df737e9 9924 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
9925 return ret;
9926}
9927
09b28d76
AS
9928static int check_abnormal_return(struct bpf_verifier_env *env)
9929{
9930 int i;
9931
9932 for (i = 1; i < env->subprog_cnt; i++) {
9933 if (env->subprog_info[i].has_ld_abs) {
9934 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9935 return -EINVAL;
9936 }
9937 if (env->subprog_info[i].has_tail_call) {
9938 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9939 return -EINVAL;
9940 }
9941 }
9942 return 0;
9943}
9944
838e9690
YS
9945/* The minimum supported BTF func info size */
9946#define MIN_BPF_FUNCINFO_SIZE 8
9947#define MAX_FUNCINFO_REC_SIZE 252
9948
c454a46b
MKL
9949static int check_btf_func(struct bpf_verifier_env *env,
9950 const union bpf_attr *attr,
af2ac3e1 9951 bpfptr_t uattr)
838e9690 9952{
09b28d76 9953 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 9954 u32 i, nfuncs, urec_size, min_size;
838e9690 9955 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 9956 struct bpf_func_info *krecord;
8c1b6e69 9957 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
9958 struct bpf_prog *prog;
9959 const struct btf *btf;
af2ac3e1 9960 bpfptr_t urecord;
d0b2818e 9961 u32 prev_offset = 0;
09b28d76 9962 bool scalar_return;
e7ed83d6 9963 int ret = -ENOMEM;
838e9690
YS
9964
9965 nfuncs = attr->func_info_cnt;
09b28d76
AS
9966 if (!nfuncs) {
9967 if (check_abnormal_return(env))
9968 return -EINVAL;
838e9690 9969 return 0;
09b28d76 9970 }
838e9690
YS
9971
9972 if (nfuncs != env->subprog_cnt) {
9973 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9974 return -EINVAL;
9975 }
9976
9977 urec_size = attr->func_info_rec_size;
9978 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9979 urec_size > MAX_FUNCINFO_REC_SIZE ||
9980 urec_size % sizeof(u32)) {
9981 verbose(env, "invalid func info rec size %u\n", urec_size);
9982 return -EINVAL;
9983 }
9984
c454a46b
MKL
9985 prog = env->prog;
9986 btf = prog->aux->btf;
838e9690 9987
af2ac3e1 9988 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
9989 min_size = min_t(u32, krec_size, urec_size);
9990
ba64e7d8 9991 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
9992 if (!krecord)
9993 return -ENOMEM;
8c1b6e69
AS
9994 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9995 if (!info_aux)
9996 goto err_free;
ba64e7d8 9997
838e9690
YS
9998 for (i = 0; i < nfuncs; i++) {
9999 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10000 if (ret) {
10001 if (ret == -E2BIG) {
10002 verbose(env, "nonzero tailing record in func info");
10003 /* set the size kernel expects so loader can zero
10004 * out the rest of the record.
10005 */
af2ac3e1
AS
10006 if (copy_to_bpfptr_offset(uattr,
10007 offsetof(union bpf_attr, func_info_rec_size),
10008 &min_size, sizeof(min_size)))
838e9690
YS
10009 ret = -EFAULT;
10010 }
c454a46b 10011 goto err_free;
838e9690
YS
10012 }
10013
af2ac3e1 10014 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10015 ret = -EFAULT;
c454a46b 10016 goto err_free;
838e9690
YS
10017 }
10018
d30d42e0 10019 /* check insn_off */
09b28d76 10020 ret = -EINVAL;
838e9690 10021 if (i == 0) {
d30d42e0 10022 if (krecord[i].insn_off) {
838e9690 10023 verbose(env,
d30d42e0
MKL
10024 "nonzero insn_off %u for the first func info record",
10025 krecord[i].insn_off);
c454a46b 10026 goto err_free;
838e9690 10027 }
d30d42e0 10028 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
10029 verbose(env,
10030 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 10031 krecord[i].insn_off, prev_offset);
c454a46b 10032 goto err_free;
838e9690
YS
10033 }
10034
d30d42e0 10035 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 10036 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 10037 goto err_free;
838e9690
YS
10038 }
10039
10040 /* check type_id */
ba64e7d8 10041 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 10042 if (!type || !btf_type_is_func(type)) {
838e9690 10043 verbose(env, "invalid type id %d in func info",
ba64e7d8 10044 krecord[i].type_id);
c454a46b 10045 goto err_free;
838e9690 10046 }
51c39bb1 10047 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
10048
10049 func_proto = btf_type_by_id(btf, type->type);
10050 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10051 /* btf_func_check() already verified it during BTF load */
10052 goto err_free;
10053 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10054 scalar_return =
10055 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10056 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10057 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10058 goto err_free;
10059 }
10060 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10061 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10062 goto err_free;
10063 }
10064
d30d42e0 10065 prev_offset = krecord[i].insn_off;
af2ac3e1 10066 bpfptr_add(&urecord, urec_size);
838e9690
YS
10067 }
10068
ba64e7d8
YS
10069 prog->aux->func_info = krecord;
10070 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 10071 prog->aux->func_info_aux = info_aux;
838e9690
YS
10072 return 0;
10073
c454a46b 10074err_free:
ba64e7d8 10075 kvfree(krecord);
8c1b6e69 10076 kfree(info_aux);
838e9690
YS
10077 return ret;
10078}
10079
ba64e7d8
YS
10080static void adjust_btf_func(struct bpf_verifier_env *env)
10081{
8c1b6e69 10082 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
10083 int i;
10084
8c1b6e69 10085 if (!aux->func_info)
ba64e7d8
YS
10086 return;
10087
10088 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 10089 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
10090}
10091
c454a46b
MKL
10092#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10093 sizeof(((struct bpf_line_info *)(0))->line_col))
10094#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10095
10096static int check_btf_line(struct bpf_verifier_env *env,
10097 const union bpf_attr *attr,
af2ac3e1 10098 bpfptr_t uattr)
c454a46b
MKL
10099{
10100 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10101 struct bpf_subprog_info *sub;
10102 struct bpf_line_info *linfo;
10103 struct bpf_prog *prog;
10104 const struct btf *btf;
af2ac3e1 10105 bpfptr_t ulinfo;
c454a46b
MKL
10106 int err;
10107
10108 nr_linfo = attr->line_info_cnt;
10109 if (!nr_linfo)
10110 return 0;
0e6491b5
BC
10111 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10112 return -EINVAL;
c454a46b
MKL
10113
10114 rec_size = attr->line_info_rec_size;
10115 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10116 rec_size > MAX_LINEINFO_REC_SIZE ||
10117 rec_size & (sizeof(u32) - 1))
10118 return -EINVAL;
10119
10120 /* Need to zero it in case the userspace may
10121 * pass in a smaller bpf_line_info object.
10122 */
10123 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10124 GFP_KERNEL | __GFP_NOWARN);
10125 if (!linfo)
10126 return -ENOMEM;
10127
10128 prog = env->prog;
10129 btf = prog->aux->btf;
10130
10131 s = 0;
10132 sub = env->subprog_info;
af2ac3e1 10133 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
10134 expected_size = sizeof(struct bpf_line_info);
10135 ncopy = min_t(u32, expected_size, rec_size);
10136 for (i = 0; i < nr_linfo; i++) {
10137 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10138 if (err) {
10139 if (err == -E2BIG) {
10140 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
10141 if (copy_to_bpfptr_offset(uattr,
10142 offsetof(union bpf_attr, line_info_rec_size),
10143 &expected_size, sizeof(expected_size)))
c454a46b
MKL
10144 err = -EFAULT;
10145 }
10146 goto err_free;
10147 }
10148
af2ac3e1 10149 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
10150 err = -EFAULT;
10151 goto err_free;
10152 }
10153
10154 /*
10155 * Check insn_off to ensure
10156 * 1) strictly increasing AND
10157 * 2) bounded by prog->len
10158 *
10159 * The linfo[0].insn_off == 0 check logically falls into
10160 * the later "missing bpf_line_info for func..." case
10161 * because the first linfo[0].insn_off must be the
10162 * first sub also and the first sub must have
10163 * subprog_info[0].start == 0.
10164 */
10165 if ((i && linfo[i].insn_off <= prev_offset) ||
10166 linfo[i].insn_off >= prog->len) {
10167 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10168 i, linfo[i].insn_off, prev_offset,
10169 prog->len);
10170 err = -EINVAL;
10171 goto err_free;
10172 }
10173
fdbaa0be
MKL
10174 if (!prog->insnsi[linfo[i].insn_off].code) {
10175 verbose(env,
10176 "Invalid insn code at line_info[%u].insn_off\n",
10177 i);
10178 err = -EINVAL;
10179 goto err_free;
10180 }
10181
23127b33
MKL
10182 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10183 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
10184 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10185 err = -EINVAL;
10186 goto err_free;
10187 }
10188
10189 if (s != env->subprog_cnt) {
10190 if (linfo[i].insn_off == sub[s].start) {
10191 sub[s].linfo_idx = i;
10192 s++;
10193 } else if (sub[s].start < linfo[i].insn_off) {
10194 verbose(env, "missing bpf_line_info for func#%u\n", s);
10195 err = -EINVAL;
10196 goto err_free;
10197 }
10198 }
10199
10200 prev_offset = linfo[i].insn_off;
af2ac3e1 10201 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
10202 }
10203
10204 if (s != env->subprog_cnt) {
10205 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10206 env->subprog_cnt - s, s);
10207 err = -EINVAL;
10208 goto err_free;
10209 }
10210
10211 prog->aux->linfo = linfo;
10212 prog->aux->nr_linfo = nr_linfo;
10213
10214 return 0;
10215
10216err_free:
10217 kvfree(linfo);
10218 return err;
10219}
10220
10221static int check_btf_info(struct bpf_verifier_env *env,
10222 const union bpf_attr *attr,
af2ac3e1 10223 bpfptr_t uattr)
c454a46b
MKL
10224{
10225 struct btf *btf;
10226 int err;
10227
09b28d76
AS
10228 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10229 if (check_abnormal_return(env))
10230 return -EINVAL;
c454a46b 10231 return 0;
09b28d76 10232 }
c454a46b
MKL
10233
10234 btf = btf_get_by_fd(attr->prog_btf_fd);
10235 if (IS_ERR(btf))
10236 return PTR_ERR(btf);
350a5c4d
AS
10237 if (btf_is_kernel(btf)) {
10238 btf_put(btf);
10239 return -EACCES;
10240 }
c454a46b
MKL
10241 env->prog->aux->btf = btf;
10242
10243 err = check_btf_func(env, attr, uattr);
10244 if (err)
10245 return err;
10246
10247 err = check_btf_line(env, attr, uattr);
10248 if (err)
10249 return err;
10250
10251 return 0;
ba64e7d8
YS
10252}
10253
f1174f77
EC
10254/* check %cur's range satisfies %old's */
10255static bool range_within(struct bpf_reg_state *old,
10256 struct bpf_reg_state *cur)
10257{
b03c9f9f
EC
10258 return old->umin_value <= cur->umin_value &&
10259 old->umax_value >= cur->umax_value &&
10260 old->smin_value <= cur->smin_value &&
fd675184
DB
10261 old->smax_value >= cur->smax_value &&
10262 old->u32_min_value <= cur->u32_min_value &&
10263 old->u32_max_value >= cur->u32_max_value &&
10264 old->s32_min_value <= cur->s32_min_value &&
10265 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
10266}
10267
f1174f77
EC
10268/* If in the old state two registers had the same id, then they need to have
10269 * the same id in the new state as well. But that id could be different from
10270 * the old state, so we need to track the mapping from old to new ids.
10271 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10272 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10273 * regs with a different old id could still have new id 9, we don't care about
10274 * that.
10275 * So we look through our idmap to see if this old id has been seen before. If
10276 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 10277 */
c9e73e3d 10278static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 10279{
f1174f77 10280 unsigned int i;
969bf05e 10281
c9e73e3d 10282 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
10283 if (!idmap[i].old) {
10284 /* Reached an empty slot; haven't seen this id before */
10285 idmap[i].old = old_id;
10286 idmap[i].cur = cur_id;
10287 return true;
10288 }
10289 if (idmap[i].old == old_id)
10290 return idmap[i].cur == cur_id;
10291 }
10292 /* We ran out of idmap slots, which should be impossible */
10293 WARN_ON_ONCE(1);
10294 return false;
10295}
10296
9242b5f5
AS
10297static void clean_func_state(struct bpf_verifier_env *env,
10298 struct bpf_func_state *st)
10299{
10300 enum bpf_reg_liveness live;
10301 int i, j;
10302
10303 for (i = 0; i < BPF_REG_FP; i++) {
10304 live = st->regs[i].live;
10305 /* liveness must not touch this register anymore */
10306 st->regs[i].live |= REG_LIVE_DONE;
10307 if (!(live & REG_LIVE_READ))
10308 /* since the register is unused, clear its state
10309 * to make further comparison simpler
10310 */
f54c7898 10311 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
10312 }
10313
10314 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10315 live = st->stack[i].spilled_ptr.live;
10316 /* liveness must not touch this stack slot anymore */
10317 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10318 if (!(live & REG_LIVE_READ)) {
f54c7898 10319 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
10320 for (j = 0; j < BPF_REG_SIZE; j++)
10321 st->stack[i].slot_type[j] = STACK_INVALID;
10322 }
10323 }
10324}
10325
10326static void clean_verifier_state(struct bpf_verifier_env *env,
10327 struct bpf_verifier_state *st)
10328{
10329 int i;
10330
10331 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10332 /* all regs in this state in all frames were already marked */
10333 return;
10334
10335 for (i = 0; i <= st->curframe; i++)
10336 clean_func_state(env, st->frame[i]);
10337}
10338
10339/* the parentage chains form a tree.
10340 * the verifier states are added to state lists at given insn and
10341 * pushed into state stack for future exploration.
10342 * when the verifier reaches bpf_exit insn some of the verifer states
10343 * stored in the state lists have their final liveness state already,
10344 * but a lot of states will get revised from liveness point of view when
10345 * the verifier explores other branches.
10346 * Example:
10347 * 1: r0 = 1
10348 * 2: if r1 == 100 goto pc+1
10349 * 3: r0 = 2
10350 * 4: exit
10351 * when the verifier reaches exit insn the register r0 in the state list of
10352 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10353 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10354 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10355 *
10356 * Since the verifier pushes the branch states as it sees them while exploring
10357 * the program the condition of walking the branch instruction for the second
10358 * time means that all states below this branch were already explored and
8fb33b60 10359 * their final liveness marks are already propagated.
9242b5f5
AS
10360 * Hence when the verifier completes the search of state list in is_state_visited()
10361 * we can call this clean_live_states() function to mark all liveness states
10362 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10363 * will not be used.
10364 * This function also clears the registers and stack for states that !READ
10365 * to simplify state merging.
10366 *
10367 * Important note here that walking the same branch instruction in the callee
10368 * doesn't meant that the states are DONE. The verifier has to compare
10369 * the callsites
10370 */
10371static void clean_live_states(struct bpf_verifier_env *env, int insn,
10372 struct bpf_verifier_state *cur)
10373{
10374 struct bpf_verifier_state_list *sl;
10375 int i;
10376
5d839021 10377 sl = *explored_state(env, insn);
a8f500af 10378 while (sl) {
2589726d
AS
10379 if (sl->state.branches)
10380 goto next;
dc2a4ebc
AS
10381 if (sl->state.insn_idx != insn ||
10382 sl->state.curframe != cur->curframe)
9242b5f5
AS
10383 goto next;
10384 for (i = 0; i <= cur->curframe; i++)
10385 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10386 goto next;
10387 clean_verifier_state(env, &sl->state);
10388next:
10389 sl = sl->next;
10390 }
10391}
10392
f1174f77 10393/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
10394static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10395 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 10396{
f4d7e40a
AS
10397 bool equal;
10398
dc503a8a
EC
10399 if (!(rold->live & REG_LIVE_READ))
10400 /* explored state didn't use this */
10401 return true;
10402
679c782d 10403 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
10404
10405 if (rold->type == PTR_TO_STACK)
10406 /* two stack pointers are equal only if they're pointing to
10407 * the same stack frame, since fp-8 in foo != fp-8 in bar
10408 */
10409 return equal && rold->frameno == rcur->frameno;
10410
10411 if (equal)
969bf05e
AS
10412 return true;
10413
f1174f77
EC
10414 if (rold->type == NOT_INIT)
10415 /* explored state can't have used this */
969bf05e 10416 return true;
f1174f77
EC
10417 if (rcur->type == NOT_INIT)
10418 return false;
10419 switch (rold->type) {
10420 case SCALAR_VALUE:
e042aa53
DB
10421 if (env->explore_alu_limits)
10422 return false;
f1174f77 10423 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
10424 if (!rold->precise && !rcur->precise)
10425 return true;
f1174f77
EC
10426 /* new val must satisfy old val knowledge */
10427 return range_within(rold, rcur) &&
10428 tnum_in(rold->var_off, rcur->var_off);
10429 } else {
179d1c56
JH
10430 /* We're trying to use a pointer in place of a scalar.
