bpf: export bpf_prog_inc_not_zero
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
8e17c1b1 143#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
f1174f77 183 [SCALAR_VALUE] = "inv",
17a52670
AS
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 188 [PTR_TO_STACK] = "fp",
969bf05e
AS
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
191};
192
ebb676da
TG
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196};
197#undef __BPF_FUNC_STR_FN
198
199static const char *func_id_name(int id)
200{
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207}
208
58e2af8b 209static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 210{
58e2af8b 211 struct bpf_reg_state *reg;
17a52670
AS
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
216 reg = &state->regs[i];
217 t = reg->type;
17a52670
AS
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
7d1238f2
EC
237 if (tnum_is_const(reg->var_off)) {
238 /* Typically an immediate SCALAR_VALUE, but
239 * could be a pointer whose offset is too big
240 * for reg->off
241 */
242 verbose(",imm=%llx", reg->var_off.value);
243 } else {
244 if (reg->smin_value != reg->umin_value &&
245 reg->smin_value != S64_MIN)
246 verbose(",smin_value=%lld",
247 (long long)reg->smin_value);
248 if (reg->smax_value != reg->umax_value &&
249 reg->smax_value != S64_MAX)
250 verbose(",smax_value=%lld",
251 (long long)reg->smax_value);
252 if (reg->umin_value != 0)
253 verbose(",umin_value=%llu",
254 (unsigned long long)reg->umin_value);
255 if (reg->umax_value != U64_MAX)
256 verbose(",umax_value=%llu",
257 (unsigned long long)reg->umax_value);
258 if (!tnum_is_unknown(reg->var_off)) {
259 char tn_buf[48];
f1174f77 260
7d1238f2
EC
261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 verbose(",var_off=%s", tn_buf);
263 }
f1174f77
EC
264 }
265 verbose(")");
266 }
17a52670 267 }
9c399760 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 269 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
272 }
273 verbose("\n");
274}
275
cbd35700
AS
276static const char *const bpf_class_string[] = {
277 [BPF_LD] = "ld",
278 [BPF_LDX] = "ldx",
279 [BPF_ST] = "st",
280 [BPF_STX] = "stx",
281 [BPF_ALU] = "alu",
282 [BPF_JMP] = "jmp",
283 [BPF_RET] = "BUG",
284 [BPF_ALU64] = "alu64",
285};
286
687f0715 287static const char *const bpf_alu_string[16] = {
cbd35700
AS
288 [BPF_ADD >> 4] = "+=",
289 [BPF_SUB >> 4] = "-=",
290 [BPF_MUL >> 4] = "*=",
291 [BPF_DIV >> 4] = "/=",
292 [BPF_OR >> 4] = "|=",
293 [BPF_AND >> 4] = "&=",
294 [BPF_LSH >> 4] = "<<=",
295 [BPF_RSH >> 4] = ">>=",
296 [BPF_NEG >> 4] = "neg",
297 [BPF_MOD >> 4] = "%=",
298 [BPF_XOR >> 4] = "^=",
299 [BPF_MOV >> 4] = "=",
300 [BPF_ARSH >> 4] = "s>>=",
301 [BPF_END >> 4] = "endian",
302};
303
304static const char *const bpf_ldst_string[] = {
305 [BPF_W >> 3] = "u32",
306 [BPF_H >> 3] = "u16",
307 [BPF_B >> 3] = "u8",
308 [BPF_DW >> 3] = "u64",
309};
310
687f0715 311static const char *const bpf_jmp_string[16] = {
cbd35700
AS
312 [BPF_JA >> 4] = "jmp",
313 [BPF_JEQ >> 4] = "==",
314 [BPF_JGT >> 4] = ">",
b4e432f1 315 [BPF_JLT >> 4] = "<",
cbd35700 316 [BPF_JGE >> 4] = ">=",
b4e432f1 317 [BPF_JLE >> 4] = "<=",
cbd35700
AS
318 [BPF_JSET >> 4] = "&",
319 [BPF_JNE >> 4] = "!=",
320 [BPF_JSGT >> 4] = "s>",
b4e432f1 321 [BPF_JSLT >> 4] = "s<",
cbd35700 322 [BPF_JSGE >> 4] = "s>=",
b4e432f1 323 [BPF_JSLE >> 4] = "s<=",
cbd35700
AS
324 [BPF_CALL >> 4] = "call",
325 [BPF_EXIT >> 4] = "exit",
326};
327
0d0e5769
DB
328static void print_bpf_insn(const struct bpf_verifier_env *env,
329 const struct bpf_insn *insn)
cbd35700
AS
330{
331 u8 class = BPF_CLASS(insn->code);
332
333 if (class == BPF_ALU || class == BPF_ALU64) {
334 if (BPF_SRC(insn->code) == BPF_X)
335 verbose("(%02x) %sr%d %s %sr%d\n",
336 insn->code, class == BPF_ALU ? "(u32) " : "",
337 insn->dst_reg,
338 bpf_alu_string[BPF_OP(insn->code) >> 4],
339 class == BPF_ALU ? "(u32) " : "",
340 insn->src_reg);
341 else
342 verbose("(%02x) %sr%d %s %s%d\n",
343 insn->code, class == BPF_ALU ? "(u32) " : "",
344 insn->dst_reg,
345 bpf_alu_string[BPF_OP(insn->code) >> 4],
346 class == BPF_ALU ? "(u32) " : "",
347 insn->imm);
348 } else if (class == BPF_STX) {
349 if (BPF_MODE(insn->code) == BPF_MEM)
350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 insn->code,
352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 insn->dst_reg,
354 insn->off, insn->src_reg);
355 else if (BPF_MODE(insn->code) == BPF_XADD)
356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->dst_reg, insn->off,
360 insn->src_reg);
361 else
362 verbose("BUG_%02x\n", insn->code);
363 } else if (class == BPF_ST) {
364 if (BPF_MODE(insn->code) != BPF_MEM) {
365 verbose("BUG_st_%02x\n", insn->code);
366 return;
367 }
368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->dst_reg,
372 insn->off, insn->imm);
373 } else if (class == BPF_LDX) {
374 if (BPF_MODE(insn->code) != BPF_MEM) {
375 verbose("BUG_ldx_%02x\n", insn->code);
376 return;
377 }
378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 insn->code, insn->dst_reg,
380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 insn->src_reg, insn->off);
382 } else if (class == BPF_LD) {
383 if (BPF_MODE(insn->code) == BPF_ABS) {
384 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 insn->code,
386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 insn->imm);
388 } else if (BPF_MODE(insn->code) == BPF_IND) {
389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 insn->code,
391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 insn->src_reg, insn->imm);
0d0e5769
DB
393 } else if (BPF_MODE(insn->code) == BPF_IMM &&
394 BPF_SIZE(insn->code) == BPF_DW) {
395 /* At this point, we already made sure that the second
396 * part of the ldimm64 insn is accessible.
397 */
398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400
401 if (map_ptr && !env->allow_ptr_leaks)
402 imm = 0;
403
404 verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
406 } else {
407 verbose("BUG_ld_%02x\n", insn->code);
408 return;
409 }
410 } else if (class == BPF_JMP) {
411 u8 opcode = BPF_OP(insn->code);
412
413 if (opcode == BPF_CALL) {
ebb676da
TG
414 verbose("(%02x) call %s#%d\n", insn->code,
415 func_id_name(insn->imm), insn->imm);
cbd35700
AS
416 } else if (insn->code == (BPF_JMP | BPF_JA)) {
417 verbose("(%02x) goto pc%+d\n",
418 insn->code, insn->off);
419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 verbose("(%02x) exit\n", insn->code);
421 } else if (BPF_SRC(insn->code) == BPF_X) {
422 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 insn->code, insn->dst_reg,
424 bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 insn->src_reg, insn->off);
426 } else {
427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 insn->code, insn->dst_reg,
429 bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 insn->imm, insn->off);
431 }
432 } else {
433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 }
435}
436
58e2af8b 437static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 438{
58e2af8b 439 struct bpf_verifier_stack_elem *elem;
17a52670
AS
440 int insn_idx;
441
442 if (env->head == NULL)
443 return -1;
444
445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 insn_idx = env->head->insn_idx;
447 if (prev_insn_idx)
448 *prev_insn_idx = env->head->prev_insn_idx;
449 elem = env->head->next;
450 kfree(env->head);
451 env->head = elem;
452 env->stack_size--;
453 return insn_idx;
454}
455
58e2af8b
JK
456static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 int insn_idx, int prev_insn_idx)
17a52670 458{
58e2af8b 459 struct bpf_verifier_stack_elem *elem;
17a52670 460
58e2af8b 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
462 if (!elem)
463 goto err;
464
465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 elem->insn_idx = insn_idx;
467 elem->prev_insn_idx = prev_insn_idx;
468 elem->next = env->head;
469 env->head = elem;
470 env->stack_size++;
07016151 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
472 verbose("BPF program is too complex\n");
473 goto err;
474 }
475 return &elem->st;
476err:
477 /* pop all elements and return */
478 while (pop_stack(env, NULL) >= 0);
479 return NULL;
480}
481
482#define CALLER_SAVED_REGS 6
483static const int caller_saved[CALLER_SAVED_REGS] = {
484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485};
486
f1174f77
EC
487static void __mark_reg_not_init(struct bpf_reg_state *reg);
488
b03c9f9f
EC
489/* Mark the unknown part of a register (variable offset or scalar value) as
490 * known to have the value @imm.
491 */
492static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493{
494 reg->id = 0;
495 reg->var_off = tnum_const(imm);
496 reg->smin_value = (s64)imm;
497 reg->smax_value = (s64)imm;
498 reg->umin_value = imm;
499 reg->umax_value = imm;
500}
501
f1174f77
EC
502/* Mark the 'variable offset' part of a register as zero. This should be
503 * used only on registers holding a pointer type.
504 */
505static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 506{
b03c9f9f 507 __mark_reg_known(reg, 0);
f1174f77 508}
a9789ef9 509
f1174f77
EC
510static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511{
512 if (WARN_ON(regno >= MAX_BPF_REG)) {
513 verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 /* Something bad happened, let's kill all regs */
515 for (regno = 0; regno < MAX_BPF_REG; regno++)
516 __mark_reg_not_init(regs + regno);
517 return;
518 }
519 __mark_reg_known_zero(regs + regno);
520}
521
b03c9f9f
EC
522/* Attempts to improve min/max values based on var_off information */
523static void __update_reg_bounds(struct bpf_reg_state *reg)
524{
525 /* min signed is max(sign bit) | min(other bits) */
526 reg->smin_value = max_t(s64, reg->smin_value,
527 reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 /* max signed is min(sign bit) | max(other bits) */
529 reg->smax_value = min_t(s64, reg->smax_value,
530 reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 reg->umax_value = min(reg->umax_value,
533 reg->var_off.value | reg->var_off.mask);
534}
535
536/* Uses signed min/max values to inform unsigned, and vice-versa */
537static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538{
539 /* Learn sign from signed bounds.
540 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 * are the same, so combine. This works even in the negative case, e.g.
542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 */
544 if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 reg->umin_value);
547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 reg->umax_value);
549 return;
550 }
551 /* Learn sign from unsigned bounds. Signed bounds cross the sign
552 * boundary, so we must be careful.
553 */
554 if ((s64)reg->umax_value >= 0) {
555 /* Positive. We can't learn anything from the smin, but smax
556 * is positive, hence safe.
557 */
558 reg->smin_value = reg->umin_value;
559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 reg->umax_value);
561 } else if ((s64)reg->umin_value < 0) {
562 /* Negative. We can't learn anything from the smax, but smin
563 * is negative, hence safe.
564 */
565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 reg->umin_value);
567 reg->smax_value = reg->umax_value;
568 }
569}
570
571/* Attempts to improve var_off based on unsigned min/max information */
572static void __reg_bound_offset(struct bpf_reg_state *reg)
573{
574 reg->var_off = tnum_intersect(reg->var_off,
575 tnum_range(reg->umin_value,
576 reg->umax_value));
577}
578
579/* Reset the min/max bounds of a register */
580static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581{
582 reg->smin_value = S64_MIN;
583 reg->smax_value = S64_MAX;
584 reg->umin_value = 0;
585 reg->umax_value = U64_MAX;
586}
587
f1174f77
EC
588/* Mark a register as having a completely unknown (scalar) value. */
589static void __mark_reg_unknown(struct bpf_reg_state *reg)
590{
591 reg->type = SCALAR_VALUE;
592 reg->id = 0;
593 reg->off = 0;
594 reg->var_off = tnum_unknown;
b03c9f9f 595 __mark_reg_unbounded(reg);
f1174f77
EC
596}
597
598static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599{
600 if (WARN_ON(regno >= MAX_BPF_REG)) {
601 verbose("mark_reg_unknown(regs, %u)\n", regno);
602 /* Something bad happened, let's kill all regs */
603 for (regno = 0; regno < MAX_BPF_REG; regno++)
604 __mark_reg_not_init(regs + regno);
605 return;
606 }
607 __mark_reg_unknown(regs + regno);
608}
609
610static void __mark_reg_not_init(struct bpf_reg_state *reg)
611{
612 __mark_reg_unknown(reg);
613 reg->type = NOT_INIT;
614}
615
616static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617{
618 if (WARN_ON(regno >= MAX_BPF_REG)) {
619 verbose("mark_reg_not_init(regs, %u)\n", regno);
620 /* Something bad happened, let's kill all regs */
621 for (regno = 0; regno < MAX_BPF_REG; regno++)
622 __mark_reg_not_init(regs + regno);
623 return;
624 }
625 __mark_reg_not_init(regs + regno);
a9789ef9
DB
626}
627
58e2af8b 628static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
629{
630 int i;
631
dc503a8a 632 for (i = 0; i < MAX_BPF_REG; i++) {
a9789ef9 633 mark_reg_not_init(regs, i);
dc503a8a
EC
634 regs[i].live = REG_LIVE_NONE;
635 }
17a52670
AS
636
637 /* frame pointer */
f1174f77
EC
638 regs[BPF_REG_FP].type = PTR_TO_STACK;
639 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
640
641 /* 1st arg to a function */
642 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 643 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
644}
645
17a52670
AS
646enum reg_arg_type {
647 SRC_OP, /* register is used as source operand */
648 DST_OP, /* register is used as destination operand */
649 DST_OP_NO_MARK /* same as above, check only, don't mark */
650};
651
dc503a8a
EC
652static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653{
654 struct bpf_verifier_state *parent = state->parent;
655
656 while (parent) {
657 /* if read wasn't screened by an earlier write ... */
658 if (state->regs[regno].live & REG_LIVE_WRITTEN)
659 break;
660 /* ... then we depend on parent's value */
661 parent->regs[regno].live |= REG_LIVE_READ;
662 state = parent;
663 parent = state->parent;
664 }
665}
666
667static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
668 enum reg_arg_type t)
669{
dc503a8a
EC
670 struct bpf_reg_state *regs = env->cur_state.regs;
671
17a52670
AS
672 if (regno >= MAX_BPF_REG) {
673 verbose("R%d is invalid\n", regno);
674 return -EINVAL;
675 }
676
677 if (t == SRC_OP) {
678 /* check whether register used as source operand can be read */
679 if (regs[regno].type == NOT_INIT) {
680 verbose("R%d !read_ok\n", regno);
681 return -EACCES;
682 }
dc503a8a 683 mark_reg_read(&env->cur_state, regno);
17a52670
AS
684 } else {
685 /* check whether register used as dest operand can be written to */
686 if (regno == BPF_REG_FP) {
687 verbose("frame pointer is read only\n");
688 return -EACCES;
689 }
dc503a8a 690 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 691 if (t == DST_OP)
f1174f77 692 mark_reg_unknown(regs, regno);
17a52670
AS
693 }
694 return 0;
695}
696
1be7f75d
AS
697static bool is_spillable_regtype(enum bpf_reg_type type)
698{
699 switch (type) {
700 case PTR_TO_MAP_VALUE:
701 case PTR_TO_MAP_VALUE_OR_NULL:
702 case PTR_TO_STACK:
703 case PTR_TO_CTX:
969bf05e
AS
704 case PTR_TO_PACKET:
705 case PTR_TO_PACKET_END:
1be7f75d
AS
706 case CONST_PTR_TO_MAP:
707 return true;
708 default:
709 return false;
710 }
711}
712
17a52670
AS
713/* check_stack_read/write functions track spill/fill of registers,
714 * stack boundary and alignment are checked in check_mem_access()
715 */
58e2af8b
JK
716static int check_stack_write(struct bpf_verifier_state *state, int off,
717 int size, int value_regno)
17a52670 718{
dc503a8a 719 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
720 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
721 * so it's aligned access and [off, off + size) are within stack limits
722 */
17a52670
AS
723
724 if (value_regno >= 0 &&
1be7f75d 725 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
726
727 /* register containing pointer is being spilled into stack */
9c399760 728 if (size != BPF_REG_SIZE) {
17a52670
AS
729 verbose("invalid size of register spill\n");
730 return -EACCES;
731 }
732
17a52670 733 /* save register state */
dc503a8a
EC
734 state->spilled_regs[spi] = state->regs[value_regno];
735 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 736
9c399760
AS
737 for (i = 0; i < BPF_REG_SIZE; i++)
738 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
739 } else {
17a52670 740 /* regular write of data into stack */
dc503a8a 741 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
742
743 for (i = 0; i < size; i++)
744 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
745 }
746 return 0;
747}
748
dc503a8a
EC
749static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
750{
751 struct bpf_verifier_state *parent = state->parent;
752
753 while (parent) {
754 /* if read wasn't screened by an earlier write ... */
755 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
756 break;
757 /* ... then we depend on parent's value */
758 parent->spilled_regs[slot].live |= REG_LIVE_READ;
759 state = parent;
760 parent = state->parent;
761 }
762}
763
58e2af8b 764static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
765 int value_regno)
766{
9c399760 767 u8 *slot_type;
dc503a8a 768 int i, spi;
17a52670 769
9c399760 770 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 771
9c399760
AS
772 if (slot_type[0] == STACK_SPILL) {
773 if (size != BPF_REG_SIZE) {
17a52670
AS
774 verbose("invalid size of register spill\n");
775 return -EACCES;
776 }
9c399760
AS
777 for (i = 1; i < BPF_REG_SIZE; i++) {
778 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
779 verbose("corrupted spill memory\n");
780 return -EACCES;
781 }
782 }
783
dc503a8a
EC
784 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
785
786 if (value_regno >= 0) {
17a52670 787 /* restore register state from stack */
dc503a8a
EC
788 state->regs[value_regno] = state->spilled_regs[spi];
789 mark_stack_slot_read(state, spi);
790 }
17a52670
AS
791 return 0;
792 } else {
793 for (i = 0; i < size; i++) {
9c399760 794 if (slot_type[i] != STACK_MISC) {
17a52670
AS
795 verbose("invalid read from stack off %d+%d size %d\n",
796 off, i, size);
797 return -EACCES;
798 }
799 }
800 if (value_regno >= 0)
801 /* have read misc data from the stack */
f1174f77 802 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
803 return 0;
804 }
805}
806
807/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 808static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
809 int size)
810{
811 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
812
5722569b 813 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
814 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
815 map->value_size, off, size);
816 return -EACCES;
817 }
818 return 0;
819}
820
f1174f77
EC
821/* check read/write into a map element with possible variable offset */
822static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
823 int off, int size)
824{
825 struct bpf_verifier_state *state = &env->cur_state;
826 struct bpf_reg_state *reg = &state->regs[regno];
827 int err;
828
f1174f77
EC
829 /* We may have adjusted the register to this map value, so we
830 * need to try adding each of min_value and max_value to off
831 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
832 */
833 if (log_level)
834 print_verifier_state(state);
f1174f77
EC
835 /* If the offset is variable, we will need to be stricter in state
836 * pruning from now on.
