xdp: Fix race in dev_map_hash_update_elem() when replacing element
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34
JK
25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26#define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
c93552c4
DB
174#define BPF_MAP_PTR_UNPRIV 1UL
175#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178
179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180{
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182}
183
184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185{
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
187}
188
189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
191{
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196}
fad73a1a 197
33ff9823
DB
198struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
435faee1 200 bool raw_mode;
36bbef52 201 bool pkt_access;
435faee1
DB
202 int regno;
203 int access_size;
849fa506
YS
204 s64 msize_smax_value;
205 u64 msize_umax_value;
1b986589 206 int ref_obj_id;
d83525ca 207 int func_id;
33ff9823
DB
208};
209
cbd35700
AS
210static DEFINE_MUTEX(bpf_verifier_lock);
211
d9762e84
MKL
212static const struct bpf_line_info *
213find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214{
215 const struct bpf_line_info *linfo;
216 const struct bpf_prog *prog;
217 u32 i, nr_linfo;
218
219 prog = env->prog;
220 nr_linfo = prog->aux->nr_linfo;
221
222 if (!nr_linfo || insn_off >= prog->len)
223 return NULL;
224
225 linfo = prog->aux->linfo;
226 for (i = 1; i < nr_linfo; i++)
227 if (insn_off < linfo[i].insn_off)
228 break;
229
230 return &linfo[i - 1];
231}
232
77d2e05a
MKL
233void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 va_list args)
cbd35700 235{
a2a7d570 236 unsigned int n;
cbd35700 237
a2a7d570 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
239
240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 "verifier log line truncated - local buffer too short\n");
242
243 n = min(log->len_total - log->len_used - 1, n);
244 log->kbuf[n] = '\0';
245
246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 log->len_used += n;
248 else
249 log->ubuf = NULL;
cbd35700 250}
abe08840
JO
251
252/* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
430e68d1 255 */
abe08840
JO
256__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 const char *fmt, ...)
258{
259 va_list args;
260
77d2e05a
MKL
261 if (!bpf_verifier_log_needed(&env->log))
262 return;
263
abe08840 264 va_start(args, fmt);
77d2e05a 265 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
266 va_end(args);
267}
268EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269
270__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271{
77d2e05a 272 struct bpf_verifier_env *env = private_data;
abe08840
JO
273 va_list args;
274
77d2e05a
MKL
275 if (!bpf_verifier_log_needed(&env->log))
276 return;
277
abe08840 278 va_start(args, fmt);
77d2e05a 279 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
280 va_end(args);
281}
cbd35700 282
d9762e84
MKL
283static const char *ltrim(const char *s)
284{
285 while (isspace(*s))
286 s++;
287
288 return s;
289}
290
291__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 u32 insn_off,
293 const char *prefix_fmt, ...)
294{
295 const struct bpf_line_info *linfo;
296
297 if (!bpf_verifier_log_needed(&env->log))
298 return;
299
300 linfo = find_linfo(env, insn_off);
301 if (!linfo || linfo == env->prev_linfo)
302 return;
303
304 if (prefix_fmt) {
305 va_list args;
306
307 va_start(args, prefix_fmt);
308 bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 va_end(args);
310 }
311
312 verbose(env, "%s\n",
313 ltrim(btf_name_by_offset(env->prog->aux->btf,
314 linfo->line_off)));
315
316 env->prev_linfo = linfo;
317}
318
de8f3a83
DB
319static bool type_is_pkt_pointer(enum bpf_reg_type type)
320{
321 return type == PTR_TO_PACKET ||
322 type == PTR_TO_PACKET_META;
323}
324
46f8bc92
MKL
325static bool type_is_sk_pointer(enum bpf_reg_type type)
326{
327 return type == PTR_TO_SOCKET ||
655a51e5 328 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
329 type == PTR_TO_TCP_SOCK ||
330 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7 335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 336 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
337 type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
339}
340
d83525ca
AS
341static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342{
343 return reg->type == PTR_TO_MAP_VALUE &&
344 map_value_has_spin_lock(reg->map_ptr);
345}
346
cba368c1
MKL
347static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348{
349 return type == PTR_TO_SOCKET ||
350 type == PTR_TO_SOCKET_OR_NULL ||
351 type == PTR_TO_TCP_SOCK ||
352 type == PTR_TO_TCP_SOCK_OR_NULL;
353}
354
1b986589 355static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 356{
1b986589 357 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
358}
359
360/* Determine whether the function releases some resources allocated by another
361 * function call. The first reference type argument will be assumed to be
362 * released by release_reference().
363 */
364static bool is_release_function(enum bpf_func_id func_id)
365{
6acc9b43 366 return func_id == BPF_FUNC_sk_release;
840b9615
JS
367}
368
46f8bc92
MKL
369static bool is_acquire_function(enum bpf_func_id func_id)
370{
371 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
372 func_id == BPF_FUNC_sk_lookup_udp ||
373 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
374}
375
1b986589
MKL
376static bool is_ptr_cast_function(enum bpf_func_id func_id)
377{
378 return func_id == BPF_FUNC_tcp_sock ||
379 func_id == BPF_FUNC_sk_fullsock;
380}
381
17a52670
AS
382/* string representation of 'enum bpf_reg_type' */
383static const char * const reg_type_str[] = {
384 [NOT_INIT] = "?",
f1174f77 385 [SCALAR_VALUE] = "inv",
17a52670
AS
386 [PTR_TO_CTX] = "ctx",
387 [CONST_PTR_TO_MAP] = "map_ptr",
388 [PTR_TO_MAP_VALUE] = "map_value",
389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 390 [PTR_TO_STACK] = "fp",
969bf05e 391 [PTR_TO_PACKET] = "pkt",
de8f3a83 392 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 393 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 394 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
395 [PTR_TO_SOCKET] = "sock",
396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
397 [PTR_TO_SOCK_COMMON] = "sock_common",
398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
399 [PTR_TO_TCP_SOCK] = "tcp_sock",
400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 401 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 402 [PTR_TO_XDP_SOCK] = "xdp_sock",
17a52670
AS
403};
404
8efea21d
EC
405static char slot_type_char[] = {
406 [STACK_INVALID] = '?',
407 [STACK_SPILL] = 'r',
408 [STACK_MISC] = 'm',
409 [STACK_ZERO] = '0',
410};
411
4e92024a
AS
412static void print_liveness(struct bpf_verifier_env *env,
413 enum bpf_reg_liveness live)
414{
9242b5f5 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
416 verbose(env, "_");
417 if (live & REG_LIVE_READ)
418 verbose(env, "r");
419 if (live & REG_LIVE_WRITTEN)
420 verbose(env, "w");
9242b5f5
AS
421 if (live & REG_LIVE_DONE)
422 verbose(env, "D");
4e92024a
AS
423}
424
f4d7e40a
AS
425static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 const struct bpf_reg_state *reg)
427{
428 struct bpf_verifier_state *cur = env->cur_state;
429
430 return cur->frame[reg->frameno];
431}
432
61bd5218 433static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 434 const struct bpf_func_state *state)
17a52670 435{
f4d7e40a 436 const struct bpf_reg_state *reg;
17a52670
AS
437 enum bpf_reg_type t;
438 int i;
439
f4d7e40a
AS
440 if (state->frameno)
441 verbose(env, " frame%d:", state->frameno);
17a52670 442 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
443 reg = &state->regs[i];
444 t = reg->type;
17a52670
AS
445 if (t == NOT_INIT)
446 continue;
4e92024a
AS
447 verbose(env, " R%d", i);
448 print_liveness(env, reg->live);
449 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
450 if (t == SCALAR_VALUE && reg->precise)
451 verbose(env, "P");
f1174f77
EC
452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 tnum_is_const(reg->var_off)) {
454 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 455 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 456 } else {
cba368c1
MKL
457 verbose(env, "(id=%d", reg->id);
458 if (reg_type_may_be_refcounted_or_null(t))
459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 460 if (t != SCALAR_VALUE)
61bd5218 461 verbose(env, ",off=%d", reg->off);
de8f3a83 462 if (type_is_pkt_pointer(t))
61bd5218 463 verbose(env, ",r=%d", reg->range);
f1174f77
EC
464 else if (t == CONST_PTR_TO_MAP ||
465 t == PTR_TO_MAP_VALUE ||
466 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 467 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
468 reg->map_ptr->key_size,
469 reg->map_ptr->value_size);
7d1238f2
EC
470 if (tnum_is_const(reg->var_off)) {
471 /* Typically an immediate SCALAR_VALUE, but
472 * could be a pointer whose offset is too big
473 * for reg->off
474 */
61bd5218 475 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
476 } else {
477 if (reg->smin_value != reg->umin_value &&
478 reg->smin_value != S64_MIN)
61bd5218 479 verbose(env, ",smin_value=%lld",
7d1238f2
EC
480 (long long)reg->smin_value);
481 if (reg->smax_value != reg->umax_value &&
482 reg->smax_value != S64_MAX)
61bd5218 483 verbose(env, ",smax_value=%lld",
7d1238f2
EC
484 (long long)reg->smax_value);
485 if (reg->umin_value != 0)
61bd5218 486 verbose(env, ",umin_value=%llu",
7d1238f2
EC
487 (unsigned long long)reg->umin_value);
488 if (reg->umax_value != U64_MAX)
61bd5218 489 verbose(env, ",umax_value=%llu",
7d1238f2
EC
490 (unsigned long long)reg->umax_value);
491 if (!tnum_is_unknown(reg->var_off)) {
492 char tn_buf[48];
f1174f77 493
7d1238f2 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 495 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 496 }
f1174f77 497 }
61bd5218 498 verbose(env, ")");
f1174f77 499 }
17a52670 500 }
638f5b90 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
502 char types_buf[BPF_REG_SIZE + 1];
503 bool valid = false;
504 int j;
505
506 for (j = 0; j < BPF_REG_SIZE; j++) {
507 if (state->stack[i].slot_type[j] != STACK_INVALID)
508 valid = true;
509 types_buf[j] = slot_type_char[
510 state->stack[i].slot_type[j]];
511 }
512 types_buf[BPF_REG_SIZE] = 0;
513 if (!valid)
514 continue;
515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
517 if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 reg = &state->stack[i].spilled_ptr;
519 t = reg->type;
520 verbose(env, "=%s", reg_type_str[t]);
521 if (t == SCALAR_VALUE && reg->precise)
522 verbose(env, "P");
523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 verbose(env, "%lld", reg->var_off.value + reg->off);
525 } else {
8efea21d 526 verbose(env, "=%s", types_buf);
b5dc0163 527 }
17a52670 528 }
fd978bf7
JS
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
61bd5218 535 verbose(env, "\n");
17a52670
AS
536}
537
84dbf350
JS
538#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541{ \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
638f5b90 552}
fd978bf7
JS
553/* copy_reference_state() */
554COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
555/* copy_stack_state() */
556COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557#undef COPY_STATE_FN
558
559#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562{ \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592}
fd978bf7
JS
593/* realloc_reference_state() */
594REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
595/* realloc_stack_state() */
596REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597#undef REALLOC_STATE_FN
638f5b90
AS
598
599/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 601 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
638f5b90 605 */
fd978bf7
JS
606static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
638f5b90 608{
fd978bf7
JS
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613}
614
615/* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
638f5b90 619 */
fd978bf7 620static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 621{
fd978bf7
JS
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 632
fd978bf7
JS
633 return id;
634}
635
636/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 637static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
638{
639 int i, last_idx;
640
fd978bf7
JS
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
638f5b90 649 return 0;
638f5b90 650 }
638f5b90 651 }
46f8bc92 652 return -EINVAL;
fd978bf7
JS
653}
654
655static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657{
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
638f5b90
AS
664 return 0;
665}
666
f4d7e40a
AS
667static void free_func_state(struct bpf_func_state *state)
668{
5896351e
AS
669 if (!state)
670 return;
fd978bf7 671 kfree(state->refs);
f4d7e40a
AS
672 kfree(state->stack);
673 kfree(state);
674}
675
b5dc0163
AS
676static void clear_jmp_history(struct bpf_verifier_state *state)
677{
678 kfree(state->jmp_history);
679 state->jmp_history = NULL;
680 state->jmp_history_cnt = 0;
681}
682
1969db47
AS
683static void free_verifier_state(struct bpf_verifier_state *state,
684 bool free_self)
638f5b90 685{
f4d7e40a
AS
686 int i;
687
688 for (i = 0; i <= state->curframe; i++) {
689 free_func_state(state->frame[i]);
690 state->frame[i] = NULL;
691 }
b5dc0163 692 clear_jmp_history(state);
1969db47
AS
693 if (free_self)
694 kfree(state);
638f5b90
AS
695}
696
697/* copy verifier state from src to dst growing dst stack space
698 * when necessary to accommodate larger src stack
699 */
f4d7e40a
AS
700static int copy_func_state(struct bpf_func_state *dst,
701 const struct bpf_func_state *src)
638f5b90
AS
702{
703 int err;
704
fd978bf7
JS
705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 false);
707 if (err)
708 return err;
709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 err = copy_reference_state(dst, src);
638f5b90
AS
711 if (err)
712 return err;
638f5b90
AS
713 return copy_stack_state(dst, src);
714}
715
f4d7e40a
AS
716static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 const struct bpf_verifier_state *src)
718{
719 struct bpf_func_state *dst;
b5dc0163 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
721 int i, err;
722
b5dc0163
AS
723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 kfree(dst_state->jmp_history);
725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 if (!dst_state->jmp_history)
727 return -ENOMEM;
728 }
729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 dst_state->jmp_history_cnt = src->jmp_history_cnt;
731
f4d7e40a
AS
732 /* if dst has more stack frames then src frame, free them */
733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 free_func_state(dst_state->frame[i]);
735 dst_state->frame[i] = NULL;
736 }
979d63d5 737 dst_state->speculative = src->speculative;
f4d7e40a 738 dst_state->curframe = src->curframe;
d83525ca 739 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
740 dst_state->branches = src->branches;
741 dst_state->parent = src->parent;
b5dc0163
AS
742 dst_state->first_insn_idx = src->first_insn_idx;
743 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
744 for (i = 0; i <= src->curframe; i++) {
745 dst = dst_state->frame[i];
746 if (!dst) {
747 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 if (!dst)
749 return -ENOMEM;
750 dst_state->frame[i] = dst;
751 }
752 err = copy_func_state(dst, src->frame[i]);
753 if (err)
754 return err;
755 }
756 return 0;
757}
758
2589726d
AS
759static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760{
761 while (st) {
762 u32 br = --st->branches;
763
764 /* WARN_ON(br > 1) technically makes sense here,
765 * but see comment in push_stack(), hence:
766 */
767 WARN_ONCE((int)br < 0,
768 "BUG update_branch_counts:branches_to_explore=%d\n",
769 br);
770 if (br)
771 break;
772 st = st->parent;
773 }
774}
775
638f5b90
AS
776static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 int *insn_idx)
778{
779 struct bpf_verifier_state *cur = env->cur_state;
780 struct bpf_verifier_stack_elem *elem, *head = env->head;
781 int err;
17a52670
AS
782
783 if (env->head == NULL)
638f5b90 784 return -ENOENT;
17a52670 785
638f5b90
AS
786 if (cur) {
787 err = copy_verifier_state(cur, &head->st);
788 if (err)
789 return err;
790 }
791 if (insn_idx)
792 *insn_idx = head->insn_idx;
17a52670 793 if (prev_insn_idx)
638f5b90
AS
794 *prev_insn_idx = head->prev_insn_idx;
795 elem = head->next;
1969db47 796 free_verifier_state(&head->st, false);
638f5b90 797 kfree(head);
17a52670
AS
798 env->head = elem;
799 env->stack_size--;
638f5b90 800 return 0;
17a52670
AS
801}
802
58e2af8b 803static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
804 int insn_idx, int prev_insn_idx,
805 bool speculative)
17a52670 806{
638f5b90 807 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 808 struct bpf_verifier_stack_elem *elem;
638f5b90 809 int err;
17a52670 810
638f5b90 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
812 if (!elem)
813 goto err;
814
17a52670
AS
815 elem->insn_idx = insn_idx;
816 elem->prev_insn_idx = prev_insn_idx;
817 elem->next = env->head;
818 env->head = elem;
819 env->stack_size++;
1969db47
AS
820 err = copy_verifier_state(&elem->st, cur);
821 if (err)
822 goto err;
979d63d5 823 elem->st.speculative |= speculative;
b285fcb7
AS
824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 verbose(env, "The sequence of %d jumps is too complex.\n",
826 env->stack_size);
17a52670
AS
827 goto err;
828 }
2589726d
AS
829 if (elem->st.parent) {
830 ++elem->st.parent->branches;
831 /* WARN_ON(branches > 2) technically makes sense here,
832 * but
833 * 1. speculative states will bump 'branches' for non-branch
834 * instructions
835 * 2. is_state_visited() heuristics may decide not to create
836 * a new state for a sequence of branches and all such current
837 * and cloned states will be pointing to a single parent state
838 * which might have large 'branches' count.
839 */
840 }
17a52670
AS
841 return &elem->st;
842err:
5896351e
AS
843 free_verifier_state(env->cur_state, true);
844 env->cur_state = NULL;
17a52670 845 /* pop all elements and return */
638f5b90 846 while (!pop_stack(env, NULL, NULL));
17a52670
AS
847 return NULL;
848}
849
850#define CALLER_SAVED_REGS 6
851static const int caller_saved[CALLER_SAVED_REGS] = {
852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853};
854
f1174f77
EC
855static void __mark_reg_not_init(struct bpf_reg_state *reg);
856
b03c9f9f
EC
857/* Mark the unknown part of a register (variable offset or scalar value) as
858 * known to have the value @imm.
859 */
860static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861{
a9c676bc
AS
862 /* Clear id, off, and union(map_ptr, range) */
863 memset(((u8 *)reg) + sizeof(reg->type), 0,
864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
865 reg->var_off = tnum_const(imm);
866 reg->smin_value = (s64)imm;
867 reg->smax_value = (s64)imm;
868 reg->umin_value = imm;
869 reg->umax_value = imm;
870}
871
f1174f77
EC
872/* Mark the 'variable offset' part of a register as zero. This should be
873 * used only on registers holding a pointer type.
874 */
875static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 876{
b03c9f9f 877 __mark_reg_known(reg, 0);
f1174f77 878}
a9789ef9 879
cc2b14d5
AS
880static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881{
882 __mark_reg_known(reg, 0);
cc2b14d5
AS
883 reg->type = SCALAR_VALUE;
884}
885
61bd5218
JK
886static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
888{
889 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
891 /* Something bad happened, let's kill all regs */
892 for (regno = 0; regno < MAX_BPF_REG; regno++)
893 __mark_reg_not_init(regs + regno);
894 return;
895 }
896 __mark_reg_known_zero(regs + regno);
897}
898
de8f3a83
DB
899static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900{
901 return type_is_pkt_pointer(reg->type);
902}
903
904static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905{
906 return reg_is_pkt_pointer(reg) ||
907 reg->type == PTR_TO_PACKET_END;
908}
909
910/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 enum bpf_reg_type which)
913{
914 /* The register can already have a range from prior markings.
915 * This is fine as long as it hasn't been advanced from its
916 * origin.
917 */
918 return reg->type == which &&
919 reg->id == 0 &&
920 reg->off == 0 &&
921 tnum_equals_const(reg->var_off, 0);
922}
923
b03c9f9f
EC
924/* Attempts to improve min/max values based on var_off information */
925static void __update_reg_bounds(struct bpf_reg_state *reg)
926{
927 /* min signed is max(sign bit) | min(other bits) */
928 reg->smin_value = max_t(s64, reg->smin_value,
929 reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 /* max signed is min(sign bit) | max(other bits) */
931 reg->smax_value = min_t(s64, reg->smax_value,
932 reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 reg->umax_value = min(reg->umax_value,
935 reg->var_off.value | reg->var_off.mask);
936}
937
938/* Uses signed min/max values to inform unsigned, and vice-versa */
939static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940{
941 /* Learn sign from signed bounds.
942 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 * are the same, so combine. This works even in the negative case, e.g.
944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 */
946 if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 reg->umin_value);
949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 reg->umax_value);
951 return;
952 }
953 /* Learn sign from unsigned bounds. Signed bounds cross the sign
954 * boundary, so we must be careful.
955 */
956 if ((s64)reg->umax_value >= 0) {
957 /* Positive. We can't learn anything from the smin, but smax
958 * is positive, hence safe.
959 */
960 reg->smin_value = reg->umin_value;
961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 reg->umax_value);
963 } else if ((s64)reg->umin_value < 0) {
964 /* Negative. We can't learn anything from the smax, but smin
965 * is negative, hence safe.
966 */
967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 reg->umin_value);
969 reg->smax_value = reg->umax_value;
970 }
971}
972
973/* Attempts to improve var_off based on unsigned min/max information */
974static void __reg_bound_offset(struct bpf_reg_state *reg)
975{
976 reg->var_off = tnum_intersect(reg->var_off,
977 tnum_range(reg->umin_value,
978 reg->umax_value));
979}
980
981/* Reset the min/max bounds of a register */
982static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983{
984 reg->smin_value = S64_MIN;
985 reg->smax_value = S64_MAX;
986 reg->umin_value = 0;
987 reg->umax_value = U64_MAX;
988}
989
f1174f77
EC
990/* Mark a register as having a completely unknown (scalar) value. */
991static void __mark_reg_unknown(struct bpf_reg_state *reg)
992{
a9c676bc
AS
993 /*
994 * Clear type, id, off, and union(map_ptr, range) and
995 * padding between 'type' and union
996 */
997 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 998 reg->type = SCALAR_VALUE;
f1174f77 999 reg->var_off = tnum_unknown;
f4d7e40a 1000 reg->frameno = 0;
b03c9f9f 1001 __mark_reg_unbounded(reg);
f1174f77
EC
1002}
1003
61bd5218
JK
1004static void mark_reg_unknown(struct bpf_verifier_env *env,
1005 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1006{
1007 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1008 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1009 /* Something bad happened, let's kill all regs except FP */
1010 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1011 __mark_reg_not_init(regs + regno);
1012 return;
1013 }
6754172c
AS
1014 regs += regno;
1015 __mark_reg_unknown(regs);
1016 /* constant backtracking is enabled for root without bpf2bpf calls */
1017 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1018 true : false;
f1174f77
EC
1019}
1020
1021static void __mark_reg_not_init(struct bpf_reg_state *reg)
1022{
1023 __mark_reg_unknown(reg);
1024 reg->type = NOT_INIT;
1025}
1026
61bd5218
JK
1027static void mark_reg_not_init(struct bpf_verifier_env *env,
1028 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1029{
1030 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1031 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1032 /* Something bad happened, let's kill all regs except FP */
1033 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1034 __mark_reg_not_init(regs + regno);
1035 return;
1036 }
1037 __mark_reg_not_init(regs + regno);
a9789ef9
DB
1038}
1039
5327ed3d 1040#define DEF_NOT_SUBREG (0)
61bd5218 1041static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1042 struct bpf_func_state *state)
17a52670 1043{
f4d7e40a 1044 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1045 int i;
1046
dc503a8a 1047 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1048 mark_reg_not_init(env, regs, i);
dc503a8a 1049 regs[i].live = REG_LIVE_NONE;
679c782d 1050 regs[i].parent = NULL;
5327ed3d 1051 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1052 }
17a52670
AS
1053
1054 /* frame pointer */
f1174f77 1055 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1056 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1057 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1058
1059 /* 1st arg to a function */
1060 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1061 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1062}
1063
f4d7e40a
AS
1064#define BPF_MAIN_FUNC (-1)
1065static void init_func_state(struct bpf_verifier_env *env,
1066 struct bpf_func_state *state,
1067 int callsite, int frameno, int subprogno)
1068{
1069 state->callsite = callsite;
1070 state->frameno = frameno;
1071 state->subprogno = subprogno;
1072 init_reg_state(env, state);
1073}
1074
17a52670
AS
1075enum reg_arg_type {
1076 SRC_OP, /* register is used as source operand */
1077 DST_OP, /* register is used as destination operand */
1078 DST_OP_NO_MARK /* same as above, check only, don't mark */
1079};
1080
cc8b0b92
AS
1081static int cmp_subprogs(const void *a, const void *b)
1082{
9c8105bd
JW
1083 return ((struct bpf_subprog_info *)a)->start -
1084 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1085}
1086
1087static int find_subprog(struct bpf_verifier_env *env, int off)
1088{
9c8105bd 1089 struct bpf_subprog_info *p;
cc8b0b92 1090
9c8105bd
JW
1091 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1092 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1093 if (!p)
1094 return -ENOENT;
9c8105bd 1095 return p - env->subprog_info;
cc8b0b92
AS
1096
1097}
1098
1099static int add_subprog(struct bpf_verifier_env *env, int off)
1100{
1101 int insn_cnt = env->prog->len;
1102 int ret;
1103
1104 if (off >= insn_cnt || off < 0) {
1105 verbose(env, "call to invalid destination\n");
1106 return -EINVAL;
1107 }
1108 ret = find_subprog(env, off);
1109 if (ret >= 0)
1110 return 0;
4cb3d99c 1111 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1112 verbose(env, "too many subprograms\n");
1113 return -E2BIG;
1114 }
9c8105bd
JW
1115 env->subprog_info[env->subprog_cnt++].start = off;
1116 sort(env->subprog_info, env->subprog_cnt,
1117 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1118 return 0;
1119}
1120
1121static int check_subprogs(struct bpf_verifier_env *env)
1122{
1123 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1124 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1125 struct bpf_insn *insn = env->prog->insnsi;
1126 int insn_cnt = env->prog->len;
1127
f910cefa
JW
1128 /* Add entry function. */
1129 ret = add_subprog(env, 0);
1130 if (ret < 0)
1131 return ret;
1132
cc8b0b92
AS
1133 /* determine subprog starts. The end is one before the next starts */
1134 for (i = 0; i < insn_cnt; i++) {
1135 if (insn[i].code != (BPF_JMP | BPF_CALL))
1136 continue;
1137 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1138 continue;
1139 if (!env->allow_ptr_leaks) {
1140 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1141 return -EPERM;
1142 }
cc8b0b92
AS
1143 ret = add_subprog(env, i + insn[i].imm + 1);
1144 if (ret < 0)
1145 return ret;
1146 }
1147
4cb3d99c
JW
1148 /* Add a fake 'exit' subprog which could simplify subprog iteration
1149 * logic. 'subprog_cnt' should not be increased.
1150 */
1151 subprog[env->subprog_cnt].start = insn_cnt;
1152
06ee7115 1153 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1154 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1155 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1156
1157 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1158 subprog_start = subprog[cur_subprog].start;
1159 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1160 for (i = 0; i < insn_cnt; i++) {
1161 u8 code = insn[i].code;
1162
092ed096 1163 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1164 goto next;
1165 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1166 goto next;
1167 off = i + insn[i].off + 1;
1168 if (off < subprog_start || off >= subprog_end) {
1169 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1170 return -EINVAL;
1171 }
1172next:
1173 if (i == subprog_end - 1) {
1174 /* to avoid fall-through from one subprog into another
1175 * the last insn of the subprog should be either exit
1176 * or unconditional jump back
1177 */
1178 if (code != (BPF_JMP | BPF_EXIT) &&
1179 code != (BPF_JMP | BPF_JA)) {
1180 verbose(env, "last insn is not an exit or jmp\n");
1181 return -EINVAL;
1182 }
1183 subprog_start = subprog_end;
4cb3d99c
JW
1184 cur_subprog++;
1185 if (cur_subprog < env->subprog_cnt)
9c8105bd 1186 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1187 }
1188 }
1189 return 0;
1190}
1191
679c782d
EC
1192/* Parentage chain of this register (or stack slot) should take care of all
1193 * issues like callee-saved registers, stack slot allocation time, etc.
1194 */
f4d7e40a 1195static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1196 const struct bpf_reg_state *state,
5327ed3d 1197 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1198{
1199 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1200 int cnt = 0;
dc503a8a
EC
1201
1202 while (parent) {
1203 /* if read wasn't screened by an earlier write ... */
679c782d 1204 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1205 break;
9242b5f5
AS
1206 if (parent->live & REG_LIVE_DONE) {
1207 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1208 reg_type_str[parent->type],
1209 parent->var_off.value, parent->off);
1210 return -EFAULT;
1211 }
5327ed3d
JW
1212 /* The first condition is more likely to be true than the
1213 * second, checked it first.
1214 */
1215 if ((parent->live & REG_LIVE_READ) == flag ||
1216 parent->live & REG_LIVE_READ64)
25af32da
AS
1217 /* The parentage chain never changes and
1218 * this parent was already marked as LIVE_READ.
1219 * There is no need to keep walking the chain again and
1220 * keep re-marking all parents as LIVE_READ.
1221 * This case happens when the same register is read
1222 * multiple times without writes into it in-between.
5327ed3d
JW
1223 * Also, if parent has the stronger REG_LIVE_READ64 set,
1224 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1225 */
1226 break;
dc503a8a 1227 /* ... then we depend on parent's value */
5327ed3d
JW
1228 parent->live |= flag;
1229 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1230 if (flag == REG_LIVE_READ64)
1231 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1232 state = parent;
1233 parent = state->parent;
f4d7e40a 1234 writes = true;
06ee7115 1235 cnt++;
dc503a8a 1236 }
06ee7115
AS
1237
1238 if (env->longest_mark_read_walk < cnt)
1239 env->longest_mark_read_walk = cnt;
f4d7e40a 1240 return 0;
dc503a8a
EC
1241}
1242
5327ed3d
JW
1243/* This function is supposed to be used by the following 32-bit optimization
1244 * code only. It returns TRUE if the source or destination register operates
1245 * on 64-bit, otherwise return FALSE.
1246 */
1247static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1248 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1249{
1250 u8 code, class, op;
1251
1252 code = insn->code;
1253 class = BPF_CLASS(code);
1254 op = BPF_OP(code);
1255 if (class == BPF_JMP) {
1256 /* BPF_EXIT for "main" will reach here. Return TRUE
1257 * conservatively.
1258 */
1259 if (op == BPF_EXIT)
1260 return true;
1261 if (op == BPF_CALL) {
1262 /* BPF to BPF call will reach here because of marking
1263 * caller saved clobber with DST_OP_NO_MARK for which we
1264 * don't care the register def because they are anyway
1265 * marked as NOT_INIT already.
1266 */
1267 if (insn->src_reg == BPF_PSEUDO_CALL)
1268 return false;
1269 /* Helper call will reach here because of arg type
1270 * check, conservatively return TRUE.
1271 */
1272 if (t == SRC_OP)
1273 return true;
1274
1275 return false;
1276 }
1277 }
1278
1279 if (class == BPF_ALU64 || class == BPF_JMP ||
1280 /* BPF_END always use BPF_ALU class. */
1281 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1282 return true;
1283
1284 if (class == BPF_ALU || class == BPF_JMP32)
1285 return false;
1286
1287 if (class == BPF_LDX) {
1288 if (t != SRC_OP)
1289 return BPF_SIZE(code) == BPF_DW;
1290 /* LDX source must be ptr. */
1291 return true;
1292 }
1293
1294 if (class == BPF_STX) {
1295 if (reg->type != SCALAR_VALUE)
1296 return true;
1297 return BPF_SIZE(code) == BPF_DW;
1298 }
1299
1300 if (class == BPF_LD) {
1301 u8 mode = BPF_MODE(code);
1302
1303 /* LD_IMM64 */
1304 if (mode == BPF_IMM)
1305 return true;
1306
1307 /* Both LD_IND and LD_ABS return 32-bit data. */
1308 if (t != SRC_OP)
1309 return false;
1310
1311 /* Implicit ctx ptr. */
1312 if (regno == BPF_REG_6)
1313 return true;
1314
1315 /* Explicit source could be any width. */
1316 return true;
1317 }
1318
1319 if (class == BPF_ST)
1320 /* The only source register for BPF_ST is a ptr. */
1321 return true;
1322
1323 /* Conservatively return true at default. */
1324 return true;
1325}
1326
b325fbca
JW
1327/* Return TRUE if INSN doesn't have explicit value define. */
1328static bool insn_no_def(struct bpf_insn *insn)
1329{
1330 u8 class = BPF_CLASS(insn->code);
1331
1332 return (class == BPF_JMP || class == BPF_JMP32 ||
1333 class == BPF_STX || class == BPF_ST);
1334}
1335
1336/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1337static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1338{
1339 if (insn_no_def(insn))
1340 return false;
1341
1342 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1343}
1344
5327ed3d
JW
1345static void mark_insn_zext(struct bpf_verifier_env *env,
1346 struct bpf_reg_state *reg)
1347{
1348 s32 def_idx = reg->subreg_def;
1349
1350 if (def_idx == DEF_NOT_SUBREG)
1351 return;
1352
1353 env->insn_aux_data[def_idx - 1].zext_dst = true;
1354 /* The dst will be zero extended, so won't be sub-register anymore. */
1355 reg->subreg_def = DEF_NOT_SUBREG;
1356}
1357
dc503a8a 1358static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1359 enum reg_arg_type t)
1360{
f4d7e40a
AS
1361 struct bpf_verifier_state *vstate = env->cur_state;
1362 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1363 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1364 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1365 bool rw64;
dc503a8a 1366
17a52670 1367 if (regno >= MAX_BPF_REG) {
61bd5218 1368 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1369 return -EINVAL;
1370 }
1371
c342dc10 1372 reg = &regs[regno];
5327ed3d 1373 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1374 if (t == SRC_OP) {
1375 /* check whether register used as source operand can be read */
c342dc10 1376 if (reg->type == NOT_INIT) {
61bd5218 1377 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1378 return -EACCES;
1379 }
679c782d 1380 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1381 if (regno == BPF_REG_FP)
1382 return 0;
1383
5327ed3d
JW
1384 if (rw64)
1385 mark_insn_zext(env, reg);
1386
1387 return mark_reg_read(env, reg, reg->parent,
1388 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1389 } else {
1390 /* check whether register used as dest operand can be written to */
1391 if (regno == BPF_REG_FP) {
61bd5218 1392 verbose(env, "frame pointer is read only\n");
17a52670
AS
1393 return -EACCES;
1394 }
c342dc10 1395 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1396 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1397 if (t == DST_OP)
61bd5218 1398 mark_reg_unknown(env, regs, regno);
17a52670
AS
1399 }
1400 return 0;
1401}
1402
b5dc0163
AS
1403/* for any branch, call, exit record the history of jmps in the given state */
1404static int push_jmp_history(struct bpf_verifier_env *env,
1405 struct bpf_verifier_state *cur)
1406{
1407 u32 cnt = cur->jmp_history_cnt;
1408 struct bpf_idx_pair *p;
1409
1410 cnt++;
1411 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1412 if (!p)
1413 return -ENOMEM;
1414 p[cnt - 1].idx = env->insn_idx;
1415 p[cnt - 1].prev_idx = env->prev_insn_idx;
1416 cur->jmp_history = p;
1417 cur->jmp_history_cnt = cnt;
1418 return 0;
1419}
1420
1421/* Backtrack one insn at a time. If idx is not at the top of recorded
1422 * history then previous instruction came from straight line execution.
1423 */
1424static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1425 u32 *history)
1426{
1427 u32 cnt = *history;
1428
1429 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1430 i = st->jmp_history[cnt - 1].prev_idx;
1431 (*history)--;
1432 } else {
1433 i--;
1434 }
1435 return i;
1436}
1437
1438/* For given verifier state backtrack_insn() is called from the last insn to
1439 * the first insn. Its purpose is to compute a bitmask of registers and
1440 * stack slots that needs precision in the parent verifier state.
1441 */
1442static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1443 u32 *reg_mask, u64 *stack_mask)
1444{
1445 const struct bpf_insn_cbs cbs = {
1446 .cb_print = verbose,
1447 .private_data = env,
1448 };
1449 struct bpf_insn *insn = env->prog->insnsi + idx;
1450 u8 class = BPF_CLASS(insn->code);
1451 u8 opcode = BPF_OP(insn->code);
1452 u8 mode = BPF_MODE(insn->code);
1453 u32 dreg = 1u << insn->dst_reg;
1454 u32 sreg = 1u << insn->src_reg;
1455 u32 spi;
1456
1457 if (insn->code == 0)
1458 return 0;
1459 if (env->log.level & BPF_LOG_LEVEL) {
1460 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1461 verbose(env, "%d: ", idx);
1462 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1463 }
1464
1465 if (class == BPF_ALU || class == BPF_ALU64) {
1466 if (!(*reg_mask & dreg))
1467 return 0;
1468 if (opcode == BPF_MOV) {
1469 if (BPF_SRC(insn->code) == BPF_X) {
1470 /* dreg = sreg
1471 * dreg needs precision after this insn
1472 * sreg needs precision before this insn
1473 */
1474 *reg_mask &= ~dreg;
1475 *reg_mask |= sreg;
1476 } else {
1477 /* dreg = K
1478 * dreg needs precision after this insn.
