bpf: Introduce bpf_obj_drop
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34 30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 31#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 34#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
35#include <linux/bpf_types.h>
36#undef BPF_PROG_TYPE
37#undef BPF_MAP_TYPE
f2e10bff 38#undef BPF_LINK_TYPE
00176a34
JK
39};
40
51580e79
AS
41/* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
8fb33b60 52 * Since it's analyzing all paths through the program, the length of the
eba38a96 53 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
f1174f77 81 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 82 * means the register has some value, but it's not a valid pointer.
f1174f77 83 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
84 *
85 * When verifier sees load or store instructions the type of base register
c64b7983
JS
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
51580e79
AS
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 137 * returns either pointer to map value or NULL.
51580e79
AS
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
164 */
165
17a52670 166/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 167struct bpf_verifier_stack_elem {
17a52670
AS
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
58e2af8b 172 struct bpf_verifier_state st;
17a52670
AS
173 int insn_idx;
174 int prev_insn_idx;
58e2af8b 175 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
cbd35700
AS
178};
179
b285fcb7 180#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
d2e4c1e6
DB
183#define BPF_MAP_KEY_POISON (1ULL << 63)
184#define BPF_MAP_KEY_SEEN (1ULL << 62)
185
c93552c4
DB
186#define BPF_MAP_PTR_UNPRIV 1UL
187#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
bc34dee6
JK
191static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193
c93552c4
DB
194static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
197}
198
199static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200{
d2e4c1e6 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
202}
203
204static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 const struct bpf_map *map, bool unpriv)
206{
207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
209 aux->map_ptr_state = (unsigned long)map |
210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211}
212
213static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214{
215 return aux->map_key_state & BPF_MAP_KEY_POISON;
216}
217
218static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219{
220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221}
222
223static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224{
225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226}
227
228static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229{
230 bool poisoned = bpf_map_key_poisoned(aux);
231
232 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 234}
fad73a1a 235
23a2d70c
YS
236static bool bpf_pseudo_call(const struct bpf_insn *insn)
237{
238 return insn->code == (BPF_JMP | BPF_CALL) &&
239 insn->src_reg == BPF_PSEUDO_CALL;
240}
241
e6ac2450
MKL
242static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243{
244 return insn->code == (BPF_JMP | BPF_CALL) &&
245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246}
247
33ff9823
DB
248struct bpf_call_arg_meta {
249 struct bpf_map *map_ptr;
435faee1 250 bool raw_mode;
36bbef52 251 bool pkt_access;
8f14852e 252 u8 release_regno;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
3e8ce298 258 int map_uid;
d83525ca 259 int func_id;
22dc4a0f 260 struct btf *btf;
eaa6bcb7 261 u32 btf_id;
22dc4a0f 262 struct btf *ret_btf;
eaa6bcb7 263 u32 ret_btf_id;
69c087ba 264 u32 subprogno;
aa3496ac 265 struct btf_field *kptr_field;
97e03f52 266 u8 uninit_dynptr_regno;
33ff9823
DB
267};
268
8580ac94
AS
269struct btf *btf_vmlinux;
270
cbd35700
AS
271static DEFINE_MUTEX(bpf_verifier_lock);
272
d9762e84
MKL
273static const struct bpf_line_info *
274find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275{
276 const struct bpf_line_info *linfo;
277 const struct bpf_prog *prog;
278 u32 i, nr_linfo;
279
280 prog = env->prog;
281 nr_linfo = prog->aux->nr_linfo;
282
283 if (!nr_linfo || insn_off >= prog->len)
284 return NULL;
285
286 linfo = prog->aux->linfo;
287 for (i = 1; i < nr_linfo; i++)
288 if (insn_off < linfo[i].insn_off)
289 break;
290
291 return &linfo[i - 1];
292}
293
77d2e05a
MKL
294void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 va_list args)
cbd35700 296{
a2a7d570 297 unsigned int n;
cbd35700 298
a2a7d570 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
300
301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 "verifier log line truncated - local buffer too short\n");
303
8580ac94 304 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
305 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306
307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
308 return;
309 }
436d404c
HT
310
311 n = min(log->len_total - log->len_used - 1, n);
312 log->kbuf[n] = '\0';
a2a7d570
JK
313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 log->len_used += n;
315 else
316 log->ubuf = NULL;
cbd35700 317}
abe08840 318
6f8a57cc
AN
319static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320{
321 char zero = 0;
322
323 if (!bpf_verifier_log_needed(log))
324 return;
325
326 log->len_used = new_pos;
327 if (put_user(zero, log->ubuf + new_pos))
328 log->ubuf = NULL;
329}
330
abe08840
JO
331/* log_level controls verbosity level of eBPF verifier.
332 * bpf_verifier_log_write() is used to dump the verification trace to the log,
333 * so the user can figure out what's wrong with the program
430e68d1 334 */
abe08840
JO
335__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 const char *fmt, ...)
337{
338 va_list args;
339
77d2e05a
MKL
340 if (!bpf_verifier_log_needed(&env->log))
341 return;
342
abe08840 343 va_start(args, fmt);
77d2e05a 344 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
345 va_end(args);
346}
347EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348
349__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350{
77d2e05a 351 struct bpf_verifier_env *env = private_data;
abe08840
JO
352 va_list args;
353
77d2e05a
MKL
354 if (!bpf_verifier_log_needed(&env->log))
355 return;
356
abe08840 357 va_start(args, fmt);
77d2e05a 358 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
359 va_end(args);
360}
cbd35700 361
9e15db66
AS
362__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 const char *fmt, ...)
364{
365 va_list args;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 va_start(args, fmt);
371 bpf_verifier_vlog(log, fmt, args);
372 va_end(args);
373}
84c6ac41 374EXPORT_SYMBOL_GPL(bpf_log);
9e15db66 375
d9762e84
MKL
376static const char *ltrim(const char *s)
377{
378 while (isspace(*s))
379 s++;
380
381 return s;
382}
383
384__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 u32 insn_off,
386 const char *prefix_fmt, ...)
387{
388 const struct bpf_line_info *linfo;
389
390 if (!bpf_verifier_log_needed(&env->log))
391 return;
392
393 linfo = find_linfo(env, insn_off);
394 if (!linfo || linfo == env->prev_linfo)
395 return;
396
397 if (prefix_fmt) {
398 va_list args;
399
400 va_start(args, prefix_fmt);
401 bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 va_end(args);
403 }
404
405 verbose(env, "%s\n",
406 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 linfo->line_off)));
408
409 env->prev_linfo = linfo;
410}
411
bc2591d6
YS
412static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 struct bpf_reg_state *reg,
414 struct tnum *range, const char *ctx,
415 const char *reg_name)
416{
417 char tn_buf[48];
418
419 verbose(env, "At %s the register %s ", ctx, reg_name);
420 if (!tnum_is_unknown(reg->var_off)) {
421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 verbose(env, "has value %s", tn_buf);
423 } else {
424 verbose(env, "has unknown scalar value");
425 }
426 tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 verbose(env, " should have been in %s\n", tn_buf);
428}
429
de8f3a83
DB
430static bool type_is_pkt_pointer(enum bpf_reg_type type)
431{
0c9a7a7e 432 type = base_type(type);
de8f3a83
DB
433 return type == PTR_TO_PACKET ||
434 type == PTR_TO_PACKET_META;
435}
436
46f8bc92
MKL
437static bool type_is_sk_pointer(enum bpf_reg_type type)
438{
439 return type == PTR_TO_SOCKET ||
655a51e5 440 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
443}
444
cac616db
JF
445static bool reg_type_not_null(enum bpf_reg_type type)
446{
447 return type == PTR_TO_SOCKET ||
448 type == PTR_TO_TCP_SOCK ||
449 type == PTR_TO_MAP_VALUE ||
69c087ba 450 type == PTR_TO_MAP_KEY ||
01c66c48 451 type == PTR_TO_SOCK_COMMON;
cac616db
JF
452}
453
4e814da0
KKD
454static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
455{
456 struct btf_record *rec = NULL;
457 struct btf_struct_meta *meta;
458
459 if (reg->type == PTR_TO_MAP_VALUE) {
460 rec = reg->map_ptr->record;
461 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
462 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
463 if (meta)
464 rec = meta->record;
465 }
466 return rec;
467}
468
d83525ca
AS
469static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
470{
4e814da0 471 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
472}
473
20b2aff4
HL
474static bool type_is_rdonly_mem(u32 type)
475{
476 return type & MEM_RDONLY;
cba368c1
MKL
477}
478
48946bd6 479static bool type_may_be_null(u32 type)
fd1b0d60 480{
48946bd6 481 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
482}
483
64d85290
JS
484static bool is_acquire_function(enum bpf_func_id func_id,
485 const struct bpf_map *map)
486{
487 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
488
489 if (func_id == BPF_FUNC_sk_lookup_tcp ||
490 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 491 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
492 func_id == BPF_FUNC_ringbuf_reserve ||
493 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
494 return true;
495
496 if (func_id == BPF_FUNC_map_lookup_elem &&
497 (map_type == BPF_MAP_TYPE_SOCKMAP ||
498 map_type == BPF_MAP_TYPE_SOCKHASH))
499 return true;
500
501 return false;
46f8bc92
MKL
502}
503
1b986589
MKL
504static bool is_ptr_cast_function(enum bpf_func_id func_id)
505{
506 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
507 func_id == BPF_FUNC_sk_fullsock ||
508 func_id == BPF_FUNC_skc_to_tcp_sock ||
509 func_id == BPF_FUNC_skc_to_tcp6_sock ||
510 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 511 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
512 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
513 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
514}
515
88374342 516static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
517{
518 return func_id == BPF_FUNC_dynptr_data;
519}
520
be2ef816
AN
521static bool is_callback_calling_function(enum bpf_func_id func_id)
522{
523 return func_id == BPF_FUNC_for_each_map_elem ||
524 func_id == BPF_FUNC_timer_set_callback ||
525 func_id == BPF_FUNC_find_vma ||
526 func_id == BPF_FUNC_loop ||
527 func_id == BPF_FUNC_user_ringbuf_drain;
528}
529
b2d8ef19
DM
530static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
531 const struct bpf_map *map)
532{
533 int ref_obj_uses = 0;
534
535 if (is_ptr_cast_function(func_id))
536 ref_obj_uses++;
537 if (is_acquire_function(func_id, map))
538 ref_obj_uses++;
88374342 539 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
540 ref_obj_uses++;
541
542 return ref_obj_uses > 1;
543}
544
39491867
BJ
545static bool is_cmpxchg_insn(const struct bpf_insn *insn)
546{
547 return BPF_CLASS(insn->code) == BPF_STX &&
548 BPF_MODE(insn->code) == BPF_ATOMIC &&
549 insn->imm == BPF_CMPXCHG;
550}
551
c25b2ae1
HL
552/* string representation of 'enum bpf_reg_type'
553 *
554 * Note that reg_type_str() can not appear more than once in a single verbose()
555 * statement.
556 */
557static const char *reg_type_str(struct bpf_verifier_env *env,
558 enum bpf_reg_type type)
559{
c6f1bfe8 560 char postfix[16] = {0}, prefix[32] = {0};
c25b2ae1
HL
561 static const char * const str[] = {
562 [NOT_INIT] = "?",
7df5072c 563 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
564 [PTR_TO_CTX] = "ctx",
565 [CONST_PTR_TO_MAP] = "map_ptr",
566 [PTR_TO_MAP_VALUE] = "map_value",
567 [PTR_TO_STACK] = "fp",
568 [PTR_TO_PACKET] = "pkt",
569 [PTR_TO_PACKET_META] = "pkt_meta",
570 [PTR_TO_PACKET_END] = "pkt_end",
571 [PTR_TO_FLOW_KEYS] = "flow_keys",
572 [PTR_TO_SOCKET] = "sock",
573 [PTR_TO_SOCK_COMMON] = "sock_common",
574 [PTR_TO_TCP_SOCK] = "tcp_sock",
575 [PTR_TO_TP_BUFFER] = "tp_buffer",
576 [PTR_TO_XDP_SOCK] = "xdp_sock",
577 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 578 [PTR_TO_MEM] = "mem",
20b2aff4 579 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
580 [PTR_TO_FUNC] = "func",
581 [PTR_TO_MAP_KEY] = "map_key",
20571567 582 [PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
583 };
584
585 if (type & PTR_MAYBE_NULL) {
5844101a 586 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
587 strncpy(postfix, "or_null_", 16);
588 else
589 strncpy(postfix, "_or_null", 16);
590 }
591
20b2aff4 592 if (type & MEM_RDONLY)
c6f1bfe8 593 strncpy(prefix, "rdonly_", 32);
894f2a8b
KKD
594 if (type & MEM_RINGBUF)
595 strncpy(prefix, "ringbuf_", 32);
c6f1bfe8
YS
596 if (type & MEM_USER)
597 strncpy(prefix, "user_", 32);
5844101a
HL
598 if (type & MEM_PERCPU)
599 strncpy(prefix, "percpu_", 32);
6efe152d
KKD
600 if (type & PTR_UNTRUSTED)
601 strncpy(prefix, "untrusted_", 32);
20b2aff4
HL
602
603 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
604 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
605 return env->type_str_buf;
606}
17a52670 607
8efea21d
EC
608static char slot_type_char[] = {
609 [STACK_INVALID] = '?',
610 [STACK_SPILL] = 'r',
611 [STACK_MISC] = 'm',
612 [STACK_ZERO] = '0',
97e03f52 613 [STACK_DYNPTR] = 'd',
8efea21d
EC
614};
615
4e92024a
AS
616static void print_liveness(struct bpf_verifier_env *env,
617 enum bpf_reg_liveness live)
618{
9242b5f5 619 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
620 verbose(env, "_");
621 if (live & REG_LIVE_READ)
622 verbose(env, "r");
623 if (live & REG_LIVE_WRITTEN)
624 verbose(env, "w");
9242b5f5
AS
625 if (live & REG_LIVE_DONE)
626 verbose(env, "D");
4e92024a
AS
627}
628
97e03f52
JK
629static int get_spi(s32 off)
630{
631 return (-off - 1) / BPF_REG_SIZE;
632}
633
634static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
635{
636 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
637
638 /* We need to check that slots between [spi - nr_slots + 1, spi] are
639 * within [0, allocated_stack).
640 *
641 * Please note that the spi grows downwards. For example, a dynptr
642 * takes the size of two stack slots; the first slot will be at
643 * spi and the second slot will be at spi - 1.
644 */
645 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
646}
647
f4d7e40a
AS
648static struct bpf_func_state *func(struct bpf_verifier_env *env,
649 const struct bpf_reg_state *reg)
650{
651 struct bpf_verifier_state *cur = env->cur_state;
652
653 return cur->frame[reg->frameno];
654}
655
22dc4a0f 656static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 657{
22dc4a0f 658 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
659}
660
0f55f9ed
CL
661static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
662{
663 env->scratched_regs |= 1U << regno;
664}
665
666static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
667{
343e5375 668 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
669}
670
671static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
672{
673 return (env->scratched_regs >> regno) & 1;
674}
675
676static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
677{
678 return (env->scratched_stack_slots >> regno) & 1;
679}
680
681static bool verifier_state_scratched(const struct bpf_verifier_env *env)
682{
683 return env->scratched_regs || env->scratched_stack_slots;
684}
685
686static void mark_verifier_state_clean(struct bpf_verifier_env *env)
687{
688 env->scratched_regs = 0U;
343e5375 689 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
690}
691
692/* Used for printing the entire verifier state. */
693static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
694{
695 env->scratched_regs = ~0U;
343e5375 696 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
697}
698
97e03f52
JK
699static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
700{
701 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
702 case DYNPTR_TYPE_LOCAL:
703 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
704 case DYNPTR_TYPE_RINGBUF:
705 return BPF_DYNPTR_TYPE_RINGBUF;
97e03f52
JK
706 default:
707 return BPF_DYNPTR_TYPE_INVALID;
708 }
709}
710
bc34dee6
JK
711static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
712{
713 return type == BPF_DYNPTR_TYPE_RINGBUF;
714}
715
97e03f52
JK
716static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
717 enum bpf_arg_type arg_type, int insn_idx)
718{
719 struct bpf_func_state *state = func(env, reg);
720 enum bpf_dynptr_type type;
bc34dee6 721 int spi, i, id;
97e03f52
JK
722
723 spi = get_spi(reg->off);
724
725 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
726 return -EINVAL;
727
728 for (i = 0; i < BPF_REG_SIZE; i++) {
729 state->stack[spi].slot_type[i] = STACK_DYNPTR;
730 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
731 }
732
733 type = arg_to_dynptr_type(arg_type);
734 if (type == BPF_DYNPTR_TYPE_INVALID)
735 return -EINVAL;
736
737 state->stack[spi].spilled_ptr.dynptr.first_slot = true;
738 state->stack[spi].spilled_ptr.dynptr.type = type;
739 state->stack[spi - 1].spilled_ptr.dynptr.type = type;
740
bc34dee6
JK
741 if (dynptr_type_refcounted(type)) {
742 /* The id is used to track proper releasing */
743 id = acquire_reference_state(env, insn_idx);
744 if (id < 0)
745 return id;
746
747 state->stack[spi].spilled_ptr.id = id;
748 state->stack[spi - 1].spilled_ptr.id = id;
749 }
750
97e03f52
JK
751 return 0;
752}
753
754static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
755{
756 struct bpf_func_state *state = func(env, reg);
757 int spi, i;
758
759 spi = get_spi(reg->off);
760
761 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
762 return -EINVAL;
763
764 for (i = 0; i < BPF_REG_SIZE; i++) {
765 state->stack[spi].slot_type[i] = STACK_INVALID;
766 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
767 }
768
bc34dee6
JK
769 /* Invalidate any slices associated with this dynptr */
770 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
771 release_reference(env, state->stack[spi].spilled_ptr.id);
772 state->stack[spi].spilled_ptr.id = 0;
773 state->stack[spi - 1].spilled_ptr.id = 0;
774 }
775
97e03f52
JK
776 state->stack[spi].spilled_ptr.dynptr.first_slot = false;
777 state->stack[spi].spilled_ptr.dynptr.type = 0;
778 state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
779
780 return 0;
781}
782
783static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
784{
785 struct bpf_func_state *state = func(env, reg);
786 int spi = get_spi(reg->off);
787 int i;
788
789 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
790 return true;
791
792 for (i = 0; i < BPF_REG_SIZE; i++) {
793 if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
794 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
795 return false;
796 }
797
798 return true;
799}
800
b8d31762
RS
801bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
802 struct bpf_reg_state *reg)
97e03f52
JK
803{
804 struct bpf_func_state *state = func(env, reg);
805 int spi = get_spi(reg->off);
806 int i;
807
808 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
809 !state->stack[spi].spilled_ptr.dynptr.first_slot)
810 return false;
811
812 for (i = 0; i < BPF_REG_SIZE; i++) {
813 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
814 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
815 return false;
816 }
817
e9e315b4
RS
818 return true;
819}
820
b8d31762
RS
821bool is_dynptr_type_expected(struct bpf_verifier_env *env,
822 struct bpf_reg_state *reg,
823 enum bpf_arg_type arg_type)
e9e315b4
RS
824{
825 struct bpf_func_state *state = func(env, reg);
826 enum bpf_dynptr_type dynptr_type;
827 int spi = get_spi(reg->off);
828
97e03f52
JK
829 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
830 if (arg_type == ARG_PTR_TO_DYNPTR)
831 return true;
832
e9e315b4
RS
833 dynptr_type = arg_to_dynptr_type(arg_type);
834
835 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
97e03f52
JK
836}
837
27113c59
MKL
838/* The reg state of a pointer or a bounded scalar was saved when
839 * it was spilled to the stack.
840 */
841static bool is_spilled_reg(const struct bpf_stack_state *stack)
842{
843 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
844}
845
354e8f19
MKL
846static void scrub_spilled_slot(u8 *stype)
847{
848 if (*stype != STACK_INVALID)
849 *stype = STACK_MISC;
850}
851
61bd5218 852static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
853 const struct bpf_func_state *state,
854 bool print_all)
17a52670 855{
f4d7e40a 856 const struct bpf_reg_state *reg;
17a52670
AS
857 enum bpf_reg_type t;
858 int i;
859
f4d7e40a
AS
860 if (state->frameno)
861 verbose(env, " frame%d:", state->frameno);
17a52670 862 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
863 reg = &state->regs[i];
864 t = reg->type;
17a52670
AS
865 if (t == NOT_INIT)
866 continue;
0f55f9ed
CL
867 if (!print_all && !reg_scratched(env, i))
868 continue;
4e92024a
AS
869 verbose(env, " R%d", i);
870 print_liveness(env, reg->live);
7df5072c 871 verbose(env, "=");
b5dc0163
AS
872 if (t == SCALAR_VALUE && reg->precise)
873 verbose(env, "P");
f1174f77
EC
874 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
875 tnum_is_const(reg->var_off)) {
876 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 877 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 878 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 879 } else {
7df5072c
ML
880 const char *sep = "";
881
882 verbose(env, "%s", reg_type_str(env, t));
5844101a 883 if (base_type(t) == PTR_TO_BTF_ID)
22dc4a0f 884 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
7df5072c
ML
885 verbose(env, "(");
886/*
887 * _a stands for append, was shortened to avoid multiline statements below.
888 * This macro is used to output a comma separated list of attributes.
889 */
890#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
891
892 if (reg->id)
893 verbose_a("id=%d", reg->id);
a28ace78 894 if (reg->ref_obj_id)
7df5072c 895 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
f1174f77 896 if (t != SCALAR_VALUE)
7df5072c 897 verbose_a("off=%d", reg->off);
de8f3a83 898 if (type_is_pkt_pointer(t))
7df5072c 899 verbose_a("r=%d", reg->range);
c25b2ae1
HL
900 else if (base_type(t) == CONST_PTR_TO_MAP ||
901 base_type(t) == PTR_TO_MAP_KEY ||
902 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
903 verbose_a("ks=%d,vs=%d",
904 reg->map_ptr->key_size,
905 reg->map_ptr->value_size);
7d1238f2
EC
906 if (tnum_is_const(reg->var_off)) {
907 /* Typically an immediate SCALAR_VALUE, but
908 * could be a pointer whose offset is too big
909 * for reg->off
910 */
7df5072c 911 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
912 } else {
913 if (reg->smin_value != reg->umin_value &&
914 reg->smin_value != S64_MIN)
7df5072c 915 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
916 if (reg->smax_value != reg->umax_value &&
917 reg->smax_value != S64_MAX)
7df5072c 918 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 919 if (reg->umin_value != 0)
7df5072c 920 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 921 if (reg->umax_value != U64_MAX)
7df5072c 922 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
923 if (!tnum_is_unknown(reg->var_off)) {
924 char tn_buf[48];
f1174f77 925
7d1238f2 926 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 927 verbose_a("var_off=%s", tn_buf);
7d1238f2 928 }
3f50f132
JF
929 if (reg->s32_min_value != reg->smin_value &&
930 reg->s32_min_value != S32_MIN)
7df5072c 931 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
932 if (reg->s32_max_value != reg->smax_value &&
933 reg->s32_max_value != S32_MAX)
7df5072c 934 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
935 if (reg->u32_min_value != reg->umin_value &&
936 reg->u32_min_value != U32_MIN)
7df5072c 937 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
938 if (reg->u32_max_value != reg->umax_value &&
939 reg->u32_max_value != U32_MAX)
7df5072c 940 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 941 }
7df5072c
ML
942#undef verbose_a
943
61bd5218 944 verbose(env, ")");
f1174f77 945 }
17a52670 946 }
638f5b90 947 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
948 char types_buf[BPF_REG_SIZE + 1];
949 bool valid = false;
950 int j;
951
952 for (j = 0; j < BPF_REG_SIZE; j++) {
953 if (state->stack[i].slot_type[j] != STACK_INVALID)
954 valid = true;
955 types_buf[j] = slot_type_char[
956 state->stack[i].slot_type[j]];
957 }
958 types_buf[BPF_REG_SIZE] = 0;
959 if (!valid)
960 continue;
0f55f9ed
CL
961 if (!print_all && !stack_slot_scratched(env, i))
962 continue;
8efea21d
EC
963 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
964 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 965 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
966 reg = &state->stack[i].spilled_ptr;
967 t = reg->type;
7df5072c 968 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
969 if (t == SCALAR_VALUE && reg->precise)
970 verbose(env, "P");
971 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
972 verbose(env, "%lld", reg->var_off.value + reg->off);
973 } else {
8efea21d 974 verbose(env, "=%s", types_buf);
b5dc0163 975 }
17a52670 976 }
fd978bf7
JS
977 if (state->acquired_refs && state->refs[0].id) {
978 verbose(env, " refs=%d", state->refs[0].id);
979 for (i = 1; i < state->acquired_refs; i++)
980 if (state->refs[i].id)
981 verbose(env, ",%d", state->refs[i].id);
982 }
bfc6bb74
AS
983 if (state->in_callback_fn)
984 verbose(env, " cb");
985 if (state->in_async_callback_fn)
986 verbose(env, " async_cb");
61bd5218 987 verbose(env, "\n");
0f55f9ed 988 mark_verifier_state_clean(env);
17a52670
AS
989}
990
2e576648
CL
991static inline u32 vlog_alignment(u32 pos)
992{
993 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
994 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
995}
996
997static void print_insn_state(struct bpf_verifier_env *env,
998 const struct bpf_func_state *state)
999{
1000 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1001 /* remove new line character */
1002 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1003 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1004 } else {
1005 verbose(env, "%d:", env->insn_idx);
1006 }
1007 print_verifier_state(env, state, false);
17a52670
AS
1008}
1009
c69431aa
LB
1010/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1011 * small to hold src. This is different from krealloc since we don't want to preserve
1012 * the contents of dst.
1013 *
1014 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1015 * not be allocated.
638f5b90 1016 */
c69431aa 1017static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1018{
c69431aa
LB
1019 size_t bytes;
1020
1021 if (ZERO_OR_NULL_PTR(src))
1022 goto out;
1023
1024 if (unlikely(check_mul_overflow(n, size, &bytes)))
1025 return NULL;
1026
1027 if (ksize(dst) < bytes) {
1028 kfree(dst);
1029 dst = kmalloc_track_caller(bytes, flags);
1030 if (!dst)
1031 return NULL;
1032 }
1033
1034 memcpy(dst, src, bytes);
1035out:
1036 return dst ? dst : ZERO_SIZE_PTR;
1037}
1038
1039/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1040 * small to hold new_n items. new items are zeroed out if the array grows.
1041 *
1042 * Contrary to krealloc_array, does not free arr if new_n is zero.
1043 */
1044static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1045{
42378a9c
KC
1046 void *new_arr;
1047
c69431aa
LB
1048 if (!new_n || old_n == new_n)
1049 goto out;
1050
42378a9c
KC
1051 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1052 if (!new_arr) {
1053 kfree(arr);
c69431aa 1054 return NULL;
42378a9c
KC
1055 }
1056 arr = new_arr;
c69431aa
LB
1057
1058 if (new_n > old_n)
1059 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1060
1061out:
1062 return arr ? arr : ZERO_SIZE_PTR;
1063}
1064
1065static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1066{
1067 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1068 sizeof(struct bpf_reference_state), GFP_KERNEL);
1069 if (!dst->refs)
1070 return -ENOMEM;
1071
1072 dst->acquired_refs = src->acquired_refs;
1073 return 0;
1074}
1075
1076static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1077{
1078 size_t n = src->allocated_stack / BPF_REG_SIZE;
1079
1080 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1081 GFP_KERNEL);
1082 if (!dst->stack)
1083 return -ENOMEM;
1084
1085 dst->allocated_stack = src->allocated_stack;
1086 return 0;
1087}
1088
1089static int resize_reference_state(struct bpf_func_state *state, size_t n)
1090{
1091 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1092 sizeof(struct bpf_reference_state));
1093 if (!state->refs)
1094 return -ENOMEM;
1095
1096 state->acquired_refs = n;
1097 return 0;
1098}
1099
1100static int grow_stack_state(struct bpf_func_state *state, int size)
1101{
1102 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1103
1104 if (old_n >= n)
1105 return 0;
1106
1107 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1108 if (!state->stack)
1109 return -ENOMEM;
1110
1111 state->allocated_stack = size;
1112 return 0;
fd978bf7
JS
1113}
1114
1115/* Acquire a pointer id from the env and update the state->refs to include
1116 * this new pointer reference.
1117 * On success, returns a valid pointer id to associate with the register
1118 * On failure, returns a negative errno.
638f5b90 1119 */
fd978bf7 1120static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1121{
fd978bf7
JS
1122 struct bpf_func_state *state = cur_func(env);
1123 int new_ofs = state->acquired_refs;
1124 int id, err;
1125
c69431aa 1126 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1127 if (err)
1128 return err;
1129 id = ++env->id_gen;
1130 state->refs[new_ofs].id = id;
1131 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1132 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1133
fd978bf7
JS
1134 return id;
1135}
1136
1137/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1138static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1139{
1140 int i, last_idx;
1141
fd978bf7
JS
1142 last_idx = state->acquired_refs - 1;
1143 for (i = 0; i < state->acquired_refs; i++) {
1144 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1145 /* Cannot release caller references in callbacks */
1146 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1147 return -EINVAL;
fd978bf7
JS
1148 if (last_idx && i != last_idx)
1149 memcpy(&state->refs[i], &state->refs[last_idx],
1150 sizeof(*state->refs));
1151 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1152 state->acquired_refs--;
638f5b90 1153 return 0;
638f5b90 1154 }
638f5b90 1155 }
46f8bc92 1156 return -EINVAL;
fd978bf7
JS
1157}
1158
f4d7e40a
AS
1159static void free_func_state(struct bpf_func_state *state)
1160{
5896351e
AS
1161 if (!state)
1162 return;
fd978bf7 1163 kfree(state->refs);
f4d7e40a
AS
1164 kfree(state->stack);
1165 kfree(state);
1166}
1167
b5dc0163
AS
1168static void clear_jmp_history(struct bpf_verifier_state *state)
1169{
1170 kfree(state->jmp_history);
1171 state->jmp_history = NULL;
1172 state->jmp_history_cnt = 0;
1173}
1174
1969db47
AS
1175static void free_verifier_state(struct bpf_verifier_state *state,
1176 bool free_self)
638f5b90 1177{
f4d7e40a
AS
1178 int i;
1179
1180 for (i = 0; i <= state->curframe; i++) {
1181 free_func_state(state->frame[i]);
1182 state->frame[i] = NULL;
1183 }
b5dc0163 1184 clear_jmp_history(state);
1969db47
AS
1185 if (free_self)
1186 kfree(state);
638f5b90
AS
1187}
1188
1189/* copy verifier state from src to dst growing dst stack space
1190 * when necessary to accommodate larger src stack
1191 */
f4d7e40a
AS
1192static int copy_func_state(struct bpf_func_state *dst,
1193 const struct bpf_func_state *src)
638f5b90
AS
1194{
1195 int err;
1196
fd978bf7
JS
1197 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1198 err = copy_reference_state(dst, src);
638f5b90
AS
1199 if (err)
1200 return err;
638f5b90
AS
1201 return copy_stack_state(dst, src);
1202}
1203
f4d7e40a
AS
1204static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1205 const struct bpf_verifier_state *src)
1206{
1207 struct bpf_func_state *dst;
1208 int i, err;
1209
06ab6a50
LB
1210 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1211 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1212 GFP_USER);
1213 if (!dst_state->jmp_history)
1214 return -ENOMEM;
b5dc0163
AS
1215 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1216
f4d7e40a
AS
1217 /* if dst has more stack frames then src frame, free them */
1218 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1219 free_func_state(dst_state->frame[i]);
1220 dst_state->frame[i] = NULL;
1221 }
979d63d5 1222 dst_state->speculative = src->speculative;
f4d7e40a 1223 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1224 dst_state->active_lock.ptr = src->active_lock.ptr;
1225 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1226 dst_state->branches = src->branches;
1227 dst_state->parent = src->parent;
b5dc0163
AS
1228 dst_state->first_insn_idx = src->first_insn_idx;
1229 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1230 for (i = 0; i <= src->curframe; i++) {
1231 dst = dst_state->frame[i];
1232 if (!dst) {
1233 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1234 if (!dst)
1235 return -ENOMEM;
1236 dst_state->frame[i] = dst;
1237 }
1238 err = copy_func_state(dst, src->frame[i]);
1239 if (err)
1240 return err;
1241 }
1242 return 0;
1243}
1244
2589726d
AS
1245static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1246{
1247 while (st) {
1248 u32 br = --st->branches;
1249
1250 /* WARN_ON(br > 1) technically makes sense here,
1251 * but see comment in push_stack(), hence:
1252 */
1253 WARN_ONCE((int)br < 0,
1254 "BUG update_branch_counts:branches_to_explore=%d\n",
1255 br);
1256 if (br)
1257 break;
1258 st = st->parent;
1259 }
1260}
1261
638f5b90 1262static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1263 int *insn_idx, bool pop_log)
638f5b90
AS
1264{
1265 struct bpf_verifier_state *cur = env->cur_state;
1266 struct bpf_verifier_stack_elem *elem, *head = env->head;
1267 int err;
17a52670
AS
1268
1269 if (env->head == NULL)
638f5b90 1270 return -ENOENT;
17a52670 1271
638f5b90
AS
1272 if (cur) {
1273 err = copy_verifier_state(cur, &head->st);
1274 if (err)
1275 return err;
1276 }
6f8a57cc
AN
1277 if (pop_log)
1278 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1279 if (insn_idx)
1280 *insn_idx = head->insn_idx;
17a52670 1281 if (prev_insn_idx)
638f5b90
AS
1282 *prev_insn_idx = head->prev_insn_idx;
1283 elem = head->next;
1969db47 1284 free_verifier_state(&head->st, false);
638f5b90 1285 kfree(head);
17a52670
AS
1286 env->head = elem;
1287 env->stack_size--;
638f5b90 1288 return 0;
17a52670
AS
1289}
1290
58e2af8b 1291static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1292 int insn_idx, int prev_insn_idx,
1293 bool speculative)
17a52670 1294{
638f5b90 1295 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1296 struct bpf_verifier_stack_elem *elem;
638f5b90 1297 int err;
17a52670 1298
638f5b90 1299 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1300 if (!elem)
1301 goto err;
1302
17a52670
AS
1303 elem->insn_idx = insn_idx;
1304 elem->prev_insn_idx = prev_insn_idx;
1305 elem->next = env->head;
6f8a57cc 1306 elem->log_pos = env->log.len_used;
17a52670
AS
1307 env->head = elem;
1308 env->stack_size++;
1969db47
AS
1309 err = copy_verifier_state(&elem->st, cur);
1310 if (err)
1311 goto err;
979d63d5 1312 elem->st.speculative |= speculative;
b285fcb7
AS
1313 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1314 verbose(env, "The sequence of %d jumps is too complex.\n",
1315 env->stack_size);
17a52670
AS
1316 goto err;
1317 }
2589726d
AS
1318 if (elem->st.parent) {
1319 ++elem->st.parent->branches;
1320 /* WARN_ON(branches > 2) technically makes sense here,
1321 * but
1322 * 1. speculative states will bump 'branches' for non-branch
1323 * instructions
1324 * 2. is_state_visited() heuristics may decide not to create
1325 * a new state for a sequence of branches and all such current
1326 * and cloned states will be pointing to a single parent state
1327 * which might have large 'branches' count.
1328 */
1329 }
17a52670
AS
1330 return &elem->st;
1331err:
5896351e
AS
1332 free_verifier_state(env->cur_state, true);
1333 env->cur_state = NULL;
17a52670 1334 /* pop all elements and return */
6f8a57cc 1335 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1336 return NULL;
1337}
1338
1339#define CALLER_SAVED_REGS 6
1340static const int caller_saved[CALLER_SAVED_REGS] = {
1341 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1342};
1343
f54c7898
DB
1344static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1345 struct bpf_reg_state *reg);
f1174f77 1346
e688c3db
AS
1347/* This helper doesn't clear reg->id */
1348static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1349{
b03c9f9f
EC
1350 reg->var_off = tnum_const(imm);
1351 reg->smin_value = (s64)imm;
1352 reg->smax_value = (s64)imm;
1353 reg->umin_value = imm;
1354 reg->umax_value = imm;
3f50f132
JF
1355
1356 reg->s32_min_value = (s32)imm;
1357 reg->s32_max_value = (s32)imm;
1358 reg->u32_min_value = (u32)imm;
1359 reg->u32_max_value = (u32)imm;
1360}
1361
e688c3db
AS
1362/* Mark the unknown part of a register (variable offset or scalar value) as
1363 * known to have the value @imm.
1364 */
1365static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1366{
1367 /* Clear id, off, and union(map_ptr, range) */
1368 memset(((u8 *)reg) + sizeof(reg->type), 0,
1369 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1370 ___mark_reg_known(reg, imm);
1371}
1372
3f50f132
JF
1373static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1374{
1375 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1376 reg->s32_min_value = (s32)imm;
1377 reg->s32_max_value = (s32)imm;
1378 reg->u32_min_value = (u32)imm;
1379 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1380}
1381
f1174f77
EC
1382/* Mark the 'variable offset' part of a register as zero. This should be
1383 * used only on registers holding a pointer type.
1384 */
1385static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1386{
b03c9f9f 1387 __mark_reg_known(reg, 0);
f1174f77 1388}
a9789ef9 1389
cc2b14d5
AS
1390static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1391{
1392 __mark_reg_known(reg, 0);
cc2b14d5
AS
1393 reg->type = SCALAR_VALUE;
1394}
1395
61bd5218
JK
1396static void mark_reg_known_zero(struct bpf_verifier_env *env,
1397 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1398{
1399 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1400 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1401 /* Something bad happened, let's kill all regs */
1402 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1403 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1404 return;
1405 }
1406 __mark_reg_known_zero(regs + regno);
1407}
1408
4ddb7416
DB
1409static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1410{
c25b2ae1 1411 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1412 const struct bpf_map *map = reg->map_ptr;
1413
1414 if (map->inner_map_meta) {
1415 reg->type = CONST_PTR_TO_MAP;
1416 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1417 /* transfer reg's id which is unique for every map_lookup_elem
1418 * as UID of the inner map.
1419 */
db559117 1420 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1421 reg->map_uid = reg->id;
4ddb7416
DB
1422 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1423 reg->type = PTR_TO_XDP_SOCK;
1424 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1425 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1426 reg->type = PTR_TO_SOCKET;
1427 } else {
1428 reg->type = PTR_TO_MAP_VALUE;
1429 }
c25b2ae1 1430 return;
4ddb7416 1431 }
c25b2ae1
HL
1432
1433 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1434}
1435
de8f3a83
DB
1436static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1437{
1438 return type_is_pkt_pointer(reg->type);
1439}
1440
1441static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1442{
1443 return reg_is_pkt_pointer(reg) ||
1444 reg->type == PTR_TO_PACKET_END;
1445}
1446
1447/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1448static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1449 enum bpf_reg_type which)
1450{
1451 /* The register can already have a range from prior markings.
1452 * This is fine as long as it hasn't been advanced from its
1453 * origin.
1454 */
1455 return reg->type == which &&
1456 reg->id == 0 &&
1457 reg->off == 0 &&
1458 tnum_equals_const(reg->var_off, 0);
1459}
1460
3f50f132
JF
1461/* Reset the min/max bounds of a register */
1462static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1463{
1464 reg->smin_value = S64_MIN;
1465 reg->smax_value = S64_MAX;
1466 reg->umin_value = 0;
1467 reg->umax_value = U64_MAX;
1468
1469 reg->s32_min_value = S32_MIN;
1470 reg->s32_max_value = S32_MAX;
1471 reg->u32_min_value = 0;
1472 reg->u32_max_value = U32_MAX;
1473}
1474
1475static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1476{
1477 reg->smin_value = S64_MIN;
1478 reg->smax_value = S64_MAX;
1479 reg->umin_value = 0;
1480 reg->umax_value = U64_MAX;
1481}
1482
1483static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1484{
1485 reg->s32_min_value = S32_MIN;
1486 reg->s32_max_value = S32_MAX;
1487 reg->u32_min_value = 0;
1488 reg->u32_max_value = U32_MAX;
1489}
1490
1491static void __update_reg32_bounds(struct bpf_reg_state *reg)
1492{
1493 struct tnum var32_off = tnum_subreg(reg->var_off);
1494
1495 /* min signed is max(sign bit) | min(other bits) */
1496 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1497 var32_off.value | (var32_off.mask & S32_MIN));
1498 /* max signed is min(sign bit) | max(other bits) */
1499 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1500 var32_off.value | (var32_off.mask & S32_MAX));
1501 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1502 reg->u32_max_value = min(reg->u32_max_value,
1503 (u32)(var32_off.value | var32_off.mask));
1504}
1505
1506static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1507{
1508 /* min signed is max(sign bit) | min(other bits) */
1509 reg->smin_value = max_t(s64, reg->smin_value,
1510 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1511 /* max signed is min(sign bit) | max(other bits) */
1512 reg->smax_value = min_t(s64, reg->smax_value,
1513 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1514 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1515 reg->umax_value = min(reg->umax_value,
1516 reg->var_off.value | reg->var_off.mask);
1517}
1518
3f50f132
JF
1519static void __update_reg_bounds(struct bpf_reg_state *reg)
1520{
1521 __update_reg32_bounds(reg);
1522 __update_reg64_bounds(reg);
1523}
1524
b03c9f9f 1525/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1526static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1527{
1528 /* Learn sign from signed bounds.
1529 * If we cannot cross the sign boundary, then signed and unsigned bounds
1530 * are the same, so combine. This works even in the negative case, e.g.
1531 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1532 */
1533 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1534 reg->s32_min_value = reg->u32_min_value =
1535 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1536 reg->s32_max_value = reg->u32_max_value =
1537 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1538 return;
1539 }
1540 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1541 * boundary, so we must be careful.
1542 */
1543 if ((s32)reg->u32_max_value >= 0) {
1544 /* Positive. We can't learn anything from the smin, but smax
1545 * is positive, hence safe.
1546 */
1547 reg->s32_min_value = reg->u32_min_value;
1548 reg->s32_max_value = reg->u32_max_value =
1549 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1550 } else if ((s32)reg->u32_min_value < 0) {
1551 /* Negative. We can't learn anything from the smax, but smin
1552 * is negative, hence safe.
1553 */
1554 reg->s32_min_value = reg->u32_min_value =
1555 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1556 reg->s32_max_value = reg->u32_max_value;
1557 }
1558}
1559
1560static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1561{
1562 /* Learn sign from signed bounds.
1563 * If we cannot cross the sign boundary, then signed and unsigned bounds
1564 * are the same, so combine. This works even in the negative case, e.g.
1565 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1566 */
1567 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1568 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1569 reg->umin_value);
1570 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1571 reg->umax_value);
1572 return;
1573 }
1574 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1575 * boundary, so we must be careful.
1576 */
1577 if ((s64)reg->umax_value >= 0) {
1578 /* Positive. We can't learn anything from the smin, but smax
1579 * is positive, hence safe.
1580 */
1581 reg->smin_value = reg->umin_value;
1582 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1583 reg->umax_value);
1584 } else if ((s64)reg->umin_value < 0) {
1585 /* Negative. We can't learn anything from the smax, but smin
1586 * is negative, hence safe.
1587 */
1588 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1589 reg->umin_value);
1590 reg->smax_value = reg->umax_value;
1591 }
1592}
1593
3f50f132
JF
1594static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1595{
1596 __reg32_deduce_bounds(reg);
1597 __reg64_deduce_bounds(reg);
1598}
1599
b03c9f9f
EC
1600/* Attempts to improve var_off based on unsigned min/max information */
1601static void __reg_bound_offset(struct bpf_reg_state *reg)
1602{
3f50f132
JF
1603 struct tnum var64_off = tnum_intersect(reg->var_off,
1604 tnum_range(reg->umin_value,
1605 reg->umax_value));
1606 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1607 tnum_range(reg->u32_min_value,
1608 reg->u32_max_value));
1609
1610 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1611}
1612
3844d153
DB
1613static void reg_bounds_sync(struct bpf_reg_state *reg)
1614{
1615 /* We might have learned new bounds from the var_off. */
1616 __update_reg_bounds(reg);
1617 /* We might have learned something about the sign bit. */
1618 __reg_deduce_bounds(reg);
1619 /* We might have learned some bits from the bounds. */
1620 __reg_bound_offset(reg);
1621 /* Intersecting with the old var_off might have improved our bounds
1622 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1623 * then new var_off is (0; 0x7f...fc) which improves our umax.
1624 */
1625 __update_reg_bounds(reg);
1626}
1627
e572ff80
DB
1628static bool __reg32_bound_s64(s32 a)
1629{
1630 return a >= 0 && a <= S32_MAX;
1631}
1632
3f50f132 1633static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1634{
3f50f132
JF
1635 reg->umin_value = reg->u32_min_value;
1636 reg->umax_value = reg->u32_max_value;
e572ff80
DB
1637
1638 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1639 * be positive otherwise set to worse case bounds and refine later
1640 * from tnum.
3f50f132 1641 */
e572ff80
DB
1642 if (__reg32_bound_s64(reg->s32_min_value) &&
1643 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 1644 reg->smin_value = reg->s32_min_value;
e572ff80
DB
1645 reg->smax_value = reg->s32_max_value;
1646 } else {
3a71dc36 1647 reg->smin_value = 0;
e572ff80
DB
1648 reg->smax_value = U32_MAX;
1649 }
3f50f132
JF
1650}
1651
1652static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1653{
1654 /* special case when 64-bit register has upper 32-bit register
1655 * zeroed. Typically happens after zext or <<32, >>32 sequence
1656 * allowing us to use 32-bit bounds directly,
1657 */
1658 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1659 __reg_assign_32_into_64(reg);
1660 } else {
1661 /* Otherwise the best we can do is push lower 32bit known and
1662 * unknown bits into register (var_off set from jmp logic)
1663 * then learn as much as possible from the 64-bit tnum
1664 * known and unknown bits. The previous smin/smax bounds are
1665 * invalid here because of jmp32 compare so mark them unknown
1666 * so they do not impact tnum bounds calculation.
1667 */
1668 __mark_reg64_unbounded(reg);
3f50f132 1669 }
3844d153 1670 reg_bounds_sync(reg);
3f50f132
JF
1671}
1672
1673static bool __reg64_bound_s32(s64 a)
1674{
388e2c0b 1675 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1676}
1677
1678static bool __reg64_bound_u32(u64 a)
1679{
b9979db8 1680 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1681}
1682
1683static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1684{
1685 __mark_reg32_unbounded(reg);
b0270958 1686 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1687 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1688 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1689 }
10bf4e83 1690 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1691 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1692 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1693 }
3844d153 1694 reg_bounds_sync(reg);
b03c9f9f
EC
1695}
1696
f1174f77 1697/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1698static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1699 struct bpf_reg_state *reg)
f1174f77 1700{
a9c676bc
AS
1701 /*
1702 * Clear type, id, off, and union(map_ptr, range) and
1703 * padding between 'type' and union
1704 */
1705 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1706 reg->type = SCALAR_VALUE;
f1174f77 1707 reg->var_off = tnum_unknown;
f4d7e40a 1708 reg->frameno = 0;
be2ef816 1709 reg->precise = !env->bpf_capable;
b03c9f9f 1710 __mark_reg_unbounded(reg);
f1174f77
EC
1711}
1712
61bd5218
JK
1713static void mark_reg_unknown(struct bpf_verifier_env *env,
1714 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1715{
1716 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1717 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1718 /* Something bad happened, let's kill all regs except FP */
1719 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1720 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1721 return;
1722 }
f54c7898 1723 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1724}
1725
f54c7898
DB
1726static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1727 struct bpf_reg_state *reg)
f1174f77 1728{
f54c7898 1729 __mark_reg_unknown(env, reg);
f1174f77
EC
1730 reg->type = NOT_INIT;
1731}
1732
61bd5218
JK
1733static void mark_reg_not_init(struct bpf_verifier_env *env,
1734 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1735{
1736 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1737 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1738 /* Something bad happened, let's kill all regs except FP */
1739 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1740 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1741 return;
1742 }
f54c7898 1743 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1744}
1745
41c48f3a
AI
1746static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1747 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 1748 enum bpf_reg_type reg_type,
c6f1bfe8
YS
1749 struct btf *btf, u32 btf_id,
1750 enum bpf_type_flag flag)
41c48f3a
AI
1751{
1752 if (reg_type == SCALAR_VALUE) {
1753 mark_reg_unknown(env, regs, regno);
1754 return;
1755 }
1756 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 1757 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 1758 regs[regno].btf = btf;
41c48f3a
AI
1759 regs[regno].btf_id = btf_id;
1760}
1761
5327ed3d 1762#define DEF_NOT_SUBREG (0)
61bd5218 1763static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1764 struct bpf_func_state *state)
17a52670 1765{
f4d7e40a 1766 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1767 int i;
1768
dc503a8a 1769 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1770 mark_reg_not_init(env, regs, i);
dc503a8a 1771 regs[i].live = REG_LIVE_NONE;
679c782d 1772 regs[i].parent = NULL;
5327ed3d 1773 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1774 }
17a52670
AS
1775
1776 /* frame pointer */
f1174f77 1777 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1778 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1779 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1780}
1781
f4d7e40a
AS
1782#define BPF_MAIN_FUNC (-1)
1783static void init_func_state(struct bpf_verifier_env *env,
1784 struct bpf_func_state *state,
1785 int callsite, int frameno, int subprogno)
1786{
1787 state->callsite = callsite;
1788 state->frameno = frameno;
1789 state->subprogno = subprogno;
1bfe26fb 1790 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 1791 init_reg_state(env, state);
0f55f9ed 1792 mark_verifier_state_scratched(env);
f4d7e40a
AS
1793}
1794
bfc6bb74
AS
1795/* Similar to push_stack(), but for async callbacks */
1796static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1797 int insn_idx, int prev_insn_idx,
1798 int subprog)
1799{
1800 struct bpf_verifier_stack_elem *elem;
1801 struct bpf_func_state *frame;
1802
1803 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1804 if (!elem)
1805 goto err;
1806
1807 elem->insn_idx = insn_idx;
1808 elem->prev_insn_idx = prev_insn_idx;
1809 elem->next = env->head;
1810 elem->log_pos = env->log.len_used;
1811 env->head = elem;
1812 env->stack_size++;
1813 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1814 verbose(env,
1815 "The sequence of %d jumps is too complex for async cb.\n",
1816 env->stack_size);
1817 goto err;
1818 }
1819 /* Unlike push_stack() do not copy_verifier_state().
1820 * The caller state doesn't matter.
1821 * This is async callback. It starts in a fresh stack.
1822 * Initialize it similar to do_check_common().
1823 */
1824 elem->st.branches = 1;
1825 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1826 if (!frame)
1827 goto err;
1828 init_func_state(env, frame,
1829 BPF_MAIN_FUNC /* callsite */,
1830 0 /* frameno within this callchain */,
1831 subprog /* subprog number within this prog */);
1832 elem->st.frame[0] = frame;
1833 return &elem->st;
1834err:
1835 free_verifier_state(env->cur_state, true);
1836 env->cur_state = NULL;
1837 /* pop all elements and return */
1838 while (!pop_stack(env, NULL, NULL, false));
1839 return NULL;
1840}
1841
1842
17a52670
AS
1843enum reg_arg_type {
1844 SRC_OP, /* register is used as source operand */
1845 DST_OP, /* register is used as destination operand */
1846 DST_OP_NO_MARK /* same as above, check only, don't mark */
1847};
1848
cc8b0b92
AS
1849static int cmp_subprogs(const void *a, const void *b)
1850{
9c8105bd
JW
1851 return ((struct bpf_subprog_info *)a)->start -
1852 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1853}
1854
1855static int find_subprog(struct bpf_verifier_env *env, int off)
1856{
9c8105bd 1857 struct bpf_subprog_info *p;
cc8b0b92 1858
9c8105bd
JW
1859 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1860 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1861 if (!p)
1862 return -ENOENT;
9c8105bd 1863 return p - env->subprog_info;
cc8b0b92
AS
1864
1865}
1866
1867static int add_subprog(struct bpf_verifier_env *env, int off)
1868{
1869 int insn_cnt = env->prog->len;
1870 int ret;
1871
1872 if (off >= insn_cnt || off < 0) {
1873 verbose(env, "call to invalid destination\n");
1874 return -EINVAL;
1875 }
1876 ret = find_subprog(env, off);
1877 if (ret >= 0)
282a0f46 1878 return ret;
4cb3d99c 1879 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1880 verbose(env, "too many subprograms\n");
1881 return -E2BIG;
1882 }
e6ac2450 1883 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1884 env->subprog_info[env->subprog_cnt++].start = off;
1885 sort(env->subprog_info, env->subprog_cnt,
1886 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1887 return env->subprog_cnt - 1;
cc8b0b92
AS
1888}
1889
2357672c
KKD
1890#define MAX_KFUNC_DESCS 256
1891#define MAX_KFUNC_BTFS 256
1892
e6ac2450
MKL
1893struct bpf_kfunc_desc {
1894 struct btf_func_model func_model;
1895 u32 func_id;
1896 s32 imm;
2357672c
KKD
1897 u16 offset;
1898};
1899
1900struct bpf_kfunc_btf {
1901 struct btf *btf;
1902 struct module *module;
1903 u16 offset;
e6ac2450
MKL
1904};
1905
e6ac2450
MKL
1906struct bpf_kfunc_desc_tab {
1907 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1908 u32 nr_descs;
1909};
1910
2357672c
KKD
1911struct bpf_kfunc_btf_tab {
1912 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1913 u32 nr_descs;
1914};
1915
1916static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1917{
1918 const struct bpf_kfunc_desc *d0 = a;
1919 const struct bpf_kfunc_desc *d1 = b;
1920
1921 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1922 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1923}
1924
1925static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1926{
1927 const struct bpf_kfunc_btf *d0 = a;
1928 const struct bpf_kfunc_btf *d1 = b;
1929
1930 return d0->offset - d1->offset;
e6ac2450
MKL
1931}
1932
1933static const struct bpf_kfunc_desc *
2357672c 1934find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1935{
1936 struct bpf_kfunc_desc desc = {
1937 .func_id = func_id,
2357672c 1938 .offset = offset,
e6ac2450
MKL
1939 };
1940 struct bpf_kfunc_desc_tab *tab;
1941
1942 tab = prog->aux->kfunc_tab;
1943 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1944 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1945}
1946
1947static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 1948 s16 offset)
2357672c
KKD
1949{
1950 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1951 struct bpf_kfunc_btf_tab *tab;
1952 struct bpf_kfunc_btf *b;
1953 struct module *mod;
1954 struct btf *btf;
1955 int btf_fd;
1956
1957 tab = env->prog->aux->kfunc_btf_tab;
1958 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1959 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1960 if (!b) {
1961 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1962 verbose(env, "too many different module BTFs\n");
1963 return ERR_PTR(-E2BIG);
1964 }
1965
1966 if (bpfptr_is_null(env->fd_array)) {
1967 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1968 return ERR_PTR(-EPROTO);
1969 }
1970
1971 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1972 offset * sizeof(btf_fd),
1973 sizeof(btf_fd)))
1974 return ERR_PTR(-EFAULT);
1975
1976 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1977 if (IS_ERR(btf)) {
1978 verbose(env, "invalid module BTF fd specified\n");
2357672c 1979 return btf;
588cd7ef 1980 }
2357672c
KKD
1981
1982 if (!btf_is_module(btf)) {
1983 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1984 btf_put(btf);
1985 return ERR_PTR(-EINVAL);
1986 }
1987
1988 mod = btf_try_get_module(btf);
1989 if (!mod) {
1990 btf_put(btf);
1991 return ERR_PTR(-ENXIO);
1992 }
1993
1994 b = &tab->descs[tab->nr_descs++];
1995 b->btf = btf;
1996 b->module = mod;
1997 b->offset = offset;
1998
1999 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2000 kfunc_btf_cmp_by_off, NULL);
2001 }
2357672c 2002 return b->btf;
e6ac2450
MKL
2003}
2004
2357672c
KKD
2005void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2006{
2007 if (!tab)
2008 return;
2009
2010 while (tab->nr_descs--) {
2011 module_put(tab->descs[tab->nr_descs].module);
2012 btf_put(tab->descs[tab->nr_descs].btf);
2013 }
2014 kfree(tab);
2015}
2016
43bf0878 2017static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2018{
2357672c
KKD
2019 if (offset) {
2020 if (offset < 0) {
2021 /* In the future, this can be allowed to increase limit
2022 * of fd index into fd_array, interpreted as u16.
2023 */
2024 verbose(env, "negative offset disallowed for kernel module function call\n");
2025 return ERR_PTR(-EINVAL);
2026 }
2027
b202d844 2028 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2029 }
2030 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2031}
2032
2357672c 2033static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2034{
2035 const struct btf_type *func, *func_proto;
2357672c 2036 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2037 struct bpf_kfunc_desc_tab *tab;
2038 struct bpf_prog_aux *prog_aux;
2039 struct bpf_kfunc_desc *desc;
2040 const char *func_name;
2357672c 2041 struct btf *desc_btf;
8cbf062a 2042 unsigned long call_imm;
e6ac2450
MKL
2043 unsigned long addr;
2044 int err;
2045
2046 prog_aux = env->prog->aux;
2047 tab = prog_aux->kfunc_tab;
2357672c 2048 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2049 if (!tab) {
2050 if (!btf_vmlinux) {
2051 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2052 return -ENOTSUPP;
2053 }
2054
2055 if (!env->prog->jit_requested) {
2056 verbose(env, "JIT is required for calling kernel function\n");
2057 return -ENOTSUPP;
2058 }
2059
2060 if (!bpf_jit_supports_kfunc_call()) {
2061 verbose(env, "JIT does not support calling kernel function\n");
2062 return -ENOTSUPP;
2063 }
2064
2065 if (!env->prog->gpl_compatible) {
2066 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2067 return -EINVAL;
2068 }
2069
2070 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2071 if (!tab)
2072 return -ENOMEM;
2073 prog_aux->kfunc_tab = tab;
2074 }
2075
a5d82727
KKD
2076 /* func_id == 0 is always invalid, but instead of returning an error, be
2077 * conservative and wait until the code elimination pass before returning
2078 * error, so that invalid calls that get pruned out can be in BPF programs
2079 * loaded from userspace. It is also required that offset be untouched
2080 * for such calls.
2081 */
2082 if (!func_id && !offset)
2083 return 0;
2084
2357672c
KKD
2085 if (!btf_tab && offset) {
2086 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2087 if (!btf_tab)
2088 return -ENOMEM;
2089 prog_aux->kfunc_btf_tab = btf_tab;
2090 }
2091
43bf0878 2092 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2093 if (IS_ERR(desc_btf)) {
2094 verbose(env, "failed to find BTF for kernel function\n");
2095 return PTR_ERR(desc_btf);
2096 }
2097
2098 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2099 return 0;
2100
2101 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2102 verbose(env, "too many different kernel function calls\n");
2103 return -E2BIG;
2104 }
2105
2357672c 2106 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2107 if (!func || !btf_type_is_func(func)) {
2108 verbose(env, "kernel btf_id %u is not a function\n",
2109 func_id);
2110 return -EINVAL;
2111 }
2357672c 2112 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2113 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2114 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2115 func_id);
2116 return -EINVAL;
2117 }
2118
2357672c 2119 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2120 addr = kallsyms_lookup_name(func_name);
2121 if (!addr) {
2122 verbose(env, "cannot find address for kernel function %s\n",
2123 func_name);
2124 return -EINVAL;
2125 }
2126
8cbf062a
HT
2127 call_imm = BPF_CALL_IMM(addr);
2128 /* Check whether or not the relative offset overflows desc->imm */
2129 if ((unsigned long)(s32)call_imm != call_imm) {
2130 verbose(env, "address of kernel function %s is out of range\n",
2131 func_name);
2132 return -EINVAL;
2133 }
2134
e6ac2450
MKL
2135 desc = &tab->descs[tab->nr_descs++];
2136 desc->func_id = func_id;
8cbf062a 2137 desc->imm = call_imm;
2357672c
KKD
2138 desc->offset = offset;
2139 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2140 func_proto, func_name,
2141 &desc->func_model);
2142 if (!err)
2143 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2144 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2145 return err;
2146}
2147
2148static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2149{
2150 const struct bpf_kfunc_desc *d0 = a;
2151 const struct bpf_kfunc_desc *d1 = b;
2152
2153 if (d0->imm > d1->imm)
2154 return 1;
2155 else if (d0->imm < d1->imm)
2156 return -1;
2157 return 0;
2158}
2159
2160static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2161{
2162 struct bpf_kfunc_desc_tab *tab;
2163
2164 tab = prog->aux->kfunc_tab;
2165 if (!tab)
2166 return;
2167
2168 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2169 kfunc_desc_cmp_by_imm, NULL);
2170}
2171
2172bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2173{
2174 return !!prog->aux->kfunc_tab;
2175}
2176
2177const struct btf_func_model *
2178bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2179 const struct bpf_insn *insn)
2180{
2181 const struct bpf_kfunc_desc desc = {
2182 .imm = insn->imm,
2183 };
2184 const struct bpf_kfunc_desc *res;
2185 struct bpf_kfunc_desc_tab *tab;
2186
2187 tab = prog->aux->kfunc_tab;
2188 res = bsearch(&desc, tab->descs, tab->nr_descs,
2189 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2190
2191 return res ? &res->func_model : NULL;
2192}
2193
2194static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2195{
9c8105bd 2196 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2197 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2198 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2199
f910cefa
JW
2200 /* Add entry function. */
2201 ret = add_subprog(env, 0);
e6ac2450 2202 if (ret)
f910cefa
JW
2203 return ret;
2204
e6ac2450
MKL
2205 for (i = 0; i < insn_cnt; i++, insn++) {
2206 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2207 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2208 continue;
e6ac2450 2209
2c78ee89 2210 if (!env->bpf_capable) {
e6ac2450 2211 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2212 return -EPERM;
2213 }
e6ac2450 2214
3990ed4c 2215 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2216 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2217 else
2357672c 2218 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2219
cc8b0b92
AS
2220 if (ret < 0)
2221 return ret;
2222 }
2223
4cb3d99c
JW
2224 /* Add a fake 'exit' subprog which could simplify subprog iteration
2225 * logic. 'subprog_cnt' should not be increased.
2226 */
2227 subprog[env->subprog_cnt].start = insn_cnt;
2228
06ee7115 2229 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2230 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2231 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2232
e6ac2450
MKL
2233 return 0;
2234}
2235
2236static int check_subprogs(struct bpf_verifier_env *env)
2237{
2238 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2239 struct bpf_subprog_info *subprog = env->subprog_info;
2240 struct bpf_insn *insn = env->prog->insnsi;
2241 int insn_cnt = env->prog->len;
2242
cc8b0b92 2243 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2244 subprog_start = subprog[cur_subprog].start;
2245 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2246 for (i = 0; i < insn_cnt; i++) {
2247 u8 code = insn[i].code;
2248
7f6e4312
MF
2249 if (code == (BPF_JMP | BPF_CALL) &&
2250 insn[i].imm == BPF_FUNC_tail_call &&
2251 insn[i].src_reg != BPF_PSEUDO_CALL)
2252 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2253 if (BPF_CLASS(code) == BPF_LD &&
2254 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2255 subprog[cur_subprog].has_ld_abs = true;
092ed096 2256 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2257 goto next;
2258 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2259 goto next;
2260 off = i + insn[i].off + 1;
2261 if (off < subprog_start || off >= subprog_end) {
2262 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2263 return -EINVAL;
2264 }
2265next:
2266 if (i == subprog_end - 1) {
2267 /* to avoid fall-through from one subprog into another
2268 * the last insn of the subprog should be either exit
2269 * or unconditional jump back
2270 */
2271 if (code != (BPF_JMP | BPF_EXIT) &&
2272 code != (BPF_JMP | BPF_JA)) {
2273 verbose(env, "last insn is not an exit or jmp\n");
2274 return -EINVAL;
2275 }
2276 subprog_start = subprog_end;
4cb3d99c
JW
2277 cur_subprog++;
2278 if (cur_subprog < env->subprog_cnt)
9c8105bd 2279 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2280 }
2281 }
2282 return 0;
2283}
2284
679c782d
EC
2285/* Parentage chain of this register (or stack slot) should take care of all
2286 * issues like callee-saved registers, stack slot allocation time, etc.
2287 */
f4d7e40a 2288static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2289 const struct bpf_reg_state *state,
5327ed3d 2290 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2291{
2292 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2293 int cnt = 0;
dc503a8a
EC
2294
2295 while (parent) {
2296 /* if read wasn't screened by an earlier write ... */
679c782d 2297 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2298 break;
9242b5f5
AS
2299 if (parent->live & REG_LIVE_DONE) {
2300 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2301 reg_type_str(env, parent->type),
9242b5f5
AS
2302 parent->var_off.value, parent->off);
2303 return -EFAULT;
2304 }
5327ed3d
JW
2305 /* The first condition is more likely to be true than the
2306 * second, checked it first.
2307 */
2308 if ((parent->live & REG_LIVE_READ) == flag ||
2309 parent->live & REG_LIVE_READ64)
25af32da
AS
2310 /* The parentage chain never changes and
2311 * this parent was already marked as LIVE_READ.
2312 * There is no need to keep walking the chain again and
2313 * keep re-marking all parents as LIVE_READ.
2314 * This case happens when the same register is read
2315 * multiple times without writes into it in-between.
5327ed3d
JW
2316 * Also, if parent has the stronger REG_LIVE_READ64 set,
2317 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2318 */
2319 break;
dc503a8a 2320 /* ... then we depend on parent's value */
5327ed3d
JW
2321 parent->live |= flag;
2322 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2323 if (flag == REG_LIVE_READ64)
2324 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2325 state = parent;
2326 parent = state->parent;
f4d7e40a 2327 writes = true;
06ee7115 2328 cnt++;
dc503a8a 2329 }
06ee7115
AS
2330
2331 if (env->longest_mark_read_walk < cnt)
2332 env->longest_mark_read_walk = cnt;
f4d7e40a 2333 return 0;
dc503a8a
EC
2334}
2335
5327ed3d
JW
2336/* This function is supposed to be used by the following 32-bit optimization
2337 * code only. It returns TRUE if the source or destination register operates
2338 * on 64-bit, otherwise return FALSE.