837 */
838 if (!tnum_is_const(reg->var_off))
839 env->varlen_map_value_access = true;
dbcfe5f7
GB
840 /* The minimum value is only important with signed
841 * comparisons where we can't assume the floor of a
842 * value is 0. If we are using signed variables for our
843 * index'es we need to make sure that whatever we use
844 * will have a set floor within our range.
845 */
b03c9f9f 846 if (reg->smin_value < 0) {
dbcfe5f7
GB
847 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
848 regno);
849 return -EACCES;
850 }
b03c9f9f 851 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 852 if (err) {
f1174f77 853 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
854 return err;
855 }
856
b03c9f9f
EC
857 /* If we haven't set a max value then we need to bail since we can't be
858 * sure we won't do bad things.
859 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 860 */
b03c9f9f 861 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
862 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
863 regno);
864 return -EACCES;
865 }
b03c9f9f 866 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
867 if (err)
868 verbose("R%d max value is outside of the array range\n", regno);
869 return err;
dbcfe5f7
GB
870}
871
969bf05e
AS
872#define MAX_PACKET_OFF 0xffff
873
58e2af8b 874static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
875 const struct bpf_call_arg_meta *meta,
876 enum bpf_access_type t)
4acf6c0b 877{
36bbef52 878 switch (env->prog->type) {
3a0af8fd
TG
879 case BPF_PROG_TYPE_LWT_IN:
880 case BPF_PROG_TYPE_LWT_OUT:
881 /* dst_input() and dst_output() can't write for now */
882 if (t == BPF_WRITE)
883 return false;
7e57fbb2 884 /* fallthrough */
36bbef52
DB
885 case BPF_PROG_TYPE_SCHED_CLS:
886 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 887 case BPF_PROG_TYPE_XDP:
3a0af8fd 888 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
889 if (meta)
890 return meta->pkt_access;
891
892 env->seen_direct_write = true;
4acf6c0b
BB
893 return true;
894 default:
895 return false;
896 }
897}
898
f1174f77
EC
899static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
900 int off, int size)
969bf05e 901{
58e2af8b
JK
902 struct bpf_reg_state *regs = env->cur_state.regs;
903 struct bpf_reg_state *reg = &regs[regno];
969bf05e 904
f1174f77 905 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
906 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
907 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
908 return -EACCES;
909 }
910 return 0;
911}
912
f1174f77
EC
913static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
914 int size)
915{
916 struct bpf_reg_state *regs = env->cur_state.regs;
917 struct bpf_reg_state *reg = &regs[regno];
918 int err;
919
920 /* We may have added a variable offset to the packet pointer; but any
921 * reg->range we have comes after that. We are only checking the fixed
922 * offset.
923 */
924
925 /* We don't allow negative numbers, because we aren't tracking enough
926 * detail to prove they're safe.
927 */
b03c9f9f 928 if (reg->smin_value < 0) {
f1174f77
EC
929 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
930 regno);
931 return -EACCES;
932 }
933 err = __check_packet_access(env, regno, off, size);
934 if (err) {
935 verbose("R%d offset is outside of the packet\n", regno);
936 return err;
937 }
938 return err;
939}
940
941/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 942static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 943 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 944{
f96da094
DB
945 struct bpf_insn_access_aux info = {
946 .reg_type = *reg_type,
947 };
31fd8581 948
13a27dfc
JK
949 /* for analyzer ctx accesses are already validated and converted */
950 if (env->analyzer_ops)
951 return 0;
952
17a52670 953 if (env->prog->aux->ops->is_valid_access &&
23994631 954 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
955 /* A non zero info.ctx_field_size indicates that this field is a
956 * candidate for later verifier transformation to load the whole
957 * field and then apply a mask when accessed with a narrower
958 * access than actual ctx access size. A zero info.ctx_field_size
959 * will only allow for whole field access and rejects any other
960 * type of narrower access.
31fd8581 961 */
f96da094 962 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 963 *reg_type = info.reg_type;
31fd8581 964
32bbe007
AS
965 /* remember the offset of last byte accessed in ctx */
966 if (env->prog->aux->max_ctx_offset < off + size)
967 env->prog->aux->max_ctx_offset = off + size;
17a52670 968 return 0;
32bbe007 969 }
17a52670
AS
970
971 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
972 return -EACCES;
973}
974
4cabc5b1
DB
975static bool __is_pointer_value(bool allow_ptr_leaks,
976 const struct bpf_reg_state *reg)
1be7f75d 977{
4cabc5b1 978 if (allow_ptr_leaks)
1be7f75d
AS
979 return false;
980
f1174f77 981 return reg->type != SCALAR_VALUE;
1be7f75d
AS
982}
983
4cabc5b1
DB
984static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
985{
986 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
987}
988
79adffcd 989static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 990 int off, int size, bool strict)
969bf05e 991{
f1174f77 992 struct tnum reg_off;
e07b98d9 993 int ip_align;
d1174416
DM
994
995 /* Byte size accesses are always allowed. */
996 if (!strict || size == 1)
997 return 0;
998
e4eda884
DM
999 /* For platforms that do not have a Kconfig enabling
1000 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1001 * NET_IP_ALIGN is universally set to '2'. And on platforms
1002 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1003 * to this code only in strict mode where we want to emulate
1004 * the NET_IP_ALIGN==2 checking. Therefore use an
1005 * unconditional IP align value of '2'.
e07b98d9 1006 */
e4eda884 1007 ip_align = 2;
f1174f77
EC
1008
1009 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1010 if (!tnum_is_aligned(reg_off, size)) {
1011 char tn_buf[48];
1012
1013 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1014 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1015 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1016 return -EACCES;
1017 }
79adffcd 1018
969bf05e
AS
1019 return 0;
1020}
1021
f1174f77
EC
1022static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1023 const char *pointer_desc,
1024 int off, int size, bool strict)
79adffcd 1025{
f1174f77
EC
1026 struct tnum reg_off;
1027
1028 /* Byte size accesses are always allowed. */
1029 if (!strict || size == 1)
1030 return 0;
1031
1032 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1033 if (!tnum_is_aligned(reg_off, size)) {
1034 char tn_buf[48];
1035
1036 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1037 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1038 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1039 return -EACCES;
1040 }
1041
969bf05e
AS
1042 return 0;
1043}
1044
e07b98d9
DM
1045static int check_ptr_alignment(struct bpf_verifier_env *env,
1046 const struct bpf_reg_state *reg,
79adffcd
DB
1047 int off, int size)
1048{
e07b98d9 1049 bool strict = env->strict_alignment;
f1174f77 1050 const char *pointer_desc = "";
d1174416 1051
79adffcd
DB
1052 switch (reg->type) {
1053 case PTR_TO_PACKET:
f1174f77 1054 /* special case, because of NET_IP_ALIGN */
d1174416 1055 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1056 case PTR_TO_MAP_VALUE:
1057 pointer_desc = "value ";
1058 break;
1059 case PTR_TO_CTX:
1060 pointer_desc = "context ";
1061 break;
1062 case PTR_TO_STACK:
1063 pointer_desc = "stack ";
1064 break;
79adffcd 1065 default:
f1174f77 1066 break;
79adffcd 1067 }
f1174f77 1068 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1069}
1070
17a52670
AS
1071/* check whether memory at (regno + off) is accessible for t = (read | write)
1072 * if t==write, value_regno is a register which value is stored into memory
1073 * if t==read, value_regno is a register which will receive the value from memory
1074 * if t==write && value_regno==-1, some unknown value is stored into memory
1075 * if t==read && value_regno==-1, don't care what we read from memory
1076 */
31fd8581 1077static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1078 int bpf_size, enum bpf_access_type t,
1079 int value_regno)
1080{
58e2af8b
JK
1081 struct bpf_verifier_state *state = &env->cur_state;
1082 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1083 int size, err = 0;
1084
1085 size = bpf_size_to_bytes(bpf_size);
1086 if (size < 0)
1087 return size;
1088
f1174f77 1089 /* alignment checks will add in reg->off themselves */
e07b98d9 1090 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1091 if (err)
1092 return err;
17a52670 1093
f1174f77
EC
1094 /* for access checks, reg->off is just part of off */
1095 off += reg->off;
1096
1097 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1098 if (t == BPF_WRITE && value_regno >= 0 &&
1099 is_pointer_value(env, value_regno)) {
1100 verbose("R%d leaks addr into map\n", value_regno);
1101 return -EACCES;
1102 }
48461135 1103
f1174f77 1104 err = check_map_access(env, regno, off, size);
17a52670 1105 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1106 mark_reg_unknown(state->regs, value_regno);
17a52670 1107
1a0dc1ac 1108 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1109 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1110
1be7f75d
AS
1111 if (t == BPF_WRITE && value_regno >= 0 &&
1112 is_pointer_value(env, value_regno)) {
1113 verbose("R%d leaks addr into ctx\n", value_regno);
1114 return -EACCES;
1115 }
f1174f77
EC
1116 /* ctx accesses must be at a fixed offset, so that we can
1117 * determine what type of data were returned.
1118 */
1119 if (!tnum_is_const(reg->var_off)) {
1120 char tn_buf[48];
1121
1122 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1123 verbose("variable ctx access var_off=%s off=%d size=%d",
1124 tn_buf, off, size);
1125 return -EACCES;
1126 }
1127 off += reg->var_off.value;
31fd8581 1128 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1129 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77
EC
1130 /* ctx access returns either a scalar, or a
1131 * PTR_TO_PACKET[_END]. In the latter case, we know
1132 * the offset is zero.
1133 */
1134 if (reg_type == SCALAR_VALUE)
1135 mark_reg_unknown(state->regs, value_regno);
1136 else
1137 mark_reg_known_zero(state->regs, value_regno);
1138 state->regs[value_regno].id = 0;
1139 state->regs[value_regno].off = 0;
1140 state->regs[value_regno].range = 0;
1955351d 1141 state->regs[value_regno].type = reg_type;
969bf05e 1142 }
17a52670 1143
f1174f77
EC
1144 } else if (reg->type == PTR_TO_STACK) {
1145 /* stack accesses must be at a fixed offset, so that we can
1146 * determine what type of data were returned.
1147 * See check_stack_read().
1148 */
1149 if (!tnum_is_const(reg->var_off)) {
1150 char tn_buf[48];
1151
1152 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1153 verbose("variable stack access var_off=%s off=%d size=%d",
1154 tn_buf, off, size);
1155 return -EACCES;
1156 }
1157 off += reg->var_off.value;
17a52670
AS
1158 if (off >= 0 || off < -MAX_BPF_STACK) {
1159 verbose("invalid stack off=%d size=%d\n", off, size);
1160 return -EACCES;
1161 }
8726679a
AS
1162
1163 if (env->prog->aux->stack_depth < -off)
1164 env->prog->aux->stack_depth = -off;
1165
1be7f75d
AS
1166 if (t == BPF_WRITE) {
1167 if (!env->allow_ptr_leaks &&
1168 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1169 size != BPF_REG_SIZE) {
1170 verbose("attempt to corrupt spilled pointer on stack\n");
1171 return -EACCES;
1172 }
17a52670 1173 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1174 } else {
17a52670 1175 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1176 }
f1174f77 1177 } else if (reg->type == PTR_TO_PACKET) {
3a0af8fd 1178 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1179 verbose("cannot write into packet\n");
1180 return -EACCES;
1181 }
4acf6c0b
BB
1182 if (t == BPF_WRITE && value_regno >= 0 &&
1183 is_pointer_value(env, value_regno)) {
1184 verbose("R%d leaks addr into packet\n", value_regno);
1185 return -EACCES;
1186 }
969bf05e
AS
1187 err = check_packet_access(env, regno, off, size);
1188 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1189 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1190 } else {
1191 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1192 regno, reg_type_str[reg->type]);
17a52670
AS
1193 return -EACCES;
1194 }
969bf05e 1195
f1174f77
EC
1196 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1197 state->regs[value_regno].type == SCALAR_VALUE) {
1198 /* b/h/w load zero-extends, mark upper bits as known 0 */
1199 state->regs[value_regno].var_off = tnum_cast(
1200 state->regs[value_regno].var_off, size);
b03c9f9f 1201 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1202 }
17a52670
AS
1203 return err;
1204}
1205
31fd8581 1206static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1207{
17a52670
AS
1208 int err;
1209
1210 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1211 insn->imm != 0) {
1212 verbose("BPF_XADD uses reserved fields\n");
1213 return -EINVAL;
1214 }
1215
1216 /* check src1 operand */
dc503a8a 1217 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1218 if (err)
1219 return err;
1220
1221 /* check src2 operand */
dc503a8a 1222 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1223 if (err)
1224 return err;
1225
6bdf6abc
DB
1226 if (is_pointer_value(env, insn->src_reg)) {
1227 verbose("R%d leaks addr into mem\n", insn->src_reg);
1228 return -EACCES;
1229 }
1230
17a52670 1231 /* check whether atomic_add can read the memory */
31fd8581 1232 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1233 BPF_SIZE(insn->code), BPF_READ, -1);
1234 if (err)
1235 return err;
1236
1237 /* check whether atomic_add can write into the same memory */
31fd8581 1238 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1239 BPF_SIZE(insn->code), BPF_WRITE, -1);
1240}
1241
f1174f77
EC
1242/* Does this register contain a constant zero? */
1243static bool register_is_null(struct bpf_reg_state reg)
1244{
1245 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1246}
1247
17a52670
AS
1248/* when register 'regno' is passed into function that will read 'access_size'
1249 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1250 * and all elements of stack are initialized.
1251 * Unlike most pointer bounds-checking functions, this one doesn't take an
1252 * 'off' argument, so it has to add in reg->off itself.
