bpf: propagate precision in ALU/ALU64 operations
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34 30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 31#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 34#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
35#include <linux/bpf_types.h>
36#undef BPF_PROG_TYPE
37#undef BPF_MAP_TYPE
f2e10bff 38#undef BPF_LINK_TYPE
00176a34
JK
39};
40
51580e79
AS
41/* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
8fb33b60 52 * Since it's analyzing all paths through the program, the length of the
eba38a96 53 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
f1174f77 81 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 82 * means the register has some value, but it's not a valid pointer.
f1174f77 83 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
84 *
85 * When verifier sees load or store instructions the type of base register
c64b7983
JS
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
51580e79
AS
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 137 * returns either pointer to map value or NULL.
51580e79
AS
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
164 */
165
17a52670 166/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 167struct bpf_verifier_stack_elem {
17a52670
AS
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
58e2af8b 172 struct bpf_verifier_state st;
17a52670
AS
173 int insn_idx;
174 int prev_insn_idx;
58e2af8b 175 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
cbd35700
AS
178};
179
b285fcb7 180#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
d2e4c1e6
DB
183#define BPF_MAP_KEY_POISON (1ULL << 63)
184#define BPF_MAP_KEY_SEEN (1ULL << 62)
185
c93552c4
DB
186#define BPF_MAP_PTR_UNPRIV 1UL
187#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
bc34dee6
JK
191static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193
c93552c4
DB
194static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
197}
198
199static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200{
d2e4c1e6 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
202}
203
204static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 const struct bpf_map *map, bool unpriv)
206{
207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
209 aux->map_ptr_state = (unsigned long)map |
210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211}
212
213static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214{
215 return aux->map_key_state & BPF_MAP_KEY_POISON;
216}
217
218static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219{
220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221}
222
223static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224{
225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226}
227
228static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229{
230 bool poisoned = bpf_map_key_poisoned(aux);
231
232 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 234}
fad73a1a 235
23a2d70c
YS
236static bool bpf_pseudo_call(const struct bpf_insn *insn)
237{
238 return insn->code == (BPF_JMP | BPF_CALL) &&
239 insn->src_reg == BPF_PSEUDO_CALL;
240}
241
e6ac2450
MKL
242static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243{
244 return insn->code == (BPF_JMP | BPF_CALL) &&
245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246}
247
33ff9823
DB
248struct bpf_call_arg_meta {
249 struct bpf_map *map_ptr;
435faee1 250 bool raw_mode;
36bbef52 251 bool pkt_access;
8f14852e 252 u8 release_regno;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
3e8ce298 258 int map_uid;
d83525ca 259 int func_id;
22dc4a0f 260 struct btf *btf;
eaa6bcb7 261 u32 btf_id;
22dc4a0f 262 struct btf *ret_btf;
eaa6bcb7 263 u32 ret_btf_id;
69c087ba 264 u32 subprogno;
aa3496ac 265 struct btf_field *kptr_field;
97e03f52 266 u8 uninit_dynptr_regno;
33ff9823
DB
267};
268
8580ac94
AS
269struct btf *btf_vmlinux;
270
cbd35700
AS
271static DEFINE_MUTEX(bpf_verifier_lock);
272
d9762e84
MKL
273static const struct bpf_line_info *
274find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275{
276 const struct bpf_line_info *linfo;
277 const struct bpf_prog *prog;
278 u32 i, nr_linfo;
279
280 prog = env->prog;
281 nr_linfo = prog->aux->nr_linfo;
282
283 if (!nr_linfo || insn_off >= prog->len)
284 return NULL;
285
286 linfo = prog->aux->linfo;
287 for (i = 1; i < nr_linfo; i++)
288 if (insn_off < linfo[i].insn_off)
289 break;
290
291 return &linfo[i - 1];
292}
293
77d2e05a
MKL
294void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 va_list args)
cbd35700 296{
a2a7d570 297 unsigned int n;
cbd35700 298
a2a7d570 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
300
301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 "verifier log line truncated - local buffer too short\n");
303
8580ac94 304 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
305 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306
307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
308 return;
309 }
436d404c
HT
310
311 n = min(log->len_total - log->len_used - 1, n);
312 log->kbuf[n] = '\0';
a2a7d570
JK
313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 log->len_used += n;
315 else
316 log->ubuf = NULL;
cbd35700 317}
abe08840 318
6f8a57cc
AN
319static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320{
321 char zero = 0;
322
323 if (!bpf_verifier_log_needed(log))
324 return;
325
326 log->len_used = new_pos;
327 if (put_user(zero, log->ubuf + new_pos))
328 log->ubuf = NULL;
329}
330
abe08840
JO
331/* log_level controls verbosity level of eBPF verifier.
332 * bpf_verifier_log_write() is used to dump the verification trace to the log,
333 * so the user can figure out what's wrong with the program
430e68d1 334 */
abe08840
JO
335__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 const char *fmt, ...)
337{
338 va_list args;
339
77d2e05a
MKL
340 if (!bpf_verifier_log_needed(&env->log))
341 return;
342
abe08840 343 va_start(args, fmt);
77d2e05a 344 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
345 va_end(args);
346}
347EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348
349__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350{
77d2e05a 351 struct bpf_verifier_env *env = private_data;
abe08840
JO
352 va_list args;
353
77d2e05a
MKL
354 if (!bpf_verifier_log_needed(&env->log))
355 return;
356
abe08840 357 va_start(args, fmt);
77d2e05a 358 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
359 va_end(args);
360}
cbd35700 361
9e15db66
AS
362__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 const char *fmt, ...)
364{
365 va_list args;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 va_start(args, fmt);
371 bpf_verifier_vlog(log, fmt, args);
372 va_end(args);
373}
84c6ac41 374EXPORT_SYMBOL_GPL(bpf_log);
9e15db66 375
d9762e84
MKL
376static const char *ltrim(const char *s)
377{
378 while (isspace(*s))
379 s++;
380
381 return s;
382}
383
384__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 u32 insn_off,
386 const char *prefix_fmt, ...)
387{
388 const struct bpf_line_info *linfo;
389
390 if (!bpf_verifier_log_needed(&env->log))
391 return;
392
393 linfo = find_linfo(env, insn_off);
394 if (!linfo || linfo == env->prev_linfo)
395 return;
396
397 if (prefix_fmt) {
398 va_list args;
399
400 va_start(args, prefix_fmt);
401 bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 va_end(args);
403 }
404
405 verbose(env, "%s\n",
406 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 linfo->line_off)));
408
409 env->prev_linfo = linfo;
410}
411
bc2591d6
YS
412static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 struct bpf_reg_state *reg,
414 struct tnum *range, const char *ctx,
415 const char *reg_name)
416{
417 char tn_buf[48];
418
419 verbose(env, "At %s the register %s ", ctx, reg_name);
420 if (!tnum_is_unknown(reg->var_off)) {
421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 verbose(env, "has value %s", tn_buf);
423 } else {
424 verbose(env, "has unknown scalar value");
425 }
426 tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 verbose(env, " should have been in %s\n", tn_buf);
428}
429
de8f3a83
DB
430static bool type_is_pkt_pointer(enum bpf_reg_type type)
431{
0c9a7a7e 432 type = base_type(type);
de8f3a83
DB
433 return type == PTR_TO_PACKET ||
434 type == PTR_TO_PACKET_META;
435}
436
46f8bc92
MKL
437static bool type_is_sk_pointer(enum bpf_reg_type type)
438{
439 return type == PTR_TO_SOCKET ||
655a51e5 440 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
443}
444
cac616db
JF
445static bool reg_type_not_null(enum bpf_reg_type type)
446{
447 return type == PTR_TO_SOCKET ||
448 type == PTR_TO_TCP_SOCK ||
449 type == PTR_TO_MAP_VALUE ||
69c087ba 450 type == PTR_TO_MAP_KEY ||
01c66c48 451 type == PTR_TO_SOCK_COMMON;
cac616db
JF
452}
453
d83525ca
AS
454static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455{
456 return reg->type == PTR_TO_MAP_VALUE &&
db559117 457 btf_record_has_field(reg->map_ptr->record, BPF_SPIN_LOCK);
d83525ca
AS
458}
459
20b2aff4
HL
460static bool type_is_rdonly_mem(u32 type)
461{
462 return type & MEM_RDONLY;
cba368c1
MKL
463}
464
48946bd6 465static bool type_may_be_null(u32 type)
fd1b0d60 466{
48946bd6 467 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
468}
469
64d85290
JS
470static bool is_acquire_function(enum bpf_func_id func_id,
471 const struct bpf_map *map)
472{
473 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
474
475 if (func_id == BPF_FUNC_sk_lookup_tcp ||
476 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 477 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
478 func_id == BPF_FUNC_ringbuf_reserve ||
479 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
480 return true;
481
482 if (func_id == BPF_FUNC_map_lookup_elem &&
483 (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 map_type == BPF_MAP_TYPE_SOCKHASH))
485 return true;
486
487 return false;
46f8bc92
MKL
488}
489
1b986589
MKL
490static bool is_ptr_cast_function(enum bpf_func_id func_id)
491{
492 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
493 func_id == BPF_FUNC_sk_fullsock ||
494 func_id == BPF_FUNC_skc_to_tcp_sock ||
495 func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 497 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
498 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
499 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
500}
501
88374342 502static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
503{
504 return func_id == BPF_FUNC_dynptr_data;
505}
506
507static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
508 const struct bpf_map *map)
509{
510 int ref_obj_uses = 0;
511
512 if (is_ptr_cast_function(func_id))
513 ref_obj_uses++;
514 if (is_acquire_function(func_id, map))
515 ref_obj_uses++;
88374342 516 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
517 ref_obj_uses++;
518
519 return ref_obj_uses > 1;
520}
521
39491867
BJ
522static bool is_cmpxchg_insn(const struct bpf_insn *insn)
523{
524 return BPF_CLASS(insn->code) == BPF_STX &&
525 BPF_MODE(insn->code) == BPF_ATOMIC &&
526 insn->imm == BPF_CMPXCHG;
527}
528
c25b2ae1
HL
529/* string representation of 'enum bpf_reg_type'
530 *
531 * Note that reg_type_str() can not appear more than once in a single verbose()
532 * statement.
533 */
534static const char *reg_type_str(struct bpf_verifier_env *env,
535 enum bpf_reg_type type)
536{
c6f1bfe8 537 char postfix[16] = {0}, prefix[32] = {0};
c25b2ae1
HL
538 static const char * const str[] = {
539 [NOT_INIT] = "?",
7df5072c 540 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
541 [PTR_TO_CTX] = "ctx",
542 [CONST_PTR_TO_MAP] = "map_ptr",
543 [PTR_TO_MAP_VALUE] = "map_value",
544 [PTR_TO_STACK] = "fp",
545 [PTR_TO_PACKET] = "pkt",
546 [PTR_TO_PACKET_META] = "pkt_meta",
547 [PTR_TO_PACKET_END] = "pkt_end",
548 [PTR_TO_FLOW_KEYS] = "flow_keys",
549 [PTR_TO_SOCKET] = "sock",
550 [PTR_TO_SOCK_COMMON] = "sock_common",
551 [PTR_TO_TCP_SOCK] = "tcp_sock",
552 [PTR_TO_TP_BUFFER] = "tp_buffer",
553 [PTR_TO_XDP_SOCK] = "xdp_sock",
554 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 555 [PTR_TO_MEM] = "mem",
20b2aff4 556 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
557 [PTR_TO_FUNC] = "func",
558 [PTR_TO_MAP_KEY] = "map_key",
20571567 559 [PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
560 };
561
562 if (type & PTR_MAYBE_NULL) {
5844101a 563 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
564 strncpy(postfix, "or_null_", 16);
565 else
566 strncpy(postfix, "_or_null", 16);
567 }
568
20b2aff4 569 if (type & MEM_RDONLY)
c6f1bfe8 570 strncpy(prefix, "rdonly_", 32);
a672b2e3 571 if (type & MEM_ALLOC)
c6f1bfe8
YS
572 strncpy(prefix, "alloc_", 32);
573 if (type & MEM_USER)
574 strncpy(prefix, "user_", 32);
5844101a
HL
575 if (type & MEM_PERCPU)
576 strncpy(prefix, "percpu_", 32);
6efe152d
KKD
577 if (type & PTR_UNTRUSTED)
578 strncpy(prefix, "untrusted_", 32);
20b2aff4
HL
579
580 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
581 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
582 return env->type_str_buf;
583}
17a52670 584
8efea21d
EC
585static char slot_type_char[] = {
586 [STACK_INVALID] = '?',
587 [STACK_SPILL] = 'r',
588 [STACK_MISC] = 'm',
589 [STACK_ZERO] = '0',
97e03f52 590 [STACK_DYNPTR] = 'd',
8efea21d
EC
591};
592
4e92024a
AS
593static void print_liveness(struct bpf_verifier_env *env,
594 enum bpf_reg_liveness live)
595{
9242b5f5 596 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
597 verbose(env, "_");
598 if (live & REG_LIVE_READ)
599 verbose(env, "r");
600 if (live & REG_LIVE_WRITTEN)
601 verbose(env, "w");
9242b5f5
AS
602 if (live & REG_LIVE_DONE)
603 verbose(env, "D");
4e92024a
AS
604}
605
97e03f52
JK
606static int get_spi(s32 off)
607{
608 return (-off - 1) / BPF_REG_SIZE;
609}
610
611static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
612{
613 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
614
615 /* We need to check that slots between [spi - nr_slots + 1, spi] are
616 * within [0, allocated_stack).
617 *
618 * Please note that the spi grows downwards. For example, a dynptr
619 * takes the size of two stack slots; the first slot will be at
620 * spi and the second slot will be at spi - 1.
621 */
622 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
623}
624
f4d7e40a
AS
625static struct bpf_func_state *func(struct bpf_verifier_env *env,
626 const struct bpf_reg_state *reg)
627{
628 struct bpf_verifier_state *cur = env->cur_state;
629
630 return cur->frame[reg->frameno];
631}
632
22dc4a0f 633static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 634{
22dc4a0f 635 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
636}
637
0f55f9ed
CL
638static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
639{
640 env->scratched_regs |= 1U << regno;
641}
642
643static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
644{
343e5375 645 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
646}
647
648static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
649{
650 return (env->scratched_regs >> regno) & 1;
651}
652
653static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
654{
655 return (env->scratched_stack_slots >> regno) & 1;
656}
657
658static bool verifier_state_scratched(const struct bpf_verifier_env *env)
659{
660 return env->scratched_regs || env->scratched_stack_slots;
661}
662
663static void mark_verifier_state_clean(struct bpf_verifier_env *env)
664{
665 env->scratched_regs = 0U;
343e5375 666 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
667}
668
669/* Used for printing the entire verifier state. */
670static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
671{
672 env->scratched_regs = ~0U;
343e5375 673 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
674}
675
97e03f52
JK
676static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
677{
678 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
679 case DYNPTR_TYPE_LOCAL:
680 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
681 case DYNPTR_TYPE_RINGBUF:
682 return BPF_DYNPTR_TYPE_RINGBUF;
97e03f52
JK
683 default:
684 return BPF_DYNPTR_TYPE_INVALID;
685 }
686}
687
bc34dee6
JK
688static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
689{
690 return type == BPF_DYNPTR_TYPE_RINGBUF;
691}
692
97e03f52
JK
693static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
694 enum bpf_arg_type arg_type, int insn_idx)
695{
696 struct bpf_func_state *state = func(env, reg);
697 enum bpf_dynptr_type type;
bc34dee6 698 int spi, i, id;
97e03f52
JK
699
700 spi = get_spi(reg->off);
701
702 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
703 return -EINVAL;
704
705 for (i = 0; i < BPF_REG_SIZE; i++) {
706 state->stack[spi].slot_type[i] = STACK_DYNPTR;
707 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
708 }
709
710 type = arg_to_dynptr_type(arg_type);
711 if (type == BPF_DYNPTR_TYPE_INVALID)
712 return -EINVAL;
713
714 state->stack[spi].spilled_ptr.dynptr.first_slot = true;
715 state->stack[spi].spilled_ptr.dynptr.type = type;
716 state->stack[spi - 1].spilled_ptr.dynptr.type = type;
717
bc34dee6
JK
718 if (dynptr_type_refcounted(type)) {
719 /* The id is used to track proper releasing */
720 id = acquire_reference_state(env, insn_idx);
721 if (id < 0)
722 return id;
723
724 state->stack[spi].spilled_ptr.id = id;
725 state->stack[spi - 1].spilled_ptr.id = id;
726 }
727
97e03f52
JK
728 return 0;
729}
730
731static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
732{
733 struct bpf_func_state *state = func(env, reg);
734 int spi, i;
735
736 spi = get_spi(reg->off);
737
738 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
739 return -EINVAL;
740
741 for (i = 0; i < BPF_REG_SIZE; i++) {
742 state->stack[spi].slot_type[i] = STACK_INVALID;
743 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
744 }
745
bc34dee6
JK
746 /* Invalidate any slices associated with this dynptr */
747 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
748 release_reference(env, state->stack[spi].spilled_ptr.id);
749 state->stack[spi].spilled_ptr.id = 0;
750 state->stack[spi - 1].spilled_ptr.id = 0;
751 }
752
97e03f52
JK
753 state->stack[spi].spilled_ptr.dynptr.first_slot = false;
754 state->stack[spi].spilled_ptr.dynptr.type = 0;
755 state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
756
757 return 0;
758}
759
760static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
761{
762 struct bpf_func_state *state = func(env, reg);
763 int spi = get_spi(reg->off);
764 int i;
765
766 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
767 return true;
768
769 for (i = 0; i < BPF_REG_SIZE; i++) {
770 if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
771 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
772 return false;
773 }
774
775 return true;
776}
777
b8d31762
RS
778bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
779 struct bpf_reg_state *reg)
97e03f52
JK
780{
781 struct bpf_func_state *state = func(env, reg);
782 int spi = get_spi(reg->off);
783 int i;
784
785 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
786 !state->stack[spi].spilled_ptr.dynptr.first_slot)
787 return false;
788
789 for (i = 0; i < BPF_REG_SIZE; i++) {
790 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
791 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
792 return false;
793 }
794
e9e315b4
RS
795 return true;
796}
797
b8d31762
RS
798bool is_dynptr_type_expected(struct bpf_verifier_env *env,
799 struct bpf_reg_state *reg,
800 enum bpf_arg_type arg_type)
e9e315b4
RS
801{
802 struct bpf_func_state *state = func(env, reg);
803 enum bpf_dynptr_type dynptr_type;
804 int spi = get_spi(reg->off);
805
97e03f52
JK
806 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
807 if (arg_type == ARG_PTR_TO_DYNPTR)
808 return true;
809
e9e315b4
RS
810 dynptr_type = arg_to_dynptr_type(arg_type);
811
812 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
97e03f52
JK
813}
814
27113c59
MKL
815/* The reg state of a pointer or a bounded scalar was saved when
816 * it was spilled to the stack.
817 */
818static bool is_spilled_reg(const struct bpf_stack_state *stack)
819{
820 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
821}
822
354e8f19
MKL
823static void scrub_spilled_slot(u8 *stype)
824{
825 if (*stype != STACK_INVALID)
826 *stype = STACK_MISC;
827}
828
61bd5218 829static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
830 const struct bpf_func_state *state,
831 bool print_all)
17a52670 832{
f4d7e40a 833 const struct bpf_reg_state *reg;
17a52670
AS
834 enum bpf_reg_type t;
835 int i;
836
f4d7e40a
AS
837 if (state->frameno)
838 verbose(env, " frame%d:", state->frameno);
17a52670 839 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
840 reg = &state->regs[i];
841 t = reg->type;
17a52670
AS
842 if (t == NOT_INIT)
843 continue;
0f55f9ed
CL
844 if (!print_all && !reg_scratched(env, i))
845 continue;
4e92024a
AS
846 verbose(env, " R%d", i);
847 print_liveness(env, reg->live);
7df5072c 848 verbose(env, "=");
b5dc0163
AS
849 if (t == SCALAR_VALUE && reg->precise)
850 verbose(env, "P");
f1174f77
EC
851 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
852 tnum_is_const(reg->var_off)) {
853 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 854 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 855 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 856 } else {
7df5072c
ML
857 const char *sep = "";
858
859 verbose(env, "%s", reg_type_str(env, t));
5844101a 860 if (base_type(t) == PTR_TO_BTF_ID)
22dc4a0f 861 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
7df5072c
ML
862 verbose(env, "(");
863/*
864 * _a stands for append, was shortened to avoid multiline statements below.
865 * This macro is used to output a comma separated list of attributes.
866 */
867#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
868
869 if (reg->id)
870 verbose_a("id=%d", reg->id);
a28ace78 871 if (reg->ref_obj_id)
7df5072c 872 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
f1174f77 873 if (t != SCALAR_VALUE)
7df5072c 874 verbose_a("off=%d", reg->off);
de8f3a83 875 if (type_is_pkt_pointer(t))
7df5072c 876 verbose_a("r=%d", reg->range);
c25b2ae1
HL
877 else if (base_type(t) == CONST_PTR_TO_MAP ||
878 base_type(t) == PTR_TO_MAP_KEY ||
879 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
880 verbose_a("ks=%d,vs=%d",
881 reg->map_ptr->key_size,
882 reg->map_ptr->value_size);
7d1238f2
EC
883 if (tnum_is_const(reg->var_off)) {
884 /* Typically an immediate SCALAR_VALUE, but
885 * could be a pointer whose offset is too big
886 * for reg->off
887 */
7df5072c 888 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
889 } else {
890 if (reg->smin_value != reg->umin_value &&
891 reg->smin_value != S64_MIN)
7df5072c 892 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
893 if (reg->smax_value != reg->umax_value &&
894 reg->smax_value != S64_MAX)
7df5072c 895 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 896 if (reg->umin_value != 0)
7df5072c 897 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 898 if (reg->umax_value != U64_MAX)
7df5072c 899 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
900 if (!tnum_is_unknown(reg->var_off)) {
901 char tn_buf[48];
f1174f77 902
7d1238f2 903 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 904 verbose_a("var_off=%s", tn_buf);
7d1238f2 905 }
3f50f132
JF
906 if (reg->s32_min_value != reg->smin_value &&
907 reg->s32_min_value != S32_MIN)
7df5072c 908 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
909 if (reg->s32_max_value != reg->smax_value &&
910 reg->s32_max_value != S32_MAX)
7df5072c 911 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
912 if (reg->u32_min_value != reg->umin_value &&
913 reg->u32_min_value != U32_MIN)
7df5072c 914 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
915 if (reg->u32_max_value != reg->umax_value &&
916 reg->u32_max_value != U32_MAX)
7df5072c 917 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 918 }
7df5072c
ML
919#undef verbose_a
920
61bd5218 921 verbose(env, ")");
f1174f77 922 }
17a52670 923 }
638f5b90 924 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
925 char types_buf[BPF_REG_SIZE + 1];
926 bool valid = false;
927 int j;
928
929 for (j = 0; j < BPF_REG_SIZE; j++) {
930 if (state->stack[i].slot_type[j] != STACK_INVALID)
931 valid = true;
932 types_buf[j] = slot_type_char[
933 state->stack[i].slot_type[j]];
934 }
935 types_buf[BPF_REG_SIZE] = 0;
936 if (!valid)
937 continue;
0f55f9ed
CL
938 if (!print_all && !stack_slot_scratched(env, i))
939 continue;
8efea21d
EC
940 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
941 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 942 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
943 reg = &state->stack[i].spilled_ptr;
944 t = reg->type;
7df5072c 945 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
946 if (t == SCALAR_VALUE && reg->precise)
947 verbose(env, "P");
948 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
949 verbose(env, "%lld", reg->var_off.value + reg->off);
950 } else {
8efea21d 951 verbose(env, "=%s", types_buf);
b5dc0163 952 }
17a52670 953 }
fd978bf7
JS
954 if (state->acquired_refs && state->refs[0].id) {
955 verbose(env, " refs=%d", state->refs[0].id);
956 for (i = 1; i < state->acquired_refs; i++)
957 if (state->refs[i].id)
958 verbose(env, ",%d", state->refs[i].id);
959 }
bfc6bb74
AS
960 if (state->in_callback_fn)
961 verbose(env, " cb");
962 if (state->in_async_callback_fn)
963 verbose(env, " async_cb");
61bd5218 964 verbose(env, "\n");
0f55f9ed 965 mark_verifier_state_clean(env);
17a52670
AS
966}
967
2e576648
CL
968static inline u32 vlog_alignment(u32 pos)
969{
970 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
971 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
972}
973
974static void print_insn_state(struct bpf_verifier_env *env,
975 const struct bpf_func_state *state)
976{
977 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
978 /* remove new line character */
979 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
980 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
981 } else {
982 verbose(env, "%d:", env->insn_idx);
983 }
984 print_verifier_state(env, state, false);
17a52670
AS
985}
986
c69431aa
LB
987/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
988 * small to hold src. This is different from krealloc since we don't want to preserve
989 * the contents of dst.
990 *
991 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
992 * not be allocated.
638f5b90 993 */
c69431aa 994static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 995{
c69431aa
LB
996 size_t bytes;
997
998 if (ZERO_OR_NULL_PTR(src))
999 goto out;
1000
1001 if (unlikely(check_mul_overflow(n, size, &bytes)))
1002 return NULL;
1003
1004 if (ksize(dst) < bytes) {
1005 kfree(dst);
1006 dst = kmalloc_track_caller(bytes, flags);
1007 if (!dst)
1008 return NULL;
1009 }
1010
1011 memcpy(dst, src, bytes);
1012out:
1013 return dst ? dst : ZERO_SIZE_PTR;
1014}
1015
1016/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1017 * small to hold new_n items. new items are zeroed out if the array grows.
1018 *
1019 * Contrary to krealloc_array, does not free arr if new_n is zero.
1020 */
1021static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1022{
1023 if (!new_n || old_n == new_n)
1024 goto out;
1025
1026 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1027 if (!arr)
1028 return NULL;
1029
1030 if (new_n > old_n)
1031 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1032
1033out:
1034 return arr ? arr : ZERO_SIZE_PTR;
1035}
1036
1037static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1038{
1039 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1040 sizeof(struct bpf_reference_state), GFP_KERNEL);
1041 if (!dst->refs)
1042 return -ENOMEM;
1043
1044 dst->acquired_refs = src->acquired_refs;
1045 return 0;
1046}
1047
1048static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1049{
1050 size_t n = src->allocated_stack / BPF_REG_SIZE;
1051
1052 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1053 GFP_KERNEL);
1054 if (!dst->stack)
1055 return -ENOMEM;
1056
1057 dst->allocated_stack = src->allocated_stack;
1058 return 0;
1059}
1060
1061static int resize_reference_state(struct bpf_func_state *state, size_t n)
1062{
1063 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1064 sizeof(struct bpf_reference_state));
1065 if (!state->refs)
1066 return -ENOMEM;
1067
1068 state->acquired_refs = n;
1069 return 0;
1070}
1071
1072static int grow_stack_state(struct bpf_func_state *state, int size)
1073{
1074 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1075
1076 if (old_n >= n)
1077 return 0;
1078
1079 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1080 if (!state->stack)
1081 return -ENOMEM;
1082
1083 state->allocated_stack = size;
1084 return 0;
fd978bf7
JS
1085}
1086
1087/* Acquire a pointer id from the env and update the state->refs to include
1088 * this new pointer reference.
1089 * On success, returns a valid pointer id to associate with the register
1090 * On failure, returns a negative errno.
638f5b90 1091 */
fd978bf7 1092static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1093{
fd978bf7
JS
1094 struct bpf_func_state *state = cur_func(env);
1095 int new_ofs = state->acquired_refs;
1096 int id, err;
1097
c69431aa 1098 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1099 if (err)
1100 return err;
1101 id = ++env->id_gen;
1102 state->refs[new_ofs].id = id;
1103 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1104 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1105
fd978bf7
JS
1106 return id;
1107}
1108
1109/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1110static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1111{
1112 int i, last_idx;
1113
fd978bf7
JS
1114 last_idx = state->acquired_refs - 1;
1115 for (i = 0; i < state->acquired_refs; i++) {
1116 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1117 /* Cannot release caller references in callbacks */
1118 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1119 return -EINVAL;
fd978bf7
JS
1120 if (last_idx && i != last_idx)
1121 memcpy(&state->refs[i], &state->refs[last_idx],
1122 sizeof(*state->refs));
1123 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1124 state->acquired_refs--;
638f5b90 1125 return 0;
638f5b90 1126 }
638f5b90 1127 }
46f8bc92 1128 return -EINVAL;
fd978bf7
JS
1129}
1130
f4d7e40a
AS
1131static void free_func_state(struct bpf_func_state *state)
1132{
5896351e
AS
1133 if (!state)
1134 return;
fd978bf7 1135 kfree(state->refs);
f4d7e40a
AS
1136 kfree(state->stack);
1137 kfree(state);
1138}
1139
b5dc0163
AS
1140static void clear_jmp_history(struct bpf_verifier_state *state)
1141{
1142 kfree(state->jmp_history);
1143 state->jmp_history = NULL;
1144 state->jmp_history_cnt = 0;
1145}
1146
1969db47
AS
1147static void free_verifier_state(struct bpf_verifier_state *state,
1148 bool free_self)
638f5b90 1149{
f4d7e40a
AS
1150 int i;
1151
1152 for (i = 0; i <= state->curframe; i++) {
1153 free_func_state(state->frame[i]);
1154 state->frame[i] = NULL;
1155 }
b5dc0163 1156 clear_jmp_history(state);
1969db47
AS
1157 if (free_self)
1158 kfree(state);
638f5b90
AS
1159}
1160
1161/* copy verifier state from src to dst growing dst stack space
1162 * when necessary to accommodate larger src stack
1163 */
f4d7e40a
AS
1164static int copy_func_state(struct bpf_func_state *dst,
1165 const struct bpf_func_state *src)
638f5b90
AS
1166{
1167 int err;
1168
fd978bf7
JS
1169 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1170 err = copy_reference_state(dst, src);
638f5b90
AS
1171 if (err)
1172 return err;
638f5b90
AS
1173 return copy_stack_state(dst, src);
1174}
1175
f4d7e40a
AS
1176static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1177 const struct bpf_verifier_state *src)
1178{
1179 struct bpf_func_state *dst;
1180 int i, err;
1181
06ab6a50
LB
1182 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1183 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1184 GFP_USER);
1185 if (!dst_state->jmp_history)
1186 return -ENOMEM;
b5dc0163
AS
1187 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1188
f4d7e40a
AS
1189 /* if dst has more stack frames then src frame, free them */
1190 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1191 free_func_state(dst_state->frame[i]);
1192 dst_state->frame[i] = NULL;
1193 }
979d63d5 1194 dst_state->speculative = src->speculative;
f4d7e40a 1195 dst_state->curframe = src->curframe;
d83525ca 1196 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
1197 dst_state->branches = src->branches;
1198 dst_state->parent = src->parent;
b5dc0163
AS
1199 dst_state->first_insn_idx = src->first_insn_idx;
1200 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1201 for (i = 0; i <= src->curframe; i++) {
1202 dst = dst_state->frame[i];
1203 if (!dst) {
1204 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1205 if (!dst)
1206 return -ENOMEM;
1207 dst_state->frame[i] = dst;
1208 }
1209 err = copy_func_state(dst, src->frame[i]);
1210 if (err)
1211 return err;
1212 }
1213 return 0;
1214}
1215
2589726d
AS
1216static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1217{
1218 while (st) {
1219 u32 br = --st->branches;
1220
1221 /* WARN_ON(br > 1) technically makes sense here,
1222 * but see comment in push_stack(), hence:
1223 */
1224 WARN_ONCE((int)br < 0,
1225 "BUG update_branch_counts:branches_to_explore=%d\n",
1226 br);
1227 if (br)
1228 break;
1229 st = st->parent;
1230 }
1231}
1232
638f5b90 1233static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1234 int *insn_idx, bool pop_log)
638f5b90
AS
1235{
1236 struct bpf_verifier_state *cur = env->cur_state;
1237 struct bpf_verifier_stack_elem *elem, *head = env->head;
1238 int err;
17a52670
AS
1239
1240 if (env->head == NULL)
638f5b90 1241 return -ENOENT;
17a52670 1242
638f5b90
AS
1243 if (cur) {
1244 err = copy_verifier_state(cur, &head->st);
1245 if (err)
1246 return err;
1247 }
6f8a57cc
AN
1248 if (pop_log)
1249 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1250 if (insn_idx)
1251 *insn_idx = head->insn_idx;
17a52670 1252 if (prev_insn_idx)
638f5b90
AS
1253 *prev_insn_idx = head->prev_insn_idx;
1254 elem = head->next;
1969db47 1255 free_verifier_state(&head->st, false);
638f5b90 1256 kfree(head);
17a52670
AS
1257 env->head = elem;
1258 env->stack_size--;
638f5b90 1259 return 0;
17a52670
AS
1260}
1261
58e2af8b 1262static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1263 int insn_idx, int prev_insn_idx,
1264 bool speculative)
17a52670 1265{
638f5b90 1266 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1267 struct bpf_verifier_stack_elem *elem;
638f5b90 1268 int err;
17a52670 1269
638f5b90 1270 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1271 if (!elem)
1272 goto err;
1273
17a52670
AS
1274 elem->insn_idx = insn_idx;
1275 elem->prev_insn_idx = prev_insn_idx;
1276 elem->next = env->head;
6f8a57cc 1277 elem->log_pos = env->log.len_used;
17a52670
AS
1278 env->head = elem;
1279 env->stack_size++;
1969db47
AS
1280 err = copy_verifier_state(&elem->st, cur);
1281 if (err)
1282 goto err;
979d63d5 1283 elem->st.speculative |= speculative;
b285fcb7
AS
1284 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1285 verbose(env, "The sequence of %d jumps is too complex.\n",
1286 env->stack_size);
17a52670
AS
1287 goto err;
1288 }
2589726d
AS
1289 if (elem->st.parent) {
1290 ++elem->st.parent->branches;
1291 /* WARN_ON(branches > 2) technically makes sense here,
1292 * but
1293 * 1. speculative states will bump 'branches' for non-branch
1294 * instructions
1295 * 2. is_state_visited() heuristics may decide not to create
1296 * a new state for a sequence of branches and all such current
1297 * and cloned states will be pointing to a single parent state
1298 * which might have large 'branches' count.
1299 */
1300 }
17a52670
AS
1301 return &elem->st;
1302err:
5896351e
AS
1303 free_verifier_state(env->cur_state, true);
1304 env->cur_state = NULL;
17a52670 1305 /* pop all elements and return */
6f8a57cc 1306 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1307 return NULL;
1308}
1309
1310#define CALLER_SAVED_REGS 6
1311static const int caller_saved[CALLER_SAVED_REGS] = {
1312 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1313};
1314
f54c7898
DB
1315static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1316 struct bpf_reg_state *reg);
f1174f77 1317
e688c3db
AS
1318/* This helper doesn't clear reg->id */
1319static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1320{
b03c9f9f
EC
1321 reg->var_off = tnum_const(imm);
1322 reg->smin_value = (s64)imm;
1323 reg->smax_value = (s64)imm;
1324 reg->umin_value = imm;
1325 reg->umax_value = imm;
3f50f132
JF
1326
1327 reg->s32_min_value = (s32)imm;
1328 reg->s32_max_value = (s32)imm;
1329 reg->u32_min_value = (u32)imm;
1330 reg->u32_max_value = (u32)imm;
1331}
1332
e688c3db
AS
1333/* Mark the unknown part of a register (variable offset or scalar value) as
1334 * known to have the value @imm.
1335 */
1336static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1337{
1338 /* Clear id, off, and union(map_ptr, range) */
1339 memset(((u8 *)reg) + sizeof(reg->type), 0,
1340 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1341 ___mark_reg_known(reg, imm);
1342}
1343
3f50f132
JF
1344static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1345{
1346 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1347 reg->s32_min_value = (s32)imm;
1348 reg->s32_max_value = (s32)imm;
1349 reg->u32_min_value = (u32)imm;
1350 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1351}
1352
f1174f77
EC
1353/* Mark the 'variable offset' part of a register as zero. This should be
1354 * used only on registers holding a pointer type.
1355 */
1356static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1357{
b03c9f9f 1358 __mark_reg_known(reg, 0);
f1174f77 1359}
a9789ef9 1360
cc2b14d5
AS
1361static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1362{
1363 __mark_reg_known(reg, 0);
cc2b14d5
AS
1364 reg->type = SCALAR_VALUE;
1365}
1366
61bd5218
JK
1367static void mark_reg_known_zero(struct bpf_verifier_env *env,
1368 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1369{
1370 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1371 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1372 /* Something bad happened, let's kill all regs */
1373 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1374 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1375 return;
1376 }
1377 __mark_reg_known_zero(regs + regno);
1378}
1379
4ddb7416
DB
1380static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1381{
c25b2ae1 1382 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1383 const struct bpf_map *map = reg->map_ptr;
1384
1385 if (map->inner_map_meta) {
1386 reg->type = CONST_PTR_TO_MAP;
1387 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1388 /* transfer reg's id which is unique for every map_lookup_elem
1389 * as UID of the inner map.
1390 */
db559117 1391 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1392 reg->map_uid = reg->id;
4ddb7416
DB
1393 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1394 reg->type = PTR_TO_XDP_SOCK;
1395 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1396 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1397 reg->type = PTR_TO_SOCKET;
1398 } else {
1399 reg->type = PTR_TO_MAP_VALUE;
1400 }
c25b2ae1 1401 return;
4ddb7416 1402 }
c25b2ae1
HL
1403
1404 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1405}
1406
de8f3a83
DB
1407static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1408{
1409 return type_is_pkt_pointer(reg->type);
1410}
1411
1412static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1413{
1414 return reg_is_pkt_pointer(reg) ||
1415 reg->type == PTR_TO_PACKET_END;
1416}
1417
1418/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1419static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1420 enum bpf_reg_type which)
1421{
1422 /* The register can already have a range from prior markings.
1423 * This is fine as long as it hasn't been advanced from its
1424 * origin.
1425 */
1426 return reg->type == which &&
1427 reg->id == 0 &&
1428 reg->off == 0 &&
1429 tnum_equals_const(reg->var_off, 0);
1430}
1431
3f50f132
JF
1432/* Reset the min/max bounds of a register */
1433static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1434{
1435 reg->smin_value = S64_MIN;
1436 reg->smax_value = S64_MAX;
1437 reg->umin_value = 0;
1438 reg->umax_value = U64_MAX;
1439
1440 reg->s32_min_value = S32_MIN;
1441 reg->s32_max_value = S32_MAX;
1442 reg->u32_min_value = 0;
1443 reg->u32_max_value = U32_MAX;
1444}
1445
1446static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1447{
1448 reg->smin_value = S64_MIN;
1449 reg->smax_value = S64_MAX;
1450 reg->umin_value = 0;
1451 reg->umax_value = U64_MAX;
1452}
1453
1454static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1455{
1456 reg->s32_min_value = S32_MIN;
1457 reg->s32_max_value = S32_MAX;
1458 reg->u32_min_value = 0;
1459 reg->u32_max_value = U32_MAX;
1460}
1461
1462static void __update_reg32_bounds(struct bpf_reg_state *reg)
1463{
1464 struct tnum var32_off = tnum_subreg(reg->var_off);
1465
1466 /* min signed is max(sign bit) | min(other bits) */
1467 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1468 var32_off.value | (var32_off.mask & S32_MIN));
1469 /* max signed is min(sign bit) | max(other bits) */
1470 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1471 var32_off.value | (var32_off.mask & S32_MAX));
1472 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1473 reg->u32_max_value = min(reg->u32_max_value,
1474 (u32)(var32_off.value | var32_off.mask));
1475}
1476
1477static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1478{
1479 /* min signed is max(sign bit) | min(other bits) */
1480 reg->smin_value = max_t(s64, reg->smin_value,
1481 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1482 /* max signed is min(sign bit) | max(other bits) */
1483 reg->smax_value = min_t(s64, reg->smax_value,
1484 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1485 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1486 reg->umax_value = min(reg->umax_value,
1487 reg->var_off.value | reg->var_off.mask);
1488}
1489
3f50f132
JF
1490static void __update_reg_bounds(struct bpf_reg_state *reg)
1491{
1492 __update_reg32_bounds(reg);
1493 __update_reg64_bounds(reg);
1494}
1495
b03c9f9f 1496/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1497static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1498{
1499 /* Learn sign from signed bounds.
1500 * If we cannot cross the sign boundary, then signed and unsigned bounds
1501 * are the same, so combine. This works even in the negative case, e.g.
1502 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1503 */
1504 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1505 reg->s32_min_value = reg->u32_min_value =
1506 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1507 reg->s32_max_value = reg->u32_max_value =
1508 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1509 return;
1510 }
1511 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1512 * boundary, so we must be careful.
1513 */
1514 if ((s32)reg->u32_max_value >= 0) {
1515 /* Positive. We can't learn anything from the smin, but smax
1516 * is positive, hence safe.
1517 */
1518 reg->s32_min_value = reg->u32_min_value;
1519 reg->s32_max_value = reg->u32_max_value =
1520 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1521 } else if ((s32)reg->u32_min_value < 0) {
1522 /* Negative. We can't learn anything from the smax, but smin
1523 * is negative, hence safe.
1524 */
1525 reg->s32_min_value = reg->u32_min_value =
1526 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1527 reg->s32_max_value = reg->u32_max_value;
1528 }
1529}
1530
1531static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1532{
1533 /* Learn sign from signed bounds.
1534 * If we cannot cross the sign boundary, then signed and unsigned bounds
1535 * are the same, so combine. This works even in the negative case, e.g.
1536 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1537 */
1538 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1539 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1540 reg->umin_value);
1541 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1542 reg->umax_value);
1543 return;
1544 }
1545 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1546 * boundary, so we must be careful.
1547 */
1548 if ((s64)reg->umax_value >= 0) {
1549 /* Positive. We can't learn anything from the smin, but smax
1550 * is positive, hence safe.
1551 */
1552 reg->smin_value = reg->umin_value;
1553 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1554 reg->umax_value);
1555 } else if ((s64)reg->umin_value < 0) {
1556 /* Negative. We can't learn anything from the smax, but smin
1557 * is negative, hence safe.
1558 */
1559 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1560 reg->umin_value);
1561 reg->smax_value = reg->umax_value;
1562 }
1563}
1564
3f50f132
JF
1565static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1566{
1567 __reg32_deduce_bounds(reg);
1568 __reg64_deduce_bounds(reg);
1569}
1570
b03c9f9f
EC
1571/* Attempts to improve var_off based on unsigned min/max information */
1572static void __reg_bound_offset(struct bpf_reg_state *reg)
1573{
3f50f132
JF
1574 struct tnum var64_off = tnum_intersect(reg->var_off,
1575 tnum_range(reg->umin_value,
1576 reg->umax_value));
1577 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1578 tnum_range(reg->u32_min_value,
1579 reg->u32_max_value));
1580
1581 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1582}
1583
3844d153
DB
1584static void reg_bounds_sync(struct bpf_reg_state *reg)
1585{
1586 /* We might have learned new bounds from the var_off. */
1587 __update_reg_bounds(reg);
1588 /* We might have learned something about the sign bit. */
1589 __reg_deduce_bounds(reg);
1590 /* We might have learned some bits from the bounds. */
1591 __reg_bound_offset(reg);
1592 /* Intersecting with the old var_off might have improved our bounds
1593 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1594 * then new var_off is (0; 0x7f...fc) which improves our umax.
1595 */
1596 __update_reg_bounds(reg);
1597}
1598
e572ff80
DB
1599static bool __reg32_bound_s64(s32 a)
1600{
1601 return a >= 0 && a <= S32_MAX;
1602}
1603
3f50f132 1604static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1605{
3f50f132
JF
1606 reg->umin_value = reg->u32_min_value;
1607 reg->umax_value = reg->u32_max_value;
e572ff80
DB
1608
1609 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1610 * be positive otherwise set to worse case bounds and refine later
1611 * from tnum.
3f50f132 1612 */
e572ff80
DB
1613 if (__reg32_bound_s64(reg->s32_min_value) &&
1614 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 1615 reg->smin_value = reg->s32_min_value;
e572ff80
DB
1616 reg->smax_value = reg->s32_max_value;
1617 } else {
3a71dc36 1618 reg->smin_value = 0;
e572ff80
DB
1619 reg->smax_value = U32_MAX;
1620 }
3f50f132
JF
1621}
1622
1623static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1624{
1625 /* special case when 64-bit register has upper 32-bit register
1626 * zeroed. Typically happens after zext or <<32, >>32 sequence
1627 * allowing us to use 32-bit bounds directly,
1628 */
1629 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1630 __reg_assign_32_into_64(reg);
1631 } else {
1632 /* Otherwise the best we can do is push lower 32bit known and
1633 * unknown bits into register (var_off set from jmp logic)
1634 * then learn as much as possible from the 64-bit tnum
1635 * known and unknown bits. The previous smin/smax bounds are
1636 * invalid here because of jmp32 compare so mark them unknown
1637 * so they do not impact tnum bounds calculation.