1479 * Corresponding register is already marked
1480 * as precise=true in this verifier state.
1481 * No further markings in parent are necessary
1482 */
1483 *reg_mask &= ~dreg;
1484 }
1485 } else {
1486 if (BPF_SRC(insn->code) == BPF_X) {
1487 /* dreg += sreg
1488 * both dreg and sreg need precision
1489 * before this insn
1490 */
1491 *reg_mask |= sreg;
1492 } /* else dreg += K
1493 * dreg still needs precision before this insn
1494 */
1495 }
1496 } else if (class == BPF_LDX) {
1497 if (!(*reg_mask & dreg))
1498 return 0;
1499 *reg_mask &= ~dreg;
1500
1501 /* scalars can only be spilled into stack w/o losing precision.
1502 * Load from any other memory can be zero extended.
1503 * The desire to keep that precision is already indicated
1504 * by 'precise' mark in corresponding register of this state.
1505 * No further tracking necessary.
1506 */
1507 if (insn->src_reg != BPF_REG_FP)
1508 return 0;
1509 if (BPF_SIZE(insn->code) != BPF_DW)
1510 return 0;
1511
1512 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1513 * that [fp - off] slot contains scalar that needs to be
1514 * tracked with precision
1515 */
1516 spi = (-insn->off - 1) / BPF_REG_SIZE;
1517 if (spi >= 64) {
1518 verbose(env, "BUG spi %d\n", spi);
1519 WARN_ONCE(1, "verifier backtracking bug");
1520 return -EFAULT;
1521 }
1522 *stack_mask |= 1ull << spi;
b3b50f05 1523 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1524 if (*reg_mask & dreg)
b3b50f05 1525 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1526 * to access memory. It means backtracking
1527 * encountered a case of pointer subtraction.
1528 */
1529 return -ENOTSUPP;
1530 /* scalars can only be spilled into stack */
1531 if (insn->dst_reg != BPF_REG_FP)
1532 return 0;
1533 if (BPF_SIZE(insn->code) != BPF_DW)
1534 return 0;
1535 spi = (-insn->off - 1) / BPF_REG_SIZE;
1536 if (spi >= 64) {
1537 verbose(env, "BUG spi %d\n", spi);
1538 WARN_ONCE(1, "verifier backtracking bug");
1539 return -EFAULT;
1540 }
1541 if (!(*stack_mask & (1ull << spi)))
1542 return 0;
1543 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1544 if (class == BPF_STX)
1545 *reg_mask |= sreg;
b5dc0163
AS
1546 } else if (class == BPF_JMP || class == BPF_JMP32) {
1547 if (opcode == BPF_CALL) {
1548 if (insn->src_reg == BPF_PSEUDO_CALL)
1549 return -ENOTSUPP;
1550 /* regular helper call sets R0 */
1551 *reg_mask &= ~1;
1552 if (*reg_mask & 0x3f) {
1553 /* if backtracing was looking for registers R1-R5
1554 * they should have been found already.
1555 */
1556 verbose(env, "BUG regs %x\n", *reg_mask);
1557 WARN_ONCE(1, "verifier backtracking bug");
1558 return -EFAULT;
1559 }
1560 } else if (opcode == BPF_EXIT) {
1561 return -ENOTSUPP;
1562 }
1563 } else if (class == BPF_LD) {
1564 if (!(*reg_mask & dreg))
1565 return 0;
1566 *reg_mask &= ~dreg;
1567 /* It's ld_imm64 or ld_abs or ld_ind.
1568 * For ld_imm64 no further tracking of precision
1569 * into parent is necessary
1570 */
1571 if (mode == BPF_IND || mode == BPF_ABS)
1572 /* to be analyzed */
1573 return -ENOTSUPP;
b5dc0163
AS
1574 }
1575 return 0;
1576}
1577
1578/* the scalar precision tracking algorithm:
1579 * . at the start all registers have precise=false.
1580 * . scalar ranges are tracked as normal through alu and jmp insns.
1581 * . once precise value of the scalar register is used in:
1582 * . ptr + scalar alu
1583 * . if (scalar cond K|scalar)
1584 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1585 * backtrack through the verifier states and mark all registers and
1586 * stack slots with spilled constants that these scalar regisers
1587 * should be precise.
1588 * . during state pruning two registers (or spilled stack slots)
1589 * are equivalent if both are not precise.
1590 *
1591 * Note the verifier cannot simply walk register parentage chain,
1592 * since many different registers and stack slots could have been
1593 * used to compute single precise scalar.
1594 *
1595 * The approach of starting with precise=true for all registers and then
1596 * backtrack to mark a register as not precise when the verifier detects
1597 * that program doesn't care about specific value (e.g., when helper
1598 * takes register as ARG_ANYTHING parameter) is not safe.
1599 *
1600 * It's ok to walk single parentage chain of the verifier states.
1601 * It's possible that this backtracking will go all the way till 1st insn.
1602 * All other branches will be explored for needing precision later.
1603 *
1604 * The backtracking needs to deal with cases like:
1605 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1606 * r9 -= r8
1607 * r5 = r9
1608 * if r5 > 0x79f goto pc+7
1609 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1610 * r5 += 1
1611 * ...
1612 * call bpf_perf_event_output#25
1613 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1614 *
1615 * and this case:
1616 * r6 = 1
1617 * call foo // uses callee's r6 inside to compute r0
1618 * r0 += r6
1619 * if r0 == 0 goto
1620 *
1621 * to track above reg_mask/stack_mask needs to be independent for each frame.
1622 *
1623 * Also if parent's curframe > frame where backtracking started,
1624 * the verifier need to mark registers in both frames, otherwise callees
1625 * may incorrectly prune callers. This is similar to
1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1627 *
1628 * For now backtracking falls back into conservative marking.
1629 */
1630static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1631 struct bpf_verifier_state *st)
1632{
1633 struct bpf_func_state *func;
1634 struct bpf_reg_state *reg;
1635 int i, j;
1636
1637 /* big hammer: mark all scalars precise in this path.
1638 * pop_stack may still get !precise scalars.
1639 */
1640 for (; st; st = st->parent)
1641 for (i = 0; i <= st->curframe; i++) {
1642 func = st->frame[i];
1643 for (j = 0; j < BPF_REG_FP; j++) {
1644 reg = &func->regs[j];
1645 if (reg->type != SCALAR_VALUE)
1646 continue;
1647 reg->precise = true;
1648 }
1649 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1650 if (func->stack[j].slot_type[0] != STACK_SPILL)
1651 continue;
1652 reg = &func->stack[j].spilled_ptr;
1653 if (reg->type != SCALAR_VALUE)
1654 continue;
1655 reg->precise = true;
1656 }
1657 }
1658}
1659
a3ce685d
AS
1660static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1661 int spi)
b5dc0163
AS
1662{
1663 struct bpf_verifier_state *st = env->cur_state;
1664 int first_idx = st->first_insn_idx;
1665 int last_idx = env->insn_idx;
1666 struct bpf_func_state *func;
1667 struct bpf_reg_state *reg;
a3ce685d
AS
1668 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1669 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1670 bool skip_first = true;
a3ce685d 1671 bool new_marks = false;
b5dc0163
AS
1672 int i, err;
1673
1674 if (!env->allow_ptr_leaks)
1675 /* backtracking is root only for now */
1676 return 0;
1677
1678 func = st->frame[st->curframe];
a3ce685d
AS
1679 if (regno >= 0) {
1680 reg = &func->regs[regno];
1681 if (reg->type != SCALAR_VALUE) {
1682 WARN_ONCE(1, "backtracing misuse");
1683 return -EFAULT;
1684 }
1685 if (!reg->precise)
1686 new_marks = true;
1687 else
1688 reg_mask = 0;
1689 reg->precise = true;
b5dc0163 1690 }
b5dc0163 1691
a3ce685d
AS
1692 while (spi >= 0) {
1693 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1694 stack_mask = 0;
1695 break;
1696 }
1697 reg = &func->stack[spi].spilled_ptr;
1698 if (reg->type != SCALAR_VALUE) {
1699 stack_mask = 0;
1700 break;
1701 }
1702 if (!reg->precise)
1703 new_marks = true;
1704 else
1705 stack_mask = 0;
1706 reg->precise = true;
1707 break;
1708 }
1709
1710 if (!new_marks)
1711 return 0;
1712 if (!reg_mask && !stack_mask)
1713 return 0;
b5dc0163
AS
1714 for (;;) {
1715 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
1716 u32 history = st->jmp_history_cnt;
1717
1718 if (env->log.level & BPF_LOG_LEVEL)
1719 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1720 for (i = last_idx;;) {
1721 if (skip_first) {
1722 err = 0;
1723 skip_first = false;
1724 } else {
1725 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1726 }
1727 if (err == -ENOTSUPP) {
1728 mark_all_scalars_precise(env, st);
1729 return 0;
1730 } else if (err) {
1731 return err;
1732 }
1733 if (!reg_mask && !stack_mask)
1734 /* Found assignment(s) into tracked register in this state.
1735 * Since this state is already marked, just return.
1736 * Nothing to be tracked further in the parent state.
1737 */
1738 return 0;
1739 if (i == first_idx)
1740 break;
1741 i = get_prev_insn_idx(st, i, &history);
1742 if (i >= env->prog->len) {
1743 /* This can happen if backtracking reached insn 0
1744 * and there are still reg_mask or stack_mask
1745 * to backtrack.
1746 * It means the backtracking missed the spot where
1747 * particular register was initialized with a constant.
1748 */
1749 verbose(env, "BUG backtracking idx %d\n", i);
1750 WARN_ONCE(1, "verifier backtracking bug");
1751 return -EFAULT;
1752 }
1753 }
1754 st = st->parent;
1755 if (!st)
1756 break;
1757
a3ce685d 1758 new_marks = false;
b5dc0163
AS
1759 func = st->frame[st->curframe];
1760 bitmap_from_u64(mask, reg_mask);
1761 for_each_set_bit(i, mask, 32) {
1762 reg = &func->regs[i];
a3ce685d
AS
1763 if (reg->type != SCALAR_VALUE) {
1764 reg_mask &= ~(1u << i);
b5dc0163 1765 continue;
a3ce685d 1766 }
b5dc0163
AS
1767 if (!reg->precise)
1768 new_marks = true;
1769 reg->precise = true;
1770 }
1771
1772 bitmap_from_u64(mask, stack_mask);
1773 for_each_set_bit(i, mask, 64) {
1774 if (i >= func->allocated_stack / BPF_REG_SIZE) {
1775 /* This can happen if backtracking
1776 * is propagating stack precision where
1777 * caller has larger stack frame
1778 * than callee, but backtrack_insn() should
1779 * have returned -ENOTSUPP.
1780 */
1781 verbose(env, "BUG spi %d stack_size %d\n",
1782 i, func->allocated_stack);
1783 WARN_ONCE(1, "verifier backtracking bug");
1784 return -EFAULT;
1785 }
1786
a3ce685d
AS
1787 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1788 stack_mask &= ~(1ull << i);
b5dc0163 1789 continue;
a3ce685d 1790 }
b5dc0163 1791 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
1792 if (reg->type != SCALAR_VALUE) {
1793 stack_mask &= ~(1ull << i);
b5dc0163 1794 continue;
a3ce685d 1795 }
b5dc0163
AS
1796 if (!reg->precise)
1797 new_marks = true;
1798 reg->precise = true;
1799 }
1800 if (env->log.level & BPF_LOG_LEVEL) {
1801 print_verifier_state(env, func);
1802 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1803 new_marks ? "didn't have" : "already had",
1804 reg_mask, stack_mask);
1805 }
1806
a3ce685d
AS
1807 if (!reg_mask && !stack_mask)
1808 break;
b5dc0163
AS
1809 if (!new_marks)
1810 break;
1811
1812 last_idx = st->last_insn_idx;
1813 first_idx = st->first_insn_idx;
1814 }
1815 return 0;
1816}
1817
a3ce685d
AS
1818static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1819{
1820 return __mark_chain_precision(env, regno, -1);
1821}
1822
1823static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1824{
1825 return __mark_chain_precision(env, -1, spi);
1826}
b5dc0163 1827
1be7f75d
AS
1828static bool is_spillable_regtype(enum bpf_reg_type type)
1829{
1830 switch (type) {
1831 case PTR_TO_MAP_VALUE:
1832 case PTR_TO_MAP_VALUE_OR_NULL:
1833 case PTR_TO_STACK:
1834 case PTR_TO_CTX:
969bf05e 1835 case PTR_TO_PACKET:
de8f3a83 1836 case PTR_TO_PACKET_META:
969bf05e 1837 case PTR_TO_PACKET_END:
d58e468b 1838 case PTR_TO_FLOW_KEYS:
1be7f75d 1839 case CONST_PTR_TO_MAP:
c64b7983
JS
1840 case PTR_TO_SOCKET:
1841 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1842 case PTR_TO_SOCK_COMMON:
1843 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1844 case PTR_TO_TCP_SOCK:
1845 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1846 case PTR_TO_XDP_SOCK:
1be7f75d
AS
1847 return true;
1848 default:
1849 return false;
1850 }
1851}
1852
cc2b14d5
AS
1853/* Does this register contain a constant zero? */
1854static bool register_is_null(struct bpf_reg_state *reg)
1855{
1856 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1857}
1858
f7cf25b2
AS
1859static bool register_is_const(struct bpf_reg_state *reg)
1860{
1861 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1862}
1863
1864static void save_register_state(struct bpf_func_state *state,
1865 int spi, struct bpf_reg_state *reg)
1866{
1867 int i;
1868
1869 state->stack[spi].spilled_ptr = *reg;
1870 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1871
1872 for (i = 0; i < BPF_REG_SIZE; i++)
1873 state->stack[spi].slot_type[i] = STACK_SPILL;
1874}
1875
17a52670
AS
1876/* check_stack_read/write functions track spill/fill of registers,
1877 * stack boundary and alignment are checked in check_mem_access()
1878 */
61bd5218 1879static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1880 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1881 int off, int size, int value_regno, int insn_idx)
17a52670 1882{
f4d7e40a 1883 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1884 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1885 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1886 struct bpf_reg_state *reg = NULL;
638f5b90 1887
f4d7e40a 1888 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1889 state->acquired_refs, true);
638f5b90
AS
1890 if (err)
1891 return err;
9c399760
AS
1892 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1893 * so it's aligned access and [off, off + size) are within stack limits
1894 */
638f5b90
AS
1895 if (!env->allow_ptr_leaks &&
1896 state->stack[spi].slot_type[0] == STACK_SPILL &&
1897 size != BPF_REG_SIZE) {
1898 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1899 return -EACCES;
1900 }
17a52670 1901
f4d7e40a 1902 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1903 if (value_regno >= 0)
1904 reg = &cur->regs[value_regno];
17a52670 1905
f7cf25b2
AS
1906 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1907 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1908 if (dst_reg != BPF_REG_FP) {
1909 /* The backtracking logic can only recognize explicit
1910 * stack slot address like [fp - 8]. Other spill of
1911 * scalar via different register has to be conervative.
1912 * Backtrack from here and mark all registers as precise
1913 * that contributed into 'reg' being a constant.
1914 */
1915 err = mark_chain_precision(env, value_regno);
1916 if (err)
1917 return err;
1918 }
f7cf25b2
AS
1919 save_register_state(state, spi, reg);
1920 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1921 /* register containing pointer is being spilled into stack */
9c399760 1922 if (size != BPF_REG_SIZE) {
f7cf25b2 1923 verbose_linfo(env, insn_idx, "; ");
61bd5218 1924 verbose(env, "invalid size of register spill\n");
17a52670
AS
1925 return -EACCES;
1926 }
1927
f7cf25b2 1928 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
1929 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1930 return -EINVAL;
1931 }
1932
f7cf25b2
AS
1933 if (!env->allow_ptr_leaks) {
1934 bool sanitize = false;
17a52670 1935
f7cf25b2
AS
1936 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1937 register_is_const(&state->stack[spi].spilled_ptr))
1938 sanitize = true;
1939 for (i = 0; i < BPF_REG_SIZE; i++)
1940 if (state->stack[spi].slot_type[i] == STACK_MISC) {
1941 sanitize = true;
1942 break;
1943 }
1944 if (sanitize) {
af86ca4e
AS
1945 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1946 int soff = (-spi - 1) * BPF_REG_SIZE;
1947
1948 /* detected reuse of integer stack slot with a pointer
1949 * which means either llvm is reusing stack slot or
1950 * an attacker is trying to exploit CVE-2018-3639
1951 * (speculative store bypass)
1952 * Have to sanitize that slot with preemptive
1953 * store of zero.
1954 */
1955 if (*poff && *poff != soff) {
1956 /* disallow programs where single insn stores
1957 * into two different stack slots, since verifier
1958 * cannot sanitize them
1959 */
1960 verbose(env,
1961 "insn %d cannot access two stack slots fp%d and fp%d",
1962 insn_idx, *poff, soff);
1963 return -EINVAL;
1964 }
1965 *poff = soff;
1966 }
af86ca4e 1967 }
f7cf25b2 1968 save_register_state(state, spi, reg);
9c399760 1969 } else {
cc2b14d5
AS
1970 u8 type = STACK_MISC;
1971
679c782d
EC
1972 /* regular write of data into stack destroys any spilled ptr */
1973 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1974 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1975 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1976 for (i = 0; i < BPF_REG_SIZE; i++)
1977 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1978
cc2b14d5
AS
1979 /* only mark the slot as written if all 8 bytes were written
1980 * otherwise read propagation may incorrectly stop too soon
1981 * when stack slots are partially written.
1982 * This heuristic means that read propagation will be
1983 * conservative, since it will add reg_live_read marks
1984 * to stack slots all the way to first state when programs
1985 * writes+reads less than 8 bytes
1986 */
1987 if (size == BPF_REG_SIZE)
1988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1989
1990 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
1991 if (reg && register_is_null(reg)) {
1992 /* backtracking doesn't work for STACK_ZERO yet. */
1993 err = mark_chain_precision(env, value_regno);
1994 if (err)
1995 return err;
cc2b14d5 1996 type = STACK_ZERO;
b5dc0163 1997 }
cc2b14d5 1998
0bae2d4d 1999 /* Mark slots affected by this stack write. */
9c399760 2000 for (i = 0; i < size; i++)
638f5b90 2001 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2002 type;
17a52670
AS
2003 }
2004 return 0;
2005}
2006
61bd5218 2007static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2008 struct bpf_func_state *reg_state /* func where register points to */,
2009 int off, int size, int value_regno)
17a52670 2010{
f4d7e40a
AS
2011 struct bpf_verifier_state *vstate = env->cur_state;
2012 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2013 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2014 struct bpf_reg_state *reg;
638f5b90 2015 u8 *stype;
17a52670 2016
f4d7e40a 2017 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2018 verbose(env, "invalid read from stack off %d+0 size %d\n",
2019 off, size);
2020 return -EACCES;
2021 }
f4d7e40a 2022 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2023 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2024
638f5b90 2025 if (stype[0] == STACK_SPILL) {
9c399760 2026 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2027 if (reg->type != SCALAR_VALUE) {
2028 verbose_linfo(env, env->insn_idx, "; ");
2029 verbose(env, "invalid size of register fill\n");
2030 return -EACCES;
2031 }
2032 if (value_regno >= 0) {
2033 mark_reg_unknown(env, state->regs, value_regno);
2034 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2035 }
2036 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2037 return 0;
17a52670 2038 }
9c399760 2039 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2040 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2041 verbose(env, "corrupted spill memory\n");
17a52670
AS
2042 return -EACCES;
2043 }
2044 }
2045
dc503a8a 2046 if (value_regno >= 0) {
17a52670 2047 /* restore register state from stack */
f7cf25b2 2048 state->regs[value_regno] = *reg;
2f18f62e
AS
2049 /* mark reg as written since spilled pointer state likely
2050 * has its liveness marks cleared by is_state_visited()
2051 * which resets stack/reg liveness for state transitions
2052 */
2053 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2054 }
f7cf25b2 2055 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2056 } else {
cc2b14d5
AS
2057 int zeros = 0;
2058
17a52670 2059 for (i = 0; i < size; i++) {
cc2b14d5
AS
2060 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2061 continue;
2062 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2063 zeros++;
2064 continue;
17a52670 2065 }
cc2b14d5
AS
2066 verbose(env, "invalid read from stack off %d+%d size %d\n",
2067 off, i, size);
2068 return -EACCES;
2069 }
f7cf25b2 2070 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2071 if (value_regno >= 0) {
2072 if (zeros == size) {
2073 /* any size read into register is zero extended,
2074 * so the whole register == const_zero
2075 */
2076 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2077 /* backtracking doesn't support STACK_ZERO yet,
2078 * so mark it precise here, so that later
2079 * backtracking can stop here.
2080 * Backtracking may not need this if this register
2081 * doesn't participate in pointer adjustment.
2082 * Forward propagation of precise flag is not
2083 * necessary either. This mark is only to stop
2084 * backtracking. Any register that contributed
2085 * to const 0 was marked precise before spill.
2086 */
2087 state->regs[value_regno].precise = true;
cc2b14d5
AS
2088 } else {
2089 /* have read misc data from the stack */
2090 mark_reg_unknown(env, state->regs, value_regno);
2091 }
2092 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2093 }
17a52670 2094 }
f7cf25b2 2095 return 0;
17a52670
AS
2096}
2097
e4298d25
DB
2098static int check_stack_access(struct bpf_verifier_env *env,
2099 const struct bpf_reg_state *reg,
2100 int off, int size)
2101{
2102 /* Stack accesses must be at a fixed offset, so that we
2103 * can determine what type of data were returned. See
2104 * check_stack_read().
2105 */
2106 if (!tnum_is_const(reg->var_off)) {
2107 char tn_buf[48];
2108
2109 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2110 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2111 tn_buf, off, size);
2112 return -EACCES;
2113 }
2114
2115 if (off >= 0 || off < -MAX_BPF_STACK) {
2116 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2117 return -EACCES;
2118 }
2119
2120 return 0;
2121}
2122
591fe988
DB
2123static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2124 int off, int size, enum bpf_access_type type)
2125{
2126 struct bpf_reg_state *regs = cur_regs(env);
2127 struct bpf_map *map = regs[regno].map_ptr;
2128 u32 cap = bpf_map_flags_to_cap(map);
2129
2130 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2131 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2132 map->value_size, off, size);
2133 return -EACCES;
2134 }
2135
2136 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2137 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2138 map->value_size, off, size);
2139 return -EACCES;
2140 }
2141
2142 return 0;
2143}
2144
17a52670 2145/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2146static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2147 int size, bool zero_size_allowed)
17a52670 2148{
638f5b90
AS
2149 struct bpf_reg_state *regs = cur_regs(env);
2150 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2151
9fd29c08
YS
2152 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2153 off + size > map->value_size) {
61bd5218 2154 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2155 map->value_size, off, size);
2156 return -EACCES;
2157 }
2158 return 0;
2159}
2160
f1174f77
EC
2161/* check read/write into a map element with possible variable offset */
2162static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2163 int off, int size, bool zero_size_allowed)
dbcfe5f7 2164{
f4d7e40a
AS
2165 struct bpf_verifier_state *vstate = env->cur_state;
2166 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2167 struct bpf_reg_state *reg = &state->regs[regno];
2168 int err;
2169
f1174f77
EC
2170 /* We may have adjusted the register to this map value, so we
2171 * need to try adding each of min_value and max_value to off
2172 * to make sure our theoretical access will be safe.
dbcfe5f7 2173 */
06ee7115 2174 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2175 print_verifier_state(env, state);
b7137c4e 2176
dbcfe5f7
GB
2177 /* The minimum value is only important with signed
2178 * comparisons where we can't assume the floor of a
2179 * value is 0. If we are using signed variables for our
2180 * index'es we need to make sure that whatever we use
2181 * will have a set floor within our range.
2182 */
b7137c4e
DB
2183 if (reg->smin_value < 0 &&
2184 (reg->smin_value == S64_MIN ||
2185 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2186 reg->smin_value + off < 0)) {
61bd5218 2187 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2188 regno);
2189 return -EACCES;
2190 }
9fd29c08
YS
2191 err = __check_map_access(env, regno, reg->smin_value + off, size,
2192 zero_size_allowed);
dbcfe5f7 2193 if (err) {
61bd5218
JK
2194 verbose(env, "R%d min value is outside of the array range\n",
2195 regno);
dbcfe5f7
GB
2196 return err;
2197 }
2198
b03c9f9f
EC
2199 /* If we haven't set a max value then we need to bail since we can't be
2200 * sure we won't do bad things.
2201 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2202 */
b03c9f9f 2203 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2204 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2205 regno);
2206 return -EACCES;
2207 }
9fd29c08
YS
2208 err = __check_map_access(env, regno, reg->umax_value + off, size,
2209 zero_size_allowed);
f1174f77 2210 if (err)
61bd5218
JK
2211 verbose(env, "R%d max value is outside of the array range\n",
2212 regno);
d83525ca
AS
2213
2214 if (map_value_has_spin_lock(reg->map_ptr)) {
2215 u32 lock = reg->map_ptr->spin_lock_off;
2216
2217 /* if any part of struct bpf_spin_lock can be touched by
2218 * load/store reject this program.
2219 * To check that [x1, x2) overlaps with [y1, y2)
2220 * it is sufficient to check x1 < y2 && y1 < x2.
2221 */
2222 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2223 lock < reg->umax_value + off + size) {
2224 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2225 return -EACCES;
2226 }
2227 }
f1174f77 2228 return err;
dbcfe5f7
GB
2229}
2230
969bf05e
AS
2231#define MAX_PACKET_OFF 0xffff
2232
58e2af8b 2233static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2234 const struct bpf_call_arg_meta *meta,
2235 enum bpf_access_type t)
4acf6c0b 2236{
36bbef52 2237 switch (env->prog->type) {
5d66fa7d 2238 /* Program types only with direct read access go here! */
3a0af8fd
TG
2239 case BPF_PROG_TYPE_LWT_IN:
2240 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2241 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2242 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2243 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2244 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2245 if (t == BPF_WRITE)
2246 return false;
7e57fbb2 2247 /* fallthrough */
5d66fa7d
DB
2248
2249 /* Program types with direct read + write access go here! */
36bbef52
DB
2250 case BPF_PROG_TYPE_SCHED_CLS:
2251 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2252 case BPF_PROG_TYPE_XDP:
3a0af8fd 2253 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2254 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2255 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2256 if (meta)
2257 return meta->pkt_access;
2258
2259 env->seen_direct_write = true;
4acf6c0b 2260 return true;
0d01da6a
SF
2261
2262 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2263 if (t == BPF_WRITE)
2264 env->seen_direct_write = true;
2265
2266 return true;
2267
4acf6c0b
BB
2268 default:
2269 return false;
2270 }
2271}
2272
f1174f77 2273static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2274 int off, int size, bool zero_size_allowed)
969bf05e 2275{
638f5b90 2276 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2277 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2278
9fd29c08
YS
2279 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2280 (u64)off + size > reg->range) {
61bd5218 2281 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2282 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2283 return -EACCES;
2284 }
2285 return 0;
2286}
2287
f1174f77 2288static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2289 int size, bool zero_size_allowed)
f1174f77 2290{
638f5b90 2291 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2292 struct bpf_reg_state *reg = &regs[regno];
2293 int err;
2294
2295 /* We may have added a variable offset to the packet pointer; but any
2296 * reg->range we have comes after that. We are only checking the fixed
2297 * offset.
2298 */
2299
2300 /* We don't allow negative numbers, because we aren't tracking enough
2301 * detail to prove they're safe.
2302 */
b03c9f9f 2303 if (reg->smin_value < 0) {
61bd5218 2304 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2305 regno);
2306 return -EACCES;
2307 }
9fd29c08 2308 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2309 if (err) {
61bd5218 2310 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2311 return err;
2312 }
e647815a
JW
2313
2314 /* __check_packet_access has made sure "off + size - 1" is within u16.
2315 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2316 * otherwise find_good_pkt_pointers would have refused to set range info
2317 * that __check_packet_access would have rejected this pkt access.
2318 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2319 */
2320 env->prog->aux->max_pkt_offset =
2321 max_t(u32, env->prog->aux->max_pkt_offset,
2322 off + reg->umax_value + size - 1);
2323
f1174f77
EC
2324 return err;
2325}
2326
2327/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2328static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 2329 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 2330{
f96da094
DB
2331 struct bpf_insn_access_aux info = {
2332 .reg_type = *reg_type,
2333 };
31fd8581 2334
4f9218aa 2335 if (env->ops->is_valid_access &&
5e43f899 2336 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2337 /* A non zero info.ctx_field_size indicates that this field is a
2338 * candidate for later verifier transformation to load the whole
2339 * field and then apply a mask when accessed with a narrower
2340 * access than actual ctx access size. A zero info.ctx_field_size
2341 * will only allow for whole field access and rejects any other
2342 * type of narrower access.
31fd8581 2343 */
23994631 2344 *reg_type = info.reg_type;
31fd8581 2345
4f9218aa 2346 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2347 /* remember the offset of last byte accessed in ctx */
2348 if (env->prog->aux->max_ctx_offset < off + size)
2349 env->prog->aux->max_ctx_offset = off + size;
17a52670 2350 return 0;
32bbe007 2351 }
17a52670 2352
61bd5218 2353 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2354 return -EACCES;
2355}
2356
d58e468b
PP
2357static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2358 int size)
2359{
2360 if (size < 0 || off < 0 ||
2361 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2362 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2363 off, size);
2364 return -EACCES;
2365 }
2366 return 0;
2367}
2368
5f456649
MKL
2369static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2370 u32 regno, int off, int size,
2371 enum bpf_access_type t)
c64b7983
JS
2372{
2373 struct bpf_reg_state *regs = cur_regs(env);
2374 struct bpf_reg_state *reg = &regs[regno];
5f456649 2375 struct bpf_insn_access_aux info = {};
46f8bc92 2376 bool valid;
c64b7983
JS
2377
2378 if (reg->smin_value < 0) {
2379 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2380 regno);
2381 return -EACCES;
2382 }
2383
46f8bc92
MKL
2384 switch (reg->type) {
2385 case PTR_TO_SOCK_COMMON:
2386 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2387 break;
2388 case PTR_TO_SOCKET:
2389 valid = bpf_sock_is_valid_access(off, size, t, &info);
2390 break;
655a51e5
MKL
2391 case PTR_TO_TCP_SOCK:
2392 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2393 break;
fada7fdc
JL
2394 case PTR_TO_XDP_SOCK:
2395 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2396 break;
46f8bc92
MKL
2397 default:
2398 valid = false;
c64b7983
JS
2399 }
2400
5f456649 2401
46f8bc92
MKL
2402 if (valid) {
2403 env->insn_aux_data[insn_idx].ctx_field_size =
2404 info.ctx_field_size;
2405 return 0;
2406 }
2407
2408 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2409 regno, reg_type_str[reg->type], off, size);
2410
2411 return -EACCES;
c64b7983
JS
2412}
2413
4cabc5b1
DB
2414static bool __is_pointer_value(bool allow_ptr_leaks,
2415 const struct bpf_reg_state *reg)
1be7f75d 2416{
4cabc5b1 2417 if (allow_ptr_leaks)
1be7f75d
AS
2418 return false;
2419
f1174f77 2420 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2421}
2422
2a159c6f
DB
2423static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2424{
2425 return cur_regs(env) + regno;
2426}
2427
4cabc5b1
DB
2428static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2429{
2a159c6f 2430 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2431}
2432
f37a8cb8
DB
2433static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2434{
2a159c6f 2435 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2436
46f8bc92
MKL
2437 return reg->type == PTR_TO_CTX;
2438}
2439
2440static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2441{
2442 const struct bpf_reg_state *reg = reg_state(env, regno);
2443
2444 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2445}
2446
ca369602
DB
2447static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2448{
2a159c6f 2449 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2450
2451 return type_is_pkt_pointer(reg->type);
2452}
2453
4b5defde
DB
2454static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2455{
2456 const struct bpf_reg_state *reg = reg_state(env, regno);
2457
2458 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2459 return reg->type == PTR_TO_FLOW_KEYS;
2460}
2461
61bd5218
JK
2462static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2463 const struct bpf_reg_state *reg,
d1174416 2464 int off, int size, bool strict)
969bf05e 2465{
f1174f77 2466 struct tnum reg_off;
e07b98d9 2467 int ip_align;
d1174416
DM
2468
2469 /* Byte size accesses are always allowed. */
2470 if (!strict || size == 1)
2471 return 0;
2472
e4eda884
DM
2473 /* For platforms that do not have a Kconfig enabling
2474 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2475 * NET_IP_ALIGN is universally set to '2'. And on platforms
2476 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2477 * to this code only in strict mode where we want to emulate
2478 * the NET_IP_ALIGN==2 checking. Therefore use an
2479 * unconditional IP align value of '2'.
e07b98d9 2480 */
e4eda884 2481 ip_align = 2;
f1174f77
EC
2482
2483 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2484 if (!tnum_is_aligned(reg_off, size)) {
2485 char tn_buf[48];
2486
2487 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2488 verbose(env,
2489 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2490 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2491 return -EACCES;
2492 }
79adffcd 2493
969bf05e
AS
2494 return 0;
2495}
2496
61bd5218
JK
2497static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2498 const struct bpf_reg_state *reg,
f1174f77
EC
2499 const char *pointer_desc,
2500 int off, int size, bool strict)
79adffcd 2501{
f1174f77
EC
2502 struct tnum reg_off;
2503
2504 /* Byte size accesses are always allowed. */
2505 if (!strict || size == 1)
2506 return 0;
2507
2508 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2509 if (!tnum_is_aligned(reg_off, size)) {
2510 char tn_buf[48];
2511
2512 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2513 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2514 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2515 return -EACCES;
2516 }
2517
969bf05e
AS
2518 return 0;
2519}
2520
e07b98d9 2521static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2522 const struct bpf_reg_state *reg, int off,
2523 int size, bool strict_alignment_once)
79adffcd 2524{
ca369602 2525 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2526 const char *pointer_desc = "";
d1174416 2527
79adffcd
DB
2528 switch (reg->type) {
2529 case PTR_TO_PACKET:
de8f3a83
DB
2530 case PTR_TO_PACKET_META:
2531 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2532 * right in front, treat it the very same way.
2533 */
61bd5218 2534 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2535 case PTR_TO_FLOW_KEYS:
2536 pointer_desc = "flow keys ";
2537 break;
f1174f77
EC
2538 case PTR_TO_MAP_VALUE:
2539 pointer_desc = "value ";
2540 break;
2541 case PTR_TO_CTX:
2542 pointer_desc = "context ";
2543 break;
2544 case PTR_TO_STACK:
2545 pointer_desc = "stack ";
a5ec6ae1
JH
2546 /* The stack spill tracking logic in check_stack_write()
2547 * and check_stack_read() relies on stack accesses being
2548 * aligned.
2549 */
2550 strict = true;
f1174f77 2551 break;
c64b7983
JS
2552 case PTR_TO_SOCKET:
2553 pointer_desc = "sock ";
2554 break;
46f8bc92
MKL
2555 case PTR_TO_SOCK_COMMON:
2556 pointer_desc = "sock_common ";
2557 break;
655a51e5
MKL
2558 case PTR_TO_TCP_SOCK:
2559 pointer_desc = "tcp_sock ";
2560 break;
fada7fdc
JL
2561 case PTR_TO_XDP_SOCK:
2562 pointer_desc = "xdp_sock ";
2563 break;
79adffcd 2564 default:
f1174f77 2565 break;
79adffcd 2566 }
61bd5218
JK
2567 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2568 strict);
79adffcd
DB
2569}
2570
f4d7e40a
AS
2571static int update_stack_depth(struct bpf_verifier_env *env,
2572 const struct bpf_func_state *func,
2573 int off)
2574{
9c8105bd 2575 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2576
2577 if (stack >= -off)
2578 return 0;
2579
2580 /* update known max for given subprogram */
9c8105bd 2581 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2582 return 0;
2583}
f4d7e40a 2584
70a87ffe
AS
2585/* starting from main bpf function walk all instructions of the function
2586 * and recursively walk all callees that given function can call.
2587 * Ignore jump and exit insns.