17a52670 1253 */
58e2af8b 1254static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1255 int access_size, bool zero_size_allowed,
1256 struct bpf_call_arg_meta *meta)
17a52670 1257{
58e2af8b
JK
1258 struct bpf_verifier_state *state = &env->cur_state;
1259 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1260 int off, i;
1261
8e2fe1d9 1262 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1263 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1264 if (zero_size_allowed && access_size == 0 &&
f1174f77 1265 register_is_null(regs[regno]))
8e2fe1d9
DB
1266 return 0;
1267
1268 verbose("R%d type=%s expected=%s\n", regno,
1269 reg_type_str[regs[regno].type],
1270 reg_type_str[PTR_TO_STACK]);
17a52670 1271 return -EACCES;
8e2fe1d9 1272 }
17a52670 1273
f1174f77
EC
1274 /* Only allow fixed-offset stack reads */
1275 if (!tnum_is_const(regs[regno].var_off)) {
1276 char tn_buf[48];
1277
1278 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1279 verbose("invalid variable stack read R%d var_off=%s\n",
1280 regno, tn_buf);
1281 }
1282 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1283 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1284 access_size <= 0) {
1285 verbose("invalid stack type R%d off=%d access_size=%d\n",
1286 regno, off, access_size);
1287 return -EACCES;
1288 }
1289
8726679a
AS
1290 if (env->prog->aux->stack_depth < -off)
1291 env->prog->aux->stack_depth = -off;
1292
435faee1
DB
1293 if (meta && meta->raw_mode) {
1294 meta->access_size = access_size;
1295 meta->regno = regno;
1296 return 0;
1297 }
1298
17a52670 1299 for (i = 0; i < access_size; i++) {
9c399760 1300 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1301 verbose("invalid indirect read from stack off %d+%d size %d\n",
1302 off, i, access_size);
1303 return -EACCES;
1304 }
1305 }
1306 return 0;
1307}
1308
06c1c049
GB
1309static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1310 int access_size, bool zero_size_allowed,
1311 struct bpf_call_arg_meta *meta)
1312{
f1174f77 1313 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1314
f1174f77 1315 switch (reg->type) {
06c1c049 1316 case PTR_TO_PACKET:
f1174f77 1317 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1318 case PTR_TO_MAP_VALUE:
f1174f77
EC
1319 return check_map_access(env, regno, reg->off, access_size);
1320 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1321 return check_stack_boundary(env, regno, access_size,
1322 zero_size_allowed, meta);
1323 }
1324}
1325
58e2af8b 1326static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1327 enum bpf_arg_type arg_type,
1328 struct bpf_call_arg_meta *meta)
17a52670 1329{
58e2af8b 1330 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1331 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1332 int err = 0;
1333
80f1d68c 1334 if (arg_type == ARG_DONTCARE)
17a52670
AS
1335 return 0;
1336
dc503a8a
EC
1337 err = check_reg_arg(env, regno, SRC_OP);
1338 if (err)
1339 return err;
17a52670 1340
1be7f75d
AS
1341 if (arg_type == ARG_ANYTHING) {
1342 if (is_pointer_value(env, regno)) {
1343 verbose("R%d leaks addr into helper function\n", regno);
1344 return -EACCES;
1345 }
80f1d68c 1346 return 0;
1be7f75d 1347 }
80f1d68c 1348
3a0af8fd
TG
1349 if (type == PTR_TO_PACKET &&
1350 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1351 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1352 return -EACCES;
1353 }
1354
8e2fe1d9 1355 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1356 arg_type == ARG_PTR_TO_MAP_VALUE) {
1357 expected_type = PTR_TO_STACK;
6841de8b
AS
1358 if (type != PTR_TO_PACKET && type != expected_type)
1359 goto err_type;
39f19ebb
AS
1360 } else if (arg_type == ARG_CONST_SIZE ||
1361 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1362 expected_type = SCALAR_VALUE;
1363 if (type != expected_type)
6841de8b 1364 goto err_type;
17a52670
AS
1365 } else if (arg_type == ARG_CONST_MAP_PTR) {
1366 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1367 if (type != expected_type)
1368 goto err_type;
608cd71a
AS
1369 } else if (arg_type == ARG_PTR_TO_CTX) {
1370 expected_type = PTR_TO_CTX;
6841de8b
AS
1371 if (type != expected_type)
1372 goto err_type;
39f19ebb
AS
1373 } else if (arg_type == ARG_PTR_TO_MEM ||
1374 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1375 expected_type = PTR_TO_STACK;
1376 /* One exception here. In case function allows for NULL to be
f1174f77 1377 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1378 * happens during stack boundary checking.
1379 */
f1174f77 1380 if (register_is_null(*reg))
6841de8b 1381 /* final test in check_stack_boundary() */;
5722569b 1382 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
f1174f77 1383 type != expected_type)
6841de8b 1384 goto err_type;
39f19ebb 1385 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1386 } else {
1387 verbose("unsupported arg_type %d\n", arg_type);
1388 return -EFAULT;
1389 }
1390
17a52670
AS
1391 if (arg_type == ARG_CONST_MAP_PTR) {
1392 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1393 meta->map_ptr = reg->map_ptr;
17a52670
AS
1394 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1395 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1396 * check that [key, key + map->key_size) are within
1397 * stack limits and initialized
1398 */
33ff9823 1399 if (!meta->map_ptr) {
17a52670
AS
1400 /* in function declaration map_ptr must come before
1401 * map_key, so that it's verified and known before
1402 * we have to check map_key here. Otherwise it means
1403 * that kernel subsystem misconfigured verifier
1404 */
1405 verbose("invalid map_ptr to access map->key\n");
1406 return -EACCES;
1407 }
6841de8b 1408 if (type == PTR_TO_PACKET)
f1174f77 1409 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1410 meta->map_ptr->key_size);
1411 else
1412 err = check_stack_boundary(env, regno,
1413 meta->map_ptr->key_size,
1414 false, NULL);
17a52670
AS
1415 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1416 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1417 * check [value, value + map->value_size) validity
1418 */
33ff9823 1419 if (!meta->map_ptr) {
17a52670
AS
1420 /* kernel subsystem misconfigured verifier */
1421 verbose("invalid map_ptr to access map->value\n");
1422 return -EACCES;
1423 }
6841de8b 1424 if (type == PTR_TO_PACKET)
f1174f77 1425 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1426 meta->map_ptr->value_size);
1427 else
1428 err = check_stack_boundary(env, regno,
1429 meta->map_ptr->value_size,
1430 false, NULL);
39f19ebb
AS
1431 } else if (arg_type == ARG_CONST_SIZE ||
1432 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1433 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1434
17a52670
AS
1435 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1436 * from stack pointer 'buf'. Check it
1437 * note: regno == len, regno - 1 == buf
1438 */
1439 if (regno == 0) {
1440 /* kernel subsystem misconfigured verifier */
39f19ebb 1441 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1442 return -EACCES;
1443 }
06c1c049 1444
f1174f77
EC
1445 /* The register is SCALAR_VALUE; the access check
1446 * happens using its boundaries.
06c1c049 1447 */
f1174f77
EC
1448
1449 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1450 /* For unprivileged variable accesses, disable raw
1451 * mode so that the program is required to
1452 * initialize all the memory that the helper could
1453 * just partially fill up.
1454 */
1455 meta = NULL;
1456
b03c9f9f 1457 if (reg->smin_value < 0) {
f1174f77
EC
1458 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1459 regno);
1460 return -EACCES;
1461 }
06c1c049 1462
b03c9f9f 1463 if (reg->umin_value == 0) {
f1174f77
EC
1464 err = check_helper_mem_access(env, regno - 1, 0,
1465 zero_size_allowed,
1466 meta);
06c1c049
GB
1467 if (err)
1468 return err;
06c1c049 1469 }
f1174f77 1470
b03c9f9f 1471 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1472 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1473 regno);
1474 return -EACCES;
1475 }
1476 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1477 reg->umax_value,
f1174f77 1478 zero_size_allowed, meta);
17a52670
AS
1479 }
1480
1481 return err;
6841de8b
AS
1482err_type:
1483 verbose("R%d type=%s expected=%s\n", regno,
1484 reg_type_str[type], reg_type_str[expected_type]);
1485 return -EACCES;
17a52670
AS
1486}
1487
35578d79
KX
1488static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1489{
35578d79
KX
1490 if (!map)
1491 return 0;
1492
6aff67c8
AS
1493 /* We need a two way check, first is from map perspective ... */
1494 switch (map->map_type) {
1495 case BPF_MAP_TYPE_PROG_ARRAY:
1496 if (func_id != BPF_FUNC_tail_call)
1497 goto error;
1498 break;
1499 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1500 if (func_id != BPF_FUNC_perf_event_read &&
1501 func_id != BPF_FUNC_perf_event_output)
1502 goto error;
1503 break;
1504 case BPF_MAP_TYPE_STACK_TRACE:
1505 if (func_id != BPF_FUNC_get_stackid)
1506 goto error;
1507 break;
4ed8ec52 1508 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1509 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1510 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1511 goto error;
1512 break;
546ac1ff
JF
1513 /* devmap returns a pointer to a live net_device ifindex that we cannot
1514 * allow to be modified from bpf side. So do not allow lookup elements
1515 * for now.
1516 */
1517 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1518 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1519 goto error;
1520 break;
56f668df 1521 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1522 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1523 if (func_id != BPF_FUNC_map_lookup_elem)
1524 goto error;
6aff67c8
AS
1525 default:
1526 break;
1527 }
1528
1529 /* ... and second from the function itself. */
1530 switch (func_id) {
1531 case BPF_FUNC_tail_call:
1532 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1533 goto error;
1534 break;
1535 case BPF_FUNC_perf_event_read:
1536 case BPF_FUNC_perf_event_output:
1537 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1538 goto error;
1539 break;
1540 case BPF_FUNC_get_stackid:
1541 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1542 goto error;
1543 break;
60d20f91 1544 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1545 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1546 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1547 goto error;
1548 break;
97f91a7c
JF
1549 case BPF_FUNC_redirect_map:
1550 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1551 goto error;
1552 break;
6aff67c8
AS
1553 default:
1554 break;
35578d79
KX
1555 }
1556
1557 return 0;
6aff67c8 1558error:
ebb676da
TG
1559 verbose("cannot pass map_type %d into func %s#%d\n",
1560 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1561 return -EINVAL;
35578d79
KX
1562}
1563
435faee1
DB
1564static int check_raw_mode(const struct bpf_func_proto *fn)
1565{
1566 int count = 0;
1567
39f19ebb 1568 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1569 count++;
39f19ebb 1570 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1571 count++;
39f19ebb 1572 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1573 count++;
39f19ebb 1574 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1575 count++;
39f19ebb 1576 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1577 count++;
1578
1579 return count > 1 ? -EINVAL : 0;
1580}
1581
f1174f77
EC
1582/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1583 * so turn them into unknown SCALAR_VALUE.
1584 */
58e2af8b 1585static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1586{
58e2af8b
JK
1587 struct bpf_verifier_state *state = &env->cur_state;
1588 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1589 int i;
1590
1591 for (i = 0; i < MAX_BPF_REG; i++)
1592 if (regs[i].type == PTR_TO_PACKET ||
1593 regs[i].type == PTR_TO_PACKET_END)
f1174f77 1594 mark_reg_unknown(regs, i);
969bf05e
AS
1595
1596 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1597 if (state->stack_slot_type[i] != STACK_SPILL)
1598 continue;
1599 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1600 if (reg->type != PTR_TO_PACKET &&
1601 reg->type != PTR_TO_PACKET_END)
1602 continue;
f1174f77 1603 __mark_reg_unknown(reg);
969bf05e
AS
1604 }
1605}
1606
81ed18ab 1607static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1608{
58e2af8b 1609 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1610 const struct bpf_func_proto *fn = NULL;
58e2af8b 1611 struct bpf_reg_state *regs = state->regs;
33ff9823 1612 struct bpf_call_arg_meta meta;
969bf05e 1613 bool changes_data;
17a52670
AS
1614 int i, err;
1615
1616 /* find function prototype */
1617 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1618 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1619 return -EINVAL;
1620 }
1621
1622 if (env->prog->aux->ops->get_func_proto)
1623 fn = env->prog->aux->ops->get_func_proto(func_id);
1624
1625 if (!fn) {
ebb676da 1626 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1627 return -EINVAL;
1628 }
1629
1630 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1631 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1632 verbose("cannot call GPL only function from proprietary program\n");
1633 return -EINVAL;
1634 }
1635
17bedab2 1636 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1637
33ff9823 1638 memset(&meta, 0, sizeof(meta));
36bbef52 1639 meta.pkt_access = fn->pkt_access;
33ff9823 1640
435faee1
DB
1641 /* We only support one arg being in raw mode at the moment, which
1642 * is sufficient for the helper functions we have right now.
1643 */
1644 err = check_raw_mode(fn);
1645 if (err) {
ebb676da
TG
1646 verbose("kernel subsystem misconfigured func %s#%d\n",
1647 func_id_name(func_id), func_id);
435faee1
DB
1648 return err;
1649 }
1650
17a52670 1651 /* check args */
33ff9823 1652 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1653 if (err)
1654 return err;
33ff9823 1655 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1656 if (err)
1657 return err;
33ff9823 1658 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1659 if (err)
1660 return err;
33ff9823 1661 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1662 if (err)
1663 return err;
33ff9823 1664 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1665 if (err)
1666 return err;
1667
435faee1
DB
1668 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1669 * is inferred from register state.
1670 */
1671 for (i = 0; i < meta.access_size; i++) {
31fd8581 1672 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1673 if (err)
1674 return err;
1675 }
1676
17a52670 1677 /* reset caller saved regs */
dc503a8a 1678 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 1679 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
1680 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1681 }
17a52670 1682
dc503a8a 1683 /* update return register (already marked as written above) */
17a52670 1684 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1685 /* sets type to SCALAR_VALUE */
1686 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1687 } else if (fn->ret_type == RET_VOID) {
1688 regs[BPF_REG_0].type = NOT_INIT;
1689 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1690 struct bpf_insn_aux_data *insn_aux;
1691
17a52670 1692 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1693 /* There is no offset yet applied, variable or fixed */
1694 mark_reg_known_zero(regs, BPF_REG_0);
1695 regs[BPF_REG_0].off = 0;
17a52670
AS
1696 /* remember map_ptr, so that check_map_access()
1697 * can check 'value_size' boundary of memory access
1698 * to map element returned from bpf_map_lookup_elem()
1699 */
33ff9823 1700 if (meta.map_ptr == NULL) {
17a52670
AS
1701 verbose("kernel subsystem misconfigured verifier\n");
1702 return -EINVAL;
1703 }
33ff9823 1704 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1705 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1706 insn_aux = &env->insn_aux_data[insn_idx];
1707 if (!insn_aux->map_ptr)
1708 insn_aux->map_ptr = meta.map_ptr;
1709 else if (insn_aux->map_ptr != meta.map_ptr)
1710 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1711 } else {
ebb676da
TG
1712 verbose("unknown return type %d of func %s#%d\n",
1713 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1714 return -EINVAL;
1715 }
04fd61ab 1716
33ff9823 1717 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1718 if (err)
1719 return err;
04fd61ab 1720
969bf05e
AS
1721 if (changes_data)
1722 clear_all_pkt_pointers(env);
1723 return 0;
1724}
1725
f1174f77
EC
1726static void coerce_reg_to_32(struct bpf_reg_state *reg)
1727{
f1174f77
EC
1728 /* clear high 32 bits */
1729 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1730 /* Update bounds */
1731 __update_reg_bounds(reg);
1732}
1733
1734static bool signed_add_overflows(s64 a, s64 b)
1735{
1736 /* Do the add in u64, where overflow is well-defined */
1737 s64 res = (s64)((u64)a + (u64)b);
1738
1739 if (b < 0)
1740 return res > a;
1741 return res < a;
1742}
1743
1744static bool signed_sub_overflows(s64 a, s64 b)
1745{
1746 /* Do the sub in u64, where overflow is well-defined */
1747 s64 res = (s64)((u64)a - (u64)b);
1748
1749 if (b < 0)
1750 return res < a;
1751 return res > a;
969bf05e
AS
1752}
1753
f1174f77 1754/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1755 * Caller should also handle BPF_MOV case separately.
1756 * If we return -EACCES, caller may want to try again treating pointer as a
1757 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1758 */
1759static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1760 struct bpf_insn *insn,
1761 const struct bpf_reg_state *ptr_reg,
1762 const struct bpf_reg_state *off_reg)
969bf05e 1763{
f1174f77
EC
1764 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1765 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1766 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1767 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1768 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1769 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1770 u8 opcode = BPF_OP(insn->code);
f1174f77 1771 u32 dst = insn->dst_reg;
969bf05e 1772
f1174f77 1773 dst_reg = &regs[dst];
969bf05e 1774
b03c9f9f 1775 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1776 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1777 verbose("verifier internal error: known but bad sbounds\n");
1778 return -EINVAL;
1779 }
1780 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1781 print_verifier_state(&env->cur_state);
1782 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1783 return -EINVAL;
1784 }
1785
1786 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1787 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1788 if (!env->allow_ptr_leaks)
1789 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1790 dst);
1791 return -EACCES;
969bf05e
AS
1792 }
1793
f1174f77
EC
1794 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1795 if (!env->allow_ptr_leaks)
1796 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1797 dst);
1798 return -EACCES;
1799 }
1800 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1801 if (!env->allow_ptr_leaks)
1802 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1803 dst);
1804 return -EACCES;
1805 }
1806 if (ptr_reg->type == PTR_TO_PACKET_END) {
1807 if (!env->allow_ptr_leaks)
1808 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1809 dst);
1810 return -EACCES;
1811 }
1812
1813 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1814 * The id may be overwritten later if we create a new variable offset.