2339 */
2340static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2341 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2342{
2343 u8 code, class, op;
2344
2345 code = insn->code;
2346 class = BPF_CLASS(code);
2347 op = BPF_OP(code);
2348 if (class == BPF_JMP) {
2349 /* BPF_EXIT for "main" will reach here. Return TRUE
2350 * conservatively.
2351 */
2352 if (op == BPF_EXIT)
2353 return true;
2354 if (op == BPF_CALL) {
2355 /* BPF to BPF call will reach here because of marking
2356 * caller saved clobber with DST_OP_NO_MARK for which we
2357 * don't care the register def because they are anyway
2358 * marked as NOT_INIT already.
2359 */
2360 if (insn->src_reg == BPF_PSEUDO_CALL)
2361 return false;
2362 /* Helper call will reach here because of arg type
2363 * check, conservatively return TRUE.
2364 */
2365 if (t == SRC_OP)
2366 return true;
2367
2368 return false;
2369 }
2370 }
2371
2372 if (class == BPF_ALU64 || class == BPF_JMP ||
2373 /* BPF_END always use BPF_ALU class. */
2374 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2375 return true;
2376
2377 if (class == BPF_ALU || class == BPF_JMP32)
2378 return false;
2379
2380 if (class == BPF_LDX) {
2381 if (t != SRC_OP)
2382 return BPF_SIZE(code) == BPF_DW;
2383 /* LDX source must be ptr. */
2384 return true;
2385 }
2386
2387 if (class == BPF_STX) {
83a28819
IL
2388 /* BPF_STX (including atomic variants) has multiple source
2389 * operands, one of which is a ptr. Check whether the caller is
2390 * asking about it.
2391 */
2392 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2393 return true;
2394 return BPF_SIZE(code) == BPF_DW;
2395 }
2396
2397 if (class == BPF_LD) {
2398 u8 mode = BPF_MODE(code);
2399
2400 /* LD_IMM64 */
2401 if (mode == BPF_IMM)
2402 return true;
2403
2404 /* Both LD_IND and LD_ABS return 32-bit data. */
2405 if (t != SRC_OP)
2406 return false;
2407
2408 /* Implicit ctx ptr. */
2409 if (regno == BPF_REG_6)
2410 return true;
2411
2412 /* Explicit source could be any width. */
2413 return true;
2414 }
2415
2416 if (class == BPF_ST)
2417 /* The only source register for BPF_ST is a ptr. */
2418 return true;
2419
2420 /* Conservatively return true at default. */
2421 return true;
2422}
2423
83a28819
IL
2424/* Return the regno defined by the insn, or -1. */
2425static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2426{
83a28819
IL
2427 switch (BPF_CLASS(insn->code)) {
2428 case BPF_JMP:
2429 case BPF_JMP32:
2430 case BPF_ST:
2431 return -1;
2432 case BPF_STX:
2433 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2434 (insn->imm & BPF_FETCH)) {
2435 if (insn->imm == BPF_CMPXCHG)
2436 return BPF_REG_0;
2437 else
2438 return insn->src_reg;
2439 } else {
2440 return -1;
2441 }
2442 default:
2443 return insn->dst_reg;
2444 }
b325fbca
JW
2445}
2446
2447/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2448static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2449{
83a28819
IL
2450 int dst_reg = insn_def_regno(insn);
2451
2452 if (dst_reg == -1)
b325fbca
JW
2453 return false;
2454
83a28819 2455 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2456}
2457
5327ed3d
JW
2458static void mark_insn_zext(struct bpf_verifier_env *env,
2459 struct bpf_reg_state *reg)
2460{
2461 s32 def_idx = reg->subreg_def;
2462
2463 if (def_idx == DEF_NOT_SUBREG)
2464 return;
2465
2466 env->insn_aux_data[def_idx - 1].zext_dst = true;
2467 /* The dst will be zero extended, so won't be sub-register anymore. */
2468 reg->subreg_def = DEF_NOT_SUBREG;
2469}
2470
dc503a8a 2471static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2472 enum reg_arg_type t)
2473{
f4d7e40a
AS
2474 struct bpf_verifier_state *vstate = env->cur_state;
2475 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2476 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2477 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2478 bool rw64;
dc503a8a 2479
17a52670 2480 if (regno >= MAX_BPF_REG) {
61bd5218 2481 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2482 return -EINVAL;
2483 }
2484
0f55f9ed
CL
2485 mark_reg_scratched(env, regno);
2486
c342dc10 2487 reg = &regs[regno];
5327ed3d 2488 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2489 if (t == SRC_OP) {
2490 /* check whether register used as source operand can be read */
c342dc10 2491 if (reg->type == NOT_INIT) {
61bd5218 2492 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2493 return -EACCES;
2494 }
679c782d 2495 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2496 if (regno == BPF_REG_FP)
2497 return 0;
2498
5327ed3d
JW
2499 if (rw64)
2500 mark_insn_zext(env, reg);
2501
2502 return mark_reg_read(env, reg, reg->parent,
2503 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2504 } else {
2505 /* check whether register used as dest operand can be written to */
2506 if (regno == BPF_REG_FP) {
61bd5218 2507 verbose(env, "frame pointer is read only\n");
17a52670
AS
2508 return -EACCES;
2509 }
c342dc10 2510 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2511 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2512 if (t == DST_OP)
61bd5218 2513 mark_reg_unknown(env, regs, regno);
17a52670
AS
2514 }
2515 return 0;
2516}
2517
b5dc0163
AS
2518/* for any branch, call, exit record the history of jmps in the given state */
2519static int push_jmp_history(struct bpf_verifier_env *env,
2520 struct bpf_verifier_state *cur)
2521{
2522 u32 cnt = cur->jmp_history_cnt;
2523 struct bpf_idx_pair *p;
2524
2525 cnt++;
2526 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2527 if (!p)
2528 return -ENOMEM;
2529 p[cnt - 1].idx = env->insn_idx;
2530 p[cnt - 1].prev_idx = env->prev_insn_idx;
2531 cur->jmp_history = p;
2532 cur->jmp_history_cnt = cnt;
2533 return 0;
2534}
2535
2536/* Backtrack one insn at a time. If idx is not at the top of recorded
2537 * history then previous instruction came from straight line execution.
2538 */
2539static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2540 u32 *history)
2541{
2542 u32 cnt = *history;
2543
2544 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2545 i = st->jmp_history[cnt - 1].prev_idx;
2546 (*history)--;
2547 } else {
2548 i--;
2549 }
2550 return i;
2551}
2552
e6ac2450
MKL
2553static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2554{
2555 const struct btf_type *func;
2357672c 2556 struct btf *desc_btf;
e6ac2450
MKL
2557
2558 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2559 return NULL;
2560
43bf0878 2561 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
2562 if (IS_ERR(desc_btf))
2563 return "<error>";
2564
2565 func = btf_type_by_id(desc_btf, insn->imm);
2566 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2567}
2568
b5dc0163
AS
2569/* For given verifier state backtrack_insn() is called from the last insn to
2570 * the first insn. Its purpose is to compute a bitmask of registers and
2571 * stack slots that needs precision in the parent verifier state.
2572 */
2573static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2574 u32 *reg_mask, u64 *stack_mask)
2575{
2576 const struct bpf_insn_cbs cbs = {
e6ac2450 2577 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2578 .cb_print = verbose,
2579 .private_data = env,
2580 };
2581 struct bpf_insn *insn = env->prog->insnsi + idx;
2582 u8 class = BPF_CLASS(insn->code);
2583 u8 opcode = BPF_OP(insn->code);
2584 u8 mode = BPF_MODE(insn->code);
2585 u32 dreg = 1u << insn->dst_reg;
2586 u32 sreg = 1u << insn->src_reg;
2587 u32 spi;
2588
2589 if (insn->code == 0)
2590 return 0;
496f3324 2591 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
2592 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2593 verbose(env, "%d: ", idx);
2594 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2595 }
2596
2597 if (class == BPF_ALU || class == BPF_ALU64) {
2598 if (!(*reg_mask & dreg))
2599 return 0;
2600 if (opcode == BPF_MOV) {
2601 if (BPF_SRC(insn->code) == BPF_X) {
2602 /* dreg = sreg
2603 * dreg needs precision after this insn
2604 * sreg needs precision before this insn
2605 */
2606 *reg_mask &= ~dreg;
2607 *reg_mask |= sreg;
2608 } else {
2609 /* dreg = K
2610 * dreg needs precision after this insn.
2611 * Corresponding register is already marked
2612 * as precise=true in this verifier state.
2613 * No further markings in parent are necessary
2614 */
2615 *reg_mask &= ~dreg;
2616 }
2617 } else {
2618 if (BPF_SRC(insn->code) == BPF_X) {
2619 /* dreg += sreg
2620 * both dreg and sreg need precision
2621 * before this insn
2622 */
2623 *reg_mask |= sreg;
2624 } /* else dreg += K
2625 * dreg still needs precision before this insn
2626 */
2627 }
2628 } else if (class == BPF_LDX) {
2629 if (!(*reg_mask & dreg))
2630 return 0;
2631 *reg_mask &= ~dreg;
2632
2633 /* scalars can only be spilled into stack w/o losing precision.
2634 * Load from any other memory can be zero extended.
2635 * The desire to keep that precision is already indicated
2636 * by 'precise' mark in corresponding register of this state.
2637 * No further tracking necessary.
2638 */
2639 if (insn->src_reg != BPF_REG_FP)
2640 return 0;
b5dc0163
AS
2641
2642 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2643 * that [fp - off] slot contains scalar that needs to be
2644 * tracked with precision
2645 */
2646 spi = (-insn->off - 1) / BPF_REG_SIZE;
2647 if (spi >= 64) {
2648 verbose(env, "BUG spi %d\n", spi);
2649 WARN_ONCE(1, "verifier backtracking bug");
2650 return -EFAULT;
2651 }
2652 *stack_mask |= 1ull << spi;
b3b50f05 2653 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2654 if (*reg_mask & dreg)
b3b50f05 2655 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2656 * to access memory. It means backtracking
2657 * encountered a case of pointer subtraction.
2658 */
2659 return -ENOTSUPP;
2660 /* scalars can only be spilled into stack */
2661 if (insn->dst_reg != BPF_REG_FP)
2662 return 0;
b5dc0163
AS
2663 spi = (-insn->off - 1) / BPF_REG_SIZE;
2664 if (spi >= 64) {
2665 verbose(env, "BUG spi %d\n", spi);
2666 WARN_ONCE(1, "verifier backtracking bug");
2667 return -EFAULT;
2668 }
2669 if (!(*stack_mask & (1ull << spi)))
2670 return 0;
2671 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2672 if (class == BPF_STX)
2673 *reg_mask |= sreg;
b5dc0163
AS
2674 } else if (class == BPF_JMP || class == BPF_JMP32) {
2675 if (opcode == BPF_CALL) {
2676 if (insn->src_reg == BPF_PSEUDO_CALL)
2677 return -ENOTSUPP;
be2ef816
AN
2678 /* BPF helpers that invoke callback subprogs are
2679 * equivalent to BPF_PSEUDO_CALL above
2680 */
2681 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2682 return -ENOTSUPP;
b5dc0163
AS
2683 /* regular helper call sets R0 */
2684 *reg_mask &= ~1;
2685 if (*reg_mask & 0x3f) {
2686 /* if backtracing was looking for registers R1-R5
2687 * they should have been found already.
2688 */
2689 verbose(env, "BUG regs %x\n", *reg_mask);
2690 WARN_ONCE(1, "verifier backtracking bug");
2691 return -EFAULT;
2692 }
2693 } else if (opcode == BPF_EXIT) {
2694 return -ENOTSUPP;
2695 }
2696 } else if (class == BPF_LD) {
2697 if (!(*reg_mask & dreg))
2698 return 0;
2699 *reg_mask &= ~dreg;
2700 /* It's ld_imm64 or ld_abs or ld_ind.
2701 * For ld_imm64 no further tracking of precision
2702 * into parent is necessary
2703 */
2704 if (mode == BPF_IND || mode == BPF_ABS)
2705 /* to be analyzed */
2706 return -ENOTSUPP;
b5dc0163
AS
2707 }
2708 return 0;
2709}
2710
2711/* the scalar precision tracking algorithm:
2712 * . at the start all registers have precise=false.
2713 * . scalar ranges are tracked as normal through alu and jmp insns.
2714 * . once precise value of the scalar register is used in:
2715 * . ptr + scalar alu
2716 * . if (scalar cond K|scalar)
2717 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2718 * backtrack through the verifier states and mark all registers and
2719 * stack slots with spilled constants that these scalar regisers
2720 * should be precise.
2721 * . during state pruning two registers (or spilled stack slots)
2722 * are equivalent if both are not precise.
2723 *
2724 * Note the verifier cannot simply walk register parentage chain,
2725 * since many different registers and stack slots could have been
2726 * used to compute single precise scalar.
2727 *
2728 * The approach of starting with precise=true for all registers and then
2729 * backtrack to mark a register as not precise when the verifier detects
2730 * that program doesn't care about specific value (e.g., when helper
2731 * takes register as ARG_ANYTHING parameter) is not safe.
2732 *
2733 * It's ok to walk single parentage chain of the verifier states.
2734 * It's possible that this backtracking will go all the way till 1st insn.
2735 * All other branches will be explored for needing precision later.
2736 *
2737 * The backtracking needs to deal with cases like:
2738 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2739 * r9 -= r8
2740 * r5 = r9
2741 * if r5 > 0x79f goto pc+7
2742 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2743 * r5 += 1
2744 * ...
2745 * call bpf_perf_event_output#25
2746 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2747 *
2748 * and this case:
2749 * r6 = 1
2750 * call foo // uses callee's r6 inside to compute r0
2751 * r0 += r6
2752 * if r0 == 0 goto
2753 *
2754 * to track above reg_mask/stack_mask needs to be independent for each frame.
2755 *
2756 * Also if parent's curframe > frame where backtracking started,
2757 * the verifier need to mark registers in both frames, otherwise callees
2758 * may incorrectly prune callers. This is similar to
2759 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2760 *
2761 * For now backtracking falls back into conservative marking.
2762 */
2763static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2764 struct bpf_verifier_state *st)
2765{
2766 struct bpf_func_state *func;
2767 struct bpf_reg_state *reg;
2768 int i, j;
2769
2770 /* big hammer: mark all scalars precise in this path.
2771 * pop_stack may still get !precise scalars.
f63181b6
AN
2772 * We also skip current state and go straight to first parent state,
2773 * because precision markings in current non-checkpointed state are
2774 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 2775 */
f63181b6 2776 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
2777 for (i = 0; i <= st->curframe; i++) {
2778 func = st->frame[i];
2779 for (j = 0; j < BPF_REG_FP; j++) {
2780 reg = &func->regs[j];
2781 if (reg->type != SCALAR_VALUE)
2782 continue;
2783 reg->precise = true;
2784 }
2785 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2786 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2787 continue;
2788 reg = &func->stack[j].spilled_ptr;
2789 if (reg->type != SCALAR_VALUE)
2790 continue;
2791 reg->precise = true;
2792 }
2793 }
f63181b6 2794 }
b5dc0163
AS
2795}
2796
7a830b53
AN
2797static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2798{
2799 struct bpf_func_state *func;
2800 struct bpf_reg_state *reg;
2801 int i, j;
2802
2803 for (i = 0; i <= st->curframe; i++) {
2804 func = st->frame[i];
2805 for (j = 0; j < BPF_REG_FP; j++) {
2806 reg = &func->regs[j];
2807 if (reg->type != SCALAR_VALUE)
2808 continue;
2809 reg->precise = false;
2810 }
2811 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2812 if (!is_spilled_reg(&func->stack[j]))
2813 continue;
2814 reg = &func->stack[j].spilled_ptr;
2815 if (reg->type != SCALAR_VALUE)
2816 continue;
2817 reg->precise = false;
2818 }
2819 }
2820}
2821
f63181b6
AN
2822/*
2823 * __mark_chain_precision() backtracks BPF program instruction sequence and
2824 * chain of verifier states making sure that register *regno* (if regno >= 0)
2825 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2826 * SCALARS, as well as any other registers and slots that contribute to
2827 * a tracked state of given registers/stack slots, depending on specific BPF
2828 * assembly instructions (see backtrack_insns() for exact instruction handling
2829 * logic). This backtracking relies on recorded jmp_history and is able to
2830 * traverse entire chain of parent states. This process ends only when all the
2831 * necessary registers/slots and their transitive dependencies are marked as
2832 * precise.
2833 *
2834 * One important and subtle aspect is that precise marks *do not matter* in
2835 * the currently verified state (current state). It is important to understand
2836 * why this is the case.
2837 *
2838 * First, note that current state is the state that is not yet "checkpointed",
2839 * i.e., it is not yet put into env->explored_states, and it has no children
2840 * states as well. It's ephemeral, and can end up either a) being discarded if
2841 * compatible explored state is found at some point or BPF_EXIT instruction is
2842 * reached or b) checkpointed and put into env->explored_states, branching out
2843 * into one or more children states.
2844 *
2845 * In the former case, precise markings in current state are completely
2846 * ignored by state comparison code (see regsafe() for details). Only
2847 * checkpointed ("old") state precise markings are important, and if old
2848 * state's register/slot is precise, regsafe() assumes current state's
2849 * register/slot as precise and checks value ranges exactly and precisely. If
2850 * states turn out to be compatible, current state's necessary precise
2851 * markings and any required parent states' precise markings are enforced
2852 * after the fact with propagate_precision() logic, after the fact. But it's
2853 * important to realize that in this case, even after marking current state
2854 * registers/slots as precise, we immediately discard current state. So what
2855 * actually matters is any of the precise markings propagated into current
2856 * state's parent states, which are always checkpointed (due to b) case above).
2857 * As such, for scenario a) it doesn't matter if current state has precise
2858 * markings set or not.
2859 *
2860 * Now, for the scenario b), checkpointing and forking into child(ren)
2861 * state(s). Note that before current state gets to checkpointing step, any
2862 * processed instruction always assumes precise SCALAR register/slot
2863 * knowledge: if precise value or range is useful to prune jump branch, BPF
2864 * verifier takes this opportunity enthusiastically. Similarly, when
2865 * register's value is used to calculate offset or memory address, exact
2866 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2867 * what we mentioned above about state comparison ignoring precise markings
2868 * during state comparison, BPF verifier ignores and also assumes precise
2869 * markings *at will* during instruction verification process. But as verifier
2870 * assumes precision, it also propagates any precision dependencies across
2871 * parent states, which are not yet finalized, so can be further restricted
2872 * based on new knowledge gained from restrictions enforced by their children
2873 * states. This is so that once those parent states are finalized, i.e., when
2874 * they have no more active children state, state comparison logic in
2875 * is_state_visited() would enforce strict and precise SCALAR ranges, if
2876 * required for correctness.
2877 *
2878 * To build a bit more intuition, note also that once a state is checkpointed,
2879 * the path we took to get to that state is not important. This is crucial
2880 * property for state pruning. When state is checkpointed and finalized at
2881 * some instruction index, it can be correctly and safely used to "short
2882 * circuit" any *compatible* state that reaches exactly the same instruction
2883 * index. I.e., if we jumped to that instruction from a completely different
2884 * code path than original finalized state was derived from, it doesn't
2885 * matter, current state can be discarded because from that instruction
2886 * forward having a compatible state will ensure we will safely reach the
2887 * exit. States describe preconditions for further exploration, but completely
2888 * forget the history of how we got here.
2889 *
2890 * This also means that even if we needed precise SCALAR range to get to
2891 * finalized state, but from that point forward *that same* SCALAR register is
2892 * never used in a precise context (i.e., it's precise value is not needed for
2893 * correctness), it's correct and safe to mark such register as "imprecise"
2894 * (i.e., precise marking set to false). This is what we rely on when we do
2895 * not set precise marking in current state. If no child state requires
2896 * precision for any given SCALAR register, it's safe to dictate that it can
2897 * be imprecise. If any child state does require this register to be precise,
2898 * we'll mark it precise later retroactively during precise markings
2899 * propagation from child state to parent states.
7a830b53
AN
2900 *
2901 * Skipping precise marking setting in current state is a mild version of
2902 * relying on the above observation. But we can utilize this property even
2903 * more aggressively by proactively forgetting any precise marking in the
2904 * current state (which we inherited from the parent state), right before we
2905 * checkpoint it and branch off into new child state. This is done by
2906 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2907 * finalized states which help in short circuiting more future states.
f63181b6 2908 */
529409ea 2909static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
a3ce685d 2910 int spi)
b5dc0163
AS
2911{
2912 struct bpf_verifier_state *st = env->cur_state;
2913 int first_idx = st->first_insn_idx;
2914 int last_idx = env->insn_idx;
2915 struct bpf_func_state *func;
2916 struct bpf_reg_state *reg;
a3ce685d
AS
2917 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2918 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2919 bool skip_first = true;
a3ce685d 2920 bool new_marks = false;
b5dc0163
AS
2921 int i, err;
2922
2c78ee89 2923 if (!env->bpf_capable)
b5dc0163
AS
2924 return 0;
2925
f63181b6
AN
2926 /* Do sanity checks against current state of register and/or stack
2927 * slot, but don't set precise flag in current state, as precision
2928 * tracking in the current state is unnecessary.
2929 */
529409ea 2930 func = st->frame[frame];
a3ce685d
AS
2931 if (regno >= 0) {
2932 reg = &func->regs[regno];
2933 if (reg->type != SCALAR_VALUE) {
2934 WARN_ONCE(1, "backtracing misuse");
2935 return -EFAULT;
2936 }
f63181b6 2937 new_marks = true;
b5dc0163 2938 }
b5dc0163 2939
a3ce685d 2940 while (spi >= 0) {
27113c59 2941 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2942 stack_mask = 0;
2943 break;
2944 }
2945 reg = &func->stack[spi].spilled_ptr;
2946 if (reg->type != SCALAR_VALUE) {
2947 stack_mask = 0;
2948 break;
2949 }
f63181b6 2950 new_marks = true;
a3ce685d
AS
2951 break;
2952 }
2953
2954 if (!new_marks)
2955 return 0;
2956 if (!reg_mask && !stack_mask)
2957 return 0;
be2ef816 2958
b5dc0163
AS
2959 for (;;) {
2960 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2961 u32 history = st->jmp_history_cnt;
2962
496f3324 2963 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163 2964 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
be2ef816
AN
2965
2966 if (last_idx < 0) {
2967 /* we are at the entry into subprog, which
2968 * is expected for global funcs, but only if
2969 * requested precise registers are R1-R5
2970 * (which are global func's input arguments)
2971 */
2972 if (st->curframe == 0 &&
2973 st->frame[0]->subprogno > 0 &&
2974 st->frame[0]->callsite == BPF_MAIN_FUNC &&
2975 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2976 bitmap_from_u64(mask, reg_mask);
2977 for_each_set_bit(i, mask, 32) {
2978 reg = &st->frame[0]->regs[i];
2979 if (reg->type != SCALAR_VALUE) {
2980 reg_mask &= ~(1u << i);
2981 continue;
2982 }
2983 reg->precise = true;
2984 }
2985 return 0;
2986 }
2987
2988 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
2989 st->frame[0]->subprogno, reg_mask, stack_mask);
2990 WARN_ONCE(1, "verifier backtracking bug");
2991 return -EFAULT;
2992 }
2993
b5dc0163
AS
2994 for (i = last_idx;;) {
2995 if (skip_first) {
2996 err = 0;
2997 skip_first = false;
2998 } else {
2999 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3000 }
3001 if (err == -ENOTSUPP) {
3002 mark_all_scalars_precise(env, st);
3003 return 0;
3004 } else if (err) {
3005 return err;
3006 }
3007 if (!reg_mask && !stack_mask)
3008 /* Found assignment(s) into tracked register in this state.
3009 * Since this state is already marked, just return.
3010 * Nothing to be tracked further in the parent state.
3011 */
3012 return 0;
3013 if (i == first_idx)
3014 break;
3015 i = get_prev_insn_idx(st, i, &history);
3016 if (i >= env->prog->len) {
3017 /* This can happen if backtracking reached insn 0
3018 * and there are still reg_mask or stack_mask
3019 * to backtrack.
3020 * It means the backtracking missed the spot where
3021 * particular register was initialized with a constant.
3022 */
3023 verbose(env, "BUG backtracking idx %d\n", i);
3024 WARN_ONCE(1, "verifier backtracking bug");
3025 return -EFAULT;
3026 }
3027 }
3028 st = st->parent;
3029 if (!st)
3030 break;
3031
a3ce685d 3032 new_marks = false;
529409ea 3033 func = st->frame[frame];
b5dc0163
AS
3034 bitmap_from_u64(mask, reg_mask);
3035 for_each_set_bit(i, mask, 32) {
3036 reg = &func->regs[i];
a3ce685d
AS
3037 if (reg->type != SCALAR_VALUE) {
3038 reg_mask &= ~(1u << i);
b5dc0163 3039 continue;
a3ce685d 3040 }
b5dc0163
AS
3041 if (!reg->precise)
3042 new_marks = true;
3043 reg->precise = true;
3044 }
3045
3046 bitmap_from_u64(mask, stack_mask);
3047 for_each_set_bit(i, mask, 64) {
3048 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
3049 /* the sequence of instructions:
3050 * 2: (bf) r3 = r10
3051 * 3: (7b) *(u64 *)(r3 -8) = r0
3052 * 4: (79) r4 = *(u64 *)(r10 -8)
3053 * doesn't contain jmps. It's backtracked
3054 * as a single block.
3055 * During backtracking insn 3 is not recognized as
3056 * stack access, so at the end of backtracking
3057 * stack slot fp-8 is still marked in stack_mask.
3058 * However the parent state may not have accessed
3059 * fp-8 and it's "unallocated" stack space.
3060 * In such case fallback to conservative.
b5dc0163 3061 */
2339cd6c
AS
3062 mark_all_scalars_precise(env, st);
3063 return 0;
b5dc0163
AS
3064 }
3065
27113c59 3066 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 3067 stack_mask &= ~(1ull << i);
b5dc0163 3068 continue;
a3ce685d 3069 }
b5dc0163 3070 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
3071 if (reg->type != SCALAR_VALUE) {
3072 stack_mask &= ~(1ull << i);
b5dc0163 3073 continue;
a3ce685d 3074 }
b5dc0163
AS
3075 if (!reg->precise)
3076 new_marks = true;
3077 reg->precise = true;
3078 }
496f3324 3079 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 3080 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
3081 new_marks ? "didn't have" : "already had",
3082 reg_mask, stack_mask);
2e576648 3083 print_verifier_state(env, func, true);
b5dc0163
AS
3084 }
3085
a3ce685d
AS
3086 if (!reg_mask && !stack_mask)
3087 break;
b5dc0163
AS
3088 if (!new_marks)
3089 break;
3090
3091 last_idx = st->last_insn_idx;
3092 first_idx = st->first_insn_idx;
3093 }
3094 return 0;
3095}
3096
eb1f7f71 3097int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 3098{
529409ea 3099 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
a3ce685d
AS
3100}
3101
529409ea 3102static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
a3ce685d 3103{
529409ea 3104 return __mark_chain_precision(env, frame, regno, -1);
a3ce685d
AS
3105}
3106
529409ea 3107static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
a3ce685d 3108{
529409ea 3109 return __mark_chain_precision(env, frame, -1, spi);
a3ce685d 3110}
b5dc0163 3111
1be7f75d
AS
3112static bool is_spillable_regtype(enum bpf_reg_type type)
3113{
c25b2ae1 3114 switch (base_type(type)) {
1be7f75d 3115 case PTR_TO_MAP_VALUE:
1be7f75d
AS
3116 case PTR_TO_STACK:
3117 case PTR_TO_CTX:
969bf05e 3118 case PTR_TO_PACKET:
de8f3a83 3119 case PTR_TO_PACKET_META:
969bf05e 3120 case PTR_TO_PACKET_END:
d58e468b 3121 case PTR_TO_FLOW_KEYS:
1be7f75d 3122 case CONST_PTR_TO_MAP:
c64b7983 3123 case PTR_TO_SOCKET:
46f8bc92 3124 case PTR_TO_SOCK_COMMON:
655a51e5 3125 case PTR_TO_TCP_SOCK:
fada7fdc 3126 case PTR_TO_XDP_SOCK:
65726b5b 3127 case PTR_TO_BTF_ID:
20b2aff4 3128 case PTR_TO_BUF:
744ea4e3 3129 case PTR_TO_MEM:
69c087ba
YS
3130 case PTR_TO_FUNC:
3131 case PTR_TO_MAP_KEY:
1be7f75d
AS
3132 return true;
3133 default:
3134 return false;
3135 }
3136}
3137
cc2b14d5
AS
3138/* Does this register contain a constant zero? */
3139static bool register_is_null(struct bpf_reg_state *reg)
3140{
3141 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3142}
3143
f7cf25b2
AS
3144static bool register_is_const(struct bpf_reg_state *reg)
3145{
3146 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3147}
3148
5689d49b
YS
3149static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3150{
3151 return tnum_is_unknown(reg->var_off) &&
3152 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3153 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3154 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3155 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3156}
3157
3158static bool register_is_bounded(struct bpf_reg_state *reg)
3159{
3160 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3161}
3162
6e7e63cb
JH
3163static bool __is_pointer_value(bool allow_ptr_leaks,
3164 const struct bpf_reg_state *reg)
3165{
3166 if (allow_ptr_leaks)
3167 return false;
3168
3169 return reg->type != SCALAR_VALUE;
3170}
3171
f7cf25b2 3172static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
3173 int spi, struct bpf_reg_state *reg,
3174 int size)
f7cf25b2
AS
3175{
3176 int i;
3177
3178 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
3179 if (size == BPF_REG_SIZE)
3180 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3181
354e8f19
MKL
3182 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3183 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3184
354e8f19
MKL
3185 /* size < 8 bytes spill */
3186 for (; i; i--)
3187 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3188}
3189
01f810ac 3190/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3191 * stack boundary and alignment are checked in check_mem_access()
3192 */
01f810ac
AM
3193static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3194 /* stack frame we're writing to */
3195 struct bpf_func_state *state,
3196 int off, int size, int value_regno,
3197 int insn_idx)
17a52670 3198{
f4d7e40a 3199 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3200 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 3201 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 3202 struct bpf_reg_state *reg = NULL;
638f5b90 3203
c69431aa 3204 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3205 if (err)
3206 return err;
9c399760
AS
3207 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3208 * so it's aligned access and [off, off + size) are within stack limits
3209 */
638f5b90
AS
3210 if (!env->allow_ptr_leaks &&
3211 state->stack[spi].slot_type[0] == STACK_SPILL &&
3212 size != BPF_REG_SIZE) {
3213 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3214 return -EACCES;
3215 }
17a52670 3216
f4d7e40a 3217 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3218 if (value_regno >= 0)
3219 reg = &cur->regs[value_regno];
2039f26f
DB
3220 if (!env->bypass_spec_v4) {
3221 bool sanitize = reg && is_spillable_regtype(reg->type);
3222
3223 for (i = 0; i < size; i++) {
3224 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3225 sanitize = true;
3226 break;
3227 }
3228 }
3229
3230 if (sanitize)
3231 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3232 }
17a52670 3233
0f55f9ed 3234 mark_stack_slot_scratched(env, spi);
354e8f19 3235 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3236 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3237 if (dst_reg != BPF_REG_FP) {
3238 /* The backtracking logic can only recognize explicit
3239 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3240 * scalar via different register has to be conservative.
b5dc0163
AS
3241 * Backtrack from here and mark all registers as precise
3242 * that contributed into 'reg' being a constant.
3243 */
3244 err = mark_chain_precision(env, value_regno);
3245 if (err)
3246 return err;
3247 }
354e8f19 3248 save_register_state(state, spi, reg, size);
f7cf25b2 3249 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3250 /* register containing pointer is being spilled into stack */
9c399760 3251 if (size != BPF_REG_SIZE) {
f7cf25b2 3252 verbose_linfo(env, insn_idx, "; ");
61bd5218 3253 verbose(env, "invalid size of register spill\n");
17a52670
AS
3254 return -EACCES;
3255 }
f7cf25b2 3256 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3257 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3258 return -EINVAL;
3259 }
354e8f19 3260 save_register_state(state, spi, reg, size);
9c399760 3261 } else {
cc2b14d5
AS
3262 u8 type = STACK_MISC;
3263
679c782d
EC
3264 /* regular write of data into stack destroys any spilled ptr */
3265 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 3266 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 3267 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 3268 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3269 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3270
cc2b14d5
AS
3271 /* only mark the slot as written if all 8 bytes were written
3272 * otherwise read propagation may incorrectly stop too soon
3273 * when stack slots are partially written.
3274 * This heuristic means that read propagation will be
3275 * conservative, since it will add reg_live_read marks
3276 * to stack slots all the way to first state when programs
3277 * writes+reads less than 8 bytes
3278 */
3279 if (size == BPF_REG_SIZE)
3280 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3281
3282 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
3283 if (reg && register_is_null(reg)) {
3284 /* backtracking doesn't work for STACK_ZERO yet. */
3285 err = mark_chain_precision(env, value_regno);
3286 if (err)
3287 return err;
cc2b14d5 3288 type = STACK_ZERO;
b5dc0163 3289 }
cc2b14d5 3290
0bae2d4d 3291 /* Mark slots affected by this stack write. */
9c399760 3292 for (i = 0; i < size; i++)
638f5b90 3293 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3294 type;
17a52670
AS
3295 }
3296 return 0;
3297}
3298
01f810ac
AM
3299/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3300 * known to contain a variable offset.
3301 * This function checks whether the write is permitted and conservatively
3302 * tracks the effects of the write, considering that each stack slot in the
3303 * dynamic range is potentially written to.
3304 *
3305 * 'off' includes 'regno->off'.
3306 * 'value_regno' can be -1, meaning that an unknown value is being written to
3307 * the stack.
3308 *
3309 * Spilled pointers in range are not marked as written because we don't know
3310 * what's going to be actually written. This means that read propagation for
3311 * future reads cannot be terminated by this write.
3312 *
3313 * For privileged programs, uninitialized stack slots are considered
3314 * initialized by this write (even though we don't know exactly what offsets
3315 * are going to be written to). The idea is that we don't want the verifier to
3316 * reject future reads that access slots written to through variable offsets.
3317 */
3318static int check_stack_write_var_off(struct bpf_verifier_env *env,
3319 /* func where register points to */
3320 struct bpf_func_state *state,
3321 int ptr_regno, int off, int size,
3322 int value_regno, int insn_idx)
3323{
3324 struct bpf_func_state *cur; /* state of the current function */
3325 int min_off, max_off;
3326 int i, err;
3327 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3328 bool writing_zero = false;
3329 /* set if the fact that we're writing a zero is used to let any
3330 * stack slots remain STACK_ZERO
3331 */
3332 bool zero_used = false;
3333
3334 cur = env->cur_state->frame[env->cur_state->curframe];
3335 ptr_reg = &cur->regs[ptr_regno];
3336 min_off = ptr_reg->smin_value + off;
3337 max_off = ptr_reg->smax_value + off + size;
3338 if (value_regno >= 0)
3339 value_reg = &cur->regs[value_regno];
3340 if (value_reg && register_is_null(value_reg))
3341 writing_zero = true;
3342
c69431aa 3343 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3344 if (err)
3345 return err;
3346
3347
3348 /* Variable offset writes destroy any spilled pointers in range. */
3349 for (i = min_off; i < max_off; i++) {
3350 u8 new_type, *stype;
3351 int slot, spi;
3352
3353 slot = -i - 1;
3354 spi = slot / BPF_REG_SIZE;
3355 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 3356 mark_stack_slot_scratched(env, spi);
01f810ac 3357
f5e477a8
KKD
3358 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3359 /* Reject the write if range we may write to has not
3360 * been initialized beforehand. If we didn't reject
3361 * here, the ptr status would be erased below (even
3362 * though not all slots are actually overwritten),
3363 * possibly opening the door to leaks.
3364 *
3365 * We do however catch STACK_INVALID case below, and
3366 * only allow reading possibly uninitialized memory
3367 * later for CAP_PERFMON, as the write may not happen to
3368 * that slot.
01f810ac
AM
3369 */
3370 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3371 insn_idx, i);
3372 return -EINVAL;
3373 }
3374
3375 /* Erase all spilled pointers. */
3376 state->stack[spi].spilled_ptr.type = NOT_INIT;
3377
3378 /* Update the slot type. */
3379 new_type = STACK_MISC;
3380 if (writing_zero && *stype == STACK_ZERO) {
3381 new_type = STACK_ZERO;
3382 zero_used = true;
3383 }
3384 /* If the slot is STACK_INVALID, we check whether it's OK to
3385 * pretend that it will be initialized by this write. The slot
3386 * might not actually be written to, and so if we mark it as
3387 * initialized future reads might leak uninitialized memory.
3388 * For privileged programs, we will accept such reads to slots
3389 * that may or may not be written because, if we're reject
3390 * them, the error would be too confusing.
3391 */
3392 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3393 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3394 insn_idx, i);
3395 return -EINVAL;
3396 }
3397 *stype = new_type;
3398 }
3399 if (zero_used) {
3400 /* backtracking doesn't work for STACK_ZERO yet. */
3401 err = mark_chain_precision(env, value_regno);
3402 if (err)
3403 return err;
3404 }
3405 return 0;
3406}
3407
3408/* When register 'dst_regno' is assigned some values from stack[min_off,
3409 * max_off), we set the register's type according to the types of the
3410 * respective stack slots. If all the stack values are known to be zeros, then
3411 * so is the destination reg. Otherwise, the register is considered to be
3412 * SCALAR. This function does not deal with register filling; the caller must
3413 * ensure that all spilled registers in the stack range have been marked as
3414 * read.
3415 */
3416static void mark_reg_stack_read(struct bpf_verifier_env *env,
3417 /* func where src register points to */
3418 struct bpf_func_state *ptr_state,
3419 int min_off, int max_off, int dst_regno)
3420{
3421 struct bpf_verifier_state *vstate = env->cur_state;
3422 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3423 int i, slot, spi;
3424 u8 *stype;
3425 int zeros = 0;
3426
3427 for (i = min_off; i < max_off; i++) {
3428 slot = -i - 1;
3429 spi = slot / BPF_REG_SIZE;
3430 stype = ptr_state->stack[spi].slot_type;
3431 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3432 break;
3433 zeros++;
3434 }
3435 if (zeros == max_off - min_off) {
3436 /* any access_size read into register is zero extended,
3437 * so the whole register == const_zero
3438 */
3439 __mark_reg_const_zero(&state->regs[dst_regno]);
3440 /* backtracking doesn't support STACK_ZERO yet,
3441 * so mark it precise here, so that later
3442 * backtracking can stop here.
3443 * Backtracking may not need this if this register
3444 * doesn't participate in pointer adjustment.
3445 * Forward propagation of precise flag is not
3446 * necessary either. This mark is only to stop
3447 * backtracking. Any register that contributed
3448 * to const 0 was marked precise before spill.
3449 */
3450 state->regs[dst_regno].precise = true;
3451 } else {
3452 /* have read misc data from the stack */
3453 mark_reg_unknown(env, state->regs, dst_regno);
3454 }
3455 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3456}
3457
3458/* Read the stack at 'off' and put the results into the register indicated by
3459 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3460 * spilled reg.
3461 *
3462 * 'dst_regno' can be -1, meaning that the read value is not going to a
3463 * register.
3464 *
3465 * The access is assumed to be within the current stack bounds.
3466 */
3467static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3468 /* func where src register points to */
3469 struct bpf_func_state *reg_state,
3470 int off, int size, int dst_regno)
17a52670 3471{
f4d7e40a
AS
3472 struct bpf_verifier_state *vstate = env->cur_state;
3473 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3474 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3475 struct bpf_reg_state *reg;
354e8f19 3476 u8 *stype, type;
17a52670 3477
f4d7e40a 3478 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3479 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3480
27113c59 3481 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3482 u8 spill_size = 1;
3483
3484 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3485 spill_size++;
354e8f19 3486
f30d4968 3487 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3488 if (reg->type != SCALAR_VALUE) {
3489 verbose_linfo(env, env->insn_idx, "; ");
3490 verbose(env, "invalid size of register fill\n");
3491 return -EACCES;
3492 }
354e8f19
MKL
3493
3494 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3495 if (dst_regno < 0)
3496 return 0;
3497
f30d4968 3498 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3499 /* The earlier check_reg_arg() has decided the
3500 * subreg_def for this insn. Save it first.
3501 */
3502 s32 subreg_def = state->regs[dst_regno].subreg_def;
3503
3504 state->regs[dst_regno] = *reg;
3505 state->regs[dst_regno].subreg_def = subreg_def;
3506 } else {
3507 for (i = 0; i < size; i++) {
3508 type = stype[(slot - i) % BPF_REG_SIZE];
3509 if (type == STACK_SPILL)
3510 continue;
3511 if (type == STACK_MISC)
3512 continue;
3513 verbose(env, "invalid read from stack off %d+%d size %d\n",
3514 off, i, size);
3515 return -EACCES;
3516 }
01f810ac 3517 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3518 }
354e8f19 3519 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3520 return 0;
17a52670 3521 }
17a52670 3522
01f810ac 3523 if (dst_regno >= 0) {
17a52670 3524 /* restore register state from stack */
01f810ac 3525 state->regs[dst_regno] = *reg;
2f18f62e
AS
3526 /* mark reg as written since spilled pointer state likely
3527 * has its liveness marks cleared by is_state_visited()
3528 * which resets stack/reg liveness for state transitions
3529 */
01f810ac 3530 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3531 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3532 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3533 * it is acceptable to use this value as a SCALAR_VALUE
3534 * (e.g. for XADD).
3535 * We must not allow unprivileged callers to do that
3536 * with spilled pointers.
3537 */
3538 verbose(env, "leaking pointer from stack off %d\n",
3539 off);
3540 return -EACCES;
dc503a8a 3541 }
f7cf25b2 3542 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3543 } else {
3544 for (i = 0; i < size; i++) {
01f810ac
AM
3545 type = stype[(slot - i) % BPF_REG_SIZE];
3546 if (type == STACK_MISC)
cc2b14d5 3547 continue;
01f810ac 3548 if (type == STACK_ZERO)
cc2b14d5 3549 continue;
cc2b14d5
AS
3550 verbose(env, "invalid read from stack off %d+%d size %d\n",
3551 off, i, size);
3552 return -EACCES;
3553 }
f7cf25b2 3554 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3555 if (dst_regno >= 0)
3556 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3557 }
f7cf25b2 3558 return 0;
17a52670
AS
3559}
3560
61df10c7 3561enum bpf_access_src {
01f810ac
AM
3562 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3563 ACCESS_HELPER = 2, /* the access is performed by a helper */
3564};
3565
3566static int check_stack_range_initialized(struct bpf_verifier_env *env,
3567 int regno, int off, int access_size,
3568 bool zero_size_allowed,
61df10c7 3569 enum bpf_access_src type,
01f810ac
AM
3570 struct bpf_call_arg_meta *meta);
3571
3572static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3573{
3574 return cur_regs(env) + regno;
3575}
3576
3577/* Read the stack at 'ptr_regno + off' and put the result into the register
3578 * 'dst_regno'.
3579 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3580 * but not its variable offset.
3581 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3582 *
3583 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3584 * filling registers (i.e. reads of spilled register cannot be detected when
3585 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3586 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3587 * offset; for a fixed offset check_stack_read_fixed_off should be used
3588 * instead.
3589 */
3590static int check_stack_read_var_off(struct bpf_verifier_env *env,
3591 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3592{
01f810ac
AM
3593 /* The state of the source register. */
3594 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3595 struct bpf_func_state *ptr_state = func(env, reg);
3596 int err;
3597 int min_off, max_off;
3598
3599 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3600 */
01f810ac
AM
3601 err = check_stack_range_initialized(env, ptr_regno, off, size,
3602 false, ACCESS_DIRECT, NULL);
3603 if (err)
3604 return err;
3605
3606 min_off = reg->smin_value + off;
3607 max_off = reg->smax_value + off;
3608 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3609 return 0;
3610}
3611
3612/* check_stack_read dispatches to check_stack_read_fixed_off or
3613 * check_stack_read_var_off.
3614 *
3615 * The caller must ensure that the offset falls within the allocated stack
3616 * bounds.
3617 *
3618 * 'dst_regno' is a register which will receive the value from the stack. It
3619 * can be -1, meaning that the read value is not going to a register.
3620 */
3621static int check_stack_read(struct bpf_verifier_env *env,
3622 int ptr_regno, int off, int size,
3623 int dst_regno)
3624{
3625 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3626 struct bpf_func_state *state = func(env, reg);
3627 int err;
3628 /* Some accesses are only permitted with a static offset. */
3629 bool var_off = !tnum_is_const(reg->var_off);
3630
3631 /* The offset is required to be static when reads don't go to a
3632 * register, in order to not leak pointers (see
3633 * check_stack_read_fixed_off).
3634 */
3635 if (dst_regno < 0 && var_off) {
e4298d25
DB
3636 char tn_buf[48];
3637
3638 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3639 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3640 tn_buf, off, size);
3641 return -EACCES;
3642 }
01f810ac
AM
3643 /* Variable offset is prohibited for unprivileged mode for simplicity
3644 * since it requires corresponding support in Spectre masking for stack
3645 * ALU. See also retrieve_ptr_limit().
3646 */
3647 if (!env->bypass_spec_v1 && var_off) {
3648 char tn_buf[48];
e4298d25 3649
01f810ac
AM
3650 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3651 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3652 ptr_regno, tn_buf);
e4298d25
DB
3653 return -EACCES;
3654 }
3655
01f810ac
AM
3656 if (!var_off) {
3657 off += reg->var_off.value;
3658 err = check_stack_read_fixed_off(env, state, off, size,
3659 dst_regno);
3660 } else {
3661 /* Variable offset stack reads need more conservative handling
3662 * than fixed offset ones. Note that dst_regno >= 0 on this
3663 * branch.
3664 */
3665 err = check_stack_read_var_off(env, ptr_regno, off, size,
3666 dst_regno);
3667 }
3668 return err;
3669}
3670
3671
3672/* check_stack_write dispatches to check_stack_write_fixed_off or
3673 * check_stack_write_var_off.
3674 *
3675 * 'ptr_regno' is the register used as a pointer into the stack.
3676 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3677 * 'value_regno' is the register whose value we're writing to the stack. It can
3678 * be -1, meaning that we're not writing from a register.
3679 *
3680 * The caller must ensure that the offset falls within the maximum stack size.
3681 */
3682static int check_stack_write(struct bpf_verifier_env *env,
3683 int ptr_regno, int off, int size,
3684 int value_regno, int insn_idx)
3685{
3686 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3687 struct bpf_func_state *state = func(env, reg);
3688 int err;
3689
3690 if (tnum_is_const(reg->var_off)) {
3691 off += reg->var_off.value;
3692 err = check_stack_write_fixed_off(env, state, off, size,
3693 value_regno, insn_idx);
3694 } else {
3695 /* Variable offset stack reads need more conservative handling
3696 * than fixed offset ones.
3697 */
3698 err = check_stack_write_var_off(env, state,
3699 ptr_regno, off, size,
3700 value_regno, insn_idx);
3701 }
3702 return err;
e4298d25
DB
3703}
3704
591fe988
DB
3705static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3706 int off, int size, enum bpf_access_type type)
3707{
3708 struct bpf_reg_state *regs = cur_regs(env);
3709 struct bpf_map *map = regs[regno].map_ptr;
3710 u32 cap = bpf_map_flags_to_cap(map);
3711
3712 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3713 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3714 map->value_size, off, size);
3715 return -EACCES;
3716 }
3717
3718 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3719 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3720 map->value_size, off, size);
3721 return -EACCES;
3722 }
3723
3724 return 0;
3725}
3726
457f4436
AN
3727/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3728static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3729 int off, int size, u32 mem_size,
3730 bool zero_size_allowed)
17a52670 3731{
457f4436
AN
3732 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3733 struct bpf_reg_state *reg;
3734
3735 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3736 return 0;
17a52670 3737
457f4436
AN
3738 reg = &cur_regs(env)[regno];
3739 switch (reg->type) {
69c087ba
YS
3740 case PTR_TO_MAP_KEY:
3741 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3742 mem_size, off, size);
3743 break;
457f4436 3744 case PTR_TO_MAP_VALUE:
61bd5218 3745 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3746 mem_size, off, size);
3747 break;
3748 case PTR_TO_PACKET:
3749 case PTR_TO_PACKET_META:
3750 case PTR_TO_PACKET_END:
3751 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3752 off, size, regno, reg->id, off, mem_size);
3753 break;
3754 case PTR_TO_MEM:
3755 default:
3756 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3757 mem_size, off, size);
17a52670 3758 }
457f4436
AN
3759
3760 return -EACCES;
17a52670
AS
3761}
3762
457f4436
AN
3763/* check read/write into a memory region with possible variable offset */
3764static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3765 int off, int size, u32 mem_size,
3766 bool zero_size_allowed)
dbcfe5f7 3767{
f4d7e40a
AS
3768 struct bpf_verifier_state *vstate = env->cur_state;
3769 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3770 struct bpf_reg_state *reg = &state->regs[regno];
3771 int err;
3772
457f4436 3773 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3774 * need to try adding each of min_value and max_value to off
3775 * to make sure our theoretical access will be safe.
2e576648
CL
3776 *
3777 * The minimum value is only important with signed
dbcfe5f7
GB
3778 * comparisons where we can't assume the floor of a
3779 * value is 0. If we are using signed variables for our
3780 * index'es we need to make sure that whatever we use
3781 * will have a set floor within our range.
3782 */
b7137c4e
DB
3783 if (reg->smin_value < 0 &&
3784 (reg->smin_value == S64_MIN ||
3785 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3786 reg->smin_value + off < 0)) {
61bd5218 3787 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3788 regno);
3789 return -EACCES;
3790 }
457f4436
AN
3791 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3792 mem_size, zero_size_allowed);
dbcfe5f7 3793 if (err) {
457f4436 3794 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3795 regno);
dbcfe5f7
GB
3796 return err;
3797 }
3798
b03c9f9f
EC
3799 /* If we haven't set a max value then we need to bail since we can't be
3800 * sure we won't do bad things.
3801 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3802 */
b03c9f9f 3803 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3804 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3805 regno);
3806 return -EACCES;
3807 }
457f4436
AN
3808 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3809 mem_size, zero_size_allowed);
3810 if (err) {
3811 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3812 regno);
457f4436
AN
3813 return err;
3814 }
3815
3816 return 0;
3817}
d83525ca 3818
e9147b44
KKD
3819static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3820 const struct bpf_reg_state *reg, int regno,
3821 bool fixed_off_ok)
3822{
3823 /* Access to this pointer-typed register or passing it to a helper
3824 * is only allowed in its original, unmodified form.
3825 */
3826
3827 if (reg->off < 0) {
3828 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3829 reg_type_str(env, reg->type), regno, reg->off);
3830 return -EACCES;
3831 }
3832
3833 if (!fixed_off_ok && reg->off) {
3834 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3835 reg_type_str(env, reg->type), regno, reg->off);
3836 return -EACCES;
3837 }
3838
3839 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3840 char tn_buf[48];
3841
3842 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3843 verbose(env, "variable %s access var_off=%s disallowed\n",
3844 reg_type_str(env, reg->type), tn_buf);
3845 return -EACCES;
3846 }
3847
3848 return 0;
3849}
3850
3851int check_ptr_off_reg(struct bpf_verifier_env *env,
3852 const struct bpf_reg_state *reg, int regno)
3853{
3854 return __check_ptr_off_reg(env, reg, regno, false);
3855}
3856
61df10c7 3857static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 3858 struct btf_field *kptr_field,
61df10c7
KKD
3859 struct bpf_reg_state *reg, u32 regno)
3860{
aa3496ac 3861 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
6efe152d 3862 int perm_flags = PTR_MAYBE_NULL;
61df10c7
KKD
3863 const char *reg_name = "";
3864
6efe152d 3865 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 3866 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3867 perm_flags |= PTR_UNTRUSTED;
3868
3869 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
3870 goto bad_type;
3871
3872 if (!btf_is_kernel(reg->btf)) {
3873 verbose(env, "R%d must point to kernel BTF\n", regno);
3874 return -EINVAL;
3875 }
3876 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
3877 reg_name = kernel_type_name(reg->btf, reg->btf_id);
3878
c0a5a21c
KKD
3879 /* For ref_ptr case, release function check should ensure we get one
3880 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3881 * normal store of unreferenced kptr, we must ensure var_off is zero.
3882 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3883 * reg->off and reg->ref_obj_id are not needed here.
3884 */
61df10c7
KKD
3885 if (__check_ptr_off_reg(env, reg, regno, true))
3886 return -EACCES;
3887
3888 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
3889 * we also need to take into account the reg->off.
3890 *
3891 * We want to support cases like:
3892 *
3893 * struct foo {
3894 * struct bar br;
3895 * struct baz bz;
3896 * };
3897 *
3898 * struct foo *v;
3899 * v = func(); // PTR_TO_BTF_ID
3900 * val->foo = v; // reg->off is zero, btf and btf_id match type
3901 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3902 * // first member type of struct after comparison fails
3903 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3904 * // to match type
3905 *
3906 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
3907 * is zero. We must also ensure that btf_struct_ids_match does not walk
3908 * the struct to match type against first member of struct, i.e. reject
3909 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3910 * strict mode to true for type match.
61df10c7
KKD
3911 */
3912 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
3913 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3914 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
3915 goto bad_type;
3916 return 0;
3917bad_type:
3918 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3919 reg_type_str(env, reg->type), reg_name);
6efe152d 3920 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 3921 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3922 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3923 targ_name);
3924 else
3925 verbose(env, "\n");
61df10c7
KKD
3926 return -EINVAL;
3927}
3928
3929static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3930 int value_regno, int insn_idx,
aa3496ac 3931 struct btf_field *kptr_field)
61df10c7
KKD
3932{
3933 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3934 int class = BPF_CLASS(insn->code);
3935 struct bpf_reg_state *val_reg;
3936
3937 /* Things we already checked for in check_map_access and caller:
3938 * - Reject cases where variable offset may touch kptr
3939 * - size of access (must be BPF_DW)
3940 * - tnum_is_const(reg->var_off)
aa3496ac 3941 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
3942 */
3943 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3944 if (BPF_MODE(insn->code) != BPF_MEM) {
3945 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3946 return -EACCES;
3947 }
3948
6efe152d
KKD
3949 /* We only allow loading referenced kptr, since it will be marked as
3950 * untrusted, similar to unreferenced kptr.
3951 */
aa3496ac 3952 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 3953 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
3954 return -EACCES;
3955 }
3956
61df10c7
KKD
3957 if (class == BPF_LDX) {
3958 val_reg = reg_state(env, value_regno);
3959 /* We can simply mark the value_regno receiving the pointer
3960 * value from map as PTR_TO_BTF_ID, with the correct type.
3961 */
aa3496ac
KKD
3962 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
3963 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
3964 /* For mark_ptr_or_null_reg */
3965 val_reg->id = ++env->id_gen;
3966 } else if (class == BPF_STX) {
3967 val_reg = reg_state(env, value_regno);
3968 if (!register_is_null(val_reg) &&
aa3496ac 3969 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
3970 return -EACCES;
3971 } else if (class == BPF_ST) {
3972 if (insn->imm) {
3973 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 3974 kptr_field->offset);
61df10c7
KKD
3975 return -EACCES;
3976 }
3977 } else {
3978 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3979 return -EACCES;
3980 }
3981 return 0;
3982}
3983
457f4436
AN
3984/* check read/write into a map element with possible variable offset */
3985static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
3986 int off, int size, bool zero_size_allowed,
3987 enum bpf_access_src src)
457f4436
AN
3988{
3989 struct bpf_verifier_state *vstate = env->cur_state;
3990 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3991 struct bpf_reg_state *reg = &state->regs[regno];
3992 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
3993 struct btf_record *rec;
3994 int err, i;
457f4436
AN
3995
3996 err = check_mem_region_access(env, regno, off, size, map->value_size,
3997 zero_size_allowed);
3998 if (err)
3999 return err;
4000
aa3496ac
KKD
4001 if (IS_ERR_OR_NULL(map->record))
4002 return 0;
4003 rec = map->record;
4004 for (i = 0; i < rec->cnt; i++) {
4005 struct btf_field *field = &rec->fields[i];
4006 u32 p = field->offset;
d83525ca 4007
db559117
KKD
4008 /* If any part of a field can be touched by load/store, reject
4009 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
4010 * it is sufficient to check x1 < y2 && y1 < x2.
4011 */
aa3496ac
KKD
4012 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4013 p < reg->umax_value + off + size) {
4014 switch (field->type) {
4015 case BPF_KPTR_UNREF:
4016 case BPF_KPTR_REF:
61df10c7
KKD
4017 if (src != ACCESS_DIRECT) {
4018 verbose(env, "kptr cannot be accessed indirectly by helper\n");
4019 return -EACCES;
4020 }
4021 if (!tnum_is_const(reg->var_off)) {
4022 verbose(env, "kptr access cannot have variable offset\n");
4023 return -EACCES;
4024 }
4025 if (p != off + reg->var_off.value) {
4026 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4027 p, off + reg->var_off.value);
4028 return -EACCES;
4029 }
4030 if (size != bpf_size_to_bytes(BPF_DW)) {
4031 verbose(env, "kptr access size must be BPF_DW\n");
4032 return -EACCES;
4033 }
4034 break;
aa3496ac 4035 default:
db559117
KKD
4036 verbose(env, "%s cannot be accessed directly by load/store\n",
4037 btf_field_type_name(field->type));
aa3496ac 4038 return -EACCES;
61df10c7
KKD
4039 }
4040 }
4041 }
aa3496ac 4042 return 0;
dbcfe5f7
GB
4043}
4044
969bf05e
AS
4045#define MAX_PACKET_OFF 0xffff
4046
58e2af8b 4047static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
4048 const struct bpf_call_arg_meta *meta,
4049 enum bpf_access_type t)
4acf6c0b 4050{
7e40781c
UP
4051 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4052
4053 switch (prog_type) {
5d66fa7d 4054 /* Program types only with direct read access go here! */
3a0af8fd
TG
4055 case BPF_PROG_TYPE_LWT_IN:
4056 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 4057 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 4058 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 4059 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 4060 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
4061 if (t == BPF_WRITE)
4062 return false;
8731745e 4063 fallthrough;
5d66fa7d
DB
4064
4065 /* Program types with direct read + write access go here! */
36bbef52
DB
4066 case BPF_PROG_TYPE_SCHED_CLS:
4067 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 4068 case BPF_PROG_TYPE_XDP:
3a0af8fd 4069 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 4070 case BPF_PROG_TYPE_SK_SKB:
4f738adb 4071 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
4072 if (meta)
4073 return meta->pkt_access;
4074
4075 env->seen_direct_write = true;
4acf6c0b 4076 return true;
0d01da6a
SF
4077
4078 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4079 if (t == BPF_WRITE)
4080 env->seen_direct_write = true;
4081
4082 return true;
4083
4acf6c0b
BB
4084 default:
4085 return false;
4086 }
4087}
4088
f1174f77 4089static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 4090 int size, bool zero_size_allowed)
f1174f77 4091{
638f5b90 4092 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
4093 struct bpf_reg_state *reg = &regs[regno];
4094 int err;
4095
4096 /* We may have added a variable offset to the packet pointer; but any
4097 * reg->range we have comes after that. We are only checking the fixed
4098 * offset.
4099 */
4100
4101 /* We don't allow negative numbers, because we aren't tracking enough
4102 * detail to prove they're safe.
4103 */
b03c9f9f 4104 if (reg->smin_value < 0) {
61bd5218 4105 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
4106 regno);
4107 return -EACCES;
4108 }
6d94e741
AS
4109
4110 err = reg->range < 0 ? -EINVAL :
4111 __check_mem_access(env, regno, off, size, reg->range,
457f4436 4112 zero_size_allowed);
f1174f77 4113 if (err) {
61bd5218 4114 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
4115 return err;
4116 }
e647815a 4117
457f4436 4118 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
4119 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4120 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 4121 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
4122 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4123 */
4124 env->prog->aux->max_pkt_offset =
4125 max_t(u32, env->prog->aux->max_pkt_offset,
4126 off + reg->umax_value + size - 1);
4127
f1174f77
EC
4128 return err;
4129}
4130
4131/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 4132static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 4133 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 4134 struct btf **btf, u32 *btf_id)
17a52670 4135{
f96da094
DB
4136 struct bpf_insn_access_aux info = {
4137 .reg_type = *reg_type,
9e15db66 4138 .log = &env->log,
f96da094 4139 };
31fd8581 4140
4f9218aa 4141 if (env->ops->is_valid_access &&
5e43f899 4142 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
4143 /* A non zero info.ctx_field_size indicates that this field is a
4144 * candidate for later verifier transformation to load the whole
4145 * field and then apply a mask when accessed with a narrower
4146 * access than actual ctx access size. A zero info.ctx_field_size
4147 * will only allow for whole field access and rejects any other
4148 * type of narrower access.
31fd8581 4149 */
23994631 4150 *reg_type = info.reg_type;
31fd8581 4151
c25b2ae1 4152 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4153 *btf = info.btf;
9e15db66 4154 *btf_id = info.btf_id;
22dc4a0f 4155 } else {
9e15db66 4156 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 4157 }
32bbe007
AS
4158 /* remember the offset of last byte accessed in ctx */
4159 if (env->prog->aux->max_ctx_offset < off + size)
4160 env->prog->aux->max_ctx_offset = off + size;
17a52670 4161 return 0;
32bbe007 4162 }
17a52670 4163
61bd5218 4164 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
4165 return -EACCES;
4166}
4167
d58e468b
PP
4168static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4169 int size)
4170{
4171 if (size < 0 || off < 0 ||
4172 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4173 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4174 off, size);
4175 return -EACCES;
4176 }
4177 return 0;
4178}
4179
5f456649
MKL
4180static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4181 u32 regno, int off, int size,
4182 enum bpf_access_type t)
c64b7983
JS
4183{
4184 struct bpf_reg_state *regs = cur_regs(env);
4185 struct bpf_reg_state *reg = &regs[regno];
5f456649 4186 struct bpf_insn_access_aux info = {};
46f8bc92 4187 bool valid;
c64b7983
JS
4188
4189 if (reg->smin_value < 0) {
4190 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4191 regno);
4192 return -EACCES;
4193 }
4194
46f8bc92
MKL
4195 switch (reg->type) {
4196 case PTR_TO_SOCK_COMMON:
4197 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4198 break;
4199 case PTR_TO_SOCKET:
4200 valid = bpf_sock_is_valid_access(off, size, t, &info);
4201 break;
655a51e5
MKL
4202 case PTR_TO_TCP_SOCK:
4203 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4204 break;
fada7fdc
JL
4205 case PTR_TO_XDP_SOCK:
4206 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4207 break;
46f8bc92
MKL
4208 default:
4209 valid = false;
c64b7983
JS
4210 }
4211
5f456649 4212
46f8bc92
MKL
4213 if (valid) {
4214 env->insn_aux_data[insn_idx].ctx_field_size =
4215 info.ctx_field_size;
4216 return 0;
4217 }
4218
4219 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4220 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4221
4222 return -EACCES;
c64b7983
JS
4223}
4224
4cabc5b1
DB
4225static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4226{
2a159c6f 4227 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4228}
4229
f37a8cb8
DB
4230static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4231{
2a159c6f 4232 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4233
46f8bc92
MKL
4234 return reg->type == PTR_TO_CTX;
4235}
4236
4237static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4238{
4239 const struct bpf_reg_state *reg = reg_state(env, regno);
4240
4241 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4242}
4243
ca369602
DB
4244static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4245{
2a159c6f 4246 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4247
4248 return type_is_pkt_pointer(reg->type);
4249}
4250
4b5defde
DB
4251static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4252{
4253 const struct bpf_reg_state *reg = reg_state(env, regno);
4254
4255 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4256 return reg->type == PTR_TO_FLOW_KEYS;
4257}
4258
61bd5218
JK
4259static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4260 const struct bpf_reg_state *reg,
d1174416 4261 int off, int size, bool strict)
969bf05e 4262{
f1174f77 4263 struct tnum reg_off;
e07b98d9 4264 int ip_align;
d1174416
DM
4265
4266 /* Byte size accesses are always allowed. */
4267 if (!strict || size == 1)
4268 return 0;
4269
e4eda884
DM
4270 /* For platforms that do not have a Kconfig enabling
4271 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4272 * NET_IP_ALIGN is universally set to '2'. And on platforms
4273 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4274 * to this code only in strict mode where we want to emulate
4275 * the NET_IP_ALIGN==2 checking. Therefore use an
4276 * unconditional IP align value of '2'.
e07b98d9 4277 */
e4eda884 4278 ip_align = 2;
f1174f77
EC
4279
4280 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4281 if (!tnum_is_aligned(reg_off, size)) {
4282 char tn_buf[48];
4283
4284 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
4285 verbose(env,
4286 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 4287 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
4288 return -EACCES;
4289 }
79adffcd 4290
969bf05e
AS
4291 return 0;
4292}
4293
61bd5218
JK
4294static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4295 const struct bpf_reg_state *reg,
f1174f77
EC
4296 const char *pointer_desc,
4297 int off, int size, bool strict)
79adffcd 4298{
f1174f77
EC
4299 struct tnum reg_off;
4300
4301 /* Byte size accesses are always allowed. */
4302 if (!strict || size == 1)
4303 return 0;
4304
4305 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4306 if (!tnum_is_aligned(reg_off, size)) {
4307 char tn_buf[48];
4308
4309 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4310 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 4311 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
4312 return -EACCES;
4313 }
4314
969bf05e
AS
4315 return 0;
4316}
4317
e07b98d9 4318static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
4319 const struct bpf_reg_state *reg, int off,
4320 int size, bool strict_alignment_once)
79adffcd 4321{
ca369602 4322 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 4323 const char *pointer_desc = "";
d1174416 4324
79adffcd
DB
4325 switch (reg->type) {
4326 case PTR_TO_PACKET:
de8f3a83
DB
4327 case PTR_TO_PACKET_META:
4328 /* Special case, because of NET_IP_ALIGN. Given metadata sits
4329 * right in front, treat it the very same way.