10431 * Even if the scalar was unbounded, this could lead to
10432 * pointer leaks because scalars are allowed to leak
10433 * while pointers are not. We could make this safe in
10434 * special cases if root is calling us, but it's
10435 * probably not worth the hassle.
f1174f77 10436 */
179d1c56 10437 return false;
f1174f77 10438 }
69c087ba 10439 case PTR_TO_MAP_KEY:
f1174f77 10440 case PTR_TO_MAP_VALUE:
1b688a19
EC
10441 /* If the new min/max/var_off satisfy the old ones and
10442 * everything else matches, we are OK.
d83525ca
AS
10443 * 'id' is not compared, since it's only used for maps with
10444 * bpf_spin_lock inside map element and in such cases if
10445 * the rest of the prog is valid for one map element then
10446 * it's valid for all map elements regardless of the key
10447 * used in bpf_map_lookup()
1b688a19
EC
10448 */
10449 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10450 range_within(rold, rcur) &&
10451 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
10452 case PTR_TO_MAP_VALUE_OR_NULL:
10453 /* a PTR_TO_MAP_VALUE could be safe to use as a
10454 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10455 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10456 * checked, doing so could have affected others with the same
10457 * id, and we can't check for that because we lost the id when
10458 * we converted to a PTR_TO_MAP_VALUE.
10459 */
10460 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10461 return false;
10462 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10463 return false;
10464 /* Check our ids match any regs they're supposed to */
10465 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 10466 case PTR_TO_PACKET_META:
f1174f77 10467 case PTR_TO_PACKET:
de8f3a83 10468 if (rcur->type != rold->type)
f1174f77
EC
10469 return false;
10470 /* We must have at least as much range as the old ptr
10471 * did, so that any accesses which were safe before are
10472 * still safe. This is true even if old range < old off,
10473 * since someone could have accessed through (ptr - k), or
10474 * even done ptr -= k in a register, to get a safe access.
10475 */
10476 if (rold->range > rcur->range)
10477 return false;
10478 /* If the offsets don't match, we can't trust our alignment;
10479 * nor can we be sure that we won't fall out of range.
10480 */
10481 if (rold->off != rcur->off)
10482 return false;
10483 /* id relations must be preserved */
10484 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10485 return false;
10486 /* new val must satisfy old val knowledge */
10487 return range_within(rold, rcur) &&
10488 tnum_in(rold->var_off, rcur->var_off);
10489 case PTR_TO_CTX:
10490 case CONST_PTR_TO_MAP:
f1174f77 10491 case PTR_TO_PACKET_END:
d58e468b 10492 case PTR_TO_FLOW_KEYS:
c64b7983
JS
10493 case PTR_TO_SOCKET:
10494 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10495 case PTR_TO_SOCK_COMMON:
10496 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10497 case PTR_TO_TCP_SOCK:
10498 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10499 case PTR_TO_XDP_SOCK:
f1174f77
EC
10500 /* Only valid matches are exact, which memcmp() above
10501 * would have accepted
10502 */
10503 default:
10504 /* Don't know what's going on, just say it's not safe */
10505 return false;
10506 }
969bf05e 10507
f1174f77
EC
10508 /* Shouldn't get here; if we do, say it's not safe */
10509 WARN_ON_ONCE(1);
969bf05e
AS
10510 return false;
10511}
10512
e042aa53
DB
10513static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10514 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
10515{
10516 int i, spi;
10517
638f5b90
AS
10518 /* walk slots of the explored stack and ignore any additional
10519 * slots in the current stack, since explored(safe) state
10520 * didn't use them
10521 */
10522 for (i = 0; i < old->allocated_stack; i++) {
10523 spi = i / BPF_REG_SIZE;
10524
b233920c
AS
10525 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10526 i += BPF_REG_SIZE - 1;
cc2b14d5 10527 /* explored state didn't use this */
fd05e57b 10528 continue;
b233920c 10529 }
cc2b14d5 10530
638f5b90
AS
10531 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10532 continue;
19e2dbb7
AS
10533
10534 /* explored stack has more populated slots than current stack
10535 * and these slots were used
10536 */
10537 if (i >= cur->allocated_stack)
10538 return false;
10539
cc2b14d5
AS
10540 /* if old state was safe with misc data in the stack
10541 * it will be safe with zero-initialized stack.
10542 * The opposite is not true
10543 */
10544 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10545 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10546 continue;
638f5b90
AS
10547 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10548 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10549 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10550 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10551 * this verifier states are not equivalent,
10552 * return false to continue verification of this path
10553 */
10554 return false;
27113c59 10555 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 10556 continue;
27113c59 10557 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 10558 continue;
e042aa53
DB
10559 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10560 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
10561 /* when explored and current stack slot are both storing
10562 * spilled registers, check that stored pointers types
10563 * are the same as well.
10564 * Ex: explored safe path could have stored
10565 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10566 * but current path has stored:
10567 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10568 * such verifier states are not equivalent.
10569 * return false to continue verification of this path
10570 */
10571 return false;
10572 }
10573 return true;
10574}
10575
fd978bf7
JS
10576static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10577{
10578 if (old->acquired_refs != cur->acquired_refs)
10579 return false;
10580 return !memcmp(old->refs, cur->refs,
10581 sizeof(*old->refs) * old->acquired_refs);
10582}
10583
f1bca824
AS
10584/* compare two verifier states
10585 *
10586 * all states stored in state_list are known to be valid, since
10587 * verifier reached 'bpf_exit' instruction through them
10588 *
10589 * this function is called when verifier exploring different branches of
10590 * execution popped from the state stack. If it sees an old state that has
10591 * more strict register state and more strict stack state then this execution
10592 * branch doesn't need to be explored further, since verifier already
10593 * concluded that more strict state leads to valid finish.
10594 *
10595 * Therefore two states are equivalent if register state is more conservative
10596 * and explored stack state is more conservative than the current one.
10597 * Example:
10598 * explored current
10599 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10600 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10601 *
10602 * In other words if current stack state (one being explored) has more
10603 * valid slots than old one that already passed validation, it means
10604 * the verifier can stop exploring and conclude that current state is valid too
10605 *
10606 * Similarly with registers. If explored state has register type as invalid
10607 * whereas register type in current state is meaningful, it means that
10608 * the current state will reach 'bpf_exit' instruction safely
10609 */
c9e73e3d 10610static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 10611 struct bpf_func_state *cur)
f1bca824
AS
10612{
10613 int i;
10614
c9e73e3d
LB
10615 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10616 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
10617 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10618 env->idmap_scratch))
c9e73e3d 10619 return false;
f1bca824 10620
e042aa53 10621 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 10622 return false;
fd978bf7
JS
10623
10624 if (!refsafe(old, cur))
c9e73e3d
LB
10625 return false;
10626
10627 return true;
f1bca824
AS
10628}
10629
f4d7e40a
AS
10630static bool states_equal(struct bpf_verifier_env *env,
10631 struct bpf_verifier_state *old,
10632 struct bpf_verifier_state *cur)
10633{
10634 int i;
10635
10636 if (old->curframe != cur->curframe)
10637 return false;
10638
979d63d5
DB
10639 /* Verification state from speculative execution simulation
10640 * must never prune a non-speculative execution one.
10641 */
10642 if (old->speculative && !cur->speculative)
10643 return false;
10644
d83525ca
AS
10645 if (old->active_spin_lock != cur->active_spin_lock)
10646 return false;
10647
f4d7e40a
AS
10648 /* for states to be equal callsites have to be the same
10649 * and all frame states need to be equivalent
10650 */
10651 for (i = 0; i <= old->curframe; i++) {
10652 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10653 return false;
c9e73e3d 10654 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
10655 return false;
10656 }
10657 return true;
10658}
10659
5327ed3d
JW
10660/* Return 0 if no propagation happened. Return negative error code if error
10661 * happened. Otherwise, return the propagated bit.
10662 */
55e7f3b5
JW
10663static int propagate_liveness_reg(struct bpf_verifier_env *env,
10664 struct bpf_reg_state *reg,
10665 struct bpf_reg_state *parent_reg)
10666{
5327ed3d
JW
10667 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10668 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10669 int err;
10670
5327ed3d
JW
10671 /* When comes here, read flags of PARENT_REG or REG could be any of
10672 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10673 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10674 */
10675 if (parent_flag == REG_LIVE_READ64 ||
10676 /* Or if there is no read flag from REG. */
10677 !flag ||
10678 /* Or if the read flag from REG is the same as PARENT_REG. */
10679 parent_flag == flag)
55e7f3b5
JW
10680 return 0;
10681
5327ed3d 10682 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10683 if (err)
10684 return err;
10685
5327ed3d 10686 return flag;
55e7f3b5
JW
10687}
10688
8e9cd9ce 10689/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10690 * straight-line code between a state and its parent. When we arrive at an
10691 * equivalent state (jump target or such) we didn't arrive by the straight-line
10692 * code, so read marks in the state must propagate to the parent regardless
10693 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10694 * in mark_reg_read() is for.
8e9cd9ce 10695 */
f4d7e40a
AS
10696static int propagate_liveness(struct bpf_verifier_env *env,
10697 const struct bpf_verifier_state *vstate,
10698 struct bpf_verifier_state *vparent)
dc503a8a 10699{
3f8cafa4 10700 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10701 struct bpf_func_state *state, *parent;
3f8cafa4 10702 int i, frame, err = 0;
dc503a8a 10703
f4d7e40a
AS
10704 if (vparent->curframe != vstate->curframe) {
10705 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10706 vparent->curframe, vstate->curframe);
10707 return -EFAULT;
10708 }
dc503a8a
EC
10709 /* Propagate read liveness of registers... */
10710 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10711 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10712 parent = vparent->frame[frame];
10713 state = vstate->frame[frame];
10714 parent_reg = parent->regs;
10715 state_reg = state->regs;
83d16312
JK
10716 /* We don't need to worry about FP liveness, it's read-only */
10717 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10718 err = propagate_liveness_reg(env, &state_reg[i],
10719 &parent_reg[i]);
5327ed3d 10720 if (err < 0)
3f8cafa4 10721 return err;
5327ed3d
JW
10722 if (err == REG_LIVE_READ64)
10723 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10724 }
f4d7e40a 10725
1b04aee7 10726 /* Propagate stack slots. */
f4d7e40a
AS
10727 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10728 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10729 parent_reg = &parent->stack[i].spilled_ptr;
10730 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10731 err = propagate_liveness_reg(env, state_reg,
10732 parent_reg);
5327ed3d 10733 if (err < 0)
3f8cafa4 10734 return err;
dc503a8a
EC
10735 }
10736 }
5327ed3d 10737 return 0;
dc503a8a
EC
10738}
10739
a3ce685d
AS
10740/* find precise scalars in the previous equivalent state and
10741 * propagate them into the current state
10742 */
10743static int propagate_precision(struct bpf_verifier_env *env,
10744 const struct bpf_verifier_state *old)
10745{
10746 struct bpf_reg_state *state_reg;
10747 struct bpf_func_state *state;
10748 int i, err = 0;
10749
10750 state = old->frame[old->curframe];
10751 state_reg = state->regs;
10752 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10753 if (state_reg->type != SCALAR_VALUE ||
10754 !state_reg->precise)
10755 continue;
10756 if (env->log.level & BPF_LOG_LEVEL2)
10757 verbose(env, "propagating r%d\n", i);
10758 err = mark_chain_precision(env, i);
10759 if (err < 0)
10760 return err;
10761 }
10762
10763 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 10764 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
10765 continue;
10766 state_reg = &state->stack[i].spilled_ptr;
10767 if (state_reg->type != SCALAR_VALUE ||
10768 !state_reg->precise)
10769 continue;
10770 if (env->log.level & BPF_LOG_LEVEL2)
10771 verbose(env, "propagating fp%d\n",
10772 (-i - 1) * BPF_REG_SIZE);
10773 err = mark_chain_precision_stack(env, i);
10774 if (err < 0)
10775 return err;
10776 }
10777 return 0;
10778}
10779
2589726d
AS
10780static bool states_maybe_looping(struct bpf_verifier_state *old,
10781 struct bpf_verifier_state *cur)
10782{
10783 struct bpf_func_state *fold, *fcur;
10784 int i, fr = cur->curframe;
10785
10786 if (old->curframe != fr)
10787 return false;
10788
10789 fold = old->frame[fr];
10790 fcur = cur->frame[fr];
10791 for (i = 0; i < MAX_BPF_REG; i++)
10792 if (memcmp(&fold->regs[i], &fcur->regs[i],
10793 offsetof(struct bpf_reg_state, parent)))
10794 return false;
10795 return true;
10796}
10797
10798
58e2af8b 10799static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 10800{
58e2af8b 10801 struct bpf_verifier_state_list *new_sl;
9f4686c4 10802 struct bpf_verifier_state_list *sl, **pprev;
679c782d 10803 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 10804 int i, j, err, states_cnt = 0;
10d274e8 10805 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 10806
b5dc0163 10807 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 10808 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
10809 /* this 'insn_idx' instruction wasn't marked, so we will not
10810 * be doing state search here
10811 */
10812 return 0;
10813
2589726d
AS
10814 /* bpf progs typically have pruning point every 4 instructions
10815 * http://vger.kernel.org/bpfconf2019.html#session-1
10816 * Do not add new state for future pruning if the verifier hasn't seen
10817 * at least 2 jumps and at least 8 instructions.
10818 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10819 * In tests that amounts to up to 50% reduction into total verifier
10820 * memory consumption and 20% verifier time speedup.
10821 */
10822 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10823 env->insn_processed - env->prev_insn_processed >= 8)
10824 add_new_state = true;
10825
a8f500af
AS
10826 pprev = explored_state(env, insn_idx);
10827 sl = *pprev;
10828
9242b5f5
AS
10829 clean_live_states(env, insn_idx, cur);
10830
a8f500af 10831 while (sl) {
dc2a4ebc
AS
10832 states_cnt++;
10833 if (sl->state.insn_idx != insn_idx)
10834 goto next;
bfc6bb74 10835
2589726d 10836 if (sl->state.branches) {
bfc6bb74
AS
10837 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10838
10839 if (frame->in_async_callback_fn &&
10840 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10841 /* Different async_entry_cnt means that the verifier is
10842 * processing another entry into async callback.
10843 * Seeing the same state is not an indication of infinite
10844 * loop or infinite recursion.
10845 * But finding the same state doesn't mean that it's safe
10846 * to stop processing the current state. The previous state
10847 * hasn't yet reached bpf_exit, since state.branches > 0.
10848 * Checking in_async_callback_fn alone is not enough either.
10849 * Since the verifier still needs to catch infinite loops
10850 * inside async callbacks.
10851 */
10852 } else if (states_maybe_looping(&sl->state, cur) &&
10853 states_equal(env, &sl->state, cur)) {
2589726d
AS
10854 verbose_linfo(env, insn_idx, "; ");
10855 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10856 return -EINVAL;
10857 }
10858 /* if the verifier is processing a loop, avoid adding new state
10859 * too often, since different loop iterations have distinct
10860 * states and may not help future pruning.
10861 * This threshold shouldn't be too low to make sure that
10862 * a loop with large bound will be rejected quickly.
10863 * The most abusive loop will be:
10864 * r1 += 1
10865 * if r1 < 1000000 goto pc-2
10866 * 1M insn_procssed limit / 100 == 10k peak states.
10867 * This threshold shouldn't be too high either, since states
10868 * at the end of the loop are likely to be useful in pruning.
10869 */
10870 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10871 env->insn_processed - env->prev_insn_processed < 100)
10872 add_new_state = false;
10873 goto miss;
10874 }
638f5b90 10875 if (states_equal(env, &sl->state, cur)) {
9f4686c4 10876 sl->hit_cnt++;
f1bca824 10877 /* reached equivalent register/stack state,
dc503a8a
EC
10878 * prune the search.
10879 * Registers read by the continuation are read by us.
8e9cd9ce
EC
10880 * If we have any write marks in env->cur_state, they
10881 * will prevent corresponding reads in the continuation
10882 * from reaching our parent (an explored_state). Our
10883 * own state will get the read marks recorded, but
10884 * they'll be immediately forgotten as we're pruning
10885 * this state and will pop a new one.
f1bca824 10886 */
f4d7e40a 10887 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
10888
10889 /* if previous state reached the exit with precision and
10890 * current state is equivalent to it (except precsion marks)
10891 * the precision needs to be propagated back in
10892 * the current state.
10893 */
10894 err = err ? : push_jmp_history(env, cur);
10895 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
10896 if (err)
10897 return err;
f1bca824 10898 return 1;
dc503a8a 10899 }
2589726d
AS
10900miss:
10901 /* when new state is not going to be added do not increase miss count.
10902 * Otherwise several loop iterations will remove the state
10903 * recorded earlier. The goal of these heuristics is to have
10904 * states from some iterations of the loop (some in the beginning
10905 * and some at the end) to help pruning.
10906 */
10907 if (add_new_state)
10908 sl->miss_cnt++;
9f4686c4
AS
10909 /* heuristic to determine whether this state is beneficial
10910 * to keep checking from state equivalence point of view.
10911 * Higher numbers increase max_states_per_insn and verification time,
10912 * but do not meaningfully decrease insn_processed.