969bf05e 1815 */
f1174f77
EC
1816 dst_reg->type = ptr_reg->type;
1817 dst_reg->id = ptr_reg->id;
969bf05e 1818
f1174f77
EC
1819 switch (opcode) {
1820 case BPF_ADD:
1821 /* We can take a fixed offset as long as it doesn't overflow
1822 * the s32 'off' field
969bf05e 1823 */
b03c9f9f
EC
1824 if (known && (ptr_reg->off + smin_val ==
1825 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1826 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1827 dst_reg->smin_value = smin_ptr;
1828 dst_reg->smax_value = smax_ptr;
1829 dst_reg->umin_value = umin_ptr;
1830 dst_reg->umax_value = umax_ptr;
f1174f77 1831 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1832 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1833 dst_reg->range = ptr_reg->range;
1834 break;
1835 }
f1174f77
EC
1836 /* A new variable offset is created. Note that off_reg->off
1837 * == 0, since it's a scalar.
1838 * dst_reg gets the pointer type and since some positive
1839 * integer value was added to the pointer, give it a new 'id'
1840 * if it's a PTR_TO_PACKET.
1841 * this creates a new 'base' pointer, off_reg (variable) gets
1842 * added into the variable offset, and we copy the fixed offset
1843 * from ptr_reg.
969bf05e 1844 */
b03c9f9f
EC
1845 if (signed_add_overflows(smin_ptr, smin_val) ||
1846 signed_add_overflows(smax_ptr, smax_val)) {
1847 dst_reg->smin_value = S64_MIN;
1848 dst_reg->smax_value = S64_MAX;
1849 } else {
1850 dst_reg->smin_value = smin_ptr + smin_val;
1851 dst_reg->smax_value = smax_ptr + smax_val;
1852 }
1853 if (umin_ptr + umin_val < umin_ptr ||
1854 umax_ptr + umax_val < umax_ptr) {
1855 dst_reg->umin_value = 0;
1856 dst_reg->umax_value = U64_MAX;
1857 } else {
1858 dst_reg->umin_value = umin_ptr + umin_val;
1859 dst_reg->umax_value = umax_ptr + umax_val;
1860 }
f1174f77
EC
1861 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1862 dst_reg->off = ptr_reg->off;
1863 if (ptr_reg->type == PTR_TO_PACKET) {
1864 dst_reg->id = ++env->id_gen;
1865 /* something was added to pkt_ptr, set range to zero */
1866 dst_reg->range = 0;
1867 }
1868 break;
1869 case BPF_SUB:
1870 if (dst_reg == off_reg) {
1871 /* scalar -= pointer. Creates an unknown scalar */
1872 if (!env->allow_ptr_leaks)
1873 verbose("R%d tried to subtract pointer from scalar\n",
1874 dst);
1875 return -EACCES;
1876 }
1877 /* We don't allow subtraction from FP, because (according to
1878 * test_verifier.c test "invalid fp arithmetic", JITs might not
1879 * be able to deal with it.
969bf05e 1880 */
f1174f77
EC
1881 if (ptr_reg->type == PTR_TO_STACK) {
1882 if (!env->allow_ptr_leaks)
1883 verbose("R%d subtraction from stack pointer prohibited\n",
1884 dst);
1885 return -EACCES;
1886 }
b03c9f9f
EC
1887 if (known && (ptr_reg->off - smin_val ==
1888 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1889 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1890 dst_reg->smin_value = smin_ptr;
1891 dst_reg->smax_value = smax_ptr;
1892 dst_reg->umin_value = umin_ptr;
1893 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1894 dst_reg->var_off = ptr_reg->var_off;
1895 dst_reg->id = ptr_reg->id;
b03c9f9f 1896 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1897 dst_reg->range = ptr_reg->range;
1898 break;
1899 }
f1174f77
EC
1900 /* A new variable offset is created. If the subtrahend is known
1901 * nonnegative, then any reg->range we had before is still good.
969bf05e 1902 */
b03c9f9f
EC
1903 if (signed_sub_overflows(smin_ptr, smax_val) ||
1904 signed_sub_overflows(smax_ptr, smin_val)) {
1905 /* Overflow possible, we know nothing */
1906 dst_reg->smin_value = S64_MIN;
1907 dst_reg->smax_value = S64_MAX;
1908 } else {
1909 dst_reg->smin_value = smin_ptr - smax_val;
1910 dst_reg->smax_value = smax_ptr - smin_val;
1911 }
1912 if (umin_ptr < umax_val) {
1913 /* Overflow possible, we know nothing */
1914 dst_reg->umin_value = 0;
1915 dst_reg->umax_value = U64_MAX;
1916 } else {
1917 /* Cannot overflow (as long as bounds are consistent) */
1918 dst_reg->umin_value = umin_ptr - umax_val;
1919 dst_reg->umax_value = umax_ptr - umin_val;
1920 }
f1174f77
EC
1921 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1922 dst_reg->off = ptr_reg->off;
1923 if (ptr_reg->type == PTR_TO_PACKET) {
1924 dst_reg->id = ++env->id_gen;
1925 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1926 if (smin_val < 0)
f1174f77 1927 dst_reg->range = 0;
43188702 1928 }
f1174f77
EC
1929 break;
1930 case BPF_AND:
1931 case BPF_OR:
1932 case BPF_XOR:
1933 /* bitwise ops on pointers are troublesome, prohibit for now.
1934 * (However, in principle we could allow some cases, e.g.
1935 * ptr &= ~3 which would reduce min_value by 3.)
1936 */
1937 if (!env->allow_ptr_leaks)
1938 verbose("R%d bitwise operator %s on pointer prohibited\n",
1939 dst, bpf_alu_string[opcode >> 4]);
1940 return -EACCES;
1941 default:
1942 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1943 if (!env->allow_ptr_leaks)
1944 verbose("R%d pointer arithmetic with %s operator prohibited\n",
1945 dst, bpf_alu_string[opcode >> 4]);
1946 return -EACCES;
43188702
JF
1947 }
1948
b03c9f9f
EC
1949 __update_reg_bounds(dst_reg);
1950 __reg_deduce_bounds(dst_reg);
1951 __reg_bound_offset(dst_reg);
43188702
JF
1952 return 0;
1953}
1954
f1174f77
EC
1955static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1956 struct bpf_insn *insn,
1957 struct bpf_reg_state *dst_reg,
1958 struct bpf_reg_state src_reg)
969bf05e 1959{
58e2af8b 1960 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1961 u8 opcode = BPF_OP(insn->code);
f1174f77 1962 bool src_known, dst_known;
b03c9f9f
EC
1963 s64 smin_val, smax_val;
1964 u64 umin_val, umax_val;
48461135 1965
f1174f77
EC
1966 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1967 /* 32-bit ALU ops are (32,32)->64 */
1968 coerce_reg_to_32(dst_reg);
1969 coerce_reg_to_32(&src_reg);
9305706c 1970 }
b03c9f9f
EC
1971 smin_val = src_reg.smin_value;
1972 smax_val = src_reg.smax_value;
1973 umin_val = src_reg.umin_value;
1974 umax_val = src_reg.umax_value;
f1174f77
EC
1975 src_known = tnum_is_const(src_reg.var_off);
1976 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1977
48461135
JB
1978 switch (opcode) {
1979 case BPF_ADD:
b03c9f9f
EC
1980 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1981 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1982 dst_reg->smin_value = S64_MIN;
1983 dst_reg->smax_value = S64_MAX;
1984 } else {
1985 dst_reg->smin_value += smin_val;
1986 dst_reg->smax_value += smax_val;
1987 }
1988 if (dst_reg->umin_value + umin_val < umin_val ||
1989 dst_reg->umax_value + umax_val < umax_val) {
1990 dst_reg->umin_value = 0;
1991 dst_reg->umax_value = U64_MAX;
1992 } else {
1993 dst_reg->umin_value += umin_val;
1994 dst_reg->umax_value += umax_val;
1995 }
f1174f77 1996 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
1997 break;
1998 case BPF_SUB:
b03c9f9f
EC
1999 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2000 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2001 /* Overflow possible, we know nothing */
2002 dst_reg->smin_value = S64_MIN;
2003 dst_reg->smax_value = S64_MAX;
2004 } else {
2005 dst_reg->smin_value -= smax_val;
2006 dst_reg->smax_value -= smin_val;
2007 }
2008 if (dst_reg->umin_value < umax_val) {
2009 /* Overflow possible, we know nothing */
2010 dst_reg->umin_value = 0;
2011 dst_reg->umax_value = U64_MAX;
2012 } else {
2013 /* Cannot overflow (as long as bounds are consistent) */
2014 dst_reg->umin_value -= umax_val;
2015 dst_reg->umax_value -= umin_val;
2016 }
f1174f77 2017 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2018 break;
2019 case BPF_MUL:
b03c9f9f
EC
2020 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2021 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2022 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2023 __mark_reg_unbounded(dst_reg);
2024 __update_reg_bounds(dst_reg);
f1174f77
EC
2025 break;
2026 }
b03c9f9f
EC
2027 /* Both values are positive, so we can work with unsigned and
2028 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2029 */
b03c9f9f
EC
2030 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2031 /* Potential overflow, we know nothing */
2032 __mark_reg_unbounded(dst_reg);
2033 /* (except what we can learn from the var_off) */
2034 __update_reg_bounds(dst_reg);
2035 break;
2036 }
2037 dst_reg->umin_value *= umin_val;
2038 dst_reg->umax_value *= umax_val;
2039 if (dst_reg->umax_value > S64_MAX) {
2040 /* Overflow possible, we know nothing */
2041 dst_reg->smin_value = S64_MIN;
2042 dst_reg->smax_value = S64_MAX;
2043 } else {
2044 dst_reg->smin_value = dst_reg->umin_value;
2045 dst_reg->smax_value = dst_reg->umax_value;
2046 }
48461135
JB
2047 break;
2048 case BPF_AND:
f1174f77 2049 if (src_known && dst_known) {
b03c9f9f
EC
2050 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2051 src_reg.var_off.value);
f1174f77
EC
2052 break;
2053 }
b03c9f9f
EC
2054 /* We get our minimum from the var_off, since that's inherently
2055 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2056 */
f1174f77 2057 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2058 dst_reg->umin_value = dst_reg->var_off.value;
2059 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2060 if (dst_reg->smin_value < 0 || smin_val < 0) {
2061 /* Lose signed bounds when ANDing negative numbers,
2062 * ain't nobody got time for that.
2063 */
2064 dst_reg->smin_value = S64_MIN;
2065 dst_reg->smax_value = S64_MAX;
2066 } else {
2067 /* ANDing two positives gives a positive, so safe to
2068 * cast result into s64.
2069 */
2070 dst_reg->smin_value = dst_reg->umin_value;
2071 dst_reg->smax_value = dst_reg->umax_value;
2072 }
2073 /* We may learn something more from the var_off */
2074 __update_reg_bounds(dst_reg);
f1174f77
EC
2075 break;
2076 case BPF_OR:
2077 if (src_known && dst_known) {
b03c9f9f
EC
2078 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2079 src_reg.var_off.value);
f1174f77
EC
2080 break;
2081 }
b03c9f9f
EC
2082 /* We get our maximum from the var_off, and our minimum is the
2083 * maximum of the operands' minima
f1174f77
EC
2084 */
2085 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2086 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2087 dst_reg->umax_value = dst_reg->var_off.value |
2088 dst_reg->var_off.mask;
2089 if (dst_reg->smin_value < 0 || smin_val < 0) {
2090 /* Lose signed bounds when ORing negative numbers,
2091 * ain't nobody got time for that.
2092 */
2093 dst_reg->smin_value = S64_MIN;
2094 dst_reg->smax_value = S64_MAX;
f1174f77 2095 } else {
b03c9f9f
EC
2096 /* ORing two positives gives a positive, so safe to
2097 * cast result into s64.
2098 */
2099 dst_reg->smin_value = dst_reg->umin_value;
2100 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2101 }
b03c9f9f
EC
2102 /* We may learn something more from the var_off */
2103 __update_reg_bounds(dst_reg);
48461135
JB
2104 break;
2105 case BPF_LSH:
b03c9f9f
EC
2106 if (umax_val > 63) {
2107 /* Shifts greater than 63 are undefined. This includes
2108 * shifts by a negative number.
2109 */
f1174f77
EC
2110 mark_reg_unknown(regs, insn->dst_reg);
2111 break;
2112 }
b03c9f9f
EC
2113 /* We lose all sign bit information (except what we can pick
2114 * up from var_off)
48461135 2115 */
b03c9f9f
EC
2116 dst_reg->smin_value = S64_MIN;
2117 dst_reg->smax_value = S64_MAX;
2118 /* If we might shift our top bit out, then we know nothing */
2119 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2120 dst_reg->umin_value = 0;
2121 dst_reg->umax_value = U64_MAX;
d1174416 2122 } else {
b03c9f9f
EC
2123 dst_reg->umin_value <<= umin_val;
2124 dst_reg->umax_value <<= umax_val;
d1174416 2125 }
b03c9f9f
EC
2126 if (src_known)
2127 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2128 else
2129 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2130 /* We may learn something more from the var_off */
2131 __update_reg_bounds(dst_reg);
48461135
JB
2132 break;
2133 case BPF_RSH:
b03c9f9f
EC
2134 if (umax_val > 63) {
2135 /* Shifts greater than 63 are undefined. This includes
2136 * shifts by a negative number.
2137 */
f1174f77
EC
2138 mark_reg_unknown(regs, insn->dst_reg);
2139 break;
2140 }
2141 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2142 if (dst_reg->smin_value < 0) {
2143 if (umin_val) {
f1174f77 2144 /* Sign bit will be cleared */
b03c9f9f
EC
2145 dst_reg->smin_value = 0;
2146 } else {
2147 /* Lost sign bit information */
2148 dst_reg->smin_value = S64_MIN;
2149 dst_reg->smax_value = S64_MAX;
2150 }
d1174416 2151 } else {
b03c9f9f
EC
2152 dst_reg->smin_value =
2153 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2154 }
f1174f77 2155 if (src_known)
b03c9f9f
EC
2156 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2157 umin_val);
f1174f77 2158 else
b03c9f9f
EC
2159 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2160 dst_reg->umin_value >>= umax_val;
2161 dst_reg->umax_value >>= umin_val;
2162 /* We may learn something more from the var_off */
2163 __update_reg_bounds(dst_reg);
48461135
JB
2164 break;
2165 default:
f1174f77 2166 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2167 break;
2168 }
2169
b03c9f9f
EC
2170 __reg_deduce_bounds(dst_reg);
2171 __reg_bound_offset(dst_reg);
f1174f77
EC
2172 return 0;
2173}
2174
2175/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2176 * and var_off.
2177 */
2178static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2179 struct bpf_insn *insn)
2180{
2181 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2182 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2183 u8 opcode = BPF_OP(insn->code);
2184 int rc;
2185
2186 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2187 src_reg = NULL;
2188 if (dst_reg->type != SCALAR_VALUE)
2189 ptr_reg = dst_reg;
2190 if (BPF_SRC(insn->code) == BPF_X) {
2191 src_reg = &regs[insn->src_reg];
f1174f77
EC
2192 if (src_reg->type != SCALAR_VALUE) {
2193 if (dst_reg->type != SCALAR_VALUE) {
2194 /* Combining two pointers by any ALU op yields
2195 * an arbitrary scalar.
2196 */
2197 if (!env->allow_ptr_leaks) {
2198 verbose("R%d pointer %s pointer prohibited\n",
2199 insn->dst_reg,
2200 bpf_alu_string[opcode >> 4]);
2201 return -EACCES;
2202 }
2203 mark_reg_unknown(regs, insn->dst_reg);
2204 return 0;
2205 } else {
2206 /* scalar += pointer
2207 * This is legal, but we have to reverse our
2208 * src/dest handling in computing the range
2209 */
2210 rc = adjust_ptr_min_max_vals(env, insn,
2211 src_reg, dst_reg);
2212 if (rc == -EACCES && env->allow_ptr_leaks) {
2213 /* scalar += unknown scalar */
2214 __mark_reg_unknown(&off_reg);
2215 return adjust_scalar_min_max_vals(
2216 env, insn,
2217 dst_reg, off_reg);
2218 }
2219 return rc;
2220 }
2221 } else if (ptr_reg) {
2222 /* pointer += scalar */
2223 rc = adjust_ptr_min_max_vals(env, insn,
2224 dst_reg, src_reg);
2225 if (rc == -EACCES && env->allow_ptr_leaks) {
2226 /* unknown scalar += scalar */
2227 __mark_reg_unknown(dst_reg);
2228 return adjust_scalar_min_max_vals(
2229 env, insn, dst_reg, *src_reg);
2230 }
2231 return rc;
2232 }
2233 } else {
2234 /* Pretend the src is a reg with a known value, since we only
2235 * need to be able to read from this state.