4330 */
61bd5218 4331 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
4332 case PTR_TO_FLOW_KEYS:
4333 pointer_desc = "flow keys ";
4334 break;
69c087ba
YS
4335 case PTR_TO_MAP_KEY:
4336 pointer_desc = "key ";
4337 break;
f1174f77
EC
4338 case PTR_TO_MAP_VALUE:
4339 pointer_desc = "value ";
4340 break;
4341 case PTR_TO_CTX:
4342 pointer_desc = "context ";
4343 break;
4344 case PTR_TO_STACK:
4345 pointer_desc = "stack ";
01f810ac
AM
4346 /* The stack spill tracking logic in check_stack_write_fixed_off()
4347 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
4348 * aligned.
4349 */
4350 strict = true;
f1174f77 4351 break;
c64b7983
JS
4352 case PTR_TO_SOCKET:
4353 pointer_desc = "sock ";
4354 break;
46f8bc92
MKL
4355 case PTR_TO_SOCK_COMMON:
4356 pointer_desc = "sock_common ";
4357 break;
655a51e5
MKL
4358 case PTR_TO_TCP_SOCK:
4359 pointer_desc = "tcp_sock ";
4360 break;
fada7fdc
JL
4361 case PTR_TO_XDP_SOCK:
4362 pointer_desc = "xdp_sock ";
4363 break;
79adffcd 4364 default:
f1174f77 4365 break;
79adffcd 4366 }
61bd5218
JK
4367 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4368 strict);
79adffcd
DB
4369}
4370
f4d7e40a
AS
4371static int update_stack_depth(struct bpf_verifier_env *env,
4372 const struct bpf_func_state *func,
4373 int off)
4374{
9c8105bd 4375 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
4376
4377 if (stack >= -off)
4378 return 0;
4379
4380 /* update known max for given subprogram */
9c8105bd 4381 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
4382 return 0;
4383}
f4d7e40a 4384
70a87ffe
AS
4385/* starting from main bpf function walk all instructions of the function
4386 * and recursively walk all callees that given function can call.
4387 * Ignore jump and exit insns.
4388 * Since recursion is prevented by check_cfg() this algorithm
4389 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4390 */
4391static int check_max_stack_depth(struct bpf_verifier_env *env)
4392{
9c8105bd
JW
4393 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4394 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 4395 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 4396 bool tail_call_reachable = false;
70a87ffe
AS
4397 int ret_insn[MAX_CALL_FRAMES];
4398 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 4399 int j;
f4d7e40a 4400
70a87ffe 4401process_func:
7f6e4312
MF
4402 /* protect against potential stack overflow that might happen when
4403 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4404 * depth for such case down to 256 so that the worst case scenario
4405 * would result in 8k stack size (32 which is tailcall limit * 256 =
4406 * 8k).
4407 *
4408 * To get the idea what might happen, see an example:
4409 * func1 -> sub rsp, 128
4410 * subfunc1 -> sub rsp, 256
4411 * tailcall1 -> add rsp, 256
4412 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4413 * subfunc2 -> sub rsp, 64
4414 * subfunc22 -> sub rsp, 128
4415 * tailcall2 -> add rsp, 128
4416 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4417 *
4418 * tailcall will unwind the current stack frame but it will not get rid
4419 * of caller's stack as shown on the example above.
4420 */
4421 if (idx && subprog[idx].has_tail_call && depth >= 256) {
4422 verbose(env,
4423 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4424 depth);
4425 return -EACCES;
4426 }
70a87ffe
AS
4427 /* round up to 32-bytes, since this is granularity
4428 * of interpreter stack size
4429 */
9c8105bd 4430 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 4431 if (depth > MAX_BPF_STACK) {
f4d7e40a 4432 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 4433 frame + 1, depth);
f4d7e40a
AS
4434 return -EACCES;
4435 }
70a87ffe 4436continue_func:
4cb3d99c 4437 subprog_end = subprog[idx + 1].start;
70a87ffe 4438 for (; i < subprog_end; i++) {
7ddc80a4
AS
4439 int next_insn;
4440
69c087ba 4441 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
4442 continue;
4443 /* remember insn and function to return to */
4444 ret_insn[frame] = i + 1;
9c8105bd 4445 ret_prog[frame] = idx;
70a87ffe
AS
4446
4447 /* find the callee */
7ddc80a4
AS
4448 next_insn = i + insn[i].imm + 1;
4449 idx = find_subprog(env, next_insn);
9c8105bd 4450 if (idx < 0) {
70a87ffe 4451 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 4452 next_insn);
70a87ffe
AS
4453 return -EFAULT;
4454 }
7ddc80a4
AS
4455 if (subprog[idx].is_async_cb) {
4456 if (subprog[idx].has_tail_call) {
4457 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4458 return -EFAULT;
4459 }
4460 /* async callbacks don't increase bpf prog stack size */
4461 continue;
4462 }
4463 i = next_insn;
ebf7d1f5
MF
4464
4465 if (subprog[idx].has_tail_call)
4466 tail_call_reachable = true;
4467
70a87ffe
AS
4468 frame++;
4469 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
4470 verbose(env, "the call stack of %d frames is too deep !\n",
4471 frame);
4472 return -E2BIG;
70a87ffe
AS
4473 }
4474 goto process_func;
4475 }
ebf7d1f5
MF
4476 /* if tail call got detected across bpf2bpf calls then mark each of the
4477 * currently present subprog frames as tail call reachable subprogs;
4478 * this info will be utilized by JIT so that we will be preserving the
4479 * tail call counter throughout bpf2bpf calls combined with tailcalls
4480 */
4481 if (tail_call_reachable)
4482 for (j = 0; j < frame; j++)
4483 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
4484 if (subprog[0].tail_call_reachable)
4485 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 4486
70a87ffe
AS
4487 /* end of for() loop means the last insn of the 'subprog'
4488 * was reached. Doesn't matter whether it was JA or EXIT
4489 */
4490 if (frame == 0)
4491 return 0;
9c8105bd 4492 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
4493 frame--;
4494 i = ret_insn[frame];
9c8105bd 4495 idx = ret_prog[frame];
70a87ffe 4496 goto continue_func;
f4d7e40a
AS
4497}
4498
19d28fbd 4499#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
4500static int get_callee_stack_depth(struct bpf_verifier_env *env,
4501 const struct bpf_insn *insn, int idx)
4502{
4503 int start = idx + insn->imm + 1, subprog;
4504
4505 subprog = find_subprog(env, start);
4506 if (subprog < 0) {
4507 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4508 start);
4509 return -EFAULT;
4510 }
9c8105bd 4511 return env->subprog_info[subprog].stack_depth;
1ea47e01 4512}
19d28fbd 4513#endif
1ea47e01 4514
afbf21dc
YS
4515static int __check_buffer_access(struct bpf_verifier_env *env,
4516 const char *buf_info,
4517 const struct bpf_reg_state *reg,
4518 int regno, int off, int size)
9df1c28b
MM
4519{
4520 if (off < 0) {
4521 verbose(env,
4fc00b79 4522 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 4523 regno, buf_info, off, size);
9df1c28b
MM
4524 return -EACCES;
4525 }
4526 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4527 char tn_buf[48];
4528
4529 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4530 verbose(env,
4fc00b79 4531 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
4532 regno, off, tn_buf);
4533 return -EACCES;
4534 }
afbf21dc
YS
4535
4536 return 0;
4537}
4538
4539static int check_tp_buffer_access(struct bpf_verifier_env *env,
4540 const struct bpf_reg_state *reg,
4541 int regno, int off, int size)
4542{
4543 int err;
4544
4545 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4546 if (err)
4547 return err;
4548
9df1c28b
MM
4549 if (off + size > env->prog->aux->max_tp_access)
4550 env->prog->aux->max_tp_access = off + size;
4551
4552 return 0;
4553}
4554
afbf21dc
YS
4555static int check_buffer_access(struct bpf_verifier_env *env,
4556 const struct bpf_reg_state *reg,
4557 int regno, int off, int size,
4558 bool zero_size_allowed,
afbf21dc
YS
4559 u32 *max_access)
4560{
44e9a741 4561 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
4562 int err;
4563
4564 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4565 if (err)
4566 return err;
4567
4568 if (off + size > *max_access)
4569 *max_access = off + size;
4570
4571 return 0;
4572}
4573
3f50f132
JF
4574/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4575static void zext_32_to_64(struct bpf_reg_state *reg)
4576{
4577 reg->var_off = tnum_subreg(reg->var_off);
4578 __reg_assign_32_into_64(reg);
4579}
9df1c28b 4580
0c17d1d2
JH
4581/* truncate register to smaller size (in bytes)
4582 * must be called with size < BPF_REG_SIZE
4583 */
4584static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4585{
4586 u64 mask;
4587
4588 /* clear high bits in bit representation */
4589 reg->var_off = tnum_cast(reg->var_off, size);
4590
4591 /* fix arithmetic bounds */
4592 mask = ((u64)1 << (size * 8)) - 1;
4593 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4594 reg->umin_value &= mask;
4595 reg->umax_value &= mask;
4596 } else {
4597 reg->umin_value = 0;
4598 reg->umax_value = mask;
4599 }
4600 reg->smin_value = reg->umin_value;
4601 reg->smax_value = reg->umax_value;
3f50f132
JF
4602
4603 /* If size is smaller than 32bit register the 32bit register
4604 * values are also truncated so we push 64-bit bounds into
4605 * 32-bit bounds. Above were truncated < 32-bits already.
4606 */
4607 if (size >= 4)
4608 return;
4609 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4610}
4611
a23740ec
AN
4612static bool bpf_map_is_rdonly(const struct bpf_map *map)
4613{
353050be
DB
4614 /* A map is considered read-only if the following condition are true:
4615 *
4616 * 1) BPF program side cannot change any of the map content. The
4617 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4618 * and was set at map creation time.
4619 * 2) The map value(s) have been initialized from user space by a
4620 * loader and then "frozen", such that no new map update/delete
4621 * operations from syscall side are possible for the rest of
4622 * the map's lifetime from that point onwards.
4623 * 3) Any parallel/pending map update/delete operations from syscall
4624 * side have been completed. Only after that point, it's safe to
4625 * assume that map value(s) are immutable.
4626 */
4627 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4628 READ_ONCE(map->frozen) &&
4629 !bpf_map_write_active(map);
a23740ec
AN
4630}
4631
4632static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4633{
4634 void *ptr;
4635 u64 addr;
4636 int err;
4637
4638 err = map->ops->map_direct_value_addr(map, &addr, off);
4639 if (err)
4640 return err;
2dedd7d2 4641 ptr = (void *)(long)addr + off;
a23740ec
AN
4642
4643 switch (size) {
4644 case sizeof(u8):
4645 *val = (u64)*(u8 *)ptr;
4646 break;
4647 case sizeof(u16):
4648 *val = (u64)*(u16 *)ptr;
4649 break;
4650 case sizeof(u32):
4651 *val = (u64)*(u32 *)ptr;
4652 break;
4653 case sizeof(u64):
4654 *val = *(u64 *)ptr;
4655 break;
4656 default:
4657 return -EINVAL;
4658 }
4659 return 0;
4660}
4661
9e15db66
AS
4662static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4663 struct bpf_reg_state *regs,
4664 int regno, int off, int size,
4665 enum bpf_access_type atype,
4666 int value_regno)
4667{
4668 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4669 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4670 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 4671 enum bpf_type_flag flag = 0;
9e15db66
AS
4672 u32 btf_id;
4673 int ret;
4674
9e15db66
AS
4675 if (off < 0) {
4676 verbose(env,
4677 "R%d is ptr_%s invalid negative access: off=%d\n",
4678 regno, tname, off);
4679 return -EACCES;
4680 }
4681 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4682 char tn_buf[48];
4683
4684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4685 verbose(env,
4686 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4687 regno, tname, off, tn_buf);
4688 return -EACCES;
4689 }
4690
c6f1bfe8
YS
4691 if (reg->type & MEM_USER) {
4692 verbose(env,
4693 "R%d is ptr_%s access user memory: off=%d\n",
4694 regno, tname, off);
4695 return -EACCES;
4696 }
4697
5844101a
HL
4698 if (reg->type & MEM_PERCPU) {
4699 verbose(env,
4700 "R%d is ptr_%s access percpu memory: off=%d\n",
4701 regno, tname, off);
4702 return -EACCES;
4703 }
4704
282de143
KKD
4705 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4706 if (!btf_is_kernel(reg->btf)) {
4707 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4708 return -EFAULT;
4709 }
6728aea7 4710 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997 4711 } else {
282de143
KKD
4712 /* Writes are permitted with default btf_struct_access for
4713 * program allocated objects (which always have ref_obj_id > 0),
4714 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4715 */
4716 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
27ae7997
MKL
4717 verbose(env, "only read is supported\n");
4718 return -EACCES;
4719 }
4720
282de143
KKD
4721 if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4722 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4723 return -EFAULT;
4724 }
4725
6728aea7 4726 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997
MKL
4727 }
4728
9e15db66
AS
4729 if (ret < 0)
4730 return ret;
4731
6efe152d
KKD
4732 /* If this is an untrusted pointer, all pointers formed by walking it
4733 * also inherit the untrusted flag.
4734 */
4735 if (type_flag(reg->type) & PTR_UNTRUSTED)
4736 flag |= PTR_UNTRUSTED;
4737
41c48f3a 4738 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 4739 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
4740
4741 return 0;
4742}
4743
4744static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4745 struct bpf_reg_state *regs,
4746 int regno, int off, int size,
4747 enum bpf_access_type atype,
4748 int value_regno)
4749{
4750 struct bpf_reg_state *reg = regs + regno;
4751 struct bpf_map *map = reg->map_ptr;
6728aea7 4752 struct bpf_reg_state map_reg;
c6f1bfe8 4753 enum bpf_type_flag flag = 0;
41c48f3a
AI
4754 const struct btf_type *t;
4755 const char *tname;
4756 u32 btf_id;
4757 int ret;
4758
4759 if (!btf_vmlinux) {
4760 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4761 return -ENOTSUPP;
4762 }
4763
4764 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4765 verbose(env, "map_ptr access not supported for map type %d\n",
4766 map->map_type);
4767 return -ENOTSUPP;
4768 }
4769
4770 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4771 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4772
4773 if (!env->allow_ptr_to_map_access) {
4774 verbose(env,
4775 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4776 tname);
4777 return -EPERM;
9e15db66 4778 }
27ae7997 4779
41c48f3a
AI
4780 if (off < 0) {
4781 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4782 regno, tname, off);
4783 return -EACCES;
4784 }
4785
4786 if (atype != BPF_READ) {
4787 verbose(env, "only read from %s is supported\n", tname);
4788 return -EACCES;
4789 }
4790
6728aea7
KKD
4791 /* Simulate access to a PTR_TO_BTF_ID */
4792 memset(&map_reg, 0, sizeof(map_reg));
4793 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4794 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
41c48f3a
AI
4795 if (ret < 0)
4796 return ret;
4797
4798 if (value_regno >= 0)
c6f1bfe8 4799 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 4800
9e15db66
AS
4801 return 0;
4802}
4803
01f810ac
AM
4804/* Check that the stack access at the given offset is within bounds. The
4805 * maximum valid offset is -1.
4806 *
4807 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4808 * -state->allocated_stack for reads.
4809 */
4810static int check_stack_slot_within_bounds(int off,
4811 struct bpf_func_state *state,
4812 enum bpf_access_type t)
4813{
4814 int min_valid_off;
4815
4816 if (t == BPF_WRITE)
4817 min_valid_off = -MAX_BPF_STACK;
4818 else
4819 min_valid_off = -state->allocated_stack;
4820
4821 if (off < min_valid_off || off > -1)
4822 return -EACCES;
4823 return 0;
4824}
4825
4826/* Check that the stack access at 'regno + off' falls within the maximum stack
4827 * bounds.
4828 *
4829 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4830 */
4831static int check_stack_access_within_bounds(
4832 struct bpf_verifier_env *env,
4833 int regno, int off, int access_size,
61df10c7 4834 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
4835{
4836 struct bpf_reg_state *regs = cur_regs(env);
4837 struct bpf_reg_state *reg = regs + regno;
4838 struct bpf_func_state *state = func(env, reg);
4839 int min_off, max_off;
4840 int err;
4841 char *err_extra;
4842
4843 if (src == ACCESS_HELPER)
4844 /* We don't know if helpers are reading or writing (or both). */
4845 err_extra = " indirect access to";
4846 else if (type == BPF_READ)
4847 err_extra = " read from";
4848 else
4849 err_extra = " write to";
4850
4851 if (tnum_is_const(reg->var_off)) {
4852 min_off = reg->var_off.value + off;
4853 if (access_size > 0)
4854 max_off = min_off + access_size - 1;
4855 else
4856 max_off = min_off;
4857 } else {
4858 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4859 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4860 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4861 err_extra, regno);
4862 return -EACCES;
4863 }
4864 min_off = reg->smin_value + off;
4865 if (access_size > 0)
4866 max_off = reg->smax_value + off + access_size - 1;
4867 else
4868 max_off = min_off;
4869 }
4870
4871 err = check_stack_slot_within_bounds(min_off, state, type);
4872 if (!err)
4873 err = check_stack_slot_within_bounds(max_off, state, type);
4874
4875 if (err) {
4876 if (tnum_is_const(reg->var_off)) {
4877 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4878 err_extra, regno, off, access_size);
4879 } else {
4880 char tn_buf[48];
4881
4882 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4883 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4884 err_extra, regno, tn_buf, access_size);
4885 }
4886 }
4887 return err;
4888}
41c48f3a 4889
17a52670
AS
4890/* check whether memory at (regno + off) is accessible for t = (read | write)
4891 * if t==write, value_regno is a register which value is stored into memory
4892 * if t==read, value_regno is a register which will receive the value from memory
4893 * if t==write && value_regno==-1, some unknown value is stored into memory
4894 * if t==read && value_regno==-1, don't care what we read from memory
4895 */
ca369602
DB
4896static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4897 int off, int bpf_size, enum bpf_access_type t,
4898 int value_regno, bool strict_alignment_once)
17a52670 4899{
638f5b90
AS
4900 struct bpf_reg_state *regs = cur_regs(env);
4901 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4902 struct bpf_func_state *state;
17a52670
AS
4903 int size, err = 0;
4904
4905 size = bpf_size_to_bytes(bpf_size);
4906 if (size < 0)
4907 return size;
4908
f1174f77 4909 /* alignment checks will add in reg->off themselves */
ca369602 4910 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4911 if (err)
4912 return err;
17a52670 4913
f1174f77
EC
4914 /* for access checks, reg->off is just part of off */
4915 off += reg->off;
4916
69c087ba
YS
4917 if (reg->type == PTR_TO_MAP_KEY) {
4918 if (t == BPF_WRITE) {
4919 verbose(env, "write to change key R%d not allowed\n", regno);
4920 return -EACCES;
4921 }
4922
4923 err = check_mem_region_access(env, regno, off, size,
4924 reg->map_ptr->key_size, false);
4925 if (err)
4926 return err;
4927 if (value_regno >= 0)
4928 mark_reg_unknown(env, regs, value_regno);
4929 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 4930 struct btf_field *kptr_field = NULL;
61df10c7 4931
1be7f75d
AS
4932 if (t == BPF_WRITE && value_regno >= 0 &&
4933 is_pointer_value(env, value_regno)) {
61bd5218 4934 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4935 return -EACCES;
4936 }
591fe988
DB
4937 err = check_map_access_type(env, regno, off, size, t);
4938 if (err)
4939 return err;
61df10c7
KKD
4940 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4941 if (err)
4942 return err;
4943 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
4944 kptr_field = btf_record_find(reg->map_ptr->record,
4945 off + reg->var_off.value, BPF_KPTR);
4946 if (kptr_field) {
4947 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 4948 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
4949 struct bpf_map *map = reg->map_ptr;
4950
4951 /* if map is read-only, track its contents as scalars */
4952 if (tnum_is_const(reg->var_off) &&
4953 bpf_map_is_rdonly(map) &&
4954 map->ops->map_direct_value_addr) {
4955 int map_off = off + reg->var_off.value;
4956 u64 val = 0;
4957
4958 err = bpf_map_direct_read(map, map_off, size,
4959 &val);
4960 if (err)
4961 return err;
4962
4963 regs[value_regno].type = SCALAR_VALUE;
4964 __mark_reg_known(&regs[value_regno], val);
4965 } else {
4966 mark_reg_unknown(env, regs, value_regno);
4967 }
4968 }
34d3a78c
HL
4969 } else if (base_type(reg->type) == PTR_TO_MEM) {
4970 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4971
4972 if (type_may_be_null(reg->type)) {
4973 verbose(env, "R%d invalid mem access '%s'\n", regno,
4974 reg_type_str(env, reg->type));
4975 return -EACCES;
4976 }
4977
4978 if (t == BPF_WRITE && rdonly_mem) {
4979 verbose(env, "R%d cannot write into %s\n",
4980 regno, reg_type_str(env, reg->type));
4981 return -EACCES;
4982 }
4983
457f4436
AN
4984 if (t == BPF_WRITE && value_regno >= 0 &&
4985 is_pointer_value(env, value_regno)) {
4986 verbose(env, "R%d leaks addr into mem\n", value_regno);
4987 return -EACCES;
4988 }
34d3a78c 4989
457f4436
AN
4990 err = check_mem_region_access(env, regno, off, size,
4991 reg->mem_size, false);
34d3a78c 4992 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 4993 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4994 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4995 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4996 struct btf *btf = NULL;
9e15db66 4997 u32 btf_id = 0;
19de99f7 4998
1be7f75d
AS
4999 if (t == BPF_WRITE && value_regno >= 0 &&
5000 is_pointer_value(env, value_regno)) {
61bd5218 5001 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
5002 return -EACCES;
5003 }
f1174f77 5004
be80a1d3 5005 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
5006 if (err < 0)
5007 return err;
5008
c6f1bfe8
YS
5009 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5010 &btf_id);
9e15db66
AS
5011 if (err)
5012 verbose_linfo(env, insn_idx, "; ");
969bf05e 5013 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 5014 /* ctx access returns either a scalar, or a
de8f3a83
DB
5015 * PTR_TO_PACKET[_META,_END]. In the latter
5016 * case, we know the offset is zero.
f1174f77 5017 */
46f8bc92 5018 if (reg_type == SCALAR_VALUE) {
638f5b90 5019 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5020 } else {
638f5b90 5021 mark_reg_known_zero(env, regs,
61bd5218 5022 value_regno);
c25b2ae1 5023 if (type_may_be_null(reg_type))
46f8bc92 5024 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
5025 /* A load of ctx field could have different
5026 * actual load size with the one encoded in the
5027 * insn. When the dst is PTR, it is for sure not
5028 * a sub-register.
5029 */
5030 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 5031 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5032 regs[value_regno].btf = btf;
9e15db66 5033 regs[value_regno].btf_id = btf_id;
22dc4a0f 5034 }
46f8bc92 5035 }
638f5b90 5036 regs[value_regno].type = reg_type;
969bf05e 5037 }
17a52670 5038
f1174f77 5039 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
5040 /* Basic bounds checks. */
5041 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
5042 if (err)
5043 return err;
8726679a 5044
f4d7e40a
AS
5045 state = func(env, reg);
5046 err = update_stack_depth(env, state, off);
5047 if (err)
5048 return err;
8726679a 5049
01f810ac
AM
5050 if (t == BPF_READ)
5051 err = check_stack_read(env, regno, off, size,
61bd5218 5052 value_regno);
01f810ac
AM
5053 else
5054 err = check_stack_write(env, regno, off, size,
5055 value_regno, insn_idx);
de8f3a83 5056 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 5057 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 5058 verbose(env, "cannot write into packet\n");
969bf05e
AS
5059 return -EACCES;
5060 }
4acf6c0b
BB
5061 if (t == BPF_WRITE && value_regno >= 0 &&
5062 is_pointer_value(env, value_regno)) {
61bd5218
JK
5063 verbose(env, "R%d leaks addr into packet\n",
5064 value_regno);
4acf6c0b
BB
5065 return -EACCES;
5066 }
9fd29c08 5067 err = check_packet_access(env, regno, off, size, false);
969bf05e 5068 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 5069 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
5070 } else if (reg->type == PTR_TO_FLOW_KEYS) {
5071 if (t == BPF_WRITE && value_regno >= 0 &&
5072 is_pointer_value(env, value_regno)) {
5073 verbose(env, "R%d leaks addr into flow keys\n",
5074 value_regno);
5075 return -EACCES;
5076 }
5077
5078 err = check_flow_keys_access(env, off, size);
5079 if (!err && t == BPF_READ && value_regno >= 0)
5080 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5081 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 5082 if (t == BPF_WRITE) {
46f8bc92 5083 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 5084 regno, reg_type_str(env, reg->type));
c64b7983
JS
5085 return -EACCES;
5086 }
5f456649 5087 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
5088 if (!err && value_regno >= 0)
5089 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
5090 } else if (reg->type == PTR_TO_TP_BUFFER) {
5091 err = check_tp_buffer_access(env, reg, regno, off, size);
5092 if (!err && t == BPF_READ && value_regno >= 0)
5093 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
5094 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5095 !type_may_be_null(reg->type)) {
9e15db66
AS
5096 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5097 value_regno);
41c48f3a
AI
5098 } else if (reg->type == CONST_PTR_TO_MAP) {
5099 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5100 value_regno);
20b2aff4
HL
5101 } else if (base_type(reg->type) == PTR_TO_BUF) {
5102 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
5103 u32 *max_access;
5104
5105 if (rdonly_mem) {
5106 if (t == BPF_WRITE) {
5107 verbose(env, "R%d cannot write into %s\n",
5108 regno, reg_type_str(env, reg->type));
5109 return -EACCES;
5110 }
20b2aff4
HL
5111 max_access = &env->prog->aux->max_rdonly_access;
5112 } else {
20b2aff4 5113 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 5114 }
20b2aff4 5115
f6dfbe31 5116 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 5117 max_access);
20b2aff4
HL
5118
5119 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 5120 mark_reg_unknown(env, regs, value_regno);
17a52670 5121 } else {
61bd5218 5122 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 5123 reg_type_str(env, reg->type));
17a52670
AS
5124 return -EACCES;
5125 }
969bf05e 5126
f1174f77 5127 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 5128 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 5129 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 5130 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 5131 }
17a52670
AS
5132 return err;
5133}
5134
91c960b0 5135static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 5136{
5ffa2550 5137 int load_reg;
17a52670
AS
5138 int err;
5139
5ca419f2
BJ
5140 switch (insn->imm) {
5141 case BPF_ADD:
5142 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
5143 case BPF_AND:
5144 case BPF_AND | BPF_FETCH:
5145 case BPF_OR:
5146 case BPF_OR | BPF_FETCH:
5147 case BPF_XOR:
5148 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
5149 case BPF_XCHG:
5150 case BPF_CMPXCHG:
5ca419f2
BJ
5151 break;
5152 default:
91c960b0
BJ
5153 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5154 return -EINVAL;
5155 }
5156
5157 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5158 verbose(env, "invalid atomic operand size\n");
17a52670
AS
5159 return -EINVAL;
5160 }
5161
5162 /* check src1 operand */
dc503a8a 5163 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5164 if (err)
5165 return err;
5166
5167 /* check src2 operand */
dc503a8a 5168 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5169 if (err)
5170 return err;
5171
5ffa2550
BJ
5172 if (insn->imm == BPF_CMPXCHG) {
5173 /* Check comparison of R0 with memory location */
a82fe085
DB
5174 const u32 aux_reg = BPF_REG_0;
5175
5176 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
5177 if (err)
5178 return err;
a82fe085
DB
5179
5180 if (is_pointer_value(env, aux_reg)) {
5181 verbose(env, "R%d leaks addr into mem\n", aux_reg);
5182 return -EACCES;
5183 }
5ffa2550
BJ
5184 }
5185
6bdf6abc 5186 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5187 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
5188 return -EACCES;
5189 }
5190
ca369602 5191 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 5192 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
5193 is_flow_key_reg(env, insn->dst_reg) ||
5194 is_sk_reg(env, insn->dst_reg)) {
91c960b0 5195 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 5196 insn->dst_reg,
c25b2ae1 5197 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
5198 return -EACCES;
5199 }
5200
37086bfd
BJ
5201 if (insn->imm & BPF_FETCH) {
5202 if (insn->imm == BPF_CMPXCHG)
5203 load_reg = BPF_REG_0;
5204 else
5205 load_reg = insn->src_reg;
5206
5207 /* check and record load of old value */
5208 err = check_reg_arg(env, load_reg, DST_OP);
5209 if (err)
5210 return err;
5211 } else {
5212 /* This instruction accesses a memory location but doesn't
5213 * actually load it into a register.
5214 */
5215 load_reg = -1;
5216 }
5217
7d3baf0a
DB
5218 /* Check whether we can read the memory, with second call for fetch
5219 * case to simulate the register fill.
5220 */
31fd8581 5221 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
5222 BPF_SIZE(insn->code), BPF_READ, -1, true);
5223 if (!err && load_reg >= 0)
5224 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5225 BPF_SIZE(insn->code), BPF_READ, load_reg,
5226 true);
17a52670
AS
5227 if (err)
5228 return err;
5229
7d3baf0a 5230 /* Check whether we can write into the same memory. */
5ca419f2
BJ
5231 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5232 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5233 if (err)
5234 return err;
5235
5ca419f2 5236 return 0;
17a52670
AS
5237}
5238
01f810ac
AM
5239/* When register 'regno' is used to read the stack (either directly or through
5240 * a helper function) make sure that it's within stack boundary and, depending
5241 * on the access type, that all elements of the stack are initialized.
5242 *
5243 * 'off' includes 'regno->off', but not its dynamic part (if any).
5244 *
5245 * All registers that have been spilled on the stack in the slots within the
5246 * read offsets are marked as read.
5247 */
5248static int check_stack_range_initialized(
5249 struct bpf_verifier_env *env, int regno, int off,
5250 int access_size, bool zero_size_allowed,
61df10c7 5251 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
5252{
5253 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
5254 struct bpf_func_state *state = func(env, reg);
5255 int err, min_off, max_off, i, j, slot, spi;
5256 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5257 enum bpf_access_type bounds_check_type;
5258 /* Some accesses can write anything into the stack, others are
5259 * read-only.
5260 */
5261 bool clobber = false;
2011fccf 5262
01f810ac
AM
5263 if (access_size == 0 && !zero_size_allowed) {
5264 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
5265 return -EACCES;
5266 }
2011fccf 5267
01f810ac
AM
5268 if (type == ACCESS_HELPER) {
5269 /* The bounds checks for writes are more permissive than for
5270 * reads. However, if raw_mode is not set, we'll do extra
5271 * checks below.
5272 */
5273 bounds_check_type = BPF_WRITE;
5274 clobber = true;
5275 } else {
5276 bounds_check_type = BPF_READ;
5277 }
5278 err = check_stack_access_within_bounds(env, regno, off, access_size,
5279 type, bounds_check_type);
5280 if (err)
5281 return err;
5282
17a52670 5283
2011fccf 5284 if (tnum_is_const(reg->var_off)) {
01f810ac 5285 min_off = max_off = reg->var_off.value + off;
2011fccf 5286 } else {
088ec26d
AI
5287 /* Variable offset is prohibited for unprivileged mode for
5288 * simplicity since it requires corresponding support in
5289 * Spectre masking for stack ALU.
5290 * See also retrieve_ptr_limit().
5291 */
2c78ee89 5292 if (!env->bypass_spec_v1) {
088ec26d 5293 char tn_buf[48];
f1174f77 5294
088ec26d 5295 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5296 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5297 regno, err_extra, tn_buf);
088ec26d
AI
5298 return -EACCES;
5299 }
f2bcd05e
AI
5300 /* Only initialized buffer on stack is allowed to be accessed
5301 * with variable offset. With uninitialized buffer it's hard to
5302 * guarantee that whole memory is marked as initialized on
5303 * helper return since specific bounds are unknown what may
5304 * cause uninitialized stack leaking.
5305 */
5306 if (meta && meta->raw_mode)
5307 meta = NULL;
5308
01f810ac
AM
5309 min_off = reg->smin_value + off;
5310 max_off = reg->smax_value + off;
17a52670
AS
5311 }
5312
435faee1
DB
5313 if (meta && meta->raw_mode) {
5314 meta->access_size = access_size;
5315 meta->regno = regno;
5316 return 0;
5317 }
5318
2011fccf 5319 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
5320 u8 *stype;
5321
2011fccf 5322 slot = -i - 1;
638f5b90 5323 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
5324 if (state->allocated_stack <= slot)
5325 goto err;
5326 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5327 if (*stype == STACK_MISC)
5328 goto mark;
5329 if (*stype == STACK_ZERO) {
01f810ac
AM
5330 if (clobber) {
5331 /* helper can write anything into the stack */
5332 *stype = STACK_MISC;
5333 }
cc2b14d5 5334 goto mark;
17a52670 5335 }
1d68f22b 5336
27113c59 5337 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
5338 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5339 env->allow_ptr_leaks)) {
01f810ac
AM
5340 if (clobber) {
5341 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5342 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 5343 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 5344 }
f7cf25b2
AS
5345 goto mark;
5346 }
5347
cc2b14d5 5348err:
2011fccf 5349 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
5350 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5351 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
5352 } else {
5353 char tn_buf[48];
5354
5355 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5356 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5357 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 5358 }
cc2b14d5
AS
5359 return -EACCES;
5360mark:
5361 /* reading any byte out of 8-byte 'spill_slot' will cause
5362 * the whole slot to be marked as 'read'
5363 */
679c782d 5364 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
5365 state->stack[spi].spilled_ptr.parent,
5366 REG_LIVE_READ64);
261f4664
KKD
5367 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5368 * be sure that whether stack slot is written to or not. Hence,
5369 * we must still conservatively propagate reads upwards even if
5370 * helper may write to the entire memory range.
5371 */
17a52670 5372 }
2011fccf 5373 return update_stack_depth(env, state, min_off);
17a52670
AS
5374}
5375
06c1c049
GB
5376static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5377 int access_size, bool zero_size_allowed,
5378 struct bpf_call_arg_meta *meta)
5379{
638f5b90 5380 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 5381 u32 *max_access;
06c1c049 5382
20b2aff4 5383 switch (base_type(reg->type)) {
06c1c049 5384 case PTR_TO_PACKET:
de8f3a83 5385 case PTR_TO_PACKET_META:
9fd29c08
YS
5386 return check_packet_access(env, regno, reg->off, access_size,
5387 zero_size_allowed);
69c087ba 5388 case PTR_TO_MAP_KEY:
7b3552d3
KKD
5389 if (meta && meta->raw_mode) {
5390 verbose(env, "R%d cannot write into %s\n", regno,
5391 reg_type_str(env, reg->type));
5392 return -EACCES;
5393 }
69c087ba
YS
5394 return check_mem_region_access(env, regno, reg->off, access_size,
5395 reg->map_ptr->key_size, false);
06c1c049 5396 case PTR_TO_MAP_VALUE:
591fe988
DB
5397 if (check_map_access_type(env, regno, reg->off, access_size,
5398 meta && meta->raw_mode ? BPF_WRITE :
5399 BPF_READ))
5400 return -EACCES;
9fd29c08 5401 return check_map_access(env, regno, reg->off, access_size,
61df10c7 5402 zero_size_allowed, ACCESS_HELPER);
457f4436 5403 case PTR_TO_MEM:
97e6d7da
KKD
5404 if (type_is_rdonly_mem(reg->type)) {
5405 if (meta && meta->raw_mode) {
5406 verbose(env, "R%d cannot write into %s\n", regno,
5407 reg_type_str(env, reg->type));
5408 return -EACCES;
5409 }
5410 }
457f4436
AN
5411 return check_mem_region_access(env, regno, reg->off,
5412 access_size, reg->mem_size,
5413 zero_size_allowed);
20b2aff4
HL
5414 case PTR_TO_BUF:
5415 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
5416 if (meta && meta->raw_mode) {
5417 verbose(env, "R%d cannot write into %s\n", regno,
5418 reg_type_str(env, reg->type));
20b2aff4 5419 return -EACCES;
97e6d7da 5420 }
20b2aff4 5421
20b2aff4
HL
5422 max_access = &env->prog->aux->max_rdonly_access;
5423 } else {
20b2aff4
HL
5424 max_access = &env->prog->aux->max_rdwr_access;
5425 }
afbf21dc
YS
5426 return check_buffer_access(env, reg, regno, reg->off,
5427 access_size, zero_size_allowed,
44e9a741 5428 max_access);
0d004c02 5429 case PTR_TO_STACK:
01f810ac
AM
5430 return check_stack_range_initialized(
5431 env,
5432 regno, reg->off, access_size,
5433 zero_size_allowed, ACCESS_HELPER, meta);
15baa55f
BT
5434 case PTR_TO_CTX:
5435 /* in case the function doesn't know how to access the context,
5436 * (because we are in a program of type SYSCALL for example), we
5437 * can not statically check its size.
5438 * Dynamically check it now.
5439 */
5440 if (!env->ops->convert_ctx_access) {
5441 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5442 int offset = access_size - 1;
5443
5444 /* Allow zero-byte read from PTR_TO_CTX */
5445 if (access_size == 0)
5446 return zero_size_allowed ? 0 : -EACCES;
5447
5448 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5449 atype, -1, false);
5450 }
5451
5452 fallthrough;
0d004c02
LB
5453 default: /* scalar_value or invalid ptr */
5454 /* Allow zero-byte read from NULL, regardless of pointer type */
5455 if (zero_size_allowed && access_size == 0 &&
5456 register_is_null(reg))
5457 return 0;
5458
c25b2ae1
HL
5459 verbose(env, "R%d type=%s ", regno,
5460 reg_type_str(env, reg->type));
5461 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 5462 return -EACCES;
06c1c049
GB
5463 }
5464}
5465
d583691c
KKD
5466static int check_mem_size_reg(struct bpf_verifier_env *env,
5467 struct bpf_reg_state *reg, u32 regno,
5468 bool zero_size_allowed,
5469 struct bpf_call_arg_meta *meta)
5470{
5471 int err;
5472
5473 /* This is used to refine r0 return value bounds for helpers
5474 * that enforce this value as an upper bound on return values.
5475 * See do_refine_retval_range() for helpers that can refine
5476 * the return value. C type of helper is u32 so we pull register
5477 * bound from umax_value however, if negative verifier errors
5478 * out. Only upper bounds can be learned because retval is an
5479 * int type and negative retvals are allowed.
5480 */
be77354a 5481 meta->msize_max_value = reg->umax_value;
d583691c
KKD
5482
5483 /* The register is SCALAR_VALUE; the access check
5484 * happens using its boundaries.
5485 */
5486 if (!tnum_is_const(reg->var_off))
5487 /* For unprivileged variable accesses, disable raw
5488 * mode so that the program is required to
5489 * initialize all the memory that the helper could
5490 * just partially fill up.
5491 */
5492 meta = NULL;
5493
5494 if (reg->smin_value < 0) {
5495 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5496 regno);
5497 return -EACCES;
5498 }
5499
5500 if (reg->umin_value == 0) {
5501 err = check_helper_mem_access(env, regno - 1, 0,
5502 zero_size_allowed,
5503 meta);
5504 if (err)
5505 return err;
5506 }
5507
5508 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5509 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5510 regno);
5511 return -EACCES;
5512 }
5513 err = check_helper_mem_access(env, regno - 1,
5514 reg->umax_value,
5515 zero_size_allowed, meta);
5516 if (!err)
5517 err = mark_chain_precision(env, regno);
5518 return err;
5519}
5520
e5069b9c
DB
5521int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5522 u32 regno, u32 mem_size)
5523{
be77354a
KKD
5524 bool may_be_null = type_may_be_null(reg->type);
5525 struct bpf_reg_state saved_reg;
5526 struct bpf_call_arg_meta meta;
5527 int err;
5528
e5069b9c
DB
5529 if (register_is_null(reg))
5530 return 0;
5531
be77354a
KKD
5532 memset(&meta, 0, sizeof(meta));
5533 /* Assuming that the register contains a value check if the memory
5534 * access is safe. Temporarily save and restore the register's state as
5535 * the conversion shouldn't be visible to a caller.
5536 */
5537 if (may_be_null) {
5538 saved_reg = *reg;
e5069b9c 5539 mark_ptr_not_null_reg(reg);
e5069b9c
DB
5540 }
5541
be77354a
KKD
5542 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5543 /* Check access for BPF_WRITE */
5544 meta.raw_mode = true;
5545 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5546
5547 if (may_be_null)
5548 *reg = saved_reg;
5549
5550 return err;
e5069b9c
DB
5551}
5552
00b85860
KKD
5553static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5554 u32 regno)
d583691c
KKD
5555{
5556 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5557 bool may_be_null = type_may_be_null(mem_reg->type);
5558 struct bpf_reg_state saved_reg;
be77354a 5559 struct bpf_call_arg_meta meta;
d583691c
KKD
5560 int err;
5561
5562 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5563
be77354a
KKD
5564 memset(&meta, 0, sizeof(meta));
5565
d583691c
KKD
5566 if (may_be_null) {
5567 saved_reg = *mem_reg;
5568 mark_ptr_not_null_reg(mem_reg);
5569 }
5570
be77354a
KKD
5571 err = check_mem_size_reg(env, reg, regno, true, &meta);
5572 /* Check access for BPF_WRITE */
5573 meta.raw_mode = true;
5574 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
5575
5576 if (may_be_null)
5577 *mem_reg = saved_reg;
5578 return err;
5579}
5580
d83525ca 5581/* Implementation details:
4e814da0
KKD
5582 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5583 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 5584 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
5585 * Two separate bpf_obj_new will also have different reg->id.
5586 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5587 * clears reg->id after value_or_null->value transition, since the verifier only
5588 * cares about the range of access to valid map value pointer and doesn't care
5589 * about actual address of the map element.
d83525ca
AS
5590 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5591 * reg->id > 0 after value_or_null->value transition. By doing so
5592 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
5593 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5594 * returned from bpf_obj_new.
d83525ca
AS
5595 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5596 * dead-locks.
5597 * Since only one bpf_spin_lock is allowed the checks are simpler than
5598 * reg_is_refcounted() logic. The verifier needs to remember only
5599 * one spin_lock instead of array of acquired_refs.
d0d78c1d 5600 * cur_state->active_lock remembers which map value element or allocated
4e814da0 5601 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
5602 */
5603static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5604 bool is_lock)
5605{
5606 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5607 struct bpf_verifier_state *cur = env->cur_state;
5608 bool is_const = tnum_is_const(reg->var_off);
d83525ca 5609 u64 val = reg->var_off.value;
4e814da0
KKD
5610 struct bpf_map *map = NULL;
5611 struct btf *btf = NULL;
5612 struct btf_record *rec;
d83525ca 5613
d83525ca
AS
5614 if (!is_const) {
5615 verbose(env,
5616 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5617 regno);
5618 return -EINVAL;
5619 }
4e814da0
KKD
5620 if (reg->type == PTR_TO_MAP_VALUE) {
5621 map = reg->map_ptr;
5622 if (!map->btf) {
5623 verbose(env,
5624 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5625 map->name);
5626 return -EINVAL;
5627 }
5628 } else {
5629 btf = reg->btf;
d83525ca 5630 }
4e814da0
KKD
5631
5632 rec = reg_btf_record(reg);
5633 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5634 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5635 map ? map->name : "kptr");
d83525ca
AS
5636 return -EINVAL;
5637 }
4e814da0 5638 if (rec->spin_lock_off != val + reg->off) {
db559117 5639 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 5640 val + reg->off, rec->spin_lock_off);
d83525ca
AS
5641 return -EINVAL;
5642 }
5643 if (is_lock) {
d0d78c1d 5644 if (cur->active_lock.ptr) {
d83525ca
AS
5645 verbose(env,
5646 "Locking two bpf_spin_locks are not allowed\n");
5647 return -EINVAL;
5648 }
d0d78c1d
KKD
5649 if (map)
5650 cur->active_lock.ptr = map;
5651 else
5652 cur->active_lock.ptr = btf;
5653 cur->active_lock.id = reg->id;
d83525ca 5654 } else {
d0d78c1d
KKD
5655 void *ptr;
5656
5657 if (map)
5658 ptr = map;
5659 else
5660 ptr = btf;
5661
5662 if (!cur->active_lock.ptr) {
d83525ca
AS
5663 verbose(env, "bpf_spin_unlock without taking a lock\n");
5664 return -EINVAL;
5665 }
d0d78c1d
KKD
5666 if (cur->active_lock.ptr != ptr ||
5667 cur->active_lock.id != reg->id) {
d83525ca
AS
5668 verbose(env, "bpf_spin_unlock of different lock\n");
5669 return -EINVAL;
5670 }
d0d78c1d
KKD
5671 cur->active_lock.ptr = NULL;
5672 cur->active_lock.id = 0;
d83525ca
AS
5673 }
5674 return 0;
5675}
5676
b00628b1
AS
5677static int process_timer_func(struct bpf_verifier_env *env, int regno,
5678 struct bpf_call_arg_meta *meta)
5679{
5680 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5681 bool is_const = tnum_is_const(reg->var_off);
5682 struct bpf_map *map = reg->map_ptr;
5683 u64 val = reg->var_off.value;
5684
5685 if (!is_const) {
5686 verbose(env,
5687 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5688 regno);
5689 return -EINVAL;
5690 }
5691 if (!map->btf) {
5692 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5693 map->name);
5694 return -EINVAL;
5695 }
db559117
KKD
5696 if (!btf_record_has_field(map->record, BPF_TIMER)) {
5697 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
5698 return -EINVAL;
5699 }
db559117 5700 if (map->record->timer_off != val + reg->off) {
68134668 5701 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 5702 val + reg->off, map->record->timer_off);
b00628b1
AS
5703 return -EINVAL;
5704 }
5705 if (meta->map_ptr) {
5706 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5707 return -EFAULT;
5708 }
3e8ce298 5709 meta->map_uid = reg->map_uid;
b00628b1
AS
5710 meta->map_ptr = map;
5711 return 0;
5712}
5713
c0a5a21c
KKD
5714static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5715 struct bpf_call_arg_meta *meta)
5716{
5717 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 5718 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 5719 struct btf_field *kptr_field;
c0a5a21c 5720 u32 kptr_off;
c0a5a21c
KKD
5721
5722 if (!tnum_is_const(reg->var_off)) {
5723 verbose(env,
5724 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5725 regno);
5726 return -EINVAL;
5727 }
5728 if (!map_ptr->btf) {
5729 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5730 map_ptr->name);
5731 return -EINVAL;
5732 }
aa3496ac
KKD
5733 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5734 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
5735 return -EINVAL;
5736 }
5737
5738 meta->map_ptr = map_ptr;
5739 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
5740 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5741 if (!kptr_field) {
c0a5a21c
KKD
5742 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5743 return -EACCES;
5744 }
aa3496ac 5745 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
5746 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5747 return -EACCES;
5748 }
aa3496ac 5749 meta->kptr_field = kptr_field;
c0a5a21c
KKD
5750 return 0;
5751}
5752
90133415
DB
5753static bool arg_type_is_mem_size(enum bpf_arg_type type)
5754{
5755 return type == ARG_CONST_SIZE ||
5756 type == ARG_CONST_SIZE_OR_ZERO;
5757}
5758
8f14852e
KKD
5759static bool arg_type_is_release(enum bpf_arg_type type)
5760{
5761 return type & OBJ_RELEASE;
5762}
5763
97e03f52
JK
5764static bool arg_type_is_dynptr(enum bpf_arg_type type)
5765{
5766 return base_type(type) == ARG_PTR_TO_DYNPTR;
5767}
5768
57c3bb72
AI
5769static int int_ptr_type_to_size(enum bpf_arg_type type)
5770{
5771 if (type == ARG_PTR_TO_INT)
5772 return sizeof(u32);
5773 else if (type == ARG_PTR_TO_LONG)
5774 return sizeof(u64);
5775
5776 return -EINVAL;
5777}
5778
912f442c
LB
5779static int resolve_map_arg_type(struct bpf_verifier_env *env,
5780 const struct bpf_call_arg_meta *meta,
5781 enum bpf_arg_type *arg_type)
5782{
5783 if (!meta->map_ptr) {
5784 /* kernel subsystem misconfigured verifier */
5785 verbose(env, "invalid map_ptr to access map->type\n");
5786 return -EACCES;
5787 }
5788
5789 switch (meta->map_ptr->map_type) {
5790 case BPF_MAP_TYPE_SOCKMAP:
5791 case BPF_MAP_TYPE_SOCKHASH:
5792 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5793 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5794 } else {
5795 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5796 return -EINVAL;
5797 }
5798 break;
9330986c
JK
5799 case BPF_MAP_TYPE_BLOOM_FILTER:
5800 if (meta->func_id == BPF_FUNC_map_peek_elem)
5801 *arg_type = ARG_PTR_TO_MAP_VALUE;
5802 break;
912f442c
LB
5803 default:
5804 break;
5805 }
5806 return 0;
5807}
5808
f79e7ea5
LB
5809struct bpf_reg_types {
5810 const enum bpf_reg_type types[10];
1df8f55a 5811 u32 *btf_id;
f79e7ea5
LB
5812};
5813
f79e7ea5
LB
5814static const struct bpf_reg_types sock_types = {
5815 .types = {
5816 PTR_TO_SOCK_COMMON,
5817 PTR_TO_SOCKET,
5818 PTR_TO_TCP_SOCK,
5819 PTR_TO_XDP_SOCK,
5820 },
5821};
5822
49a2a4d4 5823#ifdef CONFIG_NET
1df8f55a
MKL
5824static const struct bpf_reg_types btf_id_sock_common_types = {
5825 .types = {
5826 PTR_TO_SOCK_COMMON,
5827 PTR_TO_SOCKET,
5828 PTR_TO_TCP_SOCK,
5829 PTR_TO_XDP_SOCK,
5830 PTR_TO_BTF_ID,
5831 },
5832 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5833};
49a2a4d4 5834#endif
1df8f55a 5835
f79e7ea5
LB
5836static const struct bpf_reg_types mem_types = {
5837 .types = {
5838 PTR_TO_STACK,
5839 PTR_TO_PACKET,
5840 PTR_TO_PACKET_META,
69c087ba 5841 PTR_TO_MAP_KEY,
f79e7ea5
LB
5842 PTR_TO_MAP_VALUE,
5843 PTR_TO_MEM,
894f2a8b 5844 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 5845 PTR_TO_BUF,
f79e7ea5
LB
5846 },
5847};
5848
5849static const struct bpf_reg_types int_ptr_types = {
5850 .types = {
5851 PTR_TO_STACK,
5852 PTR_TO_PACKET,
5853 PTR_TO_PACKET_META,
69c087ba 5854 PTR_TO_MAP_KEY,
f79e7ea5
LB
5855 PTR_TO_MAP_VALUE,
5856 },
5857};
5858
4e814da0
KKD
5859static const struct bpf_reg_types spin_lock_types = {
5860 .types = {
5861 PTR_TO_MAP_VALUE,
5862 PTR_TO_BTF_ID | MEM_ALLOC,
5863 }
5864};
5865
f79e7ea5
LB
5866static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5867static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5868static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 5869static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5
LB
5870static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5871static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5844101a 5872static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
69c087ba
YS
5873static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5874static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5875static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5876static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 5877static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
5878static const struct bpf_reg_types dynptr_types = {
5879 .types = {
5880 PTR_TO_STACK,
5881 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5882 }
5883};
f79e7ea5 5884
0789e13b 5885static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
5886 [ARG_PTR_TO_MAP_KEY] = &mem_types,
5887 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
5888 [ARG_CONST_SIZE] = &scalar_types,
5889 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5890 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5891 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5892 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 5893 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5894#ifdef CONFIG_NET
1df8f55a 5895 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5896#endif
f79e7ea5 5897 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
5898 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5899 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5900 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 5901 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
5902 [ARG_PTR_TO_INT] = &int_ptr_types,
5903 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5904 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 5905 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 5906 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 5907 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5908 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 5909 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 5910 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
5911};
5912
5913static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 5914 enum bpf_arg_type arg_type,
c0a5a21c
KKD
5915 const u32 *arg_btf_id,
5916 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
5917{
5918 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5919 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5920 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5921 int i, j;
5922
48946bd6 5923 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
5924 if (!compatible) {
5925 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5926 return -EFAULT;
5927 }
5928
216e3cd2
HL
5929 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5930 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5931 *
5932 * Same for MAYBE_NULL:
5933 *
5934 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5935 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5936 *
5937 * Therefore we fold these flags depending on the arg_type before comparison.
5938 */
5939 if (arg_type & MEM_RDONLY)
5940 type &= ~MEM_RDONLY;
5941 if (arg_type & PTR_MAYBE_NULL)
5942 type &= ~PTR_MAYBE_NULL;
5943
f79e7ea5
LB
5944 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5945 expected = compatible->types[i];
5946 if (expected == NOT_INIT)
5947 break;
5948
5949 if (type == expected)
a968d5e2 5950 goto found;
f79e7ea5
LB
5951 }
5952
216e3cd2 5953 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 5954 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
5955 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5956 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 5957 return -EACCES;
a968d5e2
MKL
5958
5959found:
216e3cd2 5960 if (reg->type == PTR_TO_BTF_ID) {
2ab3b380
KKD
5961 /* For bpf_sk_release, it needs to match against first member
5962 * 'struct sock_common', hence make an exception for it. This
5963 * allows bpf_sk_release to work for multiple socket types.
5964 */
5965 bool strict_type_match = arg_type_is_release(arg_type) &&
5966 meta->func_id != BPF_FUNC_sk_release;
5967
1df8f55a
MKL
5968 if (!arg_btf_id) {
5969 if (!compatible->btf_id) {
5970 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5971 return -EFAULT;
5972 }
5973 arg_btf_id = compatible->btf_id;
5974 }
5975
c0a5a21c 5976 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 5977 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 5978 return -EACCES;
47e34cb7
DM
5979 } else {
5980 if (arg_btf_id == BPF_PTR_POISON) {
5981 verbose(env, "verifier internal error:");
5982 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
5983 regno);
5984 return -EACCES;
5985 }
5986
5987 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5988 btf_vmlinux, *arg_btf_id,
5989 strict_type_match)) {
5990 verbose(env, "R%d is of type %s but %s is expected\n",
5991 regno, kernel_type_name(reg->btf, reg->btf_id),
5992 kernel_type_name(btf_vmlinux, *arg_btf_id));
5993 return -EACCES;
5994 }
a968d5e2 5995 }
4e814da0
KKD
5996 } else if (type_is_alloc(reg->type)) {
5997 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
5998 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
5999 return -EFAULT;
6000 }
a968d5e2
MKL
6001 }
6002
6003 return 0;
f79e7ea5
LB
6004}
6005
25b35dd2
KKD
6006int check_func_arg_reg_off(struct bpf_verifier_env *env,
6007 const struct bpf_reg_state *reg, int regno,
8f14852e 6008 enum bpf_arg_type arg_type)
25b35dd2
KKD
6009{
6010 enum bpf_reg_type type = reg->type;
8f14852e 6011 bool fixed_off_ok = false;
25b35dd2
KKD
6012
6013 switch ((u32)type) {
25b35dd2 6014 /* Pointer types where reg offset is explicitly allowed: */
97e03f52
JK
6015 case PTR_TO_STACK:
6016 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
6017 verbose(env, "cannot pass in dynptr at an offset\n");
6018 return -EINVAL;
6019 }
6020 fallthrough;
25b35dd2
KKD
6021 case PTR_TO_PACKET:
6022 case PTR_TO_PACKET_META:
6023 case PTR_TO_MAP_KEY:
6024 case PTR_TO_MAP_VALUE:
6025 case PTR_TO_MEM:
6026 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 6027 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
6028 case PTR_TO_BUF:
6029 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 6030 case SCALAR_VALUE:
25b35dd2
KKD
6031 /* Some of the argument types nevertheless require a
6032 * zero register offset.
6033 */
894f2a8b 6034 if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM)
25b35dd2
KKD
6035 return 0;
6036 break;
6037 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6038 * fixed offset.
6039 */
6040 case PTR_TO_BTF_ID:
282de143 6041 case PTR_TO_BTF_ID | MEM_ALLOC:
24d5bb80 6042 /* When referenced PTR_TO_BTF_ID is passed to release function,
8f14852e
KKD
6043 * it's fixed offset must be 0. In the other cases, fixed offset
6044 * can be non-zero.
24d5bb80 6045 */
8f14852e 6046 if (arg_type_is_release(arg_type) && reg->off) {
24d5bb80
KKD
6047 verbose(env, "R%d must have zero offset when passed to release func\n",
6048 regno);
6049 return -EINVAL;
6050 }
8f14852e
KKD
6051 /* For arg is release pointer, fixed_off_ok must be false, but
6052 * we already checked and rejected reg->off != 0 above, so set
6053 * to true to allow fixed offset for all other cases.
24d5bb80 6054 */
25b35dd2
KKD
6055 fixed_off_ok = true;
6056 break;
6057 default:
6058 break;
6059 }
6060 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
6061}
6062
34d4ef57
JK
6063static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6064{
6065 struct bpf_func_state *state = func(env, reg);
6066 int spi = get_spi(reg->off);
6067
6068 return state->stack[spi].spilled_ptr.id;
6069}
6070
af7ec138
YS
6071static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6072 struct bpf_call_arg_meta *meta,
6073 const struct bpf_func_proto *fn)
17a52670 6074{
af7ec138 6075 u32 regno = BPF_REG_1 + arg;
638f5b90 6076 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 6077 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 6078 enum bpf_reg_type type = reg->type;
508362ac 6079 u32 *arg_btf_id = NULL;
17a52670
AS
6080 int err = 0;
6081
80f1d68c 6082 if (arg_type == ARG_DONTCARE)
17a52670
AS
6083 return 0;
6084
dc503a8a
EC
6085 err = check_reg_arg(env, regno, SRC_OP);
6086 if (err)
6087 return err;
17a52670 6088
1be7f75d
AS
6089 if (arg_type == ARG_ANYTHING) {
6090 if (is_pointer_value(env, regno)) {
61bd5218
JK
6091 verbose(env, "R%d leaks addr into helper function\n",
6092 regno);
1be7f75d
AS
6093 return -EACCES;
6094 }
80f1d68c 6095 return 0;
1be7f75d 6096 }
80f1d68c 6097
de8f3a83 6098 if (type_is_pkt_pointer(type) &&
3a0af8fd 6099 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 6100 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
6101 return -EACCES;
6102 }
6103
16d1e00c 6104 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
6105 err = resolve_map_arg_type(env, meta, &arg_type);
6106 if (err)
6107 return err;
6108 }
6109
48946bd6 6110 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
6111 /* A NULL register has a SCALAR_VALUE type, so skip
6112 * type checking.
6113 */
6114 goto skip_type_check;
6115
508362ac 6116 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
6117 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6118 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
6119 arg_btf_id = fn->arg_btf_id[arg];
6120
6121 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
6122 if (err)
6123 return err;
6124
8f14852e 6125 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
6126 if (err)
6127 return err;
d7b9454a 6128
fd1b0d60 6129skip_type_check:
8f14852e 6130 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
6131 if (arg_type_is_dynptr(arg_type)) {
6132 struct bpf_func_state *state = func(env, reg);
6133 int spi = get_spi(reg->off);
6134
6135 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6136 !state->stack[spi].spilled_ptr.id) {
6137 verbose(env, "arg %d is an unacquired reference\n", regno);
6138 return -EINVAL;
6139 }
6140 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
6141 verbose(env, "R%d must be referenced when passed to release function\n",
6142 regno);
6143 return -EINVAL;
6144 }
6145 if (meta->release_regno) {
6146 verbose(env, "verifier internal error: more than one release argument\n");
6147 return -EFAULT;
6148 }
6149 meta->release_regno = regno;
6150 }
6151
02f7c958 6152 if (reg->ref_obj_id) {
457f4436
AN
6153 if (meta->ref_obj_id) {
6154 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6155 regno, reg->ref_obj_id,
6156 meta->ref_obj_id);
6157 return -EFAULT;
6158 }
6159 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
6160 }
6161
8ab4cdcf
JK
6162 switch (base_type(arg_type)) {
6163 case ARG_CONST_MAP_PTR:
17a52670 6164 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
6165 if (meta->map_ptr) {
6166 /* Use map_uid (which is unique id of inner map) to reject:
6167 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6168 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6169 * if (inner_map1 && inner_map2) {
6170 * timer = bpf_map_lookup_elem(inner_map1);
6171 * if (timer)
6172 * // mismatch would have been allowed
6173 * bpf_timer_init(timer, inner_map2);
6174 * }
6175 *
6176 * Comparing map_ptr is enough to distinguish normal and outer maps.
6177 */
6178 if (meta->map_ptr != reg->map_ptr ||
6179 meta->map_uid != reg->map_uid) {
6180 verbose(env,
6181 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6182 meta->map_uid, reg->map_uid);
6183 return -EINVAL;
6184 }
b00628b1 6185 }
33ff9823 6186 meta->map_ptr = reg->map_ptr;
3e8ce298 6187 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
6188 break;
6189 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
6190 /* bpf_map_xxx(..., map_ptr, ..., key) call:
6191 * check that [key, key + map->key_size) are within
6192 * stack limits and initialized
6193 */
33ff9823 6194 if (!meta->map_ptr) {
17a52670
AS
6195 /* in function declaration map_ptr must come before
6196 * map_key, so that it's verified and known before
6197 * we have to check map_key here. Otherwise it means
6198 * that kernel subsystem misconfigured verifier
6199 */
61bd5218 6200 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
6201 return -EACCES;
6202 }
d71962f3
PC
6203 err = check_helper_mem_access(env, regno,
6204 meta->map_ptr->key_size, false,
6205 NULL);
8ab4cdcf
JK
6206 break;
6207 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
6208 if (type_may_be_null(arg_type) && register_is_null(reg))
6209 return 0;
6210
17a52670
AS
6211 /* bpf_map_xxx(..., map_ptr, ..., value) call:
6212 * check [value, value + map->value_size) validity
6213 */
33ff9823 6214 if (!meta->map_ptr) {
17a52670 6215 /* kernel subsystem misconfigured verifier */
61bd5218 6216 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
6217 return -EACCES;
6218 }
16d1e00c 6219 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
6220 err = check_helper_mem_access(env, regno,
6221 meta->map_ptr->value_size, false,
2ea864c5 6222 meta);
8ab4cdcf
JK
6223 break;
6224 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
6225 if (!reg->btf_id) {
6226 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6227 return -EACCES;
6228 }
22dc4a0f 6229 meta->ret_btf = reg->btf;
eaa6bcb7 6230 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
6231 break;
6232 case ARG_PTR_TO_SPIN_LOCK:
c18f0b6a
LB
6233 if (meta->func_id == BPF_FUNC_spin_lock) {
6234 if (process_spin_lock(env, regno, true))
6235 return -EACCES;
6236 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
6237 if (process_spin_lock(env, regno, false))
6238 return -EACCES;
6239 } else {
6240 verbose(env, "verifier internal error\n");
6241 return -EFAULT;
6242 }
8ab4cdcf
JK
6243 break;
6244 case ARG_PTR_TO_TIMER:
b00628b1
AS
6245 if (process_timer_func(env, regno, meta))
6246 return -EACCES;
8ab4cdcf
JK
6247 break;
6248 case ARG_PTR_TO_FUNC:
69c087ba 6249 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
6250 break;
6251 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
6252 /* The access to this pointer is only checked when we hit the
6253 * next is_mem_size argument below.
6254 */
16d1e00c 6255 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
6256 if (arg_type & MEM_FIXED_SIZE) {
6257 err = check_helper_mem_access(env, regno,
6258 fn->arg_size[arg], false,
6259 meta);
6260 }
8ab4cdcf
JK
6261 break;
6262 case ARG_CONST_SIZE:
6263 err = check_mem_size_reg(env, reg, regno, false, meta);
6264 break;
6265 case ARG_CONST_SIZE_OR_ZERO:
6266 err = check_mem_size_reg(env, reg, regno, true, meta);
6267 break;
6268 case ARG_PTR_TO_DYNPTR:
20571567
DV
6269 /* We only need to check for initialized / uninitialized helper
6270 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6271 * assumption is that if it is, that a helper function
6272 * initialized the dynptr on behalf of the BPF program.
6273 */
6274 if (base_type(reg->type) == PTR_TO_DYNPTR)
6275 break;
97e03f52
JK
6276 if (arg_type & MEM_UNINIT) {
6277 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6278 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6279 return -EINVAL;
6280 }
6281
6282 /* We only support one dynptr being uninitialized at the moment,
6283 * which is sufficient for the helper functions we have right now.
