bpf: Be conservative while processing invalid kfunc calls
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
8fb33b60 50 * Since it's analyzing all paths through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 135 * returns either pointer to map value or NULL.
51580e79
AS
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
23a2d70c
YS
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
e6ac2450
MKL
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
69c087ba
YS
243static bool bpf_pseudo_func(const struct bpf_insn *insn)
244{
245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 insn->src_reg == BPF_PSEUDO_FUNC;
247}
248
33ff9823
DB
249struct bpf_call_arg_meta {
250 struct bpf_map *map_ptr;
435faee1 251 bool raw_mode;
36bbef52 252 bool pkt_access;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
3e8ce298 258 int map_uid;
d83525ca 259 int func_id;
22dc4a0f 260 struct btf *btf;
eaa6bcb7 261 u32 btf_id;
22dc4a0f 262 struct btf *ret_btf;
eaa6bcb7 263 u32 ret_btf_id;
69c087ba 264 u32 subprogno;
33ff9823
DB
265};
266
8580ac94
AS
267struct btf *btf_vmlinux;
268
cbd35700
AS
269static DEFINE_MUTEX(bpf_verifier_lock);
270
d9762e84
MKL
271static const struct bpf_line_info *
272find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
273{
274 const struct bpf_line_info *linfo;
275 const struct bpf_prog *prog;
276 u32 i, nr_linfo;
277
278 prog = env->prog;
279 nr_linfo = prog->aux->nr_linfo;
280
281 if (!nr_linfo || insn_off >= prog->len)
282 return NULL;
283
284 linfo = prog->aux->linfo;
285 for (i = 1; i < nr_linfo; i++)
286 if (insn_off < linfo[i].insn_off)
287 break;
288
289 return &linfo[i - 1];
290}
291
77d2e05a
MKL
292void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
293 va_list args)
cbd35700 294{
a2a7d570 295 unsigned int n;
cbd35700 296
a2a7d570 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
298
299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
300 "verifier log line truncated - local buffer too short\n");
301
302 n = min(log->len_total - log->len_used - 1, n);
303 log->kbuf[n] = '\0';
304
8580ac94
AS
305 if (log->level == BPF_LOG_KERNEL) {
306 pr_err("BPF:%s\n", log->kbuf);
307 return;
308 }
a2a7d570
JK
309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
310 log->len_used += n;
311 else
312 log->ubuf = NULL;
cbd35700 313}
abe08840 314
6f8a57cc
AN
315static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
316{
317 char zero = 0;
318
319 if (!bpf_verifier_log_needed(log))
320 return;
321
322 log->len_used = new_pos;
323 if (put_user(zero, log->ubuf + new_pos))
324 log->ubuf = NULL;
325}
326
abe08840
JO
327/* log_level controls verbosity level of eBPF verifier.
328 * bpf_verifier_log_write() is used to dump the verification trace to the log,
329 * so the user can figure out what's wrong with the program
430e68d1 330 */
abe08840
JO
331__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
332 const char *fmt, ...)
333{
334 va_list args;
335
77d2e05a
MKL
336 if (!bpf_verifier_log_needed(&env->log))
337 return;
338
abe08840 339 va_start(args, fmt);
77d2e05a 340 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
341 va_end(args);
342}
343EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
344
345__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
346{
77d2e05a 347 struct bpf_verifier_env *env = private_data;
abe08840
JO
348 va_list args;
349
77d2e05a
MKL
350 if (!bpf_verifier_log_needed(&env->log))
351 return;
352
abe08840 353 va_start(args, fmt);
77d2e05a 354 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
355 va_end(args);
356}
cbd35700 357
9e15db66
AS
358__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
359 const char *fmt, ...)
360{
361 va_list args;
362
363 if (!bpf_verifier_log_needed(log))
364 return;
365
366 va_start(args, fmt);
367 bpf_verifier_vlog(log, fmt, args);
368 va_end(args);
369}
370
d9762e84
MKL
371static const char *ltrim(const char *s)
372{
373 while (isspace(*s))
374 s++;
375
376 return s;
377}
378
379__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
380 u32 insn_off,
381 const char *prefix_fmt, ...)
382{
383 const struct bpf_line_info *linfo;
384
385 if (!bpf_verifier_log_needed(&env->log))
386 return;
387
388 linfo = find_linfo(env, insn_off);
389 if (!linfo || linfo == env->prev_linfo)
390 return;
391
392 if (prefix_fmt) {
393 va_list args;
394
395 va_start(args, prefix_fmt);
396 bpf_verifier_vlog(&env->log, prefix_fmt, args);
397 va_end(args);
398 }
399
400 verbose(env, "%s\n",
401 ltrim(btf_name_by_offset(env->prog->aux->btf,
402 linfo->line_off)));
403
404 env->prev_linfo = linfo;
405}
406
bc2591d6
YS
407static void verbose_invalid_scalar(struct bpf_verifier_env *env,
408 struct bpf_reg_state *reg,
409 struct tnum *range, const char *ctx,
410 const char *reg_name)
411{
412 char tn_buf[48];
413
414 verbose(env, "At %s the register %s ", ctx, reg_name);
415 if (!tnum_is_unknown(reg->var_off)) {
416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
417 verbose(env, "has value %s", tn_buf);
418 } else {
419 verbose(env, "has unknown scalar value");
420 }
421 tnum_strn(tn_buf, sizeof(tn_buf), *range);
422 verbose(env, " should have been in %s\n", tn_buf);
423}
424
de8f3a83
DB
425static bool type_is_pkt_pointer(enum bpf_reg_type type)
426{
427 return type == PTR_TO_PACKET ||
428 type == PTR_TO_PACKET_META;
429}
430
46f8bc92
MKL
431static bool type_is_sk_pointer(enum bpf_reg_type type)
432{
433 return type == PTR_TO_SOCKET ||
655a51e5 434 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
435 type == PTR_TO_TCP_SOCK ||
436 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
437}
438
cac616db
JF
439static bool reg_type_not_null(enum bpf_reg_type type)
440{
441 return type == PTR_TO_SOCKET ||
442 type == PTR_TO_TCP_SOCK ||
443 type == PTR_TO_MAP_VALUE ||
69c087ba 444 type == PTR_TO_MAP_KEY ||
01c66c48 445 type == PTR_TO_SOCK_COMMON;
cac616db
JF
446}
447
840b9615
JS
448static bool reg_type_may_be_null(enum bpf_reg_type type)
449{
fd978bf7 450 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 451 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 452 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 453 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 454 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
455 type == PTR_TO_MEM_OR_NULL ||
456 type == PTR_TO_RDONLY_BUF_OR_NULL ||
457 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
458}
459
d83525ca
AS
460static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
461{
462 return reg->type == PTR_TO_MAP_VALUE &&
463 map_value_has_spin_lock(reg->map_ptr);
464}
465
cba368c1
MKL
466static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
467{
468 return type == PTR_TO_SOCKET ||
469 type == PTR_TO_SOCKET_OR_NULL ||
470 type == PTR_TO_TCP_SOCK ||
457f4436
AN
471 type == PTR_TO_TCP_SOCK_OR_NULL ||
472 type == PTR_TO_MEM ||
473 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
474}
475
1b986589 476static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 477{
1b986589 478 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
479}
480
fd1b0d60
LB
481static bool arg_type_may_be_null(enum bpf_arg_type type)
482{
483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
484 type == ARG_PTR_TO_MEM_OR_NULL ||
485 type == ARG_PTR_TO_CTX_OR_NULL ||
486 type == ARG_PTR_TO_SOCKET_OR_NULL ||
69c087ba
YS
487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
488 type == ARG_PTR_TO_STACK_OR_NULL;
fd1b0d60
LB
489}
490
fd978bf7
JS
491/* Determine whether the function releases some resources allocated by another
492 * function call. The first reference type argument will be assumed to be
493 * released by release_reference().
494 */
495static bool is_release_function(enum bpf_func_id func_id)
496{
457f4436
AN
497 return func_id == BPF_FUNC_sk_release ||
498 func_id == BPF_FUNC_ringbuf_submit ||
499 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
500}
501
64d85290 502static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
503{
504 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 505 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 506 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
507 func_id == BPF_FUNC_map_lookup_elem ||
508 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
509}
510
511static bool is_acquire_function(enum bpf_func_id func_id,
512 const struct bpf_map *map)
513{
514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
515
516 if (func_id == BPF_FUNC_sk_lookup_tcp ||
517 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
518 func_id == BPF_FUNC_skc_lookup_tcp ||
519 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
520 return true;
521
522 if (func_id == BPF_FUNC_map_lookup_elem &&
523 (map_type == BPF_MAP_TYPE_SOCKMAP ||
524 map_type == BPF_MAP_TYPE_SOCKHASH))
525 return true;
526
527 return false;
46f8bc92
MKL
528}
529
1b986589
MKL
530static bool is_ptr_cast_function(enum bpf_func_id func_id)
531{
532 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
533 func_id == BPF_FUNC_sk_fullsock ||
534 func_id == BPF_FUNC_skc_to_tcp_sock ||
535 func_id == BPF_FUNC_skc_to_tcp6_sock ||
536 func_id == BPF_FUNC_skc_to_udp6_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
538 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
539}
540
39491867
BJ
541static bool is_cmpxchg_insn(const struct bpf_insn *insn)
542{
543 return BPF_CLASS(insn->code) == BPF_STX &&
544 BPF_MODE(insn->code) == BPF_ATOMIC &&
545 insn->imm == BPF_CMPXCHG;
546}
547
17a52670
AS
548/* string representation of 'enum bpf_reg_type' */
549static const char * const reg_type_str[] = {
550 [NOT_INIT] = "?",
f1174f77 551 [SCALAR_VALUE] = "inv",
17a52670
AS
552 [PTR_TO_CTX] = "ctx",
553 [CONST_PTR_TO_MAP] = "map_ptr",
554 [PTR_TO_MAP_VALUE] = "map_value",
555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 556 [PTR_TO_STACK] = "fp",
969bf05e 557 [PTR_TO_PACKET] = "pkt",
de8f3a83 558 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 559 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 560 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
561 [PTR_TO_SOCKET] = "sock",
562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
563 [PTR_TO_SOCK_COMMON] = "sock_common",
564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
565 [PTR_TO_TCP_SOCK] = "tcp_sock",
566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 567 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 568 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 569 [PTR_TO_BTF_ID] = "ptr_",
b121b341 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
572 [PTR_TO_MEM] = "mem",
573 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
574 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
576 [PTR_TO_RDWR_BUF] = "rdwr_buf",
577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
578 [PTR_TO_FUNC] = "func",
579 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
580};
581
8efea21d
EC
582static char slot_type_char[] = {
583 [STACK_INVALID] = '?',
584 [STACK_SPILL] = 'r',
585 [STACK_MISC] = 'm',
586 [STACK_ZERO] = '0',
587};
588
4e92024a
AS
589static void print_liveness(struct bpf_verifier_env *env,
590 enum bpf_reg_liveness live)
591{
9242b5f5 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
593 verbose(env, "_");
594 if (live & REG_LIVE_READ)
595 verbose(env, "r");
596 if (live & REG_LIVE_WRITTEN)
597 verbose(env, "w");
9242b5f5
AS
598 if (live & REG_LIVE_DONE)
599 verbose(env, "D");
4e92024a
AS
600}
601
f4d7e40a
AS
602static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 const struct bpf_reg_state *reg)
604{
605 struct bpf_verifier_state *cur = env->cur_state;
606
607 return cur->frame[reg->frameno];
608}
609
22dc4a0f 610static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 611{
22dc4a0f 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
613}
614
27113c59
MKL
615/* The reg state of a pointer or a bounded scalar was saved when
616 * it was spilled to the stack.
617 */
618static bool is_spilled_reg(const struct bpf_stack_state *stack)
619{
620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
621}
622
354e8f19
MKL
623static void scrub_spilled_slot(u8 *stype)
624{
625 if (*stype != STACK_INVALID)
626 *stype = STACK_MISC;
627}
628
61bd5218 629static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 630 const struct bpf_func_state *state)
17a52670 631{
f4d7e40a 632 const struct bpf_reg_state *reg;
17a52670
AS
633 enum bpf_reg_type t;
634 int i;
635
f4d7e40a
AS
636 if (state->frameno)
637 verbose(env, " frame%d:", state->frameno);
17a52670 638 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
639 reg = &state->regs[i];
640 t = reg->type;
17a52670
AS
641 if (t == NOT_INIT)
642 continue;
4e92024a
AS
643 verbose(env, " R%d", i);
644 print_liveness(env, reg->live);
645 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
646 if (t == SCALAR_VALUE && reg->precise)
647 verbose(env, "P");
f1174f77
EC
648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
649 tnum_is_const(reg->var_off)) {
650 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 651 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 652 } else {
eaa6bcb7
HL
653 if (t == PTR_TO_BTF_ID ||
654 t == PTR_TO_BTF_ID_OR_NULL ||
655 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 656 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
657 verbose(env, "(id=%d", reg->id);
658 if (reg_type_may_be_refcounted_or_null(t))
659 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 660 if (t != SCALAR_VALUE)
61bd5218 661 verbose(env, ",off=%d", reg->off);
de8f3a83 662 if (type_is_pkt_pointer(t))
61bd5218 663 verbose(env, ",r=%d", reg->range);
f1174f77 664 else if (t == CONST_PTR_TO_MAP ||
69c087ba 665 t == PTR_TO_MAP_KEY ||
f1174f77
EC
666 t == PTR_TO_MAP_VALUE ||
667 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 668 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
669 reg->map_ptr->key_size,
670 reg->map_ptr->value_size);
7d1238f2
EC
671 if (tnum_is_const(reg->var_off)) {
672 /* Typically an immediate SCALAR_VALUE, but
673 * could be a pointer whose offset is too big
674 * for reg->off
675 */
61bd5218 676 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
677 } else {
678 if (reg->smin_value != reg->umin_value &&
679 reg->smin_value != S64_MIN)
61bd5218 680 verbose(env, ",smin_value=%lld",
7d1238f2
EC
681 (long long)reg->smin_value);
682 if (reg->smax_value != reg->umax_value &&
683 reg->smax_value != S64_MAX)
61bd5218 684 verbose(env, ",smax_value=%lld",
7d1238f2
EC
685 (long long)reg->smax_value);
686 if (reg->umin_value != 0)
61bd5218 687 verbose(env, ",umin_value=%llu",
7d1238f2
EC
688 (unsigned long long)reg->umin_value);
689 if (reg->umax_value != U64_MAX)
61bd5218 690 verbose(env, ",umax_value=%llu",
7d1238f2
EC
691 (unsigned long long)reg->umax_value);
692 if (!tnum_is_unknown(reg->var_off)) {
693 char tn_buf[48];
f1174f77 694
7d1238f2 695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 696 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 697 }
3f50f132
JF
698 if (reg->s32_min_value != reg->smin_value &&
699 reg->s32_min_value != S32_MIN)
700 verbose(env, ",s32_min_value=%d",
701 (int)(reg->s32_min_value));
702 if (reg->s32_max_value != reg->smax_value &&
703 reg->s32_max_value != S32_MAX)
704 verbose(env, ",s32_max_value=%d",
705 (int)(reg->s32_max_value));
706 if (reg->u32_min_value != reg->umin_value &&
707 reg->u32_min_value != U32_MIN)
708 verbose(env, ",u32_min_value=%d",
709 (int)(reg->u32_min_value));
710 if (reg->u32_max_value != reg->umax_value &&
711 reg->u32_max_value != U32_MAX)
712 verbose(env, ",u32_max_value=%d",
713 (int)(reg->u32_max_value));
f1174f77 714 }
61bd5218 715 verbose(env, ")");
f1174f77 716 }
17a52670 717 }
638f5b90 718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
719 char types_buf[BPF_REG_SIZE + 1];
720 bool valid = false;
721 int j;
722
723 for (j = 0; j < BPF_REG_SIZE; j++) {
724 if (state->stack[i].slot_type[j] != STACK_INVALID)
725 valid = true;
726 types_buf[j] = slot_type_char[
727 state->stack[i].slot_type[j]];
728 }
729 types_buf[BPF_REG_SIZE] = 0;
730 if (!valid)
731 continue;
732 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
733 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 734 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
735 reg = &state->stack[i].spilled_ptr;
736 t = reg->type;
737 verbose(env, "=%s", reg_type_str[t]);
738 if (t == SCALAR_VALUE && reg->precise)
739 verbose(env, "P");
740 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
741 verbose(env, "%lld", reg->var_off.value + reg->off);
742 } else {
8efea21d 743 verbose(env, "=%s", types_buf);
b5dc0163 744 }
17a52670 745 }
fd978bf7
JS
746 if (state->acquired_refs && state->refs[0].id) {
747 verbose(env, " refs=%d", state->refs[0].id);
748 for (i = 1; i < state->acquired_refs; i++)
749 if (state->refs[i].id)
750 verbose(env, ",%d", state->refs[i].id);
751 }
bfc6bb74
AS
752 if (state->in_callback_fn)
753 verbose(env, " cb");
754 if (state->in_async_callback_fn)
755 verbose(env, " async_cb");
61bd5218 756 verbose(env, "\n");
17a52670
AS
757}
758
c69431aa
LB
759/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
760 * small to hold src. This is different from krealloc since we don't want to preserve
761 * the contents of dst.
762 *
763 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
764 * not be allocated.
638f5b90 765 */
c69431aa 766static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 767{
c69431aa
LB
768 size_t bytes;
769
770 if (ZERO_OR_NULL_PTR(src))
771 goto out;
772
773 if (unlikely(check_mul_overflow(n, size, &bytes)))
774 return NULL;
775
776 if (ksize(dst) < bytes) {
777 kfree(dst);
778 dst = kmalloc_track_caller(bytes, flags);
779 if (!dst)
780 return NULL;
781 }
782
783 memcpy(dst, src, bytes);
784out:
785 return dst ? dst : ZERO_SIZE_PTR;
786}
787
788/* resize an array from old_n items to new_n items. the array is reallocated if it's too
789 * small to hold new_n items. new items are zeroed out if the array grows.
790 *
791 * Contrary to krealloc_array, does not free arr if new_n is zero.
792 */
793static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
794{
795 if (!new_n || old_n == new_n)
796 goto out;
797
798 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
799 if (!arr)
800 return NULL;
801
802 if (new_n > old_n)
803 memset(arr + old_n * size, 0, (new_n - old_n) * size);
804
805out:
806 return arr ? arr : ZERO_SIZE_PTR;
807}
808
809static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
810{
811 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
812 sizeof(struct bpf_reference_state), GFP_KERNEL);
813 if (!dst->refs)
814 return -ENOMEM;
815
816 dst->acquired_refs = src->acquired_refs;
817 return 0;
818}
819
820static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
821{
822 size_t n = src->allocated_stack / BPF_REG_SIZE;
823
824 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
825 GFP_KERNEL);
826 if (!dst->stack)
827 return -ENOMEM;
828
829 dst->allocated_stack = src->allocated_stack;
830 return 0;
831}
832
833static int resize_reference_state(struct bpf_func_state *state, size_t n)
834{
835 state->refs = realloc_array(state->refs, state->acquired_refs, n,
836 sizeof(struct bpf_reference_state));
837 if (!state->refs)
838 return -ENOMEM;
839
840 state->acquired_refs = n;
841 return 0;
842}
843
844static int grow_stack_state(struct bpf_func_state *state, int size)
845{
846 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
847
848 if (old_n >= n)
849 return 0;
850
851 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
852 if (!state->stack)
853 return -ENOMEM;
854
855 state->allocated_stack = size;
856 return 0;
fd978bf7
JS
857}
858
859/* Acquire a pointer id from the env and update the state->refs to include
860 * this new pointer reference.
861 * On success, returns a valid pointer id to associate with the register
862 * On failure, returns a negative errno.
638f5b90 863 */
fd978bf7 864static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 865{
fd978bf7
JS
866 struct bpf_func_state *state = cur_func(env);
867 int new_ofs = state->acquired_refs;
868 int id, err;
869
c69431aa 870 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
871 if (err)
872 return err;
873 id = ++env->id_gen;
874 state->refs[new_ofs].id = id;
875 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 876
fd978bf7
JS
877 return id;
878}
879
880/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 881static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
882{
883 int i, last_idx;
884
fd978bf7
JS
885 last_idx = state->acquired_refs - 1;
886 for (i = 0; i < state->acquired_refs; i++) {
887 if (state->refs[i].id == ptr_id) {
888 if (last_idx && i != last_idx)
889 memcpy(&state->refs[i], &state->refs[last_idx],
890 sizeof(*state->refs));
891 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
892 state->acquired_refs--;
638f5b90 893 return 0;
638f5b90 894 }
638f5b90 895 }
46f8bc92 896 return -EINVAL;
fd978bf7
JS
897}
898
f4d7e40a
AS
899static void free_func_state(struct bpf_func_state *state)
900{
5896351e
AS
901 if (!state)
902 return;
fd978bf7 903 kfree(state->refs);
f4d7e40a
AS
904 kfree(state->stack);
905 kfree(state);
906}
907
b5dc0163
AS
908static void clear_jmp_history(struct bpf_verifier_state *state)
909{
910 kfree(state->jmp_history);
911 state->jmp_history = NULL;
912 state->jmp_history_cnt = 0;
913}
914
1969db47
AS
915static void free_verifier_state(struct bpf_verifier_state *state,
916 bool free_self)
638f5b90 917{
f4d7e40a
AS
918 int i;
919
920 for (i = 0; i <= state->curframe; i++) {
921 free_func_state(state->frame[i]);
922 state->frame[i] = NULL;
923 }
b5dc0163 924 clear_jmp_history(state);
1969db47
AS
925 if (free_self)
926 kfree(state);
638f5b90
AS
927}
928
929/* copy verifier state from src to dst growing dst stack space
930 * when necessary to accommodate larger src stack
931 */
f4d7e40a
AS
932static int copy_func_state(struct bpf_func_state *dst,
933 const struct bpf_func_state *src)
638f5b90
AS
934{
935 int err;
936
fd978bf7
JS
937 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
938 err = copy_reference_state(dst, src);
638f5b90
AS
939 if (err)
940 return err;
638f5b90
AS
941 return copy_stack_state(dst, src);
942}
943
f4d7e40a
AS
944static int copy_verifier_state(struct bpf_verifier_state *dst_state,
945 const struct bpf_verifier_state *src)
946{
947 struct bpf_func_state *dst;
948 int i, err;
949
06ab6a50
LB
950 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
951 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
952 GFP_USER);
953 if (!dst_state->jmp_history)
954 return -ENOMEM;
b5dc0163
AS
955 dst_state->jmp_history_cnt = src->jmp_history_cnt;
956
f4d7e40a
AS
957 /* if dst has more stack frames then src frame, free them */
958 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
959 free_func_state(dst_state->frame[i]);
960 dst_state->frame[i] = NULL;
961 }
979d63d5 962 dst_state->speculative = src->speculative;
f4d7e40a 963 dst_state->curframe = src->curframe;
d83525ca 964 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
965 dst_state->branches = src->branches;
966 dst_state->parent = src->parent;
b5dc0163
AS
967 dst_state->first_insn_idx = src->first_insn_idx;
968 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
969 for (i = 0; i <= src->curframe; i++) {
970 dst = dst_state->frame[i];
971 if (!dst) {
972 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
973 if (!dst)
974 return -ENOMEM;
975 dst_state->frame[i] = dst;
976 }
977 err = copy_func_state(dst, src->frame[i]);
978 if (err)
979 return err;
980 }
981 return 0;
982}
983
2589726d
AS
984static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
985{
986 while (st) {
987 u32 br = --st->branches;
988
989 /* WARN_ON(br > 1) technically makes sense here,
990 * but see comment in push_stack(), hence:
991 */
992 WARN_ONCE((int)br < 0,
993 "BUG update_branch_counts:branches_to_explore=%d\n",
994 br);
995 if (br)
996 break;
997 st = st->parent;
998 }
999}
1000
638f5b90 1001static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1002 int *insn_idx, bool pop_log)
638f5b90
AS
1003{
1004 struct bpf_verifier_state *cur = env->cur_state;
1005 struct bpf_verifier_stack_elem *elem, *head = env->head;
1006 int err;
17a52670
AS
1007
1008 if (env->head == NULL)
638f5b90 1009 return -ENOENT;
17a52670 1010
638f5b90
AS
1011 if (cur) {
1012 err = copy_verifier_state(cur, &head->st);
1013 if (err)
1014 return err;
1015 }
6f8a57cc
AN
1016 if (pop_log)
1017 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1018 if (insn_idx)
1019 *insn_idx = head->insn_idx;
17a52670 1020 if (prev_insn_idx)
638f5b90
AS
1021 *prev_insn_idx = head->prev_insn_idx;
1022 elem = head->next;
1969db47 1023 free_verifier_state(&head->st, false);
638f5b90 1024 kfree(head);
17a52670
AS
1025 env->head = elem;
1026 env->stack_size--;
638f5b90 1027 return 0;
17a52670
AS
1028}
1029
58e2af8b 1030static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1031 int insn_idx, int prev_insn_idx,
1032 bool speculative)
17a52670 1033{
638f5b90 1034 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1035 struct bpf_verifier_stack_elem *elem;
638f5b90 1036 int err;
17a52670 1037
638f5b90 1038 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1039 if (!elem)
1040 goto err;
1041
17a52670
AS
1042 elem->insn_idx = insn_idx;
1043 elem->prev_insn_idx = prev_insn_idx;
1044 elem->next = env->head;
6f8a57cc 1045 elem->log_pos = env->log.len_used;
17a52670
AS
1046 env->head = elem;
1047 env->stack_size++;
1969db47
AS
1048 err = copy_verifier_state(&elem->st, cur);
1049 if (err)
1050 goto err;
979d63d5 1051 elem->st.speculative |= speculative;
b285fcb7
AS
1052 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1053 verbose(env, "The sequence of %d jumps is too complex.\n",
1054 env->stack_size);
17a52670
AS
1055 goto err;
1056 }
2589726d
AS
1057 if (elem->st.parent) {
1058 ++elem->st.parent->branches;
1059 /* WARN_ON(branches > 2) technically makes sense here,
1060 * but
1061 * 1. speculative states will bump 'branches' for non-branch
1062 * instructions
1063 * 2. is_state_visited() heuristics may decide not to create
1064 * a new state for a sequence of branches and all such current
1065 * and cloned states will be pointing to a single parent state
1066 * which might have large 'branches' count.
1067 */
1068 }
17a52670
AS
1069 return &elem->st;
1070err:
5896351e
AS
1071 free_verifier_state(env->cur_state, true);
1072 env->cur_state = NULL;
17a52670 1073 /* pop all elements and return */
6f8a57cc 1074 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1075 return NULL;
1076}
1077
1078#define CALLER_SAVED_REGS 6
1079static const int caller_saved[CALLER_SAVED_REGS] = {
1080 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1081};
1082
f54c7898
DB
1083static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1084 struct bpf_reg_state *reg);
f1174f77 1085
e688c3db
AS
1086/* This helper doesn't clear reg->id */
1087static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1088{
b03c9f9f
EC
1089 reg->var_off = tnum_const(imm);
1090 reg->smin_value = (s64)imm;
1091 reg->smax_value = (s64)imm;
1092 reg->umin_value = imm;
1093 reg->umax_value = imm;
3f50f132
JF
1094
1095 reg->s32_min_value = (s32)imm;
1096 reg->s32_max_value = (s32)imm;
1097 reg->u32_min_value = (u32)imm;
1098 reg->u32_max_value = (u32)imm;
1099}
1100
e688c3db
AS
1101/* Mark the unknown part of a register (variable offset or scalar value) as
1102 * known to have the value @imm.
1103 */
1104static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1105{
1106 /* Clear id, off, and union(map_ptr, range) */
1107 memset(((u8 *)reg) + sizeof(reg->type), 0,
1108 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1109 ___mark_reg_known(reg, imm);
1110}
1111
3f50f132
JF
1112static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1113{
1114 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1115 reg->s32_min_value = (s32)imm;
1116 reg->s32_max_value = (s32)imm;
1117 reg->u32_min_value = (u32)imm;
1118 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1119}
1120
f1174f77
EC
1121/* Mark the 'variable offset' part of a register as zero. This should be
1122 * used only on registers holding a pointer type.
1123 */
1124static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1125{
b03c9f9f 1126 __mark_reg_known(reg, 0);
f1174f77 1127}
a9789ef9 1128
cc2b14d5
AS
1129static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1130{
1131 __mark_reg_known(reg, 0);
cc2b14d5
AS
1132 reg->type = SCALAR_VALUE;
1133}
1134
61bd5218
JK
1135static void mark_reg_known_zero(struct bpf_verifier_env *env,
1136 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1137{
1138 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1139 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1140 /* Something bad happened, let's kill all regs */
1141 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1142 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1143 return;
1144 }
1145 __mark_reg_known_zero(regs + regno);
1146}
1147
4ddb7416
DB
1148static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1149{
1150 switch (reg->type) {
1151 case PTR_TO_MAP_VALUE_OR_NULL: {
1152 const struct bpf_map *map = reg->map_ptr;
1153
1154 if (map->inner_map_meta) {
1155 reg->type = CONST_PTR_TO_MAP;
1156 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1157 /* transfer reg's id which is unique for every map_lookup_elem
1158 * as UID of the inner map.
1159 */
1160 reg->map_uid = reg->id;
4ddb7416
DB
1161 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1162 reg->type = PTR_TO_XDP_SOCK;
1163 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1164 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1165 reg->type = PTR_TO_SOCKET;
1166 } else {
1167 reg->type = PTR_TO_MAP_VALUE;
1168 }
1169 break;
1170 }
1171 case PTR_TO_SOCKET_OR_NULL:
1172 reg->type = PTR_TO_SOCKET;
1173 break;
1174 case PTR_TO_SOCK_COMMON_OR_NULL:
1175 reg->type = PTR_TO_SOCK_COMMON;
1176 break;
1177 case PTR_TO_TCP_SOCK_OR_NULL:
1178 reg->type = PTR_TO_TCP_SOCK;
1179 break;
1180 case PTR_TO_BTF_ID_OR_NULL:
1181 reg->type = PTR_TO_BTF_ID;
1182 break;
1183 case PTR_TO_MEM_OR_NULL:
1184 reg->type = PTR_TO_MEM;
1185 break;
1186 case PTR_TO_RDONLY_BUF_OR_NULL:
1187 reg->type = PTR_TO_RDONLY_BUF;
1188 break;
1189 case PTR_TO_RDWR_BUF_OR_NULL:
1190 reg->type = PTR_TO_RDWR_BUF;
1191 break;
1192 default:
33ccec5f 1193 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1194 }
1195}
1196
de8f3a83
DB
1197static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1198{
1199 return type_is_pkt_pointer(reg->type);
1200}
1201
1202static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1203{
1204 return reg_is_pkt_pointer(reg) ||
1205 reg->type == PTR_TO_PACKET_END;
1206}
1207
1208/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1209static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1210 enum bpf_reg_type which)
1211{
1212 /* The register can already have a range from prior markings.
1213 * This is fine as long as it hasn't been advanced from its
1214 * origin.
1215 */
1216 return reg->type == which &&
1217 reg->id == 0 &&
1218 reg->off == 0 &&
1219 tnum_equals_const(reg->var_off, 0);
1220}
1221
3f50f132
JF
1222/* Reset the min/max bounds of a register */
1223static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1224{
1225 reg->smin_value = S64_MIN;
1226 reg->smax_value = S64_MAX;
1227 reg->umin_value = 0;
1228 reg->umax_value = U64_MAX;
1229
1230 reg->s32_min_value = S32_MIN;
1231 reg->s32_max_value = S32_MAX;
1232 reg->u32_min_value = 0;
1233 reg->u32_max_value = U32_MAX;
1234}
1235
1236static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1237{
1238 reg->smin_value = S64_MIN;
1239 reg->smax_value = S64_MAX;
1240 reg->umin_value = 0;
1241 reg->umax_value = U64_MAX;
1242}
1243
1244static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1245{
1246 reg->s32_min_value = S32_MIN;
1247 reg->s32_max_value = S32_MAX;
1248 reg->u32_min_value = 0;
1249 reg->u32_max_value = U32_MAX;
1250}
1251
1252static void __update_reg32_bounds(struct bpf_reg_state *reg)
1253{
1254 struct tnum var32_off = tnum_subreg(reg->var_off);
1255
1256 /* min signed is max(sign bit) | min(other bits) */
1257 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1258 var32_off.value | (var32_off.mask & S32_MIN));
1259 /* max signed is min(sign bit) | max(other bits) */
1260 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1261 var32_off.value | (var32_off.mask & S32_MAX));
1262 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1263 reg->u32_max_value = min(reg->u32_max_value,
1264 (u32)(var32_off.value | var32_off.mask));
1265}
1266
1267static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1268{
1269 /* min signed is max(sign bit) | min(other bits) */
1270 reg->smin_value = max_t(s64, reg->smin_value,
1271 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1272 /* max signed is min(sign bit) | max(other bits) */
1273 reg->smax_value = min_t(s64, reg->smax_value,
1274 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1275 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1276 reg->umax_value = min(reg->umax_value,
1277 reg->var_off.value | reg->var_off.mask);
1278}
1279
3f50f132
JF
1280static void __update_reg_bounds(struct bpf_reg_state *reg)
1281{
1282 __update_reg32_bounds(reg);
1283 __update_reg64_bounds(reg);
1284}
1285
b03c9f9f 1286/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1287static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1288{
1289 /* Learn sign from signed bounds.
1290 * If we cannot cross the sign boundary, then signed and unsigned bounds
1291 * are the same, so combine. This works even in the negative case, e.g.
1292 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1293 */
1294 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1295 reg->s32_min_value = reg->u32_min_value =
1296 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1297 reg->s32_max_value = reg->u32_max_value =
1298 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1299 return;
1300 }
1301 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1302 * boundary, so we must be careful.
1303 */
1304 if ((s32)reg->u32_max_value >= 0) {
1305 /* Positive. We can't learn anything from the smin, but smax
1306 * is positive, hence safe.
1307 */
1308 reg->s32_min_value = reg->u32_min_value;
1309 reg->s32_max_value = reg->u32_max_value =
1310 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1311 } else if ((s32)reg->u32_min_value < 0) {
1312 /* Negative. We can't learn anything from the smax, but smin
1313 * is negative, hence safe.
1314 */
1315 reg->s32_min_value = reg->u32_min_value =
1316 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1317 reg->s32_max_value = reg->u32_max_value;
1318 }
1319}
1320
1321static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1322{
1323 /* Learn sign from signed bounds.
1324 * If we cannot cross the sign boundary, then signed and unsigned bounds
1325 * are the same, so combine. This works even in the negative case, e.g.
1326 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1327 */
1328 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1329 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1330 reg->umin_value);
1331 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1332 reg->umax_value);
1333 return;
1334 }
1335 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1336 * boundary, so we must be careful.
1337 */
1338 if ((s64)reg->umax_value >= 0) {
1339 /* Positive. We can't learn anything from the smin, but smax
1340 * is positive, hence safe.
1341 */
1342 reg->smin_value = reg->umin_value;
1343 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1344 reg->umax_value);
1345 } else if ((s64)reg->umin_value < 0) {
1346 /* Negative. We can't learn anything from the smax, but smin
1347 * is negative, hence safe.
1348 */
1349 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1350 reg->umin_value);
1351 reg->smax_value = reg->umax_value;
1352 }
1353}
1354
3f50f132
JF
1355static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1356{
1357 __reg32_deduce_bounds(reg);
1358 __reg64_deduce_bounds(reg);
1359}
1360
b03c9f9f
EC
1361/* Attempts to improve var_off based on unsigned min/max information */
1362static void __reg_bound_offset(struct bpf_reg_state *reg)
1363{
3f50f132
JF
1364 struct tnum var64_off = tnum_intersect(reg->var_off,
1365 tnum_range(reg->umin_value,
1366 reg->umax_value));
1367 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1368 tnum_range(reg->u32_min_value,
1369 reg->u32_max_value));
1370
1371 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1372}
1373
3f50f132 1374static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1375{
3f50f132
JF
1376 reg->umin_value = reg->u32_min_value;
1377 reg->umax_value = reg->u32_max_value;
1378 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1379 * but must be positive otherwise set to worse case bounds
1380 * and refine later from tnum.
1381 */
3a71dc36 1382 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1383 reg->smax_value = reg->s32_max_value;
1384 else
1385 reg->smax_value = U32_MAX;
3a71dc36
JF
1386 if (reg->s32_min_value >= 0)
1387 reg->smin_value = reg->s32_min_value;
1388 else
1389 reg->smin_value = 0;
3f50f132
JF
1390}
1391
1392static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1393{
1394 /* special case when 64-bit register has upper 32-bit register
1395 * zeroed. Typically happens after zext or <<32, >>32 sequence
1396 * allowing us to use 32-bit bounds directly,
1397 */
1398 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1399 __reg_assign_32_into_64(reg);
1400 } else {
1401 /* Otherwise the best we can do is push lower 32bit known and
1402 * unknown bits into register (var_off set from jmp logic)
1403 * then learn as much as possible from the 64-bit tnum
1404 * known and unknown bits. The previous smin/smax bounds are
1405 * invalid here because of jmp32 compare so mark them unknown
1406 * so they do not impact tnum bounds calculation.
1407 */
1408 __mark_reg64_unbounded(reg);
1409 __update_reg_bounds(reg);
1410 }
1411
1412 /* Intersecting with the old var_off might have improved our bounds
1413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1414 * then new var_off is (0; 0x7f...fc) which improves our umax.
1415 */
1416 __reg_deduce_bounds(reg);
1417 __reg_bound_offset(reg);
1418 __update_reg_bounds(reg);
1419}
1420
1421static bool __reg64_bound_s32(s64 a)
1422{
b0270958 1423 return a > S32_MIN && a < S32_MAX;
3f50f132
JF
1424}
1425
1426static bool __reg64_bound_u32(u64 a)
1427{
10bf4e83 1428 return a > U32_MIN && a < U32_MAX;
3f50f132
JF
1429}
1430
1431static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1432{
1433 __mark_reg32_unbounded(reg);
1434
b0270958 1435 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1436 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1437 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1438 }
10bf4e83 1439 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1440 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1441 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1442 }
3f50f132
JF
1443
1444 /* Intersecting with the old var_off might have improved our bounds
1445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1446 * then new var_off is (0; 0x7f...fc) which improves our umax.
1447 */
1448 __reg_deduce_bounds(reg);
1449 __reg_bound_offset(reg);
1450 __update_reg_bounds(reg);
b03c9f9f
EC
1451}
1452
f1174f77 1453/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1454static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1455 struct bpf_reg_state *reg)
f1174f77 1456{
a9c676bc
AS
1457 /*
1458 * Clear type, id, off, and union(map_ptr, range) and
1459 * padding between 'type' and union
1460 */
1461 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1462 reg->type = SCALAR_VALUE;
f1174f77 1463 reg->var_off = tnum_unknown;
f4d7e40a 1464 reg->frameno = 0;
2c78ee89 1465 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1466 __mark_reg_unbounded(reg);
f1174f77
EC
1467}
1468
61bd5218
JK
1469static void mark_reg_unknown(struct bpf_verifier_env *env,
1470 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1471{
1472 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1473 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1474 /* Something bad happened, let's kill all regs except FP */
1475 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1476 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1477 return;
1478 }
f54c7898 1479 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1480}
1481
f54c7898
DB
1482static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1483 struct bpf_reg_state *reg)
f1174f77 1484{
f54c7898 1485 __mark_reg_unknown(env, reg);
f1174f77
EC
1486 reg->type = NOT_INIT;
1487}
1488
61bd5218
JK
1489static void mark_reg_not_init(struct bpf_verifier_env *env,
1490 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1491{
1492 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1493 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1494 /* Something bad happened, let's kill all regs except FP */
1495 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1496 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1497 return;
1498 }
f54c7898 1499 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1500}
1501
41c48f3a
AI
1502static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1503 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1504 enum bpf_reg_type reg_type,
1505 struct btf *btf, u32 btf_id)
41c48f3a
AI
1506{
1507 if (reg_type == SCALAR_VALUE) {
1508 mark_reg_unknown(env, regs, regno);
1509 return;
1510 }
1511 mark_reg_known_zero(env, regs, regno);
1512 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1513 regs[regno].btf = btf;
41c48f3a
AI
1514 regs[regno].btf_id = btf_id;
1515}
1516
5327ed3d 1517#define DEF_NOT_SUBREG (0)
61bd5218 1518static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1519 struct bpf_func_state *state)
17a52670 1520{
f4d7e40a 1521 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1522 int i;
1523
dc503a8a 1524 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1525 mark_reg_not_init(env, regs, i);
dc503a8a 1526 regs[i].live = REG_LIVE_NONE;
679c782d 1527 regs[i].parent = NULL;
5327ed3d 1528 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1529 }
17a52670
AS
1530
1531 /* frame pointer */
f1174f77 1532 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1533 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1534 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1535}
1536
f4d7e40a
AS
1537#define BPF_MAIN_FUNC (-1)
1538static void init_func_state(struct bpf_verifier_env *env,
1539 struct bpf_func_state *state,
1540 int callsite, int frameno, int subprogno)
1541{
1542 state->callsite = callsite;
1543 state->frameno = frameno;
1544 state->subprogno = subprogno;
1545 init_reg_state(env, state);
1546}
1547
bfc6bb74
AS
1548/* Similar to push_stack(), but for async callbacks */
1549static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1550 int insn_idx, int prev_insn_idx,
1551 int subprog)
1552{
1553 struct bpf_verifier_stack_elem *elem;
1554 struct bpf_func_state *frame;
1555
1556 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1557 if (!elem)
1558 goto err;
1559
1560 elem->insn_idx = insn_idx;
1561 elem->prev_insn_idx = prev_insn_idx;
1562 elem->next = env->head;
1563 elem->log_pos = env->log.len_used;
1564 env->head = elem;
1565 env->stack_size++;
1566 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1567 verbose(env,
1568 "The sequence of %d jumps is too complex for async cb.\n",
1569 env->stack_size);
1570 goto err;
1571 }
1572 /* Unlike push_stack() do not copy_verifier_state().
1573 * The caller state doesn't matter.
1574 * This is async callback. It starts in a fresh stack.
1575 * Initialize it similar to do_check_common().
1576 */
1577 elem->st.branches = 1;
1578 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1579 if (!frame)
1580 goto err;
1581 init_func_state(env, frame,
1582 BPF_MAIN_FUNC /* callsite */,
1583 0 /* frameno within this callchain */,
1584 subprog /* subprog number within this prog */);
1585 elem->st.frame[0] = frame;
1586 return &elem->st;
1587err:
1588 free_verifier_state(env->cur_state, true);
1589 env->cur_state = NULL;
1590 /* pop all elements and return */
1591 while (!pop_stack(env, NULL, NULL, false));
1592 return NULL;
1593}
1594
1595
17a52670
AS
1596enum reg_arg_type {
1597 SRC_OP, /* register is used as source operand */
1598 DST_OP, /* register is used as destination operand */
1599 DST_OP_NO_MARK /* same as above, check only, don't mark */
1600};
1601
cc8b0b92
AS
1602static int cmp_subprogs(const void *a, const void *b)
1603{
9c8105bd
JW
1604 return ((struct bpf_subprog_info *)a)->start -
1605 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1606}
1607
1608static int find_subprog(struct bpf_verifier_env *env, int off)
1609{
9c8105bd 1610 struct bpf_subprog_info *p;
cc8b0b92 1611
9c8105bd
JW
1612 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1613 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1614 if (!p)
1615 return -ENOENT;
9c8105bd 1616 return p - env->subprog_info;
cc8b0b92
AS
1617
1618}
1619
1620static int add_subprog(struct bpf_verifier_env *env, int off)
1621{
1622 int insn_cnt = env->prog->len;
1623 int ret;
1624
1625 if (off >= insn_cnt || off < 0) {
1626 verbose(env, "call to invalid destination\n");
1627 return -EINVAL;
1628 }
1629 ret = find_subprog(env, off);
1630 if (ret >= 0)
282a0f46 1631 return ret;
4cb3d99c 1632 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1633 verbose(env, "too many subprograms\n");
1634 return -E2BIG;
1635 }
e6ac2450 1636 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1637 env->subprog_info[env->subprog_cnt++].start = off;
1638 sort(env->subprog_info, env->subprog_cnt,
1639 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1640 return env->subprog_cnt - 1;
cc8b0b92
AS
1641}
1642
2357672c
KKD
1643#define MAX_KFUNC_DESCS 256
1644#define MAX_KFUNC_BTFS 256
1645
e6ac2450
MKL
1646struct bpf_kfunc_desc {
1647 struct btf_func_model func_model;
1648 u32 func_id;
1649 s32 imm;
2357672c
KKD
1650 u16 offset;
1651};
1652
1653struct bpf_kfunc_btf {
1654 struct btf *btf;
1655 struct module *module;
1656 u16 offset;
e6ac2450
MKL
1657};
1658
e6ac2450
MKL
1659struct bpf_kfunc_desc_tab {
1660 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1661 u32 nr_descs;
1662};
1663
2357672c
KKD
1664struct bpf_kfunc_btf_tab {
1665 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1666 u32 nr_descs;
1667};
1668
1669static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1670{
1671 const struct bpf_kfunc_desc *d0 = a;
1672 const struct bpf_kfunc_desc *d1 = b;
1673
1674 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1675 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1676}
1677
1678static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1679{
1680 const struct bpf_kfunc_btf *d0 = a;
1681 const struct bpf_kfunc_btf *d1 = b;
1682
1683 return d0->offset - d1->offset;
e6ac2450
MKL
1684}
1685
1686static const struct bpf_kfunc_desc *
2357672c 1687find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1688{
1689 struct bpf_kfunc_desc desc = {
1690 .func_id = func_id,
2357672c 1691 .offset = offset,
e6ac2450
MKL
1692 };
1693 struct bpf_kfunc_desc_tab *tab;
1694
1695 tab = prog->aux->kfunc_tab;
1696 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1697 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1698}
1699
1700static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1701 s16 offset, struct module **btf_modp)
1702{
1703 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1704 struct bpf_kfunc_btf_tab *tab;
1705 struct bpf_kfunc_btf *b;
1706 struct module *mod;
1707 struct btf *btf;
1708 int btf_fd;
1709
1710 tab = env->prog->aux->kfunc_btf_tab;
1711 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1712 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1713 if (!b) {
1714 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1715 verbose(env, "too many different module BTFs\n");
1716 return ERR_PTR(-E2BIG);
1717 }
1718
1719 if (bpfptr_is_null(env->fd_array)) {
1720 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1721 return ERR_PTR(-EPROTO);
1722 }
1723
1724 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1725 offset * sizeof(btf_fd),
1726 sizeof(btf_fd)))
1727 return ERR_PTR(-EFAULT);
1728
1729 btf = btf_get_by_fd(btf_fd);
1730 if (IS_ERR(btf))
1731 return btf;
1732
1733 if (!btf_is_module(btf)) {
1734 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1735 btf_put(btf);
1736 return ERR_PTR(-EINVAL);
1737 }
1738
1739 mod = btf_try_get_module(btf);
1740 if (!mod) {
1741 btf_put(btf);
1742 return ERR_PTR(-ENXIO);
1743 }
1744
1745 b = &tab->descs[tab->nr_descs++];
1746 b->btf = btf;
1747 b->module = mod;
1748 b->offset = offset;
1749
1750 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1751 kfunc_btf_cmp_by_off, NULL);
1752 }
1753 if (btf_modp)
1754 *btf_modp = b->module;
1755 return b->btf;
e6ac2450
MKL
1756}
1757
2357672c
KKD
1758void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1759{
1760 if (!tab)
1761 return;
1762
1763 while (tab->nr_descs--) {
1764 module_put(tab->descs[tab->nr_descs].module);
1765 btf_put(tab->descs[tab->nr_descs].btf);
1766 }
1767 kfree(tab);
1768}
1769
1770static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1771 u32 func_id, s16 offset,
1772 struct module **btf_modp)
1773{
1774 struct btf *kfunc_btf;
1775
1776 if (offset) {
1777 if (offset < 0) {
1778 /* In the future, this can be allowed to increase limit
1779 * of fd index into fd_array, interpreted as u16.
1780 */
1781 verbose(env, "negative offset disallowed for kernel module function call\n");
1782 return ERR_PTR(-EINVAL);
1783 }
1784
1785 kfunc_btf = __find_kfunc_desc_btf(env, offset, btf_modp);
1786 if (IS_ERR_OR_NULL(kfunc_btf)) {
1787 verbose(env, "cannot find module BTF for func_id %u\n", func_id);
1788 return kfunc_btf ?: ERR_PTR(-ENOENT);
1789 }
1790 return kfunc_btf;
1791 }
1792 return btf_vmlinux ?: ERR_PTR(-ENOENT);
1793}
1794
1795static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
1796{
1797 const struct btf_type *func, *func_proto;
2357672c 1798 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
1799 struct bpf_kfunc_desc_tab *tab;
1800 struct bpf_prog_aux *prog_aux;
1801 struct bpf_kfunc_desc *desc;
1802 const char *func_name;
2357672c 1803 struct btf *desc_btf;
e6ac2450
MKL
1804 unsigned long addr;
1805 int err;
1806
1807 prog_aux = env->prog->aux;
1808 tab = prog_aux->kfunc_tab;
2357672c 1809 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
1810 if (!tab) {
1811 if (!btf_vmlinux) {
1812 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1813 return -ENOTSUPP;
1814 }
1815
1816 if (!env->prog->jit_requested) {
1817 verbose(env, "JIT is required for calling kernel function\n");
1818 return -ENOTSUPP;
1819 }
1820
1821 if (!bpf_jit_supports_kfunc_call()) {
1822 verbose(env, "JIT does not support calling kernel function\n");
1823 return -ENOTSUPP;
1824 }
1825
1826 if (!env->prog->gpl_compatible) {
1827 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1828 return -EINVAL;
1829 }
1830
1831 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1832 if (!tab)
1833 return -ENOMEM;
1834 prog_aux->kfunc_tab = tab;
1835 }
1836
a5d82727
KKD
1837 /* func_id == 0 is always invalid, but instead of returning an error, be
1838 * conservative and wait until the code elimination pass before returning
1839 * error, so that invalid calls that get pruned out can be in BPF programs
1840 * loaded from userspace. It is also required that offset be untouched
1841 * for such calls.
1842 */
1843 if (!func_id && !offset)
1844 return 0;
1845
2357672c
KKD
1846 if (!btf_tab && offset) {
1847 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1848 if (!btf_tab)
1849 return -ENOMEM;
1850 prog_aux->kfunc_btf_tab = btf_tab;
1851 }
1852
1853 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1854 if (IS_ERR(desc_btf)) {
1855 verbose(env, "failed to find BTF for kernel function\n");
1856 return PTR_ERR(desc_btf);
1857 }
1858
1859 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
1860 return 0;
1861
1862 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1863 verbose(env, "too many different kernel function calls\n");
1864 return -E2BIG;
1865 }
1866
2357672c 1867 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
1868 if (!func || !btf_type_is_func(func)) {
1869 verbose(env, "kernel btf_id %u is not a function\n",
1870 func_id);
1871 return -EINVAL;
1872 }
2357672c 1873 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
1874 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1875 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1876 func_id);
1877 return -EINVAL;
1878 }
1879
2357672c 1880 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
1881 addr = kallsyms_lookup_name(func_name);
1882 if (!addr) {
1883 verbose(env, "cannot find address for kernel function %s\n",
1884 func_name);
1885 return -EINVAL;
1886 }
1887
1888 desc = &tab->descs[tab->nr_descs++];
1889 desc->func_id = func_id;
3d717fad 1890 desc->imm = BPF_CALL_IMM(addr);
2357672c
KKD
1891 desc->offset = offset;
1892 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
1893 func_proto, func_name,
1894 &desc->func_model);
1895 if (!err)
1896 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 1897 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
1898 return err;
1899}
1900
1901static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1902{
1903 const struct bpf_kfunc_desc *d0 = a;
1904 const struct bpf_kfunc_desc *d1 = b;
1905
1906 if (d0->imm > d1->imm)
1907 return 1;
1908 else if (d0->imm < d1->imm)
1909 return -1;
1910 return 0;
1911}
1912
1913static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1914{
1915 struct bpf_kfunc_desc_tab *tab;
1916
1917 tab = prog->aux->kfunc_tab;
1918 if (!tab)
1919 return;
1920
1921 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1922 kfunc_desc_cmp_by_imm, NULL);
1923}
1924
1925bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1926{
1927 return !!prog->aux->kfunc_tab;
1928}
1929
1930const struct btf_func_model *
1931bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1932 const struct bpf_insn *insn)
1933{
1934 const struct bpf_kfunc_desc desc = {
1935 .imm = insn->imm,
1936 };
1937 const struct bpf_kfunc_desc *res;
1938 struct bpf_kfunc_desc_tab *tab;
1939
1940 tab = prog->aux->kfunc_tab;
1941 res = bsearch(&desc, tab->descs, tab->nr_descs,
1942 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1943
1944 return res ? &res->func_model : NULL;
1945}
1946
1947static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 1948{
9c8105bd 1949 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 1950 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 1951 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 1952
f910cefa
JW
1953 /* Add entry function. */
1954 ret = add_subprog(env, 0);
e6ac2450 1955 if (ret)
f910cefa
JW
1956 return ret;
1957
e6ac2450
MKL
1958 for (i = 0; i < insn_cnt; i++, insn++) {
1959 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1960 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 1961 continue;
e6ac2450 1962
2c78ee89 1963 if (!env->bpf_capable) {
e6ac2450 1964 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1965 return -EPERM;
1966 }
e6ac2450
MKL
1967
1968 if (bpf_pseudo_func(insn)) {
1969 ret = add_subprog(env, i + insn->imm + 1);
1970 if (ret >= 0)
1971 /* remember subprog */
1972 insn[1].imm = ret;
1973 } else if (bpf_pseudo_call(insn)) {
1974 ret = add_subprog(env, i + insn->imm + 1);
1975 } else {
2357672c 1976 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450
MKL
1977 }
1978
cc8b0b92
AS
1979 if (ret < 0)
1980 return ret;
1981 }
1982
4cb3d99c
JW
1983 /* Add a fake 'exit' subprog which could simplify subprog iteration
1984 * logic. 'subprog_cnt' should not be increased.
1985 */
1986 subprog[env->subprog_cnt].start = insn_cnt;
1987
06ee7115 1988 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1989 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1990 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 1991
e6ac2450
MKL
1992 return 0;
1993}
1994
1995static int check_subprogs(struct bpf_verifier_env *env)
1996{
1997 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1998 struct bpf_subprog_info *subprog = env->subprog_info;
1999 struct bpf_insn *insn = env->prog->insnsi;
2000 int insn_cnt = env->prog->len;
2001
cc8b0b92 2002 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2003 subprog_start = subprog[cur_subprog].start;
2004 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2005 for (i = 0; i < insn_cnt; i++) {
2006 u8 code = insn[i].code;
2007
7f6e4312
MF
2008 if (code == (BPF_JMP | BPF_CALL) &&
2009 insn[i].imm == BPF_FUNC_tail_call &&
2010 insn[i].src_reg != BPF_PSEUDO_CALL)
2011 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2012 if (BPF_CLASS(code) == BPF_LD &&
2013 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2014 subprog[cur_subprog].has_ld_abs = true;
092ed096 2015 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2016 goto next;
2017 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2018 goto next;
2019 off = i + insn[i].off + 1;
2020 if (off < subprog_start || off >= subprog_end) {
2021 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2022 return -EINVAL;
2023 }
2024next:
2025 if (i == subprog_end - 1) {
2026 /* to avoid fall-through from one subprog into another
2027 * the last insn of the subprog should be either exit
2028 * or unconditional jump back
2029 */
2030 if (code != (BPF_JMP | BPF_EXIT) &&
2031 code != (BPF_JMP | BPF_JA)) {
2032 verbose(env, "last insn is not an exit or jmp\n");
2033 return -EINVAL;
2034 }
2035 subprog_start = subprog_end;
4cb3d99c
JW
2036 cur_subprog++;
2037 if (cur_subprog < env->subprog_cnt)
9c8105bd 2038 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2039 }
2040 }
2041 return 0;
2042}
2043
679c782d
EC
2044/* Parentage chain of this register (or stack slot) should take care of all
2045 * issues like callee-saved registers, stack slot allocation time, etc.
