bpf/verifier: track signed and unsigned min/max values
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
3c2ce60b 143#define BPF_COMPLEXITY_LIMIT_INSNS 98304
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
f1174f77 183 [SCALAR_VALUE] = "inv",
17a52670
AS
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 188 [PTR_TO_STACK] = "fp",
969bf05e
AS
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
191};
192
ebb676da
TG
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196};
197#undef __BPF_FUNC_STR_FN
198
199static const char *func_id_name(int id)
200{
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207}
208
58e2af8b 209static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 210{
58e2af8b 211 struct bpf_reg_state *reg;
17a52670
AS
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
216 reg = &state->regs[i];
217 t = reg->type;
17a52670
AS
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
b03c9f9f
EC
237 if (reg->smin_value != reg->umin_value &&
238 reg->smin_value != S64_MIN)
239 verbose(",smin_value=%lld",
240 (long long)reg->smin_value);
241 if (reg->smax_value != reg->umax_value &&
242 reg->smax_value != S64_MAX)
243 verbose(",smax_value=%lld",
244 (long long)reg->smax_value);
245 if (reg->umin_value != 0)
246 verbose(",umin_value=%llu",
247 (unsigned long long)reg->umin_value);
248 if (reg->umax_value != U64_MAX)
249 verbose(",umax_value=%llu",
250 (unsigned long long)reg->umax_value);
f1174f77
EC
251 if (!tnum_is_unknown(reg->var_off)) {
252 char tn_buf[48];
253
254 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
255 verbose(",var_off=%s", tn_buf);
256 }
257 verbose(")");
258 }
17a52670 259 }
9c399760 260 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 261 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 262 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 263 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
264 }
265 verbose("\n");
266}
267
cbd35700
AS
268static const char *const bpf_class_string[] = {
269 [BPF_LD] = "ld",
270 [BPF_LDX] = "ldx",
271 [BPF_ST] = "st",
272 [BPF_STX] = "stx",
273 [BPF_ALU] = "alu",
274 [BPF_JMP] = "jmp",
275 [BPF_RET] = "BUG",
276 [BPF_ALU64] = "alu64",
277};
278
687f0715 279static const char *const bpf_alu_string[16] = {
cbd35700
AS
280 [BPF_ADD >> 4] = "+=",
281 [BPF_SUB >> 4] = "-=",
282 [BPF_MUL >> 4] = "*=",
283 [BPF_DIV >> 4] = "/=",
284 [BPF_OR >> 4] = "|=",
285 [BPF_AND >> 4] = "&=",
286 [BPF_LSH >> 4] = "<<=",
287 [BPF_RSH >> 4] = ">>=",
288 [BPF_NEG >> 4] = "neg",
289 [BPF_MOD >> 4] = "%=",
290 [BPF_XOR >> 4] = "^=",
291 [BPF_MOV >> 4] = "=",
292 [BPF_ARSH >> 4] = "s>>=",
293 [BPF_END >> 4] = "endian",
294};
295
296static const char *const bpf_ldst_string[] = {
297 [BPF_W >> 3] = "u32",
298 [BPF_H >> 3] = "u16",
299 [BPF_B >> 3] = "u8",
300 [BPF_DW >> 3] = "u64",
301};
302
687f0715 303static const char *const bpf_jmp_string[16] = {
cbd35700
AS
304 [BPF_JA >> 4] = "jmp",
305 [BPF_JEQ >> 4] = "==",
306 [BPF_JGT >> 4] = ">",
307 [BPF_JGE >> 4] = ">=",
308 [BPF_JSET >> 4] = "&",
309 [BPF_JNE >> 4] = "!=",
310 [BPF_JSGT >> 4] = "s>",
311 [BPF_JSGE >> 4] = "s>=",
312 [BPF_CALL >> 4] = "call",
313 [BPF_EXIT >> 4] = "exit",
314};
315
0d0e5769
DB
316static void print_bpf_insn(const struct bpf_verifier_env *env,
317 const struct bpf_insn *insn)
cbd35700
AS
318{
319 u8 class = BPF_CLASS(insn->code);
320
321 if (class == BPF_ALU || class == BPF_ALU64) {
322 if (BPF_SRC(insn->code) == BPF_X)
323 verbose("(%02x) %sr%d %s %sr%d\n",
324 insn->code, class == BPF_ALU ? "(u32) " : "",
325 insn->dst_reg,
326 bpf_alu_string[BPF_OP(insn->code) >> 4],
327 class == BPF_ALU ? "(u32) " : "",
328 insn->src_reg);
329 else
330 verbose("(%02x) %sr%d %s %s%d\n",
331 insn->code, class == BPF_ALU ? "(u32) " : "",
332 insn->dst_reg,
333 bpf_alu_string[BPF_OP(insn->code) >> 4],
334 class == BPF_ALU ? "(u32) " : "",
335 insn->imm);
336 } else if (class == BPF_STX) {
337 if (BPF_MODE(insn->code) == BPF_MEM)
338 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->src_reg);
343 else if (BPF_MODE(insn->code) == BPF_XADD)
344 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
345 insn->code,
346 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
347 insn->dst_reg, insn->off,
348 insn->src_reg);
349 else
350 verbose("BUG_%02x\n", insn->code);
351 } else if (class == BPF_ST) {
352 if (BPF_MODE(insn->code) != BPF_MEM) {
353 verbose("BUG_st_%02x\n", insn->code);
354 return;
355 }
356 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->dst_reg,
360 insn->off, insn->imm);
361 } else if (class == BPF_LDX) {
362 if (BPF_MODE(insn->code) != BPF_MEM) {
363 verbose("BUG_ldx_%02x\n", insn->code);
364 return;
365 }
366 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
367 insn->code, insn->dst_reg,
368 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
369 insn->src_reg, insn->off);
370 } else if (class == BPF_LD) {
371 if (BPF_MODE(insn->code) == BPF_ABS) {
372 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
373 insn->code,
374 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
375 insn->imm);
376 } else if (BPF_MODE(insn->code) == BPF_IND) {
377 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
378 insn->code,
379 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
380 insn->src_reg, insn->imm);
0d0e5769
DB
381 } else if (BPF_MODE(insn->code) == BPF_IMM &&
382 BPF_SIZE(insn->code) == BPF_DW) {
383 /* At this point, we already made sure that the second
384 * part of the ldimm64 insn is accessible.
385 */
386 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
387 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
388
389 if (map_ptr && !env->allow_ptr_leaks)
390 imm = 0;
391
392 verbose("(%02x) r%d = 0x%llx\n", insn->code,
393 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
394 } else {
395 verbose("BUG_ld_%02x\n", insn->code);
396 return;
397 }
398 } else if (class == BPF_JMP) {
399 u8 opcode = BPF_OP(insn->code);
400
401 if (opcode == BPF_CALL) {
ebb676da
TG
402 verbose("(%02x) call %s#%d\n", insn->code,
403 func_id_name(insn->imm), insn->imm);
cbd35700
AS
404 } else if (insn->code == (BPF_JMP | BPF_JA)) {
405 verbose("(%02x) goto pc%+d\n",
406 insn->code, insn->off);
407 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
408 verbose("(%02x) exit\n", insn->code);
409 } else if (BPF_SRC(insn->code) == BPF_X) {
410 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
411 insn->code, insn->dst_reg,
412 bpf_jmp_string[BPF_OP(insn->code) >> 4],
413 insn->src_reg, insn->off);
414 } else {
415 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
416 insn->code, insn->dst_reg,
417 bpf_jmp_string[BPF_OP(insn->code) >> 4],
418 insn->imm, insn->off);
419 }
420 } else {
421 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
422 }
423}
424
58e2af8b 425static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 426{
58e2af8b 427 struct bpf_verifier_stack_elem *elem;
17a52670
AS
428 int insn_idx;
429
430 if (env->head == NULL)
431 return -1;
432
433 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
434 insn_idx = env->head->insn_idx;
435 if (prev_insn_idx)
436 *prev_insn_idx = env->head->prev_insn_idx;
437 elem = env->head->next;
438 kfree(env->head);
439 env->head = elem;
440 env->stack_size--;
441 return insn_idx;
442}
443
58e2af8b
JK
444static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
445 int insn_idx, int prev_insn_idx)
17a52670 446{
58e2af8b 447 struct bpf_verifier_stack_elem *elem;
17a52670 448
58e2af8b 449 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
450 if (!elem)
451 goto err;
452
453 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
454 elem->insn_idx = insn_idx;
455 elem->prev_insn_idx = prev_insn_idx;
456 elem->next = env->head;
457 env->head = elem;
458 env->stack_size++;
07016151 459 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
460 verbose("BPF program is too complex\n");
461 goto err;
462 }
463 return &elem->st;
464err:
465 /* pop all elements and return */
466 while (pop_stack(env, NULL) >= 0);
467 return NULL;
468}
469
470#define CALLER_SAVED_REGS 6
471static const int caller_saved[CALLER_SAVED_REGS] = {
472 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
473};
474
f1174f77
EC
475static void __mark_reg_not_init(struct bpf_reg_state *reg);
476
b03c9f9f
EC
477/* Mark the unknown part of a register (variable offset or scalar value) as
478 * known to have the value @imm.
479 */
480static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
481{
482 reg->id = 0;
483 reg->var_off = tnum_const(imm);
484 reg->smin_value = (s64)imm;
485 reg->smax_value = (s64)imm;
486 reg->umin_value = imm;
487 reg->umax_value = imm;
488}
489
f1174f77
EC
490/* Mark the 'variable offset' part of a register as zero. This should be
491 * used only on registers holding a pointer type.
492 */
493static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 494{
b03c9f9f 495 __mark_reg_known(reg, 0);
f1174f77 496}
a9789ef9 497
f1174f77
EC
498static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
499{
500 if (WARN_ON(regno >= MAX_BPF_REG)) {
501 verbose("mark_reg_known_zero(regs, %u)\n", regno);
502 /* Something bad happened, let's kill all regs */
503 for (regno = 0; regno < MAX_BPF_REG; regno++)
504 __mark_reg_not_init(regs + regno);
505 return;
506 }
507 __mark_reg_known_zero(regs + regno);
508}
509
b03c9f9f
EC
510/* Attempts to improve min/max values based on var_off information */
511static void __update_reg_bounds(struct bpf_reg_state *reg)
512{
513 /* min signed is max(sign bit) | min(other bits) */
514 reg->smin_value = max_t(s64, reg->smin_value,
515 reg->var_off.value | (reg->var_off.mask & S64_MIN));
516 /* max signed is min(sign bit) | max(other bits) */
517 reg->smax_value = min_t(s64, reg->smax_value,
518 reg->var_off.value | (reg->var_off.mask & S64_MAX));
519 reg->umin_value = max(reg->umin_value, reg->var_off.value);
520 reg->umax_value = min(reg->umax_value,
521 reg->var_off.value | reg->var_off.mask);
522}
523
524/* Uses signed min/max values to inform unsigned, and vice-versa */
525static void __reg_deduce_bounds(struct bpf_reg_state *reg)
526{
527 /* Learn sign from signed bounds.
528 * If we cannot cross the sign boundary, then signed and unsigned bounds
529 * are the same, so combine. This works even in the negative case, e.g.
530 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
531 */
532 if (reg->smin_value >= 0 || reg->smax_value < 0) {
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
536 reg->umax_value);
537 return;
538 }
539 /* Learn sign from unsigned bounds. Signed bounds cross the sign
540 * boundary, so we must be careful.
541 */
542 if ((s64)reg->umax_value >= 0) {
543 /* Positive. We can't learn anything from the smin, but smax
544 * is positive, hence safe.
545 */
546 reg->smin_value = reg->umin_value;
547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 reg->umax_value);
549 } else if ((s64)reg->umin_value < 0) {
550 /* Negative. We can't learn anything from the smax, but smin
551 * is negative, hence safe.
552 */
553 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
554 reg->umin_value);
555 reg->smax_value = reg->umax_value;
556 }
557}
558
559/* Attempts to improve var_off based on unsigned min/max information */
560static void __reg_bound_offset(struct bpf_reg_state *reg)
561{
562 reg->var_off = tnum_intersect(reg->var_off,
563 tnum_range(reg->umin_value,
564 reg->umax_value));
565}
566
567/* Reset the min/max bounds of a register */
568static void __mark_reg_unbounded(struct bpf_reg_state *reg)
569{
570 reg->smin_value = S64_MIN;
571 reg->smax_value = S64_MAX;
572 reg->umin_value = 0;
573 reg->umax_value = U64_MAX;
574}
575
f1174f77
EC
576/* Mark a register as having a completely unknown (scalar) value. */
577static void __mark_reg_unknown(struct bpf_reg_state *reg)
578{
579 reg->type = SCALAR_VALUE;
580 reg->id = 0;
581 reg->off = 0;
582 reg->var_off = tnum_unknown;
b03c9f9f 583 __mark_reg_unbounded(reg);
f1174f77
EC
584}
585
586static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
589 verbose("mark_reg_unknown(regs, %u)\n", regno);
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_unknown(regs + regno);
596}
597
598static void __mark_reg_not_init(struct bpf_reg_state *reg)
599{
600 __mark_reg_unknown(reg);
601 reg->type = NOT_INIT;
602}
603
604static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
605{
606 if (WARN_ON(regno >= MAX_BPF_REG)) {
607 verbose("mark_reg_not_init(regs, %u)\n", regno);
608 /* Something bad happened, let's kill all regs */
609 for (regno = 0; regno < MAX_BPF_REG; regno++)
610 __mark_reg_not_init(regs + regno);
611 return;
612 }
613 __mark_reg_not_init(regs + regno);
a9789ef9
DB
614}
615
58e2af8b 616static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
617{
618 int i;
619
a9789ef9
DB
620 for (i = 0; i < MAX_BPF_REG; i++)
621 mark_reg_not_init(regs, i);
17a52670
AS
622
623 /* frame pointer */
f1174f77
EC
624 regs[BPF_REG_FP].type = PTR_TO_STACK;
625 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
626
627 /* 1st arg to a function */
628 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 629 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
630}
631
17a52670
AS
632enum reg_arg_type {
633 SRC_OP, /* register is used as source operand */
634 DST_OP, /* register is used as destination operand */
635 DST_OP_NO_MARK /* same as above, check only, don't mark */
636};
637
58e2af8b 638static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
639 enum reg_arg_type t)
640{
641 if (regno >= MAX_BPF_REG) {
642 verbose("R%d is invalid\n", regno);
643 return -EINVAL;
644 }
645
646 if (t == SRC_OP) {
647 /* check whether register used as source operand can be read */
648 if (regs[regno].type == NOT_INIT) {
649 verbose("R%d !read_ok\n", regno);
650 return -EACCES;
651 }
652 } else {
653 /* check whether register used as dest operand can be written to */
654 if (regno == BPF_REG_FP) {
655 verbose("frame pointer is read only\n");
656 return -EACCES;
657 }
658 if (t == DST_OP)
f1174f77 659 mark_reg_unknown(regs, regno);
17a52670
AS
660 }
661 return 0;
662}
663
1be7f75d
AS
664static bool is_spillable_regtype(enum bpf_reg_type type)
665{
666 switch (type) {
667 case PTR_TO_MAP_VALUE:
668 case PTR_TO_MAP_VALUE_OR_NULL:
669 case PTR_TO_STACK:
670 case PTR_TO_CTX:
969bf05e
AS
671 case PTR_TO_PACKET:
672 case PTR_TO_PACKET_END:
1be7f75d
AS
673 case CONST_PTR_TO_MAP:
674 return true;
675 default:
676 return false;
677 }
678}
679
17a52670
AS
680/* check_stack_read/write functions track spill/fill of registers,
681 * stack boundary and alignment are checked in check_mem_access()
682 */
58e2af8b
JK
683static int check_stack_write(struct bpf_verifier_state *state, int off,
684 int size, int value_regno)
17a52670 685{
17a52670 686 int i;
9c399760
AS
687 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
688 * so it's aligned access and [off, off + size) are within stack limits
689 */
17a52670
AS
690
691 if (value_regno >= 0 &&
1be7f75d 692 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
693
694 /* register containing pointer is being spilled into stack */
9c399760 695 if (size != BPF_REG_SIZE) {
17a52670
AS
696 verbose("invalid size of register spill\n");
697 return -EACCES;
698 }
699
17a52670 700 /* save register state */
9c399760
AS
701 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
702 state->regs[value_regno];
17a52670 703
9c399760
AS
704 for (i = 0; i < BPF_REG_SIZE; i++)
705 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
706 } else {
17a52670 707 /* regular write of data into stack */
9c399760 708 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 709 (struct bpf_reg_state) {};
9c399760
AS
710
711 for (i = 0; i < size; i++)
712 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
713 }
714 return 0;
715}
716
58e2af8b 717static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
718 int value_regno)
719{
9c399760 720 u8 *slot_type;
17a52670 721 int i;
17a52670 722
9c399760 723 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 724
9c399760
AS
725 if (slot_type[0] == STACK_SPILL) {
726 if (size != BPF_REG_SIZE) {
17a52670
AS
727 verbose("invalid size of register spill\n");
728 return -EACCES;
729 }
9c399760
AS
730 for (i = 1; i < BPF_REG_SIZE; i++) {
731 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
732 verbose("corrupted spill memory\n");
733 return -EACCES;
734 }
735 }
736
737 if (value_regno >= 0)
738 /* restore register state from stack */
9c399760
AS
739 state->regs[value_regno] =
740 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
741 return 0;
742 } else {
743 for (i = 0; i < size; i++) {
9c399760 744 if (slot_type[i] != STACK_MISC) {
17a52670
AS
745 verbose("invalid read from stack off %d+%d size %d\n",
746 off, i, size);
747 return -EACCES;
748 }
749 }
750 if (value_regno >= 0)
751 /* have read misc data from the stack */
f1174f77 752 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
753 return 0;
754 }
755}
756
757/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 758static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
759 int size)
760{
761 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
762
5722569b 763 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
764 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
765 map->value_size, off, size);
766 return -EACCES;
767 }
768 return 0;
769}
770
f1174f77
EC
771/* check read/write into a map element with possible variable offset */
772static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
773 int off, int size)
774{
775 struct bpf_verifier_state *state = &env->cur_state;
776 struct bpf_reg_state *reg = &state->regs[regno];
777 int err;
778
f1174f77
EC
779 /* We may have adjusted the register to this map value, so we
780 * need to try adding each of min_value and max_value to off
781 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
782 */
783 if (log_level)
784 print_verifier_state(state);
f1174f77
EC
785 /* If the offset is variable, we will need to be stricter in state
786 * pruning from now on.