6284 */
6285 if (meta->uninit_dynptr_regno) {
6286 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6287 return -EFAULT;
6288 }
6289
6290 meta->uninit_dynptr_regno = regno;
e9e315b4
RS
6291 } else if (!is_dynptr_reg_valid_init(env, reg)) {
6292 verbose(env,
6293 "Expected an initialized dynptr as arg #%d\n",
6294 arg + 1);
6295 return -EINVAL;
6296 } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
97e03f52
JK
6297 const char *err_extra = "";
6298
6299 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6300 case DYNPTR_TYPE_LOCAL:
e9e315b4 6301 err_extra = "local";
97e03f52 6302 break;
bc34dee6 6303 case DYNPTR_TYPE_RINGBUF:
e9e315b4 6304 err_extra = "ringbuf";
bc34dee6 6305 break;
97e03f52 6306 default:
e9e315b4 6307 err_extra = "<unknown>";
97e03f52
JK
6308 break;
6309 }
e9e315b4
RS
6310 verbose(env,
6311 "Expected a dynptr of type %s as arg #%d\n",
97e03f52
JK
6312 err_extra, arg + 1);
6313 return -EINVAL;
6314 }
8ab4cdcf
JK
6315 break;
6316 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 6317 if (!tnum_is_const(reg->var_off)) {
28a8add6 6318 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
6319 regno);
6320 return -EACCES;
6321 }
6322 meta->mem_size = reg->var_off.value;
2fc31465
KKD
6323 err = mark_chain_precision(env, regno);
6324 if (err)
6325 return err;
8ab4cdcf
JK
6326 break;
6327 case ARG_PTR_TO_INT:
6328 case ARG_PTR_TO_LONG:
6329 {
57c3bb72
AI
6330 int size = int_ptr_type_to_size(arg_type);
6331
6332 err = check_helper_mem_access(env, regno, size, false, meta);
6333 if (err)
6334 return err;
6335 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
6336 break;
6337 }
6338 case ARG_PTR_TO_CONST_STR:
6339 {
fff13c4b
FR
6340 struct bpf_map *map = reg->map_ptr;
6341 int map_off;
6342 u64 map_addr;
6343 char *str_ptr;
6344
a8fad73e 6345 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
6346 verbose(env, "R%d does not point to a readonly map'\n", regno);
6347 return -EACCES;
6348 }
6349
6350 if (!tnum_is_const(reg->var_off)) {
6351 verbose(env, "R%d is not a constant address'\n", regno);
6352 return -EACCES;
6353 }
6354
6355 if (!map->ops->map_direct_value_addr) {
6356 verbose(env, "no direct value access support for this map type\n");
6357 return -EACCES;
6358 }
6359
6360 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
6361 map->value_size - reg->off, false,
6362 ACCESS_HELPER);
fff13c4b
FR
6363 if (err)
6364 return err;
6365
6366 map_off = reg->off + reg->var_off.value;
6367 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6368 if (err) {
6369 verbose(env, "direct value access on string failed\n");
6370 return err;
6371 }
6372
6373 str_ptr = (char *)(long)(map_addr);
6374 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6375 verbose(env, "string is not zero-terminated\n");
6376 return -EINVAL;
6377 }
8ab4cdcf
JK
6378 break;
6379 }
6380 case ARG_PTR_TO_KPTR:
c0a5a21c
KKD
6381 if (process_kptr_func(env, regno, meta))
6382 return -EACCES;
8ab4cdcf 6383 break;
17a52670
AS
6384 }
6385
6386 return err;
6387}
6388
0126240f
LB
6389static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6390{
6391 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 6392 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
6393
6394 if (func_id != BPF_FUNC_map_update_elem)
6395 return false;
6396
6397 /* It's not possible to get access to a locked struct sock in these
6398 * contexts, so updating is safe.
6399 */
6400 switch (type) {
6401 case BPF_PROG_TYPE_TRACING:
6402 if (eatype == BPF_TRACE_ITER)
6403 return true;
6404 break;
6405 case BPF_PROG_TYPE_SOCKET_FILTER:
6406 case BPF_PROG_TYPE_SCHED_CLS:
6407 case BPF_PROG_TYPE_SCHED_ACT:
6408 case BPF_PROG_TYPE_XDP:
6409 case BPF_PROG_TYPE_SK_REUSEPORT:
6410 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6411 case BPF_PROG_TYPE_SK_LOOKUP:
6412 return true;
6413 default:
6414 break;
6415 }
6416
6417 verbose(env, "cannot update sockmap in this context\n");
6418 return false;
6419}
6420
e411901c
MF
6421static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6422{
95acd881
TA
6423 return env->prog->jit_requested &&
6424 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
6425}
6426
61bd5218
JK
6427static int check_map_func_compatibility(struct bpf_verifier_env *env,
6428 struct bpf_map *map, int func_id)
35578d79 6429{
35578d79
KX
6430 if (!map)
6431 return 0;
6432
6aff67c8
AS
6433 /* We need a two way check, first is from map perspective ... */
6434 switch (map->map_type) {
6435 case BPF_MAP_TYPE_PROG_ARRAY:
6436 if (func_id != BPF_FUNC_tail_call)
6437 goto error;
6438 break;
6439 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6440 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 6441 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 6442 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
6443 func_id != BPF_FUNC_perf_event_read_value &&
6444 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
6445 goto error;
6446 break;
457f4436
AN
6447 case BPF_MAP_TYPE_RINGBUF:
6448 if (func_id != BPF_FUNC_ringbuf_output &&
6449 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
6450 func_id != BPF_FUNC_ringbuf_query &&
6451 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6452 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6453 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
6454 goto error;
6455 break;
583c1f42 6456 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
6457 if (func_id != BPF_FUNC_user_ringbuf_drain)
6458 goto error;
6459 break;
6aff67c8
AS
6460 case BPF_MAP_TYPE_STACK_TRACE:
6461 if (func_id != BPF_FUNC_get_stackid)
6462 goto error;
6463 break;
4ed8ec52 6464 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 6465 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 6466 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
6467 goto error;
6468 break;
cd339431 6469 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 6470 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
6471 if (func_id != BPF_FUNC_get_local_storage)
6472 goto error;
6473 break;
546ac1ff 6474 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 6475 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
6476 if (func_id != BPF_FUNC_redirect_map &&
6477 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
6478 goto error;
6479 break;
fbfc504a
BT
6480 /* Restrict bpf side of cpumap and xskmap, open when use-cases
6481 * appear.
6482 */
6710e112
JDB
6483 case BPF_MAP_TYPE_CPUMAP:
6484 if (func_id != BPF_FUNC_redirect_map)
6485 goto error;
6486 break;
fada7fdc
JL
6487 case BPF_MAP_TYPE_XSKMAP:
6488 if (func_id != BPF_FUNC_redirect_map &&
6489 func_id != BPF_FUNC_map_lookup_elem)
6490 goto error;
6491 break;
56f668df 6492 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 6493 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
6494 if (func_id != BPF_FUNC_map_lookup_elem)
6495 goto error;
16a43625 6496 break;
174a79ff
JF
6497 case BPF_MAP_TYPE_SOCKMAP:
6498 if (func_id != BPF_FUNC_sk_redirect_map &&
6499 func_id != BPF_FUNC_sock_map_update &&
4f738adb 6500 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6501 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 6502 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6503 func_id != BPF_FUNC_map_lookup_elem &&
6504 !may_update_sockmap(env, func_id))
174a79ff
JF
6505 goto error;
6506 break;
81110384
JF
6507 case BPF_MAP_TYPE_SOCKHASH:
6508 if (func_id != BPF_FUNC_sk_redirect_hash &&
6509 func_id != BPF_FUNC_sock_hash_update &&
6510 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6511 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 6512 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6513 func_id != BPF_FUNC_map_lookup_elem &&
6514 !may_update_sockmap(env, func_id))
81110384
JF
6515 goto error;
6516 break;
2dbb9b9e
MKL
6517 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6518 if (func_id != BPF_FUNC_sk_select_reuseport)
6519 goto error;
6520 break;
f1a2e44a
MV
6521 case BPF_MAP_TYPE_QUEUE:
6522 case BPF_MAP_TYPE_STACK:
6523 if (func_id != BPF_FUNC_map_peek_elem &&
6524 func_id != BPF_FUNC_map_pop_elem &&
6525 func_id != BPF_FUNC_map_push_elem)
6526 goto error;
6527 break;
6ac99e8f
MKL
6528 case BPF_MAP_TYPE_SK_STORAGE:
6529 if (func_id != BPF_FUNC_sk_storage_get &&
6530 func_id != BPF_FUNC_sk_storage_delete)
6531 goto error;
6532 break;
8ea63684
KS
6533 case BPF_MAP_TYPE_INODE_STORAGE:
6534 if (func_id != BPF_FUNC_inode_storage_get &&
6535 func_id != BPF_FUNC_inode_storage_delete)
6536 goto error;
6537 break;
4cf1bc1f
KS
6538 case BPF_MAP_TYPE_TASK_STORAGE:
6539 if (func_id != BPF_FUNC_task_storage_get &&
6540 func_id != BPF_FUNC_task_storage_delete)
6541 goto error;
6542 break;
c4bcfb38
YS
6543 case BPF_MAP_TYPE_CGRP_STORAGE:
6544 if (func_id != BPF_FUNC_cgrp_storage_get &&
6545 func_id != BPF_FUNC_cgrp_storage_delete)
6546 goto error;
6547 break;
9330986c
JK
6548 case BPF_MAP_TYPE_BLOOM_FILTER:
6549 if (func_id != BPF_FUNC_map_peek_elem &&
6550 func_id != BPF_FUNC_map_push_elem)
6551 goto error;
6552 break;
6aff67c8
AS
6553 default:
6554 break;
6555 }
6556
6557 /* ... and second from the function itself. */
6558 switch (func_id) {
6559 case BPF_FUNC_tail_call:
6560 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6561 goto error;
e411901c
MF
6562 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6563 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
6564 return -EINVAL;
6565 }
6aff67c8
AS
6566 break;
6567 case BPF_FUNC_perf_event_read:
6568 case BPF_FUNC_perf_event_output:
908432ca 6569 case BPF_FUNC_perf_event_read_value:
a7658e1a 6570 case BPF_FUNC_skb_output:
d831ee84 6571 case BPF_FUNC_xdp_output:
6aff67c8
AS
6572 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6573 goto error;
6574 break;
5b029a32
DB
6575 case BPF_FUNC_ringbuf_output:
6576 case BPF_FUNC_ringbuf_reserve:
6577 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
6578 case BPF_FUNC_ringbuf_reserve_dynptr:
6579 case BPF_FUNC_ringbuf_submit_dynptr:
6580 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
6581 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6582 goto error;
6583 break;
20571567
DV
6584 case BPF_FUNC_user_ringbuf_drain:
6585 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6586 goto error;
6587 break;
6aff67c8
AS
6588 case BPF_FUNC_get_stackid:
6589 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6590 goto error;
6591 break;
60d20f91 6592 case BPF_FUNC_current_task_under_cgroup:
747ea55e 6593 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
6594 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6595 goto error;
6596 break;
97f91a7c 6597 case BPF_FUNC_redirect_map:
9c270af3 6598 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 6599 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
6600 map->map_type != BPF_MAP_TYPE_CPUMAP &&
6601 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
6602 goto error;
6603 break;
174a79ff 6604 case BPF_FUNC_sk_redirect_map:
4f738adb 6605 case BPF_FUNC_msg_redirect_map:
81110384 6606 case BPF_FUNC_sock_map_update:
174a79ff
JF
6607 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6608 goto error;
6609 break;
81110384
JF
6610 case BPF_FUNC_sk_redirect_hash:
6611 case BPF_FUNC_msg_redirect_hash:
6612 case BPF_FUNC_sock_hash_update:
6613 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
6614 goto error;
6615 break;
cd339431 6616 case BPF_FUNC_get_local_storage:
b741f163
RG
6617 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6618 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
6619 goto error;
6620 break;
2dbb9b9e 6621 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
6622 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6623 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6624 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
6625 goto error;
6626 break;
f1a2e44a 6627 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
6628 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6629 map->map_type != BPF_MAP_TYPE_STACK)
6630 goto error;
6631 break;
9330986c
JK
6632 case BPF_FUNC_map_peek_elem:
6633 case BPF_FUNC_map_push_elem:
6634 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6635 map->map_type != BPF_MAP_TYPE_STACK &&
6636 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6637 goto error;
6638 break;
07343110
FZ
6639 case BPF_FUNC_map_lookup_percpu_elem:
6640 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6641 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6642 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6643 goto error;
6644 break;
6ac99e8f
MKL
6645 case BPF_FUNC_sk_storage_get:
6646 case BPF_FUNC_sk_storage_delete:
6647 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6648 goto error;
6649 break;
8ea63684
KS
6650 case BPF_FUNC_inode_storage_get:
6651 case BPF_FUNC_inode_storage_delete:
6652 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6653 goto error;
6654 break;
4cf1bc1f
KS
6655 case BPF_FUNC_task_storage_get:
6656 case BPF_FUNC_task_storage_delete:
6657 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6658 goto error;
6659 break;
c4bcfb38
YS
6660 case BPF_FUNC_cgrp_storage_get:
6661 case BPF_FUNC_cgrp_storage_delete:
6662 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6663 goto error;
6664 break;
6aff67c8
AS
6665 default:
6666 break;
35578d79
KX
6667 }
6668
6669 return 0;
6aff67c8 6670error:
61bd5218 6671 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 6672 map->map_type, func_id_name(func_id), func_id);
6aff67c8 6673 return -EINVAL;
35578d79
KX
6674}
6675
90133415 6676static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
6677{
6678 int count = 0;
6679
39f19ebb 6680 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6681 count++;
39f19ebb 6682 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6683 count++;
39f19ebb 6684 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6685 count++;
39f19ebb 6686 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6687 count++;
39f19ebb 6688 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
6689 count++;
6690
90133415
DB
6691 /* We only support one arg being in raw mode at the moment,
6692 * which is sufficient for the helper functions we have
6693 * right now.
6694 */
6695 return count <= 1;
6696}
6697
508362ac 6698static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 6699{
508362ac
MM
6700 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6701 bool has_size = fn->arg_size[arg] != 0;
6702 bool is_next_size = false;
6703
6704 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6705 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6706
6707 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6708 return is_next_size;
6709
6710 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
6711}
6712
6713static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6714{
6715 /* bpf_xxx(..., buf, len) call will access 'len'
6716 * bytes from memory 'buf'. Both arg types need
6717 * to be paired, so make sure there's no buggy
6718 * helper function specification.
6719 */
6720 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
6721 check_args_pair_invalid(fn, 0) ||
6722 check_args_pair_invalid(fn, 1) ||
6723 check_args_pair_invalid(fn, 2) ||
6724 check_args_pair_invalid(fn, 3) ||
6725 check_args_pair_invalid(fn, 4))
90133415
DB
6726 return false;
6727
6728 return true;
6729}
6730
9436ef6e
LB
6731static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6732{
6733 int i;
6734
1df8f55a 6735 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
6736 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
6737 return !!fn->arg_btf_id[i];
6738 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
6739 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
6740 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6741 /* arg_btf_id and arg_size are in a union. */
6742 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6743 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
6744 return false;
6745 }
6746
9436ef6e
LB
6747 return true;
6748}
6749
0c9a7a7e 6750static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
6751{
6752 return check_raw_mode_ok(fn) &&
fd978bf7 6753 check_arg_pair_ok(fn) &&
b2d8ef19 6754 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
6755}
6756
de8f3a83
DB
6757/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6758 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 6759 */
b239da34 6760static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 6761{
b239da34
KKD
6762 struct bpf_func_state *state;
6763 struct bpf_reg_state *reg;
969bf05e 6764
b239da34 6765 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
de8f3a83 6766 if (reg_is_pkt_pointer_any(reg))
f54c7898 6767 __mark_reg_unknown(env, reg);
b239da34 6768 }));
f4d7e40a
AS
6769}
6770
6d94e741
AS
6771enum {
6772 AT_PKT_END = -1,
6773 BEYOND_PKT_END = -2,
6774};
6775
6776static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6777{
6778 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6779 struct bpf_reg_state *reg = &state->regs[regn];
6780
6781 if (reg->type != PTR_TO_PACKET)
6782 /* PTR_TO_PACKET_META is not supported yet */
6783 return;
6784
6785 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6786 * How far beyond pkt_end it goes is unknown.
6787 * if (!range_open) it's the case of pkt >= pkt_end
6788 * if (range_open) it's the case of pkt > pkt_end
6789 * hence this pointer is at least 1 byte bigger than pkt_end
6790 */
6791 if (range_open)
6792 reg->range = BEYOND_PKT_END;
6793 else
6794 reg->range = AT_PKT_END;
6795}
6796
fd978bf7
JS
6797/* The pointer with the specified id has released its reference to kernel
6798 * resources. Identify all copies of the same pointer and clear the reference.
6799 */
6800static int release_reference(struct bpf_verifier_env *env,
1b986589 6801 int ref_obj_id)
fd978bf7 6802{
b239da34
KKD
6803 struct bpf_func_state *state;
6804 struct bpf_reg_state *reg;
1b986589 6805 int err;
fd978bf7 6806
1b986589
MKL
6807 err = release_reference_state(cur_func(env), ref_obj_id);
6808 if (err)
6809 return err;
6810
b239da34 6811 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
f1db2081
YL
6812 if (reg->ref_obj_id == ref_obj_id) {
6813 if (!env->allow_ptr_leaks)
6814 __mark_reg_not_init(env, reg);
6815 else
6816 __mark_reg_unknown(env, reg);
6817 }
b239da34 6818 }));
fd978bf7 6819
1b986589 6820 return 0;
fd978bf7
JS
6821}
6822
51c39bb1
AS
6823static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6824 struct bpf_reg_state *regs)
6825{
6826 int i;
6827
6828 /* after the call registers r0 - r5 were scratched */
6829 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6830 mark_reg_not_init(env, regs, caller_saved[i]);
6831 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6832 }
6833}
6834
14351375
YS
6835typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6836 struct bpf_func_state *caller,
6837 struct bpf_func_state *callee,
6838 int insn_idx);
6839
be2ef816
AN
6840static int set_callee_state(struct bpf_verifier_env *env,
6841 struct bpf_func_state *caller,
6842 struct bpf_func_state *callee, int insn_idx);
6843
14351375
YS
6844static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6845 int *insn_idx, int subprog,
6846 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
6847{
6848 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 6849 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 6850 struct bpf_func_state *caller, *callee;
14351375 6851 int err;
51c39bb1 6852 bool is_global = false;
f4d7e40a 6853
aada9ce6 6854 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 6855 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 6856 state->curframe + 2);
f4d7e40a
AS
6857 return -E2BIG;
6858 }
6859
f4d7e40a
AS
6860 caller = state->frame[state->curframe];
6861 if (state->frame[state->curframe + 1]) {
6862 verbose(env, "verifier bug. Frame %d already allocated\n",
6863 state->curframe + 1);
6864 return -EFAULT;
6865 }
6866
51c39bb1
AS
6867 func_info_aux = env->prog->aux->func_info_aux;
6868 if (func_info_aux)
6869 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 6870 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
6871 if (err == -EFAULT)
6872 return err;
6873 if (is_global) {
6874 if (err) {
6875 verbose(env, "Caller passes invalid args into func#%d\n",
6876 subprog);
6877 return err;
6878 } else {
6879 if (env->log.level & BPF_LOG_LEVEL)
6880 verbose(env,
6881 "Func#%d is global and valid. Skipping.\n",
6882 subprog);
6883 clear_caller_saved_regs(env, caller->regs);
6884
45159b27 6885 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 6886 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 6887 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
6888
6889 /* continue with next insn after call */
6890 return 0;
6891 }
6892 }
6893
be2ef816
AN
6894 /* set_callee_state is used for direct subprog calls, but we are
6895 * interested in validating only BPF helpers that can call subprogs as
6896 * callbacks
6897 */
6898 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
6899 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
6900 func_id_name(insn->imm), insn->imm);
6901 return -EFAULT;
6902 }
6903
bfc6bb74 6904 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 6905 insn->src_reg == 0 &&
bfc6bb74
AS
6906 insn->imm == BPF_FUNC_timer_set_callback) {
6907 struct bpf_verifier_state *async_cb;
6908
6909 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 6910 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
6911 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6912 *insn_idx, subprog);
6913 if (!async_cb)
6914 return -EFAULT;
6915 callee = async_cb->frame[0];
6916 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6917
6918 /* Convert bpf_timer_set_callback() args into timer callback args */
6919 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6920 if (err)
6921 return err;
6922
6923 clear_caller_saved_regs(env, caller->regs);
6924 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6925 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6926 /* continue with next insn after call */
6927 return 0;
6928 }
6929
f4d7e40a
AS
6930 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6931 if (!callee)
6932 return -ENOMEM;
6933 state->frame[state->curframe + 1] = callee;
6934
6935 /* callee cannot access r0, r6 - r9 for reading and has to write
6936 * into its own stack before reading from it.
6937 * callee can read/write into caller's stack
6938 */
6939 init_func_state(env, callee,
6940 /* remember the callsite, it will be used by bpf_exit */
6941 *insn_idx /* callsite */,
6942 state->curframe + 1 /* frameno within this callchain */,
f910cefa 6943 subprog /* subprog number within this prog */);
f4d7e40a 6944
fd978bf7 6945 /* Transfer references to the callee */
c69431aa 6946 err = copy_reference_state(callee, caller);
fd978bf7
JS
6947 if (err)
6948 return err;
6949
14351375
YS
6950 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6951 if (err)
6952 return err;
f4d7e40a 6953
51c39bb1 6954 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6955
6956 /* only increment it after check_reg_arg() finished */
6957 state->curframe++;
6958
6959 /* and go analyze first insn of the callee */
14351375 6960 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6961
06ee7115 6962 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6963 verbose(env, "caller:\n");
0f55f9ed 6964 print_verifier_state(env, caller, true);
f4d7e40a 6965 verbose(env, "callee:\n");
0f55f9ed 6966 print_verifier_state(env, callee, true);
f4d7e40a
AS
6967 }
6968 return 0;
6969}
6970
314ee05e
YS
6971int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6972 struct bpf_func_state *caller,
6973 struct bpf_func_state *callee)
6974{
6975 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6976 * void *callback_ctx, u64 flags);
6977 * callback_fn(struct bpf_map *map, void *key, void *value,
6978 * void *callback_ctx);
6979 */
6980 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6981
6982 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6983 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6984 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6985
6986 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6987 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6988 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6989
6990 /* pointer to stack or null */
6991 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6992
6993 /* unused */
6994 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6995 return 0;
6996}
6997
14351375
YS
6998static int set_callee_state(struct bpf_verifier_env *env,
6999 struct bpf_func_state *caller,
7000 struct bpf_func_state *callee, int insn_idx)
7001{
7002 int i;
7003
7004 /* copy r1 - r5 args that callee can access. The copy includes parent
7005 * pointers, which connects us up to the liveness chain
7006 */
7007 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7008 callee->regs[i] = caller->regs[i];
7009 return 0;
7010}
7011
7012static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7013 int *insn_idx)
7014{
7015 int subprog, target_insn;
7016
7017 target_insn = *insn_idx + insn->imm + 1;
7018 subprog = find_subprog(env, target_insn);
7019 if (subprog < 0) {
7020 verbose(env, "verifier bug. No program starts at insn %d\n",
7021 target_insn);
7022 return -EFAULT;
7023 }
7024
7025 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7026}
7027
69c087ba
YS
7028static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7029 struct bpf_func_state *caller,
7030 struct bpf_func_state *callee,
7031 int insn_idx)
7032{
7033 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7034 struct bpf_map *map;
7035 int err;
7036
7037 if (bpf_map_ptr_poisoned(insn_aux)) {
7038 verbose(env, "tail_call abusing map_ptr\n");
7039 return -EINVAL;
7040 }
7041
7042 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7043 if (!map->ops->map_set_for_each_callback_args ||
7044 !map->ops->map_for_each_callback) {
7045 verbose(env, "callback function not allowed for map\n");
7046 return -ENOTSUPP;
7047 }
7048
7049 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7050 if (err)
7051 return err;
7052
7053 callee->in_callback_fn = true;
1bfe26fb 7054 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
7055 return 0;
7056}
7057
e6f2dd0f
JK
7058static int set_loop_callback_state(struct bpf_verifier_env *env,
7059 struct bpf_func_state *caller,
7060 struct bpf_func_state *callee,
7061 int insn_idx)
7062{
7063 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7064 * u64 flags);
7065 * callback_fn(u32 index, void *callback_ctx);
7066 */
7067 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7068 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7069
7070 /* unused */
7071 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7072 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7073 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7074
7075 callee->in_callback_fn = true;
1bfe26fb 7076 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
7077 return 0;
7078}
7079
b00628b1
AS
7080static int set_timer_callback_state(struct bpf_verifier_env *env,
7081 struct bpf_func_state *caller,
7082 struct bpf_func_state *callee,
7083 int insn_idx)
7084{
7085 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7086
7087 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7088 * callback_fn(struct bpf_map *map, void *key, void *value);
7089 */
7090 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7091 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7092 callee->regs[BPF_REG_1].map_ptr = map_ptr;
7093
7094 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7095 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7096 callee->regs[BPF_REG_2].map_ptr = map_ptr;
7097
7098 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7099 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7100 callee->regs[BPF_REG_3].map_ptr = map_ptr;
7101
7102 /* unused */
7103 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7104 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 7105 callee->in_async_callback_fn = true;
1bfe26fb 7106 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
7107 return 0;
7108}
7109
7c7e3d31
SL
7110static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7111 struct bpf_func_state *caller,
7112 struct bpf_func_state *callee,
7113 int insn_idx)
7114{
7115 /* bpf_find_vma(struct task_struct *task, u64 addr,
7116 * void *callback_fn, void *callback_ctx, u64 flags)
7117 * (callback_fn)(struct task_struct *task,
7118 * struct vm_area_struct *vma, void *callback_ctx);
7119 */
7120 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7121
7122 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7123 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7124 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 7125 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
7126
7127 /* pointer to stack or null */
7128 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7129
7130 /* unused */
7131 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7132 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7133 callee->in_callback_fn = true;
1bfe26fb 7134 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
7135 return 0;
7136}
7137
20571567
DV
7138static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7139 struct bpf_func_state *caller,
7140 struct bpf_func_state *callee,
7141 int insn_idx)
7142{
7143 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7144 * callback_ctx, u64 flags);
7145 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
7146 */
7147 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7148 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
7149 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7150 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7151
7152 /* unused */
7153 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7154 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7155 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7156
7157 callee->in_callback_fn = true;
c92a7a52 7158 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
7159 return 0;
7160}
7161
f4d7e40a
AS
7162static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7163{
7164 struct bpf_verifier_state *state = env->cur_state;
7165 struct bpf_func_state *caller, *callee;
7166 struct bpf_reg_state *r0;
fd978bf7 7167 int err;
f4d7e40a
AS
7168
7169 callee = state->frame[state->curframe];
7170 r0 = &callee->regs[BPF_REG_0];
7171 if (r0->type == PTR_TO_STACK) {
7172 /* technically it's ok to return caller's stack pointer
7173 * (or caller's caller's pointer) back to the caller,
7174 * since these pointers are valid. Only current stack
7175 * pointer will be invalid as soon as function exits,
7176 * but let's be conservative
7177 */
7178 verbose(env, "cannot return stack pointer to the caller\n");
7179 return -EINVAL;
7180 }
7181
7182 state->curframe--;
7183 caller = state->frame[state->curframe];
69c087ba
YS
7184 if (callee->in_callback_fn) {
7185 /* enforce R0 return value range [0, 1]. */
1bfe26fb 7186 struct tnum range = callee->callback_ret_range;
69c087ba
YS
7187
7188 if (r0->type != SCALAR_VALUE) {
7189 verbose(env, "R0 not a scalar value\n");
7190 return -EACCES;
7191 }
7192 if (!tnum_in(range, r0->var_off)) {
7193 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7194 return -EINVAL;
7195 }
7196 } else {
7197 /* return to the caller whatever r0 had in the callee */
7198 caller->regs[BPF_REG_0] = *r0;
7199 }
f4d7e40a 7200
9d9d00ac
KKD
7201 /* callback_fn frame should have released its own additions to parent's
7202 * reference state at this point, or check_reference_leak would
7203 * complain, hence it must be the same as the caller. There is no need
7204 * to copy it back.
7205 */
7206 if (!callee->in_callback_fn) {
7207 /* Transfer references to the caller */
7208 err = copy_reference_state(caller, callee);
7209 if (err)
7210 return err;
7211 }
fd978bf7 7212
f4d7e40a 7213 *insn_idx = callee->callsite + 1;
06ee7115 7214 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 7215 verbose(env, "returning from callee:\n");
0f55f9ed 7216 print_verifier_state(env, callee, true);
f4d7e40a 7217 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 7218 print_verifier_state(env, caller, true);
f4d7e40a
AS
7219 }
7220 /* clear everything in the callee */
7221 free_func_state(callee);
7222 state->frame[state->curframe + 1] = NULL;
7223 return 0;
7224}
7225
849fa506
YS
7226static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7227 int func_id,
7228 struct bpf_call_arg_meta *meta)
7229{
7230 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7231
7232 if (ret_type != RET_INTEGER ||
7233 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 7234 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
7235 func_id != BPF_FUNC_probe_read_str &&
7236 func_id != BPF_FUNC_probe_read_kernel_str &&
7237 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
7238 return;
7239
10060503 7240 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 7241 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
7242 ret_reg->smin_value = -MAX_ERRNO;
7243 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 7244 reg_bounds_sync(ret_reg);
849fa506
YS
7245}
7246
c93552c4
DB
7247static int
7248record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7249 int func_id, int insn_idx)
7250{
7251 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 7252 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
7253
7254 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
7255 func_id != BPF_FUNC_map_lookup_elem &&
7256 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
7257 func_id != BPF_FUNC_map_delete_elem &&
7258 func_id != BPF_FUNC_map_push_elem &&
7259 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 7260 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 7261 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
7262 func_id != BPF_FUNC_redirect_map &&
7263 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 7264 return 0;
09772d92 7265
591fe988 7266 if (map == NULL) {
c93552c4
DB
7267 verbose(env, "kernel subsystem misconfigured verifier\n");
7268 return -EINVAL;
7269 }
7270
591fe988
DB
7271 /* In case of read-only, some additional restrictions
7272 * need to be applied in order to prevent altering the
7273 * state of the map from program side.
7274 */
7275 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7276 (func_id == BPF_FUNC_map_delete_elem ||
7277 func_id == BPF_FUNC_map_update_elem ||
7278 func_id == BPF_FUNC_map_push_elem ||
7279 func_id == BPF_FUNC_map_pop_elem)) {
7280 verbose(env, "write into map forbidden\n");
7281 return -EACCES;
7282 }
7283
d2e4c1e6 7284 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 7285 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 7286 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 7287 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 7288 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 7289 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
7290 return 0;
7291}
7292
d2e4c1e6
DB
7293static int
7294record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7295 int func_id, int insn_idx)
7296{
7297 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7298 struct bpf_reg_state *regs = cur_regs(env), *reg;
7299 struct bpf_map *map = meta->map_ptr;
a657182a 7300 u64 val, max;
cc52d914 7301 int err;
d2e4c1e6
DB
7302
7303 if (func_id != BPF_FUNC_tail_call)
7304 return 0;
7305 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7306 verbose(env, "kernel subsystem misconfigured verifier\n");
7307 return -EINVAL;
7308 }
7309
d2e4c1e6 7310 reg = &regs[BPF_REG_3];
a657182a
DB
7311 val = reg->var_off.value;
7312 max = map->max_entries;
d2e4c1e6 7313
a657182a 7314 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
7315 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7316 return 0;
7317 }
7318
cc52d914
DB
7319 err = mark_chain_precision(env, BPF_REG_3);
7320 if (err)
7321 return err;
d2e4c1e6
DB
7322 if (bpf_map_key_unseen(aux))
7323 bpf_map_key_store(aux, val);
7324 else if (!bpf_map_key_poisoned(aux) &&
7325 bpf_map_key_immediate(aux) != val)
7326 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7327 return 0;
7328}
7329
fd978bf7
JS
7330static int check_reference_leak(struct bpf_verifier_env *env)
7331{
7332 struct bpf_func_state *state = cur_func(env);
9d9d00ac 7333 bool refs_lingering = false;
fd978bf7
JS
7334 int i;
7335
9d9d00ac
KKD
7336 if (state->frameno && !state->in_callback_fn)
7337 return 0;
7338
fd978bf7 7339 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
7340 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7341 continue;
fd978bf7
JS
7342 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7343 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 7344 refs_lingering = true;
fd978bf7 7345 }
9d9d00ac 7346 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
7347}
7348
7b15523a
FR
7349static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7350 struct bpf_reg_state *regs)
7351{
7352 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7353 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7354 struct bpf_map *fmt_map = fmt_reg->map_ptr;
7355 int err, fmt_map_off, num_args;
7356 u64 fmt_addr;
7357 char *fmt;
7358
7359 /* data must be an array of u64 */
7360 if (data_len_reg->var_off.value % 8)
7361 return -EINVAL;
7362 num_args = data_len_reg->var_off.value / 8;
7363
7364 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7365 * and map_direct_value_addr is set.
7366 */
7367 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7368 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7369 fmt_map_off);
8e8ee109
FR
7370 if (err) {
7371 verbose(env, "verifier bug\n");
7372 return -EFAULT;
7373 }
7b15523a
FR
7374 fmt = (char *)(long)fmt_addr + fmt_map_off;
7375
7376 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7377 * can focus on validating the format specifiers.
7378 */
48cac3f4 7379 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
7380 if (err < 0)
7381 verbose(env, "Invalid format string\n");
7382
7383 return err;
7384}
7385
9b99edca
JO
7386static int check_get_func_ip(struct bpf_verifier_env *env)
7387{
9b99edca
JO
7388 enum bpf_prog_type type = resolve_prog_type(env->prog);
7389 int func_id = BPF_FUNC_get_func_ip;
7390
7391 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 7392 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
7393 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7394 func_id_name(func_id), func_id);
7395 return -ENOTSUPP;
7396 }
7397 return 0;
9ffd9f3f
JO
7398 } else if (type == BPF_PROG_TYPE_KPROBE) {
7399 return 0;
9b99edca
JO
7400 }
7401
7402 verbose(env, "func %s#%d not supported for program type %d\n",
7403 func_id_name(func_id), func_id, type);
7404 return -ENOTSUPP;
7405}
7406
1ade2371
EZ
7407static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7408{
7409 return &env->insn_aux_data[env->insn_idx];
7410}
7411
7412static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7413{
7414 struct bpf_reg_state *regs = cur_regs(env);
7415 struct bpf_reg_state *reg = &regs[BPF_REG_4];
7416 bool reg_is_null = register_is_null(reg);
7417
7418 if (reg_is_null)
7419 mark_chain_precision(env, BPF_REG_4);
7420
7421 return reg_is_null;
7422}
7423
7424static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7425{
7426 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7427
7428 if (!state->initialized) {
7429 state->initialized = 1;
7430 state->fit_for_inline = loop_flag_is_zero(env);
7431 state->callback_subprogno = subprogno;
7432 return;
7433 }
7434
7435 if (!state->fit_for_inline)
7436 return;
7437
7438 state->fit_for_inline = (loop_flag_is_zero(env) &&
7439 state->callback_subprogno == subprogno);
7440}
7441
69c087ba
YS
7442static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7443 int *insn_idx_p)
17a52670 7444{
aef9d4a3 7445 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 7446 const struct bpf_func_proto *fn = NULL;
3c480732 7447 enum bpf_return_type ret_type;
c25b2ae1 7448 enum bpf_type_flag ret_flag;
638f5b90 7449 struct bpf_reg_state *regs;
33ff9823 7450 struct bpf_call_arg_meta meta;
69c087ba 7451 int insn_idx = *insn_idx_p;
969bf05e 7452 bool changes_data;
69c087ba 7453 int i, err, func_id;
17a52670
AS
7454
7455 /* find function prototype */
69c087ba 7456 func_id = insn->imm;
17a52670 7457 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
7458 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7459 func_id);
17a52670
AS
7460 return -EINVAL;
7461 }
7462
00176a34 7463 if (env->ops->get_func_proto)
5e43f899 7464 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 7465 if (!fn) {
61bd5218
JK
7466 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7467 func_id);
17a52670
AS
7468 return -EINVAL;
7469 }
7470
7471 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 7472 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 7473 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
7474 return -EINVAL;
7475 }
7476
eae2e83e
JO
7477 if (fn->allowed && !fn->allowed(env->prog)) {
7478 verbose(env, "helper call is not allowed in probe\n");
7479 return -EINVAL;
7480 }
7481
04514d13 7482 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 7483 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
7484 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7485 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7486 func_id_name(func_id), func_id);
7487 return -EINVAL;
7488 }
969bf05e 7489
33ff9823 7490 memset(&meta, 0, sizeof(meta));
36bbef52 7491 meta.pkt_access = fn->pkt_access;
33ff9823 7492
0c9a7a7e 7493 err = check_func_proto(fn, func_id);
435faee1 7494 if (err) {
61bd5218 7495 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 7496 func_id_name(func_id), func_id);
435faee1
DB
7497 return err;
7498 }
7499
d83525ca 7500 meta.func_id = func_id;
17a52670 7501 /* check args */
523a4cf4 7502 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 7503 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
7504 if (err)
7505 return err;
7506 }
17a52670 7507
c93552c4
DB
7508 err = record_func_map(env, &meta, func_id, insn_idx);
7509 if (err)
7510 return err;
7511
d2e4c1e6
DB
7512 err = record_func_key(env, &meta, func_id, insn_idx);
7513 if (err)
7514 return err;
7515
435faee1
DB
7516 /* Mark slots with STACK_MISC in case of raw mode, stack offset
7517 * is inferred from register state.
7518 */
7519 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
7520 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7521 BPF_WRITE, -1, false);
435faee1
DB
7522 if (err)
7523 return err;
7524 }
7525
8f14852e
KKD
7526 regs = cur_regs(env);
7527
97e03f52
JK
7528 if (meta.uninit_dynptr_regno) {
7529 /* we write BPF_DW bits (8 bytes) at a time */
7530 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7531 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7532 i, BPF_DW, BPF_WRITE, -1, false);
7533 if (err)
7534 return err;
7535 }
7536
7537 err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7538 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7539 insn_idx);
7540 if (err)
7541 return err;
7542 }
7543
8f14852e
KKD
7544 if (meta.release_regno) {
7545 err = -EINVAL;
97e03f52
JK
7546 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7547 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7548 else if (meta.ref_obj_id)
8f14852e
KKD
7549 err = release_reference(env, meta.ref_obj_id);
7550 /* meta.ref_obj_id can only be 0 if register that is meant to be
7551 * released is NULL, which must be > R0.
7552 */
7553 else if (register_is_null(&regs[meta.release_regno]))
7554 err = 0;
46f8bc92
MKL
7555 if (err) {
7556 verbose(env, "func %s#%d reference has not been acquired before\n",
7557 func_id_name(func_id), func_id);
fd978bf7 7558 return err;
46f8bc92 7559 }
fd978bf7
JS
7560 }
7561
e6f2dd0f
JK
7562 switch (func_id) {
7563 case BPF_FUNC_tail_call:
7564 err = check_reference_leak(env);
7565 if (err) {
7566 verbose(env, "tail_call would lead to reference leak\n");
7567 return err;
7568 }
7569 break;
7570 case BPF_FUNC_get_local_storage:
7571 /* check that flags argument in get_local_storage(map, flags) is 0,
7572 * this is required because get_local_storage() can't return an error.
7573 */
7574 if (!register_is_null(&regs[BPF_REG_2])) {
7575 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7576 return -EINVAL;
7577 }
7578 break;
7579 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
7580 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7581 set_map_elem_callback_state);
e6f2dd0f
JK
7582 break;
7583 case BPF_FUNC_timer_set_callback:
b00628b1
AS
7584 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7585 set_timer_callback_state);
e6f2dd0f
JK
7586 break;
7587 case BPF_FUNC_find_vma:
7c7e3d31
SL
7588 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7589 set_find_vma_callback_state);
e6f2dd0f
JK
7590 break;
7591 case BPF_FUNC_snprintf:
7b15523a 7592 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
7593 break;
7594 case BPF_FUNC_loop:
1ade2371 7595 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
7596 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7597 set_loop_callback_state);
7598 break;
263ae152
JK
7599 case BPF_FUNC_dynptr_from_mem:
7600 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7601 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7602 reg_type_str(env, regs[BPF_REG_1].type));
7603 return -EACCES;
7604 }
69fd337a
SF
7605 break;
7606 case BPF_FUNC_set_retval:
aef9d4a3
SF
7607 if (prog_type == BPF_PROG_TYPE_LSM &&
7608 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
7609 if (!env->prog->aux->attach_func_proto->type) {
7610 /* Make sure programs that attach to void
7611 * hooks don't try to modify return value.
7612 */
7613 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7614 return -EINVAL;
7615 }
7616 }
7617 break;
88374342
JK
7618 case BPF_FUNC_dynptr_data:
7619 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7620 if (arg_type_is_dynptr(fn->arg_type[i])) {
20571567
DV
7621 struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7622
88374342
JK
7623 if (meta.ref_obj_id) {
7624 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7625 return -EFAULT;
7626 }
20571567
DV
7627
7628 if (base_type(reg->type) != PTR_TO_DYNPTR)
7629 /* Find the id of the dynptr we're
7630 * tracking the reference of
7631 */
7632 meta.ref_obj_id = stack_slot_get_id(env, reg);
88374342
JK
7633 break;
7634 }
7635 }
7636 if (i == MAX_BPF_FUNC_REG_ARGS) {
7637 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7638 return -EFAULT;
7639 }
7640 break;
20571567
DV
7641 case BPF_FUNC_user_ringbuf_drain:
7642 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7643 set_user_ringbuf_callback_state);
7644 break;
7b15523a
FR
7645 }
7646
e6f2dd0f
JK
7647 if (err)
7648 return err;
7649
17a52670 7650 /* reset caller saved regs */
dc503a8a 7651 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7652 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7653 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7654 }
17a52670 7655
5327ed3d
JW
7656 /* helper call returns 64-bit value. */
7657 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7658
dc503a8a 7659 /* update return register (already marked as written above) */
3c480732 7660 ret_type = fn->ret_type;
0c9a7a7e
JK
7661 ret_flag = type_flag(ret_type);
7662
7663 switch (base_type(ret_type)) {
7664 case RET_INTEGER:
f1174f77 7665 /* sets type to SCALAR_VALUE */
61bd5218 7666 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
7667 break;
7668 case RET_VOID:
17a52670 7669 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
7670 break;
7671 case RET_PTR_TO_MAP_VALUE:
f1174f77 7672 /* There is no offset yet applied, variable or fixed */
61bd5218 7673 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
7674 /* remember map_ptr, so that check_map_access()
7675 * can check 'value_size' boundary of memory access
7676 * to map element returned from bpf_map_lookup_elem()
7677 */
33ff9823 7678 if (meta.map_ptr == NULL) {
61bd5218
JK
7679 verbose(env,
7680 "kernel subsystem misconfigured verifier\n");
17a52670
AS
7681 return -EINVAL;
7682 }
33ff9823 7683 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 7684 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
7685 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7686 if (!type_may_be_null(ret_type) &&
db559117 7687 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 7688 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 7689 }
0c9a7a7e
JK
7690 break;
7691 case RET_PTR_TO_SOCKET:
c64b7983 7692 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7693 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
7694 break;
7695 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 7696 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7697 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
7698 break;
7699 case RET_PTR_TO_TCP_SOCK:
655a51e5 7700 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7701 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 7702 break;
2de2669b 7703 case RET_PTR_TO_MEM:
457f4436 7704 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7705 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 7706 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
7707 break;
7708 case RET_PTR_TO_MEM_OR_BTF_ID:
7709 {
eaa6bcb7
HL
7710 const struct btf_type *t;
7711
7712 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 7713 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
7714 if (!btf_type_is_struct(t)) {
7715 u32 tsize;
7716 const struct btf_type *ret;
7717 const char *tname;
7718
7719 /* resolve the type size of ksym. */
22dc4a0f 7720 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 7721 if (IS_ERR(ret)) {
22dc4a0f 7722 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
7723 verbose(env, "unable to resolve the size of type '%s': %ld\n",
7724 tname, PTR_ERR(ret));
7725 return -EINVAL;
7726 }
c25b2ae1 7727 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
7728 regs[BPF_REG_0].mem_size = tsize;
7729 } else {
34d3a78c
HL
7730 /* MEM_RDONLY may be carried from ret_flag, but it
7731 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7732 * it will confuse the check of PTR_TO_BTF_ID in
7733 * check_mem_access().
7734 */
7735 ret_flag &= ~MEM_RDONLY;
7736
c25b2ae1 7737 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 7738 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
7739 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7740 }
0c9a7a7e
JK
7741 break;
7742 }
7743 case RET_PTR_TO_BTF_ID:
7744 {
c0a5a21c 7745 struct btf *ret_btf;
af7ec138
YS
7746 int ret_btf_id;
7747
7748 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7749 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 7750 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
7751 ret_btf = meta.kptr_field->kptr.btf;
7752 ret_btf_id = meta.kptr_field->kptr.btf_id;
c0a5a21c 7753 } else {
47e34cb7
DM
7754 if (fn->ret_btf_id == BPF_PTR_POISON) {
7755 verbose(env, "verifier internal error:");
7756 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7757 func_id_name(func_id));
7758 return -EINVAL;
7759 }
c0a5a21c
KKD
7760 ret_btf = btf_vmlinux;
7761 ret_btf_id = *fn->ret_btf_id;
7762 }
af7ec138 7763 if (ret_btf_id == 0) {
3c480732
HL
7764 verbose(env, "invalid return type %u of func %s#%d\n",
7765 base_type(ret_type), func_id_name(func_id),
7766 func_id);
af7ec138
YS
7767 return -EINVAL;
7768 }
c0a5a21c 7769 regs[BPF_REG_0].btf = ret_btf;
af7ec138 7770 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
7771 break;
7772 }
7773 default:
3c480732
HL
7774 verbose(env, "unknown return type %u of func %s#%d\n",
7775 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
7776 return -EINVAL;
7777 }
04fd61ab 7778
c25b2ae1 7779 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
7780 regs[BPF_REG_0].id = ++env->id_gen;
7781
b2d8ef19
DM
7782 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7783 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7784 func_id_name(func_id), func_id);
7785 return -EFAULT;
7786 }
7787
88374342 7788 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
7789 /* For release_reference() */
7790 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 7791 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
7792 int id = acquire_reference_state(env, insn_idx);
7793
7794 if (id < 0)
7795 return id;
7796 /* For mark_ptr_or_null_reg() */
7797 regs[BPF_REG_0].id = id;
7798 /* For release_reference() */
7799 regs[BPF_REG_0].ref_obj_id = id;
7800 }
1b986589 7801
849fa506
YS
7802 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7803
61bd5218 7804 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
7805 if (err)
7806 return err;
04fd61ab 7807
fa28dcb8
SL
7808 if ((func_id == BPF_FUNC_get_stack ||
7809 func_id == BPF_FUNC_get_task_stack) &&
7810 !env->prog->has_callchain_buf) {
c195651e
YS
7811 const char *err_str;
7812
7813#ifdef CONFIG_PERF_EVENTS
7814 err = get_callchain_buffers(sysctl_perf_event_max_stack);
7815 err_str = "cannot get callchain buffer for func %s#%d\n";
7816#else
7817 err = -ENOTSUPP;
7818 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7819#endif
7820 if (err) {
7821 verbose(env, err_str, func_id_name(func_id), func_id);
7822 return err;
7823 }
7824
7825 env->prog->has_callchain_buf = true;
7826 }
7827
5d99cb2c
SL
7828 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7829 env->prog->call_get_stack = true;
7830
9b99edca
JO
7831 if (func_id == BPF_FUNC_get_func_ip) {
7832 if (check_get_func_ip(env))
7833 return -ENOTSUPP;
7834 env->prog->call_get_func_ip = true;
7835 }
7836
969bf05e
AS
7837 if (changes_data)
7838 clear_all_pkt_pointers(env);
7839 return 0;
7840}
7841
e6ac2450
MKL
7842/* mark_btf_func_reg_size() is used when the reg size is determined by
7843 * the BTF func_proto's return value size and argument.
7844 */
7845static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7846 size_t reg_size)
7847{
7848 struct bpf_reg_state *reg = &cur_regs(env)[regno];
7849
7850 if (regno == BPF_REG_0) {
7851 /* Function return value */
7852 reg->live |= REG_LIVE_WRITTEN;
7853 reg->subreg_def = reg_size == sizeof(u64) ?
7854 DEF_NOT_SUBREG : env->insn_idx + 1;
7855 } else {
7856 /* Function argument */
7857 if (reg_size == sizeof(u64)) {
7858 mark_insn_zext(env, reg);
7859 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7860 } else {
7861 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7862 }
7863 }
7864}
7865
00b85860
KKD
7866struct bpf_kfunc_call_arg_meta {
7867 /* In parameters */
7868 struct btf *btf;
7869 u32 func_id;
7870 u32 kfunc_flags;
7871 const struct btf_type *func_proto;
7872 const char *func_name;
7873 /* Out parameters */
7874 u32 ref_obj_id;
7875 u8 release_regno;
7876 bool r0_rdonly;
7877 u64 r0_size;
a50388db
KKD
7878 struct {
7879 u64 value;
7880 bool found;
7881 } arg_constant;
ac9f0605
KKD
7882 struct {
7883 struct btf *btf;
7884 u32 btf_id;
7885 } arg_obj_drop;
00b85860
KKD
7886};
7887
7888static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
7889{
7890 return meta->kfunc_flags & KF_ACQUIRE;
7891}
7892
7893static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
7894{
7895 return meta->kfunc_flags & KF_RET_NULL;
7896}
7897
7898static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
7899{
7900 return meta->kfunc_flags & KF_RELEASE;
7901}
7902
7903static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
7904{
7905 return meta->kfunc_flags & KF_TRUSTED_ARGS;
7906}
7907
7908static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
7909{
7910 return meta->kfunc_flags & KF_SLEEPABLE;
7911}
7912
7913static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
7914{
7915 return meta->kfunc_flags & KF_DESTRUCTIVE;
7916}
7917
7918static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
7919{
7920 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
7921}
7922
a50388db
KKD
7923static bool __kfunc_param_match_suffix(const struct btf *btf,
7924 const struct btf_param *arg,
7925 const char *suffix)
00b85860 7926{
a50388db 7927 int suffix_len = strlen(suffix), len;
00b85860
KKD
7928 const char *param_name;
7929
00b85860
KKD
7930 /* In the future, this can be ported to use BTF tagging */
7931 param_name = btf_name_by_offset(btf, arg->name_off);
7932 if (str_is_empty(param_name))
7933 return false;
7934 len = strlen(param_name);
a50388db 7935 if (len < suffix_len)
00b85860 7936 return false;
a50388db
KKD
7937 param_name += len - suffix_len;
7938 return !strncmp(param_name, suffix, suffix_len);
7939}
7940
7941static bool is_kfunc_arg_mem_size(const struct btf *btf,
7942 const struct btf_param *arg,
7943 const struct bpf_reg_state *reg)
7944{
7945 const struct btf_type *t;
7946
7947 t = btf_type_skip_modifiers(btf, arg->type, NULL);
7948 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860
KKD
7949 return false;
7950
a50388db
KKD
7951 return __kfunc_param_match_suffix(btf, arg, "__sz");
7952}
7953
7954static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
7955{
7956 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860
KKD
7957}
7958
958cf2e2
KKD
7959static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
7960{
7961 return __kfunc_param_match_suffix(btf, arg, "__ign");
7962}
7963
ac9f0605
KKD
7964static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
7965{
7966 return __kfunc_param_match_suffix(btf, arg, "__alloc");
7967}
7968
00b85860
KKD
7969static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
7970 const struct btf_param *arg,
7971 const char *name)
7972{
7973 int len, target_len = strlen(name);
7974 const char *param_name;
7975
7976 param_name = btf_name_by_offset(btf, arg->name_off);
7977 if (str_is_empty(param_name))
7978 return false;
7979 len = strlen(param_name);
7980 if (len != target_len)
7981 return false;
7982 if (strcmp(param_name, name))
7983 return false;
7984
7985 return true;
7986}
7987
7988enum {
7989 KF_ARG_DYNPTR_ID,
7990};
7991
7992BTF_ID_LIST(kf_arg_btf_ids)
7993BTF_ID(struct, bpf_dynptr_kern)
7994
7995static bool is_kfunc_arg_dynptr(const struct btf *btf,
7996 const struct btf_param *arg)
7997{
7998 const struct btf_type *t;
7999 u32 res_id;
8000
8001 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8002 if (!t)
8003 return false;
8004 if (!btf_type_is_ptr(t))
8005 return false;
8006 t = btf_type_skip_modifiers(btf, t->type, &res_id);
8007 if (!t)
8008 return false;
8009 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[KF_ARG_DYNPTR_ID]);
8010}
8011
8012/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8013static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8014 const struct btf *btf,
8015 const struct btf_type *t, int rec)
8016{
8017 const struct btf_type *member_type;
8018 const struct btf_member *member;
8019 u32 i;
8020
8021 if (!btf_type_is_struct(t))
8022 return false;
8023
8024 for_each_member(i, t, member) {
8025 const struct btf_array *array;
8026
8027 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8028 if (btf_type_is_struct(member_type)) {
8029 if (rec >= 3) {
8030 verbose(env, "max struct nesting depth exceeded\n");
8031 return false;
8032 }
8033 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8034 return false;
8035 continue;
8036 }
8037 if (btf_type_is_array(member_type)) {
8038 array = btf_array(member_type);
8039 if (!array->nelems)
8040 return false;
8041 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8042 if (!btf_type_is_scalar(member_type))
8043 return false;
8044 continue;
8045 }
8046 if (!btf_type_is_scalar(member_type))
8047 return false;
8048 }
8049 return true;
8050}
8051
8052
8053static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8054#ifdef CONFIG_NET
8055 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8056 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8057 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8058#endif
8059};
8060
8061enum kfunc_ptr_arg_type {
8062 KF_ARG_PTR_TO_CTX,
ac9f0605 8063 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
00b85860
KKD
8064 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */
8065 KF_ARG_PTR_TO_DYNPTR,
8066 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
8067 KF_ARG_PTR_TO_MEM,
8068 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
8069};
8070
ac9f0605
KKD
8071enum special_kfunc_type {
8072 KF_bpf_obj_new_impl,
8073 KF_bpf_obj_drop_impl,
8074};
8075
8076BTF_SET_START(special_kfunc_set)
8077BTF_ID(func, bpf_obj_new_impl)
8078BTF_ID(func, bpf_obj_drop_impl)
8079BTF_SET_END(special_kfunc_set)
8080
8081BTF_ID_LIST(special_kfunc_list)
8082BTF_ID(func, bpf_obj_new_impl)
8083BTF_ID(func, bpf_obj_drop_impl)
8084
00b85860
KKD
8085static enum kfunc_ptr_arg_type
8086get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8087 struct bpf_kfunc_call_arg_meta *meta,
8088 const struct btf_type *t, const struct btf_type *ref_t,
8089 const char *ref_tname, const struct btf_param *args,
8090 int argno, int nargs)
8091{
8092 u32 regno = argno + 1;
8093 struct bpf_reg_state *regs = cur_regs(env);
8094 struct bpf_reg_state *reg = &regs[regno];
8095 bool arg_mem_size = false;
8096
8097 /* In this function, we verify the kfunc's BTF as per the argument type,
8098 * leaving the rest of the verification with respect to the register
8099 * type to our caller. When a set of conditions hold in the BTF type of
8100 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8101 */
8102 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8103 return KF_ARG_PTR_TO_CTX;
8104
ac9f0605
KKD
8105 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8106 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8107
00b85860
KKD
8108 if (is_kfunc_arg_kptr_get(meta, argno)) {
8109 if (!btf_type_is_ptr(ref_t)) {
8110 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8111 return -EINVAL;
8112 }
8113 ref_t = btf_type_by_id(meta->btf, ref_t->type);
8114 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8115 if (!btf_type_is_struct(ref_t)) {
8116 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8117 meta->func_name, btf_type_str(ref_t), ref_tname);
8118 return -EINVAL;
8119 }
8120 return KF_ARG_PTR_TO_KPTR;
8121 }
8122
8123 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8124 return KF_ARG_PTR_TO_DYNPTR;
8125
8126 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8127 if (!btf_type_is_struct(ref_t)) {
8128 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8129 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8130 return -EINVAL;
8131 }
8132 return KF_ARG_PTR_TO_BTF_ID;
8133 }
8134
8135 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8136 arg_mem_size = true;
8137
8138 /* This is the catch all argument type of register types supported by
8139 * check_helper_mem_access. However, we only allow when argument type is
8140 * pointer to scalar, or struct composed (recursively) of scalars. When
8141 * arg_mem_size is true, the pointer can be void *.
8142 */
8143 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8144 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8145 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8146 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8147 return -EINVAL;
8148 }
8149 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8150}
8151
8152static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8153 struct bpf_reg_state *reg,
8154 const struct btf_type *ref_t,
8155 const char *ref_tname, u32 ref_id,
8156 struct bpf_kfunc_call_arg_meta *meta,
8157 int argno)
8158{
8159 const struct btf_type *reg_ref_t;
8160 bool strict_type_match = false;
8161 const struct btf *reg_btf;
8162 const char *reg_ref_tname;
8163 u32 reg_ref_id;
8164
8165 if (reg->type == PTR_TO_BTF_ID) {
8166 reg_btf = reg->btf;
8167 reg_ref_id = reg->btf_id;
8168 } else {
8169 reg_btf = btf_vmlinux;
8170 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8171 }
8172
8173 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8174 strict_type_match = true;
8175
8176 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8177 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8178 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8179 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8180 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8181 btf_type_str(reg_ref_t), reg_ref_tname);
8182 return -EINVAL;
8183 }
8184 return 0;
8185}
8186
8187static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8188 struct bpf_reg_state *reg,
8189 const struct btf_type *ref_t,
8190 const char *ref_tname,
8191 struct bpf_kfunc_call_arg_meta *meta,
8192 int argno)
8193{
8194 struct btf_field *kptr_field;
8195
8196 /* check_func_arg_reg_off allows var_off for
8197 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8198 * off_desc.
8199 */
8200 if (!tnum_is_const(reg->var_off)) {
8201 verbose(env, "arg#0 must have constant offset\n");
8202 return -EINVAL;
8203 }
8204
8205 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8206 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8207 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8208 reg->off + reg->var_off.value);
8209 return -EINVAL;
8210 }
8211
8212 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8213 kptr_field->kptr.btf_id, true)) {
8214 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8215 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8216 return -EINVAL;
8217 }
8218 return 0;
8219}
8220
8221static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8222{
8223 const char *func_name = meta->func_name, *ref_tname;
8224 const struct btf *btf = meta->btf;
8225 const struct btf_param *args;
8226 u32 i, nargs;
8227 int ret;
8228
8229 args = (const struct btf_param *)(meta->func_proto + 1);
8230 nargs = btf_type_vlen(meta->func_proto);
8231 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8232 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8233 MAX_BPF_FUNC_REG_ARGS);
8234 return -EINVAL;
8235 }
8236
8237 /* Check that BTF function arguments match actual types that the
8238 * verifier sees.
8239 */
8240 for (i = 0; i < nargs; i++) {
8241 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8242 const struct btf_type *t, *ref_t, *resolve_ret;
8243 enum bpf_arg_type arg_type = ARG_DONTCARE;
8244 u32 regno = i + 1, ref_id, type_size;
8245 bool is_ret_buf_sz = false;
8246 int kf_arg_type;
8247
8248 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
8249
8250 if (is_kfunc_arg_ignore(btf, &args[i]))
8251 continue;
8252
00b85860
KKD
8253 if (btf_type_is_scalar(t)) {
8254 if (reg->type != SCALAR_VALUE) {
8255 verbose(env, "R%d is not a scalar\n", regno);
8256 return -EINVAL;
8257 }
a50388db
KKD
8258
8259 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8260 if (meta->arg_constant.found) {
8261 verbose(env, "verifier internal error: only one constant argument permitted\n");
8262 return -EFAULT;
8263 }
8264 if (!tnum_is_const(reg->var_off)) {
8265 verbose(env, "R%d must be a known constant\n", regno);
8266 return -EINVAL;
8267 }
8268 ret = mark_chain_precision(env, regno);
8269 if (ret < 0)
8270 return ret;
8271 meta->arg_constant.found = true;
8272 meta->arg_constant.value = reg->var_off.value;
8273 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
8274 meta->r0_rdonly = true;
8275 is_ret_buf_sz = true;
8276 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8277 is_ret_buf_sz = true;
8278 }
8279
8280 if (is_ret_buf_sz) {
8281 if (meta->r0_size) {
8282 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8283 return -EINVAL;
8284 }
8285
8286 if (!tnum_is_const(reg->var_off)) {
8287 verbose(env, "R%d is not a const\n", regno);
8288 return -EINVAL;
8289 }
8290
8291 meta->r0_size = reg->var_off.value;
8292 ret = mark_chain_precision(env, regno);
8293 if (ret)
8294 return ret;
8295 }
8296 continue;
8297 }
8298
8299 if (!btf_type_is_ptr(t)) {
8300 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8301 return -EINVAL;
8302 }
8303
8304 if (reg->ref_obj_id) {
8305 if (is_kfunc_release(meta) && meta->ref_obj_id) {
8306 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8307 regno, reg->ref_obj_id,
8308 meta->ref_obj_id);
8309 return -EFAULT;
8310 }
8311 meta->ref_obj_id = reg->ref_obj_id;
8312 if (is_kfunc_release(meta))
8313 meta->release_regno = regno;
8314 }
8315
8316 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8317 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8318
8319 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8320 if (kf_arg_type < 0)
8321 return kf_arg_type;
8322
8323 switch (kf_arg_type) {
ac9f0605 8324 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860
KKD
8325 case KF_ARG_PTR_TO_BTF_ID:
8326 if (!is_kfunc_trusted_args(meta))
8327 break;
8328 if (!reg->ref_obj_id) {
8329 verbose(env, "R%d must be referenced\n", regno);
8330 return -EINVAL;
8331 }
8332 fallthrough;
8333 case KF_ARG_PTR_TO_CTX:
8334 /* Trusted arguments have the same offset checks as release arguments */
8335 arg_type |= OBJ_RELEASE;
8336 break;
8337 case KF_ARG_PTR_TO_KPTR:
8338 case KF_ARG_PTR_TO_DYNPTR:
8339 case KF_ARG_PTR_TO_MEM:
8340 case KF_ARG_PTR_TO_MEM_SIZE:
8341 /* Trusted by default */
8342 break;
8343 default:
8344 WARN_ON_ONCE(1);
8345 return -EFAULT;
8346 }
8347
8348 if (is_kfunc_release(meta) && reg->ref_obj_id)
8349 arg_type |= OBJ_RELEASE;
8350 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8351 if (ret < 0)
8352 return ret;
8353
8354 switch (kf_arg_type) {
8355 case KF_ARG_PTR_TO_CTX:
8356 if (reg->type != PTR_TO_CTX) {
8357 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8358 return -EINVAL;
8359 }
8360 break;
ac9f0605
KKD
8361 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8362 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8363 verbose(env, "arg#%d expected pointer to allocated object\n", i);
8364 return -EINVAL;
8365 }
8366 if (!reg->ref_obj_id) {
8367 verbose(env, "allocated object must be referenced\n");
8368 return -EINVAL;
8369 }
8370 if (meta->btf == btf_vmlinux &&
8371 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8372 meta->arg_obj_drop.btf = reg->btf;
8373 meta->arg_obj_drop.btf_id = reg->btf_id;
8374 }
8375 break;
00b85860
KKD
8376 case KF_ARG_PTR_TO_KPTR:
8377 if (reg->type != PTR_TO_MAP_VALUE) {
8378 verbose(env, "arg#0 expected pointer to map value\n");
8379 return -EINVAL;
8380 }
8381 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8382 if (ret < 0)
8383 return ret;
8384 break;
8385 case KF_ARG_PTR_TO_DYNPTR:
8386 if (reg->type != PTR_TO_STACK) {
8387 verbose(env, "arg#%d expected pointer to stack\n", i);
8388 return -EINVAL;
8389 }
8390
8391 if (!is_dynptr_reg_valid_init(env, reg)) {
8392 verbose(env, "arg#%d pointer type %s %s must be valid and initialized\n",
8393 i, btf_type_str(ref_t), ref_tname);
8394 return -EINVAL;
8395 }
8396
8397 if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
8398 verbose(env, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
8399 i, btf_type_str(ref_t), ref_tname);
8400 return -EINVAL;
8401 }
8402 break;
8403 case KF_ARG_PTR_TO_BTF_ID:
8404 /* Only base_type is checked, further checks are done here */
8405 if (reg->type != PTR_TO_BTF_ID &&
8406 (!reg2btf_ids[base_type(reg->type)] || type_flag(reg->type))) {
8407 verbose(env, "arg#%d expected pointer to btf or socket\n", i);
8408 return -EINVAL;
8409 }
8410 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
8411 if (ret < 0)
8412 return ret;
8413 break;
8414 case KF_ARG_PTR_TO_MEM:
8415 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
8416 if (IS_ERR(resolve_ret)) {
8417 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
8418 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
8419 return -EINVAL;
8420 }
8421 ret = check_mem_reg(env, reg, regno, type_size);
8422 if (ret < 0)
8423 return ret;
8424 break;
8425 case KF_ARG_PTR_TO_MEM_SIZE:
8426 ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
8427 if (ret < 0) {
8428 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
8429 return ret;
8430 }
8431 /* Skip next '__sz' argument */
8432 i++;
8433 break;
8434 }
8435 }
8436
8437 if (is_kfunc_release(meta) && !meta->release_regno) {
8438 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
8439 func_name);
8440 return -EINVAL;
8441 }
8442
8443 return 0;
8444}
8445
5c073f26
KKD
8446static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8447 int *insn_idx_p)
e6ac2450
MKL
8448{
8449 const struct btf_type *t, *func, *func_proto, *ptr_type;
8450 struct bpf_reg_state *regs = cur_regs(env);
8451 const char *func_name, *ptr_type_name;
00b85860 8452 struct bpf_kfunc_call_arg_meta meta;
e6ac2450 8453 u32 i, nargs, func_id, ptr_type_id;
5c073f26 8454 int err, insn_idx = *insn_idx_p;
e6ac2450 8455 const struct btf_param *args;
2357672c 8456 struct btf *desc_btf;
a4703e31 8457 u32 *kfunc_flags;
e6ac2450 8458
a5d82727
KKD
8459 /* skip for now, but return error when we find this in fixup_kfunc_call */
8460 if (!insn->imm)
8461 return 0;
8462
43bf0878 8463 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
8464 if (IS_ERR(desc_btf))
8465 return PTR_ERR(desc_btf);
8466
e6ac2450 8467 func_id = insn->imm;
2357672c
KKD
8468 func = btf_type_by_id(desc_btf, func_id);
8469 func_name = btf_name_by_offset(desc_btf, func->name_off);
8470 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 8471
a4703e31
KKD
8472 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
8473 if (!kfunc_flags) {
e6ac2450
MKL
8474 verbose(env, "calling kernel function %s is not allowed\n",
8475 func_name);
8476 return -EACCES;
8477 }
00b85860
KKD
8478
8479 /* Prepare kfunc call metadata */
8480 memset(&meta, 0, sizeof(meta));
8481 meta.btf = desc_btf;
8482 meta.func_id = func_id;
8483 meta.kfunc_flags = *kfunc_flags;
8484 meta.func_proto = func_proto;
8485 meta.func_name = func_name;
8486
8487 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
8488 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
8489 return -EACCES;
8490 }
8491
00b85860
KKD
8492 if (is_kfunc_sleepable(&meta) && !env->prog->aux->sleepable) {
8493 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
8494 return -EACCES;
8495 }
eb1f7f71 8496
e6ac2450 8497 /* Check the arguments */
00b85860 8498 err = check_kfunc_args(env, &meta);
5c073f26 8499 if (err < 0)
e6ac2450 8500 return err;
5c073f26 8501 /* In case of release function, we get register number of refcounted
00b85860 8502 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 8503 */
00b85860
KKD
8504 if (meta.release_regno) {
8505 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
8506 if (err) {
8507 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
8508 func_name, func_id);
8509 return err;
8510 }
8511 }
e6ac2450
MKL
8512
8513 for (i = 0; i < CALLER_SAVED_REGS; i++)
8514 mark_reg_not_init(env, regs, caller_saved[i]);
8515
8516 /* Check return type */
2357672c 8517 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
5c073f26 8518
00b85860 8519 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2
KKD
8520 /* Only exception is bpf_obj_new_impl */
8521 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
8522 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
8523 return -EINVAL;
8524 }
5c073f26
KKD
8525 }
8526
e6ac2450
MKL
8527 if (btf_type_is_scalar(t)) {
8528 mark_reg_unknown(env, regs, BPF_REG_0);
8529 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
8530 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
8531 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
8532
8533 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
8534 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
8535 const struct btf_type *ret_t;
8536 struct btf *ret_btf;
8537 u32 ret_btf_id;
8538
8539 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
8540 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
8541 return -EINVAL;
8542 }
8543
8544 ret_btf = env->prog->aux->btf;
8545 ret_btf_id = meta.arg_constant.value;
8546
8547 /* This may be NULL due to user not supplying a BTF */
8548 if (!ret_btf) {
8549 verbose(env, "bpf_obj_new requires prog BTF\n");
8550 return -EINVAL;
8551 }
8552
8553 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
8554 if (!ret_t || !__btf_type_is_struct(ret_t)) {
8555 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
8556 return -EINVAL;
8557 }
8558
8559 mark_reg_known_zero(env, regs, BPF_REG_0);
8560 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
8561 regs[BPF_REG_0].btf = ret_btf;
8562 regs[BPF_REG_0].btf_id = ret_btf_id;
8563
8564 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
8565 env->insn_aux_data[insn_idx].kptr_struct_meta =
8566 btf_find_struct_meta(ret_btf, ret_btf_id);
ac9f0605
KKD
8567 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8568 env->insn_aux_data[insn_idx].kptr_struct_meta =
8569 btf_find_struct_meta(meta.arg_obj_drop.btf,
8570 meta.arg_obj_drop.btf_id);
958cf2e2
KKD
8571 } else {
8572 verbose(env, "kernel function %s unhandled dynamic return type\n",
8573 meta.func_name);
8574 return -EFAULT;
8575 }
8576 } else if (!__btf_type_is_struct(ptr_type)) {
eb1f7f71
BT
8577 if (!meta.r0_size) {
8578 ptr_type_name = btf_name_by_offset(desc_btf,
8579 ptr_type->name_off);
8580 verbose(env,
8581 "kernel function %s returns pointer type %s %s is not supported\n",
8582 func_name,
8583 btf_type_str(ptr_type),
8584 ptr_type_name);
8585 return -EINVAL;
8586 }
8587
8588 mark_reg_known_zero(env, regs, BPF_REG_0);
8589 regs[BPF_REG_0].type = PTR_TO_MEM;
8590 regs[BPF_REG_0].mem_size = meta.r0_size;
8591
8592 if (meta.r0_rdonly)
8593 regs[BPF_REG_0].type |= MEM_RDONLY;
8594
8595 /* Ensures we don't access the memory after a release_reference() */
8596 if (meta.ref_obj_id)
8597 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8598 } else {
8599 mark_reg_known_zero(env, regs, BPF_REG_0);
8600 regs[BPF_REG_0].btf = desc_btf;
8601 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
8602 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 8603 }
958cf2e2 8604
00b85860 8605 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
8606 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
8607 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
8608 regs[BPF_REG_0].id = ++env->id_gen;
8609 }
e6ac2450 8610 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 8611 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
8612 int id = acquire_reference_state(env, insn_idx);
8613
8614 if (id < 0)
8615 return id;
00b85860
KKD
8616 if (is_kfunc_ret_null(&meta))
8617 regs[BPF_REG_0].id = id;
5c073f26
KKD
8618 regs[BPF_REG_0].ref_obj_id = id;
8619 }
00b85860
KKD
8620 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
8621 regs[BPF_REG_0].id = ++env->id_gen;
e6ac2450
MKL
8622 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
8623
8624 nargs = btf_type_vlen(func_proto);
8625 args = (const struct btf_param *)(func_proto + 1);
8626 for (i = 0; i < nargs; i++) {
8627 u32 regno = i + 1;
8628
2357672c 8629 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
8630 if (btf_type_is_ptr(t))
8631 mark_btf_func_reg_size(env, regno, sizeof(void *));
8632 else
8633 /* scalar. ensured by btf_check_kfunc_arg_match() */
8634 mark_btf_func_reg_size(env, regno, t->size);
8635 }
8636
8637 return 0;
8638}
8639
b03c9f9f
EC
8640static bool signed_add_overflows(s64 a, s64 b)
8641{
8642 /* Do the add in u64, where overflow is well-defined */
8643 s64 res = (s64)((u64)a + (u64)b);
8644
8645 if (b < 0)
8646 return res > a;
8647 return res < a;
8648}
8649
bc895e8b 8650static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
8651{
8652 /* Do the add in u32, where overflow is well-defined */
8653 s32 res = (s32)((u32)a + (u32)b);
8654
8655 if (b < 0)
8656 return res > a;
8657 return res < a;
8658}
8659
bc895e8b 8660static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
8661{
8662 /* Do the sub in u64, where overflow is well-defined */
8663 s64 res = (s64)((u64)a - (u64)b);
8664
8665 if (b < 0)
8666 return res < a;
8667 return res > a;
969bf05e
AS
8668}
8669
3f50f132
JF
8670static bool signed_sub32_overflows(s32 a, s32 b)
8671{
bc895e8b 8672 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
8673 s32 res = (s32)((u32)a - (u32)b);
8674
8675 if (b < 0)
8676 return res < a;
8677 return res > a;
8678}
8679
bb7f0f98
AS
8680static bool check_reg_sane_offset(struct bpf_verifier_env *env,
8681 const struct bpf_reg_state *reg,
8682 enum bpf_reg_type type)
8683{
8684 bool known = tnum_is_const(reg->var_off);
8685 s64 val = reg->var_off.value;
8686 s64 smin = reg->smin_value;
8687
8688 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
8689 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 8690 reg_type_str(env, type), val);
bb7f0f98
AS
8691 return false;
8692 }
8693
8694 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
8695 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 8696 reg_type_str(env, type), reg->off);
bb7f0f98
AS
8697 return false;
8698 }
8699
8700 if (smin == S64_MIN) {
8701 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 8702 reg_type_str(env, type));
bb7f0f98
AS
8703 return false;
8704 }
8705
8706 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
8707 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 8708 smin, reg_type_str(env, type));
bb7f0f98
AS
8709 return false;
8710 }
8711
8712 return true;
8713}
8714
a6aaece0
DB
8715enum {
8716 REASON_BOUNDS = -1,
8717 REASON_TYPE = -2,
8718 REASON_PATHS = -3,
8719 REASON_LIMIT = -4,
8720 REASON_STACK = -5,
8721};
8722
979d63d5 8723static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 8724 u32 *alu_limit, bool mask_to_left)
979d63d5 8725{
7fedb63a 8726 u32 max = 0, ptr_limit = 0;
979d63d5
DB
8727
8728 switch (ptr_reg->type) {
8729 case PTR_TO_STACK:
1b1597e6 8730 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
8731 * left direction, see BPF_REG_FP. Also, unknown scalar
8732 * offset where we would need to deal with min/max bounds is
8733 * currently prohibited for unprivileged.