2046 */
f4d7e40a 2047static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2048 const struct bpf_reg_state *state,
5327ed3d 2049 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2050{
2051 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2052 int cnt = 0;
dc503a8a
EC
2053
2054 while (parent) {
2055 /* if read wasn't screened by an earlier write ... */
679c782d 2056 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2057 break;
9242b5f5
AS
2058 if (parent->live & REG_LIVE_DONE) {
2059 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2060 reg_type_str[parent->type],
2061 parent->var_off.value, parent->off);
2062 return -EFAULT;
2063 }
5327ed3d
JW
2064 /* The first condition is more likely to be true than the
2065 * second, checked it first.
2066 */
2067 if ((parent->live & REG_LIVE_READ) == flag ||
2068 parent->live & REG_LIVE_READ64)
25af32da
AS
2069 /* The parentage chain never changes and
2070 * this parent was already marked as LIVE_READ.
2071 * There is no need to keep walking the chain again and
2072 * keep re-marking all parents as LIVE_READ.
2073 * This case happens when the same register is read
2074 * multiple times without writes into it in-between.
5327ed3d
JW
2075 * Also, if parent has the stronger REG_LIVE_READ64 set,
2076 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2077 */
2078 break;
dc503a8a 2079 /* ... then we depend on parent's value */
5327ed3d
JW
2080 parent->live |= flag;
2081 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2082 if (flag == REG_LIVE_READ64)
2083 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2084 state = parent;
2085 parent = state->parent;
f4d7e40a 2086 writes = true;
06ee7115 2087 cnt++;
dc503a8a 2088 }
06ee7115
AS
2089
2090 if (env->longest_mark_read_walk < cnt)
2091 env->longest_mark_read_walk = cnt;
f4d7e40a 2092 return 0;
dc503a8a
EC
2093}
2094
5327ed3d
JW
2095/* This function is supposed to be used by the following 32-bit optimization
2096 * code only. It returns TRUE if the source or destination register operates
2097 * on 64-bit, otherwise return FALSE.
2098 */
2099static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2100 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2101{
2102 u8 code, class, op;
2103
2104 code = insn->code;
2105 class = BPF_CLASS(code);
2106 op = BPF_OP(code);
2107 if (class == BPF_JMP) {
2108 /* BPF_EXIT for "main" will reach here. Return TRUE
2109 * conservatively.
2110 */
2111 if (op == BPF_EXIT)
2112 return true;
2113 if (op == BPF_CALL) {
2114 /* BPF to BPF call will reach here because of marking
2115 * caller saved clobber with DST_OP_NO_MARK for which we
2116 * don't care the register def because they are anyway
2117 * marked as NOT_INIT already.
2118 */
2119 if (insn->src_reg == BPF_PSEUDO_CALL)
2120 return false;
2121 /* Helper call will reach here because of arg type
2122 * check, conservatively return TRUE.
2123 */
2124 if (t == SRC_OP)
2125 return true;
2126
2127 return false;
2128 }
2129 }
2130
2131 if (class == BPF_ALU64 || class == BPF_JMP ||
2132 /* BPF_END always use BPF_ALU class. */
2133 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2134 return true;
2135
2136 if (class == BPF_ALU || class == BPF_JMP32)
2137 return false;
2138
2139 if (class == BPF_LDX) {
2140 if (t != SRC_OP)
2141 return BPF_SIZE(code) == BPF_DW;
2142 /* LDX source must be ptr. */
2143 return true;
2144 }
2145
2146 if (class == BPF_STX) {
83a28819
IL
2147 /* BPF_STX (including atomic variants) has multiple source
2148 * operands, one of which is a ptr. Check whether the caller is
2149 * asking about it.
2150 */
2151 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2152 return true;
2153 return BPF_SIZE(code) == BPF_DW;
2154 }
2155
2156 if (class == BPF_LD) {
2157 u8 mode = BPF_MODE(code);
2158
2159 /* LD_IMM64 */
2160 if (mode == BPF_IMM)
2161 return true;
2162
2163 /* Both LD_IND and LD_ABS return 32-bit data. */
2164 if (t != SRC_OP)
2165 return false;
2166
2167 /* Implicit ctx ptr. */
2168 if (regno == BPF_REG_6)
2169 return true;
2170
2171 /* Explicit source could be any width. */
2172 return true;
2173 }
2174
2175 if (class == BPF_ST)
2176 /* The only source register for BPF_ST is a ptr. */
2177 return true;
2178
2179 /* Conservatively return true at default. */
2180 return true;
2181}
2182
83a28819
IL
2183/* Return the regno defined by the insn, or -1. */
2184static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2185{
83a28819
IL
2186 switch (BPF_CLASS(insn->code)) {
2187 case BPF_JMP:
2188 case BPF_JMP32:
2189 case BPF_ST:
2190 return -1;
2191 case BPF_STX:
2192 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2193 (insn->imm & BPF_FETCH)) {
2194 if (insn->imm == BPF_CMPXCHG)
2195 return BPF_REG_0;
2196 else
2197 return insn->src_reg;
2198 } else {
2199 return -1;
2200 }
2201 default:
2202 return insn->dst_reg;
2203 }
b325fbca
JW
2204}
2205
2206/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2207static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2208{
83a28819
IL
2209 int dst_reg = insn_def_regno(insn);
2210
2211 if (dst_reg == -1)
b325fbca
JW
2212 return false;
2213
83a28819 2214 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2215}
2216
5327ed3d
JW
2217static void mark_insn_zext(struct bpf_verifier_env *env,
2218 struct bpf_reg_state *reg)
2219{
2220 s32 def_idx = reg->subreg_def;
2221
2222 if (def_idx == DEF_NOT_SUBREG)
2223 return;
2224
2225 env->insn_aux_data[def_idx - 1].zext_dst = true;
2226 /* The dst will be zero extended, so won't be sub-register anymore. */
2227 reg->subreg_def = DEF_NOT_SUBREG;
2228}
2229
dc503a8a 2230static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2231 enum reg_arg_type t)
2232{
f4d7e40a
AS
2233 struct bpf_verifier_state *vstate = env->cur_state;
2234 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2235 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2236 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2237 bool rw64;
dc503a8a 2238
17a52670 2239 if (regno >= MAX_BPF_REG) {
61bd5218 2240 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2241 return -EINVAL;
2242 }
2243
c342dc10 2244 reg = &regs[regno];
5327ed3d 2245 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2246 if (t == SRC_OP) {
2247 /* check whether register used as source operand can be read */
c342dc10 2248 if (reg->type == NOT_INIT) {
61bd5218 2249 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2250 return -EACCES;
2251 }
679c782d 2252 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2253 if (regno == BPF_REG_FP)
2254 return 0;
2255
5327ed3d
JW
2256 if (rw64)
2257 mark_insn_zext(env, reg);
2258
2259 return mark_reg_read(env, reg, reg->parent,
2260 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2261 } else {
2262 /* check whether register used as dest operand can be written to */
2263 if (regno == BPF_REG_FP) {
61bd5218 2264 verbose(env, "frame pointer is read only\n");
17a52670
AS
2265 return -EACCES;
2266 }
c342dc10 2267 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2268 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2269 if (t == DST_OP)
61bd5218 2270 mark_reg_unknown(env, regs, regno);
17a52670
AS
2271 }
2272 return 0;
2273}
2274
b5dc0163
AS
2275/* for any branch, call, exit record the history of jmps in the given state */
2276static int push_jmp_history(struct bpf_verifier_env *env,
2277 struct bpf_verifier_state *cur)
2278{
2279 u32 cnt = cur->jmp_history_cnt;
2280 struct bpf_idx_pair *p;
2281
2282 cnt++;
2283 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2284 if (!p)
2285 return -ENOMEM;
2286 p[cnt - 1].idx = env->insn_idx;
2287 p[cnt - 1].prev_idx = env->prev_insn_idx;
2288 cur->jmp_history = p;
2289 cur->jmp_history_cnt = cnt;
2290 return 0;
2291}
2292
2293/* Backtrack one insn at a time. If idx is not at the top of recorded
2294 * history then previous instruction came from straight line execution.
2295 */
2296static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2297 u32 *history)
2298{
2299 u32 cnt = *history;
2300
2301 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2302 i = st->jmp_history[cnt - 1].prev_idx;
2303 (*history)--;
2304 } else {
2305 i--;
2306 }
2307 return i;
2308}
2309
e6ac2450
MKL
2310static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2311{
2312 const struct btf_type *func;
2357672c 2313 struct btf *desc_btf;
e6ac2450
MKL
2314
2315 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2316 return NULL;
2317
2357672c
KKD
2318 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2319 if (IS_ERR(desc_btf))
2320 return "<error>";
2321
2322 func = btf_type_by_id(desc_btf, insn->imm);
2323 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2324}
2325
b5dc0163
AS
2326/* For given verifier state backtrack_insn() is called from the last insn to
2327 * the first insn. Its purpose is to compute a bitmask of registers and
2328 * stack slots that needs precision in the parent verifier state.
2329 */
2330static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2331 u32 *reg_mask, u64 *stack_mask)
2332{
2333 const struct bpf_insn_cbs cbs = {
e6ac2450 2334 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2335 .cb_print = verbose,
2336 .private_data = env,
2337 };
2338 struct bpf_insn *insn = env->prog->insnsi + idx;
2339 u8 class = BPF_CLASS(insn->code);
2340 u8 opcode = BPF_OP(insn->code);
2341 u8 mode = BPF_MODE(insn->code);
2342 u32 dreg = 1u << insn->dst_reg;
2343 u32 sreg = 1u << insn->src_reg;
2344 u32 spi;
2345
2346 if (insn->code == 0)
2347 return 0;
2348 if (env->log.level & BPF_LOG_LEVEL) {
2349 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2350 verbose(env, "%d: ", idx);
2351 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2352 }
2353
2354 if (class == BPF_ALU || class == BPF_ALU64) {
2355 if (!(*reg_mask & dreg))
2356 return 0;
2357 if (opcode == BPF_MOV) {
2358 if (BPF_SRC(insn->code) == BPF_X) {
2359 /* dreg = sreg
2360 * dreg needs precision after this insn
2361 * sreg needs precision before this insn
2362 */
2363 *reg_mask &= ~dreg;
2364 *reg_mask |= sreg;
2365 } else {
2366 /* dreg = K
2367 * dreg needs precision after this insn.
2368 * Corresponding register is already marked
2369 * as precise=true in this verifier state.
2370 * No further markings in parent are necessary
2371 */
2372 *reg_mask &= ~dreg;
2373 }
2374 } else {
2375 if (BPF_SRC(insn->code) == BPF_X) {
2376 /* dreg += sreg
2377 * both dreg and sreg need precision
2378 * before this insn
2379 */
2380 *reg_mask |= sreg;
2381 } /* else dreg += K
2382 * dreg still needs precision before this insn
2383 */
2384 }
2385 } else if (class == BPF_LDX) {
2386 if (!(*reg_mask & dreg))
2387 return 0;
2388 *reg_mask &= ~dreg;
2389
2390 /* scalars can only be spilled into stack w/o losing precision.
2391 * Load from any other memory can be zero extended.
2392 * The desire to keep that precision is already indicated
2393 * by 'precise' mark in corresponding register of this state.
2394 * No further tracking necessary.
2395 */
2396 if (insn->src_reg != BPF_REG_FP)
2397 return 0;
2398 if (BPF_SIZE(insn->code) != BPF_DW)
2399 return 0;
2400
2401 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2402 * that [fp - off] slot contains scalar that needs to be
2403 * tracked with precision
2404 */
2405 spi = (-insn->off - 1) / BPF_REG_SIZE;
2406 if (spi >= 64) {
2407 verbose(env, "BUG spi %d\n", spi);
2408 WARN_ONCE(1, "verifier backtracking bug");
2409 return -EFAULT;
2410 }
2411 *stack_mask |= 1ull << spi;
b3b50f05 2412 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2413 if (*reg_mask & dreg)
b3b50f05 2414 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2415 * to access memory. It means backtracking
2416 * encountered a case of pointer subtraction.
2417 */
2418 return -ENOTSUPP;
2419 /* scalars can only be spilled into stack */
2420 if (insn->dst_reg != BPF_REG_FP)
2421 return 0;
2422 if (BPF_SIZE(insn->code) != BPF_DW)
2423 return 0;
2424 spi = (-insn->off - 1) / BPF_REG_SIZE;
2425 if (spi >= 64) {
2426 verbose(env, "BUG spi %d\n", spi);
2427 WARN_ONCE(1, "verifier backtracking bug");
2428 return -EFAULT;
2429 }
2430 if (!(*stack_mask & (1ull << spi)))
2431 return 0;
2432 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2433 if (class == BPF_STX)
2434 *reg_mask |= sreg;
b5dc0163
AS
2435 } else if (class == BPF_JMP || class == BPF_JMP32) {
2436 if (opcode == BPF_CALL) {
2437 if (insn->src_reg == BPF_PSEUDO_CALL)
2438 return -ENOTSUPP;
2439 /* regular helper call sets R0 */
2440 *reg_mask &= ~1;
2441 if (*reg_mask & 0x3f) {
2442 /* if backtracing was looking for registers R1-R5
2443 * they should have been found already.
2444 */
2445 verbose(env, "BUG regs %x\n", *reg_mask);
2446 WARN_ONCE(1, "verifier backtracking bug");
2447 return -EFAULT;
2448 }
2449 } else if (opcode == BPF_EXIT) {
2450 return -ENOTSUPP;
2451 }
2452 } else if (class == BPF_LD) {
2453 if (!(*reg_mask & dreg))
2454 return 0;
2455 *reg_mask &= ~dreg;
2456 /* It's ld_imm64 or ld_abs or ld_ind.
2457 * For ld_imm64 no further tracking of precision
2458 * into parent is necessary
2459 */
2460 if (mode == BPF_IND || mode == BPF_ABS)
2461 /* to be analyzed */
2462 return -ENOTSUPP;
b5dc0163
AS
2463 }
2464 return 0;
2465}
2466
2467/* the scalar precision tracking algorithm:
2468 * . at the start all registers have precise=false.
2469 * . scalar ranges are tracked as normal through alu and jmp insns.
2470 * . once precise value of the scalar register is used in:
2471 * . ptr + scalar alu
2472 * . if (scalar cond K|scalar)
2473 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2474 * backtrack through the verifier states and mark all registers and
2475 * stack slots with spilled constants that these scalar regisers
2476 * should be precise.
2477 * . during state pruning two registers (or spilled stack slots)
2478 * are equivalent if both are not precise.
2479 *
2480 * Note the verifier cannot simply walk register parentage chain,
2481 * since many different registers and stack slots could have been
2482 * used to compute single precise scalar.
2483 *
2484 * The approach of starting with precise=true for all registers and then
2485 * backtrack to mark a register as not precise when the verifier detects
2486 * that program doesn't care about specific value (e.g., when helper
2487 * takes register as ARG_ANYTHING parameter) is not safe.
2488 *
2489 * It's ok to walk single parentage chain of the verifier states.
2490 * It's possible that this backtracking will go all the way till 1st insn.
2491 * All other branches will be explored for needing precision later.
2492 *
2493 * The backtracking needs to deal with cases like:
2494 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2495 * r9 -= r8
2496 * r5 = r9
2497 * if r5 > 0x79f goto pc+7
2498 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2499 * r5 += 1
2500 * ...
2501 * call bpf_perf_event_output#25
2502 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2503 *
2504 * and this case:
2505 * r6 = 1
2506 * call foo // uses callee's r6 inside to compute r0
2507 * r0 += r6
2508 * if r0 == 0 goto
2509 *
2510 * to track above reg_mask/stack_mask needs to be independent for each frame.
2511 *
2512 * Also if parent's curframe > frame where backtracking started,
2513 * the verifier need to mark registers in both frames, otherwise callees
2514 * may incorrectly prune callers. This is similar to
2515 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2516 *
2517 * For now backtracking falls back into conservative marking.
2518 */
2519static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2520 struct bpf_verifier_state *st)
2521{
2522 struct bpf_func_state *func;
2523 struct bpf_reg_state *reg;
2524 int i, j;
2525
2526 /* big hammer: mark all scalars precise in this path.
2527 * pop_stack may still get !precise scalars.
2528 */
2529 for (; st; st = st->parent)
2530 for (i = 0; i <= st->curframe; i++) {
2531 func = st->frame[i];
2532 for (j = 0; j < BPF_REG_FP; j++) {
2533 reg = &func->regs[j];
2534 if (reg->type != SCALAR_VALUE)
2535 continue;
2536 reg->precise = true;
2537 }
2538 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2539 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2540 continue;
2541 reg = &func->stack[j].spilled_ptr;
2542 if (reg->type != SCALAR_VALUE)
2543 continue;
2544 reg->precise = true;
2545 }
2546 }
2547}
2548
a3ce685d
AS
2549static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2550 int spi)
b5dc0163
AS
2551{
2552 struct bpf_verifier_state *st = env->cur_state;
2553 int first_idx = st->first_insn_idx;
2554 int last_idx = env->insn_idx;
2555 struct bpf_func_state *func;
2556 struct bpf_reg_state *reg;
a3ce685d
AS
2557 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2558 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2559 bool skip_first = true;
a3ce685d 2560 bool new_marks = false;
b5dc0163
AS
2561 int i, err;
2562
2c78ee89 2563 if (!env->bpf_capable)
b5dc0163
AS
2564 return 0;
2565
2566 func = st->frame[st->curframe];
a3ce685d
AS
2567 if (regno >= 0) {
2568 reg = &func->regs[regno];
2569 if (reg->type != SCALAR_VALUE) {
2570 WARN_ONCE(1, "backtracing misuse");
2571 return -EFAULT;
2572 }
2573 if (!reg->precise)
2574 new_marks = true;
2575 else
2576 reg_mask = 0;
2577 reg->precise = true;
b5dc0163 2578 }
b5dc0163 2579
a3ce685d 2580 while (spi >= 0) {
27113c59 2581 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2582 stack_mask = 0;
2583 break;
2584 }
2585 reg = &func->stack[spi].spilled_ptr;
2586 if (reg->type != SCALAR_VALUE) {
2587 stack_mask = 0;
2588 break;
2589 }
2590 if (!reg->precise)
2591 new_marks = true;
2592 else
2593 stack_mask = 0;
2594 reg->precise = true;
2595 break;
2596 }
2597
2598 if (!new_marks)
2599 return 0;
2600 if (!reg_mask && !stack_mask)
2601 return 0;
b5dc0163
AS
2602 for (;;) {
2603 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2604 u32 history = st->jmp_history_cnt;
2605
2606 if (env->log.level & BPF_LOG_LEVEL)
2607 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2608 for (i = last_idx;;) {
2609 if (skip_first) {
2610 err = 0;
2611 skip_first = false;
2612 } else {
2613 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2614 }
2615 if (err == -ENOTSUPP) {
2616 mark_all_scalars_precise(env, st);
2617 return 0;
2618 } else if (err) {
2619 return err;
2620 }
2621 if (!reg_mask && !stack_mask)
2622 /* Found assignment(s) into tracked register in this state.
2623 * Since this state is already marked, just return.
2624 * Nothing to be tracked further in the parent state.
2625 */
2626 return 0;
2627 if (i == first_idx)
2628 break;
2629 i = get_prev_insn_idx(st, i, &history);
2630 if (i >= env->prog->len) {
2631 /* This can happen if backtracking reached insn 0
2632 * and there are still reg_mask or stack_mask
2633 * to backtrack.
2634 * It means the backtracking missed the spot where
2635 * particular register was initialized with a constant.
2636 */
2637 verbose(env, "BUG backtracking idx %d\n", i);
2638 WARN_ONCE(1, "verifier backtracking bug");
2639 return -EFAULT;
2640 }
2641 }
2642 st = st->parent;
2643 if (!st)
2644 break;
2645
a3ce685d 2646 new_marks = false;
b5dc0163
AS
2647 func = st->frame[st->curframe];
2648 bitmap_from_u64(mask, reg_mask);
2649 for_each_set_bit(i, mask, 32) {
2650 reg = &func->regs[i];
a3ce685d
AS
2651 if (reg->type != SCALAR_VALUE) {
2652 reg_mask &= ~(1u << i);
b5dc0163 2653 continue;
a3ce685d 2654 }
b5dc0163
AS
2655 if (!reg->precise)
2656 new_marks = true;
2657 reg->precise = true;
2658 }
2659
2660 bitmap_from_u64(mask, stack_mask);
2661 for_each_set_bit(i, mask, 64) {
2662 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2663 /* the sequence of instructions:
2664 * 2: (bf) r3 = r10
2665 * 3: (7b) *(u64 *)(r3 -8) = r0
2666 * 4: (79) r4 = *(u64 *)(r10 -8)
2667 * doesn't contain jmps. It's backtracked
2668 * as a single block.
2669 * During backtracking insn 3 is not recognized as
2670 * stack access, so at the end of backtracking
2671 * stack slot fp-8 is still marked in stack_mask.
2672 * However the parent state may not have accessed
2673 * fp-8 and it's "unallocated" stack space.
2674 * In such case fallback to conservative.
b5dc0163 2675 */
2339cd6c
AS
2676 mark_all_scalars_precise(env, st);
2677 return 0;
b5dc0163
AS
2678 }
2679
27113c59 2680 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2681 stack_mask &= ~(1ull << i);
b5dc0163 2682 continue;
a3ce685d 2683 }
b5dc0163 2684 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2685 if (reg->type != SCALAR_VALUE) {
2686 stack_mask &= ~(1ull << i);
b5dc0163 2687 continue;
a3ce685d 2688 }
b5dc0163
AS
2689 if (!reg->precise)
2690 new_marks = true;
2691 reg->precise = true;
2692 }
2693 if (env->log.level & BPF_LOG_LEVEL) {
2694 print_verifier_state(env, func);
2695 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2696 new_marks ? "didn't have" : "already had",
2697 reg_mask, stack_mask);
2698 }
2699
a3ce685d
AS
2700 if (!reg_mask && !stack_mask)
2701 break;
b5dc0163
AS
2702 if (!new_marks)
2703 break;
2704
2705 last_idx = st->last_insn_idx;
2706 first_idx = st->first_insn_idx;
2707 }
2708 return 0;
2709}
2710
a3ce685d
AS
2711static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2712{
2713 return __mark_chain_precision(env, regno, -1);
2714}
2715
2716static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2717{
2718 return __mark_chain_precision(env, -1, spi);
2719}
b5dc0163 2720
1be7f75d
AS
2721static bool is_spillable_regtype(enum bpf_reg_type type)
2722{
2723 switch (type) {
2724 case PTR_TO_MAP_VALUE:
2725 case PTR_TO_MAP_VALUE_OR_NULL:
2726 case PTR_TO_STACK:
2727 case PTR_TO_CTX:
969bf05e 2728 case PTR_TO_PACKET:
de8f3a83 2729 case PTR_TO_PACKET_META:
969bf05e 2730 case PTR_TO_PACKET_END:
d58e468b 2731 case PTR_TO_FLOW_KEYS:
1be7f75d 2732 case CONST_PTR_TO_MAP:
c64b7983
JS
2733 case PTR_TO_SOCKET:
2734 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2735 case PTR_TO_SOCK_COMMON:
2736 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2737 case PTR_TO_TCP_SOCK:
2738 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2739 case PTR_TO_XDP_SOCK:
65726b5b 2740 case PTR_TO_BTF_ID:
b121b341 2741 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2742 case PTR_TO_RDONLY_BUF:
2743 case PTR_TO_RDONLY_BUF_OR_NULL:
2744 case PTR_TO_RDWR_BUF:
2745 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2746 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2747 case PTR_TO_MEM:
2748 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2749 case PTR_TO_FUNC:
2750 case PTR_TO_MAP_KEY:
1be7f75d
AS
2751 return true;
2752 default:
2753 return false;
2754 }
2755}
2756
cc2b14d5
AS
2757/* Does this register contain a constant zero? */
2758static bool register_is_null(struct bpf_reg_state *reg)
2759{
2760 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2761}
2762
f7cf25b2
AS
2763static bool register_is_const(struct bpf_reg_state *reg)
2764{
2765 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2766}
2767
5689d49b
YS
2768static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2769{
2770 return tnum_is_unknown(reg->var_off) &&
2771 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2772 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2773 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2774 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2775}
2776
2777static bool register_is_bounded(struct bpf_reg_state *reg)
2778{
2779 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2780}
2781
6e7e63cb
JH
2782static bool __is_pointer_value(bool allow_ptr_leaks,
2783 const struct bpf_reg_state *reg)
2784{
2785 if (allow_ptr_leaks)
2786 return false;
2787
2788 return reg->type != SCALAR_VALUE;
2789}
2790
f7cf25b2 2791static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2792 int spi, struct bpf_reg_state *reg,
2793 int size)
f7cf25b2
AS
2794{
2795 int i;
2796
2797 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2798 if (size == BPF_REG_SIZE)
2799 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 2800
354e8f19
MKL
2801 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2802 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2803
2804 /* size < 8 bytes spill */
2805 for (; i; i--)
2806 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
2807}
2808
01f810ac 2809/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2810 * stack boundary and alignment are checked in check_mem_access()
2811 */
01f810ac
AM
2812static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2813 /* stack frame we're writing to */
2814 struct bpf_func_state *state,
2815 int off, int size, int value_regno,
2816 int insn_idx)
17a52670 2817{
f4d7e40a 2818 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2819 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2820 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2821 struct bpf_reg_state *reg = NULL;
638f5b90 2822
c69431aa 2823 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2824 if (err)
2825 return err;
9c399760
AS
2826 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2827 * so it's aligned access and [off, off + size) are within stack limits
2828 */
638f5b90
AS
2829 if (!env->allow_ptr_leaks &&
2830 state->stack[spi].slot_type[0] == STACK_SPILL &&
2831 size != BPF_REG_SIZE) {
2832 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2833 return -EACCES;
2834 }
17a52670 2835
f4d7e40a 2836 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2837 if (value_regno >= 0)
2838 reg = &cur->regs[value_regno];
2039f26f
DB
2839 if (!env->bypass_spec_v4) {
2840 bool sanitize = reg && is_spillable_regtype(reg->type);
2841
2842 for (i = 0; i < size; i++) {
2843 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2844 sanitize = true;
2845 break;
2846 }
2847 }
2848
2849 if (sanitize)
2850 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2851 }
17a52670 2852
354e8f19 2853 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 2854 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2855 if (dst_reg != BPF_REG_FP) {
2856 /* The backtracking logic can only recognize explicit
2857 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2858 * scalar via different register has to be conservative.
b5dc0163
AS
2859 * Backtrack from here and mark all registers as precise
2860 * that contributed into 'reg' being a constant.
2861 */
2862 err = mark_chain_precision(env, value_regno);
2863 if (err)
2864 return err;
2865 }
354e8f19 2866 save_register_state(state, spi, reg, size);
f7cf25b2 2867 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2868 /* register containing pointer is being spilled into stack */
9c399760 2869 if (size != BPF_REG_SIZE) {
f7cf25b2 2870 verbose_linfo(env, insn_idx, "; ");
61bd5218 2871 verbose(env, "invalid size of register spill\n");
17a52670
AS
2872 return -EACCES;
2873 }
f7cf25b2 2874 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2875 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2876 return -EINVAL;
2877 }
354e8f19 2878 save_register_state(state, spi, reg, size);
9c399760 2879 } else {
cc2b14d5
AS
2880 u8 type = STACK_MISC;
2881
679c782d
EC
2882 /* regular write of data into stack destroys any spilled ptr */
2883 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 2884 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 2885 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 2886 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 2887 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 2888
cc2b14d5
AS
2889 /* only mark the slot as written if all 8 bytes were written
2890 * otherwise read propagation may incorrectly stop too soon
2891 * when stack slots are partially written.
2892 * This heuristic means that read propagation will be
2893 * conservative, since it will add reg_live_read marks
2894 * to stack slots all the way to first state when programs
2895 * writes+reads less than 8 bytes
2896 */
2897 if (size == BPF_REG_SIZE)
2898 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2899
2900 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2901 if (reg && register_is_null(reg)) {
2902 /* backtracking doesn't work for STACK_ZERO yet. */
2903 err = mark_chain_precision(env, value_regno);
2904 if (err)
2905 return err;
cc2b14d5 2906 type = STACK_ZERO;
b5dc0163 2907 }
cc2b14d5 2908
0bae2d4d 2909 /* Mark slots affected by this stack write. */
9c399760 2910 for (i = 0; i < size; i++)
638f5b90 2911 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2912 type;
17a52670
AS
2913 }
2914 return 0;
2915}
2916
01f810ac
AM
2917/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2918 * known to contain a variable offset.
2919 * This function checks whether the write is permitted and conservatively
2920 * tracks the effects of the write, considering that each stack slot in the
2921 * dynamic range is potentially written to.
2922 *
2923 * 'off' includes 'regno->off'.
2924 * 'value_regno' can be -1, meaning that an unknown value is being written to
2925 * the stack.
2926 *
2927 * Spilled pointers in range are not marked as written because we don't know
2928 * what's going to be actually written. This means that read propagation for
2929 * future reads cannot be terminated by this write.
2930 *
2931 * For privileged programs, uninitialized stack slots are considered
2932 * initialized by this write (even though we don't know exactly what offsets
2933 * are going to be written to). The idea is that we don't want the verifier to
2934 * reject future reads that access slots written to through variable offsets.
2935 */
2936static int check_stack_write_var_off(struct bpf_verifier_env *env,
2937 /* func where register points to */
2938 struct bpf_func_state *state,
2939 int ptr_regno, int off, int size,
2940 int value_regno, int insn_idx)
2941{
2942 struct bpf_func_state *cur; /* state of the current function */
2943 int min_off, max_off;
2944 int i, err;
2945 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2946 bool writing_zero = false;
2947 /* set if the fact that we're writing a zero is used to let any
2948 * stack slots remain STACK_ZERO
2949 */
2950 bool zero_used = false;
2951
2952 cur = env->cur_state->frame[env->cur_state->curframe];
2953 ptr_reg = &cur->regs[ptr_regno];
2954 min_off = ptr_reg->smin_value + off;
2955 max_off = ptr_reg->smax_value + off + size;
2956 if (value_regno >= 0)
2957 value_reg = &cur->regs[value_regno];
2958 if (value_reg && register_is_null(value_reg))
2959 writing_zero = true;
2960
c69431aa 2961 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
2962 if (err)
2963 return err;
2964
2965
2966 /* Variable offset writes destroy any spilled pointers in range. */
2967 for (i = min_off; i < max_off; i++) {
2968 u8 new_type, *stype;
2969 int slot, spi;
2970
2971 slot = -i - 1;
2972 spi = slot / BPF_REG_SIZE;
2973 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2974
2975 if (!env->allow_ptr_leaks
2976 && *stype != NOT_INIT
2977 && *stype != SCALAR_VALUE) {
2978 /* Reject the write if there's are spilled pointers in
2979 * range. If we didn't reject here, the ptr status
2980 * would be erased below (even though not all slots are
2981 * actually overwritten), possibly opening the door to
2982 * leaks.
2983 */
2984 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2985 insn_idx, i);
2986 return -EINVAL;
2987 }
2988
2989 /* Erase all spilled pointers. */
2990 state->stack[spi].spilled_ptr.type = NOT_INIT;
2991
2992 /* Update the slot type. */
2993 new_type = STACK_MISC;
2994 if (writing_zero && *stype == STACK_ZERO) {
2995 new_type = STACK_ZERO;
2996 zero_used = true;
2997 }
2998 /* If the slot is STACK_INVALID, we check whether it's OK to
2999 * pretend that it will be initialized by this write. The slot
3000 * might not actually be written to, and so if we mark it as
3001 * initialized future reads might leak uninitialized memory.
3002 * For privileged programs, we will accept such reads to slots
3003 * that may or may not be written because, if we're reject
3004 * them, the error would be too confusing.
3005 */
3006 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3007 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3008 insn_idx, i);
3009 return -EINVAL;
3010 }
3011 *stype = new_type;
3012 }
3013 if (zero_used) {
3014 /* backtracking doesn't work for STACK_ZERO yet. */
3015 err = mark_chain_precision(env, value_regno);
3016 if (err)
3017 return err;
3018 }
3019 return 0;
3020}
3021
3022/* When register 'dst_regno' is assigned some values from stack[min_off,
3023 * max_off), we set the register's type according to the types of the
3024 * respective stack slots. If all the stack values are known to be zeros, then
3025 * so is the destination reg. Otherwise, the register is considered to be
3026 * SCALAR. This function does not deal with register filling; the caller must
3027 * ensure that all spilled registers in the stack range have been marked as
3028 * read.
3029 */
3030static void mark_reg_stack_read(struct bpf_verifier_env *env,
3031 /* func where src register points to */
3032 struct bpf_func_state *ptr_state,
3033 int min_off, int max_off, int dst_regno)
3034{
3035 struct bpf_verifier_state *vstate = env->cur_state;
3036 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3037 int i, slot, spi;
3038 u8 *stype;
3039 int zeros = 0;
3040
3041 for (i = min_off; i < max_off; i++) {
3042 slot = -i - 1;
3043 spi = slot / BPF_REG_SIZE;
3044 stype = ptr_state->stack[spi].slot_type;
3045 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3046 break;
3047 zeros++;
3048 }
3049 if (zeros == max_off - min_off) {
3050 /* any access_size read into register is zero extended,
3051 * so the whole register == const_zero
3052 */
3053 __mark_reg_const_zero(&state->regs[dst_regno]);
3054 /* backtracking doesn't support STACK_ZERO yet,
3055 * so mark it precise here, so that later
3056 * backtracking can stop here.
3057 * Backtracking may not need this if this register
3058 * doesn't participate in pointer adjustment.
3059 * Forward propagation of precise flag is not
3060 * necessary either. This mark is only to stop
3061 * backtracking. Any register that contributed
3062 * to const 0 was marked precise before spill.
3063 */
3064 state->regs[dst_regno].precise = true;
3065 } else {
3066 /* have read misc data from the stack */
3067 mark_reg_unknown(env, state->regs, dst_regno);
3068 }
3069 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3070}
3071
3072/* Read the stack at 'off' and put the results into the register indicated by
3073 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3074 * spilled reg.
3075 *
3076 * 'dst_regno' can be -1, meaning that the read value is not going to a
3077 * register.
3078 *
3079 * The access is assumed to be within the current stack bounds.
3080 */
3081static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3082 /* func where src register points to */
3083 struct bpf_func_state *reg_state,
3084 int off, int size, int dst_regno)
17a52670 3085{
f4d7e40a
AS
3086 struct bpf_verifier_state *vstate = env->cur_state;
3087 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3088 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3089 struct bpf_reg_state *reg;
354e8f19 3090 u8 *stype, type;
17a52670 3091
f4d7e40a 3092 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3093 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3094
27113c59 3095 if (is_spilled_reg(&reg_state->stack[spi])) {
9c399760 3096 if (size != BPF_REG_SIZE) {
354e8f19
MKL
3097 u8 scalar_size = 0;
3098
f7cf25b2
AS
3099 if (reg->type != SCALAR_VALUE) {
3100 verbose_linfo(env, env->insn_idx, "; ");
3101 verbose(env, "invalid size of register fill\n");
3102 return -EACCES;
3103 }
354e8f19
MKL
3104
3105 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3106 if (dst_regno < 0)
3107 return 0;
3108
3109 for (i = BPF_REG_SIZE; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3110 scalar_size++;
3111
3112 if (!(off % BPF_REG_SIZE) && size == scalar_size) {
3113 /* The earlier check_reg_arg() has decided the
3114 * subreg_def for this insn. Save it first.
3115 */
3116 s32 subreg_def = state->regs[dst_regno].subreg_def;
3117
3118 state->regs[dst_regno] = *reg;
3119 state->regs[dst_regno].subreg_def = subreg_def;
3120 } else {
3121 for (i = 0; i < size; i++) {
3122 type = stype[(slot - i) % BPF_REG_SIZE];
3123 if (type == STACK_SPILL)
3124 continue;
3125 if (type == STACK_MISC)
3126 continue;
3127 verbose(env, "invalid read from stack off %d+%d size %d\n",
3128 off, i, size);
3129 return -EACCES;
3130 }
01f810ac 3131 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3132 }
354e8f19 3133 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3134 return 0;
17a52670 3135 }
9c399760 3136 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 3137 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 3138 verbose(env, "corrupted spill memory\n");
17a52670
AS
3139 return -EACCES;
3140 }
3141 }
3142
01f810ac 3143 if (dst_regno >= 0) {
17a52670 3144 /* restore register state from stack */
01f810ac 3145 state->regs[dst_regno] = *reg;
2f18f62e
AS
3146 /* mark reg as written since spilled pointer state likely
3147 * has its liveness marks cleared by is_state_visited()
3148 * which resets stack/reg liveness for state transitions
3149 */
01f810ac 3150 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3151 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3152 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3153 * it is acceptable to use this value as a SCALAR_VALUE
3154 * (e.g. for XADD).
3155 * We must not allow unprivileged callers to do that
3156 * with spilled pointers.
3157 */
3158 verbose(env, "leaking pointer from stack off %d\n",
3159 off);
3160 return -EACCES;
dc503a8a 3161 }
f7cf25b2 3162 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3163 } else {
3164 for (i = 0; i < size; i++) {
01f810ac
AM
3165 type = stype[(slot - i) % BPF_REG_SIZE];
3166 if (type == STACK_MISC)
cc2b14d5 3167 continue;
01f810ac 3168 if (type == STACK_ZERO)
cc2b14d5 3169 continue;
cc2b14d5
AS
3170 verbose(env, "invalid read from stack off %d+%d size %d\n",
3171 off, i, size);
3172 return -EACCES;
3173 }
f7cf25b2 3174 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3175 if (dst_regno >= 0)
3176 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3177 }
f7cf25b2 3178 return 0;
17a52670
AS
3179}
3180
01f810ac
AM
3181enum stack_access_src {
3182 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3183 ACCESS_HELPER = 2, /* the access is performed by a helper */
3184};
3185
3186static int check_stack_range_initialized(struct bpf_verifier_env *env,
3187 int regno, int off, int access_size,
3188 bool zero_size_allowed,
3189 enum stack_access_src type,
3190 struct bpf_call_arg_meta *meta);
3191
3192static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3193{
3194 return cur_regs(env) + regno;
3195}
3196
3197/* Read the stack at 'ptr_regno + off' and put the result into the register
3198 * 'dst_regno'.
3199 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3200 * but not its variable offset.
3201 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3202 *
3203 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3204 * filling registers (i.e. reads of spilled register cannot be detected when
3205 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3206 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3207 * offset; for a fixed offset check_stack_read_fixed_off should be used
3208 * instead.
3209 */
3210static int check_stack_read_var_off(struct bpf_verifier_env *env,
3211 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3212{
01f810ac
AM
3213 /* The state of the source register. */
3214 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3215 struct bpf_func_state *ptr_state = func(env, reg);
3216 int err;
3217 int min_off, max_off;
3218
3219 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3220 */
01f810ac
AM
3221 err = check_stack_range_initialized(env, ptr_regno, off, size,
3222 false, ACCESS_DIRECT, NULL);
3223 if (err)
3224 return err;
3225
3226 min_off = reg->smin_value + off;
3227 max_off = reg->smax_value + off;
3228 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3229 return 0;
3230}
3231
3232/* check_stack_read dispatches to check_stack_read_fixed_off or
3233 * check_stack_read_var_off.
3234 *
3235 * The caller must ensure that the offset falls within the allocated stack
3236 * bounds.
3237 *
3238 * 'dst_regno' is a register which will receive the value from the stack. It
3239 * can be -1, meaning that the read value is not going to a register.
3240 */
3241static int check_stack_read(struct bpf_verifier_env *env,
3242 int ptr_regno, int off, int size,
3243 int dst_regno)
3244{
3245 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3246 struct bpf_func_state *state = func(env, reg);
3247 int err;
3248 /* Some accesses are only permitted with a static offset. */
3249 bool var_off = !tnum_is_const(reg->var_off);
3250
3251 /* The offset is required to be static when reads don't go to a
3252 * register, in order to not leak pointers (see
3253 * check_stack_read_fixed_off).
3254 */
3255 if (dst_regno < 0 && var_off) {
e4298d25
DB
3256 char tn_buf[48];
3257
3258 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3259 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3260 tn_buf, off, size);
3261 return -EACCES;
3262 }
01f810ac
AM
3263 /* Variable offset is prohibited for unprivileged mode for simplicity
3264 * since it requires corresponding support in Spectre masking for stack
3265 * ALU. See also retrieve_ptr_limit().
3266 */
3267 if (!env->bypass_spec_v1 && var_off) {
3268 char tn_buf[48];
e4298d25 3269
01f810ac
AM
3270 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3271 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3272 ptr_regno, tn_buf);
e4298d25
DB
3273 return -EACCES;
3274 }
3275
01f810ac
AM
3276 if (!var_off) {
3277 off += reg->var_off.value;
3278 err = check_stack_read_fixed_off(env, state, off, size,
3279 dst_regno);
3280 } else {
3281 /* Variable offset stack reads need more conservative handling
3282 * than fixed offset ones. Note that dst_regno >= 0 on this
3283 * branch.
3284 */
3285 err = check_stack_read_var_off(env, ptr_regno, off, size,
3286 dst_regno);
3287 }
3288 return err;
3289}
3290
3291
3292/* check_stack_write dispatches to check_stack_write_fixed_off or
3293 * check_stack_write_var_off.
3294 *
3295 * 'ptr_regno' is the register used as a pointer into the stack.
3296 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3297 * 'value_regno' is the register whose value we're writing to the stack. It can
3298 * be -1, meaning that we're not writing from a register.
3299 *
3300 * The caller must ensure that the offset falls within the maximum stack size.
3301 */
3302static int check_stack_write(struct bpf_verifier_env *env,
3303 int ptr_regno, int off, int size,
3304 int value_regno, int insn_idx)
3305{
3306 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3307 struct bpf_func_state *state = func(env, reg);
3308 int err;
3309
3310 if (tnum_is_const(reg->var_off)) {
3311 off += reg->var_off.value;
3312 err = check_stack_write_fixed_off(env, state, off, size,
3313 value_regno, insn_idx);
3314 } else {
3315 /* Variable offset stack reads need more conservative handling
3316 * than fixed offset ones.
3317 */
3318 err = check_stack_write_var_off(env, state,
3319 ptr_regno, off, size,
3320 value_regno, insn_idx);
3321 }
3322 return err;
e4298d25
DB
3323}
3324
591fe988
DB
3325static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3326 int off, int size, enum bpf_access_type type)
3327{
3328 struct bpf_reg_state *regs = cur_regs(env);
3329 struct bpf_map *map = regs[regno].map_ptr;
3330 u32 cap = bpf_map_flags_to_cap(map);
3331
3332 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3333 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3334 map->value_size, off, size);
3335 return -EACCES;
3336 }
3337
3338 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3339 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3340 map->value_size, off, size);
3341 return -EACCES;
3342 }
3343
3344 return 0;
3345}
3346
457f4436
AN
3347/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3348static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3349 int off, int size, u32 mem_size,
3350 bool zero_size_allowed)
17a52670 3351{
457f4436
AN
3352 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3353 struct bpf_reg_state *reg;
3354
3355 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3356 return 0;
17a52670 3357
457f4436
AN
3358 reg = &cur_regs(env)[regno];
3359 switch (reg->type) {
69c087ba
YS
3360 case PTR_TO_MAP_KEY:
3361 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3362 mem_size, off, size);
3363 break;
457f4436 3364 case PTR_TO_MAP_VALUE:
61bd5218 3365 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3366 mem_size, off, size);
3367 break;
3368 case PTR_TO_PACKET:
3369 case PTR_TO_PACKET_META:
3370 case PTR_TO_PACKET_END:
3371 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3372 off, size, regno, reg->id, off, mem_size);
3373 break;
3374 case PTR_TO_MEM:
3375 default:
3376 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3377 mem_size, off, size);
17a52670 3378 }
457f4436
AN
3379
3380 return -EACCES;
17a52670
AS
3381}
3382
457f4436
AN
3383/* check read/write into a memory region with possible variable offset */
3384static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3385 int off, int size, u32 mem_size,
3386 bool zero_size_allowed)
dbcfe5f7 3387{
f4d7e40a
AS
3388 struct bpf_verifier_state *vstate = env->cur_state;
3389 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3390 struct bpf_reg_state *reg = &state->regs[regno];
3391 int err;
3392
457f4436 3393 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3394 * need to try adding each of min_value and max_value to off
3395 * to make sure our theoretical access will be safe.
dbcfe5f7 3396 */
06ee7115 3397 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 3398 print_verifier_state(env, state);
b7137c4e 3399
dbcfe5f7
GB
3400 /* The minimum value is only important with signed
3401 * comparisons where we can't assume the floor of a
3402 * value is 0. If we are using signed variables for our
3403 * index'es we need to make sure that whatever we use
3404 * will have a set floor within our range.
3405 */
b7137c4e
DB
3406 if (reg->smin_value < 0 &&
3407 (reg->smin_value == S64_MIN ||
3408 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3409 reg->smin_value + off < 0)) {
61bd5218 3410 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3411 regno);
3412 return -EACCES;
3413 }
457f4436
AN
3414 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3415 mem_size, zero_size_allowed);
dbcfe5f7 3416 if (err) {
457f4436 3417 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3418 regno);
dbcfe5f7
GB
3419 return err;
3420 }
3421
b03c9f9f
EC
3422 /* If we haven't set a max value then we need to bail since we can't be
3423 * sure we won't do bad things.
3424 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3425 */
b03c9f9f 3426 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3427 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3428 regno);
3429 return -EACCES;
3430 }
457f4436
AN
3431 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3432 mem_size, zero_size_allowed);
3433 if (err) {
3434 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3435 regno);
457f4436
AN
3436 return err;
3437 }
3438
3439 return 0;
3440}
d83525ca 3441
457f4436
AN
3442/* check read/write into a map element with possible variable offset */
3443static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3444 int off, int size, bool zero_size_allowed)
3445{
3446 struct bpf_verifier_state *vstate = env->cur_state;
3447 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3448 struct bpf_reg_state *reg = &state->regs[regno];
3449 struct bpf_map *map = reg->map_ptr;
3450 int err;
3451
3452 err = check_mem_region_access(env, regno, off, size, map->value_size,
3453 zero_size_allowed);
3454 if (err)
3455 return err;
3456
3457 if (map_value_has_spin_lock(map)) {
3458 u32 lock = map->spin_lock_off;
d83525ca
AS
3459
3460 /* if any part of struct bpf_spin_lock can be touched by
3461 * load/store reject this program.
3462 * To check that [x1, x2) overlaps with [y1, y2)
3463 * it is sufficient to check x1 < y2 && y1 < x2.
3464 */
3465 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3466 lock < reg->umax_value + off + size) {
3467 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3468 return -EACCES;
3469 }
3470 }
68134668
AS
3471 if (map_value_has_timer(map)) {
3472 u32 t = map->timer_off;
3473
3474 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3475 t < reg->umax_value + off + size) {
3476 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3477 return -EACCES;
3478 }
3479 }
f1174f77 3480 return err;
dbcfe5f7
GB
3481}
3482
969bf05e
AS
3483#define MAX_PACKET_OFF 0xffff
3484
7e40781c
UP
3485static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3486{
3aac1ead 3487 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3488}
3489
58e2af8b 3490static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3491 const struct bpf_call_arg_meta *meta,
3492 enum bpf_access_type t)
4acf6c0b 3493{
7e40781c
UP
3494 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3495
3496 switch (prog_type) {
5d66fa7d 3497 /* Program types only with direct read access go here! */
3a0af8fd
TG
3498 case BPF_PROG_TYPE_LWT_IN:
3499 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3500 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3501 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3502 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3503 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3504 if (t == BPF_WRITE)
3505 return false;
8731745e 3506 fallthrough;
5d66fa7d
DB
3507
3508 /* Program types with direct read + write access go here! */
36bbef52
DB
3509 case BPF_PROG_TYPE_SCHED_CLS:
3510 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3511 case BPF_PROG_TYPE_XDP:
3a0af8fd 3512 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3513 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3514 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3515 if (meta)
3516 return meta->pkt_access;
3517
3518 env->seen_direct_write = true;
4acf6c0b 3519 return true;
0d01da6a
SF
3520
3521 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3522 if (t == BPF_WRITE)
3523 env->seen_direct_write = true;
3524
3525 return true;
3526
4acf6c0b
BB
3527 default:
3528 return false;
3529 }
3530}
3531
f1174f77 3532static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3533 int size, bool zero_size_allowed)
f1174f77 3534{
638f5b90 3535 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3536 struct bpf_reg_state *reg = &regs[regno];
3537 int err;
3538
3539 /* We may have added a variable offset to the packet pointer; but any
3540 * reg->range we have comes after that. We are only checking the fixed
3541 * offset.
3542 */
3543
3544 /* We don't allow negative numbers, because we aren't tracking enough
3545 * detail to prove they're safe.
3546 */
b03c9f9f 3547 if (reg->smin_value < 0) {
61bd5218 3548 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3549 regno);
3550 return -EACCES;
3551 }
6d94e741
AS
3552
3553 err = reg->range < 0 ? -EINVAL :
3554 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3555 zero_size_allowed);
f1174f77 3556 if (err) {
61bd5218 3557 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3558 return err;
3559 }
e647815a 3560
457f4436 3561 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3562 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3563 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3564 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3565 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3566 */
3567 env->prog->aux->max_pkt_offset =
3568 max_t(u32, env->prog->aux->max_pkt_offset,
3569 off + reg->umax_value + size - 1);
3570
f1174f77
EC
3571 return err;
3572}
3573
3574/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3575static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3576 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3577 struct btf **btf, u32 *btf_id)
17a52670 3578{
f96da094
DB
3579 struct bpf_insn_access_aux info = {
3580 .reg_type = *reg_type,
9e15db66 3581 .log = &env->log,
f96da094 3582 };
31fd8581 3583
4f9218aa 3584 if (env->ops->is_valid_access &&
5e43f899 3585 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3586 /* A non zero info.ctx_field_size indicates that this field is a
3587 * candidate for later verifier transformation to load the whole
3588 * field and then apply a mask when accessed with a narrower
3589 * access than actual ctx access size. A zero info.ctx_field_size
3590 * will only allow for whole field access and rejects any other
3591 * type of narrower access.
31fd8581 3592 */
23994631 3593 *reg_type = info.reg_type;
31fd8581 3594
22dc4a0f
AN
3595 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3596 *btf = info.btf;
9e15db66 3597 *btf_id = info.btf_id;
22dc4a0f 3598 } else {
9e15db66 3599 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3600 }
32bbe007
AS
3601 /* remember the offset of last byte accessed in ctx */
3602 if (env->prog->aux->max_ctx_offset < off + size)
3603 env->prog->aux->max_ctx_offset = off + size;
17a52670 3604 return 0;
32bbe007 3605 }
17a52670 3606
61bd5218 3607 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3608 return -EACCES;
3609}
3610
d58e468b
PP
3611static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3612 int size)
3613{
3614 if (size < 0 || off < 0 ||
3615 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3616 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3617 off, size);
3618 return -EACCES;
3619 }
3620 return 0;
3621}
3622
5f456649
MKL
3623static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3624 u32 regno, int off, int size,
3625 enum bpf_access_type t)
c64b7983
JS
3626{
3627 struct bpf_reg_state *regs = cur_regs(env);
3628 struct bpf_reg_state *reg = &regs[regno];
5f456649 3629 struct bpf_insn_access_aux info = {};
46f8bc92 3630 bool valid;
c64b7983
JS
3631
3632 if (reg->smin_value < 0) {
3633 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3634 regno);
3635 return -EACCES;
3636 }
3637
46f8bc92
MKL
3638 switch (reg->type) {
3639 case PTR_TO_SOCK_COMMON:
3640 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3641 break;
3642 case PTR_TO_SOCKET:
3643 valid = bpf_sock_is_valid_access(off, size, t, &info);
3644 break;
655a51e5
MKL
3645 case PTR_TO_TCP_SOCK:
3646 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3647 break;
fada7fdc
JL
3648 case PTR_TO_XDP_SOCK:
3649 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3650 break;
46f8bc92
MKL
3651 default:
3652 valid = false;
c64b7983
JS
3653 }
3654
5f456649 3655
46f8bc92
MKL
3656 if (valid) {
3657 env->insn_aux_data[insn_idx].ctx_field_size =
3658 info.ctx_field_size;
3659 return 0;
3660 }
3661
3662 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3663 regno, reg_type_str[reg->type], off, size);
3664
3665 return -EACCES;
c64b7983
JS
3666}
3667
4cabc5b1
DB
3668static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3669{
2a159c6f 3670 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3671}
3672
f37a8cb8
DB
3673static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3674{
2a159c6f 3675 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3676
46f8bc92
MKL
3677 return reg->type == PTR_TO_CTX;
3678}
3679
3680static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3681{
3682 const struct bpf_reg_state *reg = reg_state(env, regno);
3683
3684 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3685}
3686
ca369602
DB
3687static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3688{
2a159c6f 3689 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3690
3691 return type_is_pkt_pointer(reg->type);
3692}
3693
4b5defde
DB
3694static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3695{
3696 const struct bpf_reg_state *reg = reg_state(env, regno);
3697
3698 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3699 return reg->type == PTR_TO_FLOW_KEYS;
3700}
3701
61bd5218
JK
3702static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3703 const struct bpf_reg_state *reg,
d1174416 3704 int off, int size, bool strict)
969bf05e 3705{
f1174f77 3706 struct tnum reg_off;
e07b98d9 3707 int ip_align;
d1174416
DM
3708
3709 /* Byte size accesses are always allowed. */
3710 if (!strict || size == 1)
3711 return 0;
3712
e4eda884
DM
3713 /* For platforms that do not have a Kconfig enabling
3714 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3715 * NET_IP_ALIGN is universally set to '2'. And on platforms
3716 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3717 * to this code only in strict mode where we want to emulate
3718 * the NET_IP_ALIGN==2 checking. Therefore use an
3719 * unconditional IP align value of '2'.
e07b98d9 3720 */
e4eda884 3721 ip_align = 2;
f1174f77
EC
3722
3723 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3724 if (!tnum_is_aligned(reg_off, size)) {
3725 char tn_buf[48];
3726
3727 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3728 verbose(env,
3729 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3730 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3731 return -EACCES;
3732 }
79adffcd 3733
969bf05e
AS
3734 return 0;
3735}
3736
61bd5218
JK
3737static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3738 const struct bpf_reg_state *reg,
f1174f77
EC
3739 const char *pointer_desc,
3740 int off, int size, bool strict)
79adffcd 3741{
f1174f77
EC
3742 struct tnum reg_off;
3743
3744 /* Byte size accesses are always allowed. */
3745 if (!strict || size == 1)
3746 return 0;
3747
3748 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3749 if (!tnum_is_aligned(reg_off, size)) {
3750 char tn_buf[48];
3751
3752 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3753 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3754 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3755 return -EACCES;
3756 }
3757
969bf05e
AS
3758 return 0;
3759}
3760
e07b98d9 3761static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3762 const struct bpf_reg_state *reg, int off,
3763 int size, bool strict_alignment_once)
79adffcd 3764{
ca369602 3765 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3766 const char *pointer_desc = "";
d1174416 3767
79adffcd
DB
3768 switch (reg->type) {
3769 case PTR_TO_PACKET:
de8f3a83
DB
3770 case PTR_TO_PACKET_META:
3771 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3772 * right in front, treat it the very same way.