787 */
788 if (!tnum_is_const(reg->var_off))
789 env->varlen_map_value_access = true;
dbcfe5f7
GB
790 /* The minimum value is only important with signed
791 * comparisons where we can't assume the floor of a
792 * value is 0. If we are using signed variables for our
793 * index'es we need to make sure that whatever we use
794 * will have a set floor within our range.
795 */
b03c9f9f 796 if (reg->smin_value < 0) {
dbcfe5f7
GB
797 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
798 regno);
799 return -EACCES;
800 }
b03c9f9f 801 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 802 if (err) {
f1174f77 803 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
804 return err;
805 }
806
b03c9f9f
EC
807 /* If we haven't set a max value then we need to bail since we can't be
808 * sure we won't do bad things.
809 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 810 */
b03c9f9f 811 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
812 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
813 regno);
814 return -EACCES;
815 }
b03c9f9f 816 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
817 if (err)
818 verbose("R%d max value is outside of the array range\n", regno);
819 return err;
dbcfe5f7
GB
820}
821
969bf05e
AS
822#define MAX_PACKET_OFF 0xffff
823
58e2af8b 824static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
825 const struct bpf_call_arg_meta *meta,
826 enum bpf_access_type t)
4acf6c0b 827{
36bbef52 828 switch (env->prog->type) {
3a0af8fd
TG
829 case BPF_PROG_TYPE_LWT_IN:
830 case BPF_PROG_TYPE_LWT_OUT:
831 /* dst_input() and dst_output() can't write for now */
832 if (t == BPF_WRITE)
833 return false;
7e57fbb2 834 /* fallthrough */
36bbef52
DB
835 case BPF_PROG_TYPE_SCHED_CLS:
836 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 837 case BPF_PROG_TYPE_XDP:
3a0af8fd 838 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
839 if (meta)
840 return meta->pkt_access;
841
842 env->seen_direct_write = true;
4acf6c0b
BB
843 return true;
844 default:
845 return false;
846 }
847}
848
f1174f77
EC
849static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
850 int off, int size)
969bf05e 851{
58e2af8b
JK
852 struct bpf_reg_state *regs = env->cur_state.regs;
853 struct bpf_reg_state *reg = &regs[regno];
969bf05e 854
f1174f77 855 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
856 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
857 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
858 return -EACCES;
859 }
860 return 0;
861}
862
f1174f77
EC
863static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
864 int size)
865{
866 struct bpf_reg_state *regs = env->cur_state.regs;
867 struct bpf_reg_state *reg = &regs[regno];
868 int err;
869
870 /* We may have added a variable offset to the packet pointer; but any
871 * reg->range we have comes after that. We are only checking the fixed
872 * offset.
873 */
874
875 /* We don't allow negative numbers, because we aren't tracking enough
876 * detail to prove they're safe.
877 */
b03c9f9f 878 if (reg->smin_value < 0) {
f1174f77
EC
879 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
880 regno);
881 return -EACCES;
882 }
883 err = __check_packet_access(env, regno, off, size);
884 if (err) {
885 verbose("R%d offset is outside of the packet\n", regno);
886 return err;
887 }
888 return err;
889}
890
891/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 892static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 893 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 894{
f96da094
DB
895 struct bpf_insn_access_aux info = {
896 .reg_type = *reg_type,
897 };
31fd8581 898
13a27dfc
JK
899 /* for analyzer ctx accesses are already validated and converted */
900 if (env->analyzer_ops)
901 return 0;
902
17a52670 903 if (env->prog->aux->ops->is_valid_access &&
23994631 904 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
905 /* A non zero info.ctx_field_size indicates that this field is a
906 * candidate for later verifier transformation to load the whole
907 * field and then apply a mask when accessed with a narrower
908 * access than actual ctx access size. A zero info.ctx_field_size
909 * will only allow for whole field access and rejects any other
910 * type of narrower access.
31fd8581 911 */
f96da094 912 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 913 *reg_type = info.reg_type;
31fd8581 914
32bbe007
AS
915 /* remember the offset of last byte accessed in ctx */
916 if (env->prog->aux->max_ctx_offset < off + size)
917 env->prog->aux->max_ctx_offset = off + size;
17a52670 918 return 0;
32bbe007 919 }
17a52670
AS
920
921 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
922 return -EACCES;
923}
924
4cabc5b1
DB
925static bool __is_pointer_value(bool allow_ptr_leaks,
926 const struct bpf_reg_state *reg)
1be7f75d 927{
4cabc5b1 928 if (allow_ptr_leaks)
1be7f75d
AS
929 return false;
930
f1174f77 931 return reg->type != SCALAR_VALUE;
1be7f75d
AS
932}
933
4cabc5b1
DB
934static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
935{
936 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
937}
938
79adffcd 939static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 940 int off, int size, bool strict)
969bf05e 941{
f1174f77 942 struct tnum reg_off;
e07b98d9 943 int ip_align;
d1174416
DM
944
945 /* Byte size accesses are always allowed. */
946 if (!strict || size == 1)
947 return 0;
948
e4eda884
DM
949 /* For platforms that do not have a Kconfig enabling
950 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
951 * NET_IP_ALIGN is universally set to '2'. And on platforms
952 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
953 * to this code only in strict mode where we want to emulate
954 * the NET_IP_ALIGN==2 checking. Therefore use an
955 * unconditional IP align value of '2'.
e07b98d9 956 */
e4eda884 957 ip_align = 2;
f1174f77
EC
958
959 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
960 if (!tnum_is_aligned(reg_off, size)) {
961 char tn_buf[48];
962
963 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
964 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
965 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
966 return -EACCES;
967 }
79adffcd 968
969bf05e
AS
969 return 0;
970}
971
f1174f77
EC
972static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
973 const char *pointer_desc,
974 int off, int size, bool strict)
79adffcd 975{
f1174f77
EC
976 struct tnum reg_off;
977
978 /* Byte size accesses are always allowed. */
979 if (!strict || size == 1)
980 return 0;
981
982 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
983 if (!tnum_is_aligned(reg_off, size)) {
984 char tn_buf[48];
985
986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
987 verbose("misaligned %saccess off %s+%d+%d size %d\n",
988 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
989 return -EACCES;
990 }
991
969bf05e
AS
992 return 0;
993}
994
e07b98d9
DM
995static int check_ptr_alignment(struct bpf_verifier_env *env,
996 const struct bpf_reg_state *reg,
79adffcd
DB
997 int off, int size)
998{
e07b98d9 999 bool strict = env->strict_alignment;
f1174f77 1000 const char *pointer_desc = "";
d1174416 1001
79adffcd
DB
1002 switch (reg->type) {
1003 case PTR_TO_PACKET:
f1174f77 1004 /* special case, because of NET_IP_ALIGN */
d1174416 1005 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1006 case PTR_TO_MAP_VALUE:
1007 pointer_desc = "value ";
1008 break;
1009 case PTR_TO_CTX:
1010 pointer_desc = "context ";
1011 break;
1012 case PTR_TO_STACK:
1013 pointer_desc = "stack ";
1014 break;
79adffcd 1015 default:
f1174f77 1016 break;
79adffcd 1017 }
f1174f77 1018 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1019}
1020
17a52670
AS
1021/* check whether memory at (regno + off) is accessible for t = (read | write)
1022 * if t==write, value_regno is a register which value is stored into memory
1023 * if t==read, value_regno is a register which will receive the value from memory
1024 * if t==write && value_regno==-1, some unknown value is stored into memory
1025 * if t==read && value_regno==-1, don't care what we read from memory
1026 */
31fd8581 1027static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1028 int bpf_size, enum bpf_access_type t,
1029 int value_regno)
1030{
58e2af8b
JK
1031 struct bpf_verifier_state *state = &env->cur_state;
1032 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1033 int size, err = 0;
1034
1035 size = bpf_size_to_bytes(bpf_size);
1036 if (size < 0)
1037 return size;
1038
f1174f77 1039 /* alignment checks will add in reg->off themselves */
e07b98d9 1040 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1041 if (err)
1042 return err;
17a52670 1043
f1174f77
EC
1044 /* for access checks, reg->off is just part of off */
1045 off += reg->off;
1046
1047 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1048 if (t == BPF_WRITE && value_regno >= 0 &&
1049 is_pointer_value(env, value_regno)) {
1050 verbose("R%d leaks addr into map\n", value_regno);
1051 return -EACCES;
1052 }
48461135 1053
f1174f77 1054 err = check_map_access(env, regno, off, size);
17a52670 1055 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1056 mark_reg_unknown(state->regs, value_regno);
17a52670 1057
1a0dc1ac 1058 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1059 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1060
1be7f75d
AS
1061 if (t == BPF_WRITE && value_regno >= 0 &&
1062 is_pointer_value(env, value_regno)) {
1063 verbose("R%d leaks addr into ctx\n", value_regno);
1064 return -EACCES;
1065 }
f1174f77
EC
1066 /* ctx accesses must be at a fixed offset, so that we can
1067 * determine what type of data were returned.
1068 */
1069 if (!tnum_is_const(reg->var_off)) {
1070 char tn_buf[48];
1071
1072 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1073 verbose("variable ctx access var_off=%s off=%d size=%d",
1074 tn_buf, off, size);
1075 return -EACCES;
1076 }
1077 off += reg->var_off.value;
31fd8581 1078 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1079 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77
EC
1080 /* ctx access returns either a scalar, or a
1081 * PTR_TO_PACKET[_END]. In the latter case, we know
1082 * the offset is zero.
1083 */
1084 if (reg_type == SCALAR_VALUE)
1085 mark_reg_unknown(state->regs, value_regno);
1086 else
1087 mark_reg_known_zero(state->regs, value_regno);
1088 state->regs[value_regno].id = 0;
1089 state->regs[value_regno].off = 0;
1090 state->regs[value_regno].range = 0;
1955351d 1091 state->regs[value_regno].type = reg_type;
969bf05e 1092 }
17a52670 1093
f1174f77
EC
1094 } else if (reg->type == PTR_TO_STACK) {
1095 /* stack accesses must be at a fixed offset, so that we can
1096 * determine what type of data were returned.
1097 * See check_stack_read().
1098 */
1099 if (!tnum_is_const(reg->var_off)) {
1100 char tn_buf[48];
1101
1102 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1103 verbose("variable stack access var_off=%s off=%d size=%d",
1104 tn_buf, off, size);
1105 return -EACCES;
1106 }
1107 off += reg->var_off.value;
17a52670
AS
1108 if (off >= 0 || off < -MAX_BPF_STACK) {
1109 verbose("invalid stack off=%d size=%d\n", off, size);
1110 return -EACCES;
1111 }
8726679a
AS
1112
1113 if (env->prog->aux->stack_depth < -off)
1114 env->prog->aux->stack_depth = -off;
1115
1be7f75d
AS
1116 if (t == BPF_WRITE) {
1117 if (!env->allow_ptr_leaks &&
1118 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1119 size != BPF_REG_SIZE) {
1120 verbose("attempt to corrupt spilled pointer on stack\n");
1121 return -EACCES;
1122 }
17a52670 1123 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1124 } else {
17a52670 1125 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1126 }
f1174f77 1127 } else if (reg->type == PTR_TO_PACKET) {
3a0af8fd 1128 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1129 verbose("cannot write into packet\n");
1130 return -EACCES;
1131 }
4acf6c0b
BB
1132 if (t == BPF_WRITE && value_regno >= 0 &&
1133 is_pointer_value(env, value_regno)) {
1134 verbose("R%d leaks addr into packet\n", value_regno);
1135 return -EACCES;
1136 }
969bf05e
AS
1137 err = check_packet_access(env, regno, off, size);
1138 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1139 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1140 } else {
1141 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1142 regno, reg_type_str[reg->type]);
17a52670
AS
1143 return -EACCES;
1144 }
969bf05e 1145
f1174f77
EC
1146 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1147 state->regs[value_regno].type == SCALAR_VALUE) {
1148 /* b/h/w load zero-extends, mark upper bits as known 0 */
1149 state->regs[value_regno].var_off = tnum_cast(
1150 state->regs[value_regno].var_off, size);
b03c9f9f 1151 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1152 }
17a52670
AS
1153 return err;
1154}
1155
31fd8581 1156static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1157{
58e2af8b 1158 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
1159 int err;
1160
1161 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1162 insn->imm != 0) {
1163 verbose("BPF_XADD uses reserved fields\n");
1164 return -EINVAL;
1165 }
1166
1167 /* check src1 operand */
1168 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1169 if (err)
1170 return err;
1171
1172 /* check src2 operand */
1173 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1174 if (err)
1175 return err;
1176
6bdf6abc
DB
1177 if (is_pointer_value(env, insn->src_reg)) {
1178 verbose("R%d leaks addr into mem\n", insn->src_reg);
1179 return -EACCES;
1180 }
1181
17a52670 1182 /* check whether atomic_add can read the memory */
31fd8581 1183 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1184 BPF_SIZE(insn->code), BPF_READ, -1);
1185 if (err)
1186 return err;
1187
1188 /* check whether atomic_add can write into the same memory */
31fd8581 1189 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1190 BPF_SIZE(insn->code), BPF_WRITE, -1);
1191}
1192
f1174f77
EC
1193/* Does this register contain a constant zero? */
1194static bool register_is_null(struct bpf_reg_state reg)
1195{
1196 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1197}
1198
17a52670
AS
1199/* when register 'regno' is passed into function that will read 'access_size'
1200 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1201 * and all elements of stack are initialized.
1202 * Unlike most pointer bounds-checking functions, this one doesn't take an
1203 * 'off' argument, so it has to add in reg->off itself.