1638 */
1639 __mark_reg64_unbounded(reg);
3f50f132 1640 }
3844d153 1641 reg_bounds_sync(reg);
3f50f132
JF
1642}
1643
1644static bool __reg64_bound_s32(s64 a)
1645{
388e2c0b 1646 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1647}
1648
1649static bool __reg64_bound_u32(u64 a)
1650{
b9979db8 1651 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1652}
1653
1654static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1655{
1656 __mark_reg32_unbounded(reg);
b0270958 1657 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1658 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1659 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1660 }
10bf4e83 1661 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1662 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1663 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1664 }
3844d153 1665 reg_bounds_sync(reg);
b03c9f9f
EC
1666}
1667
f1174f77 1668/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1669static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1670 struct bpf_reg_state *reg)
f1174f77 1671{
a9c676bc
AS
1672 /*
1673 * Clear type, id, off, and union(map_ptr, range) and
1674 * padding between 'type' and union
1675 */
1676 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1677 reg->type = SCALAR_VALUE;
f1174f77 1678 reg->var_off = tnum_unknown;
f4d7e40a 1679 reg->frameno = 0;
2c78ee89 1680 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1681 __mark_reg_unbounded(reg);
f1174f77
EC
1682}
1683
61bd5218
JK
1684static void mark_reg_unknown(struct bpf_verifier_env *env,
1685 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1686{
1687 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1688 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1689 /* Something bad happened, let's kill all regs except FP */
1690 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1691 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1692 return;
1693 }
f54c7898 1694 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1695}
1696
f54c7898
DB
1697static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1698 struct bpf_reg_state *reg)
f1174f77 1699{
f54c7898 1700 __mark_reg_unknown(env, reg);
f1174f77
EC
1701 reg->type = NOT_INIT;
1702}
1703
61bd5218
JK
1704static void mark_reg_not_init(struct bpf_verifier_env *env,
1705 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1706{
1707 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1708 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1709 /* Something bad happened, let's kill all regs except FP */
1710 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1711 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1712 return;
1713 }
f54c7898 1714 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1715}
1716
41c48f3a
AI
1717static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1718 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 1719 enum bpf_reg_type reg_type,
c6f1bfe8
YS
1720 struct btf *btf, u32 btf_id,
1721 enum bpf_type_flag flag)
41c48f3a
AI
1722{
1723 if (reg_type == SCALAR_VALUE) {
1724 mark_reg_unknown(env, regs, regno);
1725 return;
1726 }
1727 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 1728 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 1729 regs[regno].btf = btf;
41c48f3a
AI
1730 regs[regno].btf_id = btf_id;
1731}
1732
5327ed3d 1733#define DEF_NOT_SUBREG (0)
61bd5218 1734static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1735 struct bpf_func_state *state)
17a52670 1736{
f4d7e40a 1737 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1738 int i;
1739
dc503a8a 1740 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1741 mark_reg_not_init(env, regs, i);
dc503a8a 1742 regs[i].live = REG_LIVE_NONE;
679c782d 1743 regs[i].parent = NULL;
5327ed3d 1744 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1745 }
17a52670
AS
1746
1747 /* frame pointer */
f1174f77 1748 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1749 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1750 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1751}
1752
f4d7e40a
AS
1753#define BPF_MAIN_FUNC (-1)
1754static void init_func_state(struct bpf_verifier_env *env,
1755 struct bpf_func_state *state,
1756 int callsite, int frameno, int subprogno)
1757{
1758 state->callsite = callsite;
1759 state->frameno = frameno;
1760 state->subprogno = subprogno;
1bfe26fb 1761 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 1762 init_reg_state(env, state);
0f55f9ed 1763 mark_verifier_state_scratched(env);
f4d7e40a
AS
1764}
1765
bfc6bb74
AS
1766/* Similar to push_stack(), but for async callbacks */
1767static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1768 int insn_idx, int prev_insn_idx,
1769 int subprog)
1770{
1771 struct bpf_verifier_stack_elem *elem;
1772 struct bpf_func_state *frame;
1773
1774 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1775 if (!elem)
1776 goto err;
1777
1778 elem->insn_idx = insn_idx;
1779 elem->prev_insn_idx = prev_insn_idx;
1780 elem->next = env->head;
1781 elem->log_pos = env->log.len_used;
1782 env->head = elem;
1783 env->stack_size++;
1784 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1785 verbose(env,
1786 "The sequence of %d jumps is too complex for async cb.\n",
1787 env->stack_size);
1788 goto err;
1789 }
1790 /* Unlike push_stack() do not copy_verifier_state().
1791 * The caller state doesn't matter.
1792 * This is async callback. It starts in a fresh stack.
1793 * Initialize it similar to do_check_common().
1794 */
1795 elem->st.branches = 1;
1796 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1797 if (!frame)
1798 goto err;
1799 init_func_state(env, frame,
1800 BPF_MAIN_FUNC /* callsite */,
1801 0 /* frameno within this callchain */,
1802 subprog /* subprog number within this prog */);
1803 elem->st.frame[0] = frame;
1804 return &elem->st;
1805err:
1806 free_verifier_state(env->cur_state, true);
1807 env->cur_state = NULL;
1808 /* pop all elements and return */
1809 while (!pop_stack(env, NULL, NULL, false));
1810 return NULL;
1811}
1812
1813
17a52670
AS
1814enum reg_arg_type {
1815 SRC_OP, /* register is used as source operand */
1816 DST_OP, /* register is used as destination operand */
1817 DST_OP_NO_MARK /* same as above, check only, don't mark */
1818};
1819
cc8b0b92
AS
1820static int cmp_subprogs(const void *a, const void *b)
1821{
9c8105bd
JW
1822 return ((struct bpf_subprog_info *)a)->start -
1823 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1824}
1825
1826static int find_subprog(struct bpf_verifier_env *env, int off)
1827{
9c8105bd 1828 struct bpf_subprog_info *p;
cc8b0b92 1829
9c8105bd
JW
1830 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1831 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1832 if (!p)
1833 return -ENOENT;
9c8105bd 1834 return p - env->subprog_info;
cc8b0b92
AS
1835
1836}
1837
1838static int add_subprog(struct bpf_verifier_env *env, int off)
1839{
1840 int insn_cnt = env->prog->len;
1841 int ret;
1842
1843 if (off >= insn_cnt || off < 0) {
1844 verbose(env, "call to invalid destination\n");
1845 return -EINVAL;
1846 }
1847 ret = find_subprog(env, off);
1848 if (ret >= 0)
282a0f46 1849 return ret;
4cb3d99c 1850 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1851 verbose(env, "too many subprograms\n");
1852 return -E2BIG;
1853 }
e6ac2450 1854 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1855 env->subprog_info[env->subprog_cnt++].start = off;
1856 sort(env->subprog_info, env->subprog_cnt,
1857 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1858 return env->subprog_cnt - 1;
cc8b0b92
AS
1859}
1860
2357672c
KKD
1861#define MAX_KFUNC_DESCS 256
1862#define MAX_KFUNC_BTFS 256
1863
e6ac2450
MKL
1864struct bpf_kfunc_desc {
1865 struct btf_func_model func_model;
1866 u32 func_id;
1867 s32 imm;
2357672c
KKD
1868 u16 offset;
1869};
1870
1871struct bpf_kfunc_btf {
1872 struct btf *btf;
1873 struct module *module;
1874 u16 offset;
e6ac2450
MKL
1875};
1876
e6ac2450
MKL
1877struct bpf_kfunc_desc_tab {
1878 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1879 u32 nr_descs;
1880};
1881
2357672c
KKD
1882struct bpf_kfunc_btf_tab {
1883 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1884 u32 nr_descs;
1885};
1886
1887static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1888{
1889 const struct bpf_kfunc_desc *d0 = a;
1890 const struct bpf_kfunc_desc *d1 = b;
1891
1892 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1893 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1894}
1895
1896static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1897{
1898 const struct bpf_kfunc_btf *d0 = a;
1899 const struct bpf_kfunc_btf *d1 = b;
1900
1901 return d0->offset - d1->offset;
e6ac2450
MKL
1902}
1903
1904static const struct bpf_kfunc_desc *
2357672c 1905find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1906{
1907 struct bpf_kfunc_desc desc = {
1908 .func_id = func_id,
2357672c 1909 .offset = offset,
e6ac2450
MKL
1910 };
1911 struct bpf_kfunc_desc_tab *tab;
1912
1913 tab = prog->aux->kfunc_tab;
1914 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1915 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1916}
1917
1918static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 1919 s16 offset)
2357672c
KKD
1920{
1921 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1922 struct bpf_kfunc_btf_tab *tab;
1923 struct bpf_kfunc_btf *b;
1924 struct module *mod;
1925 struct btf *btf;
1926 int btf_fd;
1927
1928 tab = env->prog->aux->kfunc_btf_tab;
1929 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1930 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1931 if (!b) {
1932 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1933 verbose(env, "too many different module BTFs\n");
1934 return ERR_PTR(-E2BIG);
1935 }
1936
1937 if (bpfptr_is_null(env->fd_array)) {
1938 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1939 return ERR_PTR(-EPROTO);
1940 }
1941
1942 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1943 offset * sizeof(btf_fd),
1944 sizeof(btf_fd)))
1945 return ERR_PTR(-EFAULT);
1946
1947 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1948 if (IS_ERR(btf)) {
1949 verbose(env, "invalid module BTF fd specified\n");
2357672c 1950 return btf;
588cd7ef 1951 }
2357672c
KKD
1952
1953 if (!btf_is_module(btf)) {
1954 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1955 btf_put(btf);
1956 return ERR_PTR(-EINVAL);
1957 }
1958
1959 mod = btf_try_get_module(btf);
1960 if (!mod) {
1961 btf_put(btf);
1962 return ERR_PTR(-ENXIO);
1963 }
1964
1965 b = &tab->descs[tab->nr_descs++];
1966 b->btf = btf;
1967 b->module = mod;
1968 b->offset = offset;
1969
1970 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1971 kfunc_btf_cmp_by_off, NULL);
1972 }
2357672c 1973 return b->btf;
e6ac2450
MKL
1974}
1975
2357672c
KKD
1976void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1977{
1978 if (!tab)
1979 return;
1980
1981 while (tab->nr_descs--) {
1982 module_put(tab->descs[tab->nr_descs].module);
1983 btf_put(tab->descs[tab->nr_descs].btf);
1984 }
1985 kfree(tab);
1986}
1987
43bf0878 1988static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 1989{
2357672c
KKD
1990 if (offset) {
1991 if (offset < 0) {
1992 /* In the future, this can be allowed to increase limit
1993 * of fd index into fd_array, interpreted as u16.
1994 */
1995 verbose(env, "negative offset disallowed for kernel module function call\n");
1996 return ERR_PTR(-EINVAL);
1997 }
1998
b202d844 1999 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2000 }
2001 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2002}
2003
2357672c 2004static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2005{
2006 const struct btf_type *func, *func_proto;
2357672c 2007 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2008 struct bpf_kfunc_desc_tab *tab;
2009 struct bpf_prog_aux *prog_aux;
2010 struct bpf_kfunc_desc *desc;
2011 const char *func_name;
2357672c 2012 struct btf *desc_btf;
8cbf062a 2013 unsigned long call_imm;
e6ac2450
MKL
2014 unsigned long addr;
2015 int err;
2016
2017 prog_aux = env->prog->aux;
2018 tab = prog_aux->kfunc_tab;
2357672c 2019 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2020 if (!tab) {
2021 if (!btf_vmlinux) {
2022 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2023 return -ENOTSUPP;
2024 }
2025
2026 if (!env->prog->jit_requested) {
2027 verbose(env, "JIT is required for calling kernel function\n");
2028 return -ENOTSUPP;
2029 }
2030
2031 if (!bpf_jit_supports_kfunc_call()) {
2032 verbose(env, "JIT does not support calling kernel function\n");
2033 return -ENOTSUPP;
2034 }
2035
2036 if (!env->prog->gpl_compatible) {
2037 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2038 return -EINVAL;
2039 }
2040
2041 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2042 if (!tab)
2043 return -ENOMEM;
2044 prog_aux->kfunc_tab = tab;
2045 }
2046
a5d82727
KKD
2047 /* func_id == 0 is always invalid, but instead of returning an error, be
2048 * conservative and wait until the code elimination pass before returning
2049 * error, so that invalid calls that get pruned out can be in BPF programs
2050 * loaded from userspace. It is also required that offset be untouched
2051 * for such calls.
2052 */
2053 if (!func_id && !offset)
2054 return 0;
2055
2357672c
KKD
2056 if (!btf_tab && offset) {
2057 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2058 if (!btf_tab)
2059 return -ENOMEM;
2060 prog_aux->kfunc_btf_tab = btf_tab;
2061 }
2062
43bf0878 2063 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2064 if (IS_ERR(desc_btf)) {
2065 verbose(env, "failed to find BTF for kernel function\n");
2066 return PTR_ERR(desc_btf);
2067 }
2068
2069 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2070 return 0;
2071
2072 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2073 verbose(env, "too many different kernel function calls\n");
2074 return -E2BIG;
2075 }
2076
2357672c 2077 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2078 if (!func || !btf_type_is_func(func)) {
2079 verbose(env, "kernel btf_id %u is not a function\n",
2080 func_id);
2081 return -EINVAL;
2082 }
2357672c 2083 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2084 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2085 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2086 func_id);
2087 return -EINVAL;
2088 }
2089
2357672c 2090 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2091 addr = kallsyms_lookup_name(func_name);
2092 if (!addr) {
2093 verbose(env, "cannot find address for kernel function %s\n",
2094 func_name);
2095 return -EINVAL;
2096 }
2097
8cbf062a
HT
2098 call_imm = BPF_CALL_IMM(addr);
2099 /* Check whether or not the relative offset overflows desc->imm */
2100 if ((unsigned long)(s32)call_imm != call_imm) {
2101 verbose(env, "address of kernel function %s is out of range\n",
2102 func_name);
2103 return -EINVAL;
2104 }
2105
e6ac2450
MKL
2106 desc = &tab->descs[tab->nr_descs++];
2107 desc->func_id = func_id;
8cbf062a 2108 desc->imm = call_imm;
2357672c
KKD
2109 desc->offset = offset;
2110 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2111 func_proto, func_name,
2112 &desc->func_model);
2113 if (!err)
2114 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2115 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2116 return err;
2117}
2118
2119static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2120{
2121 const struct bpf_kfunc_desc *d0 = a;
2122 const struct bpf_kfunc_desc *d1 = b;
2123
2124 if (d0->imm > d1->imm)
2125 return 1;
2126 else if (d0->imm < d1->imm)
2127 return -1;
2128 return 0;
2129}
2130
2131static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2132{
2133 struct bpf_kfunc_desc_tab *tab;
2134
2135 tab = prog->aux->kfunc_tab;
2136 if (!tab)
2137 return;
2138
2139 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2140 kfunc_desc_cmp_by_imm, NULL);
2141}
2142
2143bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2144{
2145 return !!prog->aux->kfunc_tab;
2146}
2147
2148const struct btf_func_model *
2149bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2150 const struct bpf_insn *insn)
2151{
2152 const struct bpf_kfunc_desc desc = {
2153 .imm = insn->imm,
2154 };
2155 const struct bpf_kfunc_desc *res;
2156 struct bpf_kfunc_desc_tab *tab;
2157
2158 tab = prog->aux->kfunc_tab;
2159 res = bsearch(&desc, tab->descs, tab->nr_descs,
2160 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2161
2162 return res ? &res->func_model : NULL;
2163}
2164
2165static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2166{
9c8105bd 2167 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2168 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2169 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2170
f910cefa
JW
2171 /* Add entry function. */
2172 ret = add_subprog(env, 0);
e6ac2450 2173 if (ret)
f910cefa
JW
2174 return ret;
2175
e6ac2450
MKL
2176 for (i = 0; i < insn_cnt; i++, insn++) {
2177 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2178 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2179 continue;
e6ac2450 2180
2c78ee89 2181 if (!env->bpf_capable) {
e6ac2450 2182 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2183 return -EPERM;
2184 }
e6ac2450 2185
3990ed4c 2186 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2187 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2188 else
2357672c 2189 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2190
cc8b0b92
AS
2191 if (ret < 0)
2192 return ret;
2193 }
2194
4cb3d99c
JW
2195 /* Add a fake 'exit' subprog which could simplify subprog iteration
2196 * logic. 'subprog_cnt' should not be increased.
2197 */
2198 subprog[env->subprog_cnt].start = insn_cnt;
2199
06ee7115 2200 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2201 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2202 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2203
e6ac2450
MKL
2204 return 0;
2205}
2206
2207static int check_subprogs(struct bpf_verifier_env *env)
2208{
2209 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2210 struct bpf_subprog_info *subprog = env->subprog_info;
2211 struct bpf_insn *insn = env->prog->insnsi;
2212 int insn_cnt = env->prog->len;
2213
cc8b0b92 2214 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2215 subprog_start = subprog[cur_subprog].start;
2216 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2217 for (i = 0; i < insn_cnt; i++) {
2218 u8 code = insn[i].code;
2219
7f6e4312
MF
2220 if (code == (BPF_JMP | BPF_CALL) &&
2221 insn[i].imm == BPF_FUNC_tail_call &&
2222 insn[i].src_reg != BPF_PSEUDO_CALL)
2223 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2224 if (BPF_CLASS(code) == BPF_LD &&
2225 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2226 subprog[cur_subprog].has_ld_abs = true;
092ed096 2227 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2228 goto next;
2229 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2230 goto next;
2231 off = i + insn[i].off + 1;
2232 if (off < subprog_start || off >= subprog_end) {
2233 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2234 return -EINVAL;
2235 }
2236next:
2237 if (i == subprog_end - 1) {
2238 /* to avoid fall-through from one subprog into another
2239 * the last insn of the subprog should be either exit
2240 * or unconditional jump back
2241 */
2242 if (code != (BPF_JMP | BPF_EXIT) &&
2243 code != (BPF_JMP | BPF_JA)) {
2244 verbose(env, "last insn is not an exit or jmp\n");
2245 return -EINVAL;
2246 }
2247 subprog_start = subprog_end;
4cb3d99c
JW
2248 cur_subprog++;
2249 if (cur_subprog < env->subprog_cnt)
9c8105bd 2250 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2251 }
2252 }
2253 return 0;
2254}
2255
679c782d
EC
2256/* Parentage chain of this register (or stack slot) should take care of all
2257 * issues like callee-saved registers, stack slot allocation time, etc.
2258 */
f4d7e40a 2259static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2260 const struct bpf_reg_state *state,
5327ed3d 2261 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2262{
2263 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2264 int cnt = 0;
dc503a8a
EC
2265
2266 while (parent) {
2267 /* if read wasn't screened by an earlier write ... */
679c782d 2268 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2269 break;
9242b5f5
AS
2270 if (parent->live & REG_LIVE_DONE) {
2271 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2272 reg_type_str(env, parent->type),
9242b5f5
AS
2273 parent->var_off.value, parent->off);
2274 return -EFAULT;
2275 }
5327ed3d
JW
2276 /* The first condition is more likely to be true than the
2277 * second, checked it first.
2278 */
2279 if ((parent->live & REG_LIVE_READ) == flag ||
2280 parent->live & REG_LIVE_READ64)
25af32da
AS
2281 /* The parentage chain never changes and
2282 * this parent was already marked as LIVE_READ.
2283 * There is no need to keep walking the chain again and
2284 * keep re-marking all parents as LIVE_READ.
2285 * This case happens when the same register is read
2286 * multiple times without writes into it in-between.
5327ed3d
JW
2287 * Also, if parent has the stronger REG_LIVE_READ64 set,
2288 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2289 */
2290 break;
dc503a8a 2291 /* ... then we depend on parent's value */
5327ed3d
JW
2292 parent->live |= flag;
2293 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2294 if (flag == REG_LIVE_READ64)
2295 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2296 state = parent;
2297 parent = state->parent;
f4d7e40a 2298 writes = true;
06ee7115 2299 cnt++;
dc503a8a 2300 }
06ee7115
AS
2301
2302 if (env->longest_mark_read_walk < cnt)
2303 env->longest_mark_read_walk = cnt;
f4d7e40a 2304 return 0;
dc503a8a
EC
2305}
2306
5327ed3d
JW
2307/* This function is supposed to be used by the following 32-bit optimization
2308 * code only. It returns TRUE if the source or destination register operates
2309 * on 64-bit, otherwise return FALSE.
2310 */
2311static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2312 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2313{
2314 u8 code, class, op;
2315
2316 code = insn->code;
2317 class = BPF_CLASS(code);
2318 op = BPF_OP(code);
2319 if (class == BPF_JMP) {
2320 /* BPF_EXIT for "main" will reach here. Return TRUE
2321 * conservatively.
2322 */
2323 if (op == BPF_EXIT)
2324 return true;
2325 if (op == BPF_CALL) {
2326 /* BPF to BPF call will reach here because of marking
2327 * caller saved clobber with DST_OP_NO_MARK for which we
2328 * don't care the register def because they are anyway
2329 * marked as NOT_INIT already.
2330 */
2331 if (insn->src_reg == BPF_PSEUDO_CALL)
2332 return false;
2333 /* Helper call will reach here because of arg type
2334 * check, conservatively return TRUE.
2335 */
2336 if (t == SRC_OP)
2337 return true;
2338
2339 return false;
2340 }
2341 }
2342
2343 if (class == BPF_ALU64 || class == BPF_JMP ||
2344 /* BPF_END always use BPF_ALU class. */
2345 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2346 return true;
2347
2348 if (class == BPF_ALU || class == BPF_JMP32)
2349 return false;
2350
2351 if (class == BPF_LDX) {
2352 if (t != SRC_OP)
2353 return BPF_SIZE(code) == BPF_DW;
2354 /* LDX source must be ptr. */
2355 return true;
2356 }
2357
2358 if (class == BPF_STX) {
83a28819
IL
2359 /* BPF_STX (including atomic variants) has multiple source
2360 * operands, one of which is a ptr. Check whether the caller is
2361 * asking about it.
2362 */
2363 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2364 return true;
2365 return BPF_SIZE(code) == BPF_DW;
2366 }
2367
2368 if (class == BPF_LD) {
2369 u8 mode = BPF_MODE(code);
2370
2371 /* LD_IMM64 */
2372 if (mode == BPF_IMM)
2373 return true;
2374
2375 /* Both LD_IND and LD_ABS return 32-bit data. */
2376 if (t != SRC_OP)
2377 return false;
2378
2379 /* Implicit ctx ptr. */
2380 if (regno == BPF_REG_6)
2381 return true;
2382
2383 /* Explicit source could be any width. */
2384 return true;
2385 }
2386
2387 if (class == BPF_ST)
2388 /* The only source register for BPF_ST is a ptr. */
2389 return true;
2390
2391 /* Conservatively return true at default. */
2392 return true;
2393}
2394
83a28819
IL
2395/* Return the regno defined by the insn, or -1. */
2396static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2397{
83a28819
IL
2398 switch (BPF_CLASS(insn->code)) {
2399 case BPF_JMP:
2400 case BPF_JMP32:
2401 case BPF_ST:
2402 return -1;
2403 case BPF_STX:
2404 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2405 (insn->imm & BPF_FETCH)) {
2406 if (insn->imm == BPF_CMPXCHG)
2407 return BPF_REG_0;
2408 else
2409 return insn->src_reg;
2410 } else {
2411 return -1;
2412 }
2413 default:
2414 return insn->dst_reg;
2415 }
b325fbca
JW
2416}
2417
2418/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2419static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2420{
83a28819
IL
2421 int dst_reg = insn_def_regno(insn);
2422
2423 if (dst_reg == -1)
b325fbca
JW
2424 return false;
2425
83a28819 2426 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2427}
2428
5327ed3d
JW
2429static void mark_insn_zext(struct bpf_verifier_env *env,
2430 struct bpf_reg_state *reg)
2431{
2432 s32 def_idx = reg->subreg_def;
2433
2434 if (def_idx == DEF_NOT_SUBREG)
2435 return;
2436
2437 env->insn_aux_data[def_idx - 1].zext_dst = true;
2438 /* The dst will be zero extended, so won't be sub-register anymore. */
2439 reg->subreg_def = DEF_NOT_SUBREG;
2440}
2441
dc503a8a 2442static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2443 enum reg_arg_type t)
2444{
f4d7e40a
AS
2445 struct bpf_verifier_state *vstate = env->cur_state;
2446 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2447 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2448 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2449 bool rw64;
dc503a8a 2450
17a52670 2451 if (regno >= MAX_BPF_REG) {
61bd5218 2452 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2453 return -EINVAL;
2454 }
2455
0f55f9ed
CL
2456 mark_reg_scratched(env, regno);
2457
c342dc10 2458 reg = &regs[regno];
5327ed3d 2459 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2460 if (t == SRC_OP) {
2461 /* check whether register used as source operand can be read */
c342dc10 2462 if (reg->type == NOT_INIT) {
61bd5218 2463 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2464 return -EACCES;
2465 }
679c782d 2466 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2467 if (regno == BPF_REG_FP)
2468 return 0;
2469
5327ed3d
JW
2470 if (rw64)
2471 mark_insn_zext(env, reg);
2472
2473 return mark_reg_read(env, reg, reg->parent,
2474 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2475 } else {
2476 /* check whether register used as dest operand can be written to */
2477 if (regno == BPF_REG_FP) {
61bd5218 2478 verbose(env, "frame pointer is read only\n");
17a52670
AS
2479 return -EACCES;
2480 }
c342dc10 2481 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2482 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2483 if (t == DST_OP)
61bd5218 2484 mark_reg_unknown(env, regs, regno);
17a52670
AS
2485 }
2486 return 0;
2487}
2488
b5dc0163
AS
2489/* for any branch, call, exit record the history of jmps in the given state */
2490static int push_jmp_history(struct bpf_verifier_env *env,
2491 struct bpf_verifier_state *cur)
2492{
2493 u32 cnt = cur->jmp_history_cnt;
2494 struct bpf_idx_pair *p;
2495
2496 cnt++;
2497 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2498 if (!p)
2499 return -ENOMEM;
2500 p[cnt - 1].idx = env->insn_idx;
2501 p[cnt - 1].prev_idx = env->prev_insn_idx;
2502 cur->jmp_history = p;
2503 cur->jmp_history_cnt = cnt;
2504 return 0;
2505}
2506
2507/* Backtrack one insn at a time. If idx is not at the top of recorded
2508 * history then previous instruction came from straight line execution.
2509 */
2510static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2511 u32 *history)
2512{
2513 u32 cnt = *history;
2514
2515 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2516 i = st->jmp_history[cnt - 1].prev_idx;
2517 (*history)--;
2518 } else {
2519 i--;
2520 }
2521 return i;
2522}
2523
e6ac2450
MKL
2524static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2525{
2526 const struct btf_type *func;
2357672c 2527 struct btf *desc_btf;
e6ac2450
MKL
2528
2529 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2530 return NULL;
2531
43bf0878 2532 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
2533 if (IS_ERR(desc_btf))
2534 return "<error>";
2535
2536 func = btf_type_by_id(desc_btf, insn->imm);
2537 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2538}
2539
b5dc0163
AS
2540/* For given verifier state backtrack_insn() is called from the last insn to
2541 * the first insn. Its purpose is to compute a bitmask of registers and
2542 * stack slots that needs precision in the parent verifier state.
2543 */
2544static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2545 u32 *reg_mask, u64 *stack_mask)
2546{
2547 const struct bpf_insn_cbs cbs = {
e6ac2450 2548 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2549 .cb_print = verbose,
2550 .private_data = env,
2551 };
2552 struct bpf_insn *insn = env->prog->insnsi + idx;
2553 u8 class = BPF_CLASS(insn->code);
2554 u8 opcode = BPF_OP(insn->code);
2555 u8 mode = BPF_MODE(insn->code);
2556 u32 dreg = 1u << insn->dst_reg;
2557 u32 sreg = 1u << insn->src_reg;
2558 u32 spi;
2559
2560 if (insn->code == 0)
2561 return 0;
496f3324 2562 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
2563 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2564 verbose(env, "%d: ", idx);
2565 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2566 }
2567
2568 if (class == BPF_ALU || class == BPF_ALU64) {
2569 if (!(*reg_mask & dreg))
2570 return 0;
2571 if (opcode == BPF_MOV) {
2572 if (BPF_SRC(insn->code) == BPF_X) {
2573 /* dreg = sreg
2574 * dreg needs precision after this insn
2575 * sreg needs precision before this insn
2576 */
2577 *reg_mask &= ~dreg;
2578 *reg_mask |= sreg;
2579 } else {
2580 /* dreg = K
2581 * dreg needs precision after this insn.
2582 * Corresponding register is already marked
2583 * as precise=true in this verifier state.
2584 * No further markings in parent are necessary
2585 */
2586 *reg_mask &= ~dreg;
2587 }
2588 } else {
2589 if (BPF_SRC(insn->code) == BPF_X) {
2590 /* dreg += sreg
2591 * both dreg and sreg need precision
2592 * before this insn
2593 */
2594 *reg_mask |= sreg;
2595 } /* else dreg += K
2596 * dreg still needs precision before this insn
2597 */
2598 }
2599 } else if (class == BPF_LDX) {
2600 if (!(*reg_mask & dreg))
2601 return 0;
2602 *reg_mask &= ~dreg;
2603
2604 /* scalars can only be spilled into stack w/o losing precision.
2605 * Load from any other memory can be zero extended.
2606 * The desire to keep that precision is already indicated
2607 * by 'precise' mark in corresponding register of this state.
2608 * No further tracking necessary.
2609 */
2610 if (insn->src_reg != BPF_REG_FP)
2611 return 0;
b5dc0163
AS
2612
2613 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2614 * that [fp - off] slot contains scalar that needs to be
2615 * tracked with precision
2616 */
2617 spi = (-insn->off - 1) / BPF_REG_SIZE;
2618 if (spi >= 64) {
2619 verbose(env, "BUG spi %d\n", spi);
2620 WARN_ONCE(1, "verifier backtracking bug");
2621 return -EFAULT;
2622 }
2623 *stack_mask |= 1ull << spi;
b3b50f05 2624 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2625 if (*reg_mask & dreg)
b3b50f05 2626 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2627 * to access memory. It means backtracking
2628 * encountered a case of pointer subtraction.
2629 */
2630 return -ENOTSUPP;
2631 /* scalars can only be spilled into stack */
2632 if (insn->dst_reg != BPF_REG_FP)
2633 return 0;
b5dc0163
AS
2634 spi = (-insn->off - 1) / BPF_REG_SIZE;
2635 if (spi >= 64) {
2636 verbose(env, "BUG spi %d\n", spi);
2637 WARN_ONCE(1, "verifier backtracking bug");
2638 return -EFAULT;
2639 }
2640 if (!(*stack_mask & (1ull << spi)))
2641 return 0;
2642 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2643 if (class == BPF_STX)
2644 *reg_mask |= sreg;
b5dc0163
AS
2645 } else if (class == BPF_JMP || class == BPF_JMP32) {
2646 if (opcode == BPF_CALL) {
2647 if (insn->src_reg == BPF_PSEUDO_CALL)
2648 return -ENOTSUPP;
2649 /* regular helper call sets R0 */
2650 *reg_mask &= ~1;
2651 if (*reg_mask & 0x3f) {
2652 /* if backtracing was looking for registers R1-R5
2653 * they should have been found already.
2654 */
2655 verbose(env, "BUG regs %x\n", *reg_mask);
2656 WARN_ONCE(1, "verifier backtracking bug");
2657 return -EFAULT;
2658 }
2659 } else if (opcode == BPF_EXIT) {
2660 return -ENOTSUPP;
2661 }
2662 } else if (class == BPF_LD) {
2663 if (!(*reg_mask & dreg))
2664 return 0;
2665 *reg_mask &= ~dreg;
2666 /* It's ld_imm64 or ld_abs or ld_ind.
2667 * For ld_imm64 no further tracking of precision
2668 * into parent is necessary
2669 */
2670 if (mode == BPF_IND || mode == BPF_ABS)
2671 /* to be analyzed */
2672 return -ENOTSUPP;
b5dc0163
AS
2673 }
2674 return 0;
2675}
2676
2677/* the scalar precision tracking algorithm:
2678 * . at the start all registers have precise=false.
2679 * . scalar ranges are tracked as normal through alu and jmp insns.
2680 * . once precise value of the scalar register is used in:
2681 * . ptr + scalar alu
2682 * . if (scalar cond K|scalar)
2683 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2684 * backtrack through the verifier states and mark all registers and
2685 * stack slots with spilled constants that these scalar regisers
2686 * should be precise.
2687 * . during state pruning two registers (or spilled stack slots)
2688 * are equivalent if both are not precise.
2689 *
2690 * Note the verifier cannot simply walk register parentage chain,
2691 * since many different registers and stack slots could have been
2692 * used to compute single precise scalar.
2693 *
2694 * The approach of starting with precise=true for all registers and then
2695 * backtrack to mark a register as not precise when the verifier detects
2696 * that program doesn't care about specific value (e.g., when helper
2697 * takes register as ARG_ANYTHING parameter) is not safe.
2698 *
2699 * It's ok to walk single parentage chain of the verifier states.
2700 * It's possible that this backtracking will go all the way till 1st insn.
2701 * All other branches will be explored for needing precision later.
2702 *
2703 * The backtracking needs to deal with cases like:
2704 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2705 * r9 -= r8
2706 * r5 = r9
2707 * if r5 > 0x79f goto pc+7
2708 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2709 * r5 += 1
2710 * ...
2711 * call bpf_perf_event_output#25
2712 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2713 *
2714 * and this case:
2715 * r6 = 1
2716 * call foo // uses callee's r6 inside to compute r0
2717 * r0 += r6
2718 * if r0 == 0 goto
2719 *
2720 * to track above reg_mask/stack_mask needs to be independent for each frame.
2721 *
2722 * Also if parent's curframe > frame where backtracking started,
2723 * the verifier need to mark registers in both frames, otherwise callees
2724 * may incorrectly prune callers. This is similar to
2725 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2726 *
2727 * For now backtracking falls back into conservative marking.
2728 */
2729static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2730 struct bpf_verifier_state *st)
2731{
2732 struct bpf_func_state *func;
2733 struct bpf_reg_state *reg;
2734 int i, j;
2735
2736 /* big hammer: mark all scalars precise in this path.
2737 * pop_stack may still get !precise scalars.
2738 */
2739 for (; st; st = st->parent)
2740 for (i = 0; i <= st->curframe; i++) {
2741 func = st->frame[i];
2742 for (j = 0; j < BPF_REG_FP; j++) {
2743 reg = &func->regs[j];
2744 if (reg->type != SCALAR_VALUE)
2745 continue;
2746 reg->precise = true;
2747 }
2748 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2749 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2750 continue;
2751 reg = &func->stack[j].spilled_ptr;
2752 if (reg->type != SCALAR_VALUE)
2753 continue;
2754 reg->precise = true;
2755 }
2756 }
2757}
2758
a3ce685d
AS
2759static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2760 int spi)
b5dc0163
AS
2761{
2762 struct bpf_verifier_state *st = env->cur_state;
2763 int first_idx = st->first_insn_idx;
2764 int last_idx = env->insn_idx;
2765 struct bpf_func_state *func;
2766 struct bpf_reg_state *reg;
a3ce685d
AS
2767 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2768 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2769 bool skip_first = true;
a3ce685d 2770 bool new_marks = false;
b5dc0163
AS
2771 int i, err;
2772
2c78ee89 2773 if (!env->bpf_capable)
b5dc0163
AS
2774 return 0;
2775
2776 func = st->frame[st->curframe];
a3ce685d
AS
2777 if (regno >= 0) {
2778 reg = &func->regs[regno];
2779 if (reg->type != SCALAR_VALUE) {
2780 WARN_ONCE(1, "backtracing misuse");
2781 return -EFAULT;
2782 }
2783 if (!reg->precise)
2784 new_marks = true;
2785 else
2786 reg_mask = 0;
2787 reg->precise = true;
b5dc0163 2788 }
b5dc0163 2789
a3ce685d 2790 while (spi >= 0) {
27113c59 2791 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2792 stack_mask = 0;
2793 break;
2794 }
2795 reg = &func->stack[spi].spilled_ptr;
2796 if (reg->type != SCALAR_VALUE) {
2797 stack_mask = 0;
2798 break;
2799 }
2800 if (!reg->precise)
2801 new_marks = true;
2802 else
2803 stack_mask = 0;
2804 reg->precise = true;
2805 break;
2806 }
2807
2808 if (!new_marks)
2809 return 0;
2810 if (!reg_mask && !stack_mask)
2811 return 0;
b5dc0163
AS
2812 for (;;) {
2813 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2814 u32 history = st->jmp_history_cnt;
2815
496f3324 2816 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163
AS
2817 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2818 for (i = last_idx;;) {
2819 if (skip_first) {
2820 err = 0;
2821 skip_first = false;
2822 } else {
2823 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2824 }
2825 if (err == -ENOTSUPP) {
2826 mark_all_scalars_precise(env, st);
2827 return 0;
2828 } else if (err) {
2829 return err;
2830 }
2831 if (!reg_mask && !stack_mask)
2832 /* Found assignment(s) into tracked register in this state.
2833 * Since this state is already marked, just return.
2834 * Nothing to be tracked further in the parent state.
2835 */
2836 return 0;
2837 if (i == first_idx)
2838 break;
2839 i = get_prev_insn_idx(st, i, &history);
2840 if (i >= env->prog->len) {
2841 /* This can happen if backtracking reached insn 0
2842 * and there are still reg_mask or stack_mask
2843 * to backtrack.
2844 * It means the backtracking missed the spot where
2845 * particular register was initialized with a constant.
2846 */
2847 verbose(env, "BUG backtracking idx %d\n", i);
2848 WARN_ONCE(1, "verifier backtracking bug");
2849 return -EFAULT;
2850 }
2851 }
2852 st = st->parent;
2853 if (!st)
2854 break;
2855
a3ce685d 2856 new_marks = false;
b5dc0163
AS
2857 func = st->frame[st->curframe];
2858 bitmap_from_u64(mask, reg_mask);
2859 for_each_set_bit(i, mask, 32) {
2860 reg = &func->regs[i];
a3ce685d
AS
2861 if (reg->type != SCALAR_VALUE) {
2862 reg_mask &= ~(1u << i);
b5dc0163 2863 continue;
a3ce685d 2864 }
b5dc0163
AS
2865 if (!reg->precise)
2866 new_marks = true;
2867 reg->precise = true;
2868 }
2869
2870 bitmap_from_u64(mask, stack_mask);
2871 for_each_set_bit(i, mask, 64) {
2872 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2873 /* the sequence of instructions:
2874 * 2: (bf) r3 = r10
2875 * 3: (7b) *(u64 *)(r3 -8) = r0
2876 * 4: (79) r4 = *(u64 *)(r10 -8)
2877 * doesn't contain jmps. It's backtracked
2878 * as a single block.
2879 * During backtracking insn 3 is not recognized as
2880 * stack access, so at the end of backtracking
2881 * stack slot fp-8 is still marked in stack_mask.
2882 * However the parent state may not have accessed
2883 * fp-8 and it's "unallocated" stack space.
2884 * In such case fallback to conservative.
b5dc0163 2885 */
2339cd6c
AS
2886 mark_all_scalars_precise(env, st);
2887 return 0;
b5dc0163
AS
2888 }
2889
27113c59 2890 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2891 stack_mask &= ~(1ull << i);
b5dc0163 2892 continue;
a3ce685d 2893 }
b5dc0163 2894 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2895 if (reg->type != SCALAR_VALUE) {
2896 stack_mask &= ~(1ull << i);
b5dc0163 2897 continue;
a3ce685d 2898 }
b5dc0163
AS
2899 if (!reg->precise)
2900 new_marks = true;
2901 reg->precise = true;
2902 }
496f3324 2903 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 2904 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
2905 new_marks ? "didn't have" : "already had",
2906 reg_mask, stack_mask);
2e576648 2907 print_verifier_state(env, func, true);
b5dc0163
AS
2908 }
2909
a3ce685d
AS
2910 if (!reg_mask && !stack_mask)
2911 break;
b5dc0163
AS
2912 if (!new_marks)
2913 break;
2914
2915 last_idx = st->last_insn_idx;
2916 first_idx = st->first_insn_idx;
2917 }
2918 return 0;
2919}
2920
eb1f7f71 2921int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d
AS
2922{
2923 return __mark_chain_precision(env, regno, -1);
2924}
2925
2926static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2927{
2928 return __mark_chain_precision(env, -1, spi);
2929}
b5dc0163 2930
1be7f75d
AS
2931static bool is_spillable_regtype(enum bpf_reg_type type)
2932{
c25b2ae1 2933 switch (base_type(type)) {
1be7f75d 2934 case PTR_TO_MAP_VALUE:
1be7f75d
AS
2935 case PTR_TO_STACK:
2936 case PTR_TO_CTX:
969bf05e 2937 case PTR_TO_PACKET:
de8f3a83 2938 case PTR_TO_PACKET_META:
969bf05e 2939 case PTR_TO_PACKET_END:
d58e468b 2940 case PTR_TO_FLOW_KEYS:
1be7f75d 2941 case CONST_PTR_TO_MAP:
c64b7983 2942 case PTR_TO_SOCKET:
46f8bc92 2943 case PTR_TO_SOCK_COMMON:
655a51e5 2944 case PTR_TO_TCP_SOCK:
fada7fdc 2945 case PTR_TO_XDP_SOCK:
65726b5b 2946 case PTR_TO_BTF_ID:
20b2aff4 2947 case PTR_TO_BUF:
744ea4e3 2948 case PTR_TO_MEM:
69c087ba
YS
2949 case PTR_TO_FUNC:
2950 case PTR_TO_MAP_KEY:
1be7f75d
AS
2951 return true;
2952 default:
2953 return false;
2954 }
2955}
2956
cc2b14d5
AS
2957/* Does this register contain a constant zero? */
2958static bool register_is_null(struct bpf_reg_state *reg)
2959{
2960 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2961}
2962
f7cf25b2
AS
2963static bool register_is_const(struct bpf_reg_state *reg)
2964{
2965 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2966}
2967
5689d49b
YS
2968static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2969{
2970 return tnum_is_unknown(reg->var_off) &&
2971 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2972 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2973 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2974 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2975}
2976
2977static bool register_is_bounded(struct bpf_reg_state *reg)
2978{
2979 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2980}
2981
6e7e63cb
JH
2982static bool __is_pointer_value(bool allow_ptr_leaks,
2983 const struct bpf_reg_state *reg)
2984{
2985 if (allow_ptr_leaks)
2986 return false;
2987
2988 return reg->type != SCALAR_VALUE;
2989}
2990
f7cf25b2 2991static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2992 int spi, struct bpf_reg_state *reg,
2993 int size)
f7cf25b2
AS
2994{
2995 int i;
2996
2997 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2998 if (size == BPF_REG_SIZE)
2999 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3000
354e8f19
MKL
3001 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3002 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3003
354e8f19
MKL
3004 /* size < 8 bytes spill */
3005 for (; i; i--)
3006 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3007}
3008
01f810ac 3009/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3010 * stack boundary and alignment are checked in check_mem_access()
3011 */
01f810ac
AM
3012static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3013 /* stack frame we're writing to */
3014 struct bpf_func_state *state,
3015 int off, int size, int value_regno,
3016 int insn_idx)
17a52670 3017{
f4d7e40a 3018 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3019 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 3020 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 3021 struct bpf_reg_state *reg = NULL;
638f5b90 3022
c69431aa 3023 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3024 if (err)
3025 return err;
9c399760
AS
3026 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3027 * so it's aligned access and [off, off + size) are within stack limits
3028 */
638f5b90
AS
3029 if (!env->allow_ptr_leaks &&
3030 state->stack[spi].slot_type[0] == STACK_SPILL &&
3031 size != BPF_REG_SIZE) {
3032 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3033 return -EACCES;
3034 }
17a52670 3035
f4d7e40a 3036 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3037 if (value_regno >= 0)
3038 reg = &cur->regs[value_regno];
2039f26f
DB
3039 if (!env->bypass_spec_v4) {
3040 bool sanitize = reg && is_spillable_regtype(reg->type);
3041
3042 for (i = 0; i < size; i++) {
3043 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3044 sanitize = true;
3045 break;
3046 }
3047 }
3048
3049 if (sanitize)
3050 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3051 }
17a52670 3052
0f55f9ed 3053 mark_stack_slot_scratched(env, spi);
354e8f19 3054 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3055 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3056 if (dst_reg != BPF_REG_FP) {
3057 /* The backtracking logic can only recognize explicit
3058 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3059 * scalar via different register has to be conservative.
b5dc0163
AS
3060 * Backtrack from here and mark all registers as precise
3061 * that contributed into 'reg' being a constant.
3062 */
3063 err = mark_chain_precision(env, value_regno);
3064 if (err)
3065 return err;
3066 }
354e8f19 3067 save_register_state(state, spi, reg, size);
f7cf25b2 3068 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3069 /* register containing pointer is being spilled into stack */
9c399760 3070 if (size != BPF_REG_SIZE) {
f7cf25b2 3071 verbose_linfo(env, insn_idx, "; ");
61bd5218 3072 verbose(env, "invalid size of register spill\n");
17a52670
AS
3073 return -EACCES;
3074 }
f7cf25b2 3075 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3076 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3077 return -EINVAL;
3078 }
354e8f19 3079 save_register_state(state, spi, reg, size);
9c399760 3080 } else {
cc2b14d5
AS
3081 u8 type = STACK_MISC;
3082
679c782d
EC
3083 /* regular write of data into stack destroys any spilled ptr */
3084 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 3085 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 3086 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 3087 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3088 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3089
cc2b14d5
AS
3090 /* only mark the slot as written if all 8 bytes were written
3091 * otherwise read propagation may incorrectly stop too soon
3092 * when stack slots are partially written.
3093 * This heuristic means that read propagation will be
3094 * conservative, since it will add reg_live_read marks
3095 * to stack slots all the way to first state when programs
3096 * writes+reads less than 8 bytes
3097 */
3098 if (size == BPF_REG_SIZE)
3099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3100
3101 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
3102 if (reg && register_is_null(reg)) {
3103 /* backtracking doesn't work for STACK_ZERO yet. */
3104 err = mark_chain_precision(env, value_regno);
3105 if (err)
3106 return err;
cc2b14d5 3107 type = STACK_ZERO;
b5dc0163 3108 }
cc2b14d5 3109
0bae2d4d 3110 /* Mark slots affected by this stack write. */
9c399760 3111 for (i = 0; i < size; i++)
638f5b90 3112 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3113 type;
17a52670
AS
3114 }
3115 return 0;
3116}
3117
01f810ac
AM
3118/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3119 * known to contain a variable offset.
3120 * This function checks whether the write is permitted and conservatively
3121 * tracks the effects of the write, considering that each stack slot in the
3122 * dynamic range is potentially written to.
3123 *
3124 * 'off' includes 'regno->off'.
3125 * 'value_regno' can be -1, meaning that an unknown value is being written to
3126 * the stack.
3127 *
3128 * Spilled pointers in range are not marked as written because we don't know
3129 * what's going to be actually written. This means that read propagation for
3130 * future reads cannot be terminated by this write.
3131 *
3132 * For privileged programs, uninitialized stack slots are considered
3133 * initialized by this write (even though we don't know exactly what offsets
3134 * are going to be written to). The idea is that we don't want the verifier to
3135 * reject future reads that access slots written to through variable offsets.
3136 */
3137static int check_stack_write_var_off(struct bpf_verifier_env *env,
3138 /* func where register points to */
3139 struct bpf_func_state *state,
3140 int ptr_regno, int off, int size,
3141 int value_regno, int insn_idx)
3142{
3143 struct bpf_func_state *cur; /* state of the current function */
3144 int min_off, max_off;
3145 int i, err;
3146 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3147 bool writing_zero = false;
3148 /* set if the fact that we're writing a zero is used to let any
3149 * stack slots remain STACK_ZERO
3150 */
3151 bool zero_used = false;
3152
3153 cur = env->cur_state->frame[env->cur_state->curframe];
3154 ptr_reg = &cur->regs[ptr_regno];
3155 min_off = ptr_reg->smin_value + off;
3156 max_off = ptr_reg->smax_value + off + size;
3157 if (value_regno >= 0)
3158 value_reg = &cur->regs[value_regno];
3159 if (value_reg && register_is_null(value_reg))
3160 writing_zero = true;
3161
c69431aa 3162 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3163 if (err)
3164 return err;
3165
3166
3167 /* Variable offset writes destroy any spilled pointers in range. */
3168 for (i = min_off; i < max_off; i++) {
3169 u8 new_type, *stype;
3170 int slot, spi;
3171
3172 slot = -i - 1;
3173 spi = slot / BPF_REG_SIZE;
3174 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 3175 mark_stack_slot_scratched(env, spi);
01f810ac 3176
f5e477a8
KKD
3177 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3178 /* Reject the write if range we may write to has not
3179 * been initialized beforehand. If we didn't reject
3180 * here, the ptr status would be erased below (even
3181 * though not all slots are actually overwritten),
3182 * possibly opening the door to leaks.