3773 */
61bd5218 3774 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3775 case PTR_TO_FLOW_KEYS:
3776 pointer_desc = "flow keys ";
3777 break;
69c087ba
YS
3778 case PTR_TO_MAP_KEY:
3779 pointer_desc = "key ";
3780 break;
f1174f77
EC
3781 case PTR_TO_MAP_VALUE:
3782 pointer_desc = "value ";
3783 break;
3784 case PTR_TO_CTX:
3785 pointer_desc = "context ";
3786 break;
3787 case PTR_TO_STACK:
3788 pointer_desc = "stack ";
01f810ac
AM
3789 /* The stack spill tracking logic in check_stack_write_fixed_off()
3790 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3791 * aligned.
3792 */
3793 strict = true;
f1174f77 3794 break;
c64b7983
JS
3795 case PTR_TO_SOCKET:
3796 pointer_desc = "sock ";
3797 break;
46f8bc92
MKL
3798 case PTR_TO_SOCK_COMMON:
3799 pointer_desc = "sock_common ";
3800 break;
655a51e5
MKL
3801 case PTR_TO_TCP_SOCK:
3802 pointer_desc = "tcp_sock ";
3803 break;
fada7fdc
JL
3804 case PTR_TO_XDP_SOCK:
3805 pointer_desc = "xdp_sock ";
3806 break;
79adffcd 3807 default:
f1174f77 3808 break;
79adffcd 3809 }
61bd5218
JK
3810 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3811 strict);
79adffcd
DB
3812}
3813
f4d7e40a
AS
3814static int update_stack_depth(struct bpf_verifier_env *env,
3815 const struct bpf_func_state *func,
3816 int off)
3817{
9c8105bd 3818 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3819
3820 if (stack >= -off)
3821 return 0;
3822
3823 /* update known max for given subprogram */
9c8105bd 3824 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3825 return 0;
3826}
f4d7e40a 3827
70a87ffe
AS
3828/* starting from main bpf function walk all instructions of the function
3829 * and recursively walk all callees that given function can call.
3830 * Ignore jump and exit insns.
3831 * Since recursion is prevented by check_cfg() this algorithm
3832 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3833 */
3834static int check_max_stack_depth(struct bpf_verifier_env *env)
3835{
9c8105bd
JW
3836 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3837 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3838 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3839 bool tail_call_reachable = false;
70a87ffe
AS
3840 int ret_insn[MAX_CALL_FRAMES];
3841 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3842 int j;
f4d7e40a 3843
70a87ffe 3844process_func:
7f6e4312
MF
3845 /* protect against potential stack overflow that might happen when
3846 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3847 * depth for such case down to 256 so that the worst case scenario
3848 * would result in 8k stack size (32 which is tailcall limit * 256 =
3849 * 8k).
3850 *
3851 * To get the idea what might happen, see an example:
3852 * func1 -> sub rsp, 128
3853 * subfunc1 -> sub rsp, 256
3854 * tailcall1 -> add rsp, 256
3855 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3856 * subfunc2 -> sub rsp, 64
3857 * subfunc22 -> sub rsp, 128
3858 * tailcall2 -> add rsp, 128
3859 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3860 *
3861 * tailcall will unwind the current stack frame but it will not get rid
3862 * of caller's stack as shown on the example above.
3863 */
3864 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3865 verbose(env,
3866 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3867 depth);
3868 return -EACCES;
3869 }
70a87ffe
AS
3870 /* round up to 32-bytes, since this is granularity
3871 * of interpreter stack size
3872 */
9c8105bd 3873 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3874 if (depth > MAX_BPF_STACK) {
f4d7e40a 3875 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3876 frame + 1, depth);
f4d7e40a
AS
3877 return -EACCES;
3878 }
70a87ffe 3879continue_func:
4cb3d99c 3880 subprog_end = subprog[idx + 1].start;
70a87ffe 3881 for (; i < subprog_end; i++) {
7ddc80a4
AS
3882 int next_insn;
3883
69c087ba 3884 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3885 continue;
3886 /* remember insn and function to return to */
3887 ret_insn[frame] = i + 1;
9c8105bd 3888 ret_prog[frame] = idx;
70a87ffe
AS
3889
3890 /* find the callee */
7ddc80a4
AS
3891 next_insn = i + insn[i].imm + 1;
3892 idx = find_subprog(env, next_insn);
9c8105bd 3893 if (idx < 0) {
70a87ffe 3894 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 3895 next_insn);
70a87ffe
AS
3896 return -EFAULT;
3897 }
7ddc80a4
AS
3898 if (subprog[idx].is_async_cb) {
3899 if (subprog[idx].has_tail_call) {
3900 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3901 return -EFAULT;
3902 }
3903 /* async callbacks don't increase bpf prog stack size */
3904 continue;
3905 }
3906 i = next_insn;
ebf7d1f5
MF
3907
3908 if (subprog[idx].has_tail_call)
3909 tail_call_reachable = true;
3910
70a87ffe
AS
3911 frame++;
3912 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3913 verbose(env, "the call stack of %d frames is too deep !\n",
3914 frame);
3915 return -E2BIG;
70a87ffe
AS
3916 }
3917 goto process_func;
3918 }
ebf7d1f5
MF
3919 /* if tail call got detected across bpf2bpf calls then mark each of the
3920 * currently present subprog frames as tail call reachable subprogs;
3921 * this info will be utilized by JIT so that we will be preserving the
3922 * tail call counter throughout bpf2bpf calls combined with tailcalls
3923 */
3924 if (tail_call_reachable)
3925 for (j = 0; j < frame; j++)
3926 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
3927 if (subprog[0].tail_call_reachable)
3928 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 3929
70a87ffe
AS
3930 /* end of for() loop means the last insn of the 'subprog'
3931 * was reached. Doesn't matter whether it was JA or EXIT
3932 */
3933 if (frame == 0)
3934 return 0;
9c8105bd 3935 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3936 frame--;
3937 i = ret_insn[frame];
9c8105bd 3938 idx = ret_prog[frame];
70a87ffe 3939 goto continue_func;
f4d7e40a
AS
3940}
3941
19d28fbd 3942#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3943static int get_callee_stack_depth(struct bpf_verifier_env *env,
3944 const struct bpf_insn *insn, int idx)
3945{
3946 int start = idx + insn->imm + 1, subprog;
3947
3948 subprog = find_subprog(env, start);
3949 if (subprog < 0) {
3950 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3951 start);
3952 return -EFAULT;
3953 }
9c8105bd 3954 return env->subprog_info[subprog].stack_depth;
1ea47e01 3955}
19d28fbd 3956#endif
1ea47e01 3957
51c39bb1
AS
3958int check_ctx_reg(struct bpf_verifier_env *env,
3959 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3960{
3961 /* Access to ctx or passing it to a helper is only allowed in
3962 * its original, unmodified form.
3963 */
3964
3965 if (reg->off) {
3966 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3967 regno, reg->off);
3968 return -EACCES;
3969 }
3970
3971 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3972 char tn_buf[48];
3973
3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3976 return -EACCES;
3977 }
3978
3979 return 0;
3980}
3981
afbf21dc
YS
3982static int __check_buffer_access(struct bpf_verifier_env *env,
3983 const char *buf_info,
3984 const struct bpf_reg_state *reg,
3985 int regno, int off, int size)
9df1c28b
MM
3986{
3987 if (off < 0) {
3988 verbose(env,
4fc00b79 3989 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3990 regno, buf_info, off, size);
9df1c28b
MM
3991 return -EACCES;
3992 }
3993 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3994 char tn_buf[48];
3995
3996 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3997 verbose(env,
4fc00b79 3998 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3999 regno, off, tn_buf);
4000 return -EACCES;
4001 }
afbf21dc
YS
4002
4003 return 0;
4004}
4005
4006static int check_tp_buffer_access(struct bpf_verifier_env *env,
4007 const struct bpf_reg_state *reg,
4008 int regno, int off, int size)
4009{
4010 int err;
4011
4012 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4013 if (err)
4014 return err;
4015
9df1c28b
MM
4016 if (off + size > env->prog->aux->max_tp_access)
4017 env->prog->aux->max_tp_access = off + size;
4018
4019 return 0;
4020}
4021
afbf21dc
YS
4022static int check_buffer_access(struct bpf_verifier_env *env,
4023 const struct bpf_reg_state *reg,
4024 int regno, int off, int size,
4025 bool zero_size_allowed,
4026 const char *buf_info,
4027 u32 *max_access)
4028{
4029 int err;
4030
4031 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4032 if (err)
4033 return err;
4034
4035 if (off + size > *max_access)
4036 *max_access = off + size;
4037
4038 return 0;
4039}
4040
3f50f132
JF
4041/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4042static void zext_32_to_64(struct bpf_reg_state *reg)
4043{
4044 reg->var_off = tnum_subreg(reg->var_off);
4045 __reg_assign_32_into_64(reg);
4046}
9df1c28b 4047
0c17d1d2
JH
4048/* truncate register to smaller size (in bytes)
4049 * must be called with size < BPF_REG_SIZE
4050 */
4051static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4052{
4053 u64 mask;
4054
4055 /* clear high bits in bit representation */
4056 reg->var_off = tnum_cast(reg->var_off, size);
4057
4058 /* fix arithmetic bounds */
4059 mask = ((u64)1 << (size * 8)) - 1;
4060 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4061 reg->umin_value &= mask;
4062 reg->umax_value &= mask;
4063 } else {
4064 reg->umin_value = 0;
4065 reg->umax_value = mask;
4066 }
4067 reg->smin_value = reg->umin_value;
4068 reg->smax_value = reg->umax_value;
3f50f132
JF
4069
4070 /* If size is smaller than 32bit register the 32bit register
4071 * values are also truncated so we push 64-bit bounds into
4072 * 32-bit bounds. Above were truncated < 32-bits already.
4073 */
4074 if (size >= 4)
4075 return;
4076 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4077}
4078
a23740ec
AN
4079static bool bpf_map_is_rdonly(const struct bpf_map *map)
4080{
4081 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
4082}
4083
4084static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4085{
4086 void *ptr;
4087 u64 addr;
4088 int err;
4089
4090 err = map->ops->map_direct_value_addr(map, &addr, off);
4091 if (err)
4092 return err;
2dedd7d2 4093 ptr = (void *)(long)addr + off;
a23740ec
AN
4094
4095 switch (size) {
4096 case sizeof(u8):
4097 *val = (u64)*(u8 *)ptr;
4098 break;
4099 case sizeof(u16):
4100 *val = (u64)*(u16 *)ptr;
4101 break;
4102 case sizeof(u32):
4103 *val = (u64)*(u32 *)ptr;
4104 break;
4105 case sizeof(u64):
4106 *val = *(u64 *)ptr;
4107 break;
4108 default:
4109 return -EINVAL;
4110 }
4111 return 0;
4112}
4113
9e15db66
AS
4114static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4115 struct bpf_reg_state *regs,
4116 int regno, int off, int size,
4117 enum bpf_access_type atype,
4118 int value_regno)
4119{
4120 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4121 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4122 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
4123 u32 btf_id;
4124 int ret;
4125
9e15db66
AS
4126 if (off < 0) {
4127 verbose(env,
4128 "R%d is ptr_%s invalid negative access: off=%d\n",
4129 regno, tname, off);
4130 return -EACCES;
4131 }
4132 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4133 char tn_buf[48];
4134
4135 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4136 verbose(env,
4137 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4138 regno, tname, off, tn_buf);
4139 return -EACCES;
4140 }
4141
27ae7997 4142 if (env->ops->btf_struct_access) {
22dc4a0f
AN
4143 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4144 off, size, atype, &btf_id);
27ae7997
MKL
4145 } else {
4146 if (atype != BPF_READ) {
4147 verbose(env, "only read is supported\n");
4148 return -EACCES;
4149 }
4150
22dc4a0f
AN
4151 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4152 atype, &btf_id);
27ae7997
MKL
4153 }
4154
9e15db66
AS
4155 if (ret < 0)
4156 return ret;
4157
41c48f3a 4158 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 4159 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
4160
4161 return 0;
4162}
4163
4164static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4165 struct bpf_reg_state *regs,
4166 int regno, int off, int size,
4167 enum bpf_access_type atype,
4168 int value_regno)
4169{
4170 struct bpf_reg_state *reg = regs + regno;
4171 struct bpf_map *map = reg->map_ptr;
4172 const struct btf_type *t;
4173 const char *tname;
4174 u32 btf_id;
4175 int ret;
4176
4177 if (!btf_vmlinux) {
4178 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4179 return -ENOTSUPP;
4180 }
4181
4182 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4183 verbose(env, "map_ptr access not supported for map type %d\n",
4184 map->map_type);
4185 return -ENOTSUPP;
4186 }
4187
4188 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4189 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4190
4191 if (!env->allow_ptr_to_map_access) {
4192 verbose(env,
4193 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4194 tname);
4195 return -EPERM;
9e15db66 4196 }
27ae7997 4197
41c48f3a
AI
4198 if (off < 0) {
4199 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4200 regno, tname, off);
4201 return -EACCES;
4202 }
4203
4204 if (atype != BPF_READ) {
4205 verbose(env, "only read from %s is supported\n", tname);
4206 return -EACCES;
4207 }
4208
22dc4a0f 4209 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
4210 if (ret < 0)
4211 return ret;
4212
4213 if (value_regno >= 0)
22dc4a0f 4214 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 4215
9e15db66
AS
4216 return 0;
4217}
4218
01f810ac
AM
4219/* Check that the stack access at the given offset is within bounds. The
4220 * maximum valid offset is -1.
4221 *
4222 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4223 * -state->allocated_stack for reads.
4224 */
4225static int check_stack_slot_within_bounds(int off,
4226 struct bpf_func_state *state,
4227 enum bpf_access_type t)
4228{
4229 int min_valid_off;
4230
4231 if (t == BPF_WRITE)
4232 min_valid_off = -MAX_BPF_STACK;
4233 else
4234 min_valid_off = -state->allocated_stack;
4235
4236 if (off < min_valid_off || off > -1)
4237 return -EACCES;
4238 return 0;
4239}
4240
4241/* Check that the stack access at 'regno + off' falls within the maximum stack
4242 * bounds.
4243 *
4244 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4245 */
4246static int check_stack_access_within_bounds(
4247 struct bpf_verifier_env *env,
4248 int regno, int off, int access_size,
4249 enum stack_access_src src, enum bpf_access_type type)
4250{
4251 struct bpf_reg_state *regs = cur_regs(env);
4252 struct bpf_reg_state *reg = regs + regno;
4253 struct bpf_func_state *state = func(env, reg);
4254 int min_off, max_off;
4255 int err;
4256 char *err_extra;
4257
4258 if (src == ACCESS_HELPER)
4259 /* We don't know if helpers are reading or writing (or both). */
4260 err_extra = " indirect access to";
4261 else if (type == BPF_READ)
4262 err_extra = " read from";
4263 else
4264 err_extra = " write to";
4265
4266 if (tnum_is_const(reg->var_off)) {
4267 min_off = reg->var_off.value + off;
4268 if (access_size > 0)
4269 max_off = min_off + access_size - 1;
4270 else
4271 max_off = min_off;
4272 } else {
4273 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4274 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4275 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4276 err_extra, regno);
4277 return -EACCES;
4278 }
4279 min_off = reg->smin_value + off;
4280 if (access_size > 0)
4281 max_off = reg->smax_value + off + access_size - 1;
4282 else
4283 max_off = min_off;
4284 }
4285
4286 err = check_stack_slot_within_bounds(min_off, state, type);
4287 if (!err)
4288 err = check_stack_slot_within_bounds(max_off, state, type);
4289
4290 if (err) {
4291 if (tnum_is_const(reg->var_off)) {
4292 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4293 err_extra, regno, off, access_size);
4294 } else {
4295 char tn_buf[48];
4296
4297 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4298 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4299 err_extra, regno, tn_buf, access_size);
4300 }
4301 }
4302 return err;
4303}
41c48f3a 4304
17a52670
AS
4305/* check whether memory at (regno + off) is accessible for t = (read | write)
4306 * if t==write, value_regno is a register which value is stored into memory
4307 * if t==read, value_regno is a register which will receive the value from memory
4308 * if t==write && value_regno==-1, some unknown value is stored into memory
4309 * if t==read && value_regno==-1, don't care what we read from memory
4310 */
ca369602
DB
4311static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4312 int off, int bpf_size, enum bpf_access_type t,
4313 int value_regno, bool strict_alignment_once)
17a52670 4314{
638f5b90
AS
4315 struct bpf_reg_state *regs = cur_regs(env);
4316 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4317 struct bpf_func_state *state;
17a52670
AS
4318 int size, err = 0;
4319
4320 size = bpf_size_to_bytes(bpf_size);
4321 if (size < 0)
4322 return size;
4323
f1174f77 4324 /* alignment checks will add in reg->off themselves */
ca369602 4325 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4326 if (err)
4327 return err;
17a52670 4328
f1174f77
EC
4329 /* for access checks, reg->off is just part of off */
4330 off += reg->off;
4331
69c087ba
YS
4332 if (reg->type == PTR_TO_MAP_KEY) {
4333 if (t == BPF_WRITE) {
4334 verbose(env, "write to change key R%d not allowed\n", regno);
4335 return -EACCES;
4336 }
4337
4338 err = check_mem_region_access(env, regno, off, size,
4339 reg->map_ptr->key_size, false);
4340 if (err)
4341 return err;
4342 if (value_regno >= 0)
4343 mark_reg_unknown(env, regs, value_regno);
4344 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4345 if (t == BPF_WRITE && value_regno >= 0 &&
4346 is_pointer_value(env, value_regno)) {
61bd5218 4347 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4348 return -EACCES;
4349 }
591fe988
DB
4350 err = check_map_access_type(env, regno, off, size, t);
4351 if (err)
4352 return err;
9fd29c08 4353 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4354 if (!err && t == BPF_READ && value_regno >= 0) {
4355 struct bpf_map *map = reg->map_ptr;
4356
4357 /* if map is read-only, track its contents as scalars */
4358 if (tnum_is_const(reg->var_off) &&
4359 bpf_map_is_rdonly(map) &&
4360 map->ops->map_direct_value_addr) {
4361 int map_off = off + reg->var_off.value;
4362 u64 val = 0;
4363
4364 err = bpf_map_direct_read(map, map_off, size,
4365 &val);
4366 if (err)
4367 return err;
4368
4369 regs[value_regno].type = SCALAR_VALUE;
4370 __mark_reg_known(&regs[value_regno], val);
4371 } else {
4372 mark_reg_unknown(env, regs, value_regno);
4373 }
4374 }
457f4436
AN
4375 } else if (reg->type == PTR_TO_MEM) {
4376 if (t == BPF_WRITE && value_regno >= 0 &&
4377 is_pointer_value(env, value_regno)) {
4378 verbose(env, "R%d leaks addr into mem\n", value_regno);
4379 return -EACCES;
4380 }
4381 err = check_mem_region_access(env, regno, off, size,
4382 reg->mem_size, false);
4383 if (!err && t == BPF_READ && value_regno >= 0)
4384 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4385 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4386 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4387 struct btf *btf = NULL;
9e15db66 4388 u32 btf_id = 0;
19de99f7 4389
1be7f75d
AS
4390 if (t == BPF_WRITE && value_regno >= 0 &&
4391 is_pointer_value(env, value_regno)) {
61bd5218 4392 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4393 return -EACCES;
4394 }
f1174f77 4395
58990d1f
DB
4396 err = check_ctx_reg(env, reg, regno);
4397 if (err < 0)
4398 return err;
4399
22dc4a0f 4400 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4401 if (err)
4402 verbose_linfo(env, insn_idx, "; ");
969bf05e 4403 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4404 /* ctx access returns either a scalar, or a
de8f3a83
DB
4405 * PTR_TO_PACKET[_META,_END]. In the latter
4406 * case, we know the offset is zero.
f1174f77 4407 */
46f8bc92 4408 if (reg_type == SCALAR_VALUE) {
638f5b90 4409 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4410 } else {
638f5b90 4411 mark_reg_known_zero(env, regs,
61bd5218 4412 value_regno);
46f8bc92
MKL
4413 if (reg_type_may_be_null(reg_type))
4414 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4415 /* A load of ctx field could have different
4416 * actual load size with the one encoded in the
4417 * insn. When the dst is PTR, it is for sure not
4418 * a sub-register.
4419 */
4420 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4421 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4422 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4423 regs[value_regno].btf = btf;
9e15db66 4424 regs[value_regno].btf_id = btf_id;
22dc4a0f 4425 }
46f8bc92 4426 }
638f5b90 4427 regs[value_regno].type = reg_type;
969bf05e 4428 }
17a52670 4429
f1174f77 4430 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4431 /* Basic bounds checks. */
4432 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4433 if (err)
4434 return err;
8726679a 4435
f4d7e40a
AS
4436 state = func(env, reg);
4437 err = update_stack_depth(env, state, off);
4438 if (err)
4439 return err;
8726679a 4440
01f810ac
AM
4441 if (t == BPF_READ)
4442 err = check_stack_read(env, regno, off, size,
61bd5218 4443 value_regno);
01f810ac
AM
4444 else
4445 err = check_stack_write(env, regno, off, size,
4446 value_regno, insn_idx);
de8f3a83 4447 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4448 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4449 verbose(env, "cannot write into packet\n");
969bf05e
AS
4450 return -EACCES;
4451 }
4acf6c0b
BB
4452 if (t == BPF_WRITE && value_regno >= 0 &&
4453 is_pointer_value(env, value_regno)) {
61bd5218
JK
4454 verbose(env, "R%d leaks addr into packet\n",
4455 value_regno);
4acf6c0b
BB
4456 return -EACCES;
4457 }
9fd29c08 4458 err = check_packet_access(env, regno, off, size, false);
969bf05e 4459 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4460 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4461 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4462 if (t == BPF_WRITE && value_regno >= 0 &&
4463 is_pointer_value(env, value_regno)) {
4464 verbose(env, "R%d leaks addr into flow keys\n",
4465 value_regno);
4466 return -EACCES;
4467 }
4468
4469 err = check_flow_keys_access(env, off, size);
4470 if (!err && t == BPF_READ && value_regno >= 0)
4471 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4472 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4473 if (t == BPF_WRITE) {
46f8bc92
MKL
4474 verbose(env, "R%d cannot write into %s\n",
4475 regno, reg_type_str[reg->type]);
c64b7983
JS
4476 return -EACCES;
4477 }
5f456649 4478 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4479 if (!err && value_regno >= 0)
4480 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4481 } else if (reg->type == PTR_TO_TP_BUFFER) {
4482 err = check_tp_buffer_access(env, reg, regno, off, size);
4483 if (!err && t == BPF_READ && value_regno >= 0)
4484 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4485 } else if (reg->type == PTR_TO_BTF_ID) {
4486 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4487 value_regno);
41c48f3a
AI
4488 } else if (reg->type == CONST_PTR_TO_MAP) {
4489 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4490 value_regno);
afbf21dc
YS
4491 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4492 if (t == BPF_WRITE) {
4493 verbose(env, "R%d cannot write into %s\n",
4494 regno, reg_type_str[reg->type]);
4495 return -EACCES;
4496 }
f6dfbe31
CIK
4497 err = check_buffer_access(env, reg, regno, off, size, false,
4498 "rdonly",
afbf21dc
YS
4499 &env->prog->aux->max_rdonly_access);
4500 if (!err && value_regno >= 0)
4501 mark_reg_unknown(env, regs, value_regno);
4502 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4503 err = check_buffer_access(env, reg, regno, off, size, false,
4504 "rdwr",
afbf21dc
YS
4505 &env->prog->aux->max_rdwr_access);
4506 if (!err && t == BPF_READ && value_regno >= 0)
4507 mark_reg_unknown(env, regs, value_regno);
17a52670 4508 } else {
61bd5218
JK
4509 verbose(env, "R%d invalid mem access '%s'\n", regno,
4510 reg_type_str[reg->type]);
17a52670
AS
4511 return -EACCES;
4512 }
969bf05e 4513
f1174f77 4514 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4515 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4516 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4517 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4518 }
17a52670
AS
4519 return err;
4520}
4521
91c960b0 4522static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4523{
5ffa2550 4524 int load_reg;
17a52670
AS
4525 int err;
4526
5ca419f2
BJ
4527 switch (insn->imm) {
4528 case BPF_ADD:
4529 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4530 case BPF_AND:
4531 case BPF_AND | BPF_FETCH:
4532 case BPF_OR:
4533 case BPF_OR | BPF_FETCH:
4534 case BPF_XOR:
4535 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4536 case BPF_XCHG:
4537 case BPF_CMPXCHG:
5ca419f2
BJ
4538 break;
4539 default:
91c960b0
BJ
4540 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4541 return -EINVAL;
4542 }
4543
4544 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4545 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4546 return -EINVAL;
4547 }
4548
4549 /* check src1 operand */
dc503a8a 4550 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4551 if (err)
4552 return err;
4553
4554 /* check src2 operand */
dc503a8a 4555 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4556 if (err)
4557 return err;
4558
5ffa2550
BJ
4559 if (insn->imm == BPF_CMPXCHG) {
4560 /* Check comparison of R0 with memory location */
4561 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4562 if (err)
4563 return err;
4564 }
4565
6bdf6abc 4566 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4567 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4568 return -EACCES;
4569 }
4570
ca369602 4571 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4572 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4573 is_flow_key_reg(env, insn->dst_reg) ||
4574 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4575 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4576 insn->dst_reg,
4577 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4578 return -EACCES;
4579 }
4580
37086bfd
BJ
4581 if (insn->imm & BPF_FETCH) {
4582 if (insn->imm == BPF_CMPXCHG)
4583 load_reg = BPF_REG_0;
4584 else
4585 load_reg = insn->src_reg;
4586
4587 /* check and record load of old value */
4588 err = check_reg_arg(env, load_reg, DST_OP);
4589 if (err)
4590 return err;
4591 } else {
4592 /* This instruction accesses a memory location but doesn't
4593 * actually load it into a register.
4594 */
4595 load_reg = -1;
4596 }
4597
91c960b0 4598 /* check whether we can read the memory */
31fd8581 4599 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4600 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4601 if (err)
4602 return err;
4603
91c960b0 4604 /* check whether we can write into the same memory */
5ca419f2
BJ
4605 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4606 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4607 if (err)
4608 return err;
4609
5ca419f2 4610 return 0;
17a52670
AS
4611}
4612
01f810ac
AM
4613/* When register 'regno' is used to read the stack (either directly or through
4614 * a helper function) make sure that it's within stack boundary and, depending
4615 * on the access type, that all elements of the stack are initialized.
4616 *
4617 * 'off' includes 'regno->off', but not its dynamic part (if any).
4618 *
4619 * All registers that have been spilled on the stack in the slots within the
4620 * read offsets are marked as read.
4621 */
4622static int check_stack_range_initialized(
4623 struct bpf_verifier_env *env, int regno, int off,
4624 int access_size, bool zero_size_allowed,
4625 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4626{
4627 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4628 struct bpf_func_state *state = func(env, reg);
4629 int err, min_off, max_off, i, j, slot, spi;
4630 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4631 enum bpf_access_type bounds_check_type;
4632 /* Some accesses can write anything into the stack, others are
4633 * read-only.
4634 */
4635 bool clobber = false;
2011fccf 4636
01f810ac
AM
4637 if (access_size == 0 && !zero_size_allowed) {
4638 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4639 return -EACCES;
4640 }
2011fccf 4641
01f810ac
AM
4642 if (type == ACCESS_HELPER) {
4643 /* The bounds checks for writes are more permissive than for
4644 * reads. However, if raw_mode is not set, we'll do extra
4645 * checks below.
4646 */
4647 bounds_check_type = BPF_WRITE;
4648 clobber = true;
4649 } else {
4650 bounds_check_type = BPF_READ;
4651 }
4652 err = check_stack_access_within_bounds(env, regno, off, access_size,
4653 type, bounds_check_type);
4654 if (err)
4655 return err;
4656
17a52670 4657
2011fccf 4658 if (tnum_is_const(reg->var_off)) {
01f810ac 4659 min_off = max_off = reg->var_off.value + off;
2011fccf 4660 } else {
088ec26d
AI
4661 /* Variable offset is prohibited for unprivileged mode for
4662 * simplicity since it requires corresponding support in
4663 * Spectre masking for stack ALU.
4664 * See also retrieve_ptr_limit().
4665 */
2c78ee89 4666 if (!env->bypass_spec_v1) {
088ec26d 4667 char tn_buf[48];
f1174f77 4668
088ec26d 4669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4670 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4671 regno, err_extra, tn_buf);
088ec26d
AI
4672 return -EACCES;
4673 }
f2bcd05e
AI
4674 /* Only initialized buffer on stack is allowed to be accessed
4675 * with variable offset. With uninitialized buffer it's hard to
4676 * guarantee that whole memory is marked as initialized on
4677 * helper return since specific bounds are unknown what may
4678 * cause uninitialized stack leaking.
4679 */
4680 if (meta && meta->raw_mode)
4681 meta = NULL;
4682
01f810ac
AM
4683 min_off = reg->smin_value + off;
4684 max_off = reg->smax_value + off;
17a52670
AS
4685 }
4686
435faee1
DB
4687 if (meta && meta->raw_mode) {
4688 meta->access_size = access_size;
4689 meta->regno = regno;
4690 return 0;
4691 }
4692
2011fccf 4693 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4694 u8 *stype;
4695
2011fccf 4696 slot = -i - 1;
638f5b90 4697 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4698 if (state->allocated_stack <= slot)
4699 goto err;
4700 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4701 if (*stype == STACK_MISC)
4702 goto mark;
4703 if (*stype == STACK_ZERO) {
01f810ac
AM
4704 if (clobber) {
4705 /* helper can write anything into the stack */
4706 *stype = STACK_MISC;
4707 }
cc2b14d5 4708 goto mark;
17a52670 4709 }
1d68f22b 4710
27113c59 4711 if (is_spilled_reg(&state->stack[spi]) &&
1d68f22b
YS
4712 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4713 goto mark;
4714
27113c59 4715 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
4716 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4717 env->allow_ptr_leaks)) {
01f810ac
AM
4718 if (clobber) {
4719 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4720 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 4721 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 4722 }
f7cf25b2
AS
4723 goto mark;
4724 }
4725
cc2b14d5 4726err:
2011fccf 4727 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4728 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4729 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4730 } else {
4731 char tn_buf[48];
4732
4733 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4734 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4735 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4736 }
cc2b14d5
AS
4737 return -EACCES;
4738mark:
4739 /* reading any byte out of 8-byte 'spill_slot' will cause
4740 * the whole slot to be marked as 'read'
4741 */
679c782d 4742 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4743 state->stack[spi].spilled_ptr.parent,
4744 REG_LIVE_READ64);
17a52670 4745 }
2011fccf 4746 return update_stack_depth(env, state, min_off);
17a52670
AS
4747}
4748
06c1c049
GB
4749static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4750 int access_size, bool zero_size_allowed,
4751 struct bpf_call_arg_meta *meta)
4752{
638f5b90 4753 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4754
f1174f77 4755 switch (reg->type) {
06c1c049 4756 case PTR_TO_PACKET:
de8f3a83 4757 case PTR_TO_PACKET_META:
9fd29c08
YS
4758 return check_packet_access(env, regno, reg->off, access_size,
4759 zero_size_allowed);
69c087ba
YS
4760 case PTR_TO_MAP_KEY:
4761 return check_mem_region_access(env, regno, reg->off, access_size,
4762 reg->map_ptr->key_size, false);
06c1c049 4763 case PTR_TO_MAP_VALUE:
591fe988
DB
4764 if (check_map_access_type(env, regno, reg->off, access_size,
4765 meta && meta->raw_mode ? BPF_WRITE :
4766 BPF_READ))
4767 return -EACCES;
9fd29c08
YS
4768 return check_map_access(env, regno, reg->off, access_size,
4769 zero_size_allowed);
457f4436
AN
4770 case PTR_TO_MEM:
4771 return check_mem_region_access(env, regno, reg->off,
4772 access_size, reg->mem_size,
4773 zero_size_allowed);
afbf21dc
YS
4774 case PTR_TO_RDONLY_BUF:
4775 if (meta && meta->raw_mode)
4776 return -EACCES;
4777 return check_buffer_access(env, reg, regno, reg->off,
4778 access_size, zero_size_allowed,
4779 "rdonly",
4780 &env->prog->aux->max_rdonly_access);
4781 case PTR_TO_RDWR_BUF:
4782 return check_buffer_access(env, reg, regno, reg->off,
4783 access_size, zero_size_allowed,
4784 "rdwr",
4785 &env->prog->aux->max_rdwr_access);
0d004c02 4786 case PTR_TO_STACK:
01f810ac
AM
4787 return check_stack_range_initialized(
4788 env,
4789 regno, reg->off, access_size,
4790 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4791 default: /* scalar_value or invalid ptr */
4792 /* Allow zero-byte read from NULL, regardless of pointer type */
4793 if (zero_size_allowed && access_size == 0 &&
4794 register_is_null(reg))
4795 return 0;
4796
4797 verbose(env, "R%d type=%s expected=%s\n", regno,
4798 reg_type_str[reg->type],
4799 reg_type_str[PTR_TO_STACK]);
4800 return -EACCES;
06c1c049
GB
4801 }
4802}
4803
e5069b9c
DB
4804int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4805 u32 regno, u32 mem_size)
4806{
4807 if (register_is_null(reg))
4808 return 0;
4809
4810 if (reg_type_may_be_null(reg->type)) {
4811 /* Assuming that the register contains a value check if the memory
4812 * access is safe. Temporarily save and restore the register's state as
4813 * the conversion shouldn't be visible to a caller.
4814 */
4815 const struct bpf_reg_state saved_reg = *reg;
4816 int rv;
4817
4818 mark_ptr_not_null_reg(reg);
4819 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4820 *reg = saved_reg;
4821 return rv;
4822 }
4823
4824 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4825}
4826
d83525ca
AS
4827/* Implementation details:
4828 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4829 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4830 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4831 * value_or_null->value transition, since the verifier only cares about
4832 * the range of access to valid map value pointer and doesn't care about actual
4833 * address of the map element.
4834 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4835 * reg->id > 0 after value_or_null->value transition. By doing so
4836 * two bpf_map_lookups will be considered two different pointers that
4837 * point to different bpf_spin_locks.
4838 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4839 * dead-locks.
4840 * Since only one bpf_spin_lock is allowed the checks are simpler than
4841 * reg_is_refcounted() logic. The verifier needs to remember only
4842 * one spin_lock instead of array of acquired_refs.
4843 * cur_state->active_spin_lock remembers which map value element got locked
4844 * and clears it after bpf_spin_unlock.
4845 */
4846static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4847 bool is_lock)
4848{
4849 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4850 struct bpf_verifier_state *cur = env->cur_state;
4851 bool is_const = tnum_is_const(reg->var_off);
4852 struct bpf_map *map = reg->map_ptr;
4853 u64 val = reg->var_off.value;
4854
d83525ca
AS
4855 if (!is_const) {
4856 verbose(env,
4857 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4858 regno);
4859 return -EINVAL;
4860 }
4861 if (!map->btf) {
4862 verbose(env,
4863 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4864 map->name);
4865 return -EINVAL;
4866 }
4867 if (!map_value_has_spin_lock(map)) {
4868 if (map->spin_lock_off == -E2BIG)
4869 verbose(env,
4870 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4871 map->name);
4872 else if (map->spin_lock_off == -ENOENT)
4873 verbose(env,
4874 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4875 map->name);
4876 else
4877 verbose(env,
4878 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4879 map->name);
4880 return -EINVAL;
4881 }
4882 if (map->spin_lock_off != val + reg->off) {
4883 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4884 val + reg->off);
4885 return -EINVAL;
4886 }
4887 if (is_lock) {
4888 if (cur->active_spin_lock) {
4889 verbose(env,
4890 "Locking two bpf_spin_locks are not allowed\n");
4891 return -EINVAL;
4892 }
4893 cur->active_spin_lock = reg->id;
4894 } else {
4895 if (!cur->active_spin_lock) {
4896 verbose(env, "bpf_spin_unlock without taking a lock\n");
4897 return -EINVAL;
4898 }
4899 if (cur->active_spin_lock != reg->id) {
4900 verbose(env, "bpf_spin_unlock of different lock\n");
4901 return -EINVAL;
4902 }
4903 cur->active_spin_lock = 0;
4904 }
4905 return 0;
4906}
4907
b00628b1
AS
4908static int process_timer_func(struct bpf_verifier_env *env, int regno,
4909 struct bpf_call_arg_meta *meta)
4910{
4911 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4912 bool is_const = tnum_is_const(reg->var_off);
4913 struct bpf_map *map = reg->map_ptr;
4914 u64 val = reg->var_off.value;
4915
4916 if (!is_const) {
4917 verbose(env,
4918 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4919 regno);
4920 return -EINVAL;
4921 }
4922 if (!map->btf) {
4923 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4924 map->name);
4925 return -EINVAL;
4926 }
68134668
AS
4927 if (!map_value_has_timer(map)) {
4928 if (map->timer_off == -E2BIG)
4929 verbose(env,
4930 "map '%s' has more than one 'struct bpf_timer'\n",
4931 map->name);
4932 else if (map->timer_off == -ENOENT)
4933 verbose(env,
4934 "map '%s' doesn't have 'struct bpf_timer'\n",
4935 map->name);
4936 else
4937 verbose(env,
4938 "map '%s' is not a struct type or bpf_timer is mangled\n",
4939 map->name);
4940 return -EINVAL;
4941 }
4942 if (map->timer_off != val + reg->off) {
4943 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4944 val + reg->off, map->timer_off);
b00628b1
AS
4945 return -EINVAL;
4946 }
4947 if (meta->map_ptr) {
4948 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4949 return -EFAULT;
4950 }
3e8ce298 4951 meta->map_uid = reg->map_uid;
b00628b1
AS
4952 meta->map_ptr = map;
4953 return 0;
4954}
4955
90133415
DB
4956static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4957{
4958 return type == ARG_PTR_TO_MEM ||
4959 type == ARG_PTR_TO_MEM_OR_NULL ||
4960 type == ARG_PTR_TO_UNINIT_MEM;
4961}
4962
4963static bool arg_type_is_mem_size(enum bpf_arg_type type)
4964{
4965 return type == ARG_CONST_SIZE ||
4966 type == ARG_CONST_SIZE_OR_ZERO;
4967}
4968
457f4436
AN
4969static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4970{
4971 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4972}
4973
57c3bb72
AI
4974static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4975{
4976 return type == ARG_PTR_TO_INT ||
4977 type == ARG_PTR_TO_LONG;
4978}
4979
4980static int int_ptr_type_to_size(enum bpf_arg_type type)
4981{
4982 if (type == ARG_PTR_TO_INT)
4983 return sizeof(u32);
4984 else if (type == ARG_PTR_TO_LONG)
4985 return sizeof(u64);
4986
4987 return -EINVAL;
4988}
4989
912f442c
LB
4990static int resolve_map_arg_type(struct bpf_verifier_env *env,
4991 const struct bpf_call_arg_meta *meta,
4992 enum bpf_arg_type *arg_type)
4993{
4994 if (!meta->map_ptr) {
4995 /* kernel subsystem misconfigured verifier */
4996 verbose(env, "invalid map_ptr to access map->type\n");
4997 return -EACCES;
4998 }
4999
5000 switch (meta->map_ptr->map_type) {
5001 case BPF_MAP_TYPE_SOCKMAP:
5002 case BPF_MAP_TYPE_SOCKHASH:
5003 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5004 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5005 } else {
5006 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5007 return -EINVAL;
5008 }
5009 break;
5010
5011 default:
5012 break;
5013 }
5014 return 0;
5015}
5016
f79e7ea5
LB
5017struct bpf_reg_types {
5018 const enum bpf_reg_type types[10];
1df8f55a 5019 u32 *btf_id;
f79e7ea5
LB
5020};
5021
5022static const struct bpf_reg_types map_key_value_types = {
5023 .types = {
5024 PTR_TO_STACK,
5025 PTR_TO_PACKET,
5026 PTR_TO_PACKET_META,
69c087ba 5027 PTR_TO_MAP_KEY,
f79e7ea5
LB
5028 PTR_TO_MAP_VALUE,
5029 },
5030};
5031
5032static const struct bpf_reg_types sock_types = {
5033 .types = {
5034 PTR_TO_SOCK_COMMON,
5035 PTR_TO_SOCKET,
5036 PTR_TO_TCP_SOCK,
5037 PTR_TO_XDP_SOCK,
5038 },
5039};
5040
49a2a4d4 5041#ifdef CONFIG_NET
1df8f55a
MKL
5042static const struct bpf_reg_types btf_id_sock_common_types = {
5043 .types = {
5044 PTR_TO_SOCK_COMMON,
5045 PTR_TO_SOCKET,
5046 PTR_TO_TCP_SOCK,
5047 PTR_TO_XDP_SOCK,
5048 PTR_TO_BTF_ID,
5049 },
5050 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5051};
49a2a4d4 5052#endif
1df8f55a 5053
f79e7ea5
LB
5054static const struct bpf_reg_types mem_types = {
5055 .types = {
5056 PTR_TO_STACK,
5057 PTR_TO_PACKET,
5058 PTR_TO_PACKET_META,
69c087ba 5059 PTR_TO_MAP_KEY,
f79e7ea5
LB
5060 PTR_TO_MAP_VALUE,
5061 PTR_TO_MEM,
5062 PTR_TO_RDONLY_BUF,
5063 PTR_TO_RDWR_BUF,
5064 },
5065};
5066
5067static const struct bpf_reg_types int_ptr_types = {
5068 .types = {
5069 PTR_TO_STACK,
5070 PTR_TO_PACKET,
5071 PTR_TO_PACKET_META,
69c087ba 5072 PTR_TO_MAP_KEY,
f79e7ea5
LB
5073 PTR_TO_MAP_VALUE,
5074 },
5075};
5076
5077static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5078static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5079static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5080static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5081static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5082static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5083static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 5084static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
5085static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5086static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5087static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5088static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 5089
0789e13b 5090static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
5091 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5092 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5093 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
5094 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
5095 [ARG_CONST_SIZE] = &scalar_types,
5096 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5097 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5098 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5099 [ARG_PTR_TO_CTX] = &context_types,
5100 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
5101 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5102#ifdef CONFIG_NET
1df8f55a 5103 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5104#endif
f79e7ea5
LB
5105 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5106 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
5107 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5108 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5109 [ARG_PTR_TO_MEM] = &mem_types,
5110 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
5111 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5112 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5113 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
5114 [ARG_PTR_TO_INT] = &int_ptr_types,
5115 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5116 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba
YS
5117 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5118 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
fff13c4b 5119 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5120 [ARG_PTR_TO_TIMER] = &timer_types,
f79e7ea5
LB
5121};
5122
5123static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
5124 enum bpf_arg_type arg_type,
5125 const u32 *arg_btf_id)
f79e7ea5
LB
5126{
5127 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5128 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5129 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5130 int i, j;
5131
a968d5e2
MKL
5132 compatible = compatible_reg_types[arg_type];
5133 if (!compatible) {
5134 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5135 return -EFAULT;
5136 }
5137
f79e7ea5
LB
5138 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5139 expected = compatible->types[i];
5140 if (expected == NOT_INIT)
5141 break;
5142
5143 if (type == expected)
a968d5e2 5144 goto found;
f79e7ea5
LB
5145 }
5146
5147 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5148 for (j = 0; j + 1 < i; j++)
5149 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5150 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5151 return -EACCES;
a968d5e2
MKL
5152
5153found:
5154 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
5155 if (!arg_btf_id) {
5156 if (!compatible->btf_id) {
5157 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5158 return -EFAULT;
5159 }
5160 arg_btf_id = compatible->btf_id;
5161 }
5162
22dc4a0f
AN
5163 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5164 btf_vmlinux, *arg_btf_id)) {
a968d5e2 5165 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
5166 regno, kernel_type_name(reg->btf, reg->btf_id),
5167 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
5168 return -EACCES;
5169 }
5170
5171 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5172 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5173 regno);
5174 return -EACCES;
5175 }
5176 }
5177
5178 return 0;
f79e7ea5
LB
5179}
5180
af7ec138
YS
5181static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5182 struct bpf_call_arg_meta *meta,
5183 const struct bpf_func_proto *fn)
17a52670 5184{
af7ec138 5185 u32 regno = BPF_REG_1 + arg;
638f5b90 5186 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5187 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5188 enum bpf_reg_type type = reg->type;
17a52670
AS
5189 int err = 0;
5190
80f1d68c 5191 if (arg_type == ARG_DONTCARE)
17a52670
AS
5192 return 0;
5193
dc503a8a
EC
5194 err = check_reg_arg(env, regno, SRC_OP);
5195 if (err)
5196 return err;
17a52670 5197
1be7f75d
AS
5198 if (arg_type == ARG_ANYTHING) {
5199 if (is_pointer_value(env, regno)) {
61bd5218
JK
5200 verbose(env, "R%d leaks addr into helper function\n",
5201 regno);
1be7f75d
AS
5202 return -EACCES;
5203 }
80f1d68c 5204 return 0;
1be7f75d 5205 }
80f1d68c 5206
de8f3a83 5207 if (type_is_pkt_pointer(type) &&
3a0af8fd 5208 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5209 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5210 return -EACCES;
5211 }
5212
912f442c
LB
5213 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5214 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5215 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5216 err = resolve_map_arg_type(env, meta, &arg_type);
5217 if (err)
5218 return err;
5219 }
5220
fd1b0d60
LB
5221 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5222 /* A NULL register has a SCALAR_VALUE type, so skip
5223 * type checking.
5224 */
5225 goto skip_type_check;
5226
a968d5e2 5227 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
5228 if (err)
5229 return err;
5230
a968d5e2 5231 if (type == PTR_TO_CTX) {
feec7040
LB
5232 err = check_ctx_reg(env, reg, regno);
5233 if (err < 0)
5234 return err;
d7b9454a
LB
5235 }
5236
fd1b0d60 5237skip_type_check:
02f7c958 5238 if (reg->ref_obj_id) {
457f4436
AN
5239 if (meta->ref_obj_id) {
5240 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5241 regno, reg->ref_obj_id,
5242 meta->ref_obj_id);
5243 return -EFAULT;
5244 }
5245 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5246 }
5247
17a52670
AS
5248 if (arg_type == ARG_CONST_MAP_PTR) {
5249 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5250 if (meta->map_ptr) {
5251 /* Use map_uid (which is unique id of inner map) to reject:
5252 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5253 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5254 * if (inner_map1 && inner_map2) {
5255 * timer = bpf_map_lookup_elem(inner_map1);
5256 * if (timer)
5257 * // mismatch would have been allowed
5258 * bpf_timer_init(timer, inner_map2);
5259 * }
5260 *
5261 * Comparing map_ptr is enough to distinguish normal and outer maps.
5262 */
5263 if (meta->map_ptr != reg->map_ptr ||
5264 meta->map_uid != reg->map_uid) {
5265 verbose(env,
5266 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5267 meta->map_uid, reg->map_uid);
5268 return -EINVAL;
5269 }
b00628b1 5270 }
33ff9823 5271 meta->map_ptr = reg->map_ptr;
3e8ce298 5272 meta->map_uid = reg->map_uid;
17a52670
AS
5273 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5274 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5275 * check that [key, key + map->key_size) are within
5276 * stack limits and initialized
5277 */
33ff9823 5278 if (!meta->map_ptr) {
17a52670
AS
5279 /* in function declaration map_ptr must come before
5280 * map_key, so that it's verified and known before
5281 * we have to check map_key here. Otherwise it means
5282 * that kernel subsystem misconfigured verifier
5283 */
61bd5218 5284 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5285 return -EACCES;
5286 }
d71962f3
PC
5287 err = check_helper_mem_access(env, regno,
5288 meta->map_ptr->key_size, false,
5289 NULL);
2ea864c5 5290 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
5291 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5292 !register_is_null(reg)) ||
2ea864c5 5293 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
5294 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5295 * check [value, value + map->value_size) validity
5296 */
33ff9823 5297 if (!meta->map_ptr) {
17a52670 5298 /* kernel subsystem misconfigured verifier */
61bd5218 5299 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5300 return -EACCES;
5301 }
2ea864c5 5302 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
5303 err = check_helper_mem_access(env, regno,
5304 meta->map_ptr->value_size, false,
2ea864c5 5305 meta);
eaa6bcb7
HL
5306 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5307 if (!reg->btf_id) {
5308 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5309 return -EACCES;
5310 }
22dc4a0f 5311 meta->ret_btf = reg->btf;
eaa6bcb7 5312 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
5313 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5314 if (meta->func_id == BPF_FUNC_spin_lock) {
5315 if (process_spin_lock(env, regno, true))
5316 return -EACCES;
5317 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5318 if (process_spin_lock(env, regno, false))
5319 return -EACCES;
5320 } else {
5321 verbose(env, "verifier internal error\n");
5322 return -EFAULT;
5323 }
b00628b1
AS
5324 } else if (arg_type == ARG_PTR_TO_TIMER) {
5325 if (process_timer_func(env, regno, meta))
5326 return -EACCES;
69c087ba
YS
5327 } else if (arg_type == ARG_PTR_TO_FUNC) {
5328 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5329 } else if (arg_type_is_mem_ptr(arg_type)) {
5330 /* The access to this pointer is only checked when we hit the
5331 * next is_mem_size argument below.
5332 */
5333 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5334 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5335 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5336
10060503
JF
5337 /* This is used to refine r0 return value bounds for helpers
5338 * that enforce this value as an upper bound on return values.
5339 * See do_refine_retval_range() for helpers that can refine
5340 * the return value. C type of helper is u32 so we pull register
5341 * bound from umax_value however, if negative verifier errors
5342 * out. Only upper bounds can be learned because retval is an
5343 * int type and negative retvals are allowed.
849fa506 5344 */
10060503 5345 meta->msize_max_value = reg->umax_value;
849fa506 5346
f1174f77
EC
5347 /* The register is SCALAR_VALUE; the access check
5348 * happens using its boundaries.
06c1c049 5349 */
f1174f77 5350 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5351 /* For unprivileged variable accesses, disable raw
5352 * mode so that the program is required to
5353 * initialize all the memory that the helper could
5354 * just partially fill up.
5355 */
5356 meta = NULL;
5357
b03c9f9f 5358 if (reg->smin_value < 0) {
61bd5218 5359 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5360 regno);
5361 return -EACCES;
5362 }
06c1c049 5363
b03c9f9f 5364 if (reg->umin_value == 0) {
f1174f77
EC
5365 err = check_helper_mem_access(env, regno - 1, 0,
5366 zero_size_allowed,
5367 meta);
06c1c049
GB
5368 if (err)
5369 return err;
06c1c049 5370 }
f1174f77 5371
b03c9f9f 5372 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5373 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5374 regno);
5375 return -EACCES;
5376 }
5377 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5378 reg->umax_value,
f1174f77 5379 zero_size_allowed, meta);
b5dc0163
AS
5380 if (!err)
5381 err = mark_chain_precision(env, regno);
457f4436
AN
5382 } else if (arg_type_is_alloc_size(arg_type)) {
5383 if (!tnum_is_const(reg->var_off)) {
28a8add6 5384 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5385 regno);
5386 return -EACCES;
5387 }
5388 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5389 } else if (arg_type_is_int_ptr(arg_type)) {
5390 int size = int_ptr_type_to_size(arg_type);
5391
5392 err = check_helper_mem_access(env, regno, size, false, meta);
5393 if (err)
5394 return err;
5395 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5396 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5397 struct bpf_map *map = reg->map_ptr;
5398 int map_off;
5399 u64 map_addr;
5400 char *str_ptr;
5401
a8fad73e 5402 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5403 verbose(env, "R%d does not point to a readonly map'\n", regno);
5404 return -EACCES;
5405 }
5406
5407 if (!tnum_is_const(reg->var_off)) {
5408 verbose(env, "R%d is not a constant address'\n", regno);
5409 return -EACCES;
5410 }
5411
5412 if (!map->ops->map_direct_value_addr) {
5413 verbose(env, "no direct value access support for this map type\n");
5414 return -EACCES;
5415 }
5416
5417 err = check_map_access(env, regno, reg->off,
5418 map->value_size - reg->off, false);
5419 if (err)
5420 return err;
5421
5422 map_off = reg->off + reg->var_off.value;
5423 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5424 if (err) {
5425 verbose(env, "direct value access on string failed\n");
5426 return err;
5427 }
5428
5429 str_ptr = (char *)(long)(map_addr);
5430 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5431 verbose(env, "string is not zero-terminated\n");
5432 return -EINVAL;
5433 }
17a52670
AS
5434 }
5435
5436 return err;
5437}
5438
0126240f
LB
5439static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5440{
5441 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5442 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5443
5444 if (func_id != BPF_FUNC_map_update_elem)
5445 return false;
5446
5447 /* It's not possible to get access to a locked struct sock in these
5448 * contexts, so updating is safe.
5449 */
5450 switch (type) {
5451 case BPF_PROG_TYPE_TRACING:
5452 if (eatype == BPF_TRACE_ITER)
5453 return true;
5454 break;
5455 case BPF_PROG_TYPE_SOCKET_FILTER:
5456 case BPF_PROG_TYPE_SCHED_CLS:
5457 case BPF_PROG_TYPE_SCHED_ACT:
5458 case BPF_PROG_TYPE_XDP:
5459 case BPF_PROG_TYPE_SK_REUSEPORT:
5460 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5461 case BPF_PROG_TYPE_SK_LOOKUP:
5462 return true;
5463 default:
5464 break;
5465 }
5466
5467 verbose(env, "cannot update sockmap in this context\n");
5468 return false;
5469}
5470
e411901c
MF
5471static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5472{
5473 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5474}
5475
61bd5218
JK
5476static int check_map_func_compatibility(struct bpf_verifier_env *env,
5477 struct bpf_map *map, int func_id)
35578d79 5478{
35578d79
KX
5479 if (!map)
5480 return 0;
5481
6aff67c8
AS
5482 /* We need a two way check, first is from map perspective ... */
5483 switch (map->map_type) {
5484 case BPF_MAP_TYPE_PROG_ARRAY:
5485 if (func_id != BPF_FUNC_tail_call)
5486 goto error;
5487 break;
5488 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5489 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5490 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5491 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5492 func_id != BPF_FUNC_perf_event_read_value &&
5493 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5494 goto error;
5495 break;
457f4436
AN
5496 case BPF_MAP_TYPE_RINGBUF:
5497 if (func_id != BPF_FUNC_ringbuf_output &&
5498 func_id != BPF_FUNC_ringbuf_reserve &&
457f4436
AN
5499 func_id != BPF_FUNC_ringbuf_query)
5500 goto error;
5501 break;
6aff67c8
AS
5502 case BPF_MAP_TYPE_STACK_TRACE:
5503 if (func_id != BPF_FUNC_get_stackid)
5504 goto error;
5505 break;
4ed8ec52 5506 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5507 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5508 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5509 goto error;
5510 break;
cd339431 5511 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5512 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5513 if (func_id != BPF_FUNC_get_local_storage)
5514 goto error;
5515 break;
546ac1ff 5516 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5517 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5518 if (func_id != BPF_FUNC_redirect_map &&
5519 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5520 goto error;
5521 break;
fbfc504a
BT
5522 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5523 * appear.