17a52670 1204 */
58e2af8b 1205static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1206 int access_size, bool zero_size_allowed,
1207 struct bpf_call_arg_meta *meta)
17a52670 1208{
58e2af8b
JK
1209 struct bpf_verifier_state *state = &env->cur_state;
1210 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1211 int off, i;
1212
8e2fe1d9 1213 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1214 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1215 if (zero_size_allowed && access_size == 0 &&
f1174f77 1216 register_is_null(regs[regno]))
8e2fe1d9
DB
1217 return 0;
1218
1219 verbose("R%d type=%s expected=%s\n", regno,
1220 reg_type_str[regs[regno].type],
1221 reg_type_str[PTR_TO_STACK]);
17a52670 1222 return -EACCES;
8e2fe1d9 1223 }
17a52670 1224
f1174f77
EC
1225 /* Only allow fixed-offset stack reads */
1226 if (!tnum_is_const(regs[regno].var_off)) {
1227 char tn_buf[48];
1228
1229 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1230 verbose("invalid variable stack read R%d var_off=%s\n",
1231 regno, tn_buf);
1232 }
1233 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1234 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1235 access_size <= 0) {
1236 verbose("invalid stack type R%d off=%d access_size=%d\n",
1237 regno, off, access_size);
1238 return -EACCES;
1239 }
1240
8726679a
AS
1241 if (env->prog->aux->stack_depth < -off)
1242 env->prog->aux->stack_depth = -off;
1243
435faee1
DB
1244 if (meta && meta->raw_mode) {
1245 meta->access_size = access_size;
1246 meta->regno = regno;
1247 return 0;
1248 }
1249
17a52670 1250 for (i = 0; i < access_size; i++) {
9c399760 1251 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1252 verbose("invalid indirect read from stack off %d+%d size %d\n",
1253 off, i, access_size);
1254 return -EACCES;
1255 }
1256 }
1257 return 0;
1258}
1259
06c1c049
GB
1260static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1261 int access_size, bool zero_size_allowed,
1262 struct bpf_call_arg_meta *meta)
1263{
f1174f77 1264 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1265
f1174f77 1266 switch (reg->type) {
06c1c049 1267 case PTR_TO_PACKET:
f1174f77 1268 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1269 case PTR_TO_MAP_VALUE:
f1174f77
EC
1270 return check_map_access(env, regno, reg->off, access_size);
1271 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1272 return check_stack_boundary(env, regno, access_size,
1273 zero_size_allowed, meta);
1274 }
1275}
1276
58e2af8b 1277static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1278 enum bpf_arg_type arg_type,
1279 struct bpf_call_arg_meta *meta)
17a52670 1280{
58e2af8b 1281 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1282 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1283 int err = 0;
1284
80f1d68c 1285 if (arg_type == ARG_DONTCARE)
17a52670
AS
1286 return 0;
1287
6841de8b 1288 if (type == NOT_INIT) {
17a52670
AS
1289 verbose("R%d !read_ok\n", regno);
1290 return -EACCES;
1291 }
1292
1be7f75d
AS
1293 if (arg_type == ARG_ANYTHING) {
1294 if (is_pointer_value(env, regno)) {
1295 verbose("R%d leaks addr into helper function\n", regno);
1296 return -EACCES;
1297 }
80f1d68c 1298 return 0;
1be7f75d 1299 }
80f1d68c 1300
3a0af8fd
TG
1301 if (type == PTR_TO_PACKET &&
1302 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1303 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1304 return -EACCES;
1305 }
1306
8e2fe1d9 1307 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1308 arg_type == ARG_PTR_TO_MAP_VALUE) {
1309 expected_type = PTR_TO_STACK;
6841de8b
AS
1310 if (type != PTR_TO_PACKET && type != expected_type)
1311 goto err_type;
39f19ebb
AS
1312 } else if (arg_type == ARG_CONST_SIZE ||
1313 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1314 expected_type = SCALAR_VALUE;
1315 if (type != expected_type)
6841de8b 1316 goto err_type;
17a52670
AS
1317 } else if (arg_type == ARG_CONST_MAP_PTR) {
1318 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1319 if (type != expected_type)
1320 goto err_type;
608cd71a
AS
1321 } else if (arg_type == ARG_PTR_TO_CTX) {
1322 expected_type = PTR_TO_CTX;
6841de8b
AS
1323 if (type != expected_type)
1324 goto err_type;
39f19ebb
AS
1325 } else if (arg_type == ARG_PTR_TO_MEM ||
1326 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1327 expected_type = PTR_TO_STACK;
1328 /* One exception here. In case function allows for NULL to be
f1174f77 1329 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1330 * happens during stack boundary checking.
1331 */
f1174f77 1332 if (register_is_null(*reg))
6841de8b 1333 /* final test in check_stack_boundary() */;
5722569b 1334 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
f1174f77 1335 type != expected_type)
6841de8b 1336 goto err_type;
39f19ebb 1337 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1338 } else {
1339 verbose("unsupported arg_type %d\n", arg_type);
1340 return -EFAULT;
1341 }
1342
17a52670
AS
1343 if (arg_type == ARG_CONST_MAP_PTR) {
1344 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1345 meta->map_ptr = reg->map_ptr;
17a52670
AS
1346 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1347 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1348 * check that [key, key + map->key_size) are within
1349 * stack limits and initialized
1350 */
33ff9823 1351 if (!meta->map_ptr) {
17a52670
AS
1352 /* in function declaration map_ptr must come before
1353 * map_key, so that it's verified and known before
1354 * we have to check map_key here. Otherwise it means
1355 * that kernel subsystem misconfigured verifier
1356 */
1357 verbose("invalid map_ptr to access map->key\n");
1358 return -EACCES;
1359 }
6841de8b 1360 if (type == PTR_TO_PACKET)
f1174f77 1361 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1362 meta->map_ptr->key_size);
1363 else
1364 err = check_stack_boundary(env, regno,
1365 meta->map_ptr->key_size,
1366 false, NULL);
17a52670
AS
1367 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1368 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1369 * check [value, value + map->value_size) validity
1370 */
33ff9823 1371 if (!meta->map_ptr) {
17a52670
AS
1372 /* kernel subsystem misconfigured verifier */
1373 verbose("invalid map_ptr to access map->value\n");
1374 return -EACCES;
1375 }
6841de8b 1376 if (type == PTR_TO_PACKET)
f1174f77 1377 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1378 meta->map_ptr->value_size);
1379 else
1380 err = check_stack_boundary(env, regno,
1381 meta->map_ptr->value_size,
1382 false, NULL);
39f19ebb
AS
1383 } else if (arg_type == ARG_CONST_SIZE ||
1384 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1385 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1386
17a52670
AS
1387 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1388 * from stack pointer 'buf'. Check it
1389 * note: regno == len, regno - 1 == buf
1390 */
1391 if (regno == 0) {
1392 /* kernel subsystem misconfigured verifier */
39f19ebb 1393 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1394 return -EACCES;
1395 }
06c1c049 1396
f1174f77
EC
1397 /* The register is SCALAR_VALUE; the access check
1398 * happens using its boundaries.
06c1c049 1399 */
f1174f77
EC
1400
1401 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1402 /* For unprivileged variable accesses, disable raw
1403 * mode so that the program is required to
1404 * initialize all the memory that the helper could
1405 * just partially fill up.
1406 */
1407 meta = NULL;
1408
b03c9f9f 1409 if (reg->smin_value < 0) {
f1174f77
EC
1410 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1411 regno);
1412 return -EACCES;
1413 }
06c1c049 1414
b03c9f9f 1415 if (reg->umin_value == 0) {
f1174f77
EC
1416 err = check_helper_mem_access(env, regno - 1, 0,
1417 zero_size_allowed,
1418 meta);
06c1c049
GB
1419 if (err)
1420 return err;
06c1c049 1421 }
f1174f77 1422
b03c9f9f 1423 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1424 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1425 regno);
1426 return -EACCES;
1427 }
1428 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1429 reg->umax_value,
f1174f77 1430 zero_size_allowed, meta);
17a52670
AS
1431 }
1432
1433 return err;
6841de8b
AS
1434err_type:
1435 verbose("R%d type=%s expected=%s\n", regno,
1436 reg_type_str[type], reg_type_str[expected_type]);
1437 return -EACCES;
17a52670
AS
1438}
1439
35578d79
KX
1440static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1441{
35578d79
KX
1442 if (!map)
1443 return 0;
1444
6aff67c8
AS
1445 /* We need a two way check, first is from map perspective ... */
1446 switch (map->map_type) {
1447 case BPF_MAP_TYPE_PROG_ARRAY:
1448 if (func_id != BPF_FUNC_tail_call)
1449 goto error;
1450 break;
1451 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1452 if (func_id != BPF_FUNC_perf_event_read &&
1453 func_id != BPF_FUNC_perf_event_output)
1454 goto error;
1455 break;
1456 case BPF_MAP_TYPE_STACK_TRACE:
1457 if (func_id != BPF_FUNC_get_stackid)
1458 goto error;
1459 break;
4ed8ec52 1460 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1461 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1462 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1463 goto error;
1464 break;
546ac1ff
JF
1465 /* devmap returns a pointer to a live net_device ifindex that we cannot
1466 * allow to be modified from bpf side. So do not allow lookup elements
1467 * for now.
1468 */
1469 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1470 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1471 goto error;
1472 break;
56f668df 1473 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1474 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1475 if (func_id != BPF_FUNC_map_lookup_elem)
1476 goto error;
6aff67c8
AS
1477 default:
1478 break;
1479 }
1480
1481 /* ... and second from the function itself. */
1482 switch (func_id) {
1483 case BPF_FUNC_tail_call:
1484 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1485 goto error;
1486 break;
1487 case BPF_FUNC_perf_event_read:
1488 case BPF_FUNC_perf_event_output:
1489 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1490 goto error;
1491 break;
1492 case BPF_FUNC_get_stackid:
1493 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1494 goto error;
1495 break;
60d20f91 1496 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1497 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1498 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1499 goto error;
1500 break;
97f91a7c
JF
1501 case BPF_FUNC_redirect_map:
1502 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1503 goto error;
1504 break;
6aff67c8
AS
1505 default:
1506 break;
35578d79
KX
1507 }
1508
1509 return 0;
6aff67c8 1510error:
ebb676da
TG
1511 verbose("cannot pass map_type %d into func %s#%d\n",
1512 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1513 return -EINVAL;
35578d79
KX
1514}
1515
435faee1
DB
1516static int check_raw_mode(const struct bpf_func_proto *fn)
1517{
1518 int count = 0;
1519
39f19ebb 1520 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1521 count++;
39f19ebb 1522 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1523 count++;
39f19ebb 1524 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1525 count++;
39f19ebb 1526 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1527 count++;
39f19ebb 1528 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1529 count++;
1530
1531 return count > 1 ? -EINVAL : 0;
1532}
1533
f1174f77
EC
1534/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1535 * so turn them into unknown SCALAR_VALUE.
1536 */
58e2af8b 1537static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1538{
58e2af8b
JK
1539 struct bpf_verifier_state *state = &env->cur_state;
1540 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1541 int i;
1542
1543 for (i = 0; i < MAX_BPF_REG; i++)
1544 if (regs[i].type == PTR_TO_PACKET ||
1545 regs[i].type == PTR_TO_PACKET_END)
f1174f77 1546 mark_reg_unknown(regs, i);
969bf05e
AS
1547
1548 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1549 if (state->stack_slot_type[i] != STACK_SPILL)
1550 continue;
1551 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1552 if (reg->type != PTR_TO_PACKET &&
1553 reg->type != PTR_TO_PACKET_END)
1554 continue;
f1174f77 1555 __mark_reg_unknown(reg);
969bf05e
AS
1556 }
1557}
1558
81ed18ab 1559static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1560{
58e2af8b 1561 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1562 const struct bpf_func_proto *fn = NULL;
58e2af8b 1563 struct bpf_reg_state *regs = state->regs;
33ff9823 1564 struct bpf_call_arg_meta meta;
969bf05e 1565 bool changes_data;
17a52670
AS
1566 int i, err;
1567
1568 /* find function prototype */
1569 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1570 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1571 return -EINVAL;
1572 }
1573
1574 if (env->prog->aux->ops->get_func_proto)
1575 fn = env->prog->aux->ops->get_func_proto(func_id);
1576
1577 if (!fn) {
ebb676da 1578 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1579 return -EINVAL;
1580 }
1581
1582 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1583 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1584 verbose("cannot call GPL only function from proprietary program\n");
1585 return -EINVAL;
1586 }
1587
17bedab2 1588 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1589
33ff9823 1590 memset(&meta, 0, sizeof(meta));
36bbef52 1591 meta.pkt_access = fn->pkt_access;
33ff9823 1592
435faee1
DB
1593 /* We only support one arg being in raw mode at the moment, which
1594 * is sufficient for the helper functions we have right now.
1595 */
1596 err = check_raw_mode(fn);
1597 if (err) {
ebb676da
TG
1598 verbose("kernel subsystem misconfigured func %s#%d\n",
1599 func_id_name(func_id), func_id);
435faee1
DB
1600 return err;
1601 }
1602
17a52670 1603 /* check args */
33ff9823 1604 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1605 if (err)
1606 return err;
33ff9823 1607 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1608 if (err)
1609 return err;
33ff9823 1610 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1611 if (err)
1612 return err;
33ff9823 1613 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1614 if (err)
1615 return err;
33ff9823 1616 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1617 if (err)
1618 return err;
1619
435faee1
DB
1620 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1621 * is inferred from register state.
1622 */
1623 for (i = 0; i < meta.access_size; i++) {
31fd8581 1624 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1625 if (err)
1626 return err;
1627 }
1628
17a52670 1629 /* reset caller saved regs */
a9789ef9
DB
1630 for (i = 0; i < CALLER_SAVED_REGS; i++)
1631 mark_reg_not_init(regs, caller_saved[i]);
17a52670
AS
1632
1633 /* update return register */
1634 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1635 /* sets type to SCALAR_VALUE */
1636 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1637 } else if (fn->ret_type == RET_VOID) {
1638 regs[BPF_REG_0].type = NOT_INIT;
1639 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1640 struct bpf_insn_aux_data *insn_aux;
1641
17a52670 1642 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1643 /* There is no offset yet applied, variable or fixed */
1644 mark_reg_known_zero(regs, BPF_REG_0);
1645 regs[BPF_REG_0].off = 0;
17a52670
AS
1646 /* remember map_ptr, so that check_map_access()
1647 * can check 'value_size' boundary of memory access
1648 * to map element returned from bpf_map_lookup_elem()
1649 */
33ff9823 1650 if (meta.map_ptr == NULL) {
17a52670
AS
1651 verbose("kernel subsystem misconfigured verifier\n");
1652 return -EINVAL;
1653 }
33ff9823 1654 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1655 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1656 insn_aux = &env->insn_aux_data[insn_idx];
1657 if (!insn_aux->map_ptr)
1658 insn_aux->map_ptr = meta.map_ptr;
1659 else if (insn_aux->map_ptr != meta.map_ptr)
1660 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1661 } else {
ebb676da
TG
1662 verbose("unknown return type %d of func %s#%d\n",
1663 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1664 return -EINVAL;
1665 }
04fd61ab 1666
33ff9823 1667 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1668 if (err)
1669 return err;
04fd61ab 1670
969bf05e
AS
1671 if (changes_data)
1672 clear_all_pkt_pointers(env);
1673 return 0;
1674}
1675
f1174f77
EC
1676static void coerce_reg_to_32(struct bpf_reg_state *reg)
1677{
f1174f77
EC
1678 /* clear high 32 bits */
1679 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1680 /* Update bounds */
1681 __update_reg_bounds(reg);
1682}
1683
1684static bool signed_add_overflows(s64 a, s64 b)
1685{
1686 /* Do the add in u64, where overflow is well-defined */
1687 s64 res = (s64)((u64)a + (u64)b);
1688
1689 if (b < 0)
1690 return res > a;
1691 return res < a;
1692}
1693
1694static bool signed_sub_overflows(s64 a, s64 b)
1695{
1696 /* Do the sub in u64, where overflow is well-defined */
1697 s64 res = (s64)((u64)a - (u64)b);
1698
1699 if (b < 0)
1700 return res < a;
1701 return res > a;
969bf05e
AS
1702}
1703
f1174f77 1704/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1705 * Caller should also handle BPF_MOV case separately.
1706 * If we return -EACCES, caller may want to try again treating pointer as a
1707 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1708 */
1709static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1710 struct bpf_insn *insn,
1711 const struct bpf_reg_state *ptr_reg,
1712 const struct bpf_reg_state *off_reg)
969bf05e 1713{
f1174f77
EC
1714 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1715 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1716 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1717 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1718 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1719 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1720 u8 opcode = BPF_OP(insn->code);
f1174f77 1721 u32 dst = insn->dst_reg;
969bf05e 1722
f1174f77 1723 dst_reg = &regs[dst];
969bf05e 1724
b03c9f9f 1725 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1726 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1727 verbose("verifier internal error: known but bad sbounds\n");
1728 return -EINVAL;
1729 }
1730 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1731 print_verifier_state(&env->cur_state);
1732 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1733 return -EINVAL;
1734 }
1735
1736 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1737 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1738 if (!env->allow_ptr_leaks)
1739 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1740 dst);
1741 return -EACCES;
969bf05e
AS
1742 }
1743
f1174f77
EC
1744 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1745 if (!env->allow_ptr_leaks)
1746 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1747 dst);
1748 return -EACCES;
1749 }
1750 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1751 if (!env->allow_ptr_leaks)
1752 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1753 dst);
1754 return -EACCES;
1755 }
1756 if (ptr_reg->type == PTR_TO_PACKET_END) {
1757 if (!env->allow_ptr_leaks)
1758 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1759 dst);
1760 return -EACCES;
1761 }
1762
1763 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1764 * The id may be overwritten later if we create a new variable offset.