1b1597e6
PK
8734 */
8735 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 8736 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 8737 break;
979d63d5 8738 case PTR_TO_MAP_VALUE:
1b1597e6 8739 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
8740 ptr_limit = (mask_to_left ?
8741 ptr_reg->smin_value :
8742 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 8743 break;
979d63d5 8744 default:
a6aaece0 8745 return REASON_TYPE;
979d63d5 8746 }
b658bbb8
DB
8747
8748 if (ptr_limit >= max)
a6aaece0 8749 return REASON_LIMIT;
b658bbb8
DB
8750 *alu_limit = ptr_limit;
8751 return 0;
979d63d5
DB
8752}
8753
d3bd7413
DB
8754static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
8755 const struct bpf_insn *insn)
8756{
2c78ee89 8757 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
8758}
8759
8760static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
8761 u32 alu_state, u32 alu_limit)
8762{
8763 /* If we arrived here from different branches with different
8764 * state or limits to sanitize, then this won't work.
8765 */
8766 if (aux->alu_state &&
8767 (aux->alu_state != alu_state ||
8768 aux->alu_limit != alu_limit))
a6aaece0 8769 return REASON_PATHS;
d3bd7413 8770
e6ac5933 8771 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
8772 aux->alu_state = alu_state;
8773 aux->alu_limit = alu_limit;
8774 return 0;
8775}
8776
8777static int sanitize_val_alu(struct bpf_verifier_env *env,
8778 struct bpf_insn *insn)
8779{
8780 struct bpf_insn_aux_data *aux = cur_aux(env);
8781
8782 if (can_skip_alu_sanitation(env, insn))
8783 return 0;
8784
8785 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
8786}
8787
f5288193
DB
8788static bool sanitize_needed(u8 opcode)
8789{
8790 return opcode == BPF_ADD || opcode == BPF_SUB;
8791}
8792
3d0220f6
DB
8793struct bpf_sanitize_info {
8794 struct bpf_insn_aux_data aux;
bb01a1bb 8795 bool mask_to_left;
3d0220f6
DB
8796};
8797
9183671a
DB
8798static struct bpf_verifier_state *
8799sanitize_speculative_path(struct bpf_verifier_env *env,
8800 const struct bpf_insn *insn,
8801 u32 next_idx, u32 curr_idx)
8802{
8803 struct bpf_verifier_state *branch;
8804 struct bpf_reg_state *regs;
8805
8806 branch = push_stack(env, next_idx, curr_idx, true);
8807 if (branch && insn) {
8808 regs = branch->frame[branch->curframe]->regs;
8809 if (BPF_SRC(insn->code) == BPF_K) {
8810 mark_reg_unknown(env, regs, insn->dst_reg);
8811 } else if (BPF_SRC(insn->code) == BPF_X) {
8812 mark_reg_unknown(env, regs, insn->dst_reg);
8813 mark_reg_unknown(env, regs, insn->src_reg);
8814 }
8815 }
8816 return branch;
8817}
8818
979d63d5
DB
8819static int sanitize_ptr_alu(struct bpf_verifier_env *env,
8820 struct bpf_insn *insn,
8821 const struct bpf_reg_state *ptr_reg,
6f55b2f2 8822 const struct bpf_reg_state *off_reg,
979d63d5 8823 struct bpf_reg_state *dst_reg,
3d0220f6 8824 struct bpf_sanitize_info *info,
7fedb63a 8825 const bool commit_window)
979d63d5 8826{
3d0220f6 8827 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 8828 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 8829 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 8830 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
8831 bool ptr_is_dst_reg = ptr_reg == dst_reg;
8832 u8 opcode = BPF_OP(insn->code);
8833 u32 alu_state, alu_limit;
8834 struct bpf_reg_state tmp;
8835 bool ret;
f232326f 8836 int err;
979d63d5 8837
d3bd7413 8838 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
8839 return 0;
8840
8841 /* We already marked aux for masking from non-speculative
8842 * paths, thus we got here in the first place. We only care
8843 * to explore bad access from here.
8844 */
8845 if (vstate->speculative)
8846 goto do_sim;
8847
bb01a1bb
DB
8848 if (!commit_window) {
8849 if (!tnum_is_const(off_reg->var_off) &&
8850 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
8851 return REASON_BOUNDS;
8852
8853 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
8854 (opcode == BPF_SUB && !off_is_neg);
8855 }
8856
8857 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
8858 if (err < 0)
8859 return err;
8860
7fedb63a
DB
8861 if (commit_window) {
8862 /* In commit phase we narrow the masking window based on
8863 * the observed pointer move after the simulated operation.
8864 */
3d0220f6
DB
8865 alu_state = info->aux.alu_state;
8866 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
8867 } else {
8868 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 8869 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
8870 alu_state |= ptr_is_dst_reg ?
8871 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
8872
8873 /* Limit pruning on unknown scalars to enable deep search for
8874 * potential masking differences from other program paths.
8875 */
8876 if (!off_is_imm)
8877 env->explore_alu_limits = true;
7fedb63a
DB
8878 }
8879
f232326f
PK
8880 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
8881 if (err < 0)
8882 return err;
979d63d5 8883do_sim:
7fedb63a
DB
8884 /* If we're in commit phase, we're done here given we already
8885 * pushed the truncated dst_reg into the speculative verification
8886 * stack.
a7036191
DB
8887 *
8888 * Also, when register is a known constant, we rewrite register-based
8889 * operation to immediate-based, and thus do not need masking (and as
8890 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 8891 */
a7036191 8892 if (commit_window || off_is_imm)
7fedb63a
DB
8893 return 0;
8894
979d63d5
DB
8895 /* Simulate and find potential out-of-bounds access under
8896 * speculative execution from truncation as a result of
8897 * masking when off was not within expected range. If off
8898 * sits in dst, then we temporarily need to move ptr there
8899 * to simulate dst (== 0) +/-= ptr. Needed, for example,
8900 * for cases where we use K-based arithmetic in one direction
8901 * and truncated reg-based in the other in order to explore
8902 * bad access.
8903 */
8904 if (!ptr_is_dst_reg) {
8905 tmp = *dst_reg;
8906 *dst_reg = *ptr_reg;
8907 }
9183671a
DB
8908 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
8909 env->insn_idx);
0803278b 8910 if (!ptr_is_dst_reg && ret)
979d63d5 8911 *dst_reg = tmp;
a6aaece0
DB
8912 return !ret ? REASON_STACK : 0;
8913}
8914
fe9a5ca7
DB
8915static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
8916{
8917 struct bpf_verifier_state *vstate = env->cur_state;
8918
8919 /* If we simulate paths under speculation, we don't update the
8920 * insn as 'seen' such that when we verify unreachable paths in
8921 * the non-speculative domain, sanitize_dead_code() can still
8922 * rewrite/sanitize them.
8923 */
8924 if (!vstate->speculative)
8925 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8926}
8927
a6aaece0
DB
8928static int sanitize_err(struct bpf_verifier_env *env,
8929 const struct bpf_insn *insn, int reason,
8930 const struct bpf_reg_state *off_reg,
8931 const struct bpf_reg_state *dst_reg)
8932{
8933 static const char *err = "pointer arithmetic with it prohibited for !root";
8934 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
8935 u32 dst = insn->dst_reg, src = insn->src_reg;
8936
8937 switch (reason) {
8938 case REASON_BOUNDS:
8939 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
8940 off_reg == dst_reg ? dst : src, err);
8941 break;
8942 case REASON_TYPE:
8943 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
8944 off_reg == dst_reg ? src : dst, err);
8945 break;
8946 case REASON_PATHS:
8947 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
8948 dst, op, err);
8949 break;
8950 case REASON_LIMIT:
8951 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
8952 dst, op, err);
8953 break;
8954 case REASON_STACK:
8955 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
8956 dst, err);
8957 break;
8958 default:
8959 verbose(env, "verifier internal error: unknown reason (%d)\n",
8960 reason);
8961 break;
8962 }
8963
8964 return -EACCES;
979d63d5
DB
8965}
8966
01f810ac
AM
8967/* check that stack access falls within stack limits and that 'reg' doesn't
8968 * have a variable offset.
8969 *
8970 * Variable offset is prohibited for unprivileged mode for simplicity since it
8971 * requires corresponding support in Spectre masking for stack ALU. See also
8972 * retrieve_ptr_limit().
8973 *
8974 *
8975 * 'off' includes 'reg->off'.
8976 */
8977static int check_stack_access_for_ptr_arithmetic(
8978 struct bpf_verifier_env *env,
8979 int regno,
8980 const struct bpf_reg_state *reg,
8981 int off)
8982{
8983 if (!tnum_is_const(reg->var_off)) {
8984 char tn_buf[48];
8985
8986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8987 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8988 regno, tn_buf, off);
8989 return -EACCES;
8990 }
8991
8992 if (off >= 0 || off < -MAX_BPF_STACK) {
8993 verbose(env, "R%d stack pointer arithmetic goes out of range, "
8994 "prohibited for !root; off=%d\n", regno, off);
8995 return -EACCES;
8996 }
8997
8998 return 0;
8999}
9000
073815b7
DB
9001static int sanitize_check_bounds(struct bpf_verifier_env *env,
9002 const struct bpf_insn *insn,
9003 const struct bpf_reg_state *dst_reg)
9004{
9005 u32 dst = insn->dst_reg;
9006
9007 /* For unprivileged we require that resulting offset must be in bounds
9008 * in order to be able to sanitize access later on.
9009 */
9010 if (env->bypass_spec_v1)
9011 return 0;
9012
9013 switch (dst_reg->type) {
9014 case PTR_TO_STACK:
9015 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9016 dst_reg->off + dst_reg->var_off.value))
9017 return -EACCES;
9018 break;
9019 case PTR_TO_MAP_VALUE:
61df10c7 9020 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
9021 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9022 "prohibited for !root\n", dst);
9023 return -EACCES;
9024 }
9025 break;
9026 default:
9027 break;
9028 }
9029
9030 return 0;
9031}
01f810ac 9032
f1174f77 9033/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
9034 * Caller should also handle BPF_MOV case separately.
9035 * If we return -EACCES, caller may want to try again treating pointer as a
9036 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
9037 */
9038static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9039 struct bpf_insn *insn,
9040 const struct bpf_reg_state *ptr_reg,
9041 const struct bpf_reg_state *off_reg)
969bf05e 9042{
f4d7e40a
AS
9043 struct bpf_verifier_state *vstate = env->cur_state;
9044 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9045 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 9046 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
9047 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9048 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9049 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9050 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 9051 struct bpf_sanitize_info info = {};
969bf05e 9052 u8 opcode = BPF_OP(insn->code);
24c109bb 9053 u32 dst = insn->dst_reg;
979d63d5 9054 int ret;
969bf05e 9055
f1174f77 9056 dst_reg = &regs[dst];
969bf05e 9057
6f16101e
DB
9058 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9059 smin_val > smax_val || umin_val > umax_val) {
9060 /* Taint dst register if offset had invalid bounds derived from
9061 * e.g. dead branches.
9062 */
f54c7898 9063 __mark_reg_unknown(env, dst_reg);
6f16101e 9064 return 0;
f1174f77
EC
9065 }
9066
9067 if (BPF_CLASS(insn->code) != BPF_ALU64) {
9068 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
9069 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9070 __mark_reg_unknown(env, dst_reg);
9071 return 0;
9072 }
9073
82abbf8d
AS
9074 verbose(env,
9075 "R%d 32-bit pointer arithmetic prohibited\n",
9076 dst);
f1174f77 9077 return -EACCES;
969bf05e
AS
9078 }
9079
c25b2ae1 9080 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 9081 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 9082 dst, reg_type_str(env, ptr_reg->type));
f1174f77 9083 return -EACCES;
c25b2ae1
HL
9084 }
9085
9086 switch (base_type(ptr_reg->type)) {
aad2eeaf 9087 case CONST_PTR_TO_MAP:
7c696732
YS
9088 /* smin_val represents the known value */
9089 if (known && smin_val == 0 && opcode == BPF_ADD)
9090 break;
8731745e 9091 fallthrough;
aad2eeaf 9092 case PTR_TO_PACKET_END:
c64b7983 9093 case PTR_TO_SOCKET:
46f8bc92 9094 case PTR_TO_SOCK_COMMON:
655a51e5 9095 case PTR_TO_TCP_SOCK:
fada7fdc 9096 case PTR_TO_XDP_SOCK:
aad2eeaf 9097 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 9098 dst, reg_type_str(env, ptr_reg->type));
f1174f77 9099 return -EACCES;
aad2eeaf
JS
9100 default:
9101 break;
f1174f77
EC
9102 }
9103
9104 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9105 * The id may be overwritten later if we create a new variable offset.
969bf05e 9106 */
f1174f77
EC
9107 dst_reg->type = ptr_reg->type;
9108 dst_reg->id = ptr_reg->id;
969bf05e 9109
bb7f0f98
AS
9110 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9111 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9112 return -EINVAL;
9113
3f50f132
JF
9114 /* pointer types do not carry 32-bit bounds at the moment. */
9115 __mark_reg32_unbounded(dst_reg);
9116
7fedb63a
DB
9117 if (sanitize_needed(opcode)) {
9118 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 9119 &info, false);
a6aaece0
DB
9120 if (ret < 0)
9121 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 9122 }
a6aaece0 9123
f1174f77
EC
9124 switch (opcode) {
9125 case BPF_ADD:
9126 /* We can take a fixed offset as long as it doesn't overflow
9127 * the s32 'off' field
969bf05e 9128 */
b03c9f9f
EC
9129 if (known && (ptr_reg->off + smin_val ==
9130 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 9131 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
9132 dst_reg->smin_value = smin_ptr;
9133 dst_reg->smax_value = smax_ptr;
9134 dst_reg->umin_value = umin_ptr;
9135 dst_reg->umax_value = umax_ptr;
f1174f77 9136 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 9137 dst_reg->off = ptr_reg->off + smin_val;
0962590e 9138 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
9139 break;
9140 }
f1174f77
EC
9141 /* A new variable offset is created. Note that off_reg->off
9142 * == 0, since it's a scalar.
9143 * dst_reg gets the pointer type and since some positive
9144 * integer value was added to the pointer, give it a new 'id'
9145 * if it's a PTR_TO_PACKET.
9146 * this creates a new 'base' pointer, off_reg (variable) gets
9147 * added into the variable offset, and we copy the fixed offset
9148 * from ptr_reg.
969bf05e 9149 */
b03c9f9f
EC
9150 if (signed_add_overflows(smin_ptr, smin_val) ||
9151 signed_add_overflows(smax_ptr, smax_val)) {
9152 dst_reg->smin_value = S64_MIN;
9153 dst_reg->smax_value = S64_MAX;
9154 } else {
9155 dst_reg->smin_value = smin_ptr + smin_val;
9156 dst_reg->smax_value = smax_ptr + smax_val;
9157 }
9158 if (umin_ptr + umin_val < umin_ptr ||
9159 umax_ptr + umax_val < umax_ptr) {
9160 dst_reg->umin_value = 0;
9161 dst_reg->umax_value = U64_MAX;
9162 } else {
9163 dst_reg->umin_value = umin_ptr + umin_val;
9164 dst_reg->umax_value = umax_ptr + umax_val;
9165 }
f1174f77
EC
9166 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9167 dst_reg->off = ptr_reg->off;
0962590e 9168 dst_reg->raw = ptr_reg->raw;
de8f3a83 9169 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
9170 dst_reg->id = ++env->id_gen;
9171 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 9172 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
9173 }
9174 break;
9175 case BPF_SUB:
9176 if (dst_reg == off_reg) {
9177 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
9178 verbose(env, "R%d tried to subtract pointer from scalar\n",
9179 dst);
f1174f77
EC
9180 return -EACCES;
9181 }
9182 /* We don't allow subtraction from FP, because (according to
9183 * test_verifier.c test "invalid fp arithmetic", JITs might not
9184 * be able to deal with it.
969bf05e 9185 */
f1174f77 9186 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
9187 verbose(env, "R%d subtraction from stack pointer prohibited\n",
9188 dst);
f1174f77
EC
9189 return -EACCES;
9190 }
b03c9f9f
EC
9191 if (known && (ptr_reg->off - smin_val ==
9192 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 9193 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
9194 dst_reg->smin_value = smin_ptr;
9195 dst_reg->smax_value = smax_ptr;
9196 dst_reg->umin_value = umin_ptr;
9197 dst_reg->umax_value = umax_ptr;
f1174f77
EC
9198 dst_reg->var_off = ptr_reg->var_off;
9199 dst_reg->id = ptr_reg->id;
b03c9f9f 9200 dst_reg->off = ptr_reg->off - smin_val;
0962590e 9201 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
9202 break;
9203 }
f1174f77
EC
9204 /* A new variable offset is created. If the subtrahend is known
9205 * nonnegative, then any reg->range we had before is still good.
969bf05e 9206 */
b03c9f9f
EC
9207 if (signed_sub_overflows(smin_ptr, smax_val) ||
9208 signed_sub_overflows(smax_ptr, smin_val)) {
9209 /* Overflow possible, we know nothing */
9210 dst_reg->smin_value = S64_MIN;
9211 dst_reg->smax_value = S64_MAX;
9212 } else {
9213 dst_reg->smin_value = smin_ptr - smax_val;
9214 dst_reg->smax_value = smax_ptr - smin_val;
9215 }
9216 if (umin_ptr < umax_val) {
9217 /* Overflow possible, we know nothing */
9218 dst_reg->umin_value = 0;
9219 dst_reg->umax_value = U64_MAX;
9220 } else {
9221 /* Cannot overflow (as long as bounds are consistent) */
9222 dst_reg->umin_value = umin_ptr - umax_val;
9223 dst_reg->umax_value = umax_ptr - umin_val;
9224 }
f1174f77
EC
9225 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9226 dst_reg->off = ptr_reg->off;
0962590e 9227 dst_reg->raw = ptr_reg->raw;
de8f3a83 9228 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
9229 dst_reg->id = ++env->id_gen;
9230 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 9231 if (smin_val < 0)
22dc4a0f 9232 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 9233 }
f1174f77
EC
9234 break;
9235 case BPF_AND:
9236 case BPF_OR:
9237 case BPF_XOR:
82abbf8d
AS
9238 /* bitwise ops on pointers are troublesome, prohibit. */
9239 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9240 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
9241 return -EACCES;
9242 default:
9243 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
9244 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9245 dst, bpf_alu_string[opcode >> 4]);
f1174f77 9246 return -EACCES;
43188702
JF
9247 }
9248
bb7f0f98
AS
9249 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9250 return -EINVAL;
3844d153 9251 reg_bounds_sync(dst_reg);
073815b7
DB
9252 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9253 return -EACCES;
7fedb63a
DB
9254 if (sanitize_needed(opcode)) {
9255 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 9256 &info, true);
7fedb63a
DB
9257 if (ret < 0)
9258 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
9259 }
9260
43188702
JF
9261 return 0;
9262}
9263
3f50f132
JF
9264static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9265 struct bpf_reg_state *src_reg)
9266{
9267 s32 smin_val = src_reg->s32_min_value;
9268 s32 smax_val = src_reg->s32_max_value;
9269 u32 umin_val = src_reg->u32_min_value;
9270 u32 umax_val = src_reg->u32_max_value;
9271
9272 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9273 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9274 dst_reg->s32_min_value = S32_MIN;
9275 dst_reg->s32_max_value = S32_MAX;
9276 } else {
9277 dst_reg->s32_min_value += smin_val;
9278 dst_reg->s32_max_value += smax_val;
9279 }
9280 if (dst_reg->u32_min_value + umin_val < umin_val ||
9281 dst_reg->u32_max_value + umax_val < umax_val) {
9282 dst_reg->u32_min_value = 0;
9283 dst_reg->u32_max_value = U32_MAX;
9284 } else {
9285 dst_reg->u32_min_value += umin_val;
9286 dst_reg->u32_max_value += umax_val;
9287 }
9288}
9289
07cd2631
JF
9290static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9291 struct bpf_reg_state *src_reg)
9292{
9293 s64 smin_val = src_reg->smin_value;
9294 s64 smax_val = src_reg->smax_value;
9295 u64 umin_val = src_reg->umin_value;
9296 u64 umax_val = src_reg->umax_value;
9297
9298 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9299 signed_add_overflows(dst_reg->smax_value, smax_val)) {
9300 dst_reg->smin_value = S64_MIN;
9301 dst_reg->smax_value = S64_MAX;
9302 } else {
9303 dst_reg->smin_value += smin_val;
9304 dst_reg->smax_value += smax_val;
9305 }
9306 if (dst_reg->umin_value + umin_val < umin_val ||
9307 dst_reg->umax_value + umax_val < umax_val) {
9308 dst_reg->umin_value = 0;
9309 dst_reg->umax_value = U64_MAX;
9310 } else {
9311 dst_reg->umin_value += umin_val;
9312 dst_reg->umax_value += umax_val;
9313 }
3f50f132
JF
9314}
9315
9316static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
9317 struct bpf_reg_state *src_reg)
9318{
9319 s32 smin_val = src_reg->s32_min_value;
9320 s32 smax_val = src_reg->s32_max_value;
9321 u32 umin_val = src_reg->u32_min_value;
9322 u32 umax_val = src_reg->u32_max_value;
9323
9324 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
9325 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
9326 /* Overflow possible, we know nothing */
9327 dst_reg->s32_min_value = S32_MIN;
9328 dst_reg->s32_max_value = S32_MAX;
9329 } else {
9330 dst_reg->s32_min_value -= smax_val;
9331 dst_reg->s32_max_value -= smin_val;
9332 }
9333 if (dst_reg->u32_min_value < umax_val) {
9334 /* Overflow possible, we know nothing */
9335 dst_reg->u32_min_value = 0;
9336 dst_reg->u32_max_value = U32_MAX;
9337 } else {
9338 /* Cannot overflow (as long as bounds are consistent) */
9339 dst_reg->u32_min_value -= umax_val;
9340 dst_reg->u32_max_value -= umin_val;
9341 }
07cd2631
JF
9342}
9343
9344static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
9345 struct bpf_reg_state *src_reg)
9346{
9347 s64 smin_val = src_reg->smin_value;
9348 s64 smax_val = src_reg->smax_value;
9349 u64 umin_val = src_reg->umin_value;
9350 u64 umax_val = src_reg->umax_value;
9351
9352 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
9353 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
9354 /* Overflow possible, we know nothing */
9355 dst_reg->smin_value = S64_MIN;
9356 dst_reg->smax_value = S64_MAX;
9357 } else {
9358 dst_reg->smin_value -= smax_val;
9359 dst_reg->smax_value -= smin_val;
9360 }
9361 if (dst_reg->umin_value < umax_val) {
9362 /* Overflow possible, we know nothing */
9363 dst_reg->umin_value = 0;
9364 dst_reg->umax_value = U64_MAX;
9365 } else {
9366 /* Cannot overflow (as long as bounds are consistent) */
9367 dst_reg->umin_value -= umax_val;
9368 dst_reg->umax_value -= umin_val;
9369 }
3f50f132
JF
9370}
9371
9372static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
9373 struct bpf_reg_state *src_reg)
9374{
9375 s32 smin_val = src_reg->s32_min_value;
9376 u32 umin_val = src_reg->u32_min_value;
9377 u32 umax_val = src_reg->u32_max_value;
9378
9379 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
9380 /* Ain't nobody got time to multiply that sign */
9381 __mark_reg32_unbounded(dst_reg);
9382 return;
9383 }
9384 /* Both values are positive, so we can work with unsigned and
9385 * copy the result to signed (unless it exceeds S32_MAX).
9386 */
9387 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
9388 /* Potential overflow, we know nothing */
9389 __mark_reg32_unbounded(dst_reg);
9390 return;
9391 }
9392 dst_reg->u32_min_value *= umin_val;
9393 dst_reg->u32_max_value *= umax_val;
9394 if (dst_reg->u32_max_value > S32_MAX) {
9395 /* Overflow possible, we know nothing */
9396 dst_reg->s32_min_value = S32_MIN;
9397 dst_reg->s32_max_value = S32_MAX;
9398 } else {
9399 dst_reg->s32_min_value = dst_reg->u32_min_value;
9400 dst_reg->s32_max_value = dst_reg->u32_max_value;
9401 }
07cd2631
JF
9402}
9403
9404static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
9405 struct bpf_reg_state *src_reg)
9406{
9407 s64 smin_val = src_reg->smin_value;
9408 u64 umin_val = src_reg->umin_value;
9409 u64 umax_val = src_reg->umax_value;
9410
07cd2631
JF
9411 if (smin_val < 0 || dst_reg->smin_value < 0) {
9412 /* Ain't nobody got time to multiply that sign */
3f50f132 9413 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
9414 return;
9415 }
9416 /* Both values are positive, so we can work with unsigned and
9417 * copy the result to signed (unless it exceeds S64_MAX).
9418 */
9419 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
9420 /* Potential overflow, we know nothing */
3f50f132 9421 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
9422 return;
9423 }
9424 dst_reg->umin_value *= umin_val;
9425 dst_reg->umax_value *= umax_val;
9426 if (dst_reg->umax_value > S64_MAX) {
9427 /* Overflow possible, we know nothing */
9428 dst_reg->smin_value = S64_MIN;
9429 dst_reg->smax_value = S64_MAX;
9430 } else {
9431 dst_reg->smin_value = dst_reg->umin_value;
9432 dst_reg->smax_value = dst_reg->umax_value;
9433 }
9434}
9435
3f50f132
JF
9436static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
9437 struct bpf_reg_state *src_reg)
9438{
9439 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9440 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9441 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9442 s32 smin_val = src_reg->s32_min_value;
9443 u32 umax_val = src_reg->u32_max_value;
9444
049c4e13
DB
9445 if (src_known && dst_known) {
9446 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 9447 return;
049c4e13 9448 }
3f50f132
JF
9449
9450 /* We get our minimum from the var_off, since that's inherently
9451 * bitwise. Our maximum is the minimum of the operands' maxima.
9452 */
9453 dst_reg->u32_min_value = var32_off.value;
9454 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
9455 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9456 /* Lose signed bounds when ANDing negative numbers,
9457 * ain't nobody got time for that.
9458 */
9459 dst_reg->s32_min_value = S32_MIN;
9460 dst_reg->s32_max_value = S32_MAX;
9461 } else {
9462 /* ANDing two positives gives a positive, so safe to
9463 * cast result into s64.
9464 */
9465 dst_reg->s32_min_value = dst_reg->u32_min_value;
9466 dst_reg->s32_max_value = dst_reg->u32_max_value;
9467 }
3f50f132
JF
9468}
9469
07cd2631
JF
9470static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
9471 struct bpf_reg_state *src_reg)
9472{
3f50f132
JF
9473 bool src_known = tnum_is_const(src_reg->var_off);
9474 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
9475 s64 smin_val = src_reg->smin_value;
9476 u64 umax_val = src_reg->umax_value;
9477
3f50f132 9478 if (src_known && dst_known) {
4fbb38a3 9479 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
9480 return;
9481 }
9482
07cd2631
JF
9483 /* We get our minimum from the var_off, since that's inherently
9484 * bitwise. Our maximum is the minimum of the operands' maxima.
9485 */
07cd2631
JF
9486 dst_reg->umin_value = dst_reg->var_off.value;
9487 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
9488 if (dst_reg->smin_value < 0 || smin_val < 0) {
9489 /* Lose signed bounds when ANDing negative numbers,
9490 * ain't nobody got time for that.
9491 */
9492 dst_reg->smin_value = S64_MIN;
9493 dst_reg->smax_value = S64_MAX;
9494 } else {
9495 /* ANDing two positives gives a positive, so safe to
9496 * cast result into s64.
9497 */
9498 dst_reg->smin_value = dst_reg->umin_value;
9499 dst_reg->smax_value = dst_reg->umax_value;
9500 }
9501 /* We may learn something more from the var_off */
9502 __update_reg_bounds(dst_reg);
9503}
9504
3f50f132
JF
9505static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
9506 struct bpf_reg_state *src_reg)
9507{
9508 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9509 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9510 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
9511 s32 smin_val = src_reg->s32_min_value;
9512 u32 umin_val = src_reg->u32_min_value;
3f50f132 9513
049c4e13
DB
9514 if (src_known && dst_known) {
9515 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 9516 return;
049c4e13 9517 }
3f50f132
JF
9518
9519 /* We get our maximum from the var_off, and our minimum is the
9520 * maximum of the operands' minima
9521 */
9522 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
9523 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
9524 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9525 /* Lose signed bounds when ORing negative numbers,
9526 * ain't nobody got time for that.
9527 */
9528 dst_reg->s32_min_value = S32_MIN;
9529 dst_reg->s32_max_value = S32_MAX;
9530 } else {
9531 /* ORing two positives gives a positive, so safe to
9532 * cast result into s64.
9533 */
5b9fbeb7
DB
9534 dst_reg->s32_min_value = dst_reg->u32_min_value;
9535 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
9536 }
9537}
9538
07cd2631
JF
9539static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
9540 struct bpf_reg_state *src_reg)
9541{
3f50f132
JF
9542 bool src_known = tnum_is_const(src_reg->var_off);
9543 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
9544 s64 smin_val = src_reg->smin_value;
9545 u64 umin_val = src_reg->umin_value;
9546
3f50f132 9547 if (src_known && dst_known) {
4fbb38a3 9548 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
9549 return;
9550 }
9551
07cd2631
JF
9552 /* We get our maximum from the var_off, and our minimum is the
9553 * maximum of the operands' minima
9554 */
07cd2631
JF
9555 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
9556 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
9557 if (dst_reg->smin_value < 0 || smin_val < 0) {
9558 /* Lose signed bounds when ORing negative numbers,
9559 * ain't nobody got time for that.
9560 */
9561 dst_reg->smin_value = S64_MIN;
9562 dst_reg->smax_value = S64_MAX;
9563 } else {
9564 /* ORing two positives gives a positive, so safe to
9565 * cast result into s64.
9566 */
9567 dst_reg->smin_value = dst_reg->umin_value;
9568 dst_reg->smax_value = dst_reg->umax_value;
9569 }
9570 /* We may learn something more from the var_off */
9571 __update_reg_bounds(dst_reg);
9572}
9573
2921c90d
YS
9574static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
9575 struct bpf_reg_state *src_reg)
9576{
9577 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9578 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9579 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9580 s32 smin_val = src_reg->s32_min_value;
9581
049c4e13
DB
9582 if (src_known && dst_known) {
9583 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 9584 return;
049c4e13 9585 }
2921c90d
YS
9586
9587 /* We get both minimum and maximum from the var32_off. */
9588 dst_reg->u32_min_value = var32_off.value;
9589 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
9590
9591 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
9592 /* XORing two positive sign numbers gives a positive,
9593 * so safe to cast u32 result into s32.
9594 */
9595 dst_reg->s32_min_value = dst_reg->u32_min_value;
9596 dst_reg->s32_max_value = dst_reg->u32_max_value;
9597 } else {
9598 dst_reg->s32_min_value = S32_MIN;
9599 dst_reg->s32_max_value = S32_MAX;
9600 }
9601}
9602
9603static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
9604 struct bpf_reg_state *src_reg)
9605{
9606 bool src_known = tnum_is_const(src_reg->var_off);
9607 bool dst_known = tnum_is_const(dst_reg->var_off);
9608 s64 smin_val = src_reg->smin_value;
9609
9610 if (src_known && dst_known) {
9611 /* dst_reg->var_off.value has been updated earlier */
9612 __mark_reg_known(dst_reg, dst_reg->var_off.value);
9613 return;
9614 }
9615
9616 /* We get both minimum and maximum from the var_off. */
9617 dst_reg->umin_value = dst_reg->var_off.value;
9618 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
9619
9620 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
9621 /* XORing two positive sign numbers gives a positive,
9622 * so safe to cast u64 result into s64.
9623 */
9624 dst_reg->smin_value = dst_reg->umin_value;
9625 dst_reg->smax_value = dst_reg->umax_value;
9626 } else {
9627 dst_reg->smin_value = S64_MIN;
9628 dst_reg->smax_value = S64_MAX;
9629 }
9630
9631 __update_reg_bounds(dst_reg);
9632}
9633
3f50f132
JF
9634static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
9635 u64 umin_val, u64 umax_val)
07cd2631 9636{
07cd2631
JF
9637 /* We lose all sign bit information (except what we can pick
9638 * up from var_off)
9639 */
3f50f132
JF
9640 dst_reg->s32_min_value = S32_MIN;
9641 dst_reg->s32_max_value = S32_MAX;
9642 /* If we might shift our top bit out, then we know nothing */
9643 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
9644 dst_reg->u32_min_value = 0;
9645 dst_reg->u32_max_value = U32_MAX;
9646 } else {
9647 dst_reg->u32_min_value <<= umin_val;
9648 dst_reg->u32_max_value <<= umax_val;
9649 }
9650}
9651
9652static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
9653 struct bpf_reg_state *src_reg)
9654{
9655 u32 umax_val = src_reg->u32_max_value;
9656 u32 umin_val = src_reg->u32_min_value;
9657 /* u32 alu operation will zext upper bits */
9658 struct tnum subreg = tnum_subreg(dst_reg->var_off);
9659
9660 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
9661 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
9662 /* Not required but being careful mark reg64 bounds as unknown so
9663 * that we are forced to pick them up from tnum and zext later and
9664 * if some path skips this step we are still safe.
9665 */
9666 __mark_reg64_unbounded(dst_reg);
9667 __update_reg32_bounds(dst_reg);
9668}
9669
9670static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
9671 u64 umin_val, u64 umax_val)
9672{
9673 /* Special case <<32 because it is a common compiler pattern to sign
9674 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
9675 * positive we know this shift will also be positive so we can track
9676 * bounds correctly. Otherwise we lose all sign bit information except
9677 * what we can pick up from var_off. Perhaps we can generalize this
9678 * later to shifts of any length.
9679 */
9680 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
9681 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
9682 else
9683 dst_reg->smax_value = S64_MAX;
9684
9685 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
9686 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
9687 else
9688 dst_reg->smin_value = S64_MIN;
9689
07cd2631
JF
9690 /* If we might shift our top bit out, then we know nothing */
9691 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
9692 dst_reg->umin_value = 0;
9693 dst_reg->umax_value = U64_MAX;
9694 } else {
9695 dst_reg->umin_value <<= umin_val;
9696 dst_reg->umax_value <<= umax_val;
9697 }
3f50f132
JF
9698}
9699
9700static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
9701 struct bpf_reg_state *src_reg)
9702{
9703 u64 umax_val = src_reg->umax_value;
9704 u64 umin_val = src_reg->umin_value;
9705
9706 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
9707 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
9708 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
9709
07cd2631
JF
9710 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
9711 /* We may learn something more from the var_off */
9712 __update_reg_bounds(dst_reg);
9713}
9714
3f50f132
JF
9715static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
9716 struct bpf_reg_state *src_reg)
9717{
9718 struct tnum subreg = tnum_subreg(dst_reg->var_off);
9719 u32 umax_val = src_reg->u32_max_value;
9720 u32 umin_val = src_reg->u32_min_value;
9721
9722 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
9723 * be negative, then either:
9724 * 1) src_reg might be zero, so the sign bit of the result is
9725 * unknown, so we lose our signed bounds
9726 * 2) it's known negative, thus the unsigned bounds capture the
9727 * signed bounds
9728 * 3) the signed bounds cross zero, so they tell us nothing
9729 * about the result
9730 * If the value in dst_reg is known nonnegative, then again the
18b24d78 9731 * unsigned bounds capture the signed bounds.
3f50f132
JF
9732 * Thus, in all cases it suffices to blow away our signed bounds
9733 * and rely on inferring new ones from the unsigned bounds and
9734 * var_off of the result.
9735 */
9736 dst_reg->s32_min_value = S32_MIN;
9737 dst_reg->s32_max_value = S32_MAX;
9738
9739 dst_reg->var_off = tnum_rshift(subreg, umin_val);
9740 dst_reg->u32_min_value >>= umax_val;
9741 dst_reg->u32_max_value >>= umin_val;
9742
9743 __mark_reg64_unbounded(dst_reg);
9744 __update_reg32_bounds(dst_reg);
9745}
9746
07cd2631
JF
9747static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
9748 struct bpf_reg_state *src_reg)
9749{
9750 u64 umax_val = src_reg->umax_value;
9751 u64 umin_val = src_reg->umin_value;
9752
9753 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
9754 * be negative, then either:
9755 * 1) src_reg might be zero, so the sign bit of the result is
9756 * unknown, so we lose our signed bounds
9757 * 2) it's known negative, thus the unsigned bounds capture the
9758 * signed bounds
9759 * 3) the signed bounds cross zero, so they tell us nothing
9760 * about the result
9761 * If the value in dst_reg is known nonnegative, then again the
18b24d78 9762 * unsigned bounds capture the signed bounds.
07cd2631
JF
9763 * Thus, in all cases it suffices to blow away our signed bounds
9764 * and rely on inferring new ones from the unsigned bounds and
9765 * var_off of the result.
9766 */
9767 dst_reg->smin_value = S64_MIN;
9768 dst_reg->smax_value = S64_MAX;
9769 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
9770 dst_reg->umin_value >>= umax_val;
9771 dst_reg->umax_value >>= umin_val;
3f50f132
JF
9772
9773 /* Its not easy to operate on alu32 bounds here because it depends
9774 * on bits being shifted in. Take easy way out and mark unbounded
9775 * so we can recalculate later from tnum.
9776 */
9777 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
9778 __update_reg_bounds(dst_reg);
9779}
9780
3f50f132
JF
9781static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
9782 struct bpf_reg_state *src_reg)
07cd2631 9783{
3f50f132 9784 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
9785
9786 /* Upon reaching here, src_known is true and
9787 * umax_val is equal to umin_val.
9788 */
3f50f132
JF
9789 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
9790 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 9791
3f50f132
JF
9792 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
9793
9794 /* blow away the dst_reg umin_value/umax_value and rely on
9795 * dst_reg var_off to refine the result.
9796 */
9797 dst_reg->u32_min_value = 0;
9798 dst_reg->u32_max_value = U32_MAX;
9799
9800 __mark_reg64_unbounded(dst_reg);
9801 __update_reg32_bounds(dst_reg);
9802}
9803
9804static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
9805 struct bpf_reg_state *src_reg)
9806{
9807 u64 umin_val = src_reg->umin_value;
9808
9809 /* Upon reaching here, src_known is true and umax_val is equal
9810 * to umin_val.
9811 */
9812 dst_reg->smin_value >>= umin_val;
9813 dst_reg->smax_value >>= umin_val;
9814
9815 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
9816
9817 /* blow away the dst_reg umin_value/umax_value and rely on
9818 * dst_reg var_off to refine the result.
9819 */
9820 dst_reg->umin_value = 0;
9821 dst_reg->umax_value = U64_MAX;
3f50f132
JF
9822
9823 /* Its not easy to operate on alu32 bounds here because it depends
9824 * on bits being shifted in from upper 32-bits. Take easy way out
9825 * and mark unbounded so we can recalculate later from tnum.
9826 */
9827 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
9828 __update_reg_bounds(dst_reg);
9829}
9830
468f6eaf
JH
9831/* WARNING: This function does calculations on 64-bit values, but the actual
9832 * execution may occur on 32-bit values. Therefore, things like bitshifts
9833 * need extra checks in the 32-bit case.
9834 */
f1174f77
EC
9835static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
9836 struct bpf_insn *insn,
9837 struct bpf_reg_state *dst_reg,
9838 struct bpf_reg_state src_reg)
969bf05e 9839{
638f5b90 9840 struct bpf_reg_state *regs = cur_regs(env);
48461135 9841 u8 opcode = BPF_OP(insn->code);
b0b3fb67 9842 bool src_known;
b03c9f9f
EC
9843 s64 smin_val, smax_val;
9844 u64 umin_val, umax_val;
3f50f132
JF
9845 s32 s32_min_val, s32_max_val;
9846 u32 u32_min_val, u32_max_val;
468f6eaf 9847 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 9848 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 9849 int ret;
b799207e 9850
b03c9f9f
EC
9851 smin_val = src_reg.smin_value;
9852 smax_val = src_reg.smax_value;
9853 umin_val = src_reg.umin_value;
9854 umax_val = src_reg.umax_value;
f23cc643 9855
3f50f132
JF
9856 s32_min_val = src_reg.s32_min_value;
9857 s32_max_val = src_reg.s32_max_value;
9858 u32_min_val = src_reg.u32_min_value;
9859 u32_max_val = src_reg.u32_max_value;
9860
9861 if (alu32) {
9862 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
9863 if ((src_known &&
9864 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
9865 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
9866 /* Taint dst register if offset had invalid bounds
9867 * derived from e.g. dead branches.
9868 */
9869 __mark_reg_unknown(env, dst_reg);
9870 return 0;
9871 }
9872 } else {
9873 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
9874 if ((src_known &&
9875 (smin_val != smax_val || umin_val != umax_val)) ||
9876 smin_val > smax_val || umin_val > umax_val) {
9877 /* Taint dst register if offset had invalid bounds
9878 * derived from e.g. dead branches.
9879 */
9880 __mark_reg_unknown(env, dst_reg);
9881 return 0;
9882 }
6f16101e
DB
9883 }
9884
bb7f0f98
AS
9885 if (!src_known &&
9886 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 9887 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
9888 return 0;
9889 }
9890
f5288193
DB
9891 if (sanitize_needed(opcode)) {
9892 ret = sanitize_val_alu(env, insn);
9893 if (ret < 0)
9894 return sanitize_err(env, insn, ret, NULL, NULL);
9895 }
9896
3f50f132
JF
9897 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
9898 * There are two classes of instructions: The first class we track both
9899 * alu32 and alu64 sign/unsigned bounds independently this provides the
9900 * greatest amount of precision when alu operations are mixed with jmp32
9901 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
9902 * and BPF_OR. This is possible because these ops have fairly easy to
9903 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
9904 * See alu32 verifier tests for examples. The second class of
9905 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
9906 * with regards to tracking sign/unsigned bounds because the bits may
9907 * cross subreg boundaries in the alu64 case. When this happens we mark
9908 * the reg unbounded in the subreg bound space and use the resulting
9909 * tnum to calculate an approximation of the sign/unsigned bounds.
9910 */
48461135
JB
9911 switch (opcode) {
9912 case BPF_ADD:
3f50f132 9913 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 9914 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 9915 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
9916 break;
9917 case BPF_SUB:
3f50f132 9918 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 9919 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 9920 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
9921 break;
9922 case BPF_MUL:
3f50f132
JF
9923 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
9924 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 9925 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
9926 break;
9927 case BPF_AND:
3f50f132
JF
9928 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
9929 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 9930 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
9931 break;
9932 case BPF_OR:
3f50f132
JF
9933 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
9934 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 9935 scalar_min_max_or(dst_reg, &src_reg);
48461135 9936 break;
2921c90d
YS
9937 case BPF_XOR:
9938 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
9939 scalar32_min_max_xor(dst_reg, &src_reg);
9940 scalar_min_max_xor(dst_reg, &src_reg);
9941 break;
48461135 9942 case BPF_LSH:
468f6eaf
JH
9943 if (umax_val >= insn_bitness) {
9944 /* Shifts greater than 31 or 63 are undefined.
9945 * This includes shifts by a negative number.
b03c9f9f 9946 */
61bd5218 9947 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
9948 break;
9949 }
3f50f132
JF
9950 if (alu32)
9951 scalar32_min_max_lsh(dst_reg, &src_reg);
9952 else
9953 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
9954 break;
9955 case BPF_RSH:
468f6eaf
JH
9956 if (umax_val >= insn_bitness) {
9957 /* Shifts greater than 31 or 63 are undefined.
9958 * This includes shifts by a negative number.
b03c9f9f 9959 */
61bd5218 9960 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
9961 break;
9962 }
3f50f132
JF
9963 if (alu32)
9964 scalar32_min_max_rsh(dst_reg, &src_reg);
9965 else
9966 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 9967 break;
9cbe1f5a
YS
9968 case BPF_ARSH:
9969 if (umax_val >= insn_bitness) {
9970 /* Shifts greater than 31 or 63 are undefined.
9971 * This includes shifts by a negative number.
9972 */
9973 mark_reg_unknown(env, regs, insn->dst_reg);
9974 break;
9975 }
3f50f132
JF
9976 if (alu32)
9977 scalar32_min_max_arsh(dst_reg, &src_reg);
9978 else
9979 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 9980 break;
48461135 9981 default:
61bd5218 9982 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
9983 break;
9984 }
9985
3f50f132
JF
9986 /* ALU32 ops are zero extended into 64bit register */
9987 if (alu32)
9988 zext_32_to_64(dst_reg);
3844d153 9989 reg_bounds_sync(dst_reg);
f1174f77
EC
9990 return 0;
9991}
9992
9993/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9994 * and var_off.
9995 */
9996static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9997 struct bpf_insn *insn)
9998{
f4d7e40a
AS
9999 struct bpf_verifier_state *vstate = env->cur_state;
10000 struct bpf_func_state *state = vstate->frame[vstate->curframe];
10001 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
10002 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10003 u8 opcode = BPF_OP(insn->code);
b5dc0163 10004 int err;
f1174f77
EC
10005
10006 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
10007 src_reg = NULL;
10008 if (dst_reg->type != SCALAR_VALUE)
10009 ptr_reg = dst_reg;
75748837
AS
10010 else
10011 /* Make sure ID is cleared otherwise dst_reg min/max could be
10012 * incorrectly propagated into other registers by find_equal_scalars()
10013 */
10014 dst_reg->id = 0;
f1174f77
EC
10015 if (BPF_SRC(insn->code) == BPF_X) {
10016 src_reg = &regs[insn->src_reg];
f1174f77
EC
10017 if (src_reg->type != SCALAR_VALUE) {
10018 if (dst_reg->type != SCALAR_VALUE) {
10019 /* Combining two pointers by any ALU op yields
82abbf8d
AS
10020 * an arbitrary scalar. Disallow all math except
10021 * pointer subtraction
f1174f77 10022 */
dd066823 10023 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
10024 mark_reg_unknown(env, regs, insn->dst_reg);
10025 return 0;
f1174f77 10026 }
82abbf8d
AS
10027 verbose(env, "R%d pointer %s pointer prohibited\n",
10028 insn->dst_reg,
10029 bpf_alu_string[opcode >> 4]);
10030 return -EACCES;
f1174f77
EC
10031 } else {
10032 /* scalar += pointer
10033 * This is legal, but we have to reverse our
10034 * src/dest handling in computing the range
10035 */
b5dc0163
AS
10036 err = mark_chain_precision(env, insn->dst_reg);
10037 if (err)
10038 return err;
82abbf8d
AS
10039 return adjust_ptr_min_max_vals(env, insn,
10040 src_reg, dst_reg);
f1174f77
EC
10041 }
10042 } else if (ptr_reg) {
10043 /* pointer += scalar */
b5dc0163
AS
10044 err = mark_chain_precision(env, insn->src_reg);
10045 if (err)
10046 return err;
82abbf8d
AS
10047 return adjust_ptr_min_max_vals(env, insn,
10048 dst_reg, src_reg);
a3b666bf
AN
10049 } else if (dst_reg->precise) {
10050 /* if dst_reg is precise, src_reg should be precise as well */
10051 err = mark_chain_precision(env, insn->src_reg);
10052 if (err)
10053 return err;
f1174f77
EC
10054 }
10055 } else {
10056 /* Pretend the src is a reg with a known value, since we only
10057 * need to be able to read from this state.
10058 */
10059 off_reg.type = SCALAR_VALUE;
b03c9f9f 10060 __mark_reg_known(&off_reg, insn->imm);
f1174f77 10061 src_reg = &off_reg;
82abbf8d
AS
10062 if (ptr_reg) /* pointer += K */
10063 return adjust_ptr_min_max_vals(env, insn,
10064 ptr_reg, src_reg);
f1174f77
EC
10065 }
10066
10067 /* Got here implies adding two SCALAR_VALUEs */
10068 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 10069 print_verifier_state(env, state, true);
61bd5218 10070 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
10071 return -EINVAL;
10072 }
10073 if (WARN_ON(!src_reg)) {
0f55f9ed 10074 print_verifier_state(env, state, true);
61bd5218 10075 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
10076 return -EINVAL;
10077 }
10078 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
10079}
10080
17a52670 10081/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 10082static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 10083{
638f5b90 10084 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
10085 u8 opcode = BPF_OP(insn->code);
10086 int err;
10087
10088 if (opcode == BPF_END || opcode == BPF_NEG) {
10089 if (opcode == BPF_NEG) {
395e942d 10090 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
10091 insn->src_reg != BPF_REG_0 ||
10092 insn->off != 0 || insn->imm != 0) {
61bd5218 10093 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
10094 return -EINVAL;
10095 }
10096 } else {
10097 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
10098 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10099 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 10100 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
10101 return -EINVAL;
10102 }
10103 }
10104
10105 /* check src operand */
dc503a8a 10106 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10107 if (err)
10108 return err;
10109
1be7f75d 10110 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 10111 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
10112 insn->dst_reg);
10113 return -EACCES;
10114 }
10115
17a52670 10116 /* check dest operand */
dc503a8a 10117 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
10118 if (err)
10119 return err;
10120
10121 } else if (opcode == BPF_MOV) {
10122
10123 if (BPF_SRC(insn->code) == BPF_X) {
10124 if (insn->imm != 0 || insn->off != 0) {
61bd5218 10125 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
10126 return -EINVAL;
10127 }
10128
10129 /* check src operand */
dc503a8a 10130 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10131 if (err)
10132 return err;
10133 } else {
10134 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 10135 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
10136 return -EINVAL;
10137 }
10138 }
10139
fbeb1603
AF
10140 /* check dest operand, mark as required later */
10141 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
10142 if (err)
10143 return err;
10144
10145 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
10146 struct bpf_reg_state *src_reg = regs + insn->src_reg;
10147 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10148
17a52670
AS
10149 if (BPF_CLASS(insn->code) == BPF_ALU64) {
10150 /* case: R1 = R2
10151 * copy register state to dest reg
10152 */
75748837
AS
10153 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10154 /* Assign src and dst registers the same ID
10155 * that will be used by find_equal_scalars()
10156 * to propagate min/max range.
10157 */
10158 src_reg->id = ++env->id_gen;
e434b8cd
JW
10159 *dst_reg = *src_reg;
10160 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 10161 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 10162 } else {
f1174f77 10163 /* R1 = (u32) R2 */
1be7f75d 10164 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
10165 verbose(env,
10166 "R%d partial copy of pointer\n",
1be7f75d
AS
10167 insn->src_reg);
10168 return -EACCES;
e434b8cd
JW
10169 } else if (src_reg->type == SCALAR_VALUE) {
10170 *dst_reg = *src_reg;
75748837
AS
10171 /* Make sure ID is cleared otherwise
10172 * dst_reg min/max could be incorrectly
10173 * propagated into src_reg by find_equal_scalars()
10174 */
10175 dst_reg->id = 0;
e434b8cd 10176 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 10177 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
10178 } else {
10179 mark_reg_unknown(env, regs,
10180 insn->dst_reg);
1be7f75d 10181 }
3f50f132 10182 zext_32_to_64(dst_reg);
3844d153 10183 reg_bounds_sync(dst_reg);
17a52670
AS
10184 }
10185 } else {
10186 /* case: R = imm
10187 * remember the value we stored into this reg
10188 */
fbeb1603
AF
10189 /* clear any state __mark_reg_known doesn't set */
10190 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 10191 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
10192 if (BPF_CLASS(insn->code) == BPF_ALU64) {
10193 __mark_reg_known(regs + insn->dst_reg,
10194 insn->imm);
10195 } else {
10196 __mark_reg_known(regs + insn->dst_reg,
10197 (u32)insn->imm);
10198 }
17a52670
AS
10199 }
10200
10201 } else if (opcode > BPF_END) {
61bd5218 10202 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
10203 return -EINVAL;
10204
10205 } else { /* all other ALU ops: and, sub, xor, add, ... */
10206
17a52670
AS
10207 if (BPF_SRC(insn->code) == BPF_X) {
10208 if (insn->imm != 0 || insn->off != 0) {
61bd5218 10209 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
10210 return -EINVAL;
10211 }
10212 /* check src1 operand */
dc503a8a 10213 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10214 if (err)
10215 return err;
10216 } else {
10217 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 10218 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
10219 return -EINVAL;
10220 }
10221 }
10222
10223 /* check src2 operand */
dc503a8a 10224 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10225 if (err)
10226 return err;
10227
10228 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10229 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 10230 verbose(env, "div by zero\n");
17a52670
AS
10231 return -EINVAL;
10232 }
10233
229394e8
RV
10234 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10235 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10236 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10237
10238 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 10239 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
10240 return -EINVAL;
10241 }
10242 }
10243
1a0dc1ac 10244 /* check dest operand */
dc503a8a 10245 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
10246 if (err)
10247 return err;
10248
f1174f77 10249 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
10250 }
10251
10252 return 0;
10253}
10254
f4d7e40a 10255static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 10256 struct bpf_reg_state *dst_reg,
f8ddadc4 10257 enum bpf_reg_type type,
fb2a311a 10258 bool range_right_open)
969bf05e 10259{
b239da34
KKD
10260 struct bpf_func_state *state;
10261 struct bpf_reg_state *reg;
10262 int new_range;
2d2be8ca 10263
fb2a311a
DB
10264 if (dst_reg->off < 0 ||
10265 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
10266 /* This doesn't give us any range */
10267 return;
10268
b03c9f9f
EC
10269 if (dst_reg->umax_value > MAX_PACKET_OFF ||
10270 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
10271 /* Risk of overflow. For instance, ptr + (1<<63) may be less
10272 * than pkt_end, but that's because it's also less than pkt.
10273 */
10274 return;
10275
fb2a311a
DB
10276 new_range = dst_reg->off;
10277 if (range_right_open)
2fa7d94a 10278 new_range++;
fb2a311a
DB
10279
10280 /* Examples for register markings:
2d2be8ca 10281 *
fb2a311a 10282 * pkt_data in dst register:
2d2be8ca
DB
10283 *
10284 * r2 = r3;
10285 * r2 += 8;
10286 * if (r2 > pkt_end) goto <handle exception>
10287 * <access okay>
10288 *
b4e432f1
DB
10289 * r2 = r3;
10290 * r2 += 8;
10291 * if (r2 < pkt_end) goto <access okay>
10292 * <handle exception>
10293 *
2d2be8ca
DB
10294 * Where:
10295 * r2 == dst_reg, pkt_end == src_reg
10296 * r2=pkt(id=n,off=8,r=0)
10297 * r3=pkt(id=n,off=0,r=0)
10298 *
fb2a311a 10299 * pkt_data in src register:
2d2be8ca
DB
10300 *
10301 * r2 = r3;
10302 * r2 += 8;
10303 * if (pkt_end >= r2) goto <access okay>
10304 * <handle exception>
10305 *
b4e432f1
DB
10306 * r2 = r3;
10307 * r2 += 8;
10308 * if (pkt_end <= r2) goto <handle exception>
10309 * <access okay>
10310 *
2d2be8ca
DB
10311 * Where:
10312 * pkt_end == dst_reg, r2 == src_reg
10313 * r2=pkt(id=n,off=8,r=0)
10314 * r3=pkt(id=n,off=0,r=0)
10315 *
10316 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
10317 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
10318 * and [r3, r3 + 8-1) respectively is safe to access depending on
10319 * the check.
969bf05e 10320 */
2d2be8ca 10321
f1174f77
EC
10322 /* If our ids match, then we must have the same max_value. And we
10323 * don't care about the other reg's fixed offset, since if it's too big
10324 * the range won't allow anything.