10913 */
10914 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10915 /* the state is unlikely to be useful. Remove it to
10916 * speed up verification
10917 */
10918 *pprev = sl->next;
10919 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
10920 u32 br = sl->state.branches;
10921
10922 WARN_ONCE(br,
10923 "BUG live_done but branches_to_explore %d\n",
10924 br);
9f4686c4
AS
10925 free_verifier_state(&sl->state, false);
10926 kfree(sl);
10927 env->peak_states--;
10928 } else {
10929 /* cannot free this state, since parentage chain may
10930 * walk it later. Add it for free_list instead to
10931 * be freed at the end of verification
10932 */
10933 sl->next = env->free_list;
10934 env->free_list = sl;
10935 }
10936 sl = *pprev;
10937 continue;
10938 }
dc2a4ebc 10939next:
9f4686c4
AS
10940 pprev = &sl->next;
10941 sl = *pprev;
f1bca824
AS
10942 }
10943
06ee7115
AS
10944 if (env->max_states_per_insn < states_cnt)
10945 env->max_states_per_insn = states_cnt;
10946
2c78ee89 10947 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 10948 return push_jmp_history(env, cur);
ceefbc96 10949
2589726d 10950 if (!add_new_state)
b5dc0163 10951 return push_jmp_history(env, cur);
ceefbc96 10952
2589726d
AS
10953 /* There were no equivalent states, remember the current one.
10954 * Technically the current state is not proven to be safe yet,
f4d7e40a 10955 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 10956 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 10957 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
10958 * again on the way to bpf_exit.
10959 * When looping the sl->state.branches will be > 0 and this state
10960 * will not be considered for equivalence until branches == 0.
f1bca824 10961 */
638f5b90 10962 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
10963 if (!new_sl)
10964 return -ENOMEM;
06ee7115
AS
10965 env->total_states++;
10966 env->peak_states++;
2589726d
AS
10967 env->prev_jmps_processed = env->jmps_processed;
10968 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
10969
10970 /* add new state to the head of linked list */
679c782d
EC
10971 new = &new_sl->state;
10972 err = copy_verifier_state(new, cur);
1969db47 10973 if (err) {
679c782d 10974 free_verifier_state(new, false);
1969db47
AS
10975 kfree(new_sl);
10976 return err;
10977 }
dc2a4ebc 10978 new->insn_idx = insn_idx;
2589726d
AS
10979 WARN_ONCE(new->branches != 1,
10980 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 10981
2589726d 10982 cur->parent = new;
b5dc0163
AS
10983 cur->first_insn_idx = insn_idx;
10984 clear_jmp_history(cur);
5d839021
AS
10985 new_sl->next = *explored_state(env, insn_idx);
10986 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
10987 /* connect new state to parentage chain. Current frame needs all
10988 * registers connected. Only r6 - r9 of the callers are alive (pushed
10989 * to the stack implicitly by JITs) so in callers' frames connect just
10990 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10991 * the state of the call instruction (with WRITTEN set), and r0 comes
10992 * from callee with its full parentage chain, anyway.
10993 */
8e9cd9ce
EC
10994 /* clear write marks in current state: the writes we did are not writes
10995 * our child did, so they don't screen off its reads from us.
10996 * (There are no read marks in current state, because reads always mark
10997 * their parent and current state never has children yet. Only
10998 * explored_states can get read marks.)
10999 */
eea1c227
AS
11000 for (j = 0; j <= cur->curframe; j++) {
11001 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11002 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11003 for (i = 0; i < BPF_REG_FP; i++)
11004 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11005 }
f4d7e40a
AS
11006
11007 /* all stack frames are accessible from callee, clear them all */
11008 for (j = 0; j <= cur->curframe; j++) {
11009 struct bpf_func_state *frame = cur->frame[j];
679c782d 11010 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 11011
679c782d 11012 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 11013 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
11014 frame->stack[i].spilled_ptr.parent =
11015 &newframe->stack[i].spilled_ptr;
11016 }
f4d7e40a 11017 }
f1bca824
AS
11018 return 0;
11019}
11020
c64b7983
JS
11021/* Return true if it's OK to have the same insn return a different type. */
11022static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11023{
11024 switch (type) {
11025 case PTR_TO_CTX:
11026 case PTR_TO_SOCKET:
11027 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
11028 case PTR_TO_SOCK_COMMON:
11029 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
11030 case PTR_TO_TCP_SOCK:
11031 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 11032 case PTR_TO_XDP_SOCK:
2a02759e 11033 case PTR_TO_BTF_ID:
b121b341 11034 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
11035 return false;
11036 default:
11037 return true;
11038 }
11039}
11040
11041/* If an instruction was previously used with particular pointer types, then we
11042 * need to be careful to avoid cases such as the below, where it may be ok
11043 * for one branch accessing the pointer, but not ok for the other branch:
11044 *
11045 * R1 = sock_ptr
11046 * goto X;
11047 * ...
11048 * R1 = some_other_valid_ptr;
11049 * goto X;
11050 * ...
11051 * R2 = *(u32 *)(R1 + 0);
11052 */
11053static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11054{
11055 return src != prev && (!reg_type_mismatch_ok(src) ||
11056 !reg_type_mismatch_ok(prev));
11057}
11058
58e2af8b 11059static int do_check(struct bpf_verifier_env *env)
17a52670 11060{
6f8a57cc 11061 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 11062 struct bpf_verifier_state *state = env->cur_state;
17a52670 11063 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 11064 struct bpf_reg_state *regs;
06ee7115 11065 int insn_cnt = env->prog->len;
17a52670 11066 bool do_print_state = false;
b5dc0163 11067 int prev_insn_idx = -1;
17a52670 11068
17a52670
AS
11069 for (;;) {
11070 struct bpf_insn *insn;
11071 u8 class;
11072 int err;
11073
b5dc0163 11074 env->prev_insn_idx = prev_insn_idx;
c08435ec 11075 if (env->insn_idx >= insn_cnt) {
61bd5218 11076 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 11077 env->insn_idx, insn_cnt);
17a52670
AS
11078 return -EFAULT;
11079 }
11080
c08435ec 11081 insn = &insns[env->insn_idx];
17a52670
AS
11082 class = BPF_CLASS(insn->code);
11083
06ee7115 11084 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
11085 verbose(env,
11086 "BPF program is too large. Processed %d insn\n",
06ee7115 11087 env->insn_processed);
17a52670
AS
11088 return -E2BIG;
11089 }
11090
c08435ec 11091 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
11092 if (err < 0)
11093 return err;
11094 if (err == 1) {
11095 /* found equivalent state, can prune the search */
06ee7115 11096 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 11097 if (do_print_state)
979d63d5
DB
11098 verbose(env, "\nfrom %d to %d%s: safe\n",
11099 env->prev_insn_idx, env->insn_idx,
11100 env->cur_state->speculative ?
11101 " (speculative execution)" : "");
f1bca824 11102 else
c08435ec 11103 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
11104 }
11105 goto process_bpf_exit;
11106 }
11107
c3494801
AS
11108 if (signal_pending(current))
11109 return -EAGAIN;
11110
3c2ce60b
DB
11111 if (need_resched())
11112 cond_resched();
11113
06ee7115
AS
11114 if (env->log.level & BPF_LOG_LEVEL2 ||
11115 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11116 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 11117 verbose(env, "%d:", env->insn_idx);
c5fc9692 11118 else
979d63d5
DB
11119 verbose(env, "\nfrom %d to %d%s:",
11120 env->prev_insn_idx, env->insn_idx,
11121 env->cur_state->speculative ?
11122 " (speculative execution)" : "");
f4d7e40a 11123 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
11124 do_print_state = false;
11125 }
11126
06ee7115 11127 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 11128 const struct bpf_insn_cbs cbs = {
e6ac2450 11129 .cb_call = disasm_kfunc_name,
7105e828 11130 .cb_print = verbose,
abe08840 11131 .private_data = env,
7105e828
DB
11132 };
11133
c08435ec
DB
11134 verbose_linfo(env, env->insn_idx, "; ");
11135 verbose(env, "%d: ", env->insn_idx);
abe08840 11136 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
11137 }
11138
cae1927c 11139 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
11140 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11141 env->prev_insn_idx);
cae1927c
JK
11142 if (err)
11143 return err;
11144 }
13a27dfc 11145
638f5b90 11146 regs = cur_regs(env);
fe9a5ca7 11147 sanitize_mark_insn_seen(env);
b5dc0163 11148 prev_insn_idx = env->insn_idx;
fd978bf7 11149
17a52670 11150 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 11151 err = check_alu_op(env, insn);
17a52670
AS
11152 if (err)
11153 return err;
11154
11155 } else if (class == BPF_LDX) {
3df126f3 11156 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
11157
11158 /* check for reserved fields is already done */
11159
17a52670 11160 /* check src operand */
dc503a8a 11161 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11162 if (err)
11163 return err;
11164
dc503a8a 11165 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
11166 if (err)
11167 return err;
11168
725f9dcd
AS
11169 src_reg_type = regs[insn->src_reg].type;
11170
17a52670
AS
11171 /* check that memory (src_reg + off) is readable,
11172 * the state of dst_reg will be updated by this func
11173 */
c08435ec
DB
11174 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11175 insn->off, BPF_SIZE(insn->code),
11176 BPF_READ, insn->dst_reg, false);
17a52670
AS
11177 if (err)
11178 return err;
11179
c08435ec 11180 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11181
11182 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
11183 /* saw a valid insn
11184 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 11185 * save type to validate intersecting paths
9bac3d6d 11186 */
3df126f3 11187 *prev_src_type = src_reg_type;
9bac3d6d 11188
c64b7983 11189 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
11190 /* ABuser program is trying to use the same insn
11191 * dst_reg = *(u32*) (src_reg + off)
11192 * with different pointer types:
11193 * src_reg == ctx in one branch and
11194 * src_reg == stack|map in some other branch.
11195 * Reject it.
11196 */
61bd5218 11197 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
11198 return -EINVAL;
11199 }
11200
17a52670 11201 } else if (class == BPF_STX) {
3df126f3 11202 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 11203
91c960b0
BJ
11204 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11205 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
11206 if (err)
11207 return err;
c08435ec 11208 env->insn_idx++;
17a52670
AS
11209 continue;
11210 }
11211
5ca419f2
BJ
11212 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11213 verbose(env, "BPF_STX uses reserved fields\n");
11214 return -EINVAL;
11215 }
11216
17a52670 11217 /* check src1 operand */
dc503a8a 11218 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11219 if (err)
11220 return err;
11221 /* check src2 operand */
dc503a8a 11222 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11223 if (err)
11224 return err;
11225
d691f9e8
AS
11226 dst_reg_type = regs[insn->dst_reg].type;
11227
17a52670 11228 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11229 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11230 insn->off, BPF_SIZE(insn->code),
11231 BPF_WRITE, insn->src_reg, false);
17a52670
AS
11232 if (err)
11233 return err;
11234
c08435ec 11235 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11236
11237 if (*prev_dst_type == NOT_INIT) {
11238 *prev_dst_type = dst_reg_type;
c64b7983 11239 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 11240 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
11241 return -EINVAL;
11242 }
11243
17a52670
AS
11244 } else if (class == BPF_ST) {
11245 if (BPF_MODE(insn->code) != BPF_MEM ||
11246 insn->src_reg != BPF_REG_0) {
61bd5218 11247 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
11248 return -EINVAL;
11249 }
11250 /* check src operand */
dc503a8a 11251 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11252 if (err)
11253 return err;
11254
f37a8cb8 11255 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 11256 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
11257 insn->dst_reg,
11258 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
11259 return -EACCES;
11260 }
11261
17a52670 11262 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11263 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11264 insn->off, BPF_SIZE(insn->code),
11265 BPF_WRITE, -1, false);
17a52670
AS
11266 if (err)
11267 return err;
11268
092ed096 11269 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
11270 u8 opcode = BPF_OP(insn->code);
11271
2589726d 11272 env->jmps_processed++;
17a52670
AS
11273 if (opcode == BPF_CALL) {
11274 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
11275 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11276 && insn->off != 0) ||
f4d7e40a 11277 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
11278 insn->src_reg != BPF_PSEUDO_CALL &&
11279 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
11280 insn->dst_reg != BPF_REG_0 ||
11281 class == BPF_JMP32) {
61bd5218 11282 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
11283 return -EINVAL;
11284 }
11285
d83525ca
AS
11286 if (env->cur_state->active_spin_lock &&
11287 (insn->src_reg == BPF_PSEUDO_CALL ||
11288 insn->imm != BPF_FUNC_spin_unlock)) {
11289 verbose(env, "function calls are not allowed while holding a lock\n");
11290 return -EINVAL;
11291 }
f4d7e40a 11292 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 11293 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
11294 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11295 err = check_kfunc_call(env, insn);
f4d7e40a 11296 else
69c087ba 11297 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
11298 if (err)
11299 return err;
17a52670
AS
11300 } else if (opcode == BPF_JA) {
11301 if (BPF_SRC(insn->code) != BPF_K ||
11302 insn->imm != 0 ||
11303 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11304 insn->dst_reg != BPF_REG_0 ||
11305 class == BPF_JMP32) {
61bd5218 11306 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
11307 return -EINVAL;
11308 }
11309
c08435ec 11310 env->insn_idx += insn->off + 1;
17a52670
AS
11311 continue;
11312
11313 } else if (opcode == BPF_EXIT) {
11314 if (BPF_SRC(insn->code) != BPF_K ||
11315 insn->imm != 0 ||
11316 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11317 insn->dst_reg != BPF_REG_0 ||
11318 class == BPF_JMP32) {
61bd5218 11319 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
11320 return -EINVAL;
11321 }
11322
d83525ca
AS
11323 if (env->cur_state->active_spin_lock) {
11324 verbose(env, "bpf_spin_unlock is missing\n");
11325 return -EINVAL;
11326 }
11327
f4d7e40a
AS
11328 if (state->curframe) {
11329 /* exit from nested function */
c08435ec 11330 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
11331 if (err)
11332 return err;
11333 do_print_state = true;
11334 continue;
11335 }
11336
fd978bf7
JS
11337 err = check_reference_leak(env);
11338 if (err)
11339 return err;
11340
390ee7e2
AS
11341 err = check_return_code(env);
11342 if (err)
11343 return err;
f1bca824 11344process_bpf_exit:
2589726d 11345 update_branch_counts(env, env->cur_state);
b5dc0163 11346 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 11347 &env->insn_idx, pop_log);
638f5b90
AS
11348 if (err < 0) {
11349 if (err != -ENOENT)
11350 return err;
17a52670
AS
11351 break;
11352 } else {
11353 do_print_state = true;
11354 continue;
11355 }
11356 } else {
c08435ec 11357 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
11358 if (err)
11359 return err;
11360 }
11361 } else if (class == BPF_LD) {
11362 u8 mode = BPF_MODE(insn->code);
11363
11364 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
11365 err = check_ld_abs(env, insn);
11366 if (err)
11367 return err;
11368
17a52670
AS
11369 } else if (mode == BPF_IMM) {
11370 err = check_ld_imm(env, insn);
11371 if (err)
11372 return err;
11373
c08435ec 11374 env->insn_idx++;
fe9a5ca7 11375 sanitize_mark_insn_seen(env);
17a52670 11376 } else {
61bd5218 11377 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
11378 return -EINVAL;
11379 }
11380 } else {
61bd5218 11381 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
11382 return -EINVAL;
11383 }
11384
c08435ec 11385 env->insn_idx++;
17a52670
AS
11386 }
11387
11388 return 0;
11389}
11390
541c3bad
AN
11391static int find_btf_percpu_datasec(struct btf *btf)
11392{
11393 const struct btf_type *t;
11394 const char *tname;
11395 int i, n;
11396
11397 /*
11398 * Both vmlinux and module each have their own ".data..percpu"
11399 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11400 * types to look at only module's own BTF types.