969bf05e 1765 */
f1174f77
EC
1766 dst_reg->type = ptr_reg->type;
1767 dst_reg->id = ptr_reg->id;
969bf05e 1768
f1174f77
EC
1769 switch (opcode) {
1770 case BPF_ADD:
1771 /* We can take a fixed offset as long as it doesn't overflow
1772 * the s32 'off' field
969bf05e 1773 */
b03c9f9f
EC
1774 if (known && (ptr_reg->off + smin_val ==
1775 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1776 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1777 dst_reg->smin_value = smin_ptr;
1778 dst_reg->smax_value = smax_ptr;
1779 dst_reg->umin_value = umin_ptr;
1780 dst_reg->umax_value = umax_ptr;
f1174f77 1781 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1782 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1783 dst_reg->range = ptr_reg->range;
1784 break;
1785 }
f1174f77
EC
1786 /* A new variable offset is created. Note that off_reg->off
1787 * == 0, since it's a scalar.
1788 * dst_reg gets the pointer type and since some positive
1789 * integer value was added to the pointer, give it a new 'id'
1790 * if it's a PTR_TO_PACKET.
1791 * this creates a new 'base' pointer, off_reg (variable) gets
1792 * added into the variable offset, and we copy the fixed offset
1793 * from ptr_reg.
969bf05e 1794 */
b03c9f9f
EC
1795 if (signed_add_overflows(smin_ptr, smin_val) ||
1796 signed_add_overflows(smax_ptr, smax_val)) {
1797 dst_reg->smin_value = S64_MIN;
1798 dst_reg->smax_value = S64_MAX;
1799 } else {
1800 dst_reg->smin_value = smin_ptr + smin_val;
1801 dst_reg->smax_value = smax_ptr + smax_val;
1802 }
1803 if (umin_ptr + umin_val < umin_ptr ||
1804 umax_ptr + umax_val < umax_ptr) {
1805 dst_reg->umin_value = 0;
1806 dst_reg->umax_value = U64_MAX;
1807 } else {
1808 dst_reg->umin_value = umin_ptr + umin_val;
1809 dst_reg->umax_value = umax_ptr + umax_val;
1810 }
f1174f77
EC
1811 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1812 dst_reg->off = ptr_reg->off;
1813 if (ptr_reg->type == PTR_TO_PACKET) {
1814 dst_reg->id = ++env->id_gen;
1815 /* something was added to pkt_ptr, set range to zero */
1816 dst_reg->range = 0;
1817 }
1818 break;
1819 case BPF_SUB:
1820 if (dst_reg == off_reg) {
1821 /* scalar -= pointer. Creates an unknown scalar */
1822 if (!env->allow_ptr_leaks)
1823 verbose("R%d tried to subtract pointer from scalar\n",
1824 dst);
1825 return -EACCES;
1826 }
1827 /* We don't allow subtraction from FP, because (according to
1828 * test_verifier.c test "invalid fp arithmetic", JITs might not
1829 * be able to deal with it.
969bf05e 1830 */
f1174f77
EC
1831 if (ptr_reg->type == PTR_TO_STACK) {
1832 if (!env->allow_ptr_leaks)
1833 verbose("R%d subtraction from stack pointer prohibited\n",
1834 dst);
1835 return -EACCES;
1836 }
b03c9f9f
EC
1837 if (known && (ptr_reg->off - smin_val ==
1838 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1839 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1840 dst_reg->smin_value = smin_ptr;
1841 dst_reg->smax_value = smax_ptr;
1842 dst_reg->umin_value = umin_ptr;
1843 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1844 dst_reg->var_off = ptr_reg->var_off;
1845 dst_reg->id = ptr_reg->id;
b03c9f9f 1846 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1847 dst_reg->range = ptr_reg->range;
1848 break;
1849 }
f1174f77
EC
1850 /* A new variable offset is created. If the subtrahend is known
1851 * nonnegative, then any reg->range we had before is still good.
969bf05e 1852 */
b03c9f9f
EC
1853 if (signed_sub_overflows(smin_ptr, smax_val) ||
1854 signed_sub_overflows(smax_ptr, smin_val)) {
1855 /* Overflow possible, we know nothing */
1856 dst_reg->smin_value = S64_MIN;
1857 dst_reg->smax_value = S64_MAX;
1858 } else {
1859 dst_reg->smin_value = smin_ptr - smax_val;
1860 dst_reg->smax_value = smax_ptr - smin_val;
1861 }
1862 if (umin_ptr < umax_val) {
1863 /* Overflow possible, we know nothing */
1864 dst_reg->umin_value = 0;
1865 dst_reg->umax_value = U64_MAX;
1866 } else {
1867 /* Cannot overflow (as long as bounds are consistent) */
1868 dst_reg->umin_value = umin_ptr - umax_val;
1869 dst_reg->umax_value = umax_ptr - umin_val;
1870 }
f1174f77
EC
1871 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1872 dst_reg->off = ptr_reg->off;
1873 if (ptr_reg->type == PTR_TO_PACKET) {
1874 dst_reg->id = ++env->id_gen;
1875 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1876 if (smin_val < 0)
f1174f77 1877 dst_reg->range = 0;
43188702 1878 }
f1174f77
EC
1879 break;
1880 case BPF_AND:
1881 case BPF_OR:
1882 case BPF_XOR:
1883 /* bitwise ops on pointers are troublesome, prohibit for now.
1884 * (However, in principle we could allow some cases, e.g.
1885 * ptr &= ~3 which would reduce min_value by 3.)
1886 */
1887 if (!env->allow_ptr_leaks)
1888 verbose("R%d bitwise operator %s on pointer prohibited\n",
1889 dst, bpf_alu_string[opcode >> 4]);
1890 return -EACCES;
1891 default:
1892 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1893 if (!env->allow_ptr_leaks)
1894 verbose("R%d pointer arithmetic with %s operator prohibited\n",
1895 dst, bpf_alu_string[opcode >> 4]);
1896 return -EACCES;
43188702
JF
1897 }
1898
b03c9f9f
EC
1899 __update_reg_bounds(dst_reg);
1900 __reg_deduce_bounds(dst_reg);
1901 __reg_bound_offset(dst_reg);
43188702
JF
1902 return 0;
1903}
1904
f1174f77
EC
1905static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1906 struct bpf_insn *insn,
1907 struct bpf_reg_state *dst_reg,
1908 struct bpf_reg_state src_reg)
969bf05e 1909{
58e2af8b 1910 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1911 u8 opcode = BPF_OP(insn->code);
f1174f77 1912 bool src_known, dst_known;
b03c9f9f
EC
1913 s64 smin_val, smax_val;
1914 u64 umin_val, umax_val;
48461135 1915
f1174f77
EC
1916 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1917 /* 32-bit ALU ops are (32,32)->64 */
1918 coerce_reg_to_32(dst_reg);
1919 coerce_reg_to_32(&src_reg);
9305706c 1920 }
b03c9f9f
EC
1921 smin_val = src_reg.smin_value;
1922 smax_val = src_reg.smax_value;
1923 umin_val = src_reg.umin_value;
1924 umax_val = src_reg.umax_value;
f1174f77
EC
1925 src_known = tnum_is_const(src_reg.var_off);
1926 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1927
48461135
JB
1928 switch (opcode) {
1929 case BPF_ADD:
b03c9f9f
EC
1930 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1931 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1932 dst_reg->smin_value = S64_MIN;
1933 dst_reg->smax_value = S64_MAX;
1934 } else {
1935 dst_reg->smin_value += smin_val;
1936 dst_reg->smax_value += smax_val;
1937 }
1938 if (dst_reg->umin_value + umin_val < umin_val ||
1939 dst_reg->umax_value + umax_val < umax_val) {
1940 dst_reg->umin_value = 0;
1941 dst_reg->umax_value = U64_MAX;
1942 } else {
1943 dst_reg->umin_value += umin_val;
1944 dst_reg->umax_value += umax_val;
1945 }
f1174f77 1946 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
1947 break;
1948 case BPF_SUB:
b03c9f9f
EC
1949 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1950 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1951 /* Overflow possible, we know nothing */
1952 dst_reg->smin_value = S64_MIN;
1953 dst_reg->smax_value = S64_MAX;
1954 } else {
1955 dst_reg->smin_value -= smax_val;
1956 dst_reg->smax_value -= smin_val;
1957 }
1958 if (dst_reg->umin_value < umax_val) {
1959 /* Overflow possible, we know nothing */
1960 dst_reg->umin_value = 0;
1961 dst_reg->umax_value = U64_MAX;
1962 } else {
1963 /* Cannot overflow (as long as bounds are consistent) */
1964 dst_reg->umin_value -= umax_val;
1965 dst_reg->umax_value -= umin_val;
1966 }
f1174f77 1967 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
1968 break;
1969 case BPF_MUL:
b03c9f9f
EC
1970 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1971 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 1972 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
1973 __mark_reg_unbounded(dst_reg);
1974 __update_reg_bounds(dst_reg);
f1174f77
EC
1975 break;
1976 }
b03c9f9f
EC
1977 /* Both values are positive, so we can work with unsigned and
1978 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 1979 */
b03c9f9f
EC
1980 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1981 /* Potential overflow, we know nothing */
1982 __mark_reg_unbounded(dst_reg);
1983 /* (except what we can learn from the var_off) */
1984 __update_reg_bounds(dst_reg);
1985 break;
1986 }
1987 dst_reg->umin_value *= umin_val;
1988 dst_reg->umax_value *= umax_val;
1989 if (dst_reg->umax_value > S64_MAX) {
1990 /* Overflow possible, we know nothing */
1991 dst_reg->smin_value = S64_MIN;
1992 dst_reg->smax_value = S64_MAX;
1993 } else {
1994 dst_reg->smin_value = dst_reg->umin_value;
1995 dst_reg->smax_value = dst_reg->umax_value;
1996 }
48461135
JB
1997 break;
1998 case BPF_AND:
f1174f77 1999 if (src_known && dst_known) {
b03c9f9f
EC
2000 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2001 src_reg.var_off.value);
f1174f77
EC
2002 break;
2003 }
b03c9f9f
EC
2004 /* We get our minimum from the var_off, since that's inherently
2005 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2006 */
f1174f77 2007 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2008 dst_reg->umin_value = dst_reg->var_off.value;
2009 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2010 if (dst_reg->smin_value < 0 || smin_val < 0) {
2011 /* Lose signed bounds when ANDing negative numbers,
2012 * ain't nobody got time for that.
2013 */
2014 dst_reg->smin_value = S64_MIN;
2015 dst_reg->smax_value = S64_MAX;
2016 } else {
2017 /* ANDing two positives gives a positive, so safe to
2018 * cast result into s64.
2019 */
2020 dst_reg->smin_value = dst_reg->umin_value;
2021 dst_reg->smax_value = dst_reg->umax_value;
2022 }
2023 /* We may learn something more from the var_off */
2024 __update_reg_bounds(dst_reg);
f1174f77
EC
2025 break;
2026 case BPF_OR:
2027 if (src_known && dst_known) {
b03c9f9f
EC
2028 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2029 src_reg.var_off.value);
f1174f77
EC
2030 break;
2031 }
b03c9f9f
EC
2032 /* We get our maximum from the var_off, and our minimum is the
2033 * maximum of the operands' minima
f1174f77
EC
2034 */
2035 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2036 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2037 dst_reg->umax_value = dst_reg->var_off.value |
2038 dst_reg->var_off.mask;
2039 if (dst_reg->smin_value < 0 || smin_val < 0) {
2040 /* Lose signed bounds when ORing negative numbers,
2041 * ain't nobody got time for that.
2042 */
2043 dst_reg->smin_value = S64_MIN;
2044 dst_reg->smax_value = S64_MAX;
f1174f77 2045 } else {
b03c9f9f
EC
2046 /* ORing two positives gives a positive, so safe to
2047 * cast result into s64.
2048 */
2049 dst_reg->smin_value = dst_reg->umin_value;
2050 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2051 }
b03c9f9f
EC
2052 /* We may learn something more from the var_off */
2053 __update_reg_bounds(dst_reg);
48461135
JB
2054 break;
2055 case BPF_LSH:
b03c9f9f
EC
2056 if (umax_val > 63) {
2057 /* Shifts greater than 63 are undefined. This includes
2058 * shifts by a negative number.
2059 */
f1174f77
EC
2060 mark_reg_unknown(regs, insn->dst_reg);
2061 break;
2062 }
b03c9f9f
EC
2063 /* We lose all sign bit information (except what we can pick
2064 * up from var_off)
48461135 2065 */
b03c9f9f
EC
2066 dst_reg->smin_value = S64_MIN;
2067 dst_reg->smax_value = S64_MAX;
2068 /* If we might shift our top bit out, then we know nothing */
2069 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2070 dst_reg->umin_value = 0;
2071 dst_reg->umax_value = U64_MAX;
d1174416 2072 } else {
b03c9f9f
EC
2073 dst_reg->umin_value <<= umin_val;
2074 dst_reg->umax_value <<= umax_val;
d1174416 2075 }
b03c9f9f
EC
2076 if (src_known)
2077 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2078 else
2079 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2080 /* We may learn something more from the var_off */
2081 __update_reg_bounds(dst_reg);
48461135
JB
2082 break;
2083 case BPF_RSH:
b03c9f9f
EC
2084 if (umax_val > 63) {
2085 /* Shifts greater than 63 are undefined. This includes
2086 * shifts by a negative number.
2087 */
f1174f77
EC
2088 mark_reg_unknown(regs, insn->dst_reg);
2089 break;
2090 }
2091 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2092 if (dst_reg->smin_value < 0) {
2093 if (umin_val) {
f1174f77 2094 /* Sign bit will be cleared */
b03c9f9f
EC
2095 dst_reg->smin_value = 0;
2096 } else {
2097 /* Lost sign bit information */
2098 dst_reg->smin_value = S64_MIN;
2099 dst_reg->smax_value = S64_MAX;
2100 }
d1174416 2101 } else {
b03c9f9f
EC
2102 dst_reg->smin_value =
2103 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2104 }
f1174f77 2105 if (src_known)
b03c9f9f
EC
2106 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2107 umin_val);
f1174f77 2108 else
b03c9f9f
EC
2109 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2110 dst_reg->umin_value >>= umax_val;
2111 dst_reg->umax_value >>= umin_val;
2112 /* We may learn something more from the var_off */
2113 __update_reg_bounds(dst_reg);
48461135
JB
2114 break;
2115 default:
f1174f77 2116 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2117 break;
2118 }
2119
b03c9f9f
EC
2120 __reg_deduce_bounds(dst_reg);
2121 __reg_bound_offset(dst_reg);
f1174f77
EC
2122 return 0;
2123}
2124
2125/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2126 * and var_off.
2127 */
2128static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2129 struct bpf_insn *insn)
2130{
2131 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2132 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2133 u8 opcode = BPF_OP(insn->code);
2134 int rc;
2135
2136 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2137 src_reg = NULL;
2138 if (dst_reg->type != SCALAR_VALUE)
2139 ptr_reg = dst_reg;
2140 if (BPF_SRC(insn->code) == BPF_X) {
2141 src_reg = &regs[insn->src_reg];
f1174f77
EC
2142 if (src_reg->type != SCALAR_VALUE) {
2143 if (dst_reg->type != SCALAR_VALUE) {
2144 /* Combining two pointers by any ALU op yields
2145 * an arbitrary scalar.