2588 * Since recursion is prevented by check_cfg() this algorithm
2589 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2590 */
2591static int check_max_stack_depth(struct bpf_verifier_env *env)
2592{
9c8105bd
JW
2593 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2594 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2595 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2596 int ret_insn[MAX_CALL_FRAMES];
2597 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2598
70a87ffe
AS
2599process_func:
2600 /* round up to 32-bytes, since this is granularity
2601 * of interpreter stack size
2602 */
9c8105bd 2603 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2604 if (depth > MAX_BPF_STACK) {
f4d7e40a 2605 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2606 frame + 1, depth);
f4d7e40a
AS
2607 return -EACCES;
2608 }
70a87ffe 2609continue_func:
4cb3d99c 2610 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2611 for (; i < subprog_end; i++) {
2612 if (insn[i].code != (BPF_JMP | BPF_CALL))
2613 continue;
2614 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2615 continue;
2616 /* remember insn and function to return to */
2617 ret_insn[frame] = i + 1;
9c8105bd 2618 ret_prog[frame] = idx;
70a87ffe
AS
2619
2620 /* find the callee */
2621 i = i + insn[i].imm + 1;
9c8105bd
JW
2622 idx = find_subprog(env, i);
2623 if (idx < 0) {
70a87ffe
AS
2624 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2625 i);
2626 return -EFAULT;
2627 }
70a87ffe
AS
2628 frame++;
2629 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2630 verbose(env, "the call stack of %d frames is too deep !\n",
2631 frame);
2632 return -E2BIG;
70a87ffe
AS
2633 }
2634 goto process_func;
2635 }
2636 /* end of for() loop means the last insn of the 'subprog'
2637 * was reached. Doesn't matter whether it was JA or EXIT
2638 */
2639 if (frame == 0)
2640 return 0;
9c8105bd 2641 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2642 frame--;
2643 i = ret_insn[frame];
9c8105bd 2644 idx = ret_prog[frame];
70a87ffe 2645 goto continue_func;
f4d7e40a
AS
2646}
2647
19d28fbd 2648#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2649static int get_callee_stack_depth(struct bpf_verifier_env *env,
2650 const struct bpf_insn *insn, int idx)
2651{
2652 int start = idx + insn->imm + 1, subprog;
2653
2654 subprog = find_subprog(env, start);
2655 if (subprog < 0) {
2656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2657 start);
2658 return -EFAULT;
2659 }
9c8105bd 2660 return env->subprog_info[subprog].stack_depth;
1ea47e01 2661}
19d28fbd 2662#endif
1ea47e01 2663
58990d1f
DB
2664static int check_ctx_reg(struct bpf_verifier_env *env,
2665 const struct bpf_reg_state *reg, int regno)
2666{
2667 /* Access to ctx or passing it to a helper is only allowed in
2668 * its original, unmodified form.
2669 */
2670
2671 if (reg->off) {
2672 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2673 regno, reg->off);
2674 return -EACCES;
2675 }
2676
2677 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2678 char tn_buf[48];
2679
2680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2681 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2682 return -EACCES;
2683 }
2684
2685 return 0;
2686}
2687
9df1c28b
MM
2688static int check_tp_buffer_access(struct bpf_verifier_env *env,
2689 const struct bpf_reg_state *reg,
2690 int regno, int off, int size)
2691{
2692 if (off < 0) {
2693 verbose(env,
2694 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2695 regno, off, size);
2696 return -EACCES;
2697 }
2698 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2699 char tn_buf[48];
2700
2701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2702 verbose(env,
2703 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2704 regno, off, tn_buf);
2705 return -EACCES;
2706 }
2707 if (off + size > env->prog->aux->max_tp_access)
2708 env->prog->aux->max_tp_access = off + size;
2709
2710 return 0;
2711}
2712
2713
0c17d1d2
JH
2714/* truncate register to smaller size (in bytes)
2715 * must be called with size < BPF_REG_SIZE
2716 */
2717static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2718{
2719 u64 mask;
2720
2721 /* clear high bits in bit representation */
2722 reg->var_off = tnum_cast(reg->var_off, size);
2723
2724 /* fix arithmetic bounds */
2725 mask = ((u64)1 << (size * 8)) - 1;
2726 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2727 reg->umin_value &= mask;
2728 reg->umax_value &= mask;
2729 } else {
2730 reg->umin_value = 0;
2731 reg->umax_value = mask;
2732 }
2733 reg->smin_value = reg->umin_value;
2734 reg->smax_value = reg->umax_value;
2735}
2736
17a52670
AS
2737/* check whether memory at (regno + off) is accessible for t = (read | write)
2738 * if t==write, value_regno is a register which value is stored into memory
2739 * if t==read, value_regno is a register which will receive the value from memory
2740 * if t==write && value_regno==-1, some unknown value is stored into memory
2741 * if t==read && value_regno==-1, don't care what we read from memory
2742 */
ca369602
DB
2743static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2744 int off, int bpf_size, enum bpf_access_type t,
2745 int value_regno, bool strict_alignment_once)
17a52670 2746{
638f5b90
AS
2747 struct bpf_reg_state *regs = cur_regs(env);
2748 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2749 struct bpf_func_state *state;
17a52670
AS
2750 int size, err = 0;
2751
2752 size = bpf_size_to_bytes(bpf_size);
2753 if (size < 0)
2754 return size;
2755
f1174f77 2756 /* alignment checks will add in reg->off themselves */
ca369602 2757 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2758 if (err)
2759 return err;
17a52670 2760
f1174f77
EC
2761 /* for access checks, reg->off is just part of off */
2762 off += reg->off;
2763
2764 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2765 if (t == BPF_WRITE && value_regno >= 0 &&
2766 is_pointer_value(env, value_regno)) {
61bd5218 2767 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2768 return -EACCES;
2769 }
591fe988
DB
2770 err = check_map_access_type(env, regno, off, size, t);
2771 if (err)
2772 return err;
9fd29c08 2773 err = check_map_access(env, regno, off, size, false);
17a52670 2774 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2775 mark_reg_unknown(env, regs, value_regno);
17a52670 2776
1a0dc1ac 2777 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2778 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2779
1be7f75d
AS
2780 if (t == BPF_WRITE && value_regno >= 0 &&
2781 is_pointer_value(env, value_regno)) {
61bd5218 2782 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2783 return -EACCES;
2784 }
f1174f77 2785
58990d1f
DB
2786 err = check_ctx_reg(env, reg, regno);
2787 if (err < 0)
2788 return err;
2789
31fd8581 2790 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2791 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2792 /* ctx access returns either a scalar, or a
de8f3a83
DB
2793 * PTR_TO_PACKET[_META,_END]. In the latter
2794 * case, we know the offset is zero.
f1174f77 2795 */
46f8bc92 2796 if (reg_type == SCALAR_VALUE) {
638f5b90 2797 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2798 } else {
638f5b90 2799 mark_reg_known_zero(env, regs,
61bd5218 2800 value_regno);
46f8bc92
MKL
2801 if (reg_type_may_be_null(reg_type))
2802 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2803 /* A load of ctx field could have different
2804 * actual load size with the one encoded in the
2805 * insn. When the dst is PTR, it is for sure not
2806 * a sub-register.
2807 */
2808 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
46f8bc92 2809 }
638f5b90 2810 regs[value_regno].type = reg_type;
969bf05e 2811 }
17a52670 2812
f1174f77 2813 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2814 off += reg->var_off.value;
e4298d25
DB
2815 err = check_stack_access(env, reg, off, size);
2816 if (err)
2817 return err;
8726679a 2818
f4d7e40a
AS
2819 state = func(env, reg);
2820 err = update_stack_depth(env, state, off);
2821 if (err)
2822 return err;
8726679a 2823
638f5b90 2824 if (t == BPF_WRITE)
61bd5218 2825 err = check_stack_write(env, state, off, size,
af86ca4e 2826 value_regno, insn_idx);
638f5b90 2827 else
61bd5218
JK
2828 err = check_stack_read(env, state, off, size,
2829 value_regno);
de8f3a83 2830 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2831 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2832 verbose(env, "cannot write into packet\n");
969bf05e
AS
2833 return -EACCES;
2834 }
4acf6c0b
BB
2835 if (t == BPF_WRITE && value_regno >= 0 &&
2836 is_pointer_value(env, value_regno)) {
61bd5218
JK
2837 verbose(env, "R%d leaks addr into packet\n",
2838 value_regno);
4acf6c0b
BB
2839 return -EACCES;
2840 }
9fd29c08 2841 err = check_packet_access(env, regno, off, size, false);
969bf05e 2842 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2843 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2844 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2845 if (t == BPF_WRITE && value_regno >= 0 &&
2846 is_pointer_value(env, value_regno)) {
2847 verbose(env, "R%d leaks addr into flow keys\n",
2848 value_regno);
2849 return -EACCES;
2850 }
2851
2852 err = check_flow_keys_access(env, off, size);
2853 if (!err && t == BPF_READ && value_regno >= 0)
2854 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2855 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2856 if (t == BPF_WRITE) {
46f8bc92
MKL
2857 verbose(env, "R%d cannot write into %s\n",
2858 regno, reg_type_str[reg->type]);
c64b7983
JS
2859 return -EACCES;
2860 }
5f456649 2861 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2862 if (!err && value_regno >= 0)
2863 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
2864 } else if (reg->type == PTR_TO_TP_BUFFER) {
2865 err = check_tp_buffer_access(env, reg, regno, off, size);
2866 if (!err && t == BPF_READ && value_regno >= 0)
2867 mark_reg_unknown(env, regs, value_regno);
17a52670 2868 } else {
61bd5218
JK
2869 verbose(env, "R%d invalid mem access '%s'\n", regno,
2870 reg_type_str[reg->type]);
17a52670
AS
2871 return -EACCES;
2872 }
969bf05e 2873
f1174f77 2874 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2875 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2876 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2877 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2878 }
17a52670
AS
2879 return err;
2880}
2881
31fd8581 2882static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2883{
17a52670
AS
2884 int err;
2885
2886 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2887 insn->imm != 0) {
61bd5218 2888 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2889 return -EINVAL;
2890 }
2891
2892 /* check src1 operand */
dc503a8a 2893 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2894 if (err)
2895 return err;
2896
2897 /* check src2 operand */
dc503a8a 2898 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2899 if (err)
2900 return err;
2901
6bdf6abc 2902 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2903 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2904 return -EACCES;
2905 }
2906
ca369602 2907 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2908 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2909 is_flow_key_reg(env, insn->dst_reg) ||
2910 is_sk_reg(env, insn->dst_reg)) {
ca369602 2911 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2912 insn->dst_reg,
2913 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2914 return -EACCES;
2915 }
2916
17a52670 2917 /* check whether atomic_add can read the memory */
31fd8581 2918 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2919 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2920 if (err)
2921 return err;
2922
2923 /* check whether atomic_add can write into the same memory */
31fd8581 2924 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2925 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2926}
2927
2011fccf
AI
2928static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2929 int off, int access_size,
2930 bool zero_size_allowed)
2931{
2932 struct bpf_reg_state *reg = reg_state(env, regno);
2933
2934 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2935 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2936 if (tnum_is_const(reg->var_off)) {
2937 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2938 regno, off, access_size);
2939 } else {
2940 char tn_buf[48];
2941
2942 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2943 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2944 regno, tn_buf, access_size);
2945 }
2946 return -EACCES;
2947 }
2948 return 0;
2949}
2950
17a52670
AS
2951/* when register 'regno' is passed into function that will read 'access_size'
2952 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2953 * and all elements of stack are initialized.
2954 * Unlike most pointer bounds-checking functions, this one doesn't take an
2955 * 'off' argument, so it has to add in reg->off itself.
17a52670 2956 */
58e2af8b 2957static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2958 int access_size, bool zero_size_allowed,
2959 struct bpf_call_arg_meta *meta)
17a52670 2960{
2a159c6f 2961 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2962 struct bpf_func_state *state = func(env, reg);
f7cf25b2 2963 int err, min_off, max_off, i, j, slot, spi;
17a52670 2964
914cb781 2965 if (reg->type != PTR_TO_STACK) {
f1174f77 2966 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2967 if (zero_size_allowed && access_size == 0 &&
914cb781 2968 register_is_null(reg))
8e2fe1d9
DB
2969 return 0;
2970
61bd5218 2971 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2972 reg_type_str[reg->type],
8e2fe1d9 2973 reg_type_str[PTR_TO_STACK]);
17a52670 2974 return -EACCES;
8e2fe1d9 2975 }
17a52670 2976
2011fccf
AI
2977 if (tnum_is_const(reg->var_off)) {
2978 min_off = max_off = reg->var_off.value + reg->off;
2979 err = __check_stack_boundary(env, regno, min_off, access_size,
2980 zero_size_allowed);
2981 if (err)
2982 return err;
2983 } else {
088ec26d
AI
2984 /* Variable offset is prohibited for unprivileged mode for
2985 * simplicity since it requires corresponding support in
2986 * Spectre masking for stack ALU.
2987 * See also retrieve_ptr_limit().
2988 */
2989 if (!env->allow_ptr_leaks) {
2990 char tn_buf[48];
f1174f77 2991
088ec26d
AI
2992 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2993 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2994 regno, tn_buf);
2995 return -EACCES;
2996 }
f2bcd05e
AI
2997 /* Only initialized buffer on stack is allowed to be accessed
2998 * with variable offset. With uninitialized buffer it's hard to
2999 * guarantee that whole memory is marked as initialized on
3000 * helper return since specific bounds are unknown what may
3001 * cause uninitialized stack leaking.
3002 */
3003 if (meta && meta->raw_mode)
3004 meta = NULL;
3005
107c26a7
AI
3006 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3007 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3008 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3009 regno);
3010 return -EACCES;
3011 }
2011fccf 3012 min_off = reg->smin_value + reg->off;
107c26a7 3013 max_off = reg->smax_value + reg->off;
2011fccf
AI
3014 err = __check_stack_boundary(env, regno, min_off, access_size,
3015 zero_size_allowed);
107c26a7
AI
3016 if (err) {
3017 verbose(env, "R%d min value is outside of stack bound\n",
3018 regno);
2011fccf 3019 return err;
107c26a7 3020 }
2011fccf
AI
3021 err = __check_stack_boundary(env, regno, max_off, access_size,
3022 zero_size_allowed);
107c26a7
AI
3023 if (err) {
3024 verbose(env, "R%d max value is outside of stack bound\n",
3025 regno);
2011fccf 3026 return err;
107c26a7 3027 }
17a52670
AS
3028 }
3029
435faee1
DB
3030 if (meta && meta->raw_mode) {
3031 meta->access_size = access_size;
3032 meta->regno = regno;
3033 return 0;
3034 }
3035
2011fccf 3036 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3037 u8 *stype;
3038
2011fccf 3039 slot = -i - 1;
638f5b90 3040 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3041 if (state->allocated_stack <= slot)
3042 goto err;
3043 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3044 if (*stype == STACK_MISC)
3045 goto mark;
3046 if (*stype == STACK_ZERO) {
3047 /* helper can write anything into the stack */
3048 *stype = STACK_MISC;
3049 goto mark;
17a52670 3050 }
f7cf25b2
AS
3051 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3052 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3053 __mark_reg_unknown(&state->stack[spi].spilled_ptr);
3054 for (j = 0; j < BPF_REG_SIZE; j++)
3055 state->stack[spi].slot_type[j] = STACK_MISC;
3056 goto mark;
3057 }
3058
cc2b14d5 3059err:
2011fccf
AI
3060 if (tnum_is_const(reg->var_off)) {
3061 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3062 min_off, i - min_off, access_size);
3063 } else {
3064 char tn_buf[48];
3065
3066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3067 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3068 tn_buf, i - min_off, access_size);
3069 }
cc2b14d5
AS
3070 return -EACCES;
3071mark:
3072 /* reading any byte out of 8-byte 'spill_slot' will cause
3073 * the whole slot to be marked as 'read'
3074 */
679c782d 3075 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3076 state->stack[spi].spilled_ptr.parent,
3077 REG_LIVE_READ64);
17a52670 3078 }
2011fccf 3079 return update_stack_depth(env, state, min_off);
17a52670
AS
3080}
3081
06c1c049
GB
3082static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3083 int access_size, bool zero_size_allowed,
3084 struct bpf_call_arg_meta *meta)
3085{
638f5b90 3086 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3087
f1174f77 3088 switch (reg->type) {
06c1c049 3089 case PTR_TO_PACKET:
de8f3a83 3090 case PTR_TO_PACKET_META:
9fd29c08
YS
3091 return check_packet_access(env, regno, reg->off, access_size,
3092 zero_size_allowed);
06c1c049 3093 case PTR_TO_MAP_VALUE:
591fe988
DB
3094 if (check_map_access_type(env, regno, reg->off, access_size,
3095 meta && meta->raw_mode ? BPF_WRITE :
3096 BPF_READ))
3097 return -EACCES;
9fd29c08
YS
3098 return check_map_access(env, regno, reg->off, access_size,
3099 zero_size_allowed);
f1174f77 3100 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3101 return check_stack_boundary(env, regno, access_size,
3102 zero_size_allowed, meta);
3103 }
3104}
3105
d83525ca
AS
3106/* Implementation details:
3107 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3108 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3109 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3110 * value_or_null->value transition, since the verifier only cares about
3111 * the range of access to valid map value pointer and doesn't care about actual
3112 * address of the map element.
3113 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3114 * reg->id > 0 after value_or_null->value transition. By doing so
3115 * two bpf_map_lookups will be considered two different pointers that
3116 * point to different bpf_spin_locks.
3117 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3118 * dead-locks.
3119 * Since only one bpf_spin_lock is allowed the checks are simpler than
3120 * reg_is_refcounted() logic. The verifier needs to remember only
3121 * one spin_lock instead of array of acquired_refs.
3122 * cur_state->active_spin_lock remembers which map value element got locked
3123 * and clears it after bpf_spin_unlock.
3124 */
3125static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3126 bool is_lock)
3127{
3128 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3129 struct bpf_verifier_state *cur = env->cur_state;
3130 bool is_const = tnum_is_const(reg->var_off);
3131 struct bpf_map *map = reg->map_ptr;
3132 u64 val = reg->var_off.value;
3133
3134 if (reg->type != PTR_TO_MAP_VALUE) {
3135 verbose(env, "R%d is not a pointer to map_value\n", regno);
3136 return -EINVAL;
3137 }
3138 if (!is_const) {
3139 verbose(env,
3140 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3141 regno);
3142 return -EINVAL;
3143 }
3144 if (!map->btf) {
3145 verbose(env,
3146 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3147 map->name);
3148 return -EINVAL;
3149 }
3150 if (!map_value_has_spin_lock(map)) {
3151 if (map->spin_lock_off == -E2BIG)
3152 verbose(env,
3153 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3154 map->name);
3155 else if (map->spin_lock_off == -ENOENT)
3156 verbose(env,
3157 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3158 map->name);
3159 else
3160 verbose(env,
3161 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3162 map->name);
3163 return -EINVAL;
3164 }
3165 if (map->spin_lock_off != val + reg->off) {
3166 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3167 val + reg->off);
3168 return -EINVAL;
3169 }
3170 if (is_lock) {
3171 if (cur->active_spin_lock) {
3172 verbose(env,
3173 "Locking two bpf_spin_locks are not allowed\n");
3174 return -EINVAL;
3175 }
3176 cur->active_spin_lock = reg->id;
3177 } else {
3178 if (!cur->active_spin_lock) {
3179 verbose(env, "bpf_spin_unlock without taking a lock\n");
3180 return -EINVAL;
3181 }
3182 if (cur->active_spin_lock != reg->id) {
3183 verbose(env, "bpf_spin_unlock of different lock\n");
3184 return -EINVAL;
3185 }
3186 cur->active_spin_lock = 0;
3187 }
3188 return 0;
3189}
3190
90133415
DB
3191static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3192{
3193 return type == ARG_PTR_TO_MEM ||
3194 type == ARG_PTR_TO_MEM_OR_NULL ||
3195 type == ARG_PTR_TO_UNINIT_MEM;
3196}
3197
3198static bool arg_type_is_mem_size(enum bpf_arg_type type)
3199{
3200 return type == ARG_CONST_SIZE ||
3201 type == ARG_CONST_SIZE_OR_ZERO;
3202}
3203
57c3bb72
AI
3204static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3205{
3206 return type == ARG_PTR_TO_INT ||
3207 type == ARG_PTR_TO_LONG;
3208}
3209
3210static int int_ptr_type_to_size(enum bpf_arg_type type)
3211{
3212 if (type == ARG_PTR_TO_INT)
3213 return sizeof(u32);
3214 else if (type == ARG_PTR_TO_LONG)
3215 return sizeof(u64);
3216
3217 return -EINVAL;
3218}
3219
58e2af8b 3220static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3221 enum bpf_arg_type arg_type,
3222 struct bpf_call_arg_meta *meta)
17a52670 3223{
638f5b90 3224 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3225 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3226 int err = 0;
3227
80f1d68c 3228 if (arg_type == ARG_DONTCARE)
17a52670
AS
3229 return 0;
3230
dc503a8a
EC
3231 err = check_reg_arg(env, regno, SRC_OP);
3232 if (err)
3233 return err;
17a52670 3234
1be7f75d
AS
3235 if (arg_type == ARG_ANYTHING) {
3236 if (is_pointer_value(env, regno)) {
61bd5218
JK
3237 verbose(env, "R%d leaks addr into helper function\n",
3238 regno);
1be7f75d
AS
3239 return -EACCES;
3240 }
80f1d68c 3241 return 0;
1be7f75d 3242 }
80f1d68c 3243
de8f3a83 3244 if (type_is_pkt_pointer(type) &&
3a0af8fd 3245 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3246 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3247 return -EACCES;
3248 }
3249
8e2fe1d9 3250 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3251 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3252 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3253 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3254 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3255 if (register_is_null(reg) &&
3256 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3257 /* final test in check_stack_boundary() */;
3258 else if (!type_is_pkt_pointer(type) &&
3259 type != PTR_TO_MAP_VALUE &&
3260 type != expected_type)
6841de8b 3261 goto err_type;
39f19ebb
AS
3262 } else if (arg_type == ARG_CONST_SIZE ||
3263 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3264 expected_type = SCALAR_VALUE;
3265 if (type != expected_type)
6841de8b 3266 goto err_type;
17a52670
AS
3267 } else if (arg_type == ARG_CONST_MAP_PTR) {
3268 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3269 if (type != expected_type)
3270 goto err_type;
608cd71a
AS
3271 } else if (arg_type == ARG_PTR_TO_CTX) {
3272 expected_type = PTR_TO_CTX;
6841de8b
AS
3273 if (type != expected_type)
3274 goto err_type;
58990d1f
DB
3275 err = check_ctx_reg(env, reg, regno);
3276 if (err < 0)
3277 return err;
46f8bc92
MKL
3278 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3279 expected_type = PTR_TO_SOCK_COMMON;
3280 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3281 if (!type_is_sk_pointer(type))
3282 goto err_type;
1b986589
MKL
3283 if (reg->ref_obj_id) {
3284 if (meta->ref_obj_id) {
3285 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3286 regno, reg->ref_obj_id,
3287 meta->ref_obj_id);
3288 return -EFAULT;
3289 }
3290 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3291 }
6ac99e8f
MKL
3292 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3293 expected_type = PTR_TO_SOCKET;
3294 if (type != expected_type)
3295 goto err_type;
d83525ca
AS
3296 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3297 if (meta->func_id == BPF_FUNC_spin_lock) {
3298 if (process_spin_lock(env, regno, true))
3299 return -EACCES;
3300 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3301 if (process_spin_lock(env, regno, false))
3302 return -EACCES;
3303 } else {
3304 verbose(env, "verifier internal error\n");
3305 return -EFAULT;
3306 }
90133415 3307 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3308 expected_type = PTR_TO_STACK;
3309 /* One exception here. In case function allows for NULL to be
f1174f77 3310 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3311 * happens during stack boundary checking.
3312 */
914cb781 3313 if (register_is_null(reg) &&
db1ac496 3314 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3315 /* final test in check_stack_boundary() */;
de8f3a83
DB
3316 else if (!type_is_pkt_pointer(type) &&
3317 type != PTR_TO_MAP_VALUE &&
f1174f77 3318 type != expected_type)
6841de8b 3319 goto err_type;
39f19ebb 3320 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3321 } else if (arg_type_is_int_ptr(arg_type)) {
3322 expected_type = PTR_TO_STACK;
3323 if (!type_is_pkt_pointer(type) &&
3324 type != PTR_TO_MAP_VALUE &&
3325 type != expected_type)
3326 goto err_type;
17a52670 3327 } else {
61bd5218 3328 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3329 return -EFAULT;
3330 }
3331
17a52670
AS
3332 if (arg_type == ARG_CONST_MAP_PTR) {
3333 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3334 meta->map_ptr = reg->map_ptr;
17a52670
AS
3335 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3336 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3337 * check that [key, key + map->key_size) are within
3338 * stack limits and initialized
3339 */
33ff9823 3340 if (!meta->map_ptr) {
17a52670
AS
3341 /* in function declaration map_ptr must come before
3342 * map_key, so that it's verified and known before
3343 * we have to check map_key here. Otherwise it means
3344 * that kernel subsystem misconfigured verifier
3345 */
61bd5218 3346 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3347 return -EACCES;
3348 }
d71962f3
PC
3349 err = check_helper_mem_access(env, regno,
3350 meta->map_ptr->key_size, false,
3351 NULL);
2ea864c5 3352 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3353 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3354 !register_is_null(reg)) ||
2ea864c5 3355 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3356 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3357 * check [value, value + map->value_size) validity
3358 */
33ff9823 3359 if (!meta->map_ptr) {
17a52670 3360 /* kernel subsystem misconfigured verifier */
61bd5218 3361 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3362 return -EACCES;
3363 }
2ea864c5 3364 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3365 err = check_helper_mem_access(env, regno,
3366 meta->map_ptr->value_size, false,
2ea864c5 3367 meta);
90133415 3368 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3369 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3370
849fa506
YS
3371 /* remember the mem_size which may be used later
3372 * to refine return values.
3373 */
3374 meta->msize_smax_value = reg->smax_value;
3375 meta->msize_umax_value = reg->umax_value;
3376
f1174f77
EC
3377 /* The register is SCALAR_VALUE; the access check
3378 * happens using its boundaries.
06c1c049 3379 */
f1174f77 3380 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3381 /* For unprivileged variable accesses, disable raw
3382 * mode so that the program is required to
3383 * initialize all the memory that the helper could
3384 * just partially fill up.
3385 */
3386 meta = NULL;
3387
b03c9f9f 3388 if (reg->smin_value < 0) {
61bd5218 3389 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3390 regno);
3391 return -EACCES;
3392 }
06c1c049 3393
b03c9f9f 3394 if (reg->umin_value == 0) {
f1174f77
EC
3395 err = check_helper_mem_access(env, regno - 1, 0,
3396 zero_size_allowed,
3397 meta);
06c1c049
GB
3398 if (err)
3399 return err;
06c1c049 3400 }
f1174f77 3401
b03c9f9f 3402 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3403 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3404 regno);
3405 return -EACCES;
3406 }
3407 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3408 reg->umax_value,
f1174f77 3409 zero_size_allowed, meta);
b5dc0163
AS
3410 if (!err)
3411 err = mark_chain_precision(env, regno);
57c3bb72
AI
3412 } else if (arg_type_is_int_ptr(arg_type)) {
3413 int size = int_ptr_type_to_size(arg_type);
3414
3415 err = check_helper_mem_access(env, regno, size, false, meta);
3416 if (err)
3417 return err;
3418 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3419 }
3420
3421 return err;
6841de8b 3422err_type:
61bd5218 3423 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3424 reg_type_str[type], reg_type_str[expected_type]);
3425 return -EACCES;
17a52670
AS
3426}
3427
61bd5218
JK
3428static int check_map_func_compatibility(struct bpf_verifier_env *env,
3429 struct bpf_map *map, int func_id)
35578d79 3430{
35578d79
KX
3431 if (!map)
3432 return 0;
3433
6aff67c8
AS
3434 /* We need a two way check, first is from map perspective ... */
3435 switch (map->map_type) {
3436 case BPF_MAP_TYPE_PROG_ARRAY:
3437 if (func_id != BPF_FUNC_tail_call)
3438 goto error;
3439 break;
3440 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3441 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
3442 func_id != BPF_FUNC_perf_event_output &&
3443 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3444 goto error;
3445 break;
3446 case BPF_MAP_TYPE_STACK_TRACE:
3447 if (func_id != BPF_FUNC_get_stackid)
3448 goto error;
3449 break;
4ed8ec52 3450 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3451 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3452 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3453 goto error;
3454 break;
cd339431 3455 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3456 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3457 if (func_id != BPF_FUNC_get_local_storage)
3458 goto error;
3459 break;
546ac1ff 3460 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3461 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3462 if (func_id != BPF_FUNC_redirect_map &&
3463 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3464 goto error;
3465 break;
fbfc504a
BT
3466 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3467 * appear.
3468 */
6710e112
JDB
3469 case BPF_MAP_TYPE_CPUMAP:
3470 if (func_id != BPF_FUNC_redirect_map)
3471 goto error;
3472 break;
fada7fdc
JL
3473 case BPF_MAP_TYPE_XSKMAP:
3474 if (func_id != BPF_FUNC_redirect_map &&
3475 func_id != BPF_FUNC_map_lookup_elem)
3476 goto error;
3477 break;
56f668df 3478 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3479 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3480 if (func_id != BPF_FUNC_map_lookup_elem)
3481 goto error;
16a43625 3482 break;
174a79ff
JF
3483 case BPF_MAP_TYPE_SOCKMAP:
3484 if (func_id != BPF_FUNC_sk_redirect_map &&
3485 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3486 func_id != BPF_FUNC_map_delete_elem &&
3487 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3488 goto error;
3489 break;
81110384
JF
3490 case BPF_MAP_TYPE_SOCKHASH:
3491 if (func_id != BPF_FUNC_sk_redirect_hash &&
3492 func_id != BPF_FUNC_sock_hash_update &&
3493 func_id != BPF_FUNC_map_delete_elem &&
3494 func_id != BPF_FUNC_msg_redirect_hash)
3495 goto error;
3496 break;
2dbb9b9e
MKL
3497 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3498 if (func_id != BPF_FUNC_sk_select_reuseport)
3499 goto error;
3500 break;
f1a2e44a
MV
3501 case BPF_MAP_TYPE_QUEUE:
3502 case BPF_MAP_TYPE_STACK:
3503 if (func_id != BPF_FUNC_map_peek_elem &&
3504 func_id != BPF_FUNC_map_pop_elem &&
3505 func_id != BPF_FUNC_map_push_elem)
3506 goto error;
3507 break;
6ac99e8f
MKL
3508 case BPF_MAP_TYPE_SK_STORAGE:
3509 if (func_id != BPF_FUNC_sk_storage_get &&
3510 func_id != BPF_FUNC_sk_storage_delete)
3511 goto error;
3512 break;
6aff67c8
AS
3513 default:
3514 break;
3515 }
3516
3517 /* ... and second from the function itself. */
3518 switch (func_id) {
3519 case BPF_FUNC_tail_call:
3520 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3521 goto error;
f910cefa 3522 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3523 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3524 return -EINVAL;
3525 }
6aff67c8
AS
3526 break;
3527 case BPF_FUNC_perf_event_read:
3528 case BPF_FUNC_perf_event_output:
908432ca 3529 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
3530 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3531 goto error;
3532 break;
3533 case BPF_FUNC_get_stackid:
3534 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3535 goto error;
3536 break;
60d20f91 3537 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3538 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3539 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3540 goto error;
3541 break;
97f91a7c 3542 case BPF_FUNC_redirect_map:
9c270af3 3543 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 3544 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
3545 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3546 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3547 goto error;
3548 break;
174a79ff 3549 case BPF_FUNC_sk_redirect_map:
4f738adb 3550 case BPF_FUNC_msg_redirect_map:
81110384 3551 case BPF_FUNC_sock_map_update:
174a79ff
JF
3552 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3553 goto error;
3554 break;
81110384
JF
3555 case BPF_FUNC_sk_redirect_hash:
3556 case BPF_FUNC_msg_redirect_hash:
3557 case BPF_FUNC_sock_hash_update:
3558 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3559 goto error;
3560 break;
cd339431 3561 case BPF_FUNC_get_local_storage:
b741f163
RG
3562 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3563 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3564 goto error;
3565 break;
2dbb9b9e
MKL
3566 case BPF_FUNC_sk_select_reuseport:
3567 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3568 goto error;
3569 break;
f1a2e44a
MV
3570 case BPF_FUNC_map_peek_elem:
3571 case BPF_FUNC_map_pop_elem:
3572 case BPF_FUNC_map_push_elem:
3573 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3574 map->map_type != BPF_MAP_TYPE_STACK)
3575 goto error;
3576 break;
6ac99e8f
MKL
3577 case BPF_FUNC_sk_storage_get:
3578 case BPF_FUNC_sk_storage_delete:
3579 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3580 goto error;
3581 break;
6aff67c8
AS
3582 default:
3583 break;
35578d79
KX
3584 }
3585
3586 return 0;
6aff67c8 3587error:
61bd5218 3588 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3589 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3590 return -EINVAL;
35578d79
KX
3591}
3592
90133415 3593static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3594{
3595 int count = 0;
3596
39f19ebb 3597 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3598 count++;
39f19ebb 3599 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3600 count++;
39f19ebb 3601 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3602 count++;
39f19ebb 3603 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3604 count++;
39f19ebb 3605 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3606 count++;
3607
90133415
DB
3608 /* We only support one arg being in raw mode at the moment,
3609 * which is sufficient for the helper functions we have
3610 * right now.
3611 */
3612 return count <= 1;
3613}
3614
3615static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3616 enum bpf_arg_type arg_next)
3617{
3618 return (arg_type_is_mem_ptr(arg_curr) &&
3619 !arg_type_is_mem_size(arg_next)) ||
3620 (!arg_type_is_mem_ptr(arg_curr) &&
3621 arg_type_is_mem_size(arg_next));
3622}
3623
3624static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3625{
3626 /* bpf_xxx(..., buf, len) call will access 'len'
3627 * bytes from memory 'buf'. Both arg types need
3628 * to be paired, so make sure there's no buggy
3629 * helper function specification.
3630 */
3631 if (arg_type_is_mem_size(fn->arg1_type) ||
3632 arg_type_is_mem_ptr(fn->arg5_type) ||
3633 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3634 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3635 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3636 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3637 return false;
3638
3639 return true;
3640}
3641
1b986589 3642static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3643{
3644 int count = 0;
3645
1b986589 3646 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3647 count++;
1b986589 3648 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3649 count++;
1b986589 3650 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3651 count++;
1b986589 3652 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3653 count++;
1b986589 3654 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3655 count++;
3656
1b986589
MKL
3657 /* A reference acquiring function cannot acquire
3658 * another refcounted ptr.
3659 */
3660 if (is_acquire_function(func_id) && count)
3661 return false;
3662
fd978bf7
JS
3663 /* We only support one arg being unreferenced at the moment,
3664 * which is sufficient for the helper functions we have right now.
3665 */
3666 return count <= 1;
3667}
3668
1b986589 3669static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3670{
3671 return check_raw_mode_ok(fn) &&
fd978bf7 3672 check_arg_pair_ok(fn) &&
1b986589 3673 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3674}
3675
de8f3a83
DB
3676/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3677 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3678 */
f4d7e40a
AS
3679static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3680 struct bpf_func_state *state)
969bf05e 3681{
58e2af8b 3682 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3683 int i;
3684
3685 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3686 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3687 mark_reg_unknown(env, regs, i);
969bf05e 3688
f3709f69
JS
3689 bpf_for_each_spilled_reg(i, state, reg) {
3690 if (!reg)
969bf05e 3691 continue;
de8f3a83
DB
3692 if (reg_is_pkt_pointer_any(reg))
3693 __mark_reg_unknown(reg);
969bf05e
AS
3694 }
3695}
3696
f4d7e40a
AS
3697static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3698{
3699 struct bpf_verifier_state *vstate = env->cur_state;
3700 int i;
3701
3702 for (i = 0; i <= vstate->curframe; i++)
3703 __clear_all_pkt_pointers(env, vstate->frame[i]);
3704}
3705
fd978bf7 3706static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3707 struct bpf_func_state *state,
3708 int ref_obj_id)
fd978bf7
JS
3709{
3710 struct bpf_reg_state *regs = state->regs, *reg;
3711 int i;
3712
3713 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3714 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3715 mark_reg_unknown(env, regs, i);
3716
3717 bpf_for_each_spilled_reg(i, state, reg) {
3718 if (!reg)
3719 continue;
1b986589 3720 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
3721 __mark_reg_unknown(reg);
3722 }
3723}
3724
3725/* The pointer with the specified id has released its reference to kernel
3726 * resources. Identify all copies of the same pointer and clear the reference.