3183 *
3184 * We do however catch STACK_INVALID case below, and
3185 * only allow reading possibly uninitialized memory
3186 * later for CAP_PERFMON, as the write may not happen to
3187 * that slot.
01f810ac
AM
3188 */
3189 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3190 insn_idx, i);
3191 return -EINVAL;
3192 }
3193
3194 /* Erase all spilled pointers. */
3195 state->stack[spi].spilled_ptr.type = NOT_INIT;
3196
3197 /* Update the slot type. */
3198 new_type = STACK_MISC;
3199 if (writing_zero && *stype == STACK_ZERO) {
3200 new_type = STACK_ZERO;
3201 zero_used = true;
3202 }
3203 /* If the slot is STACK_INVALID, we check whether it's OK to
3204 * pretend that it will be initialized by this write. The slot
3205 * might not actually be written to, and so if we mark it as
3206 * initialized future reads might leak uninitialized memory.
3207 * For privileged programs, we will accept such reads to slots
3208 * that may or may not be written because, if we're reject
3209 * them, the error would be too confusing.
3210 */
3211 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3212 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3213 insn_idx, i);
3214 return -EINVAL;
3215 }
3216 *stype = new_type;
3217 }
3218 if (zero_used) {
3219 /* backtracking doesn't work for STACK_ZERO yet. */
3220 err = mark_chain_precision(env, value_regno);
3221 if (err)
3222 return err;
3223 }
3224 return 0;
3225}
3226
3227/* When register 'dst_regno' is assigned some values from stack[min_off,
3228 * max_off), we set the register's type according to the types of the
3229 * respective stack slots. If all the stack values are known to be zeros, then
3230 * so is the destination reg. Otherwise, the register is considered to be
3231 * SCALAR. This function does not deal with register filling; the caller must
3232 * ensure that all spilled registers in the stack range have been marked as
3233 * read.
3234 */
3235static void mark_reg_stack_read(struct bpf_verifier_env *env,
3236 /* func where src register points to */
3237 struct bpf_func_state *ptr_state,
3238 int min_off, int max_off, int dst_regno)
3239{
3240 struct bpf_verifier_state *vstate = env->cur_state;
3241 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3242 int i, slot, spi;
3243 u8 *stype;
3244 int zeros = 0;
3245
3246 for (i = min_off; i < max_off; i++) {
3247 slot = -i - 1;
3248 spi = slot / BPF_REG_SIZE;
3249 stype = ptr_state->stack[spi].slot_type;
3250 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3251 break;
3252 zeros++;
3253 }
3254 if (zeros == max_off - min_off) {
3255 /* any access_size read into register is zero extended,
3256 * so the whole register == const_zero
3257 */
3258 __mark_reg_const_zero(&state->regs[dst_regno]);
3259 /* backtracking doesn't support STACK_ZERO yet,
3260 * so mark it precise here, so that later
3261 * backtracking can stop here.
3262 * Backtracking may not need this if this register
3263 * doesn't participate in pointer adjustment.
3264 * Forward propagation of precise flag is not
3265 * necessary either. This mark is only to stop
3266 * backtracking. Any register that contributed
3267 * to const 0 was marked precise before spill.
3268 */
3269 state->regs[dst_regno].precise = true;
3270 } else {
3271 /* have read misc data from the stack */
3272 mark_reg_unknown(env, state->regs, dst_regno);
3273 }
3274 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3275}
3276
3277/* Read the stack at 'off' and put the results into the register indicated by
3278 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3279 * spilled reg.
3280 *
3281 * 'dst_regno' can be -1, meaning that the read value is not going to a
3282 * register.
3283 *
3284 * The access is assumed to be within the current stack bounds.
3285 */
3286static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3287 /* func where src register points to */
3288 struct bpf_func_state *reg_state,
3289 int off, int size, int dst_regno)
17a52670 3290{
f4d7e40a
AS
3291 struct bpf_verifier_state *vstate = env->cur_state;
3292 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3293 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3294 struct bpf_reg_state *reg;
354e8f19 3295 u8 *stype, type;
17a52670 3296
f4d7e40a 3297 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3298 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3299
27113c59 3300 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3301 u8 spill_size = 1;
3302
3303 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3304 spill_size++;
354e8f19 3305
f30d4968 3306 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3307 if (reg->type != SCALAR_VALUE) {
3308 verbose_linfo(env, env->insn_idx, "; ");
3309 verbose(env, "invalid size of register fill\n");
3310 return -EACCES;
3311 }
354e8f19
MKL
3312
3313 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3314 if (dst_regno < 0)
3315 return 0;
3316
f30d4968 3317 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3318 /* The earlier check_reg_arg() has decided the
3319 * subreg_def for this insn. Save it first.
3320 */
3321 s32 subreg_def = state->regs[dst_regno].subreg_def;
3322
3323 state->regs[dst_regno] = *reg;
3324 state->regs[dst_regno].subreg_def = subreg_def;
3325 } else {
3326 for (i = 0; i < size; i++) {
3327 type = stype[(slot - i) % BPF_REG_SIZE];
3328 if (type == STACK_SPILL)
3329 continue;
3330 if (type == STACK_MISC)
3331 continue;
3332 verbose(env, "invalid read from stack off %d+%d size %d\n",
3333 off, i, size);
3334 return -EACCES;
3335 }
01f810ac 3336 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3337 }
354e8f19 3338 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3339 return 0;
17a52670 3340 }
17a52670 3341
01f810ac 3342 if (dst_regno >= 0) {
17a52670 3343 /* restore register state from stack */
01f810ac 3344 state->regs[dst_regno] = *reg;
2f18f62e
AS
3345 /* mark reg as written since spilled pointer state likely
3346 * has its liveness marks cleared by is_state_visited()
3347 * which resets stack/reg liveness for state transitions
3348 */
01f810ac 3349 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3350 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3351 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3352 * it is acceptable to use this value as a SCALAR_VALUE
3353 * (e.g. for XADD).
3354 * We must not allow unprivileged callers to do that
3355 * with spilled pointers.
3356 */
3357 verbose(env, "leaking pointer from stack off %d\n",
3358 off);
3359 return -EACCES;
dc503a8a 3360 }
f7cf25b2 3361 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3362 } else {
3363 for (i = 0; i < size; i++) {
01f810ac
AM
3364 type = stype[(slot - i) % BPF_REG_SIZE];
3365 if (type == STACK_MISC)
cc2b14d5 3366 continue;
01f810ac 3367 if (type == STACK_ZERO)
cc2b14d5 3368 continue;
cc2b14d5
AS
3369 verbose(env, "invalid read from stack off %d+%d size %d\n",
3370 off, i, size);
3371 return -EACCES;
3372 }
f7cf25b2 3373 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3374 if (dst_regno >= 0)
3375 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3376 }
f7cf25b2 3377 return 0;
17a52670
AS
3378}
3379
61df10c7 3380enum bpf_access_src {
01f810ac
AM
3381 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3382 ACCESS_HELPER = 2, /* the access is performed by a helper */
3383};
3384
3385static int check_stack_range_initialized(struct bpf_verifier_env *env,
3386 int regno, int off, int access_size,
3387 bool zero_size_allowed,
61df10c7 3388 enum bpf_access_src type,
01f810ac
AM
3389 struct bpf_call_arg_meta *meta);
3390
3391static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3392{
3393 return cur_regs(env) + regno;
3394}
3395
3396/* Read the stack at 'ptr_regno + off' and put the result into the register
3397 * 'dst_regno'.
3398 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3399 * but not its variable offset.
3400 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3401 *
3402 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3403 * filling registers (i.e. reads of spilled register cannot be detected when
3404 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3405 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3406 * offset; for a fixed offset check_stack_read_fixed_off should be used
3407 * instead.
3408 */
3409static int check_stack_read_var_off(struct bpf_verifier_env *env,
3410 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3411{
01f810ac
AM
3412 /* The state of the source register. */
3413 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3414 struct bpf_func_state *ptr_state = func(env, reg);
3415 int err;
3416 int min_off, max_off;
3417
3418 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3419 */
01f810ac
AM
3420 err = check_stack_range_initialized(env, ptr_regno, off, size,
3421 false, ACCESS_DIRECT, NULL);
3422 if (err)
3423 return err;
3424
3425 min_off = reg->smin_value + off;
3426 max_off = reg->smax_value + off;
3427 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3428 return 0;
3429}
3430
3431/* check_stack_read dispatches to check_stack_read_fixed_off or
3432 * check_stack_read_var_off.
3433 *
3434 * The caller must ensure that the offset falls within the allocated stack
3435 * bounds.
3436 *
3437 * 'dst_regno' is a register which will receive the value from the stack. It
3438 * can be -1, meaning that the read value is not going to a register.
3439 */
3440static int check_stack_read(struct bpf_verifier_env *env,
3441 int ptr_regno, int off, int size,
3442 int dst_regno)
3443{
3444 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3445 struct bpf_func_state *state = func(env, reg);
3446 int err;
3447 /* Some accesses are only permitted with a static offset. */
3448 bool var_off = !tnum_is_const(reg->var_off);
3449
3450 /* The offset is required to be static when reads don't go to a
3451 * register, in order to not leak pointers (see
3452 * check_stack_read_fixed_off).
3453 */
3454 if (dst_regno < 0 && var_off) {
e4298d25
DB
3455 char tn_buf[48];
3456
3457 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3458 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3459 tn_buf, off, size);
3460 return -EACCES;
3461 }
01f810ac
AM
3462 /* Variable offset is prohibited for unprivileged mode for simplicity
3463 * since it requires corresponding support in Spectre masking for stack
3464 * ALU. See also retrieve_ptr_limit().
3465 */
3466 if (!env->bypass_spec_v1 && var_off) {
3467 char tn_buf[48];
e4298d25 3468
01f810ac
AM
3469 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3470 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3471 ptr_regno, tn_buf);
e4298d25
DB
3472 return -EACCES;
3473 }
3474
01f810ac
AM
3475 if (!var_off) {
3476 off += reg->var_off.value;
3477 err = check_stack_read_fixed_off(env, state, off, size,
3478 dst_regno);
3479 } else {
3480 /* Variable offset stack reads need more conservative handling
3481 * than fixed offset ones. Note that dst_regno >= 0 on this
3482 * branch.
3483 */
3484 err = check_stack_read_var_off(env, ptr_regno, off, size,
3485 dst_regno);
3486 }
3487 return err;
3488}
3489
3490
3491/* check_stack_write dispatches to check_stack_write_fixed_off or
3492 * check_stack_write_var_off.
3493 *
3494 * 'ptr_regno' is the register used as a pointer into the stack.
3495 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3496 * 'value_regno' is the register whose value we're writing to the stack. It can
3497 * be -1, meaning that we're not writing from a register.
3498 *
3499 * The caller must ensure that the offset falls within the maximum stack size.
3500 */
3501static int check_stack_write(struct bpf_verifier_env *env,
3502 int ptr_regno, int off, int size,
3503 int value_regno, int insn_idx)
3504{
3505 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3506 struct bpf_func_state *state = func(env, reg);
3507 int err;
3508
3509 if (tnum_is_const(reg->var_off)) {
3510 off += reg->var_off.value;
3511 err = check_stack_write_fixed_off(env, state, off, size,
3512 value_regno, insn_idx);
3513 } else {
3514 /* Variable offset stack reads need more conservative handling
3515 * than fixed offset ones.
3516 */
3517 err = check_stack_write_var_off(env, state,
3518 ptr_regno, off, size,
3519 value_regno, insn_idx);
3520 }
3521 return err;
e4298d25
DB
3522}
3523
591fe988
DB
3524static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3525 int off, int size, enum bpf_access_type type)
3526{
3527 struct bpf_reg_state *regs = cur_regs(env);
3528 struct bpf_map *map = regs[regno].map_ptr;
3529 u32 cap = bpf_map_flags_to_cap(map);
3530
3531 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3532 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3533 map->value_size, off, size);
3534 return -EACCES;
3535 }
3536
3537 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3538 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3539 map->value_size, off, size);
3540 return -EACCES;
3541 }
3542
3543 return 0;
3544}
3545
457f4436
AN
3546/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3547static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3548 int off, int size, u32 mem_size,
3549 bool zero_size_allowed)
17a52670 3550{
457f4436
AN
3551 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3552 struct bpf_reg_state *reg;
3553
3554 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3555 return 0;
17a52670 3556
457f4436
AN
3557 reg = &cur_regs(env)[regno];
3558 switch (reg->type) {
69c087ba
YS
3559 case PTR_TO_MAP_KEY:
3560 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3561 mem_size, off, size);
3562 break;
457f4436 3563 case PTR_TO_MAP_VALUE:
61bd5218 3564 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3565 mem_size, off, size);
3566 break;
3567 case PTR_TO_PACKET:
3568 case PTR_TO_PACKET_META:
3569 case PTR_TO_PACKET_END:
3570 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3571 off, size, regno, reg->id, off, mem_size);
3572 break;
3573 case PTR_TO_MEM:
3574 default:
3575 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3576 mem_size, off, size);
17a52670 3577 }
457f4436
AN
3578
3579 return -EACCES;
17a52670
AS
3580}
3581
457f4436
AN
3582/* check read/write into a memory region with possible variable offset */
3583static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3584 int off, int size, u32 mem_size,
3585 bool zero_size_allowed)
dbcfe5f7 3586{
f4d7e40a
AS
3587 struct bpf_verifier_state *vstate = env->cur_state;
3588 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3589 struct bpf_reg_state *reg = &state->regs[regno];
3590 int err;
3591
457f4436 3592 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3593 * need to try adding each of min_value and max_value to off
3594 * to make sure our theoretical access will be safe.
2e576648
CL
3595 *
3596 * The minimum value is only important with signed
dbcfe5f7
GB
3597 * comparisons where we can't assume the floor of a
3598 * value is 0. If we are using signed variables for our
3599 * index'es we need to make sure that whatever we use
3600 * will have a set floor within our range.
3601 */
b7137c4e
DB
3602 if (reg->smin_value < 0 &&
3603 (reg->smin_value == S64_MIN ||
3604 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3605 reg->smin_value + off < 0)) {
61bd5218 3606 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3607 regno);
3608 return -EACCES;
3609 }
457f4436
AN
3610 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3611 mem_size, zero_size_allowed);
dbcfe5f7 3612 if (err) {
457f4436 3613 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3614 regno);
dbcfe5f7
GB
3615 return err;
3616 }
3617
b03c9f9f
EC
3618 /* If we haven't set a max value then we need to bail since we can't be
3619 * sure we won't do bad things.
3620 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3621 */
b03c9f9f 3622 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3623 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3624 regno);
3625 return -EACCES;
3626 }
457f4436
AN
3627 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3628 mem_size, zero_size_allowed);
3629 if (err) {
3630 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3631 regno);
457f4436
AN
3632 return err;
3633 }
3634
3635 return 0;
3636}
d83525ca 3637
e9147b44
KKD
3638static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3639 const struct bpf_reg_state *reg, int regno,
3640 bool fixed_off_ok)
3641{
3642 /* Access to this pointer-typed register or passing it to a helper
3643 * is only allowed in its original, unmodified form.
3644 */
3645
3646 if (reg->off < 0) {
3647 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3648 reg_type_str(env, reg->type), regno, reg->off);
3649 return -EACCES;
3650 }
3651
3652 if (!fixed_off_ok && reg->off) {
3653 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3654 reg_type_str(env, reg->type), regno, reg->off);
3655 return -EACCES;
3656 }
3657
3658 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3659 char tn_buf[48];
3660
3661 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3662 verbose(env, "variable %s access var_off=%s disallowed\n",
3663 reg_type_str(env, reg->type), tn_buf);
3664 return -EACCES;
3665 }
3666
3667 return 0;
3668}
3669
3670int check_ptr_off_reg(struct bpf_verifier_env *env,
3671 const struct bpf_reg_state *reg, int regno)
3672{
3673 return __check_ptr_off_reg(env, reg, regno, false);
3674}
3675
61df10c7 3676static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 3677 struct btf_field *kptr_field,
61df10c7
KKD
3678 struct bpf_reg_state *reg, u32 regno)
3679{
aa3496ac 3680 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
6efe152d 3681 int perm_flags = PTR_MAYBE_NULL;
61df10c7
KKD
3682 const char *reg_name = "";
3683
6efe152d 3684 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 3685 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3686 perm_flags |= PTR_UNTRUSTED;
3687
3688 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
3689 goto bad_type;
3690
3691 if (!btf_is_kernel(reg->btf)) {
3692 verbose(env, "R%d must point to kernel BTF\n", regno);
3693 return -EINVAL;
3694 }
3695 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
3696 reg_name = kernel_type_name(reg->btf, reg->btf_id);
3697
c0a5a21c
KKD
3698 /* For ref_ptr case, release function check should ensure we get one
3699 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3700 * normal store of unreferenced kptr, we must ensure var_off is zero.
3701 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3702 * reg->off and reg->ref_obj_id are not needed here.
3703 */
61df10c7
KKD
3704 if (__check_ptr_off_reg(env, reg, regno, true))
3705 return -EACCES;
3706
3707 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
3708 * we also need to take into account the reg->off.
3709 *
3710 * We want to support cases like:
3711 *
3712 * struct foo {
3713 * struct bar br;
3714 * struct baz bz;
3715 * };
3716 *
3717 * struct foo *v;
3718 * v = func(); // PTR_TO_BTF_ID
3719 * val->foo = v; // reg->off is zero, btf and btf_id match type
3720 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3721 * // first member type of struct after comparison fails
3722 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3723 * // to match type
3724 *
3725 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
3726 * is zero. We must also ensure that btf_struct_ids_match does not walk
3727 * the struct to match type against first member of struct, i.e. reject
3728 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3729 * strict mode to true for type match.
61df10c7
KKD
3730 */
3731 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
3732 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3733 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
3734 goto bad_type;
3735 return 0;
3736bad_type:
3737 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3738 reg_type_str(env, reg->type), reg_name);
6efe152d 3739 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 3740 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3741 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3742 targ_name);
3743 else
3744 verbose(env, "\n");
61df10c7
KKD
3745 return -EINVAL;
3746}
3747
3748static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3749 int value_regno, int insn_idx,
aa3496ac 3750 struct btf_field *kptr_field)
61df10c7
KKD
3751{
3752 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3753 int class = BPF_CLASS(insn->code);
3754 struct bpf_reg_state *val_reg;
3755
3756 /* Things we already checked for in check_map_access and caller:
3757 * - Reject cases where variable offset may touch kptr
3758 * - size of access (must be BPF_DW)
3759 * - tnum_is_const(reg->var_off)
aa3496ac 3760 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
3761 */
3762 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3763 if (BPF_MODE(insn->code) != BPF_MEM) {
3764 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3765 return -EACCES;
3766 }
3767
6efe152d
KKD
3768 /* We only allow loading referenced kptr, since it will be marked as
3769 * untrusted, similar to unreferenced kptr.
3770 */
aa3496ac 3771 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 3772 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
3773 return -EACCES;
3774 }
3775
61df10c7
KKD
3776 if (class == BPF_LDX) {
3777 val_reg = reg_state(env, value_regno);
3778 /* We can simply mark the value_regno receiving the pointer
3779 * value from map as PTR_TO_BTF_ID, with the correct type.
3780 */
aa3496ac
KKD
3781 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
3782 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
3783 /* For mark_ptr_or_null_reg */
3784 val_reg->id = ++env->id_gen;
3785 } else if (class == BPF_STX) {
3786 val_reg = reg_state(env, value_regno);
3787 if (!register_is_null(val_reg) &&
aa3496ac 3788 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
3789 return -EACCES;
3790 } else if (class == BPF_ST) {
3791 if (insn->imm) {
3792 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 3793 kptr_field->offset);
61df10c7
KKD
3794 return -EACCES;
3795 }
3796 } else {
3797 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3798 return -EACCES;
3799 }
3800 return 0;
3801}
3802
457f4436
AN
3803/* check read/write into a map element with possible variable offset */
3804static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
3805 int off, int size, bool zero_size_allowed,
3806 enum bpf_access_src src)
457f4436
AN
3807{
3808 struct bpf_verifier_state *vstate = env->cur_state;
3809 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3810 struct bpf_reg_state *reg = &state->regs[regno];
3811 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
3812 struct btf_record *rec;
3813 int err, i;
457f4436
AN
3814
3815 err = check_mem_region_access(env, regno, off, size, map->value_size,
3816 zero_size_allowed);
3817 if (err)
3818 return err;
3819
aa3496ac
KKD
3820 if (IS_ERR_OR_NULL(map->record))
3821 return 0;
3822 rec = map->record;
3823 for (i = 0; i < rec->cnt; i++) {
3824 struct btf_field *field = &rec->fields[i];
3825 u32 p = field->offset;
3826
db559117
KKD
3827 /* If any part of a field can be touched by load/store, reject
3828 * this program. To check that [x1, x2) overlaps with [y1, y2),
3829 * it is sufficient to check x1 < y2 && y1 < x2.
3830 */
aa3496ac
KKD
3831 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
3832 p < reg->umax_value + off + size) {
3833 switch (field->type) {
3834 case BPF_KPTR_UNREF:
3835 case BPF_KPTR_REF:
61df10c7
KKD
3836 if (src != ACCESS_DIRECT) {
3837 verbose(env, "kptr cannot be accessed indirectly by helper\n");
3838 return -EACCES;
3839 }
3840 if (!tnum_is_const(reg->var_off)) {
3841 verbose(env, "kptr access cannot have variable offset\n");
3842 return -EACCES;
3843 }
3844 if (p != off + reg->var_off.value) {
3845 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3846 p, off + reg->var_off.value);
3847 return -EACCES;
3848 }
3849 if (size != bpf_size_to_bytes(BPF_DW)) {
3850 verbose(env, "kptr access size must be BPF_DW\n");
3851 return -EACCES;
3852 }
3853 break;
aa3496ac 3854 default:
db559117
KKD
3855 verbose(env, "%s cannot be accessed directly by load/store\n",
3856 btf_field_type_name(field->type));
aa3496ac 3857 return -EACCES;
61df10c7
KKD
3858 }
3859 }
3860 }
aa3496ac 3861 return 0;
dbcfe5f7
GB
3862}
3863
969bf05e
AS
3864#define MAX_PACKET_OFF 0xffff
3865
58e2af8b 3866static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3867 const struct bpf_call_arg_meta *meta,
3868 enum bpf_access_type t)
4acf6c0b 3869{
7e40781c
UP
3870 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3871
3872 switch (prog_type) {
5d66fa7d 3873 /* Program types only with direct read access go here! */
3a0af8fd
TG
3874 case BPF_PROG_TYPE_LWT_IN:
3875 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3876 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3877 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3878 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3879 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3880 if (t == BPF_WRITE)
3881 return false;
8731745e 3882 fallthrough;
5d66fa7d
DB
3883
3884 /* Program types with direct read + write access go here! */
36bbef52
DB
3885 case BPF_PROG_TYPE_SCHED_CLS:
3886 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3887 case BPF_PROG_TYPE_XDP:
3a0af8fd 3888 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3889 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3890 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3891 if (meta)
3892 return meta->pkt_access;
3893
3894 env->seen_direct_write = true;
4acf6c0b 3895 return true;
0d01da6a
SF
3896
3897 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3898 if (t == BPF_WRITE)
3899 env->seen_direct_write = true;
3900
3901 return true;
3902
4acf6c0b
BB
3903 default:
3904 return false;
3905 }
3906}
3907
f1174f77 3908static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3909 int size, bool zero_size_allowed)
f1174f77 3910{
638f5b90 3911 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3912 struct bpf_reg_state *reg = &regs[regno];
3913 int err;
3914
3915 /* We may have added a variable offset to the packet pointer; but any
3916 * reg->range we have comes after that. We are only checking the fixed
3917 * offset.
3918 */
3919
3920 /* We don't allow negative numbers, because we aren't tracking enough
3921 * detail to prove they're safe.
3922 */
b03c9f9f 3923 if (reg->smin_value < 0) {
61bd5218 3924 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3925 regno);
3926 return -EACCES;
3927 }
6d94e741
AS
3928
3929 err = reg->range < 0 ? -EINVAL :
3930 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3931 zero_size_allowed);
f1174f77 3932 if (err) {
61bd5218 3933 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3934 return err;
3935 }
e647815a 3936
457f4436 3937 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3938 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3939 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3940 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3941 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3942 */
3943 env->prog->aux->max_pkt_offset =
3944 max_t(u32, env->prog->aux->max_pkt_offset,
3945 off + reg->umax_value + size - 1);
3946
f1174f77
EC
3947 return err;
3948}
3949
3950/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3951static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3952 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3953 struct btf **btf, u32 *btf_id)
17a52670 3954{
f96da094
DB
3955 struct bpf_insn_access_aux info = {
3956 .reg_type = *reg_type,
9e15db66 3957 .log = &env->log,
f96da094 3958 };
31fd8581 3959
4f9218aa 3960 if (env->ops->is_valid_access &&
5e43f899 3961 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3962 /* A non zero info.ctx_field_size indicates that this field is a
3963 * candidate for later verifier transformation to load the whole
3964 * field and then apply a mask when accessed with a narrower
3965 * access than actual ctx access size. A zero info.ctx_field_size
3966 * will only allow for whole field access and rejects any other
3967 * type of narrower access.
31fd8581 3968 */
23994631 3969 *reg_type = info.reg_type;
31fd8581 3970
c25b2ae1 3971 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 3972 *btf = info.btf;
9e15db66 3973 *btf_id = info.btf_id;
22dc4a0f 3974 } else {
9e15db66 3975 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3976 }
32bbe007
AS
3977 /* remember the offset of last byte accessed in ctx */
3978 if (env->prog->aux->max_ctx_offset < off + size)
3979 env->prog->aux->max_ctx_offset = off + size;
17a52670 3980 return 0;
32bbe007 3981 }
17a52670 3982
61bd5218 3983 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3984 return -EACCES;
3985}
3986
d58e468b
PP
3987static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3988 int size)
3989{
3990 if (size < 0 || off < 0 ||
3991 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3992 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3993 off, size);
3994 return -EACCES;
3995 }
3996 return 0;
3997}
3998
5f456649
MKL
3999static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4000 u32 regno, int off, int size,
4001 enum bpf_access_type t)
c64b7983
JS
4002{
4003 struct bpf_reg_state *regs = cur_regs(env);
4004 struct bpf_reg_state *reg = &regs[regno];
5f456649 4005 struct bpf_insn_access_aux info = {};
46f8bc92 4006 bool valid;
c64b7983
JS
4007
4008 if (reg->smin_value < 0) {
4009 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4010 regno);
4011 return -EACCES;
4012 }
4013
46f8bc92
MKL
4014 switch (reg->type) {
4015 case PTR_TO_SOCK_COMMON:
4016 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4017 break;
4018 case PTR_TO_SOCKET:
4019 valid = bpf_sock_is_valid_access(off, size, t, &info);
4020 break;
655a51e5
MKL
4021 case PTR_TO_TCP_SOCK:
4022 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4023 break;
fada7fdc
JL
4024 case PTR_TO_XDP_SOCK:
4025 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4026 break;
46f8bc92
MKL
4027 default:
4028 valid = false;
c64b7983
JS
4029 }
4030
5f456649 4031
46f8bc92
MKL
4032 if (valid) {
4033 env->insn_aux_data[insn_idx].ctx_field_size =
4034 info.ctx_field_size;
4035 return 0;
4036 }
4037
4038 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4039 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4040
4041 return -EACCES;
c64b7983
JS
4042}
4043
4cabc5b1
DB
4044static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4045{
2a159c6f 4046 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4047}
4048
f37a8cb8
DB
4049static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4050{
2a159c6f 4051 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4052
46f8bc92
MKL
4053 return reg->type == PTR_TO_CTX;
4054}
4055
4056static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4057{
4058 const struct bpf_reg_state *reg = reg_state(env, regno);
4059
4060 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4061}
4062
ca369602
DB
4063static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4064{
2a159c6f 4065 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4066
4067 return type_is_pkt_pointer(reg->type);
4068}
4069
4b5defde
DB
4070static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4071{
4072 const struct bpf_reg_state *reg = reg_state(env, regno);
4073
4074 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4075 return reg->type == PTR_TO_FLOW_KEYS;
4076}
4077
61bd5218
JK
4078static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4079 const struct bpf_reg_state *reg,
d1174416 4080 int off, int size, bool strict)
969bf05e 4081{
f1174f77 4082 struct tnum reg_off;
e07b98d9 4083 int ip_align;
d1174416
DM
4084
4085 /* Byte size accesses are always allowed. */
4086 if (!strict || size == 1)
4087 return 0;
4088
e4eda884
DM
4089 /* For platforms that do not have a Kconfig enabling
4090 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4091 * NET_IP_ALIGN is universally set to '2'. And on platforms
4092 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4093 * to this code only in strict mode where we want to emulate
4094 * the NET_IP_ALIGN==2 checking. Therefore use an
4095 * unconditional IP align value of '2'.
e07b98d9 4096 */
e4eda884 4097 ip_align = 2;
f1174f77
EC
4098
4099 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4100 if (!tnum_is_aligned(reg_off, size)) {
4101 char tn_buf[48];
4102
4103 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
4104 verbose(env,
4105 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 4106 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
4107 return -EACCES;
4108 }
79adffcd 4109
969bf05e
AS
4110 return 0;
4111}
4112
61bd5218
JK
4113static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4114 const struct bpf_reg_state *reg,
f1174f77
EC
4115 const char *pointer_desc,
4116 int off, int size, bool strict)
79adffcd 4117{
f1174f77
EC
4118 struct tnum reg_off;
4119
4120 /* Byte size accesses are always allowed. */
4121 if (!strict || size == 1)
4122 return 0;
4123
4124 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4125 if (!tnum_is_aligned(reg_off, size)) {
4126 char tn_buf[48];
4127
4128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4129 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 4130 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
4131 return -EACCES;
4132 }
4133
969bf05e
AS
4134 return 0;
4135}
4136
e07b98d9 4137static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
4138 const struct bpf_reg_state *reg, int off,
4139 int size, bool strict_alignment_once)
79adffcd 4140{
ca369602 4141 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 4142 const char *pointer_desc = "";
d1174416 4143
79adffcd
DB
4144 switch (reg->type) {
4145 case PTR_TO_PACKET:
de8f3a83
DB
4146 case PTR_TO_PACKET_META:
4147 /* Special case, because of NET_IP_ALIGN. Given metadata sits
4148 * right in front, treat it the very same way.
4149 */
61bd5218 4150 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
4151 case PTR_TO_FLOW_KEYS:
4152 pointer_desc = "flow keys ";
4153 break;
69c087ba
YS
4154 case PTR_TO_MAP_KEY:
4155 pointer_desc = "key ";
4156 break;
f1174f77
EC
4157 case PTR_TO_MAP_VALUE:
4158 pointer_desc = "value ";
4159 break;
4160 case PTR_TO_CTX:
4161 pointer_desc = "context ";
4162 break;
4163 case PTR_TO_STACK:
4164 pointer_desc = "stack ";
01f810ac
AM
4165 /* The stack spill tracking logic in check_stack_write_fixed_off()
4166 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
4167 * aligned.
4168 */
4169 strict = true;
f1174f77 4170 break;
c64b7983
JS
4171 case PTR_TO_SOCKET:
4172 pointer_desc = "sock ";
4173 break;
46f8bc92
MKL
4174 case PTR_TO_SOCK_COMMON:
4175 pointer_desc = "sock_common ";
4176 break;
655a51e5
MKL
4177 case PTR_TO_TCP_SOCK:
4178 pointer_desc = "tcp_sock ";
4179 break;
fada7fdc
JL
4180 case PTR_TO_XDP_SOCK:
4181 pointer_desc = "xdp_sock ";
4182 break;
79adffcd 4183 default:
f1174f77 4184 break;
79adffcd 4185 }
61bd5218
JK
4186 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4187 strict);
79adffcd
DB
4188}
4189
f4d7e40a
AS
4190static int update_stack_depth(struct bpf_verifier_env *env,
4191 const struct bpf_func_state *func,
4192 int off)
4193{
9c8105bd 4194 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
4195
4196 if (stack >= -off)
4197 return 0;
4198
4199 /* update known max for given subprogram */
9c8105bd 4200 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
4201 return 0;
4202}
f4d7e40a 4203
70a87ffe
AS
4204/* starting from main bpf function walk all instructions of the function
4205 * and recursively walk all callees that given function can call.
4206 * Ignore jump and exit insns.
4207 * Since recursion is prevented by check_cfg() this algorithm
4208 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4209 */
4210static int check_max_stack_depth(struct bpf_verifier_env *env)
4211{
9c8105bd
JW
4212 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4213 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 4214 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 4215 bool tail_call_reachable = false;
70a87ffe
AS
4216 int ret_insn[MAX_CALL_FRAMES];
4217 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 4218 int j;
f4d7e40a 4219
70a87ffe 4220process_func:
7f6e4312
MF
4221 /* protect against potential stack overflow that might happen when
4222 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4223 * depth for such case down to 256 so that the worst case scenario
4224 * would result in 8k stack size (32 which is tailcall limit * 256 =
4225 * 8k).
4226 *
4227 * To get the idea what might happen, see an example:
4228 * func1 -> sub rsp, 128
4229 * subfunc1 -> sub rsp, 256
4230 * tailcall1 -> add rsp, 256
4231 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4232 * subfunc2 -> sub rsp, 64
4233 * subfunc22 -> sub rsp, 128
4234 * tailcall2 -> add rsp, 128
4235 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4236 *
4237 * tailcall will unwind the current stack frame but it will not get rid
4238 * of caller's stack as shown on the example above.
4239 */
4240 if (idx && subprog[idx].has_tail_call && depth >= 256) {
4241 verbose(env,
4242 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4243 depth);
4244 return -EACCES;
4245 }
70a87ffe
AS
4246 /* round up to 32-bytes, since this is granularity
4247 * of interpreter stack size
4248 */
9c8105bd 4249 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 4250 if (depth > MAX_BPF_STACK) {
f4d7e40a 4251 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 4252 frame + 1, depth);
f4d7e40a
AS
4253 return -EACCES;
4254 }
70a87ffe 4255continue_func:
4cb3d99c 4256 subprog_end = subprog[idx + 1].start;
70a87ffe 4257 for (; i < subprog_end; i++) {
7ddc80a4
AS
4258 int next_insn;
4259
69c087ba 4260 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
4261 continue;
4262 /* remember insn and function to return to */
4263 ret_insn[frame] = i + 1;
9c8105bd 4264 ret_prog[frame] = idx;
70a87ffe
AS
4265
4266 /* find the callee */
7ddc80a4
AS
4267 next_insn = i + insn[i].imm + 1;
4268 idx = find_subprog(env, next_insn);
9c8105bd 4269 if (idx < 0) {
70a87ffe 4270 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 4271 next_insn);
70a87ffe
AS
4272 return -EFAULT;
4273 }
7ddc80a4
AS
4274 if (subprog[idx].is_async_cb) {
4275 if (subprog[idx].has_tail_call) {
4276 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4277 return -EFAULT;
4278 }
4279 /* async callbacks don't increase bpf prog stack size */
4280 continue;
4281 }
4282 i = next_insn;
ebf7d1f5
MF
4283
4284 if (subprog[idx].has_tail_call)
4285 tail_call_reachable = true;
4286
70a87ffe
AS
4287 frame++;
4288 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
4289 verbose(env, "the call stack of %d frames is too deep !\n",
4290 frame);
4291 return -E2BIG;
70a87ffe
AS
4292 }
4293 goto process_func;
4294 }
ebf7d1f5
MF
4295 /* if tail call got detected across bpf2bpf calls then mark each of the
4296 * currently present subprog frames as tail call reachable subprogs;
4297 * this info will be utilized by JIT so that we will be preserving the
4298 * tail call counter throughout bpf2bpf calls combined with tailcalls
4299 */
4300 if (tail_call_reachable)
4301 for (j = 0; j < frame; j++)
4302 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
4303 if (subprog[0].tail_call_reachable)
4304 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 4305
70a87ffe
AS
4306 /* end of for() loop means the last insn of the 'subprog'
4307 * was reached. Doesn't matter whether it was JA or EXIT
4308 */
4309 if (frame == 0)
4310 return 0;
9c8105bd 4311 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
4312 frame--;
4313 i = ret_insn[frame];
9c8105bd 4314 idx = ret_prog[frame];
70a87ffe 4315 goto continue_func;
f4d7e40a
AS
4316}
4317
19d28fbd 4318#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
4319static int get_callee_stack_depth(struct bpf_verifier_env *env,
4320 const struct bpf_insn *insn, int idx)
4321{
4322 int start = idx + insn->imm + 1, subprog;
4323
4324 subprog = find_subprog(env, start);
4325 if (subprog < 0) {
4326 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4327 start);
4328 return -EFAULT;
4329 }
9c8105bd 4330 return env->subprog_info[subprog].stack_depth;
1ea47e01 4331}
19d28fbd 4332#endif
1ea47e01 4333
afbf21dc
YS
4334static int __check_buffer_access(struct bpf_verifier_env *env,
4335 const char *buf_info,
4336 const struct bpf_reg_state *reg,
4337 int regno, int off, int size)
9df1c28b
MM
4338{
4339 if (off < 0) {
4340 verbose(env,
4fc00b79 4341 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 4342 regno, buf_info, off, size);
9df1c28b
MM
4343 return -EACCES;
4344 }
4345 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4346 char tn_buf[48];
4347
4348 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4349 verbose(env,
4fc00b79 4350 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
4351 regno, off, tn_buf);
4352 return -EACCES;
4353 }
afbf21dc
YS
4354
4355 return 0;
4356}
4357
4358static int check_tp_buffer_access(struct bpf_verifier_env *env,
4359 const struct bpf_reg_state *reg,
4360 int regno, int off, int size)
4361{
4362 int err;
4363
4364 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4365 if (err)
4366 return err;
4367
9df1c28b
MM
4368 if (off + size > env->prog->aux->max_tp_access)
4369 env->prog->aux->max_tp_access = off + size;
4370
4371 return 0;
4372}
4373
afbf21dc
YS
4374static int check_buffer_access(struct bpf_verifier_env *env,
4375 const struct bpf_reg_state *reg,
4376 int regno, int off, int size,
4377 bool zero_size_allowed,
afbf21dc
YS
4378 u32 *max_access)
4379{
44e9a741 4380 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
4381 int err;
4382
4383 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4384 if (err)
4385 return err;
4386
4387 if (off + size > *max_access)
4388 *max_access = off + size;
4389
4390 return 0;
4391}
4392
3f50f132
JF
4393/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4394static void zext_32_to_64(struct bpf_reg_state *reg)
4395{
4396 reg->var_off = tnum_subreg(reg->var_off);
4397 __reg_assign_32_into_64(reg);
4398}
9df1c28b 4399
0c17d1d2
JH
4400/* truncate register to smaller size (in bytes)
4401 * must be called with size < BPF_REG_SIZE
4402 */
4403static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4404{
4405 u64 mask;
4406
4407 /* clear high bits in bit representation */
4408 reg->var_off = tnum_cast(reg->var_off, size);
4409
4410 /* fix arithmetic bounds */
4411 mask = ((u64)1 << (size * 8)) - 1;
4412 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4413 reg->umin_value &= mask;
4414 reg->umax_value &= mask;
4415 } else {
4416 reg->umin_value = 0;
4417 reg->umax_value = mask;
4418 }
4419 reg->smin_value = reg->umin_value;
4420 reg->smax_value = reg->umax_value;
3f50f132
JF
4421
4422 /* If size is smaller than 32bit register the 32bit register
4423 * values are also truncated so we push 64-bit bounds into
4424 * 32-bit bounds. Above were truncated < 32-bits already.
4425 */
4426 if (size >= 4)
4427 return;
4428 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4429}
4430
a23740ec
AN
4431static bool bpf_map_is_rdonly(const struct bpf_map *map)
4432{
353050be
DB
4433 /* A map is considered read-only if the following condition are true:
4434 *
4435 * 1) BPF program side cannot change any of the map content. The
4436 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4437 * and was set at map creation time.
4438 * 2) The map value(s) have been initialized from user space by a
4439 * loader and then "frozen", such that no new map update/delete
4440 * operations from syscall side are possible for the rest of
4441 * the map's lifetime from that point onwards.
4442 * 3) Any parallel/pending map update/delete operations from syscall
4443 * side have been completed. Only after that point, it's safe to
4444 * assume that map value(s) are immutable.
4445 */
4446 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4447 READ_ONCE(map->frozen) &&
4448 !bpf_map_write_active(map);
a23740ec
AN
4449}
4450
4451static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4452{
4453 void *ptr;
4454 u64 addr;
4455 int err;
4456
4457 err = map->ops->map_direct_value_addr(map, &addr, off);
4458 if (err)
4459 return err;
2dedd7d2 4460 ptr = (void *)(long)addr + off;
a23740ec
AN
4461
4462 switch (size) {
4463 case sizeof(u8):
4464 *val = (u64)*(u8 *)ptr;
4465 break;
4466 case sizeof(u16):
4467 *val = (u64)*(u16 *)ptr;
4468 break;
4469 case sizeof(u32):
4470 *val = (u64)*(u32 *)ptr;
4471 break;
4472 case sizeof(u64):
4473 *val = *(u64 *)ptr;
4474 break;
4475 default:
4476 return -EINVAL;
4477 }
4478 return 0;
4479}
4480
9e15db66
AS
4481static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4482 struct bpf_reg_state *regs,
4483 int regno, int off, int size,
4484 enum bpf_access_type atype,
4485 int value_regno)
4486{
4487 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4488 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4489 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 4490 enum bpf_type_flag flag = 0;
9e15db66
AS
4491 u32 btf_id;
4492 int ret;
4493
9e15db66
AS
4494 if (off < 0) {
4495 verbose(env,
4496 "R%d is ptr_%s invalid negative access: off=%d\n",
4497 regno, tname, off);
4498 return -EACCES;
4499 }
4500 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4501 char tn_buf[48];
4502
4503 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4504 verbose(env,
4505 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4506 regno, tname, off, tn_buf);
4507 return -EACCES;
4508 }
4509
c6f1bfe8
YS
4510 if (reg->type & MEM_USER) {
4511 verbose(env,
4512 "R%d is ptr_%s access user memory: off=%d\n",
4513 regno, tname, off);
4514 return -EACCES;
4515 }
4516
5844101a
HL
4517 if (reg->type & MEM_PERCPU) {
4518 verbose(env,
4519 "R%d is ptr_%s access percpu memory: off=%d\n",
4520 regno, tname, off);
4521 return -EACCES;
4522 }
4523
27ae7997 4524 if (env->ops->btf_struct_access) {
22dc4a0f 4525 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
c6f1bfe8 4526 off, size, atype, &btf_id, &flag);
27ae7997
MKL
4527 } else {
4528 if (atype != BPF_READ) {
4529 verbose(env, "only read is supported\n");
4530 return -EACCES;
4531 }
4532
22dc4a0f 4533 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
c6f1bfe8 4534 atype, &btf_id, &flag);
27ae7997
MKL
4535 }
4536
9e15db66
AS
4537 if (ret < 0)
4538 return ret;
4539
6efe152d
KKD
4540 /* If this is an untrusted pointer, all pointers formed by walking it
4541 * also inherit the untrusted flag.
4542 */
4543 if (type_flag(reg->type) & PTR_UNTRUSTED)
4544 flag |= PTR_UNTRUSTED;
4545
41c48f3a 4546 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 4547 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
4548
4549 return 0;
4550}
4551
4552static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4553 struct bpf_reg_state *regs,
4554 int regno, int off, int size,
4555 enum bpf_access_type atype,
4556 int value_regno)
4557{
4558 struct bpf_reg_state *reg = regs + regno;
4559 struct bpf_map *map = reg->map_ptr;
c6f1bfe8 4560 enum bpf_type_flag flag = 0;
41c48f3a
AI
4561 const struct btf_type *t;
4562 const char *tname;
4563 u32 btf_id;
4564 int ret;
4565
4566 if (!btf_vmlinux) {
4567 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4568 return -ENOTSUPP;
4569 }
4570
4571 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4572 verbose(env, "map_ptr access not supported for map type %d\n",
4573 map->map_type);
4574 return -ENOTSUPP;
4575 }
4576
4577 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4578 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4579
4580 if (!env->allow_ptr_to_map_access) {
4581 verbose(env,
4582 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4583 tname);
4584 return -EPERM;
9e15db66 4585 }
27ae7997 4586
41c48f3a
AI
4587 if (off < 0) {
4588 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4589 regno, tname, off);
4590 return -EACCES;
4591 }
4592
4593 if (atype != BPF_READ) {
4594 verbose(env, "only read from %s is supported\n", tname);
4595 return -EACCES;
4596 }
4597
c6f1bfe8 4598 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
41c48f3a
AI
4599 if (ret < 0)
4600 return ret;
4601
4602 if (value_regno >= 0)
c6f1bfe8 4603 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 4604
9e15db66
AS
4605 return 0;
4606}
4607
01f810ac
AM
4608/* Check that the stack access at the given offset is within bounds. The
4609 * maximum valid offset is -1.
4610 *
4611 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4612 * -state->allocated_stack for reads.
4613 */
4614static int check_stack_slot_within_bounds(int off,
4615 struct bpf_func_state *state,
4616 enum bpf_access_type t)
4617{
4618 int min_valid_off;
4619
4620 if (t == BPF_WRITE)
4621 min_valid_off = -MAX_BPF_STACK;
4622 else
4623 min_valid_off = -state->allocated_stack;
4624
4625 if (off < min_valid_off || off > -1)
4626 return -EACCES;
4627 return 0;
4628}
4629
4630/* Check that the stack access at 'regno + off' falls within the maximum stack
4631 * bounds.