11401 */
11402 n = btf_nr_types(btf);
11403 if (btf_is_module(btf))
11404 i = btf_nr_types(btf_vmlinux);
11405 else
11406 i = 1;
11407
11408 for(; i < n; i++) {
11409 t = btf_type_by_id(btf, i);
11410 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11411 continue;
11412
11413 tname = btf_name_by_offset(btf, t->name_off);
11414 if (!strcmp(tname, ".data..percpu"))
11415 return i;
11416 }
11417
11418 return -ENOENT;
11419}
11420
4976b718
HL
11421/* replace pseudo btf_id with kernel symbol address */
11422static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11423 struct bpf_insn *insn,
11424 struct bpf_insn_aux_data *aux)
11425{
eaa6bcb7
HL
11426 const struct btf_var_secinfo *vsi;
11427 const struct btf_type *datasec;
541c3bad 11428 struct btf_mod_pair *btf_mod;
4976b718
HL
11429 const struct btf_type *t;
11430 const char *sym_name;
eaa6bcb7 11431 bool percpu = false;
f16e6313 11432 u32 type, id = insn->imm;
541c3bad 11433 struct btf *btf;
f16e6313 11434 s32 datasec_id;
4976b718 11435 u64 addr;
541c3bad 11436 int i, btf_fd, err;
4976b718 11437
541c3bad
AN
11438 btf_fd = insn[1].imm;
11439 if (btf_fd) {
11440 btf = btf_get_by_fd(btf_fd);
11441 if (IS_ERR(btf)) {
11442 verbose(env, "invalid module BTF object FD specified.\n");
11443 return -EINVAL;
11444 }
11445 } else {
11446 if (!btf_vmlinux) {
11447 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11448 return -EINVAL;
11449 }
11450 btf = btf_vmlinux;
11451 btf_get(btf);
4976b718
HL
11452 }
11453
541c3bad 11454 t = btf_type_by_id(btf, id);
4976b718
HL
11455 if (!t) {
11456 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
11457 err = -ENOENT;
11458 goto err_put;
4976b718
HL
11459 }
11460
11461 if (!btf_type_is_var(t)) {
541c3bad
AN
11462 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11463 err = -EINVAL;
11464 goto err_put;
4976b718
HL
11465 }
11466
541c3bad 11467 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11468 addr = kallsyms_lookup_name(sym_name);
11469 if (!addr) {
11470 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11471 sym_name);
541c3bad
AN
11472 err = -ENOENT;
11473 goto err_put;
4976b718
HL
11474 }
11475
541c3bad 11476 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11477 if (datasec_id > 0) {
541c3bad 11478 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11479 for_each_vsi(i, datasec, vsi) {
11480 if (vsi->type == id) {
11481 percpu = true;
11482 break;
11483 }
11484 }
11485 }
11486
4976b718
HL
11487 insn[0].imm = (u32)addr;
11488 insn[1].imm = addr >> 32;
11489
11490 type = t->type;
541c3bad 11491 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
11492 if (percpu) {
11493 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 11494 aux->btf_var.btf = btf;
eaa6bcb7
HL
11495 aux->btf_var.btf_id = type;
11496 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11497 const struct btf_type *ret;
11498 const char *tname;
11499 u32 tsize;
11500
11501 /* resolve the type size of ksym. */
541c3bad 11502 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11503 if (IS_ERR(ret)) {
541c3bad 11504 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11505 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11506 tname, PTR_ERR(ret));
541c3bad
AN
11507 err = -EINVAL;
11508 goto err_put;
4976b718
HL
11509 }
11510 aux->btf_var.reg_type = PTR_TO_MEM;
11511 aux->btf_var.mem_size = tsize;
11512 } else {
11513 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11514 aux->btf_var.btf = btf;
4976b718
HL
11515 aux->btf_var.btf_id = type;
11516 }
541c3bad
AN
11517
11518 /* check whether we recorded this BTF (and maybe module) already */
11519 for (i = 0; i < env->used_btf_cnt; i++) {
11520 if (env->used_btfs[i].btf == btf) {
11521 btf_put(btf);
11522 return 0;
11523 }
11524 }
11525
11526 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11527 err = -E2BIG;
11528 goto err_put;
11529 }
11530
11531 btf_mod = &env->used_btfs[env->used_btf_cnt];
11532 btf_mod->btf = btf;
11533 btf_mod->module = NULL;
11534
11535 /* if we reference variables from kernel module, bump its refcount */
11536 if (btf_is_module(btf)) {
11537 btf_mod->module = btf_try_get_module(btf);
11538 if (!btf_mod->module) {
11539 err = -ENXIO;
11540 goto err_put;
11541 }
11542 }
11543
11544 env->used_btf_cnt++;
11545
4976b718 11546 return 0;
541c3bad
AN
11547err_put:
11548 btf_put(btf);
11549 return err;
4976b718
HL
11550}
11551
56f668df
MKL
11552static int check_map_prealloc(struct bpf_map *map)
11553{
11554 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11555 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11556 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11557 !(map->map_flags & BPF_F_NO_PREALLOC);
11558}
11559
d83525ca
AS
11560static bool is_tracing_prog_type(enum bpf_prog_type type)
11561{
11562 switch (type) {
11563 case BPF_PROG_TYPE_KPROBE:
11564 case BPF_PROG_TYPE_TRACEPOINT:
11565 case BPF_PROG_TYPE_PERF_EVENT:
11566 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11567 return true;
11568 default:
11569 return false;
11570 }
11571}
11572
94dacdbd
TG
11573static bool is_preallocated_map(struct bpf_map *map)
11574{
11575 if (!check_map_prealloc(map))
11576 return false;
11577 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11578 return false;
11579 return true;
11580}
11581
61bd5218
JK
11582static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11583 struct bpf_map *map,
fdc15d38
AS
11584 struct bpf_prog *prog)
11585
11586{
7e40781c 11587 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
11588 /*
11589 * Validate that trace type programs use preallocated hash maps.
11590 *
11591 * For programs attached to PERF events this is mandatory as the
11592 * perf NMI can hit any arbitrary code sequence.
11593 *
11594 * All other trace types using preallocated hash maps are unsafe as
11595 * well because tracepoint or kprobes can be inside locked regions
11596 * of the memory allocator or at a place where a recursion into the
11597 * memory allocator would see inconsistent state.
11598 *
2ed905c5
TG
11599 * On RT enabled kernels run-time allocation of all trace type
11600 * programs is strictly prohibited due to lock type constraints. On
11601 * !RT kernels it is allowed for backwards compatibility reasons for
11602 * now, but warnings are emitted so developers are made aware of
11603 * the unsafety and can fix their programs before this is enforced.
56f668df 11604 */
7e40781c
UP
11605 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11606 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11607 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11608 return -EINVAL;
11609 }
2ed905c5
TG
11610 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11611 verbose(env, "trace type programs can only use preallocated hash map\n");
11612 return -EINVAL;
11613 }
94dacdbd
TG
11614 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11615 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11616 }
a3884572 11617
9e7a4d98
KS
11618 if (map_value_has_spin_lock(map)) {
11619 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11620 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11621 return -EINVAL;
11622 }
11623
11624 if (is_tracing_prog_type(prog_type)) {
11625 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11626 return -EINVAL;
11627 }
11628
11629 if (prog->aux->sleepable) {
11630 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11631 return -EINVAL;
11632 }
d83525ca
AS
11633 }
11634
a3884572 11635 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11636 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11637 verbose(env, "offload device mismatch between prog and map\n");
11638 return -EINVAL;
11639 }
11640
85d33df3
MKL
11641 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11642 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11643 return -EINVAL;
11644 }
11645
1e6c62a8
AS
11646 if (prog->aux->sleepable)
11647 switch (map->map_type) {
11648 case BPF_MAP_TYPE_HASH:
11649 case BPF_MAP_TYPE_LRU_HASH:
11650 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11651 case BPF_MAP_TYPE_PERCPU_HASH:
11652 case BPF_MAP_TYPE_PERCPU_ARRAY:
11653 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11654 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11655 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11656 if (!is_preallocated_map(map)) {
11657 verbose(env,
638e4b82 11658 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11659 return -EINVAL;
11660 }
11661 break;
ba90c2cc
KS
11662 case BPF_MAP_TYPE_RINGBUF:
11663 break;
1e6c62a8
AS
11664 default:
11665 verbose(env,
ba90c2cc 11666 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11667 return -EINVAL;
11668 }
11669
fdc15d38
AS
11670 return 0;
11671}
11672
b741f163
RG
11673static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11674{
11675 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11676 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11677}
11678
4976b718
HL
11679/* find and rewrite pseudo imm in ld_imm64 instructions:
11680 *
11681 * 1. if it accesses map FD, replace it with actual map pointer.
11682 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11683 *
11684 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11685 */
4976b718 11686static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11687{
11688 struct bpf_insn *insn = env->prog->insnsi;
11689 int insn_cnt = env->prog->len;
fdc15d38 11690 int i, j, err;
0246e64d 11691
f1f7714e 11692 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11693 if (err)
11694 return err;
11695
0246e64d 11696 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11697 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11698 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11699 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11700 return -EINVAL;
11701 }
11702
0246e64d 11703 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11704 struct bpf_insn_aux_data *aux;
0246e64d
AS
11705 struct bpf_map *map;
11706 struct fd f;
d8eca5bb 11707 u64 addr;
387544bf 11708 u32 fd;
0246e64d
AS
11709
11710 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11711 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11712 insn[1].off != 0) {
61bd5218 11713 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11714 return -EINVAL;
11715 }
11716
d8eca5bb 11717 if (insn[0].src_reg == 0)
0246e64d
AS
11718 /* valid generic load 64-bit imm */
11719 goto next_insn;
11720
4976b718
HL
11721 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11722 aux = &env->insn_aux_data[i];
11723 err = check_pseudo_btf_id(env, insn, aux);
11724 if (err)
11725 return err;
11726 goto next_insn;
11727 }
11728
69c087ba
YS
11729 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11730 aux = &env->insn_aux_data[i];
11731 aux->ptr_type = PTR_TO_FUNC;
11732 goto next_insn;
11733 }
11734
d8eca5bb
DB
11735 /* In final convert_pseudo_ld_imm64() step, this is
11736 * converted into regular 64-bit imm load insn.
11737 */
387544bf
AS
11738 switch (insn[0].src_reg) {
11739 case BPF_PSEUDO_MAP_VALUE:
11740 case BPF_PSEUDO_MAP_IDX_VALUE:
11741 break;
11742 case BPF_PSEUDO_MAP_FD:
11743 case BPF_PSEUDO_MAP_IDX:
11744 if (insn[1].imm == 0)
11745 break;
11746 fallthrough;
11747 default:
11748 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11749 return -EINVAL;
11750 }
11751
387544bf
AS
11752 switch (insn[0].src_reg) {
11753 case BPF_PSEUDO_MAP_IDX_VALUE:
11754 case BPF_PSEUDO_MAP_IDX:
11755 if (bpfptr_is_null(env->fd_array)) {
11756 verbose(env, "fd_idx without fd_array is invalid\n");
11757 return -EPROTO;
11758 }
11759 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11760 insn[0].imm * sizeof(fd),
11761 sizeof(fd)))
11762 return -EFAULT;
11763 break;
11764 default:
11765 fd = insn[0].imm;
11766 break;
11767 }
11768
11769 f = fdget(fd);
c2101297 11770 map = __bpf_map_get(f);
0246e64d 11771 if (IS_ERR(map)) {
61bd5218 11772 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11773 insn[0].imm);
0246e64d
AS
11774 return PTR_ERR(map);
11775 }
11776
61bd5218 11777 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11778 if (err) {
11779 fdput(f);
11780 return err;
11781 }
11782
d8eca5bb 11783 aux = &env->insn_aux_data[i];
387544bf
AS
11784 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11785 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
11786 addr = (unsigned long)map;
11787 } else {
11788 u32 off = insn[1].imm;
11789
11790 if (off >= BPF_MAX_VAR_OFF) {
11791 verbose(env, "direct value offset of %u is not allowed\n", off);
11792 fdput(f);
11793 return -EINVAL;
11794 }
11795
11796 if (!map->ops->map_direct_value_addr) {
11797 verbose(env, "no direct value access support for this map type\n");
11798 fdput(f);
11799 return -EINVAL;
11800 }
11801
11802 err = map->ops->map_direct_value_addr(map, &addr, off);
11803 if (err) {
11804 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11805 map->value_size, off);
11806 fdput(f);
11807 return err;
11808 }
11809
11810 aux->map_off = off;
11811 addr += off;
11812 }
11813
11814 insn[0].imm = (u32)addr;
11815 insn[1].imm = addr >> 32;
0246e64d
AS
11816
11817 /* check whether we recorded this map already */
d8eca5bb 11818 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 11819 if (env->used_maps[j] == map) {
d8eca5bb 11820 aux->map_index = j;
0246e64d
AS
11821 fdput(f);
11822 goto next_insn;
11823 }
d8eca5bb 11824 }
0246e64d
AS
11825
11826 if (env->used_map_cnt >= MAX_USED_MAPS) {
11827 fdput(f);
11828 return -E2BIG;
11829 }
11830
0246e64d
AS
11831 /* hold the map. If the program is rejected by verifier,
11832 * the map will be released by release_maps() or it
11833 * will be used by the valid program until it's unloaded
ab7f5bf0 11834 * and all maps are released in free_used_maps()
0246e64d 11835 */
1e0bd5a0 11836 bpf_map_inc(map);
d8eca5bb
DB
11837
11838 aux->map_index = env->used_map_cnt;
92117d84
AS
11839 env->used_maps[env->used_map_cnt++] = map;
11840
b741f163 11841 if (bpf_map_is_cgroup_storage(map) &&
e4730423 11842 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 11843 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
11844 fdput(f);
11845 return -EBUSY;
11846 }
11847
0246e64d
AS
11848 fdput(f);
11849next_insn:
11850 insn++;
11851 i++;
5e581dad
DB
11852 continue;
11853 }
11854
11855 /* Basic sanity check before we invest more work here. */
11856 if (!bpf_opcode_in_insntable(insn->code)) {
11857 verbose(env, "unknown opcode %02x\n", insn->code);
11858 return -EINVAL;
0246e64d
AS
11859 }
11860 }
11861
11862 /* now all pseudo BPF_LD_IMM64 instructions load valid
11863 * 'struct bpf_map *' into a register instead of user map_fd.
11864 * These pointers will be used later by verifier to validate map access.
11865 */
11866 return 0;
11867}
11868
11869/* drop refcnt of maps used by the rejected program */
58e2af8b 11870static void release_maps(struct bpf_verifier_env *env)
0246e64d 11871{
a2ea0746
DB
11872 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11873 env->used_map_cnt);
0246e64d
AS
11874}
11875
541c3bad
AN
11876/* drop refcnt of maps used by the rejected program */
11877static void release_btfs(struct bpf_verifier_env *env)
11878{
11879 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11880 env->used_btf_cnt);
11881}
11882
0246e64d 11883/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 11884static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
11885{
11886 struct bpf_insn *insn = env->prog->insnsi;
11887 int insn_cnt = env->prog->len;
11888 int i;
11889
69c087ba
YS
11890 for (i = 0; i < insn_cnt; i++, insn++) {
11891 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11892 continue;
11893 if (insn->src_reg == BPF_PSEUDO_FUNC)
11894 continue;
11895 insn->src_reg = 0;
11896 }
0246e64d
AS
11897}
11898
8041902d
AS
11899/* single env->prog->insni[off] instruction was replaced with the range
11900 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11901 * [0, off) and [off, end) to new locations, so the patched range stays zero
11902 */
75f0fc7b
HF
11903static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11904 struct bpf_insn_aux_data *new_data,
11905 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 11906{
75f0fc7b 11907 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 11908 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 11909 u32 old_seen = old_data[off].seen;
b325fbca 11910 u32 prog_len;
c131187d 11911 int i;
8041902d 11912
b325fbca
JW
11913 /* aux info at OFF always needs adjustment, no matter fast path
11914 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11915 * original insn at old prog.
11916 */
11917 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11918
8041902d 11919 if (cnt == 1)
75f0fc7b 11920 return;
b325fbca 11921 prog_len = new_prog->len;
75f0fc7b 11922
8041902d
AS
11923 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11924 memcpy(new_data + off + cnt - 1, old_data + off,
11925 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 11926 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
11927 /* Expand insni[off]'s seen count to the patched range. */
11928 new_data[i].seen = old_seen;
b325fbca
JW
11929 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11930 }
8041902d
AS
11931 env->insn_aux_data = new_data;
11932 vfree(old_data);
8041902d
AS
11933}
11934
cc8b0b92
AS
11935static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11936{
11937 int i;
11938
11939 if (len == 1)
11940 return;
4cb3d99c
JW
11941 /* NOTE: fake 'exit' subprog should be updated as well. */
11942 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 11943 if (env->subprog_info[i].start <= off)
cc8b0b92 11944 continue;
9c8105bd 11945 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
11946 }
11947}
11948
7506d211 11949static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
11950{
11951 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11952 int i, sz = prog->aux->size_poke_tab;
11953 struct bpf_jit_poke_descriptor *desc;
11954
11955 for (i = 0; i < sz; i++) {
11956 desc = &tab[i];
7506d211
JF
11957 if (desc->insn_idx <= off)
11958 continue;
a748c697
MF
11959 desc->insn_idx += len - 1;
11960 }
11961}
11962
8041902d
AS
11963static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11964 const struct bpf_insn *patch, u32 len)
11965{
11966 struct bpf_prog *new_prog;
75f0fc7b
HF
11967 struct bpf_insn_aux_data *new_data = NULL;
11968
11969 if (len > 1) {
11970 new_data = vzalloc(array_size(env->prog->len + len - 1,
11971 sizeof(struct bpf_insn_aux_data)));
11972 if (!new_data)
11973 return NULL;
11974 }
8041902d
AS
11975
11976 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
11977 if (IS_ERR(new_prog)) {
11978 if (PTR_ERR(new_prog) == -ERANGE)
11979 verbose(env,
11980 "insn %d cannot be patched due to 16-bit range\n",
11981 env->insn_aux_data[off].orig_idx);
75f0fc7b 11982 vfree(new_data);
8041902d 11983 return NULL;
4f73379e 11984 }
75f0fc7b 11985 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 11986 adjust_subprog_starts(env, off, len);
7506d211 11987 adjust_poke_descs(new_prog, off, len);
8041902d
AS
11988 return new_prog;
11989}
11990
52875a04
JK
11991static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11992 u32 off, u32 cnt)
11993{
11994 int i, j;
11995
11996 /* find first prog starting at or after off (first to remove) */
11997 for (i = 0; i < env->subprog_cnt; i++)
11998 if (env->subprog_info[i].start >= off)
11999 break;
12000 /* find first prog starting at or after off + cnt (first to stay) */
12001 for (j = i; j < env->subprog_cnt; j++)
12002 if (env->subprog_info[j].start >= off + cnt)
12003 break;
12004 /* if j doesn't start exactly at off + cnt, we are just removing
12005 * the front of previous prog
12006 */
12007 if (env->subprog_info[j].start != off + cnt)
12008 j--;
12009
12010 if (j > i) {
12011 struct bpf_prog_aux *aux = env->prog->aux;
12012 int move;
12013
12014 /* move fake 'exit' subprog as well */
12015 move = env->subprog_cnt + 1 - j;
12016
12017 memmove(env->subprog_info + i,
12018 env->subprog_info + j,
12019 sizeof(*env->subprog_info) * move);
12020 env->subprog_cnt -= j - i;
12021
12022 /* remove func_info */
12023 if (aux->func_info) {
12024 move = aux->func_info_cnt - j;
12025
12026 memmove(aux->func_info + i,
12027 aux->func_info + j,
12028 sizeof(*aux->func_info) * move);
12029 aux->func_info_cnt -= j - i;
12030 /* func_info->insn_off is set after all code rewrites,
12031 * in adjust_btf_func() - no need to adjust
12032 */
12033 }
12034 } else {
12035 /* convert i from "first prog to remove" to "first to adjust" */
12036 if (env->subprog_info[i].start == off)
12037 i++;
12038 }
12039
12040 /* update fake 'exit' subprog as well */
12041 for (; i <= env->subprog_cnt; i++)
12042 env->subprog_info[i].start -= cnt;
12043
12044 return 0;
12045}
12046
12047static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12048 u32 cnt)
12049{
12050 struct bpf_prog *prog = env->prog;
12051 u32 i, l_off, l_cnt, nr_linfo;
12052 struct bpf_line_info *linfo;
12053
12054 nr_linfo = prog->aux->nr_linfo;
12055 if (!nr_linfo)
12056 return 0;
12057
12058 linfo = prog->aux->linfo;
12059
12060 /* find first line info to remove, count lines to be removed */
12061 for (i = 0; i < nr_linfo; i++)
12062 if (linfo[i].insn_off >= off)
12063 break;
12064
12065 l_off = i;
12066 l_cnt = 0;
12067 for (; i < nr_linfo; i++)
12068 if (linfo[i].insn_off < off + cnt)
12069 l_cnt++;
12070 else
12071 break;
12072
12073 /* First live insn doesn't match first live linfo, it needs to "inherit"
12074 * last removed linfo. prog is already modified, so prog->len == off
12075 * means no live instructions after (tail of the program was removed).