5524 */
6710e112
JDB
5525 case BPF_MAP_TYPE_CPUMAP:
5526 if (func_id != BPF_FUNC_redirect_map)
5527 goto error;
5528 break;
fada7fdc
JL
5529 case BPF_MAP_TYPE_XSKMAP:
5530 if (func_id != BPF_FUNC_redirect_map &&
5531 func_id != BPF_FUNC_map_lookup_elem)
5532 goto error;
5533 break;
56f668df 5534 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5535 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5536 if (func_id != BPF_FUNC_map_lookup_elem)
5537 goto error;
16a43625 5538 break;
174a79ff
JF
5539 case BPF_MAP_TYPE_SOCKMAP:
5540 if (func_id != BPF_FUNC_sk_redirect_map &&
5541 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5542 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5543 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5544 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5545 func_id != BPF_FUNC_map_lookup_elem &&
5546 !may_update_sockmap(env, func_id))
174a79ff
JF
5547 goto error;
5548 break;
81110384
JF
5549 case BPF_MAP_TYPE_SOCKHASH:
5550 if (func_id != BPF_FUNC_sk_redirect_hash &&
5551 func_id != BPF_FUNC_sock_hash_update &&
5552 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5553 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5554 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5555 func_id != BPF_FUNC_map_lookup_elem &&
5556 !may_update_sockmap(env, func_id))
81110384
JF
5557 goto error;
5558 break;
2dbb9b9e
MKL
5559 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5560 if (func_id != BPF_FUNC_sk_select_reuseport)
5561 goto error;
5562 break;
f1a2e44a
MV
5563 case BPF_MAP_TYPE_QUEUE:
5564 case BPF_MAP_TYPE_STACK:
5565 if (func_id != BPF_FUNC_map_peek_elem &&
5566 func_id != BPF_FUNC_map_pop_elem &&
5567 func_id != BPF_FUNC_map_push_elem)
5568 goto error;
5569 break;
6ac99e8f
MKL
5570 case BPF_MAP_TYPE_SK_STORAGE:
5571 if (func_id != BPF_FUNC_sk_storage_get &&
5572 func_id != BPF_FUNC_sk_storage_delete)
5573 goto error;
5574 break;
8ea63684
KS
5575 case BPF_MAP_TYPE_INODE_STORAGE:
5576 if (func_id != BPF_FUNC_inode_storage_get &&
5577 func_id != BPF_FUNC_inode_storage_delete)
5578 goto error;
5579 break;
4cf1bc1f
KS
5580 case BPF_MAP_TYPE_TASK_STORAGE:
5581 if (func_id != BPF_FUNC_task_storage_get &&
5582 func_id != BPF_FUNC_task_storage_delete)
5583 goto error;
5584 break;
6aff67c8
AS
5585 default:
5586 break;
5587 }
5588
5589 /* ... and second from the function itself. */
5590 switch (func_id) {
5591 case BPF_FUNC_tail_call:
5592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5593 goto error;
e411901c
MF
5594 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5595 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5596 return -EINVAL;
5597 }
6aff67c8
AS
5598 break;
5599 case BPF_FUNC_perf_event_read:
5600 case BPF_FUNC_perf_event_output:
908432ca 5601 case BPF_FUNC_perf_event_read_value:
a7658e1a 5602 case BPF_FUNC_skb_output:
d831ee84 5603 case BPF_FUNC_xdp_output:
6aff67c8
AS
5604 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5605 goto error;
5606 break;
5b029a32
DB
5607 case BPF_FUNC_ringbuf_output:
5608 case BPF_FUNC_ringbuf_reserve:
5609 case BPF_FUNC_ringbuf_query:
5610 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5611 goto error;
5612 break;
6aff67c8
AS
5613 case BPF_FUNC_get_stackid:
5614 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5615 goto error;
5616 break;
60d20f91 5617 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5618 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5619 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5620 goto error;
5621 break;
97f91a7c 5622 case BPF_FUNC_redirect_map:
9c270af3 5623 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5624 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5625 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5626 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5627 goto error;
5628 break;
174a79ff 5629 case BPF_FUNC_sk_redirect_map:
4f738adb 5630 case BPF_FUNC_msg_redirect_map:
81110384 5631 case BPF_FUNC_sock_map_update:
174a79ff
JF
5632 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5633 goto error;
5634 break;
81110384
JF
5635 case BPF_FUNC_sk_redirect_hash:
5636 case BPF_FUNC_msg_redirect_hash:
5637 case BPF_FUNC_sock_hash_update:
5638 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5639 goto error;
5640 break;
cd339431 5641 case BPF_FUNC_get_local_storage:
b741f163
RG
5642 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5643 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5644 goto error;
5645 break;
2dbb9b9e 5646 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5647 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5648 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5649 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5650 goto error;
5651 break;
f1a2e44a
MV
5652 case BPF_FUNC_map_peek_elem:
5653 case BPF_FUNC_map_pop_elem:
5654 case BPF_FUNC_map_push_elem:
5655 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5656 map->map_type != BPF_MAP_TYPE_STACK)
5657 goto error;
5658 break;
6ac99e8f
MKL
5659 case BPF_FUNC_sk_storage_get:
5660 case BPF_FUNC_sk_storage_delete:
5661 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5662 goto error;
5663 break;
8ea63684
KS
5664 case BPF_FUNC_inode_storage_get:
5665 case BPF_FUNC_inode_storage_delete:
5666 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5667 goto error;
5668 break;
4cf1bc1f
KS
5669 case BPF_FUNC_task_storage_get:
5670 case BPF_FUNC_task_storage_delete:
5671 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5672 goto error;
5673 break;
6aff67c8
AS
5674 default:
5675 break;
35578d79
KX
5676 }
5677
5678 return 0;
6aff67c8 5679error:
61bd5218 5680 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5681 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5682 return -EINVAL;
35578d79
KX
5683}
5684
90133415 5685static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5686{
5687 int count = 0;
5688
39f19ebb 5689 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5690 count++;
39f19ebb 5691 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5692 count++;
39f19ebb 5693 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5694 count++;
39f19ebb 5695 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5696 count++;
39f19ebb 5697 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5698 count++;
5699
90133415
DB
5700 /* We only support one arg being in raw mode at the moment,
5701 * which is sufficient for the helper functions we have
5702 * right now.
5703 */
5704 return count <= 1;
5705}
5706
5707static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5708 enum bpf_arg_type arg_next)
5709{
5710 return (arg_type_is_mem_ptr(arg_curr) &&
5711 !arg_type_is_mem_size(arg_next)) ||
5712 (!arg_type_is_mem_ptr(arg_curr) &&
5713 arg_type_is_mem_size(arg_next));
5714}
5715
5716static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5717{
5718 /* bpf_xxx(..., buf, len) call will access 'len'
5719 * bytes from memory 'buf'. Both arg types need
5720 * to be paired, so make sure there's no buggy
5721 * helper function specification.
5722 */
5723 if (arg_type_is_mem_size(fn->arg1_type) ||
5724 arg_type_is_mem_ptr(fn->arg5_type) ||
5725 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5726 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5727 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5728 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5729 return false;
5730
5731 return true;
5732}
5733
1b986589 5734static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5735{
5736 int count = 0;
5737
1b986589 5738 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5739 count++;
1b986589 5740 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5741 count++;
1b986589 5742 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5743 count++;
1b986589 5744 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5745 count++;
1b986589 5746 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5747 count++;
5748
1b986589
MKL
5749 /* A reference acquiring function cannot acquire
5750 * another refcounted ptr.
5751 */
64d85290 5752 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5753 return false;
5754
fd978bf7
JS
5755 /* We only support one arg being unreferenced at the moment,
5756 * which is sufficient for the helper functions we have right now.
5757 */
5758 return count <= 1;
5759}
5760
9436ef6e
LB
5761static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5762{
5763 int i;
5764
1df8f55a 5765 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5766 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5767 return false;
5768
1df8f55a
MKL
5769 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5770 return false;
5771 }
5772
9436ef6e
LB
5773 return true;
5774}
5775
1b986589 5776static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5777{
5778 return check_raw_mode_ok(fn) &&
fd978bf7 5779 check_arg_pair_ok(fn) &&
9436ef6e 5780 check_btf_id_ok(fn) &&
1b986589 5781 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5782}
5783
de8f3a83
DB
5784/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5785 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5786 */
f4d7e40a
AS
5787static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5788 struct bpf_func_state *state)
969bf05e 5789{
58e2af8b 5790 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5791 int i;
5792
5793 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5794 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5795 mark_reg_unknown(env, regs, i);
969bf05e 5796
f3709f69
JS
5797 bpf_for_each_spilled_reg(i, state, reg) {
5798 if (!reg)
969bf05e 5799 continue;
de8f3a83 5800 if (reg_is_pkt_pointer_any(reg))
f54c7898 5801 __mark_reg_unknown(env, reg);
969bf05e
AS
5802 }
5803}
5804
f4d7e40a
AS
5805static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5806{
5807 struct bpf_verifier_state *vstate = env->cur_state;
5808 int i;
5809
5810 for (i = 0; i <= vstate->curframe; i++)
5811 __clear_all_pkt_pointers(env, vstate->frame[i]);
5812}
5813
6d94e741
AS
5814enum {
5815 AT_PKT_END = -1,
5816 BEYOND_PKT_END = -2,
5817};
5818
5819static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5820{
5821 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5822 struct bpf_reg_state *reg = &state->regs[regn];
5823
5824 if (reg->type != PTR_TO_PACKET)
5825 /* PTR_TO_PACKET_META is not supported yet */
5826 return;
5827
5828 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5829 * How far beyond pkt_end it goes is unknown.
5830 * if (!range_open) it's the case of pkt >= pkt_end
5831 * if (range_open) it's the case of pkt > pkt_end
5832 * hence this pointer is at least 1 byte bigger than pkt_end
5833 */
5834 if (range_open)
5835 reg->range = BEYOND_PKT_END;
5836 else
5837 reg->range = AT_PKT_END;
5838}
5839
fd978bf7 5840static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5841 struct bpf_func_state *state,
5842 int ref_obj_id)
fd978bf7
JS
5843{
5844 struct bpf_reg_state *regs = state->regs, *reg;
5845 int i;
5846
5847 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5848 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5849 mark_reg_unknown(env, regs, i);
5850
5851 bpf_for_each_spilled_reg(i, state, reg) {
5852 if (!reg)
5853 continue;
1b986589 5854 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5855 __mark_reg_unknown(env, reg);
fd978bf7
JS
5856 }
5857}
5858
5859/* The pointer with the specified id has released its reference to kernel
5860 * resources. Identify all copies of the same pointer and clear the reference.
5861 */
5862static int release_reference(struct bpf_verifier_env *env,
1b986589 5863 int ref_obj_id)
fd978bf7
JS
5864{
5865 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5866 int err;
fd978bf7
JS
5867 int i;
5868
1b986589
MKL
5869 err = release_reference_state(cur_func(env), ref_obj_id);
5870 if (err)
5871 return err;
5872
fd978bf7 5873 for (i = 0; i <= vstate->curframe; i++)
1b986589 5874 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5875
1b986589 5876 return 0;
fd978bf7
JS
5877}
5878
51c39bb1
AS
5879static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5880 struct bpf_reg_state *regs)
5881{
5882 int i;
5883
5884 /* after the call registers r0 - r5 were scratched */
5885 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5886 mark_reg_not_init(env, regs, caller_saved[i]);
5887 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5888 }
5889}
5890
14351375
YS
5891typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5892 struct bpf_func_state *caller,
5893 struct bpf_func_state *callee,
5894 int insn_idx);
5895
5896static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5897 int *insn_idx, int subprog,
5898 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5899{
5900 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5901 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5902 struct bpf_func_state *caller, *callee;
14351375 5903 int err;
51c39bb1 5904 bool is_global = false;
f4d7e40a 5905
aada9ce6 5906 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5907 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5908 state->curframe + 2);
f4d7e40a
AS
5909 return -E2BIG;
5910 }
5911
f4d7e40a
AS
5912 caller = state->frame[state->curframe];
5913 if (state->frame[state->curframe + 1]) {
5914 verbose(env, "verifier bug. Frame %d already allocated\n",
5915 state->curframe + 1);
5916 return -EFAULT;
5917 }
5918
51c39bb1
AS
5919 func_info_aux = env->prog->aux->func_info_aux;
5920 if (func_info_aux)
5921 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5922 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5923 if (err == -EFAULT)
5924 return err;
5925 if (is_global) {
5926 if (err) {
5927 verbose(env, "Caller passes invalid args into func#%d\n",
5928 subprog);
5929 return err;
5930 } else {
5931 if (env->log.level & BPF_LOG_LEVEL)
5932 verbose(env,
5933 "Func#%d is global and valid. Skipping.\n",
5934 subprog);
5935 clear_caller_saved_regs(env, caller->regs);
5936
45159b27 5937 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 5938 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 5939 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
5940
5941 /* continue with next insn after call */
5942 return 0;
5943 }
5944 }
5945
bfc6bb74
AS
5946 if (insn->code == (BPF_JMP | BPF_CALL) &&
5947 insn->imm == BPF_FUNC_timer_set_callback) {
5948 struct bpf_verifier_state *async_cb;
5949
5950 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 5951 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
5952 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5953 *insn_idx, subprog);
5954 if (!async_cb)
5955 return -EFAULT;
5956 callee = async_cb->frame[0];
5957 callee->async_entry_cnt = caller->async_entry_cnt + 1;
5958
5959 /* Convert bpf_timer_set_callback() args into timer callback args */
5960 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5961 if (err)
5962 return err;
5963
5964 clear_caller_saved_regs(env, caller->regs);
5965 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5966 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5967 /* continue with next insn after call */
5968 return 0;
5969 }
5970
f4d7e40a
AS
5971 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5972 if (!callee)
5973 return -ENOMEM;
5974 state->frame[state->curframe + 1] = callee;
5975
5976 /* callee cannot access r0, r6 - r9 for reading and has to write
5977 * into its own stack before reading from it.
5978 * callee can read/write into caller's stack
5979 */
5980 init_func_state(env, callee,
5981 /* remember the callsite, it will be used by bpf_exit */
5982 *insn_idx /* callsite */,
5983 state->curframe + 1 /* frameno within this callchain */,
f910cefa 5984 subprog /* subprog number within this prog */);
f4d7e40a 5985
fd978bf7 5986 /* Transfer references to the callee */
c69431aa 5987 err = copy_reference_state(callee, caller);
fd978bf7
JS
5988 if (err)
5989 return err;
5990
14351375
YS
5991 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5992 if (err)
5993 return err;
f4d7e40a 5994
51c39bb1 5995 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
5996
5997 /* only increment it after check_reg_arg() finished */
5998 state->curframe++;
5999
6000 /* and go analyze first insn of the callee */
14351375 6001 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6002
06ee7115 6003 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6004 verbose(env, "caller:\n");
6005 print_verifier_state(env, caller);
6006 verbose(env, "callee:\n");
6007 print_verifier_state(env, callee);
6008 }
6009 return 0;
6010}
6011
314ee05e
YS
6012int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6013 struct bpf_func_state *caller,
6014 struct bpf_func_state *callee)
6015{
6016 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6017 * void *callback_ctx, u64 flags);
6018 * callback_fn(struct bpf_map *map, void *key, void *value,
6019 * void *callback_ctx);
6020 */
6021 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6022
6023 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6024 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6025 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6026
6027 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6028 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6029 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6030
6031 /* pointer to stack or null */
6032 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6033
6034 /* unused */
6035 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6036 return 0;
6037}
6038
14351375
YS
6039static int set_callee_state(struct bpf_verifier_env *env,
6040 struct bpf_func_state *caller,
6041 struct bpf_func_state *callee, int insn_idx)
6042{
6043 int i;
6044
6045 /* copy r1 - r5 args that callee can access. The copy includes parent
6046 * pointers, which connects us up to the liveness chain
6047 */
6048 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6049 callee->regs[i] = caller->regs[i];
6050 return 0;
6051}
6052
6053static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6054 int *insn_idx)
6055{
6056 int subprog, target_insn;
6057
6058 target_insn = *insn_idx + insn->imm + 1;
6059 subprog = find_subprog(env, target_insn);
6060 if (subprog < 0) {
6061 verbose(env, "verifier bug. No program starts at insn %d\n",
6062 target_insn);
6063 return -EFAULT;
6064 }
6065
6066 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6067}
6068
69c087ba
YS
6069static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6070 struct bpf_func_state *caller,
6071 struct bpf_func_state *callee,
6072 int insn_idx)
6073{
6074 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6075 struct bpf_map *map;
6076 int err;
6077
6078 if (bpf_map_ptr_poisoned(insn_aux)) {
6079 verbose(env, "tail_call abusing map_ptr\n");
6080 return -EINVAL;
6081 }
6082
6083 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6084 if (!map->ops->map_set_for_each_callback_args ||
6085 !map->ops->map_for_each_callback) {
6086 verbose(env, "callback function not allowed for map\n");
6087 return -ENOTSUPP;
6088 }
6089
6090 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6091 if (err)
6092 return err;
6093
6094 callee->in_callback_fn = true;
6095 return 0;
6096}
6097
b00628b1
AS
6098static int set_timer_callback_state(struct bpf_verifier_env *env,
6099 struct bpf_func_state *caller,
6100 struct bpf_func_state *callee,
6101 int insn_idx)
6102{
6103 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6104
6105 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6106 * callback_fn(struct bpf_map *map, void *key, void *value);
6107 */
6108 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6109 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6110 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6111
6112 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6113 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6114 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6115
6116 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6117 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6118 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6119
6120 /* unused */
6121 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6122 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6123 callee->in_async_callback_fn = true;
b00628b1
AS
6124 return 0;
6125}
6126
f4d7e40a
AS
6127static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6128{
6129 struct bpf_verifier_state *state = env->cur_state;
6130 struct bpf_func_state *caller, *callee;
6131 struct bpf_reg_state *r0;
fd978bf7 6132 int err;
f4d7e40a
AS
6133
6134 callee = state->frame[state->curframe];
6135 r0 = &callee->regs[BPF_REG_0];
6136 if (r0->type == PTR_TO_STACK) {
6137 /* technically it's ok to return caller's stack pointer
6138 * (or caller's caller's pointer) back to the caller,
6139 * since these pointers are valid. Only current stack
6140 * pointer will be invalid as soon as function exits,
6141 * but let's be conservative
6142 */
6143 verbose(env, "cannot return stack pointer to the caller\n");
6144 return -EINVAL;
6145 }
6146
6147 state->curframe--;
6148 caller = state->frame[state->curframe];
69c087ba
YS
6149 if (callee->in_callback_fn) {
6150 /* enforce R0 return value range [0, 1]. */
6151 struct tnum range = tnum_range(0, 1);
6152
6153 if (r0->type != SCALAR_VALUE) {
6154 verbose(env, "R0 not a scalar value\n");
6155 return -EACCES;
6156 }
6157 if (!tnum_in(range, r0->var_off)) {
6158 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6159 return -EINVAL;
6160 }
6161 } else {
6162 /* return to the caller whatever r0 had in the callee */
6163 caller->regs[BPF_REG_0] = *r0;
6164 }
f4d7e40a 6165
fd978bf7 6166 /* Transfer references to the caller */
c69431aa 6167 err = copy_reference_state(caller, callee);
fd978bf7
JS
6168 if (err)
6169 return err;
6170
f4d7e40a 6171 *insn_idx = callee->callsite + 1;
06ee7115 6172 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6173 verbose(env, "returning from callee:\n");
6174 print_verifier_state(env, callee);
6175 verbose(env, "to caller at %d:\n", *insn_idx);
6176 print_verifier_state(env, caller);
6177 }
6178 /* clear everything in the callee */
6179 free_func_state(callee);
6180 state->frame[state->curframe + 1] = NULL;
6181 return 0;
6182}
6183
849fa506
YS
6184static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6185 int func_id,
6186 struct bpf_call_arg_meta *meta)
6187{
6188 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6189
6190 if (ret_type != RET_INTEGER ||
6191 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6192 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6193 func_id != BPF_FUNC_probe_read_str &&
6194 func_id != BPF_FUNC_probe_read_kernel_str &&
6195 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6196 return;
6197
10060503 6198 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6199 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6200 ret_reg->smin_value = -MAX_ERRNO;
6201 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
6202 __reg_deduce_bounds(ret_reg);
6203 __reg_bound_offset(ret_reg);
10060503 6204 __update_reg_bounds(ret_reg);
849fa506
YS
6205}
6206
c93552c4
DB
6207static int
6208record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6209 int func_id, int insn_idx)
6210{
6211 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6212 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6213
6214 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
6215 func_id != BPF_FUNC_map_lookup_elem &&
6216 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
6217 func_id != BPF_FUNC_map_delete_elem &&
6218 func_id != BPF_FUNC_map_push_elem &&
6219 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 6220 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
6221 func_id != BPF_FUNC_for_each_map_elem &&
6222 func_id != BPF_FUNC_redirect_map)
c93552c4 6223 return 0;
09772d92 6224
591fe988 6225 if (map == NULL) {
c93552c4
DB
6226 verbose(env, "kernel subsystem misconfigured verifier\n");
6227 return -EINVAL;
6228 }
6229
591fe988
DB
6230 /* In case of read-only, some additional restrictions
6231 * need to be applied in order to prevent altering the
6232 * state of the map from program side.
6233 */
6234 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6235 (func_id == BPF_FUNC_map_delete_elem ||
6236 func_id == BPF_FUNC_map_update_elem ||
6237 func_id == BPF_FUNC_map_push_elem ||
6238 func_id == BPF_FUNC_map_pop_elem)) {
6239 verbose(env, "write into map forbidden\n");
6240 return -EACCES;
6241 }
6242
d2e4c1e6 6243 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 6244 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 6245 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 6246 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 6247 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 6248 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
6249 return 0;
6250}
6251
d2e4c1e6
DB
6252static int
6253record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6254 int func_id, int insn_idx)
6255{
6256 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6257 struct bpf_reg_state *regs = cur_regs(env), *reg;
6258 struct bpf_map *map = meta->map_ptr;
6259 struct tnum range;
6260 u64 val;
cc52d914 6261 int err;
d2e4c1e6
DB
6262
6263 if (func_id != BPF_FUNC_tail_call)
6264 return 0;
6265 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6266 verbose(env, "kernel subsystem misconfigured verifier\n");
6267 return -EINVAL;
6268 }
6269
6270 range = tnum_range(0, map->max_entries - 1);
6271 reg = &regs[BPF_REG_3];
6272
6273 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6274 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6275 return 0;
6276 }
6277
cc52d914
DB
6278 err = mark_chain_precision(env, BPF_REG_3);
6279 if (err)
6280 return err;
6281
d2e4c1e6
DB
6282 val = reg->var_off.value;
6283 if (bpf_map_key_unseen(aux))
6284 bpf_map_key_store(aux, val);
6285 else if (!bpf_map_key_poisoned(aux) &&
6286 bpf_map_key_immediate(aux) != val)
6287 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6288 return 0;
6289}
6290
fd978bf7
JS
6291static int check_reference_leak(struct bpf_verifier_env *env)
6292{
6293 struct bpf_func_state *state = cur_func(env);
6294 int i;
6295
6296 for (i = 0; i < state->acquired_refs; i++) {
6297 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6298 state->refs[i].id, state->refs[i].insn_idx);
6299 }
6300 return state->acquired_refs ? -EINVAL : 0;
6301}
6302
7b15523a
FR
6303static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6304 struct bpf_reg_state *regs)
6305{
6306 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6307 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6308 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6309 int err, fmt_map_off, num_args;
6310 u64 fmt_addr;
6311 char *fmt;
6312
6313 /* data must be an array of u64 */
6314 if (data_len_reg->var_off.value % 8)
6315 return -EINVAL;
6316 num_args = data_len_reg->var_off.value / 8;
6317
6318 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6319 * and map_direct_value_addr is set.
6320 */
6321 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6322 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6323 fmt_map_off);
8e8ee109
FR
6324 if (err) {
6325 verbose(env, "verifier bug\n");
6326 return -EFAULT;
6327 }
7b15523a
FR
6328 fmt = (char *)(long)fmt_addr + fmt_map_off;
6329
6330 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6331 * can focus on validating the format specifiers.
6332 */
48cac3f4 6333 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
6334 if (err < 0)
6335 verbose(env, "Invalid format string\n");
6336
6337 return err;
6338}
6339
9b99edca
JO
6340static int check_get_func_ip(struct bpf_verifier_env *env)
6341{
6342 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6343 enum bpf_prog_type type = resolve_prog_type(env->prog);
6344 int func_id = BPF_FUNC_get_func_ip;
6345
6346 if (type == BPF_PROG_TYPE_TRACING) {
6347 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6348 eatype != BPF_MODIFY_RETURN) {
6349 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6350 func_id_name(func_id), func_id);
6351 return -ENOTSUPP;
6352 }
6353 return 0;
9ffd9f3f
JO
6354 } else if (type == BPF_PROG_TYPE_KPROBE) {
6355 return 0;
9b99edca
JO
6356 }
6357
6358 verbose(env, "func %s#%d not supported for program type %d\n",
6359 func_id_name(func_id), func_id, type);
6360 return -ENOTSUPP;
6361}
6362
69c087ba
YS
6363static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6364 int *insn_idx_p)
17a52670 6365{
17a52670 6366 const struct bpf_func_proto *fn = NULL;
638f5b90 6367 struct bpf_reg_state *regs;
33ff9823 6368 struct bpf_call_arg_meta meta;
69c087ba 6369 int insn_idx = *insn_idx_p;
969bf05e 6370 bool changes_data;
69c087ba 6371 int i, err, func_id;
17a52670
AS
6372
6373 /* find function prototype */
69c087ba 6374 func_id = insn->imm;
17a52670 6375 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
6376 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6377 func_id);
17a52670
AS
6378 return -EINVAL;
6379 }
6380
00176a34 6381 if (env->ops->get_func_proto)
5e43f899 6382 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 6383 if (!fn) {
61bd5218
JK
6384 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6385 func_id);
17a52670
AS
6386 return -EINVAL;
6387 }
6388
6389 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 6390 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 6391 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
6392 return -EINVAL;
6393 }
6394
eae2e83e
JO
6395 if (fn->allowed && !fn->allowed(env->prog)) {
6396 verbose(env, "helper call is not allowed in probe\n");
6397 return -EINVAL;
6398 }
6399
04514d13 6400 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 6401 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
6402 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6403 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6404 func_id_name(func_id), func_id);
6405 return -EINVAL;
6406 }
969bf05e 6407
33ff9823 6408 memset(&meta, 0, sizeof(meta));
36bbef52 6409 meta.pkt_access = fn->pkt_access;
33ff9823 6410
1b986589 6411 err = check_func_proto(fn, func_id);
435faee1 6412 if (err) {
61bd5218 6413 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6414 func_id_name(func_id), func_id);
435faee1
DB
6415 return err;
6416 }
6417
d83525ca 6418 meta.func_id = func_id;
17a52670 6419 /* check args */
523a4cf4 6420 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6421 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6422 if (err)
6423 return err;
6424 }
17a52670 6425
c93552c4
DB
6426 err = record_func_map(env, &meta, func_id, insn_idx);
6427 if (err)
6428 return err;
6429
d2e4c1e6
DB
6430 err = record_func_key(env, &meta, func_id, insn_idx);
6431 if (err)
6432 return err;
6433
435faee1
DB
6434 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6435 * is inferred from register state.
6436 */
6437 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6438 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6439 BPF_WRITE, -1, false);
435faee1
DB
6440 if (err)
6441 return err;
6442 }
6443
fd978bf7
JS
6444 if (func_id == BPF_FUNC_tail_call) {
6445 err = check_reference_leak(env);
6446 if (err) {
6447 verbose(env, "tail_call would lead to reference leak\n");
6448 return err;
6449 }
6450 } else if (is_release_function(func_id)) {
1b986589 6451 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6452 if (err) {
6453 verbose(env, "func %s#%d reference has not been acquired before\n",
6454 func_id_name(func_id), func_id);
fd978bf7 6455 return err;
46f8bc92 6456 }
fd978bf7
JS
6457 }
6458
638f5b90 6459 regs = cur_regs(env);
cd339431
RG
6460
6461 /* check that flags argument in get_local_storage(map, flags) is 0,
6462 * this is required because get_local_storage() can't return an error.
6463 */
6464 if (func_id == BPF_FUNC_get_local_storage &&
6465 !register_is_null(&regs[BPF_REG_2])) {
6466 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6467 return -EINVAL;
6468 }
6469
69c087ba
YS
6470 if (func_id == BPF_FUNC_for_each_map_elem) {
6471 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6472 set_map_elem_callback_state);
6473 if (err < 0)
6474 return -EINVAL;
6475 }
6476
b00628b1
AS
6477 if (func_id == BPF_FUNC_timer_set_callback) {
6478 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6479 set_timer_callback_state);
6480 if (err < 0)
6481 return -EINVAL;
6482 }
6483
7b15523a
FR
6484 if (func_id == BPF_FUNC_snprintf) {
6485 err = check_bpf_snprintf_call(env, regs);
6486 if (err < 0)
6487 return err;
6488 }
6489
17a52670 6490 /* reset caller saved regs */
dc503a8a 6491 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6492 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6493 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6494 }
17a52670 6495
5327ed3d
JW
6496 /* helper call returns 64-bit value. */
6497 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6498
dc503a8a 6499 /* update return register (already marked as written above) */
17a52670 6500 if (fn->ret_type == RET_INTEGER) {
f1174f77 6501 /* sets type to SCALAR_VALUE */
61bd5218 6502 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6503 } else if (fn->ret_type == RET_VOID) {
6504 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6505 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6506 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6507 /* There is no offset yet applied, variable or fixed */
61bd5218 6508 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6509 /* remember map_ptr, so that check_map_access()
6510 * can check 'value_size' boundary of memory access
6511 * to map element returned from bpf_map_lookup_elem()
6512 */
33ff9823 6513 if (meta.map_ptr == NULL) {
61bd5218
JK
6514 verbose(env,
6515 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6516 return -EINVAL;
6517 }
33ff9823 6518 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 6519 regs[BPF_REG_0].map_uid = meta.map_uid;
4d31f301
DB
6520 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6521 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6522 if (map_value_has_spin_lock(meta.map_ptr))
6523 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6524 } else {
6525 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6526 }
c64b7983
JS
6527 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6528 mark_reg_known_zero(env, regs, BPF_REG_0);
6529 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6530 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6531 mark_reg_known_zero(env, regs, BPF_REG_0);
6532 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6533 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6534 mark_reg_known_zero(env, regs, BPF_REG_0);
6535 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6536 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6537 mark_reg_known_zero(env, regs, BPF_REG_0);
6538 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6539 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6540 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6541 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6542 const struct btf_type *t;
6543
6544 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6545 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6546 if (!btf_type_is_struct(t)) {
6547 u32 tsize;
6548 const struct btf_type *ret;
6549 const char *tname;
6550
6551 /* resolve the type size of ksym. */
22dc4a0f 6552 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6553 if (IS_ERR(ret)) {
22dc4a0f 6554 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6555 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6556 tname, PTR_ERR(ret));
6557 return -EINVAL;
6558 }
63d9b80d
HL
6559 regs[BPF_REG_0].type =
6560 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6561 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6562 regs[BPF_REG_0].mem_size = tsize;
6563 } else {
63d9b80d
HL
6564 regs[BPF_REG_0].type =
6565 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6566 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6567 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6568 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6569 }
3ca1032a
KS
6570 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6571 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6572 int ret_btf_id;
6573
6574 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6575 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6576 PTR_TO_BTF_ID :
6577 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6578 ret_btf_id = *fn->ret_btf_id;
6579 if (ret_btf_id == 0) {
6580 verbose(env, "invalid return type %d of func %s#%d\n",
6581 fn->ret_type, func_id_name(func_id), func_id);
6582 return -EINVAL;
6583 }
22dc4a0f
AN
6584 /* current BPF helper definitions are only coming from
6585 * built-in code with type IDs from vmlinux BTF
6586 */
6587 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6588 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6589 } else {
61bd5218 6590 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6591 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6592 return -EINVAL;
6593 }
04fd61ab 6594
93c230e3
MKL
6595 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6596 regs[BPF_REG_0].id = ++env->id_gen;
6597
0f3adc28 6598 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6599 /* For release_reference() */
6600 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6601 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6602 int id = acquire_reference_state(env, insn_idx);
6603
6604 if (id < 0)
6605 return id;
6606 /* For mark_ptr_or_null_reg() */
6607 regs[BPF_REG_0].id = id;
6608 /* For release_reference() */
6609 regs[BPF_REG_0].ref_obj_id = id;
6610 }
1b986589 6611
849fa506
YS
6612 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6613
61bd5218 6614 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6615 if (err)
6616 return err;
04fd61ab 6617
fa28dcb8
SL
6618 if ((func_id == BPF_FUNC_get_stack ||
6619 func_id == BPF_FUNC_get_task_stack) &&
6620 !env->prog->has_callchain_buf) {
c195651e
YS
6621 const char *err_str;
6622
6623#ifdef CONFIG_PERF_EVENTS
6624 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6625 err_str = "cannot get callchain buffer for func %s#%d\n";
6626#else
6627 err = -ENOTSUPP;
6628 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6629#endif
6630 if (err) {
6631 verbose(env, err_str, func_id_name(func_id), func_id);
6632 return err;
6633 }
6634
6635 env->prog->has_callchain_buf = true;
6636 }
6637
5d99cb2c
SL
6638 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6639 env->prog->call_get_stack = true;
6640
9b99edca
JO
6641 if (func_id == BPF_FUNC_get_func_ip) {
6642 if (check_get_func_ip(env))
6643 return -ENOTSUPP;
6644 env->prog->call_get_func_ip = true;
6645 }
6646
969bf05e
AS
6647 if (changes_data)
6648 clear_all_pkt_pointers(env);
6649 return 0;
6650}
6651
e6ac2450
MKL
6652/* mark_btf_func_reg_size() is used when the reg size is determined by
6653 * the BTF func_proto's return value size and argument.
6654 */
6655static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6656 size_t reg_size)
6657{
6658 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6659
6660 if (regno == BPF_REG_0) {
6661 /* Function return value */
6662 reg->live |= REG_LIVE_WRITTEN;
6663 reg->subreg_def = reg_size == sizeof(u64) ?
6664 DEF_NOT_SUBREG : env->insn_idx + 1;
6665 } else {
6666 /* Function argument */
6667 if (reg_size == sizeof(u64)) {
6668 mark_insn_zext(env, reg);
6669 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6670 } else {
6671 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6672 }
6673 }
6674}
6675
6676static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6677{
6678 const struct btf_type *t, *func, *func_proto, *ptr_type;
6679 struct bpf_reg_state *regs = cur_regs(env);
6680 const char *func_name, *ptr_type_name;
6681 u32 i, nargs, func_id, ptr_type_id;
2357672c 6682 struct module *btf_mod = NULL;
e6ac2450 6683 const struct btf_param *args;
2357672c 6684 struct btf *desc_btf;
e6ac2450
MKL
6685 int err;
6686
a5d82727
KKD
6687 /* skip for now, but return error when we find this in fixup_kfunc_call */
6688 if (!insn->imm)
6689 return 0;
6690
2357672c
KKD
6691 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6692 if (IS_ERR(desc_btf))
6693 return PTR_ERR(desc_btf);
6694
e6ac2450 6695 func_id = insn->imm;
2357672c
KKD
6696 func = btf_type_by_id(desc_btf, func_id);
6697 func_name = btf_name_by_offset(desc_btf, func->name_off);
6698 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
6699
6700 if (!env->ops->check_kfunc_call ||
2357672c 6701 !env->ops->check_kfunc_call(func_id, btf_mod)) {
e6ac2450
MKL
6702 verbose(env, "calling kernel function %s is not allowed\n",
6703 func_name);
6704 return -EACCES;
6705 }
6706
6707 /* Check the arguments */
2357672c 6708 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
e6ac2450
MKL
6709 if (err)
6710 return err;
6711
6712 for (i = 0; i < CALLER_SAVED_REGS; i++)
6713 mark_reg_not_init(env, regs, caller_saved[i]);
6714
6715 /* Check return type */
2357672c 6716 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
e6ac2450
MKL
6717 if (btf_type_is_scalar(t)) {
6718 mark_reg_unknown(env, regs, BPF_REG_0);
6719 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6720 } else if (btf_type_is_ptr(t)) {
2357672c 6721 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
6722 &ptr_type_id);
6723 if (!btf_type_is_struct(ptr_type)) {
2357672c 6724 ptr_type_name = btf_name_by_offset(desc_btf,
e6ac2450
MKL
6725 ptr_type->name_off);
6726 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6727 func_name, btf_type_str(ptr_type),
6728 ptr_type_name);
6729 return -EINVAL;
6730 }
6731 mark_reg_known_zero(env, regs, BPF_REG_0);
2357672c 6732 regs[BPF_REG_0].btf = desc_btf;
e6ac2450
MKL
6733 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6734 regs[BPF_REG_0].btf_id = ptr_type_id;
6735 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6736 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6737
6738 nargs = btf_type_vlen(func_proto);
6739 args = (const struct btf_param *)(func_proto + 1);
6740 for (i = 0; i < nargs; i++) {
6741 u32 regno = i + 1;
6742
2357672c 6743 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
6744 if (btf_type_is_ptr(t))
6745 mark_btf_func_reg_size(env, regno, sizeof(void *));
6746 else
6747 /* scalar. ensured by btf_check_kfunc_arg_match() */
6748 mark_btf_func_reg_size(env, regno, t->size);
6749 }
6750
6751 return 0;
6752}
6753
b03c9f9f
EC
6754static bool signed_add_overflows(s64 a, s64 b)
6755{
6756 /* Do the add in u64, where overflow is well-defined */
6757 s64 res = (s64)((u64)a + (u64)b);
6758
6759 if (b < 0)
6760 return res > a;
6761 return res < a;
6762}
6763
bc895e8b 6764static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6765{
6766 /* Do the add in u32, where overflow is well-defined */
6767 s32 res = (s32)((u32)a + (u32)b);
6768
6769 if (b < 0)
6770 return res > a;
6771 return res < a;
6772}
6773
bc895e8b 6774static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6775{
6776 /* Do the sub in u64, where overflow is well-defined */
6777 s64 res = (s64)((u64)a - (u64)b);
6778
6779 if (b < 0)
6780 return res < a;
6781 return res > a;
969bf05e
AS
6782}
6783
3f50f132
JF
6784static bool signed_sub32_overflows(s32 a, s32 b)
6785{
bc895e8b 6786 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6787 s32 res = (s32)((u32)a - (u32)b);
6788
6789 if (b < 0)
6790 return res < a;
6791 return res > a;
6792}
6793
bb7f0f98
AS
6794static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6795 const struct bpf_reg_state *reg,
6796 enum bpf_reg_type type)
6797{
6798 bool known = tnum_is_const(reg->var_off);
6799 s64 val = reg->var_off.value;
6800 s64 smin = reg->smin_value;
6801
6802 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6803 verbose(env, "math between %s pointer and %lld is not allowed\n",
6804 reg_type_str[type], val);
6805 return false;
6806 }
6807
6808 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6809 verbose(env, "%s pointer offset %d is not allowed\n",
6810 reg_type_str[type], reg->off);
6811 return false;
6812 }
6813
6814 if (smin == S64_MIN) {
6815 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6816 reg_type_str[type]);
6817 return false;
6818 }
6819
6820 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6821 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6822 smin, reg_type_str[type]);
6823 return false;
6824 }
6825
6826 return true;
6827}
6828
979d63d5
DB
6829static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6830{
6831 return &env->insn_aux_data[env->insn_idx];
6832}
6833
a6aaece0
DB
6834enum {
6835 REASON_BOUNDS = -1,
6836 REASON_TYPE = -2,
6837 REASON_PATHS = -3,
6838 REASON_LIMIT = -4,
6839 REASON_STACK = -5,
6840};
6841
979d63d5 6842static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 6843 u32 *alu_limit, bool mask_to_left)
979d63d5 6844{
7fedb63a 6845 u32 max = 0, ptr_limit = 0;
979d63d5
DB
6846
6847 switch (ptr_reg->type) {
6848 case PTR_TO_STACK:
1b1597e6 6849 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
6850 * left direction, see BPF_REG_FP. Also, unknown scalar
6851 * offset where we would need to deal with min/max bounds is
6852 * currently prohibited for unprivileged.
1b1597e6
PK
6853 */
6854 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 6855 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 6856 break;
979d63d5 6857 case PTR_TO_MAP_VALUE:
1b1597e6 6858 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
6859 ptr_limit = (mask_to_left ?
6860 ptr_reg->smin_value :
6861 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 6862 break;
979d63d5 6863 default:
a6aaece0 6864 return REASON_TYPE;
979d63d5 6865 }
b658bbb8
DB
6866
6867 if (ptr_limit >= max)
a6aaece0 6868 return REASON_LIMIT;
b658bbb8
DB
6869 *alu_limit = ptr_limit;
6870 return 0;
979d63d5
DB
6871}
6872
d3bd7413
DB
6873static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6874 const struct bpf_insn *insn)
6875{
2c78ee89 6876 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6877}
6878
6879static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6880 u32 alu_state, u32 alu_limit)
6881{
6882 /* If we arrived here from different branches with different
6883 * state or limits to sanitize, then this won't work.
6884 */
6885 if (aux->alu_state &&
6886 (aux->alu_state != alu_state ||
6887 aux->alu_limit != alu_limit))
a6aaece0 6888 return REASON_PATHS;
d3bd7413 6889
e6ac5933 6890 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
6891 aux->alu_state = alu_state;
6892 aux->alu_limit = alu_limit;
6893 return 0;
6894}
6895
6896static int sanitize_val_alu(struct bpf_verifier_env *env,
6897 struct bpf_insn *insn)
6898{
6899 struct bpf_insn_aux_data *aux = cur_aux(env);
6900
6901 if (can_skip_alu_sanitation(env, insn))
6902 return 0;
6903
6904 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6905}
6906
f5288193
DB
6907static bool sanitize_needed(u8 opcode)
6908{
6909 return opcode == BPF_ADD || opcode == BPF_SUB;
6910}
6911
3d0220f6
DB
6912struct bpf_sanitize_info {
6913 struct bpf_insn_aux_data aux;
bb01a1bb 6914 bool mask_to_left;
3d0220f6
DB
6915};
6916
9183671a
DB
6917static struct bpf_verifier_state *
6918sanitize_speculative_path(struct bpf_verifier_env *env,
6919 const struct bpf_insn *insn,
6920 u32 next_idx, u32 curr_idx)
6921{
6922 struct bpf_verifier_state *branch;
6923 struct bpf_reg_state *regs;
6924
6925 branch = push_stack(env, next_idx, curr_idx, true);
6926 if (branch && insn) {
6927 regs = branch->frame[branch->curframe]->regs;
6928 if (BPF_SRC(insn->code) == BPF_K) {
6929 mark_reg_unknown(env, regs, insn->dst_reg);
6930 } else if (BPF_SRC(insn->code) == BPF_X) {
6931 mark_reg_unknown(env, regs, insn->dst_reg);
6932 mark_reg_unknown(env, regs, insn->src_reg);
6933 }
6934 }
6935 return branch;
6936}
6937
979d63d5
DB
6938static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6939 struct bpf_insn *insn,
6940 const struct bpf_reg_state *ptr_reg,
6f55b2f2 6941 const struct bpf_reg_state *off_reg,
979d63d5 6942 struct bpf_reg_state *dst_reg,
3d0220f6 6943 struct bpf_sanitize_info *info,
7fedb63a 6944 const bool commit_window)
979d63d5 6945{
3d0220f6 6946 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 6947 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 6948 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 6949 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
6950 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6951 u8 opcode = BPF_OP(insn->code);
6952 u32 alu_state, alu_limit;
6953 struct bpf_reg_state tmp;
6954 bool ret;
f232326f 6955 int err;
979d63d5 6956
d3bd7413 6957 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
6958 return 0;
6959
6960 /* We already marked aux for masking from non-speculative
6961 * paths, thus we got here in the first place. We only care
6962 * to explore bad access from here.
6963 */
6964 if (vstate->speculative)
6965 goto do_sim;
6966
bb01a1bb
DB
6967 if (!commit_window) {
6968 if (!tnum_is_const(off_reg->var_off) &&
6969 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6970 return REASON_BOUNDS;
6971
6972 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6973 (opcode == BPF_SUB && !off_is_neg);
6974 }
6975
6976 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
6977 if (err < 0)
6978 return err;
6979
7fedb63a
DB
6980 if (commit_window) {
6981 /* In commit phase we narrow the masking window based on
6982 * the observed pointer move after the simulated operation.
6983 */
3d0220f6
DB
6984 alu_state = info->aux.alu_state;
6985 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
6986 } else {
6987 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 6988 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
6989 alu_state |= ptr_is_dst_reg ?
6990 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
6991
6992 /* Limit pruning on unknown scalars to enable deep search for
6993 * potential masking differences from other program paths.
6994 */
6995 if (!off_is_imm)
6996 env->explore_alu_limits = true;
7fedb63a
DB
6997 }
6998
f232326f
PK
6999 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7000 if (err < 0)
7001 return err;
979d63d5 7002do_sim:
7fedb63a
DB
7003 /* If we're in commit phase, we're done here given we already
7004 * pushed the truncated dst_reg into the speculative verification
7005 * stack.
a7036191
DB
7006 *
7007 * Also, when register is a known constant, we rewrite register-based
7008 * operation to immediate-based, and thus do not need masking (and as
7009 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7010 */
a7036191 7011 if (commit_window || off_is_imm)
7fedb63a
DB
7012 return 0;
7013
979d63d5
DB
7014 /* Simulate and find potential out-of-bounds access under
7015 * speculative execution from truncation as a result of
7016 * masking when off was not within expected range. If off
7017 * sits in dst, then we temporarily need to move ptr there
7018 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7019 * for cases where we use K-based arithmetic in one direction
7020 * and truncated reg-based in the other in order to explore
7021 * bad access.
7022 */
7023 if (!ptr_is_dst_reg) {
7024 tmp = *dst_reg;
7025 *dst_reg = *ptr_reg;
7026 }
9183671a
DB
7027 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7028 env->insn_idx);
0803278b 7029 if (!ptr_is_dst_reg && ret)
979d63d5 7030 *dst_reg = tmp;
a6aaece0
DB
7031 return !ret ? REASON_STACK : 0;
7032}
7033
fe9a5ca7
DB
7034static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7035{
7036 struct bpf_verifier_state *vstate = env->cur_state;
7037
7038 /* If we simulate paths under speculation, we don't update the
7039 * insn as 'seen' such that when we verify unreachable paths in
7040 * the non-speculative domain, sanitize_dead_code() can still
7041 * rewrite/sanitize them.
7042 */
7043 if (!vstate->speculative)
7044 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7045}
7046
a6aaece0
DB
7047static int sanitize_err(struct bpf_verifier_env *env,
7048 const struct bpf_insn *insn, int reason,
7049 const struct bpf_reg_state *off_reg,
7050 const struct bpf_reg_state *dst_reg)
7051{
7052 static const char *err = "pointer arithmetic with it prohibited for !root";
7053 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7054 u32 dst = insn->dst_reg, src = insn->src_reg;
7055
7056 switch (reason) {
7057 case REASON_BOUNDS:
7058 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7059 off_reg == dst_reg ? dst : src, err);
7060 break;
7061 case REASON_TYPE:
7062 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7063 off_reg == dst_reg ? src : dst, err);
7064 break;
7065 case REASON_PATHS:
7066 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7067 dst, op, err);
7068 break;
7069 case REASON_LIMIT:
7070 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7071 dst, op, err);
7072 break;
7073 case REASON_STACK:
7074 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7075 dst, err);
7076 break;
7077 default:
7078 verbose(env, "verifier internal error: unknown reason (%d)\n",
7079 reason);
7080 break;
7081 }
7082
7083 return -EACCES;
979d63d5
DB
7084}
7085
01f810ac
AM
7086/* check that stack access falls within stack limits and that 'reg' doesn't
7087 * have a variable offset.
7088 *
7089 * Variable offset is prohibited for unprivileged mode for simplicity since it
7090 * requires corresponding support in Spectre masking for stack ALU. See also
7091 * retrieve_ptr_limit().
7092 *
7093 *
7094 * 'off' includes 'reg->off'.
7095 */
7096static int check_stack_access_for_ptr_arithmetic(
7097 struct bpf_verifier_env *env,
7098 int regno,
7099 const struct bpf_reg_state *reg,
7100 int off)
7101{
7102 if (!tnum_is_const(reg->var_off)) {
7103 char tn_buf[48];
7104
7105 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7106 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7107 regno, tn_buf, off);
7108 return -EACCES;
7109 }
7110
7111 if (off >= 0 || off < -MAX_BPF_STACK) {
7112 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7113 "prohibited for !root; off=%d\n", regno, off);
7114 return -EACCES;
7115 }
7116
7117 return 0;
7118}
7119
073815b7
DB
7120static int sanitize_check_bounds(struct bpf_verifier_env *env,
7121 const struct bpf_insn *insn,
7122 const struct bpf_reg_state *dst_reg)
7123{
7124 u32 dst = insn->dst_reg;
7125
7126 /* For unprivileged we require that resulting offset must be in bounds
7127 * in order to be able to sanitize access later on.
7128 */
7129 if (env->bypass_spec_v1)
7130 return 0;
7131
7132 switch (dst_reg->type) {
7133 case PTR_TO_STACK:
7134 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7135 dst_reg->off + dst_reg->var_off.value))
7136 return -EACCES;
7137 break;
7138 case PTR_TO_MAP_VALUE:
7139 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7140 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7141 "prohibited for !root\n", dst);
7142 return -EACCES;
7143 }
7144 break;
7145 default:
7146 break;
7147 }
7148
7149 return 0;
7150}
01f810ac 7151
f1174f77 7152/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
7153 * Caller should also handle BPF_MOV case separately.
7154 * If we return -EACCES, caller may want to try again treating pointer as a
7155 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7156 */
7157static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7158 struct bpf_insn *insn,
7159 const struct bpf_reg_state *ptr_reg,
7160 const struct bpf_reg_state *off_reg)
969bf05e 7161{
f4d7e40a
AS
7162 struct bpf_verifier_state *vstate = env->cur_state;
7163 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7164 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 7165 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
7166 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7167 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7168 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7169 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 7170 struct bpf_sanitize_info info = {};
969bf05e 7171 u8 opcode = BPF_OP(insn->code);
24c109bb 7172 u32 dst = insn->dst_reg;
979d63d5 7173 int ret;
969bf05e 7174
f1174f77 7175 dst_reg = &regs[dst];
969bf05e 7176
6f16101e
DB
7177 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7178 smin_val > smax_val || umin_val > umax_val) {
7179 /* Taint dst register if offset had invalid bounds derived from
7180 * e.g. dead branches.
7181 */
f54c7898 7182 __mark_reg_unknown(env, dst_reg);
6f16101e 7183 return 0;
f1174f77
EC
7184 }
7185
7186 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7187 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
7188 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7189 __mark_reg_unknown(env, dst_reg);
7190 return 0;
7191 }
7192
82abbf8d
AS
7193 verbose(env,
7194 "R%d 32-bit pointer arithmetic prohibited\n",
7195 dst);
f1174f77 7196 return -EACCES;
969bf05e
AS
7197 }
7198
aad2eeaf
JS
7199 switch (ptr_reg->type) {
7200 case PTR_TO_MAP_VALUE_OR_NULL:
7201 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7202 dst, reg_type_str[ptr_reg->type]);
f1174f77 7203 return -EACCES;
aad2eeaf 7204 case CONST_PTR_TO_MAP:
7c696732
YS
7205 /* smin_val represents the known value */
7206 if (known && smin_val == 0 && opcode == BPF_ADD)
7207 break;
8731745e 7208 fallthrough;
aad2eeaf 7209 case PTR_TO_PACKET_END:
c64b7983
JS
7210 case PTR_TO_SOCKET:
7211 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7212 case PTR_TO_SOCK_COMMON:
7213 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7214 case PTR_TO_TCP_SOCK:
7215 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7216 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
7217 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7218 dst, reg_type_str[ptr_reg->type]);
f1174f77 7219 return -EACCES;
aad2eeaf
JS
7220 default:
7221 break;
f1174f77
EC
7222 }
7223
7224 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7225 * The id may be overwritten later if we create a new variable offset.
969bf05e 7226 */
f1174f77
EC
7227 dst_reg->type = ptr_reg->type;
7228 dst_reg->id = ptr_reg->id;
969bf05e 7229
bb7f0f98
AS
7230 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7231 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7232 return -EINVAL;
7233
3f50f132
JF
7234 /* pointer types do not carry 32-bit bounds at the moment. */
7235 __mark_reg32_unbounded(dst_reg);
7236
7fedb63a
DB
7237 if (sanitize_needed(opcode)) {
7238 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 7239 &info, false);
a6aaece0
DB
7240 if (ret < 0)
7241 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 7242 }
a6aaece0 7243
f1174f77
EC
7244 switch (opcode) {
7245 case BPF_ADD:
7246 /* We can take a fixed offset as long as it doesn't overflow
7247 * the s32 'off' field
969bf05e 7248 */
b03c9f9f
EC
7249 if (known && (ptr_reg->off + smin_val ==
7250 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 7251 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
7252 dst_reg->smin_value = smin_ptr;
7253 dst_reg->smax_value = smax_ptr;
7254 dst_reg->umin_value = umin_ptr;
7255 dst_reg->umax_value = umax_ptr;
f1174f77 7256 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 7257 dst_reg->off = ptr_reg->off + smin_val;
0962590e 7258 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7259 break;
7260 }
f1174f77
EC
7261 /* A new variable offset is created. Note that off_reg->off
7262 * == 0, since it's a scalar.
7263 * dst_reg gets the pointer type and since some positive
7264 * integer value was added to the pointer, give it a new 'id'
7265 * if it's a PTR_TO_PACKET.
7266 * this creates a new 'base' pointer, off_reg (variable) gets
7267 * added into the variable offset, and we copy the fixed offset
7268 * from ptr_reg.
969bf05e 7269 */
b03c9f9f
EC
7270 if (signed_add_overflows(smin_ptr, smin_val) ||
7271 signed_add_overflows(smax_ptr, smax_val)) {
7272 dst_reg->smin_value = S64_MIN;
7273 dst_reg->smax_value = S64_MAX;
7274 } else {
7275 dst_reg->smin_value = smin_ptr + smin_val;
7276 dst_reg->smax_value = smax_ptr + smax_val;
7277 }
7278 if (umin_ptr + umin_val < umin_ptr ||
7279 umax_ptr + umax_val < umax_ptr) {
7280 dst_reg->umin_value = 0;
7281 dst_reg->umax_value = U64_MAX;
7282 } else {
7283 dst_reg->umin_value = umin_ptr + umin_val;
7284 dst_reg->umax_value = umax_ptr + umax_val;
7285 }
f1174f77
EC
7286 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7287 dst_reg->off = ptr_reg->off;
0962590e 7288 dst_reg->raw = ptr_reg->raw;
de8f3a83 7289 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7290 dst_reg->id = ++env->id_gen;
7291 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 7292 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
7293 }
7294 break;
7295 case BPF_SUB:
7296 if (dst_reg == off_reg) {
7297 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
7298 verbose(env, "R%d tried to subtract pointer from scalar\n",
7299 dst);
f1174f77
EC
7300 return -EACCES;
7301 }
7302 /* We don't allow subtraction from FP, because (according to
7303 * test_verifier.c test "invalid fp arithmetic", JITs might not
7304 * be able to deal with it.