4632 *
4633 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4634 */
4635static int check_stack_access_within_bounds(
4636 struct bpf_verifier_env *env,
4637 int regno, int off, int access_size,
61df10c7 4638 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
4639{
4640 struct bpf_reg_state *regs = cur_regs(env);
4641 struct bpf_reg_state *reg = regs + regno;
4642 struct bpf_func_state *state = func(env, reg);
4643 int min_off, max_off;
4644 int err;
4645 char *err_extra;
4646
4647 if (src == ACCESS_HELPER)
4648 /* We don't know if helpers are reading or writing (or both). */
4649 err_extra = " indirect access to";
4650 else if (type == BPF_READ)
4651 err_extra = " read from";
4652 else
4653 err_extra = " write to";
4654
4655 if (tnum_is_const(reg->var_off)) {
4656 min_off = reg->var_off.value + off;
4657 if (access_size > 0)
4658 max_off = min_off + access_size - 1;
4659 else
4660 max_off = min_off;
4661 } else {
4662 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4663 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4664 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4665 err_extra, regno);
4666 return -EACCES;
4667 }
4668 min_off = reg->smin_value + off;
4669 if (access_size > 0)
4670 max_off = reg->smax_value + off + access_size - 1;
4671 else
4672 max_off = min_off;
4673 }
4674
4675 err = check_stack_slot_within_bounds(min_off, state, type);
4676 if (!err)
4677 err = check_stack_slot_within_bounds(max_off, state, type);
4678
4679 if (err) {
4680 if (tnum_is_const(reg->var_off)) {
4681 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4682 err_extra, regno, off, access_size);
4683 } else {
4684 char tn_buf[48];
4685
4686 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4687 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4688 err_extra, regno, tn_buf, access_size);
4689 }
4690 }
4691 return err;
4692}
41c48f3a 4693
17a52670
AS
4694/* check whether memory at (regno + off) is accessible for t = (read | write)
4695 * if t==write, value_regno is a register which value is stored into memory
4696 * if t==read, value_regno is a register which will receive the value from memory
4697 * if t==write && value_regno==-1, some unknown value is stored into memory
4698 * if t==read && value_regno==-1, don't care what we read from memory
4699 */
ca369602
DB
4700static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4701 int off, int bpf_size, enum bpf_access_type t,
4702 int value_regno, bool strict_alignment_once)
17a52670 4703{
638f5b90
AS
4704 struct bpf_reg_state *regs = cur_regs(env);
4705 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4706 struct bpf_func_state *state;
17a52670
AS
4707 int size, err = 0;
4708
4709 size = bpf_size_to_bytes(bpf_size);
4710 if (size < 0)
4711 return size;
4712
f1174f77 4713 /* alignment checks will add in reg->off themselves */
ca369602 4714 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4715 if (err)
4716 return err;
17a52670 4717
f1174f77
EC
4718 /* for access checks, reg->off is just part of off */
4719 off += reg->off;
4720
69c087ba
YS
4721 if (reg->type == PTR_TO_MAP_KEY) {
4722 if (t == BPF_WRITE) {
4723 verbose(env, "write to change key R%d not allowed\n", regno);
4724 return -EACCES;
4725 }
4726
4727 err = check_mem_region_access(env, regno, off, size,
4728 reg->map_ptr->key_size, false);
4729 if (err)
4730 return err;
4731 if (value_regno >= 0)
4732 mark_reg_unknown(env, regs, value_regno);
4733 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 4734 struct btf_field *kptr_field = NULL;
61df10c7 4735
1be7f75d
AS
4736 if (t == BPF_WRITE && value_regno >= 0 &&
4737 is_pointer_value(env, value_regno)) {
61bd5218 4738 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4739 return -EACCES;
4740 }
591fe988
DB
4741 err = check_map_access_type(env, regno, off, size, t);
4742 if (err)
4743 return err;
61df10c7
KKD
4744 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4745 if (err)
4746 return err;
4747 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
4748 kptr_field = btf_record_find(reg->map_ptr->record,
4749 off + reg->var_off.value, BPF_KPTR);
4750 if (kptr_field) {
4751 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 4752 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
4753 struct bpf_map *map = reg->map_ptr;
4754
4755 /* if map is read-only, track its contents as scalars */
4756 if (tnum_is_const(reg->var_off) &&
4757 bpf_map_is_rdonly(map) &&
4758 map->ops->map_direct_value_addr) {
4759 int map_off = off + reg->var_off.value;
4760 u64 val = 0;
4761
4762 err = bpf_map_direct_read(map, map_off, size,
4763 &val);
4764 if (err)
4765 return err;
4766
4767 regs[value_regno].type = SCALAR_VALUE;
4768 __mark_reg_known(&regs[value_regno], val);
4769 } else {
4770 mark_reg_unknown(env, regs, value_regno);
4771 }
4772 }
34d3a78c
HL
4773 } else if (base_type(reg->type) == PTR_TO_MEM) {
4774 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4775
4776 if (type_may_be_null(reg->type)) {
4777 verbose(env, "R%d invalid mem access '%s'\n", regno,
4778 reg_type_str(env, reg->type));
4779 return -EACCES;
4780 }
4781
4782 if (t == BPF_WRITE && rdonly_mem) {
4783 verbose(env, "R%d cannot write into %s\n",
4784 regno, reg_type_str(env, reg->type));
4785 return -EACCES;
4786 }
4787
457f4436
AN
4788 if (t == BPF_WRITE && value_regno >= 0 &&
4789 is_pointer_value(env, value_regno)) {
4790 verbose(env, "R%d leaks addr into mem\n", value_regno);
4791 return -EACCES;
4792 }
34d3a78c 4793
457f4436
AN
4794 err = check_mem_region_access(env, regno, off, size,
4795 reg->mem_size, false);
34d3a78c 4796 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 4797 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4798 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4799 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4800 struct btf *btf = NULL;
9e15db66 4801 u32 btf_id = 0;
19de99f7 4802
1be7f75d
AS
4803 if (t == BPF_WRITE && value_regno >= 0 &&
4804 is_pointer_value(env, value_regno)) {
61bd5218 4805 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4806 return -EACCES;
4807 }
f1174f77 4808
be80a1d3 4809 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
4810 if (err < 0)
4811 return err;
4812
c6f1bfe8
YS
4813 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4814 &btf_id);
9e15db66
AS
4815 if (err)
4816 verbose_linfo(env, insn_idx, "; ");
969bf05e 4817 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4818 /* ctx access returns either a scalar, or a
de8f3a83
DB
4819 * PTR_TO_PACKET[_META,_END]. In the latter
4820 * case, we know the offset is zero.
f1174f77 4821 */
46f8bc92 4822 if (reg_type == SCALAR_VALUE) {
638f5b90 4823 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4824 } else {
638f5b90 4825 mark_reg_known_zero(env, regs,
61bd5218 4826 value_regno);
c25b2ae1 4827 if (type_may_be_null(reg_type))
46f8bc92 4828 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4829 /* A load of ctx field could have different
4830 * actual load size with the one encoded in the
4831 * insn. When the dst is PTR, it is for sure not
4832 * a sub-register.
4833 */
4834 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 4835 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4836 regs[value_regno].btf = btf;
9e15db66 4837 regs[value_regno].btf_id = btf_id;
22dc4a0f 4838 }
46f8bc92 4839 }
638f5b90 4840 regs[value_regno].type = reg_type;
969bf05e 4841 }
17a52670 4842
f1174f77 4843 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4844 /* Basic bounds checks. */
4845 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4846 if (err)
4847 return err;
8726679a 4848
f4d7e40a
AS
4849 state = func(env, reg);
4850 err = update_stack_depth(env, state, off);
4851 if (err)
4852 return err;
8726679a 4853
01f810ac
AM
4854 if (t == BPF_READ)
4855 err = check_stack_read(env, regno, off, size,
61bd5218 4856 value_regno);
01f810ac
AM
4857 else
4858 err = check_stack_write(env, regno, off, size,
4859 value_regno, insn_idx);
de8f3a83 4860 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4861 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4862 verbose(env, "cannot write into packet\n");
969bf05e
AS
4863 return -EACCES;
4864 }
4acf6c0b
BB
4865 if (t == BPF_WRITE && value_regno >= 0 &&
4866 is_pointer_value(env, value_regno)) {
61bd5218
JK
4867 verbose(env, "R%d leaks addr into packet\n",
4868 value_regno);
4acf6c0b
BB
4869 return -EACCES;
4870 }
9fd29c08 4871 err = check_packet_access(env, regno, off, size, false);
969bf05e 4872 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4873 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4874 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4875 if (t == BPF_WRITE && value_regno >= 0 &&
4876 is_pointer_value(env, value_regno)) {
4877 verbose(env, "R%d leaks addr into flow keys\n",
4878 value_regno);
4879 return -EACCES;
4880 }
4881
4882 err = check_flow_keys_access(env, off, size);
4883 if (!err && t == BPF_READ && value_regno >= 0)
4884 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4885 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4886 if (t == BPF_WRITE) {
46f8bc92 4887 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 4888 regno, reg_type_str(env, reg->type));
c64b7983
JS
4889 return -EACCES;
4890 }
5f456649 4891 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4892 if (!err && value_regno >= 0)
4893 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4894 } else if (reg->type == PTR_TO_TP_BUFFER) {
4895 err = check_tp_buffer_access(env, reg, regno, off, size);
4896 if (!err && t == BPF_READ && value_regno >= 0)
4897 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
4898 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4899 !type_may_be_null(reg->type)) {
9e15db66
AS
4900 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4901 value_regno);
41c48f3a
AI
4902 } else if (reg->type == CONST_PTR_TO_MAP) {
4903 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4904 value_regno);
20b2aff4
HL
4905 } else if (base_type(reg->type) == PTR_TO_BUF) {
4906 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
4907 u32 *max_access;
4908
4909 if (rdonly_mem) {
4910 if (t == BPF_WRITE) {
4911 verbose(env, "R%d cannot write into %s\n",
4912 regno, reg_type_str(env, reg->type));
4913 return -EACCES;
4914 }
20b2aff4
HL
4915 max_access = &env->prog->aux->max_rdonly_access;
4916 } else {
20b2aff4 4917 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 4918 }
20b2aff4 4919
f6dfbe31 4920 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 4921 max_access);
20b2aff4
HL
4922
4923 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 4924 mark_reg_unknown(env, regs, value_regno);
17a52670 4925 } else {
61bd5218 4926 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 4927 reg_type_str(env, reg->type));
17a52670
AS
4928 return -EACCES;
4929 }
969bf05e 4930
f1174f77 4931 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4932 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4933 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4934 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4935 }
17a52670
AS
4936 return err;
4937}
4938
91c960b0 4939static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4940{
5ffa2550 4941 int load_reg;
17a52670
AS
4942 int err;
4943
5ca419f2
BJ
4944 switch (insn->imm) {
4945 case BPF_ADD:
4946 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4947 case BPF_AND:
4948 case BPF_AND | BPF_FETCH:
4949 case BPF_OR:
4950 case BPF_OR | BPF_FETCH:
4951 case BPF_XOR:
4952 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4953 case BPF_XCHG:
4954 case BPF_CMPXCHG:
5ca419f2
BJ
4955 break;
4956 default:
91c960b0
BJ
4957 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4958 return -EINVAL;
4959 }
4960
4961 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4962 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4963 return -EINVAL;
4964 }
4965
4966 /* check src1 operand */
dc503a8a 4967 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4968 if (err)
4969 return err;
4970
4971 /* check src2 operand */
dc503a8a 4972 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4973 if (err)
4974 return err;
4975
5ffa2550
BJ
4976 if (insn->imm == BPF_CMPXCHG) {
4977 /* Check comparison of R0 with memory location */
a82fe085
DB
4978 const u32 aux_reg = BPF_REG_0;
4979
4980 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
4981 if (err)
4982 return err;
a82fe085
DB
4983
4984 if (is_pointer_value(env, aux_reg)) {
4985 verbose(env, "R%d leaks addr into mem\n", aux_reg);
4986 return -EACCES;
4987 }
5ffa2550
BJ
4988 }
4989
6bdf6abc 4990 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4991 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4992 return -EACCES;
4993 }
4994
ca369602 4995 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4996 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4997 is_flow_key_reg(env, insn->dst_reg) ||
4998 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4999 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 5000 insn->dst_reg,
c25b2ae1 5001 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
5002 return -EACCES;
5003 }
5004
37086bfd
BJ
5005 if (insn->imm & BPF_FETCH) {
5006 if (insn->imm == BPF_CMPXCHG)
5007 load_reg = BPF_REG_0;
5008 else
5009 load_reg = insn->src_reg;
5010
5011 /* check and record load of old value */
5012 err = check_reg_arg(env, load_reg, DST_OP);
5013 if (err)
5014 return err;
5015 } else {
5016 /* This instruction accesses a memory location but doesn't
5017 * actually load it into a register.
5018 */
5019 load_reg = -1;
5020 }
5021
7d3baf0a
DB
5022 /* Check whether we can read the memory, with second call for fetch
5023 * case to simulate the register fill.
5024 */
31fd8581 5025 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
5026 BPF_SIZE(insn->code), BPF_READ, -1, true);
5027 if (!err && load_reg >= 0)
5028 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5029 BPF_SIZE(insn->code), BPF_READ, load_reg,
5030 true);
17a52670
AS
5031 if (err)
5032 return err;
5033
7d3baf0a 5034 /* Check whether we can write into the same memory. */
5ca419f2
BJ
5035 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5036 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5037 if (err)
5038 return err;
5039
5ca419f2 5040 return 0;
17a52670
AS
5041}
5042
01f810ac
AM
5043/* When register 'regno' is used to read the stack (either directly or through
5044 * a helper function) make sure that it's within stack boundary and, depending
5045 * on the access type, that all elements of the stack are initialized.
5046 *
5047 * 'off' includes 'regno->off', but not its dynamic part (if any).
5048 *
5049 * All registers that have been spilled on the stack in the slots within the
5050 * read offsets are marked as read.
5051 */
5052static int check_stack_range_initialized(
5053 struct bpf_verifier_env *env, int regno, int off,
5054 int access_size, bool zero_size_allowed,
61df10c7 5055 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
5056{
5057 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
5058 struct bpf_func_state *state = func(env, reg);
5059 int err, min_off, max_off, i, j, slot, spi;
5060 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5061 enum bpf_access_type bounds_check_type;
5062 /* Some accesses can write anything into the stack, others are
5063 * read-only.
5064 */
5065 bool clobber = false;
2011fccf 5066
01f810ac
AM
5067 if (access_size == 0 && !zero_size_allowed) {
5068 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
5069 return -EACCES;
5070 }
2011fccf 5071
01f810ac
AM
5072 if (type == ACCESS_HELPER) {
5073 /* The bounds checks for writes are more permissive than for
5074 * reads. However, if raw_mode is not set, we'll do extra
5075 * checks below.
5076 */
5077 bounds_check_type = BPF_WRITE;
5078 clobber = true;
5079 } else {
5080 bounds_check_type = BPF_READ;
5081 }
5082 err = check_stack_access_within_bounds(env, regno, off, access_size,
5083 type, bounds_check_type);
5084 if (err)
5085 return err;
5086
17a52670 5087
2011fccf 5088 if (tnum_is_const(reg->var_off)) {
01f810ac 5089 min_off = max_off = reg->var_off.value + off;
2011fccf 5090 } else {
088ec26d
AI
5091 /* Variable offset is prohibited for unprivileged mode for
5092 * simplicity since it requires corresponding support in
5093 * Spectre masking for stack ALU.
5094 * See also retrieve_ptr_limit().
5095 */
2c78ee89 5096 if (!env->bypass_spec_v1) {
088ec26d 5097 char tn_buf[48];
f1174f77 5098
088ec26d 5099 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5100 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5101 regno, err_extra, tn_buf);
088ec26d
AI
5102 return -EACCES;
5103 }
f2bcd05e
AI
5104 /* Only initialized buffer on stack is allowed to be accessed
5105 * with variable offset. With uninitialized buffer it's hard to
5106 * guarantee that whole memory is marked as initialized on
5107 * helper return since specific bounds are unknown what may
5108 * cause uninitialized stack leaking.
5109 */
5110 if (meta && meta->raw_mode)
5111 meta = NULL;
5112
01f810ac
AM
5113 min_off = reg->smin_value + off;
5114 max_off = reg->smax_value + off;
17a52670
AS
5115 }
5116
435faee1
DB
5117 if (meta && meta->raw_mode) {
5118 meta->access_size = access_size;
5119 meta->regno = regno;
5120 return 0;
5121 }
5122
2011fccf 5123 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
5124 u8 *stype;
5125
2011fccf 5126 slot = -i - 1;
638f5b90 5127 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
5128 if (state->allocated_stack <= slot)
5129 goto err;
5130 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5131 if (*stype == STACK_MISC)
5132 goto mark;
5133 if (*stype == STACK_ZERO) {
01f810ac
AM
5134 if (clobber) {
5135 /* helper can write anything into the stack */
5136 *stype = STACK_MISC;
5137 }
cc2b14d5 5138 goto mark;
17a52670 5139 }
1d68f22b 5140
27113c59 5141 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
5142 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5143 env->allow_ptr_leaks)) {
01f810ac
AM
5144 if (clobber) {
5145 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5146 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 5147 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 5148 }
f7cf25b2
AS
5149 goto mark;
5150 }
5151
cc2b14d5 5152err:
2011fccf 5153 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
5154 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5155 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
5156 } else {
5157 char tn_buf[48];
5158
5159 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5160 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5161 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 5162 }
cc2b14d5
AS
5163 return -EACCES;
5164mark:
5165 /* reading any byte out of 8-byte 'spill_slot' will cause
5166 * the whole slot to be marked as 'read'
5167 */
679c782d 5168 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
5169 state->stack[spi].spilled_ptr.parent,
5170 REG_LIVE_READ64);
261f4664
KKD
5171 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5172 * be sure that whether stack slot is written to or not. Hence,
5173 * we must still conservatively propagate reads upwards even if
5174 * helper may write to the entire memory range.
5175 */
17a52670 5176 }
2011fccf 5177 return update_stack_depth(env, state, min_off);
17a52670
AS
5178}
5179
06c1c049
GB
5180static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5181 int access_size, bool zero_size_allowed,
5182 struct bpf_call_arg_meta *meta)
5183{
638f5b90 5184 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 5185 u32 *max_access;
06c1c049 5186
20b2aff4 5187 switch (base_type(reg->type)) {
06c1c049 5188 case PTR_TO_PACKET:
de8f3a83 5189 case PTR_TO_PACKET_META:
9fd29c08
YS
5190 return check_packet_access(env, regno, reg->off, access_size,
5191 zero_size_allowed);
69c087ba 5192 case PTR_TO_MAP_KEY:
7b3552d3
KKD
5193 if (meta && meta->raw_mode) {
5194 verbose(env, "R%d cannot write into %s\n", regno,
5195 reg_type_str(env, reg->type));
5196 return -EACCES;
5197 }
69c087ba
YS
5198 return check_mem_region_access(env, regno, reg->off, access_size,
5199 reg->map_ptr->key_size, false);
06c1c049 5200 case PTR_TO_MAP_VALUE:
591fe988
DB
5201 if (check_map_access_type(env, regno, reg->off, access_size,
5202 meta && meta->raw_mode ? BPF_WRITE :
5203 BPF_READ))
5204 return -EACCES;
9fd29c08 5205 return check_map_access(env, regno, reg->off, access_size,
61df10c7 5206 zero_size_allowed, ACCESS_HELPER);
457f4436 5207 case PTR_TO_MEM:
97e6d7da
KKD
5208 if (type_is_rdonly_mem(reg->type)) {
5209 if (meta && meta->raw_mode) {
5210 verbose(env, "R%d cannot write into %s\n", regno,
5211 reg_type_str(env, reg->type));
5212 return -EACCES;
5213 }
5214 }
457f4436
AN
5215 return check_mem_region_access(env, regno, reg->off,
5216 access_size, reg->mem_size,
5217 zero_size_allowed);
20b2aff4
HL
5218 case PTR_TO_BUF:
5219 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
5220 if (meta && meta->raw_mode) {
5221 verbose(env, "R%d cannot write into %s\n", regno,
5222 reg_type_str(env, reg->type));
20b2aff4 5223 return -EACCES;
97e6d7da 5224 }
20b2aff4 5225
20b2aff4
HL
5226 max_access = &env->prog->aux->max_rdonly_access;
5227 } else {
20b2aff4
HL
5228 max_access = &env->prog->aux->max_rdwr_access;
5229 }
afbf21dc
YS
5230 return check_buffer_access(env, reg, regno, reg->off,
5231 access_size, zero_size_allowed,
44e9a741 5232 max_access);
0d004c02 5233 case PTR_TO_STACK:
01f810ac
AM
5234 return check_stack_range_initialized(
5235 env,
5236 regno, reg->off, access_size,
5237 zero_size_allowed, ACCESS_HELPER, meta);
15baa55f
BT
5238 case PTR_TO_CTX:
5239 /* in case the function doesn't know how to access the context,
5240 * (because we are in a program of type SYSCALL for example), we
5241 * can not statically check its size.
5242 * Dynamically check it now.
5243 */
5244 if (!env->ops->convert_ctx_access) {
5245 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5246 int offset = access_size - 1;
5247
5248 /* Allow zero-byte read from PTR_TO_CTX */
5249 if (access_size == 0)
5250 return zero_size_allowed ? 0 : -EACCES;
5251
5252 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5253 atype, -1, false);
5254 }
5255
5256 fallthrough;
0d004c02
LB
5257 default: /* scalar_value or invalid ptr */
5258 /* Allow zero-byte read from NULL, regardless of pointer type */
5259 if (zero_size_allowed && access_size == 0 &&
5260 register_is_null(reg))
5261 return 0;
5262
c25b2ae1
HL
5263 verbose(env, "R%d type=%s ", regno,
5264 reg_type_str(env, reg->type));
5265 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 5266 return -EACCES;
06c1c049
GB
5267 }
5268}
5269
d583691c
KKD
5270static int check_mem_size_reg(struct bpf_verifier_env *env,
5271 struct bpf_reg_state *reg, u32 regno,
5272 bool zero_size_allowed,
5273 struct bpf_call_arg_meta *meta)
5274{
5275 int err;
5276
5277 /* This is used to refine r0 return value bounds for helpers
5278 * that enforce this value as an upper bound on return values.
5279 * See do_refine_retval_range() for helpers that can refine
5280 * the return value. C type of helper is u32 so we pull register
5281 * bound from umax_value however, if negative verifier errors
5282 * out. Only upper bounds can be learned because retval is an
5283 * int type and negative retvals are allowed.
5284 */
be77354a 5285 meta->msize_max_value = reg->umax_value;
d583691c
KKD
5286
5287 /* The register is SCALAR_VALUE; the access check
5288 * happens using its boundaries.
5289 */
5290 if (!tnum_is_const(reg->var_off))
5291 /* For unprivileged variable accesses, disable raw
5292 * mode so that the program is required to
5293 * initialize all the memory that the helper could
5294 * just partially fill up.
5295 */
5296 meta = NULL;
5297
5298 if (reg->smin_value < 0) {
5299 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5300 regno);
5301 return -EACCES;
5302 }
5303
5304 if (reg->umin_value == 0) {
5305 err = check_helper_mem_access(env, regno - 1, 0,
5306 zero_size_allowed,
5307 meta);
5308 if (err)
5309 return err;
5310 }
5311
5312 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5313 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5314 regno);
5315 return -EACCES;
5316 }
5317 err = check_helper_mem_access(env, regno - 1,
5318 reg->umax_value,
5319 zero_size_allowed, meta);
5320 if (!err)
5321 err = mark_chain_precision(env, regno);
5322 return err;
5323}
5324
e5069b9c
DB
5325int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5326 u32 regno, u32 mem_size)
5327{
be77354a
KKD
5328 bool may_be_null = type_may_be_null(reg->type);
5329 struct bpf_reg_state saved_reg;
5330 struct bpf_call_arg_meta meta;
5331 int err;
5332
e5069b9c
DB
5333 if (register_is_null(reg))
5334 return 0;
5335
be77354a
KKD
5336 memset(&meta, 0, sizeof(meta));
5337 /* Assuming that the register contains a value check if the memory
5338 * access is safe. Temporarily save and restore the register's state as
5339 * the conversion shouldn't be visible to a caller.
5340 */
5341 if (may_be_null) {
5342 saved_reg = *reg;
e5069b9c 5343 mark_ptr_not_null_reg(reg);
e5069b9c
DB
5344 }
5345
be77354a
KKD
5346 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5347 /* Check access for BPF_WRITE */
5348 meta.raw_mode = true;
5349 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5350
5351 if (may_be_null)
5352 *reg = saved_reg;
5353
5354 return err;
e5069b9c
DB
5355}
5356
d583691c
KKD
5357int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5358 u32 regno)
5359{
5360 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5361 bool may_be_null = type_may_be_null(mem_reg->type);
5362 struct bpf_reg_state saved_reg;
be77354a 5363 struct bpf_call_arg_meta meta;
d583691c
KKD
5364 int err;
5365
5366 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5367
be77354a
KKD
5368 memset(&meta, 0, sizeof(meta));
5369
d583691c
KKD
5370 if (may_be_null) {
5371 saved_reg = *mem_reg;
5372 mark_ptr_not_null_reg(mem_reg);
5373 }
5374
be77354a
KKD
5375 err = check_mem_size_reg(env, reg, regno, true, &meta);
5376 /* Check access for BPF_WRITE */
5377 meta.raw_mode = true;
5378 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
5379
5380 if (may_be_null)
5381 *mem_reg = saved_reg;
5382 return err;
5383}
5384
d83525ca
AS
5385/* Implementation details:
5386 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5387 * Two bpf_map_lookups (even with the same key) will have different reg->id.
5388 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5389 * value_or_null->value transition, since the verifier only cares about
5390 * the range of access to valid map value pointer and doesn't care about actual
5391 * address of the map element.
5392 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5393 * reg->id > 0 after value_or_null->value transition. By doing so
5394 * two bpf_map_lookups will be considered two different pointers that
5395 * point to different bpf_spin_locks.
5396 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5397 * dead-locks.
5398 * Since only one bpf_spin_lock is allowed the checks are simpler than
5399 * reg_is_refcounted() logic. The verifier needs to remember only
5400 * one spin_lock instead of array of acquired_refs.
5401 * cur_state->active_spin_lock remembers which map value element got locked
5402 * and clears it after bpf_spin_unlock.
5403 */
5404static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5405 bool is_lock)
5406{
5407 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5408 struct bpf_verifier_state *cur = env->cur_state;
5409 bool is_const = tnum_is_const(reg->var_off);
5410 struct bpf_map *map = reg->map_ptr;
5411 u64 val = reg->var_off.value;
5412
d83525ca
AS
5413 if (!is_const) {
5414 verbose(env,
5415 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5416 regno);
5417 return -EINVAL;
5418 }
5419 if (!map->btf) {
5420 verbose(env,
5421 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5422 map->name);
5423 return -EINVAL;
5424 }
db559117
KKD
5425 if (!btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
5426 verbose(env, "map '%s' has no valid bpf_spin_lock\n", map->name);
d83525ca
AS
5427 return -EINVAL;
5428 }
db559117
KKD
5429 if (map->record->spin_lock_off != val + reg->off) {
5430 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
5431 val + reg->off, map->record->spin_lock_off);
d83525ca
AS
5432 return -EINVAL;
5433 }
5434 if (is_lock) {
5435 if (cur->active_spin_lock) {
5436 verbose(env,
5437 "Locking two bpf_spin_locks are not allowed\n");
5438 return -EINVAL;
5439 }
5440 cur->active_spin_lock = reg->id;
5441 } else {
5442 if (!cur->active_spin_lock) {
5443 verbose(env, "bpf_spin_unlock without taking a lock\n");
5444 return -EINVAL;
5445 }
5446 if (cur->active_spin_lock != reg->id) {
5447 verbose(env, "bpf_spin_unlock of different lock\n");
5448 return -EINVAL;
5449 }
5450 cur->active_spin_lock = 0;
5451 }
5452 return 0;
5453}
5454
b00628b1
AS
5455static int process_timer_func(struct bpf_verifier_env *env, int regno,
5456 struct bpf_call_arg_meta *meta)
5457{
5458 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5459 bool is_const = tnum_is_const(reg->var_off);
5460 struct bpf_map *map = reg->map_ptr;
5461 u64 val = reg->var_off.value;
5462
5463 if (!is_const) {
5464 verbose(env,
5465 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5466 regno);
5467 return -EINVAL;
5468 }
5469 if (!map->btf) {
5470 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5471 map->name);
5472 return -EINVAL;
5473 }
db559117
KKD
5474 if (!btf_record_has_field(map->record, BPF_TIMER)) {
5475 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
5476 return -EINVAL;
5477 }
db559117 5478 if (map->record->timer_off != val + reg->off) {
68134668 5479 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 5480 val + reg->off, map->record->timer_off);
b00628b1
AS
5481 return -EINVAL;
5482 }
5483 if (meta->map_ptr) {
5484 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5485 return -EFAULT;
5486 }
3e8ce298 5487 meta->map_uid = reg->map_uid;
b00628b1
AS
5488 meta->map_ptr = map;
5489 return 0;
5490}
5491
c0a5a21c
KKD
5492static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5493 struct bpf_call_arg_meta *meta)
5494{
5495 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 5496 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 5497 struct btf_field *kptr_field;
c0a5a21c 5498 u32 kptr_off;
c0a5a21c
KKD
5499
5500 if (!tnum_is_const(reg->var_off)) {
5501 verbose(env,
5502 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5503 regno);
5504 return -EINVAL;
5505 }
5506 if (!map_ptr->btf) {
5507 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5508 map_ptr->name);
5509 return -EINVAL;
5510 }
aa3496ac
KKD
5511 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5512 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
5513 return -EINVAL;
5514 }
5515
5516 meta->map_ptr = map_ptr;
5517 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
5518 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5519 if (!kptr_field) {
c0a5a21c
KKD
5520 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5521 return -EACCES;
5522 }
aa3496ac 5523 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
5524 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5525 return -EACCES;
5526 }
aa3496ac 5527 meta->kptr_field = kptr_field;
c0a5a21c
KKD
5528 return 0;
5529}
5530
90133415
DB
5531static bool arg_type_is_mem_size(enum bpf_arg_type type)
5532{
5533 return type == ARG_CONST_SIZE ||
5534 type == ARG_CONST_SIZE_OR_ZERO;
5535}
5536
8f14852e
KKD
5537static bool arg_type_is_release(enum bpf_arg_type type)
5538{
5539 return type & OBJ_RELEASE;
5540}
5541
97e03f52
JK
5542static bool arg_type_is_dynptr(enum bpf_arg_type type)
5543{
5544 return base_type(type) == ARG_PTR_TO_DYNPTR;
5545}
5546
57c3bb72
AI
5547static int int_ptr_type_to_size(enum bpf_arg_type type)
5548{
5549 if (type == ARG_PTR_TO_INT)
5550 return sizeof(u32);
5551 else if (type == ARG_PTR_TO_LONG)
5552 return sizeof(u64);
5553
5554 return -EINVAL;
5555}
5556
912f442c
LB
5557static int resolve_map_arg_type(struct bpf_verifier_env *env,
5558 const struct bpf_call_arg_meta *meta,
5559 enum bpf_arg_type *arg_type)
5560{
5561 if (!meta->map_ptr) {
5562 /* kernel subsystem misconfigured verifier */
5563 verbose(env, "invalid map_ptr to access map->type\n");
5564 return -EACCES;
5565 }
5566
5567 switch (meta->map_ptr->map_type) {
5568 case BPF_MAP_TYPE_SOCKMAP:
5569 case BPF_MAP_TYPE_SOCKHASH:
5570 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5571 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5572 } else {
5573 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5574 return -EINVAL;
5575 }
5576 break;
9330986c
JK
5577 case BPF_MAP_TYPE_BLOOM_FILTER:
5578 if (meta->func_id == BPF_FUNC_map_peek_elem)
5579 *arg_type = ARG_PTR_TO_MAP_VALUE;
5580 break;
912f442c
LB
5581 default:
5582 break;
5583 }
5584 return 0;
5585}
5586
f79e7ea5
LB
5587struct bpf_reg_types {
5588 const enum bpf_reg_type types[10];
1df8f55a 5589 u32 *btf_id;
f79e7ea5
LB
5590};
5591
f79e7ea5
LB
5592static const struct bpf_reg_types sock_types = {
5593 .types = {
5594 PTR_TO_SOCK_COMMON,
5595 PTR_TO_SOCKET,
5596 PTR_TO_TCP_SOCK,
5597 PTR_TO_XDP_SOCK,
5598 },
5599};
5600
49a2a4d4 5601#ifdef CONFIG_NET
1df8f55a
MKL
5602static const struct bpf_reg_types btf_id_sock_common_types = {
5603 .types = {
5604 PTR_TO_SOCK_COMMON,
5605 PTR_TO_SOCKET,
5606 PTR_TO_TCP_SOCK,
5607 PTR_TO_XDP_SOCK,
5608 PTR_TO_BTF_ID,
5609 },
5610 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5611};
49a2a4d4 5612#endif
1df8f55a 5613
f79e7ea5
LB
5614static const struct bpf_reg_types mem_types = {
5615 .types = {
5616 PTR_TO_STACK,
5617 PTR_TO_PACKET,
5618 PTR_TO_PACKET_META,
69c087ba 5619 PTR_TO_MAP_KEY,
f79e7ea5
LB
5620 PTR_TO_MAP_VALUE,
5621 PTR_TO_MEM,
a672b2e3 5622 PTR_TO_MEM | MEM_ALLOC,
20b2aff4 5623 PTR_TO_BUF,
f79e7ea5
LB
5624 },
5625};
5626
5627static const struct bpf_reg_types int_ptr_types = {
5628 .types = {
5629 PTR_TO_STACK,
5630 PTR_TO_PACKET,
5631 PTR_TO_PACKET_META,
69c087ba 5632 PTR_TO_MAP_KEY,
f79e7ea5
LB
5633 PTR_TO_MAP_VALUE,
5634 },
5635};
5636
5637static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5638static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5639static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
a672b2e3 5640static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
f79e7ea5
LB
5641static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5642static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5643static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5844101a 5644static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
69c087ba
YS
5645static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5646static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5647static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5648static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 5649static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
5650static const struct bpf_reg_types dynptr_types = {
5651 .types = {
5652 PTR_TO_STACK,
5653 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5654 }
5655};
f79e7ea5 5656
0789e13b 5657static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
5658 [ARG_PTR_TO_MAP_KEY] = &mem_types,
5659 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
5660 [ARG_CONST_SIZE] = &scalar_types,
5661 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5662 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5663 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5664 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 5665 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5666#ifdef CONFIG_NET
1df8f55a 5667 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5668#endif
f79e7ea5 5669 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
5670 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5671 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5672 [ARG_PTR_TO_MEM] = &mem_types,
f79e7ea5 5673 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
f79e7ea5
LB
5674 [ARG_PTR_TO_INT] = &int_ptr_types,
5675 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5676 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 5677 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 5678 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 5679 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5680 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 5681 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 5682 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
5683};
5684
5685static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 5686 enum bpf_arg_type arg_type,
c0a5a21c
KKD
5687 const u32 *arg_btf_id,
5688 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
5689{
5690 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5691 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5692 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5693 int i, j;
5694
48946bd6 5695 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
5696 if (!compatible) {
5697 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5698 return -EFAULT;
5699 }
5700
216e3cd2
HL
5701 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5702 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5703 *
5704 * Same for MAYBE_NULL:
5705 *
5706 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5707 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5708 *
5709 * Therefore we fold these flags depending on the arg_type before comparison.
5710 */
5711 if (arg_type & MEM_RDONLY)
5712 type &= ~MEM_RDONLY;
5713 if (arg_type & PTR_MAYBE_NULL)
5714 type &= ~PTR_MAYBE_NULL;
5715
f79e7ea5
LB
5716 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5717 expected = compatible->types[i];
5718 if (expected == NOT_INIT)
5719 break;
5720
5721 if (type == expected)
a968d5e2 5722 goto found;
f79e7ea5
LB
5723 }
5724
216e3cd2 5725 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 5726 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
5727 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5728 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 5729 return -EACCES;
a968d5e2
MKL
5730
5731found:
216e3cd2 5732 if (reg->type == PTR_TO_BTF_ID) {
2ab3b380
KKD
5733 /* For bpf_sk_release, it needs to match against first member
5734 * 'struct sock_common', hence make an exception for it. This
5735 * allows bpf_sk_release to work for multiple socket types.
5736 */
5737 bool strict_type_match = arg_type_is_release(arg_type) &&
5738 meta->func_id != BPF_FUNC_sk_release;
5739
1df8f55a
MKL
5740 if (!arg_btf_id) {
5741 if (!compatible->btf_id) {
5742 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5743 return -EFAULT;
5744 }
5745 arg_btf_id = compatible->btf_id;
5746 }
5747
c0a5a21c 5748 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 5749 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 5750 return -EACCES;
47e34cb7
DM
5751 } else {
5752 if (arg_btf_id == BPF_PTR_POISON) {
5753 verbose(env, "verifier internal error:");
5754 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
5755 regno);
5756 return -EACCES;
5757 }
5758
5759 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5760 btf_vmlinux, *arg_btf_id,
5761 strict_type_match)) {
5762 verbose(env, "R%d is of type %s but %s is expected\n",
5763 regno, kernel_type_name(reg->btf, reg->btf_id),
5764 kernel_type_name(btf_vmlinux, *arg_btf_id));
5765 return -EACCES;
5766 }
a968d5e2 5767 }
a968d5e2
MKL
5768 }
5769
5770 return 0;
f79e7ea5
LB
5771}
5772
25b35dd2
KKD
5773int check_func_arg_reg_off(struct bpf_verifier_env *env,
5774 const struct bpf_reg_state *reg, int regno,
8f14852e 5775 enum bpf_arg_type arg_type)
25b35dd2
KKD
5776{
5777 enum bpf_reg_type type = reg->type;
8f14852e 5778 bool fixed_off_ok = false;
25b35dd2
KKD
5779
5780 switch ((u32)type) {
25b35dd2 5781 /* Pointer types where reg offset is explicitly allowed: */
97e03f52
JK
5782 case PTR_TO_STACK:
5783 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5784 verbose(env, "cannot pass in dynptr at an offset\n");
5785 return -EINVAL;
5786 }
5787 fallthrough;
25b35dd2
KKD
5788 case PTR_TO_PACKET:
5789 case PTR_TO_PACKET_META:
5790 case PTR_TO_MAP_KEY:
5791 case PTR_TO_MAP_VALUE:
5792 case PTR_TO_MEM:
5793 case PTR_TO_MEM | MEM_RDONLY:
5794 case PTR_TO_MEM | MEM_ALLOC:
5795 case PTR_TO_BUF:
5796 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 5797 case SCALAR_VALUE:
25b35dd2
KKD
5798 /* Some of the argument types nevertheless require a
5799 * zero register offset.
5800 */
8f14852e 5801 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
25b35dd2
KKD
5802 return 0;
5803 break;
5804 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5805 * fixed offset.
5806 */
5807 case PTR_TO_BTF_ID:
24d5bb80 5808 /* When referenced PTR_TO_BTF_ID is passed to release function,
8f14852e
KKD
5809 * it's fixed offset must be 0. In the other cases, fixed offset
5810 * can be non-zero.
24d5bb80 5811 */
8f14852e 5812 if (arg_type_is_release(arg_type) && reg->off) {
24d5bb80
KKD
5813 verbose(env, "R%d must have zero offset when passed to release func\n",
5814 regno);
5815 return -EINVAL;
5816 }
8f14852e
KKD
5817 /* For arg is release pointer, fixed_off_ok must be false, but
5818 * we already checked and rejected reg->off != 0 above, so set
5819 * to true to allow fixed offset for all other cases.
24d5bb80 5820 */
25b35dd2
KKD
5821 fixed_off_ok = true;
5822 break;
5823 default:
5824 break;
5825 }
5826 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5827}
5828
34d4ef57
JK
5829static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5830{
5831 struct bpf_func_state *state = func(env, reg);
5832 int spi = get_spi(reg->off);
5833
5834 return state->stack[spi].spilled_ptr.id;
5835}
5836
af7ec138
YS
5837static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5838 struct bpf_call_arg_meta *meta,
5839 const struct bpf_func_proto *fn)
17a52670 5840{
af7ec138 5841 u32 regno = BPF_REG_1 + arg;
638f5b90 5842 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5843 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5844 enum bpf_reg_type type = reg->type;
508362ac 5845 u32 *arg_btf_id = NULL;
17a52670
AS
5846 int err = 0;
5847
80f1d68c 5848 if (arg_type == ARG_DONTCARE)
17a52670
AS
5849 return 0;
5850
dc503a8a
EC
5851 err = check_reg_arg(env, regno, SRC_OP);
5852 if (err)
5853 return err;
17a52670 5854
1be7f75d
AS
5855 if (arg_type == ARG_ANYTHING) {
5856 if (is_pointer_value(env, regno)) {
61bd5218
JK
5857 verbose(env, "R%d leaks addr into helper function\n",
5858 regno);
1be7f75d
AS
5859 return -EACCES;
5860 }
80f1d68c 5861 return 0;
1be7f75d 5862 }
80f1d68c 5863
de8f3a83 5864 if (type_is_pkt_pointer(type) &&
3a0af8fd 5865 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5866 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5867 return -EACCES;
5868 }
5869
16d1e00c 5870 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
5871 err = resolve_map_arg_type(env, meta, &arg_type);
5872 if (err)
5873 return err;
5874 }
5875
48946bd6 5876 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
5877 /* A NULL register has a SCALAR_VALUE type, so skip
5878 * type checking.
5879 */
5880 goto skip_type_check;
5881
508362ac
MM
5882 /* arg_btf_id and arg_size are in a union. */
5883 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5884 arg_btf_id = fn->arg_btf_id[arg];
5885
5886 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
5887 if (err)
5888 return err;
5889
8f14852e 5890 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
5891 if (err)
5892 return err;
d7b9454a 5893
fd1b0d60 5894skip_type_check:
8f14852e 5895 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
5896 if (arg_type_is_dynptr(arg_type)) {
5897 struct bpf_func_state *state = func(env, reg);
5898 int spi = get_spi(reg->off);
5899
5900 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5901 !state->stack[spi].spilled_ptr.id) {
5902 verbose(env, "arg %d is an unacquired reference\n", regno);
5903 return -EINVAL;
5904 }
5905 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
5906 verbose(env, "R%d must be referenced when passed to release function\n",
5907 regno);
5908 return -EINVAL;
5909 }
5910 if (meta->release_regno) {
5911 verbose(env, "verifier internal error: more than one release argument\n");
5912 return -EFAULT;
5913 }
5914 meta->release_regno = regno;
5915 }
5916
02f7c958 5917 if (reg->ref_obj_id) {
457f4436
AN
5918 if (meta->ref_obj_id) {
5919 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5920 regno, reg->ref_obj_id,
5921 meta->ref_obj_id);
5922 return -EFAULT;
5923 }
5924 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5925 }
5926
8ab4cdcf
JK
5927 switch (base_type(arg_type)) {
5928 case ARG_CONST_MAP_PTR:
17a52670 5929 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5930 if (meta->map_ptr) {
5931 /* Use map_uid (which is unique id of inner map) to reject:
5932 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5933 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5934 * if (inner_map1 && inner_map2) {
5935 * timer = bpf_map_lookup_elem(inner_map1);
5936 * if (timer)
5937 * // mismatch would have been allowed
5938 * bpf_timer_init(timer, inner_map2);
5939 * }
5940 *
5941 * Comparing map_ptr is enough to distinguish normal and outer maps.
5942 */
5943 if (meta->map_ptr != reg->map_ptr ||
5944 meta->map_uid != reg->map_uid) {
5945 verbose(env,
5946 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5947 meta->map_uid, reg->map_uid);
5948 return -EINVAL;
5949 }
b00628b1 5950 }
33ff9823 5951 meta->map_ptr = reg->map_ptr;
3e8ce298 5952 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
5953 break;
5954 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
5955 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5956 * check that [key, key + map->key_size) are within
5957 * stack limits and initialized
5958 */
33ff9823 5959 if (!meta->map_ptr) {
17a52670
AS
5960 /* in function declaration map_ptr must come before
5961 * map_key, so that it's verified and known before
5962 * we have to check map_key here. Otherwise it means
5963 * that kernel subsystem misconfigured verifier
5964 */
61bd5218 5965 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5966 return -EACCES;
5967 }
d71962f3
PC
5968 err = check_helper_mem_access(env, regno,
5969 meta->map_ptr->key_size, false,
5970 NULL);
8ab4cdcf
JK
5971 break;
5972 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
5973 if (type_may_be_null(arg_type) && register_is_null(reg))
5974 return 0;
5975
17a52670
AS
5976 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5977 * check [value, value + map->value_size) validity
5978 */
33ff9823 5979 if (!meta->map_ptr) {
17a52670 5980 /* kernel subsystem misconfigured verifier */
61bd5218 5981 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5982 return -EACCES;
5983 }
16d1e00c 5984 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
5985 err = check_helper_mem_access(env, regno,
5986 meta->map_ptr->value_size, false,
2ea864c5 5987 meta);
8ab4cdcf
JK
5988 break;
5989 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
5990 if (!reg->btf_id) {
5991 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5992 return -EACCES;
5993 }
22dc4a0f 5994 meta->ret_btf = reg->btf;
eaa6bcb7 5995 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
5996 break;
5997 case ARG_PTR_TO_SPIN_LOCK:
c18f0b6a
LB
5998 if (meta->func_id == BPF_FUNC_spin_lock) {
5999 if (process_spin_lock(env, regno, true))
6000 return -EACCES;
6001 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
6002 if (process_spin_lock(env, regno, false))
6003 return -EACCES;
6004 } else {
6005 verbose(env, "verifier internal error\n");
6006 return -EFAULT;
6007 }
8ab4cdcf
JK
6008 break;
6009 case ARG_PTR_TO_TIMER:
b00628b1
AS
6010 if (process_timer_func(env, regno, meta))
6011 return -EACCES;
8ab4cdcf
JK
6012 break;
6013 case ARG_PTR_TO_FUNC:
69c087ba 6014 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
6015 break;
6016 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
6017 /* The access to this pointer is only checked when we hit the
6018 * next is_mem_size argument below.
6019 */
16d1e00c 6020 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
6021 if (arg_type & MEM_FIXED_SIZE) {
6022 err = check_helper_mem_access(env, regno,
6023 fn->arg_size[arg], false,
6024 meta);
6025 }
8ab4cdcf
JK
6026 break;
6027 case ARG_CONST_SIZE:
6028 err = check_mem_size_reg(env, reg, regno, false, meta);
6029 break;
6030 case ARG_CONST_SIZE_OR_ZERO:
6031 err = check_mem_size_reg(env, reg, regno, true, meta);
6032 break;
6033 case ARG_PTR_TO_DYNPTR:
20571567
DV
6034 /* We only need to check for initialized / uninitialized helper
6035 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6036 * assumption is that if it is, that a helper function
6037 * initialized the dynptr on behalf of the BPF program.
6038 */
6039 if (base_type(reg->type) == PTR_TO_DYNPTR)
6040 break;
97e03f52
JK
6041 if (arg_type & MEM_UNINIT) {
6042 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6043 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6044 return -EINVAL;
6045 }
6046
6047 /* We only support one dynptr being uninitialized at the moment,
6048 * which is sufficient for the helper functions we have right now.