12076 */
12077 if (prog->len != off && l_cnt &&
12078 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12079 l_cnt--;
12080 linfo[--i].insn_off = off + cnt;
12081 }
12082
12083 /* remove the line info which refer to the removed instructions */
12084 if (l_cnt) {
12085 memmove(linfo + l_off, linfo + i,
12086 sizeof(*linfo) * (nr_linfo - i));
12087
12088 prog->aux->nr_linfo -= l_cnt;
12089 nr_linfo = prog->aux->nr_linfo;
12090 }
12091
12092 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12093 for (i = l_off; i < nr_linfo; i++)
12094 linfo[i].insn_off -= cnt;
12095
12096 /* fix up all subprogs (incl. 'exit') which start >= off */
12097 for (i = 0; i <= env->subprog_cnt; i++)
12098 if (env->subprog_info[i].linfo_idx > l_off) {
12099 /* program may have started in the removed region but
12100 * may not be fully removed
12101 */
12102 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12103 env->subprog_info[i].linfo_idx -= l_cnt;
12104 else
12105 env->subprog_info[i].linfo_idx = l_off;
12106 }
12107
12108 return 0;
12109}
12110
12111static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12112{
12113 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12114 unsigned int orig_prog_len = env->prog->len;
12115 int err;
12116
08ca90af
JK
12117 if (bpf_prog_is_dev_bound(env->prog->aux))
12118 bpf_prog_offload_remove_insns(env, off, cnt);
12119
52875a04
JK
12120 err = bpf_remove_insns(env->prog, off, cnt);
12121 if (err)
12122 return err;
12123
12124 err = adjust_subprog_starts_after_remove(env, off, cnt);
12125 if (err)
12126 return err;
12127
12128 err = bpf_adj_linfo_after_remove(env, off, cnt);
12129 if (err)
12130 return err;
12131
12132 memmove(aux_data + off, aux_data + off + cnt,
12133 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12134
12135 return 0;
12136}
12137
2a5418a1
DB
12138/* The verifier does more data flow analysis than llvm and will not
12139 * explore branches that are dead at run time. Malicious programs can
12140 * have dead code too. Therefore replace all dead at-run-time code
12141 * with 'ja -1'.
12142 *
12143 * Just nops are not optimal, e.g. if they would sit at the end of the
12144 * program and through another bug we would manage to jump there, then
12145 * we'd execute beyond program memory otherwise. Returning exception
12146 * code also wouldn't work since we can have subprogs where the dead
12147 * code could be located.
c131187d
AS
12148 */
12149static void sanitize_dead_code(struct bpf_verifier_env *env)
12150{
12151 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 12152 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
12153 struct bpf_insn *insn = env->prog->insnsi;
12154 const int insn_cnt = env->prog->len;
12155 int i;
12156
12157 for (i = 0; i < insn_cnt; i++) {
12158 if (aux_data[i].seen)
12159 continue;
2a5418a1 12160 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 12161 aux_data[i].zext_dst = false;
c131187d
AS
12162 }
12163}
12164
e2ae4ca2
JK
12165static bool insn_is_cond_jump(u8 code)
12166{
12167 u8 op;
12168
092ed096
JW
12169 if (BPF_CLASS(code) == BPF_JMP32)
12170 return true;
12171
e2ae4ca2
JK
12172 if (BPF_CLASS(code) != BPF_JMP)
12173 return false;
12174
12175 op = BPF_OP(code);
12176 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12177}
12178
12179static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12180{
12181 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12182 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12183 struct bpf_insn *insn = env->prog->insnsi;
12184 const int insn_cnt = env->prog->len;
12185 int i;
12186
12187 for (i = 0; i < insn_cnt; i++, insn++) {
12188 if (!insn_is_cond_jump(insn->code))
12189 continue;
12190
12191 if (!aux_data[i + 1].seen)
12192 ja.off = insn->off;
12193 else if (!aux_data[i + 1 + insn->off].seen)
12194 ja.off = 0;
12195 else
12196 continue;
12197
08ca90af
JK
12198 if (bpf_prog_is_dev_bound(env->prog->aux))
12199 bpf_prog_offload_replace_insn(env, i, &ja);
12200
e2ae4ca2
JK
12201 memcpy(insn, &ja, sizeof(ja));
12202 }
12203}
12204
52875a04
JK
12205static int opt_remove_dead_code(struct bpf_verifier_env *env)
12206{
12207 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12208 int insn_cnt = env->prog->len;
12209 int i, err;
12210
12211 for (i = 0; i < insn_cnt; i++) {
12212 int j;
12213
12214 j = 0;
12215 while (i + j < insn_cnt && !aux_data[i + j].seen)
12216 j++;
12217 if (!j)
12218 continue;
12219
12220 err = verifier_remove_insns(env, i, j);
12221 if (err)
12222 return err;
12223 insn_cnt = env->prog->len;
12224 }
12225
12226 return 0;
12227}
12228
a1b14abc
JK
12229static int opt_remove_nops(struct bpf_verifier_env *env)
12230{
12231 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12232 struct bpf_insn *insn = env->prog->insnsi;
12233 int insn_cnt = env->prog->len;
12234 int i, err;
12235
12236 for (i = 0; i < insn_cnt; i++) {
12237 if (memcmp(&insn[i], &ja, sizeof(ja)))
12238 continue;
12239
12240 err = verifier_remove_insns(env, i, 1);
12241 if (err)
12242 return err;
12243 insn_cnt--;
12244 i--;
12245 }
12246
12247 return 0;
12248}
12249
d6c2308c
JW
12250static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12251 const union bpf_attr *attr)
a4b1d3c1 12252{
d6c2308c 12253 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 12254 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 12255 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 12256 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 12257 struct bpf_prog *new_prog;
d6c2308c 12258 bool rnd_hi32;
a4b1d3c1 12259
d6c2308c 12260 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 12261 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
12262 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12263 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12264 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
12265 for (i = 0; i < len; i++) {
12266 int adj_idx = i + delta;
12267 struct bpf_insn insn;
83a28819 12268 int load_reg;
a4b1d3c1 12269
d6c2308c 12270 insn = insns[adj_idx];
83a28819 12271 load_reg = insn_def_regno(&insn);
d6c2308c
JW
12272 if (!aux[adj_idx].zext_dst) {
12273 u8 code, class;
12274 u32 imm_rnd;
12275
12276 if (!rnd_hi32)
12277 continue;
12278
12279 code = insn.code;
12280 class = BPF_CLASS(code);
83a28819 12281 if (load_reg == -1)
d6c2308c
JW
12282 continue;
12283
12284 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
12285 * BPF_STX + SRC_OP, so it is safe to pass NULL
12286 * here.
d6c2308c 12287 */
83a28819 12288 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
12289 if (class == BPF_LD &&
12290 BPF_MODE(code) == BPF_IMM)
12291 i++;
12292 continue;
12293 }
12294
12295 /* ctx load could be transformed into wider load. */
12296 if (class == BPF_LDX &&
12297 aux[adj_idx].ptr_type == PTR_TO_CTX)
12298 continue;
12299
12300 imm_rnd = get_random_int();
12301 rnd_hi32_patch[0] = insn;
12302 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 12303 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
12304 patch = rnd_hi32_patch;
12305 patch_len = 4;
12306 goto apply_patch_buffer;
12307 }
12308
39491867
BJ
12309 /* Add in an zero-extend instruction if a) the JIT has requested
12310 * it or b) it's a CMPXCHG.
12311 *
12312 * The latter is because: BPF_CMPXCHG always loads a value into
12313 * R0, therefore always zero-extends. However some archs'
12314 * equivalent instruction only does this load when the
12315 * comparison is successful. This detail of CMPXCHG is
12316 * orthogonal to the general zero-extension behaviour of the
12317 * CPU, so it's treated independently of bpf_jit_needs_zext.
12318 */
12319 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
12320 continue;
12321
83a28819
IL
12322 if (WARN_ON(load_reg == -1)) {
12323 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12324 return -EFAULT;
b2e37a71
IL
12325 }
12326
a4b1d3c1 12327 zext_patch[0] = insn;
b2e37a71
IL
12328 zext_patch[1].dst_reg = load_reg;
12329 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
12330 patch = zext_patch;
12331 patch_len = 2;
12332apply_patch_buffer:
12333 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
12334 if (!new_prog)
12335 return -ENOMEM;
12336 env->prog = new_prog;
12337 insns = new_prog->insnsi;
12338 aux = env->insn_aux_data;
d6c2308c 12339 delta += patch_len - 1;
a4b1d3c1
JW
12340 }
12341
12342 return 0;
12343}
12344
c64b7983
JS
12345/* convert load instructions that access fields of a context type into a
12346 * sequence of instructions that access fields of the underlying structure:
12347 * struct __sk_buff -> struct sk_buff
12348 * struct bpf_sock_ops -> struct sock
9bac3d6d 12349 */
58e2af8b 12350static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 12351{
00176a34 12352 const struct bpf_verifier_ops *ops = env->ops;
f96da094 12353 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 12354 const int insn_cnt = env->prog->len;
36bbef52 12355 struct bpf_insn insn_buf[16], *insn;
46f53a65 12356 u32 target_size, size_default, off;
9bac3d6d 12357 struct bpf_prog *new_prog;
d691f9e8 12358 enum bpf_access_type type;
f96da094 12359 bool is_narrower_load;
9bac3d6d 12360
b09928b9
DB
12361 if (ops->gen_prologue || env->seen_direct_write) {
12362 if (!ops->gen_prologue) {
12363 verbose(env, "bpf verifier is misconfigured\n");
12364 return -EINVAL;
12365 }
36bbef52
DB
12366 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12367 env->prog);
12368 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 12369 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
12370 return -EINVAL;
12371 } else if (cnt) {
8041902d 12372 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
12373 if (!new_prog)
12374 return -ENOMEM;
8041902d 12375
36bbef52 12376 env->prog = new_prog;
3df126f3 12377 delta += cnt - 1;
36bbef52
DB
12378 }
12379 }
12380
c64b7983 12381 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
12382 return 0;
12383
3df126f3 12384 insn = env->prog->insnsi + delta;
36bbef52 12385
9bac3d6d 12386 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 12387 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 12388 bool ctx_access;
c64b7983 12389
62c7989b
DB
12390 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12391 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12392 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 12393 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 12394 type = BPF_READ;
2039f26f
DB
12395 ctx_access = true;
12396 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12397 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12398 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12399 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12400 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12401 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12402 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12403 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 12404 type = BPF_WRITE;
2039f26f
DB
12405 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12406 } else {
9bac3d6d 12407 continue;
2039f26f 12408 }
9bac3d6d 12409
af86ca4e 12410 if (type == BPF_WRITE &&
2039f26f 12411 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 12412 struct bpf_insn patch[] = {
af86ca4e 12413 *insn,
2039f26f 12414 BPF_ST_NOSPEC(),
af86ca4e
AS
12415 };
12416
12417 cnt = ARRAY_SIZE(patch);
12418 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12419 if (!new_prog)
12420 return -ENOMEM;
12421
12422 delta += cnt - 1;
12423 env->prog = new_prog;
12424 insn = new_prog->insnsi + i + delta;
12425 continue;
12426 }
12427
2039f26f
DB
12428 if (!ctx_access)
12429 continue;
12430
c64b7983
JS
12431 switch (env->insn_aux_data[i + delta].ptr_type) {
12432 case PTR_TO_CTX:
12433 if (!ops->convert_ctx_access)
12434 continue;
12435 convert_ctx_access = ops->convert_ctx_access;
12436 break;
12437 case PTR_TO_SOCKET:
46f8bc92 12438 case PTR_TO_SOCK_COMMON:
c64b7983
JS
12439 convert_ctx_access = bpf_sock_convert_ctx_access;
12440 break;
655a51e5
MKL
12441 case PTR_TO_TCP_SOCK:
12442 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12443 break;
fada7fdc
JL
12444 case PTR_TO_XDP_SOCK:
12445 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12446 break;
2a02759e 12447 case PTR_TO_BTF_ID:
27ae7997
MKL
12448 if (type == BPF_READ) {
12449 insn->code = BPF_LDX | BPF_PROBE_MEM |
12450 BPF_SIZE((insn)->code);
12451 env->prog->aux->num_exentries++;
7e40781c 12452 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
12453 verbose(env, "Writes through BTF pointers are not allowed\n");
12454 return -EINVAL;
12455 }
2a02759e 12456 continue;
c64b7983 12457 default:
9bac3d6d 12458 continue;
c64b7983 12459 }
9bac3d6d 12460
31fd8581 12461 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 12462 size = BPF_LDST_BYTES(insn);
31fd8581
YS
12463
12464 /* If the read access is a narrower load of the field,
12465 * convert to a 4/8-byte load, to minimum program type specific
12466 * convert_ctx_access changes. If conversion is successful,
12467 * we will apply proper mask to the result.
12468 */
f96da094 12469 is_narrower_load = size < ctx_field_size;
46f53a65
AI
12470 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12471 off = insn->off;
31fd8581 12472 if (is_narrower_load) {
f96da094
DB
12473 u8 size_code;
12474
12475 if (type == BPF_WRITE) {
61bd5218 12476 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12477 return -EINVAL;
12478 }
31fd8581 12479
f96da094 12480 size_code = BPF_H;
31fd8581
YS
12481 if (ctx_field_size == 4)
12482 size_code = BPF_W;
12483 else if (ctx_field_size == 8)
12484 size_code = BPF_DW;
f96da094 12485
bc23105c 12486 insn->off = off & ~(size_default - 1);
31fd8581
YS
12487 insn->code = BPF_LDX | BPF_MEM | size_code;
12488 }
f96da094
DB
12489
12490 target_size = 0;
c64b7983
JS
12491 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12492 &target_size);
f96da094
DB
12493 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12494 (ctx_field_size && !target_size)) {
61bd5218 12495 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12496 return -EINVAL;
12497 }
f96da094
DB
12498
12499 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12500 u8 shift = bpf_ctx_narrow_access_offset(
12501 off, size, size_default) * 8;
d7af7e49
AI
12502 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12503 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12504 return -EINVAL;
12505 }
46f53a65
AI
12506 if (ctx_field_size <= 4) {
12507 if (shift)
12508 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12509 insn->dst_reg,
12510 shift);
31fd8581 12511 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12512 (1 << size * 8) - 1);
46f53a65
AI
12513 } else {
12514 if (shift)
12515 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12516 insn->dst_reg,
12517 shift);
31fd8581 12518 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12519 (1ULL << size * 8) - 1);
46f53a65 12520 }
31fd8581 12521 }
9bac3d6d 12522
8041902d 12523 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12524 if (!new_prog)
12525 return -ENOMEM;
12526
3df126f3 12527 delta += cnt - 1;
9bac3d6d
AS
12528
12529 /* keep walking new program and skip insns we just inserted */
12530 env->prog = new_prog;
3df126f3 12531 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12532 }
12533
12534 return 0;
12535}
12536
1c2a088a
AS
12537static int jit_subprogs(struct bpf_verifier_env *env)
12538{
12539 struct bpf_prog *prog = env->prog, **func, *tmp;
12540 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12541 struct bpf_map *map_ptr;
7105e828 12542 struct bpf_insn *insn;
1c2a088a 12543 void *old_bpf_func;
c4c0bdc0 12544 int err, num_exentries;
1c2a088a 12545
f910cefa 12546 if (env->subprog_cnt <= 1)
1c2a088a
AS
12547 return 0;
12548
7105e828 12549 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 12550 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 12551 continue;
69c087ba 12552
c7a89784
DB
12553 /* Upon error here we cannot fall back to interpreter but
12554 * need a hard reject of the program. Thus -EFAULT is
12555 * propagated in any case.