969bf05e 7305 */
f1174f77 7306 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
7307 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7308 dst);
f1174f77
EC
7309 return -EACCES;
7310 }
b03c9f9f
EC
7311 if (known && (ptr_reg->off - smin_val ==
7312 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 7313 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
7314 dst_reg->smin_value = smin_ptr;
7315 dst_reg->smax_value = smax_ptr;
7316 dst_reg->umin_value = umin_ptr;
7317 dst_reg->umax_value = umax_ptr;
f1174f77
EC
7318 dst_reg->var_off = ptr_reg->var_off;
7319 dst_reg->id = ptr_reg->id;
b03c9f9f 7320 dst_reg->off = ptr_reg->off - smin_val;
0962590e 7321 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7322 break;
7323 }
f1174f77
EC
7324 /* A new variable offset is created. If the subtrahend is known
7325 * nonnegative, then any reg->range we had before is still good.
969bf05e 7326 */
b03c9f9f
EC
7327 if (signed_sub_overflows(smin_ptr, smax_val) ||
7328 signed_sub_overflows(smax_ptr, smin_val)) {
7329 /* Overflow possible, we know nothing */
7330 dst_reg->smin_value = S64_MIN;
7331 dst_reg->smax_value = S64_MAX;
7332 } else {
7333 dst_reg->smin_value = smin_ptr - smax_val;
7334 dst_reg->smax_value = smax_ptr - smin_val;
7335 }
7336 if (umin_ptr < umax_val) {
7337 /* Overflow possible, we know nothing */
7338 dst_reg->umin_value = 0;
7339 dst_reg->umax_value = U64_MAX;
7340 } else {
7341 /* Cannot overflow (as long as bounds are consistent) */
7342 dst_reg->umin_value = umin_ptr - umax_val;
7343 dst_reg->umax_value = umax_ptr - umin_val;
7344 }
f1174f77
EC
7345 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7346 dst_reg->off = ptr_reg->off;
0962590e 7347 dst_reg->raw = ptr_reg->raw;
de8f3a83 7348 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7349 dst_reg->id = ++env->id_gen;
7350 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 7351 if (smin_val < 0)
22dc4a0f 7352 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 7353 }
f1174f77
EC
7354 break;
7355 case BPF_AND:
7356 case BPF_OR:
7357 case BPF_XOR:
82abbf8d
AS
7358 /* bitwise ops on pointers are troublesome, prohibit. */
7359 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7360 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
7361 return -EACCES;
7362 default:
7363 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
7364 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7365 dst, bpf_alu_string[opcode >> 4]);
f1174f77 7366 return -EACCES;
43188702
JF
7367 }
7368
bb7f0f98
AS
7369 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7370 return -EINVAL;
7371
b03c9f9f
EC
7372 __update_reg_bounds(dst_reg);
7373 __reg_deduce_bounds(dst_reg);
7374 __reg_bound_offset(dst_reg);
0d6303db 7375
073815b7
DB
7376 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7377 return -EACCES;
7fedb63a
DB
7378 if (sanitize_needed(opcode)) {
7379 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 7380 &info, true);
7fedb63a
DB
7381 if (ret < 0)
7382 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
7383 }
7384
43188702
JF
7385 return 0;
7386}
7387
3f50f132
JF
7388static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7389 struct bpf_reg_state *src_reg)
7390{
7391 s32 smin_val = src_reg->s32_min_value;
7392 s32 smax_val = src_reg->s32_max_value;
7393 u32 umin_val = src_reg->u32_min_value;
7394 u32 umax_val = src_reg->u32_max_value;
7395
7396 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7397 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7398 dst_reg->s32_min_value = S32_MIN;
7399 dst_reg->s32_max_value = S32_MAX;
7400 } else {
7401 dst_reg->s32_min_value += smin_val;
7402 dst_reg->s32_max_value += smax_val;
7403 }
7404 if (dst_reg->u32_min_value + umin_val < umin_val ||
7405 dst_reg->u32_max_value + umax_val < umax_val) {
7406 dst_reg->u32_min_value = 0;
7407 dst_reg->u32_max_value = U32_MAX;
7408 } else {
7409 dst_reg->u32_min_value += umin_val;
7410 dst_reg->u32_max_value += umax_val;
7411 }
7412}
7413
07cd2631
JF
7414static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7415 struct bpf_reg_state *src_reg)
7416{
7417 s64 smin_val = src_reg->smin_value;
7418 s64 smax_val = src_reg->smax_value;
7419 u64 umin_val = src_reg->umin_value;
7420 u64 umax_val = src_reg->umax_value;
7421
7422 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7423 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7424 dst_reg->smin_value = S64_MIN;
7425 dst_reg->smax_value = S64_MAX;
7426 } else {
7427 dst_reg->smin_value += smin_val;
7428 dst_reg->smax_value += smax_val;
7429 }
7430 if (dst_reg->umin_value + umin_val < umin_val ||
7431 dst_reg->umax_value + umax_val < umax_val) {
7432 dst_reg->umin_value = 0;
7433 dst_reg->umax_value = U64_MAX;
7434 } else {
7435 dst_reg->umin_value += umin_val;
7436 dst_reg->umax_value += umax_val;
7437 }
3f50f132
JF
7438}
7439
7440static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7441 struct bpf_reg_state *src_reg)
7442{
7443 s32 smin_val = src_reg->s32_min_value;
7444 s32 smax_val = src_reg->s32_max_value;
7445 u32 umin_val = src_reg->u32_min_value;
7446 u32 umax_val = src_reg->u32_max_value;
7447
7448 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7449 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7450 /* Overflow possible, we know nothing */
7451 dst_reg->s32_min_value = S32_MIN;
7452 dst_reg->s32_max_value = S32_MAX;
7453 } else {
7454 dst_reg->s32_min_value -= smax_val;
7455 dst_reg->s32_max_value -= smin_val;
7456 }
7457 if (dst_reg->u32_min_value < umax_val) {
7458 /* Overflow possible, we know nothing */
7459 dst_reg->u32_min_value = 0;
7460 dst_reg->u32_max_value = U32_MAX;
7461 } else {
7462 /* Cannot overflow (as long as bounds are consistent) */
7463 dst_reg->u32_min_value -= umax_val;
7464 dst_reg->u32_max_value -= umin_val;
7465 }
07cd2631
JF
7466}
7467
7468static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7469 struct bpf_reg_state *src_reg)
7470{
7471 s64 smin_val = src_reg->smin_value;
7472 s64 smax_val = src_reg->smax_value;
7473 u64 umin_val = src_reg->umin_value;
7474 u64 umax_val = src_reg->umax_value;
7475
7476 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7477 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7478 /* Overflow possible, we know nothing */
7479 dst_reg->smin_value = S64_MIN;
7480 dst_reg->smax_value = S64_MAX;
7481 } else {
7482 dst_reg->smin_value -= smax_val;
7483 dst_reg->smax_value -= smin_val;
7484 }
7485 if (dst_reg->umin_value < umax_val) {
7486 /* Overflow possible, we know nothing */
7487 dst_reg->umin_value = 0;
7488 dst_reg->umax_value = U64_MAX;
7489 } else {
7490 /* Cannot overflow (as long as bounds are consistent) */
7491 dst_reg->umin_value -= umax_val;
7492 dst_reg->umax_value -= umin_val;
7493 }
3f50f132
JF
7494}
7495
7496static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7497 struct bpf_reg_state *src_reg)
7498{
7499 s32 smin_val = src_reg->s32_min_value;
7500 u32 umin_val = src_reg->u32_min_value;
7501 u32 umax_val = src_reg->u32_max_value;
7502
7503 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7504 /* Ain't nobody got time to multiply that sign */
7505 __mark_reg32_unbounded(dst_reg);
7506 return;
7507 }
7508 /* Both values are positive, so we can work with unsigned and
7509 * copy the result to signed (unless it exceeds S32_MAX).
7510 */
7511 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7512 /* Potential overflow, we know nothing */
7513 __mark_reg32_unbounded(dst_reg);
7514 return;
7515 }
7516 dst_reg->u32_min_value *= umin_val;
7517 dst_reg->u32_max_value *= umax_val;
7518 if (dst_reg->u32_max_value > S32_MAX) {
7519 /* Overflow possible, we know nothing */
7520 dst_reg->s32_min_value = S32_MIN;
7521 dst_reg->s32_max_value = S32_MAX;
7522 } else {
7523 dst_reg->s32_min_value = dst_reg->u32_min_value;
7524 dst_reg->s32_max_value = dst_reg->u32_max_value;
7525 }
07cd2631
JF
7526}
7527
7528static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7529 struct bpf_reg_state *src_reg)
7530{
7531 s64 smin_val = src_reg->smin_value;
7532 u64 umin_val = src_reg->umin_value;
7533 u64 umax_val = src_reg->umax_value;
7534
07cd2631
JF
7535 if (smin_val < 0 || dst_reg->smin_value < 0) {
7536 /* Ain't nobody got time to multiply that sign */
3f50f132 7537 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7538 return;
7539 }
7540 /* Both values are positive, so we can work with unsigned and
7541 * copy the result to signed (unless it exceeds S64_MAX).
7542 */
7543 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7544 /* Potential overflow, we know nothing */
3f50f132 7545 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7546 return;
7547 }
7548 dst_reg->umin_value *= umin_val;
7549 dst_reg->umax_value *= umax_val;
7550 if (dst_reg->umax_value > S64_MAX) {
7551 /* Overflow possible, we know nothing */
7552 dst_reg->smin_value = S64_MIN;
7553 dst_reg->smax_value = S64_MAX;
7554 } else {
7555 dst_reg->smin_value = dst_reg->umin_value;
7556 dst_reg->smax_value = dst_reg->umax_value;
7557 }
7558}
7559
3f50f132
JF
7560static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7561 struct bpf_reg_state *src_reg)
7562{
7563 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7564 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7565 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7566 s32 smin_val = src_reg->s32_min_value;
7567 u32 umax_val = src_reg->u32_max_value;
7568
049c4e13
DB
7569 if (src_known && dst_known) {
7570 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7571 return;
049c4e13 7572 }
3f50f132
JF
7573
7574 /* We get our minimum from the var_off, since that's inherently
7575 * bitwise. Our maximum is the minimum of the operands' maxima.
7576 */
7577 dst_reg->u32_min_value = var32_off.value;
7578 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7579 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7580 /* Lose signed bounds when ANDing negative numbers,
7581 * ain't nobody got time for that.
7582 */
7583 dst_reg->s32_min_value = S32_MIN;
7584 dst_reg->s32_max_value = S32_MAX;
7585 } else {
7586 /* ANDing two positives gives a positive, so safe to
7587 * cast result into s64.
7588 */
7589 dst_reg->s32_min_value = dst_reg->u32_min_value;
7590 dst_reg->s32_max_value = dst_reg->u32_max_value;
7591 }
3f50f132
JF
7592}
7593
07cd2631
JF
7594static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7595 struct bpf_reg_state *src_reg)
7596{
3f50f132
JF
7597 bool src_known = tnum_is_const(src_reg->var_off);
7598 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7599 s64 smin_val = src_reg->smin_value;
7600 u64 umax_val = src_reg->umax_value;
7601
3f50f132 7602 if (src_known && dst_known) {
4fbb38a3 7603 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7604 return;
7605 }
7606
07cd2631
JF
7607 /* We get our minimum from the var_off, since that's inherently
7608 * bitwise. Our maximum is the minimum of the operands' maxima.
7609 */
07cd2631
JF
7610 dst_reg->umin_value = dst_reg->var_off.value;
7611 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7612 if (dst_reg->smin_value < 0 || smin_val < 0) {
7613 /* Lose signed bounds when ANDing negative numbers,
7614 * ain't nobody got time for that.
7615 */
7616 dst_reg->smin_value = S64_MIN;
7617 dst_reg->smax_value = S64_MAX;
7618 } else {
7619 /* ANDing two positives gives a positive, so safe to
7620 * cast result into s64.
7621 */
7622 dst_reg->smin_value = dst_reg->umin_value;
7623 dst_reg->smax_value = dst_reg->umax_value;
7624 }
7625 /* We may learn something more from the var_off */
7626 __update_reg_bounds(dst_reg);
7627}
7628
3f50f132
JF
7629static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7630 struct bpf_reg_state *src_reg)
7631{
7632 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7633 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7634 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7635 s32 smin_val = src_reg->s32_min_value;
7636 u32 umin_val = src_reg->u32_min_value;
3f50f132 7637
049c4e13
DB
7638 if (src_known && dst_known) {
7639 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7640 return;
049c4e13 7641 }
3f50f132
JF
7642
7643 /* We get our maximum from the var_off, and our minimum is the
7644 * maximum of the operands' minima
7645 */
7646 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7647 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7648 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7649 /* Lose signed bounds when ORing negative numbers,
7650 * ain't nobody got time for that.
7651 */
7652 dst_reg->s32_min_value = S32_MIN;
7653 dst_reg->s32_max_value = S32_MAX;
7654 } else {
7655 /* ORing two positives gives a positive, so safe to
7656 * cast result into s64.
7657 */
5b9fbeb7
DB
7658 dst_reg->s32_min_value = dst_reg->u32_min_value;
7659 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7660 }
7661}
7662
07cd2631
JF
7663static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7664 struct bpf_reg_state *src_reg)
7665{
3f50f132
JF
7666 bool src_known = tnum_is_const(src_reg->var_off);
7667 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7668 s64 smin_val = src_reg->smin_value;
7669 u64 umin_val = src_reg->umin_value;
7670
3f50f132 7671 if (src_known && dst_known) {
4fbb38a3 7672 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7673 return;
7674 }
7675
07cd2631
JF
7676 /* We get our maximum from the var_off, and our minimum is the
7677 * maximum of the operands' minima
7678 */
07cd2631
JF
7679 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7680 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7681 if (dst_reg->smin_value < 0 || smin_val < 0) {
7682 /* Lose signed bounds when ORing negative numbers,
7683 * ain't nobody got time for that.
7684 */
7685 dst_reg->smin_value = S64_MIN;
7686 dst_reg->smax_value = S64_MAX;
7687 } else {
7688 /* ORing two positives gives a positive, so safe to
7689 * cast result into s64.
7690 */
7691 dst_reg->smin_value = dst_reg->umin_value;
7692 dst_reg->smax_value = dst_reg->umax_value;
7693 }
7694 /* We may learn something more from the var_off */
7695 __update_reg_bounds(dst_reg);
7696}
7697
2921c90d
YS
7698static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7699 struct bpf_reg_state *src_reg)
7700{
7701 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7702 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7703 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7704 s32 smin_val = src_reg->s32_min_value;
7705
049c4e13
DB
7706 if (src_known && dst_known) {
7707 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 7708 return;
049c4e13 7709 }
2921c90d
YS
7710
7711 /* We get both minimum and maximum from the var32_off. */
7712 dst_reg->u32_min_value = var32_off.value;
7713 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7714
7715 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7716 /* XORing two positive sign numbers gives a positive,
7717 * so safe to cast u32 result into s32.
7718 */
7719 dst_reg->s32_min_value = dst_reg->u32_min_value;
7720 dst_reg->s32_max_value = dst_reg->u32_max_value;
7721 } else {
7722 dst_reg->s32_min_value = S32_MIN;
7723 dst_reg->s32_max_value = S32_MAX;
7724 }
7725}
7726
7727static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7728 struct bpf_reg_state *src_reg)
7729{
7730 bool src_known = tnum_is_const(src_reg->var_off);
7731 bool dst_known = tnum_is_const(dst_reg->var_off);
7732 s64 smin_val = src_reg->smin_value;
7733
7734 if (src_known && dst_known) {
7735 /* dst_reg->var_off.value has been updated earlier */
7736 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7737 return;
7738 }
7739
7740 /* We get both minimum and maximum from the var_off. */
7741 dst_reg->umin_value = dst_reg->var_off.value;
7742 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7743
7744 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7745 /* XORing two positive sign numbers gives a positive,
7746 * so safe to cast u64 result into s64.
7747 */
7748 dst_reg->smin_value = dst_reg->umin_value;
7749 dst_reg->smax_value = dst_reg->umax_value;
7750 } else {
7751 dst_reg->smin_value = S64_MIN;
7752 dst_reg->smax_value = S64_MAX;
7753 }
7754
7755 __update_reg_bounds(dst_reg);
7756}
7757
3f50f132
JF
7758static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7759 u64 umin_val, u64 umax_val)
07cd2631 7760{
07cd2631
JF
7761 /* We lose all sign bit information (except what we can pick
7762 * up from var_off)
7763 */
3f50f132
JF
7764 dst_reg->s32_min_value = S32_MIN;
7765 dst_reg->s32_max_value = S32_MAX;
7766 /* If we might shift our top bit out, then we know nothing */
7767 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7768 dst_reg->u32_min_value = 0;
7769 dst_reg->u32_max_value = U32_MAX;
7770 } else {
7771 dst_reg->u32_min_value <<= umin_val;
7772 dst_reg->u32_max_value <<= umax_val;
7773 }
7774}
7775
7776static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7777 struct bpf_reg_state *src_reg)
7778{
7779 u32 umax_val = src_reg->u32_max_value;
7780 u32 umin_val = src_reg->u32_min_value;
7781 /* u32 alu operation will zext upper bits */
7782 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7783
7784 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7785 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7786 /* Not required but being careful mark reg64 bounds as unknown so
7787 * that we are forced to pick them up from tnum and zext later and
7788 * if some path skips this step we are still safe.
7789 */
7790 __mark_reg64_unbounded(dst_reg);
7791 __update_reg32_bounds(dst_reg);
7792}
7793
7794static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7795 u64 umin_val, u64 umax_val)
7796{
7797 /* Special case <<32 because it is a common compiler pattern to sign
7798 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7799 * positive we know this shift will also be positive so we can track
7800 * bounds correctly. Otherwise we lose all sign bit information except
7801 * what we can pick up from var_off. Perhaps we can generalize this
7802 * later to shifts of any length.
7803 */
7804 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7805 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7806 else
7807 dst_reg->smax_value = S64_MAX;
7808
7809 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7810 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7811 else
7812 dst_reg->smin_value = S64_MIN;
7813
07cd2631
JF
7814 /* If we might shift our top bit out, then we know nothing */
7815 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7816 dst_reg->umin_value = 0;
7817 dst_reg->umax_value = U64_MAX;
7818 } else {
7819 dst_reg->umin_value <<= umin_val;
7820 dst_reg->umax_value <<= umax_val;
7821 }
3f50f132
JF
7822}
7823
7824static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7825 struct bpf_reg_state *src_reg)
7826{
7827 u64 umax_val = src_reg->umax_value;
7828 u64 umin_val = src_reg->umin_value;
7829
7830 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7831 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7832 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7833
07cd2631
JF
7834 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7835 /* We may learn something more from the var_off */
7836 __update_reg_bounds(dst_reg);
7837}
7838
3f50f132
JF
7839static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7840 struct bpf_reg_state *src_reg)
7841{
7842 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7843 u32 umax_val = src_reg->u32_max_value;
7844 u32 umin_val = src_reg->u32_min_value;
7845
7846 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7847 * be negative, then either:
7848 * 1) src_reg might be zero, so the sign bit of the result is
7849 * unknown, so we lose our signed bounds
7850 * 2) it's known negative, thus the unsigned bounds capture the
7851 * signed bounds
7852 * 3) the signed bounds cross zero, so they tell us nothing
7853 * about the result
7854 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7855 * unsigned bounds capture the signed bounds.
3f50f132
JF
7856 * Thus, in all cases it suffices to blow away our signed bounds
7857 * and rely on inferring new ones from the unsigned bounds and
7858 * var_off of the result.
7859 */
7860 dst_reg->s32_min_value = S32_MIN;
7861 dst_reg->s32_max_value = S32_MAX;
7862
7863 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7864 dst_reg->u32_min_value >>= umax_val;
7865 dst_reg->u32_max_value >>= umin_val;
7866
7867 __mark_reg64_unbounded(dst_reg);
7868 __update_reg32_bounds(dst_reg);
7869}
7870
07cd2631
JF
7871static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7872 struct bpf_reg_state *src_reg)
7873{
7874 u64 umax_val = src_reg->umax_value;
7875 u64 umin_val = src_reg->umin_value;
7876
7877 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7878 * be negative, then either:
7879 * 1) src_reg might be zero, so the sign bit of the result is
7880 * unknown, so we lose our signed bounds
7881 * 2) it's known negative, thus the unsigned bounds capture the
7882 * signed bounds
7883 * 3) the signed bounds cross zero, so they tell us nothing
7884 * about the result
7885 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7886 * unsigned bounds capture the signed bounds.
07cd2631
JF
7887 * Thus, in all cases it suffices to blow away our signed bounds
7888 * and rely on inferring new ones from the unsigned bounds and
7889 * var_off of the result.
7890 */
7891 dst_reg->smin_value = S64_MIN;
7892 dst_reg->smax_value = S64_MAX;
7893 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7894 dst_reg->umin_value >>= umax_val;
7895 dst_reg->umax_value >>= umin_val;
3f50f132
JF
7896
7897 /* Its not easy to operate on alu32 bounds here because it depends
7898 * on bits being shifted in. Take easy way out and mark unbounded
7899 * so we can recalculate later from tnum.
7900 */
7901 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7902 __update_reg_bounds(dst_reg);
7903}
7904
3f50f132
JF
7905static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7906 struct bpf_reg_state *src_reg)
07cd2631 7907{
3f50f132 7908 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
7909
7910 /* Upon reaching here, src_known is true and
7911 * umax_val is equal to umin_val.
7912 */
3f50f132
JF
7913 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7914 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 7915
3f50f132
JF
7916 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7917
7918 /* blow away the dst_reg umin_value/umax_value and rely on
7919 * dst_reg var_off to refine the result.
7920 */
7921 dst_reg->u32_min_value = 0;
7922 dst_reg->u32_max_value = U32_MAX;
7923
7924 __mark_reg64_unbounded(dst_reg);
7925 __update_reg32_bounds(dst_reg);
7926}
7927
7928static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7929 struct bpf_reg_state *src_reg)
7930{
7931 u64 umin_val = src_reg->umin_value;
7932
7933 /* Upon reaching here, src_known is true and umax_val is equal
7934 * to umin_val.
7935 */
7936 dst_reg->smin_value >>= umin_val;
7937 dst_reg->smax_value >>= umin_val;
7938
7939 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
7940
7941 /* blow away the dst_reg umin_value/umax_value and rely on
7942 * dst_reg var_off to refine the result.
7943 */
7944 dst_reg->umin_value = 0;
7945 dst_reg->umax_value = U64_MAX;
3f50f132
JF
7946
7947 /* Its not easy to operate on alu32 bounds here because it depends
7948 * on bits being shifted in from upper 32-bits. Take easy way out
7949 * and mark unbounded so we can recalculate later from tnum.
7950 */
7951 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7952 __update_reg_bounds(dst_reg);
7953}
7954
468f6eaf
JH
7955/* WARNING: This function does calculations on 64-bit values, but the actual
7956 * execution may occur on 32-bit values. Therefore, things like bitshifts
7957 * need extra checks in the 32-bit case.
7958 */
f1174f77
EC
7959static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7960 struct bpf_insn *insn,
7961 struct bpf_reg_state *dst_reg,
7962 struct bpf_reg_state src_reg)
969bf05e 7963{
638f5b90 7964 struct bpf_reg_state *regs = cur_regs(env);
48461135 7965 u8 opcode = BPF_OP(insn->code);
b0b3fb67 7966 bool src_known;
b03c9f9f
EC
7967 s64 smin_val, smax_val;
7968 u64 umin_val, umax_val;
3f50f132
JF
7969 s32 s32_min_val, s32_max_val;
7970 u32 u32_min_val, u32_max_val;
468f6eaf 7971 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 7972 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 7973 int ret;
b799207e 7974
b03c9f9f
EC
7975 smin_val = src_reg.smin_value;
7976 smax_val = src_reg.smax_value;
7977 umin_val = src_reg.umin_value;
7978 umax_val = src_reg.umax_value;
f23cc643 7979
3f50f132
JF
7980 s32_min_val = src_reg.s32_min_value;
7981 s32_max_val = src_reg.s32_max_value;
7982 u32_min_val = src_reg.u32_min_value;
7983 u32_max_val = src_reg.u32_max_value;
7984
7985 if (alu32) {
7986 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
7987 if ((src_known &&
7988 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7989 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7990 /* Taint dst register if offset had invalid bounds
7991 * derived from e.g. dead branches.
7992 */
7993 __mark_reg_unknown(env, dst_reg);
7994 return 0;
7995 }
7996 } else {
7997 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
7998 if ((src_known &&
7999 (smin_val != smax_val || umin_val != umax_val)) ||
8000 smin_val > smax_val || umin_val > umax_val) {
8001 /* Taint dst register if offset had invalid bounds
8002 * derived from e.g. dead branches.
8003 */
8004 __mark_reg_unknown(env, dst_reg);
8005 return 0;
8006 }
6f16101e
DB
8007 }
8008
bb7f0f98
AS
8009 if (!src_known &&
8010 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8011 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8012 return 0;
8013 }
8014
f5288193
DB
8015 if (sanitize_needed(opcode)) {
8016 ret = sanitize_val_alu(env, insn);
8017 if (ret < 0)
8018 return sanitize_err(env, insn, ret, NULL, NULL);
8019 }
8020
3f50f132
JF
8021 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8022 * There are two classes of instructions: The first class we track both
8023 * alu32 and alu64 sign/unsigned bounds independently this provides the
8024 * greatest amount of precision when alu operations are mixed with jmp32
8025 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8026 * and BPF_OR. This is possible because these ops have fairly easy to
8027 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8028 * See alu32 verifier tests for examples. The second class of
8029 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8030 * with regards to tracking sign/unsigned bounds because the bits may
8031 * cross subreg boundaries in the alu64 case. When this happens we mark
8032 * the reg unbounded in the subreg bound space and use the resulting
8033 * tnum to calculate an approximation of the sign/unsigned bounds.
8034 */
48461135
JB
8035 switch (opcode) {
8036 case BPF_ADD:
3f50f132 8037 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 8038 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 8039 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
8040 break;
8041 case BPF_SUB:
3f50f132 8042 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 8043 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 8044 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
8045 break;
8046 case BPF_MUL:
3f50f132
JF
8047 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8048 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 8049 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
8050 break;
8051 case BPF_AND:
3f50f132
JF
8052 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8053 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 8054 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
8055 break;
8056 case BPF_OR:
3f50f132
JF
8057 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8058 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 8059 scalar_min_max_or(dst_reg, &src_reg);
48461135 8060 break;
2921c90d
YS
8061 case BPF_XOR:
8062 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8063 scalar32_min_max_xor(dst_reg, &src_reg);
8064 scalar_min_max_xor(dst_reg, &src_reg);
8065 break;
48461135 8066 case BPF_LSH:
468f6eaf
JH
8067 if (umax_val >= insn_bitness) {
8068 /* Shifts greater than 31 or 63 are undefined.
8069 * This includes shifts by a negative number.
b03c9f9f 8070 */
61bd5218 8071 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8072 break;
8073 }
3f50f132
JF
8074 if (alu32)
8075 scalar32_min_max_lsh(dst_reg, &src_reg);
8076 else
8077 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
8078 break;
8079 case BPF_RSH:
468f6eaf
JH
8080 if (umax_val >= insn_bitness) {
8081 /* Shifts greater than 31 or 63 are undefined.
8082 * This includes shifts by a negative number.
b03c9f9f 8083 */
61bd5218 8084 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8085 break;
8086 }
3f50f132
JF
8087 if (alu32)
8088 scalar32_min_max_rsh(dst_reg, &src_reg);
8089 else
8090 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 8091 break;
9cbe1f5a
YS
8092 case BPF_ARSH:
8093 if (umax_val >= insn_bitness) {
8094 /* Shifts greater than 31 or 63 are undefined.
8095 * This includes shifts by a negative number.
8096 */
8097 mark_reg_unknown(env, regs, insn->dst_reg);
8098 break;
8099 }
3f50f132
JF
8100 if (alu32)
8101 scalar32_min_max_arsh(dst_reg, &src_reg);
8102 else
8103 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 8104 break;
48461135 8105 default:
61bd5218 8106 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
8107 break;
8108 }
8109
3f50f132
JF
8110 /* ALU32 ops are zero extended into 64bit register */
8111 if (alu32)
8112 zext_32_to_64(dst_reg);
468f6eaf 8113
294f2fc6 8114 __update_reg_bounds(dst_reg);
b03c9f9f
EC
8115 __reg_deduce_bounds(dst_reg);
8116 __reg_bound_offset(dst_reg);
f1174f77
EC
8117 return 0;
8118}
8119
8120/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8121 * and var_off.
8122 */
8123static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8124 struct bpf_insn *insn)
8125{
f4d7e40a
AS
8126 struct bpf_verifier_state *vstate = env->cur_state;
8127 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8128 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
8129 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8130 u8 opcode = BPF_OP(insn->code);
b5dc0163 8131 int err;
f1174f77
EC
8132
8133 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
8134 src_reg = NULL;
8135 if (dst_reg->type != SCALAR_VALUE)
8136 ptr_reg = dst_reg;
75748837
AS
8137 else
8138 /* Make sure ID is cleared otherwise dst_reg min/max could be
8139 * incorrectly propagated into other registers by find_equal_scalars()
8140 */
8141 dst_reg->id = 0;
f1174f77
EC
8142 if (BPF_SRC(insn->code) == BPF_X) {
8143 src_reg = &regs[insn->src_reg];
f1174f77
EC
8144 if (src_reg->type != SCALAR_VALUE) {
8145 if (dst_reg->type != SCALAR_VALUE) {
8146 /* Combining two pointers by any ALU op yields
82abbf8d
AS
8147 * an arbitrary scalar. Disallow all math except
8148 * pointer subtraction
f1174f77 8149 */
dd066823 8150 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
8151 mark_reg_unknown(env, regs, insn->dst_reg);
8152 return 0;
f1174f77 8153 }
82abbf8d
AS
8154 verbose(env, "R%d pointer %s pointer prohibited\n",
8155 insn->dst_reg,
8156 bpf_alu_string[opcode >> 4]);
8157 return -EACCES;
f1174f77
EC
8158 } else {
8159 /* scalar += pointer
8160 * This is legal, but we have to reverse our
8161 * src/dest handling in computing the range
8162 */
b5dc0163
AS
8163 err = mark_chain_precision(env, insn->dst_reg);
8164 if (err)
8165 return err;
82abbf8d
AS
8166 return adjust_ptr_min_max_vals(env, insn,
8167 src_reg, dst_reg);
f1174f77
EC
8168 }
8169 } else if (ptr_reg) {
8170 /* pointer += scalar */
b5dc0163
AS
8171 err = mark_chain_precision(env, insn->src_reg);
8172 if (err)
8173 return err;
82abbf8d
AS
8174 return adjust_ptr_min_max_vals(env, insn,
8175 dst_reg, src_reg);
f1174f77
EC
8176 }
8177 } else {
8178 /* Pretend the src is a reg with a known value, since we only
8179 * need to be able to read from this state.
8180 */
8181 off_reg.type = SCALAR_VALUE;
b03c9f9f 8182 __mark_reg_known(&off_reg, insn->imm);
f1174f77 8183 src_reg = &off_reg;
82abbf8d
AS
8184 if (ptr_reg) /* pointer += K */
8185 return adjust_ptr_min_max_vals(env, insn,
8186 ptr_reg, src_reg);
f1174f77
EC
8187 }
8188
8189 /* Got here implies adding two SCALAR_VALUEs */
8190 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 8191 print_verifier_state(env, state);
61bd5218 8192 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
8193 return -EINVAL;
8194 }
8195 if (WARN_ON(!src_reg)) {
f4d7e40a 8196 print_verifier_state(env, state);
61bd5218 8197 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
8198 return -EINVAL;
8199 }
8200 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
8201}
8202
17a52670 8203/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 8204static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8205{
638f5b90 8206 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
8207 u8 opcode = BPF_OP(insn->code);
8208 int err;
8209
8210 if (opcode == BPF_END || opcode == BPF_NEG) {
8211 if (opcode == BPF_NEG) {
8212 if (BPF_SRC(insn->code) != 0 ||
8213 insn->src_reg != BPF_REG_0 ||
8214 insn->off != 0 || insn->imm != 0) {
61bd5218 8215 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
8216 return -EINVAL;
8217 }
8218 } else {
8219 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
8220 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8221 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 8222 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
8223 return -EINVAL;
8224 }
8225 }
8226
8227 /* check src operand */
dc503a8a 8228 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8229 if (err)
8230 return err;
8231
1be7f75d 8232 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 8233 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
8234 insn->dst_reg);
8235 return -EACCES;
8236 }
8237
17a52670 8238 /* check dest operand */
dc503a8a 8239 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8240 if (err)
8241 return err;
8242
8243 } else if (opcode == BPF_MOV) {
8244
8245 if (BPF_SRC(insn->code) == BPF_X) {
8246 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8247 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8248 return -EINVAL;
8249 }
8250
8251 /* check src operand */
dc503a8a 8252 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8253 if (err)
8254 return err;
8255 } else {
8256 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8257 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8258 return -EINVAL;
8259 }
8260 }
8261
fbeb1603
AF
8262 /* check dest operand, mark as required later */
8263 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8264 if (err)
8265 return err;
8266
8267 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
8268 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8269 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8270
17a52670
AS
8271 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8272 /* case: R1 = R2
8273 * copy register state to dest reg
8274 */
75748837
AS
8275 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8276 /* Assign src and dst registers the same ID
8277 * that will be used by find_equal_scalars()
8278 * to propagate min/max range.
8279 */
8280 src_reg->id = ++env->id_gen;
e434b8cd
JW
8281 *dst_reg = *src_reg;
8282 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8283 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 8284 } else {
f1174f77 8285 /* R1 = (u32) R2 */
1be7f75d 8286 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
8287 verbose(env,
8288 "R%d partial copy of pointer\n",
1be7f75d
AS
8289 insn->src_reg);
8290 return -EACCES;
e434b8cd
JW
8291 } else if (src_reg->type == SCALAR_VALUE) {
8292 *dst_reg = *src_reg;
75748837
AS
8293 /* Make sure ID is cleared otherwise
8294 * dst_reg min/max could be incorrectly
8295 * propagated into src_reg by find_equal_scalars()
8296 */
8297 dst_reg->id = 0;
e434b8cd 8298 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8299 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
8300 } else {
8301 mark_reg_unknown(env, regs,
8302 insn->dst_reg);
1be7f75d 8303 }
3f50f132 8304 zext_32_to_64(dst_reg);
17a52670
AS
8305 }
8306 } else {
8307 /* case: R = imm
8308 * remember the value we stored into this reg
8309 */
fbeb1603
AF
8310 /* clear any state __mark_reg_known doesn't set */
8311 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 8312 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
8313 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8314 __mark_reg_known(regs + insn->dst_reg,
8315 insn->imm);
8316 } else {
8317 __mark_reg_known(regs + insn->dst_reg,
8318 (u32)insn->imm);
8319 }
17a52670
AS
8320 }
8321
8322 } else if (opcode > BPF_END) {
61bd5218 8323 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
8324 return -EINVAL;
8325
8326 } else { /* all other ALU ops: and, sub, xor, add, ... */
8327
17a52670
AS
8328 if (BPF_SRC(insn->code) == BPF_X) {
8329 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8330 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8331 return -EINVAL;
8332 }
8333 /* check src1 operand */
dc503a8a 8334 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8335 if (err)
8336 return err;
8337 } else {
8338 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8339 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8340 return -EINVAL;
8341 }
8342 }
8343
8344 /* check src2 operand */
dc503a8a 8345 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8346 if (err)
8347 return err;
8348
8349 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8350 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 8351 verbose(env, "div by zero\n");
17a52670
AS
8352 return -EINVAL;
8353 }
8354
229394e8
RV
8355 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8356 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8357 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8358
8359 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 8360 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
8361 return -EINVAL;
8362 }
8363 }
8364
1a0dc1ac 8365 /* check dest operand */
dc503a8a 8366 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
8367 if (err)
8368 return err;
8369
f1174f77 8370 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
8371 }
8372
8373 return 0;
8374}
8375
c6a9efa1
PC
8376static void __find_good_pkt_pointers(struct bpf_func_state *state,
8377 struct bpf_reg_state *dst_reg,
6d94e741 8378 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
8379{
8380 struct bpf_reg_state *reg;
8381 int i;
8382
8383 for (i = 0; i < MAX_BPF_REG; i++) {
8384 reg = &state->regs[i];
8385 if (reg->type == type && reg->id == dst_reg->id)
8386 /* keep the maximum range already checked */
8387 reg->range = max(reg->range, new_range);
8388 }
8389
8390 bpf_for_each_spilled_reg(i, state, reg) {
8391 if (!reg)
8392 continue;
8393 if (reg->type == type && reg->id == dst_reg->id)
8394 reg->range = max(reg->range, new_range);
8395 }
8396}
8397
f4d7e40a 8398static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 8399 struct bpf_reg_state *dst_reg,
f8ddadc4 8400 enum bpf_reg_type type,
fb2a311a 8401 bool range_right_open)
969bf05e 8402{
6d94e741 8403 int new_range, i;
2d2be8ca 8404
fb2a311a
DB
8405 if (dst_reg->off < 0 ||
8406 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
8407 /* This doesn't give us any range */
8408 return;
8409
b03c9f9f
EC
8410 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8411 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
8412 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8413 * than pkt_end, but that's because it's also less than pkt.
8414 */
8415 return;
8416
fb2a311a
DB
8417 new_range = dst_reg->off;
8418 if (range_right_open)
8419 new_range--;
8420
8421 /* Examples for register markings:
2d2be8ca 8422 *
fb2a311a 8423 * pkt_data in dst register:
2d2be8ca
DB
8424 *
8425 * r2 = r3;
8426 * r2 += 8;
8427 * if (r2 > pkt_end) goto <handle exception>
8428 * <access okay>
8429 *
b4e432f1
DB
8430 * r2 = r3;
8431 * r2 += 8;
8432 * if (r2 < pkt_end) goto <access okay>
8433 * <handle exception>
8434 *
2d2be8ca
DB
8435 * Where:
8436 * r2 == dst_reg, pkt_end == src_reg
8437 * r2=pkt(id=n,off=8,r=0)
8438 * r3=pkt(id=n,off=0,r=0)
8439 *
fb2a311a 8440 * pkt_data in src register:
2d2be8ca
DB
8441 *
8442 * r2 = r3;
8443 * r2 += 8;
8444 * if (pkt_end >= r2) goto <access okay>
8445 * <handle exception>
8446 *
b4e432f1
DB
8447 * r2 = r3;
8448 * r2 += 8;
8449 * if (pkt_end <= r2) goto <handle exception>
8450 * <access okay>
8451 *
2d2be8ca
DB
8452 * Where:
8453 * pkt_end == dst_reg, r2 == src_reg
8454 * r2=pkt(id=n,off=8,r=0)
8455 * r3=pkt(id=n,off=0,r=0)
8456 *
8457 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8458 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8459 * and [r3, r3 + 8-1) respectively is safe to access depending on
8460 * the check.
969bf05e 8461 */
2d2be8ca 8462
f1174f77
EC
8463 /* If our ids match, then we must have the same max_value. And we
8464 * don't care about the other reg's fixed offset, since if it's too big
8465 * the range won't allow anything.
8466 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8467 */
c6a9efa1
PC
8468 for (i = 0; i <= vstate->curframe; i++)
8469 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8470 new_range);
969bf05e
AS
8471}
8472
3f50f132 8473static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8474{
3f50f132
JF
8475 struct tnum subreg = tnum_subreg(reg->var_off);
8476 s32 sval = (s32)val;
a72dafaf 8477
3f50f132
JF
8478 switch (opcode) {
8479 case BPF_JEQ:
8480 if (tnum_is_const(subreg))
8481 return !!tnum_equals_const(subreg, val);
8482 break;
8483 case BPF_JNE:
8484 if (tnum_is_const(subreg))
8485 return !tnum_equals_const(subreg, val);
8486 break;
8487 case BPF_JSET:
8488 if ((~subreg.mask & subreg.value) & val)
8489 return 1;
8490 if (!((subreg.mask | subreg.value) & val))
8491 return 0;
8492 break;
8493 case BPF_JGT:
8494 if (reg->u32_min_value > val)
8495 return 1;
8496 else if (reg->u32_max_value <= val)
8497 return 0;
8498 break;
8499 case BPF_JSGT:
8500 if (reg->s32_min_value > sval)
8501 return 1;
ee114dd6 8502 else if (reg->s32_max_value <= sval)
3f50f132
JF
8503 return 0;
8504 break;
8505 case BPF_JLT:
8506 if (reg->u32_max_value < val)
8507 return 1;
8508 else if (reg->u32_min_value >= val)
8509 return 0;
8510 break;
8511 case BPF_JSLT:
8512 if (reg->s32_max_value < sval)
8513 return 1;
8514 else if (reg->s32_min_value >= sval)
8515 return 0;
8516 break;
8517 case BPF_JGE:
8518 if (reg->u32_min_value >= val)
8519 return 1;
8520 else if (reg->u32_max_value < val)
8521 return 0;
8522 break;
8523 case BPF_JSGE:
8524 if (reg->s32_min_value >= sval)
8525 return 1;
8526 else if (reg->s32_max_value < sval)
8527 return 0;
8528 break;
8529 case BPF_JLE:
8530 if (reg->u32_max_value <= val)
8531 return 1;
8532 else if (reg->u32_min_value > val)
8533 return 0;
8534 break;
8535 case BPF_JSLE:
8536 if (reg->s32_max_value <= sval)
8537 return 1;
8538 else if (reg->s32_min_value > sval)
8539 return 0;
8540 break;
8541 }
4f7b3e82 8542
3f50f132
JF
8543 return -1;
8544}
092ed096 8545
3f50f132
JF
8546
8547static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8548{
8549 s64 sval = (s64)val;
a72dafaf 8550
4f7b3e82
AS
8551 switch (opcode) {
8552 case BPF_JEQ:
8553 if (tnum_is_const(reg->var_off))
8554 return !!tnum_equals_const(reg->var_off, val);
8555 break;
8556 case BPF_JNE:
8557 if (tnum_is_const(reg->var_off))
8558 return !tnum_equals_const(reg->var_off, val);
8559 break;
960ea056
JK
8560 case BPF_JSET:
8561 if ((~reg->var_off.mask & reg->var_off.value) & val)
8562 return 1;
8563 if (!((reg->var_off.mask | reg->var_off.value) & val))
8564 return 0;
8565 break;
4f7b3e82
AS
8566 case BPF_JGT:
8567 if (reg->umin_value > val)
8568 return 1;
8569 else if (reg->umax_value <= val)
8570 return 0;
8571 break;
8572 case BPF_JSGT:
a72dafaf 8573 if (reg->smin_value > sval)
4f7b3e82 8574 return 1;
ee114dd6 8575 else if (reg->smax_value <= sval)
4f7b3e82
AS
8576 return 0;
8577 break;
8578 case BPF_JLT:
8579 if (reg->umax_value < val)
8580 return 1;
8581 else if (reg->umin_value >= val)
8582 return 0;
8583 break;
8584 case BPF_JSLT:
a72dafaf 8585 if (reg->smax_value < sval)
4f7b3e82 8586 return 1;
a72dafaf 8587 else if (reg->smin_value >= sval)
4f7b3e82
AS
8588 return 0;
8589 break;
8590 case BPF_JGE:
8591 if (reg->umin_value >= val)
8592 return 1;
8593 else if (reg->umax_value < val)
8594 return 0;
8595 break;
8596 case BPF_JSGE:
a72dafaf 8597 if (reg->smin_value >= sval)
4f7b3e82 8598 return 1;
a72dafaf 8599 else if (reg->smax_value < sval)
4f7b3e82
AS
8600 return 0;
8601 break;
8602 case BPF_JLE:
8603 if (reg->umax_value <= val)
8604 return 1;
8605 else if (reg->umin_value > val)
8606 return 0;
8607 break;
8608 case BPF_JSLE:
a72dafaf 8609 if (reg->smax_value <= sval)
4f7b3e82 8610 return 1;
a72dafaf 8611 else if (reg->smin_value > sval)
4f7b3e82
AS
8612 return 0;
8613 break;
8614 }
8615
8616 return -1;
8617}
8618
3f50f132
JF
8619/* compute branch direction of the expression "if (reg opcode val) goto target;"
8620 * and return:
8621 * 1 - branch will be taken and "goto target" will be executed
8622 * 0 - branch will not be taken and fall-through to next insn
8623 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8624 * range [0,10]
604dca5e 8625 */
3f50f132
JF
8626static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8627 bool is_jmp32)
604dca5e 8628{
cac616db
JF
8629 if (__is_pointer_value(false, reg)) {
8630 if (!reg_type_not_null(reg->type))
8631 return -1;
8632
8633 /* If pointer is valid tests against zero will fail so we can
8634 * use this to direct branch taken.
8635 */
8636 if (val != 0)
8637 return -1;
8638
8639 switch (opcode) {
8640 case BPF_JEQ:
8641 return 0;
8642 case BPF_JNE:
8643 return 1;
8644 default:
8645 return -1;
8646 }
8647 }
604dca5e 8648
3f50f132
JF
8649 if (is_jmp32)
8650 return is_branch32_taken(reg, val, opcode);
8651 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8652}
8653
6d94e741
AS
8654static int flip_opcode(u32 opcode)
8655{
8656 /* How can we transform "a <op> b" into "b <op> a"? */
8657 static const u8 opcode_flip[16] = {
8658 /* these stay the same */
8659 [BPF_JEQ >> 4] = BPF_JEQ,
8660 [BPF_JNE >> 4] = BPF_JNE,
8661 [BPF_JSET >> 4] = BPF_JSET,
8662 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8663 [BPF_JGE >> 4] = BPF_JLE,
8664 [BPF_JGT >> 4] = BPF_JLT,
8665 [BPF_JLE >> 4] = BPF_JGE,
8666 [BPF_JLT >> 4] = BPF_JGT,
8667 [BPF_JSGE >> 4] = BPF_JSLE,
8668 [BPF_JSGT >> 4] = BPF_JSLT,
8669 [BPF_JSLE >> 4] = BPF_JSGE,
8670 [BPF_JSLT >> 4] = BPF_JSGT
8671 };
8672 return opcode_flip[opcode >> 4];
8673}
8674
8675static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8676 struct bpf_reg_state *src_reg,
8677 u8 opcode)
8678{
8679 struct bpf_reg_state *pkt;
8680
8681 if (src_reg->type == PTR_TO_PACKET_END) {
8682 pkt = dst_reg;
8683 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8684 pkt = src_reg;
8685 opcode = flip_opcode(opcode);
8686 } else {
8687 return -1;
8688 }
8689
8690 if (pkt->range >= 0)
8691 return -1;
8692
8693 switch (opcode) {
8694 case BPF_JLE:
8695 /* pkt <= pkt_end */
8696 fallthrough;
8697 case BPF_JGT:
8698 /* pkt > pkt_end */
8699 if (pkt->range == BEYOND_PKT_END)
8700 /* pkt has at last one extra byte beyond pkt_end */
8701 return opcode == BPF_JGT;
8702 break;
8703 case BPF_JLT:
8704 /* pkt < pkt_end */
8705 fallthrough;
8706 case BPF_JGE:
8707 /* pkt >= pkt_end */
8708 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8709 return opcode == BPF_JGE;
8710 break;
8711 }
8712 return -1;
8713}
8714
48461135
JB
8715/* Adjusts the register min/max values in the case that the dst_reg is the
8716 * variable register that we are working on, and src_reg is a constant or we're
8717 * simply doing a BPF_K check.
f1174f77 8718 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8719 */
8720static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8721 struct bpf_reg_state *false_reg,
8722 u64 val, u32 val32,
092ed096 8723 u8 opcode, bool is_jmp32)
48461135 8724{
3f50f132
JF
8725 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8726 struct tnum false_64off = false_reg->var_off;
8727 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8728 struct tnum true_64off = true_reg->var_off;
8729 s64 sval = (s64)val;
8730 s32 sval32 = (s32)val32;
a72dafaf 8731
f1174f77
EC
8732 /* If the dst_reg is a pointer, we can't learn anything about its
8733 * variable offset from the compare (unless src_reg were a pointer into
8734 * the same object, but we don't bother with that.
8735 * Since false_reg and true_reg have the same type by construction, we
8736 * only need to check one of them for pointerness.
8737 */
8738 if (__is_pointer_value(false, false_reg))
8739 return;
4cabc5b1 8740
48461135
JB
8741 switch (opcode) {
8742 case BPF_JEQ:
48461135 8743 case BPF_JNE:
a72dafaf
JW
8744 {
8745 struct bpf_reg_state *reg =
8746 opcode == BPF_JEQ ? true_reg : false_reg;
8747
e688c3db
AS
8748 /* JEQ/JNE comparison doesn't change the register equivalence.
8749 * r1 = r2;
8750 * if (r1 == 42) goto label;
8751 * ...
8752 * label: // here both r1 and r2 are known to be 42.
8753 *
8754 * Hence when marking register as known preserve it's ID.
48461135 8755 */
3f50f132
JF
8756 if (is_jmp32)
8757 __mark_reg32_known(reg, val32);
8758 else
e688c3db 8759 ___mark_reg_known(reg, val);
48461135 8760 break;
a72dafaf 8761 }
960ea056 8762 case BPF_JSET:
3f50f132
JF
8763 if (is_jmp32) {
8764 false_32off = tnum_and(false_32off, tnum_const(~val32));
8765 if (is_power_of_2(val32))
8766 true_32off = tnum_or(true_32off,
8767 tnum_const(val32));
8768 } else {
8769 false_64off = tnum_and(false_64off, tnum_const(~val));
8770 if (is_power_of_2(val))
8771 true_64off = tnum_or(true_64off,
8772 tnum_const(val));
8773 }
960ea056 8774 break;
48461135 8775 case BPF_JGE:
a72dafaf
JW
8776 case BPF_JGT:
8777 {
3f50f132
JF
8778 if (is_jmp32) {
8779 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8780 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8781
8782 false_reg->u32_max_value = min(false_reg->u32_max_value,
8783 false_umax);
8784 true_reg->u32_min_value = max(true_reg->u32_min_value,
8785 true_umin);
8786 } else {
8787 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8788 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8789
8790 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8791 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8792 }
b03c9f9f 8793 break;
a72dafaf 8794 }
48461135 8795 case BPF_JSGE:
a72dafaf
JW
8796 case BPF_JSGT:
8797 {
3f50f132
JF
8798 if (is_jmp32) {
8799 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8800 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8801
3f50f132
JF
8802 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8803 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8804 } else {
8805 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8806 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8807
8808 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8809 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8810 }
48461135 8811 break;
a72dafaf 8812 }
b4e432f1 8813 case BPF_JLE:
a72dafaf
JW
8814 case BPF_JLT:
8815 {
3f50f132
JF
8816 if (is_jmp32) {
8817 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8818 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8819
8820 false_reg->u32_min_value = max(false_reg->u32_min_value,
8821 false_umin);
8822 true_reg->u32_max_value = min(true_reg->u32_max_value,
8823 true_umax);
8824 } else {
8825 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8826 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8827
8828 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8829 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8830 }
b4e432f1 8831 break;
a72dafaf 8832 }
b4e432f1 8833 case BPF_JSLE:
a72dafaf
JW
8834 case BPF_JSLT:
8835 {
3f50f132
JF
8836 if (is_jmp32) {
8837 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8838 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8839
3f50f132
JF
8840 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8841 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8842 } else {
8843 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8844 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8845
8846 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8847 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8848 }
b4e432f1 8849 break;
a72dafaf 8850 }
48461135 8851 default:
0fc31b10 8852 return;
48461135
JB
8853 }
8854
3f50f132
JF
8855 if (is_jmp32) {
8856 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8857 tnum_subreg(false_32off));
8858 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8859 tnum_subreg(true_32off));
8860 __reg_combine_32_into_64(false_reg);
8861 __reg_combine_32_into_64(true_reg);
8862 } else {
8863 false_reg->var_off = false_64off;
8864 true_reg->var_off = true_64off;
8865 __reg_combine_64_into_32(false_reg);
8866 __reg_combine_64_into_32(true_reg);
8867 }
48461135
JB
8868}
8869
f1174f77
EC
8870/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8871 * the variable reg.
48461135
JB
8872 */
8873static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8874 struct bpf_reg_state *false_reg,
8875 u64 val, u32 val32,
092ed096 8876 u8 opcode, bool is_jmp32)
48461135 8877{
6d94e741 8878 opcode = flip_opcode(opcode);
0fc31b10
JH
8879 /* This uses zero as "not present in table"; luckily the zero opcode,
8880 * BPF_JA, can't get here.
b03c9f9f 8881 */
0fc31b10 8882 if (opcode)
3f50f132 8883 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8884}
8885
8886/* Regs are known to be equal, so intersect their min/max/var_off */
8887static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8888 struct bpf_reg_state *dst_reg)
8889{
b03c9f9f
EC
8890 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8891 dst_reg->umin_value);
8892 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8893 dst_reg->umax_value);
8894 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8895 dst_reg->smin_value);
8896 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8897 dst_reg->smax_value);
f1174f77
EC
8898 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8899 dst_reg->var_off);
b03c9f9f
EC
8900 /* We might have learned new bounds from the var_off. */
8901 __update_reg_bounds(src_reg);
8902 __update_reg_bounds(dst_reg);
8903 /* We might have learned something about the sign bit. */
8904 __reg_deduce_bounds(src_reg);
8905 __reg_deduce_bounds(dst_reg);
8906 /* We might have learned some bits from the bounds. */
8907 __reg_bound_offset(src_reg);
8908 __reg_bound_offset(dst_reg);
8909 /* Intersecting with the old var_off might have improved our bounds
8910 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8911 * then new var_off is (0; 0x7f...fc) which improves our umax.
8912 */
8913 __update_reg_bounds(src_reg);
8914 __update_reg_bounds(dst_reg);
f1174f77
EC
8915}
8916
8917static void reg_combine_min_max(struct bpf_reg_state *true_src,
8918 struct bpf_reg_state *true_dst,
8919 struct bpf_reg_state *false_src,
8920 struct bpf_reg_state *false_dst,
8921 u8 opcode)
8922{
8923 switch (opcode) {
8924 case BPF_JEQ:
8925 __reg_combine_min_max(true_src, true_dst);
8926 break;
8927 case BPF_JNE:
8928 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 8929 break;
4cabc5b1 8930 }
48461135
JB
8931}
8932
fd978bf7
JS
8933static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8934 struct bpf_reg_state *reg, u32 id,
840b9615 8935 bool is_null)
57a09bf0 8936{
93c230e3
MKL
8937 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8938 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
8939 /* Old offset (both fixed and variable parts) should
8940 * have been known-zero, because we don't allow pointer
8941 * arithmetic on pointers that might be NULL.
8942 */
b03c9f9f
EC
8943 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8944 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 8945 reg->off)) {
b03c9f9f
EC
8946 __mark_reg_known_zero(reg);
8947 reg->off = 0;
f1174f77
EC
8948 }
8949 if (is_null) {
8950 reg->type = SCALAR_VALUE;
1b986589
MKL
8951 /* We don't need id and ref_obj_id from this point
8952 * onwards anymore, thus we should better reset it,
8953 * so that state pruning has chances to take effect.
8954 */
8955 reg->id = 0;
8956 reg->ref_obj_id = 0;
4ddb7416
DB
8957
8958 return;
8959 }
8960
8961 mark_ptr_not_null_reg(reg);
8962
8963 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
8964 /* For not-NULL ptr, reg->ref_obj_id will be reset
8965 * in release_reg_references().
8966 *
8967 * reg->id is still used by spin_lock ptr. Other
8968 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
8969 */
8970 reg->id = 0;
56f668df 8971 }
57a09bf0
TG
8972 }
8973}
8974
c6a9efa1
PC
8975static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8976 bool is_null)
8977{
8978 struct bpf_reg_state *reg;
8979 int i;
8980
8981 for (i = 0; i < MAX_BPF_REG; i++)
8982 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8983
8984 bpf_for_each_spilled_reg(i, state, reg) {
8985 if (!reg)
8986 continue;
8987 mark_ptr_or_null_reg(state, reg, id, is_null);
8988 }
8989}
8990
57a09bf0
TG
8991/* The logic is similar to find_good_pkt_pointers(), both could eventually
8992 * be folded together at some point.