6049 */
6050 if (meta->uninit_dynptr_regno) {
6051 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6052 return -EFAULT;
6053 }
6054
6055 meta->uninit_dynptr_regno = regno;
e9e315b4
RS
6056 } else if (!is_dynptr_reg_valid_init(env, reg)) {
6057 verbose(env,
6058 "Expected an initialized dynptr as arg #%d\n",
6059 arg + 1);
6060 return -EINVAL;
6061 } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
97e03f52
JK
6062 const char *err_extra = "";
6063
6064 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6065 case DYNPTR_TYPE_LOCAL:
e9e315b4 6066 err_extra = "local";
97e03f52 6067 break;
bc34dee6 6068 case DYNPTR_TYPE_RINGBUF:
e9e315b4 6069 err_extra = "ringbuf";
bc34dee6 6070 break;
97e03f52 6071 default:
e9e315b4 6072 err_extra = "<unknown>";
97e03f52
JK
6073 break;
6074 }
e9e315b4
RS
6075 verbose(env,
6076 "Expected a dynptr of type %s as arg #%d\n",
97e03f52
JK
6077 err_extra, arg + 1);
6078 return -EINVAL;
6079 }
8ab4cdcf
JK
6080 break;
6081 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 6082 if (!tnum_is_const(reg->var_off)) {
28a8add6 6083 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
6084 regno);
6085 return -EACCES;
6086 }
6087 meta->mem_size = reg->var_off.value;
2fc31465
KKD
6088 err = mark_chain_precision(env, regno);
6089 if (err)
6090 return err;
8ab4cdcf
JK
6091 break;
6092 case ARG_PTR_TO_INT:
6093 case ARG_PTR_TO_LONG:
6094 {
57c3bb72
AI
6095 int size = int_ptr_type_to_size(arg_type);
6096
6097 err = check_helper_mem_access(env, regno, size, false, meta);
6098 if (err)
6099 return err;
6100 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
6101 break;
6102 }
6103 case ARG_PTR_TO_CONST_STR:
6104 {
fff13c4b
FR
6105 struct bpf_map *map = reg->map_ptr;
6106 int map_off;
6107 u64 map_addr;
6108 char *str_ptr;
6109
a8fad73e 6110 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
6111 verbose(env, "R%d does not point to a readonly map'\n", regno);
6112 return -EACCES;
6113 }
6114
6115 if (!tnum_is_const(reg->var_off)) {
6116 verbose(env, "R%d is not a constant address'\n", regno);
6117 return -EACCES;
6118 }
6119
6120 if (!map->ops->map_direct_value_addr) {
6121 verbose(env, "no direct value access support for this map type\n");
6122 return -EACCES;
6123 }
6124
6125 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
6126 map->value_size - reg->off, false,
6127 ACCESS_HELPER);
fff13c4b
FR
6128 if (err)
6129 return err;
6130
6131 map_off = reg->off + reg->var_off.value;
6132 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6133 if (err) {
6134 verbose(env, "direct value access on string failed\n");
6135 return err;
6136 }
6137
6138 str_ptr = (char *)(long)(map_addr);
6139 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6140 verbose(env, "string is not zero-terminated\n");
6141 return -EINVAL;
6142 }
8ab4cdcf
JK
6143 break;
6144 }
6145 case ARG_PTR_TO_KPTR:
c0a5a21c
KKD
6146 if (process_kptr_func(env, regno, meta))
6147 return -EACCES;
8ab4cdcf 6148 break;
17a52670
AS
6149 }
6150
6151 return err;
6152}
6153
0126240f
LB
6154static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6155{
6156 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 6157 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
6158
6159 if (func_id != BPF_FUNC_map_update_elem)
6160 return false;
6161
6162 /* It's not possible to get access to a locked struct sock in these
6163 * contexts, so updating is safe.
6164 */
6165 switch (type) {
6166 case BPF_PROG_TYPE_TRACING:
6167 if (eatype == BPF_TRACE_ITER)
6168 return true;
6169 break;
6170 case BPF_PROG_TYPE_SOCKET_FILTER:
6171 case BPF_PROG_TYPE_SCHED_CLS:
6172 case BPF_PROG_TYPE_SCHED_ACT:
6173 case BPF_PROG_TYPE_XDP:
6174 case BPF_PROG_TYPE_SK_REUSEPORT:
6175 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6176 case BPF_PROG_TYPE_SK_LOOKUP:
6177 return true;
6178 default:
6179 break;
6180 }
6181
6182 verbose(env, "cannot update sockmap in this context\n");
6183 return false;
6184}
6185
e411901c
MF
6186static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6187{
95acd881
TA
6188 return env->prog->jit_requested &&
6189 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
6190}
6191
61bd5218
JK
6192static int check_map_func_compatibility(struct bpf_verifier_env *env,
6193 struct bpf_map *map, int func_id)
35578d79 6194{
35578d79
KX
6195 if (!map)
6196 return 0;
6197
6aff67c8
AS
6198 /* We need a two way check, first is from map perspective ... */
6199 switch (map->map_type) {
6200 case BPF_MAP_TYPE_PROG_ARRAY:
6201 if (func_id != BPF_FUNC_tail_call)
6202 goto error;
6203 break;
6204 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6205 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 6206 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 6207 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
6208 func_id != BPF_FUNC_perf_event_read_value &&
6209 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
6210 goto error;
6211 break;
457f4436
AN
6212 case BPF_MAP_TYPE_RINGBUF:
6213 if (func_id != BPF_FUNC_ringbuf_output &&
6214 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
6215 func_id != BPF_FUNC_ringbuf_query &&
6216 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6217 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6218 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
6219 goto error;
6220 break;
583c1f42 6221 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
6222 if (func_id != BPF_FUNC_user_ringbuf_drain)
6223 goto error;
6224 break;
6aff67c8
AS
6225 case BPF_MAP_TYPE_STACK_TRACE:
6226 if (func_id != BPF_FUNC_get_stackid)
6227 goto error;
6228 break;
4ed8ec52 6229 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 6230 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 6231 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
6232 goto error;
6233 break;
cd339431 6234 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 6235 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
6236 if (func_id != BPF_FUNC_get_local_storage)
6237 goto error;
6238 break;
546ac1ff 6239 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 6240 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
6241 if (func_id != BPF_FUNC_redirect_map &&
6242 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
6243 goto error;
6244 break;
fbfc504a
BT
6245 /* Restrict bpf side of cpumap and xskmap, open when use-cases
6246 * appear.
6247 */
6710e112
JDB
6248 case BPF_MAP_TYPE_CPUMAP:
6249 if (func_id != BPF_FUNC_redirect_map)
6250 goto error;
6251 break;
fada7fdc
JL
6252 case BPF_MAP_TYPE_XSKMAP:
6253 if (func_id != BPF_FUNC_redirect_map &&
6254 func_id != BPF_FUNC_map_lookup_elem)
6255 goto error;
6256 break;
56f668df 6257 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 6258 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
6259 if (func_id != BPF_FUNC_map_lookup_elem)
6260 goto error;
16a43625 6261 break;
174a79ff
JF
6262 case BPF_MAP_TYPE_SOCKMAP:
6263 if (func_id != BPF_FUNC_sk_redirect_map &&
6264 func_id != BPF_FUNC_sock_map_update &&
4f738adb 6265 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6266 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 6267 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6268 func_id != BPF_FUNC_map_lookup_elem &&
6269 !may_update_sockmap(env, func_id))
174a79ff
JF
6270 goto error;
6271 break;
81110384
JF
6272 case BPF_MAP_TYPE_SOCKHASH:
6273 if (func_id != BPF_FUNC_sk_redirect_hash &&
6274 func_id != BPF_FUNC_sock_hash_update &&
6275 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6276 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 6277 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6278 func_id != BPF_FUNC_map_lookup_elem &&
6279 !may_update_sockmap(env, func_id))
81110384
JF
6280 goto error;
6281 break;
2dbb9b9e
MKL
6282 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6283 if (func_id != BPF_FUNC_sk_select_reuseport)
6284 goto error;
6285 break;
f1a2e44a
MV
6286 case BPF_MAP_TYPE_QUEUE:
6287 case BPF_MAP_TYPE_STACK:
6288 if (func_id != BPF_FUNC_map_peek_elem &&
6289 func_id != BPF_FUNC_map_pop_elem &&
6290 func_id != BPF_FUNC_map_push_elem)
6291 goto error;
6292 break;
6ac99e8f
MKL
6293 case BPF_MAP_TYPE_SK_STORAGE:
6294 if (func_id != BPF_FUNC_sk_storage_get &&
6295 func_id != BPF_FUNC_sk_storage_delete)
6296 goto error;
6297 break;
8ea63684
KS
6298 case BPF_MAP_TYPE_INODE_STORAGE:
6299 if (func_id != BPF_FUNC_inode_storage_get &&
6300 func_id != BPF_FUNC_inode_storage_delete)
6301 goto error;
6302 break;
4cf1bc1f
KS
6303 case BPF_MAP_TYPE_TASK_STORAGE:
6304 if (func_id != BPF_FUNC_task_storage_get &&
6305 func_id != BPF_FUNC_task_storage_delete)
6306 goto error;
6307 break;
c4bcfb38
YS
6308 case BPF_MAP_TYPE_CGRP_STORAGE:
6309 if (func_id != BPF_FUNC_cgrp_storage_get &&
6310 func_id != BPF_FUNC_cgrp_storage_delete)
6311 goto error;
6312 break;
9330986c
JK
6313 case BPF_MAP_TYPE_BLOOM_FILTER:
6314 if (func_id != BPF_FUNC_map_peek_elem &&
6315 func_id != BPF_FUNC_map_push_elem)
6316 goto error;
6317 break;
6aff67c8
AS
6318 default:
6319 break;
6320 }
6321
6322 /* ... and second from the function itself. */
6323 switch (func_id) {
6324 case BPF_FUNC_tail_call:
6325 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6326 goto error;
e411901c
MF
6327 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6328 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
6329 return -EINVAL;
6330 }
6aff67c8
AS
6331 break;
6332 case BPF_FUNC_perf_event_read:
6333 case BPF_FUNC_perf_event_output:
908432ca 6334 case BPF_FUNC_perf_event_read_value:
a7658e1a 6335 case BPF_FUNC_skb_output:
d831ee84 6336 case BPF_FUNC_xdp_output:
6aff67c8
AS
6337 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6338 goto error;
6339 break;
5b029a32
DB
6340 case BPF_FUNC_ringbuf_output:
6341 case BPF_FUNC_ringbuf_reserve:
6342 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
6343 case BPF_FUNC_ringbuf_reserve_dynptr:
6344 case BPF_FUNC_ringbuf_submit_dynptr:
6345 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
6346 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6347 goto error;
6348 break;
20571567
DV
6349 case BPF_FUNC_user_ringbuf_drain:
6350 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6351 goto error;
6352 break;
6aff67c8
AS
6353 case BPF_FUNC_get_stackid:
6354 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6355 goto error;
6356 break;
60d20f91 6357 case BPF_FUNC_current_task_under_cgroup:
747ea55e 6358 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
6359 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6360 goto error;
6361 break;
97f91a7c 6362 case BPF_FUNC_redirect_map:
9c270af3 6363 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 6364 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
6365 map->map_type != BPF_MAP_TYPE_CPUMAP &&
6366 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
6367 goto error;
6368 break;
174a79ff 6369 case BPF_FUNC_sk_redirect_map:
4f738adb 6370 case BPF_FUNC_msg_redirect_map:
81110384 6371 case BPF_FUNC_sock_map_update:
174a79ff
JF
6372 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6373 goto error;
6374 break;
81110384
JF
6375 case BPF_FUNC_sk_redirect_hash:
6376 case BPF_FUNC_msg_redirect_hash:
6377 case BPF_FUNC_sock_hash_update:
6378 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
6379 goto error;
6380 break;
cd339431 6381 case BPF_FUNC_get_local_storage:
b741f163
RG
6382 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6383 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
6384 goto error;
6385 break;
2dbb9b9e 6386 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
6387 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6388 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6389 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
6390 goto error;
6391 break;
f1a2e44a 6392 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
6393 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6394 map->map_type != BPF_MAP_TYPE_STACK)
6395 goto error;
6396 break;
9330986c
JK
6397 case BPF_FUNC_map_peek_elem:
6398 case BPF_FUNC_map_push_elem:
6399 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6400 map->map_type != BPF_MAP_TYPE_STACK &&
6401 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6402 goto error;
6403 break;
07343110
FZ
6404 case BPF_FUNC_map_lookup_percpu_elem:
6405 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6406 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6407 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6408 goto error;
6409 break;
6ac99e8f
MKL
6410 case BPF_FUNC_sk_storage_get:
6411 case BPF_FUNC_sk_storage_delete:
6412 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6413 goto error;
6414 break;
8ea63684
KS
6415 case BPF_FUNC_inode_storage_get:
6416 case BPF_FUNC_inode_storage_delete:
6417 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6418 goto error;
6419 break;
4cf1bc1f
KS
6420 case BPF_FUNC_task_storage_get:
6421 case BPF_FUNC_task_storage_delete:
6422 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6423 goto error;
6424 break;
c4bcfb38
YS
6425 case BPF_FUNC_cgrp_storage_get:
6426 case BPF_FUNC_cgrp_storage_delete:
6427 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6428 goto error;
6429 break;
6aff67c8
AS
6430 default:
6431 break;
35578d79
KX
6432 }
6433
6434 return 0;
6aff67c8 6435error:
61bd5218 6436 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 6437 map->map_type, func_id_name(func_id), func_id);
6aff67c8 6438 return -EINVAL;
35578d79
KX
6439}
6440
90133415 6441static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
6442{
6443 int count = 0;
6444
39f19ebb 6445 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6446 count++;
39f19ebb 6447 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6448 count++;
39f19ebb 6449 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6450 count++;
39f19ebb 6451 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6452 count++;
39f19ebb 6453 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
6454 count++;
6455
90133415
DB
6456 /* We only support one arg being in raw mode at the moment,
6457 * which is sufficient for the helper functions we have
6458 * right now.
6459 */
6460 return count <= 1;
6461}
6462
508362ac 6463static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 6464{
508362ac
MM
6465 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6466 bool has_size = fn->arg_size[arg] != 0;
6467 bool is_next_size = false;
6468
6469 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6470 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6471
6472 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6473 return is_next_size;
6474
6475 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
6476}
6477
6478static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6479{
6480 /* bpf_xxx(..., buf, len) call will access 'len'
6481 * bytes from memory 'buf'. Both arg types need
6482 * to be paired, so make sure there's no buggy
6483 * helper function specification.
6484 */
6485 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
6486 check_args_pair_invalid(fn, 0) ||
6487 check_args_pair_invalid(fn, 1) ||
6488 check_args_pair_invalid(fn, 2) ||
6489 check_args_pair_invalid(fn, 3) ||
6490 check_args_pair_invalid(fn, 4))
90133415
DB
6491 return false;
6492
6493 return true;
6494}
6495
9436ef6e
LB
6496static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6497{
6498 int i;
6499
1df8f55a 6500 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
c0a5a21c 6501 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
9436ef6e
LB
6502 return false;
6503
508362ac
MM
6504 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6505 /* arg_btf_id and arg_size are in a union. */
6506 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6507 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
6508 return false;
6509 }
6510
9436ef6e
LB
6511 return true;
6512}
6513
0c9a7a7e 6514static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
6515{
6516 return check_raw_mode_ok(fn) &&
fd978bf7 6517 check_arg_pair_ok(fn) &&
b2d8ef19 6518 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
6519}
6520
de8f3a83
DB
6521/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6522 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 6523 */
b239da34 6524static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 6525{
b239da34
KKD
6526 struct bpf_func_state *state;
6527 struct bpf_reg_state *reg;
969bf05e 6528
b239da34 6529 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
de8f3a83 6530 if (reg_is_pkt_pointer_any(reg))
f54c7898 6531 __mark_reg_unknown(env, reg);
b239da34 6532 }));
f4d7e40a
AS
6533}
6534
6d94e741
AS
6535enum {
6536 AT_PKT_END = -1,
6537 BEYOND_PKT_END = -2,
6538};
6539
6540static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6541{
6542 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6543 struct bpf_reg_state *reg = &state->regs[regn];
6544
6545 if (reg->type != PTR_TO_PACKET)
6546 /* PTR_TO_PACKET_META is not supported yet */
6547 return;
6548
6549 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6550 * How far beyond pkt_end it goes is unknown.
6551 * if (!range_open) it's the case of pkt >= pkt_end
6552 * if (range_open) it's the case of pkt > pkt_end
6553 * hence this pointer is at least 1 byte bigger than pkt_end
6554 */
6555 if (range_open)
6556 reg->range = BEYOND_PKT_END;
6557 else
6558 reg->range = AT_PKT_END;
6559}
6560
fd978bf7
JS
6561/* The pointer with the specified id has released its reference to kernel
6562 * resources. Identify all copies of the same pointer and clear the reference.
6563 */
6564static int release_reference(struct bpf_verifier_env *env,
1b986589 6565 int ref_obj_id)
fd978bf7 6566{
b239da34
KKD
6567 struct bpf_func_state *state;
6568 struct bpf_reg_state *reg;
1b986589 6569 int err;
fd978bf7 6570
1b986589
MKL
6571 err = release_reference_state(cur_func(env), ref_obj_id);
6572 if (err)
6573 return err;
6574
b239da34
KKD
6575 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6576 if (reg->ref_obj_id == ref_obj_id)
6577 __mark_reg_unknown(env, reg);
6578 }));
fd978bf7 6579
1b986589 6580 return 0;
fd978bf7
JS
6581}
6582
51c39bb1
AS
6583static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6584 struct bpf_reg_state *regs)
6585{
6586 int i;
6587
6588 /* after the call registers r0 - r5 were scratched */
6589 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6590 mark_reg_not_init(env, regs, caller_saved[i]);
6591 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6592 }
6593}
6594
14351375
YS
6595typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6596 struct bpf_func_state *caller,
6597 struct bpf_func_state *callee,
6598 int insn_idx);
6599
6600static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6601 int *insn_idx, int subprog,
6602 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
6603{
6604 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 6605 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 6606 struct bpf_func_state *caller, *callee;
14351375 6607 int err;
51c39bb1 6608 bool is_global = false;
f4d7e40a 6609
aada9ce6 6610 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 6611 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 6612 state->curframe + 2);
f4d7e40a
AS
6613 return -E2BIG;
6614 }
6615
f4d7e40a
AS
6616 caller = state->frame[state->curframe];
6617 if (state->frame[state->curframe + 1]) {
6618 verbose(env, "verifier bug. Frame %d already allocated\n",
6619 state->curframe + 1);
6620 return -EFAULT;
6621 }
6622
51c39bb1
AS
6623 func_info_aux = env->prog->aux->func_info_aux;
6624 if (func_info_aux)
6625 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 6626 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
6627 if (err == -EFAULT)
6628 return err;
6629 if (is_global) {
6630 if (err) {
6631 verbose(env, "Caller passes invalid args into func#%d\n",
6632 subprog);
6633 return err;
6634 } else {
6635 if (env->log.level & BPF_LOG_LEVEL)
6636 verbose(env,
6637 "Func#%d is global and valid. Skipping.\n",
6638 subprog);
6639 clear_caller_saved_regs(env, caller->regs);
6640
45159b27 6641 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 6642 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 6643 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
6644
6645 /* continue with next insn after call */
6646 return 0;
6647 }
6648 }
6649
bfc6bb74 6650 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 6651 insn->src_reg == 0 &&
bfc6bb74
AS
6652 insn->imm == BPF_FUNC_timer_set_callback) {
6653 struct bpf_verifier_state *async_cb;
6654
6655 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 6656 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
6657 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6658 *insn_idx, subprog);
6659 if (!async_cb)
6660 return -EFAULT;
6661 callee = async_cb->frame[0];
6662 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6663
6664 /* Convert bpf_timer_set_callback() args into timer callback args */
6665 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6666 if (err)
6667 return err;
6668
6669 clear_caller_saved_regs(env, caller->regs);
6670 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6671 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6672 /* continue with next insn after call */
6673 return 0;
6674 }
6675
f4d7e40a
AS
6676 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6677 if (!callee)
6678 return -ENOMEM;
6679 state->frame[state->curframe + 1] = callee;
6680
6681 /* callee cannot access r0, r6 - r9 for reading and has to write
6682 * into its own stack before reading from it.
6683 * callee can read/write into caller's stack
6684 */
6685 init_func_state(env, callee,
6686 /* remember the callsite, it will be used by bpf_exit */
6687 *insn_idx /* callsite */,
6688 state->curframe + 1 /* frameno within this callchain */,
f910cefa 6689 subprog /* subprog number within this prog */);
f4d7e40a 6690
fd978bf7 6691 /* Transfer references to the callee */
c69431aa 6692 err = copy_reference_state(callee, caller);
fd978bf7
JS
6693 if (err)
6694 return err;
6695
14351375
YS
6696 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6697 if (err)
6698 return err;
f4d7e40a 6699
51c39bb1 6700 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6701
6702 /* only increment it after check_reg_arg() finished */
6703 state->curframe++;
6704
6705 /* and go analyze first insn of the callee */
14351375 6706 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6707
06ee7115 6708 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6709 verbose(env, "caller:\n");
0f55f9ed 6710 print_verifier_state(env, caller, true);
f4d7e40a 6711 verbose(env, "callee:\n");
0f55f9ed 6712 print_verifier_state(env, callee, true);
f4d7e40a
AS
6713 }
6714 return 0;
6715}
6716
314ee05e
YS
6717int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6718 struct bpf_func_state *caller,
6719 struct bpf_func_state *callee)
6720{
6721 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6722 * void *callback_ctx, u64 flags);
6723 * callback_fn(struct bpf_map *map, void *key, void *value,
6724 * void *callback_ctx);
6725 */
6726 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6727
6728 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6729 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6730 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6731
6732 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6733 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6734 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6735
6736 /* pointer to stack or null */
6737 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6738
6739 /* unused */
6740 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6741 return 0;
6742}
6743
14351375
YS
6744static int set_callee_state(struct bpf_verifier_env *env,
6745 struct bpf_func_state *caller,
6746 struct bpf_func_state *callee, int insn_idx)
6747{
6748 int i;
6749
6750 /* copy r1 - r5 args that callee can access. The copy includes parent
6751 * pointers, which connects us up to the liveness chain
6752 */
6753 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6754 callee->regs[i] = caller->regs[i];
6755 return 0;
6756}
6757
6758static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6759 int *insn_idx)
6760{
6761 int subprog, target_insn;
6762
6763 target_insn = *insn_idx + insn->imm + 1;
6764 subprog = find_subprog(env, target_insn);
6765 if (subprog < 0) {
6766 verbose(env, "verifier bug. No program starts at insn %d\n",
6767 target_insn);
6768 return -EFAULT;
6769 }
6770
6771 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6772}
6773
69c087ba
YS
6774static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6775 struct bpf_func_state *caller,
6776 struct bpf_func_state *callee,
6777 int insn_idx)
6778{
6779 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6780 struct bpf_map *map;
6781 int err;
6782
6783 if (bpf_map_ptr_poisoned(insn_aux)) {
6784 verbose(env, "tail_call abusing map_ptr\n");
6785 return -EINVAL;
6786 }
6787
6788 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6789 if (!map->ops->map_set_for_each_callback_args ||
6790 !map->ops->map_for_each_callback) {
6791 verbose(env, "callback function not allowed for map\n");
6792 return -ENOTSUPP;
6793 }
6794
6795 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6796 if (err)
6797 return err;
6798
6799 callee->in_callback_fn = true;
1bfe26fb 6800 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
6801 return 0;
6802}
6803
e6f2dd0f
JK
6804static int set_loop_callback_state(struct bpf_verifier_env *env,
6805 struct bpf_func_state *caller,
6806 struct bpf_func_state *callee,
6807 int insn_idx)
6808{
6809 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6810 * u64 flags);
6811 * callback_fn(u32 index, void *callback_ctx);
6812 */
6813 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6814 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6815
6816 /* unused */
6817 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6818 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6819 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6820
6821 callee->in_callback_fn = true;
1bfe26fb 6822 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
6823 return 0;
6824}
6825
b00628b1
AS
6826static int set_timer_callback_state(struct bpf_verifier_env *env,
6827 struct bpf_func_state *caller,
6828 struct bpf_func_state *callee,
6829 int insn_idx)
6830{
6831 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6832
6833 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6834 * callback_fn(struct bpf_map *map, void *key, void *value);
6835 */
6836 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6837 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6838 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6839
6840 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6841 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6842 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6843
6844 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6845 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6846 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6847
6848 /* unused */
6849 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6850 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6851 callee->in_async_callback_fn = true;
1bfe26fb 6852 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
6853 return 0;
6854}
6855
7c7e3d31
SL
6856static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6857 struct bpf_func_state *caller,
6858 struct bpf_func_state *callee,
6859 int insn_idx)
6860{
6861 /* bpf_find_vma(struct task_struct *task, u64 addr,
6862 * void *callback_fn, void *callback_ctx, u64 flags)
6863 * (callback_fn)(struct task_struct *task,
6864 * struct vm_area_struct *vma, void *callback_ctx);
6865 */
6866 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6867
6868 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6869 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6870 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 6871 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
6872
6873 /* pointer to stack or null */
6874 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6875
6876 /* unused */
6877 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6878 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6879 callee->in_callback_fn = true;
1bfe26fb 6880 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
6881 return 0;
6882}
6883
20571567
DV
6884static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
6885 struct bpf_func_state *caller,
6886 struct bpf_func_state *callee,
6887 int insn_idx)
6888{
6889 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
6890 * callback_ctx, u64 flags);
6891 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
6892 */
6893 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
6894 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
6895 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6896 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6897
6898 /* unused */
6899 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6900 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6901 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6902
6903 callee->in_callback_fn = true;
c92a7a52 6904 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
6905 return 0;
6906}
6907
f4d7e40a
AS
6908static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6909{
6910 struct bpf_verifier_state *state = env->cur_state;
6911 struct bpf_func_state *caller, *callee;
6912 struct bpf_reg_state *r0;
fd978bf7 6913 int err;
f4d7e40a
AS
6914
6915 callee = state->frame[state->curframe];
6916 r0 = &callee->regs[BPF_REG_0];
6917 if (r0->type == PTR_TO_STACK) {
6918 /* technically it's ok to return caller's stack pointer
6919 * (or caller's caller's pointer) back to the caller,
6920 * since these pointers are valid. Only current stack
6921 * pointer will be invalid as soon as function exits,
6922 * but let's be conservative
6923 */
6924 verbose(env, "cannot return stack pointer to the caller\n");
6925 return -EINVAL;
6926 }
6927
6928 state->curframe--;
6929 caller = state->frame[state->curframe];
69c087ba
YS
6930 if (callee->in_callback_fn) {
6931 /* enforce R0 return value range [0, 1]. */
1bfe26fb 6932 struct tnum range = callee->callback_ret_range;
69c087ba
YS
6933
6934 if (r0->type != SCALAR_VALUE) {
6935 verbose(env, "R0 not a scalar value\n");
6936 return -EACCES;
6937 }
6938 if (!tnum_in(range, r0->var_off)) {
6939 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6940 return -EINVAL;
6941 }
6942 } else {
6943 /* return to the caller whatever r0 had in the callee */
6944 caller->regs[BPF_REG_0] = *r0;
6945 }
f4d7e40a 6946
9d9d00ac
KKD
6947 /* callback_fn frame should have released its own additions to parent's
6948 * reference state at this point, or check_reference_leak would
6949 * complain, hence it must be the same as the caller. There is no need
6950 * to copy it back.
6951 */
6952 if (!callee->in_callback_fn) {
6953 /* Transfer references to the caller */
6954 err = copy_reference_state(caller, callee);
6955 if (err)
6956 return err;
6957 }
fd978bf7 6958
f4d7e40a 6959 *insn_idx = callee->callsite + 1;
06ee7115 6960 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6961 verbose(env, "returning from callee:\n");
0f55f9ed 6962 print_verifier_state(env, callee, true);
f4d7e40a 6963 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 6964 print_verifier_state(env, caller, true);
f4d7e40a
AS
6965 }
6966 /* clear everything in the callee */
6967 free_func_state(callee);
6968 state->frame[state->curframe + 1] = NULL;
6969 return 0;
6970}
6971
849fa506
YS
6972static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6973 int func_id,
6974 struct bpf_call_arg_meta *meta)
6975{
6976 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6977
6978 if (ret_type != RET_INTEGER ||
6979 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6980 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6981 func_id != BPF_FUNC_probe_read_str &&
6982 func_id != BPF_FUNC_probe_read_kernel_str &&
6983 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6984 return;
6985
10060503 6986 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6987 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6988 ret_reg->smin_value = -MAX_ERRNO;
6989 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 6990 reg_bounds_sync(ret_reg);
849fa506
YS
6991}
6992
c93552c4
DB
6993static int
6994record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6995 int func_id, int insn_idx)
6996{
6997 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6998 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6999
7000 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
7001 func_id != BPF_FUNC_map_lookup_elem &&
7002 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
7003 func_id != BPF_FUNC_map_delete_elem &&
7004 func_id != BPF_FUNC_map_push_elem &&
7005 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 7006 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 7007 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
7008 func_id != BPF_FUNC_redirect_map &&
7009 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 7010 return 0;
09772d92 7011
591fe988 7012 if (map == NULL) {
c93552c4
DB
7013 verbose(env, "kernel subsystem misconfigured verifier\n");
7014 return -EINVAL;
7015 }
7016
591fe988
DB
7017 /* In case of read-only, some additional restrictions
7018 * need to be applied in order to prevent altering the
7019 * state of the map from program side.
7020 */
7021 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7022 (func_id == BPF_FUNC_map_delete_elem ||
7023 func_id == BPF_FUNC_map_update_elem ||
7024 func_id == BPF_FUNC_map_push_elem ||
7025 func_id == BPF_FUNC_map_pop_elem)) {
7026 verbose(env, "write into map forbidden\n");
7027 return -EACCES;
7028 }
7029
d2e4c1e6 7030 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 7031 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 7032 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 7033 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 7034 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 7035 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
7036 return 0;
7037}
7038
d2e4c1e6
DB
7039static int
7040record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7041 int func_id, int insn_idx)
7042{
7043 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7044 struct bpf_reg_state *regs = cur_regs(env), *reg;
7045 struct bpf_map *map = meta->map_ptr;
a657182a 7046 u64 val, max;
cc52d914 7047 int err;
d2e4c1e6
DB
7048
7049 if (func_id != BPF_FUNC_tail_call)
7050 return 0;
7051 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7052 verbose(env, "kernel subsystem misconfigured verifier\n");
7053 return -EINVAL;
7054 }
7055
d2e4c1e6 7056 reg = &regs[BPF_REG_3];
a657182a
DB
7057 val = reg->var_off.value;
7058 max = map->max_entries;
d2e4c1e6 7059
a657182a 7060 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
7061 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7062 return 0;
7063 }
7064
cc52d914
DB
7065 err = mark_chain_precision(env, BPF_REG_3);
7066 if (err)
7067 return err;
d2e4c1e6
DB
7068 if (bpf_map_key_unseen(aux))
7069 bpf_map_key_store(aux, val);
7070 else if (!bpf_map_key_poisoned(aux) &&
7071 bpf_map_key_immediate(aux) != val)
7072 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7073 return 0;
7074}
7075
fd978bf7
JS
7076static int check_reference_leak(struct bpf_verifier_env *env)
7077{
7078 struct bpf_func_state *state = cur_func(env);
9d9d00ac 7079 bool refs_lingering = false;
fd978bf7
JS
7080 int i;
7081
9d9d00ac
KKD
7082 if (state->frameno && !state->in_callback_fn)
7083 return 0;
7084
fd978bf7 7085 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
7086 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7087 continue;
fd978bf7
JS
7088 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7089 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 7090 refs_lingering = true;
fd978bf7 7091 }
9d9d00ac 7092 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
7093}
7094
7b15523a
FR
7095static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7096 struct bpf_reg_state *regs)
7097{
7098 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7099 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7100 struct bpf_map *fmt_map = fmt_reg->map_ptr;
7101 int err, fmt_map_off, num_args;
7102 u64 fmt_addr;
7103 char *fmt;
7104
7105 /* data must be an array of u64 */
7106 if (data_len_reg->var_off.value % 8)
7107 return -EINVAL;
7108 num_args = data_len_reg->var_off.value / 8;
7109
7110 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7111 * and map_direct_value_addr is set.
7112 */
7113 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7114 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7115 fmt_map_off);
8e8ee109
FR
7116 if (err) {
7117 verbose(env, "verifier bug\n");
7118 return -EFAULT;
7119 }
7b15523a
FR
7120 fmt = (char *)(long)fmt_addr + fmt_map_off;
7121
7122 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7123 * can focus on validating the format specifiers.
7124 */
48cac3f4 7125 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
7126 if (err < 0)
7127 verbose(env, "Invalid format string\n");
7128
7129 return err;
7130}
7131
9b99edca
JO
7132static int check_get_func_ip(struct bpf_verifier_env *env)
7133{
9b99edca
JO
7134 enum bpf_prog_type type = resolve_prog_type(env->prog);
7135 int func_id = BPF_FUNC_get_func_ip;
7136
7137 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 7138 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
7139 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7140 func_id_name(func_id), func_id);
7141 return -ENOTSUPP;
7142 }
7143 return 0;
9ffd9f3f
JO
7144 } else if (type == BPF_PROG_TYPE_KPROBE) {
7145 return 0;
9b99edca
JO
7146 }
7147
7148 verbose(env, "func %s#%d not supported for program type %d\n",
7149 func_id_name(func_id), func_id, type);
7150 return -ENOTSUPP;
7151}
7152
1ade2371
EZ
7153static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7154{
7155 return &env->insn_aux_data[env->insn_idx];
7156}
7157
7158static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7159{
7160 struct bpf_reg_state *regs = cur_regs(env);
7161 struct bpf_reg_state *reg = &regs[BPF_REG_4];
7162 bool reg_is_null = register_is_null(reg);
7163
7164 if (reg_is_null)
7165 mark_chain_precision(env, BPF_REG_4);
7166
7167 return reg_is_null;
7168}
7169
7170static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7171{
7172 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7173
7174 if (!state->initialized) {
7175 state->initialized = 1;
7176 state->fit_for_inline = loop_flag_is_zero(env);
7177 state->callback_subprogno = subprogno;
7178 return;
7179 }
7180
7181 if (!state->fit_for_inline)
7182 return;
7183
7184 state->fit_for_inline = (loop_flag_is_zero(env) &&
7185 state->callback_subprogno == subprogno);
7186}
7187
69c087ba
YS
7188static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7189 int *insn_idx_p)
17a52670 7190{
aef9d4a3 7191 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 7192 const struct bpf_func_proto *fn = NULL;
3c480732 7193 enum bpf_return_type ret_type;
c25b2ae1 7194 enum bpf_type_flag ret_flag;
638f5b90 7195 struct bpf_reg_state *regs;
33ff9823 7196 struct bpf_call_arg_meta meta;
69c087ba 7197 int insn_idx = *insn_idx_p;
969bf05e 7198 bool changes_data;
69c087ba 7199 int i, err, func_id;
17a52670
AS
7200
7201 /* find function prototype */
69c087ba 7202 func_id = insn->imm;
17a52670 7203 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
7204 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7205 func_id);
17a52670
AS
7206 return -EINVAL;
7207 }
7208
00176a34 7209 if (env->ops->get_func_proto)
5e43f899 7210 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 7211 if (!fn) {
61bd5218
JK
7212 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7213 func_id);
17a52670
AS
7214 return -EINVAL;
7215 }
7216
7217 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 7218 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 7219 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
7220 return -EINVAL;
7221 }
7222
eae2e83e
JO
7223 if (fn->allowed && !fn->allowed(env->prog)) {
7224 verbose(env, "helper call is not allowed in probe\n");
7225 return -EINVAL;
7226 }
7227
04514d13 7228 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 7229 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
7230 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7231 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7232 func_id_name(func_id), func_id);
7233 return -EINVAL;
7234 }
969bf05e 7235
33ff9823 7236 memset(&meta, 0, sizeof(meta));
36bbef52 7237 meta.pkt_access = fn->pkt_access;
33ff9823 7238
0c9a7a7e 7239 err = check_func_proto(fn, func_id);
435faee1 7240 if (err) {
61bd5218 7241 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 7242 func_id_name(func_id), func_id);
435faee1
DB
7243 return err;
7244 }
7245
d83525ca 7246 meta.func_id = func_id;
17a52670 7247 /* check args */
523a4cf4 7248 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 7249 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
7250 if (err)
7251 return err;
7252 }
17a52670 7253
c93552c4
DB
7254 err = record_func_map(env, &meta, func_id, insn_idx);
7255 if (err)
7256 return err;
7257
d2e4c1e6
DB
7258 err = record_func_key(env, &meta, func_id, insn_idx);
7259 if (err)
7260 return err;
7261
435faee1
DB
7262 /* Mark slots with STACK_MISC in case of raw mode, stack offset
7263 * is inferred from register state.
7264 */
7265 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
7266 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7267 BPF_WRITE, -1, false);
435faee1
DB
7268 if (err)
7269 return err;
7270 }
7271
8f14852e
KKD
7272 regs = cur_regs(env);
7273
97e03f52
JK
7274 if (meta.uninit_dynptr_regno) {
7275 /* we write BPF_DW bits (8 bytes) at a time */
7276 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7277 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7278 i, BPF_DW, BPF_WRITE, -1, false);
7279 if (err)
7280 return err;
7281 }
7282
7283 err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7284 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7285 insn_idx);
7286 if (err)
7287 return err;
7288 }
7289
8f14852e
KKD
7290 if (meta.release_regno) {
7291 err = -EINVAL;
97e03f52
JK
7292 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7293 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7294 else if (meta.ref_obj_id)
8f14852e
KKD
7295 err = release_reference(env, meta.ref_obj_id);
7296 /* meta.ref_obj_id can only be 0 if register that is meant to be
7297 * released is NULL, which must be > R0.
7298 */
7299 else if (register_is_null(&regs[meta.release_regno]))
7300 err = 0;
46f8bc92
MKL
7301 if (err) {
7302 verbose(env, "func %s#%d reference has not been acquired before\n",
7303 func_id_name(func_id), func_id);
fd978bf7 7304 return err;
46f8bc92 7305 }
fd978bf7
JS
7306 }
7307
e6f2dd0f
JK
7308 switch (func_id) {
7309 case BPF_FUNC_tail_call:
7310 err = check_reference_leak(env);
7311 if (err) {
7312 verbose(env, "tail_call would lead to reference leak\n");
7313 return err;
7314 }
7315 break;
7316 case BPF_FUNC_get_local_storage:
7317 /* check that flags argument in get_local_storage(map, flags) is 0,
7318 * this is required because get_local_storage() can't return an error.
7319 */
7320 if (!register_is_null(&regs[BPF_REG_2])) {
7321 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7322 return -EINVAL;
7323 }
7324 break;
7325 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
7326 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7327 set_map_elem_callback_state);
e6f2dd0f
JK
7328 break;
7329 case BPF_FUNC_timer_set_callback:
b00628b1
AS
7330 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7331 set_timer_callback_state);
e6f2dd0f
JK
7332 break;
7333 case BPF_FUNC_find_vma:
7c7e3d31
SL
7334 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7335 set_find_vma_callback_state);
e6f2dd0f
JK
7336 break;
7337 case BPF_FUNC_snprintf:
7b15523a 7338 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
7339 break;
7340 case BPF_FUNC_loop:
1ade2371 7341 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
7342 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7343 set_loop_callback_state);
7344 break;
263ae152
JK
7345 case BPF_FUNC_dynptr_from_mem:
7346 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7347 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7348 reg_type_str(env, regs[BPF_REG_1].type));
7349 return -EACCES;
7350 }
69fd337a
SF
7351 break;
7352 case BPF_FUNC_set_retval:
aef9d4a3
SF
7353 if (prog_type == BPF_PROG_TYPE_LSM &&
7354 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
7355 if (!env->prog->aux->attach_func_proto->type) {
7356 /* Make sure programs that attach to void
7357 * hooks don't try to modify return value.
7358 */
7359 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7360 return -EINVAL;
7361 }
7362 }
7363 break;
88374342
JK
7364 case BPF_FUNC_dynptr_data:
7365 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7366 if (arg_type_is_dynptr(fn->arg_type[i])) {
20571567
DV
7367 struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7368
88374342
JK
7369 if (meta.ref_obj_id) {
7370 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7371 return -EFAULT;
7372 }
20571567
DV
7373
7374 if (base_type(reg->type) != PTR_TO_DYNPTR)
7375 /* Find the id of the dynptr we're
7376 * tracking the reference of
7377 */
7378 meta.ref_obj_id = stack_slot_get_id(env, reg);
88374342
JK
7379 break;
7380 }
7381 }
7382 if (i == MAX_BPF_FUNC_REG_ARGS) {
7383 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7384 return -EFAULT;
7385 }
7386 break;
20571567
DV
7387 case BPF_FUNC_user_ringbuf_drain:
7388 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7389 set_user_ringbuf_callback_state);
7390 break;
7b15523a
FR
7391 }
7392
e6f2dd0f
JK
7393 if (err)
7394 return err;
7395
17a52670 7396 /* reset caller saved regs */
dc503a8a 7397 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7398 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7399 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7400 }
17a52670 7401
5327ed3d
JW
7402 /* helper call returns 64-bit value. */
7403 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7404
dc503a8a 7405 /* update return register (already marked as written above) */
3c480732 7406 ret_type = fn->ret_type;
0c9a7a7e
JK
7407 ret_flag = type_flag(ret_type);
7408
7409 switch (base_type(ret_type)) {
7410 case RET_INTEGER:
f1174f77 7411 /* sets type to SCALAR_VALUE */
61bd5218 7412 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
7413 break;
7414 case RET_VOID:
17a52670 7415 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
7416 break;
7417 case RET_PTR_TO_MAP_VALUE:
f1174f77 7418 /* There is no offset yet applied, variable or fixed */
61bd5218 7419 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
7420 /* remember map_ptr, so that check_map_access()
7421 * can check 'value_size' boundary of memory access
7422 * to map element returned from bpf_map_lookup_elem()
7423 */
33ff9823 7424 if (meta.map_ptr == NULL) {
61bd5218
JK
7425 verbose(env,
7426 "kernel subsystem misconfigured verifier\n");
17a52670
AS
7427 return -EINVAL;
7428 }
33ff9823 7429 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 7430 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
7431 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7432 if (!type_may_be_null(ret_type) &&
db559117 7433 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 7434 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 7435 }
0c9a7a7e
JK
7436 break;
7437 case RET_PTR_TO_SOCKET:
c64b7983 7438 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7439 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
7440 break;
7441 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 7442 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7443 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
7444 break;
7445 case RET_PTR_TO_TCP_SOCK:
655a51e5 7446 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7447 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e
JK
7448 break;
7449 case RET_PTR_TO_ALLOC_MEM:
457f4436 7450 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7451 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 7452 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
7453 break;
7454 case RET_PTR_TO_MEM_OR_BTF_ID:
7455 {
eaa6bcb7
HL
7456 const struct btf_type *t;
7457
7458 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 7459 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
7460 if (!btf_type_is_struct(t)) {
7461 u32 tsize;
7462 const struct btf_type *ret;
7463 const char *tname;
7464
7465 /* resolve the type size of ksym. */
22dc4a0f 7466 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 7467 if (IS_ERR(ret)) {
22dc4a0f 7468 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
7469 verbose(env, "unable to resolve the size of type '%s': %ld\n",
7470 tname, PTR_ERR(ret));
7471 return -EINVAL;
7472 }
c25b2ae1 7473 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
7474 regs[BPF_REG_0].mem_size = tsize;
7475 } else {
34d3a78c
HL
7476 /* MEM_RDONLY may be carried from ret_flag, but it
7477 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7478 * it will confuse the check of PTR_TO_BTF_ID in
7479 * check_mem_access().
7480 */
7481 ret_flag &= ~MEM_RDONLY;
7482
c25b2ae1 7483 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 7484 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
7485 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7486 }
0c9a7a7e
JK
7487 break;
7488 }
7489 case RET_PTR_TO_BTF_ID:
7490 {
c0a5a21c 7491 struct btf *ret_btf;
af7ec138
YS
7492 int ret_btf_id;
7493
7494 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7495 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 7496 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
7497 ret_btf = meta.kptr_field->kptr.btf;
7498 ret_btf_id = meta.kptr_field->kptr.btf_id;
c0a5a21c 7499 } else {
47e34cb7
DM
7500 if (fn->ret_btf_id == BPF_PTR_POISON) {
7501 verbose(env, "verifier internal error:");
7502 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7503 func_id_name(func_id));
7504 return -EINVAL;
7505 }
c0a5a21c
KKD
7506 ret_btf = btf_vmlinux;
7507 ret_btf_id = *fn->ret_btf_id;
7508 }
af7ec138 7509 if (ret_btf_id == 0) {
3c480732
HL
7510 verbose(env, "invalid return type %u of func %s#%d\n",
7511 base_type(ret_type), func_id_name(func_id),
7512 func_id);
af7ec138
YS
7513 return -EINVAL;
7514 }
c0a5a21c 7515 regs[BPF_REG_0].btf = ret_btf;
af7ec138 7516 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
7517 break;
7518 }
7519 default:
3c480732
HL
7520 verbose(env, "unknown return type %u of func %s#%d\n",
7521 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
7522 return -EINVAL;
7523 }
04fd61ab 7524
c25b2ae1 7525 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
7526 regs[BPF_REG_0].id = ++env->id_gen;
7527
b2d8ef19
DM
7528 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7529 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7530 func_id_name(func_id), func_id);
7531 return -EFAULT;
7532 }
7533
88374342 7534 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
7535 /* For release_reference() */
7536 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 7537 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
7538 int id = acquire_reference_state(env, insn_idx);
7539
7540 if (id < 0)
7541 return id;
7542 /* For mark_ptr_or_null_reg() */
7543 regs[BPF_REG_0].id = id;
7544 /* For release_reference() */
7545 regs[BPF_REG_0].ref_obj_id = id;
7546 }
1b986589 7547
849fa506
YS
7548 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7549
61bd5218 7550 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
7551 if (err)
7552 return err;
04fd61ab 7553
fa28dcb8
SL
7554 if ((func_id == BPF_FUNC_get_stack ||
7555 func_id == BPF_FUNC_get_task_stack) &&
7556 !env->prog->has_callchain_buf) {
c195651e
YS
7557 const char *err_str;
7558
7559#ifdef CONFIG_PERF_EVENTS
7560 err = get_callchain_buffers(sysctl_perf_event_max_stack);
7561 err_str = "cannot get callchain buffer for func %s#%d\n";
7562#else
7563 err = -ENOTSUPP;
7564 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7565#endif
7566 if (err) {
7567 verbose(env, err_str, func_id_name(func_id), func_id);
7568 return err;
7569 }
7570
7571 env->prog->has_callchain_buf = true;
7572 }
7573
5d99cb2c
SL
7574 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7575 env->prog->call_get_stack = true;
7576
9b99edca
JO
7577 if (func_id == BPF_FUNC_get_func_ip) {
7578 if (check_get_func_ip(env))
7579 return -ENOTSUPP;
7580 env->prog->call_get_func_ip = true;
7581 }
7582
969bf05e
AS
7583 if (changes_data)
7584 clear_all_pkt_pointers(env);
7585 return 0;
7586}
7587
e6ac2450
MKL
7588/* mark_btf_func_reg_size() is used when the reg size is determined by
7589 * the BTF func_proto's return value size and argument.