2236 */
2237 off_reg.type = SCALAR_VALUE;
b03c9f9f 2238 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2239 src_reg = &off_reg;
f1174f77
EC
2240 if (ptr_reg) { /* pointer += K */
2241 rc = adjust_ptr_min_max_vals(env, insn,
2242 ptr_reg, src_reg);
2243 if (rc == -EACCES && env->allow_ptr_leaks) {
2244 /* unknown scalar += K */
2245 __mark_reg_unknown(dst_reg);
2246 return adjust_scalar_min_max_vals(
2247 env, insn, dst_reg, off_reg);
2248 }
2249 return rc;
2250 }
2251 }
2252
2253 /* Got here implies adding two SCALAR_VALUEs */
2254 if (WARN_ON_ONCE(ptr_reg)) {
2255 print_verifier_state(&env->cur_state);
2256 verbose("verifier internal error: unexpected ptr_reg\n");
2257 return -EINVAL;
2258 }
2259 if (WARN_ON(!src_reg)) {
2260 print_verifier_state(&env->cur_state);
2261 verbose("verifier internal error: no src_reg\n");
2262 return -EINVAL;
2263 }
2264 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2265}
2266
17a52670 2267/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2268static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2269{
f1174f77 2270 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2271 u8 opcode = BPF_OP(insn->code);
2272 int err;
2273
2274 if (opcode == BPF_END || opcode == BPF_NEG) {
2275 if (opcode == BPF_NEG) {
2276 if (BPF_SRC(insn->code) != 0 ||
2277 insn->src_reg != BPF_REG_0 ||
2278 insn->off != 0 || insn->imm != 0) {
2279 verbose("BPF_NEG uses reserved fields\n");
2280 return -EINVAL;
2281 }
2282 } else {
2283 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2284 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
2285 verbose("BPF_END uses reserved fields\n");
2286 return -EINVAL;
2287 }
2288 }
2289
2290 /* check src operand */
dc503a8a 2291 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2292 if (err)
2293 return err;
2294
1be7f75d
AS
2295 if (is_pointer_value(env, insn->dst_reg)) {
2296 verbose("R%d pointer arithmetic prohibited\n",
2297 insn->dst_reg);
2298 return -EACCES;
2299 }
2300
17a52670 2301 /* check dest operand */
dc503a8a 2302 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2303 if (err)
2304 return err;
2305
2306 } else if (opcode == BPF_MOV) {
2307
2308 if (BPF_SRC(insn->code) == BPF_X) {
2309 if (insn->imm != 0 || insn->off != 0) {
2310 verbose("BPF_MOV uses reserved fields\n");
2311 return -EINVAL;
2312 }
2313
2314 /* check src operand */
dc503a8a 2315 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2316 if (err)
2317 return err;
2318 } else {
2319 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2320 verbose("BPF_MOV uses reserved fields\n");
2321 return -EINVAL;
2322 }
2323 }
2324
2325 /* check dest operand */
dc503a8a 2326 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2327 if (err)
2328 return err;
2329
2330 if (BPF_SRC(insn->code) == BPF_X) {
2331 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2332 /* case: R1 = R2
2333 * copy register state to dest reg
2334 */
2335 regs[insn->dst_reg] = regs[insn->src_reg];
2336 } else {
f1174f77 2337 /* R1 = (u32) R2 */
1be7f75d
AS
2338 if (is_pointer_value(env, insn->src_reg)) {
2339 verbose("R%d partial copy of pointer\n",
2340 insn->src_reg);
2341 return -EACCES;
2342 }
f1174f77 2343 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2344 /* high 32 bits are known zero. */
f1174f77
EC
2345 regs[insn->dst_reg].var_off = tnum_cast(
2346 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2347 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2348 }
2349 } else {
2350 /* case: R = imm
2351 * remember the value we stored into this reg
2352 */
f1174f77 2353 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2354 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2355 }
2356
2357 } else if (opcode > BPF_END) {
2358 verbose("invalid BPF_ALU opcode %x\n", opcode);
2359 return -EINVAL;
2360
2361 } else { /* all other ALU ops: and, sub, xor, add, ... */
2362
17a52670
AS
2363 if (BPF_SRC(insn->code) == BPF_X) {
2364 if (insn->imm != 0 || insn->off != 0) {
2365 verbose("BPF_ALU uses reserved fields\n");
2366 return -EINVAL;
2367 }
2368 /* check src1 operand */
dc503a8a 2369 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2370 if (err)
2371 return err;
2372 } else {
2373 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2374 verbose("BPF_ALU uses reserved fields\n");
2375 return -EINVAL;
2376 }
2377 }
2378
2379 /* check src2 operand */
dc503a8a 2380 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2381 if (err)
2382 return err;
2383
2384 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2385 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2386 verbose("div by zero\n");
2387 return -EINVAL;
2388 }
2389
229394e8
RV
2390 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2391 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2392 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2393
2394 if (insn->imm < 0 || insn->imm >= size) {
2395 verbose("invalid shift %d\n", insn->imm);
2396 return -EINVAL;
2397 }
2398 }
2399
1a0dc1ac 2400 /* check dest operand */
dc503a8a 2401 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2402 if (err)
2403 return err;
2404
f1174f77 2405 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2406 }
2407
2408 return 0;
2409}
2410
58e2af8b
JK
2411static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2412 struct bpf_reg_state *dst_reg)
969bf05e 2413{
58e2af8b 2414 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2415 int i;
2d2be8ca 2416
f1174f77
EC
2417 if (dst_reg->off < 0)
2418 /* This doesn't give us any range */
2419 return;
2420
b03c9f9f
EC
2421 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2422 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2423 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2424 * than pkt_end, but that's because it's also less than pkt.
2425 */
2426 return;
2427
b4e432f1 2428 /* LLVM can generate four kind of checks:
2d2be8ca 2429 *
b4e432f1 2430 * Type 1/2:
2d2be8ca
DB
2431 *
2432 * r2 = r3;
2433 * r2 += 8;
2434 * if (r2 > pkt_end) goto <handle exception>
2435 * <access okay>
2436 *
b4e432f1
DB
2437 * r2 = r3;
2438 * r2 += 8;
2439 * if (r2 < pkt_end) goto <access okay>
2440 * <handle exception>
2441 *
2d2be8ca
DB
2442 * Where:
2443 * r2 == dst_reg, pkt_end == src_reg
2444 * r2=pkt(id=n,off=8,r=0)
2445 * r3=pkt(id=n,off=0,r=0)
2446 *
b4e432f1 2447 * Type 3/4:
2d2be8ca
DB
2448 *
2449 * r2 = r3;
2450 * r2 += 8;
2451 * if (pkt_end >= r2) goto <access okay>
2452 * <handle exception>
2453 *
b4e432f1
DB
2454 * r2 = r3;
2455 * r2 += 8;
2456 * if (pkt_end <= r2) goto <handle exception>
2457 * <access okay>
2458 *
2d2be8ca
DB
2459 * Where:
2460 * pkt_end == dst_reg, r2 == src_reg
2461 * r2=pkt(id=n,off=8,r=0)
2462 * r3=pkt(id=n,off=0,r=0)
2463 *
2464 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2465 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2466 */
2d2be8ca 2467
f1174f77
EC
2468 /* If our ids match, then we must have the same max_value. And we
2469 * don't care about the other reg's fixed offset, since if it's too big
2470 * the range won't allow anything.
2471 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2472 */
969bf05e
AS
2473 for (i = 0; i < MAX_BPF_REG; i++)
2474 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682 2475 /* keep the maximum range already checked */
f1174f77 2476 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2477
2478 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2479 if (state->stack_slot_type[i] != STACK_SPILL)
2480 continue;
2481 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2482 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
f1174f77 2483 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2484 }
2485}
2486
48461135
JB
2487/* Adjusts the register min/max values in the case that the dst_reg is the
2488 * variable register that we are working on, and src_reg is a constant or we're
2489 * simply doing a BPF_K check.
f1174f77 2490 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2491 */
2492static void reg_set_min_max(struct bpf_reg_state *true_reg,
2493 struct bpf_reg_state *false_reg, u64 val,
2494 u8 opcode)
2495{
f1174f77
EC
2496 /* If the dst_reg is a pointer, we can't learn anything about its
2497 * variable offset from the compare (unless src_reg were a pointer into
2498 * the same object, but we don't bother with that.
2499 * Since false_reg and true_reg have the same type by construction, we
2500 * only need to check one of them for pointerness.
2501 */
2502 if (__is_pointer_value(false, false_reg))
2503 return;
4cabc5b1 2504
48461135
JB
2505 switch (opcode) {
2506 case BPF_JEQ:
2507 /* If this is false then we know nothing Jon Snow, but if it is
2508 * true then we know for sure.
2509 */
b03c9f9f 2510 __mark_reg_known(true_reg, val);
48461135
JB
2511 break;
2512 case BPF_JNE:
2513 /* If this is true we know nothing Jon Snow, but if it is false
2514 * we know the value for sure;
2515 */
b03c9f9f 2516 __mark_reg_known(false_reg, val);
48461135
JB
2517 break;
2518 case BPF_JGT:
b03c9f9f
EC
2519 false_reg->umax_value = min(false_reg->umax_value, val);
2520 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2521 break;
48461135 2522 case BPF_JSGT:
b03c9f9f
EC
2523 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2524 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2525 break;
b4e432f1
DB
2526 case BPF_JLT:
2527 false_reg->umin_value = max(false_reg->umin_value, val);
2528 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2529 break;
2530 case BPF_JSLT:
2531 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2532 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2533 break;
48461135 2534 case BPF_JGE:
b03c9f9f
EC
2535 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2536 true_reg->umin_value = max(true_reg->umin_value, val);
2537 break;
48461135 2538 case BPF_JSGE:
b03c9f9f
EC
2539 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2540 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2541 break;
b4e432f1
DB
2542 case BPF_JLE:
2543 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2544 true_reg->umax_value = min(true_reg->umax_value, val);
2545 break;
2546 case BPF_JSLE:
2547 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2548 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2549 break;
48461135
JB
2550 default:
2551 break;
2552 }
2553
b03c9f9f
EC
2554 __reg_deduce_bounds(false_reg);
2555 __reg_deduce_bounds(true_reg);
2556 /* We might have learned some bits from the bounds. */
2557 __reg_bound_offset(false_reg);
2558 __reg_bound_offset(true_reg);
2559 /* Intersecting with the old var_off might have improved our bounds
2560 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2561 * then new var_off is (0; 0x7f...fc) which improves our umax.
2562 */
2563 __update_reg_bounds(false_reg);
2564 __update_reg_bounds(true_reg);
48461135
JB
2565}
2566
f1174f77
EC
2567/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2568 * the variable reg.
48461135
JB
2569 */
2570static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2571 struct bpf_reg_state *false_reg, u64 val,
2572 u8 opcode)
2573{
f1174f77
EC
2574 if (__is_pointer_value(false, false_reg))
2575 return;
4cabc5b1 2576
48461135
JB
2577 switch (opcode) {
2578 case BPF_JEQ:
2579 /* If this is false then we know nothing Jon Snow, but if it is
2580 * true then we know for sure.
2581 */
b03c9f9f 2582 __mark_reg_known(true_reg, val);
48461135
JB
2583 break;
2584 case BPF_JNE:
2585 /* If this is true we know nothing Jon Snow, but if it is false
2586 * we know the value for sure;
2587 */
b03c9f9f 2588 __mark_reg_known(false_reg, val);
48461135
JB
2589 break;
2590 case BPF_JGT:
b03c9f9f
EC
2591 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2592 false_reg->umin_value = max(false_reg->umin_value, val);
2593 break;
48461135 2594 case BPF_JSGT:
b03c9f9f
EC
2595 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2596 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2597 break;
b4e432f1
DB
2598 case BPF_JLT:
2599 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2600 false_reg->umax_value = min(false_reg->umax_value, val);
2601 break;
2602 case BPF_JSLT:
2603 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2604 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2605 break;
48461135 2606 case BPF_JGE:
b03c9f9f
EC
2607 true_reg->umax_value = min(true_reg->umax_value, val);
2608 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2609 break;
48461135 2610 case BPF_JSGE:
b03c9f9f
EC
2611 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2612 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2613 break;
b4e432f1
DB
2614 case BPF_JLE:
2615 true_reg->umin_value = max(true_reg->umin_value, val);
2616 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2617 break;
2618 case BPF_JSLE:
2619 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2620 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2621 break;
48461135
JB
2622 default:
2623 break;
2624 }
2625
b03c9f9f
EC
2626 __reg_deduce_bounds(false_reg);
2627 __reg_deduce_bounds(true_reg);
2628 /* We might have learned some bits from the bounds. */
2629 __reg_bound_offset(false_reg);
2630 __reg_bound_offset(true_reg);
2631 /* Intersecting with the old var_off might have improved our bounds
2632 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2633 * then new var_off is (0; 0x7f...fc) which improves our umax.
2634 */
2635 __update_reg_bounds(false_reg);
2636 __update_reg_bounds(true_reg);
f1174f77
EC
2637}
2638
2639/* Regs are known to be equal, so intersect their min/max/var_off */
2640static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2641 struct bpf_reg_state *dst_reg)
2642{
b03c9f9f
EC
2643 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2644 dst_reg->umin_value);
2645 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2646 dst_reg->umax_value);
2647 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2648 dst_reg->smin_value);
2649 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2650 dst_reg->smax_value);
f1174f77
EC
2651 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2652 dst_reg->var_off);
b03c9f9f
EC
2653 /* We might have learned new bounds from the var_off. */
2654 __update_reg_bounds(src_reg);
2655 __update_reg_bounds(dst_reg);
2656 /* We might have learned something about the sign bit. */
2657 __reg_deduce_bounds(src_reg);
2658 __reg_deduce_bounds(dst_reg);
2659 /* We might have learned some bits from the bounds. */
2660 __reg_bound_offset(src_reg);
2661 __reg_bound_offset(dst_reg);
2662 /* Intersecting with the old var_off might have improved our bounds
2663 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2664 * then new var_off is (0; 0x7f...fc) which improves our umax.
2665 */
2666 __update_reg_bounds(src_reg);
2667 __update_reg_bounds(dst_reg);
f1174f77
EC
2668}
2669
2670static void reg_combine_min_max(struct bpf_reg_state *true_src,
2671 struct bpf_reg_state *true_dst,
2672 struct bpf_reg_state *false_src,
2673 struct bpf_reg_state *false_dst,
2674 u8 opcode)
2675{
2676 switch (opcode) {
2677 case BPF_JEQ:
2678 __reg_combine_min_max(true_src, true_dst);
2679 break;
2680 case BPF_JNE:
2681 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2682 break;
4cabc5b1 2683 }
48461135
JB
2684}
2685
57a09bf0 2686static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2687 bool is_null)
57a09bf0
TG
2688{
2689 struct bpf_reg_state *reg = &regs[regno];
2690
2691 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2692 /* Old offset (both fixed and variable parts) should
2693 * have been known-zero, because we don't allow pointer
2694 * arithmetic on pointers that might be NULL.
2695 */
b03c9f9f
EC
2696 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2697 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2698 reg->off)) {
b03c9f9f
EC
2699 __mark_reg_known_zero(reg);
2700 reg->off = 0;
f1174f77
EC
2701 }
2702 if (is_null) {
2703 reg->type = SCALAR_VALUE;
56f668df
MKL
2704 } else if (reg->map_ptr->inner_map_meta) {
2705 reg->type = CONST_PTR_TO_MAP;
2706 reg->map_ptr = reg->map_ptr->inner_map_meta;
2707 } else {
f1174f77 2708 reg->type = PTR_TO_MAP_VALUE;
56f668df 2709 }
a08dd0da
DB
2710 /* We don't need id from this point onwards anymore, thus we
2711 * should better reset it, so that state pruning has chances
2712 * to take effect.
2713 */
2714 reg->id = 0;
57a09bf0
TG
2715 }
2716}
2717
2718/* The logic is similar to find_good_pkt_pointers(), both could eventually
2719 * be folded together at some point.