3727 */
3728static int release_reference(struct bpf_verifier_env *env,
1b986589 3729 int ref_obj_id)
fd978bf7
JS
3730{
3731 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3732 int err;
fd978bf7
JS
3733 int i;
3734
1b986589
MKL
3735 err = release_reference_state(cur_func(env), ref_obj_id);
3736 if (err)
3737 return err;
3738
fd978bf7 3739 for (i = 0; i <= vstate->curframe; i++)
1b986589 3740 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3741
1b986589 3742 return 0;
fd978bf7
JS
3743}
3744
f4d7e40a
AS
3745static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3746 int *insn_idx)
3747{
3748 struct bpf_verifier_state *state = env->cur_state;
3749 struct bpf_func_state *caller, *callee;
fd978bf7 3750 int i, err, subprog, target_insn;
f4d7e40a 3751
aada9ce6 3752 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3753 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3754 state->curframe + 2);
f4d7e40a
AS
3755 return -E2BIG;
3756 }
3757
3758 target_insn = *insn_idx + insn->imm;
3759 subprog = find_subprog(env, target_insn + 1);
3760 if (subprog < 0) {
3761 verbose(env, "verifier bug. No program starts at insn %d\n",
3762 target_insn + 1);
3763 return -EFAULT;
3764 }
3765
3766 caller = state->frame[state->curframe];
3767 if (state->frame[state->curframe + 1]) {
3768 verbose(env, "verifier bug. Frame %d already allocated\n",
3769 state->curframe + 1);
3770 return -EFAULT;
3771 }
3772
3773 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3774 if (!callee)
3775 return -ENOMEM;
3776 state->frame[state->curframe + 1] = callee;
3777
3778 /* callee cannot access r0, r6 - r9 for reading and has to write
3779 * into its own stack before reading from it.
3780 * callee can read/write into caller's stack
3781 */
3782 init_func_state(env, callee,
3783 /* remember the callsite, it will be used by bpf_exit */
3784 *insn_idx /* callsite */,
3785 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3786 subprog /* subprog number within this prog */);
f4d7e40a 3787
fd978bf7
JS
3788 /* Transfer references to the callee */
3789 err = transfer_reference_state(callee, caller);
3790 if (err)
3791 return err;
3792
679c782d
EC
3793 /* copy r1 - r5 args that callee can access. The copy includes parent
3794 * pointers, which connects us up to the liveness chain
3795 */
f4d7e40a
AS
3796 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3797 callee->regs[i] = caller->regs[i];
3798
679c782d 3799 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
3800 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3801 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3802 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3803 }
3804
3805 /* only increment it after check_reg_arg() finished */
3806 state->curframe++;
3807
3808 /* and go analyze first insn of the callee */
3809 *insn_idx = target_insn;
3810
06ee7115 3811 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3812 verbose(env, "caller:\n");
3813 print_verifier_state(env, caller);
3814 verbose(env, "callee:\n");
3815 print_verifier_state(env, callee);
3816 }
3817 return 0;
3818}
3819
3820static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3821{
3822 struct bpf_verifier_state *state = env->cur_state;
3823 struct bpf_func_state *caller, *callee;
3824 struct bpf_reg_state *r0;
fd978bf7 3825 int err;
f4d7e40a
AS
3826
3827 callee = state->frame[state->curframe];
3828 r0 = &callee->regs[BPF_REG_0];
3829 if (r0->type == PTR_TO_STACK) {
3830 /* technically it's ok to return caller's stack pointer
3831 * (or caller's caller's pointer) back to the caller,
3832 * since these pointers are valid. Only current stack
3833 * pointer will be invalid as soon as function exits,
3834 * but let's be conservative
3835 */
3836 verbose(env, "cannot return stack pointer to the caller\n");
3837 return -EINVAL;
3838 }
3839
3840 state->curframe--;
3841 caller = state->frame[state->curframe];
3842 /* return to the caller whatever r0 had in the callee */
3843 caller->regs[BPF_REG_0] = *r0;
3844
fd978bf7
JS
3845 /* Transfer references to the caller */
3846 err = transfer_reference_state(caller, callee);
3847 if (err)
3848 return err;
3849
f4d7e40a 3850 *insn_idx = callee->callsite + 1;
06ee7115 3851 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3852 verbose(env, "returning from callee:\n");
3853 print_verifier_state(env, callee);
3854 verbose(env, "to caller at %d:\n", *insn_idx);
3855 print_verifier_state(env, caller);
3856 }
3857 /* clear everything in the callee */
3858 free_func_state(callee);
3859 state->frame[state->curframe + 1] = NULL;
3860 return 0;
3861}
3862
849fa506
YS
3863static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3864 int func_id,
3865 struct bpf_call_arg_meta *meta)
3866{
3867 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3868
3869 if (ret_type != RET_INTEGER ||
3870 (func_id != BPF_FUNC_get_stack &&
3871 func_id != BPF_FUNC_probe_read_str))
3872 return;
3873
3874 ret_reg->smax_value = meta->msize_smax_value;
3875 ret_reg->umax_value = meta->msize_umax_value;
3876 __reg_deduce_bounds(ret_reg);
3877 __reg_bound_offset(ret_reg);
3878}
3879
c93552c4
DB
3880static int
3881record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3882 int func_id, int insn_idx)
3883{
3884 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 3885 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
3886
3887 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3888 func_id != BPF_FUNC_map_lookup_elem &&
3889 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3890 func_id != BPF_FUNC_map_delete_elem &&
3891 func_id != BPF_FUNC_map_push_elem &&
3892 func_id != BPF_FUNC_map_pop_elem &&
3893 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3894 return 0;
09772d92 3895
591fe988 3896 if (map == NULL) {
c93552c4
DB
3897 verbose(env, "kernel subsystem misconfigured verifier\n");
3898 return -EINVAL;
3899 }
3900
591fe988
DB
3901 /* In case of read-only, some additional restrictions
3902 * need to be applied in order to prevent altering the
3903 * state of the map from program side.
3904 */
3905 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3906 (func_id == BPF_FUNC_map_delete_elem ||
3907 func_id == BPF_FUNC_map_update_elem ||
3908 func_id == BPF_FUNC_map_push_elem ||
3909 func_id == BPF_FUNC_map_pop_elem)) {
3910 verbose(env, "write into map forbidden\n");
3911 return -EACCES;
3912 }
3913
c93552c4
DB
3914 if (!BPF_MAP_PTR(aux->map_state))
3915 bpf_map_ptr_store(aux, meta->map_ptr,
3916 meta->map_ptr->unpriv_array);
3917 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3918 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3919 meta->map_ptr->unpriv_array);
3920 return 0;
3921}
3922
fd978bf7
JS
3923static int check_reference_leak(struct bpf_verifier_env *env)
3924{
3925 struct bpf_func_state *state = cur_func(env);
3926 int i;
3927
3928 for (i = 0; i < state->acquired_refs; i++) {
3929 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3930 state->refs[i].id, state->refs[i].insn_idx);
3931 }
3932 return state->acquired_refs ? -EINVAL : 0;
3933}
3934
f4d7e40a 3935static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3936{
17a52670 3937 const struct bpf_func_proto *fn = NULL;
638f5b90 3938 struct bpf_reg_state *regs;
33ff9823 3939 struct bpf_call_arg_meta meta;
969bf05e 3940 bool changes_data;
17a52670
AS
3941 int i, err;
3942
3943 /* find function prototype */
3944 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3945 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3946 func_id);
17a52670
AS
3947 return -EINVAL;
3948 }
3949
00176a34 3950 if (env->ops->get_func_proto)
5e43f899 3951 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3952 if (!fn) {
61bd5218
JK
3953 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3954 func_id);
17a52670
AS
3955 return -EINVAL;
3956 }
3957
3958 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3959 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3960 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3961 return -EINVAL;
3962 }
3963
04514d13 3964 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3965 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3966 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3967 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3968 func_id_name(func_id), func_id);
3969 return -EINVAL;
3970 }
969bf05e 3971
33ff9823 3972 memset(&meta, 0, sizeof(meta));
36bbef52 3973 meta.pkt_access = fn->pkt_access;
33ff9823 3974
1b986589 3975 err = check_func_proto(fn, func_id);
435faee1 3976 if (err) {
61bd5218 3977 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3978 func_id_name(func_id), func_id);
435faee1
DB
3979 return err;
3980 }
3981
d83525ca 3982 meta.func_id = func_id;
17a52670 3983 /* check args */
33ff9823 3984 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3985 if (err)
3986 return err;
33ff9823 3987 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3988 if (err)
3989 return err;
33ff9823 3990 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3991 if (err)
3992 return err;
33ff9823 3993 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3994 if (err)
3995 return err;
33ff9823 3996 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3997 if (err)
3998 return err;
3999
c93552c4
DB
4000 err = record_func_map(env, &meta, func_id, insn_idx);
4001 if (err)
4002 return err;
4003
435faee1
DB
4004 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4005 * is inferred from register state.
4006 */
4007 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4008 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4009 BPF_WRITE, -1, false);
435faee1
DB
4010 if (err)
4011 return err;
4012 }
4013
fd978bf7
JS
4014 if (func_id == BPF_FUNC_tail_call) {
4015 err = check_reference_leak(env);
4016 if (err) {
4017 verbose(env, "tail_call would lead to reference leak\n");
4018 return err;
4019 }
4020 } else if (is_release_function(func_id)) {
1b986589 4021 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4022 if (err) {
4023 verbose(env, "func %s#%d reference has not been acquired before\n",
4024 func_id_name(func_id), func_id);
fd978bf7 4025 return err;
46f8bc92 4026 }
fd978bf7
JS
4027 }
4028
638f5b90 4029 regs = cur_regs(env);
cd339431
RG
4030
4031 /* check that flags argument in get_local_storage(map, flags) is 0,
4032 * this is required because get_local_storage() can't return an error.
4033 */
4034 if (func_id == BPF_FUNC_get_local_storage &&
4035 !register_is_null(&regs[BPF_REG_2])) {
4036 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4037 return -EINVAL;
4038 }
4039
17a52670 4040 /* reset caller saved regs */
dc503a8a 4041 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4042 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4043 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4044 }
17a52670 4045
5327ed3d
JW
4046 /* helper call returns 64-bit value. */
4047 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4048
dc503a8a 4049 /* update return register (already marked as written above) */
17a52670 4050 if (fn->ret_type == RET_INTEGER) {
f1174f77 4051 /* sets type to SCALAR_VALUE */
61bd5218 4052 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4053 } else if (fn->ret_type == RET_VOID) {
4054 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4055 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4056 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4057 /* There is no offset yet applied, variable or fixed */
61bd5218 4058 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4059 /* remember map_ptr, so that check_map_access()
4060 * can check 'value_size' boundary of memory access
4061 * to map element returned from bpf_map_lookup_elem()
4062 */
33ff9823 4063 if (meta.map_ptr == NULL) {
61bd5218
JK
4064 verbose(env,
4065 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4066 return -EINVAL;
4067 }
33ff9823 4068 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4069 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4070 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4071 if (map_value_has_spin_lock(meta.map_ptr))
4072 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4073 } else {
4074 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4075 regs[BPF_REG_0].id = ++env->id_gen;
4076 }
c64b7983
JS
4077 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4078 mark_reg_known_zero(env, regs, BPF_REG_0);
4079 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4080 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4081 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4082 mark_reg_known_zero(env, regs, BPF_REG_0);
4083 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4084 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4085 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4086 mark_reg_known_zero(env, regs, BPF_REG_0);
4087 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4088 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4089 } else {
61bd5218 4090 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4091 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4092 return -EINVAL;
4093 }
04fd61ab 4094
0f3adc28 4095 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4096 /* For release_reference() */
4097 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4098 } else if (is_acquire_function(func_id)) {
4099 int id = acquire_reference_state(env, insn_idx);
4100
4101 if (id < 0)
4102 return id;
4103 /* For mark_ptr_or_null_reg() */
4104 regs[BPF_REG_0].id = id;
4105 /* For release_reference() */
4106 regs[BPF_REG_0].ref_obj_id = id;
4107 }
1b986589 4108
849fa506
YS
4109 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4110
61bd5218 4111 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4112 if (err)
4113 return err;
04fd61ab 4114
c195651e
YS
4115 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4116 const char *err_str;
4117
4118#ifdef CONFIG_PERF_EVENTS
4119 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4120 err_str = "cannot get callchain buffer for func %s#%d\n";
4121#else
4122 err = -ENOTSUPP;
4123 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4124#endif
4125 if (err) {
4126 verbose(env, err_str, func_id_name(func_id), func_id);
4127 return err;
4128 }
4129
4130 env->prog->has_callchain_buf = true;
4131 }
4132
969bf05e
AS
4133 if (changes_data)
4134 clear_all_pkt_pointers(env);
4135 return 0;
4136}
4137
b03c9f9f
EC
4138static bool signed_add_overflows(s64 a, s64 b)
4139{
4140 /* Do the add in u64, where overflow is well-defined */
4141 s64 res = (s64)((u64)a + (u64)b);
4142
4143 if (b < 0)
4144 return res > a;
4145 return res < a;
4146}
4147
4148static bool signed_sub_overflows(s64 a, s64 b)
4149{
4150 /* Do the sub in u64, where overflow is well-defined */
4151 s64 res = (s64)((u64)a - (u64)b);
4152
4153 if (b < 0)
4154 return res < a;
4155 return res > a;
969bf05e
AS
4156}
4157
bb7f0f98
AS
4158static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4159 const struct bpf_reg_state *reg,
4160 enum bpf_reg_type type)
4161{
4162 bool known = tnum_is_const(reg->var_off);
4163 s64 val = reg->var_off.value;
4164 s64 smin = reg->smin_value;
4165
4166 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4167 verbose(env, "math between %s pointer and %lld is not allowed\n",
4168 reg_type_str[type], val);
4169 return false;
4170 }
4171
4172 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4173 verbose(env, "%s pointer offset %d is not allowed\n",
4174 reg_type_str[type], reg->off);
4175 return false;
4176 }
4177
4178 if (smin == S64_MIN) {
4179 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4180 reg_type_str[type]);
4181 return false;
4182 }
4183
4184 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4185 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4186 smin, reg_type_str[type]);
4187 return false;
4188 }
4189
4190 return true;
4191}
4192
979d63d5
DB
4193static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4194{
4195 return &env->insn_aux_data[env->insn_idx];
4196}
4197
4198static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4199 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4200{
4201 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4202 (opcode == BPF_SUB && !off_is_neg);
4203 u32 off;
4204
4205 switch (ptr_reg->type) {
4206 case PTR_TO_STACK:
088ec26d
AI
4207 /* Indirect variable offset stack access is prohibited in
4208 * unprivileged mode so it's not handled here.
4209 */
979d63d5
DB
4210 off = ptr_reg->off + ptr_reg->var_off.value;
4211 if (mask_to_left)
4212 *ptr_limit = MAX_BPF_STACK + off;
4213 else
4214 *ptr_limit = -off;
4215 return 0;
4216 case PTR_TO_MAP_VALUE:
4217 if (mask_to_left) {
4218 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4219 } else {
4220 off = ptr_reg->smin_value + ptr_reg->off;
4221 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4222 }
4223 return 0;
4224 default:
4225 return -EINVAL;
4226 }
4227}
4228
d3bd7413
DB
4229static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4230 const struct bpf_insn *insn)
4231{
4232 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4233}
4234
4235static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4236 u32 alu_state, u32 alu_limit)
4237{
4238 /* If we arrived here from different branches with different
4239 * state or limits to sanitize, then this won't work.
4240 */
4241 if (aux->alu_state &&
4242 (aux->alu_state != alu_state ||
4243 aux->alu_limit != alu_limit))
4244 return -EACCES;
4245
4246 /* Corresponding fixup done in fixup_bpf_calls(). */
4247 aux->alu_state = alu_state;
4248 aux->alu_limit = alu_limit;
4249 return 0;
4250}
4251
4252static int sanitize_val_alu(struct bpf_verifier_env *env,
4253 struct bpf_insn *insn)
4254{
4255 struct bpf_insn_aux_data *aux = cur_aux(env);
4256
4257 if (can_skip_alu_sanitation(env, insn))
4258 return 0;
4259
4260 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4261}
4262
979d63d5
DB
4263static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4264 struct bpf_insn *insn,
4265 const struct bpf_reg_state *ptr_reg,
4266 struct bpf_reg_state *dst_reg,
4267 bool off_is_neg)
4268{
4269 struct bpf_verifier_state *vstate = env->cur_state;
4270 struct bpf_insn_aux_data *aux = cur_aux(env);
4271 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4272 u8 opcode = BPF_OP(insn->code);
4273 u32 alu_state, alu_limit;
4274 struct bpf_reg_state tmp;
4275 bool ret;
4276
d3bd7413 4277 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4278 return 0;
4279
4280 /* We already marked aux for masking from non-speculative
4281 * paths, thus we got here in the first place. We only care
4282 * to explore bad access from here.
4283 */
4284 if (vstate->speculative)
4285 goto do_sim;
4286
4287 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4288 alu_state |= ptr_is_dst_reg ?
4289 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4290
4291 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4292 return 0;
d3bd7413 4293 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4294 return -EACCES;
979d63d5
DB
4295do_sim:
4296 /* Simulate and find potential out-of-bounds access under
4297 * speculative execution from truncation as a result of
4298 * masking when off was not within expected range. If off
4299 * sits in dst, then we temporarily need to move ptr there
4300 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4301 * for cases where we use K-based arithmetic in one direction
4302 * and truncated reg-based in the other in order to explore
4303 * bad access.
4304 */
4305 if (!ptr_is_dst_reg) {
4306 tmp = *dst_reg;
4307 *dst_reg = *ptr_reg;
4308 }
4309 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4310 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4311 *dst_reg = tmp;
4312 return !ret ? -EFAULT : 0;
4313}
4314
f1174f77 4315/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4316 * Caller should also handle BPF_MOV case separately.
4317 * If we return -EACCES, caller may want to try again treating pointer as a
4318 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4319 */
4320static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4321 struct bpf_insn *insn,
4322 const struct bpf_reg_state *ptr_reg,
4323 const struct bpf_reg_state *off_reg)
969bf05e 4324{
f4d7e40a
AS
4325 struct bpf_verifier_state *vstate = env->cur_state;
4326 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4327 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4328 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4329 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4330 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4331 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4332 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4333 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4334 u8 opcode = BPF_OP(insn->code);
979d63d5 4335 int ret;
969bf05e 4336
f1174f77 4337 dst_reg = &regs[dst];
969bf05e 4338
6f16101e
DB
4339 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4340 smin_val > smax_val || umin_val > umax_val) {
4341 /* Taint dst register if offset had invalid bounds derived from
4342 * e.g. dead branches.
4343 */
4344 __mark_reg_unknown(dst_reg);
4345 return 0;
f1174f77
EC
4346 }
4347
4348 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4349 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4350 verbose(env,
4351 "R%d 32-bit pointer arithmetic prohibited\n",
4352 dst);
f1174f77 4353 return -EACCES;
969bf05e
AS
4354 }
4355
aad2eeaf
JS
4356 switch (ptr_reg->type) {
4357 case PTR_TO_MAP_VALUE_OR_NULL:
4358 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4359 dst, reg_type_str[ptr_reg->type]);
f1174f77 4360 return -EACCES;
aad2eeaf
JS
4361 case CONST_PTR_TO_MAP:
4362 case PTR_TO_PACKET_END:
c64b7983
JS
4363 case PTR_TO_SOCKET:
4364 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4365 case PTR_TO_SOCK_COMMON:
4366 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4367 case PTR_TO_TCP_SOCK:
4368 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4369 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4370 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4371 dst, reg_type_str[ptr_reg->type]);
f1174f77 4372 return -EACCES;
9d7eceed
DB
4373 case PTR_TO_MAP_VALUE:
4374 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4375 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4376 off_reg == dst_reg ? dst : src);
4377 return -EACCES;
4378 }
4379 /* fall-through */
aad2eeaf
JS
4380 default:
4381 break;
f1174f77
EC
4382 }
4383
4384 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4385 * The id may be overwritten later if we create a new variable offset.
969bf05e 4386 */
f1174f77
EC
4387 dst_reg->type = ptr_reg->type;
4388 dst_reg->id = ptr_reg->id;
969bf05e 4389
bb7f0f98
AS
4390 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4391 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4392 return -EINVAL;
4393
f1174f77
EC
4394 switch (opcode) {
4395 case BPF_ADD:
979d63d5
DB
4396 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4397 if (ret < 0) {
4398 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4399 return ret;
4400 }
f1174f77
EC
4401 /* We can take a fixed offset as long as it doesn't overflow
4402 * the s32 'off' field
969bf05e 4403 */
b03c9f9f
EC
4404 if (known && (ptr_reg->off + smin_val ==
4405 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4406 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4407 dst_reg->smin_value = smin_ptr;
4408 dst_reg->smax_value = smax_ptr;
4409 dst_reg->umin_value = umin_ptr;
4410 dst_reg->umax_value = umax_ptr;
f1174f77 4411 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4412 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4413 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4414 break;
4415 }
f1174f77
EC
4416 /* A new variable offset is created. Note that off_reg->off
4417 * == 0, since it's a scalar.
4418 * dst_reg gets the pointer type and since some positive
4419 * integer value was added to the pointer, give it a new 'id'
4420 * if it's a PTR_TO_PACKET.
4421 * this creates a new 'base' pointer, off_reg (variable) gets
4422 * added into the variable offset, and we copy the fixed offset
4423 * from ptr_reg.
969bf05e 4424 */
b03c9f9f
EC
4425 if (signed_add_overflows(smin_ptr, smin_val) ||
4426 signed_add_overflows(smax_ptr, smax_val)) {
4427 dst_reg->smin_value = S64_MIN;
4428 dst_reg->smax_value = S64_MAX;
4429 } else {
4430 dst_reg->smin_value = smin_ptr + smin_val;
4431 dst_reg->smax_value = smax_ptr + smax_val;
4432 }
4433 if (umin_ptr + umin_val < umin_ptr ||
4434 umax_ptr + umax_val < umax_ptr) {
4435 dst_reg->umin_value = 0;
4436 dst_reg->umax_value = U64_MAX;
4437 } else {
4438 dst_reg->umin_value = umin_ptr + umin_val;
4439 dst_reg->umax_value = umax_ptr + umax_val;
4440 }
f1174f77
EC
4441 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4442 dst_reg->off = ptr_reg->off;
0962590e 4443 dst_reg->raw = ptr_reg->raw;
de8f3a83 4444 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4445 dst_reg->id = ++env->id_gen;
4446 /* something was added to pkt_ptr, set range to zero */
0962590e 4447 dst_reg->raw = 0;
f1174f77
EC
4448 }
4449 break;
4450 case BPF_SUB:
979d63d5
DB
4451 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4452 if (ret < 0) {
4453 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4454 return ret;
4455 }
f1174f77
EC
4456 if (dst_reg == off_reg) {
4457 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4458 verbose(env, "R%d tried to subtract pointer from scalar\n",
4459 dst);
f1174f77
EC
4460 return -EACCES;
4461 }
4462 /* We don't allow subtraction from FP, because (according to
4463 * test_verifier.c test "invalid fp arithmetic", JITs might not
4464 * be able to deal with it.
969bf05e 4465 */
f1174f77 4466 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4467 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4468 dst);
f1174f77
EC
4469 return -EACCES;
4470 }
b03c9f9f
EC
4471 if (known && (ptr_reg->off - smin_val ==
4472 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4473 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4474 dst_reg->smin_value = smin_ptr;
4475 dst_reg->smax_value = smax_ptr;
4476 dst_reg->umin_value = umin_ptr;
4477 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4478 dst_reg->var_off = ptr_reg->var_off;
4479 dst_reg->id = ptr_reg->id;
b03c9f9f 4480 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4481 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4482 break;
4483 }
f1174f77
EC
4484 /* A new variable offset is created. If the subtrahend is known
4485 * nonnegative, then any reg->range we had before is still good.
969bf05e 4486 */
b03c9f9f
EC
4487 if (signed_sub_overflows(smin_ptr, smax_val) ||
4488 signed_sub_overflows(smax_ptr, smin_val)) {
4489 /* Overflow possible, we know nothing */
4490 dst_reg->smin_value = S64_MIN;
4491 dst_reg->smax_value = S64_MAX;
4492 } else {
4493 dst_reg->smin_value = smin_ptr - smax_val;
4494 dst_reg->smax_value = smax_ptr - smin_val;
4495 }
4496 if (umin_ptr < umax_val) {
4497 /* Overflow possible, we know nothing */
4498 dst_reg->umin_value = 0;
4499 dst_reg->umax_value = U64_MAX;
4500 } else {
4501 /* Cannot overflow (as long as bounds are consistent) */
4502 dst_reg->umin_value = umin_ptr - umax_val;
4503 dst_reg->umax_value = umax_ptr - umin_val;
4504 }
f1174f77
EC
4505 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4506 dst_reg->off = ptr_reg->off;
0962590e 4507 dst_reg->raw = ptr_reg->raw;
de8f3a83 4508 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4509 dst_reg->id = ++env->id_gen;
4510 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4511 if (smin_val < 0)
0962590e 4512 dst_reg->raw = 0;
43188702 4513 }
f1174f77
EC
4514 break;
4515 case BPF_AND:
4516 case BPF_OR:
4517 case BPF_XOR:
82abbf8d
AS
4518 /* bitwise ops on pointers are troublesome, prohibit. */
4519 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4520 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4521 return -EACCES;
4522 default:
4523 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4524 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4525 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4526 return -EACCES;
43188702
JF
4527 }
4528
bb7f0f98
AS
4529 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4530 return -EINVAL;
4531
b03c9f9f
EC
4532 __update_reg_bounds(dst_reg);
4533 __reg_deduce_bounds(dst_reg);
4534 __reg_bound_offset(dst_reg);
0d6303db
DB
4535
4536 /* For unprivileged we require that resulting offset must be in bounds
4537 * in order to be able to sanitize access later on.
4538 */
e4298d25
DB
4539 if (!env->allow_ptr_leaks) {
4540 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4541 check_map_access(env, dst, dst_reg->off, 1, false)) {
4542 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4543 "prohibited for !root\n", dst);
4544 return -EACCES;
4545 } else if (dst_reg->type == PTR_TO_STACK &&
4546 check_stack_access(env, dst_reg, dst_reg->off +
4547 dst_reg->var_off.value, 1)) {
4548 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4549 "prohibited for !root\n", dst);
4550 return -EACCES;
4551 }
0d6303db
DB
4552 }
4553
43188702
JF
4554 return 0;
4555}
4556
468f6eaf
JH
4557/* WARNING: This function does calculations on 64-bit values, but the actual
4558 * execution may occur on 32-bit values. Therefore, things like bitshifts
4559 * need extra checks in the 32-bit case.
4560 */
f1174f77
EC
4561static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4562 struct bpf_insn *insn,
4563 struct bpf_reg_state *dst_reg,
4564 struct bpf_reg_state src_reg)
969bf05e 4565{
638f5b90 4566 struct bpf_reg_state *regs = cur_regs(env);
48461135 4567 u8 opcode = BPF_OP(insn->code);
f1174f77 4568 bool src_known, dst_known;
b03c9f9f
EC
4569 s64 smin_val, smax_val;
4570 u64 umin_val, umax_val;
468f6eaf 4571 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4572 u32 dst = insn->dst_reg;
4573 int ret;
48461135 4574
b799207e
JH
4575 if (insn_bitness == 32) {
4576 /* Relevant for 32-bit RSH: Information can propagate towards
4577 * LSB, so it isn't sufficient to only truncate the output to
4578 * 32 bits.
4579 */
4580 coerce_reg_to_size(dst_reg, 4);
4581 coerce_reg_to_size(&src_reg, 4);
4582 }
4583
b03c9f9f
EC
4584 smin_val = src_reg.smin_value;
4585 smax_val = src_reg.smax_value;
4586 umin_val = src_reg.umin_value;
4587 umax_val = src_reg.umax_value;
f1174f77
EC
4588 src_known = tnum_is_const(src_reg.var_off);
4589 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4590
6f16101e
DB
4591 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4592 smin_val > smax_val || umin_val > umax_val) {
4593 /* Taint dst register if offset had invalid bounds derived from
4594 * e.g. dead branches.
4595 */
4596 __mark_reg_unknown(dst_reg);
4597 return 0;
4598 }
4599
bb7f0f98
AS
4600 if (!src_known &&
4601 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4602 __mark_reg_unknown(dst_reg);
4603 return 0;
4604 }
4605
48461135
JB
4606 switch (opcode) {
4607 case BPF_ADD:
d3bd7413
DB
4608 ret = sanitize_val_alu(env, insn);
4609 if (ret < 0) {
4610 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4611 return ret;
4612 }
b03c9f9f
EC
4613 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4614 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4615 dst_reg->smin_value = S64_MIN;
4616 dst_reg->smax_value = S64_MAX;
4617 } else {
4618 dst_reg->smin_value += smin_val;
4619 dst_reg->smax_value += smax_val;
4620 }
4621 if (dst_reg->umin_value + umin_val < umin_val ||
4622 dst_reg->umax_value + umax_val < umax_val) {
4623 dst_reg->umin_value = 0;
4624 dst_reg->umax_value = U64_MAX;
4625 } else {
4626 dst_reg->umin_value += umin_val;
4627 dst_reg->umax_value += umax_val;
4628 }
f1174f77 4629 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4630 break;
4631 case BPF_SUB:
d3bd7413
DB
4632 ret = sanitize_val_alu(env, insn);
4633 if (ret < 0) {
4634 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4635 return ret;
4636 }
b03c9f9f
EC
4637 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4638 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4639 /* Overflow possible, we know nothing */
4640 dst_reg->smin_value = S64_MIN;
4641 dst_reg->smax_value = S64_MAX;
4642 } else {
4643 dst_reg->smin_value -= smax_val;
4644 dst_reg->smax_value -= smin_val;
4645 }
4646 if (dst_reg->umin_value < umax_val) {
4647 /* Overflow possible, we know nothing */
4648 dst_reg->umin_value = 0;
4649 dst_reg->umax_value = U64_MAX;
4650 } else {
4651 /* Cannot overflow (as long as bounds are consistent) */
4652 dst_reg->umin_value -= umax_val;
4653 dst_reg->umax_value -= umin_val;
4654 }
f1174f77 4655 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4656 break;
4657 case BPF_MUL:
b03c9f9f
EC
4658 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4659 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4660 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4661 __mark_reg_unbounded(dst_reg);
4662 __update_reg_bounds(dst_reg);
f1174f77
EC
4663 break;
4664 }
b03c9f9f
EC
4665 /* Both values are positive, so we can work with unsigned and
4666 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4667 */
b03c9f9f
EC
4668 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4669 /* Potential overflow, we know nothing */
4670 __mark_reg_unbounded(dst_reg);
4671 /* (except what we can learn from the var_off) */
4672 __update_reg_bounds(dst_reg);
4673 break;
4674 }
4675 dst_reg->umin_value *= umin_val;
4676 dst_reg->umax_value *= umax_val;
4677 if (dst_reg->umax_value > S64_MAX) {
4678 /* Overflow possible, we know nothing */
4679 dst_reg->smin_value = S64_MIN;
4680 dst_reg->smax_value = S64_MAX;
4681 } else {
4682 dst_reg->smin_value = dst_reg->umin_value;
4683 dst_reg->smax_value = dst_reg->umax_value;
4684 }
48461135
JB
4685 break;
4686 case BPF_AND:
f1174f77 4687 if (src_known && dst_known) {
b03c9f9f
EC
4688 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4689 src_reg.var_off.value);
f1174f77
EC
4690 break;
4691 }
b03c9f9f
EC
4692 /* We get our minimum from the var_off, since that's inherently
4693 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4694 */
f1174f77 4695 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4696 dst_reg->umin_value = dst_reg->var_off.value;
4697 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4698 if (dst_reg->smin_value < 0 || smin_val < 0) {
4699 /* Lose signed bounds when ANDing negative numbers,
4700 * ain't nobody got time for that.
4701 */
4702 dst_reg->smin_value = S64_MIN;
4703 dst_reg->smax_value = S64_MAX;
4704 } else {
4705 /* ANDing two positives gives a positive, so safe to
4706 * cast result into s64.
4707 */
4708 dst_reg->smin_value = dst_reg->umin_value;
4709 dst_reg->smax_value = dst_reg->umax_value;
4710 }
4711 /* We may learn something more from the var_off */
4712 __update_reg_bounds(dst_reg);
f1174f77
EC
4713 break;
4714 case BPF_OR:
4715 if (src_known && dst_known) {
b03c9f9f
EC
4716 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4717 src_reg.var_off.value);
f1174f77
EC
4718 break;
4719 }
b03c9f9f
EC
4720 /* We get our maximum from the var_off, and our minimum is the
4721 * maximum of the operands' minima
f1174f77
EC
4722 */
4723 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4724 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4725 dst_reg->umax_value = dst_reg->var_off.value |
4726 dst_reg->var_off.mask;
4727 if (dst_reg->smin_value < 0 || smin_val < 0) {
4728 /* Lose signed bounds when ORing negative numbers,
4729 * ain't nobody got time for that.
4730 */
4731 dst_reg->smin_value = S64_MIN;
4732 dst_reg->smax_value = S64_MAX;
f1174f77 4733 } else {
b03c9f9f
EC
4734 /* ORing two positives gives a positive, so safe to
4735 * cast result into s64.
4736 */
4737 dst_reg->smin_value = dst_reg->umin_value;
4738 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4739 }
b03c9f9f
EC
4740 /* We may learn something more from the var_off */
4741 __update_reg_bounds(dst_reg);
48461135
JB
4742 break;
4743 case BPF_LSH:
468f6eaf
JH
4744 if (umax_val >= insn_bitness) {
4745 /* Shifts greater than 31 or 63 are undefined.
4746 * This includes shifts by a negative number.
b03c9f9f 4747 */
61bd5218 4748 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4749 break;
4750 }
b03c9f9f
EC
4751 /* We lose all sign bit information (except what we can pick
4752 * up from var_off)
48461135 4753 */
b03c9f9f
EC
4754 dst_reg->smin_value = S64_MIN;
4755 dst_reg->smax_value = S64_MAX;
4756 /* If we might shift our top bit out, then we know nothing */
4757 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4758 dst_reg->umin_value = 0;
4759 dst_reg->umax_value = U64_MAX;
d1174416 4760 } else {
b03c9f9f
EC
4761 dst_reg->umin_value <<= umin_val;
4762 dst_reg->umax_value <<= umax_val;
d1174416 4763 }
afbe1a5b 4764 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4765 /* We may learn something more from the var_off */
4766 __update_reg_bounds(dst_reg);
48461135
JB
4767 break;
4768 case BPF_RSH:
468f6eaf
JH
4769 if (umax_val >= insn_bitness) {
4770 /* Shifts greater than 31 or 63 are undefined.
4771 * This includes shifts by a negative number.
b03c9f9f 4772 */
61bd5218 4773 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4774 break;
4775 }
4374f256
EC
4776 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4777 * be negative, then either:
4778 * 1) src_reg might be zero, so the sign bit of the result is
4779 * unknown, so we lose our signed bounds
4780 * 2) it's known negative, thus the unsigned bounds capture the
4781 * signed bounds
4782 * 3) the signed bounds cross zero, so they tell us nothing
4783 * about the result
4784 * If the value in dst_reg is known nonnegative, then again the
4785 * unsigned bounts capture the signed bounds.
4786 * Thus, in all cases it suffices to blow away our signed bounds
4787 * and rely on inferring new ones from the unsigned bounds and
4788 * var_off of the result.
4789 */
4790 dst_reg->smin_value = S64_MIN;
4791 dst_reg->smax_value = S64_MAX;
afbe1a5b 4792 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4793 dst_reg->umin_value >>= umax_val;
4794 dst_reg->umax_value >>= umin_val;
4795 /* We may learn something more from the var_off */
4796 __update_reg_bounds(dst_reg);
48461135 4797 break;
9cbe1f5a
YS
4798 case BPF_ARSH:
4799 if (umax_val >= insn_bitness) {
4800 /* Shifts greater than 31 or 63 are undefined.
4801 * This includes shifts by a negative number.
4802 */
4803 mark_reg_unknown(env, regs, insn->dst_reg);
4804 break;
4805 }
4806
4807 /* Upon reaching here, src_known is true and
4808 * umax_val is equal to umin_val.
4809 */
4810 dst_reg->smin_value >>= umin_val;
4811 dst_reg->smax_value >>= umin_val;
4812 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4813
4814 /* blow away the dst_reg umin_value/umax_value and rely on
4815 * dst_reg var_off to refine the result.
4816 */
4817 dst_reg->umin_value = 0;
4818 dst_reg->umax_value = U64_MAX;
4819 __update_reg_bounds(dst_reg);
4820 break;
48461135 4821 default:
61bd5218 4822 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
4823 break;
4824 }
4825
468f6eaf
JH
4826 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4827 /* 32-bit ALU ops are (32,32)->32 */
4828 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
4829 }
4830
b03c9f9f
EC
4831 __reg_deduce_bounds(dst_reg);
4832 __reg_bound_offset(dst_reg);
f1174f77
EC
4833 return 0;
4834}
4835
4836/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4837 * and var_off.