10325 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
10326 */
b239da34
KKD
10327 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10328 if (reg->type == type && reg->id == dst_reg->id)
10329 /* keep the maximum range already checked */
10330 reg->range = max(reg->range, new_range);
10331 }));
969bf05e
AS
10332}
10333
3f50f132 10334static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 10335{
3f50f132
JF
10336 struct tnum subreg = tnum_subreg(reg->var_off);
10337 s32 sval = (s32)val;
a72dafaf 10338
3f50f132
JF
10339 switch (opcode) {
10340 case BPF_JEQ:
10341 if (tnum_is_const(subreg))
10342 return !!tnum_equals_const(subreg, val);
10343 break;
10344 case BPF_JNE:
10345 if (tnum_is_const(subreg))
10346 return !tnum_equals_const(subreg, val);
10347 break;
10348 case BPF_JSET:
10349 if ((~subreg.mask & subreg.value) & val)
10350 return 1;
10351 if (!((subreg.mask | subreg.value) & val))
10352 return 0;
10353 break;
10354 case BPF_JGT:
10355 if (reg->u32_min_value > val)
10356 return 1;
10357 else if (reg->u32_max_value <= val)
10358 return 0;
10359 break;
10360 case BPF_JSGT:
10361 if (reg->s32_min_value > sval)
10362 return 1;
ee114dd6 10363 else if (reg->s32_max_value <= sval)
3f50f132
JF
10364 return 0;
10365 break;
10366 case BPF_JLT:
10367 if (reg->u32_max_value < val)
10368 return 1;
10369 else if (reg->u32_min_value >= val)
10370 return 0;
10371 break;
10372 case BPF_JSLT:
10373 if (reg->s32_max_value < sval)
10374 return 1;
10375 else if (reg->s32_min_value >= sval)
10376 return 0;
10377 break;
10378 case BPF_JGE:
10379 if (reg->u32_min_value >= val)
10380 return 1;
10381 else if (reg->u32_max_value < val)
10382 return 0;
10383 break;
10384 case BPF_JSGE:
10385 if (reg->s32_min_value >= sval)
10386 return 1;
10387 else if (reg->s32_max_value < sval)
10388 return 0;
10389 break;
10390 case BPF_JLE:
10391 if (reg->u32_max_value <= val)
10392 return 1;
10393 else if (reg->u32_min_value > val)
10394 return 0;
10395 break;
10396 case BPF_JSLE:
10397 if (reg->s32_max_value <= sval)
10398 return 1;
10399 else if (reg->s32_min_value > sval)
10400 return 0;
10401 break;
10402 }
4f7b3e82 10403
3f50f132
JF
10404 return -1;
10405}
092ed096 10406
3f50f132
JF
10407
10408static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
10409{
10410 s64 sval = (s64)val;
a72dafaf 10411
4f7b3e82
AS
10412 switch (opcode) {
10413 case BPF_JEQ:
10414 if (tnum_is_const(reg->var_off))
10415 return !!tnum_equals_const(reg->var_off, val);
10416 break;
10417 case BPF_JNE:
10418 if (tnum_is_const(reg->var_off))
10419 return !tnum_equals_const(reg->var_off, val);
10420 break;
960ea056
JK
10421 case BPF_JSET:
10422 if ((~reg->var_off.mask & reg->var_off.value) & val)
10423 return 1;
10424 if (!((reg->var_off.mask | reg->var_off.value) & val))
10425 return 0;
10426 break;
4f7b3e82
AS
10427 case BPF_JGT:
10428 if (reg->umin_value > val)
10429 return 1;
10430 else if (reg->umax_value <= val)
10431 return 0;
10432 break;
10433 case BPF_JSGT:
a72dafaf 10434 if (reg->smin_value > sval)
4f7b3e82 10435 return 1;
ee114dd6 10436 else if (reg->smax_value <= sval)
4f7b3e82
AS
10437 return 0;
10438 break;
10439 case BPF_JLT:
10440 if (reg->umax_value < val)
10441 return 1;
10442 else if (reg->umin_value >= val)
10443 return 0;
10444 break;
10445 case BPF_JSLT:
a72dafaf 10446 if (reg->smax_value < sval)
4f7b3e82 10447 return 1;
a72dafaf 10448 else if (reg->smin_value >= sval)
4f7b3e82
AS
10449 return 0;
10450 break;
10451 case BPF_JGE:
10452 if (reg->umin_value >= val)
10453 return 1;
10454 else if (reg->umax_value < val)
10455 return 0;
10456 break;
10457 case BPF_JSGE:
a72dafaf 10458 if (reg->smin_value >= sval)
4f7b3e82 10459 return 1;
a72dafaf 10460 else if (reg->smax_value < sval)
4f7b3e82
AS
10461 return 0;
10462 break;
10463 case BPF_JLE:
10464 if (reg->umax_value <= val)
10465 return 1;
10466 else if (reg->umin_value > val)
10467 return 0;
10468 break;
10469 case BPF_JSLE:
a72dafaf 10470 if (reg->smax_value <= sval)
4f7b3e82 10471 return 1;
a72dafaf 10472 else if (reg->smin_value > sval)
4f7b3e82
AS
10473 return 0;
10474 break;
10475 }
10476
10477 return -1;
10478}
10479
3f50f132
JF
10480/* compute branch direction of the expression "if (reg opcode val) goto target;"
10481 * and return:
10482 * 1 - branch will be taken and "goto target" will be executed
10483 * 0 - branch will not be taken and fall-through to next insn
10484 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
10485 * range [0,10]
604dca5e 10486 */
3f50f132
JF
10487static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
10488 bool is_jmp32)
604dca5e 10489{
cac616db
JF
10490 if (__is_pointer_value(false, reg)) {
10491 if (!reg_type_not_null(reg->type))
10492 return -1;
10493
10494 /* If pointer is valid tests against zero will fail so we can
10495 * use this to direct branch taken.
10496 */
10497 if (val != 0)
10498 return -1;
10499
10500 switch (opcode) {
10501 case BPF_JEQ:
10502 return 0;
10503 case BPF_JNE:
10504 return 1;
10505 default:
10506 return -1;
10507 }
10508 }
604dca5e 10509
3f50f132
JF
10510 if (is_jmp32)
10511 return is_branch32_taken(reg, val, opcode);
10512 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
10513}
10514
6d94e741
AS
10515static int flip_opcode(u32 opcode)
10516{
10517 /* How can we transform "a <op> b" into "b <op> a"? */
10518 static const u8 opcode_flip[16] = {
10519 /* these stay the same */
10520 [BPF_JEQ >> 4] = BPF_JEQ,
10521 [BPF_JNE >> 4] = BPF_JNE,
10522 [BPF_JSET >> 4] = BPF_JSET,
10523 /* these swap "lesser" and "greater" (L and G in the opcodes) */
10524 [BPF_JGE >> 4] = BPF_JLE,
10525 [BPF_JGT >> 4] = BPF_JLT,
10526 [BPF_JLE >> 4] = BPF_JGE,
10527 [BPF_JLT >> 4] = BPF_JGT,
10528 [BPF_JSGE >> 4] = BPF_JSLE,
10529 [BPF_JSGT >> 4] = BPF_JSLT,
10530 [BPF_JSLE >> 4] = BPF_JSGE,
10531 [BPF_JSLT >> 4] = BPF_JSGT
10532 };
10533 return opcode_flip[opcode >> 4];
10534}
10535
10536static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
10537 struct bpf_reg_state *src_reg,
10538 u8 opcode)
10539{
10540 struct bpf_reg_state *pkt;
10541
10542 if (src_reg->type == PTR_TO_PACKET_END) {
10543 pkt = dst_reg;
10544 } else if (dst_reg->type == PTR_TO_PACKET_END) {
10545 pkt = src_reg;
10546 opcode = flip_opcode(opcode);
10547 } else {
10548 return -1;
10549 }
10550
10551 if (pkt->range >= 0)
10552 return -1;
10553
10554 switch (opcode) {
10555 case BPF_JLE:
10556 /* pkt <= pkt_end */
10557 fallthrough;
10558 case BPF_JGT:
10559 /* pkt > pkt_end */
10560 if (pkt->range == BEYOND_PKT_END)
10561 /* pkt has at last one extra byte beyond pkt_end */
10562 return opcode == BPF_JGT;
10563 break;
10564 case BPF_JLT:
10565 /* pkt < pkt_end */
10566 fallthrough;
10567 case BPF_JGE:
10568 /* pkt >= pkt_end */
10569 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
10570 return opcode == BPF_JGE;
10571 break;
10572 }
10573 return -1;
10574}
10575
48461135
JB
10576/* Adjusts the register min/max values in the case that the dst_reg is the
10577 * variable register that we are working on, and src_reg is a constant or we're
10578 * simply doing a BPF_K check.
f1174f77 10579 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
10580 */
10581static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
10582 struct bpf_reg_state *false_reg,
10583 u64 val, u32 val32,
092ed096 10584 u8 opcode, bool is_jmp32)
48461135 10585{
3f50f132
JF
10586 struct tnum false_32off = tnum_subreg(false_reg->var_off);
10587 struct tnum false_64off = false_reg->var_off;
10588 struct tnum true_32off = tnum_subreg(true_reg->var_off);
10589 struct tnum true_64off = true_reg->var_off;
10590 s64 sval = (s64)val;
10591 s32 sval32 = (s32)val32;
a72dafaf 10592
f1174f77
EC
10593 /* If the dst_reg is a pointer, we can't learn anything about its
10594 * variable offset from the compare (unless src_reg were a pointer into
10595 * the same object, but we don't bother with that.
10596 * Since false_reg and true_reg have the same type by construction, we
10597 * only need to check one of them for pointerness.
10598 */
10599 if (__is_pointer_value(false, false_reg))
10600 return;
4cabc5b1 10601
48461135 10602 switch (opcode) {
a12ca627
DB
10603 /* JEQ/JNE comparison doesn't change the register equivalence.
10604 *
10605 * r1 = r2;
10606 * if (r1 == 42) goto label;
10607 * ...
10608 * label: // here both r1 and r2 are known to be 42.
10609 *
10610 * Hence when marking register as known preserve it's ID.
10611 */
48461135 10612 case BPF_JEQ:
a12ca627
DB
10613 if (is_jmp32) {
10614 __mark_reg32_known(true_reg, val32);
10615 true_32off = tnum_subreg(true_reg->var_off);
10616 } else {
10617 ___mark_reg_known(true_reg, val);
10618 true_64off = true_reg->var_off;
10619 }
10620 break;
48461135 10621 case BPF_JNE:
a12ca627
DB
10622 if (is_jmp32) {
10623 __mark_reg32_known(false_reg, val32);
10624 false_32off = tnum_subreg(false_reg->var_off);
10625 } else {
10626 ___mark_reg_known(false_reg, val);
10627 false_64off = false_reg->var_off;
10628 }
48461135 10629 break;
960ea056 10630 case BPF_JSET:
3f50f132
JF
10631 if (is_jmp32) {
10632 false_32off = tnum_and(false_32off, tnum_const(~val32));
10633 if (is_power_of_2(val32))
10634 true_32off = tnum_or(true_32off,
10635 tnum_const(val32));
10636 } else {
10637 false_64off = tnum_and(false_64off, tnum_const(~val));
10638 if (is_power_of_2(val))
10639 true_64off = tnum_or(true_64off,
10640 tnum_const(val));
10641 }
960ea056 10642 break;
48461135 10643 case BPF_JGE:
a72dafaf
JW
10644 case BPF_JGT:
10645 {
3f50f132
JF
10646 if (is_jmp32) {
10647 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
10648 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
10649
10650 false_reg->u32_max_value = min(false_reg->u32_max_value,
10651 false_umax);
10652 true_reg->u32_min_value = max(true_reg->u32_min_value,
10653 true_umin);
10654 } else {
10655 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
10656 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
10657
10658 false_reg->umax_value = min(false_reg->umax_value, false_umax);
10659 true_reg->umin_value = max(true_reg->umin_value, true_umin);
10660 }
b03c9f9f 10661 break;
a72dafaf 10662 }
48461135 10663 case BPF_JSGE:
a72dafaf
JW
10664 case BPF_JSGT:
10665 {
3f50f132
JF
10666 if (is_jmp32) {
10667 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
10668 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 10669
3f50f132
JF
10670 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
10671 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
10672 } else {
10673 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
10674 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
10675
10676 false_reg->smax_value = min(false_reg->smax_value, false_smax);
10677 true_reg->smin_value = max(true_reg->smin_value, true_smin);
10678 }
48461135 10679 break;
a72dafaf 10680 }
b4e432f1 10681 case BPF_JLE:
a72dafaf
JW
10682 case BPF_JLT:
10683 {
3f50f132
JF
10684 if (is_jmp32) {
10685 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
10686 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
10687
10688 false_reg->u32_min_value = max(false_reg->u32_min_value,
10689 false_umin);
10690 true_reg->u32_max_value = min(true_reg->u32_max_value,
10691 true_umax);
10692 } else {
10693 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
10694 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
10695
10696 false_reg->umin_value = max(false_reg->umin_value, false_umin);
10697 true_reg->umax_value = min(true_reg->umax_value, true_umax);
10698 }
b4e432f1 10699 break;
a72dafaf 10700 }
b4e432f1 10701 case BPF_JSLE:
a72dafaf
JW
10702 case BPF_JSLT:
10703 {
3f50f132
JF
10704 if (is_jmp32) {
10705 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
10706 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 10707
3f50f132
JF
10708 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
10709 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
10710 } else {
10711 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
10712 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
10713
10714 false_reg->smin_value = max(false_reg->smin_value, false_smin);
10715 true_reg->smax_value = min(true_reg->smax_value, true_smax);
10716 }
b4e432f1 10717 break;
a72dafaf 10718 }
48461135 10719 default:
0fc31b10 10720 return;
48461135
JB
10721 }
10722
3f50f132
JF
10723 if (is_jmp32) {
10724 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
10725 tnum_subreg(false_32off));
10726 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
10727 tnum_subreg(true_32off));
10728 __reg_combine_32_into_64(false_reg);
10729 __reg_combine_32_into_64(true_reg);
10730 } else {
10731 false_reg->var_off = false_64off;
10732 true_reg->var_off = true_64off;
10733 __reg_combine_64_into_32(false_reg);
10734 __reg_combine_64_into_32(true_reg);
10735 }
48461135
JB
10736}
10737
f1174f77
EC
10738/* Same as above, but for the case that dst_reg holds a constant and src_reg is
10739 * the variable reg.
48461135
JB
10740 */
10741static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
10742 struct bpf_reg_state *false_reg,
10743 u64 val, u32 val32,
092ed096 10744 u8 opcode, bool is_jmp32)
48461135 10745{
6d94e741 10746 opcode = flip_opcode(opcode);
0fc31b10
JH
10747 /* This uses zero as "not present in table"; luckily the zero opcode,
10748 * BPF_JA, can't get here.
b03c9f9f 10749 */
0fc31b10 10750 if (opcode)
3f50f132 10751 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
10752}
10753
10754/* Regs are known to be equal, so intersect their min/max/var_off */
10755static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
10756 struct bpf_reg_state *dst_reg)
10757{
b03c9f9f
EC
10758 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
10759 dst_reg->umin_value);
10760 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
10761 dst_reg->umax_value);
10762 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
10763 dst_reg->smin_value);
10764 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
10765 dst_reg->smax_value);
f1174f77
EC
10766 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
10767 dst_reg->var_off);
3844d153
DB
10768 reg_bounds_sync(src_reg);
10769 reg_bounds_sync(dst_reg);
f1174f77
EC
10770}
10771
10772static void reg_combine_min_max(struct bpf_reg_state *true_src,
10773 struct bpf_reg_state *true_dst,
10774 struct bpf_reg_state *false_src,
10775 struct bpf_reg_state *false_dst,
10776 u8 opcode)
10777{
10778 switch (opcode) {
10779 case BPF_JEQ:
10780 __reg_combine_min_max(true_src, true_dst);
10781 break;
10782 case BPF_JNE:
10783 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 10784 break;
4cabc5b1 10785 }
48461135
JB
10786}
10787
fd978bf7
JS
10788static void mark_ptr_or_null_reg(struct bpf_func_state *state,
10789 struct bpf_reg_state *reg, u32 id,
840b9615 10790 bool is_null)
57a09bf0 10791{
c25b2ae1 10792 if (type_may_be_null(reg->type) && reg->id == id &&
93c230e3 10793 !WARN_ON_ONCE(!reg->id)) {
b03c9f9f
EC
10794 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
10795 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 10796 reg->off)) {
e60b0d12
DB
10797 /* Old offset (both fixed and variable parts) should
10798 * have been known-zero, because we don't allow pointer
10799 * arithmetic on pointers that might be NULL. If we
10800 * see this happening, don't convert the register.
10801 */
10802 return;
f1174f77
EC
10803 }
10804 if (is_null) {
10805 reg->type = SCALAR_VALUE;
1b986589
MKL
10806 /* We don't need id and ref_obj_id from this point
10807 * onwards anymore, thus we should better reset it,
10808 * so that state pruning has chances to take effect.
10809 */
10810 reg->id = 0;
10811 reg->ref_obj_id = 0;
4ddb7416
DB
10812
10813 return;
10814 }
10815
10816 mark_ptr_not_null_reg(reg);
10817
10818 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 10819 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 10820 * in release_reference().
1b986589
MKL
10821 *
10822 * reg->id is still used by spin_lock ptr. Other
10823 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
10824 */
10825 reg->id = 0;
56f668df 10826 }
57a09bf0
TG
10827 }
10828}
10829
10830/* The logic is similar to find_good_pkt_pointers(), both could eventually
10831 * be folded together at some point.
10832 */
840b9615
JS
10833static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
10834 bool is_null)
57a09bf0 10835{
f4d7e40a 10836 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 10837 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 10838 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 10839 u32 id = regs[regno].id;
57a09bf0 10840
1b986589
MKL
10841 if (ref_obj_id && ref_obj_id == id && is_null)
10842 /* regs[regno] is in the " == NULL" branch.
10843 * No one could have freed the reference state before
10844 * doing the NULL check.
10845 */
10846 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 10847
b239da34
KKD
10848 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10849 mark_ptr_or_null_reg(state, reg, id, is_null);
10850 }));
57a09bf0
TG
10851}
10852
5beca081
DB
10853static bool try_match_pkt_pointers(const struct bpf_insn *insn,
10854 struct bpf_reg_state *dst_reg,
10855 struct bpf_reg_state *src_reg,
10856 struct bpf_verifier_state *this_branch,
10857 struct bpf_verifier_state *other_branch)
10858{
10859 if (BPF_SRC(insn->code) != BPF_X)
10860 return false;
10861
092ed096
JW
10862 /* Pointers are always 64-bit. */
10863 if (BPF_CLASS(insn->code) == BPF_JMP32)
10864 return false;
10865
5beca081
DB
10866 switch (BPF_OP(insn->code)) {
10867 case BPF_JGT:
10868 if ((dst_reg->type == PTR_TO_PACKET &&
10869 src_reg->type == PTR_TO_PACKET_END) ||
10870 (dst_reg->type == PTR_TO_PACKET_META &&
10871 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10872 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
10873 find_good_pkt_pointers(this_branch, dst_reg,
10874 dst_reg->type, false);
6d94e741 10875 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
10876 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10877 src_reg->type == PTR_TO_PACKET) ||
10878 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10879 src_reg->type == PTR_TO_PACKET_META)) {
10880 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
10881 find_good_pkt_pointers(other_branch, src_reg,
10882 src_reg->type, true);
6d94e741 10883 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
10884 } else {
10885 return false;
10886 }
10887 break;
10888 case BPF_JLT:
10889 if ((dst_reg->type == PTR_TO_PACKET &&
10890 src_reg->type == PTR_TO_PACKET_END) ||
10891 (dst_reg->type == PTR_TO_PACKET_META &&
10892 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10893 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
10894 find_good_pkt_pointers(other_branch, dst_reg,
10895 dst_reg->type, true);
6d94e741 10896 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
10897 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10898 src_reg->type == PTR_TO_PACKET) ||
10899 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10900 src_reg->type == PTR_TO_PACKET_META)) {
10901 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
10902 find_good_pkt_pointers(this_branch, src_reg,
10903 src_reg->type, false);
6d94e741 10904 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
10905 } else {
10906 return false;
10907 }
10908 break;
10909 case BPF_JGE:
10910 if ((dst_reg->type == PTR_TO_PACKET &&
10911 src_reg->type == PTR_TO_PACKET_END) ||
10912 (dst_reg->type == PTR_TO_PACKET_META &&
10913 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10914 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
10915 find_good_pkt_pointers(this_branch, dst_reg,
10916 dst_reg->type, true);
6d94e741 10917 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
10918 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10919 src_reg->type == PTR_TO_PACKET) ||
10920 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10921 src_reg->type == PTR_TO_PACKET_META)) {
10922 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
10923 find_good_pkt_pointers(other_branch, src_reg,
10924 src_reg->type, false);
6d94e741 10925 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
10926 } else {
10927 return false;
10928 }
10929 break;
10930 case BPF_JLE:
10931 if ((dst_reg->type == PTR_TO_PACKET &&
10932 src_reg->type == PTR_TO_PACKET_END) ||
10933 (dst_reg->type == PTR_TO_PACKET_META &&
10934 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10935 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
10936 find_good_pkt_pointers(other_branch, dst_reg,
10937 dst_reg->type, false);
6d94e741 10938 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
10939 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10940 src_reg->type == PTR_TO_PACKET) ||
10941 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10942 src_reg->type == PTR_TO_PACKET_META)) {
10943 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10944 find_good_pkt_pointers(this_branch, src_reg,
10945 src_reg->type, true);
6d94e741 10946 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
10947 } else {
10948 return false;
10949 }
10950 break;
10951 default:
10952 return false;
10953 }
10954
10955 return true;
10956}
10957
75748837
AS
10958static void find_equal_scalars(struct bpf_verifier_state *vstate,
10959 struct bpf_reg_state *known_reg)
10960{
10961 struct bpf_func_state *state;
10962 struct bpf_reg_state *reg;
75748837 10963
b239da34
KKD
10964 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10965 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10966 *reg = *known_reg;
10967 }));
75748837
AS
10968}
10969
58e2af8b 10970static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
10971 struct bpf_insn *insn, int *insn_idx)
10972{
f4d7e40a
AS
10973 struct bpf_verifier_state *this_branch = env->cur_state;
10974 struct bpf_verifier_state *other_branch;
10975 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 10976 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 10977 struct bpf_reg_state *eq_branch_regs;
17a52670 10978 u8 opcode = BPF_OP(insn->code);
092ed096 10979 bool is_jmp32;
fb8d251e 10980 int pred = -1;
17a52670
AS
10981 int err;
10982
092ed096
JW
10983 /* Only conditional jumps are expected to reach here. */
10984 if (opcode == BPF_JA || opcode > BPF_JSLE) {
10985 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
10986 return -EINVAL;
10987 }
10988
10989 if (BPF_SRC(insn->code) == BPF_X) {
10990 if (insn->imm != 0) {
092ed096 10991 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
10992 return -EINVAL;
10993 }
10994
10995 /* check src1 operand */
dc503a8a 10996 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10997 if (err)
10998 return err;
1be7f75d
AS
10999
11000 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 11001 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
11002 insn->src_reg);
11003 return -EACCES;
11004 }
fb8d251e 11005 src_reg = &regs[insn->src_reg];
17a52670
AS
11006 } else {
11007 if (insn->src_reg != BPF_REG_0) {
092ed096 11008 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
11009 return -EINVAL;
11010 }
11011 }
11012
11013 /* check src2 operand */
dc503a8a 11014 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11015 if (err)
11016 return err;
11017
1a0dc1ac 11018 dst_reg = &regs[insn->dst_reg];
092ed096 11019 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 11020
3f50f132
JF
11021 if (BPF_SRC(insn->code) == BPF_K) {
11022 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11023 } else if (src_reg->type == SCALAR_VALUE &&
11024 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11025 pred = is_branch_taken(dst_reg,
11026 tnum_subreg(src_reg->var_off).value,
11027 opcode,
11028 is_jmp32);
11029 } else if (src_reg->type == SCALAR_VALUE &&
11030 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11031 pred = is_branch_taken(dst_reg,
11032 src_reg->var_off.value,
11033 opcode,
11034 is_jmp32);
6d94e741
AS
11035 } else if (reg_is_pkt_pointer_any(dst_reg) &&
11036 reg_is_pkt_pointer_any(src_reg) &&
11037 !is_jmp32) {
11038 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
11039 }
11040
b5dc0163 11041 if (pred >= 0) {
cac616db
JF
11042 /* If we get here with a dst_reg pointer type it is because
11043 * above is_branch_taken() special cased the 0 comparison.
11044 */
11045 if (!__is_pointer_value(false, dst_reg))
11046 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
11047 if (BPF_SRC(insn->code) == BPF_X && !err &&
11048 !__is_pointer_value(false, src_reg))
b5dc0163
AS
11049 err = mark_chain_precision(env, insn->src_reg);
11050 if (err)
11051 return err;
11052 }
9183671a 11053
fb8d251e 11054 if (pred == 1) {
9183671a
DB
11055 /* Only follow the goto, ignore fall-through. If needed, push
11056 * the fall-through branch for simulation under speculative
11057 * execution.
11058 */
11059 if (!env->bypass_spec_v1 &&
11060 !sanitize_speculative_path(env, insn, *insn_idx + 1,
11061 *insn_idx))
11062 return -EFAULT;
fb8d251e
AS
11063 *insn_idx += insn->off;
11064 return 0;
11065 } else if (pred == 0) {
9183671a
DB
11066 /* Only follow the fall-through branch, since that's where the
11067 * program will go. If needed, push the goto branch for
11068 * simulation under speculative execution.
fb8d251e 11069 */
9183671a
DB
11070 if (!env->bypass_spec_v1 &&
11071 !sanitize_speculative_path(env, insn,
11072 *insn_idx + insn->off + 1,
11073 *insn_idx))
11074 return -EFAULT;
fb8d251e 11075 return 0;
17a52670
AS
11076 }
11077
979d63d5
DB
11078 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11079 false);
17a52670
AS
11080 if (!other_branch)
11081 return -EFAULT;
f4d7e40a 11082 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 11083
48461135
JB
11084 /* detect if we are comparing against a constant value so we can adjust
11085 * our min/max values for our dst register.
f1174f77 11086 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
11087 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11088 * because otherwise the different base pointers mean the offsets aren't
f1174f77 11089 * comparable.
48461135
JB
11090 */
11091 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 11092 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 11093
f1174f77 11094 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
11095 src_reg->type == SCALAR_VALUE) {
11096 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
11097 (is_jmp32 &&
11098 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 11099 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 11100 dst_reg,
3f50f132
JF
11101 src_reg->var_off.value,
11102 tnum_subreg(src_reg->var_off).value,
092ed096
JW
11103 opcode, is_jmp32);
11104 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
11105 (is_jmp32 &&
11106 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 11107 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 11108 src_reg,
3f50f132
JF
11109 dst_reg->var_off.value,
11110 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
11111 opcode, is_jmp32);
11112 else if (!is_jmp32 &&
11113 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 11114 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
11115 reg_combine_min_max(&other_branch_regs[insn->src_reg],
11116 &other_branch_regs[insn->dst_reg],
092ed096 11117 src_reg, dst_reg, opcode);
e688c3db
AS
11118 if (src_reg->id &&
11119 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
11120 find_equal_scalars(this_branch, src_reg);
11121 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11122 }
11123
f1174f77
EC
11124 }
11125 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 11126 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
11127 dst_reg, insn->imm, (u32)insn->imm,
11128 opcode, is_jmp32);
48461135
JB
11129 }
11130
e688c3db
AS
11131 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11132 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
11133 find_equal_scalars(this_branch, dst_reg);
11134 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11135 }
11136
befae758
EZ
11137 /* if one pointer register is compared to another pointer
11138 * register check if PTR_MAYBE_NULL could be lifted.
11139 * E.g. register A - maybe null
11140 * register B - not null
11141 * for JNE A, B, ... - A is not null in the false branch;
11142 * for JEQ A, B, ... - A is not null in the true branch.
11143 */
11144 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11145 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11146 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
11147 eq_branch_regs = NULL;
11148 switch (opcode) {
11149 case BPF_JEQ:
11150 eq_branch_regs = other_branch_regs;
11151 break;
11152 case BPF_JNE:
11153 eq_branch_regs = regs;
11154 break;
11155 default:
11156 /* do nothing */
11157 break;
11158 }
11159 if (eq_branch_regs) {
11160 if (type_may_be_null(src_reg->type))
11161 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11162 else
11163 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11164 }
11165 }
11166
092ed096
JW
11167 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11168 * NOTE: these optimizations below are related with pointer comparison
11169 * which will never be JMP32.
11170 */
11171 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 11172 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 11173 type_may_be_null(dst_reg->type)) {
840b9615 11174 /* Mark all identical registers in each branch as either
57a09bf0
TG
11175 * safe or unknown depending R == 0 or R != 0 conditional.
11176 */
840b9615
JS
11177 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11178 opcode == BPF_JNE);
11179 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11180 opcode == BPF_JEQ);
5beca081
DB
11181 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11182 this_branch, other_branch) &&
11183 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
11184 verbose(env, "R%d pointer comparison prohibited\n",
11185 insn->dst_reg);
1be7f75d 11186 return -EACCES;
17a52670 11187 }
06ee7115 11188 if (env->log.level & BPF_LOG_LEVEL)
2e576648 11189 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
11190 return 0;
11191}
11192
17a52670 11193/* verify BPF_LD_IMM64 instruction */
58e2af8b 11194static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 11195{
d8eca5bb 11196 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 11197 struct bpf_reg_state *regs = cur_regs(env);
4976b718 11198 struct bpf_reg_state *dst_reg;
d8eca5bb 11199 struct bpf_map *map;
17a52670
AS
11200 int err;
11201
11202 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 11203 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
11204 return -EINVAL;
11205 }
11206 if (insn->off != 0) {
61bd5218 11207 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
11208 return -EINVAL;
11209 }
11210
dc503a8a 11211 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
11212 if (err)
11213 return err;
11214
4976b718 11215 dst_reg = &regs[insn->dst_reg];
6b173873 11216 if (insn->src_reg == 0) {
6b173873
JK
11217 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11218
4976b718 11219 dst_reg->type = SCALAR_VALUE;
b03c9f9f 11220 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 11221 return 0;
6b173873 11222 }
17a52670 11223
d400a6cf
DB
11224 /* All special src_reg cases are listed below. From this point onwards
11225 * we either succeed and assign a corresponding dst_reg->type after
11226 * zeroing the offset, or fail and reject the program.
11227 */
11228 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 11229
d400a6cf 11230 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 11231 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 11232 switch (base_type(dst_reg->type)) {
4976b718
HL
11233 case PTR_TO_MEM:
11234 dst_reg->mem_size = aux->btf_var.mem_size;
11235 break;
11236 case PTR_TO_BTF_ID:
22dc4a0f 11237 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
11238 dst_reg->btf_id = aux->btf_var.btf_id;
11239 break;
11240 default:
11241 verbose(env, "bpf verifier is misconfigured\n");
11242 return -EFAULT;
11243 }
11244 return 0;
11245 }
11246
69c087ba
YS
11247 if (insn->src_reg == BPF_PSEUDO_FUNC) {
11248 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
11249 u32 subprogno = find_subprog(env,
11250 env->insn_idx + insn->imm + 1);
69c087ba
YS
11251
11252 if (!aux->func_info) {
11253 verbose(env, "missing btf func_info\n");
11254 return -EINVAL;
11255 }
11256 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11257 verbose(env, "callback function not static\n");
11258 return -EINVAL;
11259 }
11260
11261 dst_reg->type = PTR_TO_FUNC;
11262 dst_reg->subprogno = subprogno;
11263 return 0;
11264 }
11265
d8eca5bb 11266 map = env->used_maps[aux->map_index];
4976b718 11267 dst_reg->map_ptr = map;
d8eca5bb 11268
387544bf
AS
11269 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11270 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
11271 dst_reg->type = PTR_TO_MAP_VALUE;
11272 dst_reg->off = aux->map_off;
d0d78c1d
KKD
11273 WARN_ON_ONCE(map->max_entries != 1);
11274 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
11275 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11276 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 11277 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
11278 } else {
11279 verbose(env, "bpf verifier is misconfigured\n");
11280 return -EINVAL;
11281 }
17a52670 11282
17a52670
AS
11283 return 0;
11284}
11285
96be4325
DB
11286static bool may_access_skb(enum bpf_prog_type type)
11287{
11288 switch (type) {
11289 case BPF_PROG_TYPE_SOCKET_FILTER:
11290 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 11291 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
11292 return true;
11293 default:
11294 return false;
11295 }
11296}
11297
ddd872bc
AS
11298/* verify safety of LD_ABS|LD_IND instructions:
11299 * - they can only appear in the programs where ctx == skb
11300 * - since they are wrappers of function calls, they scratch R1-R5 registers,
11301 * preserve R6-R9, and store return value into R0
11302 *
11303 * Implicit input:
11304 * ctx == skb == R6 == CTX
11305 *
11306 * Explicit input:
11307 * SRC == any register
11308 * IMM == 32-bit immediate
11309 *
11310 * Output:
11311 * R0 - 8/16/32-bit skb data converted to cpu endianness
11312 */
58e2af8b 11313static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 11314{
638f5b90 11315 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 11316 static const int ctx_reg = BPF_REG_6;
ddd872bc 11317 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
11318 int i, err;
11319
7e40781c 11320 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 11321 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
11322 return -EINVAL;
11323 }
11324
e0cea7ce
DB
11325 if (!env->ops->gen_ld_abs) {
11326 verbose(env, "bpf verifier is misconfigured\n");
11327 return -EINVAL;
11328 }
11329
ddd872bc 11330 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 11331 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 11332 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 11333 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
11334 return -EINVAL;
11335 }
11336
11337 /* check whether implicit source operand (register R6) is readable */
6d4f151a 11338 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
11339 if (err)
11340 return err;
11341
fd978bf7
JS
11342 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
11343 * gen_ld_abs() may terminate the program at runtime, leading to
11344 * reference leak.
11345 */
11346 err = check_reference_leak(env);
11347 if (err) {
11348 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
11349 return err;
11350 }
11351
d0d78c1d 11352 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
11353 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
11354 return -EINVAL;
11355 }
11356
6d4f151a 11357 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
11358 verbose(env,
11359 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
11360 return -EINVAL;
11361 }
11362
11363 if (mode == BPF_IND) {
11364 /* check explicit source operand */
dc503a8a 11365 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
11366 if (err)
11367 return err;
11368 }
11369
be80a1d3 11370 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
11371 if (err < 0)
11372 return err;
11373
ddd872bc 11374 /* reset caller saved regs to unreadable */
dc503a8a 11375 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 11376 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
11377 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11378 }
ddd872bc
AS
11379
11380 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
11381 * the value fetched from the packet.
11382 * Already marked as written above.
ddd872bc 11383 */
61bd5218 11384 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
11385 /* ld_abs load up to 32-bit skb data. */
11386 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
11387 return 0;
11388}
11389
390ee7e2
AS
11390static int check_return_code(struct bpf_verifier_env *env)
11391{
5cf1e914 11392 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 11393 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
11394 struct bpf_reg_state *reg;
11395 struct tnum range = tnum_range(0, 1);
7e40781c 11396 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 11397 int err;
bfc6bb74
AS
11398 struct bpf_func_state *frame = env->cur_state->frame[0];
11399 const bool is_subprog = frame->subprogno;
27ae7997 11400
9e4e01df 11401 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
11402 if (!is_subprog) {
11403 switch (prog_type) {
11404 case BPF_PROG_TYPE_LSM:
11405 if (prog->expected_attach_type == BPF_LSM_CGROUP)
11406 /* See below, can be 0 or 0-1 depending on hook. */
11407 break;
11408 fallthrough;
11409 case BPF_PROG_TYPE_STRUCT_OPS:
11410 if (!prog->aux->attach_func_proto->type)
11411 return 0;
11412 break;
11413 default:
11414 break;
11415 }
11416 }
27ae7997 11417
8fb33b60 11418 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
11419 * to return the value from eBPF program.
11420 * Make sure that it's readable at this time
11421 * of bpf_exit, which means that program wrote
11422 * something into it earlier
11423 */
11424 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
11425 if (err)
11426 return err;
11427
11428 if (is_pointer_value(env, BPF_REG_0)) {
11429 verbose(env, "R0 leaks addr as return value\n");
11430 return -EACCES;
11431 }
390ee7e2 11432
f782e2c3 11433 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
11434
11435 if (frame->in_async_callback_fn) {
11436 /* enforce return zero from async callbacks like timer */
11437 if (reg->type != SCALAR_VALUE) {
11438 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 11439 reg_type_str(env, reg->type));
bfc6bb74
AS
11440 return -EINVAL;
11441 }
11442
11443 if (!tnum_in(tnum_const(0), reg->var_off)) {
11444 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
11445 return -EINVAL;
11446 }
11447 return 0;
11448 }
11449
f782e2c3
DB
11450 if (is_subprog) {
11451 if (reg->type != SCALAR_VALUE) {
11452 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 11453 reg_type_str(env, reg->type));
f782e2c3
DB
11454 return -EINVAL;
11455 }
11456 return 0;
11457 }
11458
7e40781c 11459 switch (prog_type) {
983695fa
DB
11460 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
11461 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
11462 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
11463 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
11464 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
11465 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
11466 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 11467 range = tnum_range(1, 1);
77241217
SF
11468 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
11469 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
11470 range = tnum_range(0, 3);
ed4ed404 11471 break;
390ee7e2 11472 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 11473 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
11474 range = tnum_range(0, 3);
11475 enforce_attach_type_range = tnum_range(2, 3);
11476 }
ed4ed404 11477 break;
390ee7e2
AS
11478 case BPF_PROG_TYPE_CGROUP_SOCK:
11479 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 11480 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 11481 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 11482 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 11483 break;
15ab09bd
AS
11484 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11485 if (!env->prog->aux->attach_btf_id)
11486 return 0;
11487 range = tnum_const(0);
11488 break;
15d83c4d 11489 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
11490 switch (env->prog->expected_attach_type) {
11491 case BPF_TRACE_FENTRY:
11492 case BPF_TRACE_FEXIT:
11493 range = tnum_const(0);
11494 break;
11495 case BPF_TRACE_RAW_TP:
11496 case BPF_MODIFY_RETURN:
15d83c4d 11497 return 0;
2ec0616e
DB
11498 case BPF_TRACE_ITER:
11499 break;
e92888c7
YS
11500 default:
11501 return -ENOTSUPP;
11502 }
15d83c4d 11503 break;
e9ddbb77
JS
11504 case BPF_PROG_TYPE_SK_LOOKUP:
11505 range = tnum_range(SK_DROP, SK_PASS);
11506 break;
69fd337a
SF
11507
11508 case BPF_PROG_TYPE_LSM:
11509 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
11510 /* Regular BPF_PROG_TYPE_LSM programs can return
11511 * any value.
11512 */
11513 return 0;
11514 }
11515 if (!env->prog->aux->attach_func_proto->type) {
11516 /* Make sure programs that attach to void
11517 * hooks don't try to modify return value.
11518 */
11519 range = tnum_range(1, 1);
11520 }
11521 break;
11522
e92888c7
YS
11523 case BPF_PROG_TYPE_EXT:
11524 /* freplace program can return anything as its return value
11525 * depends on the to-be-replaced kernel func or bpf program.
11526 */
390ee7e2
AS
11527 default:
11528 return 0;
11529 }
11530
390ee7e2 11531 if (reg->type != SCALAR_VALUE) {
61bd5218 11532 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 11533 reg_type_str(env, reg->type));
390ee7e2
AS
11534 return -EINVAL;
11535 }
11536
11537 if (!tnum_in(range, reg->var_off)) {
bc2591d6 11538 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 11539 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 11540 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
11541 !prog->aux->attach_func_proto->type)
11542 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
11543 return -EINVAL;
11544 }
5cf1e914 11545
11546 if (!tnum_is_unknown(enforce_attach_type_range) &&
11547 tnum_in(enforce_attach_type_range, reg->var_off))
11548 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
11549 return 0;
11550}
11551
475fb78f
AS
11552/* non-recursive DFS pseudo code
11553 * 1 procedure DFS-iterative(G,v):
11554 * 2 label v as discovered
11555 * 3 let S be a stack
11556 * 4 S.push(v)
11557 * 5 while S is not empty
b6d20799 11558 * 6 t <- S.peek()
475fb78f
AS
11559 * 7 if t is what we're looking for:
11560 * 8 return t
11561 * 9 for all edges e in G.adjacentEdges(t) do
11562 * 10 if edge e is already labelled
11563 * 11 continue with the next edge
11564 * 12 w <- G.adjacentVertex(t,e)
11565 * 13 if vertex w is not discovered and not explored
11566 * 14 label e as tree-edge
11567 * 15 label w as discovered
11568 * 16 S.push(w)
11569 * 17 continue at 5
11570 * 18 else if vertex w is discovered
11571 * 19 label e as back-edge
11572 * 20 else
11573 * 21 // vertex w is explored
11574 * 22 label e as forward- or cross-edge
11575 * 23 label t as explored
11576 * 24 S.pop()
11577 *
11578 * convention:
11579 * 0x10 - discovered
11580 * 0x11 - discovered and fall-through edge labelled
11581 * 0x12 - discovered and fall-through and branch edges labelled
11582 * 0x20 - explored
11583 */
11584
11585enum {
11586 DISCOVERED = 0x10,
11587 EXPLORED = 0x20,
11588 FALLTHROUGH = 1,
11589 BRANCH = 2,
11590};
11591
dc2a4ebc
AS
11592static u32 state_htab_size(struct bpf_verifier_env *env)
11593{
11594 return env->prog->len;
11595}
11596
5d839021
AS
11597static struct bpf_verifier_state_list **explored_state(
11598 struct bpf_verifier_env *env,
11599 int idx)
11600{
dc2a4ebc
AS
11601 struct bpf_verifier_state *cur = env->cur_state;
11602 struct bpf_func_state *state = cur->frame[cur->curframe];
11603
11604 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
11605}
11606
11607static void init_explored_state(struct bpf_verifier_env *env, int idx)
11608{
a8f500af 11609 env->insn_aux_data[idx].prune_point = true;
5d839021 11610}
f1bca824 11611
59e2e27d
WAF
11612enum {
11613 DONE_EXPLORING = 0,
11614 KEEP_EXPLORING = 1,
11615};
11616
475fb78f
AS
11617/* t, w, e - match pseudo-code above:
11618 * t - index of current instruction
11619 * w - next instruction
11620 * e - edge
11621 */
2589726d
AS
11622static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
11623 bool loop_ok)
475fb78f 11624{
7df737e9
AS
11625 int *insn_stack = env->cfg.insn_stack;
11626 int *insn_state = env->cfg.insn_state;
11627
475fb78f 11628 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 11629 return DONE_EXPLORING;
475fb78f
AS
11630
11631 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 11632 return DONE_EXPLORING;
475fb78f
AS
11633
11634 if (w < 0 || w >= env->prog->len) {
d9762e84 11635 verbose_linfo(env, t, "%d: ", t);
61bd5218 11636 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
11637 return -EINVAL;
11638 }
11639
f1bca824
AS
11640 if (e == BRANCH)
11641 /* mark branch target for state pruning */
5d839021 11642 init_explored_state(env, w);
f1bca824 11643
475fb78f
AS
11644 if (insn_state[w] == 0) {
11645 /* tree-edge */
11646 insn_state[t] = DISCOVERED | e;
11647 insn_state[w] = DISCOVERED;
7df737e9 11648 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 11649 return -E2BIG;
7df737e9 11650 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 11651 return KEEP_EXPLORING;
475fb78f 11652 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 11653 if (loop_ok && env->bpf_capable)
59e2e27d 11654 return DONE_EXPLORING;
d9762e84
MKL
11655 verbose_linfo(env, t, "%d: ", t);
11656 verbose_linfo(env, w, "%d: ", w);
61bd5218 11657 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
11658 return -EINVAL;
11659 } else if (insn_state[w] == EXPLORED) {
11660 /* forward- or cross-edge */
11661 insn_state[t] = DISCOVERED | e;
11662 } else {
61bd5218 11663 verbose(env, "insn state internal bug\n");
475fb78f
AS
11664 return -EFAULT;
11665 }
59e2e27d
WAF
11666 return DONE_EXPLORING;
11667}
11668
efdb22de
YS
11669static int visit_func_call_insn(int t, int insn_cnt,
11670 struct bpf_insn *insns,
11671 struct bpf_verifier_env *env,
11672 bool visit_callee)
11673{
11674 int ret;
11675
11676 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
11677 if (ret)
11678 return ret;
11679
11680 if (t + 1 < insn_cnt)
11681 init_explored_state(env, t + 1);
11682 if (visit_callee) {
11683 init_explored_state(env, t);
86fc6ee6
AS
11684 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
11685 /* It's ok to allow recursion from CFG point of
11686 * view. __check_func_call() will do the actual
11687 * check.
11688 */
11689 bpf_pseudo_func(insns + t));
efdb22de
YS
11690 }
11691 return ret;
11692}
11693
59e2e27d
WAF
11694/* Visits the instruction at index t and returns one of the following:
11695 * < 0 - an error occurred
11696 * DONE_EXPLORING - the instruction was fully explored
11697 * KEEP_EXPLORING - there is still work to be done before it is fully explored
11698 */
11699static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
11700{
11701 struct bpf_insn *insns = env->prog->insnsi;
11702 int ret;
11703
69c087ba
YS
11704 if (bpf_pseudo_func(insns + t))
11705 return visit_func_call_insn(t, insn_cnt, insns, env, true);
11706
59e2e27d
WAF
11707 /* All non-branch instructions have a single fall-through edge. */
11708 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
11709 BPF_CLASS(insns[t].code) != BPF_JMP32)
11710 return push_insn(t, t + 1, FALLTHROUGH, env, false);
11711
11712 switch (BPF_OP(insns[t].code)) {
11713 case BPF_EXIT:
11714 return DONE_EXPLORING;
11715
11716 case BPF_CALL:
bfc6bb74
AS
11717 if (insns[t].imm == BPF_FUNC_timer_set_callback)
11718 /* Mark this call insn to trigger is_state_visited() check
11719 * before call itself is processed by __check_func_call().
11720 * Otherwise new async state will be pushed for further
11721 * exploration.
11722 */
11723 init_explored_state(env, t);
efdb22de
YS
11724 return visit_func_call_insn(t, insn_cnt, insns, env,
11725 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
11726
11727 case BPF_JA:
11728 if (BPF_SRC(insns[t].code) != BPF_K)
11729 return -EINVAL;
11730
11731 /* unconditional jump with single edge */
11732 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
11733 true);
11734 if (ret)
11735 return ret;
11736
11737 /* unconditional jmp is not a good pruning point,
11738 * but it's marked, since backtracking needs
11739 * to record jmp history in is_state_visited().
11740 */
11741 init_explored_state(env, t + insns[t].off + 1);
11742 /* tell verifier to check for equivalent states
11743 * after every call and jump
11744 */
11745 if (t + 1 < insn_cnt)
11746 init_explored_state(env, t + 1);
11747
11748 return ret;
11749
11750 default:
11751 /* conditional jump with two edges */
11752 init_explored_state(env, t);
11753 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
11754 if (ret)
11755 return ret;
11756
11757 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
11758 }
475fb78f
AS
11759}
11760
11761/* non-recursive depth-first-search to detect loops in BPF program
11762 * loop == back-edge in directed graph
11763 */
58e2af8b 11764static int check_cfg(struct bpf_verifier_env *env)
475fb78f 11765{
475fb78f 11766 int insn_cnt = env->prog->len;
7df737e9 11767 int *insn_stack, *insn_state;
475fb78f 11768 int ret = 0;
59e2e27d 11769 int i;
475fb78f 11770
7df737e9 11771 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
11772 if (!insn_state)
11773 return -ENOMEM;
11774
7df737e9 11775 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 11776 if (!insn_stack) {
71dde681 11777 kvfree(insn_state);
475fb78f
AS
11778 return -ENOMEM;
11779 }
11780
11781 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
11782 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 11783 env->cfg.cur_stack = 1;
475fb78f 11784
59e2e27d
WAF
11785 while (env->cfg.cur_stack > 0) {
11786 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 11787
59e2e27d
WAF
11788 ret = visit_insn(t, insn_cnt, env);
11789 switch (ret) {
11790 case DONE_EXPLORING:
11791 insn_state[t] = EXPLORED;
11792 env->cfg.cur_stack--;
11793 break;
11794 case KEEP_EXPLORING:
11795 break;
11796 default:
11797 if (ret > 0) {
11798 verbose(env, "visit_insn internal bug\n");
11799 ret = -EFAULT;
475fb78f 11800 }
475fb78f 11801 goto err_free;
59e2e27d 11802 }
475fb78f
AS
11803 }
11804
59e2e27d 11805 if (env->cfg.cur_stack < 0) {
61bd5218 11806 verbose(env, "pop stack internal bug\n");
475fb78f
AS
11807 ret = -EFAULT;
11808 goto err_free;
11809 }
475fb78f 11810
475fb78f
AS
11811 for (i = 0; i < insn_cnt; i++) {
11812 if (insn_state[i] != EXPLORED) {
61bd5218 11813 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
11814 ret = -EINVAL;
11815 goto err_free;
11816 }
11817 }
11818 ret = 0; /* cfg looks good */
11819
11820err_free:
71dde681
AS
11821 kvfree(insn_state);
11822 kvfree(insn_stack);
7df737e9 11823 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
11824 return ret;
11825}
11826
09b28d76
AS
11827static int check_abnormal_return(struct bpf_verifier_env *env)
11828{
11829 int i;
11830
11831 for (i = 1; i < env->subprog_cnt; i++) {
11832 if (env->subprog_info[i].has_ld_abs) {
11833 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
11834 return -EINVAL;
11835 }
11836 if (env->subprog_info[i].has_tail_call) {
11837 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
11838 return -EINVAL;
11839 }
11840 }
11841 return 0;
11842}
11843
838e9690
YS
11844/* The minimum supported BTF func info size */
11845#define MIN_BPF_FUNCINFO_SIZE 8
11846#define MAX_FUNCINFO_REC_SIZE 252
11847
c454a46b
MKL
11848static int check_btf_func(struct bpf_verifier_env *env,
11849 const union bpf_attr *attr,
af2ac3e1 11850 bpfptr_t uattr)
838e9690 11851{
09b28d76 11852 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 11853 u32 i, nfuncs, urec_size, min_size;
838e9690 11854 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 11855 struct bpf_func_info *krecord;
8c1b6e69 11856 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
11857 struct bpf_prog *prog;
11858 const struct btf *btf;
af2ac3e1 11859 bpfptr_t urecord;
d0b2818e 11860 u32 prev_offset = 0;
09b28d76 11861 bool scalar_return;
e7ed83d6 11862 int ret = -ENOMEM;
838e9690
YS
11863
11864 nfuncs = attr->func_info_cnt;
09b28d76
AS
11865 if (!nfuncs) {
11866 if (check_abnormal_return(env))
11867 return -EINVAL;
838e9690 11868 return 0;
09b28d76 11869 }
838e9690
YS
11870
11871 if (nfuncs != env->subprog_cnt) {
11872 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
11873 return -EINVAL;
11874 }
11875
11876 urec_size = attr->func_info_rec_size;
11877 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
11878 urec_size > MAX_FUNCINFO_REC_SIZE ||
11879 urec_size % sizeof(u32)) {
11880 verbose(env, "invalid func info rec size %u\n", urec_size);
11881 return -EINVAL;
11882 }
11883
c454a46b
MKL
11884 prog = env->prog;
11885 btf = prog->aux->btf;
838e9690 11886
af2ac3e1 11887 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
11888 min_size = min_t(u32, krec_size, urec_size);
11889
ba64e7d8 11890 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
11891 if (!krecord)
11892 return -ENOMEM;
8c1b6e69
AS
11893 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
11894 if (!info_aux)
11895 goto err_free;
ba64e7d8 11896
838e9690
YS
11897 for (i = 0; i < nfuncs; i++) {
11898 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
11899 if (ret) {
11900 if (ret == -E2BIG) {
11901 verbose(env, "nonzero tailing record in func info");
11902 /* set the size kernel expects so loader can zero
11903 * out the rest of the record.
11904 */
af2ac3e1
AS
11905 if (copy_to_bpfptr_offset(uattr,
11906 offsetof(union bpf_attr, func_info_rec_size),
11907 &min_size, sizeof(min_size)))
838e9690
YS
11908 ret = -EFAULT;
11909 }
c454a46b 11910 goto err_free;
838e9690
YS
11911 }
11912
af2ac3e1 11913 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 11914 ret = -EFAULT;
c454a46b 11915 goto err_free;
838e9690
YS
11916 }
11917
d30d42e0 11918 /* check insn_off */
09b28d76 11919 ret = -EINVAL;
838e9690 11920 if (i == 0) {
d30d42e0 11921 if (krecord[i].insn_off) {
838e9690 11922 verbose(env,
d30d42e0
MKL
11923 "nonzero insn_off %u for the first func info record",
11924 krecord[i].insn_off);
c454a46b 11925 goto err_free;
838e9690 11926 }
d30d42e0 11927 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
11928 verbose(env,
11929 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 11930 krecord[i].insn_off, prev_offset);
c454a46b 11931 goto err_free;
838e9690
YS
11932 }
11933
d30d42e0 11934 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 11935 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 11936 goto err_free;
838e9690
YS
11937 }
11938
11939 /* check type_id */
ba64e7d8 11940 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 11941 if (!type || !btf_type_is_func(type)) {
838e9690 11942 verbose(env, "invalid type id %d in func info",
ba64e7d8 11943 krecord[i].type_id);
c454a46b 11944 goto err_free;
838e9690 11945 }
51c39bb1 11946 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
11947
11948 func_proto = btf_type_by_id(btf, type->type);
11949 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
11950 /* btf_func_check() already verified it during BTF load */
11951 goto err_free;
11952 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
11953 scalar_return =
6089fb32 11954 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
11955 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
11956 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
11957 goto err_free;
11958 }
11959 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
11960 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
11961 goto err_free;
11962 }
11963
d30d42e0 11964 prev_offset = krecord[i].insn_off;
af2ac3e1 11965 bpfptr_add(&urecord, urec_size);
838e9690
YS
11966 }
11967
ba64e7d8
YS
11968 prog->aux->func_info = krecord;
11969 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 11970 prog->aux->func_info_aux = info_aux;
838e9690
YS
11971 return 0;
11972
c454a46b 11973err_free:
ba64e7d8 11974 kvfree(krecord);
8c1b6e69 11975 kfree(info_aux);
838e9690
YS
11976 return ret;
11977}
11978
ba64e7d8
YS
11979static void adjust_btf_func(struct bpf_verifier_env *env)
11980{
8c1b6e69 11981 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
11982 int i;
11983
8c1b6e69 11984 if (!aux->func_info)
ba64e7d8
YS
11985 return;
11986
11987 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 11988 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
11989}
11990
1b773d00 11991#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
11992#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
11993
11994static int check_btf_line(struct bpf_verifier_env *env,
11995 const union bpf_attr *attr,
af2ac3e1 11996 bpfptr_t uattr)
c454a46b
MKL
11997{
11998 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11999 struct bpf_subprog_info *sub;
12000 struct bpf_line_info *linfo;
12001 struct bpf_prog *prog;
12002 const struct btf *btf;
af2ac3e1 12003 bpfptr_t ulinfo;
c454a46b
MKL
12004 int err;
12005
12006 nr_linfo = attr->line_info_cnt;
12007 if (!nr_linfo)
12008 return 0;
0e6491b5
BC
12009 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12010 return -EINVAL;
c454a46b
MKL
12011
12012 rec_size = attr->line_info_rec_size;
12013 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12014 rec_size > MAX_LINEINFO_REC_SIZE ||
12015 rec_size & (sizeof(u32) - 1))
12016 return -EINVAL;
12017
12018 /* Need to zero it in case the userspace may
12019 * pass in a smaller bpf_line_info object.
12020 */
12021 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12022 GFP_KERNEL | __GFP_NOWARN);
12023 if (!linfo)
12024 return -ENOMEM;
12025
12026 prog = env->prog;
12027 btf = prog->aux->btf;
12028
12029 s = 0;
12030 sub = env->subprog_info;
af2ac3e1 12031 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
12032 expected_size = sizeof(struct bpf_line_info);
12033 ncopy = min_t(u32, expected_size, rec_size);
12034 for (i = 0; i < nr_linfo; i++) {
12035 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12036 if (err) {
12037 if (err == -E2BIG) {
12038 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
12039 if (copy_to_bpfptr_offset(uattr,
12040 offsetof(union bpf_attr, line_info_rec_size),
12041 &expected_size, sizeof(expected_size)))
c454a46b
MKL
12042 err = -EFAULT;
12043 }
12044 goto err_free;
12045 }
12046
af2ac3e1 12047 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
12048 err = -EFAULT;
12049 goto err_free;
12050 }
12051
12052 /*
12053 * Check insn_off to ensure
12054 * 1) strictly increasing AND
12055 * 2) bounded by prog->len
12056 *
12057 * The linfo[0].insn_off == 0 check logically falls into
12058 * the later "missing bpf_line_info for func..." case
12059 * because the first linfo[0].insn_off must be the
12060 * first sub also and the first sub must have
12061 * subprog_info[0].start == 0.
12062 */
12063 if ((i && linfo[i].insn_off <= prev_offset) ||
12064 linfo[i].insn_off >= prog->len) {
12065 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12066 i, linfo[i].insn_off, prev_offset,
12067 prog->len);
12068 err = -EINVAL;
12069 goto err_free;
12070 }
12071
fdbaa0be
MKL
12072 if (!prog->insnsi[linfo[i].insn_off].code) {
12073 verbose(env,
12074 "Invalid insn code at line_info[%u].insn_off\n",
12075 i);
12076 err = -EINVAL;
12077 goto err_free;
12078 }
12079
23127b33
MKL
12080 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12081 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
12082 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12083 err = -EINVAL;
12084 goto err_free;
12085 }
12086
12087 if (s != env->subprog_cnt) {
12088 if (linfo[i].insn_off == sub[s].start) {
12089 sub[s].linfo_idx = i;
12090 s++;
12091 } else if (sub[s].start < linfo[i].insn_off) {
12092 verbose(env, "missing bpf_line_info for func#%u\n", s);
12093 err = -EINVAL;
12094 goto err_free;
12095 }
12096 }
12097
12098 prev_offset = linfo[i].insn_off;
af2ac3e1 12099 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
12100 }
12101
12102 if (s != env->subprog_cnt) {
12103 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12104 env->subprog_cnt - s, s);
12105 err = -EINVAL;
12106 goto err_free;
12107 }
12108
12109 prog->aux->linfo = linfo;
12110 prog->aux->nr_linfo = nr_linfo;
12111
12112 return 0;
12113
12114err_free:
12115 kvfree(linfo);
12116 return err;
12117}
12118
fbd94c7a
AS
12119#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
12120#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
12121
12122static int check_core_relo(struct bpf_verifier_env *env,
12123 const union bpf_attr *attr,
12124 bpfptr_t uattr)
12125{
12126 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12127 struct bpf_core_relo core_relo = {};
12128 struct bpf_prog *prog = env->prog;
12129 const struct btf *btf = prog->aux->btf;
12130 struct bpf_core_ctx ctx = {
12131 .log = &env->log,
12132 .btf = btf,
12133 };
12134 bpfptr_t u_core_relo;
12135 int err;
12136
12137 nr_core_relo = attr->core_relo_cnt;
12138 if (!nr_core_relo)
12139 return 0;
12140 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12141 return -EINVAL;
12142
12143 rec_size = attr->core_relo_rec_size;
12144 if (rec_size < MIN_CORE_RELO_SIZE ||
12145 rec_size > MAX_CORE_RELO_SIZE ||
12146 rec_size % sizeof(u32))
12147 return -EINVAL;
12148
12149 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12150 expected_size = sizeof(struct bpf_core_relo);
12151 ncopy = min_t(u32, expected_size, rec_size);
12152
12153 /* Unlike func_info and line_info, copy and apply each CO-RE
12154 * relocation record one at a time.
12155 */
12156 for (i = 0; i < nr_core_relo; i++) {
12157 /* future proofing when sizeof(bpf_core_relo) changes */
12158 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12159 if (err) {
12160 if (err == -E2BIG) {
12161 verbose(env, "nonzero tailing record in core_relo");
12162 if (copy_to_bpfptr_offset(uattr,
12163 offsetof(union bpf_attr, core_relo_rec_size),
12164 &expected_size, sizeof(expected_size)))
12165 err = -EFAULT;
12166 }
12167 break;
12168 }
12169
12170 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12171 err = -EFAULT;
12172 break;
12173 }
12174
12175 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12176 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12177 i, core_relo.insn_off, prog->len);
12178 err = -EINVAL;
12179 break;
12180 }
12181
12182 err = bpf_core_apply(&ctx, &core_relo, i,
12183 &prog->insnsi[core_relo.insn_off / 8]);
12184 if (err)
12185 break;
12186 bpfptr_add(&u_core_relo, rec_size);
12187 }
12188 return err;
12189}
12190
c454a46b
MKL
12191static int check_btf_info(struct bpf_verifier_env *env,
12192 const union bpf_attr *attr,
af2ac3e1 12193 bpfptr_t uattr)
c454a46b
MKL
12194{
12195 struct btf *btf;
12196 int err;
12197
09b28d76
AS
12198 if (!attr->func_info_cnt && !attr->line_info_cnt) {
12199 if (check_abnormal_return(env))
12200 return -EINVAL;
c454a46b 12201 return 0;
09b28d76 12202 }
c454a46b
MKL
12203
12204 btf = btf_get_by_fd(attr->prog_btf_fd);
12205 if (IS_ERR(btf))
12206 return PTR_ERR(btf);
350a5c4d
AS
12207 if (btf_is_kernel(btf)) {
12208 btf_put(btf);
12209 return -EACCES;
12210 }
c454a46b
MKL
12211 env->prog->aux->btf = btf;
12212
12213 err = check_btf_func(env, attr, uattr);
12214 if (err)
12215 return err;
12216
12217 err = check_btf_line(env, attr, uattr);
12218 if (err)
12219 return err;
12220
fbd94c7a
AS
12221 err = check_core_relo(env, attr, uattr);
12222 if (err)
12223 return err;
12224
c454a46b 12225 return 0;
ba64e7d8
YS
12226}
12227
f1174f77
EC
12228/* check %cur's range satisfies %old's */
12229static bool range_within(struct bpf_reg_state *old,
12230 struct bpf_reg_state *cur)
12231{
b03c9f9f
EC
12232 return old->umin_value <= cur->umin_value &&
12233 old->umax_value >= cur->umax_value &&
12234 old->smin_value <= cur->smin_value &&
fd675184
DB
12235 old->smax_value >= cur->smax_value &&
12236 old->u32_min_value <= cur->u32_min_value &&
12237 old->u32_max_value >= cur->u32_max_value &&
12238 old->s32_min_value <= cur->s32_min_value &&
12239 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
12240}
12241
f1174f77
EC
12242/* If in the old state two registers had the same id, then they need to have
12243 * the same id in the new state as well. But that id could be different from
12244 * the old state, so we need to track the mapping from old to new ids.
12245 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12246 * regs with old id 5 must also have new id 9 for the new state to be safe. But
12247 * regs with a different old id could still have new id 9, we don't care about
12248 * that.
12249 * So we look through our idmap to see if this old id has been seen before. If
12250 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 12251 */
c9e73e3d 12252static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 12253{
f1174f77 12254 unsigned int i;
969bf05e 12255
c9e73e3d 12256 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
12257 if (!idmap[i].old) {
12258 /* Reached an empty slot; haven't seen this id before */
12259 idmap[i].old = old_id;
12260 idmap[i].cur = cur_id;
12261 return true;
12262 }
12263 if (idmap[i].old == old_id)
12264 return idmap[i].cur == cur_id;
12265 }
12266 /* We ran out of idmap slots, which should be impossible */
12267 WARN_ON_ONCE(1);
12268 return false;
12269}
12270
9242b5f5
AS
12271static void clean_func_state(struct bpf_verifier_env *env,
12272 struct bpf_func_state *st)
12273{
12274 enum bpf_reg_liveness live;
12275 int i, j;
12276
12277 for (i = 0; i < BPF_REG_FP; i++) {
12278 live = st->regs[i].live;
12279 /* liveness must not touch this register anymore */
12280 st->regs[i].live |= REG_LIVE_DONE;
12281 if (!(live & REG_LIVE_READ))
12282 /* since the register is unused, clear its state
12283 * to make further comparison simpler
12284 */
f54c7898 12285 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
12286 }
12287
12288 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12289 live = st->stack[i].spilled_ptr.live;
12290 /* liveness must not touch this stack slot anymore */
12291 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12292 if (!(live & REG_LIVE_READ)) {
f54c7898 12293 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
12294 for (j = 0; j < BPF_REG_SIZE; j++)
12295 st->stack[i].slot_type[j] = STACK_INVALID;
12296 }
12297 }
12298}
12299
12300static void clean_verifier_state(struct bpf_verifier_env *env,
12301 struct bpf_verifier_state *st)
12302{
12303 int i;
12304
12305 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
12306 /* all regs in this state in all frames were already marked */
12307 return;
12308
12309 for (i = 0; i <= st->curframe; i++)
12310 clean_func_state(env, st->frame[i]);
12311}
12312
12313/* the parentage chains form a tree.
12314 * the verifier states are added to state lists at given insn and
12315 * pushed into state stack for future exploration.
12316 * when the verifier reaches bpf_exit insn some of the verifer states
12317 * stored in the state lists have their final liveness state already,
12318 * but a lot of states will get revised from liveness point of view when
12319 * the verifier explores other branches.
12320 * Example:
12321 * 1: r0 = 1
12322 * 2: if r1 == 100 goto pc+1
12323 * 3: r0 = 2
12324 * 4: exit
12325 * when the verifier reaches exit insn the register r0 in the state list of
12326 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
12327 * of insn 2 and goes exploring further. At the insn 4 it will walk the
12328 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
12329 *
12330 * Since the verifier pushes the branch states as it sees them while exploring
12331 * the program the condition of walking the branch instruction for the second
12332 * time means that all states below this branch were already explored and
8fb33b60 12333 * their final liveness marks are already propagated.
9242b5f5
AS
12334 * Hence when the verifier completes the search of state list in is_state_visited()
12335 * we can call this clean_live_states() function to mark all liveness states
12336 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
12337 * will not be used.
12338 * This function also clears the registers and stack for states that !READ
12339 * to simplify state merging.
12340 *
12341 * Important note here that walking the same branch instruction in the callee
12342 * doesn't meant that the states are DONE. The verifier has to compare
12343 * the callsites
12344 */
12345static void clean_live_states(struct bpf_verifier_env *env, int insn,
12346 struct bpf_verifier_state *cur)
12347{
12348 struct bpf_verifier_state_list *sl;
12349 int i;
12350
5d839021 12351 sl = *explored_state(env, insn);
a8f500af 12352 while (sl) {
2589726d
AS
12353 if (sl->state.branches)
12354 goto next;
dc2a4ebc
AS
12355 if (sl->state.insn_idx != insn ||
12356 sl->state.curframe != cur->curframe)
9242b5f5
AS
12357 goto next;
12358 for (i = 0; i <= cur->curframe; i++)
12359 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
12360 goto next;
12361 clean_verifier_state(env, &sl->state);
12362next:
12363 sl = sl->next;
12364 }
12365}
12366
f1174f77 12367/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
12368static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
12369 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 12370{
f4d7e40a
AS
12371 bool equal;
12372
dc503a8a
EC
12373 if (!(rold->live & REG_LIVE_READ))
12374 /* explored state didn't use this */
12375 return true;
12376
679c782d 12377 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
12378
12379 if (rold->type == PTR_TO_STACK)
12380 /* two stack pointers are equal only if they're pointing to
12381 * the same stack frame, since fp-8 in foo != fp-8 in bar
12382 */
12383 return equal && rold->frameno == rcur->frameno;
12384
12385 if (equal)
969bf05e
AS
12386 return true;
12387
f1174f77
EC
12388 if (rold->type == NOT_INIT)
12389 /* explored state can't have used this */
969bf05e 12390 return true;
f1174f77
EC
12391 if (rcur->type == NOT_INIT)
12392 return false;
c25b2ae1 12393 switch (base_type(rold->type)) {
f1174f77 12394 case SCALAR_VALUE:
e042aa53
DB
12395 if (env->explore_alu_limits)
12396 return false;
f1174f77 12397 if (rcur->type == SCALAR_VALUE) {
f63181b6 12398 if (!rold->precise)
b5dc0163 12399 return true;
f1174f77
EC
12400 /* new val must satisfy old val knowledge */
12401 return range_within(rold, rcur) &&
12402 tnum_in(rold->var_off, rcur->var_off);
12403 } else {
179d1c56
JH
12404 /* We're trying to use a pointer in place of a scalar.