8993 */
840b9615
JS
8994static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8995 bool is_null)
57a09bf0 8996{
f4d7e40a 8997 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 8998 struct bpf_reg_state *regs = state->regs;
1b986589 8999 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 9000 u32 id = regs[regno].id;
c6a9efa1 9001 int i;
57a09bf0 9002
1b986589
MKL
9003 if (ref_obj_id && ref_obj_id == id && is_null)
9004 /* regs[regno] is in the " == NULL" branch.
9005 * No one could have freed the reference state before
9006 * doing the NULL check.
9007 */
9008 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9009
c6a9efa1
PC
9010 for (i = 0; i <= vstate->curframe; i++)
9011 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
9012}
9013
5beca081
DB
9014static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9015 struct bpf_reg_state *dst_reg,
9016 struct bpf_reg_state *src_reg,
9017 struct bpf_verifier_state *this_branch,
9018 struct bpf_verifier_state *other_branch)
9019{
9020 if (BPF_SRC(insn->code) != BPF_X)
9021 return false;
9022
092ed096
JW
9023 /* Pointers are always 64-bit. */
9024 if (BPF_CLASS(insn->code) == BPF_JMP32)
9025 return false;
9026
5beca081
DB
9027 switch (BPF_OP(insn->code)) {
9028 case BPF_JGT:
9029 if ((dst_reg->type == PTR_TO_PACKET &&
9030 src_reg->type == PTR_TO_PACKET_END) ||
9031 (dst_reg->type == PTR_TO_PACKET_META &&
9032 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9033 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9034 find_good_pkt_pointers(this_branch, dst_reg,
9035 dst_reg->type, false);
6d94e741 9036 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9037 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9038 src_reg->type == PTR_TO_PACKET) ||
9039 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9040 src_reg->type == PTR_TO_PACKET_META)) {
9041 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9042 find_good_pkt_pointers(other_branch, src_reg,
9043 src_reg->type, true);
6d94e741 9044 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9045 } else {
9046 return false;
9047 }
9048 break;
9049 case BPF_JLT:
9050 if ((dst_reg->type == PTR_TO_PACKET &&
9051 src_reg->type == PTR_TO_PACKET_END) ||
9052 (dst_reg->type == PTR_TO_PACKET_META &&
9053 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9054 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9055 find_good_pkt_pointers(other_branch, dst_reg,
9056 dst_reg->type, true);
6d94e741 9057 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
9058 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9059 src_reg->type == PTR_TO_PACKET) ||
9060 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9061 src_reg->type == PTR_TO_PACKET_META)) {
9062 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9063 find_good_pkt_pointers(this_branch, src_reg,
9064 src_reg->type, false);
6d94e741 9065 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
9066 } else {
9067 return false;
9068 }
9069 break;
9070 case BPF_JGE:
9071 if ((dst_reg->type == PTR_TO_PACKET &&
9072 src_reg->type == PTR_TO_PACKET_END) ||
9073 (dst_reg->type == PTR_TO_PACKET_META &&
9074 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9075 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9076 find_good_pkt_pointers(this_branch, dst_reg,
9077 dst_reg->type, true);
6d94e741 9078 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
9079 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9080 src_reg->type == PTR_TO_PACKET) ||
9081 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9082 src_reg->type == PTR_TO_PACKET_META)) {
9083 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9084 find_good_pkt_pointers(other_branch, src_reg,
9085 src_reg->type, false);
6d94e741 9086 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
9087 } else {
9088 return false;
9089 }
9090 break;
9091 case BPF_JLE:
9092 if ((dst_reg->type == PTR_TO_PACKET &&
9093 src_reg->type == PTR_TO_PACKET_END) ||
9094 (dst_reg->type == PTR_TO_PACKET_META &&
9095 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9096 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9097 find_good_pkt_pointers(other_branch, dst_reg,
9098 dst_reg->type, false);
6d94e741 9099 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
9100 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9101 src_reg->type == PTR_TO_PACKET) ||
9102 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9103 src_reg->type == PTR_TO_PACKET_META)) {
9104 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9105 find_good_pkt_pointers(this_branch, src_reg,
9106 src_reg->type, true);
6d94e741 9107 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
9108 } else {
9109 return false;
9110 }
9111 break;
9112 default:
9113 return false;
9114 }
9115
9116 return true;
9117}
9118
75748837
AS
9119static void find_equal_scalars(struct bpf_verifier_state *vstate,
9120 struct bpf_reg_state *known_reg)
9121{
9122 struct bpf_func_state *state;
9123 struct bpf_reg_state *reg;
9124 int i, j;
9125
9126 for (i = 0; i <= vstate->curframe; i++) {
9127 state = vstate->frame[i];
9128 for (j = 0; j < MAX_BPF_REG; j++) {
9129 reg = &state->regs[j];
9130 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9131 *reg = *known_reg;
9132 }
9133
9134 bpf_for_each_spilled_reg(j, state, reg) {
9135 if (!reg)
9136 continue;
9137 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9138 *reg = *known_reg;
9139 }
9140 }
9141}
9142
58e2af8b 9143static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
9144 struct bpf_insn *insn, int *insn_idx)
9145{
f4d7e40a
AS
9146 struct bpf_verifier_state *this_branch = env->cur_state;
9147 struct bpf_verifier_state *other_branch;
9148 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 9149 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 9150 u8 opcode = BPF_OP(insn->code);
092ed096 9151 bool is_jmp32;
fb8d251e 9152 int pred = -1;
17a52670
AS
9153 int err;
9154
092ed096
JW
9155 /* Only conditional jumps are expected to reach here. */
9156 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9157 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
9158 return -EINVAL;
9159 }
9160
9161 if (BPF_SRC(insn->code) == BPF_X) {
9162 if (insn->imm != 0) {
092ed096 9163 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9164 return -EINVAL;
9165 }
9166
9167 /* check src1 operand */
dc503a8a 9168 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9169 if (err)
9170 return err;
1be7f75d
AS
9171
9172 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 9173 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
9174 insn->src_reg);
9175 return -EACCES;
9176 }
fb8d251e 9177 src_reg = &regs[insn->src_reg];
17a52670
AS
9178 } else {
9179 if (insn->src_reg != BPF_REG_0) {
092ed096 9180 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9181 return -EINVAL;
9182 }
9183 }
9184
9185 /* check src2 operand */
dc503a8a 9186 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9187 if (err)
9188 return err;
9189
1a0dc1ac 9190 dst_reg = &regs[insn->dst_reg];
092ed096 9191 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 9192
3f50f132
JF
9193 if (BPF_SRC(insn->code) == BPF_K) {
9194 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9195 } else if (src_reg->type == SCALAR_VALUE &&
9196 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9197 pred = is_branch_taken(dst_reg,
9198 tnum_subreg(src_reg->var_off).value,
9199 opcode,
9200 is_jmp32);
9201 } else if (src_reg->type == SCALAR_VALUE &&
9202 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9203 pred = is_branch_taken(dst_reg,
9204 src_reg->var_off.value,
9205 opcode,
9206 is_jmp32);
6d94e741
AS
9207 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9208 reg_is_pkt_pointer_any(src_reg) &&
9209 !is_jmp32) {
9210 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
9211 }
9212
b5dc0163 9213 if (pred >= 0) {
cac616db
JF
9214 /* If we get here with a dst_reg pointer type it is because
9215 * above is_branch_taken() special cased the 0 comparison.
9216 */
9217 if (!__is_pointer_value(false, dst_reg))
9218 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
9219 if (BPF_SRC(insn->code) == BPF_X && !err &&
9220 !__is_pointer_value(false, src_reg))
b5dc0163
AS
9221 err = mark_chain_precision(env, insn->src_reg);
9222 if (err)
9223 return err;
9224 }
9183671a 9225
fb8d251e 9226 if (pred == 1) {
9183671a
DB
9227 /* Only follow the goto, ignore fall-through. If needed, push
9228 * the fall-through branch for simulation under speculative
9229 * execution.
9230 */
9231 if (!env->bypass_spec_v1 &&
9232 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9233 *insn_idx))
9234 return -EFAULT;
fb8d251e
AS
9235 *insn_idx += insn->off;
9236 return 0;
9237 } else if (pred == 0) {
9183671a
DB
9238 /* Only follow the fall-through branch, since that's where the
9239 * program will go. If needed, push the goto branch for
9240 * simulation under speculative execution.
fb8d251e 9241 */
9183671a
DB
9242 if (!env->bypass_spec_v1 &&
9243 !sanitize_speculative_path(env, insn,
9244 *insn_idx + insn->off + 1,
9245 *insn_idx))
9246 return -EFAULT;
fb8d251e 9247 return 0;
17a52670
AS
9248 }
9249
979d63d5
DB
9250 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9251 false);
17a52670
AS
9252 if (!other_branch)
9253 return -EFAULT;
f4d7e40a 9254 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 9255
48461135
JB
9256 /* detect if we are comparing against a constant value so we can adjust
9257 * our min/max values for our dst register.
f1174f77
EC
9258 * this is only legit if both are scalars (or pointers to the same
9259 * object, I suppose, but we don't support that right now), because
9260 * otherwise the different base pointers mean the offsets aren't
9261 * comparable.
48461135
JB
9262 */
9263 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 9264 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 9265
f1174f77 9266 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
9267 src_reg->type == SCALAR_VALUE) {
9268 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
9269 (is_jmp32 &&
9270 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 9271 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 9272 dst_reg,
3f50f132
JF
9273 src_reg->var_off.value,
9274 tnum_subreg(src_reg->var_off).value,
092ed096
JW
9275 opcode, is_jmp32);
9276 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
9277 (is_jmp32 &&
9278 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 9279 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 9280 src_reg,
3f50f132
JF
9281 dst_reg->var_off.value,
9282 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
9283 opcode, is_jmp32);
9284 else if (!is_jmp32 &&
9285 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 9286 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
9287 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9288 &other_branch_regs[insn->dst_reg],
092ed096 9289 src_reg, dst_reg, opcode);
e688c3db
AS
9290 if (src_reg->id &&
9291 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
9292 find_equal_scalars(this_branch, src_reg);
9293 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9294 }
9295
f1174f77
EC
9296 }
9297 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 9298 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
9299 dst_reg, insn->imm, (u32)insn->imm,
9300 opcode, is_jmp32);
48461135
JB
9301 }
9302
e688c3db
AS
9303 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9304 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
9305 find_equal_scalars(this_branch, dst_reg);
9306 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9307 }
9308
092ed096
JW
9309 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9310 * NOTE: these optimizations below are related with pointer comparison
9311 * which will never be JMP32.
9312 */
9313 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 9314 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
9315 reg_type_may_be_null(dst_reg->type)) {
9316 /* Mark all identical registers in each branch as either
57a09bf0
TG
9317 * safe or unknown depending R == 0 or R != 0 conditional.
9318 */
840b9615
JS
9319 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9320 opcode == BPF_JNE);
9321 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9322 opcode == BPF_JEQ);
5beca081
DB
9323 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9324 this_branch, other_branch) &&
9325 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
9326 verbose(env, "R%d pointer comparison prohibited\n",
9327 insn->dst_reg);
1be7f75d 9328 return -EACCES;
17a52670 9329 }
06ee7115 9330 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 9331 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
9332 return 0;
9333}
9334
17a52670 9335/* verify BPF_LD_IMM64 instruction */
58e2af8b 9336static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9337{
d8eca5bb 9338 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 9339 struct bpf_reg_state *regs = cur_regs(env);
4976b718 9340 struct bpf_reg_state *dst_reg;
d8eca5bb 9341 struct bpf_map *map;
17a52670
AS
9342 int err;
9343
9344 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 9345 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
9346 return -EINVAL;
9347 }
9348 if (insn->off != 0) {
61bd5218 9349 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
9350 return -EINVAL;
9351 }
9352
dc503a8a 9353 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9354 if (err)
9355 return err;
9356
4976b718 9357 dst_reg = &regs[insn->dst_reg];
6b173873 9358 if (insn->src_reg == 0) {
6b173873
JK
9359 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9360
4976b718 9361 dst_reg->type = SCALAR_VALUE;
b03c9f9f 9362 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 9363 return 0;
6b173873 9364 }
17a52670 9365
4976b718
HL
9366 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9367 mark_reg_known_zero(env, regs, insn->dst_reg);
9368
9369 dst_reg->type = aux->btf_var.reg_type;
9370 switch (dst_reg->type) {
9371 case PTR_TO_MEM:
9372 dst_reg->mem_size = aux->btf_var.mem_size;
9373 break;
9374 case PTR_TO_BTF_ID:
eaa6bcb7 9375 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 9376 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
9377 dst_reg->btf_id = aux->btf_var.btf_id;
9378 break;
9379 default:
9380 verbose(env, "bpf verifier is misconfigured\n");
9381 return -EFAULT;
9382 }
9383 return 0;
9384 }
9385
69c087ba
YS
9386 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9387 struct bpf_prog_aux *aux = env->prog->aux;
9388 u32 subprogno = insn[1].imm;
9389
9390 if (!aux->func_info) {
9391 verbose(env, "missing btf func_info\n");
9392 return -EINVAL;
9393 }
9394 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9395 verbose(env, "callback function not static\n");
9396 return -EINVAL;
9397 }
9398
9399 dst_reg->type = PTR_TO_FUNC;
9400 dst_reg->subprogno = subprogno;
9401 return 0;
9402 }
9403
d8eca5bb
DB
9404 map = env->used_maps[aux->map_index];
9405 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 9406 dst_reg->map_ptr = map;
d8eca5bb 9407
387544bf
AS
9408 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9409 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
9410 dst_reg->type = PTR_TO_MAP_VALUE;
9411 dst_reg->off = aux->map_off;
d8eca5bb 9412 if (map_value_has_spin_lock(map))
4976b718 9413 dst_reg->id = ++env->id_gen;
387544bf
AS
9414 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9415 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 9416 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
9417 } else {
9418 verbose(env, "bpf verifier is misconfigured\n");
9419 return -EINVAL;
9420 }
17a52670 9421
17a52670
AS
9422 return 0;
9423}
9424
96be4325
DB
9425static bool may_access_skb(enum bpf_prog_type type)
9426{
9427 switch (type) {
9428 case BPF_PROG_TYPE_SOCKET_FILTER:
9429 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 9430 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
9431 return true;
9432 default:
9433 return false;
9434 }
9435}
9436
ddd872bc
AS
9437/* verify safety of LD_ABS|LD_IND instructions:
9438 * - they can only appear in the programs where ctx == skb
9439 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9440 * preserve R6-R9, and store return value into R0
9441 *
9442 * Implicit input:
9443 * ctx == skb == R6 == CTX
9444 *
9445 * Explicit input:
9446 * SRC == any register
9447 * IMM == 32-bit immediate
9448 *
9449 * Output:
9450 * R0 - 8/16/32-bit skb data converted to cpu endianness
9451 */
58e2af8b 9452static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9453{
638f5b90 9454 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9455 static const int ctx_reg = BPF_REG_6;
ddd872bc 9456 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9457 int i, err;
9458
7e40781c 9459 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9460 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9461 return -EINVAL;
9462 }
9463
e0cea7ce
DB
9464 if (!env->ops->gen_ld_abs) {
9465 verbose(env, "bpf verifier is misconfigured\n");
9466 return -EINVAL;
9467 }
9468
ddd872bc 9469 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9470 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9471 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9472 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9473 return -EINVAL;
9474 }
9475
9476 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9477 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9478 if (err)
9479 return err;
9480
fd978bf7
JS
9481 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9482 * gen_ld_abs() may terminate the program at runtime, leading to
9483 * reference leak.
9484 */
9485 err = check_reference_leak(env);
9486 if (err) {
9487 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9488 return err;
9489 }
9490
d83525ca
AS
9491 if (env->cur_state->active_spin_lock) {
9492 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9493 return -EINVAL;
9494 }
9495
6d4f151a 9496 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9497 verbose(env,
9498 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9499 return -EINVAL;
9500 }
9501
9502 if (mode == BPF_IND) {
9503 /* check explicit source operand */
dc503a8a 9504 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9505 if (err)
9506 return err;
9507 }
9508
6d4f151a
DB
9509 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9510 if (err < 0)
9511 return err;
9512
ddd872bc 9513 /* reset caller saved regs to unreadable */
dc503a8a 9514 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9515 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9516 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9517 }
ddd872bc
AS
9518
9519 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9520 * the value fetched from the packet.
9521 * Already marked as written above.
ddd872bc 9522 */
61bd5218 9523 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9524 /* ld_abs load up to 32-bit skb data. */
9525 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9526 return 0;
9527}
9528
390ee7e2
AS
9529static int check_return_code(struct bpf_verifier_env *env)
9530{
5cf1e914 9531 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9532 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9533 struct bpf_reg_state *reg;
9534 struct tnum range = tnum_range(0, 1);
7e40781c 9535 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9536 int err;
bfc6bb74
AS
9537 struct bpf_func_state *frame = env->cur_state->frame[0];
9538 const bool is_subprog = frame->subprogno;
27ae7997 9539
9e4e01df 9540 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9541 if (!is_subprog &&
9542 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9543 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9544 !prog->aux->attach_func_proto->type)
9545 return 0;
9546
8fb33b60 9547 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9548 * to return the value from eBPF program.
9549 * Make sure that it's readable at this time
9550 * of bpf_exit, which means that program wrote
9551 * something into it earlier
9552 */
9553 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9554 if (err)
9555 return err;
9556
9557 if (is_pointer_value(env, BPF_REG_0)) {
9558 verbose(env, "R0 leaks addr as return value\n");
9559 return -EACCES;
9560 }
390ee7e2 9561
f782e2c3 9562 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
9563
9564 if (frame->in_async_callback_fn) {
9565 /* enforce return zero from async callbacks like timer */
9566 if (reg->type != SCALAR_VALUE) {
9567 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9568 reg_type_str[reg->type]);
9569 return -EINVAL;
9570 }
9571
9572 if (!tnum_in(tnum_const(0), reg->var_off)) {
9573 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9574 return -EINVAL;
9575 }
9576 return 0;
9577 }
9578
f782e2c3
DB
9579 if (is_subprog) {
9580 if (reg->type != SCALAR_VALUE) {
9581 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9582 reg_type_str[reg->type]);
9583 return -EINVAL;
9584 }
9585 return 0;
9586 }
9587
7e40781c 9588 switch (prog_type) {
983695fa
DB
9589 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9590 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9591 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9592 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9593 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9594 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9595 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9596 range = tnum_range(1, 1);
77241217
SF
9597 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9598 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9599 range = tnum_range(0, 3);
ed4ed404 9600 break;
390ee7e2 9601 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9602 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9603 range = tnum_range(0, 3);
9604 enforce_attach_type_range = tnum_range(2, 3);
9605 }
ed4ed404 9606 break;
390ee7e2
AS
9607 case BPF_PROG_TYPE_CGROUP_SOCK:
9608 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9609 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9610 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9611 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9612 break;
15ab09bd
AS
9613 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9614 if (!env->prog->aux->attach_btf_id)
9615 return 0;
9616 range = tnum_const(0);
9617 break;
15d83c4d 9618 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9619 switch (env->prog->expected_attach_type) {
9620 case BPF_TRACE_FENTRY:
9621 case BPF_TRACE_FEXIT:
9622 range = tnum_const(0);
9623 break;
9624 case BPF_TRACE_RAW_TP:
9625 case BPF_MODIFY_RETURN:
15d83c4d 9626 return 0;
2ec0616e
DB
9627 case BPF_TRACE_ITER:
9628 break;
e92888c7
YS
9629 default:
9630 return -ENOTSUPP;
9631 }
15d83c4d 9632 break;
e9ddbb77
JS
9633 case BPF_PROG_TYPE_SK_LOOKUP:
9634 range = tnum_range(SK_DROP, SK_PASS);
9635 break;
e92888c7
YS
9636 case BPF_PROG_TYPE_EXT:
9637 /* freplace program can return anything as its return value
9638 * depends on the to-be-replaced kernel func or bpf program.
9639 */
390ee7e2
AS
9640 default:
9641 return 0;
9642 }
9643
390ee7e2 9644 if (reg->type != SCALAR_VALUE) {
61bd5218 9645 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9646 reg_type_str[reg->type]);
9647 return -EINVAL;
9648 }
9649
9650 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9651 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9652 return -EINVAL;
9653 }
5cf1e914 9654
9655 if (!tnum_is_unknown(enforce_attach_type_range) &&
9656 tnum_in(enforce_attach_type_range, reg->var_off))
9657 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9658 return 0;
9659}
9660
475fb78f
AS
9661/* non-recursive DFS pseudo code
9662 * 1 procedure DFS-iterative(G,v):
9663 * 2 label v as discovered
9664 * 3 let S be a stack
9665 * 4 S.push(v)
9666 * 5 while S is not empty
9667 * 6 t <- S.pop()
9668 * 7 if t is what we're looking for:
9669 * 8 return t
9670 * 9 for all edges e in G.adjacentEdges(t) do
9671 * 10 if edge e is already labelled
9672 * 11 continue with the next edge
9673 * 12 w <- G.adjacentVertex(t,e)
9674 * 13 if vertex w is not discovered and not explored
9675 * 14 label e as tree-edge
9676 * 15 label w as discovered
9677 * 16 S.push(w)
9678 * 17 continue at 5
9679 * 18 else if vertex w is discovered
9680 * 19 label e as back-edge
9681 * 20 else
9682 * 21 // vertex w is explored
9683 * 22 label e as forward- or cross-edge
9684 * 23 label t as explored
9685 * 24 S.pop()
9686 *
9687 * convention:
9688 * 0x10 - discovered
9689 * 0x11 - discovered and fall-through edge labelled
9690 * 0x12 - discovered and fall-through and branch edges labelled
9691 * 0x20 - explored
9692 */
9693
9694enum {
9695 DISCOVERED = 0x10,
9696 EXPLORED = 0x20,
9697 FALLTHROUGH = 1,
9698 BRANCH = 2,
9699};
9700
dc2a4ebc
AS
9701static u32 state_htab_size(struct bpf_verifier_env *env)
9702{
9703 return env->prog->len;
9704}
9705
5d839021
AS
9706static struct bpf_verifier_state_list **explored_state(
9707 struct bpf_verifier_env *env,
9708 int idx)
9709{
dc2a4ebc
AS
9710 struct bpf_verifier_state *cur = env->cur_state;
9711 struct bpf_func_state *state = cur->frame[cur->curframe];
9712
9713 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9714}
9715
9716static void init_explored_state(struct bpf_verifier_env *env, int idx)
9717{
a8f500af 9718 env->insn_aux_data[idx].prune_point = true;
5d839021 9719}
f1bca824 9720
59e2e27d
WAF
9721enum {
9722 DONE_EXPLORING = 0,
9723 KEEP_EXPLORING = 1,
9724};
9725
475fb78f
AS
9726/* t, w, e - match pseudo-code above:
9727 * t - index of current instruction
9728 * w - next instruction
9729 * e - edge
9730 */
2589726d
AS
9731static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9732 bool loop_ok)
475fb78f 9733{
7df737e9
AS
9734 int *insn_stack = env->cfg.insn_stack;
9735 int *insn_state = env->cfg.insn_state;
9736
475fb78f 9737 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9738 return DONE_EXPLORING;
475fb78f
AS
9739
9740 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9741 return DONE_EXPLORING;
475fb78f
AS
9742
9743 if (w < 0 || w >= env->prog->len) {
d9762e84 9744 verbose_linfo(env, t, "%d: ", t);
61bd5218 9745 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9746 return -EINVAL;
9747 }
9748
f1bca824
AS
9749 if (e == BRANCH)
9750 /* mark branch target for state pruning */
5d839021 9751 init_explored_state(env, w);
f1bca824 9752
475fb78f
AS
9753 if (insn_state[w] == 0) {
9754 /* tree-edge */
9755 insn_state[t] = DISCOVERED | e;
9756 insn_state[w] = DISCOVERED;
7df737e9 9757 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9758 return -E2BIG;
7df737e9 9759 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9760 return KEEP_EXPLORING;
475fb78f 9761 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9762 if (loop_ok && env->bpf_capable)
59e2e27d 9763 return DONE_EXPLORING;
d9762e84
MKL
9764 verbose_linfo(env, t, "%d: ", t);
9765 verbose_linfo(env, w, "%d: ", w);
61bd5218 9766 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9767 return -EINVAL;
9768 } else if (insn_state[w] == EXPLORED) {
9769 /* forward- or cross-edge */
9770 insn_state[t] = DISCOVERED | e;
9771 } else {
61bd5218 9772 verbose(env, "insn state internal bug\n");
475fb78f
AS
9773 return -EFAULT;
9774 }
59e2e27d
WAF
9775 return DONE_EXPLORING;
9776}
9777
efdb22de
YS
9778static int visit_func_call_insn(int t, int insn_cnt,
9779 struct bpf_insn *insns,
9780 struct bpf_verifier_env *env,
9781 bool visit_callee)
9782{
9783 int ret;
9784
9785 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9786 if (ret)
9787 return ret;
9788
9789 if (t + 1 < insn_cnt)
9790 init_explored_state(env, t + 1);
9791 if (visit_callee) {
9792 init_explored_state(env, t);
86fc6ee6
AS
9793 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9794 /* It's ok to allow recursion from CFG point of
9795 * view. __check_func_call() will do the actual
9796 * check.
9797 */
9798 bpf_pseudo_func(insns + t));
efdb22de
YS
9799 }
9800 return ret;
9801}
9802
59e2e27d
WAF
9803/* Visits the instruction at index t and returns one of the following:
9804 * < 0 - an error occurred
9805 * DONE_EXPLORING - the instruction was fully explored
9806 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9807 */
9808static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9809{
9810 struct bpf_insn *insns = env->prog->insnsi;
9811 int ret;
9812
69c087ba
YS
9813 if (bpf_pseudo_func(insns + t))
9814 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9815
59e2e27d
WAF
9816 /* All non-branch instructions have a single fall-through edge. */
9817 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9818 BPF_CLASS(insns[t].code) != BPF_JMP32)
9819 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9820
9821 switch (BPF_OP(insns[t].code)) {
9822 case BPF_EXIT:
9823 return DONE_EXPLORING;
9824
9825 case BPF_CALL:
bfc6bb74
AS
9826 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9827 /* Mark this call insn to trigger is_state_visited() check
9828 * before call itself is processed by __check_func_call().
9829 * Otherwise new async state will be pushed for further
9830 * exploration.
9831 */
9832 init_explored_state(env, t);
efdb22de
YS
9833 return visit_func_call_insn(t, insn_cnt, insns, env,
9834 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9835
9836 case BPF_JA:
9837 if (BPF_SRC(insns[t].code) != BPF_K)
9838 return -EINVAL;
9839
9840 /* unconditional jump with single edge */
9841 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9842 true);
9843 if (ret)
9844 return ret;
9845
9846 /* unconditional jmp is not a good pruning point,
9847 * but it's marked, since backtracking needs
9848 * to record jmp history in is_state_visited().
9849 */
9850 init_explored_state(env, t + insns[t].off + 1);
9851 /* tell verifier to check for equivalent states
9852 * after every call and jump
9853 */
9854 if (t + 1 < insn_cnt)
9855 init_explored_state(env, t + 1);
9856
9857 return ret;
9858
9859 default:
9860 /* conditional jump with two edges */
9861 init_explored_state(env, t);
9862 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9863 if (ret)
9864 return ret;
9865
9866 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9867 }
475fb78f
AS
9868}
9869
9870/* non-recursive depth-first-search to detect loops in BPF program
9871 * loop == back-edge in directed graph
9872 */
58e2af8b 9873static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9874{
475fb78f 9875 int insn_cnt = env->prog->len;
7df737e9 9876 int *insn_stack, *insn_state;
475fb78f 9877 int ret = 0;
59e2e27d 9878 int i;
475fb78f 9879
7df737e9 9880 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9881 if (!insn_state)
9882 return -ENOMEM;
9883
7df737e9 9884 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 9885 if (!insn_stack) {
71dde681 9886 kvfree(insn_state);
475fb78f
AS
9887 return -ENOMEM;
9888 }
9889
9890 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9891 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 9892 env->cfg.cur_stack = 1;
475fb78f 9893
59e2e27d
WAF
9894 while (env->cfg.cur_stack > 0) {
9895 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 9896
59e2e27d
WAF
9897 ret = visit_insn(t, insn_cnt, env);
9898 switch (ret) {
9899 case DONE_EXPLORING:
9900 insn_state[t] = EXPLORED;
9901 env->cfg.cur_stack--;
9902 break;
9903 case KEEP_EXPLORING:
9904 break;
9905 default:
9906 if (ret > 0) {
9907 verbose(env, "visit_insn internal bug\n");
9908 ret = -EFAULT;
475fb78f 9909 }
475fb78f 9910 goto err_free;
59e2e27d 9911 }
475fb78f
AS
9912 }
9913
59e2e27d 9914 if (env->cfg.cur_stack < 0) {
61bd5218 9915 verbose(env, "pop stack internal bug\n");
475fb78f
AS
9916 ret = -EFAULT;
9917 goto err_free;
9918 }
475fb78f 9919
475fb78f
AS
9920 for (i = 0; i < insn_cnt; i++) {
9921 if (insn_state[i] != EXPLORED) {
61bd5218 9922 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
9923 ret = -EINVAL;
9924 goto err_free;
9925 }
9926 }
9927 ret = 0; /* cfg looks good */
9928
9929err_free:
71dde681
AS
9930 kvfree(insn_state);
9931 kvfree(insn_stack);
7df737e9 9932 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
9933 return ret;
9934}
9935
09b28d76
AS
9936static int check_abnormal_return(struct bpf_verifier_env *env)
9937{
9938 int i;
9939
9940 for (i = 1; i < env->subprog_cnt; i++) {
9941 if (env->subprog_info[i].has_ld_abs) {
9942 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9943 return -EINVAL;
9944 }
9945 if (env->subprog_info[i].has_tail_call) {
9946 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9947 return -EINVAL;
9948 }
9949 }
9950 return 0;
9951}
9952
838e9690
YS
9953/* The minimum supported BTF func info size */
9954#define MIN_BPF_FUNCINFO_SIZE 8
9955#define MAX_FUNCINFO_REC_SIZE 252
9956
c454a46b
MKL
9957static int check_btf_func(struct bpf_verifier_env *env,
9958 const union bpf_attr *attr,
af2ac3e1 9959 bpfptr_t uattr)
838e9690 9960{
09b28d76 9961 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 9962 u32 i, nfuncs, urec_size, min_size;
838e9690 9963 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 9964 struct bpf_func_info *krecord;
8c1b6e69 9965 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
9966 struct bpf_prog *prog;
9967 const struct btf *btf;
af2ac3e1 9968 bpfptr_t urecord;
d0b2818e 9969 u32 prev_offset = 0;
09b28d76 9970 bool scalar_return;
e7ed83d6 9971 int ret = -ENOMEM;
838e9690
YS
9972
9973 nfuncs = attr->func_info_cnt;
09b28d76
AS
9974 if (!nfuncs) {
9975 if (check_abnormal_return(env))
9976 return -EINVAL;
838e9690 9977 return 0;
09b28d76 9978 }
838e9690
YS
9979
9980 if (nfuncs != env->subprog_cnt) {
9981 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9982 return -EINVAL;
9983 }
9984
9985 urec_size = attr->func_info_rec_size;
9986 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9987 urec_size > MAX_FUNCINFO_REC_SIZE ||
9988 urec_size % sizeof(u32)) {
9989 verbose(env, "invalid func info rec size %u\n", urec_size);
9990 return -EINVAL;
9991 }
9992
c454a46b
MKL
9993 prog = env->prog;
9994 btf = prog->aux->btf;
838e9690 9995
af2ac3e1 9996 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
9997 min_size = min_t(u32, krec_size, urec_size);
9998
ba64e7d8 9999 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
10000 if (!krecord)
10001 return -ENOMEM;
8c1b6e69
AS
10002 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10003 if (!info_aux)
10004 goto err_free;
ba64e7d8 10005
838e9690
YS
10006 for (i = 0; i < nfuncs; i++) {
10007 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10008 if (ret) {
10009 if (ret == -E2BIG) {
10010 verbose(env, "nonzero tailing record in func info");
10011 /* set the size kernel expects so loader can zero
10012 * out the rest of the record.
10013 */
af2ac3e1
AS
10014 if (copy_to_bpfptr_offset(uattr,
10015 offsetof(union bpf_attr, func_info_rec_size),
10016 &min_size, sizeof(min_size)))
838e9690
YS
10017 ret = -EFAULT;
10018 }
c454a46b 10019 goto err_free;
838e9690
YS
10020 }
10021
af2ac3e1 10022 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10023 ret = -EFAULT;
c454a46b 10024 goto err_free;
838e9690
YS
10025 }
10026
d30d42e0 10027 /* check insn_off */
09b28d76 10028 ret = -EINVAL;
838e9690 10029 if (i == 0) {
d30d42e0 10030 if (krecord[i].insn_off) {
838e9690 10031 verbose(env,
d30d42e0
MKL
10032 "nonzero insn_off %u for the first func info record",
10033 krecord[i].insn_off);
c454a46b 10034 goto err_free;
838e9690 10035 }
d30d42e0 10036 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
10037 verbose(env,
10038 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 10039 krecord[i].insn_off, prev_offset);
c454a46b 10040 goto err_free;
838e9690
YS
10041 }
10042
d30d42e0 10043 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 10044 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 10045 goto err_free;
838e9690
YS
10046 }
10047
10048 /* check type_id */
ba64e7d8 10049 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 10050 if (!type || !btf_type_is_func(type)) {
838e9690 10051 verbose(env, "invalid type id %d in func info",
ba64e7d8 10052 krecord[i].type_id);
c454a46b 10053 goto err_free;
838e9690 10054 }
51c39bb1 10055 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
10056
10057 func_proto = btf_type_by_id(btf, type->type);
10058 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10059 /* btf_func_check() already verified it during BTF load */
10060 goto err_free;
10061 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10062 scalar_return =
10063 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10064 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10065 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10066 goto err_free;
10067 }
10068 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10069 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10070 goto err_free;
10071 }
10072
d30d42e0 10073 prev_offset = krecord[i].insn_off;
af2ac3e1 10074 bpfptr_add(&urecord, urec_size);
838e9690
YS
10075 }
10076
ba64e7d8
YS
10077 prog->aux->func_info = krecord;
10078 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 10079 prog->aux->func_info_aux = info_aux;
838e9690
YS
10080 return 0;
10081
c454a46b 10082err_free:
ba64e7d8 10083 kvfree(krecord);
8c1b6e69 10084 kfree(info_aux);
838e9690
YS
10085 return ret;
10086}
10087
ba64e7d8
YS
10088static void adjust_btf_func(struct bpf_verifier_env *env)
10089{
8c1b6e69 10090 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
10091 int i;
10092
8c1b6e69 10093 if (!aux->func_info)
ba64e7d8
YS
10094 return;
10095
10096 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 10097 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
10098}
10099
c454a46b
MKL
10100#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10101 sizeof(((struct bpf_line_info *)(0))->line_col))
10102#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10103
10104static int check_btf_line(struct bpf_verifier_env *env,
10105 const union bpf_attr *attr,
af2ac3e1 10106 bpfptr_t uattr)
c454a46b
MKL
10107{
10108 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10109 struct bpf_subprog_info *sub;
10110 struct bpf_line_info *linfo;
10111 struct bpf_prog *prog;
10112 const struct btf *btf;
af2ac3e1 10113 bpfptr_t ulinfo;
c454a46b
MKL
10114 int err;
10115
10116 nr_linfo = attr->line_info_cnt;
10117 if (!nr_linfo)
10118 return 0;
0e6491b5
BC
10119 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10120 return -EINVAL;
c454a46b
MKL
10121
10122 rec_size = attr->line_info_rec_size;
10123 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10124 rec_size > MAX_LINEINFO_REC_SIZE ||
10125 rec_size & (sizeof(u32) - 1))
10126 return -EINVAL;
10127
10128 /* Need to zero it in case the userspace may
10129 * pass in a smaller bpf_line_info object.
10130 */
10131 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10132 GFP_KERNEL | __GFP_NOWARN);
10133 if (!linfo)
10134 return -ENOMEM;
10135
10136 prog = env->prog;
10137 btf = prog->aux->btf;
10138
10139 s = 0;
10140 sub = env->subprog_info;
af2ac3e1 10141 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
10142 expected_size = sizeof(struct bpf_line_info);
10143 ncopy = min_t(u32, expected_size, rec_size);
10144 for (i = 0; i < nr_linfo; i++) {
10145 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10146 if (err) {
10147 if (err == -E2BIG) {
10148 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
10149 if (copy_to_bpfptr_offset(uattr,
10150 offsetof(union bpf_attr, line_info_rec_size),
10151 &expected_size, sizeof(expected_size)))
c454a46b
MKL
10152 err = -EFAULT;
10153 }
10154 goto err_free;
10155 }
10156
af2ac3e1 10157 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
10158 err = -EFAULT;
10159 goto err_free;
10160 }
10161
10162 /*
10163 * Check insn_off to ensure
10164 * 1) strictly increasing AND
10165 * 2) bounded by prog->len
10166 *
10167 * The linfo[0].insn_off == 0 check logically falls into
10168 * the later "missing bpf_line_info for func..." case
10169 * because the first linfo[0].insn_off must be the
10170 * first sub also and the first sub must have
10171 * subprog_info[0].start == 0.
10172 */
10173 if ((i && linfo[i].insn_off <= prev_offset) ||
10174 linfo[i].insn_off >= prog->len) {
10175 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10176 i, linfo[i].insn_off, prev_offset,
10177 prog->len);
10178 err = -EINVAL;
10179 goto err_free;
10180 }
10181
fdbaa0be
MKL
10182 if (!prog->insnsi[linfo[i].insn_off].code) {
10183 verbose(env,
10184 "Invalid insn code at line_info[%u].insn_off\n",
10185 i);
10186 err = -EINVAL;
10187 goto err_free;
10188 }
10189
23127b33
MKL
10190 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10191 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
10192 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10193 err = -EINVAL;
10194 goto err_free;
10195 }
10196
10197 if (s != env->subprog_cnt) {
10198 if (linfo[i].insn_off == sub[s].start) {
10199 sub[s].linfo_idx = i;
10200 s++;
10201 } else if (sub[s].start < linfo[i].insn_off) {
10202 verbose(env, "missing bpf_line_info for func#%u\n", s);
10203 err = -EINVAL;
10204 goto err_free;
10205 }
10206 }
10207
10208 prev_offset = linfo[i].insn_off;
af2ac3e1 10209 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
10210 }
10211
10212 if (s != env->subprog_cnt) {
10213 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10214 env->subprog_cnt - s, s);
10215 err = -EINVAL;
10216 goto err_free;
10217 }
10218
10219 prog->aux->linfo = linfo;
10220 prog->aux->nr_linfo = nr_linfo;
10221
10222 return 0;
10223
10224err_free:
10225 kvfree(linfo);
10226 return err;
10227}
10228
10229static int check_btf_info(struct bpf_verifier_env *env,
10230 const union bpf_attr *attr,
af2ac3e1 10231 bpfptr_t uattr)
c454a46b
MKL
10232{
10233 struct btf *btf;
10234 int err;
10235
09b28d76
AS
10236 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10237 if (check_abnormal_return(env))
10238 return -EINVAL;
c454a46b 10239 return 0;
09b28d76 10240 }
c454a46b
MKL
10241
10242 btf = btf_get_by_fd(attr->prog_btf_fd);
10243 if (IS_ERR(btf))
10244 return PTR_ERR(btf);
350a5c4d
AS
10245 if (btf_is_kernel(btf)) {
10246 btf_put(btf);
10247 return -EACCES;
10248 }
c454a46b
MKL
10249 env->prog->aux->btf = btf;
10250
10251 err = check_btf_func(env, attr, uattr);
10252 if (err)
10253 return err;
10254
10255 err = check_btf_line(env, attr, uattr);
10256 if (err)
10257 return err;
10258
10259 return 0;
ba64e7d8
YS
10260}
10261
f1174f77
EC
10262/* check %cur's range satisfies %old's */
10263static bool range_within(struct bpf_reg_state *old,
10264 struct bpf_reg_state *cur)
10265{
b03c9f9f
EC
10266 return old->umin_value <= cur->umin_value &&
10267 old->umax_value >= cur->umax_value &&
10268 old->smin_value <= cur->smin_value &&
fd675184
DB
10269 old->smax_value >= cur->smax_value &&
10270 old->u32_min_value <= cur->u32_min_value &&
10271 old->u32_max_value >= cur->u32_max_value &&
10272 old->s32_min_value <= cur->s32_min_value &&
10273 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
10274}
10275
f1174f77
EC
10276/* If in the old state two registers had the same id, then they need to have
10277 * the same id in the new state as well. But that id could be different from
10278 * the old state, so we need to track the mapping from old to new ids.
10279 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10280 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10281 * regs with a different old id could still have new id 9, we don't care about
10282 * that.
10283 * So we look through our idmap to see if this old id has been seen before. If
10284 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 10285 */
c9e73e3d 10286static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 10287{
f1174f77 10288 unsigned int i;
969bf05e 10289
c9e73e3d 10290 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
10291 if (!idmap[i].old) {
10292 /* Reached an empty slot; haven't seen this id before */
10293 idmap[i].old = old_id;
10294 idmap[i].cur = cur_id;
10295 return true;
10296 }
10297 if (idmap[i].old == old_id)
10298 return idmap[i].cur == cur_id;
10299 }
10300 /* We ran out of idmap slots, which should be impossible */
10301 WARN_ON_ONCE(1);
10302 return false;
10303}
10304
9242b5f5
AS
10305static void clean_func_state(struct bpf_verifier_env *env,
10306 struct bpf_func_state *st)
10307{
10308 enum bpf_reg_liveness live;
10309 int i, j;
10310
10311 for (i = 0; i < BPF_REG_FP; i++) {
10312 live = st->regs[i].live;
10313 /* liveness must not touch this register anymore */
10314 st->regs[i].live |= REG_LIVE_DONE;
10315 if (!(live & REG_LIVE_READ))
10316 /* since the register is unused, clear its state
10317 * to make further comparison simpler
10318 */
f54c7898 10319 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
10320 }
10321
10322 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10323 live = st->stack[i].spilled_ptr.live;
10324 /* liveness must not touch this stack slot anymore */
10325 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10326 if (!(live & REG_LIVE_READ)) {
f54c7898 10327 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
10328 for (j = 0; j < BPF_REG_SIZE; j++)
10329 st->stack[i].slot_type[j] = STACK_INVALID;
10330 }
10331 }
10332}
10333
10334static void clean_verifier_state(struct bpf_verifier_env *env,
10335 struct bpf_verifier_state *st)
10336{
10337 int i;
10338
10339 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10340 /* all regs in this state in all frames were already marked */
10341 return;
10342
10343 for (i = 0; i <= st->curframe; i++)
10344 clean_func_state(env, st->frame[i]);
10345}
10346
10347/* the parentage chains form a tree.
10348 * the verifier states are added to state lists at given insn and
10349 * pushed into state stack for future exploration.
10350 * when the verifier reaches bpf_exit insn some of the verifer states
10351 * stored in the state lists have their final liveness state already,
10352 * but a lot of states will get revised from liveness point of view when
10353 * the verifier explores other branches.
10354 * Example:
10355 * 1: r0 = 1
10356 * 2: if r1 == 100 goto pc+1
10357 * 3: r0 = 2
10358 * 4: exit
10359 * when the verifier reaches exit insn the register r0 in the state list of
10360 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10361 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10362 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10363 *
10364 * Since the verifier pushes the branch states as it sees them while exploring
10365 * the program the condition of walking the branch instruction for the second
10366 * time means that all states below this branch were already explored and
8fb33b60 10367 * their final liveness marks are already propagated.
9242b5f5
AS
10368 * Hence when the verifier completes the search of state list in is_state_visited()
10369 * we can call this clean_live_states() function to mark all liveness states
10370 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10371 * will not be used.
10372 * This function also clears the registers and stack for states that !READ
10373 * to simplify state merging.
10374 *
10375 * Important note here that walking the same branch instruction in the callee
10376 * doesn't meant that the states are DONE. The verifier has to compare
10377 * the callsites
10378 */
10379static void clean_live_states(struct bpf_verifier_env *env, int insn,
10380 struct bpf_verifier_state *cur)
10381{
10382 struct bpf_verifier_state_list *sl;
10383 int i;
10384
5d839021 10385 sl = *explored_state(env, insn);
a8f500af 10386 while (sl) {
2589726d
AS
10387 if (sl->state.branches)
10388 goto next;
dc2a4ebc
AS
10389 if (sl->state.insn_idx != insn ||
10390 sl->state.curframe != cur->curframe)
9242b5f5
AS
10391 goto next;
10392 for (i = 0; i <= cur->curframe; i++)
10393 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10394 goto next;
10395 clean_verifier_state(env, &sl->state);
10396next:
10397 sl = sl->next;
10398 }
10399}
10400
f1174f77 10401/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
10402static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10403 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 10404{
f4d7e40a
AS
10405 bool equal;
10406
dc503a8a
EC
10407 if (!(rold->live & REG_LIVE_READ))
10408 /* explored state didn't use this */
10409 return true;
10410
679c782d 10411 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
10412
10413 if (rold->type == PTR_TO_STACK)
10414 /* two stack pointers are equal only if they're pointing to
10415 * the same stack frame, since fp-8 in foo != fp-8 in bar
10416 */
10417 return equal && rold->frameno == rcur->frameno;
10418
10419 if (equal)
969bf05e
AS
10420 return true;
10421
f1174f77
EC
10422 if (rold->type == NOT_INIT)
10423 /* explored state can't have used this */
969bf05e 10424 return true;
f1174f77
EC
10425 if (rcur->type == NOT_INIT)
10426 return false;
10427 switch (rold->type) {
10428 case SCALAR_VALUE:
e042aa53
DB
10429 if (env->explore_alu_limits)
10430 return false;
f1174f77 10431 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
10432 if (!rold->precise && !rcur->precise)
10433 return true;
f1174f77
EC
10434 /* new val must satisfy old val knowledge */
10435 return range_within(rold, rcur) &&
10436 tnum_in(rold->var_off, rcur->var_off);
10437 } else {
179d1c56
JH
10438 /* We're trying to use a pointer in place of a scalar.
10439 * Even if the scalar was unbounded, this could lead to
10440 * pointer leaks because scalars are allowed to leak
10441 * while pointers are not. We could make this safe in
10442 * special cases if root is calling us, but it's
10443 * probably not worth the hassle.
f1174f77 10444 */
179d1c56 10445 return false;
f1174f77 10446 }
69c087ba 10447 case PTR_TO_MAP_KEY:
f1174f77 10448 case PTR_TO_MAP_VALUE:
1b688a19
EC
10449 /* If the new min/max/var_off satisfy the old ones and
10450 * everything else matches, we are OK.
d83525ca
AS
10451 * 'id' is not compared, since it's only used for maps with
10452 * bpf_spin_lock inside map element and in such cases if
10453 * the rest of the prog is valid for one map element then
10454 * it's valid for all map elements regardless of the key
10455 * used in bpf_map_lookup()
1b688a19
EC
10456 */
10457 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10458 range_within(rold, rcur) &&
10459 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
10460 case PTR_TO_MAP_VALUE_OR_NULL:
10461 /* a PTR_TO_MAP_VALUE could be safe to use as a
10462 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10463 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10464 * checked, doing so could have affected others with the same
10465 * id, and we can't check for that because we lost the id when
10466 * we converted to a PTR_TO_MAP_VALUE.
10467 */
10468 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10469 return false;
10470 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10471 return false;
10472 /* Check our ids match any regs they're supposed to */
10473 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 10474 case PTR_TO_PACKET_META:
f1174f77 10475 case PTR_TO_PACKET:
de8f3a83 10476 if (rcur->type != rold->type)
f1174f77
EC
10477 return false;
10478 /* We must have at least as much range as the old ptr
10479 * did, so that any accesses which were safe before are
10480 * still safe. This is true even if old range < old off,
10481 * since someone could have accessed through (ptr - k), or
10482 * even done ptr -= k in a register, to get a safe access.
10483 */
10484 if (rold->range > rcur->range)
10485 return false;
10486 /* If the offsets don't match, we can't trust our alignment;
10487 * nor can we be sure that we won't fall out of range.
10488 */
10489 if (rold->off != rcur->off)
10490 return false;
10491 /* id relations must be preserved */
10492 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10493 return false;
10494 /* new val must satisfy old val knowledge */
10495 return range_within(rold, rcur) &&
10496 tnum_in(rold->var_off, rcur->var_off);
10497 case PTR_TO_CTX:
10498 case CONST_PTR_TO_MAP:
f1174f77 10499 case PTR_TO_PACKET_END:
d58e468b 10500 case PTR_TO_FLOW_KEYS:
c64b7983
JS
10501 case PTR_TO_SOCKET:
10502 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10503 case PTR_TO_SOCK_COMMON:
10504 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10505 case PTR_TO_TCP_SOCK:
10506 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10507 case PTR_TO_XDP_SOCK:
f1174f77
EC
10508 /* Only valid matches are exact, which memcmp() above
10509 * would have accepted
10510 */
10511 default:
10512 /* Don't know what's going on, just say it's not safe */
10513 return false;
10514 }
969bf05e 10515
f1174f77
EC
10516 /* Shouldn't get here; if we do, say it's not safe */
10517 WARN_ON_ONCE(1);
969bf05e
AS
10518 return false;
10519}
10520
e042aa53
DB
10521static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10522 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
10523{
10524 int i, spi;
10525
638f5b90
AS
10526 /* walk slots of the explored stack and ignore any additional
10527 * slots in the current stack, since explored(safe) state
10528 * didn't use them
10529 */
10530 for (i = 0; i < old->allocated_stack; i++) {
10531 spi = i / BPF_REG_SIZE;
10532
b233920c
AS
10533 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10534 i += BPF_REG_SIZE - 1;
cc2b14d5 10535 /* explored state didn't use this */
fd05e57b 10536 continue;
b233920c 10537 }
cc2b14d5 10538
638f5b90
AS
10539 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10540 continue;
19e2dbb7
AS
10541
10542 /* explored stack has more populated slots than current stack
10543 * and these slots were used
10544 */
10545 if (i >= cur->allocated_stack)
10546 return false;
10547
cc2b14d5
AS
10548 /* if old state was safe with misc data in the stack
10549 * it will be safe with zero-initialized stack.
10550 * The opposite is not true
10551 */
10552 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10553 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10554 continue;
638f5b90
AS
10555 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10556 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10557 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10558 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10559 * this verifier states are not equivalent,
10560 * return false to continue verification of this path
10561 */
10562 return false;
27113c59 10563 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 10564 continue;
27113c59 10565 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 10566 continue;
e042aa53
DB
10567 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10568 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
10569 /* when explored and current stack slot are both storing
10570 * spilled registers, check that stored pointers types
10571 * are the same as well.
10572 * Ex: explored safe path could have stored
10573 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10574 * but current path has stored:
10575 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10576 * such verifier states are not equivalent.
10577 * return false to continue verification of this path
10578 */
10579 return false;
10580 }
10581 return true;
10582}
10583
fd978bf7
JS
10584static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10585{
10586 if (old->acquired_refs != cur->acquired_refs)
10587 return false;
10588 return !memcmp(old->refs, cur->refs,
10589 sizeof(*old->refs) * old->acquired_refs);
10590}
10591
f1bca824
AS
10592/* compare two verifier states
10593 *
10594 * all states stored in state_list are known to be valid, since
10595 * verifier reached 'bpf_exit' instruction through them
10596 *
10597 * this function is called when verifier exploring different branches of
10598 * execution popped from the state stack. If it sees an old state that has
10599 * more strict register state and more strict stack state then this execution
10600 * branch doesn't need to be explored further, since verifier already
10601 * concluded that more strict state leads to valid finish.
10602 *
10603 * Therefore two states are equivalent if register state is more conservative
10604 * and explored stack state is more conservative than the current one.
10605 * Example:
10606 * explored current
10607 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10608 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10609 *
10610 * In other words if current stack state (one being explored) has more
10611 * valid slots than old one that already passed validation, it means
10612 * the verifier can stop exploring and conclude that current state is valid too
10613 *
10614 * Similarly with registers. If explored state has register type as invalid
10615 * whereas register type in current state is meaningful, it means that
10616 * the current state will reach 'bpf_exit' instruction safely
10617 */
c9e73e3d 10618static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 10619 struct bpf_func_state *cur)
f1bca824
AS
10620{
10621 int i;
10622
c9e73e3d
LB
10623 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10624 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
10625 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10626 env->idmap_scratch))
c9e73e3d 10627 return false;
f1bca824 10628
e042aa53 10629 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 10630 return false;
fd978bf7
JS
10631
10632 if (!refsafe(old, cur))
c9e73e3d
LB
10633 return false;
10634
10635 return true;
f1bca824
AS
10636}
10637
f4d7e40a
AS
10638static bool states_equal(struct bpf_verifier_env *env,
10639 struct bpf_verifier_state *old,
10640 struct bpf_verifier_state *cur)
10641{
10642 int i;
10643
10644 if (old->curframe != cur->curframe)
10645 return false;
10646
979d63d5
DB
10647 /* Verification state from speculative execution simulation
10648 * must never prune a non-speculative execution one.
10649 */
10650 if (old->speculative && !cur->speculative)
10651 return false;
10652
d83525ca
AS
10653 if (old->active_spin_lock != cur->active_spin_lock)
10654 return false;
10655
f4d7e40a
AS
10656 /* for states to be equal callsites have to be the same
10657 * and all frame states need to be equivalent
10658 */
10659 for (i = 0; i <= old->curframe; i++) {
10660 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10661 return false;
c9e73e3d 10662 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
10663 return false;
10664 }
10665 return true;
10666}
10667
5327ed3d
JW
10668/* Return 0 if no propagation happened. Return negative error code if error
10669 * happened. Otherwise, return the propagated bit.
10670 */
55e7f3b5
JW
10671static int propagate_liveness_reg(struct bpf_verifier_env *env,
10672 struct bpf_reg_state *reg,
10673 struct bpf_reg_state *parent_reg)
10674{
5327ed3d
JW
10675 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10676 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10677 int err;
10678
5327ed3d
JW
10679 /* When comes here, read flags of PARENT_REG or REG could be any of
10680 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10681 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10682 */
10683 if (parent_flag == REG_LIVE_READ64 ||
10684 /* Or if there is no read flag from REG. */
10685 !flag ||
10686 /* Or if the read flag from REG is the same as PARENT_REG. */
10687 parent_flag == flag)
55e7f3b5
JW
10688 return 0;
10689
5327ed3d 10690 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10691 if (err)
10692 return err;
10693
5327ed3d 10694 return flag;
55e7f3b5
JW
10695}
10696
8e9cd9ce 10697/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10698 * straight-line code between a state and its parent. When we arrive at an
10699 * equivalent state (jump target or such) we didn't arrive by the straight-line
10700 * code, so read marks in the state must propagate to the parent regardless
10701 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10702 * in mark_reg_read() is for.