4838 */
4839static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4840 struct bpf_insn *insn)
4841{
f4d7e40a
AS
4842 struct bpf_verifier_state *vstate = env->cur_state;
4843 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4844 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4845 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4846 u8 opcode = BPF_OP(insn->code);
b5dc0163 4847 int err;
f1174f77
EC
4848
4849 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4850 src_reg = NULL;
4851 if (dst_reg->type != SCALAR_VALUE)
4852 ptr_reg = dst_reg;
4853 if (BPF_SRC(insn->code) == BPF_X) {
4854 src_reg = &regs[insn->src_reg];
f1174f77
EC
4855 if (src_reg->type != SCALAR_VALUE) {
4856 if (dst_reg->type != SCALAR_VALUE) {
4857 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4858 * an arbitrary scalar. Disallow all math except
4859 * pointer subtraction
f1174f77 4860 */
dd066823 4861 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4862 mark_reg_unknown(env, regs, insn->dst_reg);
4863 return 0;
f1174f77 4864 }
82abbf8d
AS
4865 verbose(env, "R%d pointer %s pointer prohibited\n",
4866 insn->dst_reg,
4867 bpf_alu_string[opcode >> 4]);
4868 return -EACCES;
f1174f77
EC
4869 } else {
4870 /* scalar += pointer
4871 * This is legal, but we have to reverse our
4872 * src/dest handling in computing the range
4873 */
b5dc0163
AS
4874 err = mark_chain_precision(env, insn->dst_reg);
4875 if (err)
4876 return err;
82abbf8d
AS
4877 return adjust_ptr_min_max_vals(env, insn,
4878 src_reg, dst_reg);
f1174f77
EC
4879 }
4880 } else if (ptr_reg) {
4881 /* pointer += scalar */
b5dc0163
AS
4882 err = mark_chain_precision(env, insn->src_reg);
4883 if (err)
4884 return err;
82abbf8d
AS
4885 return adjust_ptr_min_max_vals(env, insn,
4886 dst_reg, src_reg);
f1174f77
EC
4887 }
4888 } else {
4889 /* Pretend the src is a reg with a known value, since we only
4890 * need to be able to read from this state.
4891 */
4892 off_reg.type = SCALAR_VALUE;
b03c9f9f 4893 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4894 src_reg = &off_reg;
82abbf8d
AS
4895 if (ptr_reg) /* pointer += K */
4896 return adjust_ptr_min_max_vals(env, insn,
4897 ptr_reg, src_reg);
f1174f77
EC
4898 }
4899
4900 /* Got here implies adding two SCALAR_VALUEs */
4901 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4902 print_verifier_state(env, state);
61bd5218 4903 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4904 return -EINVAL;
4905 }
4906 if (WARN_ON(!src_reg)) {
f4d7e40a 4907 print_verifier_state(env, state);
61bd5218 4908 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4909 return -EINVAL;
4910 }
4911 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4912}
4913
17a52670 4914/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4915static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4916{
638f5b90 4917 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4918 u8 opcode = BPF_OP(insn->code);
4919 int err;
4920
4921 if (opcode == BPF_END || opcode == BPF_NEG) {
4922 if (opcode == BPF_NEG) {
4923 if (BPF_SRC(insn->code) != 0 ||
4924 insn->src_reg != BPF_REG_0 ||
4925 insn->off != 0 || insn->imm != 0) {
61bd5218 4926 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4927 return -EINVAL;
4928 }
4929 } else {
4930 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4931 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4932 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4933 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4934 return -EINVAL;
4935 }
4936 }
4937
4938 /* check src operand */
dc503a8a 4939 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4940 if (err)
4941 return err;
4942
1be7f75d 4943 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 4944 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4945 insn->dst_reg);
4946 return -EACCES;
4947 }
4948
17a52670 4949 /* check dest operand */
dc503a8a 4950 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4951 if (err)
4952 return err;
4953
4954 } else if (opcode == BPF_MOV) {
4955
4956 if (BPF_SRC(insn->code) == BPF_X) {
4957 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4958 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4959 return -EINVAL;
4960 }
4961
4962 /* check src operand */
dc503a8a 4963 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4964 if (err)
4965 return err;
4966 } else {
4967 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4968 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4969 return -EINVAL;
4970 }
4971 }
4972
fbeb1603
AF
4973 /* check dest operand, mark as required later */
4974 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4975 if (err)
4976 return err;
4977
4978 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4979 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4980 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4981
17a52670
AS
4982 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4983 /* case: R1 = R2
4984 * copy register state to dest reg
4985 */
e434b8cd
JW
4986 *dst_reg = *src_reg;
4987 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4988 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 4989 } else {
f1174f77 4990 /* R1 = (u32) R2 */
1be7f75d 4991 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4992 verbose(env,
4993 "R%d partial copy of pointer\n",
1be7f75d
AS
4994 insn->src_reg);
4995 return -EACCES;
e434b8cd
JW
4996 } else if (src_reg->type == SCALAR_VALUE) {
4997 *dst_reg = *src_reg;
4998 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4999 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
5000 } else {
5001 mark_reg_unknown(env, regs,
5002 insn->dst_reg);
1be7f75d 5003 }
e434b8cd 5004 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
5005 }
5006 } else {
5007 /* case: R = imm
5008 * remember the value we stored into this reg
5009 */
fbeb1603
AF
5010 /* clear any state __mark_reg_known doesn't set */
5011 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5012 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5013 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5014 __mark_reg_known(regs + insn->dst_reg,
5015 insn->imm);
5016 } else {
5017 __mark_reg_known(regs + insn->dst_reg,
5018 (u32)insn->imm);
5019 }
17a52670
AS
5020 }
5021
5022 } else if (opcode > BPF_END) {
61bd5218 5023 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
5024 return -EINVAL;
5025
5026 } else { /* all other ALU ops: and, sub, xor, add, ... */
5027
17a52670
AS
5028 if (BPF_SRC(insn->code) == BPF_X) {
5029 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5030 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5031 return -EINVAL;
5032 }
5033 /* check src1 operand */
dc503a8a 5034 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5035 if (err)
5036 return err;
5037 } else {
5038 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5039 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5040 return -EINVAL;
5041 }
5042 }
5043
5044 /* check src2 operand */
dc503a8a 5045 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5046 if (err)
5047 return err;
5048
5049 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5050 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5051 verbose(env, "div by zero\n");
17a52670
AS
5052 return -EINVAL;
5053 }
5054
229394e8
RV
5055 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5056 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5057 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5058
5059 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5060 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5061 return -EINVAL;
5062 }
5063 }
5064
1a0dc1ac 5065 /* check dest operand */
dc503a8a 5066 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5067 if (err)
5068 return err;
5069
f1174f77 5070 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5071 }
5072
5073 return 0;
5074}
5075
c6a9efa1
PC
5076static void __find_good_pkt_pointers(struct bpf_func_state *state,
5077 struct bpf_reg_state *dst_reg,
5078 enum bpf_reg_type type, u16 new_range)
5079{
5080 struct bpf_reg_state *reg;
5081 int i;
5082
5083 for (i = 0; i < MAX_BPF_REG; i++) {
5084 reg = &state->regs[i];
5085 if (reg->type == type && reg->id == dst_reg->id)
5086 /* keep the maximum range already checked */
5087 reg->range = max(reg->range, new_range);
5088 }
5089
5090 bpf_for_each_spilled_reg(i, state, reg) {
5091 if (!reg)
5092 continue;
5093 if (reg->type == type && reg->id == dst_reg->id)
5094 reg->range = max(reg->range, new_range);
5095 }
5096}
5097
f4d7e40a 5098static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5099 struct bpf_reg_state *dst_reg,
f8ddadc4 5100 enum bpf_reg_type type,
fb2a311a 5101 bool range_right_open)
969bf05e 5102{
fb2a311a 5103 u16 new_range;
c6a9efa1 5104 int i;
2d2be8ca 5105
fb2a311a
DB
5106 if (dst_reg->off < 0 ||
5107 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5108 /* This doesn't give us any range */
5109 return;
5110
b03c9f9f
EC
5111 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5112 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5113 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5114 * than pkt_end, but that's because it's also less than pkt.
5115 */
5116 return;
5117
fb2a311a
DB
5118 new_range = dst_reg->off;
5119 if (range_right_open)
5120 new_range--;
5121
5122 /* Examples for register markings:
2d2be8ca 5123 *
fb2a311a 5124 * pkt_data in dst register:
2d2be8ca
DB
5125 *
5126 * r2 = r3;
5127 * r2 += 8;
5128 * if (r2 > pkt_end) goto <handle exception>
5129 * <access okay>
5130 *
b4e432f1
DB
5131 * r2 = r3;
5132 * r2 += 8;
5133 * if (r2 < pkt_end) goto <access okay>
5134 * <handle exception>
5135 *
2d2be8ca
DB
5136 * Where:
5137 * r2 == dst_reg, pkt_end == src_reg
5138 * r2=pkt(id=n,off=8,r=0)
5139 * r3=pkt(id=n,off=0,r=0)
5140 *
fb2a311a 5141 * pkt_data in src register:
2d2be8ca
DB
5142 *
5143 * r2 = r3;
5144 * r2 += 8;
5145 * if (pkt_end >= r2) goto <access okay>
5146 * <handle exception>
5147 *
b4e432f1
DB
5148 * r2 = r3;
5149 * r2 += 8;
5150 * if (pkt_end <= r2) goto <handle exception>
5151 * <access okay>
5152 *
2d2be8ca
DB
5153 * Where:
5154 * pkt_end == dst_reg, r2 == src_reg
5155 * r2=pkt(id=n,off=8,r=0)
5156 * r3=pkt(id=n,off=0,r=0)
5157 *
5158 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5159 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5160 * and [r3, r3 + 8-1) respectively is safe to access depending on
5161 * the check.
969bf05e 5162 */
2d2be8ca 5163
f1174f77
EC
5164 /* If our ids match, then we must have the same max_value. And we
5165 * don't care about the other reg's fixed offset, since if it's too big
5166 * the range won't allow anything.
5167 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5168 */
c6a9efa1
PC
5169 for (i = 0; i <= vstate->curframe; i++)
5170 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5171 new_range);
969bf05e
AS
5172}
5173
4f7b3e82
AS
5174/* compute branch direction of the expression "if (reg opcode val) goto target;"
5175 * and return:
5176 * 1 - branch will be taken and "goto target" will be executed
5177 * 0 - branch will not be taken and fall-through to next insn
5178 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5179 */
092ed096
JW
5180static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5181 bool is_jmp32)
4f7b3e82 5182{
092ed096 5183 struct bpf_reg_state reg_lo;
a72dafaf
JW
5184 s64 sval;
5185
4f7b3e82
AS
5186 if (__is_pointer_value(false, reg))
5187 return -1;
5188
092ed096
JW
5189 if (is_jmp32) {
5190 reg_lo = *reg;
5191 reg = &reg_lo;
5192 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5193 * could truncate high bits and update umin/umax according to
5194 * information of low bits.
5195 */
5196 coerce_reg_to_size(reg, 4);
5197 /* smin/smax need special handling. For example, after coerce,
5198 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5199 * used as operand to JMP32. It is a negative number from s32's
5200 * point of view, while it is a positive number when seen as
5201 * s64. The smin/smax are kept as s64, therefore, when used with
5202 * JMP32, they need to be transformed into s32, then sign
5203 * extended back to s64.
5204 *
5205 * Also, smin/smax were copied from umin/umax. If umin/umax has
5206 * different sign bit, then min/max relationship doesn't
5207 * maintain after casting into s32, for this case, set smin/smax
5208 * to safest range.
5209 */
5210 if ((reg->umax_value ^ reg->umin_value) &
5211 (1ULL << 31)) {
5212 reg->smin_value = S32_MIN;
5213 reg->smax_value = S32_MAX;
5214 }
5215 reg->smin_value = (s64)(s32)reg->smin_value;
5216 reg->smax_value = (s64)(s32)reg->smax_value;
5217
5218 val = (u32)val;
5219 sval = (s64)(s32)val;
5220 } else {
5221 sval = (s64)val;
5222 }
a72dafaf 5223
4f7b3e82
AS
5224 switch (opcode) {
5225 case BPF_JEQ:
5226 if (tnum_is_const(reg->var_off))
5227 return !!tnum_equals_const(reg->var_off, val);
5228 break;
5229 case BPF_JNE:
5230 if (tnum_is_const(reg->var_off))
5231 return !tnum_equals_const(reg->var_off, val);
5232 break;
960ea056
JK
5233 case BPF_JSET:
5234 if ((~reg->var_off.mask & reg->var_off.value) & val)
5235 return 1;
5236 if (!((reg->var_off.mask | reg->var_off.value) & val))
5237 return 0;
5238 break;
4f7b3e82
AS
5239 case BPF_JGT:
5240 if (reg->umin_value > val)
5241 return 1;
5242 else if (reg->umax_value <= val)
5243 return 0;
5244 break;
5245 case BPF_JSGT:
a72dafaf 5246 if (reg->smin_value > sval)
4f7b3e82 5247 return 1;
a72dafaf 5248 else if (reg->smax_value < sval)
4f7b3e82
AS
5249 return 0;
5250 break;
5251 case BPF_JLT:
5252 if (reg->umax_value < val)
5253 return 1;
5254 else if (reg->umin_value >= val)
5255 return 0;
5256 break;
5257 case BPF_JSLT:
a72dafaf 5258 if (reg->smax_value < sval)
4f7b3e82 5259 return 1;
a72dafaf 5260 else if (reg->smin_value >= sval)
4f7b3e82
AS
5261 return 0;
5262 break;
5263 case BPF_JGE:
5264 if (reg->umin_value >= val)
5265 return 1;
5266 else if (reg->umax_value < val)
5267 return 0;
5268 break;
5269 case BPF_JSGE:
a72dafaf 5270 if (reg->smin_value >= sval)
4f7b3e82 5271 return 1;
a72dafaf 5272 else if (reg->smax_value < sval)
4f7b3e82
AS
5273 return 0;
5274 break;
5275 case BPF_JLE:
5276 if (reg->umax_value <= val)
5277 return 1;
5278 else if (reg->umin_value > val)
5279 return 0;
5280 break;
5281 case BPF_JSLE:
a72dafaf 5282 if (reg->smax_value <= sval)
4f7b3e82 5283 return 1;
a72dafaf 5284 else if (reg->smin_value > sval)
4f7b3e82
AS
5285 return 0;
5286 break;
5287 }
5288
5289 return -1;
5290}
5291
092ed096
JW
5292/* Generate min value of the high 32-bit from TNUM info. */
5293static u64 gen_hi_min(struct tnum var)
5294{
5295 return var.value & ~0xffffffffULL;
5296}
5297
5298/* Generate max value of the high 32-bit from TNUM info. */
5299static u64 gen_hi_max(struct tnum var)
5300{
5301 return (var.value | var.mask) & ~0xffffffffULL;
5302}
5303
5304/* Return true if VAL is compared with a s64 sign extended from s32, and they
5305 * are with the same signedness.
5306 */
5307static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5308{
5309 return ((s32)sval >= 0 &&
5310 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5311 ((s32)sval < 0 &&
5312 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5313}
5314
48461135
JB
5315/* Adjusts the register min/max values in the case that the dst_reg is the
5316 * variable register that we are working on, and src_reg is a constant or we're
5317 * simply doing a BPF_K check.
f1174f77 5318 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5319 */
5320static void reg_set_min_max(struct bpf_reg_state *true_reg,
5321 struct bpf_reg_state *false_reg, u64 val,
092ed096 5322 u8 opcode, bool is_jmp32)
48461135 5323{
a72dafaf
JW
5324 s64 sval;
5325
f1174f77
EC
5326 /* If the dst_reg is a pointer, we can't learn anything about its
5327 * variable offset from the compare (unless src_reg were a pointer into
5328 * the same object, but we don't bother with that.
5329 * Since false_reg and true_reg have the same type by construction, we
5330 * only need to check one of them for pointerness.
5331 */
5332 if (__is_pointer_value(false, false_reg))
5333 return;
4cabc5b1 5334
092ed096
JW
5335 val = is_jmp32 ? (u32)val : val;
5336 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5337
48461135
JB
5338 switch (opcode) {
5339 case BPF_JEQ:
48461135 5340 case BPF_JNE:
a72dafaf
JW
5341 {
5342 struct bpf_reg_state *reg =
5343 opcode == BPF_JEQ ? true_reg : false_reg;
5344
5345 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5346 * if it is true we know the value for sure. Likewise for
5347 * BPF_JNE.
48461135 5348 */
092ed096
JW
5349 if (is_jmp32) {
5350 u64 old_v = reg->var_off.value;
5351 u64 hi_mask = ~0xffffffffULL;
5352
5353 reg->var_off.value = (old_v & hi_mask) | val;
5354 reg->var_off.mask &= hi_mask;
5355 } else {
5356 __mark_reg_known(reg, val);
5357 }
48461135 5358 break;
a72dafaf 5359 }
960ea056
JK
5360 case BPF_JSET:
5361 false_reg->var_off = tnum_and(false_reg->var_off,
5362 tnum_const(~val));
5363 if (is_power_of_2(val))
5364 true_reg->var_off = tnum_or(true_reg->var_off,
5365 tnum_const(val));
5366 break;
48461135 5367 case BPF_JGE:
a72dafaf
JW
5368 case BPF_JGT:
5369 {
5370 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5371 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5372
092ed096
JW
5373 if (is_jmp32) {
5374 false_umax += gen_hi_max(false_reg->var_off);
5375 true_umin += gen_hi_min(true_reg->var_off);
5376 }
a72dafaf
JW
5377 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5378 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5379 break;
a72dafaf 5380 }
48461135 5381 case BPF_JSGE:
a72dafaf
JW
5382 case BPF_JSGT:
5383 {
5384 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5385 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5386
092ed096
JW
5387 /* If the full s64 was not sign-extended from s32 then don't
5388 * deduct further info.
5389 */
5390 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5391 break;
a72dafaf
JW
5392 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5393 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5394 break;
a72dafaf 5395 }
b4e432f1 5396 case BPF_JLE:
a72dafaf
JW
5397 case BPF_JLT:
5398 {
5399 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5400 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5401
092ed096
JW
5402 if (is_jmp32) {
5403 false_umin += gen_hi_min(false_reg->var_off);
5404 true_umax += gen_hi_max(true_reg->var_off);
5405 }
a72dafaf
JW
5406 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5407 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5408 break;
a72dafaf 5409 }
b4e432f1 5410 case BPF_JSLE:
a72dafaf
JW
5411 case BPF_JSLT:
5412 {
5413 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5414 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5415
092ed096
JW
5416 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5417 break;
a72dafaf
JW
5418 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5419 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5420 break;
a72dafaf 5421 }
48461135
JB
5422 default:
5423 break;
5424 }
5425
b03c9f9f
EC
5426 __reg_deduce_bounds(false_reg);
5427 __reg_deduce_bounds(true_reg);
5428 /* We might have learned some bits from the bounds. */
5429 __reg_bound_offset(false_reg);
5430 __reg_bound_offset(true_reg);
5431 /* Intersecting with the old var_off might have improved our bounds
5432 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5433 * then new var_off is (0; 0x7f...fc) which improves our umax.
5434 */
5435 __update_reg_bounds(false_reg);
5436 __update_reg_bounds(true_reg);
48461135
JB
5437}
5438
f1174f77
EC
5439/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5440 * the variable reg.
48461135
JB
5441 */
5442static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5443 struct bpf_reg_state *false_reg, u64 val,
092ed096 5444 u8 opcode, bool is_jmp32)
48461135 5445{
a72dafaf
JW
5446 s64 sval;
5447
f1174f77
EC
5448 if (__is_pointer_value(false, false_reg))
5449 return;
4cabc5b1 5450
092ed096
JW
5451 val = is_jmp32 ? (u32)val : val;
5452 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5453
48461135
JB
5454 switch (opcode) {
5455 case BPF_JEQ:
48461135 5456 case BPF_JNE:
a72dafaf
JW
5457 {
5458 struct bpf_reg_state *reg =
5459 opcode == BPF_JEQ ? true_reg : false_reg;
5460
092ed096
JW
5461 if (is_jmp32) {
5462 u64 old_v = reg->var_off.value;
5463 u64 hi_mask = ~0xffffffffULL;
5464
5465 reg->var_off.value = (old_v & hi_mask) | val;
5466 reg->var_off.mask &= hi_mask;
5467 } else {
5468 __mark_reg_known(reg, val);
5469 }
48461135 5470 break;
a72dafaf 5471 }
960ea056
JK
5472 case BPF_JSET:
5473 false_reg->var_off = tnum_and(false_reg->var_off,
5474 tnum_const(~val));
5475 if (is_power_of_2(val))
5476 true_reg->var_off = tnum_or(true_reg->var_off,
5477 tnum_const(val));
5478 break;
48461135 5479 case BPF_JGE:
a72dafaf
JW
5480 case BPF_JGT:
5481 {
5482 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5483 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5484
092ed096
JW
5485 if (is_jmp32) {
5486 false_umin += gen_hi_min(false_reg->var_off);
5487 true_umax += gen_hi_max(true_reg->var_off);
5488 }
a72dafaf
JW
5489 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5490 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5491 break;
a72dafaf 5492 }
48461135 5493 case BPF_JSGE:
a72dafaf
JW
5494 case BPF_JSGT:
5495 {
5496 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5497 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5498
092ed096
JW
5499 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5500 break;
a72dafaf
JW
5501 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5502 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5503 break;
a72dafaf 5504 }
b4e432f1 5505 case BPF_JLE:
a72dafaf
JW
5506 case BPF_JLT:
5507 {
5508 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5509 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5510
092ed096
JW
5511 if (is_jmp32) {
5512 false_umax += gen_hi_max(false_reg->var_off);
5513 true_umin += gen_hi_min(true_reg->var_off);
5514 }
a72dafaf
JW
5515 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5516 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5517 break;
a72dafaf 5518 }
b4e432f1 5519 case BPF_JSLE:
a72dafaf
JW
5520 case BPF_JSLT:
5521 {
5522 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5523 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5524
092ed096
JW
5525 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5526 break;
a72dafaf
JW
5527 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5528 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5529 break;
a72dafaf 5530 }
48461135
JB
5531 default:
5532 break;
5533 }
5534
b03c9f9f
EC
5535 __reg_deduce_bounds(false_reg);
5536 __reg_deduce_bounds(true_reg);
5537 /* We might have learned some bits from the bounds. */
5538 __reg_bound_offset(false_reg);
5539 __reg_bound_offset(true_reg);
5540 /* Intersecting with the old var_off might have improved our bounds
5541 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5542 * then new var_off is (0; 0x7f...fc) which improves our umax.
5543 */
5544 __update_reg_bounds(false_reg);
5545 __update_reg_bounds(true_reg);
f1174f77
EC
5546}
5547
5548/* Regs are known to be equal, so intersect their min/max/var_off */
5549static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5550 struct bpf_reg_state *dst_reg)
5551{
b03c9f9f
EC
5552 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5553 dst_reg->umin_value);
5554 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5555 dst_reg->umax_value);
5556 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5557 dst_reg->smin_value);
5558 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5559 dst_reg->smax_value);
f1174f77
EC
5560 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5561 dst_reg->var_off);
b03c9f9f
EC
5562 /* We might have learned new bounds from the var_off. */
5563 __update_reg_bounds(src_reg);
5564 __update_reg_bounds(dst_reg);
5565 /* We might have learned something about the sign bit. */
5566 __reg_deduce_bounds(src_reg);
5567 __reg_deduce_bounds(dst_reg);
5568 /* We might have learned some bits from the bounds. */
5569 __reg_bound_offset(src_reg);
5570 __reg_bound_offset(dst_reg);
5571 /* Intersecting with the old var_off might have improved our bounds
5572 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5573 * then new var_off is (0; 0x7f...fc) which improves our umax.
5574 */
5575 __update_reg_bounds(src_reg);
5576 __update_reg_bounds(dst_reg);
f1174f77
EC
5577}
5578
5579static void reg_combine_min_max(struct bpf_reg_state *true_src,
5580 struct bpf_reg_state *true_dst,
5581 struct bpf_reg_state *false_src,
5582 struct bpf_reg_state *false_dst,
5583 u8 opcode)
5584{
5585 switch (opcode) {
5586 case BPF_JEQ:
5587 __reg_combine_min_max(true_src, true_dst);
5588 break;
5589 case BPF_JNE:
5590 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5591 break;
4cabc5b1 5592 }
48461135
JB
5593}
5594
fd978bf7
JS
5595static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5596 struct bpf_reg_state *reg, u32 id,
840b9615 5597 bool is_null)
57a09bf0 5598{
840b9615 5599 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5600 /* Old offset (both fixed and variable parts) should
5601 * have been known-zero, because we don't allow pointer
5602 * arithmetic on pointers that might be NULL.
5603 */
b03c9f9f
EC
5604 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5605 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5606 reg->off)) {
b03c9f9f
EC
5607 __mark_reg_known_zero(reg);
5608 reg->off = 0;
f1174f77
EC
5609 }
5610 if (is_null) {
5611 reg->type = SCALAR_VALUE;
840b9615
JS
5612 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5613 if (reg->map_ptr->inner_map_meta) {
5614 reg->type = CONST_PTR_TO_MAP;
5615 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5616 } else if (reg->map_ptr->map_type ==
5617 BPF_MAP_TYPE_XSKMAP) {
5618 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5619 } else {
5620 reg->type = PTR_TO_MAP_VALUE;
5621 }
c64b7983
JS
5622 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5623 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5624 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5625 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5626 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5627 reg->type = PTR_TO_TCP_SOCK;
56f668df 5628 }
1b986589
MKL
5629 if (is_null) {
5630 /* We don't need id and ref_obj_id from this point
5631 * onwards anymore, thus we should better reset it,
5632 * so that state pruning has chances to take effect.
5633 */
5634 reg->id = 0;
5635 reg->ref_obj_id = 0;
5636 } else if (!reg_may_point_to_spin_lock(reg)) {
5637 /* For not-NULL ptr, reg->ref_obj_id will be reset
5638 * in release_reg_references().
5639 *
5640 * reg->id is still used by spin_lock ptr. Other
5641 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5642 */
5643 reg->id = 0;
56f668df 5644 }
57a09bf0
TG
5645 }
5646}
5647
c6a9efa1
PC
5648static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5649 bool is_null)
5650{
5651 struct bpf_reg_state *reg;
5652 int i;
5653
5654 for (i = 0; i < MAX_BPF_REG; i++)
5655 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5656
5657 bpf_for_each_spilled_reg(i, state, reg) {
5658 if (!reg)
5659 continue;
5660 mark_ptr_or_null_reg(state, reg, id, is_null);
5661 }
5662}
5663
57a09bf0
TG
5664/* The logic is similar to find_good_pkt_pointers(), both could eventually
5665 * be folded together at some point.
5666 */
840b9615
JS
5667static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5668 bool is_null)
57a09bf0 5669{
f4d7e40a 5670 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5671 struct bpf_reg_state *regs = state->regs;
1b986589 5672 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5673 u32 id = regs[regno].id;
c6a9efa1 5674 int i;
57a09bf0 5675
1b986589
MKL
5676 if (ref_obj_id && ref_obj_id == id && is_null)
5677 /* regs[regno] is in the " == NULL" branch.
5678 * No one could have freed the reference state before
5679 * doing the NULL check.
5680 */
5681 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5682
c6a9efa1
PC
5683 for (i = 0; i <= vstate->curframe; i++)
5684 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5685}
5686
5beca081
DB
5687static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5688 struct bpf_reg_state *dst_reg,
5689 struct bpf_reg_state *src_reg,
5690 struct bpf_verifier_state *this_branch,
5691 struct bpf_verifier_state *other_branch)
5692{
5693 if (BPF_SRC(insn->code) != BPF_X)
5694 return false;
5695
092ed096
JW
5696 /* Pointers are always 64-bit. */
5697 if (BPF_CLASS(insn->code) == BPF_JMP32)
5698 return false;
5699
5beca081
DB
5700 switch (BPF_OP(insn->code)) {
5701 case BPF_JGT:
5702 if ((dst_reg->type == PTR_TO_PACKET &&
5703 src_reg->type == PTR_TO_PACKET_END) ||
5704 (dst_reg->type == PTR_TO_PACKET_META &&
5705 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5706 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5707 find_good_pkt_pointers(this_branch, dst_reg,
5708 dst_reg->type, false);
5709 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5710 src_reg->type == PTR_TO_PACKET) ||
5711 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5712 src_reg->type == PTR_TO_PACKET_META)) {
5713 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5714 find_good_pkt_pointers(other_branch, src_reg,
5715 src_reg->type, true);
5716 } else {
5717 return false;
5718 }
5719 break;
5720 case BPF_JLT:
5721 if ((dst_reg->type == PTR_TO_PACKET &&
5722 src_reg->type == PTR_TO_PACKET_END) ||
5723 (dst_reg->type == PTR_TO_PACKET_META &&
5724 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5725 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5726 find_good_pkt_pointers(other_branch, dst_reg,
5727 dst_reg->type, true);
5728 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5729 src_reg->type == PTR_TO_PACKET) ||
5730 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5731 src_reg->type == PTR_TO_PACKET_META)) {
5732 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5733 find_good_pkt_pointers(this_branch, src_reg,
5734 src_reg->type, false);
5735 } else {
5736 return false;
5737 }
5738 break;
5739 case BPF_JGE:
5740 if ((dst_reg->type == PTR_TO_PACKET &&
5741 src_reg->type == PTR_TO_PACKET_END) ||
5742 (dst_reg->type == PTR_TO_PACKET_META &&
5743 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5744 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5745 find_good_pkt_pointers(this_branch, dst_reg,
5746 dst_reg->type, true);
5747 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5748 src_reg->type == PTR_TO_PACKET) ||
5749 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5750 src_reg->type == PTR_TO_PACKET_META)) {
5751 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5752 find_good_pkt_pointers(other_branch, src_reg,
5753 src_reg->type, false);
5754 } else {
5755 return false;
5756 }
5757 break;
5758 case BPF_JLE:
5759 if ((dst_reg->type == PTR_TO_PACKET &&
5760 src_reg->type == PTR_TO_PACKET_END) ||
5761 (dst_reg->type == PTR_TO_PACKET_META &&
5762 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5763 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5764 find_good_pkt_pointers(other_branch, dst_reg,
5765 dst_reg->type, false);
5766 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5767 src_reg->type == PTR_TO_PACKET) ||
5768 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5769 src_reg->type == PTR_TO_PACKET_META)) {
5770 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5771 find_good_pkt_pointers(this_branch, src_reg,
5772 src_reg->type, true);
5773 } else {
5774 return false;
5775 }
5776 break;
5777 default:
5778 return false;
5779 }
5780
5781 return true;
5782}
5783
58e2af8b 5784static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
5785 struct bpf_insn *insn, int *insn_idx)
5786{
f4d7e40a
AS
5787 struct bpf_verifier_state *this_branch = env->cur_state;
5788 struct bpf_verifier_state *other_branch;
5789 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 5790 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 5791 u8 opcode = BPF_OP(insn->code);
092ed096 5792 bool is_jmp32;
fb8d251e 5793 int pred = -1;
17a52670
AS
5794 int err;
5795
092ed096
JW
5796 /* Only conditional jumps are expected to reach here. */
5797 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5798 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
5799 return -EINVAL;
5800 }
5801
5802 if (BPF_SRC(insn->code) == BPF_X) {
5803 if (insn->imm != 0) {
092ed096 5804 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5805 return -EINVAL;
5806 }
5807
5808 /* check src1 operand */
dc503a8a 5809 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5810 if (err)
5811 return err;
1be7f75d
AS
5812
5813 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5814 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
5815 insn->src_reg);
5816 return -EACCES;
5817 }
fb8d251e 5818 src_reg = &regs[insn->src_reg];
17a52670
AS
5819 } else {
5820 if (insn->src_reg != BPF_REG_0) {
092ed096 5821 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5822 return -EINVAL;
5823 }
5824 }
5825
5826 /* check src2 operand */
dc503a8a 5827 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5828 if (err)
5829 return err;
5830
1a0dc1ac 5831 dst_reg = &regs[insn->dst_reg];
092ed096 5832 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 5833
fb8d251e
AS
5834 if (BPF_SRC(insn->code) == BPF_K)
5835 pred = is_branch_taken(dst_reg, insn->imm,
5836 opcode, is_jmp32);
5837 else if (src_reg->type == SCALAR_VALUE &&
5838 tnum_is_const(src_reg->var_off))
5839 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5840 opcode, is_jmp32);
b5dc0163
AS
5841 if (pred >= 0) {
5842 err = mark_chain_precision(env, insn->dst_reg);
5843 if (BPF_SRC(insn->code) == BPF_X && !err)
5844 err = mark_chain_precision(env, insn->src_reg);
5845 if (err)
5846 return err;
5847 }
fb8d251e
AS
5848 if (pred == 1) {
5849 /* only follow the goto, ignore fall-through */
5850 *insn_idx += insn->off;
5851 return 0;
5852 } else if (pred == 0) {
5853 /* only follow fall-through branch, since
5854 * that's where the program will go
5855 */
5856 return 0;
17a52670
AS
5857 }
5858
979d63d5
DB
5859 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5860 false);
17a52670
AS
5861 if (!other_branch)
5862 return -EFAULT;
f4d7e40a 5863 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 5864
48461135
JB
5865 /* detect if we are comparing against a constant value so we can adjust
5866 * our min/max values for our dst register.
f1174f77
EC
5867 * this is only legit if both are scalars (or pointers to the same
5868 * object, I suppose, but we don't support that right now), because
5869 * otherwise the different base pointers mean the offsets aren't
5870 * comparable.
48461135
JB
5871 */
5872 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
5873 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5874 struct bpf_reg_state lo_reg0 = *dst_reg;
5875 struct bpf_reg_state lo_reg1 = *src_reg;
5876 struct bpf_reg_state *src_lo, *dst_lo;
5877
5878 dst_lo = &lo_reg0;
5879 src_lo = &lo_reg1;
5880 coerce_reg_to_size(dst_lo, 4);
5881 coerce_reg_to_size(src_lo, 4);
5882
f1174f77 5883 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5884 src_reg->type == SCALAR_VALUE) {
5885 if (tnum_is_const(src_reg->var_off) ||
5886 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5887 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5888 dst_reg,
5889 is_jmp32
5890 ? src_lo->var_off.value
5891 : src_reg->var_off.value,
5892 opcode, is_jmp32);
5893 else if (tnum_is_const(dst_reg->var_off) ||
5894 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5895 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5896 src_reg,
5897 is_jmp32
5898 ? dst_lo->var_off.value
5899 : dst_reg->var_off.value,
5900 opcode, is_jmp32);
5901 else if (!is_jmp32 &&
5902 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5903 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5904 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5905 &other_branch_regs[insn->dst_reg],
092ed096 5906 src_reg, dst_reg, opcode);
f1174f77
EC
5907 }
5908 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5909 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5910 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5911 }
5912
092ed096
JW
5913 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5914 * NOTE: these optimizations below are related with pointer comparison
5915 * which will never be JMP32.
5916 */
5917 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5918 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5919 reg_type_may_be_null(dst_reg->type)) {
5920 /* Mark all identical registers in each branch as either
57a09bf0
TG
5921 * safe or unknown depending R == 0 or R != 0 conditional.