12405 * Even if the scalar was unbounded, this could lead to
12406 * pointer leaks because scalars are allowed to leak
12407 * while pointers are not. We could make this safe in
12408 * special cases if root is calling us, but it's
12409 * probably not worth the hassle.
f1174f77 12410 */
179d1c56 12411 return false;
f1174f77 12412 }
69c087ba 12413 case PTR_TO_MAP_KEY:
f1174f77 12414 case PTR_TO_MAP_VALUE:
c25b2ae1
HL
12415 /* a PTR_TO_MAP_VALUE could be safe to use as a
12416 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
12417 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
12418 * checked, doing so could have affected others with the same
12419 * id, and we can't check for that because we lost the id when
12420 * we converted to a PTR_TO_MAP_VALUE.
12421 */
12422 if (type_may_be_null(rold->type)) {
12423 if (!type_may_be_null(rcur->type))
12424 return false;
12425 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
12426 return false;
12427 /* Check our ids match any regs they're supposed to */
12428 return check_ids(rold->id, rcur->id, idmap);
12429 }
12430
1b688a19
EC
12431 /* If the new min/max/var_off satisfy the old ones and
12432 * everything else matches, we are OK.
d83525ca
AS
12433 * 'id' is not compared, since it's only used for maps with
12434 * bpf_spin_lock inside map element and in such cases if
12435 * the rest of the prog is valid for one map element then
12436 * it's valid for all map elements regardless of the key
12437 * used in bpf_map_lookup()
1b688a19
EC
12438 */
12439 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
12440 range_within(rold, rcur) &&
12441 tnum_in(rold->var_off, rcur->var_off);
de8f3a83 12442 case PTR_TO_PACKET_META:
f1174f77 12443 case PTR_TO_PACKET:
de8f3a83 12444 if (rcur->type != rold->type)
f1174f77
EC
12445 return false;
12446 /* We must have at least as much range as the old ptr
12447 * did, so that any accesses which were safe before are
12448 * still safe. This is true even if old range < old off,
12449 * since someone could have accessed through (ptr - k), or
12450 * even done ptr -= k in a register, to get a safe access.
12451 */
12452 if (rold->range > rcur->range)
12453 return false;
12454 /* If the offsets don't match, we can't trust our alignment;
12455 * nor can we be sure that we won't fall out of range.
12456 */
12457 if (rold->off != rcur->off)
12458 return false;
12459 /* id relations must be preserved */
12460 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
12461 return false;
12462 /* new val must satisfy old val knowledge */
12463 return range_within(rold, rcur) &&
12464 tnum_in(rold->var_off, rcur->var_off);
12465 case PTR_TO_CTX:
12466 case CONST_PTR_TO_MAP:
f1174f77 12467 case PTR_TO_PACKET_END:
d58e468b 12468 case PTR_TO_FLOW_KEYS:
c64b7983 12469 case PTR_TO_SOCKET:
46f8bc92 12470 case PTR_TO_SOCK_COMMON:
655a51e5 12471 case PTR_TO_TCP_SOCK:
fada7fdc 12472 case PTR_TO_XDP_SOCK:
f1174f77
EC
12473 /* Only valid matches are exact, which memcmp() above
12474 * would have accepted
12475 */
12476 default:
12477 /* Don't know what's going on, just say it's not safe */
12478 return false;
12479 }
969bf05e 12480
f1174f77
EC
12481 /* Shouldn't get here; if we do, say it's not safe */
12482 WARN_ON_ONCE(1);
969bf05e
AS
12483 return false;
12484}
12485
e042aa53
DB
12486static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
12487 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
12488{
12489 int i, spi;
12490
638f5b90
AS
12491 /* walk slots of the explored stack and ignore any additional
12492 * slots in the current stack, since explored(safe) state
12493 * didn't use them
12494 */
12495 for (i = 0; i < old->allocated_stack; i++) {
12496 spi = i / BPF_REG_SIZE;
12497
b233920c
AS
12498 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
12499 i += BPF_REG_SIZE - 1;
cc2b14d5 12500 /* explored state didn't use this */
fd05e57b 12501 continue;
b233920c 12502 }
cc2b14d5 12503
638f5b90
AS
12504 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
12505 continue;
19e2dbb7
AS
12506
12507 /* explored stack has more populated slots than current stack
12508 * and these slots were used
12509 */
12510 if (i >= cur->allocated_stack)
12511 return false;
12512
cc2b14d5
AS
12513 /* if old state was safe with misc data in the stack
12514 * it will be safe with zero-initialized stack.
12515 * The opposite is not true
12516 */
12517 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
12518 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
12519 continue;
638f5b90
AS
12520 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
12521 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
12522 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 12523 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
12524 * this verifier states are not equivalent,
12525 * return false to continue verification of this path
12526 */
12527 return false;
27113c59 12528 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 12529 continue;
27113c59 12530 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 12531 continue;
e042aa53
DB
12532 if (!regsafe(env, &old->stack[spi].spilled_ptr,
12533 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
12534 /* when explored and current stack slot are both storing
12535 * spilled registers, check that stored pointers types
12536 * are the same as well.
12537 * Ex: explored safe path could have stored
12538 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
12539 * but current path has stored:
12540 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
12541 * such verifier states are not equivalent.
12542 * return false to continue verification of this path
12543 */
12544 return false;
12545 }
12546 return true;
12547}
12548
fd978bf7
JS
12549static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
12550{
12551 if (old->acquired_refs != cur->acquired_refs)
12552 return false;
12553 return !memcmp(old->refs, cur->refs,
12554 sizeof(*old->refs) * old->acquired_refs);
12555}
12556
f1bca824
AS
12557/* compare two verifier states
12558 *
12559 * all states stored in state_list are known to be valid, since
12560 * verifier reached 'bpf_exit' instruction through them
12561 *
12562 * this function is called when verifier exploring different branches of
12563 * execution popped from the state stack. If it sees an old state that has
12564 * more strict register state and more strict stack state then this execution
12565 * branch doesn't need to be explored further, since verifier already
12566 * concluded that more strict state leads to valid finish.
12567 *
12568 * Therefore two states are equivalent if register state is more conservative
12569 * and explored stack state is more conservative than the current one.
12570 * Example:
12571 * explored current
12572 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
12573 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
12574 *
12575 * In other words if current stack state (one being explored) has more
12576 * valid slots than old one that already passed validation, it means
12577 * the verifier can stop exploring and conclude that current state is valid too
12578 *
12579 * Similarly with registers. If explored state has register type as invalid
12580 * whereas register type in current state is meaningful, it means that
12581 * the current state will reach 'bpf_exit' instruction safely
12582 */
c9e73e3d 12583static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 12584 struct bpf_func_state *cur)
f1bca824
AS
12585{
12586 int i;
12587
c9e73e3d
LB
12588 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
12589 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
12590 if (!regsafe(env, &old->regs[i], &cur->regs[i],
12591 env->idmap_scratch))
c9e73e3d 12592 return false;
f1bca824 12593
e042aa53 12594 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 12595 return false;
fd978bf7
JS
12596
12597 if (!refsafe(old, cur))
c9e73e3d
LB
12598 return false;
12599
12600 return true;
f1bca824
AS
12601}
12602
f4d7e40a
AS
12603static bool states_equal(struct bpf_verifier_env *env,
12604 struct bpf_verifier_state *old,
12605 struct bpf_verifier_state *cur)
12606{
12607 int i;
12608
12609 if (old->curframe != cur->curframe)
12610 return false;
12611
979d63d5
DB
12612 /* Verification state from speculative execution simulation
12613 * must never prune a non-speculative execution one.
12614 */
12615 if (old->speculative && !cur->speculative)
12616 return false;
12617
d0d78c1d
KKD
12618 if (old->active_lock.ptr != cur->active_lock.ptr ||
12619 old->active_lock.id != cur->active_lock.id)
d83525ca
AS
12620 return false;
12621
f4d7e40a
AS
12622 /* for states to be equal callsites have to be the same
12623 * and all frame states need to be equivalent
12624 */
12625 for (i = 0; i <= old->curframe; i++) {
12626 if (old->frame[i]->callsite != cur->frame[i]->callsite)
12627 return false;
c9e73e3d 12628 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
12629 return false;
12630 }
12631 return true;
12632}
12633
5327ed3d
JW
12634/* Return 0 if no propagation happened. Return negative error code if error
12635 * happened. Otherwise, return the propagated bit.
12636 */
55e7f3b5
JW
12637static int propagate_liveness_reg(struct bpf_verifier_env *env,
12638 struct bpf_reg_state *reg,
12639 struct bpf_reg_state *parent_reg)
12640{
5327ed3d
JW
12641 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
12642 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
12643 int err;
12644
5327ed3d
JW
12645 /* When comes here, read flags of PARENT_REG or REG could be any of
12646 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
12647 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
12648 */
12649 if (parent_flag == REG_LIVE_READ64 ||
12650 /* Or if there is no read flag from REG. */
12651 !flag ||
12652 /* Or if the read flag from REG is the same as PARENT_REG. */
12653 parent_flag == flag)
55e7f3b5
JW
12654 return 0;
12655
5327ed3d 12656 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
12657 if (err)
12658 return err;
12659
5327ed3d 12660 return flag;
55e7f3b5
JW
12661}
12662
8e9cd9ce 12663/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
12664 * straight-line code between a state and its parent. When we arrive at an
12665 * equivalent state (jump target or such) we didn't arrive by the straight-line
12666 * code, so read marks in the state must propagate to the parent regardless
12667 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 12668 * in mark_reg_read() is for.
8e9cd9ce 12669 */
f4d7e40a
AS
12670static int propagate_liveness(struct bpf_verifier_env *env,
12671 const struct bpf_verifier_state *vstate,
12672 struct bpf_verifier_state *vparent)
dc503a8a 12673{
3f8cafa4 12674 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 12675 struct bpf_func_state *state, *parent;
3f8cafa4 12676 int i, frame, err = 0;
dc503a8a 12677
f4d7e40a
AS
12678 if (vparent->curframe != vstate->curframe) {
12679 WARN(1, "propagate_live: parent frame %d current frame %d\n",
12680 vparent->curframe, vstate->curframe);
12681 return -EFAULT;
12682 }
dc503a8a
EC
12683 /* Propagate read liveness of registers... */
12684 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 12685 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
12686 parent = vparent->frame[frame];
12687 state = vstate->frame[frame];
12688 parent_reg = parent->regs;
12689 state_reg = state->regs;
83d16312
JK
12690 /* We don't need to worry about FP liveness, it's read-only */
12691 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
12692 err = propagate_liveness_reg(env, &state_reg[i],
12693 &parent_reg[i]);
5327ed3d 12694 if (err < 0)
3f8cafa4 12695 return err;
5327ed3d
JW
12696 if (err == REG_LIVE_READ64)
12697 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 12698 }
f4d7e40a 12699
1b04aee7 12700 /* Propagate stack slots. */
f4d7e40a
AS
12701 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
12702 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
12703 parent_reg = &parent->stack[i].spilled_ptr;
12704 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
12705 err = propagate_liveness_reg(env, state_reg,
12706 parent_reg);
5327ed3d 12707 if (err < 0)
3f8cafa4 12708 return err;
dc503a8a
EC
12709 }
12710 }
5327ed3d 12711 return 0;
dc503a8a
EC
12712}
12713
a3ce685d
AS
12714/* find precise scalars in the previous equivalent state and
12715 * propagate them into the current state
12716 */
12717static int propagate_precision(struct bpf_verifier_env *env,
12718 const struct bpf_verifier_state *old)
12719{
12720 struct bpf_reg_state *state_reg;
12721 struct bpf_func_state *state;
529409ea 12722 int i, err = 0, fr;
a3ce685d 12723
529409ea
AN
12724 for (fr = old->curframe; fr >= 0; fr--) {
12725 state = old->frame[fr];
12726 state_reg = state->regs;
12727 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
12728 if (state_reg->type != SCALAR_VALUE ||
12729 !state_reg->precise)
12730 continue;
12731 if (env->log.level & BPF_LOG_LEVEL2)
12732 verbose(env, "frame %d: propagating r%d\n", i, fr);
12733 err = mark_chain_precision_frame(env, fr, i);
12734 if (err < 0)
12735 return err;
12736 }
a3ce685d 12737
529409ea
AN
12738 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
12739 if (!is_spilled_reg(&state->stack[i]))
12740 continue;
12741 state_reg = &state->stack[i].spilled_ptr;
12742 if (state_reg->type != SCALAR_VALUE ||
12743 !state_reg->precise)
12744 continue;
12745 if (env->log.level & BPF_LOG_LEVEL2)
12746 verbose(env, "frame %d: propagating fp%d\n",
12747 (-i - 1) * BPF_REG_SIZE, fr);
12748 err = mark_chain_precision_stack_frame(env, fr, i);
12749 if (err < 0)
12750 return err;
12751 }
a3ce685d
AS
12752 }
12753 return 0;
12754}
12755
2589726d
AS
12756static bool states_maybe_looping(struct bpf_verifier_state *old,
12757 struct bpf_verifier_state *cur)
12758{
12759 struct bpf_func_state *fold, *fcur;
12760 int i, fr = cur->curframe;
12761
12762 if (old->curframe != fr)
12763 return false;
12764
12765 fold = old->frame[fr];
12766 fcur = cur->frame[fr];
12767 for (i = 0; i < MAX_BPF_REG; i++)
12768 if (memcmp(&fold->regs[i], &fcur->regs[i],
12769 offsetof(struct bpf_reg_state, parent)))
12770 return false;
12771 return true;
12772}
12773
12774
58e2af8b 12775static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 12776{
58e2af8b 12777 struct bpf_verifier_state_list *new_sl;
9f4686c4 12778 struct bpf_verifier_state_list *sl, **pprev;
679c782d 12779 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 12780 int i, j, err, states_cnt = 0;
10d274e8 12781 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 12782
b5dc0163 12783 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 12784 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
12785 /* this 'insn_idx' instruction wasn't marked, so we will not
12786 * be doing state search here
12787 */
12788 return 0;
12789
2589726d
AS
12790 /* bpf progs typically have pruning point every 4 instructions
12791 * http://vger.kernel.org/bpfconf2019.html#session-1
12792 * Do not add new state for future pruning if the verifier hasn't seen
12793 * at least 2 jumps and at least 8 instructions.
12794 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
12795 * In tests that amounts to up to 50% reduction into total verifier
12796 * memory consumption and 20% verifier time speedup.
12797 */
12798 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
12799 env->insn_processed - env->prev_insn_processed >= 8)
12800 add_new_state = true;
12801
a8f500af
AS
12802 pprev = explored_state(env, insn_idx);
12803 sl = *pprev;
12804
9242b5f5
AS
12805 clean_live_states(env, insn_idx, cur);
12806
a8f500af 12807 while (sl) {
dc2a4ebc
AS
12808 states_cnt++;
12809 if (sl->state.insn_idx != insn_idx)
12810 goto next;
bfc6bb74 12811
2589726d 12812 if (sl->state.branches) {
bfc6bb74
AS
12813 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
12814
12815 if (frame->in_async_callback_fn &&
12816 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
12817 /* Different async_entry_cnt means that the verifier is
12818 * processing another entry into async callback.
12819 * Seeing the same state is not an indication of infinite
12820 * loop or infinite recursion.
12821 * But finding the same state doesn't mean that it's safe
12822 * to stop processing the current state. The previous state
12823 * hasn't yet reached bpf_exit, since state.branches > 0.
12824 * Checking in_async_callback_fn alone is not enough either.
12825 * Since the verifier still needs to catch infinite loops
12826 * inside async callbacks.
12827 */
12828 } else if (states_maybe_looping(&sl->state, cur) &&
12829 states_equal(env, &sl->state, cur)) {
2589726d
AS
12830 verbose_linfo(env, insn_idx, "; ");
12831 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
12832 return -EINVAL;
12833 }
12834 /* if the verifier is processing a loop, avoid adding new state
12835 * too often, since different loop iterations have distinct
12836 * states and may not help future pruning.
12837 * This threshold shouldn't be too low to make sure that
12838 * a loop with large bound will be rejected quickly.
12839 * The most abusive loop will be:
12840 * r1 += 1
12841 * if r1 < 1000000 goto pc-2
12842 * 1M insn_procssed limit / 100 == 10k peak states.
12843 * This threshold shouldn't be too high either, since states
12844 * at the end of the loop are likely to be useful in pruning.
12845 */
12846 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
12847 env->insn_processed - env->prev_insn_processed < 100)
12848 add_new_state = false;
12849 goto miss;
12850 }
638f5b90 12851 if (states_equal(env, &sl->state, cur)) {
9f4686c4 12852 sl->hit_cnt++;
f1bca824 12853 /* reached equivalent register/stack state,
dc503a8a
EC
12854 * prune the search.
12855 * Registers read by the continuation are read by us.
8e9cd9ce
EC
12856 * If we have any write marks in env->cur_state, they
12857 * will prevent corresponding reads in the continuation
12858 * from reaching our parent (an explored_state). Our
12859 * own state will get the read marks recorded, but
12860 * they'll be immediately forgotten as we're pruning
12861 * this state and will pop a new one.
f1bca824 12862 */
f4d7e40a 12863 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
12864
12865 /* if previous state reached the exit with precision and
12866 * current state is equivalent to it (except precsion marks)
12867 * the precision needs to be propagated back in
12868 * the current state.
12869 */
12870 err = err ? : push_jmp_history(env, cur);
12871 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
12872 if (err)
12873 return err;
f1bca824 12874 return 1;
dc503a8a 12875 }
2589726d
AS
12876miss:
12877 /* when new state is not going to be added do not increase miss count.
12878 * Otherwise several loop iterations will remove the state
12879 * recorded earlier. The goal of these heuristics is to have
12880 * states from some iterations of the loop (some in the beginning
12881 * and some at the end) to help pruning.
12882 */
12883 if (add_new_state)
12884 sl->miss_cnt++;
9f4686c4
AS
12885 /* heuristic to determine whether this state is beneficial
12886 * to keep checking from state equivalence point of view.
12887 * Higher numbers increase max_states_per_insn and verification time,
12888 * but do not meaningfully decrease insn_processed.
12889 */
12890 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
12891 /* the state is unlikely to be useful. Remove it to
12892 * speed up verification
12893 */
12894 *pprev = sl->next;
12895 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
12896 u32 br = sl->state.branches;
12897
12898 WARN_ONCE(br,
12899 "BUG live_done but branches_to_explore %d\n",
12900 br);
9f4686c4
AS
12901 free_verifier_state(&sl->state, false);
12902 kfree(sl);
12903 env->peak_states--;
12904 } else {
12905 /* cannot free this state, since parentage chain may
12906 * walk it later. Add it for free_list instead to
12907 * be freed at the end of verification
12908 */
12909 sl->next = env->free_list;
12910 env->free_list = sl;
12911 }
12912 sl = *pprev;
12913 continue;
12914 }
dc2a4ebc 12915next:
9f4686c4
AS
12916 pprev = &sl->next;
12917 sl = *pprev;
f1bca824
AS
12918 }
12919
06ee7115
AS
12920 if (env->max_states_per_insn < states_cnt)
12921 env->max_states_per_insn = states_cnt;
12922
2c78ee89 12923 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 12924 return push_jmp_history(env, cur);
ceefbc96 12925
2589726d 12926 if (!add_new_state)
b5dc0163 12927 return push_jmp_history(env, cur);
ceefbc96 12928
2589726d
AS
12929 /* There were no equivalent states, remember the current one.
12930 * Technically the current state is not proven to be safe yet,
f4d7e40a 12931 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 12932 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 12933 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
12934 * again on the way to bpf_exit.
12935 * When looping the sl->state.branches will be > 0 and this state
12936 * will not be considered for equivalence until branches == 0.
f1bca824 12937 */
638f5b90 12938 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
12939 if (!new_sl)
12940 return -ENOMEM;
06ee7115
AS
12941 env->total_states++;
12942 env->peak_states++;
2589726d
AS
12943 env->prev_jmps_processed = env->jmps_processed;
12944 env->prev_insn_processed = env->insn_processed;
f1bca824 12945
7a830b53
AN
12946 /* forget precise markings we inherited, see __mark_chain_precision */
12947 if (env->bpf_capable)
12948 mark_all_scalars_imprecise(env, cur);
12949
f1bca824 12950 /* add new state to the head of linked list */
679c782d
EC
12951 new = &new_sl->state;
12952 err = copy_verifier_state(new, cur);
1969db47 12953 if (err) {
679c782d 12954 free_verifier_state(new, false);
1969db47
AS
12955 kfree(new_sl);
12956 return err;
12957 }
dc2a4ebc 12958 new->insn_idx = insn_idx;
2589726d
AS
12959 WARN_ONCE(new->branches != 1,
12960 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 12961
2589726d 12962 cur->parent = new;
b5dc0163
AS
12963 cur->first_insn_idx = insn_idx;
12964 clear_jmp_history(cur);
5d839021
AS
12965 new_sl->next = *explored_state(env, insn_idx);
12966 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
12967 /* connect new state to parentage chain. Current frame needs all
12968 * registers connected. Only r6 - r9 of the callers are alive (pushed
12969 * to the stack implicitly by JITs) so in callers' frames connect just
12970 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12971 * the state of the call instruction (with WRITTEN set), and r0 comes
12972 * from callee with its full parentage chain, anyway.
12973 */
8e9cd9ce
EC
12974 /* clear write marks in current state: the writes we did are not writes
12975 * our child did, so they don't screen off its reads from us.
12976 * (There are no read marks in current state, because reads always mark
12977 * their parent and current state never has children yet. Only
12978 * explored_states can get read marks.)
12979 */
eea1c227
AS
12980 for (j = 0; j <= cur->curframe; j++) {
12981 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12982 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12983 for (i = 0; i < BPF_REG_FP; i++)
12984 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12985 }
f4d7e40a
AS
12986
12987 /* all stack frames are accessible from callee, clear them all */
12988 for (j = 0; j <= cur->curframe; j++) {
12989 struct bpf_func_state *frame = cur->frame[j];
679c782d 12990 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 12991
679c782d 12992 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 12993 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
12994 frame->stack[i].spilled_ptr.parent =
12995 &newframe->stack[i].spilled_ptr;
12996 }
f4d7e40a 12997 }
f1bca824
AS
12998 return 0;
12999}
13000
c64b7983
JS
13001/* Return true if it's OK to have the same insn return a different type. */
13002static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13003{
c25b2ae1 13004 switch (base_type(type)) {
c64b7983
JS
13005 case PTR_TO_CTX:
13006 case PTR_TO_SOCKET:
46f8bc92 13007 case PTR_TO_SOCK_COMMON:
655a51e5 13008 case PTR_TO_TCP_SOCK:
fada7fdc 13009 case PTR_TO_XDP_SOCK:
2a02759e 13010 case PTR_TO_BTF_ID:
c64b7983
JS
13011 return false;
13012 default:
13013 return true;
13014 }
13015}
13016
13017/* If an instruction was previously used with particular pointer types, then we
13018 * need to be careful to avoid cases such as the below, where it may be ok
13019 * for one branch accessing the pointer, but not ok for the other branch:
13020 *
13021 * R1 = sock_ptr
13022 * goto X;
13023 * ...
13024 * R1 = some_other_valid_ptr;
13025 * goto X;
13026 * ...
13027 * R2 = *(u32 *)(R1 + 0);
13028 */
13029static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13030{
13031 return src != prev && (!reg_type_mismatch_ok(src) ||
13032 !reg_type_mismatch_ok(prev));
13033}
13034
58e2af8b 13035static int do_check(struct bpf_verifier_env *env)
17a52670 13036{
6f8a57cc 13037 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 13038 struct bpf_verifier_state *state = env->cur_state;
17a52670 13039 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 13040 struct bpf_reg_state *regs;
06ee7115 13041 int insn_cnt = env->prog->len;
17a52670 13042 bool do_print_state = false;
b5dc0163 13043 int prev_insn_idx = -1;
17a52670 13044
17a52670
AS
13045 for (;;) {
13046 struct bpf_insn *insn;
13047 u8 class;
13048 int err;
13049
b5dc0163 13050 env->prev_insn_idx = prev_insn_idx;
c08435ec 13051 if (env->insn_idx >= insn_cnt) {
61bd5218 13052 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 13053 env->insn_idx, insn_cnt);
17a52670
AS
13054 return -EFAULT;
13055 }
13056
c08435ec 13057 insn = &insns[env->insn_idx];
17a52670
AS
13058 class = BPF_CLASS(insn->code);
13059
06ee7115 13060 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
13061 verbose(env,
13062 "BPF program is too large. Processed %d insn\n",
06ee7115 13063 env->insn_processed);
17a52670
AS
13064 return -E2BIG;
13065 }
13066
c08435ec 13067 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
13068 if (err < 0)
13069 return err;
13070 if (err == 1) {
13071 /* found equivalent state, can prune the search */
06ee7115 13072 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 13073 if (do_print_state)
979d63d5
DB
13074 verbose(env, "\nfrom %d to %d%s: safe\n",
13075 env->prev_insn_idx, env->insn_idx,
13076 env->cur_state->speculative ?
13077 " (speculative execution)" : "");
f1bca824 13078 else
c08435ec 13079 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
13080 }
13081 goto process_bpf_exit;
13082 }
13083
c3494801
AS
13084 if (signal_pending(current))
13085 return -EAGAIN;
13086
3c2ce60b
DB
13087 if (need_resched())
13088 cond_resched();
13089
2e576648
CL
13090 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13091 verbose(env, "\nfrom %d to %d%s:",
13092 env->prev_insn_idx, env->insn_idx,
13093 env->cur_state->speculative ?
13094 " (speculative execution)" : "");
13095 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
13096 do_print_state = false;
13097 }
13098
06ee7115 13099 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 13100 const struct bpf_insn_cbs cbs = {
e6ac2450 13101 .cb_call = disasm_kfunc_name,
7105e828 13102 .cb_print = verbose,
abe08840 13103 .private_data = env,
7105e828
DB
13104 };
13105
2e576648
CL
13106 if (verifier_state_scratched(env))
13107 print_insn_state(env, state->frame[state->curframe]);
13108
c08435ec 13109 verbose_linfo(env, env->insn_idx, "; ");
2e576648 13110 env->prev_log_len = env->log.len_used;
c08435ec 13111 verbose(env, "%d: ", env->insn_idx);
abe08840 13112 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
13113 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13114 env->prev_log_len = env->log.len_used;
17a52670
AS
13115 }
13116
cae1927c 13117 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
13118 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13119 env->prev_insn_idx);
cae1927c
JK
13120 if (err)
13121 return err;
13122 }
13a27dfc 13123
638f5b90 13124 regs = cur_regs(env);
fe9a5ca7 13125 sanitize_mark_insn_seen(env);
b5dc0163 13126 prev_insn_idx = env->insn_idx;
fd978bf7 13127
17a52670 13128 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 13129 err = check_alu_op(env, insn);
17a52670
AS
13130 if (err)
13131 return err;
13132
13133 } else if (class == BPF_LDX) {
3df126f3 13134 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
13135
13136 /* check for reserved fields is already done */
13137
17a52670 13138 /* check src operand */
dc503a8a 13139 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13140 if (err)
13141 return err;
13142
dc503a8a 13143 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
13144 if (err)
13145 return err;
13146
725f9dcd
AS
13147 src_reg_type = regs[insn->src_reg].type;
13148
17a52670
AS
13149 /* check that memory (src_reg + off) is readable,
13150 * the state of dst_reg will be updated by this func
13151 */
c08435ec
DB
13152 err = check_mem_access(env, env->insn_idx, insn->src_reg,
13153 insn->off, BPF_SIZE(insn->code),
13154 BPF_READ, insn->dst_reg, false);
17a52670
AS
13155 if (err)
13156 return err;
13157
c08435ec 13158 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
13159
13160 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
13161 /* saw a valid insn
13162 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 13163 * save type to validate intersecting paths
9bac3d6d 13164 */
3df126f3 13165 *prev_src_type = src_reg_type;
9bac3d6d 13166
c64b7983 13167 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
13168 /* ABuser program is trying to use the same insn
13169 * dst_reg = *(u32*) (src_reg + off)
13170 * with different pointer types:
13171 * src_reg == ctx in one branch and
13172 * src_reg == stack|map in some other branch.
13173 * Reject it.
13174 */
61bd5218 13175 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
13176 return -EINVAL;
13177 }
13178
17a52670 13179 } else if (class == BPF_STX) {
3df126f3 13180 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 13181
91c960b0
BJ
13182 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13183 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
13184 if (err)
13185 return err;
c08435ec 13186 env->insn_idx++;
17a52670
AS
13187 continue;
13188 }
13189
5ca419f2
BJ
13190 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13191 verbose(env, "BPF_STX uses reserved fields\n");
13192 return -EINVAL;
13193 }
13194
17a52670 13195 /* check src1 operand */
dc503a8a 13196 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13197 if (err)
13198 return err;
13199 /* check src2 operand */
dc503a8a 13200 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13201 if (err)
13202 return err;
13203
d691f9e8
AS
13204 dst_reg_type = regs[insn->dst_reg].type;
13205
17a52670 13206 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
13207 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13208 insn->off, BPF_SIZE(insn->code),
13209 BPF_WRITE, insn->src_reg, false);
17a52670
AS
13210 if (err)
13211 return err;
13212
c08435ec 13213 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
13214
13215 if (*prev_dst_type == NOT_INIT) {
13216 *prev_dst_type = dst_reg_type;
c64b7983 13217 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 13218 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
13219 return -EINVAL;
13220 }
13221
17a52670
AS
13222 } else if (class == BPF_ST) {
13223 if (BPF_MODE(insn->code) != BPF_MEM ||
13224 insn->src_reg != BPF_REG_0) {
61bd5218 13225 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
13226 return -EINVAL;
13227 }
13228 /* check src operand */
dc503a8a 13229 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13230 if (err)
13231 return err;
13232
f37a8cb8 13233 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 13234 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f 13235 insn->dst_reg,
c25b2ae1 13236 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
13237 return -EACCES;
13238 }
13239
17a52670 13240 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
13241 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13242 insn->off, BPF_SIZE(insn->code),
13243 BPF_WRITE, -1, false);
17a52670
AS
13244 if (err)
13245 return err;
13246
092ed096 13247 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
13248 u8 opcode = BPF_OP(insn->code);
13249
2589726d 13250 env->jmps_processed++;
17a52670
AS
13251 if (opcode == BPF_CALL) {
13252 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
13253 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13254 && insn->off != 0) ||
f4d7e40a 13255 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
13256 insn->src_reg != BPF_PSEUDO_CALL &&
13257 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
13258 insn->dst_reg != BPF_REG_0 ||
13259 class == BPF_JMP32) {
61bd5218 13260 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
13261 return -EINVAL;
13262 }
13263
d0d78c1d 13264 if (env->cur_state->active_lock.ptr &&
d83525ca
AS
13265 (insn->src_reg == BPF_PSEUDO_CALL ||
13266 insn->imm != BPF_FUNC_spin_unlock)) {
13267 verbose(env, "function calls are not allowed while holding a lock\n");
13268 return -EINVAL;
13269 }
f4d7e40a 13270 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 13271 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 13272 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 13273 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 13274 else
69c087ba 13275 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
13276 if (err)
13277 return err;
17a52670
AS
13278 } else if (opcode == BPF_JA) {
13279 if (BPF_SRC(insn->code) != BPF_K ||
13280 insn->imm != 0 ||
13281 insn->src_reg != BPF_REG_0 ||
092ed096
JW
13282 insn->dst_reg != BPF_REG_0 ||
13283 class == BPF_JMP32) {
61bd5218 13284 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
13285 return -EINVAL;
13286 }
13287
c08435ec 13288 env->insn_idx += insn->off + 1;
17a52670
AS
13289 continue;
13290
13291 } else if (opcode == BPF_EXIT) {
13292 if (BPF_SRC(insn->code) != BPF_K ||
13293 insn->imm != 0 ||
13294 insn->src_reg != BPF_REG_0 ||
092ed096
JW
13295 insn->dst_reg != BPF_REG_0 ||
13296 class == BPF_JMP32) {
61bd5218 13297 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
13298 return -EINVAL;
13299 }
13300
d0d78c1d 13301 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
13302 verbose(env, "bpf_spin_unlock is missing\n");
13303 return -EINVAL;
13304 }
13305
9d9d00ac
KKD
13306 /* We must do check_reference_leak here before
13307 * prepare_func_exit to handle the case when
13308 * state->curframe > 0, it may be a callback
13309 * function, for which reference_state must
13310 * match caller reference state when it exits.
13311 */
13312 err = check_reference_leak(env);
13313 if (err)
13314 return err;
13315
f4d7e40a
AS
13316 if (state->curframe) {
13317 /* exit from nested function */
c08435ec 13318 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
13319 if (err)
13320 return err;
13321 do_print_state = true;
13322 continue;
13323 }
13324
390ee7e2
AS
13325 err = check_return_code(env);
13326 if (err)
13327 return err;
f1bca824 13328process_bpf_exit:
0f55f9ed 13329 mark_verifier_state_scratched(env);
2589726d 13330 update_branch_counts(env, env->cur_state);
b5dc0163 13331 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 13332 &env->insn_idx, pop_log);
638f5b90
AS
13333 if (err < 0) {
13334 if (err != -ENOENT)
13335 return err;
17a52670
AS
13336 break;
13337 } else {
13338 do_print_state = true;
13339 continue;
13340 }
13341 } else {
c08435ec 13342 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
13343 if (err)
13344 return err;
13345 }
13346 } else if (class == BPF_LD) {
13347 u8 mode = BPF_MODE(insn->code);
13348
13349 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
13350 err = check_ld_abs(env, insn);
13351 if (err)
13352 return err;
13353
17a52670
AS
13354 } else if (mode == BPF_IMM) {
13355 err = check_ld_imm(env, insn);
13356 if (err)
13357 return err;
13358
c08435ec 13359 env->insn_idx++;
fe9a5ca7 13360 sanitize_mark_insn_seen(env);
17a52670 13361 } else {
61bd5218 13362 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
13363 return -EINVAL;
13364 }
13365 } else {
61bd5218 13366 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
13367 return -EINVAL;
13368 }
13369
c08435ec 13370 env->insn_idx++;
17a52670
AS
13371 }
13372
13373 return 0;
13374}
13375
541c3bad
AN
13376static int find_btf_percpu_datasec(struct btf *btf)
13377{
13378 const struct btf_type *t;
13379 const char *tname;
13380 int i, n;
13381
13382 /*
13383 * Both vmlinux and module each have their own ".data..percpu"
13384 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
13385 * types to look at only module's own BTF types.
13386 */
13387 n = btf_nr_types(btf);
13388 if (btf_is_module(btf))
13389 i = btf_nr_types(btf_vmlinux);
13390 else
13391 i = 1;
13392
13393 for(; i < n; i++) {
13394 t = btf_type_by_id(btf, i);
13395 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
13396 continue;
13397
13398 tname = btf_name_by_offset(btf, t->name_off);
13399 if (!strcmp(tname, ".data..percpu"))
13400 return i;
13401 }
13402
13403 return -ENOENT;
13404}
13405
4976b718
HL
13406/* replace pseudo btf_id with kernel symbol address */
13407static int check_pseudo_btf_id(struct bpf_verifier_env *env,
13408 struct bpf_insn *insn,
13409 struct bpf_insn_aux_data *aux)
13410{
eaa6bcb7
HL
13411 const struct btf_var_secinfo *vsi;
13412 const struct btf_type *datasec;
541c3bad 13413 struct btf_mod_pair *btf_mod;
4976b718
HL
13414 const struct btf_type *t;
13415 const char *sym_name;
eaa6bcb7 13416 bool percpu = false;
f16e6313 13417 u32 type, id = insn->imm;
541c3bad 13418 struct btf *btf;
f16e6313 13419 s32 datasec_id;
4976b718 13420 u64 addr;
541c3bad 13421 int i, btf_fd, err;
4976b718 13422
541c3bad
AN
13423 btf_fd = insn[1].imm;
13424 if (btf_fd) {
13425 btf = btf_get_by_fd(btf_fd);
13426 if (IS_ERR(btf)) {
13427 verbose(env, "invalid module BTF object FD specified.\n");
13428 return -EINVAL;
13429 }
13430 } else {
13431 if (!btf_vmlinux) {
13432 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
13433 return -EINVAL;
13434 }
13435 btf = btf_vmlinux;
13436 btf_get(btf);
4976b718
HL
13437 }
13438
541c3bad 13439 t = btf_type_by_id(btf, id);
4976b718
HL
13440 if (!t) {
13441 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
13442 err = -ENOENT;
13443 goto err_put;
4976b718
HL
13444 }
13445
13446 if (!btf_type_is_var(t)) {
541c3bad
AN
13447 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
13448 err = -EINVAL;
13449 goto err_put;
4976b718
HL
13450 }
13451
541c3bad 13452 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
13453 addr = kallsyms_lookup_name(sym_name);
13454 if (!addr) {
13455 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
13456 sym_name);
541c3bad
AN
13457 err = -ENOENT;
13458 goto err_put;
4976b718
HL
13459 }
13460
541c3bad 13461 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 13462 if (datasec_id > 0) {
541c3bad 13463 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
13464 for_each_vsi(i, datasec, vsi) {
13465 if (vsi->type == id) {
13466 percpu = true;
13467 break;
13468 }
13469 }
13470 }
13471
4976b718
HL
13472 insn[0].imm = (u32)addr;
13473 insn[1].imm = addr >> 32;
13474
13475 type = t->type;
541c3bad 13476 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 13477 if (percpu) {
5844101a 13478 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 13479 aux->btf_var.btf = btf;
eaa6bcb7
HL
13480 aux->btf_var.btf_id = type;
13481 } else if (!btf_type_is_struct(t)) {
4976b718
HL
13482 const struct btf_type *ret;
13483 const char *tname;
13484 u32 tsize;
13485
13486 /* resolve the type size of ksym. */
541c3bad 13487 ret = btf_resolve_size(btf, t, &tsize);
4976b718 13488 if (IS_ERR(ret)) {
541c3bad 13489 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
13490 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
13491 tname, PTR_ERR(ret));
541c3bad
AN
13492 err = -EINVAL;
13493 goto err_put;
4976b718 13494 }
34d3a78c 13495 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
13496 aux->btf_var.mem_size = tsize;
13497 } else {
13498 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 13499 aux->btf_var.btf = btf;
4976b718
HL
13500 aux->btf_var.btf_id = type;
13501 }
541c3bad
AN
13502
13503 /* check whether we recorded this BTF (and maybe module) already */
13504 for (i = 0; i < env->used_btf_cnt; i++) {
13505 if (env->used_btfs[i].btf == btf) {
13506 btf_put(btf);
13507 return 0;
13508 }
13509 }
13510
13511 if (env->used_btf_cnt >= MAX_USED_BTFS) {
13512 err = -E2BIG;
13513 goto err_put;
13514 }
13515
13516 btf_mod = &env->used_btfs[env->used_btf_cnt];
13517 btf_mod->btf = btf;
13518 btf_mod->module = NULL;
13519
13520 /* if we reference variables from kernel module, bump its refcount */
13521 if (btf_is_module(btf)) {
13522 btf_mod->module = btf_try_get_module(btf);
13523 if (!btf_mod->module) {
13524 err = -ENXIO;
13525 goto err_put;
13526 }
13527 }
13528
13529 env->used_btf_cnt++;
13530
4976b718 13531 return 0;
541c3bad
AN
13532err_put:
13533 btf_put(btf);
13534 return err;
4976b718
HL
13535}
13536
d83525ca
AS
13537static bool is_tracing_prog_type(enum bpf_prog_type type)
13538{
13539 switch (type) {
13540 case BPF_PROG_TYPE_KPROBE:
13541 case BPF_PROG_TYPE_TRACEPOINT:
13542 case BPF_PROG_TYPE_PERF_EVENT:
13543 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 13544 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
13545 return true;
13546 default:
13547 return false;
13548 }
13549}
13550
61bd5218
JK
13551static int check_map_prog_compatibility(struct bpf_verifier_env *env,
13552 struct bpf_map *map,
fdc15d38
AS
13553 struct bpf_prog *prog)
13554
13555{
7e40781c 13556 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 13557
f0c5941f
KKD
13558 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
13559 if (is_tracing_prog_type(prog_type)) {
13560 verbose(env, "tracing progs cannot use bpf_list_head yet\n");
13561 return -EINVAL;
13562 }
13563 }
13564
db559117 13565 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
13566 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
13567 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
13568 return -EINVAL;
13569 }
13570
13571 if (is_tracing_prog_type(prog_type)) {
13572 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
13573 return -EINVAL;
13574 }
13575
13576 if (prog->aux->sleepable) {
13577 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
13578 return -EINVAL;
13579 }
d83525ca
AS
13580 }
13581
db559117 13582 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
13583 if (is_tracing_prog_type(prog_type)) {
13584 verbose(env, "tracing progs cannot use bpf_timer yet\n");
13585 return -EINVAL;
13586 }
13587 }
13588
a3884572 13589 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 13590 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
13591 verbose(env, "offload device mismatch between prog and map\n");
13592 return -EINVAL;
13593 }
13594
85d33df3
MKL
13595 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
13596 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
13597 return -EINVAL;
13598 }
13599
1e6c62a8
AS
13600 if (prog->aux->sleepable)
13601 switch (map->map_type) {
13602 case BPF_MAP_TYPE_HASH:
13603 case BPF_MAP_TYPE_LRU_HASH:
13604 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
13605 case BPF_MAP_TYPE_PERCPU_HASH:
13606 case BPF_MAP_TYPE_PERCPU_ARRAY:
13607 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
13608 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
13609 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 13610 case BPF_MAP_TYPE_RINGBUF:
583c1f42 13611 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
13612 case BPF_MAP_TYPE_INODE_STORAGE:
13613 case BPF_MAP_TYPE_SK_STORAGE:
13614 case BPF_MAP_TYPE_TASK_STORAGE:
ba90c2cc 13615 break;
1e6c62a8
AS
13616 default:
13617 verbose(env,
ba90c2cc 13618 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
13619 return -EINVAL;
13620 }
13621
fdc15d38
AS
13622 return 0;
13623}
13624
b741f163
RG
13625static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
13626{
13627 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
13628 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
13629}
13630
4976b718
HL
13631/* find and rewrite pseudo imm in ld_imm64 instructions:
13632 *
13633 * 1. if it accesses map FD, replace it with actual map pointer.
13634 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
13635 *
13636 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 13637 */
4976b718 13638static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
13639{
13640 struct bpf_insn *insn = env->prog->insnsi;
13641 int insn_cnt = env->prog->len;
fdc15d38 13642 int i, j, err;
0246e64d 13643
f1f7714e 13644 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
13645 if (err)
13646 return err;
13647
0246e64d 13648 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 13649 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 13650 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 13651 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
13652 return -EINVAL;
13653 }
13654
0246e64d 13655 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 13656 struct bpf_insn_aux_data *aux;
0246e64d
AS
13657 struct bpf_map *map;
13658 struct fd f;
d8eca5bb 13659 u64 addr;
387544bf 13660 u32 fd;
0246e64d
AS
13661
13662 if (i == insn_cnt - 1 || insn[1].code != 0 ||
13663 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
13664 insn[1].off != 0) {
61bd5218 13665 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
13666 return -EINVAL;
13667 }
13668
d8eca5bb 13669 if (insn[0].src_reg == 0)
0246e64d
AS
13670 /* valid generic load 64-bit imm */
13671 goto next_insn;
13672
4976b718
HL
13673 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
13674 aux = &env->insn_aux_data[i];
13675 err = check_pseudo_btf_id(env, insn, aux);
13676 if (err)
13677 return err;
13678 goto next_insn;
13679 }
13680
69c087ba
YS
13681 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
13682 aux = &env->insn_aux_data[i];
13683 aux->ptr_type = PTR_TO_FUNC;
13684 goto next_insn;
13685 }
13686
d8eca5bb
DB
13687 /* In final convert_pseudo_ld_imm64() step, this is
13688 * converted into regular 64-bit imm load insn.
13689 */
387544bf
AS
13690 switch (insn[0].src_reg) {
13691 case BPF_PSEUDO_MAP_VALUE:
13692 case BPF_PSEUDO_MAP_IDX_VALUE:
13693 break;
13694 case BPF_PSEUDO_MAP_FD:
13695 case BPF_PSEUDO_MAP_IDX:
13696 if (insn[1].imm == 0)
13697 break;
13698 fallthrough;
13699 default:
13700 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
13701 return -EINVAL;
13702 }
13703
387544bf
AS
13704 switch (insn[0].src_reg) {
13705 case BPF_PSEUDO_MAP_IDX_VALUE:
13706 case BPF_PSEUDO_MAP_IDX:
13707 if (bpfptr_is_null(env->fd_array)) {
13708 verbose(env, "fd_idx without fd_array is invalid\n");
13709 return -EPROTO;
13710 }
13711 if (copy_from_bpfptr_offset(&fd, env->fd_array,
13712 insn[0].imm * sizeof(fd),
13713 sizeof(fd)))
13714 return -EFAULT;
13715 break;
13716 default:
13717 fd = insn[0].imm;
13718 break;
13719 }
13720
13721 f = fdget(fd);
c2101297 13722 map = __bpf_map_get(f);
0246e64d 13723 if (IS_ERR(map)) {
61bd5218 13724 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 13725 insn[0].imm);
0246e64d
AS
13726 return PTR_ERR(map);
13727 }
13728
61bd5218 13729 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
13730 if (err) {
13731 fdput(f);
13732 return err;
13733 }
13734
d8eca5bb 13735 aux = &env->insn_aux_data[i];
387544bf
AS
13736 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
13737 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
13738 addr = (unsigned long)map;
13739 } else {
13740 u32 off = insn[1].imm;
13741
13742 if (off >= BPF_MAX_VAR_OFF) {
13743 verbose(env, "direct value offset of %u is not allowed\n", off);
13744 fdput(f);
13745 return -EINVAL;
13746 }
13747
13748 if (!map->ops->map_direct_value_addr) {
13749 verbose(env, "no direct value access support for this map type\n");
13750 fdput(f);
13751 return -EINVAL;
13752 }
13753
13754 err = map->ops->map_direct_value_addr(map, &addr, off);
13755 if (err) {
13756 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
13757 map->value_size, off);
13758 fdput(f);
13759 return err;
13760 }
13761
13762 aux->map_off = off;
13763 addr += off;
13764 }
13765
13766 insn[0].imm = (u32)addr;
13767 insn[1].imm = addr >> 32;
0246e64d
AS
13768
13769 /* check whether we recorded this map already */
d8eca5bb 13770 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 13771 if (env->used_maps[j] == map) {
d8eca5bb 13772 aux->map_index = j;
0246e64d
AS
13773 fdput(f);
13774 goto next_insn;
13775 }
d8eca5bb 13776 }
0246e64d
AS
13777
13778 if (env->used_map_cnt >= MAX_USED_MAPS) {
13779 fdput(f);
13780 return -E2BIG;
13781 }
13782
0246e64d
AS
13783 /* hold the map. If the program is rejected by verifier,
13784 * the map will be released by release_maps() or it
13785 * will be used by the valid program until it's unloaded
ab7f5bf0 13786 * and all maps are released in free_used_maps()
0246e64d 13787 */
1e0bd5a0 13788 bpf_map_inc(map);
d8eca5bb
DB
13789
13790 aux->map_index = env->used_map_cnt;
92117d84
AS
13791 env->used_maps[env->used_map_cnt++] = map;
13792
b741f163 13793 if (bpf_map_is_cgroup_storage(map) &&
e4730423 13794 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 13795 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
13796 fdput(f);
13797 return -EBUSY;
13798 }
13799
0246e64d
AS
13800 fdput(f);
13801next_insn:
13802 insn++;
13803 i++;
5e581dad
DB
13804 continue;
13805 }
13806
13807 /* Basic sanity check before we invest more work here. */
13808 if (!bpf_opcode_in_insntable(insn->code)) {
13809 verbose(env, "unknown opcode %02x\n", insn->code);
13810 return -EINVAL;
0246e64d
AS
13811 }
13812 }
13813
13814 /* now all pseudo BPF_LD_IMM64 instructions load valid
13815 * 'struct bpf_map *' into a register instead of user map_fd.
13816 * These pointers will be used later by verifier to validate map access.
13817 */
13818 return 0;
13819}
13820
13821/* drop refcnt of maps used by the rejected program */
58e2af8b 13822static void release_maps(struct bpf_verifier_env *env)
0246e64d 13823{
a2ea0746
DB
13824 __bpf_free_used_maps(env->prog->aux, env->used_maps,
13825 env->used_map_cnt);
0246e64d
AS
13826}
13827
541c3bad
AN
13828/* drop refcnt of maps used by the rejected program */
13829static void release_btfs(struct bpf_verifier_env *env)
13830{
13831 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
13832 env->used_btf_cnt);
13833}
13834
0246e64d 13835/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 13836static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
13837{
13838 struct bpf_insn *insn = env->prog->insnsi;
13839 int insn_cnt = env->prog->len;
13840 int i;
13841
69c087ba
YS
13842 for (i = 0; i < insn_cnt; i++, insn++) {
13843 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
13844 continue;
13845 if (insn->src_reg == BPF_PSEUDO_FUNC)
13846 continue;
13847 insn->src_reg = 0;
13848 }
0246e64d
AS
13849}
13850
8041902d
AS
13851/* single env->prog->insni[off] instruction was replaced with the range
13852 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
13853 * [0, off) and [off, end) to new locations, so the patched range stays zero
13854 */
75f0fc7b
HF
13855static void adjust_insn_aux_data(struct bpf_verifier_env *env,
13856 struct bpf_insn_aux_data *new_data,
13857 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 13858{
75f0fc7b 13859 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 13860 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 13861 u32 old_seen = old_data[off].seen;
b325fbca 13862 u32 prog_len;
c131187d 13863 int i;
8041902d 13864
b325fbca
JW
13865 /* aux info at OFF always needs adjustment, no matter fast path
13866 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
13867 * original insn at old prog.
13868 */
13869 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
13870
8041902d 13871 if (cnt == 1)
75f0fc7b 13872 return;
b325fbca 13873 prog_len = new_prog->len;
75f0fc7b 13874
8041902d
AS
13875 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
13876 memcpy(new_data + off + cnt - 1, old_data + off,
13877 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 13878 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
13879 /* Expand insni[off]'s seen count to the patched range. */
13880 new_data[i].seen = old_seen;
b325fbca
JW
13881 new_data[i].zext_dst = insn_has_def32(env, insn + i);
13882 }
8041902d
AS
13883 env->insn_aux_data = new_data;
13884 vfree(old_data);
8041902d
AS
13885}
13886
cc8b0b92
AS
13887static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
13888{
13889 int i;
13890
13891 if (len == 1)
13892 return;
4cb3d99c
JW
13893 /* NOTE: fake 'exit' subprog should be updated as well. */
13894 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 13895 if (env->subprog_info[i].start <= off)
cc8b0b92 13896 continue;
9c8105bd 13897 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
13898 }
13899}
13900
7506d211 13901static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
13902{
13903 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
13904 int i, sz = prog->aux->size_poke_tab;
13905 struct bpf_jit_poke_descriptor *desc;
13906
13907 for (i = 0; i < sz; i++) {
13908 desc = &tab[i];
7506d211
JF
13909 if (desc->insn_idx <= off)
13910 continue;
a748c697
MF
13911 desc->insn_idx += len - 1;
13912 }
13913}
13914
8041902d
AS
13915static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
13916 const struct bpf_insn *patch, u32 len)
13917{
13918 struct bpf_prog *new_prog;
75f0fc7b
HF
13919 struct bpf_insn_aux_data *new_data = NULL;
13920
13921 if (len > 1) {
13922 new_data = vzalloc(array_size(env->prog->len + len - 1,
13923 sizeof(struct bpf_insn_aux_data)));
13924 if (!new_data)
13925 return NULL;
13926 }
8041902d
AS
13927
13928 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
13929 if (IS_ERR(new_prog)) {
13930 if (PTR_ERR(new_prog) == -ERANGE)
13931 verbose(env,
13932 "insn %d cannot be patched due to 16-bit range\n",
13933 env->insn_aux_data[off].orig_idx);
75f0fc7b 13934 vfree(new_data);
8041902d 13935 return NULL;
4f73379e 13936 }
75f0fc7b 13937 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 13938 adjust_subprog_starts(env, off, len);
7506d211 13939 adjust_poke_descs(new_prog, off, len);
8041902d
AS
13940 return new_prog;
13941}
13942
52875a04
JK
13943static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13944 u32 off, u32 cnt)
13945{
13946 int i, j;
13947
13948 /* find first prog starting at or after off (first to remove) */
13949 for (i = 0; i < env->subprog_cnt; i++)
13950 if (env->subprog_info[i].start >= off)
13951 break;
13952 /* find first prog starting at or after off + cnt (first to stay) */
13953 for (j = i; j < env->subprog_cnt; j++)
13954 if (env->subprog_info[j].start >= off + cnt)
13955 break;
13956 /* if j doesn't start exactly at off + cnt, we are just removing
13957 * the front of previous prog
13958 */
13959 if (env->subprog_info[j].start != off + cnt)
13960 j--;
13961
13962 if (j > i) {
13963 struct bpf_prog_aux *aux = env->prog->aux;
13964 int move;
13965
13966 /* move fake 'exit' subprog as well */
13967 move = env->subprog_cnt + 1 - j;
13968
13969 memmove(env->subprog_info + i,
13970 env->subprog_info + j,
13971 sizeof(*env->subprog_info) * move);
13972 env->subprog_cnt -= j - i;
13973
13974 /* remove func_info */
13975 if (aux->func_info) {
13976 move = aux->func_info_cnt - j;
13977
13978 memmove(aux->func_info + i,
13979 aux->func_info + j,
13980 sizeof(*aux->func_info) * move);
13981 aux->func_info_cnt -= j - i;
13982 /* func_info->insn_off is set after all code rewrites,
13983 * in adjust_btf_func() - no need to adjust
13984 */
13985 }
13986 } else {
13987 /* convert i from "first prog to remove" to "first to adjust" */
13988 if (env->subprog_info[i].start == off)
13989 i++;
13990 }
13991
13992 /* update fake 'exit' subprog as well */
13993 for (; i <= env->subprog_cnt; i++)
13994 env->subprog_info[i].start -= cnt;
13995
13996 return 0;
13997}
13998
13999static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14000 u32 cnt)
14001{
14002 struct bpf_prog *prog = env->prog;
14003 u32 i, l_off, l_cnt, nr_linfo;
14004 struct bpf_line_info *linfo;
14005
14006 nr_linfo = prog->aux->nr_linfo;
14007 if (!nr_linfo)
14008 return 0;
14009
14010 linfo = prog->aux->linfo;
14011
14012 /* find first line info to remove, count lines to be removed */
14013 for (i = 0; i < nr_linfo; i++)
14014 if (linfo[i].insn_off >= off)
14015 break;
14016
14017 l_off = i;
14018 l_cnt = 0;
14019 for (; i < nr_linfo; i++)
14020 if (linfo[i].insn_off < off + cnt)
14021 l_cnt++;
14022 else
14023 break;
14024
14025 /* First live insn doesn't match first live linfo, it needs to "inherit"
14026 * last removed linfo. prog is already modified, so prog->len == off
14027 * means no live instructions after (tail of the program was removed).
14028 */
14029 if (prog->len != off && l_cnt &&
14030 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14031 l_cnt--;
14032 linfo[--i].insn_off = off + cnt;
14033 }
14034
14035 /* remove the line info which refer to the removed instructions */
14036 if (l_cnt) {
14037 memmove(linfo + l_off, linfo + i,
14038 sizeof(*linfo) * (nr_linfo - i));
14039
14040 prog->aux->nr_linfo -= l_cnt;
14041 nr_linfo = prog->aux->nr_linfo;
14042 }
14043
14044 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
14045 for (i = l_off; i < nr_linfo; i++)
14046 linfo[i].insn_off -= cnt;
14047
14048 /* fix up all subprogs (incl. 'exit') which start >= off */
14049 for (i = 0; i <= env->subprog_cnt; i++)
14050 if (env->subprog_info[i].linfo_idx > l_off) {
14051 /* program may have started in the removed region but
14052 * may not be fully removed
14053 */
14054 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14055 env->subprog_info[i].linfo_idx -= l_cnt;
14056 else
14057 env->subprog_info[i].linfo_idx = l_off;
14058 }
14059
14060 return 0;
14061}
14062
14063static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14064{
14065 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14066 unsigned int orig_prog_len = env->prog->len;
14067 int err;
14068
08ca90af
JK
14069 if (bpf_prog_is_dev_bound(env->prog->aux))
14070 bpf_prog_offload_remove_insns(env, off, cnt);
14071
52875a04
JK
14072 err = bpf_remove_insns(env->prog, off, cnt);
14073 if (err)
14074 return err;
14075
14076 err = adjust_subprog_starts_after_remove(env, off, cnt);
14077 if (err)
14078 return err;
14079
14080 err = bpf_adj_linfo_after_remove(env, off, cnt);
14081 if (err)
14082 return err;
14083
14084 memmove(aux_data + off, aux_data + off + cnt,
14085 sizeof(*aux_data) * (orig_prog_len - off - cnt));
14086
14087 return 0;
14088}
14089
2a5418a1
DB
14090/* The verifier does more data flow analysis than llvm and will not
14091 * explore branches that are dead at run time. Malicious programs can
14092 * have dead code too. Therefore replace all dead at-run-time code
14093 * with 'ja -1'.
14094 *
14095 * Just nops are not optimal, e.g. if they would sit at the end of the
14096 * program and through another bug we would manage to jump there, then
14097 * we'd execute beyond program memory otherwise. Returning exception
14098 * code also wouldn't work since we can have subprogs where the dead
14099 * code could be located.
c131187d
AS
14100 */
14101static void sanitize_dead_code(struct bpf_verifier_env *env)
14102{
14103 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 14104 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
14105 struct bpf_insn *insn = env->prog->insnsi;
14106 const int insn_cnt = env->prog->len;
14107 int i;
14108
14109 for (i = 0; i < insn_cnt; i++) {
14110 if (aux_data[i].seen)
14111 continue;
2a5418a1 14112 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 14113 aux_data[i].zext_dst = false;
c131187d
AS
14114 }
14115}
14116
e2ae4ca2
JK
14117static bool insn_is_cond_jump(u8 code)
14118{
14119 u8 op;
14120
092ed096
JW
14121 if (BPF_CLASS(code) == BPF_JMP32)
14122 return true;
14123
e2ae4ca2
JK
14124 if (BPF_CLASS(code) != BPF_JMP)
14125 return false;
14126
14127 op = BPF_OP(code);
14128 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14129}
14130
14131static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14132{
14133 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14134 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14135 struct bpf_insn *insn = env->prog->insnsi;
14136 const int insn_cnt = env->prog->len;
14137 int i;
14138
14139 for (i = 0; i < insn_cnt; i++, insn++) {
14140 if (!insn_is_cond_jump(insn->code))
14141 continue;
14142
14143 if (!aux_data[i + 1].seen)
14144 ja.off = insn->off;
14145 else if (!aux_data[i + 1 + insn->off].seen)
14146 ja.off = 0;
14147 else
14148 continue;
14149
08ca90af
JK
14150 if (bpf_prog_is_dev_bound(env->prog->aux))
14151 bpf_prog_offload_replace_insn(env, i, &ja);
14152
e2ae4ca2
JK
14153 memcpy(insn, &ja, sizeof(ja));
14154 }
14155}
14156
52875a04
JK
14157static int opt_remove_dead_code(struct bpf_verifier_env *env)
14158{
14159 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14160 int insn_cnt = env->prog->len;
14161 int i, err;
14162
14163 for (i = 0; i < insn_cnt; i++) {
14164 int j;
14165
14166 j = 0;
14167 while (i + j < insn_cnt && !aux_data[i + j].seen)
14168 j++;
14169 if (!j)
14170 continue;
14171
14172 err = verifier_remove_insns(env, i, j);
14173 if (err)
14174 return err;
14175 insn_cnt = env->prog->len;
14176 }
14177
14178 return 0;
14179}
14180
a1b14abc
JK
14181static int opt_remove_nops(struct bpf_verifier_env *env)
14182{
14183 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14184 struct bpf_insn *insn = env->prog->insnsi;
14185 int insn_cnt = env->prog->len;
14186 int i, err;
14187
14188 for (i = 0; i < insn_cnt; i++) {
14189 if (memcmp(&insn[i], &ja, sizeof(ja)))
14190 continue;
14191
14192 err = verifier_remove_insns(env, i, 1);
14193 if (err)
14194 return err;
14195 insn_cnt--;
14196 i--;
14197 }
14198
14199 return 0;
14200}
14201
d6c2308c
JW
14202static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14203 const union bpf_attr *attr)
a4b1d3c1 14204{
d6c2308c 14205 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 14206 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 14207 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 14208 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 14209 struct bpf_prog *new_prog;
d6c2308c 14210 bool rnd_hi32;
a4b1d3c1 14211
d6c2308c 14212 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 14213 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
14214 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14215 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14216 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
14217 for (i = 0; i < len; i++) {
14218 int adj_idx = i + delta;
14219 struct bpf_insn insn;
83a28819 14220 int load_reg;
a4b1d3c1 14221
d6c2308c 14222 insn = insns[adj_idx];
83a28819 14223 load_reg = insn_def_regno(&insn);
d6c2308c
JW
14224 if (!aux[adj_idx].zext_dst) {
14225 u8 code, class;
14226 u32 imm_rnd;
14227
14228 if (!rnd_hi32)
14229 continue;
14230
14231 code = insn.code;
14232 class = BPF_CLASS(code);
83a28819 14233 if (load_reg == -1)
d6c2308c
JW
14234 continue;
14235
14236 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
14237 * BPF_STX + SRC_OP, so it is safe to pass NULL
14238 * here.
d6c2308c 14239 */
83a28819 14240 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
14241 if (class == BPF_LD &&
14242 BPF_MODE(code) == BPF_IMM)
14243 i++;
14244 continue;
14245 }
14246
14247 /* ctx load could be transformed into wider load. */
14248 if (class == BPF_LDX &&
14249 aux[adj_idx].ptr_type == PTR_TO_CTX)
14250 continue;
14251
a251c17a 14252 imm_rnd = get_random_u32();
d6c2308c
JW
14253 rnd_hi32_patch[0] = insn;
14254 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 14255 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
14256 patch = rnd_hi32_patch;
14257 patch_len = 4;
14258 goto apply_patch_buffer;
14259 }
14260
39491867
BJ
14261 /* Add in an zero-extend instruction if a) the JIT has requested
14262 * it or b) it's a CMPXCHG.
14263 *
14264 * The latter is because: BPF_CMPXCHG always loads a value into
14265 * R0, therefore always zero-extends. However some archs'
14266 * equivalent instruction only does this load when the
14267 * comparison is successful. This detail of CMPXCHG is
14268 * orthogonal to the general zero-extension behaviour of the
14269 * CPU, so it's treated independently of bpf_jit_needs_zext.
14270 */
14271 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
14272 continue;
14273
83a28819
IL
14274 if (WARN_ON(load_reg == -1)) {
14275 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14276 return -EFAULT;
b2e37a71
IL
14277 }
14278
a4b1d3c1 14279 zext_patch[0] = insn;
b2e37a71
IL
14280 zext_patch[1].dst_reg = load_reg;
14281 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
14282 patch = zext_patch;
14283 patch_len = 2;
14284apply_patch_buffer:
14285 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
14286 if (!new_prog)
14287 return -ENOMEM;
14288 env->prog = new_prog;
14289 insns = new_prog->insnsi;
14290 aux = env->insn_aux_data;
d6c2308c 14291 delta += patch_len - 1;
a4b1d3c1
JW
14292 }
14293
14294 return 0;
14295}
14296
c64b7983
JS
14297/* convert load instructions that access fields of a context type into a
14298 * sequence of instructions that access fields of the underlying structure:
14299 * struct __sk_buff -> struct sk_buff
14300 * struct bpf_sock_ops -> struct sock
9bac3d6d 14301 */
58e2af8b 14302static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 14303{
00176a34 14304 const struct bpf_verifier_ops *ops = env->ops;
f96da094 14305 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 14306 const int insn_cnt = env->prog->len;
36bbef52 14307 struct bpf_insn insn_buf[16], *insn;
46f53a65 14308 u32 target_size, size_default, off;
9bac3d6d 14309 struct bpf_prog *new_prog;
d691f9e8 14310 enum bpf_access_type type;
f96da094 14311 bool is_narrower_load;
9bac3d6d 14312
b09928b9
DB
14313 if (ops->gen_prologue || env->seen_direct_write) {
14314 if (!ops->gen_prologue) {
14315 verbose(env, "bpf verifier is misconfigured\n");
14316 return -EINVAL;
14317 }
36bbef52
DB
14318 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
14319 env->prog);
14320 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 14321 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
14322 return -EINVAL;
14323 } else if (cnt) {
8041902d 14324 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
14325 if (!new_prog)
14326 return -ENOMEM;
8041902d 14327
36bbef52 14328 env->prog = new_prog;
3df126f3 14329 delta += cnt - 1;
36bbef52
DB
14330 }
14331 }
14332
c64b7983 14333 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
14334 return 0;
14335
3df126f3 14336 insn = env->prog->insnsi + delta;
36bbef52 14337
9bac3d6d 14338 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 14339 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 14340 bool ctx_access;
c64b7983 14341
62c7989b
DB
14342 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
14343 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
14344 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 14345 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 14346 type = BPF_READ;
2039f26f
DB
14347 ctx_access = true;
14348 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
14349 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
14350 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
14351 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
14352 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
14353 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
14354 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
14355 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 14356 type = BPF_WRITE;
2039f26f
DB
14357 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
14358 } else {
9bac3d6d 14359 continue;
2039f26f 14360 }
9bac3d6d 14361
af86ca4e 14362 if (type == BPF_WRITE &&
2039f26f 14363 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 14364 struct bpf_insn patch[] = {
af86ca4e 14365 *insn,
2039f26f 14366 BPF_ST_NOSPEC(),
af86ca4e
AS
14367 };
14368
14369 cnt = ARRAY_SIZE(patch);
14370 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
14371 if (!new_prog)
14372 return -ENOMEM;
14373
14374 delta += cnt - 1;
14375 env->prog = new_prog;
14376 insn = new_prog->insnsi + i + delta;
14377 continue;
14378 }
14379
2039f26f
DB
14380 if (!ctx_access)
14381 continue;
14382
6efe152d 14383 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
14384 case PTR_TO_CTX:
14385 if (!ops->convert_ctx_access)
14386 continue;
14387 convert_ctx_access = ops->convert_ctx_access;
14388 break;
14389 case PTR_TO_SOCKET:
46f8bc92 14390 case PTR_TO_SOCK_COMMON:
c64b7983
JS
14391 convert_ctx_access = bpf_sock_convert_ctx_access;
14392 break;
655a51e5
MKL
14393 case PTR_TO_TCP_SOCK:
14394 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
14395 break;
fada7fdc
JL
14396 case PTR_TO_XDP_SOCK:
14397 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
14398 break;
2a02759e 14399 case PTR_TO_BTF_ID:
6efe152d 14400 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
282de143
KKD
14401 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
14402 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
14403 * be said once it is marked PTR_UNTRUSTED, hence we must handle
14404 * any faults for loads into such types. BPF_WRITE is disallowed
14405 * for this case.