8e9cd9ce 10703 */
f4d7e40a
AS
10704static int propagate_liveness(struct bpf_verifier_env *env,
10705 const struct bpf_verifier_state *vstate,
10706 struct bpf_verifier_state *vparent)
dc503a8a 10707{
3f8cafa4 10708 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10709 struct bpf_func_state *state, *parent;
3f8cafa4 10710 int i, frame, err = 0;
dc503a8a 10711
f4d7e40a
AS
10712 if (vparent->curframe != vstate->curframe) {
10713 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10714 vparent->curframe, vstate->curframe);
10715 return -EFAULT;
10716 }
dc503a8a
EC
10717 /* Propagate read liveness of registers... */
10718 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10719 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10720 parent = vparent->frame[frame];
10721 state = vstate->frame[frame];
10722 parent_reg = parent->regs;
10723 state_reg = state->regs;
83d16312
JK
10724 /* We don't need to worry about FP liveness, it's read-only */
10725 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10726 err = propagate_liveness_reg(env, &state_reg[i],
10727 &parent_reg[i]);
5327ed3d 10728 if (err < 0)
3f8cafa4 10729 return err;
5327ed3d
JW
10730 if (err == REG_LIVE_READ64)
10731 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10732 }
f4d7e40a 10733
1b04aee7 10734 /* Propagate stack slots. */
f4d7e40a
AS
10735 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10736 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10737 parent_reg = &parent->stack[i].spilled_ptr;
10738 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10739 err = propagate_liveness_reg(env, state_reg,
10740 parent_reg);
5327ed3d 10741 if (err < 0)
3f8cafa4 10742 return err;
dc503a8a
EC
10743 }
10744 }
5327ed3d 10745 return 0;
dc503a8a
EC
10746}
10747
a3ce685d
AS
10748/* find precise scalars in the previous equivalent state and
10749 * propagate them into the current state
10750 */
10751static int propagate_precision(struct bpf_verifier_env *env,
10752 const struct bpf_verifier_state *old)
10753{
10754 struct bpf_reg_state *state_reg;
10755 struct bpf_func_state *state;
10756 int i, err = 0;
10757
10758 state = old->frame[old->curframe];
10759 state_reg = state->regs;
10760 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10761 if (state_reg->type != SCALAR_VALUE ||
10762 !state_reg->precise)
10763 continue;
10764 if (env->log.level & BPF_LOG_LEVEL2)
10765 verbose(env, "propagating r%d\n", i);
10766 err = mark_chain_precision(env, i);
10767 if (err < 0)
10768 return err;
10769 }
10770
10771 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 10772 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
10773 continue;
10774 state_reg = &state->stack[i].spilled_ptr;
10775 if (state_reg->type != SCALAR_VALUE ||
10776 !state_reg->precise)
10777 continue;
10778 if (env->log.level & BPF_LOG_LEVEL2)
10779 verbose(env, "propagating fp%d\n",
10780 (-i - 1) * BPF_REG_SIZE);
10781 err = mark_chain_precision_stack(env, i);
10782 if (err < 0)
10783 return err;
10784 }
10785 return 0;
10786}
10787
2589726d
AS
10788static bool states_maybe_looping(struct bpf_verifier_state *old,
10789 struct bpf_verifier_state *cur)
10790{
10791 struct bpf_func_state *fold, *fcur;
10792 int i, fr = cur->curframe;
10793
10794 if (old->curframe != fr)
10795 return false;
10796
10797 fold = old->frame[fr];
10798 fcur = cur->frame[fr];
10799 for (i = 0; i < MAX_BPF_REG; i++)
10800 if (memcmp(&fold->regs[i], &fcur->regs[i],
10801 offsetof(struct bpf_reg_state, parent)))
10802 return false;
10803 return true;
10804}
10805
10806
58e2af8b 10807static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 10808{
58e2af8b 10809 struct bpf_verifier_state_list *new_sl;
9f4686c4 10810 struct bpf_verifier_state_list *sl, **pprev;
679c782d 10811 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 10812 int i, j, err, states_cnt = 0;
10d274e8 10813 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 10814
b5dc0163 10815 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 10816 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
10817 /* this 'insn_idx' instruction wasn't marked, so we will not
10818 * be doing state search here
10819 */
10820 return 0;
10821
2589726d
AS
10822 /* bpf progs typically have pruning point every 4 instructions
10823 * http://vger.kernel.org/bpfconf2019.html#session-1
10824 * Do not add new state for future pruning if the verifier hasn't seen
10825 * at least 2 jumps and at least 8 instructions.
10826 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10827 * In tests that amounts to up to 50% reduction into total verifier
10828 * memory consumption and 20% verifier time speedup.
10829 */
10830 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10831 env->insn_processed - env->prev_insn_processed >= 8)
10832 add_new_state = true;
10833
a8f500af
AS
10834 pprev = explored_state(env, insn_idx);
10835 sl = *pprev;
10836
9242b5f5
AS
10837 clean_live_states(env, insn_idx, cur);
10838
a8f500af 10839 while (sl) {
dc2a4ebc
AS
10840 states_cnt++;
10841 if (sl->state.insn_idx != insn_idx)
10842 goto next;
bfc6bb74 10843
2589726d 10844 if (sl->state.branches) {
bfc6bb74
AS
10845 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10846
10847 if (frame->in_async_callback_fn &&
10848 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10849 /* Different async_entry_cnt means that the verifier is
10850 * processing another entry into async callback.
10851 * Seeing the same state is not an indication of infinite
10852 * loop or infinite recursion.
10853 * But finding the same state doesn't mean that it's safe
10854 * to stop processing the current state. The previous state
10855 * hasn't yet reached bpf_exit, since state.branches > 0.
10856 * Checking in_async_callback_fn alone is not enough either.
10857 * Since the verifier still needs to catch infinite loops
10858 * inside async callbacks.
10859 */
10860 } else if (states_maybe_looping(&sl->state, cur) &&
10861 states_equal(env, &sl->state, cur)) {
2589726d
AS
10862 verbose_linfo(env, insn_idx, "; ");
10863 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10864 return -EINVAL;
10865 }
10866 /* if the verifier is processing a loop, avoid adding new state
10867 * too often, since different loop iterations have distinct
10868 * states and may not help future pruning.
10869 * This threshold shouldn't be too low to make sure that
10870 * a loop with large bound will be rejected quickly.
10871 * The most abusive loop will be:
10872 * r1 += 1
10873 * if r1 < 1000000 goto pc-2
10874 * 1M insn_procssed limit / 100 == 10k peak states.
10875 * This threshold shouldn't be too high either, since states
10876 * at the end of the loop are likely to be useful in pruning.
10877 */
10878 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10879 env->insn_processed - env->prev_insn_processed < 100)
10880 add_new_state = false;
10881 goto miss;
10882 }
638f5b90 10883 if (states_equal(env, &sl->state, cur)) {
9f4686c4 10884 sl->hit_cnt++;
f1bca824 10885 /* reached equivalent register/stack state,
dc503a8a
EC
10886 * prune the search.
10887 * Registers read by the continuation are read by us.
8e9cd9ce
EC
10888 * If we have any write marks in env->cur_state, they
10889 * will prevent corresponding reads in the continuation
10890 * from reaching our parent (an explored_state). Our
10891 * own state will get the read marks recorded, but
10892 * they'll be immediately forgotten as we're pruning
10893 * this state and will pop a new one.
f1bca824 10894 */
f4d7e40a 10895 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
10896
10897 /* if previous state reached the exit with precision and
10898 * current state is equivalent to it (except precsion marks)
10899 * the precision needs to be propagated back in
10900 * the current state.
10901 */
10902 err = err ? : push_jmp_history(env, cur);
10903 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
10904 if (err)
10905 return err;
f1bca824 10906 return 1;
dc503a8a 10907 }
2589726d
AS
10908miss:
10909 /* when new state is not going to be added do not increase miss count.
10910 * Otherwise several loop iterations will remove the state
10911 * recorded earlier. The goal of these heuristics is to have
10912 * states from some iterations of the loop (some in the beginning
10913 * and some at the end) to help pruning.
10914 */
10915 if (add_new_state)
10916 sl->miss_cnt++;
9f4686c4
AS
10917 /* heuristic to determine whether this state is beneficial
10918 * to keep checking from state equivalence point of view.
10919 * Higher numbers increase max_states_per_insn and verification time,
10920 * but do not meaningfully decrease insn_processed.
10921 */
10922 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10923 /* the state is unlikely to be useful. Remove it to
10924 * speed up verification
10925 */
10926 *pprev = sl->next;
10927 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
10928 u32 br = sl->state.branches;
10929
10930 WARN_ONCE(br,
10931 "BUG live_done but branches_to_explore %d\n",
10932 br);
9f4686c4
AS
10933 free_verifier_state(&sl->state, false);
10934 kfree(sl);
10935 env->peak_states--;
10936 } else {
10937 /* cannot free this state, since parentage chain may
10938 * walk it later. Add it for free_list instead to
10939 * be freed at the end of verification
10940 */
10941 sl->next = env->free_list;
10942 env->free_list = sl;
10943 }
10944 sl = *pprev;
10945 continue;
10946 }
dc2a4ebc 10947next:
9f4686c4
AS
10948 pprev = &sl->next;
10949 sl = *pprev;
f1bca824
AS
10950 }
10951
06ee7115
AS
10952 if (env->max_states_per_insn < states_cnt)
10953 env->max_states_per_insn = states_cnt;
10954
2c78ee89 10955 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 10956 return push_jmp_history(env, cur);
ceefbc96 10957
2589726d 10958 if (!add_new_state)
b5dc0163 10959 return push_jmp_history(env, cur);
ceefbc96 10960
2589726d
AS
10961 /* There were no equivalent states, remember the current one.
10962 * Technically the current state is not proven to be safe yet,
f4d7e40a 10963 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 10964 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 10965 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
10966 * again on the way to bpf_exit.
10967 * When looping the sl->state.branches will be > 0 and this state
10968 * will not be considered for equivalence until branches == 0.
f1bca824 10969 */
638f5b90 10970 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
10971 if (!new_sl)
10972 return -ENOMEM;
06ee7115
AS
10973 env->total_states++;
10974 env->peak_states++;
2589726d
AS
10975 env->prev_jmps_processed = env->jmps_processed;
10976 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
10977
10978 /* add new state to the head of linked list */
679c782d
EC
10979 new = &new_sl->state;
10980 err = copy_verifier_state(new, cur);
1969db47 10981 if (err) {
679c782d 10982 free_verifier_state(new, false);
1969db47
AS
10983 kfree(new_sl);
10984 return err;
10985 }
dc2a4ebc 10986 new->insn_idx = insn_idx;
2589726d
AS
10987 WARN_ONCE(new->branches != 1,
10988 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 10989
2589726d 10990 cur->parent = new;
b5dc0163
AS
10991 cur->first_insn_idx = insn_idx;
10992 clear_jmp_history(cur);
5d839021
AS
10993 new_sl->next = *explored_state(env, insn_idx);
10994 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
10995 /* connect new state to parentage chain. Current frame needs all
10996 * registers connected. Only r6 - r9 of the callers are alive (pushed
10997 * to the stack implicitly by JITs) so in callers' frames connect just
10998 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10999 * the state of the call instruction (with WRITTEN set), and r0 comes
11000 * from callee with its full parentage chain, anyway.
11001 */
8e9cd9ce
EC
11002 /* clear write marks in current state: the writes we did are not writes
11003 * our child did, so they don't screen off its reads from us.
11004 * (There are no read marks in current state, because reads always mark
11005 * their parent and current state never has children yet. Only
11006 * explored_states can get read marks.)
11007 */
eea1c227
AS
11008 for (j = 0; j <= cur->curframe; j++) {
11009 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11010 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11011 for (i = 0; i < BPF_REG_FP; i++)
11012 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11013 }
f4d7e40a
AS
11014
11015 /* all stack frames are accessible from callee, clear them all */
11016 for (j = 0; j <= cur->curframe; j++) {
11017 struct bpf_func_state *frame = cur->frame[j];
679c782d 11018 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 11019
679c782d 11020 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 11021 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
11022 frame->stack[i].spilled_ptr.parent =
11023 &newframe->stack[i].spilled_ptr;
11024 }
f4d7e40a 11025 }
f1bca824
AS
11026 return 0;
11027}
11028
c64b7983
JS
11029/* Return true if it's OK to have the same insn return a different type. */
11030static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11031{
11032 switch (type) {
11033 case PTR_TO_CTX:
11034 case PTR_TO_SOCKET:
11035 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
11036 case PTR_TO_SOCK_COMMON:
11037 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
11038 case PTR_TO_TCP_SOCK:
11039 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 11040 case PTR_TO_XDP_SOCK:
2a02759e 11041 case PTR_TO_BTF_ID:
b121b341 11042 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
11043 return false;
11044 default:
11045 return true;
11046 }
11047}
11048
11049/* If an instruction was previously used with particular pointer types, then we
11050 * need to be careful to avoid cases such as the below, where it may be ok
11051 * for one branch accessing the pointer, but not ok for the other branch:
11052 *
11053 * R1 = sock_ptr
11054 * goto X;
11055 * ...
11056 * R1 = some_other_valid_ptr;
11057 * goto X;
11058 * ...
11059 * R2 = *(u32 *)(R1 + 0);
11060 */
11061static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11062{
11063 return src != prev && (!reg_type_mismatch_ok(src) ||
11064 !reg_type_mismatch_ok(prev));
11065}
11066
58e2af8b 11067static int do_check(struct bpf_verifier_env *env)
17a52670 11068{
6f8a57cc 11069 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 11070 struct bpf_verifier_state *state = env->cur_state;
17a52670 11071 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 11072 struct bpf_reg_state *regs;
06ee7115 11073 int insn_cnt = env->prog->len;
17a52670 11074 bool do_print_state = false;
b5dc0163 11075 int prev_insn_idx = -1;
17a52670 11076
17a52670
AS
11077 for (;;) {
11078 struct bpf_insn *insn;
11079 u8 class;
11080 int err;
11081
b5dc0163 11082 env->prev_insn_idx = prev_insn_idx;
c08435ec 11083 if (env->insn_idx >= insn_cnt) {
61bd5218 11084 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 11085 env->insn_idx, insn_cnt);
17a52670
AS
11086 return -EFAULT;
11087 }
11088
c08435ec 11089 insn = &insns[env->insn_idx];
17a52670
AS
11090 class = BPF_CLASS(insn->code);
11091
06ee7115 11092 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
11093 verbose(env,
11094 "BPF program is too large. Processed %d insn\n",
06ee7115 11095 env->insn_processed);
17a52670
AS
11096 return -E2BIG;
11097 }
11098
c08435ec 11099 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
11100 if (err < 0)
11101 return err;
11102 if (err == 1) {
11103 /* found equivalent state, can prune the search */
06ee7115 11104 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 11105 if (do_print_state)
979d63d5
DB
11106 verbose(env, "\nfrom %d to %d%s: safe\n",
11107 env->prev_insn_idx, env->insn_idx,
11108 env->cur_state->speculative ?
11109 " (speculative execution)" : "");
f1bca824 11110 else
c08435ec 11111 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
11112 }
11113 goto process_bpf_exit;
11114 }
11115
c3494801
AS
11116 if (signal_pending(current))
11117 return -EAGAIN;
11118
3c2ce60b
DB
11119 if (need_resched())
11120 cond_resched();
11121
06ee7115
AS
11122 if (env->log.level & BPF_LOG_LEVEL2 ||
11123 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11124 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 11125 verbose(env, "%d:", env->insn_idx);
c5fc9692 11126 else
979d63d5
DB
11127 verbose(env, "\nfrom %d to %d%s:",
11128 env->prev_insn_idx, env->insn_idx,
11129 env->cur_state->speculative ?
11130 " (speculative execution)" : "");
f4d7e40a 11131 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
11132 do_print_state = false;
11133 }
11134
06ee7115 11135 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 11136 const struct bpf_insn_cbs cbs = {
e6ac2450 11137 .cb_call = disasm_kfunc_name,
7105e828 11138 .cb_print = verbose,
abe08840 11139 .private_data = env,
7105e828
DB
11140 };
11141
c08435ec
DB
11142 verbose_linfo(env, env->insn_idx, "; ");
11143 verbose(env, "%d: ", env->insn_idx);
abe08840 11144 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
11145 }
11146
cae1927c 11147 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
11148 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11149 env->prev_insn_idx);
cae1927c
JK
11150 if (err)
11151 return err;
11152 }
13a27dfc 11153
638f5b90 11154 regs = cur_regs(env);
fe9a5ca7 11155 sanitize_mark_insn_seen(env);
b5dc0163 11156 prev_insn_idx = env->insn_idx;
fd978bf7 11157
17a52670 11158 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 11159 err = check_alu_op(env, insn);
17a52670
AS
11160 if (err)
11161 return err;
11162
11163 } else if (class == BPF_LDX) {
3df126f3 11164 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
11165
11166 /* check for reserved fields is already done */
11167
17a52670 11168 /* check src operand */
dc503a8a 11169 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11170 if (err)
11171 return err;
11172
dc503a8a 11173 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
11174 if (err)
11175 return err;
11176
725f9dcd
AS
11177 src_reg_type = regs[insn->src_reg].type;
11178
17a52670
AS
11179 /* check that memory (src_reg + off) is readable,
11180 * the state of dst_reg will be updated by this func
11181 */
c08435ec
DB
11182 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11183 insn->off, BPF_SIZE(insn->code),
11184 BPF_READ, insn->dst_reg, false);
17a52670
AS
11185 if (err)
11186 return err;
11187
c08435ec 11188 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11189
11190 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
11191 /* saw a valid insn
11192 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 11193 * save type to validate intersecting paths
9bac3d6d 11194 */
3df126f3 11195 *prev_src_type = src_reg_type;
9bac3d6d 11196
c64b7983 11197 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
11198 /* ABuser program is trying to use the same insn
11199 * dst_reg = *(u32*) (src_reg + off)
11200 * with different pointer types:
11201 * src_reg == ctx in one branch and
11202 * src_reg == stack|map in some other branch.
11203 * Reject it.
11204 */
61bd5218 11205 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
11206 return -EINVAL;
11207 }
11208
17a52670 11209 } else if (class == BPF_STX) {
3df126f3 11210 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 11211
91c960b0
BJ
11212 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11213 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
11214 if (err)
11215 return err;
c08435ec 11216 env->insn_idx++;
17a52670
AS
11217 continue;
11218 }
11219
5ca419f2
BJ
11220 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11221 verbose(env, "BPF_STX uses reserved fields\n");
11222 return -EINVAL;
11223 }
11224
17a52670 11225 /* check src1 operand */
dc503a8a 11226 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11227 if (err)
11228 return err;
11229 /* check src2 operand */
dc503a8a 11230 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11231 if (err)
11232 return err;
11233
d691f9e8
AS
11234 dst_reg_type = regs[insn->dst_reg].type;
11235
17a52670 11236 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11237 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11238 insn->off, BPF_SIZE(insn->code),
11239 BPF_WRITE, insn->src_reg, false);
17a52670
AS
11240 if (err)
11241 return err;
11242
c08435ec 11243 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11244
11245 if (*prev_dst_type == NOT_INIT) {
11246 *prev_dst_type = dst_reg_type;
c64b7983 11247 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 11248 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
11249 return -EINVAL;
11250 }
11251
17a52670
AS
11252 } else if (class == BPF_ST) {
11253 if (BPF_MODE(insn->code) != BPF_MEM ||
11254 insn->src_reg != BPF_REG_0) {
61bd5218 11255 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
11256 return -EINVAL;
11257 }
11258 /* check src operand */
dc503a8a 11259 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11260 if (err)
11261 return err;
11262
f37a8cb8 11263 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 11264 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
11265 insn->dst_reg,
11266 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
11267 return -EACCES;
11268 }
11269
17a52670 11270 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11271 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11272 insn->off, BPF_SIZE(insn->code),
11273 BPF_WRITE, -1, false);
17a52670
AS
11274 if (err)
11275 return err;
11276
092ed096 11277 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
11278 u8 opcode = BPF_OP(insn->code);
11279
2589726d 11280 env->jmps_processed++;
17a52670
AS
11281 if (opcode == BPF_CALL) {
11282 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
11283 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11284 && insn->off != 0) ||
f4d7e40a 11285 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
11286 insn->src_reg != BPF_PSEUDO_CALL &&
11287 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
11288 insn->dst_reg != BPF_REG_0 ||
11289 class == BPF_JMP32) {
61bd5218 11290 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
11291 return -EINVAL;
11292 }
11293
d83525ca
AS
11294 if (env->cur_state->active_spin_lock &&
11295 (insn->src_reg == BPF_PSEUDO_CALL ||
11296 insn->imm != BPF_FUNC_spin_unlock)) {
11297 verbose(env, "function calls are not allowed while holding a lock\n");
11298 return -EINVAL;
11299 }
f4d7e40a 11300 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 11301 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
11302 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11303 err = check_kfunc_call(env, insn);
f4d7e40a 11304 else
69c087ba 11305 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
11306 if (err)
11307 return err;
17a52670
AS
11308 } else if (opcode == BPF_JA) {
11309 if (BPF_SRC(insn->code) != BPF_K ||
11310 insn->imm != 0 ||
11311 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11312 insn->dst_reg != BPF_REG_0 ||
11313 class == BPF_JMP32) {
61bd5218 11314 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
11315 return -EINVAL;
11316 }
11317
c08435ec 11318 env->insn_idx += insn->off + 1;
17a52670
AS
11319 continue;
11320
11321 } else if (opcode == BPF_EXIT) {
11322 if (BPF_SRC(insn->code) != BPF_K ||
11323 insn->imm != 0 ||
11324 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11325 insn->dst_reg != BPF_REG_0 ||
11326 class == BPF_JMP32) {
61bd5218 11327 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
11328 return -EINVAL;
11329 }
11330
d83525ca
AS
11331 if (env->cur_state->active_spin_lock) {
11332 verbose(env, "bpf_spin_unlock is missing\n");
11333 return -EINVAL;
11334 }
11335
f4d7e40a
AS
11336 if (state->curframe) {
11337 /* exit from nested function */
c08435ec 11338 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
11339 if (err)
11340 return err;
11341 do_print_state = true;
11342 continue;
11343 }
11344
fd978bf7
JS
11345 err = check_reference_leak(env);
11346 if (err)
11347 return err;
11348
390ee7e2
AS
11349 err = check_return_code(env);
11350 if (err)
11351 return err;
f1bca824 11352process_bpf_exit:
2589726d 11353 update_branch_counts(env, env->cur_state);
b5dc0163 11354 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 11355 &env->insn_idx, pop_log);
638f5b90
AS
11356 if (err < 0) {
11357 if (err != -ENOENT)
11358 return err;
17a52670
AS
11359 break;
11360 } else {
11361 do_print_state = true;
11362 continue;
11363 }
11364 } else {
c08435ec 11365 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
11366 if (err)
11367 return err;
11368 }
11369 } else if (class == BPF_LD) {
11370 u8 mode = BPF_MODE(insn->code);
11371
11372 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
11373 err = check_ld_abs(env, insn);
11374 if (err)
11375 return err;
11376
17a52670
AS
11377 } else if (mode == BPF_IMM) {
11378 err = check_ld_imm(env, insn);
11379 if (err)
11380 return err;
11381
c08435ec 11382 env->insn_idx++;
fe9a5ca7 11383 sanitize_mark_insn_seen(env);
17a52670 11384 } else {
61bd5218 11385 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
11386 return -EINVAL;
11387 }
11388 } else {
61bd5218 11389 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
11390 return -EINVAL;
11391 }
11392
c08435ec 11393 env->insn_idx++;
17a52670
AS
11394 }
11395
11396 return 0;
11397}
11398
541c3bad
AN
11399static int find_btf_percpu_datasec(struct btf *btf)
11400{
11401 const struct btf_type *t;
11402 const char *tname;
11403 int i, n;
11404
11405 /*
11406 * Both vmlinux and module each have their own ".data..percpu"
11407 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11408 * types to look at only module's own BTF types.
11409 */
11410 n = btf_nr_types(btf);
11411 if (btf_is_module(btf))
11412 i = btf_nr_types(btf_vmlinux);
11413 else
11414 i = 1;
11415
11416 for(; i < n; i++) {
11417 t = btf_type_by_id(btf, i);
11418 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11419 continue;
11420
11421 tname = btf_name_by_offset(btf, t->name_off);
11422 if (!strcmp(tname, ".data..percpu"))
11423 return i;
11424 }
11425
11426 return -ENOENT;
11427}
11428
4976b718
HL
11429/* replace pseudo btf_id with kernel symbol address */
11430static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11431 struct bpf_insn *insn,
11432 struct bpf_insn_aux_data *aux)
11433{
eaa6bcb7
HL
11434 const struct btf_var_secinfo *vsi;
11435 const struct btf_type *datasec;
541c3bad 11436 struct btf_mod_pair *btf_mod;
4976b718
HL
11437 const struct btf_type *t;
11438 const char *sym_name;
eaa6bcb7 11439 bool percpu = false;
f16e6313 11440 u32 type, id = insn->imm;
541c3bad 11441 struct btf *btf;
f16e6313 11442 s32 datasec_id;
4976b718 11443 u64 addr;
541c3bad 11444 int i, btf_fd, err;
4976b718 11445
541c3bad
AN
11446 btf_fd = insn[1].imm;
11447 if (btf_fd) {
11448 btf = btf_get_by_fd(btf_fd);
11449 if (IS_ERR(btf)) {
11450 verbose(env, "invalid module BTF object FD specified.\n");
11451 return -EINVAL;
11452 }
11453 } else {
11454 if (!btf_vmlinux) {
11455 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11456 return -EINVAL;
11457 }
11458 btf = btf_vmlinux;
11459 btf_get(btf);
4976b718
HL
11460 }
11461
541c3bad 11462 t = btf_type_by_id(btf, id);
4976b718
HL
11463 if (!t) {
11464 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
11465 err = -ENOENT;
11466 goto err_put;
4976b718
HL
11467 }
11468
11469 if (!btf_type_is_var(t)) {
541c3bad
AN
11470 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11471 err = -EINVAL;
11472 goto err_put;
4976b718
HL
11473 }
11474
541c3bad 11475 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11476 addr = kallsyms_lookup_name(sym_name);
11477 if (!addr) {
11478 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11479 sym_name);
541c3bad
AN
11480 err = -ENOENT;
11481 goto err_put;
4976b718
HL
11482 }
11483
541c3bad 11484 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11485 if (datasec_id > 0) {
541c3bad 11486 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11487 for_each_vsi(i, datasec, vsi) {
11488 if (vsi->type == id) {
11489 percpu = true;
11490 break;
11491 }
11492 }
11493 }
11494
4976b718
HL
11495 insn[0].imm = (u32)addr;
11496 insn[1].imm = addr >> 32;
11497
11498 type = t->type;
541c3bad 11499 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
11500 if (percpu) {
11501 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 11502 aux->btf_var.btf = btf;
eaa6bcb7
HL
11503 aux->btf_var.btf_id = type;
11504 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11505 const struct btf_type *ret;
11506 const char *tname;
11507 u32 tsize;
11508
11509 /* resolve the type size of ksym. */
541c3bad 11510 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11511 if (IS_ERR(ret)) {
541c3bad 11512 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11513 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11514 tname, PTR_ERR(ret));
541c3bad
AN
11515 err = -EINVAL;
11516 goto err_put;
4976b718
HL
11517 }
11518 aux->btf_var.reg_type = PTR_TO_MEM;
11519 aux->btf_var.mem_size = tsize;
11520 } else {
11521 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11522 aux->btf_var.btf = btf;
4976b718
HL
11523 aux->btf_var.btf_id = type;
11524 }
541c3bad
AN
11525
11526 /* check whether we recorded this BTF (and maybe module) already */
11527 for (i = 0; i < env->used_btf_cnt; i++) {
11528 if (env->used_btfs[i].btf == btf) {
11529 btf_put(btf);
11530 return 0;
11531 }
11532 }
11533
11534 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11535 err = -E2BIG;
11536 goto err_put;
11537 }
11538
11539 btf_mod = &env->used_btfs[env->used_btf_cnt];
11540 btf_mod->btf = btf;
11541 btf_mod->module = NULL;
11542
11543 /* if we reference variables from kernel module, bump its refcount */
11544 if (btf_is_module(btf)) {
11545 btf_mod->module = btf_try_get_module(btf);
11546 if (!btf_mod->module) {
11547 err = -ENXIO;
11548 goto err_put;
11549 }
11550 }
11551
11552 env->used_btf_cnt++;
11553
4976b718 11554 return 0;
541c3bad
AN
11555err_put:
11556 btf_put(btf);
11557 return err;
4976b718
HL
11558}
11559
56f668df
MKL
11560static int check_map_prealloc(struct bpf_map *map)
11561{
11562 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11563 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11564 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11565 !(map->map_flags & BPF_F_NO_PREALLOC);
11566}
11567
d83525ca
AS
11568static bool is_tracing_prog_type(enum bpf_prog_type type)
11569{
11570 switch (type) {
11571 case BPF_PROG_TYPE_KPROBE:
11572 case BPF_PROG_TYPE_TRACEPOINT:
11573 case BPF_PROG_TYPE_PERF_EVENT:
11574 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11575 return true;
11576 default:
11577 return false;
11578 }
11579}
11580
94dacdbd
TG
11581static bool is_preallocated_map(struct bpf_map *map)
11582{
11583 if (!check_map_prealloc(map))
11584 return false;
11585 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11586 return false;
11587 return true;
11588}
11589
61bd5218
JK
11590static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11591 struct bpf_map *map,
fdc15d38
AS
11592 struct bpf_prog *prog)
11593
11594{
7e40781c 11595 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
11596 /*
11597 * Validate that trace type programs use preallocated hash maps.
11598 *
11599 * For programs attached to PERF events this is mandatory as the
11600 * perf NMI can hit any arbitrary code sequence.
11601 *
11602 * All other trace types using preallocated hash maps are unsafe as
11603 * well because tracepoint or kprobes can be inside locked regions
11604 * of the memory allocator or at a place where a recursion into the
11605 * memory allocator would see inconsistent state.
11606 *
2ed905c5
TG
11607 * On RT enabled kernels run-time allocation of all trace type
11608 * programs is strictly prohibited due to lock type constraints. On
11609 * !RT kernels it is allowed for backwards compatibility reasons for
11610 * now, but warnings are emitted so developers are made aware of
11611 * the unsafety and can fix their programs before this is enforced.
56f668df 11612 */
7e40781c
UP
11613 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11614 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11615 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11616 return -EINVAL;
11617 }
2ed905c5
TG
11618 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11619 verbose(env, "trace type programs can only use preallocated hash map\n");
11620 return -EINVAL;
11621 }
94dacdbd
TG
11622 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11623 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11624 }
a3884572 11625
9e7a4d98
KS
11626 if (map_value_has_spin_lock(map)) {
11627 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11628 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11629 return -EINVAL;
11630 }
11631
11632 if (is_tracing_prog_type(prog_type)) {
11633 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11634 return -EINVAL;
11635 }
11636
11637 if (prog->aux->sleepable) {
11638 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11639 return -EINVAL;
11640 }
d83525ca
AS
11641 }
11642
a3884572 11643 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11644 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11645 verbose(env, "offload device mismatch between prog and map\n");
11646 return -EINVAL;
11647 }
11648
85d33df3
MKL
11649 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11650 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11651 return -EINVAL;
11652 }
11653
1e6c62a8
AS
11654 if (prog->aux->sleepable)
11655 switch (map->map_type) {
11656 case BPF_MAP_TYPE_HASH:
11657 case BPF_MAP_TYPE_LRU_HASH:
11658 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11659 case BPF_MAP_TYPE_PERCPU_HASH:
11660 case BPF_MAP_TYPE_PERCPU_ARRAY:
11661 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11662 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11663 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11664 if (!is_preallocated_map(map)) {
11665 verbose(env,
638e4b82 11666 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11667 return -EINVAL;
11668 }
11669 break;
ba90c2cc
KS
11670 case BPF_MAP_TYPE_RINGBUF:
11671 break;
1e6c62a8
AS
11672 default:
11673 verbose(env,
ba90c2cc 11674 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11675 return -EINVAL;
11676 }
11677
fdc15d38
AS
11678 return 0;
11679}
11680
b741f163
RG
11681static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11682{
11683 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11684 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11685}
11686
4976b718
HL
11687/* find and rewrite pseudo imm in ld_imm64 instructions:
11688 *
11689 * 1. if it accesses map FD, replace it with actual map pointer.
11690 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11691 *
11692 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11693 */
4976b718 11694static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11695{
11696 struct bpf_insn *insn = env->prog->insnsi;
11697 int insn_cnt = env->prog->len;
fdc15d38 11698 int i, j, err;
0246e64d 11699
f1f7714e 11700 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11701 if (err)
11702 return err;
11703
0246e64d 11704 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11705 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11706 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11707 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11708 return -EINVAL;
11709 }
11710
0246e64d 11711 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11712 struct bpf_insn_aux_data *aux;
0246e64d
AS
11713 struct bpf_map *map;
11714 struct fd f;
d8eca5bb 11715 u64 addr;
387544bf 11716 u32 fd;
0246e64d
AS
11717
11718 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11719 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11720 insn[1].off != 0) {
61bd5218 11721 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11722 return -EINVAL;
11723 }
11724
d8eca5bb 11725 if (insn[0].src_reg == 0)
0246e64d
AS
11726 /* valid generic load 64-bit imm */
11727 goto next_insn;
11728
4976b718
HL
11729 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11730 aux = &env->insn_aux_data[i];
11731 err = check_pseudo_btf_id(env, insn, aux);
11732 if (err)
11733 return err;
11734 goto next_insn;
11735 }
11736
69c087ba
YS
11737 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11738 aux = &env->insn_aux_data[i];
11739 aux->ptr_type = PTR_TO_FUNC;
11740 goto next_insn;
11741 }
11742
d8eca5bb
DB
11743 /* In final convert_pseudo_ld_imm64() step, this is
11744 * converted into regular 64-bit imm load insn.
11745 */
387544bf
AS
11746 switch (insn[0].src_reg) {
11747 case BPF_PSEUDO_MAP_VALUE:
11748 case BPF_PSEUDO_MAP_IDX_VALUE:
11749 break;
11750 case BPF_PSEUDO_MAP_FD:
11751 case BPF_PSEUDO_MAP_IDX:
11752 if (insn[1].imm == 0)
11753 break;
11754 fallthrough;
11755 default:
11756 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11757 return -EINVAL;
11758 }
11759
387544bf
AS
11760 switch (insn[0].src_reg) {
11761 case BPF_PSEUDO_MAP_IDX_VALUE:
11762 case BPF_PSEUDO_MAP_IDX:
11763 if (bpfptr_is_null(env->fd_array)) {
11764 verbose(env, "fd_idx without fd_array is invalid\n");
11765 return -EPROTO;
11766 }
11767 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11768 insn[0].imm * sizeof(fd),
11769 sizeof(fd)))
11770 return -EFAULT;
11771 break;
11772 default:
11773 fd = insn[0].imm;
11774 break;
11775 }
11776
11777 f = fdget(fd);
c2101297 11778 map = __bpf_map_get(f);
0246e64d 11779 if (IS_ERR(map)) {
61bd5218 11780 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11781 insn[0].imm);
0246e64d
AS
11782 return PTR_ERR(map);
11783 }
11784
61bd5218 11785 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11786 if (err) {
11787 fdput(f);
11788 return err;
11789 }
11790
d8eca5bb 11791 aux = &env->insn_aux_data[i];
387544bf
AS
11792 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11793 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
11794 addr = (unsigned long)map;
11795 } else {
11796 u32 off = insn[1].imm;
11797
11798 if (off >= BPF_MAX_VAR_OFF) {
11799 verbose(env, "direct value offset of %u is not allowed\n", off);
11800 fdput(f);
11801 return -EINVAL;
11802 }
11803
11804 if (!map->ops->map_direct_value_addr) {
11805 verbose(env, "no direct value access support for this map type\n");
11806 fdput(f);
11807 return -EINVAL;
11808 }
11809
11810 err = map->ops->map_direct_value_addr(map, &addr, off);
11811 if (err) {
11812 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11813 map->value_size, off);
11814 fdput(f);
11815 return err;
11816 }
11817
11818 aux->map_off = off;
11819 addr += off;
11820 }
11821
11822 insn[0].imm = (u32)addr;
11823 insn[1].imm = addr >> 32;
0246e64d
AS
11824
11825 /* check whether we recorded this map already */
d8eca5bb 11826 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 11827 if (env->used_maps[j] == map) {
d8eca5bb 11828 aux->map_index = j;
0246e64d
AS
11829 fdput(f);
11830 goto next_insn;
11831 }
d8eca5bb 11832 }
0246e64d
AS
11833
11834 if (env->used_map_cnt >= MAX_USED_MAPS) {
11835 fdput(f);
11836 return -E2BIG;
11837 }
11838
0246e64d
AS
11839 /* hold the map. If the program is rejected by verifier,
11840 * the map will be released by release_maps() or it
11841 * will be used by the valid program until it's unloaded
ab7f5bf0 11842 * and all maps are released in free_used_maps()
0246e64d 11843 */
1e0bd5a0 11844 bpf_map_inc(map);
d8eca5bb
DB
11845
11846 aux->map_index = env->used_map_cnt;
92117d84
AS
11847 env->used_maps[env->used_map_cnt++] = map;
11848
b741f163 11849 if (bpf_map_is_cgroup_storage(map) &&
e4730423 11850 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 11851 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
11852 fdput(f);
11853 return -EBUSY;
11854 }
11855
0246e64d
AS
11856 fdput(f);
11857next_insn:
11858 insn++;
11859 i++;
5e581dad
DB
11860 continue;
11861 }
11862
11863 /* Basic sanity check before we invest more work here. */
11864 if (!bpf_opcode_in_insntable(insn->code)) {
11865 verbose(env, "unknown opcode %02x\n", insn->code);
11866 return -EINVAL;
0246e64d
AS
11867 }
11868 }
11869
11870 /* now all pseudo BPF_LD_IMM64 instructions load valid
11871 * 'struct bpf_map *' into a register instead of user map_fd.
11872 * These pointers will be used later by verifier to validate map access.
11873 */
11874 return 0;
11875}
11876
11877/* drop refcnt of maps used by the rejected program */
58e2af8b 11878static void release_maps(struct bpf_verifier_env *env)
0246e64d 11879{
a2ea0746
DB
11880 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11881 env->used_map_cnt);
0246e64d
AS
11882}
11883
541c3bad
AN
11884/* drop refcnt of maps used by the rejected program */
11885static void release_btfs(struct bpf_verifier_env *env)
11886{
11887 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11888 env->used_btf_cnt);
11889}
11890
0246e64d 11891/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 11892static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
11893{
11894 struct bpf_insn *insn = env->prog->insnsi;
11895 int insn_cnt = env->prog->len;
11896 int i;
11897
69c087ba
YS
11898 for (i = 0; i < insn_cnt; i++, insn++) {
11899 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11900 continue;
11901 if (insn->src_reg == BPF_PSEUDO_FUNC)
11902 continue;
11903 insn->src_reg = 0;
11904 }
0246e64d
AS
11905}
11906
8041902d
AS
11907/* single env->prog->insni[off] instruction was replaced with the range
11908 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11909 * [0, off) and [off, end) to new locations, so the patched range stays zero
11910 */
75f0fc7b
HF
11911static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11912 struct bpf_insn_aux_data *new_data,
11913 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 11914{
75f0fc7b 11915 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 11916 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 11917 u32 old_seen = old_data[off].seen;
b325fbca 11918 u32 prog_len;
c131187d 11919 int i;
8041902d 11920
b325fbca
JW
11921 /* aux info at OFF always needs adjustment, no matter fast path
11922 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11923 * original insn at old prog.
11924 */
11925 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11926
8041902d 11927 if (cnt == 1)
75f0fc7b 11928 return;
b325fbca 11929 prog_len = new_prog->len;
75f0fc7b 11930
8041902d
AS
11931 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11932 memcpy(new_data + off + cnt - 1, old_data + off,
11933 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 11934 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
11935 /* Expand insni[off]'s seen count to the patched range. */
11936 new_data[i].seen = old_seen;
b325fbca
JW
11937 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11938 }
8041902d
AS
11939 env->insn_aux_data = new_data;
11940 vfree(old_data);
8041902d
AS
11941}
11942
cc8b0b92
AS
11943static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11944{
11945 int i;
11946
11947 if (len == 1)
11948 return;
4cb3d99c
JW
11949 /* NOTE: fake 'exit' subprog should be updated as well. */
11950 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 11951 if (env->subprog_info[i].start <= off)
cc8b0b92 11952 continue;
9c8105bd 11953 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
11954 }
11955}
11956
7506d211 11957static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
11958{
11959 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11960 int i, sz = prog->aux->size_poke_tab;
11961 struct bpf_jit_poke_descriptor *desc;
11962
11963 for (i = 0; i < sz; i++) {
11964 desc = &tab[i];
7506d211
JF
11965 if (desc->insn_idx <= off)
11966 continue;
a748c697
MF
11967 desc->insn_idx += len - 1;
11968 }
11969}
11970
8041902d
AS
11971static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11972 const struct bpf_insn *patch, u32 len)
11973{
11974 struct bpf_prog *new_prog;
75f0fc7b
HF
11975 struct bpf_insn_aux_data *new_data = NULL;
11976
11977 if (len > 1) {
11978 new_data = vzalloc(array_size(env->prog->len + len - 1,
11979 sizeof(struct bpf_insn_aux_data)));
11980 if (!new_data)
11981 return NULL;
11982 }
8041902d
AS
11983
11984 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
11985 if (IS_ERR(new_prog)) {
11986 if (PTR_ERR(new_prog) == -ERANGE)
11987 verbose(env,
11988 "insn %d cannot be patched due to 16-bit range\n",
11989 env->insn_aux_data[off].orig_idx);
75f0fc7b 11990 vfree(new_data);
8041902d 11991 return NULL;
4f73379e 11992 }
75f0fc7b 11993 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 11994 adjust_subprog_starts(env, off, len);
7506d211 11995 adjust_poke_descs(new_prog, off, len);
8041902d
AS
11996 return new_prog;
11997}
11998
52875a04
JK
11999static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12000 u32 off, u32 cnt)
12001{
12002 int i, j;
12003
12004 /* find first prog starting at or after off (first to remove) */
12005 for (i = 0; i < env->subprog_cnt; i++)
12006 if (env->subprog_info[i].start >= off)
12007 break;
12008 /* find first prog starting at or after off + cnt (first to stay) */
12009 for (j = i; j < env->subprog_cnt; j++)
12010 if (env->subprog_info[j].start >= off + cnt)
12011 break;
12012 /* if j doesn't start exactly at off + cnt, we are just removing
12013 * the front of previous prog
12014 */
12015 if (env->subprog_info[j].start != off + cnt)
12016 j--;
12017
12018 if (j > i) {
12019 struct bpf_prog_aux *aux = env->prog->aux;
12020 int move;
12021
12022 /* move fake 'exit' subprog as well */
12023 move = env->subprog_cnt + 1 - j;
12024
12025 memmove(env->subprog_info + i,
12026 env->subprog_info + j,
12027 sizeof(*env->subprog_info) * move);
12028 env->subprog_cnt -= j - i;
12029
12030 /* remove func_info */
12031 if (aux->func_info) {
12032 move = aux->func_info_cnt - j;
12033
12034 memmove(aux->func_info + i,
12035 aux->func_info + j,
12036 sizeof(*aux->func_info) * move);
12037 aux->func_info_cnt -= j - i;
12038 /* func_info->insn_off is set after all code rewrites,
12039 * in adjust_btf_func() - no need to adjust
12040 */
12041 }
12042 } else {
12043 /* convert i from "first prog to remove" to "first to adjust" */
12044 if (env->subprog_info[i].start == off)
12045 i++;
12046 }
12047
12048 /* update fake 'exit' subprog as well */
12049 for (; i <= env->subprog_cnt; i++)
12050 env->subprog_info[i].start -= cnt;
12051
12052 return 0;
12053}
12054
12055static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12056 u32 cnt)
12057{
12058 struct bpf_prog *prog = env->prog;
12059 u32 i, l_off, l_cnt, nr_linfo;
12060 struct bpf_line_info *linfo;
12061
12062 nr_linfo = prog->aux->nr_linfo;
12063 if (!nr_linfo)
12064 return 0;
12065
12066 linfo = prog->aux->linfo;
12067
12068 /* find first line info to remove, count lines to be removed */
12069 for (i = 0; i < nr_linfo; i++)
12070 if (linfo[i].insn_off >= off)
12071 break;
12072
12073 l_off = i;
12074 l_cnt = 0;
12075 for (; i < nr_linfo; i++)
12076 if (linfo[i].insn_off < off + cnt)
12077 l_cnt++;
12078 else
12079 break;
12080
12081 /* First live insn doesn't match first live linfo, it needs to "inherit"
12082 * last removed linfo. prog is already modified, so prog->len == off
12083 * means no live instructions after (tail of the program was removed).
12084 */
12085 if (prog->len != off && l_cnt &&
12086 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12087 l_cnt--;
12088 linfo[--i].insn_off = off + cnt;
12089 }
12090
12091 /* remove the line info which refer to the removed instructions */
12092 if (l_cnt) {
12093 memmove(linfo + l_off, linfo + i,
12094 sizeof(*linfo) * (nr_linfo - i));
12095
12096 prog->aux->nr_linfo -= l_cnt;
12097 nr_linfo = prog->aux->nr_linfo;
12098 }
12099
12100 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12101 for (i = l_off; i < nr_linfo; i++)
12102 linfo[i].insn_off -= cnt;
12103
12104 /* fix up all subprogs (incl. 'exit') which start >= off */
12105 for (i = 0; i <= env->subprog_cnt; i++)
12106 if (env->subprog_info[i].linfo_idx > l_off) {
12107 /* program may have started in the removed region but
12108 * may not be fully removed
12109 */
12110 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12111 env->subprog_info[i].linfo_idx -= l_cnt;
12112 else
12113 env->subprog_info[i].linfo_idx = l_off;
12114 }
12115
12116 return 0;
12117}
12118
12119static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12120{
12121 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12122 unsigned int orig_prog_len = env->prog->len;
12123 int err;
12124
08ca90af
JK
12125 if (bpf_prog_is_dev_bound(env->prog->aux))
12126 bpf_prog_offload_remove_insns(env, off, cnt);
12127
52875a04
JK
12128 err = bpf_remove_insns(env->prog, off, cnt);
12129 if (err)
12130 return err;
12131
12132 err = adjust_subprog_starts_after_remove(env, off, cnt);
12133 if (err)
12134 return err;
12135
12136 err = bpf_adj_linfo_after_remove(env, off, cnt);
12137 if (err)
12138 return err;
12139
12140 memmove(aux_data + off, aux_data + off + cnt,
12141 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12142
12143 return 0;
12144}
12145
2a5418a1
DB
12146/* The verifier does more data flow analysis than llvm and will not
12147 * explore branches that are dead at run time. Malicious programs can
12148 * have dead code too. Therefore replace all dead at-run-time code
12149 * with 'ja -1'.
12150 *
12151 * Just nops are not optimal, e.g. if they would sit at the end of the
12152 * program and through another bug we would manage to jump there, then
12153 * we'd execute beyond program memory otherwise. Returning exception
12154 * code also wouldn't work since we can have subprogs where the dead
12155 * code could be located.
c131187d
AS
12156 */
12157static void sanitize_dead_code(struct bpf_verifier_env *env)
12158{
12159 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 12160 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
12161 struct bpf_insn *insn = env->prog->insnsi;
12162 const int insn_cnt = env->prog->len;
12163 int i;
12164
12165 for (i = 0; i < insn_cnt; i++) {
12166 if (aux_data[i].seen)
12167 continue;
2a5418a1 12168 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 12169 aux_data[i].zext_dst = false;
c131187d
AS
12170 }
12171}
12172
e2ae4ca2
JK
12173static bool insn_is_cond_jump(u8 code)
12174{
12175 u8 op;
12176
092ed096
JW
12177 if (BPF_CLASS(code) == BPF_JMP32)
12178 return true;
12179
e2ae4ca2
JK
12180 if (BPF_CLASS(code) != BPF_JMP)
12181 return false;
12182
12183 op = BPF_OP(code);
12184 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12185}
12186
12187static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12188{
12189 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12190 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12191 struct bpf_insn *insn = env->prog->insnsi;
12192 const int insn_cnt = env->prog->len;
12193 int i;
12194
12195 for (i = 0; i < insn_cnt; i++, insn++) {
12196 if (!insn_is_cond_jump(insn->code))
12197 continue;
12198
12199 if (!aux_data[i + 1].seen)
12200 ja.off = insn->off;
12201 else if (!aux_data[i + 1 + insn->off].seen)
12202 ja.off = 0;
12203 else
12204 continue;
12205
08ca90af
JK
12206 if (bpf_prog_is_dev_bound(env->prog->aux))
12207 bpf_prog_offload_replace_insn(env, i, &ja);
12208
e2ae4ca2
JK
12209 memcpy(insn, &ja, sizeof(ja));
12210 }
12211}
12212
52875a04
JK
12213static int opt_remove_dead_code(struct bpf_verifier_env *env)
12214{
12215 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12216 int insn_cnt = env->prog->len;
12217 int i, err;
12218
12219 for (i = 0; i < insn_cnt; i++) {
12220 int j;
12221
12222 j = 0;
12223 while (i + j < insn_cnt && !aux_data[i + j].seen)
12224 j++;
12225 if (!j)
12226 continue;
12227
12228 err = verifier_remove_insns(env, i, j);
12229 if (err)
12230 return err;
12231 insn_cnt = env->prog->len;
12232 }
12233
12234 return 0;
12235}
12236
a1b14abc
JK
12237static int opt_remove_nops(struct bpf_verifier_env *env)
12238{
12239 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12240 struct bpf_insn *insn = env->prog->insnsi;
12241 int insn_cnt = env->prog->len;
12242 int i, err;
12243
12244 for (i = 0; i < insn_cnt; i++) {
12245 if (memcmp(&insn[i], &ja, sizeof(ja)))
12246 continue;
12247
12248 err = verifier_remove_insns(env, i, 1);
12249 if (err)
12250 return err;
12251 insn_cnt--;
12252 i--;
12253 }
12254
12255 return 0;
12256}
12257
d6c2308c
JW
12258static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12259 const union bpf_attr *attr)
a4b1d3c1 12260{
d6c2308c 12261 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 12262 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 12263 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 12264 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 12265 struct bpf_prog *new_prog;
d6c2308c 12266 bool rnd_hi32;
a4b1d3c1 12267
d6c2308c 12268 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 12269 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
12270 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12271 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12272 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
12273 for (i = 0; i < len; i++) {
12274 int adj_idx = i + delta;
12275 struct bpf_insn insn;
83a28819 12276 int load_reg;
a4b1d3c1 12277
d6c2308c 12278 insn = insns[adj_idx];
83a28819 12279 load_reg = insn_def_regno(&insn);
d6c2308c
JW
12280 if (!aux[adj_idx].zext_dst) {
12281 u8 code, class;
12282 u32 imm_rnd;
12283
12284 if (!rnd_hi32)
12285 continue;
12286
12287 code = insn.code;
12288 class = BPF_CLASS(code);
83a28819 12289 if (load_reg == -1)
d6c2308c
JW
12290 continue;
12291
12292 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
12293 * BPF_STX + SRC_OP, so it is safe to pass NULL
12294 * here.
d6c2308c 12295 */
83a28819 12296 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
12297 if (class == BPF_LD &&
12298 BPF_MODE(code) == BPF_IMM)
12299 i++;
12300 continue;
12301 }
12302
12303 /* ctx load could be transformed into wider load. */
12304 if (class == BPF_LDX &&
12305 aux[adj_idx].ptr_type == PTR_TO_CTX)
12306 continue;
12307
12308 imm_rnd = get_random_int();
12309 rnd_hi32_patch[0] = insn;
12310 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 12311 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
12312 patch = rnd_hi32_patch;
12313 patch_len = 4;
12314 goto apply_patch_buffer;
12315 }
12316
39491867
BJ
12317 /* Add in an zero-extend instruction if a) the JIT has requested
12318 * it or b) it's a CMPXCHG.
12319 *
12320 * The latter is because: BPF_CMPXCHG always loads a value into
12321 * R0, therefore always zero-extends. However some archs'
12322 * equivalent instruction only does this load when the
12323 * comparison is successful. This detail of CMPXCHG is
12324 * orthogonal to the general zero-extension behaviour of the
12325 * CPU, so it's treated independently of bpf_jit_needs_zext.
12326 */
12327 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
12328 continue;
12329
83a28819
IL
12330 if (WARN_ON(load_reg == -1)) {
12331 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12332 return -EFAULT;
b2e37a71
IL
12333 }
12334
a4b1d3c1 12335 zext_patch[0] = insn;
b2e37a71
IL
12336 zext_patch[1].dst_reg = load_reg;
12337 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
12338 patch = zext_patch;
12339 patch_len = 2;
12340apply_patch_buffer:
12341 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
12342 if (!new_prog)
12343 return -ENOMEM;
12344 env->prog = new_prog;
12345 insns = new_prog->insnsi;
12346 aux = env->insn_aux_data;
d6c2308c 12347 delta += patch_len - 1;
a4b1d3c1
JW
12348 }
12349
12350 return 0;
12351}
12352
c64b7983
JS
12353/* convert load instructions that access fields of a context type into a
12354 * sequence of instructions that access fields of the underlying structure:
12355 * struct __sk_buff -> struct sk_buff
12356 * struct bpf_sock_ops -> struct sock
9bac3d6d 12357 */
58e2af8b 12358static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 12359{
00176a34 12360 const struct bpf_verifier_ops *ops = env->ops;
f96da094 12361 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 12362 const int insn_cnt = env->prog->len;
36bbef52 12363 struct bpf_insn insn_buf[16], *insn;
46f53a65 12364 u32 target_size, size_default, off;
9bac3d6d 12365 struct bpf_prog *new_prog;
d691f9e8 12366 enum bpf_access_type type;
f96da094 12367 bool is_narrower_load;
9bac3d6d 12368
b09928b9
DB
12369 if (ops->gen_prologue || env->seen_direct_write) {
12370 if (!ops->gen_prologue) {
12371 verbose(env, "bpf verifier is misconfigured\n");
12372 return -EINVAL;
12373 }
36bbef52
DB
12374 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12375 env->prog);
12376 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 12377 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
12378 return -EINVAL;
12379 } else if (cnt) {
8041902d 12380 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
12381 if (!new_prog)
12382 return -ENOMEM;
8041902d 12383
36bbef52 12384 env->prog = new_prog;
3df126f3 12385 delta += cnt - 1;
36bbef52
DB
12386 }
12387 }
12388
c64b7983 12389 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
12390 return 0;
12391
3df126f3 12392 insn = env->prog->insnsi + delta;
36bbef52 12393
9bac3d6d 12394 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 12395 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 12396 bool ctx_access;
c64b7983 12397
62c7989b
DB
12398 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12399 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12400 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 12401 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 12402 type = BPF_READ;
2039f26f
DB
12403 ctx_access = true;
12404 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12405 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12406 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12407 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12408 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12409 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12410 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12411 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 12412 type = BPF_WRITE;
2039f26f
DB
12413 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12414 } else {
9bac3d6d 12415 continue;
2039f26f 12416 }
9bac3d6d 12417
af86ca4e 12418 if (type == BPF_WRITE &&
2039f26f 12419 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 12420 struct bpf_insn patch[] = {
af86ca4e 12421 *insn,
2039f26f 12422 BPF_ST_NOSPEC(),
af86ca4e
AS
12423 };
12424
12425 cnt = ARRAY_SIZE(patch);
12426 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12427 if (!new_prog)
12428 return -ENOMEM;
12429
12430 delta += cnt - 1;
12431 env->prog = new_prog;
12432 insn = new_prog->insnsi + i + delta;
12433 continue;
12434 }
12435
2039f26f
DB
12436 if (!ctx_access)
12437 continue;
12438
c64b7983
JS
12439 switch (env->insn_aux_data[i + delta].ptr_type) {
12440 case PTR_TO_CTX:
12441 if (!ops->convert_ctx_access)
12442 continue;
12443 convert_ctx_access = ops->convert_ctx_access;
12444 break;
12445 case PTR_TO_SOCKET:
46f8bc92 12446 case PTR_TO_SOCK_COMMON:
c64b7983
JS
12447 convert_ctx_access = bpf_sock_convert_ctx_access;
12448 break;
655a51e5
MKL
12449 case PTR_TO_TCP_SOCK:
12450 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12451 break;
fada7fdc
JL
12452 case PTR_TO_XDP_SOCK:
12453 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12454 break;
2a02759e 12455 case PTR_TO_BTF_ID:
27ae7997
MKL
12456 if (type == BPF_READ) {
12457 insn->code = BPF_LDX | BPF_PROBE_MEM |
12458 BPF_SIZE((insn)->code);
12459 env->prog->aux->num_exentries++;
7e40781c 12460 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
12461 verbose(env, "Writes through BTF pointers are not allowed\n");
12462 return -EINVAL;
12463 }
2a02759e 12464 continue;
c64b7983 12465 default:
9bac3d6d 12466 continue;
c64b7983 12467 }
9bac3d6d 12468
31fd8581 12469 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 12470 size = BPF_LDST_BYTES(insn);
31fd8581
YS
12471
12472 /* If the read access is a narrower load of the field,
12473 * convert to a 4/8-byte load, to minimum program type specific
12474 * convert_ctx_access changes. If conversion is successful,
12475 * we will apply proper mask to the result.