2720 */
2721static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2722 bool is_null)
57a09bf0
TG
2723{
2724 struct bpf_reg_state *regs = state->regs;
a08dd0da 2725 u32 id = regs[regno].id;
57a09bf0
TG
2726 int i;
2727
2728 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2729 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2730
2731 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2732 if (state->stack_slot_type[i] != STACK_SPILL)
2733 continue;
f1174f77 2734 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2735 }
2736}
2737
58e2af8b 2738static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2739 struct bpf_insn *insn, int *insn_idx)
2740{
58e2af8b
JK
2741 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2742 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2743 u8 opcode = BPF_OP(insn->code);
2744 int err;
2745
b4e432f1 2746 if (opcode > BPF_JSLE) {
17a52670
AS
2747 verbose("invalid BPF_JMP opcode %x\n", opcode);
2748 return -EINVAL;
2749 }
2750
2751 if (BPF_SRC(insn->code) == BPF_X) {
2752 if (insn->imm != 0) {
2753 verbose("BPF_JMP uses reserved fields\n");
2754 return -EINVAL;
2755 }
2756
2757 /* check src1 operand */
dc503a8a 2758 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2759 if (err)
2760 return err;
1be7f75d
AS
2761
2762 if (is_pointer_value(env, insn->src_reg)) {
2763 verbose("R%d pointer comparison prohibited\n",
2764 insn->src_reg);
2765 return -EACCES;
2766 }
17a52670
AS
2767 } else {
2768 if (insn->src_reg != BPF_REG_0) {
2769 verbose("BPF_JMP uses reserved fields\n");
2770 return -EINVAL;
2771 }
2772 }
2773
2774 /* check src2 operand */
dc503a8a 2775 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2776 if (err)
2777 return err;
2778
1a0dc1ac
AS
2779 dst_reg = &regs[insn->dst_reg];
2780
17a52670
AS
2781 /* detect if R == 0 where R was initialized to zero earlier */
2782 if (BPF_SRC(insn->code) == BPF_K &&
2783 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2784 dst_reg->type == SCALAR_VALUE &&
2785 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2786 if (opcode == BPF_JEQ) {
2787 /* if (imm == imm) goto pc+off;
2788 * only follow the goto, ignore fall-through
2789 */
2790 *insn_idx += insn->off;
2791 return 0;
2792 } else {
2793 /* if (imm != imm) goto pc+off;
2794 * only follow fall-through branch, since
2795 * that's where the program will go
2796 */
2797 return 0;
2798 }
2799 }
2800
2801 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2802 if (!other_branch)
2803 return -EFAULT;
2804
48461135
JB
2805 /* detect if we are comparing against a constant value so we can adjust
2806 * our min/max values for our dst register.
f1174f77
EC
2807 * this is only legit if both are scalars (or pointers to the same
2808 * object, I suppose, but we don't support that right now), because
2809 * otherwise the different base pointers mean the offsets aren't
2810 * comparable.
48461135
JB
2811 */
2812 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2813 if (dst_reg->type == SCALAR_VALUE &&
2814 regs[insn->src_reg].type == SCALAR_VALUE) {
2815 if (tnum_is_const(regs[insn->src_reg].var_off))
2816 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2817 dst_reg, regs[insn->src_reg].var_off.value,
2818 opcode);
2819 else if (tnum_is_const(dst_reg->var_off))
2820 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2821 &regs[insn->src_reg],
2822 dst_reg->var_off.value, opcode);
2823 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2824 /* Comparing for equality, we can combine knowledge */
2825 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2826 &other_branch->regs[insn->dst_reg],
2827 &regs[insn->src_reg],
2828 &regs[insn->dst_reg], opcode);
2829 }
2830 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2831 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2832 dst_reg, insn->imm, opcode);
2833 }
2834
58e2af8b 2835 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2836 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2837 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2838 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2839 /* Mark all identical map registers in each branch as either
2840 * safe or unknown depending R == 0 or R != 0 conditional.
2841 */
f1174f77
EC
2842 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2843 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2844 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2845 dst_reg->type == PTR_TO_PACKET &&
2846 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca 2847 find_good_pkt_pointers(this_branch, dst_reg);
b4e432f1
DB
2848 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2849 dst_reg->type == PTR_TO_PACKET &&
2850 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2851 find_good_pkt_pointers(other_branch, dst_reg);
2d2be8ca
DB
2852 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2853 dst_reg->type == PTR_TO_PACKET_END &&
2854 regs[insn->src_reg].type == PTR_TO_PACKET) {
2855 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
b4e432f1
DB
2856 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2857 dst_reg->type == PTR_TO_PACKET_END &&
2858 regs[insn->src_reg].type == PTR_TO_PACKET) {
2859 find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
1be7f75d
AS
2860 } else if (is_pointer_value(env, insn->dst_reg)) {
2861 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2862 return -EACCES;
17a52670
AS
2863 }
2864 if (log_level)
2d2be8ca 2865 print_verifier_state(this_branch);
17a52670
AS
2866 return 0;
2867}
2868
0246e64d
AS
2869/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2870static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2871{
2872 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2873
2874 return (struct bpf_map *) (unsigned long) imm64;
2875}
2876
17a52670 2877/* verify BPF_LD_IMM64 instruction */
58e2af8b 2878static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2879{
58e2af8b 2880 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2881 int err;
2882
2883 if (BPF_SIZE(insn->code) != BPF_DW) {
2884 verbose("invalid BPF_LD_IMM insn\n");
2885 return -EINVAL;
2886 }
2887 if (insn->off != 0) {
2888 verbose("BPF_LD_IMM64 uses reserved fields\n");
2889 return -EINVAL;
2890 }
2891
dc503a8a 2892 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2893 if (err)
2894 return err;
2895
6b173873 2896 if (insn->src_reg == 0) {
6b173873
JK
2897 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2898
f1174f77 2899 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2900 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2901 return 0;
6b173873 2902 }
17a52670
AS
2903
2904 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2905 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2906
2907 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2908 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2909 return 0;
2910}
2911
96be4325
DB
2912static bool may_access_skb(enum bpf_prog_type type)
2913{
2914 switch (type) {
2915 case BPF_PROG_TYPE_SOCKET_FILTER:
2916 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2917 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2918 return true;
2919 default:
2920 return false;
2921 }
2922}
2923
ddd872bc
AS
2924/* verify safety of LD_ABS|LD_IND instructions:
2925 * - they can only appear in the programs where ctx == skb
2926 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2927 * preserve R6-R9, and store return value into R0
2928 *
2929 * Implicit input:
2930 * ctx == skb == R6 == CTX
2931 *
2932 * Explicit input:
2933 * SRC == any register
2934 * IMM == 32-bit immediate
2935 *
2936 * Output:
2937 * R0 - 8/16/32-bit skb data converted to cpu endianness
2938 */
58e2af8b 2939static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2940{
58e2af8b 2941 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2942 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2943 int i, err;
2944
24701ece 2945 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2946 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2947 return -EINVAL;
2948 }
2949
2950 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2951 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2952 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2953 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2954 return -EINVAL;
2955 }
2956
2957 /* check whether implicit source operand (register R6) is readable */
dc503a8a 2958 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
2959 if (err)
2960 return err;
2961
2962 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2963 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2964 return -EINVAL;
2965 }
2966
2967 if (mode == BPF_IND) {
2968 /* check explicit source operand */
dc503a8a 2969 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
2970 if (err)
2971 return err;
2972 }
2973
2974 /* reset caller saved regs to unreadable */
dc503a8a 2975 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 2976 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
2977 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2978 }
ddd872bc
AS
2979
2980 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
2981 * the value fetched from the packet.
2982 * Already marked as written above.
ddd872bc 2983 */
f1174f77 2984 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
2985 return 0;
2986}
2987
475fb78f
AS
2988/* non-recursive DFS pseudo code
2989 * 1 procedure DFS-iterative(G,v):
2990 * 2 label v as discovered
2991 * 3 let S be a stack
2992 * 4 S.push(v)
2993 * 5 while S is not empty
2994 * 6 t <- S.pop()
2995 * 7 if t is what we're looking for:
2996 * 8 return t
2997 * 9 for all edges e in G.adjacentEdges(t) do
2998 * 10 if edge e is already labelled
2999 * 11 continue with the next edge
3000 * 12 w <- G.adjacentVertex(t,e)
3001 * 13 if vertex w is not discovered and not explored
3002 * 14 label e as tree-edge
3003 * 15 label w as discovered
3004 * 16 S.push(w)
3005 * 17 continue at 5
3006 * 18 else if vertex w is discovered
3007 * 19 label e as back-edge
3008 * 20 else
3009 * 21 // vertex w is explored
3010 * 22 label e as forward- or cross-edge
3011 * 23 label t as explored
3012 * 24 S.pop()
3013 *
3014 * convention:
3015 * 0x10 - discovered
3016 * 0x11 - discovered and fall-through edge labelled
3017 * 0x12 - discovered and fall-through and branch edges labelled
3018 * 0x20 - explored
3019 */
3020
3021enum {
3022 DISCOVERED = 0x10,
3023 EXPLORED = 0x20,
3024 FALLTHROUGH = 1,
3025 BRANCH = 2,
3026};
3027
58e2af8b 3028#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3029
475fb78f
AS
3030static int *insn_stack; /* stack of insns to process */
3031static int cur_stack; /* current stack index */
3032static int *insn_state;
3033
3034/* t, w, e - match pseudo-code above:
3035 * t - index of current instruction
3036 * w - next instruction
3037 * e - edge
3038 */
58e2af8b 3039static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3040{
3041 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3042 return 0;
3043
3044 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3045 return 0;
3046
3047 if (w < 0 || w >= env->prog->len) {
3048 verbose("jump out of range from insn %d to %d\n", t, w);
3049 return -EINVAL;
3050 }
3051
f1bca824
AS
3052 if (e == BRANCH)
3053 /* mark branch target for state pruning */
3054 env->explored_states[w] = STATE_LIST_MARK;
3055
475fb78f
AS
3056 if (insn_state[w] == 0) {
3057 /* tree-edge */
3058 insn_state[t] = DISCOVERED | e;
3059 insn_state[w] = DISCOVERED;
3060 if (cur_stack >= env->prog->len)
3061 return -E2BIG;
3062 insn_stack[cur_stack++] = w;
3063 return 1;
3064 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3065 verbose("back-edge from insn %d to %d\n", t, w);
3066 return -EINVAL;
3067 } else if (insn_state[w] == EXPLORED) {
3068 /* forward- or cross-edge */
3069 insn_state[t] = DISCOVERED | e;
3070 } else {
3071 verbose("insn state internal bug\n");
3072 return -EFAULT;
3073 }
3074 return 0;
3075}
3076
3077/* non-recursive depth-first-search to detect loops in BPF program
3078 * loop == back-edge in directed graph
3079 */
58e2af8b 3080static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3081{
3082 struct bpf_insn *insns = env->prog->insnsi;
3083 int insn_cnt = env->prog->len;
3084 int ret = 0;
3085 int i, t;
3086
3087 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3088 if (!insn_state)
3089 return -ENOMEM;
3090
3091 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3092 if (!insn_stack) {
3093 kfree(insn_state);
3094 return -ENOMEM;
3095 }
3096
3097 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3098 insn_stack[0] = 0; /* 0 is the first instruction */
3099 cur_stack = 1;
3100
3101peek_stack:
3102 if (cur_stack == 0)
3103 goto check_state;
3104 t = insn_stack[cur_stack - 1];
3105
3106 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3107 u8 opcode = BPF_OP(insns[t].code);
3108
3109 if (opcode == BPF_EXIT) {
3110 goto mark_explored;
3111 } else if (opcode == BPF_CALL) {
3112 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3113 if (ret == 1)
3114 goto peek_stack;
3115 else if (ret < 0)
3116 goto err_free;
07016151
DB
3117 if (t + 1 < insn_cnt)
3118 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3119 } else if (opcode == BPF_JA) {
3120 if (BPF_SRC(insns[t].code) != BPF_K) {
3121 ret = -EINVAL;
3122 goto err_free;
3123 }
3124 /* unconditional jump with single edge */
3125 ret = push_insn(t, t + insns[t].off + 1,
3126 FALLTHROUGH, env);
3127 if (ret == 1)
3128 goto peek_stack;
3129 else if (ret < 0)
3130 goto err_free;
f1bca824
AS
3131 /* tell verifier to check for equivalent states
3132 * after every call and jump
3133 */
c3de6317
AS
3134 if (t + 1 < insn_cnt)
3135 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3136 } else {
3137 /* conditional jump with two edges */
3c2ce60b 3138 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3139 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3140 if (ret == 1)
3141 goto peek_stack;
3142 else if (ret < 0)
3143 goto err_free;
3144
3145 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3146 if (ret == 1)
3147 goto peek_stack;
3148 else if (ret < 0)
3149 goto err_free;
3150 }
3151 } else {
3152 /* all other non-branch instructions with single
3153 * fall-through edge
3154 */
3155 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3156 if (ret == 1)
3157 goto peek_stack;
3158 else if (ret < 0)
3159 goto err_free;
3160 }
3161
3162mark_explored:
3163 insn_state[t] = EXPLORED;
3164 if (cur_stack-- <= 0) {
3165 verbose("pop stack internal bug\n");
3166 ret = -EFAULT;
3167 goto err_free;
3168 }
3169 goto peek_stack;
3170
3171check_state:
3172 for (i = 0; i < insn_cnt; i++) {
3173 if (insn_state[i] != EXPLORED) {
3174 verbose("unreachable insn %d\n", i);
3175 ret = -EINVAL;
3176 goto err_free;
3177 }
3178 }
3179 ret = 0; /* cfg looks good */
3180
3181err_free:
3182 kfree(insn_state);
3183 kfree(insn_stack);
3184 return ret;
3185}
3186
f1174f77
EC
3187/* check %cur's range satisfies %old's */
3188static bool range_within(struct bpf_reg_state *old,
3189 struct bpf_reg_state *cur)
3190{
b03c9f9f
EC
3191 return old->umin_value <= cur->umin_value &&
3192 old->umax_value >= cur->umax_value &&
3193 old->smin_value <= cur->smin_value &&
3194 old->smax_value >= cur->smax_value;
f1174f77
EC
3195}
3196
3197/* Maximum number of register states that can exist at once */
3198#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3199struct idpair {
3200 u32 old;
3201 u32 cur;
3202};
3203
3204/* If in the old state two registers had the same id, then they need to have
3205 * the same id in the new state as well. But that id could be different from
3206 * the old state, so we need to track the mapping from old to new ids.
3207 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3208 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3209 * regs with a different old id could still have new id 9, we don't care about
3210 * that.
3211 * So we look through our idmap to see if this old id has been seen before. If
3212 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3213 */
f1174f77 3214static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3215{
f1174f77 3216 unsigned int i;
969bf05e 3217
f1174f77
EC
3218 for (i = 0; i < ID_MAP_SIZE; i++) {
3219 if (!idmap[i].old) {
3220 /* Reached an empty slot; haven't seen this id before */
3221 idmap[i].old = old_id;
3222 idmap[i].cur = cur_id;
3223 return true;
3224 }
3225 if (idmap[i].old == old_id)
3226 return idmap[i].cur == cur_id;
3227 }
3228 /* We ran out of idmap slots, which should be impossible */
3229 WARN_ON_ONCE(1);
3230 return false;
3231}
3232
3233/* Returns true if (rold safe implies rcur safe) */
3234static bool regsafe(struct bpf_reg_state *rold,
3235 struct bpf_reg_state *rcur,
3236 bool varlen_map_access, struct idpair *idmap)
3237{
dc503a8a
EC
3238 if (!(rold->live & REG_LIVE_READ))
3239 /* explored state didn't use this */
3240 return true;
3241
3242 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3243 return true;
3244
f1174f77
EC
3245 if (rold->type == NOT_INIT)
3246 /* explored state can't have used this */
969bf05e 3247 return true;
f1174f77
EC
3248 if (rcur->type == NOT_INIT)
3249 return false;
3250 switch (rold->type) {
3251 case SCALAR_VALUE:
3252 if (rcur->type == SCALAR_VALUE) {
3253 /* new val must satisfy old val knowledge */
3254 return range_within(rold, rcur) &&
3255 tnum_in(rold->var_off, rcur->var_off);
3256 } else {
3257 /* if we knew anything about the old value, we're not
3258 * equal, because we can't know anything about the
3259 * scalar value of the pointer in the new value.
3260 */
b03c9f9f
EC
3261 return rold->umin_value == 0 &&
3262 rold->umax_value == U64_MAX &&
3263 rold->smin_value == S64_MIN &&
3264 rold->smax_value == S64_MAX &&
f1174f77
EC
3265 tnum_is_unknown(rold->var_off);
3266 }
3267 case PTR_TO_MAP_VALUE:
3268 if (varlen_map_access) {
3269 /* If the new min/max/var_off satisfy the old ones and
3270 * everything else matches, we are OK.
3271 * We don't care about the 'id' value, because nothing
3272 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3273 */
3274 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3275 range_within(rold, rcur) &&
3276 tnum_in(rold->var_off, rcur->var_off);
3277 } else {
3278 /* If the ranges/var_off were not the same, but
3279 * everything else was and we didn't do a variable
3280 * access into a map then we are a-ok.
3281 */
3282 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
3283 }
3284 case PTR_TO_MAP_VALUE_OR_NULL:
3285 /* a PTR_TO_MAP_VALUE could be safe to use as a
3286 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3287 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3288 * checked, doing so could have affected others with the same
3289 * id, and we can't check for that because we lost the id when
3290 * we converted to a PTR_TO_MAP_VALUE.
3291 */
3292 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3293 return false;
3294 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3295 return false;
3296 /* Check our ids match any regs they're supposed to */
3297 return check_ids(rold->id, rcur->id, idmap);
3298 case PTR_TO_PACKET:
3299 if (rcur->type != PTR_TO_PACKET)
3300 return false;
3301 /* We must have at least as much range as the old ptr
3302 * did, so that any accesses which were safe before are
3303 * still safe. This is true even if old range < old off,
3304 * since someone could have accessed through (ptr - k), or
3305 * even done ptr -= k in a register, to get a safe access.
3306 */
3307 if (rold->range > rcur->range)
3308 return false;
3309 /* If the offsets don't match, we can't trust our alignment;
3310 * nor can we be sure that we won't fall out of range.