12556 */
1c2a088a
AS
12557 subprog = find_subprog(env, i + insn->imm + 1);
12558 if (subprog < 0) {
12559 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12560 i + insn->imm + 1);
12561 return -EFAULT;
12562 }
12563 /* temporarily remember subprog id inside insn instead of
12564 * aux_data, since next loop will split up all insns into funcs
12565 */
f910cefa 12566 insn->off = subprog;
1c2a088a
AS
12567 /* remember original imm in case JIT fails and fallback
12568 * to interpreter will be needed
12569 */
12570 env->insn_aux_data[i].call_imm = insn->imm;
12571 /* point imm to __bpf_call_base+1 from JITs point of view */
12572 insn->imm = 1;
3990ed4c
MKL
12573 if (bpf_pseudo_func(insn))
12574 /* jit (e.g. x86_64) may emit fewer instructions
12575 * if it learns a u32 imm is the same as a u64 imm.
12576 * Force a non zero here.
12577 */
12578 insn[1].imm = 1;
1c2a088a
AS
12579 }
12580
c454a46b
MKL
12581 err = bpf_prog_alloc_jited_linfo(prog);
12582 if (err)
12583 goto out_undo_insn;
12584
12585 err = -ENOMEM;
6396bb22 12586 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 12587 if (!func)
c7a89784 12588 goto out_undo_insn;
1c2a088a 12589
f910cefa 12590 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 12591 subprog_start = subprog_end;
4cb3d99c 12592 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
12593
12594 len = subprog_end - subprog_start;
fb7dd8bc 12595 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
12596 * hence main prog stats include the runtime of subprogs.
12597 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 12598 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
12599 */
12600 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
12601 if (!func[i])
12602 goto out_free;
12603 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12604 len * sizeof(struct bpf_insn));
4f74d809 12605 func[i]->type = prog->type;
1c2a088a 12606 func[i]->len = len;
4f74d809
DB
12607 if (bpf_prog_calc_tag(func[i]))
12608 goto out_free;
1c2a088a 12609 func[i]->is_func = 1;
ba64e7d8 12610 func[i]->aux->func_idx = i;
f263a814 12611 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
12612 func[i]->aux->btf = prog->aux->btf;
12613 func[i]->aux->func_info = prog->aux->func_info;
f263a814
JF
12614 func[i]->aux->poke_tab = prog->aux->poke_tab;
12615 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 12616
a748c697 12617 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 12618 struct bpf_jit_poke_descriptor *poke;
a748c697 12619
f263a814
JF
12620 poke = &prog->aux->poke_tab[j];
12621 if (poke->insn_idx < subprog_end &&
12622 poke->insn_idx >= subprog_start)
12623 poke->aux = func[i]->aux;
a748c697
MF
12624 }
12625
1c2a088a
AS
12626 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12627 * Long term would need debug info to populate names
12628 */
12629 func[i]->aux->name[0] = 'F';
9c8105bd 12630 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12631 func[i]->jit_requested = 1;
e6ac2450 12632 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 12633 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
12634 func[i]->aux->linfo = prog->aux->linfo;
12635 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12636 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12637 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12638 num_exentries = 0;
12639 insn = func[i]->insnsi;
12640 for (j = 0; j < func[i]->len; j++, insn++) {
12641 if (BPF_CLASS(insn->code) == BPF_LDX &&
12642 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12643 num_exentries++;
12644 }
12645 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12646 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12647 func[i] = bpf_int_jit_compile(func[i]);
12648 if (!func[i]->jited) {
12649 err = -ENOTSUPP;
12650 goto out_free;
12651 }
12652 cond_resched();
12653 }
a748c697 12654
1c2a088a
AS
12655 /* at this point all bpf functions were successfully JITed
12656 * now populate all bpf_calls with correct addresses and
12657 * run last pass of JIT
12658 */
f910cefa 12659 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12660 insn = func[i]->insnsi;
12661 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 12662 if (bpf_pseudo_func(insn)) {
3990ed4c 12663 subprog = insn->off;
69c087ba
YS
12664 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12665 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12666 continue;
12667 }
23a2d70c 12668 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12669 continue;
12670 subprog = insn->off;
3d717fad 12671 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 12672 }
2162fed4
SD
12673
12674 /* we use the aux data to keep a list of the start addresses
12675 * of the JITed images for each function in the program
12676 *
12677 * for some architectures, such as powerpc64, the imm field
12678 * might not be large enough to hold the offset of the start
12679 * address of the callee's JITed image from __bpf_call_base
12680 *
12681 * in such cases, we can lookup the start address of a callee
12682 * by using its subprog id, available from the off field of
12683 * the call instruction, as an index for this list
12684 */
12685 func[i]->aux->func = func;
12686 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12687 }
f910cefa 12688 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12689 old_bpf_func = func[i]->bpf_func;
12690 tmp = bpf_int_jit_compile(func[i]);
12691 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12692 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12693 err = -ENOTSUPP;
1c2a088a
AS
12694 goto out_free;
12695 }
12696 cond_resched();
12697 }
12698
12699 /* finally lock prog and jit images for all functions and
12700 * populate kallsysm
12701 */
f910cefa 12702 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12703 bpf_prog_lock_ro(func[i]);
12704 bpf_prog_kallsyms_add(func[i]);
12705 }
7105e828
DB
12706
12707 /* Last step: make now unused interpreter insns from main
12708 * prog consistent for later dump requests, so they can
12709 * later look the same as if they were interpreted only.
12710 */
12711 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12712 if (bpf_pseudo_func(insn)) {
12713 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
12714 insn[1].imm = insn->off;
12715 insn->off = 0;
69c087ba
YS
12716 continue;
12717 }
23a2d70c 12718 if (!bpf_pseudo_call(insn))
7105e828
DB
12719 continue;
12720 insn->off = env->insn_aux_data[i].call_imm;
12721 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12722 insn->imm = subprog;
7105e828
DB
12723 }
12724
1c2a088a
AS
12725 prog->jited = 1;
12726 prog->bpf_func = func[0]->bpf_func;
12727 prog->aux->func = func;
f910cefa 12728 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12729 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12730 return 0;
12731out_free:
f263a814
JF
12732 /* We failed JIT'ing, so at this point we need to unregister poke
12733 * descriptors from subprogs, so that kernel is not attempting to
12734 * patch it anymore as we're freeing the subprog JIT memory.
12735 */
12736 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12737 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12738 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12739 }
12740 /* At this point we're guaranteed that poke descriptors are not
12741 * live anymore. We can just unlink its descriptor table as it's
12742 * released with the main prog.
12743 */
a748c697
MF
12744 for (i = 0; i < env->subprog_cnt; i++) {
12745 if (!func[i])
12746 continue;
f263a814 12747 func[i]->aux->poke_tab = NULL;
a748c697
MF
12748 bpf_jit_free(func[i]);
12749 }
1c2a088a 12750 kfree(func);
c7a89784 12751out_undo_insn:
1c2a088a
AS
12752 /* cleanup main prog to be interpreted */
12753 prog->jit_requested = 0;
12754 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12755 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12756 continue;
12757 insn->off = 0;
12758 insn->imm = env->insn_aux_data[i].call_imm;
12759 }
e16301fb 12760 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12761 return err;
12762}
12763
1ea47e01
AS
12764static int fixup_call_args(struct bpf_verifier_env *env)
12765{
19d28fbd 12766#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12767 struct bpf_prog *prog = env->prog;
12768 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12769 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12770 int i, depth;
19d28fbd 12771#endif
e4052d06 12772 int err = 0;
1ea47e01 12773
e4052d06
QM
12774 if (env->prog->jit_requested &&
12775 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12776 err = jit_subprogs(env);
12777 if (err == 0)
1c2a088a 12778 return 0;
c7a89784
DB
12779 if (err == -EFAULT)
12780 return err;
19d28fbd
DM
12781 }
12782#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12783 if (has_kfunc_call) {
12784 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12785 return -EINVAL;
12786 }
e411901c
MF
12787 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12788 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12789 * have to be rejected, since interpreter doesn't support them yet.
12790 */
12791 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12792 return -EINVAL;
12793 }
1ea47e01 12794 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
12795 if (bpf_pseudo_func(insn)) {
12796 /* When JIT fails the progs with callback calls
12797 * have to be rejected, since interpreter doesn't support them yet.
12798 */
12799 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12800 return -EINVAL;
12801 }
12802
23a2d70c 12803 if (!bpf_pseudo_call(insn))
1ea47e01
AS
12804 continue;
12805 depth = get_callee_stack_depth(env, insn, i);
12806 if (depth < 0)
12807 return depth;
12808 bpf_patch_call_args(insn, depth);
12809 }
19d28fbd
DM
12810 err = 0;
12811#endif
12812 return err;
1ea47e01
AS
12813}
12814
e6ac2450
MKL
12815static int fixup_kfunc_call(struct bpf_verifier_env *env,
12816 struct bpf_insn *insn)
12817{
12818 const struct bpf_kfunc_desc *desc;
12819
a5d82727
KKD
12820 if (!insn->imm) {
12821 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12822 return -EINVAL;
12823 }
12824
e6ac2450
MKL
12825 /* insn->imm has the btf func_id. Replace it with
12826 * an address (relative to __bpf_base_call).
12827 */
2357672c 12828 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
12829 if (!desc) {
12830 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12831 insn->imm);
12832 return -EFAULT;
12833 }
12834
12835 insn->imm = desc->imm;
12836
12837 return 0;
12838}
12839
e6ac5933
BJ
12840/* Do various post-verification rewrites in a single program pass.
12841 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 12842 */
e6ac5933 12843static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 12844{
79741b3b 12845 struct bpf_prog *prog = env->prog;
d2e4c1e6 12846 bool expect_blinding = bpf_jit_blinding_enabled(prog);
9b99edca 12847 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 12848 struct bpf_insn *insn = prog->insnsi;
e245c5c6 12849 const struct bpf_func_proto *fn;
79741b3b 12850 const int insn_cnt = prog->len;
09772d92 12851 const struct bpf_map_ops *ops;
c93552c4 12852 struct bpf_insn_aux_data *aux;
81ed18ab
AS
12853 struct bpf_insn insn_buf[16];
12854 struct bpf_prog *new_prog;
12855 struct bpf_map *map_ptr;
d2e4c1e6 12856 int i, ret, cnt, delta = 0;
e245c5c6 12857
79741b3b 12858 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 12859 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
12860 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12861 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12862 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 12863 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 12864 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
12865 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12866 struct bpf_insn *patchlet;
12867 struct bpf_insn chk_and_div[] = {
9b00f1b7 12868 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
12869 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12870 BPF_JNE | BPF_K, insn->src_reg,
12871 0, 2, 0),
f6b1b3bf
DB
12872 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12873 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12874 *insn,
12875 };
e88b2c6e 12876 struct bpf_insn chk_and_mod[] = {
9b00f1b7 12877 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
12878 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12879 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 12880 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 12881 *insn,
9b00f1b7
DB
12882 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12883 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 12884 };
f6b1b3bf 12885
e88b2c6e
DB
12886 patchlet = isdiv ? chk_and_div : chk_and_mod;
12887 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 12888 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
12889
12890 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
12891 if (!new_prog)
12892 return -ENOMEM;
12893
12894 delta += cnt - 1;
12895 env->prog = prog = new_prog;
12896 insn = new_prog->insnsi + i + delta;
12897 continue;
12898 }
12899
e6ac5933 12900 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
12901 if (BPF_CLASS(insn->code) == BPF_LD &&
12902 (BPF_MODE(insn->code) == BPF_ABS ||
12903 BPF_MODE(insn->code) == BPF_IND)) {
12904 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12905 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12906 verbose(env, "bpf verifier is misconfigured\n");
12907 return -EINVAL;
12908 }
12909
12910 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12911 if (!new_prog)
12912 return -ENOMEM;
12913
12914 delta += cnt - 1;
12915 env->prog = prog = new_prog;
12916 insn = new_prog->insnsi + i + delta;
12917 continue;
12918 }
12919
e6ac5933 12920 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
12921 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12922 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12923 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12924 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 12925 struct bpf_insn *patch = &insn_buf[0];
801c6058 12926 bool issrc, isneg, isimm;
979d63d5
DB
12927 u32 off_reg;
12928
12929 aux = &env->insn_aux_data[i + delta];
3612af78
DB
12930 if (!aux->alu_state ||
12931 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
12932 continue;
12933
12934 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12935 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12936 BPF_ALU_SANITIZE_SRC;
801c6058 12937 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
12938
12939 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
12940 if (isimm) {
12941 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12942 } else {
12943 if (isneg)
12944 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12945 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12946 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12947 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12948 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12949 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12950 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12951 }
b9b34ddb
DB
12952 if (!issrc)
12953 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12954 insn->src_reg = BPF_REG_AX;
979d63d5
DB
12955 if (isneg)
12956 insn->code = insn->code == code_add ?
12957 code_sub : code_add;
12958 *patch++ = *insn;
801c6058 12959 if (issrc && isneg && !isimm)
979d63d5
DB
12960 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12961 cnt = patch - insn_buf;
12962
12963 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12964 if (!new_prog)
12965 return -ENOMEM;
12966
12967 delta += cnt - 1;
12968 env->prog = prog = new_prog;
12969 insn = new_prog->insnsi + i + delta;
12970 continue;
12971 }
12972
79741b3b
AS
12973 if (insn->code != (BPF_JMP | BPF_CALL))
12974 continue;
cc8b0b92
AS
12975 if (insn->src_reg == BPF_PSEUDO_CALL)
12976 continue;
e6ac2450
MKL
12977 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12978 ret = fixup_kfunc_call(env, insn);
12979 if (ret)
12980 return ret;
12981 continue;
12982 }
e245c5c6 12983
79741b3b
AS
12984 if (insn->imm == BPF_FUNC_get_route_realm)
12985 prog->dst_needed = 1;
12986 if (insn->imm == BPF_FUNC_get_prandom_u32)
12987 bpf_user_rnd_init_once();
9802d865
JB
12988 if (insn->imm == BPF_FUNC_override_return)
12989 prog->kprobe_override = 1;
79741b3b 12990 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
12991 /* If we tail call into other programs, we
12992 * cannot make any assumptions since they can
12993 * be replaced dynamically during runtime in
12994 * the program array.
12995 */
12996 prog->cb_access = 1;
e411901c
MF
12997 if (!allow_tail_call_in_subprogs(env))
12998 prog->aux->stack_depth = MAX_BPF_STACK;
12999 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 13000
79741b3b 13001 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 13002 * conditional branch in the interpreter for every normal
79741b3b
AS
13003 * call and to prevent accidental JITing by JIT compiler
13004 * that doesn't support bpf_tail_call yet
e245c5c6 13005 */
79741b3b 13006 insn->imm = 0;
71189fa9 13007 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 13008
c93552c4 13009 aux = &env->insn_aux_data[i + delta];
2c78ee89 13010 if (env->bpf_capable && !expect_blinding &&
cc52d914 13011 prog->jit_requested &&
d2e4c1e6
DB
13012 !bpf_map_key_poisoned(aux) &&
13013 !bpf_map_ptr_poisoned(aux) &&
13014 !bpf_map_ptr_unpriv(aux)) {
13015 struct bpf_jit_poke_descriptor desc = {
13016 .reason = BPF_POKE_REASON_TAIL_CALL,
13017 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13018 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 13019 .insn_idx = i + delta,
d2e4c1e6
DB
13020 };
13021
13022 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13023 if (ret < 0) {
13024 verbose(env, "adding tail call poke descriptor failed\n");
13025 return ret;
13026 }
13027
13028 insn->imm = ret + 1;
13029 continue;
13030 }
13031
c93552c4
DB
13032 if (!bpf_map_ptr_unpriv(aux))
13033 continue;
13034
b2157399
AS
13035 /* instead of changing every JIT dealing with tail_call
13036 * emit two extra insns:
13037 * if (index >= max_entries) goto out;
13038 * index &= array->index_mask;
13039 * to avoid out-of-bounds cpu speculation
13040 */
c93552c4 13041 if (bpf_map_ptr_poisoned(aux)) {
40950343 13042 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
13043 return -EINVAL;
13044 }
c93552c4 13045
d2e4c1e6 13046 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
13047 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13048 map_ptr->max_entries, 2);
13049 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13050 container_of(map_ptr,
13051 struct bpf_array,
13052 map)->index_mask);
13053 insn_buf[2] = *insn;
13054 cnt = 3;
13055 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13056 if (!new_prog)
13057 return -ENOMEM;
13058
13059 delta += cnt - 1;
13060 env->prog = prog = new_prog;
13061 insn = new_prog->insnsi + i + delta;
79741b3b
AS
13062 continue;
13063 }
e245c5c6 13064
b00628b1
AS
13065 if (insn->imm == BPF_FUNC_timer_set_callback) {
13066 /* The verifier will process callback_fn as many times as necessary
13067 * with different maps and the register states prepared by
13068 * set_timer_callback_state will be accurate.
13069 *
13070 * The following use case is valid:
13071 * map1 is shared by prog1, prog2, prog3.
13072 * prog1 calls bpf_timer_init for some map1 elements
13073 * prog2 calls bpf_timer_set_callback for some map1 elements.
13074 * Those that were not bpf_timer_init-ed will return -EINVAL.
13075 * prog3 calls bpf_timer_start for some map1 elements.
13076 * Those that were not both bpf_timer_init-ed and
13077 * bpf_timer_set_callback-ed will return -EINVAL.