5922 */
840b9615
JS
5923 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5924 opcode == BPF_JNE);
5925 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5926 opcode == BPF_JEQ);
5beca081
DB
5927 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5928 this_branch, other_branch) &&
5929 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5930 verbose(env, "R%d pointer comparison prohibited\n",
5931 insn->dst_reg);
1be7f75d 5932 return -EACCES;
17a52670 5933 }
06ee7115 5934 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5935 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
5936 return 0;
5937}
5938
17a52670 5939/* verify BPF_LD_IMM64 instruction */
58e2af8b 5940static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5941{
d8eca5bb 5942 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 5943 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 5944 struct bpf_map *map;
17a52670
AS
5945 int err;
5946
5947 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 5948 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
5949 return -EINVAL;
5950 }
5951 if (insn->off != 0) {
61bd5218 5952 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
5953 return -EINVAL;
5954 }
5955
dc503a8a 5956 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5957 if (err)
5958 return err;
5959
6b173873 5960 if (insn->src_reg == 0) {
6b173873
JK
5961 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5962
f1174f77 5963 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 5964 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 5965 return 0;
6b173873 5966 }
17a52670 5967
d8eca5bb
DB
5968 map = env->used_maps[aux->map_index];
5969 mark_reg_known_zero(env, regs, insn->dst_reg);
5970 regs[insn->dst_reg].map_ptr = map;
5971
5972 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5973 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5974 regs[insn->dst_reg].off = aux->map_off;
5975 if (map_value_has_spin_lock(map))
5976 regs[insn->dst_reg].id = ++env->id_gen;
5977 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5978 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5979 } else {
5980 verbose(env, "bpf verifier is misconfigured\n");
5981 return -EINVAL;
5982 }
17a52670 5983
17a52670
AS
5984 return 0;
5985}
5986
96be4325
DB
5987static bool may_access_skb(enum bpf_prog_type type)
5988{
5989 switch (type) {
5990 case BPF_PROG_TYPE_SOCKET_FILTER:
5991 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5992 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5993 return true;
5994 default:
5995 return false;
5996 }
5997}
5998
ddd872bc
AS
5999/* verify safety of LD_ABS|LD_IND instructions:
6000 * - they can only appear in the programs where ctx == skb
6001 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6002 * preserve R6-R9, and store return value into R0
6003 *
6004 * Implicit input:
6005 * ctx == skb == R6 == CTX
6006 *
6007 * Explicit input:
6008 * SRC == any register
6009 * IMM == 32-bit immediate
6010 *
6011 * Output:
6012 * R0 - 8/16/32-bit skb data converted to cpu endianness
6013 */
58e2af8b 6014static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6015{
638f5b90 6016 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 6017 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6018 int i, err;
6019
24701ece 6020 if (!may_access_skb(env->prog->type)) {
61bd5218 6021 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6022 return -EINVAL;
6023 }
6024
e0cea7ce
DB
6025 if (!env->ops->gen_ld_abs) {
6026 verbose(env, "bpf verifier is misconfigured\n");
6027 return -EINVAL;
6028 }
6029
f910cefa 6030 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6031 /* when program has LD_ABS insn JITs and interpreter assume
6032 * that r1 == ctx == skb which is not the case for callees
6033 * that can have arbitrary arguments. It's problematic
6034 * for main prog as well since JITs would need to analyze
6035 * all functions in order to make proper register save/restore
6036 * decisions in the main prog. Hence disallow LD_ABS with calls
6037 */
6038 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6039 return -EINVAL;
6040 }
6041
ddd872bc 6042 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6043 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6044 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6045 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6046 return -EINVAL;
6047 }
6048
6049 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6050 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6051 if (err)
6052 return err;
6053
fd978bf7
JS
6054 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6055 * gen_ld_abs() may terminate the program at runtime, leading to
6056 * reference leak.
6057 */
6058 err = check_reference_leak(env);
6059 if (err) {
6060 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6061 return err;
6062 }
6063
d83525ca
AS
6064 if (env->cur_state->active_spin_lock) {
6065 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6066 return -EINVAL;
6067 }
6068
ddd872bc 6069 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6070 verbose(env,
6071 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6072 return -EINVAL;
6073 }
6074
6075 if (mode == BPF_IND) {
6076 /* check explicit source operand */
dc503a8a 6077 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6078 if (err)
6079 return err;
6080 }
6081
6082 /* reset caller saved regs to unreadable */
dc503a8a 6083 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6084 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6085 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6086 }
ddd872bc
AS
6087
6088 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6089 * the value fetched from the packet.
6090 * Already marked as written above.
ddd872bc 6091 */
61bd5218 6092 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6093 /* ld_abs load up to 32-bit skb data. */
6094 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6095 return 0;
6096}
6097
390ee7e2
AS
6098static int check_return_code(struct bpf_verifier_env *env)
6099{
5cf1e914 6100 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
6101 struct bpf_reg_state *reg;
6102 struct tnum range = tnum_range(0, 1);
6103
6104 switch (env->prog->type) {
983695fa
DB
6105 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6106 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6107 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6108 range = tnum_range(1, 1);
ed4ed404 6109 break;
390ee7e2 6110 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6111 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6112 range = tnum_range(0, 3);
6113 enforce_attach_type_range = tnum_range(2, 3);
6114 }
ed4ed404 6115 break;
390ee7e2
AS
6116 case BPF_PROG_TYPE_CGROUP_SOCK:
6117 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6118 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6119 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6120 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2
AS
6121 break;
6122 default:
6123 return 0;
6124 }
6125
638f5b90 6126 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6127 if (reg->type != SCALAR_VALUE) {
61bd5218 6128 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6129 reg_type_str[reg->type]);
6130 return -EINVAL;
6131 }
6132
6133 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6134 char tn_buf[48];
6135
61bd5218 6136 verbose(env, "At program exit the register R0 ");
390ee7e2 6137 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6138 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6139 verbose(env, "has value %s", tn_buf);
390ee7e2 6140 } else {
61bd5218 6141 verbose(env, "has unknown scalar value");
390ee7e2 6142 }
5cf1e914 6143 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6144 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6145 return -EINVAL;
6146 }
5cf1e914 6147
6148 if (!tnum_is_unknown(enforce_attach_type_range) &&
6149 tnum_in(enforce_attach_type_range, reg->var_off))
6150 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6151 return 0;
6152}
6153
475fb78f
AS
6154/* non-recursive DFS pseudo code
6155 * 1 procedure DFS-iterative(G,v):
6156 * 2 label v as discovered
6157 * 3 let S be a stack
6158 * 4 S.push(v)
6159 * 5 while S is not empty
6160 * 6 t <- S.pop()
6161 * 7 if t is what we're looking for:
6162 * 8 return t
6163 * 9 for all edges e in G.adjacentEdges(t) do
6164 * 10 if edge e is already labelled
6165 * 11 continue with the next edge
6166 * 12 w <- G.adjacentVertex(t,e)
6167 * 13 if vertex w is not discovered and not explored
6168 * 14 label e as tree-edge
6169 * 15 label w as discovered
6170 * 16 S.push(w)
6171 * 17 continue at 5
6172 * 18 else if vertex w is discovered
6173 * 19 label e as back-edge
6174 * 20 else
6175 * 21 // vertex w is explored
6176 * 22 label e as forward- or cross-edge
6177 * 23 label t as explored
6178 * 24 S.pop()
6179 *
6180 * convention:
6181 * 0x10 - discovered
6182 * 0x11 - discovered and fall-through edge labelled
6183 * 0x12 - discovered and fall-through and branch edges labelled
6184 * 0x20 - explored
6185 */
6186
6187enum {
6188 DISCOVERED = 0x10,
6189 EXPLORED = 0x20,
6190 FALLTHROUGH = 1,
6191 BRANCH = 2,
6192};
6193
dc2a4ebc
AS
6194static u32 state_htab_size(struct bpf_verifier_env *env)
6195{
6196 return env->prog->len;
6197}
6198
5d839021
AS
6199static struct bpf_verifier_state_list **explored_state(
6200 struct bpf_verifier_env *env,
6201 int idx)
6202{
dc2a4ebc
AS
6203 struct bpf_verifier_state *cur = env->cur_state;
6204 struct bpf_func_state *state = cur->frame[cur->curframe];
6205
6206 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6207}
6208
6209static void init_explored_state(struct bpf_verifier_env *env, int idx)
6210{
a8f500af 6211 env->insn_aux_data[idx].prune_point = true;
5d839021 6212}
f1bca824 6213
475fb78f
AS
6214/* t, w, e - match pseudo-code above:
6215 * t - index of current instruction
6216 * w - next instruction
6217 * e - edge
6218 */
2589726d
AS
6219static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6220 bool loop_ok)
475fb78f 6221{
7df737e9
AS
6222 int *insn_stack = env->cfg.insn_stack;
6223 int *insn_state = env->cfg.insn_state;
6224
475fb78f
AS
6225 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6226 return 0;
6227
6228 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6229 return 0;
6230
6231 if (w < 0 || w >= env->prog->len) {
d9762e84 6232 verbose_linfo(env, t, "%d: ", t);
61bd5218 6233 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6234 return -EINVAL;
6235 }
6236
f1bca824
AS
6237 if (e == BRANCH)
6238 /* mark branch target for state pruning */
5d839021 6239 init_explored_state(env, w);
f1bca824 6240
475fb78f
AS
6241 if (insn_state[w] == 0) {
6242 /* tree-edge */
6243 insn_state[t] = DISCOVERED | e;
6244 insn_state[w] = DISCOVERED;
7df737e9 6245 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6246 return -E2BIG;
7df737e9 6247 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6248 return 1;
6249 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6250 if (loop_ok && env->allow_ptr_leaks)
6251 return 0;
d9762e84
MKL
6252 verbose_linfo(env, t, "%d: ", t);
6253 verbose_linfo(env, w, "%d: ", w);
61bd5218 6254 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6255 return -EINVAL;
6256 } else if (insn_state[w] == EXPLORED) {
6257 /* forward- or cross-edge */
6258 insn_state[t] = DISCOVERED | e;
6259 } else {
61bd5218 6260 verbose(env, "insn state internal bug\n");
475fb78f
AS
6261 return -EFAULT;
6262 }
6263 return 0;
6264}
6265
6266/* non-recursive depth-first-search to detect loops in BPF program
6267 * loop == back-edge in directed graph
6268 */
58e2af8b 6269static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6270{
6271 struct bpf_insn *insns = env->prog->insnsi;
6272 int insn_cnt = env->prog->len;
7df737e9 6273 int *insn_stack, *insn_state;
475fb78f
AS
6274 int ret = 0;
6275 int i, t;
6276
7df737e9 6277 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6278 if (!insn_state)
6279 return -ENOMEM;
6280
7df737e9 6281 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6282 if (!insn_stack) {
71dde681 6283 kvfree(insn_state);
475fb78f
AS
6284 return -ENOMEM;
6285 }
6286
6287 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6288 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6289 env->cfg.cur_stack = 1;
475fb78f
AS
6290
6291peek_stack:
7df737e9 6292 if (env->cfg.cur_stack == 0)
475fb78f 6293 goto check_state;
7df737e9 6294 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6295
092ed096
JW
6296 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6297 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6298 u8 opcode = BPF_OP(insns[t].code);
6299
6300 if (opcode == BPF_EXIT) {
6301 goto mark_explored;
6302 } else if (opcode == BPF_CALL) {
2589726d 6303 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6304 if (ret == 1)
6305 goto peek_stack;
6306 else if (ret < 0)
6307 goto err_free;
07016151 6308 if (t + 1 < insn_cnt)
5d839021 6309 init_explored_state(env, t + 1);
cc8b0b92 6310 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6311 init_explored_state(env, t);
2589726d
AS
6312 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6313 env, false);
cc8b0b92
AS
6314 if (ret == 1)
6315 goto peek_stack;
6316 else if (ret < 0)
6317 goto err_free;
6318 }
475fb78f
AS
6319 } else if (opcode == BPF_JA) {
6320 if (BPF_SRC(insns[t].code) != BPF_K) {
6321 ret = -EINVAL;
6322 goto err_free;
6323 }
6324 /* unconditional jump with single edge */
6325 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6326 FALLTHROUGH, env, true);
475fb78f
AS
6327 if (ret == 1)
6328 goto peek_stack;
6329 else if (ret < 0)
6330 goto err_free;
b5dc0163
AS
6331 /* unconditional jmp is not a good pruning point,
6332 * but it's marked, since backtracking needs
6333 * to record jmp history in is_state_visited().
6334 */
6335 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6336 /* tell verifier to check for equivalent states
6337 * after every call and jump
6338 */
c3de6317 6339 if (t + 1 < insn_cnt)
5d839021 6340 init_explored_state(env, t + 1);
475fb78f
AS
6341 } else {
6342 /* conditional jump with two edges */
5d839021 6343 init_explored_state(env, t);
2589726d 6344 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6345 if (ret == 1)
6346 goto peek_stack;
6347 else if (ret < 0)
6348 goto err_free;
6349
2589726d 6350 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6351 if (ret == 1)
6352 goto peek_stack;
6353 else if (ret < 0)
6354 goto err_free;
6355 }
6356 } else {
6357 /* all other non-branch instructions with single
6358 * fall-through edge
6359 */
2589726d 6360 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6361 if (ret == 1)
6362 goto peek_stack;
6363 else if (ret < 0)
6364 goto err_free;
6365 }
6366
6367mark_explored:
6368 insn_state[t] = EXPLORED;
7df737e9 6369 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6370 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6371 ret = -EFAULT;
6372 goto err_free;
6373 }
6374 goto peek_stack;
6375
6376check_state:
6377 for (i = 0; i < insn_cnt; i++) {
6378 if (insn_state[i] != EXPLORED) {
61bd5218 6379 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6380 ret = -EINVAL;
6381 goto err_free;
6382 }
6383 }
6384 ret = 0; /* cfg looks good */
6385
6386err_free:
71dde681
AS
6387 kvfree(insn_state);
6388 kvfree(insn_stack);
7df737e9 6389 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6390 return ret;
6391}
6392
838e9690
YS
6393/* The minimum supported BTF func info size */
6394#define MIN_BPF_FUNCINFO_SIZE 8
6395#define MAX_FUNCINFO_REC_SIZE 252
6396
c454a46b
MKL
6397static int check_btf_func(struct bpf_verifier_env *env,
6398 const union bpf_attr *attr,
6399 union bpf_attr __user *uattr)
838e9690 6400{
d0b2818e 6401 u32 i, nfuncs, urec_size, min_size;
838e9690 6402 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6403 struct bpf_func_info *krecord;
838e9690 6404 const struct btf_type *type;
c454a46b
MKL
6405 struct bpf_prog *prog;
6406 const struct btf *btf;
838e9690 6407 void __user *urecord;
d0b2818e 6408 u32 prev_offset = 0;
838e9690
YS
6409 int ret = 0;
6410
6411 nfuncs = attr->func_info_cnt;
6412 if (!nfuncs)
6413 return 0;
6414
6415 if (nfuncs != env->subprog_cnt) {
6416 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6417 return -EINVAL;
6418 }
6419
6420 urec_size = attr->func_info_rec_size;
6421 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6422 urec_size > MAX_FUNCINFO_REC_SIZE ||
6423 urec_size % sizeof(u32)) {
6424 verbose(env, "invalid func info rec size %u\n", urec_size);
6425 return -EINVAL;
6426 }
6427
c454a46b
MKL
6428 prog = env->prog;
6429 btf = prog->aux->btf;
838e9690
YS
6430
6431 urecord = u64_to_user_ptr(attr->func_info);
6432 min_size = min_t(u32, krec_size, urec_size);
6433
ba64e7d8 6434 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6435 if (!krecord)
6436 return -ENOMEM;
ba64e7d8 6437
838e9690
YS
6438 for (i = 0; i < nfuncs; i++) {
6439 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6440 if (ret) {
6441 if (ret == -E2BIG) {
6442 verbose(env, "nonzero tailing record in func info");
6443 /* set the size kernel expects so loader can zero
6444 * out the rest of the record.
6445 */
6446 if (put_user(min_size, &uattr->func_info_rec_size))
6447 ret = -EFAULT;
6448 }
c454a46b 6449 goto err_free;
838e9690
YS
6450 }
6451
ba64e7d8 6452 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6453 ret = -EFAULT;
c454a46b 6454 goto err_free;
838e9690
YS
6455 }
6456
d30d42e0 6457 /* check insn_off */
838e9690 6458 if (i == 0) {
d30d42e0 6459 if (krecord[i].insn_off) {
838e9690 6460 verbose(env,
d30d42e0
MKL
6461 "nonzero insn_off %u for the first func info record",
6462 krecord[i].insn_off);
838e9690 6463 ret = -EINVAL;
c454a46b 6464 goto err_free;
838e9690 6465 }
d30d42e0 6466 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6467 verbose(env,
6468 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6469 krecord[i].insn_off, prev_offset);
838e9690 6470 ret = -EINVAL;
c454a46b 6471 goto err_free;
838e9690
YS
6472 }
6473
d30d42e0 6474 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6475 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6476 ret = -EINVAL;
c454a46b 6477 goto err_free;
838e9690
YS
6478 }
6479
6480 /* check type_id */
ba64e7d8 6481 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6482 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6483 verbose(env, "invalid type id %d in func info",
ba64e7d8 6484 krecord[i].type_id);
838e9690 6485 ret = -EINVAL;
c454a46b 6486 goto err_free;
838e9690
YS
6487 }
6488
d30d42e0 6489 prev_offset = krecord[i].insn_off;
838e9690
YS
6490 urecord += urec_size;
6491 }
6492
ba64e7d8
YS
6493 prog->aux->func_info = krecord;
6494 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
6495 return 0;
6496
c454a46b 6497err_free:
ba64e7d8 6498 kvfree(krecord);
838e9690
YS
6499 return ret;
6500}
6501
ba64e7d8
YS
6502static void adjust_btf_func(struct bpf_verifier_env *env)
6503{
6504 int i;
6505
6506 if (!env->prog->aux->func_info)
6507 return;
6508
6509 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 6510 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6511}
6512
c454a46b
MKL
6513#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6514 sizeof(((struct bpf_line_info *)(0))->line_col))
6515#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6516
6517static int check_btf_line(struct bpf_verifier_env *env,
6518 const union bpf_attr *attr,
6519 union bpf_attr __user *uattr)
6520{
6521 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6522 struct bpf_subprog_info *sub;
6523 struct bpf_line_info *linfo;
6524 struct bpf_prog *prog;
6525 const struct btf *btf;
6526 void __user *ulinfo;
6527 int err;
6528
6529 nr_linfo = attr->line_info_cnt;
6530 if (!nr_linfo)
6531 return 0;
6532
6533 rec_size = attr->line_info_rec_size;
6534 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6535 rec_size > MAX_LINEINFO_REC_SIZE ||
6536 rec_size & (sizeof(u32) - 1))
6537 return -EINVAL;
6538
6539 /* Need to zero it in case the userspace may
6540 * pass in a smaller bpf_line_info object.
6541 */
6542 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6543 GFP_KERNEL | __GFP_NOWARN);
6544 if (!linfo)
6545 return -ENOMEM;
6546
6547 prog = env->prog;
6548 btf = prog->aux->btf;
6549
6550 s = 0;
6551 sub = env->subprog_info;
6552 ulinfo = u64_to_user_ptr(attr->line_info);
6553 expected_size = sizeof(struct bpf_line_info);
6554 ncopy = min_t(u32, expected_size, rec_size);
6555 for (i = 0; i < nr_linfo; i++) {
6556 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6557 if (err) {
6558 if (err == -E2BIG) {
6559 verbose(env, "nonzero tailing record in line_info");
6560 if (put_user(expected_size,
6561 &uattr->line_info_rec_size))
6562 err = -EFAULT;
6563 }
6564 goto err_free;
6565 }
6566
6567 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6568 err = -EFAULT;
6569 goto err_free;
6570 }
6571
6572 /*
6573 * Check insn_off to ensure
6574 * 1) strictly increasing AND
6575 * 2) bounded by prog->len
6576 *
6577 * The linfo[0].insn_off == 0 check logically falls into
6578 * the later "missing bpf_line_info for func..." case
6579 * because the first linfo[0].insn_off must be the
6580 * first sub also and the first sub must have
6581 * subprog_info[0].start == 0.
6582 */
6583 if ((i && linfo[i].insn_off <= prev_offset) ||
6584 linfo[i].insn_off >= prog->len) {
6585 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6586 i, linfo[i].insn_off, prev_offset,
6587 prog->len);
6588 err = -EINVAL;
6589 goto err_free;
6590 }
6591
fdbaa0be
MKL
6592 if (!prog->insnsi[linfo[i].insn_off].code) {
6593 verbose(env,
6594 "Invalid insn code at line_info[%u].insn_off\n",
6595 i);
6596 err = -EINVAL;
6597 goto err_free;
6598 }
6599
23127b33
MKL
6600 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6601 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6602 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6603 err = -EINVAL;
6604 goto err_free;
6605 }
6606
6607 if (s != env->subprog_cnt) {
6608 if (linfo[i].insn_off == sub[s].start) {
6609 sub[s].linfo_idx = i;
6610 s++;
6611 } else if (sub[s].start < linfo[i].insn_off) {
6612 verbose(env, "missing bpf_line_info for func#%u\n", s);
6613 err = -EINVAL;
6614 goto err_free;
6615 }
6616 }
6617
6618 prev_offset = linfo[i].insn_off;
6619 ulinfo += rec_size;
6620 }
6621
6622 if (s != env->subprog_cnt) {
6623 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6624 env->subprog_cnt - s, s);
6625 err = -EINVAL;
6626 goto err_free;
6627 }
6628
6629 prog->aux->linfo = linfo;
6630 prog->aux->nr_linfo = nr_linfo;
6631
6632 return 0;
6633
6634err_free:
6635 kvfree(linfo);
6636 return err;
6637}
6638
6639static int check_btf_info(struct bpf_verifier_env *env,
6640 const union bpf_attr *attr,
6641 union bpf_attr __user *uattr)
6642{
6643 struct btf *btf;
6644 int err;
6645
6646 if (!attr->func_info_cnt && !attr->line_info_cnt)
6647 return 0;
6648
6649 btf = btf_get_by_fd(attr->prog_btf_fd);
6650 if (IS_ERR(btf))
6651 return PTR_ERR(btf);
6652 env->prog->aux->btf = btf;
6653
6654 err = check_btf_func(env, attr, uattr);
6655 if (err)
6656 return err;
6657
6658 err = check_btf_line(env, attr, uattr);
6659 if (err)
6660 return err;
6661
6662 return 0;
ba64e7d8
YS
6663}
6664
f1174f77
EC
6665/* check %cur's range satisfies %old's */
6666static bool range_within(struct bpf_reg_state *old,
6667 struct bpf_reg_state *cur)
6668{
b03c9f9f
EC
6669 return old->umin_value <= cur->umin_value &&
6670 old->umax_value >= cur->umax_value &&
6671 old->smin_value <= cur->smin_value &&
6672 old->smax_value >= cur->smax_value;
f1174f77
EC
6673}
6674
6675/* Maximum number of register states that can exist at once */
6676#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6677struct idpair {
6678 u32 old;
6679 u32 cur;
6680};
6681
6682/* If in the old state two registers had the same id, then they need to have
6683 * the same id in the new state as well. But that id could be different from
6684 * the old state, so we need to track the mapping from old to new ids.
6685 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6686 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6687 * regs with a different old id could still have new id 9, we don't care about
6688 * that.
6689 * So we look through our idmap to see if this old id has been seen before. If
6690 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6691 */
f1174f77 6692static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6693{
f1174f77 6694 unsigned int i;
969bf05e 6695
f1174f77
EC
6696 for (i = 0; i < ID_MAP_SIZE; i++) {
6697 if (!idmap[i].old) {
6698 /* Reached an empty slot; haven't seen this id before */
6699 idmap[i].old = old_id;
6700 idmap[i].cur = cur_id;
6701 return true;
6702 }
6703 if (idmap[i].old == old_id)
6704 return idmap[i].cur == cur_id;
6705 }
6706 /* We ran out of idmap slots, which should be impossible */
6707 WARN_ON_ONCE(1);
6708 return false;
6709}
6710
9242b5f5
AS
6711static void clean_func_state(struct bpf_verifier_env *env,
6712 struct bpf_func_state *st)
6713{
6714 enum bpf_reg_liveness live;
6715 int i, j;
6716
6717 for (i = 0; i < BPF_REG_FP; i++) {
6718 live = st->regs[i].live;
6719 /* liveness must not touch this register anymore */
6720 st->regs[i].live |= REG_LIVE_DONE;
6721 if (!(live & REG_LIVE_READ))
6722 /* since the register is unused, clear its state
6723 * to make further comparison simpler
6724 */
6725 __mark_reg_not_init(&st->regs[i]);
6726 }
6727
6728 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6729 live = st->stack[i].spilled_ptr.live;
6730 /* liveness must not touch this stack slot anymore */
6731 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6732 if (!(live & REG_LIVE_READ)) {
6733 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6734 for (j = 0; j < BPF_REG_SIZE; j++)
6735 st->stack[i].slot_type[j] = STACK_INVALID;
6736 }
6737 }
6738}
6739
6740static void clean_verifier_state(struct bpf_verifier_env *env,
6741 struct bpf_verifier_state *st)
6742{
6743 int i;
6744
6745 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6746 /* all regs in this state in all frames were already marked */
6747 return;
6748
6749 for (i = 0; i <= st->curframe; i++)
6750 clean_func_state(env, st->frame[i]);
6751}
6752
6753/* the parentage chains form a tree.
6754 * the verifier states are added to state lists at given insn and
6755 * pushed into state stack for future exploration.
6756 * when the verifier reaches bpf_exit insn some of the verifer states
6757 * stored in the state lists have their final liveness state already,
6758 * but a lot of states will get revised from liveness point of view when
6759 * the verifier explores other branches.
6760 * Example:
6761 * 1: r0 = 1
6762 * 2: if r1 == 100 goto pc+1
6763 * 3: r0 = 2
6764 * 4: exit
6765 * when the verifier reaches exit insn the register r0 in the state list of
6766 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6767 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6768 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6769 *
6770 * Since the verifier pushes the branch states as it sees them while exploring
6771 * the program the condition of walking the branch instruction for the second
6772 * time means that all states below this branch were already explored and
6773 * their final liveness markes are already propagated.
6774 * Hence when the verifier completes the search of state list in is_state_visited()
6775 * we can call this clean_live_states() function to mark all liveness states
6776 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6777 * will not be used.
6778 * This function also clears the registers and stack for states that !READ
6779 * to simplify state merging.
6780 *
6781 * Important note here that walking the same branch instruction in the callee
6782 * doesn't meant that the states are DONE. The verifier has to compare
6783 * the callsites
6784 */
6785static void clean_live_states(struct bpf_verifier_env *env, int insn,
6786 struct bpf_verifier_state *cur)
6787{
6788 struct bpf_verifier_state_list *sl;
6789 int i;
6790
5d839021 6791 sl = *explored_state(env, insn);
a8f500af 6792 while (sl) {
2589726d
AS
6793 if (sl->state.branches)
6794 goto next;
dc2a4ebc
AS
6795 if (sl->state.insn_idx != insn ||
6796 sl->state.curframe != cur->curframe)
9242b5f5
AS
6797 goto next;
6798 for (i = 0; i <= cur->curframe; i++)
6799 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6800 goto next;
6801 clean_verifier_state(env, &sl->state);
6802next:
6803 sl = sl->next;
6804 }
6805}
6806
f1174f77 6807/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
6808static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6809 struct idpair *idmap)
f1174f77 6810{
f4d7e40a
AS
6811 bool equal;
6812
dc503a8a
EC
6813 if (!(rold->live & REG_LIVE_READ))
6814 /* explored state didn't use this */
6815 return true;
6816
679c782d 6817 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
6818
6819 if (rold->type == PTR_TO_STACK)
6820 /* two stack pointers are equal only if they're pointing to
6821 * the same stack frame, since fp-8 in foo != fp-8 in bar
6822 */
6823 return equal && rold->frameno == rcur->frameno;
6824
6825 if (equal)
969bf05e
AS
6826 return true;
6827
f1174f77
EC
6828 if (rold->type == NOT_INIT)
6829 /* explored state can't have used this */
969bf05e 6830 return true;
f1174f77
EC
6831 if (rcur->type == NOT_INIT)
6832 return false;
6833 switch (rold->type) {
6834 case SCALAR_VALUE:
6835 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
6836 if (!rold->precise && !rcur->precise)
6837 return true;
f1174f77
EC
6838 /* new val must satisfy old val knowledge */
6839 return range_within(rold, rcur) &&
6840 tnum_in(rold->var_off, rcur->var_off);
6841 } else {
179d1c56
JH
6842 /* We're trying to use a pointer in place of a scalar.
6843 * Even if the scalar was unbounded, this could lead to
6844 * pointer leaks because scalars are allowed to leak
6845 * while pointers are not. We could make this safe in
6846 * special cases if root is calling us, but it's
6847 * probably not worth the hassle.
f1174f77 6848 */
179d1c56 6849 return false;
f1174f77
EC
6850 }
6851 case PTR_TO_MAP_VALUE:
1b688a19
EC
6852 /* If the new min/max/var_off satisfy the old ones and
6853 * everything else matches, we are OK.
d83525ca
AS
6854 * 'id' is not compared, since it's only used for maps with
6855 * bpf_spin_lock inside map element and in such cases if
6856 * the rest of the prog is valid for one map element then
6857 * it's valid for all map elements regardless of the key
6858 * used in bpf_map_lookup()
1b688a19
EC
6859 */
6860 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6861 range_within(rold, rcur) &&
6862 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
6863 case PTR_TO_MAP_VALUE_OR_NULL:
6864 /* a PTR_TO_MAP_VALUE could be safe to use as a
6865 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6866 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6867 * checked, doing so could have affected others with the same
6868 * id, and we can't check for that because we lost the id when
6869 * we converted to a PTR_TO_MAP_VALUE.
6870 */
6871 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6872 return false;
6873 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6874 return false;
6875 /* Check our ids match any regs they're supposed to */
6876 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 6877 case PTR_TO_PACKET_META:
f1174f77 6878 case PTR_TO_PACKET:
de8f3a83 6879 if (rcur->type != rold->type)
f1174f77
EC
6880 return false;
6881 /* We must have at least as much range as the old ptr
6882 * did, so that any accesses which were safe before are
6883 * still safe. This is true even if old range < old off,
6884 * since someone could have accessed through (ptr - k), or
6885 * even done ptr -= k in a register, to get a safe access.
6886 */
6887 if (rold->range > rcur->range)
6888 return false;
6889 /* If the offsets don't match, we can't trust our alignment;
6890 * nor can we be sure that we won't fall out of range.
6891 */
6892 if (rold->off != rcur->off)
6893 return false;
6894 /* id relations must be preserved */
6895 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6896 return false;
6897 /* new val must satisfy old val knowledge */
6898 return range_within(rold, rcur) &&
6899 tnum_in(rold->var_off, rcur->var_off);
6900 case PTR_TO_CTX:
6901 case CONST_PTR_TO_MAP:
f1174f77 6902 case PTR_TO_PACKET_END:
d58e468b 6903 case PTR_TO_FLOW_KEYS:
c64b7983
JS
6904 case PTR_TO_SOCKET:
6905 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6906 case PTR_TO_SOCK_COMMON:
6907 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6908 case PTR_TO_TCP_SOCK:
6909 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6910 case PTR_TO_XDP_SOCK:
f1174f77
EC
6911 /* Only valid matches are exact, which memcmp() above
6912 * would have accepted
6913 */
6914 default:
6915 /* Don't know what's going on, just say it's not safe */
6916 return false;
6917 }
969bf05e 6918
f1174f77
EC
6919 /* Shouldn't get here; if we do, say it's not safe */
6920 WARN_ON_ONCE(1);
969bf05e
AS
6921 return false;
6922}
6923
f4d7e40a
AS
6924static bool stacksafe(struct bpf_func_state *old,
6925 struct bpf_func_state *cur,
638f5b90
AS
6926 struct idpair *idmap)
6927{
6928 int i, spi;
6929
638f5b90
AS
6930 /* walk slots of the explored stack and ignore any additional
6931 * slots in the current stack, since explored(safe) state
6932 * didn't use them
6933 */
6934 for (i = 0; i < old->allocated_stack; i++) {
6935 spi = i / BPF_REG_SIZE;
6936
b233920c
AS
6937 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6938 i += BPF_REG_SIZE - 1;
cc2b14d5 6939 /* explored state didn't use this */
fd05e57b 6940 continue;
b233920c 6941 }
cc2b14d5 6942
638f5b90
AS
6943 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6944 continue;
19e2dbb7
AS
6945
6946 /* explored stack has more populated slots than current stack
6947 * and these slots were used
6948 */
6949 if (i >= cur->allocated_stack)
6950 return false;
6951
cc2b14d5
AS
6952 /* if old state was safe with misc data in the stack
6953 * it will be safe with zero-initialized stack.
6954 * The opposite is not true
6955 */
6956 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6957 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6958 continue;
638f5b90
AS
6959 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6960 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6961 /* Ex: old explored (safe) state has STACK_SPILL in
6962 * this stack slot, but current has has STACK_MISC ->
6963 * this verifier states are not equivalent,
6964 * return false to continue verification of this path
6965 */
6966 return false;
6967 if (i % BPF_REG_SIZE)
6968 continue;
6969 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6970 continue;
6971 if (!regsafe(&old->stack[spi].spilled_ptr,
6972 &cur->stack[spi].spilled_ptr,
6973 idmap))
6974 /* when explored and current stack slot are both storing
6975 * spilled registers, check that stored pointers types
6976 * are the same as well.
6977 * Ex: explored safe path could have stored
6978 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6979 * but current path has stored:
6980 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6981 * such verifier states are not equivalent.
6982 * return false to continue verification of this path
6983 */
6984 return false;
6985 }
6986 return true;
6987}
6988
fd978bf7
JS
6989static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6990{
6991 if (old->acquired_refs != cur->acquired_refs)
6992 return false;
6993 return !memcmp(old->refs, cur->refs,
6994 sizeof(*old->refs) * old->acquired_refs);
6995}
6996
f1bca824
AS
6997/* compare two verifier states
6998 *
6999 * all states stored in state_list are known to be valid, since
7000 * verifier reached 'bpf_exit' instruction through them
7001 *
7002 * this function is called when verifier exploring different branches of
7003 * execution popped from the state stack. If it sees an old state that has
7004 * more strict register state and more strict stack state then this execution
7005 * branch doesn't need to be explored further, since verifier already
7006 * concluded that more strict state leads to valid finish.
7007 *
7008 * Therefore two states are equivalent if register state is more conservative
7009 * and explored stack state is more conservative than the current one.
7010 * Example:
7011 * explored current
7012 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7013 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7014 *
7015 * In other words if current stack state (one being explored) has more
7016 * valid slots than old one that already passed validation, it means
7017 * the verifier can stop exploring and conclude that current state is valid too
7018 *
7019 * Similarly with registers. If explored state has register type as invalid
7020 * whereas register type in current state is meaningful, it means that
7021 * the current state will reach 'bpf_exit' instruction safely
7022 */
f4d7e40a
AS
7023static bool func_states_equal(struct bpf_func_state *old,
7024 struct bpf_func_state *cur)
f1bca824 7025{
f1174f77
EC
7026 struct idpair *idmap;
7027 bool ret = false;
f1bca824
AS
7028 int i;
7029
f1174f77
EC
7030 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7031 /* If we failed to allocate the idmap, just say it's not safe */
7032 if (!idmap)
1a0dc1ac 7033 return false;
f1174f77
EC
7034
7035 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 7036 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 7037 goto out_free;
f1bca824
AS
7038 }
7039
638f5b90
AS
7040 if (!stacksafe(old, cur, idmap))
7041 goto out_free;
fd978bf7
JS
7042
7043 if (!refsafe(old, cur))
7044 goto out_free;
f1174f77
EC
7045 ret = true;
7046out_free:
7047 kfree(idmap);
7048 return ret;
f1bca824
AS
7049}
7050
f4d7e40a
AS
7051static bool states_equal(struct bpf_verifier_env *env,
7052 struct bpf_verifier_state *old,
7053 struct bpf_verifier_state *cur)
7054{
7055 int i;
7056
7057 if (old->curframe != cur->curframe)
7058 return false;
7059
979d63d5
DB
7060 /* Verification state from speculative execution simulation
7061 * must never prune a non-speculative execution one.
7062 */
7063 if (old->speculative && !cur->speculative)
7064 return false;
7065
d83525ca
AS
7066 if (old->active_spin_lock != cur->active_spin_lock)
7067 return false;
7068
f4d7e40a
AS
7069 /* for states to be equal callsites have to be the same
7070 * and all frame states need to be equivalent
7071 */
7072 for (i = 0; i <= old->curframe; i++) {
7073 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7074 return false;
7075 if (!func_states_equal(old->frame[i], cur->frame[i]))
7076 return false;
7077 }
7078 return true;
7079}
7080
5327ed3d
JW
7081/* Return 0 if no propagation happened. Return negative error code if error
7082 * happened. Otherwise, return the propagated bit.
7083 */
55e7f3b5
JW
7084static int propagate_liveness_reg(struct bpf_verifier_env *env,
7085 struct bpf_reg_state *reg,
7086 struct bpf_reg_state *parent_reg)
7087{
5327ed3d
JW
7088 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7089 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7090 int err;
7091
5327ed3d
JW
7092 /* When comes here, read flags of PARENT_REG or REG could be any of
7093 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7094 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7095 */
7096 if (parent_flag == REG_LIVE_READ64 ||
7097 /* Or if there is no read flag from REG. */
7098 !flag ||
7099 /* Or if the read flag from REG is the same as PARENT_REG. */
7100 parent_flag == flag)
55e7f3b5
JW
7101 return 0;
7102
5327ed3d 7103 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7104 if (err)
7105 return err;
7106
5327ed3d 7107 return flag;
55e7f3b5
JW
7108}
7109
8e9cd9ce 7110/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7111 * straight-line code between a state and its parent. When we arrive at an
7112 * equivalent state (jump target or such) we didn't arrive by the straight-line
7113 * code, so read marks in the state must propagate to the parent regardless
7114 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7115 * in mark_reg_read() is for.