7590 */
7591static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7592 size_t reg_size)
7593{
7594 struct bpf_reg_state *reg = &cur_regs(env)[regno];
7595
7596 if (regno == BPF_REG_0) {
7597 /* Function return value */
7598 reg->live |= REG_LIVE_WRITTEN;
7599 reg->subreg_def = reg_size == sizeof(u64) ?
7600 DEF_NOT_SUBREG : env->insn_idx + 1;
7601 } else {
7602 /* Function argument */
7603 if (reg_size == sizeof(u64)) {
7604 mark_insn_zext(env, reg);
7605 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7606 } else {
7607 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7608 }
7609 }
7610}
7611
5c073f26
KKD
7612static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7613 int *insn_idx_p)
e6ac2450
MKL
7614{
7615 const struct btf_type *t, *func, *func_proto, *ptr_type;
7616 struct bpf_reg_state *regs = cur_regs(env);
eb1f7f71 7617 struct bpf_kfunc_arg_meta meta = { 0 };
e6ac2450
MKL
7618 const char *func_name, *ptr_type_name;
7619 u32 i, nargs, func_id, ptr_type_id;
5c073f26 7620 int err, insn_idx = *insn_idx_p;
e6ac2450 7621 const struct btf_param *args;
2357672c 7622 struct btf *desc_btf;
a4703e31 7623 u32 *kfunc_flags;
5c073f26 7624 bool acq;
e6ac2450 7625
a5d82727
KKD
7626 /* skip for now, but return error when we find this in fixup_kfunc_call */
7627 if (!insn->imm)
7628 return 0;
7629
43bf0878 7630 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
7631 if (IS_ERR(desc_btf))
7632 return PTR_ERR(desc_btf);
7633
e6ac2450 7634 func_id = insn->imm;
2357672c
KKD
7635 func = btf_type_by_id(desc_btf, func_id);
7636 func_name = btf_name_by_offset(desc_btf, func->name_off);
7637 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 7638
a4703e31
KKD
7639 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7640 if (!kfunc_flags) {
e6ac2450
MKL
7641 verbose(env, "calling kernel function %s is not allowed\n",
7642 func_name);
7643 return -EACCES;
7644 }
4dd48c6f
AS
7645 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
7646 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
7647 return -EACCES;
7648 }
7649
a4703e31 7650 acq = *kfunc_flags & KF_ACQUIRE;
5c073f26 7651
eb1f7f71
BT
7652 meta.flags = *kfunc_flags;
7653
e6ac2450 7654 /* Check the arguments */
eb1f7f71 7655 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
5c073f26 7656 if (err < 0)
e6ac2450 7657 return err;
5c073f26
KKD
7658 /* In case of release function, we get register number of refcounted
7659 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7660 */
7661 if (err) {
7662 err = release_reference(env, regs[err].ref_obj_id);
7663 if (err) {
7664 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7665 func_name, func_id);
7666 return err;
7667 }
7668 }
e6ac2450
MKL
7669
7670 for (i = 0; i < CALLER_SAVED_REGS; i++)
7671 mark_reg_not_init(env, regs, caller_saved[i]);
7672
7673 /* Check return type */
2357672c 7674 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
5c073f26 7675
eb1f7f71 7676 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
5c073f26
KKD
7677 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7678 return -EINVAL;
7679 }
7680
e6ac2450
MKL
7681 if (btf_type_is_scalar(t)) {
7682 mark_reg_unknown(env, regs, BPF_REG_0);
7683 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7684 } else if (btf_type_is_ptr(t)) {
2357672c 7685 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
7686 &ptr_type_id);
7687 if (!btf_type_is_struct(ptr_type)) {
eb1f7f71
BT
7688 if (!meta.r0_size) {
7689 ptr_type_name = btf_name_by_offset(desc_btf,
7690 ptr_type->name_off);
7691 verbose(env,
7692 "kernel function %s returns pointer type %s %s is not supported\n",
7693 func_name,
7694 btf_type_str(ptr_type),
7695 ptr_type_name);
7696 return -EINVAL;
7697 }
7698
7699 mark_reg_known_zero(env, regs, BPF_REG_0);
7700 regs[BPF_REG_0].type = PTR_TO_MEM;
7701 regs[BPF_REG_0].mem_size = meta.r0_size;
7702
7703 if (meta.r0_rdonly)
7704 regs[BPF_REG_0].type |= MEM_RDONLY;
7705
7706 /* Ensures we don't access the memory after a release_reference() */
7707 if (meta.ref_obj_id)
7708 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7709 } else {
7710 mark_reg_known_zero(env, regs, BPF_REG_0);
7711 regs[BPF_REG_0].btf = desc_btf;
7712 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7713 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 7714 }
a4703e31 7715 if (*kfunc_flags & KF_RET_NULL) {
5c073f26
KKD
7716 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7717 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7718 regs[BPF_REG_0].id = ++env->id_gen;
7719 }
e6ac2450 7720 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
5c073f26
KKD
7721 if (acq) {
7722 int id = acquire_reference_state(env, insn_idx);
7723
7724 if (id < 0)
7725 return id;
7726 regs[BPF_REG_0].id = id;
7727 regs[BPF_REG_0].ref_obj_id = id;
7728 }
e6ac2450
MKL
7729 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7730
7731 nargs = btf_type_vlen(func_proto);
7732 args = (const struct btf_param *)(func_proto + 1);
7733 for (i = 0; i < nargs; i++) {
7734 u32 regno = i + 1;
7735
2357672c 7736 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
7737 if (btf_type_is_ptr(t))
7738 mark_btf_func_reg_size(env, regno, sizeof(void *));
7739 else
7740 /* scalar. ensured by btf_check_kfunc_arg_match() */
7741 mark_btf_func_reg_size(env, regno, t->size);
7742 }
7743
7744 return 0;
7745}
7746
b03c9f9f
EC
7747static bool signed_add_overflows(s64 a, s64 b)
7748{
7749 /* Do the add in u64, where overflow is well-defined */
7750 s64 res = (s64)((u64)a + (u64)b);
7751
7752 if (b < 0)
7753 return res > a;
7754 return res < a;
7755}
7756
bc895e8b 7757static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
7758{
7759 /* Do the add in u32, where overflow is well-defined */
7760 s32 res = (s32)((u32)a + (u32)b);
7761
7762 if (b < 0)
7763 return res > a;
7764 return res < a;
7765}
7766
bc895e8b 7767static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
7768{
7769 /* Do the sub in u64, where overflow is well-defined */
7770 s64 res = (s64)((u64)a - (u64)b);
7771
7772 if (b < 0)
7773 return res < a;
7774 return res > a;
969bf05e
AS
7775}
7776
3f50f132
JF
7777static bool signed_sub32_overflows(s32 a, s32 b)
7778{
bc895e8b 7779 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
7780 s32 res = (s32)((u32)a - (u32)b);
7781
7782 if (b < 0)
7783 return res < a;
7784 return res > a;
7785}
7786
bb7f0f98
AS
7787static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7788 const struct bpf_reg_state *reg,
7789 enum bpf_reg_type type)
7790{
7791 bool known = tnum_is_const(reg->var_off);
7792 s64 val = reg->var_off.value;
7793 s64 smin = reg->smin_value;
7794
7795 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7796 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 7797 reg_type_str(env, type), val);
bb7f0f98
AS
7798 return false;
7799 }
7800
7801 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7802 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 7803 reg_type_str(env, type), reg->off);
bb7f0f98
AS
7804 return false;
7805 }
7806
7807 if (smin == S64_MIN) {
7808 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 7809 reg_type_str(env, type));
bb7f0f98
AS
7810 return false;
7811 }
7812
7813 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7814 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 7815 smin, reg_type_str(env, type));
bb7f0f98
AS
7816 return false;
7817 }
7818
7819 return true;
7820}
7821
a6aaece0
DB
7822enum {
7823 REASON_BOUNDS = -1,
7824 REASON_TYPE = -2,
7825 REASON_PATHS = -3,
7826 REASON_LIMIT = -4,
7827 REASON_STACK = -5,
7828};
7829
979d63d5 7830static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 7831 u32 *alu_limit, bool mask_to_left)
979d63d5 7832{
7fedb63a 7833 u32 max = 0, ptr_limit = 0;
979d63d5
DB
7834
7835 switch (ptr_reg->type) {
7836 case PTR_TO_STACK:
1b1597e6 7837 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
7838 * left direction, see BPF_REG_FP. Also, unknown scalar
7839 * offset where we would need to deal with min/max bounds is
7840 * currently prohibited for unprivileged.
1b1597e6
PK
7841 */
7842 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 7843 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 7844 break;
979d63d5 7845 case PTR_TO_MAP_VALUE:
1b1597e6 7846 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
7847 ptr_limit = (mask_to_left ?
7848 ptr_reg->smin_value :
7849 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 7850 break;
979d63d5 7851 default:
a6aaece0 7852 return REASON_TYPE;
979d63d5 7853 }
b658bbb8
DB
7854
7855 if (ptr_limit >= max)
a6aaece0 7856 return REASON_LIMIT;
b658bbb8
DB
7857 *alu_limit = ptr_limit;
7858 return 0;
979d63d5
DB
7859}
7860
d3bd7413
DB
7861static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7862 const struct bpf_insn *insn)
7863{
2c78ee89 7864 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
7865}
7866
7867static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7868 u32 alu_state, u32 alu_limit)
7869{
7870 /* If we arrived here from different branches with different
7871 * state or limits to sanitize, then this won't work.
7872 */
7873 if (aux->alu_state &&
7874 (aux->alu_state != alu_state ||
7875 aux->alu_limit != alu_limit))
a6aaece0 7876 return REASON_PATHS;
d3bd7413 7877
e6ac5933 7878 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
7879 aux->alu_state = alu_state;
7880 aux->alu_limit = alu_limit;
7881 return 0;
7882}
7883
7884static int sanitize_val_alu(struct bpf_verifier_env *env,
7885 struct bpf_insn *insn)
7886{
7887 struct bpf_insn_aux_data *aux = cur_aux(env);
7888
7889 if (can_skip_alu_sanitation(env, insn))
7890 return 0;
7891
7892 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7893}
7894
f5288193
DB
7895static bool sanitize_needed(u8 opcode)
7896{
7897 return opcode == BPF_ADD || opcode == BPF_SUB;
7898}
7899
3d0220f6
DB
7900struct bpf_sanitize_info {
7901 struct bpf_insn_aux_data aux;
bb01a1bb 7902 bool mask_to_left;
3d0220f6
DB
7903};
7904
9183671a
DB
7905static struct bpf_verifier_state *
7906sanitize_speculative_path(struct bpf_verifier_env *env,
7907 const struct bpf_insn *insn,
7908 u32 next_idx, u32 curr_idx)
7909{
7910 struct bpf_verifier_state *branch;
7911 struct bpf_reg_state *regs;
7912
7913 branch = push_stack(env, next_idx, curr_idx, true);
7914 if (branch && insn) {
7915 regs = branch->frame[branch->curframe]->regs;
7916 if (BPF_SRC(insn->code) == BPF_K) {
7917 mark_reg_unknown(env, regs, insn->dst_reg);
7918 } else if (BPF_SRC(insn->code) == BPF_X) {
7919 mark_reg_unknown(env, regs, insn->dst_reg);
7920 mark_reg_unknown(env, regs, insn->src_reg);
7921 }
7922 }
7923 return branch;
7924}
7925
979d63d5
DB
7926static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7927 struct bpf_insn *insn,
7928 const struct bpf_reg_state *ptr_reg,
6f55b2f2 7929 const struct bpf_reg_state *off_reg,
979d63d5 7930 struct bpf_reg_state *dst_reg,
3d0220f6 7931 struct bpf_sanitize_info *info,
7fedb63a 7932 const bool commit_window)
979d63d5 7933{
3d0220f6 7934 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 7935 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 7936 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 7937 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
7938 bool ptr_is_dst_reg = ptr_reg == dst_reg;
7939 u8 opcode = BPF_OP(insn->code);
7940 u32 alu_state, alu_limit;
7941 struct bpf_reg_state tmp;
7942 bool ret;
f232326f 7943 int err;
979d63d5 7944
d3bd7413 7945 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
7946 return 0;
7947
7948 /* We already marked aux for masking from non-speculative
7949 * paths, thus we got here in the first place. We only care
7950 * to explore bad access from here.
7951 */
7952 if (vstate->speculative)
7953 goto do_sim;
7954
bb01a1bb
DB
7955 if (!commit_window) {
7956 if (!tnum_is_const(off_reg->var_off) &&
7957 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7958 return REASON_BOUNDS;
7959
7960 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
7961 (opcode == BPF_SUB && !off_is_neg);
7962 }
7963
7964 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
7965 if (err < 0)
7966 return err;
7967
7fedb63a
DB
7968 if (commit_window) {
7969 /* In commit phase we narrow the masking window based on
7970 * the observed pointer move after the simulated operation.
7971 */
3d0220f6
DB
7972 alu_state = info->aux.alu_state;
7973 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
7974 } else {
7975 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 7976 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
7977 alu_state |= ptr_is_dst_reg ?
7978 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
7979
7980 /* Limit pruning on unknown scalars to enable deep search for
7981 * potential masking differences from other program paths.
7982 */
7983 if (!off_is_imm)
7984 env->explore_alu_limits = true;
7fedb63a
DB
7985 }
7986
f232326f
PK
7987 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7988 if (err < 0)
7989 return err;
979d63d5 7990do_sim:
7fedb63a
DB
7991 /* If we're in commit phase, we're done here given we already
7992 * pushed the truncated dst_reg into the speculative verification
7993 * stack.
a7036191
DB
7994 *
7995 * Also, when register is a known constant, we rewrite register-based
7996 * operation to immediate-based, and thus do not need masking (and as
7997 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7998 */
a7036191 7999 if (commit_window || off_is_imm)
7fedb63a
DB
8000 return 0;
8001
979d63d5
DB
8002 /* Simulate and find potential out-of-bounds access under
8003 * speculative execution from truncation as a result of
8004 * masking when off was not within expected range. If off
8005 * sits in dst, then we temporarily need to move ptr there
8006 * to simulate dst (== 0) +/-= ptr. Needed, for example,
8007 * for cases where we use K-based arithmetic in one direction
8008 * and truncated reg-based in the other in order to explore
8009 * bad access.
8010 */
8011 if (!ptr_is_dst_reg) {
8012 tmp = *dst_reg;
8013 *dst_reg = *ptr_reg;
8014 }
9183671a
DB
8015 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
8016 env->insn_idx);
0803278b 8017 if (!ptr_is_dst_reg && ret)
979d63d5 8018 *dst_reg = tmp;
a6aaece0
DB
8019 return !ret ? REASON_STACK : 0;
8020}
8021
fe9a5ca7
DB
8022static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
8023{
8024 struct bpf_verifier_state *vstate = env->cur_state;
8025
8026 /* If we simulate paths under speculation, we don't update the
8027 * insn as 'seen' such that when we verify unreachable paths in
8028 * the non-speculative domain, sanitize_dead_code() can still
8029 * rewrite/sanitize them.
8030 */
8031 if (!vstate->speculative)
8032 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8033}
8034
a6aaece0
DB
8035static int sanitize_err(struct bpf_verifier_env *env,
8036 const struct bpf_insn *insn, int reason,
8037 const struct bpf_reg_state *off_reg,
8038 const struct bpf_reg_state *dst_reg)
8039{
8040 static const char *err = "pointer arithmetic with it prohibited for !root";
8041 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
8042 u32 dst = insn->dst_reg, src = insn->src_reg;
8043
8044 switch (reason) {
8045 case REASON_BOUNDS:
8046 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
8047 off_reg == dst_reg ? dst : src, err);
8048 break;
8049 case REASON_TYPE:
8050 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
8051 off_reg == dst_reg ? src : dst, err);
8052 break;
8053 case REASON_PATHS:
8054 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
8055 dst, op, err);
8056 break;
8057 case REASON_LIMIT:
8058 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
8059 dst, op, err);
8060 break;
8061 case REASON_STACK:
8062 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
8063 dst, err);
8064 break;
8065 default:
8066 verbose(env, "verifier internal error: unknown reason (%d)\n",
8067 reason);
8068 break;
8069 }
8070
8071 return -EACCES;
979d63d5
DB
8072}
8073
01f810ac
AM
8074/* check that stack access falls within stack limits and that 'reg' doesn't
8075 * have a variable offset.
8076 *
8077 * Variable offset is prohibited for unprivileged mode for simplicity since it
8078 * requires corresponding support in Spectre masking for stack ALU. See also
8079 * retrieve_ptr_limit().
8080 *
8081 *
8082 * 'off' includes 'reg->off'.
8083 */
8084static int check_stack_access_for_ptr_arithmetic(
8085 struct bpf_verifier_env *env,
8086 int regno,
8087 const struct bpf_reg_state *reg,
8088 int off)
8089{
8090 if (!tnum_is_const(reg->var_off)) {
8091 char tn_buf[48];
8092
8093 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8094 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8095 regno, tn_buf, off);
8096 return -EACCES;
8097 }
8098
8099 if (off >= 0 || off < -MAX_BPF_STACK) {
8100 verbose(env, "R%d stack pointer arithmetic goes out of range, "
8101 "prohibited for !root; off=%d\n", regno, off);
8102 return -EACCES;
8103 }
8104
8105 return 0;
8106}
8107
073815b7
DB
8108static int sanitize_check_bounds(struct bpf_verifier_env *env,
8109 const struct bpf_insn *insn,
8110 const struct bpf_reg_state *dst_reg)
8111{
8112 u32 dst = insn->dst_reg;
8113
8114 /* For unprivileged we require that resulting offset must be in bounds
8115 * in order to be able to sanitize access later on.
8116 */
8117 if (env->bypass_spec_v1)
8118 return 0;
8119
8120 switch (dst_reg->type) {
8121 case PTR_TO_STACK:
8122 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8123 dst_reg->off + dst_reg->var_off.value))
8124 return -EACCES;
8125 break;
8126 case PTR_TO_MAP_VALUE:
61df10c7 8127 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
8128 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8129 "prohibited for !root\n", dst);
8130 return -EACCES;
8131 }
8132 break;
8133 default:
8134 break;
8135 }
8136
8137 return 0;
8138}
01f810ac 8139
f1174f77 8140/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
8141 * Caller should also handle BPF_MOV case separately.
8142 * If we return -EACCES, caller may want to try again treating pointer as a
8143 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
8144 */
8145static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8146 struct bpf_insn *insn,
8147 const struct bpf_reg_state *ptr_reg,
8148 const struct bpf_reg_state *off_reg)
969bf05e 8149{
f4d7e40a
AS
8150 struct bpf_verifier_state *vstate = env->cur_state;
8151 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8152 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 8153 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
8154 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8155 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8156 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8157 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 8158 struct bpf_sanitize_info info = {};
969bf05e 8159 u8 opcode = BPF_OP(insn->code);
24c109bb 8160 u32 dst = insn->dst_reg;
979d63d5 8161 int ret;
969bf05e 8162
f1174f77 8163 dst_reg = &regs[dst];
969bf05e 8164
6f16101e
DB
8165 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8166 smin_val > smax_val || umin_val > umax_val) {
8167 /* Taint dst register if offset had invalid bounds derived from
8168 * e.g. dead branches.
8169 */
f54c7898 8170 __mark_reg_unknown(env, dst_reg);
6f16101e 8171 return 0;
f1174f77
EC
8172 }
8173
8174 if (BPF_CLASS(insn->code) != BPF_ALU64) {
8175 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
8176 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8177 __mark_reg_unknown(env, dst_reg);
8178 return 0;
8179 }
8180
82abbf8d
AS
8181 verbose(env,
8182 "R%d 32-bit pointer arithmetic prohibited\n",
8183 dst);
f1174f77 8184 return -EACCES;
969bf05e
AS
8185 }
8186
c25b2ae1 8187 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 8188 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 8189 dst, reg_type_str(env, ptr_reg->type));
f1174f77 8190 return -EACCES;
c25b2ae1
HL
8191 }
8192
8193 switch (base_type(ptr_reg->type)) {
aad2eeaf 8194 case CONST_PTR_TO_MAP:
7c696732
YS
8195 /* smin_val represents the known value */
8196 if (known && smin_val == 0 && opcode == BPF_ADD)
8197 break;
8731745e 8198 fallthrough;
aad2eeaf 8199 case PTR_TO_PACKET_END:
c64b7983 8200 case PTR_TO_SOCKET:
46f8bc92 8201 case PTR_TO_SOCK_COMMON:
655a51e5 8202 case PTR_TO_TCP_SOCK:
fada7fdc 8203 case PTR_TO_XDP_SOCK:
aad2eeaf 8204 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 8205 dst, reg_type_str(env, ptr_reg->type));
f1174f77 8206 return -EACCES;
aad2eeaf
JS
8207 default:
8208 break;
f1174f77
EC
8209 }
8210
8211 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8212 * The id may be overwritten later if we create a new variable offset.
969bf05e 8213 */
f1174f77
EC
8214 dst_reg->type = ptr_reg->type;
8215 dst_reg->id = ptr_reg->id;
969bf05e 8216
bb7f0f98
AS
8217 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8218 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8219 return -EINVAL;
8220
3f50f132
JF
8221 /* pointer types do not carry 32-bit bounds at the moment. */
8222 __mark_reg32_unbounded(dst_reg);
8223
7fedb63a
DB
8224 if (sanitize_needed(opcode)) {
8225 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 8226 &info, false);
a6aaece0
DB
8227 if (ret < 0)
8228 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 8229 }
a6aaece0 8230
f1174f77
EC
8231 switch (opcode) {
8232 case BPF_ADD:
8233 /* We can take a fixed offset as long as it doesn't overflow
8234 * the s32 'off' field
969bf05e 8235 */
b03c9f9f
EC
8236 if (known && (ptr_reg->off + smin_val ==
8237 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 8238 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
8239 dst_reg->smin_value = smin_ptr;
8240 dst_reg->smax_value = smax_ptr;
8241 dst_reg->umin_value = umin_ptr;
8242 dst_reg->umax_value = umax_ptr;
f1174f77 8243 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 8244 dst_reg->off = ptr_reg->off + smin_val;
0962590e 8245 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
8246 break;
8247 }
f1174f77
EC
8248 /* A new variable offset is created. Note that off_reg->off
8249 * == 0, since it's a scalar.
8250 * dst_reg gets the pointer type and since some positive
8251 * integer value was added to the pointer, give it a new 'id'
8252 * if it's a PTR_TO_PACKET.
8253 * this creates a new 'base' pointer, off_reg (variable) gets
8254 * added into the variable offset, and we copy the fixed offset
8255 * from ptr_reg.
969bf05e 8256 */
b03c9f9f
EC
8257 if (signed_add_overflows(smin_ptr, smin_val) ||
8258 signed_add_overflows(smax_ptr, smax_val)) {
8259 dst_reg->smin_value = S64_MIN;
8260 dst_reg->smax_value = S64_MAX;
8261 } else {
8262 dst_reg->smin_value = smin_ptr + smin_val;
8263 dst_reg->smax_value = smax_ptr + smax_val;
8264 }
8265 if (umin_ptr + umin_val < umin_ptr ||
8266 umax_ptr + umax_val < umax_ptr) {
8267 dst_reg->umin_value = 0;
8268 dst_reg->umax_value = U64_MAX;
8269 } else {
8270 dst_reg->umin_value = umin_ptr + umin_val;
8271 dst_reg->umax_value = umax_ptr + umax_val;
8272 }
f1174f77
EC
8273 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8274 dst_reg->off = ptr_reg->off;
0962590e 8275 dst_reg->raw = ptr_reg->raw;
de8f3a83 8276 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
8277 dst_reg->id = ++env->id_gen;
8278 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 8279 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
8280 }
8281 break;
8282 case BPF_SUB:
8283 if (dst_reg == off_reg) {
8284 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
8285 verbose(env, "R%d tried to subtract pointer from scalar\n",
8286 dst);
f1174f77
EC
8287 return -EACCES;
8288 }
8289 /* We don't allow subtraction from FP, because (according to
8290 * test_verifier.c test "invalid fp arithmetic", JITs might not
8291 * be able to deal with it.
969bf05e 8292 */
f1174f77 8293 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
8294 verbose(env, "R%d subtraction from stack pointer prohibited\n",
8295 dst);
f1174f77
EC
8296 return -EACCES;
8297 }
b03c9f9f
EC
8298 if (known && (ptr_reg->off - smin_val ==
8299 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 8300 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
8301 dst_reg->smin_value = smin_ptr;
8302 dst_reg->smax_value = smax_ptr;
8303 dst_reg->umin_value = umin_ptr;
8304 dst_reg->umax_value = umax_ptr;
f1174f77
EC
8305 dst_reg->var_off = ptr_reg->var_off;
8306 dst_reg->id = ptr_reg->id;
b03c9f9f 8307 dst_reg->off = ptr_reg->off - smin_val;
0962590e 8308 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
8309 break;
8310 }
f1174f77
EC
8311 /* A new variable offset is created. If the subtrahend is known
8312 * nonnegative, then any reg->range we had before is still good.
969bf05e 8313 */
b03c9f9f
EC
8314 if (signed_sub_overflows(smin_ptr, smax_val) ||
8315 signed_sub_overflows(smax_ptr, smin_val)) {
8316 /* Overflow possible, we know nothing */
8317 dst_reg->smin_value = S64_MIN;
8318 dst_reg->smax_value = S64_MAX;
8319 } else {
8320 dst_reg->smin_value = smin_ptr - smax_val;
8321 dst_reg->smax_value = smax_ptr - smin_val;
8322 }
8323 if (umin_ptr < umax_val) {
8324 /* Overflow possible, we know nothing */
8325 dst_reg->umin_value = 0;
8326 dst_reg->umax_value = U64_MAX;
8327 } else {
8328 /* Cannot overflow (as long as bounds are consistent) */
8329 dst_reg->umin_value = umin_ptr - umax_val;
8330 dst_reg->umax_value = umax_ptr - umin_val;
8331 }
f1174f77
EC
8332 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8333 dst_reg->off = ptr_reg->off;
0962590e 8334 dst_reg->raw = ptr_reg->raw;
de8f3a83 8335 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
8336 dst_reg->id = ++env->id_gen;
8337 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 8338 if (smin_val < 0)
22dc4a0f 8339 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 8340 }
f1174f77
EC
8341 break;
8342 case BPF_AND:
8343 case BPF_OR:
8344 case BPF_XOR:
82abbf8d
AS
8345 /* bitwise ops on pointers are troublesome, prohibit. */
8346 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8347 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
8348 return -EACCES;
8349 default:
8350 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
8351 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8352 dst, bpf_alu_string[opcode >> 4]);
f1174f77 8353 return -EACCES;
43188702
JF
8354 }
8355
bb7f0f98
AS
8356 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8357 return -EINVAL;
3844d153 8358 reg_bounds_sync(dst_reg);
073815b7
DB
8359 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8360 return -EACCES;
7fedb63a
DB
8361 if (sanitize_needed(opcode)) {
8362 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 8363 &info, true);
7fedb63a
DB
8364 if (ret < 0)
8365 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
8366 }
8367
43188702
JF
8368 return 0;
8369}
8370
3f50f132
JF
8371static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8372 struct bpf_reg_state *src_reg)
8373{
8374 s32 smin_val = src_reg->s32_min_value;
8375 s32 smax_val = src_reg->s32_max_value;
8376 u32 umin_val = src_reg->u32_min_value;
8377 u32 umax_val = src_reg->u32_max_value;
8378
8379 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8380 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8381 dst_reg->s32_min_value = S32_MIN;
8382 dst_reg->s32_max_value = S32_MAX;
8383 } else {
8384 dst_reg->s32_min_value += smin_val;
8385 dst_reg->s32_max_value += smax_val;
8386 }
8387 if (dst_reg->u32_min_value + umin_val < umin_val ||
8388 dst_reg->u32_max_value + umax_val < umax_val) {
8389 dst_reg->u32_min_value = 0;
8390 dst_reg->u32_max_value = U32_MAX;
8391 } else {
8392 dst_reg->u32_min_value += umin_val;
8393 dst_reg->u32_max_value += umax_val;
8394 }
8395}
8396
07cd2631
JF
8397static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8398 struct bpf_reg_state *src_reg)
8399{
8400 s64 smin_val = src_reg->smin_value;
8401 s64 smax_val = src_reg->smax_value;
8402 u64 umin_val = src_reg->umin_value;
8403 u64 umax_val = src_reg->umax_value;
8404
8405 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8406 signed_add_overflows(dst_reg->smax_value, smax_val)) {
8407 dst_reg->smin_value = S64_MIN;
8408 dst_reg->smax_value = S64_MAX;
8409 } else {
8410 dst_reg->smin_value += smin_val;
8411 dst_reg->smax_value += smax_val;
8412 }
8413 if (dst_reg->umin_value + umin_val < umin_val ||
8414 dst_reg->umax_value + umax_val < umax_val) {
8415 dst_reg->umin_value = 0;
8416 dst_reg->umax_value = U64_MAX;
8417 } else {
8418 dst_reg->umin_value += umin_val;
8419 dst_reg->umax_value += umax_val;
8420 }
3f50f132
JF
8421}
8422
8423static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8424 struct bpf_reg_state *src_reg)
8425{
8426 s32 smin_val = src_reg->s32_min_value;
8427 s32 smax_val = src_reg->s32_max_value;
8428 u32 umin_val = src_reg->u32_min_value;
8429 u32 umax_val = src_reg->u32_max_value;
8430
8431 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8432 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8433 /* Overflow possible, we know nothing */
8434 dst_reg->s32_min_value = S32_MIN;
8435 dst_reg->s32_max_value = S32_MAX;
8436 } else {
8437 dst_reg->s32_min_value -= smax_val;
8438 dst_reg->s32_max_value -= smin_val;
8439 }
8440 if (dst_reg->u32_min_value < umax_val) {
8441 /* Overflow possible, we know nothing */
8442 dst_reg->u32_min_value = 0;
8443 dst_reg->u32_max_value = U32_MAX;
8444 } else {
8445 /* Cannot overflow (as long as bounds are consistent) */
8446 dst_reg->u32_min_value -= umax_val;
8447 dst_reg->u32_max_value -= umin_val;
8448 }
07cd2631
JF
8449}
8450
8451static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8452 struct bpf_reg_state *src_reg)
8453{
8454 s64 smin_val = src_reg->smin_value;
8455 s64 smax_val = src_reg->smax_value;
8456 u64 umin_val = src_reg->umin_value;
8457 u64 umax_val = src_reg->umax_value;
8458
8459 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8460 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8461 /* Overflow possible, we know nothing */
8462 dst_reg->smin_value = S64_MIN;
8463 dst_reg->smax_value = S64_MAX;
8464 } else {
8465 dst_reg->smin_value -= smax_val;
8466 dst_reg->smax_value -= smin_val;
8467 }
8468 if (dst_reg->umin_value < umax_val) {
8469 /* Overflow possible, we know nothing */
8470 dst_reg->umin_value = 0;
8471 dst_reg->umax_value = U64_MAX;
8472 } else {
8473 /* Cannot overflow (as long as bounds are consistent) */
8474 dst_reg->umin_value -= umax_val;
8475 dst_reg->umax_value -= umin_val;
8476 }
3f50f132
JF
8477}
8478
8479static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8480 struct bpf_reg_state *src_reg)
8481{
8482 s32 smin_val = src_reg->s32_min_value;
8483 u32 umin_val = src_reg->u32_min_value;
8484 u32 umax_val = src_reg->u32_max_value;
8485
8486 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8487 /* Ain't nobody got time to multiply that sign */
8488 __mark_reg32_unbounded(dst_reg);
8489 return;
8490 }
8491 /* Both values are positive, so we can work with unsigned and
8492 * copy the result to signed (unless it exceeds S32_MAX).
8493 */
8494 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8495 /* Potential overflow, we know nothing */
8496 __mark_reg32_unbounded(dst_reg);
8497 return;
8498 }
8499 dst_reg->u32_min_value *= umin_val;
8500 dst_reg->u32_max_value *= umax_val;
8501 if (dst_reg->u32_max_value > S32_MAX) {
8502 /* Overflow possible, we know nothing */
8503 dst_reg->s32_min_value = S32_MIN;
8504 dst_reg->s32_max_value = S32_MAX;
8505 } else {
8506 dst_reg->s32_min_value = dst_reg->u32_min_value;
8507 dst_reg->s32_max_value = dst_reg->u32_max_value;
8508 }
07cd2631
JF
8509}
8510
8511static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8512 struct bpf_reg_state *src_reg)
8513{
8514 s64 smin_val = src_reg->smin_value;
8515 u64 umin_val = src_reg->umin_value;
8516 u64 umax_val = src_reg->umax_value;
8517
07cd2631
JF
8518 if (smin_val < 0 || dst_reg->smin_value < 0) {
8519 /* Ain't nobody got time to multiply that sign */
3f50f132 8520 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
8521 return;
8522 }
8523 /* Both values are positive, so we can work with unsigned and
8524 * copy the result to signed (unless it exceeds S64_MAX).
8525 */
8526 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8527 /* Potential overflow, we know nothing */
3f50f132 8528 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
8529 return;
8530 }
8531 dst_reg->umin_value *= umin_val;
8532 dst_reg->umax_value *= umax_val;
8533 if (dst_reg->umax_value > S64_MAX) {
8534 /* Overflow possible, we know nothing */
8535 dst_reg->smin_value = S64_MIN;
8536 dst_reg->smax_value = S64_MAX;
8537 } else {
8538 dst_reg->smin_value = dst_reg->umin_value;
8539 dst_reg->smax_value = dst_reg->umax_value;
8540 }
8541}
8542
3f50f132
JF
8543static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8544 struct bpf_reg_state *src_reg)
8545{
8546 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8547 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8548 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8549 s32 smin_val = src_reg->s32_min_value;
8550 u32 umax_val = src_reg->u32_max_value;
8551
049c4e13
DB
8552 if (src_known && dst_known) {
8553 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 8554 return;
049c4e13 8555 }
3f50f132
JF
8556
8557 /* We get our minimum from the var_off, since that's inherently
8558 * bitwise. Our maximum is the minimum of the operands' maxima.
8559 */
8560 dst_reg->u32_min_value = var32_off.value;
8561 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8562 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8563 /* Lose signed bounds when ANDing negative numbers,
8564 * ain't nobody got time for that.
8565 */
8566 dst_reg->s32_min_value = S32_MIN;
8567 dst_reg->s32_max_value = S32_MAX;
8568 } else {
8569 /* ANDing two positives gives a positive, so safe to
8570 * cast result into s64.
8571 */
8572 dst_reg->s32_min_value = dst_reg->u32_min_value;
8573 dst_reg->s32_max_value = dst_reg->u32_max_value;
8574 }
3f50f132
JF
8575}
8576
07cd2631
JF
8577static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8578 struct bpf_reg_state *src_reg)
8579{
3f50f132
JF
8580 bool src_known = tnum_is_const(src_reg->var_off);
8581 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
8582 s64 smin_val = src_reg->smin_value;
8583 u64 umax_val = src_reg->umax_value;
8584
3f50f132 8585 if (src_known && dst_known) {
4fbb38a3 8586 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
8587 return;
8588 }
8589
07cd2631
JF
8590 /* We get our minimum from the var_off, since that's inherently
8591 * bitwise. Our maximum is the minimum of the operands' maxima.
8592 */
07cd2631
JF
8593 dst_reg->umin_value = dst_reg->var_off.value;
8594 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8595 if (dst_reg->smin_value < 0 || smin_val < 0) {
8596 /* Lose signed bounds when ANDing negative numbers,
8597 * ain't nobody got time for that.
8598 */
8599 dst_reg->smin_value = S64_MIN;
8600 dst_reg->smax_value = S64_MAX;
8601 } else {
8602 /* ANDing two positives gives a positive, so safe to
8603 * cast result into s64.
8604 */
8605 dst_reg->smin_value = dst_reg->umin_value;
8606 dst_reg->smax_value = dst_reg->umax_value;
8607 }
8608 /* We may learn something more from the var_off */
8609 __update_reg_bounds(dst_reg);
8610}
8611
3f50f132
JF
8612static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8613 struct bpf_reg_state *src_reg)
8614{
8615 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8616 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8617 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
8618 s32 smin_val = src_reg->s32_min_value;
8619 u32 umin_val = src_reg->u32_min_value;
3f50f132 8620
049c4e13
DB
8621 if (src_known && dst_known) {
8622 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 8623 return;
049c4e13 8624 }
3f50f132
JF
8625
8626 /* We get our maximum from the var_off, and our minimum is the
8627 * maximum of the operands' minima
8628 */
8629 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8630 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8631 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8632 /* Lose signed bounds when ORing negative numbers,
8633 * ain't nobody got time for that.
8634 */
8635 dst_reg->s32_min_value = S32_MIN;
8636 dst_reg->s32_max_value = S32_MAX;
8637 } else {
8638 /* ORing two positives gives a positive, so safe to
8639 * cast result into s64.
8640 */
5b9fbeb7
DB
8641 dst_reg->s32_min_value = dst_reg->u32_min_value;
8642 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
8643 }
8644}
8645
07cd2631
JF
8646static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8647 struct bpf_reg_state *src_reg)
8648{
3f50f132
JF
8649 bool src_known = tnum_is_const(src_reg->var_off);
8650 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
8651 s64 smin_val = src_reg->smin_value;
8652 u64 umin_val = src_reg->umin_value;
8653
3f50f132 8654 if (src_known && dst_known) {
4fbb38a3 8655 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
8656 return;
8657 }
8658
07cd2631
JF
8659 /* We get our maximum from the var_off, and our minimum is the
8660 * maximum of the operands' minima
8661 */
07cd2631
JF
8662 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8663 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8664 if (dst_reg->smin_value < 0 || smin_val < 0) {
8665 /* Lose signed bounds when ORing negative numbers,
8666 * ain't nobody got time for that.
8667 */
8668 dst_reg->smin_value = S64_MIN;
8669 dst_reg->smax_value = S64_MAX;
8670 } else {
8671 /* ORing two positives gives a positive, so safe to
8672 * cast result into s64.
8673 */
8674 dst_reg->smin_value = dst_reg->umin_value;
8675 dst_reg->smax_value = dst_reg->umax_value;
8676 }
8677 /* We may learn something more from the var_off */
8678 __update_reg_bounds(dst_reg);
8679}
8680
2921c90d
YS
8681static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8682 struct bpf_reg_state *src_reg)
8683{
8684 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8685 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8686 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8687 s32 smin_val = src_reg->s32_min_value;
8688
049c4e13
DB
8689 if (src_known && dst_known) {
8690 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 8691 return;
049c4e13 8692 }
2921c90d
YS
8693
8694 /* We get both minimum and maximum from the var32_off. */
8695 dst_reg->u32_min_value = var32_off.value;
8696 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8697
8698 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8699 /* XORing two positive sign numbers gives a positive,
8700 * so safe to cast u32 result into s32.
8701 */
8702 dst_reg->s32_min_value = dst_reg->u32_min_value;
8703 dst_reg->s32_max_value = dst_reg->u32_max_value;
8704 } else {
8705 dst_reg->s32_min_value = S32_MIN;
8706 dst_reg->s32_max_value = S32_MAX;
8707 }
8708}
8709
8710static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8711 struct bpf_reg_state *src_reg)
8712{
8713 bool src_known = tnum_is_const(src_reg->var_off);
8714 bool dst_known = tnum_is_const(dst_reg->var_off);
8715 s64 smin_val = src_reg->smin_value;
8716
8717 if (src_known && dst_known) {
8718 /* dst_reg->var_off.value has been updated earlier */
8719 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8720 return;
8721 }
8722
8723 /* We get both minimum and maximum from the var_off. */
8724 dst_reg->umin_value = dst_reg->var_off.value;
8725 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8726
8727 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8728 /* XORing two positive sign numbers gives a positive,
8729 * so safe to cast u64 result into s64.
8730 */
8731 dst_reg->smin_value = dst_reg->umin_value;
8732 dst_reg->smax_value = dst_reg->umax_value;
8733 } else {
8734 dst_reg->smin_value = S64_MIN;
8735 dst_reg->smax_value = S64_MAX;
8736 }
8737
8738 __update_reg_bounds(dst_reg);
8739}
8740
3f50f132
JF
8741static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8742 u64 umin_val, u64 umax_val)
07cd2631 8743{
07cd2631
JF
8744 /* We lose all sign bit information (except what we can pick
8745 * up from var_off)
8746 */
3f50f132
JF
8747 dst_reg->s32_min_value = S32_MIN;
8748 dst_reg->s32_max_value = S32_MAX;
8749 /* If we might shift our top bit out, then we know nothing */
8750 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8751 dst_reg->u32_min_value = 0;
8752 dst_reg->u32_max_value = U32_MAX;
8753 } else {
8754 dst_reg->u32_min_value <<= umin_val;
8755 dst_reg->u32_max_value <<= umax_val;
8756 }
8757}
8758
8759static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8760 struct bpf_reg_state *src_reg)
8761{
8762 u32 umax_val = src_reg->u32_max_value;
8763 u32 umin_val = src_reg->u32_min_value;
8764 /* u32 alu operation will zext upper bits */
8765 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8766
8767 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8768 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8769 /* Not required but being careful mark reg64 bounds as unknown so
8770 * that we are forced to pick them up from tnum and zext later and
8771 * if some path skips this step we are still safe.
8772 */
8773 __mark_reg64_unbounded(dst_reg);
8774 __update_reg32_bounds(dst_reg);
8775}
8776
8777static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8778 u64 umin_val, u64 umax_val)
8779{
8780 /* Special case <<32 because it is a common compiler pattern to sign
8781 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8782 * positive we know this shift will also be positive so we can track
8783 * bounds correctly. Otherwise we lose all sign bit information except
8784 * what we can pick up from var_off. Perhaps we can generalize this
8785 * later to shifts of any length.
8786 */
8787 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8788 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8789 else
8790 dst_reg->smax_value = S64_MAX;
8791
8792 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8793 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8794 else
8795 dst_reg->smin_value = S64_MIN;
8796
07cd2631
JF
8797 /* If we might shift our top bit out, then we know nothing */
8798 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8799 dst_reg->umin_value = 0;
8800 dst_reg->umax_value = U64_MAX;
8801 } else {
8802 dst_reg->umin_value <<= umin_val;
8803 dst_reg->umax_value <<= umax_val;
8804 }
3f50f132
JF
8805}
8806
8807static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8808 struct bpf_reg_state *src_reg)
8809{
8810 u64 umax_val = src_reg->umax_value;
8811 u64 umin_val = src_reg->umin_value;
8812
8813 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
8814 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8815 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8816
07cd2631
JF
8817 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8818 /* We may learn something more from the var_off */
8819 __update_reg_bounds(dst_reg);
8820}
8821
3f50f132
JF
8822static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8823 struct bpf_reg_state *src_reg)
8824{
8825 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8826 u32 umax_val = src_reg->u32_max_value;
8827 u32 umin_val = src_reg->u32_min_value;
8828
8829 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8830 * be negative, then either:
8831 * 1) src_reg might be zero, so the sign bit of the result is
8832 * unknown, so we lose our signed bounds
8833 * 2) it's known negative, thus the unsigned bounds capture the
8834 * signed bounds
8835 * 3) the signed bounds cross zero, so they tell us nothing
8836 * about the result
8837 * If the value in dst_reg is known nonnegative, then again the
18b24d78 8838 * unsigned bounds capture the signed bounds.
3f50f132
JF
8839 * Thus, in all cases it suffices to blow away our signed bounds
8840 * and rely on inferring new ones from the unsigned bounds and
8841 * var_off of the result.
8842 */
8843 dst_reg->s32_min_value = S32_MIN;
8844 dst_reg->s32_max_value = S32_MAX;
8845
8846 dst_reg->var_off = tnum_rshift(subreg, umin_val);
8847 dst_reg->u32_min_value >>= umax_val;
8848 dst_reg->u32_max_value >>= umin_val;
8849
8850 __mark_reg64_unbounded(dst_reg);
8851 __update_reg32_bounds(dst_reg);
8852}
8853
07cd2631
JF
8854static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8855 struct bpf_reg_state *src_reg)
8856{
8857 u64 umax_val = src_reg->umax_value;
8858 u64 umin_val = src_reg->umin_value;
8859
8860 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8861 * be negative, then either:
8862 * 1) src_reg might be zero, so the sign bit of the result is
8863 * unknown, so we lose our signed bounds
8864 * 2) it's known negative, thus the unsigned bounds capture the
8865 * signed bounds
8866 * 3) the signed bounds cross zero, so they tell us nothing
8867 * about the result
8868 * If the value in dst_reg is known nonnegative, then again the
18b24d78 8869 * unsigned bounds capture the signed bounds.
07cd2631
JF
8870 * Thus, in all cases it suffices to blow away our signed bounds
8871 * and rely on inferring new ones from the unsigned bounds and
8872 * var_off of the result.
8873 */
8874 dst_reg->smin_value = S64_MIN;
8875 dst_reg->smax_value = S64_MAX;
8876 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8877 dst_reg->umin_value >>= umax_val;
8878 dst_reg->umax_value >>= umin_val;
3f50f132
JF
8879
8880 /* Its not easy to operate on alu32 bounds here because it depends
8881 * on bits being shifted in. Take easy way out and mark unbounded
8882 * so we can recalculate later from tnum.
8883 */
8884 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
8885 __update_reg_bounds(dst_reg);
8886}
8887
3f50f132
JF
8888static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8889 struct bpf_reg_state *src_reg)
07cd2631 8890{
3f50f132 8891 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
8892
8893 /* Upon reaching here, src_known is true and
8894 * umax_val is equal to umin_val.
8895 */
3f50f132
JF
8896 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8897 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 8898
3f50f132
JF
8899 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8900
8901 /* blow away the dst_reg umin_value/umax_value and rely on
8902 * dst_reg var_off to refine the result.
8903 */
8904 dst_reg->u32_min_value = 0;
8905 dst_reg->u32_max_value = U32_MAX;
8906
8907 __mark_reg64_unbounded(dst_reg);
8908 __update_reg32_bounds(dst_reg);
8909}
8910
8911static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8912 struct bpf_reg_state *src_reg)
8913{
8914 u64 umin_val = src_reg->umin_value;
8915
8916 /* Upon reaching here, src_known is true and umax_val is equal
8917 * to umin_val.
8918 */
8919 dst_reg->smin_value >>= umin_val;
8920 dst_reg->smax_value >>= umin_val;
8921
8922 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
8923
8924 /* blow away the dst_reg umin_value/umax_value and rely on
8925 * dst_reg var_off to refine the result.