3311 */
3312 if (rold->off != rcur->off)
3313 return false;
3314 /* id relations must be preserved */
3315 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3316 return false;
3317 /* new val must satisfy old val knowledge */
3318 return range_within(rold, rcur) &&
3319 tnum_in(rold->var_off, rcur->var_off);
3320 case PTR_TO_CTX:
3321 case CONST_PTR_TO_MAP:
3322 case PTR_TO_STACK:
3323 case PTR_TO_PACKET_END:
3324 /* Only valid matches are exact, which memcmp() above
3325 * would have accepted
3326 */
3327 default:
3328 /* Don't know what's going on, just say it's not safe */
3329 return false;
3330 }
969bf05e 3331
f1174f77
EC
3332 /* Shouldn't get here; if we do, say it's not safe */
3333 WARN_ON_ONCE(1);
969bf05e
AS
3334 return false;
3335}
3336
f1bca824
AS
3337/* compare two verifier states
3338 *
3339 * all states stored in state_list are known to be valid, since
3340 * verifier reached 'bpf_exit' instruction through them
3341 *
3342 * this function is called when verifier exploring different branches of
3343 * execution popped from the state stack. If it sees an old state that has
3344 * more strict register state and more strict stack state then this execution
3345 * branch doesn't need to be explored further, since verifier already
3346 * concluded that more strict state leads to valid finish.
3347 *
3348 * Therefore two states are equivalent if register state is more conservative
3349 * and explored stack state is more conservative than the current one.
3350 * Example:
3351 * explored current
3352 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3353 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3354 *
3355 * In other words if current stack state (one being explored) has more
3356 * valid slots than old one that already passed validation, it means
3357 * the verifier can stop exploring and conclude that current state is valid too
3358 *
3359 * Similarly with registers. If explored state has register type as invalid
3360 * whereas register type in current state is meaningful, it means that
3361 * the current state will reach 'bpf_exit' instruction safely
3362 */
48461135
JB
3363static bool states_equal(struct bpf_verifier_env *env,
3364 struct bpf_verifier_state *old,
58e2af8b 3365 struct bpf_verifier_state *cur)
f1bca824 3366{
e2d2afe1 3367 bool varlen_map_access = env->varlen_map_value_access;
f1174f77
EC
3368 struct idpair *idmap;
3369 bool ret = false;
f1bca824
AS
3370 int i;
3371
f1174f77
EC
3372 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3373 /* If we failed to allocate the idmap, just say it's not safe */
3374 if (!idmap)
1a0dc1ac 3375 return false;
f1174f77
EC
3376
3377 for (i = 0; i < MAX_BPF_REG; i++) {
3378 if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
3379 idmap))
3380 goto out_free;
f1bca824
AS
3381 }
3382
3383 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3384 if (old->stack_slot_type[i] == STACK_INVALID)
3385 continue;
3386 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3387 /* Ex: old explored (safe) state has STACK_SPILL in
3388 * this stack slot, but current has has STACK_MISC ->
3389 * this verifier states are not equivalent,
3390 * return false to continue verification of this path
3391 */
f1174f77 3392 goto out_free;
9c399760
AS
3393 if (i % BPF_REG_SIZE)
3394 continue;
d25da6ca
DB
3395 if (old->stack_slot_type[i] != STACK_SPILL)
3396 continue;
f1174f77
EC
3397 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3398 &cur->spilled_regs[i / BPF_REG_SIZE],
3399 varlen_map_access, idmap))
3400 /* when explored and current stack slot are both storing
3401 * spilled registers, check that stored pointers types
9c399760
AS
3402 * are the same as well.
3403 * Ex: explored safe path could have stored
f1174f77 3404 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3405 * but current path has stored:
f1174f77 3406 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3407 * such verifier states are not equivalent.
3408 * return false to continue verification of this path
3409 */
f1174f77 3410 goto out_free;
9c399760
AS
3411 else
3412 continue;
f1bca824 3413 }
f1174f77
EC
3414 ret = true;
3415out_free:
3416 kfree(idmap);
3417 return ret;
f1bca824
AS
3418}
3419
dc503a8a
EC
3420static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3421 struct bpf_verifier_state *parent)
3422{
3423 bool touched = false; /* any changes made? */
3424 int i;
3425
3426 if (!parent)
3427 return touched;
3428 /* Propagate read liveness of registers... */
3429 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3430 /* We don't need to worry about FP liveness because it's read-only */
3431 for (i = 0; i < BPF_REG_FP; i++) {
3432 if (parent->regs[i].live & REG_LIVE_READ)
3433 continue;
3434 if (state->regs[i].live == REG_LIVE_READ) {
3435 parent->regs[i].live |= REG_LIVE_READ;
3436 touched = true;
3437 }
3438 }
3439 /* ... and stack slots */
3440 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3441 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3442 continue;
3443 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3444 continue;
3445 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3446 continue;
3447 if (state->spilled_regs[i].live == REG_LIVE_READ) {
3448 parent->regs[i].live |= REG_LIVE_READ;
3449 touched = true;
3450 }
3451 }
3452 return touched;
3453}
3454
3455static void propagate_liveness(const struct bpf_verifier_state *state,
3456 struct bpf_verifier_state *parent)
3457{
3458 while (do_propagate_liveness(state, parent)) {
3459 /* Something changed, so we need to feed those changes onward */
3460 state = parent;
3461 parent = state->parent;
3462 }
3463}
3464
58e2af8b 3465static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3466{
58e2af8b
JK
3467 struct bpf_verifier_state_list *new_sl;
3468 struct bpf_verifier_state_list *sl;
dc503a8a 3469 int i;
f1bca824
AS
3470
3471 sl = env->explored_states[insn_idx];
3472 if (!sl)
3473 /* this 'insn_idx' instruction wasn't marked, so we will not
3474 * be doing state search here
3475 */
3476 return 0;
3477
3478 while (sl != STATE_LIST_MARK) {
dc503a8a 3479 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3480 /* reached equivalent register/stack state,
dc503a8a
EC
3481 * prune the search.
3482 * Registers read by the continuation are read by us.
f1bca824 3483 */
dc503a8a 3484 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3485 return 1;
dc503a8a 3486 }
f1bca824
AS
3487 sl = sl->next;
3488 }
3489
3490 /* there were no equivalent states, remember current one.
3491 * technically the current state is not proven to be safe yet,
3492 * but it will either reach bpf_exit (which means it's safe) or
3493 * it will be rejected. Since there are no loops, we won't be
3494 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3495 */
58e2af8b 3496 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3497 if (!new_sl)
3498 return -ENOMEM;
3499
3500 /* add new state to the head of linked list */
3501 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3502 new_sl->next = env->explored_states[insn_idx];
3503 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3504 /* connect new state to parentage chain */
3505 env->cur_state.parent = &new_sl->state;
3506 /* clear liveness marks in current state */
3507 for (i = 0; i < BPF_REG_FP; i++)
3508 env->cur_state.regs[i].live = REG_LIVE_NONE;
3509 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3510 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3511 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3512 return 0;
3513}
3514
13a27dfc
JK
3515static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3516 int insn_idx, int prev_insn_idx)
3517{
3518 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3519 return 0;
3520
3521 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3522}
3523
58e2af8b 3524static int do_check(struct bpf_verifier_env *env)
17a52670 3525{
58e2af8b 3526 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3527 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3528 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3529 int insn_cnt = env->prog->len;
3530 int insn_idx, prev_insn_idx = 0;
3531 int insn_processed = 0;
3532 bool do_print_state = false;
3533
3534 init_reg_state(regs);
dc503a8a 3535 state->parent = NULL;
17a52670 3536 insn_idx = 0;
48461135 3537 env->varlen_map_value_access = false;
17a52670
AS
3538 for (;;) {
3539 struct bpf_insn *insn;
3540 u8 class;
3541 int err;
3542
3543 if (insn_idx >= insn_cnt) {
3544 verbose("invalid insn idx %d insn_cnt %d\n",
3545 insn_idx, insn_cnt);
3546 return -EFAULT;
3547 }
3548
3549 insn = &insns[insn_idx];
3550 class = BPF_CLASS(insn->code);
3551
07016151 3552 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3553 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3554 insn_processed);
3555 return -E2BIG;
3556 }
3557
f1bca824
AS
3558 err = is_state_visited(env, insn_idx);
3559 if (err < 0)
3560 return err;
3561 if (err == 1) {
3562 /* found equivalent state, can prune the search */
3563 if (log_level) {
3564 if (do_print_state)
3565 verbose("\nfrom %d to %d: safe\n",
3566 prev_insn_idx, insn_idx);
3567 else
3568 verbose("%d: safe\n", insn_idx);
3569 }
3570 goto process_bpf_exit;
3571 }
3572
3c2ce60b
DB
3573 if (need_resched())
3574 cond_resched();
3575
c5fc9692
DM
3576 if (log_level > 1 || (log_level && do_print_state)) {
3577 if (log_level > 1)
3578 verbose("%d:", insn_idx);
3579 else
3580 verbose("\nfrom %d to %d:",
3581 prev_insn_idx, insn_idx);
1a0dc1ac 3582 print_verifier_state(&env->cur_state);
17a52670
AS
3583 do_print_state = false;
3584 }
3585
3586 if (log_level) {
3587 verbose("%d: ", insn_idx);
0d0e5769 3588 print_bpf_insn(env, insn);
17a52670
AS
3589 }
3590
13a27dfc
JK
3591 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3592 if (err)
3593 return err;
3594
17a52670 3595 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3596 err = check_alu_op(env, insn);
17a52670
AS
3597 if (err)
3598 return err;
3599
3600 } else if (class == BPF_LDX) {
3df126f3 3601 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3602
3603 /* check for reserved fields is already done */
3604
17a52670 3605 /* check src operand */
dc503a8a 3606 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3607 if (err)
3608 return err;
3609
dc503a8a 3610 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3611 if (err)
3612 return err;
3613
725f9dcd
AS
3614 src_reg_type = regs[insn->src_reg].type;
3615
17a52670
AS
3616 /* check that memory (src_reg + off) is readable,
3617 * the state of dst_reg will be updated by this func
3618 */
31fd8581 3619 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3620 BPF_SIZE(insn->code), BPF_READ,
3621 insn->dst_reg);
3622 if (err)
3623 return err;
3624
3df126f3
JK
3625 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3626
3627 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3628 /* saw a valid insn
3629 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3630 * save type to validate intersecting paths
9bac3d6d 3631 */
3df126f3 3632 *prev_src_type = src_reg_type;
9bac3d6d 3633
3df126f3 3634 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3635 (src_reg_type == PTR_TO_CTX ||
3df126f3 3636 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3637 /* ABuser program is trying to use the same insn
3638 * dst_reg = *(u32*) (src_reg + off)
3639 * with different pointer types:
3640 * src_reg == ctx in one branch and
3641 * src_reg == stack|map in some other branch.
3642 * Reject it.
3643 */
3644 verbose("same insn cannot be used with different pointers\n");
3645 return -EINVAL;
3646 }
3647
17a52670 3648 } else if (class == BPF_STX) {
3df126f3 3649 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3650
17a52670 3651 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3652 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3653 if (err)
3654 return err;
3655 insn_idx++;
3656 continue;
3657 }
3658
17a52670 3659 /* check src1 operand */
dc503a8a 3660 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3661 if (err)
3662 return err;
3663 /* check src2 operand */
dc503a8a 3664 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3665 if (err)
3666 return err;
3667
d691f9e8
AS
3668 dst_reg_type = regs[insn->dst_reg].type;
3669
17a52670 3670 /* check that memory (dst_reg + off) is writeable */
31fd8581 3671 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3672 BPF_SIZE(insn->code), BPF_WRITE,
3673 insn->src_reg);
3674 if (err)
3675 return err;
3676
3df126f3
JK
3677 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3678
3679 if (*prev_dst_type == NOT_INIT) {
3680 *prev_dst_type = dst_reg_type;
3681 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3682 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3683 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3684 verbose("same insn cannot be used with different pointers\n");
3685 return -EINVAL;
3686 }
3687
17a52670
AS
3688 } else if (class == BPF_ST) {
3689 if (BPF_MODE(insn->code) != BPF_MEM ||
3690 insn->src_reg != BPF_REG_0) {
3691 verbose("BPF_ST uses reserved fields\n");
3692 return -EINVAL;
3693 }
3694 /* check src operand */
dc503a8a 3695 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3696 if (err)
3697 return err;
3698
3699 /* check that memory (dst_reg + off) is writeable */
31fd8581 3700 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3701 BPF_SIZE(insn->code), BPF_WRITE,
3702 -1);
3703 if (err)
3704 return err;
3705
3706 } else if (class == BPF_JMP) {
3707 u8 opcode = BPF_OP(insn->code);
3708
3709 if (opcode == BPF_CALL) {
3710 if (BPF_SRC(insn->code) != BPF_K ||
3711 insn->off != 0 ||
3712 insn->src_reg != BPF_REG_0 ||
3713 insn->dst_reg != BPF_REG_0) {
3714 verbose("BPF_CALL uses reserved fields\n");
3715 return -EINVAL;
3716 }
3717
81ed18ab 3718 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3719 if (err)
3720 return err;
3721
3722 } else if (opcode == BPF_JA) {
3723 if (BPF_SRC(insn->code) != BPF_K ||
3724 insn->imm != 0 ||
3725 insn->src_reg != BPF_REG_0 ||
3726 insn->dst_reg != BPF_REG_0) {
3727 verbose("BPF_JA uses reserved fields\n");
3728 return -EINVAL;
3729 }
3730
3731 insn_idx += insn->off + 1;
3732 continue;
3733
3734 } else if (opcode == BPF_EXIT) {
3735 if (BPF_SRC(insn->code) != BPF_K ||
3736 insn->imm != 0 ||
3737 insn->src_reg != BPF_REG_0 ||
3738 insn->dst_reg != BPF_REG_0) {
3739 verbose("BPF_EXIT uses reserved fields\n");
3740 return -EINVAL;
3741 }
3742
3743 /* eBPF calling convetion is such that R0 is used
3744 * to return the value from eBPF program.
3745 * Make sure that it's readable at this time
3746 * of bpf_exit, which means that program wrote
3747 * something into it earlier
3748 */
dc503a8a 3749 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3750 if (err)
3751 return err;
3752
1be7f75d
AS
3753 if (is_pointer_value(env, BPF_REG_0)) {
3754 verbose("R0 leaks addr as return value\n");
3755 return -EACCES;
3756 }
3757
f1bca824 3758process_bpf_exit:
17a52670
AS
3759 insn_idx = pop_stack(env, &prev_insn_idx);
3760 if (insn_idx < 0) {
3761 break;
3762 } else {
3763 do_print_state = true;
3764 continue;
3765 }
3766 } else {
3767 err = check_cond_jmp_op(env, insn, &insn_idx);
3768 if (err)
3769 return err;
3770 }
3771 } else if (class == BPF_LD) {
3772 u8 mode = BPF_MODE(insn->code);
3773
3774 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3775 err = check_ld_abs(env, insn);
3776 if (err)
3777 return err;
3778
17a52670
AS
3779 } else if (mode == BPF_IMM) {
3780 err = check_ld_imm(env, insn);
3781 if (err)
3782 return err;
3783
3784 insn_idx++;
3785 } else {
3786 verbose("invalid BPF_LD mode\n");
3787 return -EINVAL;
3788 }
3789 } else {
3790 verbose("unknown insn class %d\n", class);
3791 return -EINVAL;
3792 }
3793
3794 insn_idx++;
3795 }
3796
8726679a
AS
3797 verbose("processed %d insns, stack depth %d\n",
3798 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3799 return 0;
3800}
3801
56f668df
MKL
3802static int check_map_prealloc(struct bpf_map *map)
3803{
3804 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3805 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3806 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3807 !(map->map_flags & BPF_F_NO_PREALLOC);
3808}
3809
fdc15d38
AS
3810static int check_map_prog_compatibility(struct bpf_map *map,
3811 struct bpf_prog *prog)
3812
3813{
56f668df
MKL
3814 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3815 * preallocated hash maps, since doing memory allocation
3816 * in overflow_handler can crash depending on where nmi got
3817 * triggered.