2146 */
2147 if (!env->allow_ptr_leaks) {
2148 verbose("R%d pointer %s pointer prohibited\n",
2149 insn->dst_reg,
2150 bpf_alu_string[opcode >> 4]);
2151 return -EACCES;
2152 }
2153 mark_reg_unknown(regs, insn->dst_reg);
2154 return 0;
2155 } else {
2156 /* scalar += pointer
2157 * This is legal, but we have to reverse our
2158 * src/dest handling in computing the range
2159 */
2160 rc = adjust_ptr_min_max_vals(env, insn,
2161 src_reg, dst_reg);
2162 if (rc == -EACCES && env->allow_ptr_leaks) {
2163 /* scalar += unknown scalar */
2164 __mark_reg_unknown(&off_reg);
2165 return adjust_scalar_min_max_vals(
2166 env, insn,
2167 dst_reg, off_reg);
2168 }
2169 return rc;
2170 }
2171 } else if (ptr_reg) {
2172 /* pointer += scalar */
2173 rc = adjust_ptr_min_max_vals(env, insn,
2174 dst_reg, src_reg);
2175 if (rc == -EACCES && env->allow_ptr_leaks) {
2176 /* unknown scalar += scalar */
2177 __mark_reg_unknown(dst_reg);
2178 return adjust_scalar_min_max_vals(
2179 env, insn, dst_reg, *src_reg);
2180 }
2181 return rc;
2182 }
2183 } else {
2184 /* Pretend the src is a reg with a known value, since we only
2185 * need to be able to read from this state.
2186 */
2187 off_reg.type = SCALAR_VALUE;
b03c9f9f 2188 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2189 src_reg = &off_reg;
f1174f77
EC
2190 if (ptr_reg) { /* pointer += K */
2191 rc = adjust_ptr_min_max_vals(env, insn,
2192 ptr_reg, src_reg);
2193 if (rc == -EACCES && env->allow_ptr_leaks) {
2194 /* unknown scalar += K */
2195 __mark_reg_unknown(dst_reg);
2196 return adjust_scalar_min_max_vals(
2197 env, insn, dst_reg, off_reg);
2198 }
2199 return rc;
2200 }
2201 }
2202
2203 /* Got here implies adding two SCALAR_VALUEs */
2204 if (WARN_ON_ONCE(ptr_reg)) {
2205 print_verifier_state(&env->cur_state);
2206 verbose("verifier internal error: unexpected ptr_reg\n");
2207 return -EINVAL;
2208 }
2209 if (WARN_ON(!src_reg)) {
2210 print_verifier_state(&env->cur_state);
2211 verbose("verifier internal error: no src_reg\n");
2212 return -EINVAL;
2213 }
2214 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2215}
2216
17a52670 2217/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2218static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2219{
f1174f77 2220 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2221 u8 opcode = BPF_OP(insn->code);
2222 int err;
2223
2224 if (opcode == BPF_END || opcode == BPF_NEG) {
2225 if (opcode == BPF_NEG) {
2226 if (BPF_SRC(insn->code) != 0 ||
2227 insn->src_reg != BPF_REG_0 ||
2228 insn->off != 0 || insn->imm != 0) {
2229 verbose("BPF_NEG uses reserved fields\n");
2230 return -EINVAL;
2231 }
2232 } else {
2233 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2234 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
2235 verbose("BPF_END uses reserved fields\n");
2236 return -EINVAL;
2237 }
2238 }
2239
2240 /* check src operand */
2241 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2242 if (err)
2243 return err;
2244
1be7f75d
AS
2245 if (is_pointer_value(env, insn->dst_reg)) {
2246 verbose("R%d pointer arithmetic prohibited\n",
2247 insn->dst_reg);
2248 return -EACCES;
2249 }
2250
17a52670
AS
2251 /* check dest operand */
2252 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2253 if (err)
2254 return err;
2255
2256 } else if (opcode == BPF_MOV) {
2257
2258 if (BPF_SRC(insn->code) == BPF_X) {
2259 if (insn->imm != 0 || insn->off != 0) {
2260 verbose("BPF_MOV uses reserved fields\n");
2261 return -EINVAL;
2262 }
2263
2264 /* check src operand */
2265 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2266 if (err)
2267 return err;
2268 } else {
2269 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2270 verbose("BPF_MOV uses reserved fields\n");
2271 return -EINVAL;
2272 }
2273 }
2274
2275 /* check dest operand */
2276 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2277 if (err)
2278 return err;
2279
2280 if (BPF_SRC(insn->code) == BPF_X) {
2281 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2282 /* case: R1 = R2
2283 * copy register state to dest reg
2284 */
2285 regs[insn->dst_reg] = regs[insn->src_reg];
2286 } else {
f1174f77 2287 /* R1 = (u32) R2 */
1be7f75d
AS
2288 if (is_pointer_value(env, insn->src_reg)) {
2289 verbose("R%d partial copy of pointer\n",
2290 insn->src_reg);
2291 return -EACCES;
2292 }
f1174f77 2293 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2294 /* high 32 bits are known zero. */
f1174f77
EC
2295 regs[insn->dst_reg].var_off = tnum_cast(
2296 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2297 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2298 }
2299 } else {
2300 /* case: R = imm
2301 * remember the value we stored into this reg
2302 */
f1174f77 2303 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2304 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2305 }
2306
2307 } else if (opcode > BPF_END) {
2308 verbose("invalid BPF_ALU opcode %x\n", opcode);
2309 return -EINVAL;
2310
2311 } else { /* all other ALU ops: and, sub, xor, add, ... */
2312
17a52670
AS
2313 if (BPF_SRC(insn->code) == BPF_X) {
2314 if (insn->imm != 0 || insn->off != 0) {
2315 verbose("BPF_ALU uses reserved fields\n");
2316 return -EINVAL;
2317 }
2318 /* check src1 operand */
2319 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2320 if (err)
2321 return err;
2322 } else {
2323 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2324 verbose("BPF_ALU uses reserved fields\n");
2325 return -EINVAL;
2326 }
2327 }
2328
2329 /* check src2 operand */
2330 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2331 if (err)
2332 return err;
2333
2334 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2335 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2336 verbose("div by zero\n");
2337 return -EINVAL;
2338 }
2339
229394e8
RV
2340 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2341 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2342 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2343
2344 if (insn->imm < 0 || insn->imm >= size) {
2345 verbose("invalid shift %d\n", insn->imm);
2346 return -EINVAL;
2347 }
2348 }
2349
1a0dc1ac
AS
2350 /* check dest operand */
2351 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2352 if (err)
2353 return err;
2354
f1174f77 2355 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2356 }
2357
2358 return 0;
2359}
2360
58e2af8b
JK
2361static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2362 struct bpf_reg_state *dst_reg)
969bf05e 2363{
58e2af8b 2364 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2365 int i;
2d2be8ca 2366
f1174f77
EC
2367 if (dst_reg->off < 0)
2368 /* This doesn't give us any range */
2369 return;
2370
b03c9f9f
EC
2371 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2372 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2373 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2374 * than pkt_end, but that's because it's also less than pkt.
2375 */
2376 return;
2377
2d2be8ca
DB
2378 /* LLVM can generate two kind of checks:
2379 *
2380 * Type 1:
2381 *
2382 * r2 = r3;
2383 * r2 += 8;
2384 * if (r2 > pkt_end) goto <handle exception>
2385 * <access okay>
2386 *
2387 * Where:
2388 * r2 == dst_reg, pkt_end == src_reg
2389 * r2=pkt(id=n,off=8,r=0)
2390 * r3=pkt(id=n,off=0,r=0)
2391 *
2392 * Type 2:
2393 *
2394 * r2 = r3;
2395 * r2 += 8;
2396 * if (pkt_end >= r2) goto <access okay>
2397 * <handle exception>
2398 *
2399 * Where:
2400 * pkt_end == dst_reg, r2 == src_reg
2401 * r2=pkt(id=n,off=8,r=0)
2402 * r3=pkt(id=n,off=0,r=0)
2403 *
2404 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2405 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2406 */
2d2be8ca 2407
f1174f77
EC
2408 /* If our ids match, then we must have the same max_value. And we
2409 * don't care about the other reg's fixed offset, since if it's too big
2410 * the range won't allow anything.
2411 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2412 */
969bf05e
AS
2413 for (i = 0; i < MAX_BPF_REG; i++)
2414 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682 2415 /* keep the maximum range already checked */
f1174f77 2416 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2417
2418 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2419 if (state->stack_slot_type[i] != STACK_SPILL)
2420 continue;
2421 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2422 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
f1174f77 2423 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2424 }
2425}
2426
48461135
JB
2427/* Adjusts the register min/max values in the case that the dst_reg is the
2428 * variable register that we are working on, and src_reg is a constant or we're
2429 * simply doing a BPF_K check.
f1174f77 2430 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2431 */
2432static void reg_set_min_max(struct bpf_reg_state *true_reg,
2433 struct bpf_reg_state *false_reg, u64 val,
2434 u8 opcode)
2435{
f1174f77
EC
2436 /* If the dst_reg is a pointer, we can't learn anything about its
2437 * variable offset from the compare (unless src_reg were a pointer into
2438 * the same object, but we don't bother with that.
2439 * Since false_reg and true_reg have the same type by construction, we
2440 * only need to check one of them for pointerness.
2441 */
2442 if (__is_pointer_value(false, false_reg))
2443 return;
4cabc5b1 2444
48461135
JB
2445 switch (opcode) {
2446 case BPF_JEQ:
2447 /* If this is false then we know nothing Jon Snow, but if it is
2448 * true then we know for sure.
2449 */
b03c9f9f 2450 __mark_reg_known(true_reg, val);
48461135
JB
2451 break;
2452 case BPF_JNE:
2453 /* If this is true we know nothing Jon Snow, but if it is false
2454 * we know the value for sure;
2455 */
b03c9f9f 2456 __mark_reg_known(false_reg, val);
48461135
JB
2457 break;
2458 case BPF_JGT:
b03c9f9f
EC
2459 false_reg->umax_value = min(false_reg->umax_value, val);
2460 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2461 break;
48461135 2462 case BPF_JSGT:
b03c9f9f
EC
2463 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2464 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135
JB
2465 break;
2466 case BPF_JGE:
b03c9f9f
EC
2467 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2468 true_reg->umin_value = max(true_reg->umin_value, val);
2469 break;
48461135 2470 case BPF_JSGE:
b03c9f9f
EC
2471 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2472 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135
JB
2473 break;
2474 default:
2475 break;
2476 }
2477
b03c9f9f
EC
2478 __reg_deduce_bounds(false_reg);
2479 __reg_deduce_bounds(true_reg);
2480 /* We might have learned some bits from the bounds. */
2481 __reg_bound_offset(false_reg);
2482 __reg_bound_offset(true_reg);
2483 /* Intersecting with the old var_off might have improved our bounds
2484 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2485 * then new var_off is (0; 0x7f...fc) which improves our umax.
2486 */
2487 __update_reg_bounds(false_reg);
2488 __update_reg_bounds(true_reg);
48461135
JB
2489}
2490
f1174f77
EC
2491/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2492 * the variable reg.
48461135
JB
2493 */
2494static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2495 struct bpf_reg_state *false_reg, u64 val,
2496 u8 opcode)
2497{
f1174f77
EC
2498 if (__is_pointer_value(false, false_reg))
2499 return;
4cabc5b1 2500
48461135
JB
2501 switch (opcode) {
2502 case BPF_JEQ:
2503 /* If this is false then we know nothing Jon Snow, but if it is
2504 * true then we know for sure.
2505 */
b03c9f9f 2506 __mark_reg_known(true_reg, val);
48461135
JB
2507 break;
2508 case BPF_JNE:
2509 /* If this is true we know nothing Jon Snow, but if it is false
2510 * we know the value for sure;
2511 */
b03c9f9f 2512 __mark_reg_known(false_reg, val);
48461135
JB
2513 break;
2514 case BPF_JGT:
b03c9f9f
EC
2515 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2516 false_reg->umin_value = max(false_reg->umin_value, val);
2517 break;
48461135 2518 case BPF_JSGT:
b03c9f9f
EC
2519 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2520 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135
JB
2521 break;
2522 case BPF_JGE:
b03c9f9f
EC
2523 true_reg->umax_value = min(true_reg->umax_value, val);
2524 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2525 break;
48461135 2526 case BPF_JSGE:
b03c9f9f
EC
2527 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2528 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135
JB
2529 break;
2530 default:
2531 break;
2532 }
2533
b03c9f9f
EC
2534 __reg_deduce_bounds(false_reg);
2535 __reg_deduce_bounds(true_reg);
2536 /* We might have learned some bits from the bounds. */
2537 __reg_bound_offset(false_reg);
2538 __reg_bound_offset(true_reg);
2539 /* Intersecting with the old var_off might have improved our bounds
2540 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2541 * then new var_off is (0; 0x7f...fc) which improves our umax.
2542 */
2543 __update_reg_bounds(false_reg);
2544 __update_reg_bounds(true_reg);
f1174f77
EC
2545}
2546
2547/* Regs are known to be equal, so intersect their min/max/var_off */
2548static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2549 struct bpf_reg_state *dst_reg)
2550{
b03c9f9f
EC
2551 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2552 dst_reg->umin_value);
2553 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2554 dst_reg->umax_value);
2555 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2556 dst_reg->smin_value);
2557 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2558 dst_reg->smax_value);
f1174f77
EC
2559 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2560 dst_reg->var_off);
b03c9f9f
EC
2561 /* We might have learned new bounds from the var_off. */
2562 __update_reg_bounds(src_reg);
2563 __update_reg_bounds(dst_reg);
2564 /* We might have learned something about the sign bit. */
2565 __reg_deduce_bounds(src_reg);
2566 __reg_deduce_bounds(dst_reg);
2567 /* We might have learned some bits from the bounds. */
2568 __reg_bound_offset(src_reg);
2569 __reg_bound_offset(dst_reg);
2570 /* Intersecting with the old var_off might have improved our bounds
2571 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2572 * then new var_off is (0; 0x7f...fc) which improves our umax.
2573 */
2574 __update_reg_bounds(src_reg);
2575 __update_reg_bounds(dst_reg);
f1174f77
EC
2576}
2577
2578static void reg_combine_min_max(struct bpf_reg_state *true_src,
2579 struct bpf_reg_state *true_dst,
2580 struct bpf_reg_state *false_src,
2581 struct bpf_reg_state *false_dst,
2582 u8 opcode)
2583{
2584 switch (opcode) {
2585 case BPF_JEQ:
2586 __reg_combine_min_max(true_src, true_dst);
2587 break;
2588 case BPF_JNE:
2589 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2590 break;
4cabc5b1 2591 }
48461135
JB
2592}
2593
57a09bf0 2594static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2595 bool is_null)
57a09bf0
TG
2596{
2597 struct bpf_reg_state *reg = &regs[regno];
2598
2599 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2600 /* Old offset (both fixed and variable parts) should
2601 * have been known-zero, because we don't allow pointer
2602 * arithmetic on pointers that might be NULL.
2603 */
b03c9f9f
EC
2604 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2605 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2606 reg->off)) {
b03c9f9f
EC
2607 __mark_reg_known_zero(reg);
2608 reg->off = 0;
f1174f77
EC
2609 }
2610 if (is_null) {
2611 reg->type = SCALAR_VALUE;
56f668df
MKL
2612 } else if (reg->map_ptr->inner_map_meta) {
2613 reg->type = CONST_PTR_TO_MAP;
2614 reg->map_ptr = reg->map_ptr->inner_map_meta;
2615 } else {
f1174f77 2616 reg->type = PTR_TO_MAP_VALUE;
56f668df 2617 }
a08dd0da
DB
2618 /* We don't need id from this point onwards anymore, thus we
2619 * should better reset it, so that state pruning has chances
2620 * to take effect.
2621 */
2622 reg->id = 0;
57a09bf0
TG
2623 }
2624}
2625
2626/* The logic is similar to find_good_pkt_pointers(), both could eventually
2627 * be folded together at some point.