8926 */
8927 dst_reg->umin_value = 0;
8928 dst_reg->umax_value = U64_MAX;
3f50f132
JF
8929
8930 /* Its not easy to operate on alu32 bounds here because it depends
8931 * on bits being shifted in from upper 32-bits. Take easy way out
8932 * and mark unbounded so we can recalculate later from tnum.
8933 */
8934 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
8935 __update_reg_bounds(dst_reg);
8936}
8937
468f6eaf
JH
8938/* WARNING: This function does calculations on 64-bit values, but the actual
8939 * execution may occur on 32-bit values. Therefore, things like bitshifts
8940 * need extra checks in the 32-bit case.
8941 */
f1174f77
EC
8942static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8943 struct bpf_insn *insn,
8944 struct bpf_reg_state *dst_reg,
8945 struct bpf_reg_state src_reg)
969bf05e 8946{
638f5b90 8947 struct bpf_reg_state *regs = cur_regs(env);
48461135 8948 u8 opcode = BPF_OP(insn->code);
b0b3fb67 8949 bool src_known;
b03c9f9f
EC
8950 s64 smin_val, smax_val;
8951 u64 umin_val, umax_val;
3f50f132
JF
8952 s32 s32_min_val, s32_max_val;
8953 u32 u32_min_val, u32_max_val;
468f6eaf 8954 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 8955 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 8956 int ret;
b799207e 8957
b03c9f9f
EC
8958 smin_val = src_reg.smin_value;
8959 smax_val = src_reg.smax_value;
8960 umin_val = src_reg.umin_value;
8961 umax_val = src_reg.umax_value;
f23cc643 8962
3f50f132
JF
8963 s32_min_val = src_reg.s32_min_value;
8964 s32_max_val = src_reg.s32_max_value;
8965 u32_min_val = src_reg.u32_min_value;
8966 u32_max_val = src_reg.u32_max_value;
8967
8968 if (alu32) {
8969 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
8970 if ((src_known &&
8971 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8972 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8973 /* Taint dst register if offset had invalid bounds
8974 * derived from e.g. dead branches.
8975 */
8976 __mark_reg_unknown(env, dst_reg);
8977 return 0;
8978 }
8979 } else {
8980 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
8981 if ((src_known &&
8982 (smin_val != smax_val || umin_val != umax_val)) ||
8983 smin_val > smax_val || umin_val > umax_val) {
8984 /* Taint dst register if offset had invalid bounds
8985 * derived from e.g. dead branches.
8986 */
8987 __mark_reg_unknown(env, dst_reg);
8988 return 0;
8989 }
6f16101e
DB
8990 }
8991
bb7f0f98
AS
8992 if (!src_known &&
8993 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8994 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8995 return 0;
8996 }
8997
f5288193
DB
8998 if (sanitize_needed(opcode)) {
8999 ret = sanitize_val_alu(env, insn);
9000 if (ret < 0)
9001 return sanitize_err(env, insn, ret, NULL, NULL);
9002 }
9003
3f50f132
JF
9004 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
9005 * There are two classes of instructions: The first class we track both
9006 * alu32 and alu64 sign/unsigned bounds independently this provides the
9007 * greatest amount of precision when alu operations are mixed with jmp32
9008 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
9009 * and BPF_OR. This is possible because these ops have fairly easy to
9010 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
9011 * See alu32 verifier tests for examples. The second class of
9012 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
9013 * with regards to tracking sign/unsigned bounds because the bits may
9014 * cross subreg boundaries in the alu64 case. When this happens we mark
9015 * the reg unbounded in the subreg bound space and use the resulting
9016 * tnum to calculate an approximation of the sign/unsigned bounds.
9017 */
48461135
JB
9018 switch (opcode) {
9019 case BPF_ADD:
3f50f132 9020 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 9021 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 9022 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
9023 break;
9024 case BPF_SUB:
3f50f132 9025 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 9026 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 9027 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
9028 break;
9029 case BPF_MUL:
3f50f132
JF
9030 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
9031 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 9032 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
9033 break;
9034 case BPF_AND:
3f50f132
JF
9035 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
9036 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 9037 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
9038 break;
9039 case BPF_OR:
3f50f132
JF
9040 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
9041 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 9042 scalar_min_max_or(dst_reg, &src_reg);
48461135 9043 break;
2921c90d
YS
9044 case BPF_XOR:
9045 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
9046 scalar32_min_max_xor(dst_reg, &src_reg);
9047 scalar_min_max_xor(dst_reg, &src_reg);
9048 break;
48461135 9049 case BPF_LSH:
468f6eaf
JH
9050 if (umax_val >= insn_bitness) {
9051 /* Shifts greater than 31 or 63 are undefined.
9052 * This includes shifts by a negative number.
b03c9f9f 9053 */
61bd5218 9054 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
9055 break;
9056 }
3f50f132
JF
9057 if (alu32)
9058 scalar32_min_max_lsh(dst_reg, &src_reg);
9059 else
9060 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
9061 break;
9062 case BPF_RSH:
468f6eaf
JH
9063 if (umax_val >= insn_bitness) {
9064 /* Shifts greater than 31 or 63 are undefined.
9065 * This includes shifts by a negative number.
b03c9f9f 9066 */
61bd5218 9067 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
9068 break;
9069 }
3f50f132
JF
9070 if (alu32)
9071 scalar32_min_max_rsh(dst_reg, &src_reg);
9072 else
9073 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 9074 break;
9cbe1f5a
YS
9075 case BPF_ARSH:
9076 if (umax_val >= insn_bitness) {
9077 /* Shifts greater than 31 or 63 are undefined.
9078 * This includes shifts by a negative number.
9079 */
9080 mark_reg_unknown(env, regs, insn->dst_reg);
9081 break;
9082 }
3f50f132
JF
9083 if (alu32)
9084 scalar32_min_max_arsh(dst_reg, &src_reg);
9085 else
9086 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 9087 break;
48461135 9088 default:
61bd5218 9089 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
9090 break;
9091 }
9092
3f50f132
JF
9093 /* ALU32 ops are zero extended into 64bit register */
9094 if (alu32)
9095 zext_32_to_64(dst_reg);
3844d153 9096 reg_bounds_sync(dst_reg);
f1174f77
EC
9097 return 0;
9098}
9099
9100/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9101 * and var_off.
9102 */
9103static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9104 struct bpf_insn *insn)
9105{
f4d7e40a
AS
9106 struct bpf_verifier_state *vstate = env->cur_state;
9107 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9108 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
9109 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9110 u8 opcode = BPF_OP(insn->code);
b5dc0163 9111 int err;
f1174f77
EC
9112
9113 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
9114 src_reg = NULL;
9115 if (dst_reg->type != SCALAR_VALUE)
9116 ptr_reg = dst_reg;
75748837
AS
9117 else
9118 /* Make sure ID is cleared otherwise dst_reg min/max could be
9119 * incorrectly propagated into other registers by find_equal_scalars()
9120 */
9121 dst_reg->id = 0;
f1174f77
EC
9122 if (BPF_SRC(insn->code) == BPF_X) {
9123 src_reg = &regs[insn->src_reg];
f1174f77
EC
9124 if (src_reg->type != SCALAR_VALUE) {
9125 if (dst_reg->type != SCALAR_VALUE) {
9126 /* Combining two pointers by any ALU op yields
82abbf8d
AS
9127 * an arbitrary scalar. Disallow all math except
9128 * pointer subtraction
f1174f77 9129 */
dd066823 9130 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
9131 mark_reg_unknown(env, regs, insn->dst_reg);
9132 return 0;
f1174f77 9133 }
82abbf8d
AS
9134 verbose(env, "R%d pointer %s pointer prohibited\n",
9135 insn->dst_reg,
9136 bpf_alu_string[opcode >> 4]);
9137 return -EACCES;
f1174f77
EC
9138 } else {
9139 /* scalar += pointer
9140 * This is legal, but we have to reverse our
9141 * src/dest handling in computing the range
9142 */
b5dc0163
AS
9143 err = mark_chain_precision(env, insn->dst_reg);
9144 if (err)
9145 return err;
82abbf8d
AS
9146 return adjust_ptr_min_max_vals(env, insn,
9147 src_reg, dst_reg);
f1174f77
EC
9148 }
9149 } else if (ptr_reg) {
9150 /* pointer += scalar */
b5dc0163
AS
9151 err = mark_chain_precision(env, insn->src_reg);
9152 if (err)
9153 return err;
82abbf8d
AS
9154 return adjust_ptr_min_max_vals(env, insn,
9155 dst_reg, src_reg);
a3b666bf
AN
9156 } else if (dst_reg->precise) {
9157 /* if dst_reg is precise, src_reg should be precise as well */
9158 err = mark_chain_precision(env, insn->src_reg);
9159 if (err)
9160 return err;
f1174f77
EC
9161 }
9162 } else {
9163 /* Pretend the src is a reg with a known value, since we only
9164 * need to be able to read from this state.
9165 */
9166 off_reg.type = SCALAR_VALUE;
b03c9f9f 9167 __mark_reg_known(&off_reg, insn->imm);
f1174f77 9168 src_reg = &off_reg;
82abbf8d
AS
9169 if (ptr_reg) /* pointer += K */
9170 return adjust_ptr_min_max_vals(env, insn,
9171 ptr_reg, src_reg);
f1174f77
EC
9172 }
9173
9174 /* Got here implies adding two SCALAR_VALUEs */
9175 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 9176 print_verifier_state(env, state, true);
61bd5218 9177 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
9178 return -EINVAL;
9179 }
9180 if (WARN_ON(!src_reg)) {
0f55f9ed 9181 print_verifier_state(env, state, true);
61bd5218 9182 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
9183 return -EINVAL;
9184 }
9185 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
9186}
9187
17a52670 9188/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 9189static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9190{
638f5b90 9191 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
9192 u8 opcode = BPF_OP(insn->code);
9193 int err;
9194
9195 if (opcode == BPF_END || opcode == BPF_NEG) {
9196 if (opcode == BPF_NEG) {
395e942d 9197 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
9198 insn->src_reg != BPF_REG_0 ||
9199 insn->off != 0 || insn->imm != 0) {
61bd5218 9200 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
9201 return -EINVAL;
9202 }
9203 } else {
9204 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
9205 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9206 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 9207 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
9208 return -EINVAL;
9209 }
9210 }
9211
9212 /* check src operand */
dc503a8a 9213 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9214 if (err)
9215 return err;
9216
1be7f75d 9217 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 9218 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
9219 insn->dst_reg);
9220 return -EACCES;
9221 }
9222
17a52670 9223 /* check dest operand */
dc503a8a 9224 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9225 if (err)
9226 return err;
9227
9228 } else if (opcode == BPF_MOV) {
9229
9230 if (BPF_SRC(insn->code) == BPF_X) {
9231 if (insn->imm != 0 || insn->off != 0) {
61bd5218 9232 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
9233 return -EINVAL;
9234 }
9235
9236 /* check src operand */
dc503a8a 9237 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9238 if (err)
9239 return err;
9240 } else {
9241 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 9242 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
9243 return -EINVAL;
9244 }
9245 }
9246
fbeb1603
AF
9247 /* check dest operand, mark as required later */
9248 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9249 if (err)
9250 return err;
9251
9252 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
9253 struct bpf_reg_state *src_reg = regs + insn->src_reg;
9254 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9255
17a52670
AS
9256 if (BPF_CLASS(insn->code) == BPF_ALU64) {
9257 /* case: R1 = R2
9258 * copy register state to dest reg
9259 */
75748837
AS
9260 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9261 /* Assign src and dst registers the same ID
9262 * that will be used by find_equal_scalars()
9263 * to propagate min/max range.
9264 */
9265 src_reg->id = ++env->id_gen;
e434b8cd
JW
9266 *dst_reg = *src_reg;
9267 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 9268 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 9269 } else {
f1174f77 9270 /* R1 = (u32) R2 */
1be7f75d 9271 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
9272 verbose(env,
9273 "R%d partial copy of pointer\n",
1be7f75d
AS
9274 insn->src_reg);
9275 return -EACCES;
e434b8cd
JW
9276 } else if (src_reg->type == SCALAR_VALUE) {
9277 *dst_reg = *src_reg;
75748837
AS
9278 /* Make sure ID is cleared otherwise
9279 * dst_reg min/max could be incorrectly
9280 * propagated into src_reg by find_equal_scalars()
9281 */
9282 dst_reg->id = 0;
e434b8cd 9283 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 9284 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
9285 } else {
9286 mark_reg_unknown(env, regs,
9287 insn->dst_reg);
1be7f75d 9288 }
3f50f132 9289 zext_32_to_64(dst_reg);
3844d153 9290 reg_bounds_sync(dst_reg);
17a52670
AS
9291 }
9292 } else {
9293 /* case: R = imm
9294 * remember the value we stored into this reg
9295 */
fbeb1603
AF
9296 /* clear any state __mark_reg_known doesn't set */
9297 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 9298 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
9299 if (BPF_CLASS(insn->code) == BPF_ALU64) {
9300 __mark_reg_known(regs + insn->dst_reg,
9301 insn->imm);
9302 } else {
9303 __mark_reg_known(regs + insn->dst_reg,
9304 (u32)insn->imm);
9305 }
17a52670
AS
9306 }
9307
9308 } else if (opcode > BPF_END) {
61bd5218 9309 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
9310 return -EINVAL;
9311
9312 } else { /* all other ALU ops: and, sub, xor, add, ... */
9313
17a52670
AS
9314 if (BPF_SRC(insn->code) == BPF_X) {
9315 if (insn->imm != 0 || insn->off != 0) {
61bd5218 9316 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
9317 return -EINVAL;
9318 }
9319 /* check src1 operand */
dc503a8a 9320 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9321 if (err)
9322 return err;
9323 } else {
9324 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 9325 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
9326 return -EINVAL;
9327 }
9328 }
9329
9330 /* check src2 operand */
dc503a8a 9331 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9332 if (err)
9333 return err;
9334
9335 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9336 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 9337 verbose(env, "div by zero\n");
17a52670
AS
9338 return -EINVAL;
9339 }
9340
229394e8
RV
9341 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9342 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9343 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9344
9345 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 9346 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
9347 return -EINVAL;
9348 }
9349 }
9350
1a0dc1ac 9351 /* check dest operand */
dc503a8a 9352 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
9353 if (err)
9354 return err;
9355
f1174f77 9356 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
9357 }
9358
9359 return 0;
9360}
9361
f4d7e40a 9362static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 9363 struct bpf_reg_state *dst_reg,
f8ddadc4 9364 enum bpf_reg_type type,
fb2a311a 9365 bool range_right_open)
969bf05e 9366{
b239da34
KKD
9367 struct bpf_func_state *state;
9368 struct bpf_reg_state *reg;
9369 int new_range;
2d2be8ca 9370
fb2a311a
DB
9371 if (dst_reg->off < 0 ||
9372 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
9373 /* This doesn't give us any range */
9374 return;
9375
b03c9f9f
EC
9376 if (dst_reg->umax_value > MAX_PACKET_OFF ||
9377 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
9378 /* Risk of overflow. For instance, ptr + (1<<63) may be less
9379 * than pkt_end, but that's because it's also less than pkt.
9380 */
9381 return;
9382
fb2a311a
DB
9383 new_range = dst_reg->off;
9384 if (range_right_open)
2fa7d94a 9385 new_range++;
fb2a311a
DB
9386
9387 /* Examples for register markings:
2d2be8ca 9388 *
fb2a311a 9389 * pkt_data in dst register:
2d2be8ca
DB
9390 *
9391 * r2 = r3;
9392 * r2 += 8;
9393 * if (r2 > pkt_end) goto <handle exception>
9394 * <access okay>
9395 *
b4e432f1
DB
9396 * r2 = r3;
9397 * r2 += 8;
9398 * if (r2 < pkt_end) goto <access okay>
9399 * <handle exception>
9400 *
2d2be8ca
DB
9401 * Where:
9402 * r2 == dst_reg, pkt_end == src_reg
9403 * r2=pkt(id=n,off=8,r=0)
9404 * r3=pkt(id=n,off=0,r=0)
9405 *
fb2a311a 9406 * pkt_data in src register:
2d2be8ca
DB
9407 *
9408 * r2 = r3;
9409 * r2 += 8;
9410 * if (pkt_end >= r2) goto <access okay>
9411 * <handle exception>
9412 *
b4e432f1
DB
9413 * r2 = r3;
9414 * r2 += 8;
9415 * if (pkt_end <= r2) goto <handle exception>
9416 * <access okay>
9417 *
2d2be8ca
DB
9418 * Where:
9419 * pkt_end == dst_reg, r2 == src_reg
9420 * r2=pkt(id=n,off=8,r=0)
9421 * r3=pkt(id=n,off=0,r=0)
9422 *
9423 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
9424 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9425 * and [r3, r3 + 8-1) respectively is safe to access depending on
9426 * the check.
969bf05e 9427 */
2d2be8ca 9428
f1174f77
EC
9429 /* If our ids match, then we must have the same max_value. And we
9430 * don't care about the other reg's fixed offset, since if it's too big
9431 * the range won't allow anything.
9432 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9433 */
b239da34
KKD
9434 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9435 if (reg->type == type && reg->id == dst_reg->id)
9436 /* keep the maximum range already checked */
9437 reg->range = max(reg->range, new_range);
9438 }));
969bf05e
AS
9439}
9440
3f50f132 9441static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 9442{
3f50f132
JF
9443 struct tnum subreg = tnum_subreg(reg->var_off);
9444 s32 sval = (s32)val;
a72dafaf 9445
3f50f132
JF
9446 switch (opcode) {
9447 case BPF_JEQ:
9448 if (tnum_is_const(subreg))
9449 return !!tnum_equals_const(subreg, val);
9450 break;
9451 case BPF_JNE:
9452 if (tnum_is_const(subreg))
9453 return !tnum_equals_const(subreg, val);
9454 break;
9455 case BPF_JSET:
9456 if ((~subreg.mask & subreg.value) & val)
9457 return 1;
9458 if (!((subreg.mask | subreg.value) & val))
9459 return 0;
9460 break;
9461 case BPF_JGT:
9462 if (reg->u32_min_value > val)
9463 return 1;
9464 else if (reg->u32_max_value <= val)
9465 return 0;
9466 break;
9467 case BPF_JSGT:
9468 if (reg->s32_min_value > sval)
9469 return 1;
ee114dd6 9470 else if (reg->s32_max_value <= sval)
3f50f132
JF
9471 return 0;
9472 break;
9473 case BPF_JLT:
9474 if (reg->u32_max_value < val)
9475 return 1;
9476 else if (reg->u32_min_value >= val)
9477 return 0;
9478 break;
9479 case BPF_JSLT:
9480 if (reg->s32_max_value < sval)
9481 return 1;
9482 else if (reg->s32_min_value >= sval)
9483 return 0;
9484 break;
9485 case BPF_JGE:
9486 if (reg->u32_min_value >= val)
9487 return 1;
9488 else if (reg->u32_max_value < val)
9489 return 0;
9490 break;
9491 case BPF_JSGE:
9492 if (reg->s32_min_value >= sval)
9493 return 1;
9494 else if (reg->s32_max_value < sval)
9495 return 0;
9496 break;
9497 case BPF_JLE:
9498 if (reg->u32_max_value <= val)
9499 return 1;
9500 else if (reg->u32_min_value > val)
9501 return 0;
9502 break;
9503 case BPF_JSLE:
9504 if (reg->s32_max_value <= sval)
9505 return 1;
9506 else if (reg->s32_min_value > sval)
9507 return 0;
9508 break;
9509 }
4f7b3e82 9510
3f50f132
JF
9511 return -1;
9512}
092ed096 9513
3f50f132
JF
9514
9515static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9516{
9517 s64 sval = (s64)val;
a72dafaf 9518
4f7b3e82
AS
9519 switch (opcode) {
9520 case BPF_JEQ:
9521 if (tnum_is_const(reg->var_off))
9522 return !!tnum_equals_const(reg->var_off, val);
9523 break;
9524 case BPF_JNE:
9525 if (tnum_is_const(reg->var_off))
9526 return !tnum_equals_const(reg->var_off, val);
9527 break;
960ea056
JK
9528 case BPF_JSET:
9529 if ((~reg->var_off.mask & reg->var_off.value) & val)
9530 return 1;
9531 if (!((reg->var_off.mask | reg->var_off.value) & val))
9532 return 0;
9533 break;
4f7b3e82
AS
9534 case BPF_JGT:
9535 if (reg->umin_value > val)
9536 return 1;
9537 else if (reg->umax_value <= val)
9538 return 0;
9539 break;
9540 case BPF_JSGT:
a72dafaf 9541 if (reg->smin_value > sval)
4f7b3e82 9542 return 1;
ee114dd6 9543 else if (reg->smax_value <= sval)
4f7b3e82
AS
9544 return 0;
9545 break;
9546 case BPF_JLT:
9547 if (reg->umax_value < val)
9548 return 1;
9549 else if (reg->umin_value >= val)
9550 return 0;
9551 break;
9552 case BPF_JSLT:
a72dafaf 9553 if (reg->smax_value < sval)
4f7b3e82 9554 return 1;
a72dafaf 9555 else if (reg->smin_value >= sval)
4f7b3e82
AS
9556 return 0;
9557 break;
9558 case BPF_JGE:
9559 if (reg->umin_value >= val)
9560 return 1;
9561 else if (reg->umax_value < val)
9562 return 0;
9563 break;
9564 case BPF_JSGE:
a72dafaf 9565 if (reg->smin_value >= sval)
4f7b3e82 9566 return 1;
a72dafaf 9567 else if (reg->smax_value < sval)
4f7b3e82
AS
9568 return 0;
9569 break;
9570 case BPF_JLE:
9571 if (reg->umax_value <= val)
9572 return 1;
9573 else if (reg->umin_value > val)
9574 return 0;
9575 break;
9576 case BPF_JSLE:
a72dafaf 9577 if (reg->smax_value <= sval)
4f7b3e82 9578 return 1;
a72dafaf 9579 else if (reg->smin_value > sval)
4f7b3e82
AS
9580 return 0;
9581 break;
9582 }
9583
9584 return -1;
9585}
9586
3f50f132
JF
9587/* compute branch direction of the expression "if (reg opcode val) goto target;"
9588 * and return:
9589 * 1 - branch will be taken and "goto target" will be executed
9590 * 0 - branch will not be taken and fall-through to next insn
9591 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9592 * range [0,10]
604dca5e 9593 */
3f50f132
JF
9594static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9595 bool is_jmp32)
604dca5e 9596{
cac616db
JF
9597 if (__is_pointer_value(false, reg)) {
9598 if (!reg_type_not_null(reg->type))
9599 return -1;
9600
9601 /* If pointer is valid tests against zero will fail so we can
9602 * use this to direct branch taken.
9603 */
9604 if (val != 0)
9605 return -1;
9606
9607 switch (opcode) {
9608 case BPF_JEQ:
9609 return 0;
9610 case BPF_JNE:
9611 return 1;
9612 default:
9613 return -1;
9614 }
9615 }
604dca5e 9616
3f50f132
JF
9617 if (is_jmp32)
9618 return is_branch32_taken(reg, val, opcode);
9619 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
9620}
9621
6d94e741
AS
9622static int flip_opcode(u32 opcode)
9623{
9624 /* How can we transform "a <op> b" into "b <op> a"? */
9625 static const u8 opcode_flip[16] = {
9626 /* these stay the same */
9627 [BPF_JEQ >> 4] = BPF_JEQ,
9628 [BPF_JNE >> 4] = BPF_JNE,
9629 [BPF_JSET >> 4] = BPF_JSET,
9630 /* these swap "lesser" and "greater" (L and G in the opcodes) */
9631 [BPF_JGE >> 4] = BPF_JLE,
9632 [BPF_JGT >> 4] = BPF_JLT,
9633 [BPF_JLE >> 4] = BPF_JGE,
9634 [BPF_JLT >> 4] = BPF_JGT,
9635 [BPF_JSGE >> 4] = BPF_JSLE,
9636 [BPF_JSGT >> 4] = BPF_JSLT,
9637 [BPF_JSLE >> 4] = BPF_JSGE,
9638 [BPF_JSLT >> 4] = BPF_JSGT
9639 };
9640 return opcode_flip[opcode >> 4];
9641}
9642
9643static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9644 struct bpf_reg_state *src_reg,
9645 u8 opcode)
9646{
9647 struct bpf_reg_state *pkt;
9648
9649 if (src_reg->type == PTR_TO_PACKET_END) {
9650 pkt = dst_reg;
9651 } else if (dst_reg->type == PTR_TO_PACKET_END) {
9652 pkt = src_reg;
9653 opcode = flip_opcode(opcode);
9654 } else {
9655 return -1;
9656 }
9657
9658 if (pkt->range >= 0)
9659 return -1;
9660
9661 switch (opcode) {
9662 case BPF_JLE:
9663 /* pkt <= pkt_end */
9664 fallthrough;
9665 case BPF_JGT:
9666 /* pkt > pkt_end */
9667 if (pkt->range == BEYOND_PKT_END)
9668 /* pkt has at last one extra byte beyond pkt_end */
9669 return opcode == BPF_JGT;
9670 break;
9671 case BPF_JLT:
9672 /* pkt < pkt_end */
9673 fallthrough;
9674 case BPF_JGE:
9675 /* pkt >= pkt_end */
9676 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9677 return opcode == BPF_JGE;
9678 break;
9679 }
9680 return -1;
9681}
9682
48461135
JB
9683/* Adjusts the register min/max values in the case that the dst_reg is the
9684 * variable register that we are working on, and src_reg is a constant or we're
9685 * simply doing a BPF_K check.
f1174f77 9686 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
9687 */
9688static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
9689 struct bpf_reg_state *false_reg,
9690 u64 val, u32 val32,
092ed096 9691 u8 opcode, bool is_jmp32)
48461135 9692{
3f50f132
JF
9693 struct tnum false_32off = tnum_subreg(false_reg->var_off);
9694 struct tnum false_64off = false_reg->var_off;
9695 struct tnum true_32off = tnum_subreg(true_reg->var_off);
9696 struct tnum true_64off = true_reg->var_off;
9697 s64 sval = (s64)val;
9698 s32 sval32 = (s32)val32;
a72dafaf 9699
f1174f77
EC
9700 /* If the dst_reg is a pointer, we can't learn anything about its
9701 * variable offset from the compare (unless src_reg were a pointer into
9702 * the same object, but we don't bother with that.
9703 * Since false_reg and true_reg have the same type by construction, we
9704 * only need to check one of them for pointerness.
9705 */
9706 if (__is_pointer_value(false, false_reg))
9707 return;
4cabc5b1 9708
48461135 9709 switch (opcode) {
a12ca627
DB
9710 /* JEQ/JNE comparison doesn't change the register equivalence.
9711 *
9712 * r1 = r2;
9713 * if (r1 == 42) goto label;
9714 * ...
9715 * label: // here both r1 and r2 are known to be 42.
9716 *
9717 * Hence when marking register as known preserve it's ID.
9718 */
48461135 9719 case BPF_JEQ:
a12ca627
DB
9720 if (is_jmp32) {
9721 __mark_reg32_known(true_reg, val32);
9722 true_32off = tnum_subreg(true_reg->var_off);
9723 } else {
9724 ___mark_reg_known(true_reg, val);
9725 true_64off = true_reg->var_off;
9726 }
9727 break;
48461135 9728 case BPF_JNE:
a12ca627
DB
9729 if (is_jmp32) {
9730 __mark_reg32_known(false_reg, val32);
9731 false_32off = tnum_subreg(false_reg->var_off);
9732 } else {
9733 ___mark_reg_known(false_reg, val);
9734 false_64off = false_reg->var_off;
9735 }
48461135 9736 break;
960ea056 9737 case BPF_JSET:
3f50f132
JF
9738 if (is_jmp32) {
9739 false_32off = tnum_and(false_32off, tnum_const(~val32));
9740 if (is_power_of_2(val32))
9741 true_32off = tnum_or(true_32off,
9742 tnum_const(val32));
9743 } else {
9744 false_64off = tnum_and(false_64off, tnum_const(~val));
9745 if (is_power_of_2(val))
9746 true_64off = tnum_or(true_64off,
9747 tnum_const(val));
9748 }
960ea056 9749 break;
48461135 9750 case BPF_JGE:
a72dafaf
JW
9751 case BPF_JGT:
9752 {
3f50f132
JF
9753 if (is_jmp32) {
9754 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
9755 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9756
9757 false_reg->u32_max_value = min(false_reg->u32_max_value,
9758 false_umax);
9759 true_reg->u32_min_value = max(true_reg->u32_min_value,
9760 true_umin);
9761 } else {
9762 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
9763 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9764
9765 false_reg->umax_value = min(false_reg->umax_value, false_umax);
9766 true_reg->umin_value = max(true_reg->umin_value, true_umin);
9767 }
b03c9f9f 9768 break;
a72dafaf 9769 }
48461135 9770 case BPF_JSGE:
a72dafaf
JW
9771 case BPF_JSGT:
9772 {
3f50f132
JF
9773 if (is_jmp32) {
9774 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
9775 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 9776
3f50f132
JF
9777 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9778 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9779 } else {
9780 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
9781 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9782
9783 false_reg->smax_value = min(false_reg->smax_value, false_smax);
9784 true_reg->smin_value = max(true_reg->smin_value, true_smin);
9785 }
48461135 9786 break;
a72dafaf 9787 }
b4e432f1 9788 case BPF_JLE:
a72dafaf
JW
9789 case BPF_JLT:
9790 {
3f50f132
JF
9791 if (is_jmp32) {
9792 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
9793 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9794
9795 false_reg->u32_min_value = max(false_reg->u32_min_value,
9796 false_umin);
9797 true_reg->u32_max_value = min(true_reg->u32_max_value,
9798 true_umax);
9799 } else {
9800 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
9801 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9802
9803 false_reg->umin_value = max(false_reg->umin_value, false_umin);
9804 true_reg->umax_value = min(true_reg->umax_value, true_umax);
9805 }
b4e432f1 9806 break;
a72dafaf 9807 }
b4e432f1 9808 case BPF_JSLE:
a72dafaf
JW
9809 case BPF_JSLT:
9810 {
3f50f132
JF
9811 if (is_jmp32) {
9812 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
9813 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 9814
3f50f132
JF
9815 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9816 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9817 } else {
9818 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
9819 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9820
9821 false_reg->smin_value = max(false_reg->smin_value, false_smin);
9822 true_reg->smax_value = min(true_reg->smax_value, true_smax);
9823 }
b4e432f1 9824 break;
a72dafaf 9825 }
48461135 9826 default:
0fc31b10 9827 return;
48461135
JB
9828 }
9829
3f50f132
JF
9830 if (is_jmp32) {
9831 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9832 tnum_subreg(false_32off));
9833 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9834 tnum_subreg(true_32off));
9835 __reg_combine_32_into_64(false_reg);
9836 __reg_combine_32_into_64(true_reg);
9837 } else {
9838 false_reg->var_off = false_64off;
9839 true_reg->var_off = true_64off;
9840 __reg_combine_64_into_32(false_reg);
9841 __reg_combine_64_into_32(true_reg);
9842 }
48461135
JB
9843}
9844
f1174f77
EC
9845/* Same as above, but for the case that dst_reg holds a constant and src_reg is
9846 * the variable reg.
48461135
JB
9847 */
9848static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
9849 struct bpf_reg_state *false_reg,
9850 u64 val, u32 val32,
092ed096 9851 u8 opcode, bool is_jmp32)
48461135 9852{
6d94e741 9853 opcode = flip_opcode(opcode);
0fc31b10
JH
9854 /* This uses zero as "not present in table"; luckily the zero opcode,
9855 * BPF_JA, can't get here.
b03c9f9f 9856 */
0fc31b10 9857 if (opcode)
3f50f132 9858 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
9859}
9860
9861/* Regs are known to be equal, so intersect their min/max/var_off */
9862static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9863 struct bpf_reg_state *dst_reg)
9864{
b03c9f9f
EC
9865 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9866 dst_reg->umin_value);
9867 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9868 dst_reg->umax_value);
9869 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9870 dst_reg->smin_value);
9871 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9872 dst_reg->smax_value);
f1174f77
EC
9873 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9874 dst_reg->var_off);
3844d153
DB
9875 reg_bounds_sync(src_reg);
9876 reg_bounds_sync(dst_reg);
f1174f77
EC
9877}
9878
9879static void reg_combine_min_max(struct bpf_reg_state *true_src,
9880 struct bpf_reg_state *true_dst,
9881 struct bpf_reg_state *false_src,
9882 struct bpf_reg_state *false_dst,
9883 u8 opcode)
9884{
9885 switch (opcode) {
9886 case BPF_JEQ:
9887 __reg_combine_min_max(true_src, true_dst);
9888 break;
9889 case BPF_JNE:
9890 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 9891 break;
4cabc5b1 9892 }
48461135
JB
9893}
9894
fd978bf7
JS
9895static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9896 struct bpf_reg_state *reg, u32 id,
840b9615 9897 bool is_null)
57a09bf0 9898{
c25b2ae1 9899 if (type_may_be_null(reg->type) && reg->id == id &&
93c230e3 9900 !WARN_ON_ONCE(!reg->id)) {
b03c9f9f
EC
9901 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9902 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 9903 reg->off)) {
e60b0d12
DB
9904 /* Old offset (both fixed and variable parts) should
9905 * have been known-zero, because we don't allow pointer
9906 * arithmetic on pointers that might be NULL. If we
9907 * see this happening, don't convert the register.
9908 */
9909 return;
f1174f77
EC
9910 }
9911 if (is_null) {
9912 reg->type = SCALAR_VALUE;
1b986589
MKL
9913 /* We don't need id and ref_obj_id from this point
9914 * onwards anymore, thus we should better reset it,
9915 * so that state pruning has chances to take effect.
9916 */
9917 reg->id = 0;
9918 reg->ref_obj_id = 0;
4ddb7416
DB
9919
9920 return;
9921 }
9922
9923 mark_ptr_not_null_reg(reg);
9924
9925 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 9926 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 9927 * in release_reference().
1b986589
MKL
9928 *
9929 * reg->id is still used by spin_lock ptr. Other
9930 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
9931 */
9932 reg->id = 0;
56f668df 9933 }
57a09bf0
TG
9934 }
9935}
9936
9937/* The logic is similar to find_good_pkt_pointers(), both could eventually
9938 * be folded together at some point.
9939 */
840b9615
JS
9940static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9941 bool is_null)
57a09bf0 9942{
f4d7e40a 9943 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 9944 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 9945 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 9946 u32 id = regs[regno].id;
57a09bf0 9947
1b986589
MKL
9948 if (ref_obj_id && ref_obj_id == id && is_null)
9949 /* regs[regno] is in the " == NULL" branch.
9950 * No one could have freed the reference state before
9951 * doing the NULL check.
9952 */
9953 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9954
b239da34
KKD
9955 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9956 mark_ptr_or_null_reg(state, reg, id, is_null);
9957 }));
57a09bf0
TG
9958}
9959
5beca081
DB
9960static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9961 struct bpf_reg_state *dst_reg,
9962 struct bpf_reg_state *src_reg,
9963 struct bpf_verifier_state *this_branch,
9964 struct bpf_verifier_state *other_branch)
9965{
9966 if (BPF_SRC(insn->code) != BPF_X)
9967 return false;
9968
092ed096
JW
9969 /* Pointers are always 64-bit. */
9970 if (BPF_CLASS(insn->code) == BPF_JMP32)
9971 return false;
9972
5beca081
DB
9973 switch (BPF_OP(insn->code)) {
9974 case BPF_JGT:
9975 if ((dst_reg->type == PTR_TO_PACKET &&
9976 src_reg->type == PTR_TO_PACKET_END) ||
9977 (dst_reg->type == PTR_TO_PACKET_META &&
9978 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9979 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9980 find_good_pkt_pointers(this_branch, dst_reg,
9981 dst_reg->type, false);
6d94e741 9982 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9983 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9984 src_reg->type == PTR_TO_PACKET) ||
9985 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9986 src_reg->type == PTR_TO_PACKET_META)) {
9987 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9988 find_good_pkt_pointers(other_branch, src_reg,
9989 src_reg->type, true);
6d94e741 9990 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9991 } else {
9992 return false;
9993 }
9994 break;
9995 case BPF_JLT:
9996 if ((dst_reg->type == PTR_TO_PACKET &&
9997 src_reg->type == PTR_TO_PACKET_END) ||
9998 (dst_reg->type == PTR_TO_PACKET_META &&
9999 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10000 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
10001 find_good_pkt_pointers(other_branch, dst_reg,
10002 dst_reg->type, true);
6d94e741 10003 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
10004 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10005 src_reg->type == PTR_TO_PACKET) ||
10006 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10007 src_reg->type == PTR_TO_PACKET_META)) {
10008 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
10009 find_good_pkt_pointers(this_branch, src_reg,
10010 src_reg->type, false);
6d94e741 10011 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
10012 } else {
10013 return false;
10014 }
10015 break;
10016 case BPF_JGE:
10017 if ((dst_reg->type == PTR_TO_PACKET &&
10018 src_reg->type == PTR_TO_PACKET_END) ||
10019 (dst_reg->type == PTR_TO_PACKET_META &&
10020 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10021 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
10022 find_good_pkt_pointers(this_branch, dst_reg,
10023 dst_reg->type, true);
6d94e741 10024 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
10025 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10026 src_reg->type == PTR_TO_PACKET) ||
10027 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10028 src_reg->type == PTR_TO_PACKET_META)) {
10029 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
10030 find_good_pkt_pointers(other_branch, src_reg,
10031 src_reg->type, false);
6d94e741 10032 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
10033 } else {
10034 return false;
10035 }
10036 break;
10037 case BPF_JLE:
10038 if ((dst_reg->type == PTR_TO_PACKET &&
10039 src_reg->type == PTR_TO_PACKET_END) ||
10040 (dst_reg->type == PTR_TO_PACKET_META &&
10041 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10042 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
10043 find_good_pkt_pointers(other_branch, dst_reg,
10044 dst_reg->type, false);
6d94e741 10045 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
10046 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10047 src_reg->type == PTR_TO_PACKET) ||
10048 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10049 src_reg->type == PTR_TO_PACKET_META)) {
10050 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10051 find_good_pkt_pointers(this_branch, src_reg,
10052 src_reg->type, true);
6d94e741 10053 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
10054 } else {
10055 return false;
10056 }
10057 break;
10058 default:
10059 return false;
10060 }
10061
10062 return true;
10063}
10064
75748837
AS
10065static void find_equal_scalars(struct bpf_verifier_state *vstate,
10066 struct bpf_reg_state *known_reg)
10067{
10068 struct bpf_func_state *state;
10069 struct bpf_reg_state *reg;
75748837 10070
b239da34
KKD
10071 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10072 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10073 *reg = *known_reg;
10074 }));
75748837
AS
10075}
10076
58e2af8b 10077static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
10078 struct bpf_insn *insn, int *insn_idx)
10079{
f4d7e40a
AS
10080 struct bpf_verifier_state *this_branch = env->cur_state;
10081 struct bpf_verifier_state *other_branch;
10082 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 10083 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 10084 u8 opcode = BPF_OP(insn->code);
092ed096 10085 bool is_jmp32;
fb8d251e 10086 int pred = -1;
17a52670
AS
10087 int err;
10088
092ed096
JW
10089 /* Only conditional jumps are expected to reach here. */
10090 if (opcode == BPF_JA || opcode > BPF_JSLE) {
10091 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
10092 return -EINVAL;
10093 }
10094
10095 if (BPF_SRC(insn->code) == BPF_X) {
10096 if (insn->imm != 0) {
092ed096 10097 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
10098 return -EINVAL;
10099 }
10100
10101 /* check src1 operand */
dc503a8a 10102 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10103 if (err)
10104 return err;
1be7f75d
AS
10105
10106 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 10107 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
10108 insn->src_reg);
10109 return -EACCES;
10110 }
fb8d251e 10111 src_reg = &regs[insn->src_reg];
17a52670
AS
10112 } else {
10113 if (insn->src_reg != BPF_REG_0) {
092ed096 10114 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
10115 return -EINVAL;
10116 }
10117 }
10118
10119 /* check src2 operand */
dc503a8a 10120 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10121 if (err)
10122 return err;
10123
1a0dc1ac 10124 dst_reg = &regs[insn->dst_reg];
092ed096 10125 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 10126
3f50f132
JF
10127 if (BPF_SRC(insn->code) == BPF_K) {
10128 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10129 } else if (src_reg->type == SCALAR_VALUE &&
10130 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10131 pred = is_branch_taken(dst_reg,
10132 tnum_subreg(src_reg->var_off).value,
10133 opcode,
10134 is_jmp32);
10135 } else if (src_reg->type == SCALAR_VALUE &&
10136 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10137 pred = is_branch_taken(dst_reg,
10138 src_reg->var_off.value,
10139 opcode,
10140 is_jmp32);
6d94e741
AS
10141 } else if (reg_is_pkt_pointer_any(dst_reg) &&
10142 reg_is_pkt_pointer_any(src_reg) &&
10143 !is_jmp32) {
10144 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
10145 }
10146
b5dc0163 10147 if (pred >= 0) {
cac616db
JF
10148 /* If we get here with a dst_reg pointer type it is because
10149 * above is_branch_taken() special cased the 0 comparison.
10150 */
10151 if (!__is_pointer_value(false, dst_reg))
10152 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
10153 if (BPF_SRC(insn->code) == BPF_X && !err &&
10154 !__is_pointer_value(false, src_reg))
b5dc0163
AS
10155 err = mark_chain_precision(env, insn->src_reg);
10156 if (err)
10157 return err;
10158 }
9183671a 10159
fb8d251e 10160 if (pred == 1) {
9183671a
DB
10161 /* Only follow the goto, ignore fall-through. If needed, push
10162 * the fall-through branch for simulation under speculative
10163 * execution.
10164 */
10165 if (!env->bypass_spec_v1 &&
10166 !sanitize_speculative_path(env, insn, *insn_idx + 1,
10167 *insn_idx))
10168 return -EFAULT;
fb8d251e
AS
10169 *insn_idx += insn->off;
10170 return 0;
10171 } else if (pred == 0) {
9183671a
DB
10172 /* Only follow the fall-through branch, since that's where the
10173 * program will go. If needed, push the goto branch for
10174 * simulation under speculative execution.
fb8d251e 10175 */
9183671a
DB
10176 if (!env->bypass_spec_v1 &&
10177 !sanitize_speculative_path(env, insn,
10178 *insn_idx + insn->off + 1,
10179 *insn_idx))
10180 return -EFAULT;
fb8d251e 10181 return 0;
17a52670
AS
10182 }
10183
979d63d5
DB
10184 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10185 false);
17a52670
AS
10186 if (!other_branch)
10187 return -EFAULT;
f4d7e40a 10188 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 10189
48461135
JB
10190 /* detect if we are comparing against a constant value so we can adjust
10191 * our min/max values for our dst register.
f1174f77
EC
10192 * this is only legit if both are scalars (or pointers to the same
10193 * object, I suppose, but we don't support that right now), because
10194 * otherwise the different base pointers mean the offsets aren't
10195 * comparable.
48461135
JB
10196 */
10197 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 10198 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 10199
f1174f77 10200 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
10201 src_reg->type == SCALAR_VALUE) {
10202 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
10203 (is_jmp32 &&
10204 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 10205 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 10206 dst_reg,
3f50f132
JF
10207 src_reg->var_off.value,
10208 tnum_subreg(src_reg->var_off).value,
092ed096
JW
10209 opcode, is_jmp32);
10210 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
10211 (is_jmp32 &&
10212 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 10213 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 10214 src_reg,
3f50f132
JF
10215 dst_reg->var_off.value,
10216 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
10217 opcode, is_jmp32);
10218 else if (!is_jmp32 &&
10219 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 10220 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
10221 reg_combine_min_max(&other_branch_regs[insn->src_reg],
10222 &other_branch_regs[insn->dst_reg],
092ed096 10223 src_reg, dst_reg, opcode);
e688c3db
AS
10224 if (src_reg->id &&
10225 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
10226 find_equal_scalars(this_branch, src_reg);
10227 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10228 }
10229
f1174f77
EC
10230 }
10231 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 10232 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
10233 dst_reg, insn->imm, (u32)insn->imm,
10234 opcode, is_jmp32);
48461135
JB
10235 }
10236
e688c3db
AS
10237 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10238 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
10239 find_equal_scalars(this_branch, dst_reg);
10240 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10241 }
10242
092ed096
JW
10243 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10244 * NOTE: these optimizations below are related with pointer comparison
10245 * which will never be JMP32.
10246 */
10247 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 10248 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 10249 type_may_be_null(dst_reg->type)) {
840b9615 10250 /* Mark all identical registers in each branch as either
57a09bf0
TG
10251 * safe or unknown depending R == 0 or R != 0 conditional.
10252 */
840b9615
JS
10253 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10254 opcode == BPF_JNE);
10255 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10256 opcode == BPF_JEQ);
5beca081
DB
10257 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
10258 this_branch, other_branch) &&
10259 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
10260 verbose(env, "R%d pointer comparison prohibited\n",
10261 insn->dst_reg);
1be7f75d 10262 return -EACCES;
17a52670 10263 }
06ee7115 10264 if (env->log.level & BPF_LOG_LEVEL)
2e576648 10265 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
10266 return 0;
10267}
10268
17a52670 10269/* verify BPF_LD_IMM64 instruction */
58e2af8b 10270static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 10271{
d8eca5bb 10272 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 10273 struct bpf_reg_state *regs = cur_regs(env);
4976b718 10274 struct bpf_reg_state *dst_reg;
d8eca5bb 10275 struct bpf_map *map;
17a52670
AS
10276 int err;
10277
10278 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 10279 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
10280 return -EINVAL;
10281 }
10282 if (insn->off != 0) {
61bd5218 10283 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
10284 return -EINVAL;
10285 }
10286
dc503a8a 10287 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
10288 if (err)
10289 return err;
10290
4976b718 10291 dst_reg = &regs[insn->dst_reg];
6b173873 10292 if (insn->src_reg == 0) {
6b173873
JK
10293 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10294
4976b718 10295 dst_reg->type = SCALAR_VALUE;
b03c9f9f 10296 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 10297 return 0;
6b173873 10298 }
17a52670 10299
d400a6cf
DB
10300 /* All special src_reg cases are listed below. From this point onwards
10301 * we either succeed and assign a corresponding dst_reg->type after
10302 * zeroing the offset, or fail and reject the program.