13078 */
13079 struct bpf_insn ld_addrs[2] = {
13080 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13081 };
13082
13083 insn_buf[0] = ld_addrs[0];
13084 insn_buf[1] = ld_addrs[1];
13085 insn_buf[2] = *insn;
13086 cnt = 3;
13087
13088 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13089 if (!new_prog)
13090 return -ENOMEM;
13091
13092 delta += cnt - 1;
13093 env->prog = prog = new_prog;
13094 insn = new_prog->insnsi + i + delta;
13095 goto patch_call_imm;
13096 }
13097
89c63074 13098 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
13099 * and other inlining handlers are currently limited to 64 bit
13100 * only.
89c63074 13101 */
60b58afc 13102 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
13103 (insn->imm == BPF_FUNC_map_lookup_elem ||
13104 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
13105 insn->imm == BPF_FUNC_map_delete_elem ||
13106 insn->imm == BPF_FUNC_map_push_elem ||
13107 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 13108 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c
AI
13109 insn->imm == BPF_FUNC_redirect_map ||
13110 insn->imm == BPF_FUNC_for_each_map_elem)) {
c93552c4
DB
13111 aux = &env->insn_aux_data[i + delta];
13112 if (bpf_map_ptr_poisoned(aux))
13113 goto patch_call_imm;
13114
d2e4c1e6 13115 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
13116 ops = map_ptr->ops;
13117 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13118 ops->map_gen_lookup) {
13119 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
13120 if (cnt == -EOPNOTSUPP)
13121 goto patch_map_ops_generic;
13122 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
13123 verbose(env, "bpf verifier is misconfigured\n");
13124 return -EINVAL;
13125 }
81ed18ab 13126
09772d92
DB
13127 new_prog = bpf_patch_insn_data(env, i + delta,
13128 insn_buf, cnt);
13129 if (!new_prog)
13130 return -ENOMEM;
81ed18ab 13131
09772d92
DB
13132 delta += cnt - 1;
13133 env->prog = prog = new_prog;
13134 insn = new_prog->insnsi + i + delta;
13135 continue;
13136 }
81ed18ab 13137
09772d92
DB
13138 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13139 (void *(*)(struct bpf_map *map, void *key))NULL));
13140 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13141 (int (*)(struct bpf_map *map, void *key))NULL));
13142 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13143 (int (*)(struct bpf_map *map, void *key, void *value,
13144 u64 flags))NULL));
84430d42
DB
13145 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13146 (int (*)(struct bpf_map *map, void *value,
13147 u64 flags))NULL));
13148 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13149 (int (*)(struct bpf_map *map, void *value))NULL));
13150 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13151 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
13152 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13153 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
0640c77c
AI
13154 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13155 (int (*)(struct bpf_map *map,
13156 bpf_callback_t callback_fn,
13157 void *callback_ctx,
13158 u64 flags))NULL));
e6a4750f 13159
4a8f87e6 13160patch_map_ops_generic:
09772d92
DB
13161 switch (insn->imm) {
13162 case BPF_FUNC_map_lookup_elem:
3d717fad 13163 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
13164 continue;
13165 case BPF_FUNC_map_update_elem:
3d717fad 13166 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
13167 continue;
13168 case BPF_FUNC_map_delete_elem:
3d717fad 13169 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 13170 continue;
84430d42 13171 case BPF_FUNC_map_push_elem:
3d717fad 13172 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
13173 continue;
13174 case BPF_FUNC_map_pop_elem:
3d717fad 13175 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
13176 continue;
13177 case BPF_FUNC_map_peek_elem:
3d717fad 13178 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 13179 continue;
e6a4750f 13180 case BPF_FUNC_redirect_map:
3d717fad 13181 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 13182 continue;
0640c77c
AI
13183 case BPF_FUNC_for_each_map_elem:
13184 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 13185 continue;
09772d92 13186 }
81ed18ab 13187
09772d92 13188 goto patch_call_imm;
81ed18ab
AS
13189 }
13190
e6ac5933 13191 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
13192 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13193 insn->imm == BPF_FUNC_jiffies64) {
13194 struct bpf_insn ld_jiffies_addr[2] = {
13195 BPF_LD_IMM64(BPF_REG_0,
13196 (unsigned long)&jiffies),
13197 };
13198
13199 insn_buf[0] = ld_jiffies_addr[0];
13200 insn_buf[1] = ld_jiffies_addr[1];
13201 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13202 BPF_REG_0, 0);
13203 cnt = 3;
13204
13205 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13206 cnt);
13207 if (!new_prog)
13208 return -ENOMEM;
13209
13210 delta += cnt - 1;
13211 env->prog = prog = new_prog;
13212 insn = new_prog->insnsi + i + delta;
13213 continue;
13214 }
13215
9b99edca
JO
13216 /* Implement bpf_get_func_ip inline. */
13217 if (prog_type == BPF_PROG_TYPE_TRACING &&
13218 insn->imm == BPF_FUNC_get_func_ip) {
13219 /* Load IP address from ctx - 8 */
13220 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13221
13222 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13223 if (!new_prog)
13224 return -ENOMEM;
13225
13226 env->prog = prog = new_prog;
13227 insn = new_prog->insnsi + i + delta;
13228 continue;
13229 }
13230
81ed18ab 13231patch_call_imm:
5e43f899 13232 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
13233 /* all functions that have prototype and verifier allowed
13234 * programs to call them, must be real in-kernel functions
13235 */
13236 if (!fn->func) {
61bd5218
JK
13237 verbose(env,
13238 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
13239 func_id_name(insn->imm), insn->imm);
13240 return -EFAULT;
e245c5c6 13241 }
79741b3b 13242 insn->imm = fn->func - __bpf_call_base;
e245c5c6 13243 }
e245c5c6 13244
d2e4c1e6
DB
13245 /* Since poke tab is now finalized, publish aux to tracker. */
13246 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13247 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13248 if (!map_ptr->ops->map_poke_track ||
13249 !map_ptr->ops->map_poke_untrack ||
13250 !map_ptr->ops->map_poke_run) {
13251 verbose(env, "bpf verifier is misconfigured\n");
13252 return -EINVAL;
13253 }
13254
13255 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13256 if (ret < 0) {
13257 verbose(env, "tracking tail call prog failed\n");
13258 return ret;
13259 }
13260 }
13261
e6ac2450
MKL
13262 sort_kfunc_descs_by_imm(env->prog);
13263
79741b3b
AS
13264 return 0;
13265}
e245c5c6 13266
58e2af8b 13267static void free_states(struct bpf_verifier_env *env)
f1bca824 13268{
58e2af8b 13269 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
13270 int i;
13271
9f4686c4
AS
13272 sl = env->free_list;
13273 while (sl) {
13274 sln = sl->next;
13275 free_verifier_state(&sl->state, false);
13276 kfree(sl);
13277 sl = sln;
13278 }
51c39bb1 13279 env->free_list = NULL;
9f4686c4 13280
f1bca824
AS
13281 if (!env->explored_states)
13282 return;
13283
dc2a4ebc 13284 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
13285 sl = env->explored_states[i];
13286
a8f500af
AS
13287 while (sl) {
13288 sln = sl->next;
13289 free_verifier_state(&sl->state, false);
13290 kfree(sl);
13291 sl = sln;
13292 }
51c39bb1 13293 env->explored_states[i] = NULL;
f1bca824 13294 }
51c39bb1 13295}
f1bca824 13296
51c39bb1
AS
13297static int do_check_common(struct bpf_verifier_env *env, int subprog)
13298{
6f8a57cc 13299 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
13300 struct bpf_verifier_state *state;
13301 struct bpf_reg_state *regs;
13302 int ret, i;
13303
13304 env->prev_linfo = NULL;
13305 env->pass_cnt++;
13306
13307 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13308 if (!state)
13309 return -ENOMEM;
13310 state->curframe = 0;
13311 state->speculative = false;
13312 state->branches = 1;
13313 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13314 if (!state->frame[0]) {
13315 kfree(state);
13316 return -ENOMEM;
13317 }
13318 env->cur_state = state;
13319 init_func_state(env, state->frame[0],
13320 BPF_MAIN_FUNC /* callsite */,
13321 0 /* frameno */,
13322 subprog);
13323
13324 regs = state->frame[state->curframe]->regs;
be8704ff 13325 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
13326 ret = btf_prepare_func_args(env, subprog, regs);
13327 if (ret)
13328 goto out;
13329 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13330 if (regs[i].type == PTR_TO_CTX)
13331 mark_reg_known_zero(env, regs, i);
13332 else if (regs[i].type == SCALAR_VALUE)
13333 mark_reg_unknown(env, regs, i);
e5069b9c
DB
13334 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13335 const u32 mem_size = regs[i].mem_size;
13336
13337 mark_reg_known_zero(env, regs, i);
13338 regs[i].mem_size = mem_size;
13339 regs[i].id = ++env->id_gen;
13340 }
51c39bb1
AS
13341 }
13342 } else {
13343 /* 1st arg to a function */
13344 regs[BPF_REG_1].type = PTR_TO_CTX;
13345 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 13346 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
13347 if (ret == -EFAULT)
13348 /* unlikely verifier bug. abort.
13349 * ret == 0 and ret < 0 are sadly acceptable for
13350 * main() function due to backward compatibility.
13351 * Like socket filter program may be written as:
13352 * int bpf_prog(struct pt_regs *ctx)
13353 * and never dereference that ctx in the program.
13354 * 'struct pt_regs' is a type mismatch for socket
13355 * filter that should be using 'struct __sk_buff'.
13356 */
13357 goto out;
13358 }
13359
13360 ret = do_check(env);
13361out:
f59bbfc2
AS
13362 /* check for NULL is necessary, since cur_state can be freed inside
13363 * do_check() under memory pressure.
13364 */
13365 if (env->cur_state) {
13366 free_verifier_state(env->cur_state, true);
13367 env->cur_state = NULL;
13368 }
6f8a57cc
AN
13369 while (!pop_stack(env, NULL, NULL, false));
13370 if (!ret && pop_log)
13371 bpf_vlog_reset(&env->log, 0);
51c39bb1 13372 free_states(env);
51c39bb1
AS
13373 return ret;
13374}
13375
13376/* Verify all global functions in a BPF program one by one based on their BTF.
13377 * All global functions must pass verification. Otherwise the whole program is rejected.
13378 * Consider:
13379 * int bar(int);
13380 * int foo(int f)
13381 * {
13382 * return bar(f);
13383 * }
13384 * int bar(int b)
13385 * {
13386 * ...
13387 * }
13388 * foo() will be verified first for R1=any_scalar_value. During verification it
13389 * will be assumed that bar() already verified successfully and call to bar()
13390 * from foo() will be checked for type match only. Later bar() will be verified
13391 * independently to check that it's safe for R1=any_scalar_value.
13392 */
13393static int do_check_subprogs(struct bpf_verifier_env *env)
13394{
13395 struct bpf_prog_aux *aux = env->prog->aux;
13396 int i, ret;
13397
13398 if (!aux->func_info)
13399 return 0;
13400
13401 for (i = 1; i < env->subprog_cnt; i++) {
13402 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13403 continue;
13404 env->insn_idx = env->subprog_info[i].start;
13405 WARN_ON_ONCE(env->insn_idx == 0);
13406 ret = do_check_common(env, i);
13407 if (ret) {
13408 return ret;
13409 } else if (env->log.level & BPF_LOG_LEVEL) {
13410 verbose(env,
13411 "Func#%d is safe for any args that match its prototype\n",
13412 i);
13413 }
13414 }
13415 return 0;
13416}
13417
13418static int do_check_main(struct bpf_verifier_env *env)
13419{
13420 int ret;
13421
13422 env->insn_idx = 0;
13423 ret = do_check_common(env, 0);
13424 if (!ret)
13425 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13426 return ret;
13427}
13428
13429
06ee7115
AS
13430static void print_verification_stats(struct bpf_verifier_env *env)
13431{
13432 int i;
13433
13434 if (env->log.level & BPF_LOG_STATS) {
13435 verbose(env, "verification time %lld usec\n",
13436 div_u64(env->verification_time, 1000));
13437 verbose(env, "stack depth ");
13438 for (i = 0; i < env->subprog_cnt; i++) {
13439 u32 depth = env->subprog_info[i].stack_depth;
13440
13441 verbose(env, "%d", depth);
13442 if (i + 1 < env->subprog_cnt)
13443 verbose(env, "+");
13444 }
13445 verbose(env, "\n");
13446 }
13447 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13448 "total_states %d peak_states %d mark_read %d\n",
13449 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13450 env->max_states_per_insn, env->total_states,
13451 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
13452}
13453
27ae7997
MKL
13454static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13455{
13456 const struct btf_type *t, *func_proto;
13457 const struct bpf_struct_ops *st_ops;
13458 const struct btf_member *member;
13459 struct bpf_prog *prog = env->prog;
13460 u32 btf_id, member_idx;
13461 const char *mname;
13462
12aa8a94
THJ
13463 if (!prog->gpl_compatible) {
13464 verbose(env, "struct ops programs must have a GPL compatible license\n");
13465 return -EINVAL;
13466 }
13467
27ae7997
MKL
13468 btf_id = prog->aux->attach_btf_id;
13469 st_ops = bpf_struct_ops_find(btf_id);
13470 if (!st_ops) {
13471 verbose(env, "attach_btf_id %u is not a supported struct\n",
13472 btf_id);
13473 return -ENOTSUPP;
13474 }
13475
13476 t = st_ops->type;
13477 member_idx = prog->expected_attach_type;
13478 if (member_idx >= btf_type_vlen(t)) {
13479 verbose(env, "attach to invalid member idx %u of struct %s\n",
13480 member_idx, st_ops->name);
13481 return -EINVAL;
13482 }
13483
13484 member = &btf_type_member(t)[member_idx];
13485 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13486 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13487 NULL);
13488 if (!func_proto) {
13489 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13490 mname, member_idx, st_ops->name);
13491 return -EINVAL;
13492 }
13493
13494 if (st_ops->check_member) {
13495 int err = st_ops->check_member(t, member);
13496
13497 if (err) {
13498 verbose(env, "attach to unsupported member %s of struct %s\n",
13499 mname, st_ops->name);
13500 return err;
13501 }
13502 }
13503
13504 prog->aux->attach_func_proto = func_proto;
13505 prog->aux->attach_func_name = mname;
13506 env->ops = st_ops->verifier_ops;
13507
13508 return 0;
13509}
6ba43b76
KS
13510#define SECURITY_PREFIX "security_"
13511
f7b12b6f 13512static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 13513{
69191754 13514 if (within_error_injection_list(addr) ||
f7b12b6f 13515 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 13516 return 0;
6ba43b76 13517
6ba43b76
KS
13518 return -EINVAL;
13519}
27ae7997 13520
1e6c62a8
AS
13521/* list of non-sleepable functions that are otherwise on
13522 * ALLOW_ERROR_INJECTION list
13523 */
13524BTF_SET_START(btf_non_sleepable_error_inject)
13525/* Three functions below can be called from sleepable and non-sleepable context.
13526 * Assume non-sleepable from bpf safety point of view.
13527 */
9dd3d069 13528BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
13529BTF_ID(func, should_fail_alloc_page)
13530BTF_ID(func, should_failslab)
13531BTF_SET_END(btf_non_sleepable_error_inject)
13532
13533static int check_non_sleepable_error_inject(u32 btf_id)
13534{
13535 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13536}
13537
f7b12b6f
THJ
13538int bpf_check_attach_target(struct bpf_verifier_log *log,
13539 const struct bpf_prog *prog,
13540 const struct bpf_prog *tgt_prog,
13541 u32 btf_id,
13542 struct bpf_attach_target_info *tgt_info)
38207291 13543{
be8704ff 13544 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 13545 const char prefix[] = "btf_trace_";
5b92a28a 13546 int ret = 0, subprog = -1, i;
38207291 13547 const struct btf_type *t;
5b92a28a 13548 bool conservative = true;
38207291 13549 const char *tname;
5b92a28a 13550 struct btf *btf;
f7b12b6f 13551 long addr = 0;
38207291 13552
f1b9509c 13553 if (!btf_id) {
efc68158 13554 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
13555 return -EINVAL;
13556 }
22dc4a0f 13557 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 13558 if (!btf) {
efc68158 13559 bpf_log(log,
5b92a28a
AS
13560 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13561 return -EINVAL;
13562 }
13563 t = btf_type_by_id(btf, btf_id);
f1b9509c 13564 if (!t) {
efc68158 13565 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
13566 return -EINVAL;
13567 }
5b92a28a 13568 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 13569 if (!tname) {
efc68158 13570 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
13571 return -EINVAL;
13572 }
5b92a28a
AS
13573 if (tgt_prog) {
13574 struct bpf_prog_aux *aux = tgt_prog->aux;
13575
13576 for (i = 0; i < aux->func_info_cnt; i++)
13577 if (aux->func_info[i].type_id == btf_id) {
13578 subprog = i;
13579 break;
13580 }
13581 if (subprog == -1) {
efc68158 13582 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
13583 return -EINVAL;
13584 }
13585 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
13586 if (prog_extension) {
13587 if (conservative) {
efc68158 13588 bpf_log(log,
be8704ff
AS
13589 "Cannot replace static functions\n");
13590 return -EINVAL;
13591 }
13592 if (!prog->jit_requested) {
efc68158 13593 bpf_log(log,
be8704ff
AS
13594 "Extension programs should be JITed\n");
13595 return -EINVAL;
13596 }
be8704ff
AS
13597 }
13598 if (!tgt_prog->jited) {
efc68158 13599 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
13600 return -EINVAL;
13601 }
13602 if (tgt_prog->type == prog->type) {
13603 /* Cannot fentry/fexit another fentry/fexit program.