2628 */
2629static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2630 bool is_null)
57a09bf0
TG
2631{
2632 struct bpf_reg_state *regs = state->regs;
a08dd0da 2633 u32 id = regs[regno].id;
57a09bf0
TG
2634 int i;
2635
2636 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2637 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2638
2639 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2640 if (state->stack_slot_type[i] != STACK_SPILL)
2641 continue;
f1174f77 2642 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2643 }
2644}
2645
58e2af8b 2646static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2647 struct bpf_insn *insn, int *insn_idx)
2648{
58e2af8b
JK
2649 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2650 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2651 u8 opcode = BPF_OP(insn->code);
2652 int err;
2653
2654 if (opcode > BPF_EXIT) {
2655 verbose("invalid BPF_JMP opcode %x\n", opcode);
2656 return -EINVAL;
2657 }
2658
2659 if (BPF_SRC(insn->code) == BPF_X) {
2660 if (insn->imm != 0) {
2661 verbose("BPF_JMP uses reserved fields\n");
2662 return -EINVAL;
2663 }
2664
2665 /* check src1 operand */
2666 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2667 if (err)
2668 return err;
1be7f75d
AS
2669
2670 if (is_pointer_value(env, insn->src_reg)) {
2671 verbose("R%d pointer comparison prohibited\n",
2672 insn->src_reg);
2673 return -EACCES;
2674 }
17a52670
AS
2675 } else {
2676 if (insn->src_reg != BPF_REG_0) {
2677 verbose("BPF_JMP uses reserved fields\n");
2678 return -EINVAL;
2679 }
2680 }
2681
2682 /* check src2 operand */
2683 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2684 if (err)
2685 return err;
2686
1a0dc1ac
AS
2687 dst_reg = &regs[insn->dst_reg];
2688
17a52670
AS
2689 /* detect if R == 0 where R was initialized to zero earlier */
2690 if (BPF_SRC(insn->code) == BPF_K &&
2691 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2692 dst_reg->type == SCALAR_VALUE &&
2693 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2694 if (opcode == BPF_JEQ) {
2695 /* if (imm == imm) goto pc+off;
2696 * only follow the goto, ignore fall-through
2697 */
2698 *insn_idx += insn->off;
2699 return 0;
2700 } else {
2701 /* if (imm != imm) goto pc+off;
2702 * only follow fall-through branch, since
2703 * that's where the program will go
2704 */
2705 return 0;
2706 }
2707 }
2708
2709 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2710 if (!other_branch)
2711 return -EFAULT;
2712
48461135
JB
2713 /* detect if we are comparing against a constant value so we can adjust
2714 * our min/max values for our dst register.
f1174f77
EC
2715 * this is only legit if both are scalars (or pointers to the same
2716 * object, I suppose, but we don't support that right now), because
2717 * otherwise the different base pointers mean the offsets aren't
2718 * comparable.
48461135
JB
2719 */
2720 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2721 if (dst_reg->type == SCALAR_VALUE &&
2722 regs[insn->src_reg].type == SCALAR_VALUE) {
2723 if (tnum_is_const(regs[insn->src_reg].var_off))
2724 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2725 dst_reg, regs[insn->src_reg].var_off.value,
2726 opcode);
2727 else if (tnum_is_const(dst_reg->var_off))
2728 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2729 &regs[insn->src_reg],
2730 dst_reg->var_off.value, opcode);
2731 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2732 /* Comparing for equality, we can combine knowledge */
2733 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2734 &other_branch->regs[insn->dst_reg],
2735 &regs[insn->src_reg],
2736 &regs[insn->dst_reg], opcode);
2737 }
2738 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2739 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2740 dst_reg, insn->imm, opcode);
2741 }
2742
58e2af8b 2743 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2744 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2745 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2746 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2747 /* Mark all identical map registers in each branch as either
2748 * safe or unknown depending R == 0 or R != 0 conditional.
2749 */
f1174f77
EC
2750 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2751 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2752 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2753 dst_reg->type == PTR_TO_PACKET &&
2754 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2755 find_good_pkt_pointers(this_branch, dst_reg);
2756 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2757 dst_reg->type == PTR_TO_PACKET_END &&
2758 regs[insn->src_reg].type == PTR_TO_PACKET) {
2759 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2760 } else if (is_pointer_value(env, insn->dst_reg)) {
2761 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2762 return -EACCES;
17a52670
AS
2763 }
2764 if (log_level)
2d2be8ca 2765 print_verifier_state(this_branch);
17a52670
AS
2766 return 0;
2767}
2768
0246e64d
AS
2769/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2770static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2771{
2772 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2773
2774 return (struct bpf_map *) (unsigned long) imm64;
2775}
2776
17a52670 2777/* verify BPF_LD_IMM64 instruction */
58e2af8b 2778static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2779{
58e2af8b 2780 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2781 int err;
2782
2783 if (BPF_SIZE(insn->code) != BPF_DW) {
2784 verbose("invalid BPF_LD_IMM insn\n");
2785 return -EINVAL;
2786 }
2787 if (insn->off != 0) {
2788 verbose("BPF_LD_IMM64 uses reserved fields\n");
2789 return -EINVAL;
2790 }
2791
2792 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2793 if (err)
2794 return err;
2795
6b173873 2796 if (insn->src_reg == 0) {
6b173873
JK
2797 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2798
f1174f77 2799 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2800 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2801 return 0;
6b173873 2802 }
17a52670
AS
2803
2804 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2805 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2806
2807 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2808 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2809 return 0;
2810}
2811
96be4325
DB
2812static bool may_access_skb(enum bpf_prog_type type)
2813{
2814 switch (type) {
2815 case BPF_PROG_TYPE_SOCKET_FILTER:
2816 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2817 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2818 return true;
2819 default:
2820 return false;
2821 }
2822}
2823
ddd872bc
AS
2824/* verify safety of LD_ABS|LD_IND instructions:
2825 * - they can only appear in the programs where ctx == skb
2826 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2827 * preserve R6-R9, and store return value into R0
2828 *
2829 * Implicit input:
2830 * ctx == skb == R6 == CTX
2831 *
2832 * Explicit input:
2833 * SRC == any register
2834 * IMM == 32-bit immediate
2835 *
2836 * Output:
2837 * R0 - 8/16/32-bit skb data converted to cpu endianness
2838 */
58e2af8b 2839static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2840{
58e2af8b 2841 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2842 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2843 int i, err;
2844
24701ece 2845 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2846 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2847 return -EINVAL;
2848 }
2849
2850 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2851 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2852 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2853 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2854 return -EINVAL;
2855 }
2856
2857 /* check whether implicit source operand (register R6) is readable */
2858 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2859 if (err)
2860 return err;
2861
2862 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2863 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2864 return -EINVAL;
2865 }
2866
2867 if (mode == BPF_IND) {
2868 /* check explicit source operand */
2869 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2870 if (err)
2871 return err;
2872 }
2873
2874 /* reset caller saved regs to unreadable */
a9789ef9
DB
2875 for (i = 0; i < CALLER_SAVED_REGS; i++)
2876 mark_reg_not_init(regs, caller_saved[i]);
ddd872bc
AS
2877
2878 /* mark destination R0 register as readable, since it contains
2879 * the value fetched from the packet
2880 */
f1174f77 2881 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
2882 return 0;
2883}
2884
475fb78f
AS
2885/* non-recursive DFS pseudo code
2886 * 1 procedure DFS-iterative(G,v):
2887 * 2 label v as discovered
2888 * 3 let S be a stack
2889 * 4 S.push(v)
2890 * 5 while S is not empty
2891 * 6 t <- S.pop()
2892 * 7 if t is what we're looking for:
2893 * 8 return t
2894 * 9 for all edges e in G.adjacentEdges(t) do
2895 * 10 if edge e is already labelled
2896 * 11 continue with the next edge
2897 * 12 w <- G.adjacentVertex(t,e)
2898 * 13 if vertex w is not discovered and not explored
2899 * 14 label e as tree-edge
2900 * 15 label w as discovered
2901 * 16 S.push(w)
2902 * 17 continue at 5
2903 * 18 else if vertex w is discovered
2904 * 19 label e as back-edge
2905 * 20 else
2906 * 21 // vertex w is explored
2907 * 22 label e as forward- or cross-edge
2908 * 23 label t as explored
2909 * 24 S.pop()
2910 *
2911 * convention:
2912 * 0x10 - discovered
2913 * 0x11 - discovered and fall-through edge labelled
2914 * 0x12 - discovered and fall-through and branch edges labelled
2915 * 0x20 - explored
2916 */
2917
2918enum {
2919 DISCOVERED = 0x10,
2920 EXPLORED = 0x20,
2921 FALLTHROUGH = 1,
2922 BRANCH = 2,
2923};
2924
58e2af8b 2925#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2926
475fb78f
AS
2927static int *insn_stack; /* stack of insns to process */
2928static int cur_stack; /* current stack index */
2929static int *insn_state;
2930
2931/* t, w, e - match pseudo-code above:
2932 * t - index of current instruction
2933 * w - next instruction
2934 * e - edge
2935 */
58e2af8b 2936static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2937{
2938 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2939 return 0;
2940
2941 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2942 return 0;
2943
2944 if (w < 0 || w >= env->prog->len) {
2945 verbose("jump out of range from insn %d to %d\n", t, w);
2946 return -EINVAL;
2947 }
2948
f1bca824
AS
2949 if (e == BRANCH)
2950 /* mark branch target for state pruning */
2951 env->explored_states[w] = STATE_LIST_MARK;
2952
475fb78f
AS
2953 if (insn_state[w] == 0) {
2954 /* tree-edge */
2955 insn_state[t] = DISCOVERED | e;
2956 insn_state[w] = DISCOVERED;
2957 if (cur_stack >= env->prog->len)
2958 return -E2BIG;
2959 insn_stack[cur_stack++] = w;
2960 return 1;
2961 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2962 verbose("back-edge from insn %d to %d\n", t, w);
2963 return -EINVAL;
2964 } else if (insn_state[w] == EXPLORED) {
2965 /* forward- or cross-edge */
2966 insn_state[t] = DISCOVERED | e;
2967 } else {
2968 verbose("insn state internal bug\n");
2969 return -EFAULT;
2970 }
2971 return 0;
2972}
2973
2974/* non-recursive depth-first-search to detect loops in BPF program
2975 * loop == back-edge in directed graph
2976 */
58e2af8b 2977static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2978{
2979 struct bpf_insn *insns = env->prog->insnsi;
2980 int insn_cnt = env->prog->len;
2981 int ret = 0;
2982 int i, t;
2983
2984 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2985 if (!insn_state)
2986 return -ENOMEM;
2987
2988 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2989 if (!insn_stack) {
2990 kfree(insn_state);
2991 return -ENOMEM;
2992 }
2993
2994 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2995 insn_stack[0] = 0; /* 0 is the first instruction */
2996 cur_stack = 1;
2997
2998peek_stack:
2999 if (cur_stack == 0)
3000 goto check_state;
3001 t = insn_stack[cur_stack - 1];
3002
3003 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3004 u8 opcode = BPF_OP(insns[t].code);
3005
3006 if (opcode == BPF_EXIT) {
3007 goto mark_explored;
3008 } else if (opcode == BPF_CALL) {
3009 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3010 if (ret == 1)
3011 goto peek_stack;
3012 else if (ret < 0)
3013 goto err_free;
07016151
DB
3014 if (t + 1 < insn_cnt)
3015 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3016 } else if (opcode == BPF_JA) {
3017 if (BPF_SRC(insns[t].code) != BPF_K) {
3018 ret = -EINVAL;
3019 goto err_free;
3020 }
3021 /* unconditional jump with single edge */
3022 ret = push_insn(t, t + insns[t].off + 1,
3023 FALLTHROUGH, env);
3024 if (ret == 1)
3025 goto peek_stack;
3026 else if (ret < 0)
3027 goto err_free;
f1bca824
AS
3028 /* tell verifier to check for equivalent states
3029 * after every call and jump
3030 */
c3de6317
AS
3031 if (t + 1 < insn_cnt)
3032 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3033 } else {
3034 /* conditional jump with two edges */
3c2ce60b 3035 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3036 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3037 if (ret == 1)
3038 goto peek_stack;
3039 else if (ret < 0)
3040 goto err_free;
3041
3042 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3043 if (ret == 1)
3044 goto peek_stack;
3045 else if (ret < 0)
3046 goto err_free;
3047 }
3048 } else {
3049 /* all other non-branch instructions with single
3050 * fall-through edge
3051 */
3052 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3053 if (ret == 1)
3054 goto peek_stack;
3055 else if (ret < 0)
3056 goto err_free;
3057 }
3058
3059mark_explored:
3060 insn_state[t] = EXPLORED;
3061 if (cur_stack-- <= 0) {
3062 verbose("pop stack internal bug\n");
3063 ret = -EFAULT;
3064 goto err_free;
3065 }
3066 goto peek_stack;
3067
3068check_state:
3069 for (i = 0; i < insn_cnt; i++) {
3070 if (insn_state[i] != EXPLORED) {
3071 verbose("unreachable insn %d\n", i);
3072 ret = -EINVAL;
3073 goto err_free;
3074 }
3075 }
3076 ret = 0; /* cfg looks good */
3077
3078err_free:
3079 kfree(insn_state);
3080 kfree(insn_stack);
3081 return ret;
3082}
3083
f1174f77
EC
3084/* check %cur's range satisfies %old's */
3085static bool range_within(struct bpf_reg_state *old,
3086 struct bpf_reg_state *cur)
3087{
b03c9f9f
EC
3088 return old->umin_value <= cur->umin_value &&
3089 old->umax_value >= cur->umax_value &&
3090 old->smin_value <= cur->smin_value &&
3091 old->smax_value >= cur->smax_value;
f1174f77
EC
3092}
3093
3094/* Maximum number of register states that can exist at once */
3095#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3096struct idpair {
3097 u32 old;
3098 u32 cur;
3099};
3100
3101/* If in the old state two registers had the same id, then they need to have
3102 * the same id in the new state as well. But that id could be different from
3103 * the old state, so we need to track the mapping from old to new ids.
3104 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3105 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3106 * regs with a different old id could still have new id 9, we don't care about
3107 * that.
3108 * So we look through our idmap to see if this old id has been seen before. If
3109 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3110 */
f1174f77 3111static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3112{
f1174f77 3113 unsigned int i;
969bf05e 3114
f1174f77
EC
3115 for (i = 0; i < ID_MAP_SIZE; i++) {
3116 if (!idmap[i].old) {
3117 /* Reached an empty slot; haven't seen this id before */
3118 idmap[i].old = old_id;
3119 idmap[i].cur = cur_id;
3120 return true;
3121 }
3122 if (idmap[i].old == old_id)
3123 return idmap[i].cur == cur_id;
3124 }
3125 /* We ran out of idmap slots, which should be impossible */
3126 WARN_ON_ONCE(1);
3127 return false;
3128}
3129
3130/* Returns true if (rold safe implies rcur safe) */
3131static bool regsafe(struct bpf_reg_state *rold,
3132 struct bpf_reg_state *rcur,
3133 bool varlen_map_access, struct idpair *idmap)
3134{
3135 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
969bf05e
AS
3136 return true;
3137
f1174f77
EC
3138 if (rold->type == NOT_INIT)
3139 /* explored state can't have used this */
969bf05e 3140 return true;
f1174f77
EC
3141 if (rcur->type == NOT_INIT)
3142 return false;
3143 switch (rold->type) {
3144 case SCALAR_VALUE:
3145 if (rcur->type == SCALAR_VALUE) {
3146 /* new val must satisfy old val knowledge */
3147 return range_within(rold, rcur) &&
3148 tnum_in(rold->var_off, rcur->var_off);
3149 } else {
3150 /* if we knew anything about the old value, we're not
3151 * equal, because we can't know anything about the
3152 * scalar value of the pointer in the new value.
3153 */
b03c9f9f
EC
3154 return rold->umin_value == 0 &&
3155 rold->umax_value == U64_MAX &&
3156 rold->smin_value == S64_MIN &&
3157 rold->smax_value == S64_MAX &&
f1174f77
EC
3158 tnum_is_unknown(rold->var_off);
3159 }
3160 case PTR_TO_MAP_VALUE:
3161 if (varlen_map_access) {
3162 /* If the new min/max/var_off satisfy the old ones and
3163 * everything else matches, we are OK.
3164 * We don't care about the 'id' value, because nothing
3165 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3166 */
3167 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3168 range_within(rold, rcur) &&
3169 tnum_in(rold->var_off, rcur->var_off);
3170 } else {
3171 /* If the ranges/var_off were not the same, but
3172 * everything else was and we didn't do a variable
3173 * access into a map then we are a-ok.
3174 */
3175 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
3176 }
3177 case PTR_TO_MAP_VALUE_OR_NULL:
3178 /* a PTR_TO_MAP_VALUE could be safe to use as a
3179 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3180 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3181 * checked, doing so could have affected others with the same
3182 * id, and we can't check for that because we lost the id when
3183 * we converted to a PTR_TO_MAP_VALUE.