14406 */
14407 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
27ae7997
MKL
14408 if (type == BPF_READ) {
14409 insn->code = BPF_LDX | BPF_PROBE_MEM |
14410 BPF_SIZE((insn)->code);
14411 env->prog->aux->num_exentries++;
2a02759e 14412 }
2a02759e 14413 continue;
c64b7983 14414 default:
9bac3d6d 14415 continue;
c64b7983 14416 }
9bac3d6d 14417
31fd8581 14418 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 14419 size = BPF_LDST_BYTES(insn);
31fd8581
YS
14420
14421 /* If the read access is a narrower load of the field,
14422 * convert to a 4/8-byte load, to minimum program type specific
14423 * convert_ctx_access changes. If conversion is successful,
14424 * we will apply proper mask to the result.
14425 */
f96da094 14426 is_narrower_load = size < ctx_field_size;
46f53a65
AI
14427 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
14428 off = insn->off;
31fd8581 14429 if (is_narrower_load) {
f96da094
DB
14430 u8 size_code;
14431
14432 if (type == BPF_WRITE) {
61bd5218 14433 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
14434 return -EINVAL;
14435 }
31fd8581 14436
f96da094 14437 size_code = BPF_H;
31fd8581
YS
14438 if (ctx_field_size == 4)
14439 size_code = BPF_W;
14440 else if (ctx_field_size == 8)
14441 size_code = BPF_DW;
f96da094 14442
bc23105c 14443 insn->off = off & ~(size_default - 1);
31fd8581
YS
14444 insn->code = BPF_LDX | BPF_MEM | size_code;
14445 }
f96da094
DB
14446
14447 target_size = 0;
c64b7983
JS
14448 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
14449 &target_size);
f96da094
DB
14450 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
14451 (ctx_field_size && !target_size)) {
61bd5218 14452 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
14453 return -EINVAL;
14454 }
f96da094
DB
14455
14456 if (is_narrower_load && size < target_size) {
d895a0f1
IL
14457 u8 shift = bpf_ctx_narrow_access_offset(
14458 off, size, size_default) * 8;
d7af7e49
AI
14459 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
14460 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
14461 return -EINVAL;
14462 }
46f53a65
AI
14463 if (ctx_field_size <= 4) {
14464 if (shift)
14465 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
14466 insn->dst_reg,
14467 shift);
31fd8581 14468 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 14469 (1 << size * 8) - 1);
46f53a65
AI
14470 } else {
14471 if (shift)
14472 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
14473 insn->dst_reg,
14474 shift);
31fd8581 14475 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 14476 (1ULL << size * 8) - 1);
46f53a65 14477 }
31fd8581 14478 }
9bac3d6d 14479
8041902d 14480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
14481 if (!new_prog)
14482 return -ENOMEM;
14483
3df126f3 14484 delta += cnt - 1;
9bac3d6d
AS
14485
14486 /* keep walking new program and skip insns we just inserted */
14487 env->prog = new_prog;
3df126f3 14488 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
14489 }
14490
14491 return 0;
14492}
14493
1c2a088a
AS
14494static int jit_subprogs(struct bpf_verifier_env *env)
14495{
14496 struct bpf_prog *prog = env->prog, **func, *tmp;
14497 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 14498 struct bpf_map *map_ptr;
7105e828 14499 struct bpf_insn *insn;
1c2a088a 14500 void *old_bpf_func;
c4c0bdc0 14501 int err, num_exentries;
1c2a088a 14502
f910cefa 14503 if (env->subprog_cnt <= 1)
1c2a088a
AS
14504 return 0;
14505
7105e828 14506 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 14507 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 14508 continue;
69c087ba 14509
c7a89784
DB
14510 /* Upon error here we cannot fall back to interpreter but
14511 * need a hard reject of the program. Thus -EFAULT is
14512 * propagated in any case.
14513 */
1c2a088a
AS
14514 subprog = find_subprog(env, i + insn->imm + 1);
14515 if (subprog < 0) {
14516 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
14517 i + insn->imm + 1);
14518 return -EFAULT;
14519 }
14520 /* temporarily remember subprog id inside insn instead of
14521 * aux_data, since next loop will split up all insns into funcs
14522 */
f910cefa 14523 insn->off = subprog;
1c2a088a
AS
14524 /* remember original imm in case JIT fails and fallback
14525 * to interpreter will be needed
14526 */
14527 env->insn_aux_data[i].call_imm = insn->imm;
14528 /* point imm to __bpf_call_base+1 from JITs point of view */
14529 insn->imm = 1;
3990ed4c
MKL
14530 if (bpf_pseudo_func(insn))
14531 /* jit (e.g. x86_64) may emit fewer instructions
14532 * if it learns a u32 imm is the same as a u64 imm.
14533 * Force a non zero here.
14534 */
14535 insn[1].imm = 1;
1c2a088a
AS
14536 }
14537
c454a46b
MKL
14538 err = bpf_prog_alloc_jited_linfo(prog);
14539 if (err)
14540 goto out_undo_insn;
14541
14542 err = -ENOMEM;
6396bb22 14543 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 14544 if (!func)
c7a89784 14545 goto out_undo_insn;
1c2a088a 14546
f910cefa 14547 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 14548 subprog_start = subprog_end;
4cb3d99c 14549 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
14550
14551 len = subprog_end - subprog_start;
fb7dd8bc 14552 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
14553 * hence main prog stats include the runtime of subprogs.
14554 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 14555 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
14556 */
14557 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
14558 if (!func[i])
14559 goto out_free;
14560 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
14561 len * sizeof(struct bpf_insn));
4f74d809 14562 func[i]->type = prog->type;
1c2a088a 14563 func[i]->len = len;
4f74d809
DB
14564 if (bpf_prog_calc_tag(func[i]))
14565 goto out_free;
1c2a088a 14566 func[i]->is_func = 1;
ba64e7d8 14567 func[i]->aux->func_idx = i;
f263a814 14568 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
14569 func[i]->aux->btf = prog->aux->btf;
14570 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 14571 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
14572 func[i]->aux->poke_tab = prog->aux->poke_tab;
14573 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 14574
a748c697 14575 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 14576 struct bpf_jit_poke_descriptor *poke;
a748c697 14577
f263a814
JF
14578 poke = &prog->aux->poke_tab[j];
14579 if (poke->insn_idx < subprog_end &&
14580 poke->insn_idx >= subprog_start)
14581 poke->aux = func[i]->aux;
a748c697
MF
14582 }
14583
1c2a088a 14584 func[i]->aux->name[0] = 'F';
9c8105bd 14585 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 14586 func[i]->jit_requested = 1;
d2a3b7c5 14587 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 14588 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 14589 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
14590 func[i]->aux->linfo = prog->aux->linfo;
14591 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
14592 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
14593 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
14594 num_exentries = 0;
14595 insn = func[i]->insnsi;
14596 for (j = 0; j < func[i]->len; j++, insn++) {
14597 if (BPF_CLASS(insn->code) == BPF_LDX &&
14598 BPF_MODE(insn->code) == BPF_PROBE_MEM)
14599 num_exentries++;
14600 }
14601 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 14602 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
14603 func[i] = bpf_int_jit_compile(func[i]);
14604 if (!func[i]->jited) {
14605 err = -ENOTSUPP;
14606 goto out_free;
14607 }
14608 cond_resched();
14609 }
a748c697 14610
1c2a088a
AS
14611 /* at this point all bpf functions were successfully JITed
14612 * now populate all bpf_calls with correct addresses and
14613 * run last pass of JIT
14614 */
f910cefa 14615 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
14616 insn = func[i]->insnsi;
14617 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 14618 if (bpf_pseudo_func(insn)) {
3990ed4c 14619 subprog = insn->off;
69c087ba
YS
14620 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
14621 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
14622 continue;
14623 }
23a2d70c 14624 if (!bpf_pseudo_call(insn))
1c2a088a
AS
14625 continue;
14626 subprog = insn->off;
3d717fad 14627 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 14628 }
2162fed4
SD
14629
14630 /* we use the aux data to keep a list of the start addresses
14631 * of the JITed images for each function in the program
14632 *
14633 * for some architectures, such as powerpc64, the imm field
14634 * might not be large enough to hold the offset of the start
14635 * address of the callee's JITed image from __bpf_call_base
14636 *
14637 * in such cases, we can lookup the start address of a callee
14638 * by using its subprog id, available from the off field of
14639 * the call instruction, as an index for this list
14640 */
14641 func[i]->aux->func = func;
14642 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 14643 }
f910cefa 14644 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
14645 old_bpf_func = func[i]->bpf_func;
14646 tmp = bpf_int_jit_compile(func[i]);
14647 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
14648 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 14649 err = -ENOTSUPP;
1c2a088a
AS
14650 goto out_free;
14651 }
14652 cond_resched();
14653 }
14654
14655 /* finally lock prog and jit images for all functions and
14656 * populate kallsysm
14657 */
f910cefa 14658 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
14659 bpf_prog_lock_ro(func[i]);
14660 bpf_prog_kallsyms_add(func[i]);
14661 }
7105e828
DB
14662
14663 /* Last step: make now unused interpreter insns from main
14664 * prog consistent for later dump requests, so they can
14665 * later look the same as if they were interpreted only.
14666 */
14667 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
14668 if (bpf_pseudo_func(insn)) {
14669 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
14670 insn[1].imm = insn->off;
14671 insn->off = 0;
69c087ba
YS
14672 continue;
14673 }
23a2d70c 14674 if (!bpf_pseudo_call(insn))
7105e828
DB
14675 continue;
14676 insn->off = env->insn_aux_data[i].call_imm;
14677 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 14678 insn->imm = subprog;
7105e828
DB
14679 }
14680
1c2a088a
AS
14681 prog->jited = 1;
14682 prog->bpf_func = func[0]->bpf_func;
d00c6473 14683 prog->jited_len = func[0]->jited_len;
1c2a088a 14684 prog->aux->func = func;
f910cefa 14685 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 14686 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
14687 return 0;
14688out_free:
f263a814
JF
14689 /* We failed JIT'ing, so at this point we need to unregister poke
14690 * descriptors from subprogs, so that kernel is not attempting to
14691 * patch it anymore as we're freeing the subprog JIT memory.
14692 */
14693 for (i = 0; i < prog->aux->size_poke_tab; i++) {
14694 map_ptr = prog->aux->poke_tab[i].tail_call.map;
14695 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
14696 }
14697 /* At this point we're guaranteed that poke descriptors are not
14698 * live anymore. We can just unlink its descriptor table as it's
14699 * released with the main prog.
14700 */
a748c697
MF
14701 for (i = 0; i < env->subprog_cnt; i++) {
14702 if (!func[i])
14703 continue;
f263a814 14704 func[i]->aux->poke_tab = NULL;
a748c697
MF
14705 bpf_jit_free(func[i]);
14706 }
1c2a088a 14707 kfree(func);
c7a89784 14708out_undo_insn:
1c2a088a
AS
14709 /* cleanup main prog to be interpreted */
14710 prog->jit_requested = 0;
d2a3b7c5 14711 prog->blinding_requested = 0;
1c2a088a 14712 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 14713 if (!bpf_pseudo_call(insn))
1c2a088a
AS
14714 continue;
14715 insn->off = 0;
14716 insn->imm = env->insn_aux_data[i].call_imm;
14717 }
e16301fb 14718 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
14719 return err;
14720}
14721
1ea47e01
AS
14722static int fixup_call_args(struct bpf_verifier_env *env)
14723{
19d28fbd 14724#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
14725 struct bpf_prog *prog = env->prog;
14726 struct bpf_insn *insn = prog->insnsi;
e6ac2450 14727 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 14728 int i, depth;
19d28fbd 14729#endif
e4052d06 14730 int err = 0;
1ea47e01 14731
e4052d06
QM
14732 if (env->prog->jit_requested &&
14733 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
14734 err = jit_subprogs(env);
14735 if (err == 0)
1c2a088a 14736 return 0;
c7a89784
DB
14737 if (err == -EFAULT)
14738 return err;
19d28fbd
DM
14739 }
14740#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
14741 if (has_kfunc_call) {
14742 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
14743 return -EINVAL;
14744 }
e411901c
MF
14745 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
14746 /* When JIT fails the progs with bpf2bpf calls and tail_calls
14747 * have to be rejected, since interpreter doesn't support them yet.
14748 */
14749 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
14750 return -EINVAL;
14751 }
1ea47e01 14752 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
14753 if (bpf_pseudo_func(insn)) {
14754 /* When JIT fails the progs with callback calls
14755 * have to be rejected, since interpreter doesn't support them yet.
14756 */
14757 verbose(env, "callbacks are not allowed in non-JITed programs\n");
14758 return -EINVAL;
14759 }
14760
23a2d70c 14761 if (!bpf_pseudo_call(insn))
1ea47e01
AS
14762 continue;
14763 depth = get_callee_stack_depth(env, insn, i);
14764 if (depth < 0)
14765 return depth;
14766 bpf_patch_call_args(insn, depth);
14767 }
19d28fbd
DM
14768 err = 0;
14769#endif
14770 return err;
1ea47e01
AS
14771}
14772
958cf2e2
KKD
14773static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
14774 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
14775{
14776 const struct bpf_kfunc_desc *desc;
14777
a5d82727
KKD
14778 if (!insn->imm) {
14779 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
14780 return -EINVAL;
14781 }
14782
e6ac2450
MKL
14783 /* insn->imm has the btf func_id. Replace it with
14784 * an address (relative to __bpf_base_call).
14785 */
2357672c 14786 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
14787 if (!desc) {
14788 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
14789 insn->imm);
14790 return -EFAULT;
14791 }
14792
958cf2e2 14793 *cnt = 0;
e6ac2450 14794 insn->imm = desc->imm;
958cf2e2
KKD
14795 if (insn->off)
14796 return 0;
14797 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
14798 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
14799 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
14800 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 14801
958cf2e2
KKD
14802 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
14803 insn_buf[1] = addr[0];
14804 insn_buf[2] = addr[1];
14805 insn_buf[3] = *insn;
14806 *cnt = 4;
ac9f0605
KKD
14807 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
14808 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
14809 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
14810
14811 insn_buf[0] = addr[0];
14812 insn_buf[1] = addr[1];
14813 insn_buf[2] = *insn;
14814 *cnt = 3;
958cf2e2 14815 }
e6ac2450
MKL
14816 return 0;
14817}
14818
e6ac5933
BJ
14819/* Do various post-verification rewrites in a single program pass.
14820 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 14821 */
e6ac5933 14822static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 14823{
79741b3b 14824 struct bpf_prog *prog = env->prog;
f92c1e18 14825 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 14826 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 14827 struct bpf_insn *insn = prog->insnsi;
e245c5c6 14828 const struct bpf_func_proto *fn;
79741b3b 14829 const int insn_cnt = prog->len;
09772d92 14830 const struct bpf_map_ops *ops;
c93552c4 14831 struct bpf_insn_aux_data *aux;
81ed18ab
AS
14832 struct bpf_insn insn_buf[16];
14833 struct bpf_prog *new_prog;
14834 struct bpf_map *map_ptr;
d2e4c1e6 14835 int i, ret, cnt, delta = 0;
e245c5c6 14836
79741b3b 14837 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 14838 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
14839 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
14840 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
14841 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 14842 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 14843 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
14844 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
14845 struct bpf_insn *patchlet;
14846 struct bpf_insn chk_and_div[] = {
9b00f1b7 14847 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
14848 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
14849 BPF_JNE | BPF_K, insn->src_reg,
14850 0, 2, 0),
f6b1b3bf
DB
14851 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
14852 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
14853 *insn,
14854 };
e88b2c6e 14855 struct bpf_insn chk_and_mod[] = {
9b00f1b7 14856 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
14857 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
14858 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 14859 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 14860 *insn,
9b00f1b7
DB
14861 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
14862 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 14863 };
f6b1b3bf 14864
e88b2c6e
DB
14865 patchlet = isdiv ? chk_and_div : chk_and_mod;
14866 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 14867 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
14868
14869 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
14870 if (!new_prog)
14871 return -ENOMEM;
14872
14873 delta += cnt - 1;
14874 env->prog = prog = new_prog;
14875 insn = new_prog->insnsi + i + delta;
14876 continue;
14877 }
14878
e6ac5933 14879 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
14880 if (BPF_CLASS(insn->code) == BPF_LD &&
14881 (BPF_MODE(insn->code) == BPF_ABS ||
14882 BPF_MODE(insn->code) == BPF_IND)) {
14883 cnt = env->ops->gen_ld_abs(insn, insn_buf);
14884 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14885 verbose(env, "bpf verifier is misconfigured\n");
14886 return -EINVAL;
14887 }
14888
14889 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14890 if (!new_prog)
14891 return -ENOMEM;
14892
14893 delta += cnt - 1;
14894 env->prog = prog = new_prog;
14895 insn = new_prog->insnsi + i + delta;
14896 continue;
14897 }
14898
e6ac5933 14899 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
14900 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
14901 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
14902 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
14903 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 14904 struct bpf_insn *patch = &insn_buf[0];
801c6058 14905 bool issrc, isneg, isimm;
979d63d5
DB
14906 u32 off_reg;
14907
14908 aux = &env->insn_aux_data[i + delta];
3612af78
DB
14909 if (!aux->alu_state ||
14910 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
14911 continue;
14912
14913 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
14914 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
14915 BPF_ALU_SANITIZE_SRC;
801c6058 14916 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
14917
14918 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
14919 if (isimm) {
14920 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14921 } else {
14922 if (isneg)
14923 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14924 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14925 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
14926 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
14927 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
14928 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
14929 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
14930 }
b9b34ddb
DB
14931 if (!issrc)
14932 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
14933 insn->src_reg = BPF_REG_AX;
979d63d5
DB
14934 if (isneg)
14935 insn->code = insn->code == code_add ?
14936 code_sub : code_add;
14937 *patch++ = *insn;
801c6058 14938 if (issrc && isneg && !isimm)
979d63d5
DB
14939 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14940 cnt = patch - insn_buf;
14941
14942 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14943 if (!new_prog)
14944 return -ENOMEM;
14945
14946 delta += cnt - 1;
14947 env->prog = prog = new_prog;
14948 insn = new_prog->insnsi + i + delta;
14949 continue;
14950 }
14951
79741b3b
AS
14952 if (insn->code != (BPF_JMP | BPF_CALL))
14953 continue;
cc8b0b92
AS
14954 if (insn->src_reg == BPF_PSEUDO_CALL)
14955 continue;
e6ac2450 14956 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 14957 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
14958 if (ret)
14959 return ret;
958cf2e2
KKD
14960 if (cnt == 0)
14961 continue;
14962
14963 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14964 if (!new_prog)
14965 return -ENOMEM;
14966
14967 delta += cnt - 1;
14968 env->prog = prog = new_prog;
14969 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
14970 continue;
14971 }
e245c5c6 14972
79741b3b
AS
14973 if (insn->imm == BPF_FUNC_get_route_realm)
14974 prog->dst_needed = 1;
14975 if (insn->imm == BPF_FUNC_get_prandom_u32)
14976 bpf_user_rnd_init_once();
9802d865
JB
14977 if (insn->imm == BPF_FUNC_override_return)
14978 prog->kprobe_override = 1;
79741b3b 14979 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
14980 /* If we tail call into other programs, we
14981 * cannot make any assumptions since they can
14982 * be replaced dynamically during runtime in
14983 * the program array.
14984 */
14985 prog->cb_access = 1;
e411901c
MF
14986 if (!allow_tail_call_in_subprogs(env))
14987 prog->aux->stack_depth = MAX_BPF_STACK;
14988 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 14989
79741b3b 14990 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 14991 * conditional branch in the interpreter for every normal
79741b3b
AS
14992 * call and to prevent accidental JITing by JIT compiler
14993 * that doesn't support bpf_tail_call yet
e245c5c6 14994 */
79741b3b 14995 insn->imm = 0;
71189fa9 14996 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 14997
c93552c4 14998 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 14999 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 15000 prog->jit_requested &&
d2e4c1e6
DB
15001 !bpf_map_key_poisoned(aux) &&
15002 !bpf_map_ptr_poisoned(aux) &&
15003 !bpf_map_ptr_unpriv(aux)) {
15004 struct bpf_jit_poke_descriptor desc = {
15005 .reason = BPF_POKE_REASON_TAIL_CALL,
15006 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15007 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 15008 .insn_idx = i + delta,
d2e4c1e6
DB
15009 };
15010
15011 ret = bpf_jit_add_poke_descriptor(prog, &desc);
15012 if (ret < 0) {
15013 verbose(env, "adding tail call poke descriptor failed\n");
15014 return ret;
15015 }
15016
15017 insn->imm = ret + 1;
15018 continue;
15019 }
15020
c93552c4
DB
15021 if (!bpf_map_ptr_unpriv(aux))
15022 continue;
15023
b2157399
AS
15024 /* instead of changing every JIT dealing with tail_call
15025 * emit two extra insns:
15026 * if (index >= max_entries) goto out;
15027 * index &= array->index_mask;
15028 * to avoid out-of-bounds cpu speculation
15029 */
c93552c4 15030 if (bpf_map_ptr_poisoned(aux)) {
40950343 15031 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
15032 return -EINVAL;
15033 }
c93552c4 15034
d2e4c1e6 15035 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
15036 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15037 map_ptr->max_entries, 2);
15038 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15039 container_of(map_ptr,
15040 struct bpf_array,
15041 map)->index_mask);
15042 insn_buf[2] = *insn;
15043 cnt = 3;
15044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15045 if (!new_prog)
15046 return -ENOMEM;
15047
15048 delta += cnt - 1;
15049 env->prog = prog = new_prog;
15050 insn = new_prog->insnsi + i + delta;
79741b3b
AS
15051 continue;
15052 }
e245c5c6 15053
b00628b1
AS
15054 if (insn->imm == BPF_FUNC_timer_set_callback) {
15055 /* The verifier will process callback_fn as many times as necessary
15056 * with different maps and the register states prepared by
15057 * set_timer_callback_state will be accurate.
15058 *
15059 * The following use case is valid:
15060 * map1 is shared by prog1, prog2, prog3.
15061 * prog1 calls bpf_timer_init for some map1 elements
15062 * prog2 calls bpf_timer_set_callback for some map1 elements.
15063 * Those that were not bpf_timer_init-ed will return -EINVAL.
15064 * prog3 calls bpf_timer_start for some map1 elements.
15065 * Those that were not both bpf_timer_init-ed and
15066 * bpf_timer_set_callback-ed will return -EINVAL.
15067 */
15068 struct bpf_insn ld_addrs[2] = {
15069 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15070 };
15071
15072 insn_buf[0] = ld_addrs[0];
15073 insn_buf[1] = ld_addrs[1];
15074 insn_buf[2] = *insn;
15075 cnt = 3;
15076
15077 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15078 if (!new_prog)
15079 return -ENOMEM;
15080
15081 delta += cnt - 1;
15082 env->prog = prog = new_prog;
15083 insn = new_prog->insnsi + i + delta;
15084 goto patch_call_imm;
15085 }
15086
b00fa38a
JK
15087 if (insn->imm == BPF_FUNC_task_storage_get ||
15088 insn->imm == BPF_FUNC_sk_storage_get ||
c4bcfb38
YS
15089 insn->imm == BPF_FUNC_inode_storage_get ||
15090 insn->imm == BPF_FUNC_cgrp_storage_get) {
b00fa38a 15091 if (env->prog->aux->sleepable)
d56c9fe6 15092 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a 15093 else
d56c9fe6 15094 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
b00fa38a
JK
15095 insn_buf[1] = *insn;
15096 cnt = 2;
15097
15098 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15099 if (!new_prog)
15100 return -ENOMEM;
15101
15102 delta += cnt - 1;
15103 env->prog = prog = new_prog;
15104 insn = new_prog->insnsi + i + delta;
15105 goto patch_call_imm;
15106 }
15107
89c63074 15108 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
15109 * and other inlining handlers are currently limited to 64 bit
15110 * only.
89c63074 15111 */
60b58afc 15112 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
15113 (insn->imm == BPF_FUNC_map_lookup_elem ||
15114 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
15115 insn->imm == BPF_FUNC_map_delete_elem ||
15116 insn->imm == BPF_FUNC_map_push_elem ||
15117 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 15118 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 15119 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
15120 insn->imm == BPF_FUNC_for_each_map_elem ||
15121 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
15122 aux = &env->insn_aux_data[i + delta];
15123 if (bpf_map_ptr_poisoned(aux))
15124 goto patch_call_imm;
15125
d2e4c1e6 15126 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
15127 ops = map_ptr->ops;
15128 if (insn->imm == BPF_FUNC_map_lookup_elem &&
15129 ops->map_gen_lookup) {
15130 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
15131 if (cnt == -EOPNOTSUPP)
15132 goto patch_map_ops_generic;
15133 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
15134 verbose(env, "bpf verifier is misconfigured\n");
15135 return -EINVAL;
15136 }
81ed18ab 15137
09772d92
DB
15138 new_prog = bpf_patch_insn_data(env, i + delta,
15139 insn_buf, cnt);
15140 if (!new_prog)
15141 return -ENOMEM;
81ed18ab 15142
09772d92
DB
15143 delta += cnt - 1;
15144 env->prog = prog = new_prog;
15145 insn = new_prog->insnsi + i + delta;
15146 continue;
15147 }
81ed18ab 15148
09772d92
DB
15149 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15150 (void *(*)(struct bpf_map *map, void *key))NULL));
15151 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15152 (int (*)(struct bpf_map *map, void *key))NULL));
15153 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15154 (int (*)(struct bpf_map *map, void *key, void *value,
15155 u64 flags))NULL));
84430d42
DB
15156 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15157 (int (*)(struct bpf_map *map, void *value,
15158 u64 flags))NULL));
15159 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15160 (int (*)(struct bpf_map *map, void *value))NULL));
15161 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15162 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 15163 BUILD_BUG_ON(!__same_type(ops->map_redirect,
32637e33 15164 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c
AI
15165 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15166 (int (*)(struct bpf_map *map,
15167 bpf_callback_t callback_fn,
15168 void *callback_ctx,
15169 u64 flags))NULL));
07343110
FZ
15170 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15171 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 15172
4a8f87e6 15173patch_map_ops_generic:
09772d92
DB
15174 switch (insn->imm) {
15175 case BPF_FUNC_map_lookup_elem:
3d717fad 15176 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
15177 continue;
15178 case BPF_FUNC_map_update_elem:
3d717fad 15179 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
15180 continue;
15181 case BPF_FUNC_map_delete_elem:
3d717fad 15182 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 15183 continue;
84430d42 15184 case BPF_FUNC_map_push_elem:
3d717fad 15185 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
15186 continue;
15187 case BPF_FUNC_map_pop_elem:
3d717fad 15188 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
15189 continue;
15190 case BPF_FUNC_map_peek_elem:
3d717fad 15191 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 15192 continue;
e6a4750f 15193 case BPF_FUNC_redirect_map:
3d717fad 15194 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 15195 continue;
0640c77c
AI
15196 case BPF_FUNC_for_each_map_elem:
15197 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 15198 continue;
07343110
FZ
15199 case BPF_FUNC_map_lookup_percpu_elem:
15200 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15201 continue;
09772d92 15202 }
81ed18ab 15203
09772d92 15204 goto patch_call_imm;
81ed18ab
AS
15205 }
15206
e6ac5933 15207 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
15208 if (prog->jit_requested && BITS_PER_LONG == 64 &&
15209 insn->imm == BPF_FUNC_jiffies64) {
15210 struct bpf_insn ld_jiffies_addr[2] = {
15211 BPF_LD_IMM64(BPF_REG_0,
15212 (unsigned long)&jiffies),
15213 };
15214
15215 insn_buf[0] = ld_jiffies_addr[0];
15216 insn_buf[1] = ld_jiffies_addr[1];
15217 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15218 BPF_REG_0, 0);
15219 cnt = 3;
15220
15221 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15222 cnt);
15223 if (!new_prog)
15224 return -ENOMEM;
15225
15226 delta += cnt - 1;
15227 env->prog = prog = new_prog;
15228 insn = new_prog->insnsi + i + delta;
15229 continue;
15230 }
15231
f92c1e18
JO
15232 /* Implement bpf_get_func_arg inline. */
15233 if (prog_type == BPF_PROG_TYPE_TRACING &&
15234 insn->imm == BPF_FUNC_get_func_arg) {
15235 /* Load nr_args from ctx - 8 */
15236 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15237 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15238 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15239 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15240 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15241 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15242 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15243 insn_buf[7] = BPF_JMP_A(1);
15244 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15245 cnt = 9;
15246
15247 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15248 if (!new_prog)
15249 return -ENOMEM;
15250
15251 delta += cnt - 1;
15252 env->prog = prog = new_prog;
15253 insn = new_prog->insnsi + i + delta;
15254 continue;
15255 }
15256
15257 /* Implement bpf_get_func_ret inline. */
15258 if (prog_type == BPF_PROG_TYPE_TRACING &&
15259 insn->imm == BPF_FUNC_get_func_ret) {
15260 if (eatype == BPF_TRACE_FEXIT ||
15261 eatype == BPF_MODIFY_RETURN) {
15262 /* Load nr_args from ctx - 8 */
15263 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15264 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15265 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15266 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15267 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15268 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15269 cnt = 6;
15270 } else {
15271 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15272 cnt = 1;
15273 }
15274
15275 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15276 if (!new_prog)
15277 return -ENOMEM;
15278
15279 delta += cnt - 1;
15280 env->prog = prog = new_prog;
15281 insn = new_prog->insnsi + i + delta;
15282 continue;
15283 }
15284
15285 /* Implement get_func_arg_cnt inline. */
15286 if (prog_type == BPF_PROG_TYPE_TRACING &&
15287 insn->imm == BPF_FUNC_get_func_arg_cnt) {
15288 /* Load nr_args from ctx - 8 */
15289 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15290
15291 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15292 if (!new_prog)
15293 return -ENOMEM;
15294
15295 env->prog = prog = new_prog;
15296 insn = new_prog->insnsi + i + delta;
15297 continue;
15298 }
15299
f705ec76 15300 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
15301 if (prog_type == BPF_PROG_TYPE_TRACING &&
15302 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
15303 /* Load IP address from ctx - 16 */
15304 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
15305
15306 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15307 if (!new_prog)
15308 return -ENOMEM;
15309
15310 env->prog = prog = new_prog;
15311 insn = new_prog->insnsi + i + delta;
15312 continue;
15313 }
15314
81ed18ab 15315patch_call_imm:
5e43f899 15316 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
15317 /* all functions that have prototype and verifier allowed
15318 * programs to call them, must be real in-kernel functions
15319 */
15320 if (!fn->func) {
61bd5218
JK
15321 verbose(env,
15322 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
15323 func_id_name(insn->imm), insn->imm);
15324 return -EFAULT;
e245c5c6 15325 }
79741b3b 15326 insn->imm = fn->func - __bpf_call_base;
e245c5c6 15327 }
e245c5c6 15328
d2e4c1e6
DB
15329 /* Since poke tab is now finalized, publish aux to tracker. */
15330 for (i = 0; i < prog->aux->size_poke_tab; i++) {
15331 map_ptr = prog->aux->poke_tab[i].tail_call.map;
15332 if (!map_ptr->ops->map_poke_track ||
15333 !map_ptr->ops->map_poke_untrack ||
15334 !map_ptr->ops->map_poke_run) {
15335 verbose(env, "bpf verifier is misconfigured\n");
15336 return -EINVAL;
15337 }
15338
15339 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
15340 if (ret < 0) {
15341 verbose(env, "tracking tail call prog failed\n");
15342 return ret;
15343 }
15344 }
15345
e6ac2450
MKL
15346 sort_kfunc_descs_by_imm(env->prog);
15347
79741b3b
AS
15348 return 0;
15349}
e245c5c6 15350
1ade2371
EZ
15351static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
15352 int position,
15353 s32 stack_base,
15354 u32 callback_subprogno,
15355 u32 *cnt)
15356{
15357 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
15358 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
15359 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
15360 int reg_loop_max = BPF_REG_6;
15361 int reg_loop_cnt = BPF_REG_7;
15362 int reg_loop_ctx = BPF_REG_8;
15363
15364 struct bpf_prog *new_prog;
15365 u32 callback_start;
15366 u32 call_insn_offset;
15367 s32 callback_offset;
15368
15369 /* This represents an inlined version of bpf_iter.c:bpf_loop,
15370 * be careful to modify this code in sync.
15371 */
15372 struct bpf_insn insn_buf[] = {
15373 /* Return error and jump to the end of the patch if
15374 * expected number of iterations is too big.
15375 */
15376 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
15377 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
15378 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
15379 /* spill R6, R7, R8 to use these as loop vars */
15380 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
15381 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
15382 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
15383 /* initialize loop vars */
15384 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
15385 BPF_MOV32_IMM(reg_loop_cnt, 0),
15386 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
15387 /* loop header,
15388 * if reg_loop_cnt >= reg_loop_max skip the loop body
15389 */
15390 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
15391 /* callback call,
15392 * correct callback offset would be set after patching
15393 */
15394 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
15395 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
15396 BPF_CALL_REL(0),
15397 /* increment loop counter */
15398 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
15399 /* jump to loop header if callback returned 0 */
15400 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
15401 /* return value of bpf_loop,
15402 * set R0 to the number of iterations
15403 */
15404 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
15405 /* restore original values of R6, R7, R8 */
15406 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
15407 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
15408 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
15409 };
15410
15411 *cnt = ARRAY_SIZE(insn_buf);
15412 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
15413 if (!new_prog)
15414 return new_prog;
15415
15416 /* callback start is known only after patching */
15417 callback_start = env->subprog_info[callback_subprogno].start;
15418 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
15419 call_insn_offset = position + 12;
15420 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 15421 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
15422
15423 return new_prog;
15424}
15425
15426static bool is_bpf_loop_call(struct bpf_insn *insn)
15427{
15428 return insn->code == (BPF_JMP | BPF_CALL) &&
15429 insn->src_reg == 0 &&
15430 insn->imm == BPF_FUNC_loop;
15431}
15432
15433/* For all sub-programs in the program (including main) check
15434 * insn_aux_data to see if there are bpf_loop calls that require
15435 * inlining. If such calls are found the calls are replaced with a
15436 * sequence of instructions produced by `inline_bpf_loop` function and
15437 * subprog stack_depth is increased by the size of 3 registers.
15438 * This stack space is used to spill values of the R6, R7, R8. These
15439 * registers are used to store the loop bound, counter and context
15440 * variables.
15441 */
15442static int optimize_bpf_loop(struct bpf_verifier_env *env)
15443{
15444 struct bpf_subprog_info *subprogs = env->subprog_info;
15445 int i, cur_subprog = 0, cnt, delta = 0;
15446 struct bpf_insn *insn = env->prog->insnsi;
15447 int insn_cnt = env->prog->len;
15448 u16 stack_depth = subprogs[cur_subprog].stack_depth;
15449 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
15450 u16 stack_depth_extra = 0;
15451
15452 for (i = 0; i < insn_cnt; i++, insn++) {
15453 struct bpf_loop_inline_state *inline_state =
15454 &env->insn_aux_data[i + delta].loop_inline_state;
15455
15456 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
15457 struct bpf_prog *new_prog;
15458
15459 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
15460 new_prog = inline_bpf_loop(env,
15461 i + delta,
15462 -(stack_depth + stack_depth_extra),
15463 inline_state->callback_subprogno,
15464 &cnt);
15465 if (!new_prog)
15466 return -ENOMEM;
15467
15468 delta += cnt - 1;
15469 env->prog = new_prog;
15470 insn = new_prog->insnsi + i + delta;
15471 }
15472
15473 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
15474 subprogs[cur_subprog].stack_depth += stack_depth_extra;
15475 cur_subprog++;
15476 stack_depth = subprogs[cur_subprog].stack_depth;
15477 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
15478 stack_depth_extra = 0;
15479 }
15480 }
15481
15482 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
15483
15484 return 0;
15485}
15486
58e2af8b 15487static void free_states(struct bpf_verifier_env *env)
f1bca824 15488{
58e2af8b 15489 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
15490 int i;
15491
9f4686c4
AS
15492 sl = env->free_list;
15493 while (sl) {
15494 sln = sl->next;
15495 free_verifier_state(&sl->state, false);
15496 kfree(sl);
15497 sl = sln;
15498 }
51c39bb1 15499 env->free_list = NULL;
9f4686c4 15500
f1bca824
AS
15501 if (!env->explored_states)
15502 return;
15503
dc2a4ebc 15504 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
15505 sl = env->explored_states[i];
15506
a8f500af
AS
15507 while (sl) {
15508 sln = sl->next;
15509 free_verifier_state(&sl->state, false);
15510 kfree(sl);
15511 sl = sln;
15512 }
51c39bb1 15513 env->explored_states[i] = NULL;
f1bca824 15514 }
51c39bb1 15515}
f1bca824 15516
51c39bb1
AS
15517static int do_check_common(struct bpf_verifier_env *env, int subprog)
15518{
6f8a57cc 15519 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
15520 struct bpf_verifier_state *state;
15521 struct bpf_reg_state *regs;
15522 int ret, i;
15523
15524 env->prev_linfo = NULL;
15525 env->pass_cnt++;
15526
15527 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
15528 if (!state)
15529 return -ENOMEM;
15530 state->curframe = 0;
15531 state->speculative = false;
15532 state->branches = 1;
15533 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
15534 if (!state->frame[0]) {
15535 kfree(state);
15536 return -ENOMEM;
15537 }
15538 env->cur_state = state;
15539 init_func_state(env, state->frame[0],
15540 BPF_MAIN_FUNC /* callsite */,
15541 0 /* frameno */,
15542 subprog);
be2ef816
AN
15543 state->first_insn_idx = env->subprog_info[subprog].start;
15544 state->last_insn_idx = -1;
51c39bb1
AS
15545
15546 regs = state->frame[state->curframe]->regs;
be8704ff 15547 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
15548 ret = btf_prepare_func_args(env, subprog, regs);
15549 if (ret)
15550 goto out;
15551 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
15552 if (regs[i].type == PTR_TO_CTX)
15553 mark_reg_known_zero(env, regs, i);
15554 else if (regs[i].type == SCALAR_VALUE)
15555 mark_reg_unknown(env, regs, i);
cf9f2f8d 15556 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
15557 const u32 mem_size = regs[i].mem_size;
15558
15559 mark_reg_known_zero(env, regs, i);
15560 regs[i].mem_size = mem_size;
15561 regs[i].id = ++env->id_gen;
15562 }
51c39bb1
AS
15563 }
15564 } else {
15565 /* 1st arg to a function */
15566 regs[BPF_REG_1].type = PTR_TO_CTX;
15567 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 15568 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
15569 if (ret == -EFAULT)
15570 /* unlikely verifier bug. abort.
15571 * ret == 0 and ret < 0 are sadly acceptable for
15572 * main() function due to backward compatibility.
15573 * Like socket filter program may be written as:
15574 * int bpf_prog(struct pt_regs *ctx)
15575 * and never dereference that ctx in the program.
15576 * 'struct pt_regs' is a type mismatch for socket
15577 * filter that should be using 'struct __sk_buff'.
15578 */
15579 goto out;
15580 }
15581
15582 ret = do_check(env);
15583out:
f59bbfc2
AS
15584 /* check for NULL is necessary, since cur_state can be freed inside
15585 * do_check() under memory pressure.
15586 */
15587 if (env->cur_state) {
15588 free_verifier_state(env->cur_state, true);
15589 env->cur_state = NULL;
15590 }
6f8a57cc
AN
15591 while (!pop_stack(env, NULL, NULL, false));
15592 if (!ret && pop_log)
15593 bpf_vlog_reset(&env->log, 0);
51c39bb1 15594 free_states(env);
51c39bb1
AS
15595 return ret;
15596}
15597
15598/* Verify all global functions in a BPF program one by one based on their BTF.
15599 * All global functions must pass verification. Otherwise the whole program is rejected.
15600 * Consider:
15601 * int bar(int);
15602 * int foo(int f)
15603 * {
15604 * return bar(f);
15605 * }
15606 * int bar(int b)
15607 * {
15608 * ...
15609 * }
15610 * foo() will be verified first for R1=any_scalar_value. During verification it
15611 * will be assumed that bar() already verified successfully and call to bar()
15612 * from foo() will be checked for type match only. Later bar() will be verified
15613 * independently to check that it's safe for R1=any_scalar_value.
15614 */
15615static int do_check_subprogs(struct bpf_verifier_env *env)
15616{
15617 struct bpf_prog_aux *aux = env->prog->aux;
15618 int i, ret;
15619
15620 if (!aux->func_info)
15621 return 0;
15622
15623 for (i = 1; i < env->subprog_cnt; i++) {
15624 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
15625 continue;
15626 env->insn_idx = env->subprog_info[i].start;
15627 WARN_ON_ONCE(env->insn_idx == 0);
15628 ret = do_check_common(env, i);
15629 if (ret) {
15630 return ret;
15631 } else if (env->log.level & BPF_LOG_LEVEL) {
15632 verbose(env,
15633 "Func#%d is safe for any args that match its prototype\n",
15634 i);
15635 }
15636 }
15637 return 0;
15638}
15639
15640static int do_check_main(struct bpf_verifier_env *env)
15641{
15642 int ret;
15643
15644 env->insn_idx = 0;
15645 ret = do_check_common(env, 0);
15646 if (!ret)
15647 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
15648 return ret;
15649}
15650
15651
06ee7115
AS
15652static void print_verification_stats(struct bpf_verifier_env *env)
15653{
15654 int i;
15655
15656 if (env->log.level & BPF_LOG_STATS) {
15657 verbose(env, "verification time %lld usec\n",
15658 div_u64(env->verification_time, 1000));
15659 verbose(env, "stack depth ");
15660 for (i = 0; i < env->subprog_cnt; i++) {
15661 u32 depth = env->subprog_info[i].stack_depth;
15662
15663 verbose(env, "%d", depth);
15664 if (i + 1 < env->subprog_cnt)
15665 verbose(env, "+");
15666 }
15667 verbose(env, "\n");
15668 }
15669 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
15670 "total_states %d peak_states %d mark_read %d\n",
15671 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
15672 env->max_states_per_insn, env->total_states,
15673 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
15674}
15675
27ae7997
MKL
15676static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
15677{
15678 const struct btf_type *t, *func_proto;
15679 const struct bpf_struct_ops *st_ops;
15680 const struct btf_member *member;
15681 struct bpf_prog *prog = env->prog;
15682 u32 btf_id, member_idx;
15683 const char *mname;
15684
12aa8a94
THJ
15685 if (!prog->gpl_compatible) {
15686 verbose(env, "struct ops programs must have a GPL compatible license\n");
15687 return -EINVAL;
15688 }
15689
27ae7997
MKL
15690 btf_id = prog->aux->attach_btf_id;
15691 st_ops = bpf_struct_ops_find(btf_id);
15692 if (!st_ops) {
15693 verbose(env, "attach_btf_id %u is not a supported struct\n",
15694 btf_id);
15695 return -ENOTSUPP;
15696 }
15697
15698 t = st_ops->type;
15699 member_idx = prog->expected_attach_type;
15700 if (member_idx >= btf_type_vlen(t)) {
15701 verbose(env, "attach to invalid member idx %u of struct %s\n",
15702 member_idx, st_ops->name);
15703 return -EINVAL;
15704 }
15705
15706 member = &btf_type_member(t)[member_idx];
15707 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
15708 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
15709 NULL);
15710 if (!func_proto) {
15711 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
15712 mname, member_idx, st_ops->name);
15713 return -EINVAL;
15714 }
15715
15716 if (st_ops->check_member) {
15717 int err = st_ops->check_member(t, member);
15718
15719 if (err) {
15720 verbose(env, "attach to unsupported member %s of struct %s\n",
15721 mname, st_ops->name);
15722 return err;
15723 }
15724 }
15725
15726 prog->aux->attach_func_proto = func_proto;
15727 prog->aux->attach_func_name = mname;
15728 env->ops = st_ops->verifier_ops;
15729
15730 return 0;
15731}
6ba43b76
KS
15732#define SECURITY_PREFIX "security_"
15733
f7b12b6f 15734static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 15735{
69191754 15736 if (within_error_injection_list(addr) ||
f7b12b6f 15737 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 15738 return 0;
6ba43b76 15739
6ba43b76
KS
15740 return -EINVAL;
15741}
27ae7997 15742
1e6c62a8
AS
15743/* list of non-sleepable functions that are otherwise on
15744 * ALLOW_ERROR_INJECTION list
15745 */
15746BTF_SET_START(btf_non_sleepable_error_inject)
15747/* Three functions below can be called from sleepable and non-sleepable context.
15748 * Assume non-sleepable from bpf safety point of view.
15749 */
9dd3d069 15750BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
15751BTF_ID(func, should_fail_alloc_page)
15752BTF_ID(func, should_failslab)
15753BTF_SET_END(btf_non_sleepable_error_inject)
15754
15755static int check_non_sleepable_error_inject(u32 btf_id)
15756{
15757 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
15758}
15759
f7b12b6f
THJ
15760int bpf_check_attach_target(struct bpf_verifier_log *log,
15761 const struct bpf_prog *prog,
15762 const struct bpf_prog *tgt_prog,
15763 u32 btf_id,
15764 struct bpf_attach_target_info *tgt_info)
38207291 15765{
be8704ff 15766 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 15767 const char prefix[] = "btf_trace_";
5b92a28a 15768 int ret = 0, subprog = -1, i;
38207291 15769 const struct btf_type *t;
5b92a28a 15770 bool conservative = true;
38207291 15771 const char *tname;
5b92a28a 15772 struct btf *btf;
f7b12b6f 15773 long addr = 0;
38207291 15774
f1b9509c 15775 if (!btf_id) {
efc68158 15776 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
15777 return -EINVAL;
15778 }
22dc4a0f 15779 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 15780 if (!btf) {
efc68158 15781 bpf_log(log,
5b92a28a
AS
15782 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
15783 return -EINVAL;
15784 }
15785 t = btf_type_by_id(btf, btf_id);
f1b9509c 15786 if (!t) {
efc68158 15787 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
15788 return -EINVAL;
15789 }
5b92a28a 15790 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 15791 if (!tname) {
efc68158 15792 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
15793 return -EINVAL;
15794 }
5b92a28a
AS
15795 if (tgt_prog) {
15796 struct bpf_prog_aux *aux = tgt_prog->aux;
15797
15798 for (i = 0; i < aux->func_info_cnt; i++)
15799 if (aux->func_info[i].type_id == btf_id) {
15800 subprog = i;
15801 break;
15802 }
15803 if (subprog == -1) {
efc68158 15804 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
15805 return -EINVAL;
15806 }
15807 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
15808 if (prog_extension) {
15809 if (conservative) {
efc68158 15810 bpf_log(log,
be8704ff
AS
15811 "Cannot replace static functions\n");
15812 return -EINVAL;
15813 }
15814 if (!prog->jit_requested) {
efc68158 15815 bpf_log(log,
be8704ff
AS
15816 "Extension programs should be JITed\n");
15817 return -EINVAL;
15818 }
be8704ff
AS
15819 }
15820 if (!tgt_prog->jited) {
efc68158 15821 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
15822 return -EINVAL;
15823 }
15824 if (tgt_prog->type == prog->type) {
15825 /* Cannot fentry/fexit another fentry/fexit program.
15826 * Cannot attach program extension to another extension.
15827 * It's ok to attach fentry/fexit to extension program.
15828 */
efc68158 15829 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
15830 return -EINVAL;
15831 }
15832 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
15833 prog_extension &&
15834 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
15835 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
15836 /* Program extensions can extend all program types
15837 * except fentry/fexit. The reason is the following.
15838 * The fentry/fexit programs are used for performance
15839 * analysis, stats and can be attached to any program
15840 * type except themselves. When extension program is
15841 * replacing XDP function it is necessary to allow
15842 * performance analysis of all functions. Both original
15843 * XDP program and its program extension. Hence
15844 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
15845 * allowed. If extending of fentry/fexit was allowed it
15846 * would be possible to create long call chain
15847 * fentry->extension->fentry->extension beyond
15848 * reasonable stack size. Hence extending fentry is not
15849 * allowed.
15850 */
efc68158 15851 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
15852 return -EINVAL;
15853 }
5b92a28a 15854 } else {
be8704ff 15855 if (prog_extension) {
efc68158 15856 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
15857 return -EINVAL;
15858 }
5b92a28a 15859 }
f1b9509c
AS
15860
15861 switch (prog->expected_attach_type) {
15862 case BPF_TRACE_RAW_TP:
5b92a28a 15863 if (tgt_prog) {
efc68158 15864 bpf_log(log,
5b92a28a
AS
15865 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
15866 return -EINVAL;
15867 }
38207291 15868 if (!btf_type_is_typedef(t)) {
efc68158 15869 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
15870 btf_id);
15871 return -EINVAL;
15872 }
f1b9509c 15873 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 15874 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
15875 btf_id, tname);
15876 return -EINVAL;
15877 }
15878 tname += sizeof(prefix) - 1;
5b92a28a 15879 t = btf_type_by_id(btf, t->type);
38207291
MKL
15880 if (!btf_type_is_ptr(t))
15881 /* should never happen in valid vmlinux build */
15882 return -EINVAL;
5b92a28a 15883 t = btf_type_by_id(btf, t->type);
38207291
MKL
15884 if (!btf_type_is_func_proto(t))
15885 /* should never happen in valid vmlinux build */
15886 return -EINVAL;
15887
f7b12b6f 15888 break;
15d83c4d
YS
15889 case BPF_TRACE_ITER:
15890 if (!btf_type_is_func(t)) {
efc68158 15891 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
15892 btf_id);
15893 return -EINVAL;
15894 }
15895 t = btf_type_by_id(btf, t->type);
15896 if (!btf_type_is_func_proto(t))
15897 return -EINVAL;
f7b12b6f
THJ
15898 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15899 if (ret)
15900 return ret;
15901 break;
be8704ff
AS
15902 default:
15903 if (!prog_extension)
15904 return -EINVAL;
df561f66 15905 fallthrough;
ae240823 15906 case BPF_MODIFY_RETURN:
9e4e01df 15907 case BPF_LSM_MAC:
69fd337a 15908 case BPF_LSM_CGROUP:
fec56f58
AS
15909 case BPF_TRACE_FENTRY:
15910 case BPF_TRACE_FEXIT:
15911 if (!btf_type_is_func(t)) {
efc68158 15912 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
15913 btf_id);
15914 return -EINVAL;
15915 }
be8704ff 15916 if (prog_extension &&
efc68158 15917 btf_check_type_match(log, prog, btf, t))
be8704ff 15918 return -EINVAL;
5b92a28a 15919 t = btf_type_by_id(btf, t->type);
fec56f58
AS
15920 if (!btf_type_is_func_proto(t))
15921 return -EINVAL;
f7b12b6f 15922
4a1e7c0c
THJ
15923 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
15924 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
15925 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
15926 return -EINVAL;
15927
f7b12b6f 15928 if (tgt_prog && conservative)
5b92a28a 15929 t = NULL;
f7b12b6f
THJ
15930
15931 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 15932 if (ret < 0)
f7b12b6f
THJ
15933 return ret;
15934
5b92a28a 15935 if (tgt_prog) {
e9eeec58
YS
15936 if (subprog == 0)
15937 addr = (long) tgt_prog->bpf_func;
15938 else
15939 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
15940 } else {
15941 addr = kallsyms_lookup_name(tname);
15942 if (!addr) {
efc68158 15943 bpf_log(log,
5b92a28a
AS
15944 "The address of function %s cannot be found\n",
15945 tname);
f7b12b6f 15946 return -ENOENT;
5b92a28a 15947 }
fec56f58 15948 }
18644cec 15949
1e6c62a8
AS
15950 if (prog->aux->sleepable) {
15951 ret = -EINVAL;
15952 switch (prog->type) {
15953 case BPF_PROG_TYPE_TRACING:
15954 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
15955 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
15956 */
15957 if (!check_non_sleepable_error_inject(btf_id) &&
15958 within_error_injection_list(addr))
15959 ret = 0;
15960 break;
15961 case BPF_PROG_TYPE_LSM:
15962 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
15963 * Only some of them are sleepable.
15964 */
423f1610 15965 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
15966 ret = 0;
15967 break;
15968 default:
15969 break;
15970 }
f7b12b6f
THJ
15971 if (ret) {
15972 bpf_log(log, "%s is not sleepable\n", tname);
15973 return ret;
15974 }
1e6c62a8 15975 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 15976 if (tgt_prog) {
efc68158 15977 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
15978 return -EINVAL;
15979 }
15980 ret = check_attach_modify_return(addr, tname);
15981 if (ret) {
15982 bpf_log(log, "%s() is not modifiable\n", tname);
15983 return ret;
1af9270e 15984 }
18644cec 15985 }
f7b12b6f
THJ
15986
15987 break;
15988 }
15989 tgt_info->tgt_addr = addr;
15990 tgt_info->tgt_name = tname;
15991 tgt_info->tgt_type = t;
15992 return 0;
15993}
15994
35e3815f
JO
15995BTF_SET_START(btf_id_deny)
15996BTF_ID_UNUSED
15997#ifdef CONFIG_SMP
15998BTF_ID(func, migrate_disable)
15999BTF_ID(func, migrate_enable)
16000#endif
16001#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16002BTF_ID(func, rcu_read_unlock_strict)
16003#endif
16004BTF_SET_END(btf_id_deny)
16005
f7b12b6f
THJ
16006static int check_attach_btf_id(struct bpf_verifier_env *env)
16007{
16008 struct bpf_prog *prog = env->prog;
3aac1ead 16009 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
16010 struct bpf_attach_target_info tgt_info = {};
16011 u32 btf_id = prog->aux->attach_btf_id;
16012 struct bpf_trampoline *tr;
16013 int ret;
16014 u64 key;
16015
79a7f8bd
AS
16016 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16017 if (prog->aux->sleepable)
16018 /* attach_btf_id checked to be zero already */
16019 return 0;
16020 verbose(env, "Syscall programs can only be sleepable\n");
16021 return -EINVAL;
16022 }
16023
f7b12b6f 16024 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
64ad7556
DK
16025 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16026 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
f7b12b6f
THJ
16027 return -EINVAL;
16028 }
16029
16030 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16031 return check_struct_ops_btf_id(env);
16032
16033 if (prog->type != BPF_PROG_TYPE_TRACING &&
16034 prog->type != BPF_PROG_TYPE_LSM &&
16035 prog->type != BPF_PROG_TYPE_EXT)
16036 return 0;
16037
16038 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16039 if (ret)
fec56f58 16040 return ret;
f7b12b6f
THJ
16041
16042 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
16043 /* to make freplace equivalent to their targets, they need to
16044 * inherit env->ops and expected_attach_type for the rest of the
16045 * verification
16046 */
f7b12b6f
THJ
16047 env->ops = bpf_verifier_ops[tgt_prog->type];
16048 prog->expected_attach_type = tgt_prog->expected_attach_type;
16049 }
16050
16051 /* store info about the attachment target that will be used later */
16052 prog->aux->attach_func_proto = tgt_info.tgt_type;
16053 prog->aux->attach_func_name = tgt_info.tgt_name;
16054
4a1e7c0c
THJ
16055 if (tgt_prog) {
16056 prog->aux->saved_dst_prog_type = tgt_prog->type;
16057 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16058 }
16059
f7b12b6f
THJ
16060 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16061 prog->aux->attach_btf_trace = true;
16062 return 0;
16063 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16064 if (!bpf_iter_prog_supported(prog))
16065 return -EINVAL;
16066 return 0;
16067 }
16068
16069 if (prog->type == BPF_PROG_TYPE_LSM) {
16070 ret = bpf_lsm_verify_prog(&env->log, prog);
16071 if (ret < 0)
16072 return ret;
35e3815f
JO
16073 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
16074 btf_id_set_contains(&btf_id_deny, btf_id)) {
16075 return -EINVAL;
38207291 16076 }
f7b12b6f 16077
22dc4a0f 16078 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
16079 tr = bpf_trampoline_get(key, &tgt_info);
16080 if (!tr)
16081 return -ENOMEM;
16082
3aac1ead 16083 prog->aux->dst_trampoline = tr;
f7b12b6f 16084 return 0;
38207291
MKL
16085}
16086
76654e67
AM
16087struct btf *bpf_get_btf_vmlinux(void)
16088{
16089 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16090 mutex_lock(&bpf_verifier_lock);
16091 if (!btf_vmlinux)
16092 btf_vmlinux = btf_parse_vmlinux();
16093 mutex_unlock(&bpf_verifier_lock);
16094 }
16095 return btf_vmlinux;
16096}
16097
af2ac3e1 16098int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 16099{
06ee7115 16100 u64 start_time = ktime_get_ns();
58e2af8b 16101 struct bpf_verifier_env *env;
b9193c1b 16102 struct bpf_verifier_log *log;
9e4c24e7 16103 int i, len, ret = -EINVAL;
e2ae4ca2 16104 bool is_priv;
51580e79 16105
eba0c929
AB
16106 /* no program is valid */
16107 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16108 return -EINVAL;
16109
58e2af8b 16110 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
16111 * allocate/free it every time bpf_check() is called
16112 */
58e2af8b 16113 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
16114 if (!env)
16115 return -ENOMEM;
61bd5218 16116 log = &env->log;
cbd35700 16117
9e4c24e7 16118 len = (*prog)->len;
fad953ce 16119 env->insn_aux_data =
9e4c24e7 16120 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
16121 ret = -ENOMEM;
16122 if (!env->insn_aux_data)
16123 goto err_free_env;
9e4c24e7
JK
16124 for (i = 0; i < len; i++)
16125 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 16126 env->prog = *prog;
00176a34 16127 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 16128 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 16129 is_priv = bpf_capable();
0246e64d 16130
76654e67 16131 bpf_get_btf_vmlinux();
8580ac94 16132
cbd35700 16133 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
16134 if (!is_priv)
16135 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
16136
16137 if (attr->log_level || attr->log_buf || attr->log_size) {
16138 /* user requested verbose verifier output
16139 * and supplied buffer to store the verification trace
16140 */
e7bf8249
JK
16141 log->level = attr->log_level;
16142 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16143 log->len_total = attr->log_size;
cbd35700 16144
e7bf8249 16145 /* log attributes have to be sane */
866de407
HT
16146 if (!bpf_verifier_log_attr_valid(log)) {
16147 ret = -EINVAL;
3df126f3 16148 goto err_unlock;
866de407 16149 }
cbd35700 16150 }
1ad2f583 16151
0f55f9ed
CL
16152 mark_verifier_state_clean(env);
16153
8580ac94
AS
16154 if (IS_ERR(btf_vmlinux)) {
16155 /* Either gcc or pahole or kernel are broken. */
16156 verbose(env, "in-kernel BTF is malformed\n");
16157 ret = PTR_ERR(btf_vmlinux);
38207291 16158 goto skip_full_check;
8580ac94
AS
16159 }
16160
1ad2f583
DB
16161 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16162 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 16163 env->strict_alignment = true;
e9ee9efc
DM
16164 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16165 env->strict_alignment = false;
cbd35700 16166
2c78ee89 16167 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 16168 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 16169 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
16170 env->bypass_spec_v1 = bpf_bypass_spec_v1();
16171 env->bypass_spec_v4 = bpf_bypass_spec_v4();
16172 env->bpf_capable = bpf_capable();
e2ae4ca2 16173
10d274e8
AS
16174 if (is_priv)
16175 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16176
dc2a4ebc 16177 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 16178 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
16179 GFP_USER);
16180 ret = -ENOMEM;
16181 if (!env->explored_states)
16182 goto skip_full_check;
16183
e6ac2450
MKL
16184 ret = add_subprog_and_kfunc(env);
16185 if (ret < 0)
16186 goto skip_full_check;
16187
d9762e84 16188 ret = check_subprogs(env);
475fb78f
AS
16189 if (ret < 0)
16190 goto skip_full_check;
16191
c454a46b 16192 ret = check_btf_info(env, attr, uattr);
838e9690
YS
16193 if (ret < 0)
16194 goto skip_full_check;
16195
be8704ff
AS
16196 ret = check_attach_btf_id(env);
16197 if (ret)
16198 goto skip_full_check;
16199
4976b718
HL
16200 ret = resolve_pseudo_ldimm64(env);
16201 if (ret < 0)
16202 goto skip_full_check;
16203
ceb11679
YZ
16204 if (bpf_prog_is_dev_bound(env->prog->aux)) {
16205 ret = bpf_prog_offload_verifier_prep(env->prog);
16206 if (ret)
16207 goto skip_full_check;
16208 }
16209
d9762e84
MKL
16210 ret = check_cfg(env);
16211 if (ret < 0)
16212 goto skip_full_check;
16213
51c39bb1
AS
16214 ret = do_check_subprogs(env);
16215 ret = ret ?: do_check_main(env);
cbd35700 16216
c941ce9c
QM
16217 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16218 ret = bpf_prog_offload_finalize(env);
16219
0246e64d 16220skip_full_check:
51c39bb1 16221 kvfree(env->explored_states);
0246e64d 16222
c131187d 16223 if (ret == 0)
9b38c405 16224 ret = check_max_stack_depth(env);
c131187d 16225
9b38c405 16226 /* instruction rewrites happen after this point */
1ade2371
EZ
16227 if (ret == 0)
16228 ret = optimize_bpf_loop(env);
16229
e2ae4ca2
JK
16230 if (is_priv) {
16231 if (ret == 0)
16232 opt_hard_wire_dead_code_branches(env);
52875a04
JK
16233 if (ret == 0)
16234 ret = opt_remove_dead_code(env);
a1b14abc
JK
16235 if (ret == 0)
16236 ret = opt_remove_nops(env);
52875a04
JK
16237 } else {
16238 if (ret == 0)
16239 sanitize_dead_code(env);
e2ae4ca2
JK
16240 }
16241
9bac3d6d
AS
16242 if (ret == 0)
16243 /* program is valid, convert *(u32*)(ctx + off) accesses */
16244 ret = convert_ctx_accesses(env);
16245
e245c5c6 16246 if (ret == 0)
e6ac5933 16247 ret = do_misc_fixups(env);
e245c5c6 16248
a4b1d3c1
JW
16249 /* do 32-bit optimization after insn patching has done so those patched
16250 * insns could be handled correctly.
16251 */
d6c2308c
JW
16252 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16253 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16254 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16255 : false;
a4b1d3c1
JW
16256 }
16257
1ea47e01
AS
16258 if (ret == 0)
16259 ret = fixup_call_args(env);
16260
06ee7115
AS
16261 env->verification_time = ktime_get_ns() - start_time;
16262 print_verification_stats(env);
aba64c7d 16263 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 16264
a2a7d570 16265 if (log->level && bpf_verifier_log_full(log))
cbd35700 16266 ret = -ENOSPC;
a2a7d570 16267 if (log->level && !log->ubuf) {
cbd35700 16268 ret = -EFAULT;
a2a7d570 16269 goto err_release_maps;
cbd35700
AS
16270 }
16271
541c3bad
AN
16272 if (ret)
16273 goto err_release_maps;
16274
16275 if (env->used_map_cnt) {
0246e64d 16276 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
16277 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
16278 sizeof(env->used_maps[0]),
16279 GFP_KERNEL);
0246e64d 16280
9bac3d6d 16281 if (!env->prog->aux->used_maps) {
0246e64d 16282 ret = -ENOMEM;
a2a7d570 16283 goto err_release_maps;
0246e64d
AS
16284 }
16285
9bac3d6d 16286 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 16287 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 16288 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
16289 }
16290 if (env->used_btf_cnt) {
16291 /* if program passed verifier, update used_btfs in bpf_prog_aux */
16292 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
16293 sizeof(env->used_btfs[0]),
16294 GFP_KERNEL);
16295 if (!env->prog->aux->used_btfs) {
16296 ret = -ENOMEM;
16297 goto err_release_maps;
16298 }
0246e64d 16299
541c3bad
AN
16300 memcpy(env->prog->aux->used_btfs, env->used_btfs,
16301 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
16302 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
16303 }
16304 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
16305 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
16306 * bpf_ld_imm64 instructions
16307 */
16308 convert_pseudo_ld_imm64(env);
16309 }
cbd35700 16310
541c3bad 16311 adjust_btf_func(env);
ba64e7d8 16312
a2a7d570 16313err_release_maps:
9bac3d6d 16314 if (!env->prog->aux->used_maps)
0246e64d 16315 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 16316 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
16317 */
16318 release_maps(env);
541c3bad
AN
16319 if (!env->prog->aux->used_btfs)
16320 release_btfs(env);
03f87c0b
THJ
16321
16322 /* extension progs temporarily inherit the attach_type of their targets
16323 for verification purposes, so set it back to zero before returning
16324 */
16325 if (env->prog->type == BPF_PROG_TYPE_EXT)
16326 env->prog->expected_attach_type = 0;
16327
9bac3d6d 16328 *prog = env->prog;
3df126f3 16329err_unlock:
45a73c17
AS
16330 if (!is_priv)
16331 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
16332 vfree(env->insn_aux_data);
16333err_free_env:
16334 kfree(env);
51580e79
AS
16335 return ret;
16336}