8e9cd9ce 7116 */
f4d7e40a
AS
7117static int propagate_liveness(struct bpf_verifier_env *env,
7118 const struct bpf_verifier_state *vstate,
7119 struct bpf_verifier_state *vparent)
dc503a8a 7120{
3f8cafa4 7121 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7122 struct bpf_func_state *state, *parent;
3f8cafa4 7123 int i, frame, err = 0;
dc503a8a 7124
f4d7e40a
AS
7125 if (vparent->curframe != vstate->curframe) {
7126 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7127 vparent->curframe, vstate->curframe);
7128 return -EFAULT;
7129 }
dc503a8a
EC
7130 /* Propagate read liveness of registers... */
7131 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7132 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7133 parent = vparent->frame[frame];
7134 state = vstate->frame[frame];
7135 parent_reg = parent->regs;
7136 state_reg = state->regs;
83d16312
JK
7137 /* We don't need to worry about FP liveness, it's read-only */
7138 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7139 err = propagate_liveness_reg(env, &state_reg[i],
7140 &parent_reg[i]);
5327ed3d 7141 if (err < 0)
3f8cafa4 7142 return err;
5327ed3d
JW
7143 if (err == REG_LIVE_READ64)
7144 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7145 }
f4d7e40a 7146
1b04aee7 7147 /* Propagate stack slots. */
f4d7e40a
AS
7148 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7149 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7150 parent_reg = &parent->stack[i].spilled_ptr;
7151 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7152 err = propagate_liveness_reg(env, state_reg,
7153 parent_reg);
5327ed3d 7154 if (err < 0)
3f8cafa4 7155 return err;
dc503a8a
EC
7156 }
7157 }
5327ed3d 7158 return 0;
dc503a8a
EC
7159}
7160
a3ce685d
AS
7161/* find precise scalars in the previous equivalent state and
7162 * propagate them into the current state
7163 */
7164static int propagate_precision(struct bpf_verifier_env *env,
7165 const struct bpf_verifier_state *old)
7166{
7167 struct bpf_reg_state *state_reg;
7168 struct bpf_func_state *state;
7169 int i, err = 0;
7170
7171 state = old->frame[old->curframe];
7172 state_reg = state->regs;
7173 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7174 if (state_reg->type != SCALAR_VALUE ||
7175 !state_reg->precise)
7176 continue;
7177 if (env->log.level & BPF_LOG_LEVEL2)
7178 verbose(env, "propagating r%d\n", i);
7179 err = mark_chain_precision(env, i);
7180 if (err < 0)
7181 return err;
7182 }
7183
7184 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7185 if (state->stack[i].slot_type[0] != STACK_SPILL)
7186 continue;
7187 state_reg = &state->stack[i].spilled_ptr;
7188 if (state_reg->type != SCALAR_VALUE ||
7189 !state_reg->precise)
7190 continue;
7191 if (env->log.level & BPF_LOG_LEVEL2)
7192 verbose(env, "propagating fp%d\n",
7193 (-i - 1) * BPF_REG_SIZE);
7194 err = mark_chain_precision_stack(env, i);
7195 if (err < 0)
7196 return err;
7197 }
7198 return 0;
7199}
7200
2589726d
AS
7201static bool states_maybe_looping(struct bpf_verifier_state *old,
7202 struct bpf_verifier_state *cur)
7203{
7204 struct bpf_func_state *fold, *fcur;
7205 int i, fr = cur->curframe;
7206
7207 if (old->curframe != fr)
7208 return false;
7209
7210 fold = old->frame[fr];
7211 fcur = cur->frame[fr];
7212 for (i = 0; i < MAX_BPF_REG; i++)
7213 if (memcmp(&fold->regs[i], &fcur->regs[i],
7214 offsetof(struct bpf_reg_state, parent)))
7215 return false;
7216 return true;
7217}
7218
7219
58e2af8b 7220static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7221{
58e2af8b 7222 struct bpf_verifier_state_list *new_sl;
9f4686c4 7223 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7224 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7225 int i, j, err, states_cnt = 0;
10d274e8 7226 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 7227
b5dc0163 7228 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7229 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7230 /* this 'insn_idx' instruction wasn't marked, so we will not
7231 * be doing state search here
7232 */
7233 return 0;
7234
2589726d
AS
7235 /* bpf progs typically have pruning point every 4 instructions
7236 * http://vger.kernel.org/bpfconf2019.html#session-1
7237 * Do not add new state for future pruning if the verifier hasn't seen
7238 * at least 2 jumps and at least 8 instructions.
7239 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7240 * In tests that amounts to up to 50% reduction into total verifier
7241 * memory consumption and 20% verifier time speedup.
7242 */
7243 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7244 env->insn_processed - env->prev_insn_processed >= 8)
7245 add_new_state = true;
7246
a8f500af
AS
7247 pprev = explored_state(env, insn_idx);
7248 sl = *pprev;
7249
9242b5f5
AS
7250 clean_live_states(env, insn_idx, cur);
7251
a8f500af 7252 while (sl) {
dc2a4ebc
AS
7253 states_cnt++;
7254 if (sl->state.insn_idx != insn_idx)
7255 goto next;
2589726d
AS
7256 if (sl->state.branches) {
7257 if (states_maybe_looping(&sl->state, cur) &&
7258 states_equal(env, &sl->state, cur)) {
7259 verbose_linfo(env, insn_idx, "; ");
7260 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7261 return -EINVAL;
7262 }
7263 /* if the verifier is processing a loop, avoid adding new state
7264 * too often, since different loop iterations have distinct
7265 * states and may not help future pruning.
7266 * This threshold shouldn't be too low to make sure that
7267 * a loop with large bound will be rejected quickly.
7268 * The most abusive loop will be:
7269 * r1 += 1
7270 * if r1 < 1000000 goto pc-2
7271 * 1M insn_procssed limit / 100 == 10k peak states.
7272 * This threshold shouldn't be too high either, since states
7273 * at the end of the loop are likely to be useful in pruning.
7274 */
7275 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7276 env->insn_processed - env->prev_insn_processed < 100)
7277 add_new_state = false;
7278 goto miss;
7279 }
638f5b90 7280 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7281 sl->hit_cnt++;
f1bca824 7282 /* reached equivalent register/stack state,
dc503a8a
EC
7283 * prune the search.
7284 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7285 * If we have any write marks in env->cur_state, they
7286 * will prevent corresponding reads in the continuation
7287 * from reaching our parent (an explored_state). Our
7288 * own state will get the read marks recorded, but
7289 * they'll be immediately forgotten as we're pruning
7290 * this state and will pop a new one.
f1bca824 7291 */
f4d7e40a 7292 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
7293
7294 /* if previous state reached the exit with precision and
7295 * current state is equivalent to it (except precsion marks)
7296 * the precision needs to be propagated back in
7297 * the current state.
7298 */
7299 err = err ? : push_jmp_history(env, cur);
7300 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
7301 if (err)
7302 return err;
f1bca824 7303 return 1;
dc503a8a 7304 }
2589726d
AS
7305miss:
7306 /* when new state is not going to be added do not increase miss count.
7307 * Otherwise several loop iterations will remove the state
7308 * recorded earlier. The goal of these heuristics is to have
7309 * states from some iterations of the loop (some in the beginning
7310 * and some at the end) to help pruning.
7311 */
7312 if (add_new_state)
7313 sl->miss_cnt++;
9f4686c4
AS
7314 /* heuristic to determine whether this state is beneficial
7315 * to keep checking from state equivalence point of view.
7316 * Higher numbers increase max_states_per_insn and verification time,
7317 * but do not meaningfully decrease insn_processed.
7318 */
7319 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7320 /* the state is unlikely to be useful. Remove it to
7321 * speed up verification
7322 */
7323 *pprev = sl->next;
7324 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7325 u32 br = sl->state.branches;
7326
7327 WARN_ONCE(br,
7328 "BUG live_done but branches_to_explore %d\n",
7329 br);
9f4686c4
AS
7330 free_verifier_state(&sl->state, false);
7331 kfree(sl);
7332 env->peak_states--;
7333 } else {
7334 /* cannot free this state, since parentage chain may
7335 * walk it later. Add it for free_list instead to
7336 * be freed at the end of verification
7337 */
7338 sl->next = env->free_list;
7339 env->free_list = sl;
7340 }
7341 sl = *pprev;
7342 continue;
7343 }
dc2a4ebc 7344next:
9f4686c4
AS
7345 pprev = &sl->next;
7346 sl = *pprev;
f1bca824
AS
7347 }
7348
06ee7115
AS
7349 if (env->max_states_per_insn < states_cnt)
7350 env->max_states_per_insn = states_cnt;
7351
ceefbc96 7352 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7353 return push_jmp_history(env, cur);
ceefbc96 7354
2589726d 7355 if (!add_new_state)
b5dc0163 7356 return push_jmp_history(env, cur);
ceefbc96 7357
2589726d
AS
7358 /* There were no equivalent states, remember the current one.
7359 * Technically the current state is not proven to be safe yet,
f4d7e40a 7360 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7361 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7362 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7363 * again on the way to bpf_exit.
7364 * When looping the sl->state.branches will be > 0 and this state
7365 * will not be considered for equivalence until branches == 0.
f1bca824 7366 */
638f5b90 7367 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7368 if (!new_sl)
7369 return -ENOMEM;
06ee7115
AS
7370 env->total_states++;
7371 env->peak_states++;
2589726d
AS
7372 env->prev_jmps_processed = env->jmps_processed;
7373 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7374
7375 /* add new state to the head of linked list */
679c782d
EC
7376 new = &new_sl->state;
7377 err = copy_verifier_state(new, cur);
1969db47 7378 if (err) {
679c782d 7379 free_verifier_state(new, false);
1969db47
AS
7380 kfree(new_sl);
7381 return err;
7382 }
dc2a4ebc 7383 new->insn_idx = insn_idx;
2589726d
AS
7384 WARN_ONCE(new->branches != 1,
7385 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7386
2589726d 7387 cur->parent = new;
b5dc0163
AS
7388 cur->first_insn_idx = insn_idx;
7389 clear_jmp_history(cur);
5d839021
AS
7390 new_sl->next = *explored_state(env, insn_idx);
7391 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7392 /* connect new state to parentage chain. Current frame needs all
7393 * registers connected. Only r6 - r9 of the callers are alive (pushed
7394 * to the stack implicitly by JITs) so in callers' frames connect just
7395 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7396 * the state of the call instruction (with WRITTEN set), and r0 comes
7397 * from callee with its full parentage chain, anyway.
7398 */
8e9cd9ce
EC
7399 /* clear write marks in current state: the writes we did are not writes
7400 * our child did, so they don't screen off its reads from us.
7401 * (There are no read marks in current state, because reads always mark
7402 * their parent and current state never has children yet. Only
7403 * explored_states can get read marks.)
7404 */
eea1c227
AS
7405 for (j = 0; j <= cur->curframe; j++) {
7406 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7407 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7408 for (i = 0; i < BPF_REG_FP; i++)
7409 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7410 }
f4d7e40a
AS
7411
7412 /* all stack frames are accessible from callee, clear them all */
7413 for (j = 0; j <= cur->curframe; j++) {
7414 struct bpf_func_state *frame = cur->frame[j];
679c782d 7415 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7416
679c782d 7417 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7418 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7419 frame->stack[i].spilled_ptr.parent =
7420 &newframe->stack[i].spilled_ptr;
7421 }
f4d7e40a 7422 }
f1bca824
AS
7423 return 0;
7424}
7425
c64b7983
JS
7426/* Return true if it's OK to have the same insn return a different type. */
7427static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7428{
7429 switch (type) {
7430 case PTR_TO_CTX:
7431 case PTR_TO_SOCKET:
7432 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7433 case PTR_TO_SOCK_COMMON:
7434 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7435 case PTR_TO_TCP_SOCK:
7436 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7437 case PTR_TO_XDP_SOCK:
c64b7983
JS
7438 return false;
7439 default:
7440 return true;
7441 }
7442}
7443
7444/* If an instruction was previously used with particular pointer types, then we
7445 * need to be careful to avoid cases such as the below, where it may be ok
7446 * for one branch accessing the pointer, but not ok for the other branch:
7447 *
7448 * R1 = sock_ptr
7449 * goto X;
7450 * ...
7451 * R1 = some_other_valid_ptr;
7452 * goto X;
7453 * ...
7454 * R2 = *(u32 *)(R1 + 0);
7455 */
7456static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7457{
7458 return src != prev && (!reg_type_mismatch_ok(src) ||
7459 !reg_type_mismatch_ok(prev));
7460}
7461
58e2af8b 7462static int do_check(struct bpf_verifier_env *env)
17a52670 7463{
638f5b90 7464 struct bpf_verifier_state *state;
17a52670 7465 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7466 struct bpf_reg_state *regs;
06ee7115 7467 int insn_cnt = env->prog->len;
17a52670 7468 bool do_print_state = false;
b5dc0163 7469 int prev_insn_idx = -1;
17a52670 7470
d9762e84
MKL
7471 env->prev_linfo = NULL;
7472
638f5b90
AS
7473 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7474 if (!state)
7475 return -ENOMEM;
f4d7e40a 7476 state->curframe = 0;
979d63d5 7477 state->speculative = false;
2589726d 7478 state->branches = 1;
f4d7e40a
AS
7479 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7480 if (!state->frame[0]) {
7481 kfree(state);
7482 return -ENOMEM;
7483 }
7484 env->cur_state = state;
7485 init_func_state(env, state->frame[0],
7486 BPF_MAIN_FUNC /* callsite */,
7487 0 /* frameno */,
7488 0 /* subprogno, zero == main subprog */);
c08435ec 7489
17a52670
AS
7490 for (;;) {
7491 struct bpf_insn *insn;
7492 u8 class;
7493 int err;
7494
b5dc0163 7495 env->prev_insn_idx = prev_insn_idx;
c08435ec 7496 if (env->insn_idx >= insn_cnt) {
61bd5218 7497 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7498 env->insn_idx, insn_cnt);
17a52670
AS
7499 return -EFAULT;
7500 }
7501
c08435ec 7502 insn = &insns[env->insn_idx];
17a52670
AS
7503 class = BPF_CLASS(insn->code);
7504
06ee7115 7505 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7506 verbose(env,
7507 "BPF program is too large. Processed %d insn\n",
06ee7115 7508 env->insn_processed);
17a52670
AS
7509 return -E2BIG;
7510 }
7511
c08435ec 7512 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7513 if (err < 0)
7514 return err;
7515 if (err == 1) {
7516 /* found equivalent state, can prune the search */
06ee7115 7517 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7518 if (do_print_state)
979d63d5
DB
7519 verbose(env, "\nfrom %d to %d%s: safe\n",
7520 env->prev_insn_idx, env->insn_idx,
7521 env->cur_state->speculative ?
7522 " (speculative execution)" : "");
f1bca824 7523 else
c08435ec 7524 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7525 }
7526 goto process_bpf_exit;
7527 }
7528
c3494801
AS
7529 if (signal_pending(current))
7530 return -EAGAIN;
7531
3c2ce60b
DB
7532 if (need_resched())
7533 cond_resched();
7534
06ee7115
AS
7535 if (env->log.level & BPF_LOG_LEVEL2 ||
7536 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7537 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7538 verbose(env, "%d:", env->insn_idx);
c5fc9692 7539 else
979d63d5
DB
7540 verbose(env, "\nfrom %d to %d%s:",
7541 env->prev_insn_idx, env->insn_idx,
7542 env->cur_state->speculative ?
7543 " (speculative execution)" : "");
f4d7e40a 7544 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7545 do_print_state = false;
7546 }
7547
06ee7115 7548 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7549 const struct bpf_insn_cbs cbs = {
7550 .cb_print = verbose,
abe08840 7551 .private_data = env,
7105e828
DB
7552 };
7553
c08435ec
DB
7554 verbose_linfo(env, env->insn_idx, "; ");
7555 verbose(env, "%d: ", env->insn_idx);
abe08840 7556 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7557 }
7558
cae1927c 7559 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7560 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7561 env->prev_insn_idx);
cae1927c
JK
7562 if (err)
7563 return err;
7564 }
13a27dfc 7565
638f5b90 7566 regs = cur_regs(env);
c08435ec 7567 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7568 prev_insn_idx = env->insn_idx;
fd978bf7 7569
17a52670 7570 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7571 err = check_alu_op(env, insn);
17a52670
AS
7572 if (err)
7573 return err;
7574
7575 } else if (class == BPF_LDX) {
3df126f3 7576 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7577
7578 /* check for reserved fields is already done */
7579
17a52670 7580 /* check src operand */
dc503a8a 7581 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7582 if (err)
7583 return err;
7584
dc503a8a 7585 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7586 if (err)
7587 return err;
7588
725f9dcd
AS
7589 src_reg_type = regs[insn->src_reg].type;
7590
17a52670
AS
7591 /* check that memory (src_reg + off) is readable,
7592 * the state of dst_reg will be updated by this func
7593 */
c08435ec
DB
7594 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7595 insn->off, BPF_SIZE(insn->code),
7596 BPF_READ, insn->dst_reg, false);
17a52670
AS
7597 if (err)
7598 return err;
7599
c08435ec 7600 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7601
7602 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7603 /* saw a valid insn
7604 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7605 * save type to validate intersecting paths
9bac3d6d 7606 */
3df126f3 7607 *prev_src_type = src_reg_type;
9bac3d6d 7608
c64b7983 7609 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7610 /* ABuser program is trying to use the same insn
7611 * dst_reg = *(u32*) (src_reg + off)
7612 * with different pointer types:
7613 * src_reg == ctx in one branch and
7614 * src_reg == stack|map in some other branch.
7615 * Reject it.
7616 */
61bd5218 7617 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7618 return -EINVAL;
7619 }
7620
17a52670 7621 } else if (class == BPF_STX) {
3df126f3 7622 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7623
17a52670 7624 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7625 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7626 if (err)
7627 return err;
c08435ec 7628 env->insn_idx++;
17a52670
AS
7629 continue;
7630 }
7631
17a52670 7632 /* check src1 operand */
dc503a8a 7633 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7634 if (err)
7635 return err;
7636 /* check src2 operand */
dc503a8a 7637 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7638 if (err)
7639 return err;
7640
d691f9e8
AS
7641 dst_reg_type = regs[insn->dst_reg].type;
7642
17a52670 7643 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7644 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7645 insn->off, BPF_SIZE(insn->code),
7646 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7647 if (err)
7648 return err;
7649
c08435ec 7650 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7651
7652 if (*prev_dst_type == NOT_INIT) {
7653 *prev_dst_type = dst_reg_type;
c64b7983 7654 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7655 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7656 return -EINVAL;
7657 }
7658
17a52670
AS
7659 } else if (class == BPF_ST) {
7660 if (BPF_MODE(insn->code) != BPF_MEM ||
7661 insn->src_reg != BPF_REG_0) {
61bd5218 7662 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7663 return -EINVAL;
7664 }
7665 /* check src operand */
dc503a8a 7666 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7667 if (err)
7668 return err;
7669
f37a8cb8 7670 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7671 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7672 insn->dst_reg,
7673 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7674 return -EACCES;
7675 }
7676
17a52670 7677 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7678 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7679 insn->off, BPF_SIZE(insn->code),
7680 BPF_WRITE, -1, false);
17a52670
AS
7681 if (err)
7682 return err;
7683
092ed096 7684 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7685 u8 opcode = BPF_OP(insn->code);
7686
2589726d 7687 env->jmps_processed++;
17a52670
AS
7688 if (opcode == BPF_CALL) {
7689 if (BPF_SRC(insn->code) != BPF_K ||
7690 insn->off != 0 ||
f4d7e40a
AS
7691 (insn->src_reg != BPF_REG_0 &&
7692 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7693 insn->dst_reg != BPF_REG_0 ||
7694 class == BPF_JMP32) {
61bd5218 7695 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7696 return -EINVAL;
7697 }
7698
d83525ca
AS
7699 if (env->cur_state->active_spin_lock &&
7700 (insn->src_reg == BPF_PSEUDO_CALL ||
7701 insn->imm != BPF_FUNC_spin_unlock)) {
7702 verbose(env, "function calls are not allowed while holding a lock\n");
7703 return -EINVAL;
7704 }
f4d7e40a 7705 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 7706 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 7707 else
c08435ec 7708 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
7709 if (err)
7710 return err;
7711
7712 } else if (opcode == BPF_JA) {
7713 if (BPF_SRC(insn->code) != BPF_K ||
7714 insn->imm != 0 ||
7715 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7716 insn->dst_reg != BPF_REG_0 ||
7717 class == BPF_JMP32) {
61bd5218 7718 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
7719 return -EINVAL;
7720 }
7721
c08435ec 7722 env->insn_idx += insn->off + 1;
17a52670
AS
7723 continue;
7724
7725 } else if (opcode == BPF_EXIT) {
7726 if (BPF_SRC(insn->code) != BPF_K ||
7727 insn->imm != 0 ||
7728 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7729 insn->dst_reg != BPF_REG_0 ||
7730 class == BPF_JMP32) {
61bd5218 7731 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
7732 return -EINVAL;
7733 }
7734
d83525ca
AS
7735 if (env->cur_state->active_spin_lock) {
7736 verbose(env, "bpf_spin_unlock is missing\n");
7737 return -EINVAL;
7738 }
7739
f4d7e40a
AS
7740 if (state->curframe) {
7741 /* exit from nested function */
c08435ec 7742 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
7743 if (err)
7744 return err;
7745 do_print_state = true;
7746 continue;
7747 }
7748
fd978bf7
JS
7749 err = check_reference_leak(env);
7750 if (err)
7751 return err;
7752
17a52670
AS
7753 /* eBPF calling convetion is such that R0 is used
7754 * to return the value from eBPF program.
7755 * Make sure that it's readable at this time
7756 * of bpf_exit, which means that program wrote
7757 * something into it earlier
7758 */
dc503a8a 7759 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
7760 if (err)
7761 return err;
7762
1be7f75d 7763 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 7764 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
7765 return -EACCES;
7766 }
7767
390ee7e2
AS
7768 err = check_return_code(env);
7769 if (err)
7770 return err;
f1bca824 7771process_bpf_exit:
2589726d 7772 update_branch_counts(env, env->cur_state);
b5dc0163 7773 err = pop_stack(env, &prev_insn_idx,
c08435ec 7774 &env->insn_idx);
638f5b90
AS
7775 if (err < 0) {
7776 if (err != -ENOENT)
7777 return err;
17a52670
AS
7778 break;
7779 } else {
7780 do_print_state = true;
7781 continue;
7782 }
7783 } else {
c08435ec 7784 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
7785 if (err)
7786 return err;
7787 }
7788 } else if (class == BPF_LD) {
7789 u8 mode = BPF_MODE(insn->code);
7790
7791 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
7792 err = check_ld_abs(env, insn);
7793 if (err)
7794 return err;
7795
17a52670
AS
7796 } else if (mode == BPF_IMM) {
7797 err = check_ld_imm(env, insn);
7798 if (err)
7799 return err;
7800
c08435ec
DB
7801 env->insn_idx++;
7802 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 7803 } else {
61bd5218 7804 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
7805 return -EINVAL;
7806 }
7807 } else {
61bd5218 7808 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
7809 return -EINVAL;
7810 }
7811
c08435ec 7812 env->insn_idx++;
17a52670
AS
7813 }
7814
9c8105bd 7815 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
7816 return 0;
7817}
7818
56f668df
MKL
7819static int check_map_prealloc(struct bpf_map *map)
7820{
7821 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
7822 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7823 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
7824 !(map->map_flags & BPF_F_NO_PREALLOC);
7825}
7826
d83525ca
AS
7827static bool is_tracing_prog_type(enum bpf_prog_type type)
7828{
7829 switch (type) {
7830 case BPF_PROG_TYPE_KPROBE:
7831 case BPF_PROG_TYPE_TRACEPOINT:
7832 case BPF_PROG_TYPE_PERF_EVENT:
7833 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7834 return true;
7835 default:
7836 return false;
7837 }
7838}
7839
61bd5218
JK
7840static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7841 struct bpf_map *map,
fdc15d38
AS
7842 struct bpf_prog *prog)
7843
7844{
56f668df
MKL
7845 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7846 * preallocated hash maps, since doing memory allocation
7847 * in overflow_handler can crash depending on where nmi got
7848 * triggered.
7849 */
7850 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7851 if (!check_map_prealloc(map)) {
61bd5218 7852 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
7853 return -EINVAL;
7854 }
7855 if (map->inner_map_meta &&
7856 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 7857 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
7858 return -EINVAL;
7859 }
fdc15d38 7860 }
a3884572 7861
d83525ca
AS
7862 if ((is_tracing_prog_type(prog->type) ||
7863 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7864 map_value_has_spin_lock(map)) {
7865 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7866 return -EINVAL;
7867 }
7868
a3884572 7869 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 7870 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
7871 verbose(env, "offload device mismatch between prog and map\n");
7872 return -EINVAL;
7873 }
7874
fdc15d38
AS
7875 return 0;
7876}
7877
b741f163
RG
7878static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7879{
7880 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7881 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7882}
7883
0246e64d
AS
7884/* look for pseudo eBPF instructions that access map FDs and
7885 * replace them with actual map pointers
7886 */
58e2af8b 7887static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
7888{
7889 struct bpf_insn *insn = env->prog->insnsi;
7890 int insn_cnt = env->prog->len;
fdc15d38 7891 int i, j, err;
0246e64d 7892
f1f7714e 7893 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
7894 if (err)
7895 return err;
7896
0246e64d 7897 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 7898 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 7899 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 7900 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
7901 return -EINVAL;
7902 }
7903
d691f9e8
AS
7904 if (BPF_CLASS(insn->code) == BPF_STX &&
7905 ((BPF_MODE(insn->code) != BPF_MEM &&
7906 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 7907 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
7908 return -EINVAL;
7909 }
7910
0246e64d 7911 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 7912 struct bpf_insn_aux_data *aux;
0246e64d
AS
7913 struct bpf_map *map;
7914 struct fd f;
d8eca5bb 7915 u64 addr;
0246e64d
AS
7916
7917 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7918 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7919 insn[1].off != 0) {
61bd5218 7920 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
7921 return -EINVAL;
7922 }
7923
d8eca5bb 7924 if (insn[0].src_reg == 0)
0246e64d
AS
7925 /* valid generic load 64-bit imm */
7926 goto next_insn;
7927
d8eca5bb
DB
7928 /* In final convert_pseudo_ld_imm64() step, this is
7929 * converted into regular 64-bit imm load insn.
7930 */
7931 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7932 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7933 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7934 insn[1].imm != 0)) {
7935 verbose(env,
7936 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
7937 return -EINVAL;
7938 }
7939
20182390 7940 f = fdget(insn[0].imm);
c2101297 7941 map = __bpf_map_get(f);
0246e64d 7942 if (IS_ERR(map)) {
61bd5218 7943 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 7944 insn[0].imm);
0246e64d
AS
7945 return PTR_ERR(map);
7946 }
7947
61bd5218 7948 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
7949 if (err) {
7950 fdput(f);
7951 return err;
7952 }
7953
d8eca5bb
DB
7954 aux = &env->insn_aux_data[i];
7955 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7956 addr = (unsigned long)map;
7957 } else {
7958 u32 off = insn[1].imm;
7959
7960 if (off >= BPF_MAX_VAR_OFF) {
7961 verbose(env, "direct value offset of %u is not allowed\n", off);
7962 fdput(f);
7963 return -EINVAL;
7964 }
7965
7966 if (!map->ops->map_direct_value_addr) {
7967 verbose(env, "no direct value access support for this map type\n");
7968 fdput(f);
7969 return -EINVAL;
7970 }
7971
7972 err = map->ops->map_direct_value_addr(map, &addr, off);
7973 if (err) {
7974 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7975 map->value_size, off);
7976 fdput(f);
7977 return err;
7978 }
7979
7980 aux->map_off = off;
7981 addr += off;
7982 }
7983
7984 insn[0].imm = (u32)addr;
7985 insn[1].imm = addr >> 32;
0246e64d
AS
7986
7987 /* check whether we recorded this map already */
d8eca5bb 7988 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 7989 if (env->used_maps[j] == map) {
d8eca5bb 7990 aux->map_index = j;
0246e64d
AS
7991 fdput(f);
7992 goto next_insn;
7993 }
d8eca5bb 7994 }
0246e64d
AS
7995
7996 if (env->used_map_cnt >= MAX_USED_MAPS) {
7997 fdput(f);
7998 return -E2BIG;
7999 }
8000
0246e64d
AS
8001 /* hold the map. If the program is rejected by verifier,
8002 * the map will be released by release_maps() or it
8003 * will be used by the valid program until it's unloaded
ab7f5bf0 8004 * and all maps are released in free_used_maps()
0246e64d 8005 */
92117d84
AS
8006 map = bpf_map_inc(map, false);
8007 if (IS_ERR(map)) {
8008 fdput(f);
8009 return PTR_ERR(map);
8010 }
d8eca5bb
DB
8011
8012 aux->map_index = env->used_map_cnt;
92117d84
AS
8013 env->used_maps[env->used_map_cnt++] = map;
8014
b741f163 8015 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 8016 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 8017 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
8018 fdput(f);
8019 return -EBUSY;
8020 }
8021
0246e64d
AS
8022 fdput(f);
8023next_insn:
8024 insn++;
8025 i++;
5e581dad
DB
8026 continue;
8027 }
8028
8029 /* Basic sanity check before we invest more work here. */
8030 if (!bpf_opcode_in_insntable(insn->code)) {
8031 verbose(env, "unknown opcode %02x\n", insn->code);
8032 return -EINVAL;
0246e64d
AS
8033 }
8034 }
8035
8036 /* now all pseudo BPF_LD_IMM64 instructions load valid
8037 * 'struct bpf_map *' into a register instead of user map_fd.
8038 * These pointers will be used later by verifier to validate map access.
8039 */
8040 return 0;
8041}
8042
8043/* drop refcnt of maps used by the rejected program */
58e2af8b 8044static void release_maps(struct bpf_verifier_env *env)
0246e64d 8045{
8bad74f9 8046 enum bpf_cgroup_storage_type stype;
0246e64d
AS
8047 int i;
8048
8bad74f9
RG
8049 for_each_cgroup_storage_type(stype) {
8050 if (!env->prog->aux->cgroup_storage[stype])
8051 continue;
de9cbbaa 8052 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
8053 env->prog->aux->cgroup_storage[stype]);
8054 }
de9cbbaa 8055
0246e64d
AS
8056 for (i = 0; i < env->used_map_cnt; i++)
8057 bpf_map_put(env->used_maps[i]);
8058}
8059
8060/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 8061static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
8062{
8063 struct bpf_insn *insn = env->prog->insnsi;
8064 int insn_cnt = env->prog->len;
8065 int i;
8066
8067 for (i = 0; i < insn_cnt; i++, insn++)
8068 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8069 insn->src_reg = 0;
8070}
8071
8041902d
AS
8072/* single env->prog->insni[off] instruction was replaced with the range
8073 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8074 * [0, off) and [off, end) to new locations, so the patched range stays zero
8075 */
b325fbca
JW
8076static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8077 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
8078{
8079 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
8080 struct bpf_insn *insn = new_prog->insnsi;
8081 u32 prog_len;
c131187d 8082 int i;
8041902d 8083
b325fbca
JW
8084 /* aux info at OFF always needs adjustment, no matter fast path
8085 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8086 * original insn at old prog.
8087 */
8088 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8089
8041902d
AS
8090 if (cnt == 1)
8091 return 0;
b325fbca 8092 prog_len = new_prog->len;
fad953ce
KC
8093 new_data = vzalloc(array_size(prog_len,
8094 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8095 if (!new_data)
8096 return -ENOMEM;
8097 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8098 memcpy(new_data + off + cnt - 1, old_data + off,
8099 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8100 for (i = off; i < off + cnt - 1; i++) {
c131187d 8101 new_data[i].seen = true;
b325fbca
JW
8102 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8103 }
8041902d
AS
8104 env->insn_aux_data = new_data;
8105 vfree(old_data);
8106 return 0;
8107}
8108
cc8b0b92
AS
8109static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8110{
8111 int i;
8112
8113 if (len == 1)
8114 return;
4cb3d99c
JW
8115 /* NOTE: fake 'exit' subprog should be updated as well. */
8116 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8117 if (env->subprog_info[i].start <= off)
cc8b0b92 8118 continue;
9c8105bd 8119 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8120 }
8121}
8122
8041902d
AS
8123static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8124 const struct bpf_insn *patch, u32 len)
8125{
8126 struct bpf_prog *new_prog;
8127
8128 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8129 if (IS_ERR(new_prog)) {
8130 if (PTR_ERR(new_prog) == -ERANGE)
8131 verbose(env,
8132 "insn %d cannot be patched due to 16-bit range\n",
8133 env->insn_aux_data[off].orig_idx);
8041902d 8134 return NULL;
4f73379e 8135 }
b325fbca 8136 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8137 return NULL;
cc8b0b92 8138 adjust_subprog_starts(env, off, len);
8041902d
AS
8139 return new_prog;
8140}
8141
52875a04
JK
8142static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8143 u32 off, u32 cnt)
8144{
8145 int i, j;
8146
8147 /* find first prog starting at or after off (first to remove) */
8148 for (i = 0; i < env->subprog_cnt; i++)
8149 if (env->subprog_info[i].start >= off)
8150 break;
8151 /* find first prog starting at or after off + cnt (first to stay) */
8152 for (j = i; j < env->subprog_cnt; j++)
8153 if (env->subprog_info[j].start >= off + cnt)
8154 break;
8155 /* if j doesn't start exactly at off + cnt, we are just removing
8156 * the front of previous prog
8157 */
8158 if (env->subprog_info[j].start != off + cnt)
8159 j--;
8160
8161 if (j > i) {
8162 struct bpf_prog_aux *aux = env->prog->aux;
8163 int move;
8164
8165 /* move fake 'exit' subprog as well */
8166 move = env->subprog_cnt + 1 - j;
8167
8168 memmove(env->subprog_info + i,
8169 env->subprog_info + j,
8170 sizeof(*env->subprog_info) * move);
8171 env->subprog_cnt -= j - i;
8172
8173 /* remove func_info */
8174 if (aux->func_info) {
8175 move = aux->func_info_cnt - j;
8176
8177 memmove(aux->func_info + i,
8178 aux->func_info + j,
8179 sizeof(*aux->func_info) * move);
8180 aux->func_info_cnt -= j - i;
8181 /* func_info->insn_off is set after all code rewrites,
8182 * in adjust_btf_func() - no need to adjust
8183 */
8184 }
8185 } else {
8186 /* convert i from "first prog to remove" to "first to adjust" */
8187 if (env->subprog_info[i].start == off)
8188 i++;
8189 }
8190
8191 /* update fake 'exit' subprog as well */
8192 for (; i <= env->subprog_cnt; i++)
8193 env->subprog_info[i].start -= cnt;
8194
8195 return 0;
8196}
8197
8198static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8199 u32 cnt)
8200{
8201 struct bpf_prog *prog = env->prog;
8202 u32 i, l_off, l_cnt, nr_linfo;
8203 struct bpf_line_info *linfo;
8204
8205 nr_linfo = prog->aux->nr_linfo;
8206 if (!nr_linfo)
8207 return 0;
8208
8209 linfo = prog->aux->linfo;
8210
8211 /* find first line info to remove, count lines to be removed */
8212 for (i = 0; i < nr_linfo; i++)
8213 if (linfo[i].insn_off >= off)
8214 break;
8215
8216 l_off = i;
8217 l_cnt = 0;
8218 for (; i < nr_linfo; i++)
8219 if (linfo[i].insn_off < off + cnt)
8220 l_cnt++;
8221 else
8222 break;
8223
8224 /* First live insn doesn't match first live linfo, it needs to "inherit"
8225 * last removed linfo. prog is already modified, so prog->len == off
8226 * means no live instructions after (tail of the program was removed).