3184 */
3185 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3186 return false;
3187 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3188 return false;
3189 /* Check our ids match any regs they're supposed to */
3190 return check_ids(rold->id, rcur->id, idmap);
3191 case PTR_TO_PACKET:
3192 if (rcur->type != PTR_TO_PACKET)
3193 return false;
3194 /* We must have at least as much range as the old ptr
3195 * did, so that any accesses which were safe before are
3196 * still safe. This is true even if old range < old off,
3197 * since someone could have accessed through (ptr - k), or
3198 * even done ptr -= k in a register, to get a safe access.
3199 */
3200 if (rold->range > rcur->range)
3201 return false;
3202 /* If the offsets don't match, we can't trust our alignment;
3203 * nor can we be sure that we won't fall out of range.
3204 */
3205 if (rold->off != rcur->off)
3206 return false;
3207 /* id relations must be preserved */
3208 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3209 return false;
3210 /* new val must satisfy old val knowledge */
3211 return range_within(rold, rcur) &&
3212 tnum_in(rold->var_off, rcur->var_off);
3213 case PTR_TO_CTX:
3214 case CONST_PTR_TO_MAP:
3215 case PTR_TO_STACK:
3216 case PTR_TO_PACKET_END:
3217 /* Only valid matches are exact, which memcmp() above
3218 * would have accepted
3219 */
3220 default:
3221 /* Don't know what's going on, just say it's not safe */
3222 return false;
3223 }
969bf05e 3224
f1174f77
EC
3225 /* Shouldn't get here; if we do, say it's not safe */
3226 WARN_ON_ONCE(1);
969bf05e
AS
3227 return false;
3228}
3229
f1bca824
AS
3230/* compare two verifier states
3231 *
3232 * all states stored in state_list are known to be valid, since
3233 * verifier reached 'bpf_exit' instruction through them
3234 *
3235 * this function is called when verifier exploring different branches of
3236 * execution popped from the state stack. If it sees an old state that has
3237 * more strict register state and more strict stack state then this execution
3238 * branch doesn't need to be explored further, since verifier already
3239 * concluded that more strict state leads to valid finish.
3240 *
3241 * Therefore two states are equivalent if register state is more conservative
3242 * and explored stack state is more conservative than the current one.
3243 * Example:
3244 * explored current
3245 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3246 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3247 *
3248 * In other words if current stack state (one being explored) has more
3249 * valid slots than old one that already passed validation, it means
3250 * the verifier can stop exploring and conclude that current state is valid too
3251 *
3252 * Similarly with registers. If explored state has register type as invalid
3253 * whereas register type in current state is meaningful, it means that
3254 * the current state will reach 'bpf_exit' instruction safely
3255 */
48461135
JB
3256static bool states_equal(struct bpf_verifier_env *env,
3257 struct bpf_verifier_state *old,
58e2af8b 3258 struct bpf_verifier_state *cur)
f1bca824 3259{
e2d2afe1 3260 bool varlen_map_access = env->varlen_map_value_access;
f1174f77
EC
3261 struct idpair *idmap;
3262 bool ret = false;
f1bca824
AS
3263 int i;
3264
f1174f77
EC
3265 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3266 /* If we failed to allocate the idmap, just say it's not safe */
3267 if (!idmap)
1a0dc1ac 3268 return false;
f1174f77
EC
3269
3270 for (i = 0; i < MAX_BPF_REG; i++) {
3271 if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
3272 idmap))
3273 goto out_free;
f1bca824
AS
3274 }
3275
3276 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3277 if (old->stack_slot_type[i] == STACK_INVALID)
3278 continue;
3279 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3280 /* Ex: old explored (safe) state has STACK_SPILL in
3281 * this stack slot, but current has has STACK_MISC ->
3282 * this verifier states are not equivalent,
3283 * return false to continue verification of this path
3284 */
f1174f77 3285 goto out_free;
9c399760
AS
3286 if (i % BPF_REG_SIZE)
3287 continue;
d25da6ca
DB
3288 if (old->stack_slot_type[i] != STACK_SPILL)
3289 continue;
f1174f77
EC
3290 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3291 &cur->spilled_regs[i / BPF_REG_SIZE],
3292 varlen_map_access, idmap))
3293 /* when explored and current stack slot are both storing
3294 * spilled registers, check that stored pointers types
9c399760
AS
3295 * are the same as well.
3296 * Ex: explored safe path could have stored
f1174f77 3297 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3298 * but current path has stored:
f1174f77 3299 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3300 * such verifier states are not equivalent.
3301 * return false to continue verification of this path
3302 */
f1174f77 3303 goto out_free;
9c399760
AS
3304 else
3305 continue;
f1bca824 3306 }
f1174f77
EC
3307 ret = true;
3308out_free:
3309 kfree(idmap);
3310 return ret;
f1bca824
AS
3311}
3312
58e2af8b 3313static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3314{
58e2af8b
JK
3315 struct bpf_verifier_state_list *new_sl;
3316 struct bpf_verifier_state_list *sl;
f1bca824
AS
3317
3318 sl = env->explored_states[insn_idx];
3319 if (!sl)
3320 /* this 'insn_idx' instruction wasn't marked, so we will not
3321 * be doing state search here
3322 */
3323 return 0;
3324
3325 while (sl != STATE_LIST_MARK) {
48461135 3326 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
3327 /* reached equivalent register/stack state,
3328 * prune the search
3329 */
3330 return 1;
3331 sl = sl->next;
3332 }
3333
3334 /* there were no equivalent states, remember current one.
3335 * technically the current state is not proven to be safe yet,
3336 * but it will either reach bpf_exit (which means it's safe) or
3337 * it will be rejected. Since there are no loops, we won't be
3338 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3339 */
58e2af8b 3340 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3341 if (!new_sl)
3342 return -ENOMEM;
3343
3344 /* add new state to the head of linked list */
3345 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3346 new_sl->next = env->explored_states[insn_idx];
3347 env->explored_states[insn_idx] = new_sl;
3348 return 0;
3349}
3350
13a27dfc
JK
3351static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3352 int insn_idx, int prev_insn_idx)
3353{
3354 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3355 return 0;
3356
3357 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3358}
3359
58e2af8b 3360static int do_check(struct bpf_verifier_env *env)
17a52670 3361{
58e2af8b 3362 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3363 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3364 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3365 int insn_cnt = env->prog->len;
3366 int insn_idx, prev_insn_idx = 0;
3367 int insn_processed = 0;
3368 bool do_print_state = false;
3369
3370 init_reg_state(regs);
3371 insn_idx = 0;
48461135 3372 env->varlen_map_value_access = false;
17a52670
AS
3373 for (;;) {
3374 struct bpf_insn *insn;
3375 u8 class;
3376 int err;
3377
3378 if (insn_idx >= insn_cnt) {
3379 verbose("invalid insn idx %d insn_cnt %d\n",
3380 insn_idx, insn_cnt);
3381 return -EFAULT;
3382 }
3383
3384 insn = &insns[insn_idx];
3385 class = BPF_CLASS(insn->code);
3386
07016151 3387 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3388 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3389 insn_processed);
3390 return -E2BIG;
3391 }
3392
f1bca824
AS
3393 err = is_state_visited(env, insn_idx);
3394 if (err < 0)
3395 return err;
3396 if (err == 1) {
3397 /* found equivalent state, can prune the search */
3398 if (log_level) {
3399 if (do_print_state)
3400 verbose("\nfrom %d to %d: safe\n",
3401 prev_insn_idx, insn_idx);
3402 else
3403 verbose("%d: safe\n", insn_idx);
3404 }
3405 goto process_bpf_exit;
3406 }
3407
3c2ce60b
DB
3408 if (need_resched())
3409 cond_resched();
3410
c5fc9692
DM
3411 if (log_level > 1 || (log_level && do_print_state)) {
3412 if (log_level > 1)
3413 verbose("%d:", insn_idx);
3414 else
3415 verbose("\nfrom %d to %d:",
3416 prev_insn_idx, insn_idx);
1a0dc1ac 3417 print_verifier_state(&env->cur_state);
17a52670
AS
3418 do_print_state = false;
3419 }
3420
3421 if (log_level) {
3422 verbose("%d: ", insn_idx);
0d0e5769 3423 print_bpf_insn(env, insn);
17a52670
AS
3424 }
3425
13a27dfc
JK
3426 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3427 if (err)
3428 return err;
3429
17a52670 3430 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3431 err = check_alu_op(env, insn);
17a52670
AS
3432 if (err)
3433 return err;
3434
3435 } else if (class == BPF_LDX) {
3df126f3 3436 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3437
3438 /* check for reserved fields is already done */
3439
17a52670
AS
3440 /* check src operand */
3441 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3442 if (err)
3443 return err;
3444
3445 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
3446 if (err)
3447 return err;
3448
725f9dcd
AS
3449 src_reg_type = regs[insn->src_reg].type;
3450
17a52670
AS
3451 /* check that memory (src_reg + off) is readable,
3452 * the state of dst_reg will be updated by this func
3453 */
31fd8581 3454 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3455 BPF_SIZE(insn->code), BPF_READ,
3456 insn->dst_reg);
3457 if (err)
3458 return err;
3459
3df126f3
JK
3460 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3461
3462 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3463 /* saw a valid insn
3464 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3465 * save type to validate intersecting paths
9bac3d6d 3466 */
3df126f3 3467 *prev_src_type = src_reg_type;
9bac3d6d 3468
3df126f3 3469 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3470 (src_reg_type == PTR_TO_CTX ||
3df126f3 3471 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3472 /* ABuser program is trying to use the same insn
3473 * dst_reg = *(u32*) (src_reg + off)
3474 * with different pointer types:
3475 * src_reg == ctx in one branch and
3476 * src_reg == stack|map in some other branch.
3477 * Reject it.
3478 */
3479 verbose("same insn cannot be used with different pointers\n");
3480 return -EINVAL;
3481 }
3482
17a52670 3483 } else if (class == BPF_STX) {
3df126f3 3484 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3485
17a52670 3486 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3487 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3488 if (err)
3489 return err;
3490 insn_idx++;
3491 continue;
3492 }
3493
17a52670
AS
3494 /* check src1 operand */
3495 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3496 if (err)
3497 return err;
3498 /* check src2 operand */
3499 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3500 if (err)
3501 return err;
3502
d691f9e8
AS
3503 dst_reg_type = regs[insn->dst_reg].type;
3504
17a52670 3505 /* check that memory (dst_reg + off) is writeable */
31fd8581 3506 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3507 BPF_SIZE(insn->code), BPF_WRITE,
3508 insn->src_reg);
3509 if (err)
3510 return err;
3511
3df126f3
JK
3512 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3513
3514 if (*prev_dst_type == NOT_INIT) {
3515 *prev_dst_type = dst_reg_type;
3516 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3517 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3518 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3519 verbose("same insn cannot be used with different pointers\n");
3520 return -EINVAL;
3521 }
3522
17a52670
AS
3523 } else if (class == BPF_ST) {
3524 if (BPF_MODE(insn->code) != BPF_MEM ||
3525 insn->src_reg != BPF_REG_0) {
3526 verbose("BPF_ST uses reserved fields\n");
3527 return -EINVAL;
3528 }
3529 /* check src operand */
3530 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3531 if (err)
3532 return err;
3533
3534 /* check that memory (dst_reg + off) is writeable */
31fd8581 3535 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3536 BPF_SIZE(insn->code), BPF_WRITE,
3537 -1);
3538 if (err)
3539 return err;
3540
3541 } else if (class == BPF_JMP) {
3542 u8 opcode = BPF_OP(insn->code);
3543
3544 if (opcode == BPF_CALL) {
3545 if (BPF_SRC(insn->code) != BPF_K ||
3546 insn->off != 0 ||
3547 insn->src_reg != BPF_REG_0 ||
3548 insn->dst_reg != BPF_REG_0) {
3549 verbose("BPF_CALL uses reserved fields\n");
3550 return -EINVAL;
3551 }
3552
81ed18ab 3553 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3554 if (err)
3555 return err;
3556
3557 } else if (opcode == BPF_JA) {
3558 if (BPF_SRC(insn->code) != BPF_K ||
3559 insn->imm != 0 ||
3560 insn->src_reg != BPF_REG_0 ||
3561 insn->dst_reg != BPF_REG_0) {
3562 verbose("BPF_JA uses reserved fields\n");
3563 return -EINVAL;
3564 }
3565
3566 insn_idx += insn->off + 1;
3567 continue;
3568
3569 } else if (opcode == BPF_EXIT) {
3570 if (BPF_SRC(insn->code) != BPF_K ||
3571 insn->imm != 0 ||
3572 insn->src_reg != BPF_REG_0 ||
3573 insn->dst_reg != BPF_REG_0) {
3574 verbose("BPF_EXIT uses reserved fields\n");
3575 return -EINVAL;
3576 }
3577
3578 /* eBPF calling convetion is such that R0 is used
3579 * to return the value from eBPF program.
3580 * Make sure that it's readable at this time
3581 * of bpf_exit, which means that program wrote
3582 * something into it earlier
3583 */
3584 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3585 if (err)
3586 return err;
3587
1be7f75d
AS
3588 if (is_pointer_value(env, BPF_REG_0)) {
3589 verbose("R0 leaks addr as return value\n");
3590 return -EACCES;
3591 }
3592
f1bca824 3593process_bpf_exit:
17a52670
AS
3594 insn_idx = pop_stack(env, &prev_insn_idx);
3595 if (insn_idx < 0) {
3596 break;
3597 } else {
3598 do_print_state = true;
3599 continue;
3600 }
3601 } else {
3602 err = check_cond_jmp_op(env, insn, &insn_idx);
3603 if (err)
3604 return err;
3605 }
3606 } else if (class == BPF_LD) {
3607 u8 mode = BPF_MODE(insn->code);
3608
3609 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3610 err = check_ld_abs(env, insn);
3611 if (err)
3612 return err;
3613
17a52670
AS
3614 } else if (mode == BPF_IMM) {
3615 err = check_ld_imm(env, insn);
3616 if (err)
3617 return err;
3618
3619 insn_idx++;
3620 } else {
3621 verbose("invalid BPF_LD mode\n");
3622 return -EINVAL;
3623 }
3624 } else {
3625 verbose("unknown insn class %d\n", class);
3626 return -EINVAL;
3627 }
3628
3629 insn_idx++;
3630 }
3631
8726679a
AS
3632 verbose("processed %d insns, stack depth %d\n",
3633 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3634 return 0;
3635}
3636
56f668df
MKL
3637static int check_map_prealloc(struct bpf_map *map)
3638{
3639 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3640 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3641 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3642 !(map->map_flags & BPF_F_NO_PREALLOC);
3643}
3644
fdc15d38
AS
3645static int check_map_prog_compatibility(struct bpf_map *map,
3646 struct bpf_prog *prog)
3647
3648{
56f668df
MKL
3649 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3650 * preallocated hash maps, since doing memory allocation
3651 * in overflow_handler can crash depending on where nmi got
3652 * triggered.