3818 */
3819 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3820 if (!check_map_prealloc(map)) {
3821 verbose("perf_event programs can only use preallocated hash map\n");
3822 return -EINVAL;
3823 }
3824 if (map->inner_map_meta &&
3825 !check_map_prealloc(map->inner_map_meta)) {
3826 verbose("perf_event programs can only use preallocated inner hash map\n");
3827 return -EINVAL;
3828 }
fdc15d38
AS
3829 }
3830 return 0;
3831}
3832
0246e64d
AS
3833/* look for pseudo eBPF instructions that access map FDs and
3834 * replace them with actual map pointers
3835 */
58e2af8b 3836static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3837{
3838 struct bpf_insn *insn = env->prog->insnsi;
3839 int insn_cnt = env->prog->len;
fdc15d38 3840 int i, j, err;
0246e64d 3841
f1f7714e 3842 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3843 if (err)
3844 return err;
3845
0246e64d 3846 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3847 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3848 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3849 verbose("BPF_LDX uses reserved fields\n");
3850 return -EINVAL;
3851 }
3852
d691f9e8
AS
3853 if (BPF_CLASS(insn->code) == BPF_STX &&
3854 ((BPF_MODE(insn->code) != BPF_MEM &&
3855 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3856 verbose("BPF_STX uses reserved fields\n");
3857 return -EINVAL;
3858 }
3859
0246e64d
AS
3860 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3861 struct bpf_map *map;
3862 struct fd f;
3863
3864 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3865 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3866 insn[1].off != 0) {
3867 verbose("invalid bpf_ld_imm64 insn\n");
3868 return -EINVAL;
3869 }
3870
3871 if (insn->src_reg == 0)
3872 /* valid generic load 64-bit imm */
3873 goto next_insn;
3874
3875 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3876 verbose("unrecognized bpf_ld_imm64 insn\n");
3877 return -EINVAL;
3878 }
3879
3880 f = fdget(insn->imm);
c2101297 3881 map = __bpf_map_get(f);
0246e64d
AS
3882 if (IS_ERR(map)) {
3883 verbose("fd %d is not pointing to valid bpf_map\n",
3884 insn->imm);
0246e64d
AS
3885 return PTR_ERR(map);
3886 }
3887
fdc15d38
AS
3888 err = check_map_prog_compatibility(map, env->prog);
3889 if (err) {
3890 fdput(f);
3891 return err;
3892 }
3893
0246e64d
AS
3894 /* store map pointer inside BPF_LD_IMM64 instruction */
3895 insn[0].imm = (u32) (unsigned long) map;
3896 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3897
3898 /* check whether we recorded this map already */
3899 for (j = 0; j < env->used_map_cnt; j++)
3900 if (env->used_maps[j] == map) {
3901 fdput(f);
3902 goto next_insn;
3903 }
3904
3905 if (env->used_map_cnt >= MAX_USED_MAPS) {
3906 fdput(f);
3907 return -E2BIG;
3908 }
3909
0246e64d
AS
3910 /* hold the map. If the program is rejected by verifier,
3911 * the map will be released by release_maps() or it
3912 * will be used by the valid program until it's unloaded
3913 * and all maps are released in free_bpf_prog_info()
3914 */
92117d84
AS
3915 map = bpf_map_inc(map, false);
3916 if (IS_ERR(map)) {
3917 fdput(f);
3918 return PTR_ERR(map);
3919 }
3920 env->used_maps[env->used_map_cnt++] = map;
3921
0246e64d
AS
3922 fdput(f);
3923next_insn:
3924 insn++;
3925 i++;
3926 }
3927 }
3928
3929 /* now all pseudo BPF_LD_IMM64 instructions load valid
3930 * 'struct bpf_map *' into a register instead of user map_fd.
3931 * These pointers will be used later by verifier to validate map access.
3932 */
3933 return 0;
3934}
3935
3936/* drop refcnt of maps used by the rejected program */
58e2af8b 3937static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3938{
3939 int i;
3940
3941 for (i = 0; i < env->used_map_cnt; i++)
3942 bpf_map_put(env->used_maps[i]);
3943}
3944
3945/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3946static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3947{
3948 struct bpf_insn *insn = env->prog->insnsi;
3949 int insn_cnt = env->prog->len;
3950 int i;
3951
3952 for (i = 0; i < insn_cnt; i++, insn++)
3953 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3954 insn->src_reg = 0;
3955}
3956
8041902d
AS
3957/* single env->prog->insni[off] instruction was replaced with the range
3958 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3959 * [0, off) and [off, end) to new locations, so the patched range stays zero
3960 */
3961static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3962 u32 off, u32 cnt)
3963{
3964 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3965
3966 if (cnt == 1)
3967 return 0;
3968 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3969 if (!new_data)
3970 return -ENOMEM;
3971 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3972 memcpy(new_data + off + cnt - 1, old_data + off,
3973 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3974 env->insn_aux_data = new_data;
3975 vfree(old_data);
3976 return 0;
3977}
3978
3979static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3980 const struct bpf_insn *patch, u32 len)
3981{
3982 struct bpf_prog *new_prog;
3983
3984 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3985 if (!new_prog)
3986 return NULL;
3987 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3988 return NULL;
3989 return new_prog;
3990}
3991
9bac3d6d
AS
3992/* convert load instructions that access fields of 'struct __sk_buff'
3993 * into sequence of instructions that access fields of 'struct sk_buff'
3994 */
58e2af8b 3995static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3996{
36bbef52 3997 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 3998 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 3999 const int insn_cnt = env->prog->len;
36bbef52 4000 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4001 struct bpf_prog *new_prog;
d691f9e8 4002 enum bpf_access_type type;
f96da094
DB
4003 bool is_narrower_load;
4004 u32 target_size;
9bac3d6d 4005
36bbef52
DB
4006 if (ops->gen_prologue) {
4007 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4008 env->prog);
4009 if (cnt >= ARRAY_SIZE(insn_buf)) {
4010 verbose("bpf verifier is misconfigured\n");
4011 return -EINVAL;
4012 } else if (cnt) {
8041902d 4013 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4014 if (!new_prog)
4015 return -ENOMEM;
8041902d 4016
36bbef52 4017 env->prog = new_prog;
3df126f3 4018 delta += cnt - 1;
36bbef52
DB
4019 }
4020 }
4021
4022 if (!ops->convert_ctx_access)
9bac3d6d
AS
4023 return 0;
4024
3df126f3 4025 insn = env->prog->insnsi + delta;
36bbef52 4026
9bac3d6d 4027 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4028 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4029 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4030 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4031 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4032 type = BPF_READ;
62c7989b
DB
4033 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4034 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4035 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4036 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4037 type = BPF_WRITE;
4038 else
9bac3d6d
AS
4039 continue;
4040
8041902d 4041 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4042 continue;
9bac3d6d 4043
31fd8581 4044 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4045 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4046
4047 /* If the read access is a narrower load of the field,
4048 * convert to a 4/8-byte load, to minimum program type specific
4049 * convert_ctx_access changes. If conversion is successful,
4050 * we will apply proper mask to the result.
4051 */
f96da094 4052 is_narrower_load = size < ctx_field_size;
31fd8581 4053 if (is_narrower_load) {
f96da094
DB
4054 u32 off = insn->off;
4055 u8 size_code;
4056
4057 if (type == BPF_WRITE) {
4058 verbose("bpf verifier narrow ctx access misconfigured\n");
4059 return -EINVAL;
4060 }
31fd8581 4061
f96da094 4062 size_code = BPF_H;
31fd8581
YS
4063 if (ctx_field_size == 4)
4064 size_code = BPF_W;
4065 else if (ctx_field_size == 8)
4066 size_code = BPF_DW;
f96da094 4067
31fd8581
YS
4068 insn->off = off & ~(ctx_field_size - 1);
4069 insn->code = BPF_LDX | BPF_MEM | size_code;
4070 }
f96da094
DB
4071
4072 target_size = 0;
4073 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4074 &target_size);
4075 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4076 (ctx_field_size && !target_size)) {
9bac3d6d
AS
4077 verbose("bpf verifier is misconfigured\n");
4078 return -EINVAL;
4079 }
f96da094
DB
4080
4081 if (is_narrower_load && size < target_size) {
31fd8581
YS
4082 if (ctx_field_size <= 4)
4083 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4084 (1 << size * 8) - 1);
31fd8581
YS
4085 else
4086 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4087 (1 << size * 8) - 1);
31fd8581 4088 }
9bac3d6d 4089
8041902d 4090 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4091 if (!new_prog)
4092 return -ENOMEM;
4093
3df126f3 4094 delta += cnt - 1;
9bac3d6d
AS
4095
4096 /* keep walking new program and skip insns we just inserted */
4097 env->prog = new_prog;
3df126f3 4098 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4099 }
4100
4101 return 0;
4102}
4103
79741b3b 4104/* fixup insn->imm field of bpf_call instructions
81ed18ab 4105 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4106 *
4107 * this function is called after eBPF program passed verification
4108 */
79741b3b 4109static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4110{
79741b3b
AS
4111 struct bpf_prog *prog = env->prog;
4112 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4113 const struct bpf_func_proto *fn;
79741b3b 4114 const int insn_cnt = prog->len;
81ed18ab
AS
4115 struct bpf_insn insn_buf[16];
4116 struct bpf_prog *new_prog;
4117 struct bpf_map *map_ptr;
4118 int i, cnt, delta = 0;
e245c5c6 4119
79741b3b
AS
4120 for (i = 0; i < insn_cnt; i++, insn++) {
4121 if (insn->code != (BPF_JMP | BPF_CALL))
4122 continue;
e245c5c6 4123
79741b3b
AS
4124 if (insn->imm == BPF_FUNC_get_route_realm)
4125 prog->dst_needed = 1;
4126 if (insn->imm == BPF_FUNC_get_prandom_u32)
4127 bpf_user_rnd_init_once();
79741b3b 4128 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4129 /* If we tail call into other programs, we
4130 * cannot make any assumptions since they can
4131 * be replaced dynamically during runtime in
4132 * the program array.
4133 */
4134 prog->cb_access = 1;
80a58d02 4135 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4136
79741b3b
AS
4137 /* mark bpf_tail_call as different opcode to avoid
4138 * conditional branch in the interpeter for every normal
4139 * call and to prevent accidental JITing by JIT compiler
4140 * that doesn't support bpf_tail_call yet
e245c5c6 4141 */
79741b3b 4142 insn->imm = 0;
71189fa9 4143 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4144 continue;
4145 }
e245c5c6 4146
81ed18ab
AS
4147 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
4148 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4149 if (map_ptr == BPF_MAP_PTR_POISON ||
4150 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4151 goto patch_call_imm;
4152
4153 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4154 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4155 verbose("bpf verifier is misconfigured\n");
4156 return -EINVAL;
4157 }
4158
4159 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4160 cnt);
4161 if (!new_prog)
4162 return -ENOMEM;
4163
4164 delta += cnt - 1;
4165
4166 /* keep walking new program and skip insns we just inserted */
4167 env->prog = prog = new_prog;
4168 insn = new_prog->insnsi + i + delta;
4169 continue;
4170 }
4171
4172patch_call_imm:
79741b3b
AS
4173 fn = prog->aux->ops->get_func_proto(insn->imm);
4174 /* all functions that have prototype and verifier allowed
4175 * programs to call them, must be real in-kernel functions
4176 */
4177 if (!fn->func) {
4178 verbose("kernel subsystem misconfigured func %s#%d\n",
4179 func_id_name(insn->imm), insn->imm);
4180 return -EFAULT;
e245c5c6 4181 }
79741b3b 4182 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4183 }
e245c5c6 4184
79741b3b
AS
4185 return 0;
4186}
e245c5c6 4187
58e2af8b 4188static void free_states(struct bpf_verifier_env *env)
f1bca824 4189{
58e2af8b 4190 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4191 int i;
4192
4193 if (!env->explored_states)
4194 return;
4195
4196 for (i = 0; i < env->prog->len; i++) {
4197 sl = env->explored_states[i];
4198
4199 if (sl)
4200 while (sl != STATE_LIST_MARK) {
4201 sln = sl->next;
4202 kfree(sl);
4203 sl = sln;
4204 }
4205 }
4206
4207 kfree(env->explored_states);
4208}
4209
9bac3d6d 4210int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4211{
cbd35700 4212 char __user *log_ubuf = NULL;
58e2af8b 4213 struct bpf_verifier_env *env;
51580e79
AS
4214 int ret = -EINVAL;
4215
58e2af8b 4216 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4217 * allocate/free it every time bpf_check() is called
4218 */
58e2af8b 4219 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4220 if (!env)
4221 return -ENOMEM;
4222
3df126f3
JK
4223 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4224 (*prog)->len);
4225 ret = -ENOMEM;
4226 if (!env->insn_aux_data)
4227 goto err_free_env;
9bac3d6d 4228 env->prog = *prog;
0246e64d 4229
cbd35700
AS
4230 /* grab the mutex to protect few globals used by verifier */
4231 mutex_lock(&bpf_verifier_lock);
4232
4233 if (attr->log_level || attr->log_buf || attr->log_size) {
4234 /* user requested verbose verifier output
4235 * and supplied buffer to store the verification trace
4236 */
4237 log_level = attr->log_level;
4238 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4239 log_size = attr->log_size;
4240 log_len = 0;
4241
4242 ret = -EINVAL;
4243 /* log_* values have to be sane */
4244 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4245 log_level == 0 || log_ubuf == NULL)
3df126f3 4246 goto err_unlock;
cbd35700
AS
4247
4248 ret = -ENOMEM;
4249 log_buf = vmalloc(log_size);
4250 if (!log_buf)
3df126f3 4251 goto err_unlock;
cbd35700
AS
4252 } else {
4253 log_level = 0;
4254 }
1ad2f583
DB
4255
4256 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4257 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4258 env->strict_alignment = true;
cbd35700 4259
0246e64d
AS
4260 ret = replace_map_fd_with_map_ptr(env);
4261 if (ret < 0)
4262 goto skip_full_check;
4263
9bac3d6d 4264 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4265 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4266 GFP_USER);
4267 ret = -ENOMEM;
4268 if (!env->explored_states)
4269 goto skip_full_check;
4270
475fb78f
AS
4271 ret = check_cfg(env);
4272 if (ret < 0)
4273 goto skip_full_check;
4274
1be7f75d
AS
4275 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4276
17a52670 4277 ret = do_check(env);
cbd35700 4278
0246e64d 4279skip_full_check:
17a52670 4280 while (pop_stack(env, NULL) >= 0);
f1bca824 4281 free_states(env);
0246e64d 4282
9bac3d6d
AS
4283 if (ret == 0)
4284 /* program is valid, convert *(u32*)(ctx + off) accesses */
4285 ret = convert_ctx_accesses(env);
4286
e245c5c6 4287 if (ret == 0)
79741b3b 4288 ret = fixup_bpf_calls(env);
e245c5c6 4289
cbd35700
AS
4290 if (log_level && log_len >= log_size - 1) {
4291 BUG_ON(log_len >= log_size);
4292 /* verifier log exceeded user supplied buffer */
4293 ret = -ENOSPC;
4294 /* fall through to return what was recorded */
4295 }
4296
4297 /* copy verifier log back to user space including trailing zero */
4298 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4299 ret = -EFAULT;
4300 goto free_log_buf;
4301 }
4302
0246e64d
AS
4303 if (ret == 0 && env->used_map_cnt) {
4304 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4305 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4306 sizeof(env->used_maps[0]),
4307 GFP_KERNEL);
0246e64d 4308
9bac3d6d 4309 if (!env->prog->aux->used_maps) {
0246e64d
AS
4310 ret = -ENOMEM;
4311 goto free_log_buf;
4312 }
4313
9bac3d6d 4314 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4315 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4316 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4317
4318 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4319 * bpf_ld_imm64 instructions
4320 */
4321 convert_pseudo_ld_imm64(env);
4322 }
cbd35700
AS
4323
4324free_log_buf:
4325 if (log_level)
4326 vfree(log_buf);
9bac3d6d 4327 if (!env->prog->aux->used_maps)
0246e64d
AS
4328 /* if we didn't copy map pointers into bpf_prog_info, release
4329 * them now. Otherwise free_bpf_prog_info() will release them.
4330 */
4331 release_maps(env);
9bac3d6d 4332 *prog = env->prog;
3df126f3 4333err_unlock:
cbd35700 4334 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4335 vfree(env->insn_aux_data);
4336err_free_env:
4337 kfree(env);
51580e79
AS
4338 return ret;
4339}
13a27dfc
JK
4340
4341int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4342 void *priv)
4343{
4344 struct bpf_verifier_env *env;
4345 int ret;
4346
4347 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4348 if (!env)
4349 return -ENOMEM;
4350
4351 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4352 prog->len);
4353 ret = -ENOMEM;
4354 if (!env->insn_aux_data)
4355 goto err_free_env;
4356 env->prog = prog;
4357 env->analyzer_ops = ops;
4358 env->analyzer_priv = priv;
4359
4360 /* grab the mutex to protect few globals used by verifier */
4361 mutex_lock(&bpf_verifier_lock);
4362
4363 log_level = 0;
1ad2f583 4364
e07b98d9 4365 env->strict_alignment = false;
1ad2f583
DB
4366 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4367 env->strict_alignment = true;
13a27dfc
JK
4368
4369 env->explored_states = kcalloc(env->prog->len,
4370 sizeof(struct bpf_verifier_state_list *),
4371 GFP_KERNEL);
4372 ret = -ENOMEM;
4373 if (!env->explored_states)
4374 goto skip_full_check;
4375
4376 ret = check_cfg(env);
4377 if (ret < 0)
4378 goto skip_full_check;
4379
4380 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4381
4382 ret = do_check(env);
4383
4384skip_full_check:
4385 while (pop_stack(env, NULL) >= 0);
4386 free_states(env);
4387
4388 mutex_unlock(&bpf_verifier_lock);
4389 vfree(env->insn_aux_data);
4390err_free_env:
4391 kfree(env);
4392 return ret;
4393}
4394EXPORT_SYMBOL_GPL(bpf_analyzer);