12476 */
f96da094 12477 is_narrower_load = size < ctx_field_size;
46f53a65
AI
12478 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12479 off = insn->off;
31fd8581 12480 if (is_narrower_load) {
f96da094
DB
12481 u8 size_code;
12482
12483 if (type == BPF_WRITE) {
61bd5218 12484 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12485 return -EINVAL;
12486 }
31fd8581 12487
f96da094 12488 size_code = BPF_H;
31fd8581
YS
12489 if (ctx_field_size == 4)
12490 size_code = BPF_W;
12491 else if (ctx_field_size == 8)
12492 size_code = BPF_DW;
f96da094 12493
bc23105c 12494 insn->off = off & ~(size_default - 1);
31fd8581
YS
12495 insn->code = BPF_LDX | BPF_MEM | size_code;
12496 }
f96da094
DB
12497
12498 target_size = 0;
c64b7983
JS
12499 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12500 &target_size);
f96da094
DB
12501 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12502 (ctx_field_size && !target_size)) {
61bd5218 12503 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12504 return -EINVAL;
12505 }
f96da094
DB
12506
12507 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12508 u8 shift = bpf_ctx_narrow_access_offset(
12509 off, size, size_default) * 8;
d7af7e49
AI
12510 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12511 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12512 return -EINVAL;
12513 }
46f53a65
AI
12514 if (ctx_field_size <= 4) {
12515 if (shift)
12516 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12517 insn->dst_reg,
12518 shift);
31fd8581 12519 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12520 (1 << size * 8) - 1);
46f53a65
AI
12521 } else {
12522 if (shift)
12523 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12524 insn->dst_reg,
12525 shift);
31fd8581 12526 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12527 (1ULL << size * 8) - 1);
46f53a65 12528 }
31fd8581 12529 }
9bac3d6d 12530
8041902d 12531 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12532 if (!new_prog)
12533 return -ENOMEM;
12534
3df126f3 12535 delta += cnt - 1;
9bac3d6d
AS
12536
12537 /* keep walking new program and skip insns we just inserted */
12538 env->prog = new_prog;
3df126f3 12539 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12540 }
12541
12542 return 0;
12543}
12544
1c2a088a
AS
12545static int jit_subprogs(struct bpf_verifier_env *env)
12546{
12547 struct bpf_prog *prog = env->prog, **func, *tmp;
12548 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12549 struct bpf_map *map_ptr;
7105e828 12550 struct bpf_insn *insn;
1c2a088a 12551 void *old_bpf_func;
c4c0bdc0 12552 int err, num_exentries;
1c2a088a 12553
f910cefa 12554 if (env->subprog_cnt <= 1)
1c2a088a
AS
12555 return 0;
12556
7105e828 12557 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12558 if (bpf_pseudo_func(insn)) {
12559 env->insn_aux_data[i].call_imm = insn->imm;
12560 /* subprog is encoded in insn[1].imm */
12561 continue;
12562 }
12563
23a2d70c 12564 if (!bpf_pseudo_call(insn))
1c2a088a 12565 continue;
c7a89784
DB
12566 /* Upon error here we cannot fall back to interpreter but
12567 * need a hard reject of the program. Thus -EFAULT is
12568 * propagated in any case.
12569 */
1c2a088a
AS
12570 subprog = find_subprog(env, i + insn->imm + 1);
12571 if (subprog < 0) {
12572 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12573 i + insn->imm + 1);
12574 return -EFAULT;
12575 }
12576 /* temporarily remember subprog id inside insn instead of
12577 * aux_data, since next loop will split up all insns into funcs
12578 */
f910cefa 12579 insn->off = subprog;
1c2a088a
AS
12580 /* remember original imm in case JIT fails and fallback
12581 * to interpreter will be needed
12582 */
12583 env->insn_aux_data[i].call_imm = insn->imm;
12584 /* point imm to __bpf_call_base+1 from JITs point of view */
12585 insn->imm = 1;
12586 }
12587
c454a46b
MKL
12588 err = bpf_prog_alloc_jited_linfo(prog);
12589 if (err)
12590 goto out_undo_insn;
12591
12592 err = -ENOMEM;
6396bb22 12593 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 12594 if (!func)
c7a89784 12595 goto out_undo_insn;
1c2a088a 12596
f910cefa 12597 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 12598 subprog_start = subprog_end;
4cb3d99c 12599 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
12600
12601 len = subprog_end - subprog_start;
fb7dd8bc 12602 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
12603 * hence main prog stats include the runtime of subprogs.
12604 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 12605 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
12606 */
12607 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
12608 if (!func[i])
12609 goto out_free;
12610 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12611 len * sizeof(struct bpf_insn));
4f74d809 12612 func[i]->type = prog->type;
1c2a088a 12613 func[i]->len = len;
4f74d809
DB
12614 if (bpf_prog_calc_tag(func[i]))
12615 goto out_free;
1c2a088a 12616 func[i]->is_func = 1;
ba64e7d8 12617 func[i]->aux->func_idx = i;
f263a814 12618 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
12619 func[i]->aux->btf = prog->aux->btf;
12620 func[i]->aux->func_info = prog->aux->func_info;
f263a814
JF
12621 func[i]->aux->poke_tab = prog->aux->poke_tab;
12622 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 12623
a748c697 12624 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 12625 struct bpf_jit_poke_descriptor *poke;
a748c697 12626
f263a814
JF
12627 poke = &prog->aux->poke_tab[j];
12628 if (poke->insn_idx < subprog_end &&
12629 poke->insn_idx >= subprog_start)
12630 poke->aux = func[i]->aux;
a748c697
MF
12631 }
12632
1c2a088a
AS
12633 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12634 * Long term would need debug info to populate names
12635 */
12636 func[i]->aux->name[0] = 'F';
9c8105bd 12637 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12638 func[i]->jit_requested = 1;
e6ac2450 12639 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 12640 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
12641 func[i]->aux->linfo = prog->aux->linfo;
12642 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12643 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12644 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12645 num_exentries = 0;
12646 insn = func[i]->insnsi;
12647 for (j = 0; j < func[i]->len; j++, insn++) {
12648 if (BPF_CLASS(insn->code) == BPF_LDX &&
12649 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12650 num_exentries++;
12651 }
12652 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12653 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12654 func[i] = bpf_int_jit_compile(func[i]);
12655 if (!func[i]->jited) {
12656 err = -ENOTSUPP;
12657 goto out_free;
12658 }
12659 cond_resched();
12660 }
a748c697 12661
1c2a088a
AS
12662 /* at this point all bpf functions were successfully JITed
12663 * now populate all bpf_calls with correct addresses and
12664 * run last pass of JIT
12665 */
f910cefa 12666 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12667 insn = func[i]->insnsi;
12668 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba
YS
12669 if (bpf_pseudo_func(insn)) {
12670 subprog = insn[1].imm;
12671 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12672 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12673 continue;
12674 }
23a2d70c 12675 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12676 continue;
12677 subprog = insn->off;
3d717fad 12678 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 12679 }
2162fed4
SD
12680
12681 /* we use the aux data to keep a list of the start addresses
12682 * of the JITed images for each function in the program
12683 *
12684 * for some architectures, such as powerpc64, the imm field
12685 * might not be large enough to hold the offset of the start
12686 * address of the callee's JITed image from __bpf_call_base
12687 *
12688 * in such cases, we can lookup the start address of a callee
12689 * by using its subprog id, available from the off field of
12690 * the call instruction, as an index for this list
12691 */
12692 func[i]->aux->func = func;
12693 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12694 }
f910cefa 12695 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12696 old_bpf_func = func[i]->bpf_func;
12697 tmp = bpf_int_jit_compile(func[i]);
12698 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12699 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12700 err = -ENOTSUPP;
1c2a088a
AS
12701 goto out_free;
12702 }
12703 cond_resched();
12704 }
12705
12706 /* finally lock prog and jit images for all functions and
12707 * populate kallsysm
12708 */
f910cefa 12709 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12710 bpf_prog_lock_ro(func[i]);
12711 bpf_prog_kallsyms_add(func[i]);
12712 }
7105e828
DB
12713
12714 /* Last step: make now unused interpreter insns from main
12715 * prog consistent for later dump requests, so they can
12716 * later look the same as if they were interpreted only.
12717 */
12718 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12719 if (bpf_pseudo_func(insn)) {
12720 insn[0].imm = env->insn_aux_data[i].call_imm;
12721 insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12722 continue;
12723 }
23a2d70c 12724 if (!bpf_pseudo_call(insn))
7105e828
DB
12725 continue;
12726 insn->off = env->insn_aux_data[i].call_imm;
12727 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12728 insn->imm = subprog;
7105e828
DB
12729 }
12730
1c2a088a
AS
12731 prog->jited = 1;
12732 prog->bpf_func = func[0]->bpf_func;
12733 prog->aux->func = func;
f910cefa 12734 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12735 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12736 return 0;
12737out_free:
f263a814
JF
12738 /* We failed JIT'ing, so at this point we need to unregister poke
12739 * descriptors from subprogs, so that kernel is not attempting to
12740 * patch it anymore as we're freeing the subprog JIT memory.
12741 */
12742 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12743 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12744 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12745 }
12746 /* At this point we're guaranteed that poke descriptors are not
12747 * live anymore. We can just unlink its descriptor table as it's
12748 * released with the main prog.
12749 */
a748c697
MF
12750 for (i = 0; i < env->subprog_cnt; i++) {
12751 if (!func[i])
12752 continue;
f263a814 12753 func[i]->aux->poke_tab = NULL;
a748c697
MF
12754 bpf_jit_free(func[i]);
12755 }
1c2a088a 12756 kfree(func);
c7a89784 12757out_undo_insn:
1c2a088a
AS
12758 /* cleanup main prog to be interpreted */
12759 prog->jit_requested = 0;
12760 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12761 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12762 continue;
12763 insn->off = 0;
12764 insn->imm = env->insn_aux_data[i].call_imm;
12765 }
e16301fb 12766 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12767 return err;
12768}
12769
1ea47e01
AS
12770static int fixup_call_args(struct bpf_verifier_env *env)
12771{
19d28fbd 12772#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12773 struct bpf_prog *prog = env->prog;
12774 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12775 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12776 int i, depth;
19d28fbd 12777#endif
e4052d06 12778 int err = 0;
1ea47e01 12779
e4052d06
QM
12780 if (env->prog->jit_requested &&
12781 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12782 err = jit_subprogs(env);
12783 if (err == 0)
1c2a088a 12784 return 0;
c7a89784
DB
12785 if (err == -EFAULT)
12786 return err;
19d28fbd
DM
12787 }
12788#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12789 if (has_kfunc_call) {
12790 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12791 return -EINVAL;
12792 }
e411901c
MF
12793 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12794 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12795 * have to be rejected, since interpreter doesn't support them yet.
12796 */
12797 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12798 return -EINVAL;
12799 }
1ea47e01 12800 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
12801 if (bpf_pseudo_func(insn)) {
12802 /* When JIT fails the progs with callback calls
12803 * have to be rejected, since interpreter doesn't support them yet.
12804 */
12805 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12806 return -EINVAL;
12807 }
12808
23a2d70c 12809 if (!bpf_pseudo_call(insn))
1ea47e01
AS
12810 continue;
12811 depth = get_callee_stack_depth(env, insn, i);
12812 if (depth < 0)
12813 return depth;
12814 bpf_patch_call_args(insn, depth);
12815 }
19d28fbd
DM
12816 err = 0;
12817#endif
12818 return err;
1ea47e01
AS
12819}
12820
e6ac2450
MKL
12821static int fixup_kfunc_call(struct bpf_verifier_env *env,
12822 struct bpf_insn *insn)
12823{
12824 const struct bpf_kfunc_desc *desc;
12825
a5d82727
KKD
12826 if (!insn->imm) {
12827 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12828 return -EINVAL;
12829 }
12830
e6ac2450
MKL
12831 /* insn->imm has the btf func_id. Replace it with
12832 * an address (relative to __bpf_base_call).
12833 */
2357672c 12834 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
12835 if (!desc) {
12836 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12837 insn->imm);
12838 return -EFAULT;
12839 }
12840
12841 insn->imm = desc->imm;
12842
12843 return 0;
12844}
12845
e6ac5933
BJ
12846/* Do various post-verification rewrites in a single program pass.
12847 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 12848 */
e6ac5933 12849static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 12850{
79741b3b 12851 struct bpf_prog *prog = env->prog;
d2e4c1e6 12852 bool expect_blinding = bpf_jit_blinding_enabled(prog);
9b99edca 12853 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 12854 struct bpf_insn *insn = prog->insnsi;
e245c5c6 12855 const struct bpf_func_proto *fn;
79741b3b 12856 const int insn_cnt = prog->len;
09772d92 12857 const struct bpf_map_ops *ops;
c93552c4 12858 struct bpf_insn_aux_data *aux;
81ed18ab
AS
12859 struct bpf_insn insn_buf[16];
12860 struct bpf_prog *new_prog;
12861 struct bpf_map *map_ptr;
d2e4c1e6 12862 int i, ret, cnt, delta = 0;
e245c5c6 12863
79741b3b 12864 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 12865 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
12866 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12867 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12868 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 12869 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 12870 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
12871 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12872 struct bpf_insn *patchlet;
12873 struct bpf_insn chk_and_div[] = {
9b00f1b7 12874 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
12875 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12876 BPF_JNE | BPF_K, insn->src_reg,
12877 0, 2, 0),
f6b1b3bf
DB
12878 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12879 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12880 *insn,
12881 };
e88b2c6e 12882 struct bpf_insn chk_and_mod[] = {
9b00f1b7 12883 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
12884 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12885 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 12886 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 12887 *insn,
9b00f1b7
DB
12888 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12889 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 12890 };
f6b1b3bf 12891
e88b2c6e
DB
12892 patchlet = isdiv ? chk_and_div : chk_and_mod;
12893 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 12894 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
12895
12896 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
12897 if (!new_prog)
12898 return -ENOMEM;
12899
12900 delta += cnt - 1;
12901 env->prog = prog = new_prog;
12902 insn = new_prog->insnsi + i + delta;
12903 continue;
12904 }
12905
e6ac5933 12906 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
12907 if (BPF_CLASS(insn->code) == BPF_LD &&
12908 (BPF_MODE(insn->code) == BPF_ABS ||
12909 BPF_MODE(insn->code) == BPF_IND)) {
12910 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12911 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12912 verbose(env, "bpf verifier is misconfigured\n");
12913 return -EINVAL;
12914 }
12915
12916 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12917 if (!new_prog)
12918 return -ENOMEM;
12919
12920 delta += cnt - 1;
12921 env->prog = prog = new_prog;
12922 insn = new_prog->insnsi + i + delta;
12923 continue;
12924 }
12925
e6ac5933 12926 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
12927 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12928 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12929 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12930 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 12931 struct bpf_insn *patch = &insn_buf[0];
801c6058 12932 bool issrc, isneg, isimm;
979d63d5
DB
12933 u32 off_reg;
12934
12935 aux = &env->insn_aux_data[i + delta];
3612af78
DB
12936 if (!aux->alu_state ||
12937 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
12938 continue;
12939
12940 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12941 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12942 BPF_ALU_SANITIZE_SRC;
801c6058 12943 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
12944
12945 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
12946 if (isimm) {
12947 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12948 } else {
12949 if (isneg)
12950 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12951 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12952 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12953 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12954 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12955 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12956 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12957 }
b9b34ddb
DB
12958 if (!issrc)
12959 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12960 insn->src_reg = BPF_REG_AX;
979d63d5
DB
12961 if (isneg)
12962 insn->code = insn->code == code_add ?
12963 code_sub : code_add;
12964 *patch++ = *insn;
801c6058 12965 if (issrc && isneg && !isimm)
979d63d5
DB
12966 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12967 cnt = patch - insn_buf;
12968
12969 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12970 if (!new_prog)
12971 return -ENOMEM;
12972
12973 delta += cnt - 1;
12974 env->prog = prog = new_prog;
12975 insn = new_prog->insnsi + i + delta;
12976 continue;
12977 }
12978
79741b3b
AS
12979 if (insn->code != (BPF_JMP | BPF_CALL))
12980 continue;
cc8b0b92
AS
12981 if (insn->src_reg == BPF_PSEUDO_CALL)
12982 continue;
e6ac2450
MKL
12983 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12984 ret = fixup_kfunc_call(env, insn);
12985 if (ret)
12986 return ret;
12987 continue;
12988 }
e245c5c6 12989
79741b3b
AS
12990 if (insn->imm == BPF_FUNC_get_route_realm)
12991 prog->dst_needed = 1;
12992 if (insn->imm == BPF_FUNC_get_prandom_u32)
12993 bpf_user_rnd_init_once();
9802d865
JB
12994 if (insn->imm == BPF_FUNC_override_return)
12995 prog->kprobe_override = 1;
79741b3b 12996 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
12997 /* If we tail call into other programs, we
12998 * cannot make any assumptions since they can
12999 * be replaced dynamically during runtime in
13000 * the program array.
13001 */
13002 prog->cb_access = 1;
e411901c
MF
13003 if (!allow_tail_call_in_subprogs(env))
13004 prog->aux->stack_depth = MAX_BPF_STACK;
13005 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 13006
79741b3b 13007 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 13008 * conditional branch in the interpreter for every normal
79741b3b
AS
13009 * call and to prevent accidental JITing by JIT compiler
13010 * that doesn't support bpf_tail_call yet
e245c5c6 13011 */
79741b3b 13012 insn->imm = 0;
71189fa9 13013 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 13014
c93552c4 13015 aux = &env->insn_aux_data[i + delta];
2c78ee89 13016 if (env->bpf_capable && !expect_blinding &&
cc52d914 13017 prog->jit_requested &&
d2e4c1e6
DB
13018 !bpf_map_key_poisoned(aux) &&
13019 !bpf_map_ptr_poisoned(aux) &&
13020 !bpf_map_ptr_unpriv(aux)) {
13021 struct bpf_jit_poke_descriptor desc = {
13022 .reason = BPF_POKE_REASON_TAIL_CALL,
13023 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13024 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 13025 .insn_idx = i + delta,
d2e4c1e6
DB
13026 };
13027
13028 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13029 if (ret < 0) {
13030 verbose(env, "adding tail call poke descriptor failed\n");
13031 return ret;
13032 }
13033
13034 insn->imm = ret + 1;
13035 continue;
13036 }
13037
c93552c4
DB
13038 if (!bpf_map_ptr_unpriv(aux))
13039 continue;
13040
b2157399
AS
13041 /* instead of changing every JIT dealing with tail_call
13042 * emit two extra insns:
13043 * if (index >= max_entries) goto out;
13044 * index &= array->index_mask;
13045 * to avoid out-of-bounds cpu speculation
13046 */
c93552c4 13047 if (bpf_map_ptr_poisoned(aux)) {
40950343 13048 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
13049 return -EINVAL;
13050 }
c93552c4 13051
d2e4c1e6 13052 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
13053 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13054 map_ptr->max_entries, 2);
13055 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13056 container_of(map_ptr,
13057 struct bpf_array,
13058 map)->index_mask);
13059 insn_buf[2] = *insn;
13060 cnt = 3;
13061 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13062 if (!new_prog)
13063 return -ENOMEM;
13064
13065 delta += cnt - 1;
13066 env->prog = prog = new_prog;
13067 insn = new_prog->insnsi + i + delta;
79741b3b
AS
13068 continue;
13069 }
e245c5c6 13070
b00628b1
AS
13071 if (insn->imm == BPF_FUNC_timer_set_callback) {
13072 /* The verifier will process callback_fn as many times as necessary
13073 * with different maps and the register states prepared by
13074 * set_timer_callback_state will be accurate.
13075 *
13076 * The following use case is valid:
13077 * map1 is shared by prog1, prog2, prog3.
13078 * prog1 calls bpf_timer_init for some map1 elements
13079 * prog2 calls bpf_timer_set_callback for some map1 elements.
13080 * Those that were not bpf_timer_init-ed will return -EINVAL.
13081 * prog3 calls bpf_timer_start for some map1 elements.
13082 * Those that were not both bpf_timer_init-ed and
13083 * bpf_timer_set_callback-ed will return -EINVAL.
13084 */
13085 struct bpf_insn ld_addrs[2] = {
13086 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13087 };
13088
13089 insn_buf[0] = ld_addrs[0];
13090 insn_buf[1] = ld_addrs[1];
13091 insn_buf[2] = *insn;
13092 cnt = 3;
13093
13094 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13095 if (!new_prog)
13096 return -ENOMEM;
13097
13098 delta += cnt - 1;
13099 env->prog = prog = new_prog;
13100 insn = new_prog->insnsi + i + delta;
13101 goto patch_call_imm;
13102 }
13103
89c63074 13104 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
13105 * and other inlining handlers are currently limited to 64 bit
13106 * only.
89c63074 13107 */
60b58afc 13108 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
13109 (insn->imm == BPF_FUNC_map_lookup_elem ||
13110 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
13111 insn->imm == BPF_FUNC_map_delete_elem ||
13112 insn->imm == BPF_FUNC_map_push_elem ||
13113 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f
BT
13114 insn->imm == BPF_FUNC_map_peek_elem ||
13115 insn->imm == BPF_FUNC_redirect_map)) {
c93552c4
DB
13116 aux = &env->insn_aux_data[i + delta];
13117 if (bpf_map_ptr_poisoned(aux))
13118 goto patch_call_imm;
13119
d2e4c1e6 13120 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
13121 ops = map_ptr->ops;
13122 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13123 ops->map_gen_lookup) {
13124 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
13125 if (cnt == -EOPNOTSUPP)
13126 goto patch_map_ops_generic;
13127 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
13128 verbose(env, "bpf verifier is misconfigured\n");
13129 return -EINVAL;
13130 }
81ed18ab 13131
09772d92
DB
13132 new_prog = bpf_patch_insn_data(env, i + delta,
13133 insn_buf, cnt);
13134 if (!new_prog)
13135 return -ENOMEM;
81ed18ab 13136
09772d92
DB
13137 delta += cnt - 1;
13138 env->prog = prog = new_prog;
13139 insn = new_prog->insnsi + i + delta;
13140 continue;
13141 }
81ed18ab 13142
09772d92
DB
13143 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13144 (void *(*)(struct bpf_map *map, void *key))NULL));
13145 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13146 (int (*)(struct bpf_map *map, void *key))NULL));
13147 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13148 (int (*)(struct bpf_map *map, void *key, void *value,
13149 u64 flags))NULL));
84430d42
DB
13150 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13151 (int (*)(struct bpf_map *map, void *value,
13152 u64 flags))NULL));
13153 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13154 (int (*)(struct bpf_map *map, void *value))NULL));
13155 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13156 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
13157 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13158 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13159
4a8f87e6 13160patch_map_ops_generic:
09772d92
DB
13161 switch (insn->imm) {
13162 case BPF_FUNC_map_lookup_elem:
3d717fad 13163 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
13164 continue;
13165 case BPF_FUNC_map_update_elem:
3d717fad 13166 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
13167 continue;
13168 case BPF_FUNC_map_delete_elem:
3d717fad 13169 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 13170 continue;
84430d42 13171 case BPF_FUNC_map_push_elem:
3d717fad 13172 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
13173 continue;
13174 case BPF_FUNC_map_pop_elem:
3d717fad 13175 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
13176 continue;
13177 case BPF_FUNC_map_peek_elem:
3d717fad 13178 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 13179 continue;
e6a4750f 13180 case BPF_FUNC_redirect_map:
3d717fad 13181 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 13182 continue;
09772d92 13183 }
81ed18ab 13184
09772d92 13185 goto patch_call_imm;
81ed18ab
AS
13186 }
13187
e6ac5933 13188 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
13189 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13190 insn->imm == BPF_FUNC_jiffies64) {
13191 struct bpf_insn ld_jiffies_addr[2] = {
13192 BPF_LD_IMM64(BPF_REG_0,
13193 (unsigned long)&jiffies),
13194 };
13195
13196 insn_buf[0] = ld_jiffies_addr[0];
13197 insn_buf[1] = ld_jiffies_addr[1];
13198 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13199 BPF_REG_0, 0);
13200 cnt = 3;
13201
13202 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13203 cnt);
13204 if (!new_prog)
13205 return -ENOMEM;
13206
13207 delta += cnt - 1;
13208 env->prog = prog = new_prog;
13209 insn = new_prog->insnsi + i + delta;
13210 continue;
13211 }
13212
9b99edca
JO
13213 /* Implement bpf_get_func_ip inline. */
13214 if (prog_type == BPF_PROG_TYPE_TRACING &&
13215 insn->imm == BPF_FUNC_get_func_ip) {
13216 /* Load IP address from ctx - 8 */
13217 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13218
13219 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13220 if (!new_prog)
13221 return -ENOMEM;
13222
13223 env->prog = prog = new_prog;
13224 insn = new_prog->insnsi + i + delta;
13225 continue;
13226 }
13227
81ed18ab 13228patch_call_imm:
5e43f899 13229 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
13230 /* all functions that have prototype and verifier allowed
13231 * programs to call them, must be real in-kernel functions
13232 */
13233 if (!fn->func) {
61bd5218
JK
13234 verbose(env,
13235 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
13236 func_id_name(insn->imm), insn->imm);
13237 return -EFAULT;
e245c5c6 13238 }
79741b3b 13239 insn->imm = fn->func - __bpf_call_base;
e245c5c6 13240 }
e245c5c6 13241
d2e4c1e6
DB
13242 /* Since poke tab is now finalized, publish aux to tracker. */
13243 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13244 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13245 if (!map_ptr->ops->map_poke_track ||
13246 !map_ptr->ops->map_poke_untrack ||
13247 !map_ptr->ops->map_poke_run) {
13248 verbose(env, "bpf verifier is misconfigured\n");
13249 return -EINVAL;
13250 }
13251
13252 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13253 if (ret < 0) {
13254 verbose(env, "tracking tail call prog failed\n");
13255 return ret;
13256 }
13257 }
13258
e6ac2450
MKL
13259 sort_kfunc_descs_by_imm(env->prog);
13260
79741b3b
AS
13261 return 0;
13262}
e245c5c6 13263
58e2af8b 13264static void free_states(struct bpf_verifier_env *env)
f1bca824 13265{
58e2af8b 13266 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
13267 int i;
13268
9f4686c4
AS
13269 sl = env->free_list;
13270 while (sl) {
13271 sln = sl->next;
13272 free_verifier_state(&sl->state, false);
13273 kfree(sl);
13274 sl = sln;
13275 }
51c39bb1 13276 env->free_list = NULL;
9f4686c4 13277
f1bca824
AS
13278 if (!env->explored_states)
13279 return;
13280
dc2a4ebc 13281 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
13282 sl = env->explored_states[i];
13283
a8f500af
AS
13284 while (sl) {
13285 sln = sl->next;
13286 free_verifier_state(&sl->state, false);
13287 kfree(sl);
13288 sl = sln;
13289 }
51c39bb1 13290 env->explored_states[i] = NULL;
f1bca824 13291 }
51c39bb1 13292}
f1bca824 13293
51c39bb1
AS
13294static int do_check_common(struct bpf_verifier_env *env, int subprog)
13295{
6f8a57cc 13296 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
13297 struct bpf_verifier_state *state;
13298 struct bpf_reg_state *regs;
13299 int ret, i;
13300
13301 env->prev_linfo = NULL;
13302 env->pass_cnt++;
13303
13304 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13305 if (!state)
13306 return -ENOMEM;
13307 state->curframe = 0;
13308 state->speculative = false;
13309 state->branches = 1;
13310 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13311 if (!state->frame[0]) {
13312 kfree(state);
13313 return -ENOMEM;
13314 }
13315 env->cur_state = state;
13316 init_func_state(env, state->frame[0],
13317 BPF_MAIN_FUNC /* callsite */,
13318 0 /* frameno */,
13319 subprog);
13320
13321 regs = state->frame[state->curframe]->regs;
be8704ff 13322 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
13323 ret = btf_prepare_func_args(env, subprog, regs);
13324 if (ret)
13325 goto out;
13326 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13327 if (regs[i].type == PTR_TO_CTX)
13328 mark_reg_known_zero(env, regs, i);
13329 else if (regs[i].type == SCALAR_VALUE)
13330 mark_reg_unknown(env, regs, i);
e5069b9c
DB
13331 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13332 const u32 mem_size = regs[i].mem_size;
13333
13334 mark_reg_known_zero(env, regs, i);
13335 regs[i].mem_size = mem_size;
13336 regs[i].id = ++env->id_gen;
13337 }
51c39bb1
AS
13338 }
13339 } else {
13340 /* 1st arg to a function */
13341 regs[BPF_REG_1].type = PTR_TO_CTX;
13342 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 13343 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
13344 if (ret == -EFAULT)
13345 /* unlikely verifier bug. abort.
13346 * ret == 0 and ret < 0 are sadly acceptable for
13347 * main() function due to backward compatibility.
13348 * Like socket filter program may be written as:
13349 * int bpf_prog(struct pt_regs *ctx)
13350 * and never dereference that ctx in the program.
13351 * 'struct pt_regs' is a type mismatch for socket
13352 * filter that should be using 'struct __sk_buff'.
13353 */
13354 goto out;
13355 }
13356
13357 ret = do_check(env);
13358out:
f59bbfc2
AS
13359 /* check for NULL is necessary, since cur_state can be freed inside
13360 * do_check() under memory pressure.
13361 */
13362 if (env->cur_state) {
13363 free_verifier_state(env->cur_state, true);
13364 env->cur_state = NULL;
13365 }
6f8a57cc
AN
13366 while (!pop_stack(env, NULL, NULL, false));
13367 if (!ret && pop_log)
13368 bpf_vlog_reset(&env->log, 0);
51c39bb1 13369 free_states(env);
51c39bb1
AS
13370 return ret;
13371}
13372
13373/* Verify all global functions in a BPF program one by one based on their BTF.
13374 * All global functions must pass verification. Otherwise the whole program is rejected.
13375 * Consider:
13376 * int bar(int);
13377 * int foo(int f)
13378 * {
13379 * return bar(f);
13380 * }
13381 * int bar(int b)
13382 * {
13383 * ...
13384 * }
13385 * foo() will be verified first for R1=any_scalar_value. During verification it
13386 * will be assumed that bar() already verified successfully and call to bar()
13387 * from foo() will be checked for type match only. Later bar() will be verified
13388 * independently to check that it's safe for R1=any_scalar_value.
13389 */
13390static int do_check_subprogs(struct bpf_verifier_env *env)
13391{
13392 struct bpf_prog_aux *aux = env->prog->aux;
13393 int i, ret;
13394
13395 if (!aux->func_info)
13396 return 0;
13397
13398 for (i = 1; i < env->subprog_cnt; i++) {
13399 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13400 continue;
13401 env->insn_idx = env->subprog_info[i].start;
13402 WARN_ON_ONCE(env->insn_idx == 0);
13403 ret = do_check_common(env, i);
13404 if (ret) {
13405 return ret;
13406 } else if (env->log.level & BPF_LOG_LEVEL) {
13407 verbose(env,
13408 "Func#%d is safe for any args that match its prototype\n",
13409 i);
13410 }
13411 }
13412 return 0;
13413}
13414
13415static int do_check_main(struct bpf_verifier_env *env)
13416{
13417 int ret;
13418
13419 env->insn_idx = 0;
13420 ret = do_check_common(env, 0);
13421 if (!ret)
13422 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13423 return ret;
13424}
13425
13426
06ee7115
AS
13427static void print_verification_stats(struct bpf_verifier_env *env)
13428{
13429 int i;
13430
13431 if (env->log.level & BPF_LOG_STATS) {
13432 verbose(env, "verification time %lld usec\n",
13433 div_u64(env->verification_time, 1000));
13434 verbose(env, "stack depth ");
13435 for (i = 0; i < env->subprog_cnt; i++) {
13436 u32 depth = env->subprog_info[i].stack_depth;
13437
13438 verbose(env, "%d", depth);
13439 if (i + 1 < env->subprog_cnt)
13440 verbose(env, "+");
13441 }
13442 verbose(env, "\n");
13443 }
13444 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13445 "total_states %d peak_states %d mark_read %d\n",
13446 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13447 env->max_states_per_insn, env->total_states,
13448 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
13449}
13450
27ae7997
MKL
13451static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13452{
13453 const struct btf_type *t, *func_proto;
13454 const struct bpf_struct_ops *st_ops;
13455 const struct btf_member *member;
13456 struct bpf_prog *prog = env->prog;
13457 u32 btf_id, member_idx;
13458 const char *mname;
13459
12aa8a94
THJ
13460 if (!prog->gpl_compatible) {
13461 verbose(env, "struct ops programs must have a GPL compatible license\n");
13462 return -EINVAL;
13463 }
13464
27ae7997
MKL
13465 btf_id = prog->aux->attach_btf_id;
13466 st_ops = bpf_struct_ops_find(btf_id);
13467 if (!st_ops) {
13468 verbose(env, "attach_btf_id %u is not a supported struct\n",
13469 btf_id);
13470 return -ENOTSUPP;
13471 }
13472
13473 t = st_ops->type;
13474 member_idx = prog->expected_attach_type;
13475 if (member_idx >= btf_type_vlen(t)) {
13476 verbose(env, "attach to invalid member idx %u of struct %s\n",
13477 member_idx, st_ops->name);
13478 return -EINVAL;
13479 }
13480
13481 member = &btf_type_member(t)[member_idx];
13482 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13483 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13484 NULL);
13485 if (!func_proto) {
13486 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13487 mname, member_idx, st_ops->name);
13488 return -EINVAL;
13489 }
13490
13491 if (st_ops->check_member) {
13492 int err = st_ops->check_member(t, member);
13493
13494 if (err) {
13495 verbose(env, "attach to unsupported member %s of struct %s\n",
13496 mname, st_ops->name);
13497 return err;
13498 }
13499 }
13500
13501 prog->aux->attach_func_proto = func_proto;
13502 prog->aux->attach_func_name = mname;
13503 env->ops = st_ops->verifier_ops;
13504
13505 return 0;
13506}
6ba43b76
KS
13507#define SECURITY_PREFIX "security_"
13508
f7b12b6f 13509static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 13510{
69191754 13511 if (within_error_injection_list(addr) ||
f7b12b6f 13512 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 13513 return 0;
6ba43b76 13514
6ba43b76
KS
13515 return -EINVAL;
13516}
27ae7997 13517
1e6c62a8
AS
13518/* list of non-sleepable functions that are otherwise on
13519 * ALLOW_ERROR_INJECTION list
13520 */
13521BTF_SET_START(btf_non_sleepable_error_inject)
13522/* Three functions below can be called from sleepable and non-sleepable context.
13523 * Assume non-sleepable from bpf safety point of view.
13524 */
13525BTF_ID(func, __add_to_page_cache_locked)
13526BTF_ID(func, should_fail_alloc_page)
13527BTF_ID(func, should_failslab)
13528BTF_SET_END(btf_non_sleepable_error_inject)
13529
13530static int check_non_sleepable_error_inject(u32 btf_id)
13531{
13532 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13533}
13534
f7b12b6f
THJ
13535int bpf_check_attach_target(struct bpf_verifier_log *log,
13536 const struct bpf_prog *prog,
13537 const struct bpf_prog *tgt_prog,
13538 u32 btf_id,
13539 struct bpf_attach_target_info *tgt_info)
38207291 13540{
be8704ff 13541 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 13542 const char prefix[] = "btf_trace_";
5b92a28a 13543 int ret = 0, subprog = -1, i;
38207291 13544 const struct btf_type *t;
5b92a28a 13545 bool conservative = true;
38207291 13546 const char *tname;
5b92a28a 13547 struct btf *btf;
f7b12b6f 13548 long addr = 0;
38207291 13549
f1b9509c 13550 if (!btf_id) {
efc68158 13551 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
13552 return -EINVAL;
13553 }
22dc4a0f 13554 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 13555 if (!btf) {
efc68158 13556 bpf_log(log,
5b92a28a
AS
13557 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13558 return -EINVAL;
13559 }
13560 t = btf_type_by_id(btf, btf_id);
f1b9509c 13561 if (!t) {
efc68158 13562 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
13563 return -EINVAL;
13564 }
5b92a28a 13565 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 13566 if (!tname) {
efc68158 13567 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
13568 return -EINVAL;
13569 }
5b92a28a
AS
13570 if (tgt_prog) {
13571 struct bpf_prog_aux *aux = tgt_prog->aux;
13572
13573 for (i = 0; i < aux->func_info_cnt; i++)
13574 if (aux->func_info[i].type_id == btf_id) {
13575 subprog = i;
13576 break;
13577 }
13578 if (subprog == -1) {
efc68158 13579 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
13580 return -EINVAL;
13581 }
13582 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
13583 if (prog_extension) {
13584 if (conservative) {
efc68158 13585 bpf_log(log,
be8704ff
AS
13586 "Cannot replace static functions\n");
13587 return -EINVAL;
13588 }
13589 if (!prog->jit_requested) {
efc68158 13590 bpf_log(log,
be8704ff
AS
13591 "Extension programs should be JITed\n");
13592 return -EINVAL;
13593 }
be8704ff
AS
13594 }
13595 if (!tgt_prog->jited) {
efc68158 13596 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
13597 return -EINVAL;
13598 }
13599 if (tgt_prog->type == prog->type) {
13600 /* Cannot fentry/fexit another fentry/fexit program.
13601 * Cannot attach program extension to another extension.
13602 * It's ok to attach fentry/fexit to extension program.
13603 */
efc68158 13604 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
13605 return -EINVAL;
13606 }
13607 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13608 prog_extension &&
13609 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13610 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13611 /* Program extensions can extend all program types
13612 * except fentry/fexit. The reason is the following.
13613 * The fentry/fexit programs are used for performance
13614 * analysis, stats and can be attached to any program
13615 * type except themselves. When extension program is
13616 * replacing XDP function it is necessary to allow
13617 * performance analysis of all functions. Both original
13618 * XDP program and its program extension. Hence
13619 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13620 * allowed. If extending of fentry/fexit was allowed it
13621 * would be possible to create long call chain
13622 * fentry->extension->fentry->extension beyond
13623 * reasonable stack size. Hence extending fentry is not
13624 * allowed.
13625 */
efc68158 13626 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
13627 return -EINVAL;
13628 }
5b92a28a 13629 } else {
be8704ff 13630 if (prog_extension) {
efc68158 13631 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
13632 return -EINVAL;
13633 }
5b92a28a 13634 }
f1b9509c
AS
13635
13636 switch (prog->expected_attach_type) {
13637 case BPF_TRACE_RAW_TP:
5b92a28a 13638 if (tgt_prog) {
efc68158 13639 bpf_log(log,
5b92a28a
AS
13640 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13641 return -EINVAL;
13642 }
38207291 13643 if (!btf_type_is_typedef(t)) {
efc68158 13644 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
13645 btf_id);
13646 return -EINVAL;
13647 }
f1b9509c 13648 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 13649 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
13650 btf_id, tname);
13651 return -EINVAL;
13652 }
13653 tname += sizeof(prefix) - 1;
5b92a28a 13654 t = btf_type_by_id(btf, t->type);
38207291
MKL
13655 if (!btf_type_is_ptr(t))
13656 /* should never happen in valid vmlinux build */
13657 return -EINVAL;
5b92a28a 13658 t = btf_type_by_id(btf, t->type);
38207291
MKL
13659 if (!btf_type_is_func_proto(t))
13660 /* should never happen in valid vmlinux build */
13661 return -EINVAL;
13662
f7b12b6f 13663 break;
15d83c4d
YS
13664 case BPF_TRACE_ITER:
13665 if (!btf_type_is_func(t)) {
efc68158 13666 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13667 btf_id);
13668 return -EINVAL;
13669 }
13670 t = btf_type_by_id(btf, t->type);
13671 if (!btf_type_is_func_proto(t))
13672 return -EINVAL;
f7b12b6f
THJ
13673 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13674 if (ret)
13675 return ret;
13676 break;
be8704ff
AS
13677 default:
13678 if (!prog_extension)
13679 return -EINVAL;
df561f66 13680 fallthrough;
ae240823 13681 case BPF_MODIFY_RETURN:
9e4e01df 13682 case BPF_LSM_MAC:
fec56f58
AS
13683 case BPF_TRACE_FENTRY:
13684 case BPF_TRACE_FEXIT:
13685 if (!btf_type_is_func(t)) {
efc68158 13686 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13687 btf_id);
13688 return -EINVAL;
13689 }
be8704ff 13690 if (prog_extension &&
efc68158 13691 btf_check_type_match(log, prog, btf, t))
be8704ff 13692 return -EINVAL;
5b92a28a 13693 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13694 if (!btf_type_is_func_proto(t))
13695 return -EINVAL;
f7b12b6f 13696
4a1e7c0c
THJ
13697 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13698 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13699 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13700 return -EINVAL;
13701
f7b12b6f 13702 if (tgt_prog && conservative)
5b92a28a 13703 t = NULL;
f7b12b6f
THJ
13704
13705 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13706 if (ret < 0)
f7b12b6f
THJ
13707 return ret;
13708
5b92a28a 13709 if (tgt_prog) {
e9eeec58
YS
13710 if (subprog == 0)
13711 addr = (long) tgt_prog->bpf_func;
13712 else
13713 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13714 } else {
13715 addr = kallsyms_lookup_name(tname);
13716 if (!addr) {
efc68158 13717 bpf_log(log,
5b92a28a
AS
13718 "The address of function %s cannot be found\n",
13719 tname);
f7b12b6f 13720 return -ENOENT;
5b92a28a 13721 }
fec56f58 13722 }
18644cec 13723
1e6c62a8
AS
13724 if (prog->aux->sleepable) {
13725 ret = -EINVAL;
13726 switch (prog->type) {
13727 case BPF_PROG_TYPE_TRACING:
13728 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13729 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13730 */
13731 if (!check_non_sleepable_error_inject(btf_id) &&
13732 within_error_injection_list(addr))
13733 ret = 0;
13734 break;
13735 case BPF_PROG_TYPE_LSM:
13736 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13737 * Only some of them are sleepable.
13738 */
423f1610 13739 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
13740 ret = 0;
13741 break;
13742 default:
13743 break;
13744 }
f7b12b6f
THJ
13745 if (ret) {
13746 bpf_log(log, "%s is not sleepable\n", tname);
13747 return ret;
13748 }
1e6c62a8 13749 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 13750 if (tgt_prog) {
efc68158 13751 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
13752 return -EINVAL;
13753 }
13754 ret = check_attach_modify_return(addr, tname);
13755 if (ret) {
13756 bpf_log(log, "%s() is not modifiable\n", tname);
13757 return ret;
1af9270e 13758 }
18644cec 13759 }
f7b12b6f
THJ
13760
13761 break;
13762 }
13763 tgt_info->tgt_addr = addr;
13764 tgt_info->tgt_name = tname;
13765 tgt_info->tgt_type = t;
13766 return 0;
13767}
13768
35e3815f
JO
13769BTF_SET_START(btf_id_deny)
13770BTF_ID_UNUSED
13771#ifdef CONFIG_SMP
13772BTF_ID(func, migrate_disable)
13773BTF_ID(func, migrate_enable)
13774#endif
13775#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13776BTF_ID(func, rcu_read_unlock_strict)
13777#endif
13778BTF_SET_END(btf_id_deny)
13779
f7b12b6f
THJ
13780static int check_attach_btf_id(struct bpf_verifier_env *env)
13781{
13782 struct bpf_prog *prog = env->prog;
3aac1ead 13783 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
13784 struct bpf_attach_target_info tgt_info = {};
13785 u32 btf_id = prog->aux->attach_btf_id;
13786 struct bpf_trampoline *tr;
13787 int ret;
13788 u64 key;
13789
79a7f8bd
AS
13790 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13791 if (prog->aux->sleepable)
13792 /* attach_btf_id checked to be zero already */
13793 return 0;
13794 verbose(env, "Syscall programs can only be sleepable\n");
13795 return -EINVAL;
13796 }
13797
f7b12b6f
THJ
13798 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13799 prog->type != BPF_PROG_TYPE_LSM) {
13800 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13801 return -EINVAL;
13802 }
13803
13804 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13805 return check_struct_ops_btf_id(env);
13806
13807 if (prog->type != BPF_PROG_TYPE_TRACING &&
13808 prog->type != BPF_PROG_TYPE_LSM &&
13809 prog->type != BPF_PROG_TYPE_EXT)
13810 return 0;
13811
13812 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13813 if (ret)
fec56f58 13814 return ret;
f7b12b6f
THJ
13815
13816 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
13817 /* to make freplace equivalent to their targets, they need to
13818 * inherit env->ops and expected_attach_type for the rest of the
13819 * verification
13820 */
f7b12b6f
THJ
13821 env->ops = bpf_verifier_ops[tgt_prog->type];
13822 prog->expected_attach_type = tgt_prog->expected_attach_type;
13823 }
13824
13825 /* store info about the attachment target that will be used later */
13826 prog->aux->attach_func_proto = tgt_info.tgt_type;
13827 prog->aux->attach_func_name = tgt_info.tgt_name;
13828
4a1e7c0c
THJ
13829 if (tgt_prog) {
13830 prog->aux->saved_dst_prog_type = tgt_prog->type;
13831 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13832 }
13833
f7b12b6f
THJ
13834 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13835 prog->aux->attach_btf_trace = true;
13836 return 0;
13837 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13838 if (!bpf_iter_prog_supported(prog))
13839 return -EINVAL;
13840 return 0;
13841 }
13842
13843 if (prog->type == BPF_PROG_TYPE_LSM) {
13844 ret = bpf_lsm_verify_prog(&env->log, prog);
13845 if (ret < 0)
13846 return ret;
35e3815f
JO
13847 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13848 btf_id_set_contains(&btf_id_deny, btf_id)) {
13849 return -EINVAL;
38207291 13850 }
f7b12b6f 13851
22dc4a0f 13852 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
13853 tr = bpf_trampoline_get(key, &tgt_info);
13854 if (!tr)
13855 return -ENOMEM;
13856
3aac1ead 13857 prog->aux->dst_trampoline = tr;
f7b12b6f 13858 return 0;
38207291
MKL
13859}
13860
76654e67
AM
13861struct btf *bpf_get_btf_vmlinux(void)
13862{
13863 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13864 mutex_lock(&bpf_verifier_lock);
13865 if (!btf_vmlinux)
13866 btf_vmlinux = btf_parse_vmlinux();
13867 mutex_unlock(&bpf_verifier_lock);
13868 }
13869 return btf_vmlinux;
13870}
13871
af2ac3e1 13872int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 13873{
06ee7115 13874 u64 start_time = ktime_get_ns();
58e2af8b 13875 struct bpf_verifier_env *env;
b9193c1b 13876 struct bpf_verifier_log *log;
9e4c24e7 13877 int i, len, ret = -EINVAL;
e2ae4ca2 13878 bool is_priv;
51580e79 13879
eba0c929
AB
13880 /* no program is valid */
13881 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13882 return -EINVAL;
13883
58e2af8b 13884 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
13885 * allocate/free it every time bpf_check() is called
13886 */
58e2af8b 13887 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
13888 if (!env)
13889 return -ENOMEM;
61bd5218 13890 log = &env->log;
cbd35700 13891
9e4c24e7 13892 len = (*prog)->len;
fad953ce 13893 env->insn_aux_data =
9e4c24e7 13894 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
13895 ret = -ENOMEM;
13896 if (!env->insn_aux_data)
13897 goto err_free_env;
9e4c24e7
JK
13898 for (i = 0; i < len; i++)
13899 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 13900 env->prog = *prog;
00176a34 13901 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 13902 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 13903 is_priv = bpf_capable();
0246e64d 13904
76654e67 13905 bpf_get_btf_vmlinux();
8580ac94 13906
cbd35700 13907 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
13908 if (!is_priv)
13909 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
13910
13911 if (attr->log_level || attr->log_buf || attr->log_size) {
13912 /* user requested verbose verifier output
13913 * and supplied buffer to store the verification trace
13914 */
e7bf8249
JK
13915 log->level = attr->log_level;
13916 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13917 log->len_total = attr->log_size;
cbd35700
AS
13918
13919 ret = -EINVAL;
e7bf8249 13920 /* log attributes have to be sane */
7a9f5c65 13921 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 13922 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 13923 goto err_unlock;
cbd35700 13924 }
1ad2f583 13925
8580ac94
AS
13926 if (IS_ERR(btf_vmlinux)) {
13927 /* Either gcc or pahole or kernel are broken. */
13928 verbose(env, "in-kernel BTF is malformed\n");
13929 ret = PTR_ERR(btf_vmlinux);
38207291 13930 goto skip_full_check;
8580ac94
AS
13931 }
13932
1ad2f583
DB
13933 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13934 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 13935 env->strict_alignment = true;
e9ee9efc
DM
13936 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13937 env->strict_alignment = false;
cbd35700 13938
2c78ee89 13939 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 13940 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 13941 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
13942 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13943 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13944 env->bpf_capable = bpf_capable();
e2ae4ca2 13945
10d274e8
AS
13946 if (is_priv)
13947 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13948
dc2a4ebc 13949 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 13950 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
13951 GFP_USER);
13952 ret = -ENOMEM;
13953 if (!env->explored_states)
13954 goto skip_full_check;
13955
e6ac2450
MKL
13956 ret = add_subprog_and_kfunc(env);
13957 if (ret < 0)
13958 goto skip_full_check;
13959
d9762e84 13960 ret = check_subprogs(env);
475fb78f
AS
13961 if (ret < 0)
13962 goto skip_full_check;
13963
c454a46b 13964 ret = check_btf_info(env, attr, uattr);
838e9690
YS
13965 if (ret < 0)
13966 goto skip_full_check;
13967
be8704ff
AS
13968 ret = check_attach_btf_id(env);
13969 if (ret)
13970 goto skip_full_check;
13971
4976b718
HL
13972 ret = resolve_pseudo_ldimm64(env);
13973 if (ret < 0)
13974 goto skip_full_check;
13975
ceb11679
YZ
13976 if (bpf_prog_is_dev_bound(env->prog->aux)) {
13977 ret = bpf_prog_offload_verifier_prep(env->prog);
13978 if (ret)
13979 goto skip_full_check;
13980 }
13981
d9762e84
MKL
13982 ret = check_cfg(env);
13983 if (ret < 0)
13984 goto skip_full_check;
13985
51c39bb1
AS
13986 ret = do_check_subprogs(env);
13987 ret = ret ?: do_check_main(env);
cbd35700 13988
c941ce9c
QM
13989 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13990 ret = bpf_prog_offload_finalize(env);
13991
0246e64d 13992skip_full_check:
51c39bb1 13993 kvfree(env->explored_states);
0246e64d 13994
c131187d 13995 if (ret == 0)
9b38c405 13996 ret = check_max_stack_depth(env);
c131187d 13997
9b38c405 13998 /* instruction rewrites happen after this point */
e2ae4ca2
JK
13999 if (is_priv) {
14000 if (ret == 0)
14001 opt_hard_wire_dead_code_branches(env);
52875a04
JK
14002 if (ret == 0)
14003 ret = opt_remove_dead_code(env);
a1b14abc
JK
14004 if (ret == 0)
14005 ret = opt_remove_nops(env);
52875a04
JK
14006 } else {
14007 if (ret == 0)
14008 sanitize_dead_code(env);
e2ae4ca2
JK
14009 }
14010
9bac3d6d
AS
14011 if (ret == 0)
14012 /* program is valid, convert *(u32*)(ctx + off) accesses */
14013 ret = convert_ctx_accesses(env);
14014
e245c5c6 14015 if (ret == 0)
e6ac5933 14016 ret = do_misc_fixups(env);
e245c5c6 14017
a4b1d3c1
JW
14018 /* do 32-bit optimization after insn patching has done so those patched
14019 * insns could be handled correctly.
14020 */
d6c2308c
JW
14021 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14022 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14023 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14024 : false;
a4b1d3c1
JW
14025 }
14026
1ea47e01
AS
14027 if (ret == 0)
14028 ret = fixup_call_args(env);
14029
06ee7115
AS
14030 env->verification_time = ktime_get_ns() - start_time;
14031 print_verification_stats(env);
14032
a2a7d570 14033 if (log->level && bpf_verifier_log_full(log))
cbd35700 14034 ret = -ENOSPC;
a2a7d570 14035 if (log->level && !log->ubuf) {
cbd35700 14036 ret = -EFAULT;
a2a7d570 14037 goto err_release_maps;
cbd35700
AS
14038 }
14039
541c3bad
AN
14040 if (ret)
14041 goto err_release_maps;
14042
14043 if (env->used_map_cnt) {
0246e64d 14044 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
14045 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14046 sizeof(env->used_maps[0]),
14047 GFP_KERNEL);
0246e64d 14048
9bac3d6d 14049 if (!env->prog->aux->used_maps) {
0246e64d 14050 ret = -ENOMEM;
a2a7d570 14051 goto err_release_maps;
0246e64d
AS
14052 }
14053
9bac3d6d 14054 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 14055 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 14056 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
14057 }
14058 if (env->used_btf_cnt) {
14059 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14060 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14061 sizeof(env->used_btfs[0]),
14062 GFP_KERNEL);
14063 if (!env->prog->aux->used_btfs) {
14064 ret = -ENOMEM;
14065 goto err_release_maps;
14066 }
0246e64d 14067
541c3bad
AN
14068 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14069 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14070 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14071 }
14072 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
14073 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14074 * bpf_ld_imm64 instructions
14075 */
14076 convert_pseudo_ld_imm64(env);
14077 }
cbd35700 14078
541c3bad 14079 adjust_btf_func(env);
ba64e7d8 14080
a2a7d570 14081err_release_maps:
9bac3d6d 14082 if (!env->prog->aux->used_maps)
0246e64d 14083 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 14084 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
14085 */
14086 release_maps(env);
541c3bad
AN
14087 if (!env->prog->aux->used_btfs)
14088 release_btfs(env);
03f87c0b
THJ
14089
14090 /* extension progs temporarily inherit the attach_type of their targets
14091 for verification purposes, so set it back to zero before returning
14092 */
14093 if (env->prog->type == BPF_PROG_TYPE_EXT)
14094 env->prog->expected_attach_type = 0;
14095
9bac3d6d 14096 *prog = env->prog;
3df126f3 14097err_unlock:
45a73c17
AS
14098 if (!is_priv)
14099 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
14100 vfree(env->insn_aux_data);
14101err_free_env:
14102 kfree(env);
51580e79
AS
14103 return ret;
14104}