3653 */
3654 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3655 if (!check_map_prealloc(map)) {
3656 verbose("perf_event programs can only use preallocated hash map\n");
3657 return -EINVAL;
3658 }
3659 if (map->inner_map_meta &&
3660 !check_map_prealloc(map->inner_map_meta)) {
3661 verbose("perf_event programs can only use preallocated inner hash map\n");
3662 return -EINVAL;
3663 }
fdc15d38
AS
3664 }
3665 return 0;
3666}
3667
0246e64d
AS
3668/* look for pseudo eBPF instructions that access map FDs and
3669 * replace them with actual map pointers
3670 */
58e2af8b 3671static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3672{
3673 struct bpf_insn *insn = env->prog->insnsi;
3674 int insn_cnt = env->prog->len;
fdc15d38 3675 int i, j, err;
0246e64d 3676
f1f7714e 3677 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3678 if (err)
3679 return err;
3680
0246e64d 3681 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3682 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3683 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3684 verbose("BPF_LDX uses reserved fields\n");
3685 return -EINVAL;
3686 }
3687
d691f9e8
AS
3688 if (BPF_CLASS(insn->code) == BPF_STX &&
3689 ((BPF_MODE(insn->code) != BPF_MEM &&
3690 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3691 verbose("BPF_STX uses reserved fields\n");
3692 return -EINVAL;
3693 }
3694
0246e64d
AS
3695 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3696 struct bpf_map *map;
3697 struct fd f;
3698
3699 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3700 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3701 insn[1].off != 0) {
3702 verbose("invalid bpf_ld_imm64 insn\n");
3703 return -EINVAL;
3704 }
3705
3706 if (insn->src_reg == 0)
3707 /* valid generic load 64-bit imm */
3708 goto next_insn;
3709
3710 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3711 verbose("unrecognized bpf_ld_imm64 insn\n");
3712 return -EINVAL;
3713 }
3714
3715 f = fdget(insn->imm);
c2101297 3716 map = __bpf_map_get(f);
0246e64d
AS
3717 if (IS_ERR(map)) {
3718 verbose("fd %d is not pointing to valid bpf_map\n",
3719 insn->imm);
0246e64d
AS
3720 return PTR_ERR(map);
3721 }
3722
fdc15d38
AS
3723 err = check_map_prog_compatibility(map, env->prog);
3724 if (err) {
3725 fdput(f);
3726 return err;
3727 }
3728
0246e64d
AS
3729 /* store map pointer inside BPF_LD_IMM64 instruction */
3730 insn[0].imm = (u32) (unsigned long) map;
3731 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3732
3733 /* check whether we recorded this map already */
3734 for (j = 0; j < env->used_map_cnt; j++)
3735 if (env->used_maps[j] == map) {
3736 fdput(f);
3737 goto next_insn;
3738 }
3739
3740 if (env->used_map_cnt >= MAX_USED_MAPS) {
3741 fdput(f);
3742 return -E2BIG;
3743 }
3744
0246e64d
AS
3745 /* hold the map. If the program is rejected by verifier,
3746 * the map will be released by release_maps() or it
3747 * will be used by the valid program until it's unloaded
3748 * and all maps are released in free_bpf_prog_info()
3749 */
92117d84
AS
3750 map = bpf_map_inc(map, false);
3751 if (IS_ERR(map)) {
3752 fdput(f);
3753 return PTR_ERR(map);
3754 }
3755 env->used_maps[env->used_map_cnt++] = map;
3756
0246e64d
AS
3757 fdput(f);
3758next_insn:
3759 insn++;
3760 i++;
3761 }
3762 }
3763
3764 /* now all pseudo BPF_LD_IMM64 instructions load valid
3765 * 'struct bpf_map *' into a register instead of user map_fd.
3766 * These pointers will be used later by verifier to validate map access.
3767 */
3768 return 0;
3769}
3770
3771/* drop refcnt of maps used by the rejected program */
58e2af8b 3772static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3773{
3774 int i;
3775
3776 for (i = 0; i < env->used_map_cnt; i++)
3777 bpf_map_put(env->used_maps[i]);
3778}
3779
3780/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3781static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3782{
3783 struct bpf_insn *insn = env->prog->insnsi;
3784 int insn_cnt = env->prog->len;
3785 int i;
3786
3787 for (i = 0; i < insn_cnt; i++, insn++)
3788 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3789 insn->src_reg = 0;
3790}
3791
8041902d
AS
3792/* single env->prog->insni[off] instruction was replaced with the range
3793 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3794 * [0, off) and [off, end) to new locations, so the patched range stays zero
3795 */
3796static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3797 u32 off, u32 cnt)
3798{
3799 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3800
3801 if (cnt == 1)
3802 return 0;
3803 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3804 if (!new_data)
3805 return -ENOMEM;
3806 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3807 memcpy(new_data + off + cnt - 1, old_data + off,
3808 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3809 env->insn_aux_data = new_data;
3810 vfree(old_data);
3811 return 0;
3812}
3813
3814static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3815 const struct bpf_insn *patch, u32 len)
3816{
3817 struct bpf_prog *new_prog;
3818
3819 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3820 if (!new_prog)
3821 return NULL;
3822 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3823 return NULL;
3824 return new_prog;
3825}
3826
9bac3d6d
AS
3827/* convert load instructions that access fields of 'struct __sk_buff'
3828 * into sequence of instructions that access fields of 'struct sk_buff'
3829 */
58e2af8b 3830static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3831{
36bbef52 3832 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 3833 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 3834 const int insn_cnt = env->prog->len;
36bbef52 3835 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3836 struct bpf_prog *new_prog;
d691f9e8 3837 enum bpf_access_type type;
f96da094
DB
3838 bool is_narrower_load;
3839 u32 target_size;
9bac3d6d 3840
36bbef52
DB
3841 if (ops->gen_prologue) {
3842 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3843 env->prog);
3844 if (cnt >= ARRAY_SIZE(insn_buf)) {
3845 verbose("bpf verifier is misconfigured\n");
3846 return -EINVAL;
3847 } else if (cnt) {
8041902d 3848 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3849 if (!new_prog)
3850 return -ENOMEM;
8041902d 3851
36bbef52 3852 env->prog = new_prog;
3df126f3 3853 delta += cnt - 1;
36bbef52
DB
3854 }
3855 }
3856
3857 if (!ops->convert_ctx_access)
9bac3d6d
AS
3858 return 0;
3859
3df126f3 3860 insn = env->prog->insnsi + delta;
36bbef52 3861
9bac3d6d 3862 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3863 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3864 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3865 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3866 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3867 type = BPF_READ;
62c7989b
DB
3868 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3869 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3870 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3871 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3872 type = BPF_WRITE;
3873 else
9bac3d6d
AS
3874 continue;
3875
8041902d 3876 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3877 continue;
9bac3d6d 3878
31fd8581 3879 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 3880 size = BPF_LDST_BYTES(insn);
31fd8581
YS
3881
3882 /* If the read access is a narrower load of the field,
3883 * convert to a 4/8-byte load, to minimum program type specific
3884 * convert_ctx_access changes. If conversion is successful,
3885 * we will apply proper mask to the result.
3886 */
f96da094 3887 is_narrower_load = size < ctx_field_size;
31fd8581 3888 if (is_narrower_load) {
f96da094
DB
3889 u32 off = insn->off;
3890 u8 size_code;
3891
3892 if (type == BPF_WRITE) {
3893 verbose("bpf verifier narrow ctx access misconfigured\n");
3894 return -EINVAL;
3895 }
31fd8581 3896
f96da094 3897 size_code = BPF_H;
31fd8581
YS
3898 if (ctx_field_size == 4)
3899 size_code = BPF_W;
3900 else if (ctx_field_size == 8)
3901 size_code = BPF_DW;
f96da094 3902
31fd8581
YS
3903 insn->off = off & ~(ctx_field_size - 1);
3904 insn->code = BPF_LDX | BPF_MEM | size_code;
3905 }
f96da094
DB
3906
3907 target_size = 0;
3908 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
3909 &target_size);
3910 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
3911 (ctx_field_size && !target_size)) {
9bac3d6d
AS
3912 verbose("bpf verifier is misconfigured\n");
3913 return -EINVAL;
3914 }
f96da094
DB
3915
3916 if (is_narrower_load && size < target_size) {
31fd8581
YS
3917 if (ctx_field_size <= 4)
3918 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 3919 (1 << size * 8) - 1);
31fd8581
YS
3920 else
3921 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 3922 (1 << size * 8) - 1);
31fd8581 3923 }
9bac3d6d 3924
8041902d 3925 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3926 if (!new_prog)
3927 return -ENOMEM;
3928
3df126f3 3929 delta += cnt - 1;
9bac3d6d
AS
3930
3931 /* keep walking new program and skip insns we just inserted */
3932 env->prog = new_prog;
3df126f3 3933 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3934 }
3935
3936 return 0;
3937}
3938
79741b3b 3939/* fixup insn->imm field of bpf_call instructions
81ed18ab 3940 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3941 *
3942 * this function is called after eBPF program passed verification
3943 */
79741b3b 3944static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3945{
79741b3b
AS
3946 struct bpf_prog *prog = env->prog;
3947 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3948 const struct bpf_func_proto *fn;
79741b3b 3949 const int insn_cnt = prog->len;
81ed18ab
AS
3950 struct bpf_insn insn_buf[16];
3951 struct bpf_prog *new_prog;
3952 struct bpf_map *map_ptr;
3953 int i, cnt, delta = 0;
e245c5c6 3954
79741b3b
AS
3955 for (i = 0; i < insn_cnt; i++, insn++) {
3956 if (insn->code != (BPF_JMP | BPF_CALL))
3957 continue;
e245c5c6 3958
79741b3b
AS
3959 if (insn->imm == BPF_FUNC_get_route_realm)
3960 prog->dst_needed = 1;
3961 if (insn->imm == BPF_FUNC_get_prandom_u32)
3962 bpf_user_rnd_init_once();
79741b3b 3963 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3964 /* If we tail call into other programs, we
3965 * cannot make any assumptions since they can
3966 * be replaced dynamically during runtime in
3967 * the program array.
3968 */
3969 prog->cb_access = 1;
80a58d02 3970 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 3971
79741b3b
AS
3972 /* mark bpf_tail_call as different opcode to avoid
3973 * conditional branch in the interpeter for every normal
3974 * call and to prevent accidental JITing by JIT compiler
3975 * that doesn't support bpf_tail_call yet
e245c5c6 3976 */
79741b3b 3977 insn->imm = 0;
71189fa9 3978 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
3979 continue;
3980 }
e245c5c6 3981
81ed18ab
AS
3982 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3983 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3984 if (map_ptr == BPF_MAP_PTR_POISON ||
3985 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3986 goto patch_call_imm;
3987
3988 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3989 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3990 verbose("bpf verifier is misconfigured\n");
3991 return -EINVAL;
3992 }
3993
3994 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3995 cnt);
3996 if (!new_prog)
3997 return -ENOMEM;
3998
3999 delta += cnt - 1;
4000
4001 /* keep walking new program and skip insns we just inserted */
4002 env->prog = prog = new_prog;
4003 insn = new_prog->insnsi + i + delta;
4004 continue;
4005 }
4006
4007patch_call_imm:
79741b3b
AS
4008 fn = prog->aux->ops->get_func_proto(insn->imm);
4009 /* all functions that have prototype and verifier allowed
4010 * programs to call them, must be real in-kernel functions
4011 */
4012 if (!fn->func) {
4013 verbose("kernel subsystem misconfigured func %s#%d\n",
4014 func_id_name(insn->imm), insn->imm);
4015 return -EFAULT;
e245c5c6 4016 }
79741b3b 4017 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4018 }
e245c5c6 4019
79741b3b
AS
4020 return 0;
4021}
e245c5c6 4022
58e2af8b 4023static void free_states(struct bpf_verifier_env *env)
f1bca824 4024{
58e2af8b 4025 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4026 int i;
4027
4028 if (!env->explored_states)
4029 return;
4030
4031 for (i = 0; i < env->prog->len; i++) {
4032 sl = env->explored_states[i];
4033
4034 if (sl)
4035 while (sl != STATE_LIST_MARK) {
4036 sln = sl->next;
4037 kfree(sl);
4038 sl = sln;
4039 }
4040 }
4041
4042 kfree(env->explored_states);
4043}
4044
9bac3d6d 4045int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4046{
cbd35700 4047 char __user *log_ubuf = NULL;
58e2af8b 4048 struct bpf_verifier_env *env;
51580e79
AS
4049 int ret = -EINVAL;
4050
58e2af8b 4051 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4052 * allocate/free it every time bpf_check() is called
4053 */
58e2af8b 4054 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4055 if (!env)
4056 return -ENOMEM;
4057
3df126f3
JK
4058 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4059 (*prog)->len);
4060 ret = -ENOMEM;
4061 if (!env->insn_aux_data)
4062 goto err_free_env;
9bac3d6d 4063 env->prog = *prog;
0246e64d 4064
cbd35700
AS
4065 /* grab the mutex to protect few globals used by verifier */
4066 mutex_lock(&bpf_verifier_lock);
4067
4068 if (attr->log_level || attr->log_buf || attr->log_size) {
4069 /* user requested verbose verifier output
4070 * and supplied buffer to store the verification trace
4071 */
4072 log_level = attr->log_level;
4073 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4074 log_size = attr->log_size;
4075 log_len = 0;
4076
4077 ret = -EINVAL;
4078 /* log_* values have to be sane */
4079 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4080 log_level == 0 || log_ubuf == NULL)
3df126f3 4081 goto err_unlock;
cbd35700
AS
4082
4083 ret = -ENOMEM;
4084 log_buf = vmalloc(log_size);
4085 if (!log_buf)
3df126f3 4086 goto err_unlock;
cbd35700
AS
4087 } else {
4088 log_level = 0;
4089 }
1ad2f583
DB
4090
4091 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4092 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4093 env->strict_alignment = true;
cbd35700 4094
0246e64d
AS
4095 ret = replace_map_fd_with_map_ptr(env);
4096 if (ret < 0)
4097 goto skip_full_check;
4098
9bac3d6d 4099 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4100 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4101 GFP_USER);
4102 ret = -ENOMEM;
4103 if (!env->explored_states)
4104 goto skip_full_check;
4105
475fb78f
AS
4106 ret = check_cfg(env);
4107 if (ret < 0)
4108 goto skip_full_check;
4109
1be7f75d
AS
4110 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4111
17a52670 4112 ret = do_check(env);
cbd35700 4113
0246e64d 4114skip_full_check:
17a52670 4115 while (pop_stack(env, NULL) >= 0);
f1bca824 4116 free_states(env);
0246e64d 4117
9bac3d6d
AS
4118 if (ret == 0)
4119 /* program is valid, convert *(u32*)(ctx + off) accesses */
4120 ret = convert_ctx_accesses(env);
4121
e245c5c6 4122 if (ret == 0)
79741b3b 4123 ret = fixup_bpf_calls(env);
e245c5c6 4124
cbd35700
AS
4125 if (log_level && log_len >= log_size - 1) {
4126 BUG_ON(log_len >= log_size);
4127 /* verifier log exceeded user supplied buffer */
4128 ret = -ENOSPC;
4129 /* fall through to return what was recorded */
4130 }
4131
4132 /* copy verifier log back to user space including trailing zero */
4133 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4134 ret = -EFAULT;
4135 goto free_log_buf;
4136 }
4137
0246e64d
AS
4138 if (ret == 0 && env->used_map_cnt) {
4139 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4140 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4141 sizeof(env->used_maps[0]),
4142 GFP_KERNEL);
0246e64d 4143
9bac3d6d 4144 if (!env->prog->aux->used_maps) {
0246e64d
AS
4145 ret = -ENOMEM;
4146 goto free_log_buf;
4147 }
4148
9bac3d6d 4149 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4150 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4151 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4152
4153 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4154 * bpf_ld_imm64 instructions
4155 */
4156 convert_pseudo_ld_imm64(env);
4157 }
cbd35700
AS
4158
4159free_log_buf:
4160 if (log_level)
4161 vfree(log_buf);
9bac3d6d 4162 if (!env->prog->aux->used_maps)
0246e64d
AS
4163 /* if we didn't copy map pointers into bpf_prog_info, release
4164 * them now. Otherwise free_bpf_prog_info() will release them.
4165 */
4166 release_maps(env);
9bac3d6d 4167 *prog = env->prog;
3df126f3 4168err_unlock:
cbd35700 4169 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4170 vfree(env->insn_aux_data);
4171err_free_env:
4172 kfree(env);
51580e79
AS
4173 return ret;
4174}
13a27dfc
JK
4175
4176int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4177 void *priv)
4178{
4179 struct bpf_verifier_env *env;
4180 int ret;
4181
4182 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4183 if (!env)
4184 return -ENOMEM;
4185
4186 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4187 prog->len);
4188 ret = -ENOMEM;
4189 if (!env->insn_aux_data)
4190 goto err_free_env;
4191 env->prog = prog;
4192 env->analyzer_ops = ops;
4193 env->analyzer_priv = priv;
4194
4195 /* grab the mutex to protect few globals used by verifier */
4196 mutex_lock(&bpf_verifier_lock);
4197
4198 log_level = 0;
1ad2f583 4199
e07b98d9 4200 env->strict_alignment = false;
1ad2f583
DB
4201 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4202 env->strict_alignment = true;
13a27dfc
JK
4203
4204 env->explored_states = kcalloc(env->prog->len,
4205 sizeof(struct bpf_verifier_state_list *),
4206 GFP_KERNEL);
4207 ret = -ENOMEM;
4208 if (!env->explored_states)
4209 goto skip_full_check;
4210
4211 ret = check_cfg(env);
4212 if (ret < 0)
4213 goto skip_full_check;
4214
4215 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4216
4217 ret = do_check(env);
4218
4219skip_full_check:
4220 while (pop_stack(env, NULL) >= 0);
4221 free_states(env);
4222
4223 mutex_unlock(&bpf_verifier_lock);
4224 vfree(env->insn_aux_data);
4225err_free_env:
4226 kfree(env);
4227 return ret;
4228}
4229EXPORT_SYMBOL_GPL(bpf_analyzer);