13604 * Cannot attach program extension to another extension.
13605 * It's ok to attach fentry/fexit to extension program.
13606 */
efc68158 13607 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
13608 return -EINVAL;
13609 }
13610 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13611 prog_extension &&
13612 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13613 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13614 /* Program extensions can extend all program types
13615 * except fentry/fexit. The reason is the following.
13616 * The fentry/fexit programs are used for performance
13617 * analysis, stats and can be attached to any program
13618 * type except themselves. When extension program is
13619 * replacing XDP function it is necessary to allow
13620 * performance analysis of all functions. Both original
13621 * XDP program and its program extension. Hence
13622 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13623 * allowed. If extending of fentry/fexit was allowed it
13624 * would be possible to create long call chain
13625 * fentry->extension->fentry->extension beyond
13626 * reasonable stack size. Hence extending fentry is not
13627 * allowed.
13628 */
efc68158 13629 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
13630 return -EINVAL;
13631 }
5b92a28a 13632 } else {
be8704ff 13633 if (prog_extension) {
efc68158 13634 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
13635 return -EINVAL;
13636 }
5b92a28a 13637 }
f1b9509c
AS
13638
13639 switch (prog->expected_attach_type) {
13640 case BPF_TRACE_RAW_TP:
5b92a28a 13641 if (tgt_prog) {
efc68158 13642 bpf_log(log,
5b92a28a
AS
13643 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13644 return -EINVAL;
13645 }
38207291 13646 if (!btf_type_is_typedef(t)) {
efc68158 13647 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
13648 btf_id);
13649 return -EINVAL;
13650 }
f1b9509c 13651 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 13652 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
13653 btf_id, tname);
13654 return -EINVAL;
13655 }
13656 tname += sizeof(prefix) - 1;
5b92a28a 13657 t = btf_type_by_id(btf, t->type);
38207291
MKL
13658 if (!btf_type_is_ptr(t))
13659 /* should never happen in valid vmlinux build */
13660 return -EINVAL;
5b92a28a 13661 t = btf_type_by_id(btf, t->type);
38207291
MKL
13662 if (!btf_type_is_func_proto(t))
13663 /* should never happen in valid vmlinux build */
13664 return -EINVAL;
13665
f7b12b6f 13666 break;
15d83c4d
YS
13667 case BPF_TRACE_ITER:
13668 if (!btf_type_is_func(t)) {
efc68158 13669 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13670 btf_id);
13671 return -EINVAL;
13672 }
13673 t = btf_type_by_id(btf, t->type);
13674 if (!btf_type_is_func_proto(t))
13675 return -EINVAL;
f7b12b6f
THJ
13676 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13677 if (ret)
13678 return ret;
13679 break;
be8704ff
AS
13680 default:
13681 if (!prog_extension)
13682 return -EINVAL;
df561f66 13683 fallthrough;
ae240823 13684 case BPF_MODIFY_RETURN:
9e4e01df 13685 case BPF_LSM_MAC:
fec56f58
AS
13686 case BPF_TRACE_FENTRY:
13687 case BPF_TRACE_FEXIT:
13688 if (!btf_type_is_func(t)) {
efc68158 13689 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13690 btf_id);
13691 return -EINVAL;
13692 }
be8704ff 13693 if (prog_extension &&
efc68158 13694 btf_check_type_match(log, prog, btf, t))
be8704ff 13695 return -EINVAL;
5b92a28a 13696 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13697 if (!btf_type_is_func_proto(t))
13698 return -EINVAL;
f7b12b6f 13699
4a1e7c0c
THJ
13700 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13701 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13702 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13703 return -EINVAL;
13704
f7b12b6f 13705 if (tgt_prog && conservative)
5b92a28a 13706 t = NULL;
f7b12b6f
THJ
13707
13708 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13709 if (ret < 0)
f7b12b6f
THJ
13710 return ret;
13711
5b92a28a 13712 if (tgt_prog) {
e9eeec58
YS
13713 if (subprog == 0)
13714 addr = (long) tgt_prog->bpf_func;
13715 else
13716 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13717 } else {
13718 addr = kallsyms_lookup_name(tname);
13719 if (!addr) {
efc68158 13720 bpf_log(log,
5b92a28a
AS
13721 "The address of function %s cannot be found\n",
13722 tname);
f7b12b6f 13723 return -ENOENT;
5b92a28a 13724 }
fec56f58 13725 }
18644cec 13726
1e6c62a8
AS
13727 if (prog->aux->sleepable) {
13728 ret = -EINVAL;
13729 switch (prog->type) {
13730 case BPF_PROG_TYPE_TRACING:
13731 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13732 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13733 */
13734 if (!check_non_sleepable_error_inject(btf_id) &&
13735 within_error_injection_list(addr))
13736 ret = 0;
13737 break;
13738 case BPF_PROG_TYPE_LSM:
13739 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13740 * Only some of them are sleepable.
13741 */
423f1610 13742 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
13743 ret = 0;
13744 break;
13745 default:
13746 break;
13747 }
f7b12b6f
THJ
13748 if (ret) {
13749 bpf_log(log, "%s is not sleepable\n", tname);
13750 return ret;
13751 }
1e6c62a8 13752 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 13753 if (tgt_prog) {
efc68158 13754 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
13755 return -EINVAL;
13756 }
13757 ret = check_attach_modify_return(addr, tname);
13758 if (ret) {
13759 bpf_log(log, "%s() is not modifiable\n", tname);
13760 return ret;
1af9270e 13761 }
18644cec 13762 }
f7b12b6f
THJ
13763
13764 break;
13765 }
13766 tgt_info->tgt_addr = addr;
13767 tgt_info->tgt_name = tname;
13768 tgt_info->tgt_type = t;
13769 return 0;
13770}
13771
35e3815f
JO
13772BTF_SET_START(btf_id_deny)
13773BTF_ID_UNUSED
13774#ifdef CONFIG_SMP
13775BTF_ID(func, migrate_disable)
13776BTF_ID(func, migrate_enable)
13777#endif
13778#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13779BTF_ID(func, rcu_read_unlock_strict)
13780#endif
13781BTF_SET_END(btf_id_deny)
13782
f7b12b6f
THJ
13783static int check_attach_btf_id(struct bpf_verifier_env *env)
13784{
13785 struct bpf_prog *prog = env->prog;
3aac1ead 13786 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
13787 struct bpf_attach_target_info tgt_info = {};
13788 u32 btf_id = prog->aux->attach_btf_id;
13789 struct bpf_trampoline *tr;
13790 int ret;
13791 u64 key;
13792
79a7f8bd
AS
13793 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13794 if (prog->aux->sleepable)
13795 /* attach_btf_id checked to be zero already */
13796 return 0;
13797 verbose(env, "Syscall programs can only be sleepable\n");
13798 return -EINVAL;
13799 }
13800
f7b12b6f
THJ
13801 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13802 prog->type != BPF_PROG_TYPE_LSM) {
13803 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13804 return -EINVAL;
13805 }
13806
13807 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13808 return check_struct_ops_btf_id(env);
13809
13810 if (prog->type != BPF_PROG_TYPE_TRACING &&
13811 prog->type != BPF_PROG_TYPE_LSM &&
13812 prog->type != BPF_PROG_TYPE_EXT)
13813 return 0;
13814
13815 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13816 if (ret)
fec56f58 13817 return ret;
f7b12b6f
THJ
13818
13819 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
13820 /* to make freplace equivalent to their targets, they need to
13821 * inherit env->ops and expected_attach_type for the rest of the
13822 * verification
13823 */
f7b12b6f
THJ
13824 env->ops = bpf_verifier_ops[tgt_prog->type];
13825 prog->expected_attach_type = tgt_prog->expected_attach_type;
13826 }
13827
13828 /* store info about the attachment target that will be used later */
13829 prog->aux->attach_func_proto = tgt_info.tgt_type;
13830 prog->aux->attach_func_name = tgt_info.tgt_name;
13831
4a1e7c0c
THJ
13832 if (tgt_prog) {
13833 prog->aux->saved_dst_prog_type = tgt_prog->type;
13834 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13835 }
13836
f7b12b6f
THJ
13837 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13838 prog->aux->attach_btf_trace = true;
13839 return 0;
13840 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13841 if (!bpf_iter_prog_supported(prog))
13842 return -EINVAL;
13843 return 0;
13844 }
13845
13846 if (prog->type == BPF_PROG_TYPE_LSM) {
13847 ret = bpf_lsm_verify_prog(&env->log, prog);
13848 if (ret < 0)
13849 return ret;
35e3815f
JO
13850 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13851 btf_id_set_contains(&btf_id_deny, btf_id)) {
13852 return -EINVAL;
38207291 13853 }
f7b12b6f 13854
22dc4a0f 13855 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
13856 tr = bpf_trampoline_get(key, &tgt_info);
13857 if (!tr)
13858 return -ENOMEM;
13859
3aac1ead 13860 prog->aux->dst_trampoline = tr;
f7b12b6f 13861 return 0;
38207291
MKL
13862}
13863
76654e67
AM
13864struct btf *bpf_get_btf_vmlinux(void)
13865{
13866 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13867 mutex_lock(&bpf_verifier_lock);
13868 if (!btf_vmlinux)
13869 btf_vmlinux = btf_parse_vmlinux();
13870 mutex_unlock(&bpf_verifier_lock);
13871 }
13872 return btf_vmlinux;
13873}
13874
af2ac3e1 13875int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 13876{
06ee7115 13877 u64 start_time = ktime_get_ns();
58e2af8b 13878 struct bpf_verifier_env *env;
b9193c1b 13879 struct bpf_verifier_log *log;
9e4c24e7 13880 int i, len, ret = -EINVAL;
e2ae4ca2 13881 bool is_priv;
51580e79 13882
eba0c929
AB
13883 /* no program is valid */
13884 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13885 return -EINVAL;
13886
58e2af8b 13887 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
13888 * allocate/free it every time bpf_check() is called
13889 */
58e2af8b 13890 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
13891 if (!env)
13892 return -ENOMEM;
61bd5218 13893 log = &env->log;
cbd35700 13894
9e4c24e7 13895 len = (*prog)->len;
fad953ce 13896 env->insn_aux_data =
9e4c24e7 13897 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
13898 ret = -ENOMEM;
13899 if (!env->insn_aux_data)
13900 goto err_free_env;
9e4c24e7
JK
13901 for (i = 0; i < len; i++)
13902 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 13903 env->prog = *prog;
00176a34 13904 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 13905 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 13906 is_priv = bpf_capable();
0246e64d 13907
76654e67 13908 bpf_get_btf_vmlinux();
8580ac94 13909
cbd35700 13910 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
13911 if (!is_priv)
13912 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
13913
13914 if (attr->log_level || attr->log_buf || attr->log_size) {
13915 /* user requested verbose verifier output
13916 * and supplied buffer to store the verification trace
13917 */
e7bf8249
JK
13918 log->level = attr->log_level;
13919 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13920 log->len_total = attr->log_size;
cbd35700
AS
13921
13922 ret = -EINVAL;
e7bf8249 13923 /* log attributes have to be sane */
7a9f5c65 13924 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 13925 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 13926 goto err_unlock;
cbd35700 13927 }
1ad2f583 13928
8580ac94
AS
13929 if (IS_ERR(btf_vmlinux)) {
13930 /* Either gcc or pahole or kernel are broken. */
13931 verbose(env, "in-kernel BTF is malformed\n");
13932 ret = PTR_ERR(btf_vmlinux);
38207291 13933 goto skip_full_check;
8580ac94
AS
13934 }
13935
1ad2f583
DB
13936 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13937 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 13938 env->strict_alignment = true;
e9ee9efc
DM
13939 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13940 env->strict_alignment = false;
cbd35700 13941
2c78ee89 13942 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 13943 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 13944 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
13945 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13946 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13947 env->bpf_capable = bpf_capable();
e2ae4ca2 13948
10d274e8
AS
13949 if (is_priv)
13950 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13951
dc2a4ebc 13952 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 13953 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
13954 GFP_USER);
13955 ret = -ENOMEM;
13956 if (!env->explored_states)
13957 goto skip_full_check;
13958
e6ac2450
MKL
13959 ret = add_subprog_and_kfunc(env);
13960 if (ret < 0)
13961 goto skip_full_check;
13962
d9762e84 13963 ret = check_subprogs(env);
475fb78f
AS
13964 if (ret < 0)
13965 goto skip_full_check;
13966
c454a46b 13967 ret = check_btf_info(env, attr, uattr);
838e9690
YS
13968 if (ret < 0)
13969 goto skip_full_check;
13970
be8704ff
AS
13971 ret = check_attach_btf_id(env);
13972 if (ret)
13973 goto skip_full_check;
13974
4976b718
HL
13975 ret = resolve_pseudo_ldimm64(env);
13976 if (ret < 0)
13977 goto skip_full_check;
13978
ceb11679
YZ
13979 if (bpf_prog_is_dev_bound(env->prog->aux)) {
13980 ret = bpf_prog_offload_verifier_prep(env->prog);
13981 if (ret)
13982 goto skip_full_check;
13983 }
13984
d9762e84
MKL
13985 ret = check_cfg(env);
13986 if (ret < 0)
13987 goto skip_full_check;
13988
51c39bb1
AS
13989 ret = do_check_subprogs(env);
13990 ret = ret ?: do_check_main(env);
cbd35700 13991
c941ce9c
QM
13992 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13993 ret = bpf_prog_offload_finalize(env);
13994
0246e64d 13995skip_full_check:
51c39bb1 13996 kvfree(env->explored_states);
0246e64d 13997
c131187d 13998 if (ret == 0)
9b38c405 13999 ret = check_max_stack_depth(env);
c131187d 14000
9b38c405 14001 /* instruction rewrites happen after this point */
e2ae4ca2
JK
14002 if (is_priv) {
14003 if (ret == 0)
14004 opt_hard_wire_dead_code_branches(env);
52875a04
JK
14005 if (ret == 0)
14006 ret = opt_remove_dead_code(env);
a1b14abc
JK
14007 if (ret == 0)
14008 ret = opt_remove_nops(env);
52875a04
JK
14009 } else {
14010 if (ret == 0)
14011 sanitize_dead_code(env);
e2ae4ca2
JK
14012 }
14013
9bac3d6d
AS
14014 if (ret == 0)
14015 /* program is valid, convert *(u32*)(ctx + off) accesses */
14016 ret = convert_ctx_accesses(env);
14017
e245c5c6 14018 if (ret == 0)
e6ac5933 14019 ret = do_misc_fixups(env);
e245c5c6 14020
a4b1d3c1
JW
14021 /* do 32-bit optimization after insn patching has done so those patched
14022 * insns could be handled correctly.
14023 */
d6c2308c
JW
14024 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14025 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14026 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14027 : false;
a4b1d3c1
JW
14028 }
14029
1ea47e01
AS
14030 if (ret == 0)
14031 ret = fixup_call_args(env);
14032
06ee7115
AS
14033 env->verification_time = ktime_get_ns() - start_time;
14034 print_verification_stats(env);
aba64c7d 14035 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 14036
a2a7d570 14037 if (log->level && bpf_verifier_log_full(log))
cbd35700 14038 ret = -ENOSPC;
a2a7d570 14039 if (log->level && !log->ubuf) {
cbd35700 14040 ret = -EFAULT;
a2a7d570 14041 goto err_release_maps;
cbd35700
AS
14042 }
14043
541c3bad
AN
14044 if (ret)
14045 goto err_release_maps;
14046
14047 if (env->used_map_cnt) {
0246e64d 14048 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
14049 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14050 sizeof(env->used_maps[0]),
14051 GFP_KERNEL);
0246e64d 14052
9bac3d6d 14053 if (!env->prog->aux->used_maps) {
0246e64d 14054 ret = -ENOMEM;
a2a7d570 14055 goto err_release_maps;
0246e64d
AS
14056 }
14057
9bac3d6d 14058 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 14059 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 14060 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
14061 }
14062 if (env->used_btf_cnt) {
14063 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14064 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14065 sizeof(env->used_btfs[0]),
14066 GFP_KERNEL);
14067 if (!env->prog->aux->used_btfs) {
14068 ret = -ENOMEM;
14069 goto err_release_maps;
14070 }
0246e64d 14071
541c3bad
AN
14072 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14073 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14074 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14075 }
14076 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
14077 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14078 * bpf_ld_imm64 instructions
14079 */
14080 convert_pseudo_ld_imm64(env);
14081 }
cbd35700 14082
541c3bad 14083 adjust_btf_func(env);
ba64e7d8 14084
a2a7d570 14085err_release_maps:
9bac3d6d 14086 if (!env->prog->aux->used_maps)
0246e64d 14087 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 14088 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
14089 */
14090 release_maps(env);
541c3bad
AN
14091 if (!env->prog->aux->used_btfs)
14092 release_btfs(env);
03f87c0b
THJ
14093
14094 /* extension progs temporarily inherit the attach_type of their targets
14095 for verification purposes, so set it back to zero before returning
14096 */
14097 if (env->prog->type == BPF_PROG_TYPE_EXT)
14098 env->prog->expected_attach_type = 0;
14099
9bac3d6d 14100 *prog = env->prog;
3df126f3 14101err_unlock:
45a73c17
AS
14102 if (!is_priv)
14103 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
14104 vfree(env->insn_aux_data);
14105err_free_env:
14106 kfree(env);
51580e79
AS
14107 return ret;
14108}