8227 */
8228 if (prog->len != off && l_cnt &&
8229 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8230 l_cnt--;
8231 linfo[--i].insn_off = off + cnt;
8232 }
8233
8234 /* remove the line info which refer to the removed instructions */
8235 if (l_cnt) {
8236 memmove(linfo + l_off, linfo + i,
8237 sizeof(*linfo) * (nr_linfo - i));
8238
8239 prog->aux->nr_linfo -= l_cnt;
8240 nr_linfo = prog->aux->nr_linfo;
8241 }
8242
8243 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8244 for (i = l_off; i < nr_linfo; i++)
8245 linfo[i].insn_off -= cnt;
8246
8247 /* fix up all subprogs (incl. 'exit') which start >= off */
8248 for (i = 0; i <= env->subprog_cnt; i++)
8249 if (env->subprog_info[i].linfo_idx > l_off) {
8250 /* program may have started in the removed region but
8251 * may not be fully removed
8252 */
8253 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8254 env->subprog_info[i].linfo_idx -= l_cnt;
8255 else
8256 env->subprog_info[i].linfo_idx = l_off;
8257 }
8258
8259 return 0;
8260}
8261
8262static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8263{
8264 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8265 unsigned int orig_prog_len = env->prog->len;
8266 int err;
8267
08ca90af
JK
8268 if (bpf_prog_is_dev_bound(env->prog->aux))
8269 bpf_prog_offload_remove_insns(env, off, cnt);
8270
52875a04
JK
8271 err = bpf_remove_insns(env->prog, off, cnt);
8272 if (err)
8273 return err;
8274
8275 err = adjust_subprog_starts_after_remove(env, off, cnt);
8276 if (err)
8277 return err;
8278
8279 err = bpf_adj_linfo_after_remove(env, off, cnt);
8280 if (err)
8281 return err;
8282
8283 memmove(aux_data + off, aux_data + off + cnt,
8284 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8285
8286 return 0;
8287}
8288
2a5418a1
DB
8289/* The verifier does more data flow analysis than llvm and will not
8290 * explore branches that are dead at run time. Malicious programs can
8291 * have dead code too. Therefore replace all dead at-run-time code
8292 * with 'ja -1'.
8293 *
8294 * Just nops are not optimal, e.g. if they would sit at the end of the
8295 * program and through another bug we would manage to jump there, then
8296 * we'd execute beyond program memory otherwise. Returning exception
8297 * code also wouldn't work since we can have subprogs where the dead
8298 * code could be located.
c131187d
AS
8299 */
8300static void sanitize_dead_code(struct bpf_verifier_env *env)
8301{
8302 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8303 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8304 struct bpf_insn *insn = env->prog->insnsi;
8305 const int insn_cnt = env->prog->len;
8306 int i;
8307
8308 for (i = 0; i < insn_cnt; i++) {
8309 if (aux_data[i].seen)
8310 continue;
2a5418a1 8311 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8312 }
8313}
8314
e2ae4ca2
JK
8315static bool insn_is_cond_jump(u8 code)
8316{
8317 u8 op;
8318
092ed096
JW
8319 if (BPF_CLASS(code) == BPF_JMP32)
8320 return true;
8321
e2ae4ca2
JK
8322 if (BPF_CLASS(code) != BPF_JMP)
8323 return false;
8324
8325 op = BPF_OP(code);
8326 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8327}
8328
8329static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8330{
8331 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8332 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8333 struct bpf_insn *insn = env->prog->insnsi;
8334 const int insn_cnt = env->prog->len;
8335 int i;
8336
8337 for (i = 0; i < insn_cnt; i++, insn++) {
8338 if (!insn_is_cond_jump(insn->code))
8339 continue;
8340
8341 if (!aux_data[i + 1].seen)
8342 ja.off = insn->off;
8343 else if (!aux_data[i + 1 + insn->off].seen)
8344 ja.off = 0;
8345 else
8346 continue;
8347
08ca90af
JK
8348 if (bpf_prog_is_dev_bound(env->prog->aux))
8349 bpf_prog_offload_replace_insn(env, i, &ja);
8350
e2ae4ca2
JK
8351 memcpy(insn, &ja, sizeof(ja));
8352 }
8353}
8354
52875a04
JK
8355static int opt_remove_dead_code(struct bpf_verifier_env *env)
8356{
8357 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8358 int insn_cnt = env->prog->len;
8359 int i, err;
8360
8361 for (i = 0; i < insn_cnt; i++) {
8362 int j;
8363
8364 j = 0;
8365 while (i + j < insn_cnt && !aux_data[i + j].seen)
8366 j++;
8367 if (!j)
8368 continue;
8369
8370 err = verifier_remove_insns(env, i, j);
8371 if (err)
8372 return err;
8373 insn_cnt = env->prog->len;
8374 }
8375
8376 return 0;
8377}
8378
a1b14abc
JK
8379static int opt_remove_nops(struct bpf_verifier_env *env)
8380{
8381 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8382 struct bpf_insn *insn = env->prog->insnsi;
8383 int insn_cnt = env->prog->len;
8384 int i, err;
8385
8386 for (i = 0; i < insn_cnt; i++) {
8387 if (memcmp(&insn[i], &ja, sizeof(ja)))
8388 continue;
8389
8390 err = verifier_remove_insns(env, i, 1);
8391 if (err)
8392 return err;
8393 insn_cnt--;
8394 i--;
8395 }
8396
8397 return 0;
8398}
8399
d6c2308c
JW
8400static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8401 const union bpf_attr *attr)
a4b1d3c1 8402{
d6c2308c 8403 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8404 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8405 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8406 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8407 struct bpf_prog *new_prog;
d6c2308c 8408 bool rnd_hi32;
a4b1d3c1 8409
d6c2308c 8410 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8411 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8412 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8413 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8414 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8415 for (i = 0; i < len; i++) {
8416 int adj_idx = i + delta;
8417 struct bpf_insn insn;
8418
d6c2308c
JW
8419 insn = insns[adj_idx];
8420 if (!aux[adj_idx].zext_dst) {
8421 u8 code, class;
8422 u32 imm_rnd;
8423
8424 if (!rnd_hi32)
8425 continue;
8426
8427 code = insn.code;
8428 class = BPF_CLASS(code);
8429 if (insn_no_def(&insn))
8430 continue;
8431
8432 /* NOTE: arg "reg" (the fourth one) is only used for
8433 * BPF_STX which has been ruled out in above
8434 * check, it is safe to pass NULL here.
8435 */
8436 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8437 if (class == BPF_LD &&
8438 BPF_MODE(code) == BPF_IMM)
8439 i++;
8440 continue;
8441 }
8442
8443 /* ctx load could be transformed into wider load. */
8444 if (class == BPF_LDX &&
8445 aux[adj_idx].ptr_type == PTR_TO_CTX)
8446 continue;
8447
8448 imm_rnd = get_random_int();
8449 rnd_hi32_patch[0] = insn;
8450 rnd_hi32_patch[1].imm = imm_rnd;
8451 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8452 patch = rnd_hi32_patch;
8453 patch_len = 4;
8454 goto apply_patch_buffer;
8455 }
8456
8457 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8458 continue;
8459
a4b1d3c1
JW
8460 zext_patch[0] = insn;
8461 zext_patch[1].dst_reg = insn.dst_reg;
8462 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8463 patch = zext_patch;
8464 patch_len = 2;
8465apply_patch_buffer:
8466 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8467 if (!new_prog)
8468 return -ENOMEM;
8469 env->prog = new_prog;
8470 insns = new_prog->insnsi;
8471 aux = env->insn_aux_data;
d6c2308c 8472 delta += patch_len - 1;
a4b1d3c1
JW
8473 }
8474
8475 return 0;
8476}
8477
c64b7983
JS
8478/* convert load instructions that access fields of a context type into a
8479 * sequence of instructions that access fields of the underlying structure:
8480 * struct __sk_buff -> struct sk_buff
8481 * struct bpf_sock_ops -> struct sock
9bac3d6d 8482 */
58e2af8b 8483static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8484{
00176a34 8485 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8486 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8487 const int insn_cnt = env->prog->len;
36bbef52 8488 struct bpf_insn insn_buf[16], *insn;
46f53a65 8489 u32 target_size, size_default, off;
9bac3d6d 8490 struct bpf_prog *new_prog;
d691f9e8 8491 enum bpf_access_type type;
f96da094 8492 bool is_narrower_load;
9bac3d6d 8493
b09928b9
DB
8494 if (ops->gen_prologue || env->seen_direct_write) {
8495 if (!ops->gen_prologue) {
8496 verbose(env, "bpf verifier is misconfigured\n");
8497 return -EINVAL;
8498 }
36bbef52
DB
8499 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8500 env->prog);
8501 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8502 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8503 return -EINVAL;
8504 } else if (cnt) {
8041902d 8505 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8506 if (!new_prog)
8507 return -ENOMEM;
8041902d 8508
36bbef52 8509 env->prog = new_prog;
3df126f3 8510 delta += cnt - 1;
36bbef52
DB
8511 }
8512 }
8513
c64b7983 8514 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8515 return 0;
8516
3df126f3 8517 insn = env->prog->insnsi + delta;
36bbef52 8518
9bac3d6d 8519 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8520 bpf_convert_ctx_access_t convert_ctx_access;
8521
62c7989b
DB
8522 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8523 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8524 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8525 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8526 type = BPF_READ;
62c7989b
DB
8527 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8528 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8529 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8530 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8531 type = BPF_WRITE;
8532 else
9bac3d6d
AS
8533 continue;
8534
af86ca4e
AS
8535 if (type == BPF_WRITE &&
8536 env->insn_aux_data[i + delta].sanitize_stack_off) {
8537 struct bpf_insn patch[] = {
8538 /* Sanitize suspicious stack slot with zero.
8539 * There are no memory dependencies for this store,
8540 * since it's only using frame pointer and immediate
8541 * constant of zero
8542 */
8543 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8544 env->insn_aux_data[i + delta].sanitize_stack_off,
8545 0),
8546 /* the original STX instruction will immediately
8547 * overwrite the same stack slot with appropriate value
8548 */
8549 *insn,
8550 };
8551
8552 cnt = ARRAY_SIZE(patch);
8553 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8554 if (!new_prog)
8555 return -ENOMEM;
8556
8557 delta += cnt - 1;
8558 env->prog = new_prog;
8559 insn = new_prog->insnsi + i + delta;
8560 continue;
8561 }
8562
c64b7983
JS
8563 switch (env->insn_aux_data[i + delta].ptr_type) {
8564 case PTR_TO_CTX:
8565 if (!ops->convert_ctx_access)
8566 continue;
8567 convert_ctx_access = ops->convert_ctx_access;
8568 break;
8569 case PTR_TO_SOCKET:
46f8bc92 8570 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8571 convert_ctx_access = bpf_sock_convert_ctx_access;
8572 break;
655a51e5
MKL
8573 case PTR_TO_TCP_SOCK:
8574 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8575 break;
fada7fdc
JL
8576 case PTR_TO_XDP_SOCK:
8577 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8578 break;
c64b7983 8579 default:
9bac3d6d 8580 continue;
c64b7983 8581 }
9bac3d6d 8582
31fd8581 8583 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8584 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8585
8586 /* If the read access is a narrower load of the field,
8587 * convert to a 4/8-byte load, to minimum program type specific
8588 * convert_ctx_access changes. If conversion is successful,
8589 * we will apply proper mask to the result.
8590 */
f96da094 8591 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8592 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8593 off = insn->off;
31fd8581 8594 if (is_narrower_load) {
f96da094
DB
8595 u8 size_code;
8596
8597 if (type == BPF_WRITE) {
61bd5218 8598 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8599 return -EINVAL;
8600 }
31fd8581 8601
f96da094 8602 size_code = BPF_H;
31fd8581
YS
8603 if (ctx_field_size == 4)
8604 size_code = BPF_W;
8605 else if (ctx_field_size == 8)
8606 size_code = BPF_DW;
f96da094 8607
bc23105c 8608 insn->off = off & ~(size_default - 1);
31fd8581
YS
8609 insn->code = BPF_LDX | BPF_MEM | size_code;
8610 }
f96da094
DB
8611
8612 target_size = 0;
c64b7983
JS
8613 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8614 &target_size);
f96da094
DB
8615 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8616 (ctx_field_size && !target_size)) {
61bd5218 8617 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8618 return -EINVAL;
8619 }
f96da094
DB
8620
8621 if (is_narrower_load && size < target_size) {
d9b8aada
IL
8622 u8 shift = bpf_ctx_narrow_load_shift(off, size,
8623 size_default);
46f53a65
AI
8624 if (ctx_field_size <= 4) {
8625 if (shift)
8626 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8627 insn->dst_reg,
8628 shift);
31fd8581 8629 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8630 (1 << size * 8) - 1);
46f53a65
AI
8631 } else {
8632 if (shift)
8633 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8634 insn->dst_reg,
8635 shift);
31fd8581 8636 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8637 (1ULL << size * 8) - 1);
46f53a65 8638 }
31fd8581 8639 }
9bac3d6d 8640
8041902d 8641 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8642 if (!new_prog)
8643 return -ENOMEM;
8644
3df126f3 8645 delta += cnt - 1;
9bac3d6d
AS
8646
8647 /* keep walking new program and skip insns we just inserted */
8648 env->prog = new_prog;
3df126f3 8649 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8650 }
8651
8652 return 0;
8653}
8654
1c2a088a
AS
8655static int jit_subprogs(struct bpf_verifier_env *env)
8656{
8657 struct bpf_prog *prog = env->prog, **func, *tmp;
8658 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8659 struct bpf_insn *insn;
1c2a088a 8660 void *old_bpf_func;
c454a46b 8661 int err;
1c2a088a 8662
f910cefa 8663 if (env->subprog_cnt <= 1)
1c2a088a
AS
8664 return 0;
8665
7105e828 8666 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8667 if (insn->code != (BPF_JMP | BPF_CALL) ||
8668 insn->src_reg != BPF_PSEUDO_CALL)
8669 continue;
c7a89784
DB
8670 /* Upon error here we cannot fall back to interpreter but
8671 * need a hard reject of the program. Thus -EFAULT is
8672 * propagated in any case.
8673 */
1c2a088a
AS
8674 subprog = find_subprog(env, i + insn->imm + 1);
8675 if (subprog < 0) {
8676 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8677 i + insn->imm + 1);
8678 return -EFAULT;
8679 }
8680 /* temporarily remember subprog id inside insn instead of
8681 * aux_data, since next loop will split up all insns into funcs
8682 */
f910cefa 8683 insn->off = subprog;
1c2a088a
AS
8684 /* remember original imm in case JIT fails and fallback
8685 * to interpreter will be needed
8686 */
8687 env->insn_aux_data[i].call_imm = insn->imm;
8688 /* point imm to __bpf_call_base+1 from JITs point of view */
8689 insn->imm = 1;
8690 }
8691
c454a46b
MKL
8692 err = bpf_prog_alloc_jited_linfo(prog);
8693 if (err)
8694 goto out_undo_insn;
8695
8696 err = -ENOMEM;
6396bb22 8697 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8698 if (!func)
c7a89784 8699 goto out_undo_insn;
1c2a088a 8700
f910cefa 8701 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8702 subprog_start = subprog_end;
4cb3d99c 8703 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8704
8705 len = subprog_end - subprog_start;
492ecee8
AS
8706 /* BPF_PROG_RUN doesn't call subprogs directly,
8707 * hence main prog stats include the runtime of subprogs.
8708 * subprogs don't have IDs and not reachable via prog_get_next_id
8709 * func[i]->aux->stats will never be accessed and stays NULL
8710 */
8711 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8712 if (!func[i])
8713 goto out_free;
8714 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8715 len * sizeof(struct bpf_insn));
4f74d809 8716 func[i]->type = prog->type;
1c2a088a 8717 func[i]->len = len;
4f74d809
DB
8718 if (bpf_prog_calc_tag(func[i]))
8719 goto out_free;
1c2a088a 8720 func[i]->is_func = 1;
ba64e7d8
YS
8721 func[i]->aux->func_idx = i;
8722 /* the btf and func_info will be freed only at prog->aux */
8723 func[i]->aux->btf = prog->aux->btf;
8724 func[i]->aux->func_info = prog->aux->func_info;
8725
1c2a088a
AS
8726 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8727 * Long term would need debug info to populate names
8728 */
8729 func[i]->aux->name[0] = 'F';
9c8105bd 8730 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 8731 func[i]->jit_requested = 1;
c454a46b
MKL
8732 func[i]->aux->linfo = prog->aux->linfo;
8733 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8734 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8735 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
8736 func[i] = bpf_int_jit_compile(func[i]);
8737 if (!func[i]->jited) {
8738 err = -ENOTSUPP;
8739 goto out_free;
8740 }
8741 cond_resched();
8742 }
8743 /* at this point all bpf functions were successfully JITed
8744 * now populate all bpf_calls with correct addresses and
8745 * run last pass of JIT
8746 */
f910cefa 8747 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8748 insn = func[i]->insnsi;
8749 for (j = 0; j < func[i]->len; j++, insn++) {
8750 if (insn->code != (BPF_JMP | BPF_CALL) ||
8751 insn->src_reg != BPF_PSEUDO_CALL)
8752 continue;
8753 subprog = insn->off;
0d306c31
PB
8754 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8755 __bpf_call_base;
1c2a088a 8756 }
2162fed4
SD
8757
8758 /* we use the aux data to keep a list of the start addresses
8759 * of the JITed images for each function in the program
8760 *
8761 * for some architectures, such as powerpc64, the imm field
8762 * might not be large enough to hold the offset of the start
8763 * address of the callee's JITed image from __bpf_call_base
8764 *
8765 * in such cases, we can lookup the start address of a callee
8766 * by using its subprog id, available from the off field of
8767 * the call instruction, as an index for this list
8768 */
8769 func[i]->aux->func = func;
8770 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 8771 }
f910cefa 8772 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8773 old_bpf_func = func[i]->bpf_func;
8774 tmp = bpf_int_jit_compile(func[i]);
8775 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8776 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 8777 err = -ENOTSUPP;
1c2a088a
AS
8778 goto out_free;
8779 }
8780 cond_resched();
8781 }
8782
8783 /* finally lock prog and jit images for all functions and
8784 * populate kallsysm
8785 */
f910cefa 8786 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8787 bpf_prog_lock_ro(func[i]);
8788 bpf_prog_kallsyms_add(func[i]);
8789 }
7105e828
DB
8790
8791 /* Last step: make now unused interpreter insns from main
8792 * prog consistent for later dump requests, so they can
8793 * later look the same as if they were interpreted only.
8794 */
8795 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
8796 if (insn->code != (BPF_JMP | BPF_CALL) ||
8797 insn->src_reg != BPF_PSEUDO_CALL)
8798 continue;
8799 insn->off = env->insn_aux_data[i].call_imm;
8800 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 8801 insn->imm = subprog;
7105e828
DB
8802 }
8803
1c2a088a
AS
8804 prog->jited = 1;
8805 prog->bpf_func = func[0]->bpf_func;
8806 prog->aux->func = func;
f910cefa 8807 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 8808 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
8809 return 0;
8810out_free:
f910cefa 8811 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
8812 if (func[i])
8813 bpf_jit_free(func[i]);
8814 kfree(func);
c7a89784 8815out_undo_insn:
1c2a088a
AS
8816 /* cleanup main prog to be interpreted */
8817 prog->jit_requested = 0;
8818 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8819 if (insn->code != (BPF_JMP | BPF_CALL) ||
8820 insn->src_reg != BPF_PSEUDO_CALL)
8821 continue;
8822 insn->off = 0;
8823 insn->imm = env->insn_aux_data[i].call_imm;
8824 }
c454a46b 8825 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
8826 return err;
8827}
8828
1ea47e01
AS
8829static int fixup_call_args(struct bpf_verifier_env *env)
8830{
19d28fbd 8831#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8832 struct bpf_prog *prog = env->prog;
8833 struct bpf_insn *insn = prog->insnsi;
8834 int i, depth;
19d28fbd 8835#endif
e4052d06 8836 int err = 0;
1ea47e01 8837
e4052d06
QM
8838 if (env->prog->jit_requested &&
8839 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
8840 err = jit_subprogs(env);
8841 if (err == 0)
1c2a088a 8842 return 0;
c7a89784
DB
8843 if (err == -EFAULT)
8844 return err;
19d28fbd
DM
8845 }
8846#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8847 for (i = 0; i < prog->len; i++, insn++) {
8848 if (insn->code != (BPF_JMP | BPF_CALL) ||
8849 insn->src_reg != BPF_PSEUDO_CALL)
8850 continue;
8851 depth = get_callee_stack_depth(env, insn, i);
8852 if (depth < 0)
8853 return depth;
8854 bpf_patch_call_args(insn, depth);
8855 }
19d28fbd
DM
8856 err = 0;
8857#endif
8858 return err;
1ea47e01
AS
8859}
8860
79741b3b 8861/* fixup insn->imm field of bpf_call instructions
81ed18ab 8862 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
8863 *
8864 * this function is called after eBPF program passed verification
8865 */
79741b3b 8866static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 8867{
79741b3b
AS
8868 struct bpf_prog *prog = env->prog;
8869 struct bpf_insn *insn = prog->insnsi;
e245c5c6 8870 const struct bpf_func_proto *fn;
79741b3b 8871 const int insn_cnt = prog->len;
09772d92 8872 const struct bpf_map_ops *ops;
c93552c4 8873 struct bpf_insn_aux_data *aux;
81ed18ab
AS
8874 struct bpf_insn insn_buf[16];
8875 struct bpf_prog *new_prog;
8876 struct bpf_map *map_ptr;
8877 int i, cnt, delta = 0;
e245c5c6 8878
79741b3b 8879 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
8880 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8881 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8882 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 8883 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
8884 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8885 struct bpf_insn mask_and_div[] = {
8886 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8887 /* Rx div 0 -> 0 */
8888 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8889 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8890 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8891 *insn,
8892 };
8893 struct bpf_insn mask_and_mod[] = {
8894 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8895 /* Rx mod 0 -> Rx */
8896 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8897 *insn,
8898 };
8899 struct bpf_insn *patchlet;
8900
8901 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8902 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8903 patchlet = mask_and_div + (is64 ? 1 : 0);
8904 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8905 } else {
8906 patchlet = mask_and_mod + (is64 ? 1 : 0);
8907 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8908 }
8909
8910 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
8911 if (!new_prog)
8912 return -ENOMEM;
8913
8914 delta += cnt - 1;
8915 env->prog = prog = new_prog;
8916 insn = new_prog->insnsi + i + delta;
8917 continue;
8918 }
8919
e0cea7ce
DB
8920 if (BPF_CLASS(insn->code) == BPF_LD &&
8921 (BPF_MODE(insn->code) == BPF_ABS ||
8922 BPF_MODE(insn->code) == BPF_IND)) {
8923 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8924 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8925 verbose(env, "bpf verifier is misconfigured\n");
8926 return -EINVAL;
8927 }
8928
8929 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8930 if (!new_prog)
8931 return -ENOMEM;
8932
8933 delta += cnt - 1;
8934 env->prog = prog = new_prog;
8935 insn = new_prog->insnsi + i + delta;
8936 continue;
8937 }
8938
979d63d5
DB
8939 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8940 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8941 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8942 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8943 struct bpf_insn insn_buf[16];
8944 struct bpf_insn *patch = &insn_buf[0];
8945 bool issrc, isneg;
8946 u32 off_reg;
8947
8948 aux = &env->insn_aux_data[i + delta];
3612af78
DB
8949 if (!aux->alu_state ||
8950 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
8951 continue;
8952
8953 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8954 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8955 BPF_ALU_SANITIZE_SRC;
8956
8957 off_reg = issrc ? insn->src_reg : insn->dst_reg;
8958 if (isneg)
8959 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8960 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8961 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8962 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8963 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8964 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8965 if (issrc) {
8966 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8967 off_reg);
8968 insn->src_reg = BPF_REG_AX;
8969 } else {
8970 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8971 BPF_REG_AX);
8972 }
8973 if (isneg)
8974 insn->code = insn->code == code_add ?
8975 code_sub : code_add;
8976 *patch++ = *insn;
8977 if (issrc && isneg)
8978 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8979 cnt = patch - insn_buf;
8980
8981 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8982 if (!new_prog)
8983 return -ENOMEM;
8984
8985 delta += cnt - 1;
8986 env->prog = prog = new_prog;
8987 insn = new_prog->insnsi + i + delta;
8988 continue;
8989 }
8990
79741b3b
AS
8991 if (insn->code != (BPF_JMP | BPF_CALL))
8992 continue;
cc8b0b92
AS
8993 if (insn->src_reg == BPF_PSEUDO_CALL)
8994 continue;
e245c5c6 8995
79741b3b
AS
8996 if (insn->imm == BPF_FUNC_get_route_realm)
8997 prog->dst_needed = 1;
8998 if (insn->imm == BPF_FUNC_get_prandom_u32)
8999 bpf_user_rnd_init_once();
9802d865
JB
9000 if (insn->imm == BPF_FUNC_override_return)
9001 prog->kprobe_override = 1;
79741b3b 9002 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
9003 /* If we tail call into other programs, we
9004 * cannot make any assumptions since they can
9005 * be replaced dynamically during runtime in
9006 * the program array.
9007 */
9008 prog->cb_access = 1;
80a58d02 9009 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 9010 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 9011
79741b3b
AS
9012 /* mark bpf_tail_call as different opcode to avoid
9013 * conditional branch in the interpeter for every normal
9014 * call and to prevent accidental JITing by JIT compiler
9015 * that doesn't support bpf_tail_call yet
e245c5c6 9016 */
79741b3b 9017 insn->imm = 0;
71189fa9 9018 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 9019
c93552c4
DB
9020 aux = &env->insn_aux_data[i + delta];
9021 if (!bpf_map_ptr_unpriv(aux))
9022 continue;
9023
b2157399
AS
9024 /* instead of changing every JIT dealing with tail_call
9025 * emit two extra insns:
9026 * if (index >= max_entries) goto out;
9027 * index &= array->index_mask;
9028 * to avoid out-of-bounds cpu speculation
9029 */
c93552c4 9030 if (bpf_map_ptr_poisoned(aux)) {
40950343 9031 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
9032 return -EINVAL;
9033 }
c93552c4
DB
9034
9035 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
9036 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9037 map_ptr->max_entries, 2);
9038 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9039 container_of(map_ptr,
9040 struct bpf_array,
9041 map)->index_mask);
9042 insn_buf[2] = *insn;
9043 cnt = 3;
9044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9045 if (!new_prog)
9046 return -ENOMEM;
9047
9048 delta += cnt - 1;
9049 env->prog = prog = new_prog;
9050 insn = new_prog->insnsi + i + delta;
79741b3b
AS
9051 continue;
9052 }
e245c5c6 9053
89c63074 9054 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
9055 * and other inlining handlers are currently limited to 64 bit
9056 * only.
89c63074 9057 */
60b58afc 9058 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
9059 (insn->imm == BPF_FUNC_map_lookup_elem ||
9060 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
9061 insn->imm == BPF_FUNC_map_delete_elem ||
9062 insn->imm == BPF_FUNC_map_push_elem ||
9063 insn->imm == BPF_FUNC_map_pop_elem ||
9064 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
9065 aux = &env->insn_aux_data[i + delta];
9066 if (bpf_map_ptr_poisoned(aux))
9067 goto patch_call_imm;
9068
9069 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
9070 ops = map_ptr->ops;
9071 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9072 ops->map_gen_lookup) {
9073 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9074 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9075 verbose(env, "bpf verifier is misconfigured\n");
9076 return -EINVAL;
9077 }
81ed18ab 9078
09772d92
DB
9079 new_prog = bpf_patch_insn_data(env, i + delta,
9080 insn_buf, cnt);
9081 if (!new_prog)
9082 return -ENOMEM;
81ed18ab 9083
09772d92
DB
9084 delta += cnt - 1;
9085 env->prog = prog = new_prog;
9086 insn = new_prog->insnsi + i + delta;
9087 continue;
9088 }
81ed18ab 9089
09772d92
DB
9090 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9091 (void *(*)(struct bpf_map *map, void *key))NULL));
9092 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9093 (int (*)(struct bpf_map *map, void *key))NULL));
9094 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9095 (int (*)(struct bpf_map *map, void *key, void *value,
9096 u64 flags))NULL));
84430d42
DB
9097 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9098 (int (*)(struct bpf_map *map, void *value,
9099 u64 flags))NULL));
9100 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9101 (int (*)(struct bpf_map *map, void *value))NULL));
9102 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9103 (int (*)(struct bpf_map *map, void *value))NULL));
9104
09772d92
DB
9105 switch (insn->imm) {
9106 case BPF_FUNC_map_lookup_elem:
9107 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9108 __bpf_call_base;
9109 continue;
9110 case BPF_FUNC_map_update_elem:
9111 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9112 __bpf_call_base;
9113 continue;
9114 case BPF_FUNC_map_delete_elem:
9115 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9116 __bpf_call_base;
9117 continue;
84430d42
DB
9118 case BPF_FUNC_map_push_elem:
9119 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9120 __bpf_call_base;
9121 continue;
9122 case BPF_FUNC_map_pop_elem:
9123 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9124 __bpf_call_base;
9125 continue;
9126 case BPF_FUNC_map_peek_elem:
9127 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9128 __bpf_call_base;
9129 continue;
09772d92 9130 }
81ed18ab 9131
09772d92 9132 goto patch_call_imm;
81ed18ab
AS
9133 }
9134
9135patch_call_imm:
5e43f899 9136 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9137 /* all functions that have prototype and verifier allowed
9138 * programs to call them, must be real in-kernel functions
9139 */
9140 if (!fn->func) {
61bd5218
JK
9141 verbose(env,
9142 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9143 func_id_name(insn->imm), insn->imm);
9144 return -EFAULT;
e245c5c6 9145 }
79741b3b 9146 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9147 }
e245c5c6 9148
79741b3b
AS
9149 return 0;
9150}
e245c5c6 9151
58e2af8b 9152static void free_states(struct bpf_verifier_env *env)
f1bca824 9153{
58e2af8b 9154 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9155 int i;
9156
9f4686c4
AS
9157 sl = env->free_list;
9158 while (sl) {
9159 sln = sl->next;
9160 free_verifier_state(&sl->state, false);
9161 kfree(sl);
9162 sl = sln;
9163 }
9164
f1bca824
AS
9165 if (!env->explored_states)
9166 return;
9167
dc2a4ebc 9168 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9169 sl = env->explored_states[i];
9170
a8f500af
AS
9171 while (sl) {
9172 sln = sl->next;
9173 free_verifier_state(&sl->state, false);
9174 kfree(sl);
9175 sl = sln;
9176 }
f1bca824
AS
9177 }
9178
71dde681 9179 kvfree(env->explored_states);
f1bca824
AS
9180}
9181
06ee7115
AS
9182static void print_verification_stats(struct bpf_verifier_env *env)
9183{
9184 int i;
9185
9186 if (env->log.level & BPF_LOG_STATS) {
9187 verbose(env, "verification time %lld usec\n",
9188 div_u64(env->verification_time, 1000));
9189 verbose(env, "stack depth ");
9190 for (i = 0; i < env->subprog_cnt; i++) {
9191 u32 depth = env->subprog_info[i].stack_depth;
9192
9193 verbose(env, "%d", depth);
9194 if (i + 1 < env->subprog_cnt)
9195 verbose(env, "+");
9196 }
9197 verbose(env, "\n");
9198 }
9199 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9200 "total_states %d peak_states %d mark_read %d\n",
9201 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9202 env->max_states_per_insn, env->total_states,
9203 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9204}
9205
838e9690
YS
9206int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9207 union bpf_attr __user *uattr)
51580e79 9208{
06ee7115 9209 u64 start_time = ktime_get_ns();
58e2af8b 9210 struct bpf_verifier_env *env;
b9193c1b 9211 struct bpf_verifier_log *log;
9e4c24e7 9212 int i, len, ret = -EINVAL;
e2ae4ca2 9213 bool is_priv;
51580e79 9214
eba0c929
AB
9215 /* no program is valid */
9216 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9217 return -EINVAL;
9218
58e2af8b 9219 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9220 * allocate/free it every time bpf_check() is called
9221 */
58e2af8b 9222 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9223 if (!env)
9224 return -ENOMEM;
61bd5218 9225 log = &env->log;
cbd35700 9226
9e4c24e7 9227 len = (*prog)->len;
fad953ce 9228 env->insn_aux_data =
9e4c24e7 9229 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9230 ret = -ENOMEM;
9231 if (!env->insn_aux_data)
9232 goto err_free_env;
9e4c24e7
JK
9233 for (i = 0; i < len; i++)
9234 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9235 env->prog = *prog;
00176a34 9236 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9237 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9238
cbd35700 9239 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9240 if (!is_priv)
9241 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9242
9243 if (attr->log_level || attr->log_buf || attr->log_size) {
9244 /* user requested verbose verifier output
9245 * and supplied buffer to store the verification trace
9246 */
e7bf8249
JK
9247 log->level = attr->log_level;
9248 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9249 log->len_total = attr->log_size;
cbd35700
AS
9250
9251 ret = -EINVAL;
e7bf8249 9252 /* log attributes have to be sane */
7a9f5c65 9253 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9254 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9255 goto err_unlock;
cbd35700 9256 }
1ad2f583
DB
9257
9258 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9259 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9260 env->strict_alignment = true;
e9ee9efc
DM
9261 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9262 env->strict_alignment = false;
cbd35700 9263
e2ae4ca2
JK
9264 env->allow_ptr_leaks = is_priv;
9265
10d274e8
AS
9266 if (is_priv)
9267 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9268
f4e3ec0d
JK
9269 ret = replace_map_fd_with_map_ptr(env);
9270 if (ret < 0)
9271 goto skip_full_check;
9272
cae1927c 9273 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9274 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9275 if (ret)
f4e3ec0d 9276 goto skip_full_check;
ab3f0063
JK
9277 }
9278
dc2a4ebc 9279 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9280 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9281 GFP_USER);
9282 ret = -ENOMEM;
9283 if (!env->explored_states)
9284 goto skip_full_check;
9285
d9762e84 9286 ret = check_subprogs(env);
475fb78f
AS
9287 if (ret < 0)
9288 goto skip_full_check;
9289
c454a46b 9290 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9291 if (ret < 0)
9292 goto skip_full_check;
9293
d9762e84
MKL
9294 ret = check_cfg(env);
9295 if (ret < 0)
9296 goto skip_full_check;
9297
17a52670 9298 ret = do_check(env);
8c01c4f8
CG
9299 if (env->cur_state) {
9300 free_verifier_state(env->cur_state, true);
9301 env->cur_state = NULL;
9302 }
cbd35700 9303
c941ce9c
QM
9304 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9305 ret = bpf_prog_offload_finalize(env);
9306
0246e64d 9307skip_full_check:
638f5b90 9308 while (!pop_stack(env, NULL, NULL));
f1bca824 9309 free_states(env);
0246e64d 9310
c131187d 9311 if (ret == 0)
9b38c405 9312 ret = check_max_stack_depth(env);
c131187d 9313
9b38c405 9314 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9315 if (is_priv) {
9316 if (ret == 0)
9317 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9318 if (ret == 0)
9319 ret = opt_remove_dead_code(env);
a1b14abc
JK
9320 if (ret == 0)
9321 ret = opt_remove_nops(env);
52875a04
JK
9322 } else {
9323 if (ret == 0)
9324 sanitize_dead_code(env);
e2ae4ca2
JK
9325 }
9326
9bac3d6d
AS
9327 if (ret == 0)
9328 /* program is valid, convert *(u32*)(ctx + off) accesses */
9329 ret = convert_ctx_accesses(env);
9330
e245c5c6 9331 if (ret == 0)
79741b3b 9332 ret = fixup_bpf_calls(env);
e245c5c6 9333
a4b1d3c1
JW
9334 /* do 32-bit optimization after insn patching has done so those patched
9335 * insns could be handled correctly.
9336 */
d6c2308c
JW
9337 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9338 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9339 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9340 : false;
a4b1d3c1
JW
9341 }
9342
1ea47e01
AS
9343 if (ret == 0)
9344 ret = fixup_call_args(env);
9345
06ee7115
AS
9346 env->verification_time = ktime_get_ns() - start_time;
9347 print_verification_stats(env);
9348
a2a7d570 9349 if (log->level && bpf_verifier_log_full(log))
cbd35700 9350 ret = -ENOSPC;
a2a7d570 9351 if (log->level && !log->ubuf) {
cbd35700 9352 ret = -EFAULT;
a2a7d570 9353 goto err_release_maps;
cbd35700
AS
9354 }
9355
0246e64d
AS
9356 if (ret == 0 && env->used_map_cnt) {
9357 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9358 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9359 sizeof(env->used_maps[0]),
9360 GFP_KERNEL);
0246e64d 9361
9bac3d6d 9362 if (!env->prog->aux->used_maps) {
0246e64d 9363 ret = -ENOMEM;
a2a7d570 9364 goto err_release_maps;
0246e64d
AS
9365 }
9366
9bac3d6d 9367 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9368 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9369 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9370
9371 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9372 * bpf_ld_imm64 instructions
9373 */
9374 convert_pseudo_ld_imm64(env);
9375 }
cbd35700 9376
ba64e7d8
YS
9377 if (ret == 0)
9378 adjust_btf_func(env);
9379
a2a7d570 9380err_release_maps:
9bac3d6d 9381 if (!env->prog->aux->used_maps)
0246e64d 9382 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9383 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9384 */
9385 release_maps(env);
9bac3d6d 9386 *prog = env->prog;
3df126f3 9387err_unlock:
45a73c17
AS
9388 if (!is_priv)
9389 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9390 vfree(env->insn_aux_data);
9391err_free_env:
9392 kfree(env);
51580e79
AS
9393 return ret;
9394}