10303 */
10304 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 10305
d400a6cf 10306 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 10307 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 10308 switch (base_type(dst_reg->type)) {
4976b718
HL
10309 case PTR_TO_MEM:
10310 dst_reg->mem_size = aux->btf_var.mem_size;
10311 break;
10312 case PTR_TO_BTF_ID:
22dc4a0f 10313 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
10314 dst_reg->btf_id = aux->btf_var.btf_id;
10315 break;
10316 default:
10317 verbose(env, "bpf verifier is misconfigured\n");
10318 return -EFAULT;
10319 }
10320 return 0;
10321 }
10322
69c087ba
YS
10323 if (insn->src_reg == BPF_PSEUDO_FUNC) {
10324 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
10325 u32 subprogno = find_subprog(env,
10326 env->insn_idx + insn->imm + 1);
69c087ba
YS
10327
10328 if (!aux->func_info) {
10329 verbose(env, "missing btf func_info\n");
10330 return -EINVAL;
10331 }
10332 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10333 verbose(env, "callback function not static\n");
10334 return -EINVAL;
10335 }
10336
10337 dst_reg->type = PTR_TO_FUNC;
10338 dst_reg->subprogno = subprogno;
10339 return 0;
10340 }
10341
d8eca5bb 10342 map = env->used_maps[aux->map_index];
4976b718 10343 dst_reg->map_ptr = map;
d8eca5bb 10344
387544bf
AS
10345 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10346 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
10347 dst_reg->type = PTR_TO_MAP_VALUE;
10348 dst_reg->off = aux->map_off;
db559117 10349 if (btf_record_has_field(map->record, BPF_SPIN_LOCK))
4976b718 10350 dst_reg->id = ++env->id_gen;
387544bf
AS
10351 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10352 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 10353 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
10354 } else {
10355 verbose(env, "bpf verifier is misconfigured\n");
10356 return -EINVAL;
10357 }
17a52670 10358
17a52670
AS
10359 return 0;
10360}
10361
96be4325
DB
10362static bool may_access_skb(enum bpf_prog_type type)
10363{
10364 switch (type) {
10365 case BPF_PROG_TYPE_SOCKET_FILTER:
10366 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 10367 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
10368 return true;
10369 default:
10370 return false;
10371 }
10372}
10373
ddd872bc
AS
10374/* verify safety of LD_ABS|LD_IND instructions:
10375 * - they can only appear in the programs where ctx == skb
10376 * - since they are wrappers of function calls, they scratch R1-R5 registers,
10377 * preserve R6-R9, and store return value into R0
10378 *
10379 * Implicit input:
10380 * ctx == skb == R6 == CTX
10381 *
10382 * Explicit input:
10383 * SRC == any register
10384 * IMM == 32-bit immediate
10385 *
10386 * Output:
10387 * R0 - 8/16/32-bit skb data converted to cpu endianness
10388 */
58e2af8b 10389static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 10390{
638f5b90 10391 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 10392 static const int ctx_reg = BPF_REG_6;
ddd872bc 10393 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
10394 int i, err;
10395
7e40781c 10396 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 10397 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
10398 return -EINVAL;
10399 }
10400
e0cea7ce
DB
10401 if (!env->ops->gen_ld_abs) {
10402 verbose(env, "bpf verifier is misconfigured\n");
10403 return -EINVAL;
10404 }
10405
ddd872bc 10406 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 10407 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 10408 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 10409 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
10410 return -EINVAL;
10411 }
10412
10413 /* check whether implicit source operand (register R6) is readable */
6d4f151a 10414 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
10415 if (err)
10416 return err;
10417
fd978bf7
JS
10418 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10419 * gen_ld_abs() may terminate the program at runtime, leading to
10420 * reference leak.
10421 */
10422 err = check_reference_leak(env);
10423 if (err) {
10424 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10425 return err;
10426 }
10427
d83525ca
AS
10428 if (env->cur_state->active_spin_lock) {
10429 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10430 return -EINVAL;
10431 }
10432
6d4f151a 10433 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
10434 verbose(env,
10435 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
10436 return -EINVAL;
10437 }
10438
10439 if (mode == BPF_IND) {
10440 /* check explicit source operand */
dc503a8a 10441 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
10442 if (err)
10443 return err;
10444 }
10445
be80a1d3 10446 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
10447 if (err < 0)
10448 return err;
10449
ddd872bc 10450 /* reset caller saved regs to unreadable */
dc503a8a 10451 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 10452 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
10453 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10454 }
ddd872bc
AS
10455
10456 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
10457 * the value fetched from the packet.
10458 * Already marked as written above.
ddd872bc 10459 */
61bd5218 10460 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
10461 /* ld_abs load up to 32-bit skb data. */
10462 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
10463 return 0;
10464}
10465
390ee7e2
AS
10466static int check_return_code(struct bpf_verifier_env *env)
10467{
5cf1e914 10468 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 10469 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
10470 struct bpf_reg_state *reg;
10471 struct tnum range = tnum_range(0, 1);
7e40781c 10472 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 10473 int err;
bfc6bb74
AS
10474 struct bpf_func_state *frame = env->cur_state->frame[0];
10475 const bool is_subprog = frame->subprogno;
27ae7997 10476
9e4e01df 10477 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
10478 if (!is_subprog) {
10479 switch (prog_type) {
10480 case BPF_PROG_TYPE_LSM:
10481 if (prog->expected_attach_type == BPF_LSM_CGROUP)
10482 /* See below, can be 0 or 0-1 depending on hook. */
10483 break;
10484 fallthrough;
10485 case BPF_PROG_TYPE_STRUCT_OPS:
10486 if (!prog->aux->attach_func_proto->type)
10487 return 0;
10488 break;
10489 default:
10490 break;
10491 }
10492 }
27ae7997 10493
8fb33b60 10494 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
10495 * to return the value from eBPF program.
10496 * Make sure that it's readable at this time
10497 * of bpf_exit, which means that program wrote
10498 * something into it earlier
10499 */
10500 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10501 if (err)
10502 return err;
10503
10504 if (is_pointer_value(env, BPF_REG_0)) {
10505 verbose(env, "R0 leaks addr as return value\n");
10506 return -EACCES;
10507 }
390ee7e2 10508
f782e2c3 10509 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
10510
10511 if (frame->in_async_callback_fn) {
10512 /* enforce return zero from async callbacks like timer */
10513 if (reg->type != SCALAR_VALUE) {
10514 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 10515 reg_type_str(env, reg->type));
bfc6bb74
AS
10516 return -EINVAL;
10517 }
10518
10519 if (!tnum_in(tnum_const(0), reg->var_off)) {
10520 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10521 return -EINVAL;
10522 }
10523 return 0;
10524 }
10525
f782e2c3
DB
10526 if (is_subprog) {
10527 if (reg->type != SCALAR_VALUE) {
10528 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 10529 reg_type_str(env, reg->type));
f782e2c3
DB
10530 return -EINVAL;
10531 }
10532 return 0;
10533 }
10534
7e40781c 10535 switch (prog_type) {
983695fa
DB
10536 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10537 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
10538 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10539 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10540 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10541 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10542 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 10543 range = tnum_range(1, 1);
77241217
SF
10544 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10545 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10546 range = tnum_range(0, 3);
ed4ed404 10547 break;
390ee7e2 10548 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 10549 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10550 range = tnum_range(0, 3);
10551 enforce_attach_type_range = tnum_range(2, 3);
10552 }
ed4ed404 10553 break;
390ee7e2
AS
10554 case BPF_PROG_TYPE_CGROUP_SOCK:
10555 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 10556 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 10557 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 10558 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 10559 break;
15ab09bd
AS
10560 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10561 if (!env->prog->aux->attach_btf_id)
10562 return 0;
10563 range = tnum_const(0);
10564 break;
15d83c4d 10565 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
10566 switch (env->prog->expected_attach_type) {
10567 case BPF_TRACE_FENTRY:
10568 case BPF_TRACE_FEXIT:
10569 range = tnum_const(0);
10570 break;
10571 case BPF_TRACE_RAW_TP:
10572 case BPF_MODIFY_RETURN:
15d83c4d 10573 return 0;
2ec0616e
DB
10574 case BPF_TRACE_ITER:
10575 break;
e92888c7
YS
10576 default:
10577 return -ENOTSUPP;
10578 }
15d83c4d 10579 break;
e9ddbb77
JS
10580 case BPF_PROG_TYPE_SK_LOOKUP:
10581 range = tnum_range(SK_DROP, SK_PASS);
10582 break;
69fd337a
SF
10583
10584 case BPF_PROG_TYPE_LSM:
10585 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10586 /* Regular BPF_PROG_TYPE_LSM programs can return
10587 * any value.
10588 */
10589 return 0;
10590 }
10591 if (!env->prog->aux->attach_func_proto->type) {
10592 /* Make sure programs that attach to void
10593 * hooks don't try to modify return value.
10594 */
10595 range = tnum_range(1, 1);
10596 }
10597 break;
10598
e92888c7
YS
10599 case BPF_PROG_TYPE_EXT:
10600 /* freplace program can return anything as its return value
10601 * depends on the to-be-replaced kernel func or bpf program.
10602 */
390ee7e2
AS
10603 default:
10604 return 0;
10605 }
10606
390ee7e2 10607 if (reg->type != SCALAR_VALUE) {
61bd5218 10608 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 10609 reg_type_str(env, reg->type));
390ee7e2
AS
10610 return -EINVAL;
10611 }
10612
10613 if (!tnum_in(range, reg->var_off)) {
bc2591d6 10614 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 10615 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 10616 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
10617 !prog->aux->attach_func_proto->type)
10618 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
10619 return -EINVAL;
10620 }
5cf1e914 10621
10622 if (!tnum_is_unknown(enforce_attach_type_range) &&
10623 tnum_in(enforce_attach_type_range, reg->var_off))
10624 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
10625 return 0;
10626}
10627
475fb78f
AS
10628/* non-recursive DFS pseudo code
10629 * 1 procedure DFS-iterative(G,v):
10630 * 2 label v as discovered
10631 * 3 let S be a stack
10632 * 4 S.push(v)
10633 * 5 while S is not empty
b6d20799 10634 * 6 t <- S.peek()
475fb78f
AS
10635 * 7 if t is what we're looking for:
10636 * 8 return t
10637 * 9 for all edges e in G.adjacentEdges(t) do
10638 * 10 if edge e is already labelled
10639 * 11 continue with the next edge
10640 * 12 w <- G.adjacentVertex(t,e)
10641 * 13 if vertex w is not discovered and not explored
10642 * 14 label e as tree-edge
10643 * 15 label w as discovered
10644 * 16 S.push(w)
10645 * 17 continue at 5
10646 * 18 else if vertex w is discovered
10647 * 19 label e as back-edge
10648 * 20 else
10649 * 21 // vertex w is explored
10650 * 22 label e as forward- or cross-edge
10651 * 23 label t as explored
10652 * 24 S.pop()
10653 *
10654 * convention:
10655 * 0x10 - discovered
10656 * 0x11 - discovered and fall-through edge labelled
10657 * 0x12 - discovered and fall-through and branch edges labelled
10658 * 0x20 - explored
10659 */
10660
10661enum {
10662 DISCOVERED = 0x10,
10663 EXPLORED = 0x20,
10664 FALLTHROUGH = 1,
10665 BRANCH = 2,
10666};
10667
dc2a4ebc
AS
10668static u32 state_htab_size(struct bpf_verifier_env *env)
10669{
10670 return env->prog->len;
10671}
10672
5d839021
AS
10673static struct bpf_verifier_state_list **explored_state(
10674 struct bpf_verifier_env *env,
10675 int idx)
10676{
dc2a4ebc
AS
10677 struct bpf_verifier_state *cur = env->cur_state;
10678 struct bpf_func_state *state = cur->frame[cur->curframe];
10679
10680 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
10681}
10682
10683static void init_explored_state(struct bpf_verifier_env *env, int idx)
10684{
a8f500af 10685 env->insn_aux_data[idx].prune_point = true;
5d839021 10686}
f1bca824 10687
59e2e27d
WAF
10688enum {
10689 DONE_EXPLORING = 0,
10690 KEEP_EXPLORING = 1,
10691};
10692
475fb78f
AS
10693/* t, w, e - match pseudo-code above:
10694 * t - index of current instruction
10695 * w - next instruction
10696 * e - edge
10697 */
2589726d
AS
10698static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10699 bool loop_ok)
475fb78f 10700{
7df737e9
AS
10701 int *insn_stack = env->cfg.insn_stack;
10702 int *insn_state = env->cfg.insn_state;
10703
475fb78f 10704 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 10705 return DONE_EXPLORING;
475fb78f
AS
10706
10707 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 10708 return DONE_EXPLORING;
475fb78f
AS
10709
10710 if (w < 0 || w >= env->prog->len) {
d9762e84 10711 verbose_linfo(env, t, "%d: ", t);
61bd5218 10712 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
10713 return -EINVAL;
10714 }
10715
f1bca824
AS
10716 if (e == BRANCH)
10717 /* mark branch target for state pruning */
5d839021 10718 init_explored_state(env, w);
f1bca824 10719
475fb78f
AS
10720 if (insn_state[w] == 0) {
10721 /* tree-edge */
10722 insn_state[t] = DISCOVERED | e;
10723 insn_state[w] = DISCOVERED;
7df737e9 10724 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 10725 return -E2BIG;
7df737e9 10726 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 10727 return KEEP_EXPLORING;
475fb78f 10728 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 10729 if (loop_ok && env->bpf_capable)
59e2e27d 10730 return DONE_EXPLORING;
d9762e84
MKL
10731 verbose_linfo(env, t, "%d: ", t);
10732 verbose_linfo(env, w, "%d: ", w);
61bd5218 10733 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
10734 return -EINVAL;
10735 } else if (insn_state[w] == EXPLORED) {
10736 /* forward- or cross-edge */
10737 insn_state[t] = DISCOVERED | e;
10738 } else {
61bd5218 10739 verbose(env, "insn state internal bug\n");
475fb78f
AS
10740 return -EFAULT;
10741 }
59e2e27d
WAF
10742 return DONE_EXPLORING;
10743}
10744
efdb22de
YS
10745static int visit_func_call_insn(int t, int insn_cnt,
10746 struct bpf_insn *insns,
10747 struct bpf_verifier_env *env,
10748 bool visit_callee)
10749{
10750 int ret;
10751
10752 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10753 if (ret)
10754 return ret;
10755
10756 if (t + 1 < insn_cnt)
10757 init_explored_state(env, t + 1);
10758 if (visit_callee) {
10759 init_explored_state(env, t);
86fc6ee6
AS
10760 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10761 /* It's ok to allow recursion from CFG point of
10762 * view. __check_func_call() will do the actual
10763 * check.
10764 */
10765 bpf_pseudo_func(insns + t));
efdb22de
YS
10766 }
10767 return ret;
10768}
10769
59e2e27d
WAF
10770/* Visits the instruction at index t and returns one of the following:
10771 * < 0 - an error occurred
10772 * DONE_EXPLORING - the instruction was fully explored
10773 * KEEP_EXPLORING - there is still work to be done before it is fully explored
10774 */
10775static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10776{
10777 struct bpf_insn *insns = env->prog->insnsi;
10778 int ret;
10779
69c087ba
YS
10780 if (bpf_pseudo_func(insns + t))
10781 return visit_func_call_insn(t, insn_cnt, insns, env, true);
10782
59e2e27d
WAF
10783 /* All non-branch instructions have a single fall-through edge. */
10784 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10785 BPF_CLASS(insns[t].code) != BPF_JMP32)
10786 return push_insn(t, t + 1, FALLTHROUGH, env, false);
10787
10788 switch (BPF_OP(insns[t].code)) {
10789 case BPF_EXIT:
10790 return DONE_EXPLORING;
10791
10792 case BPF_CALL:
bfc6bb74
AS
10793 if (insns[t].imm == BPF_FUNC_timer_set_callback)
10794 /* Mark this call insn to trigger is_state_visited() check
10795 * before call itself is processed by __check_func_call().
10796 * Otherwise new async state will be pushed for further
10797 * exploration.
10798 */
10799 init_explored_state(env, t);
efdb22de
YS
10800 return visit_func_call_insn(t, insn_cnt, insns, env,
10801 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
10802
10803 case BPF_JA:
10804 if (BPF_SRC(insns[t].code) != BPF_K)
10805 return -EINVAL;
10806
10807 /* unconditional jump with single edge */
10808 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10809 true);
10810 if (ret)
10811 return ret;
10812
10813 /* unconditional jmp is not a good pruning point,
10814 * but it's marked, since backtracking needs
10815 * to record jmp history in is_state_visited().
10816 */
10817 init_explored_state(env, t + insns[t].off + 1);
10818 /* tell verifier to check for equivalent states
10819 * after every call and jump
10820 */
10821 if (t + 1 < insn_cnt)
10822 init_explored_state(env, t + 1);
10823
10824 return ret;
10825
10826 default:
10827 /* conditional jump with two edges */
10828 init_explored_state(env, t);
10829 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10830 if (ret)
10831 return ret;
10832
10833 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10834 }
475fb78f
AS
10835}
10836
10837/* non-recursive depth-first-search to detect loops in BPF program
10838 * loop == back-edge in directed graph
10839 */
58e2af8b 10840static int check_cfg(struct bpf_verifier_env *env)
475fb78f 10841{
475fb78f 10842 int insn_cnt = env->prog->len;
7df737e9 10843 int *insn_stack, *insn_state;
475fb78f 10844 int ret = 0;
59e2e27d 10845 int i;
475fb78f 10846
7df737e9 10847 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
10848 if (!insn_state)
10849 return -ENOMEM;
10850
7df737e9 10851 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 10852 if (!insn_stack) {
71dde681 10853 kvfree(insn_state);
475fb78f
AS
10854 return -ENOMEM;
10855 }
10856
10857 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10858 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 10859 env->cfg.cur_stack = 1;
475fb78f 10860
59e2e27d
WAF
10861 while (env->cfg.cur_stack > 0) {
10862 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 10863
59e2e27d
WAF
10864 ret = visit_insn(t, insn_cnt, env);
10865 switch (ret) {
10866 case DONE_EXPLORING:
10867 insn_state[t] = EXPLORED;
10868 env->cfg.cur_stack--;
10869 break;
10870 case KEEP_EXPLORING:
10871 break;
10872 default:
10873 if (ret > 0) {
10874 verbose(env, "visit_insn internal bug\n");
10875 ret = -EFAULT;
475fb78f 10876 }
475fb78f 10877 goto err_free;
59e2e27d 10878 }
475fb78f
AS
10879 }
10880
59e2e27d 10881 if (env->cfg.cur_stack < 0) {
61bd5218 10882 verbose(env, "pop stack internal bug\n");
475fb78f
AS
10883 ret = -EFAULT;
10884 goto err_free;
10885 }
475fb78f 10886
475fb78f
AS
10887 for (i = 0; i < insn_cnt; i++) {
10888 if (insn_state[i] != EXPLORED) {
61bd5218 10889 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
10890 ret = -EINVAL;
10891 goto err_free;
10892 }
10893 }
10894 ret = 0; /* cfg looks good */
10895
10896err_free:
71dde681
AS
10897 kvfree(insn_state);
10898 kvfree(insn_stack);
7df737e9 10899 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
10900 return ret;
10901}
10902
09b28d76
AS
10903static int check_abnormal_return(struct bpf_verifier_env *env)
10904{
10905 int i;
10906
10907 for (i = 1; i < env->subprog_cnt; i++) {
10908 if (env->subprog_info[i].has_ld_abs) {
10909 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10910 return -EINVAL;
10911 }
10912 if (env->subprog_info[i].has_tail_call) {
10913 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10914 return -EINVAL;
10915 }
10916 }
10917 return 0;
10918}
10919
838e9690
YS
10920/* The minimum supported BTF func info size */
10921#define MIN_BPF_FUNCINFO_SIZE 8
10922#define MAX_FUNCINFO_REC_SIZE 252
10923
c454a46b
MKL
10924static int check_btf_func(struct bpf_verifier_env *env,
10925 const union bpf_attr *attr,
af2ac3e1 10926 bpfptr_t uattr)
838e9690 10927{
09b28d76 10928 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 10929 u32 i, nfuncs, urec_size, min_size;
838e9690 10930 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 10931 struct bpf_func_info *krecord;
8c1b6e69 10932 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
10933 struct bpf_prog *prog;
10934 const struct btf *btf;
af2ac3e1 10935 bpfptr_t urecord;
d0b2818e 10936 u32 prev_offset = 0;
09b28d76 10937 bool scalar_return;
e7ed83d6 10938 int ret = -ENOMEM;
838e9690
YS
10939
10940 nfuncs = attr->func_info_cnt;
09b28d76
AS
10941 if (!nfuncs) {
10942 if (check_abnormal_return(env))
10943 return -EINVAL;
838e9690 10944 return 0;
09b28d76 10945 }
838e9690
YS
10946
10947 if (nfuncs != env->subprog_cnt) {
10948 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10949 return -EINVAL;
10950 }
10951
10952 urec_size = attr->func_info_rec_size;
10953 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10954 urec_size > MAX_FUNCINFO_REC_SIZE ||
10955 urec_size % sizeof(u32)) {
10956 verbose(env, "invalid func info rec size %u\n", urec_size);
10957 return -EINVAL;
10958 }
10959
c454a46b
MKL
10960 prog = env->prog;
10961 btf = prog->aux->btf;
838e9690 10962
af2ac3e1 10963 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
10964 min_size = min_t(u32, krec_size, urec_size);
10965
ba64e7d8 10966 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
10967 if (!krecord)
10968 return -ENOMEM;
8c1b6e69
AS
10969 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10970 if (!info_aux)
10971 goto err_free;
ba64e7d8 10972
838e9690
YS
10973 for (i = 0; i < nfuncs; i++) {
10974 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10975 if (ret) {
10976 if (ret == -E2BIG) {
10977 verbose(env, "nonzero tailing record in func info");
10978 /* set the size kernel expects so loader can zero
10979 * out the rest of the record.
10980 */
af2ac3e1
AS
10981 if (copy_to_bpfptr_offset(uattr,
10982 offsetof(union bpf_attr, func_info_rec_size),
10983 &min_size, sizeof(min_size)))
838e9690
YS
10984 ret = -EFAULT;
10985 }
c454a46b 10986 goto err_free;
838e9690
YS
10987 }
10988
af2ac3e1 10989 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10990 ret = -EFAULT;
c454a46b 10991 goto err_free;
838e9690
YS
10992 }
10993
d30d42e0 10994 /* check insn_off */
09b28d76 10995 ret = -EINVAL;
838e9690 10996 if (i == 0) {
d30d42e0 10997 if (krecord[i].insn_off) {
838e9690 10998 verbose(env,
d30d42e0
MKL
10999 "nonzero insn_off %u for the first func info record",
11000 krecord[i].insn_off);
c454a46b 11001 goto err_free;
838e9690 11002 }
d30d42e0 11003 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
11004 verbose(env,
11005 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 11006 krecord[i].insn_off, prev_offset);
c454a46b 11007 goto err_free;
838e9690
YS
11008 }
11009
d30d42e0 11010 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 11011 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 11012 goto err_free;
838e9690
YS
11013 }
11014
11015 /* check type_id */
ba64e7d8 11016 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 11017 if (!type || !btf_type_is_func(type)) {
838e9690 11018 verbose(env, "invalid type id %d in func info",
ba64e7d8 11019 krecord[i].type_id);
c454a46b 11020 goto err_free;
838e9690 11021 }
51c39bb1 11022 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
11023
11024 func_proto = btf_type_by_id(btf, type->type);
11025 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
11026 /* btf_func_check() already verified it during BTF load */
11027 goto err_free;
11028 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
11029 scalar_return =
6089fb32 11030 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
11031 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
11032 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
11033 goto err_free;
11034 }
11035 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
11036 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
11037 goto err_free;
11038 }
11039
d30d42e0 11040 prev_offset = krecord[i].insn_off;
af2ac3e1 11041 bpfptr_add(&urecord, urec_size);
838e9690
YS
11042 }
11043
ba64e7d8
YS
11044 prog->aux->func_info = krecord;
11045 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 11046 prog->aux->func_info_aux = info_aux;
838e9690
YS
11047 return 0;
11048
c454a46b 11049err_free:
ba64e7d8 11050 kvfree(krecord);
8c1b6e69 11051 kfree(info_aux);
838e9690
YS
11052 return ret;
11053}
11054
ba64e7d8
YS
11055static void adjust_btf_func(struct bpf_verifier_env *env)
11056{
8c1b6e69 11057 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
11058 int i;
11059
8c1b6e69 11060 if (!aux->func_info)
ba64e7d8
YS
11061 return;
11062
11063 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 11064 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
11065}
11066
1b773d00 11067#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
11068#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
11069
11070static int check_btf_line(struct bpf_verifier_env *env,
11071 const union bpf_attr *attr,
af2ac3e1 11072 bpfptr_t uattr)
c454a46b
MKL
11073{
11074 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11075 struct bpf_subprog_info *sub;
11076 struct bpf_line_info *linfo;
11077 struct bpf_prog *prog;
11078 const struct btf *btf;
af2ac3e1 11079 bpfptr_t ulinfo;
c454a46b
MKL
11080 int err;
11081
11082 nr_linfo = attr->line_info_cnt;
11083 if (!nr_linfo)
11084 return 0;
0e6491b5
BC
11085 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11086 return -EINVAL;
c454a46b
MKL
11087
11088 rec_size = attr->line_info_rec_size;
11089 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11090 rec_size > MAX_LINEINFO_REC_SIZE ||
11091 rec_size & (sizeof(u32) - 1))
11092 return -EINVAL;
11093
11094 /* Need to zero it in case the userspace may
11095 * pass in a smaller bpf_line_info object.
11096 */
11097 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11098 GFP_KERNEL | __GFP_NOWARN);
11099 if (!linfo)
11100 return -ENOMEM;
11101
11102 prog = env->prog;
11103 btf = prog->aux->btf;
11104
11105 s = 0;
11106 sub = env->subprog_info;
af2ac3e1 11107 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
11108 expected_size = sizeof(struct bpf_line_info);
11109 ncopy = min_t(u32, expected_size, rec_size);
11110 for (i = 0; i < nr_linfo; i++) {
11111 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11112 if (err) {
11113 if (err == -E2BIG) {
11114 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
11115 if (copy_to_bpfptr_offset(uattr,
11116 offsetof(union bpf_attr, line_info_rec_size),
11117 &expected_size, sizeof(expected_size)))
c454a46b
MKL
11118 err = -EFAULT;
11119 }
11120 goto err_free;
11121 }
11122
af2ac3e1 11123 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
11124 err = -EFAULT;
11125 goto err_free;
11126 }
11127
11128 /*
11129 * Check insn_off to ensure
11130 * 1) strictly increasing AND
11131 * 2) bounded by prog->len
11132 *
11133 * The linfo[0].insn_off == 0 check logically falls into
11134 * the later "missing bpf_line_info for func..." case
11135 * because the first linfo[0].insn_off must be the
11136 * first sub also and the first sub must have
11137 * subprog_info[0].start == 0.
11138 */
11139 if ((i && linfo[i].insn_off <= prev_offset) ||
11140 linfo[i].insn_off >= prog->len) {
11141 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11142 i, linfo[i].insn_off, prev_offset,
11143 prog->len);
11144 err = -EINVAL;
11145 goto err_free;
11146 }
11147
fdbaa0be
MKL
11148 if (!prog->insnsi[linfo[i].insn_off].code) {
11149 verbose(env,
11150 "Invalid insn code at line_info[%u].insn_off\n",
11151 i);
11152 err = -EINVAL;
11153 goto err_free;
11154 }
11155
23127b33
MKL
11156 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11157 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
11158 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11159 err = -EINVAL;
11160 goto err_free;
11161 }
11162
11163 if (s != env->subprog_cnt) {
11164 if (linfo[i].insn_off == sub[s].start) {
11165 sub[s].linfo_idx = i;
11166 s++;
11167 } else if (sub[s].start < linfo[i].insn_off) {
11168 verbose(env, "missing bpf_line_info for func#%u\n", s);
11169 err = -EINVAL;
11170 goto err_free;
11171 }
11172 }
11173
11174 prev_offset = linfo[i].insn_off;
af2ac3e1 11175 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
11176 }
11177
11178 if (s != env->subprog_cnt) {
11179 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11180 env->subprog_cnt - s, s);
11181 err = -EINVAL;
11182 goto err_free;
11183 }
11184
11185 prog->aux->linfo = linfo;
11186 prog->aux->nr_linfo = nr_linfo;
11187
11188 return 0;
11189
11190err_free:
11191 kvfree(linfo);
11192 return err;
11193}
11194
fbd94c7a
AS
11195#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
11196#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
11197
11198static int check_core_relo(struct bpf_verifier_env *env,
11199 const union bpf_attr *attr,
11200 bpfptr_t uattr)
11201{
11202 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11203 struct bpf_core_relo core_relo = {};
11204 struct bpf_prog *prog = env->prog;
11205 const struct btf *btf = prog->aux->btf;
11206 struct bpf_core_ctx ctx = {
11207 .log = &env->log,
11208 .btf = btf,
11209 };
11210 bpfptr_t u_core_relo;
11211 int err;
11212
11213 nr_core_relo = attr->core_relo_cnt;
11214 if (!nr_core_relo)
11215 return 0;
11216 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11217 return -EINVAL;
11218
11219 rec_size = attr->core_relo_rec_size;
11220 if (rec_size < MIN_CORE_RELO_SIZE ||
11221 rec_size > MAX_CORE_RELO_SIZE ||
11222 rec_size % sizeof(u32))
11223 return -EINVAL;
11224
11225 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11226 expected_size = sizeof(struct bpf_core_relo);
11227 ncopy = min_t(u32, expected_size, rec_size);
11228
11229 /* Unlike func_info and line_info, copy and apply each CO-RE
11230 * relocation record one at a time.
11231 */
11232 for (i = 0; i < nr_core_relo; i++) {
11233 /* future proofing when sizeof(bpf_core_relo) changes */
11234 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11235 if (err) {
11236 if (err == -E2BIG) {
11237 verbose(env, "nonzero tailing record in core_relo");
11238 if (copy_to_bpfptr_offset(uattr,
11239 offsetof(union bpf_attr, core_relo_rec_size),
11240 &expected_size, sizeof(expected_size)))
11241 err = -EFAULT;
11242 }
11243 break;
11244 }
11245
11246 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11247 err = -EFAULT;
11248 break;
11249 }
11250
11251 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11252 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11253 i, core_relo.insn_off, prog->len);
11254 err = -EINVAL;
11255 break;
11256 }
11257
11258 err = bpf_core_apply(&ctx, &core_relo, i,
11259 &prog->insnsi[core_relo.insn_off / 8]);
11260 if (err)
11261 break;
11262 bpfptr_add(&u_core_relo, rec_size);
11263 }
11264 return err;
11265}
11266
c454a46b
MKL
11267static int check_btf_info(struct bpf_verifier_env *env,
11268 const union bpf_attr *attr,
af2ac3e1 11269 bpfptr_t uattr)
c454a46b
MKL
11270{
11271 struct btf *btf;
11272 int err;
11273
09b28d76
AS
11274 if (!attr->func_info_cnt && !attr->line_info_cnt) {
11275 if (check_abnormal_return(env))
11276 return -EINVAL;
c454a46b 11277 return 0;
09b28d76 11278 }
c454a46b
MKL
11279
11280 btf = btf_get_by_fd(attr->prog_btf_fd);
11281 if (IS_ERR(btf))
11282 return PTR_ERR(btf);
350a5c4d
AS
11283 if (btf_is_kernel(btf)) {
11284 btf_put(btf);
11285 return -EACCES;
11286 }
c454a46b
MKL
11287 env->prog->aux->btf = btf;
11288
11289 err = check_btf_func(env, attr, uattr);
11290 if (err)
11291 return err;
11292
11293 err = check_btf_line(env, attr, uattr);
11294 if (err)
11295 return err;
11296
fbd94c7a
AS
11297 err = check_core_relo(env, attr, uattr);
11298 if (err)
11299 return err;
11300
c454a46b 11301 return 0;
ba64e7d8
YS
11302}
11303
f1174f77
EC
11304/* check %cur's range satisfies %old's */
11305static bool range_within(struct bpf_reg_state *old,
11306 struct bpf_reg_state *cur)
11307{
b03c9f9f
EC
11308 return old->umin_value <= cur->umin_value &&
11309 old->umax_value >= cur->umax_value &&
11310 old->smin_value <= cur->smin_value &&
fd675184
DB
11311 old->smax_value >= cur->smax_value &&
11312 old->u32_min_value <= cur->u32_min_value &&
11313 old->u32_max_value >= cur->u32_max_value &&
11314 old->s32_min_value <= cur->s32_min_value &&
11315 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
11316}
11317
f1174f77
EC
11318/* If in the old state two registers had the same id, then they need to have
11319 * the same id in the new state as well. But that id could be different from
11320 * the old state, so we need to track the mapping from old to new ids.
11321 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11322 * regs with old id 5 must also have new id 9 for the new state to be safe. But
11323 * regs with a different old id could still have new id 9, we don't care about
11324 * that.
11325 * So we look through our idmap to see if this old id has been seen before. If
11326 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 11327 */
c9e73e3d 11328static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 11329{
f1174f77 11330 unsigned int i;
969bf05e 11331
c9e73e3d 11332 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
11333 if (!idmap[i].old) {
11334 /* Reached an empty slot; haven't seen this id before */
11335 idmap[i].old = old_id;
11336 idmap[i].cur = cur_id;
11337 return true;
11338 }
11339 if (idmap[i].old == old_id)
11340 return idmap[i].cur == cur_id;
11341 }
11342 /* We ran out of idmap slots, which should be impossible */
11343 WARN_ON_ONCE(1);
11344 return false;
11345}
11346
9242b5f5
AS
11347static void clean_func_state(struct bpf_verifier_env *env,
11348 struct bpf_func_state *st)
11349{
11350 enum bpf_reg_liveness live;
11351 int i, j;
11352
11353 for (i = 0; i < BPF_REG_FP; i++) {
11354 live = st->regs[i].live;
11355 /* liveness must not touch this register anymore */
11356 st->regs[i].live |= REG_LIVE_DONE;
11357 if (!(live & REG_LIVE_READ))
11358 /* since the register is unused, clear its state
11359 * to make further comparison simpler
11360 */
f54c7898 11361 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
11362 }
11363
11364 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11365 live = st->stack[i].spilled_ptr.live;
11366 /* liveness must not touch this stack slot anymore */
11367 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11368 if (!(live & REG_LIVE_READ)) {
f54c7898 11369 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
11370 for (j = 0; j < BPF_REG_SIZE; j++)
11371 st->stack[i].slot_type[j] = STACK_INVALID;
11372 }
11373 }
11374}
11375
11376static void clean_verifier_state(struct bpf_verifier_env *env,
11377 struct bpf_verifier_state *st)
11378{
11379 int i;
11380
11381 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11382 /* all regs in this state in all frames were already marked */
11383 return;
11384
11385 for (i = 0; i <= st->curframe; i++)
11386 clean_func_state(env, st->frame[i]);
11387}
11388
11389/* the parentage chains form a tree.
11390 * the verifier states are added to state lists at given insn and
11391 * pushed into state stack for future exploration.
11392 * when the verifier reaches bpf_exit insn some of the verifer states
11393 * stored in the state lists have their final liveness state already,
11394 * but a lot of states will get revised from liveness point of view when
11395 * the verifier explores other branches.
11396 * Example:
11397 * 1: r0 = 1
11398 * 2: if r1 == 100 goto pc+1
11399 * 3: r0 = 2
11400 * 4: exit
11401 * when the verifier reaches exit insn the register r0 in the state list of
11402 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11403 * of insn 2 and goes exploring further. At the insn 4 it will walk the
11404 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11405 *
11406 * Since the verifier pushes the branch states as it sees them while exploring
11407 * the program the condition of walking the branch instruction for the second
11408 * time means that all states below this branch were already explored and
8fb33b60 11409 * their final liveness marks are already propagated.
9242b5f5
AS
11410 * Hence when the verifier completes the search of state list in is_state_visited()
11411 * we can call this clean_live_states() function to mark all liveness states
11412 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11413 * will not be used.
11414 * This function also clears the registers and stack for states that !READ
11415 * to simplify state merging.
11416 *
11417 * Important note here that walking the same branch instruction in the callee
11418 * doesn't meant that the states are DONE. The verifier has to compare
11419 * the callsites
11420 */
11421static void clean_live_states(struct bpf_verifier_env *env, int insn,
11422 struct bpf_verifier_state *cur)
11423{
11424 struct bpf_verifier_state_list *sl;
11425 int i;
11426
5d839021 11427 sl = *explored_state(env, insn);
a8f500af 11428 while (sl) {
2589726d
AS
11429 if (sl->state.branches)
11430 goto next;
dc2a4ebc
AS
11431 if (sl->state.insn_idx != insn ||
11432 sl->state.curframe != cur->curframe)
9242b5f5
AS
11433 goto next;
11434 for (i = 0; i <= cur->curframe; i++)
11435 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11436 goto next;
11437 clean_verifier_state(env, &sl->state);
11438next:
11439 sl = sl->next;
11440 }
11441}
11442
f1174f77 11443/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
11444static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11445 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 11446{
f4d7e40a
AS
11447 bool equal;
11448
dc503a8a
EC
11449 if (!(rold->live & REG_LIVE_READ))
11450 /* explored state didn't use this */
11451 return true;
11452
679c782d 11453 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
11454
11455 if (rold->type == PTR_TO_STACK)
11456 /* two stack pointers are equal only if they're pointing to
11457 * the same stack frame, since fp-8 in foo != fp-8 in bar
11458 */
11459 return equal && rold->frameno == rcur->frameno;
11460
11461 if (equal)
969bf05e
AS
11462 return true;
11463
f1174f77
EC
11464 if (rold->type == NOT_INIT)
11465 /* explored state can't have used this */
969bf05e 11466 return true;
f1174f77
EC
11467 if (rcur->type == NOT_INIT)
11468 return false;
c25b2ae1 11469 switch (base_type(rold->type)) {
f1174f77 11470 case SCALAR_VALUE:
e042aa53
DB
11471 if (env->explore_alu_limits)
11472 return false;
f1174f77 11473 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
11474 if (!rold->precise && !rcur->precise)
11475 return true;
f1174f77
EC
11476 /* new val must satisfy old val knowledge */
11477 return range_within(rold, rcur) &&
11478 tnum_in(rold->var_off, rcur->var_off);
11479 } else {
179d1c56
JH
11480 /* We're trying to use a pointer in place of a scalar.
11481 * Even if the scalar was unbounded, this could lead to
11482 * pointer leaks because scalars are allowed to leak
11483 * while pointers are not. We could make this safe in
11484 * special cases if root is calling us, but it's
11485 * probably not worth the hassle.
f1174f77 11486 */
179d1c56 11487 return false;
f1174f77 11488 }
69c087ba 11489 case PTR_TO_MAP_KEY:
f1174f77 11490 case PTR_TO_MAP_VALUE:
c25b2ae1
HL
11491 /* a PTR_TO_MAP_VALUE could be safe to use as a
11492 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11493 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11494 * checked, doing so could have affected others with the same
11495 * id, and we can't check for that because we lost the id when
11496 * we converted to a PTR_TO_MAP_VALUE.
11497 */
11498 if (type_may_be_null(rold->type)) {
11499 if (!type_may_be_null(rcur->type))
11500 return false;
11501 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11502 return false;
11503 /* Check our ids match any regs they're supposed to */
11504 return check_ids(rold->id, rcur->id, idmap);
11505 }
11506
1b688a19
EC
11507 /* If the new min/max/var_off satisfy the old ones and
11508 * everything else matches, we are OK.
d83525ca
AS
11509 * 'id' is not compared, since it's only used for maps with
11510 * bpf_spin_lock inside map element and in such cases if
11511 * the rest of the prog is valid for one map element then
11512 * it's valid for all map elements regardless of the key
11513 * used in bpf_map_lookup()
1b688a19
EC
11514 */
11515 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11516 range_within(rold, rcur) &&
11517 tnum_in(rold->var_off, rcur->var_off);
de8f3a83 11518 case PTR_TO_PACKET_META:
f1174f77 11519 case PTR_TO_PACKET:
de8f3a83 11520 if (rcur->type != rold->type)
f1174f77
EC
11521 return false;
11522 /* We must have at least as much range as the old ptr
11523 * did, so that any accesses which were safe before are
11524 * still safe. This is true even if old range < old off,
11525 * since someone could have accessed through (ptr - k), or
11526 * even done ptr -= k in a register, to get a safe access.
11527 */
11528 if (rold->range > rcur->range)
11529 return false;
11530 /* If the offsets don't match, we can't trust our alignment;
11531 * nor can we be sure that we won't fall out of range.
11532 */
11533 if (rold->off != rcur->off)
11534 return false;
11535 /* id relations must be preserved */
11536 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11537 return false;
11538 /* new val must satisfy old val knowledge */
11539 return range_within(rold, rcur) &&
11540 tnum_in(rold->var_off, rcur->var_off);
11541 case PTR_TO_CTX:
11542 case CONST_PTR_TO_MAP:
f1174f77 11543 case PTR_TO_PACKET_END:
d58e468b 11544 case PTR_TO_FLOW_KEYS:
c64b7983 11545 case PTR_TO_SOCKET:
46f8bc92 11546 case PTR_TO_SOCK_COMMON:
655a51e5 11547 case PTR_TO_TCP_SOCK:
fada7fdc 11548 case PTR_TO_XDP_SOCK:
f1174f77
EC
11549 /* Only valid matches are exact, which memcmp() above
11550 * would have accepted
11551 */
11552 default:
11553 /* Don't know what's going on, just say it's not safe */
11554 return false;
11555 }
969bf05e 11556
f1174f77
EC
11557 /* Shouldn't get here; if we do, say it's not safe */
11558 WARN_ON_ONCE(1);
969bf05e
AS
11559 return false;
11560}
11561
e042aa53
DB
11562static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11563 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
11564{
11565 int i, spi;
11566
638f5b90
AS
11567 /* walk slots of the explored stack and ignore any additional
11568 * slots in the current stack, since explored(safe) state
11569 * didn't use them
11570 */
11571 for (i = 0; i < old->allocated_stack; i++) {
11572 spi = i / BPF_REG_SIZE;
11573
b233920c
AS
11574 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11575 i += BPF_REG_SIZE - 1;
cc2b14d5 11576 /* explored state didn't use this */
fd05e57b 11577 continue;
b233920c 11578 }
cc2b14d5 11579
638f5b90
AS
11580 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11581 continue;
19e2dbb7
AS
11582
11583 /* explored stack has more populated slots than current stack
11584 * and these slots were used
11585 */
11586 if (i >= cur->allocated_stack)
11587 return false;
11588
cc2b14d5
AS
11589 /* if old state was safe with misc data in the stack
11590 * it will be safe with zero-initialized stack.
11591 * The opposite is not true
11592 */
11593 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11594 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11595 continue;
638f5b90
AS
11596 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11597 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11598 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 11599 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
11600 * this verifier states are not equivalent,
11601 * return false to continue verification of this path
11602 */
11603 return false;
27113c59 11604 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 11605 continue;
27113c59 11606 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 11607 continue;
e042aa53
DB
11608 if (!regsafe(env, &old->stack[spi].spilled_ptr,
11609 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
11610 /* when explored and current stack slot are both storing
11611 * spilled registers, check that stored pointers types
11612 * are the same as well.
11613 * Ex: explored safe path could have stored
11614 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11615 * but current path has stored:
11616 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11617 * such verifier states are not equivalent.
11618 * return false to continue verification of this path
11619 */
11620 return false;
11621 }
11622 return true;
11623}
11624
fd978bf7
JS
11625static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11626{
11627 if (old->acquired_refs != cur->acquired_refs)
11628 return false;
11629 return !memcmp(old->refs, cur->refs,
11630 sizeof(*old->refs) * old->acquired_refs);
11631}
11632
f1bca824
AS
11633/* compare two verifier states
11634 *
11635 * all states stored in state_list are known to be valid, since
11636 * verifier reached 'bpf_exit' instruction through them
11637 *
11638 * this function is called when verifier exploring different branches of
11639 * execution popped from the state stack. If it sees an old state that has
11640 * more strict register state and more strict stack state then this execution
11641 * branch doesn't need to be explored further, since verifier already
11642 * concluded that more strict state leads to valid finish.
11643 *
11644 * Therefore two states are equivalent if register state is more conservative
11645 * and explored stack state is more conservative than the current one.
11646 * Example:
11647 * explored current
11648 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11649 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11650 *
11651 * In other words if current stack state (one being explored) has more
11652 * valid slots than old one that already passed validation, it means
11653 * the verifier can stop exploring and conclude that current state is valid too
11654 *
11655 * Similarly with registers. If explored state has register type as invalid
11656 * whereas register type in current state is meaningful, it means that
11657 * the current state will reach 'bpf_exit' instruction safely
11658 */
c9e73e3d 11659static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 11660 struct bpf_func_state *cur)
f1bca824
AS
11661{
11662 int i;
11663
c9e73e3d
LB
11664 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11665 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
11666 if (!regsafe(env, &old->regs[i], &cur->regs[i],
11667 env->idmap_scratch))
c9e73e3d 11668 return false;
f1bca824 11669
e042aa53 11670 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 11671 return false;
fd978bf7
JS
11672
11673 if (!refsafe(old, cur))
c9e73e3d
LB
11674 return false;
11675
11676 return true;
f1bca824
AS
11677}
11678
f4d7e40a
AS
11679static bool states_equal(struct bpf_verifier_env *env,
11680 struct bpf_verifier_state *old,
11681 struct bpf_verifier_state *cur)
11682{
11683 int i;
11684
11685 if (old->curframe != cur->curframe)
11686 return false;
11687
979d63d5
DB
11688 /* Verification state from speculative execution simulation
11689 * must never prune a non-speculative execution one.
11690 */
11691 if (old->speculative && !cur->speculative)
11692 return false;
11693
d83525ca
AS
11694 if (old->active_spin_lock != cur->active_spin_lock)
11695 return false;
11696
f4d7e40a
AS
11697 /* for states to be equal callsites have to be the same
11698 * and all frame states need to be equivalent
11699 */
11700 for (i = 0; i <= old->curframe; i++) {
11701 if (old->frame[i]->callsite != cur->frame[i]->callsite)
11702 return false;
c9e73e3d 11703 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
11704 return false;
11705 }
11706 return true;
11707}
11708
5327ed3d
JW
11709/* Return 0 if no propagation happened. Return negative error code if error
11710 * happened. Otherwise, return the propagated bit.
11711 */
55e7f3b5
JW
11712static int propagate_liveness_reg(struct bpf_verifier_env *env,
11713 struct bpf_reg_state *reg,
11714 struct bpf_reg_state *parent_reg)
11715{
5327ed3d
JW
11716 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11717 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
11718 int err;
11719
5327ed3d
JW
11720 /* When comes here, read flags of PARENT_REG or REG could be any of
11721 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11722 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11723 */
11724 if (parent_flag == REG_LIVE_READ64 ||
11725 /* Or if there is no read flag from REG. */
11726 !flag ||
11727 /* Or if the read flag from REG is the same as PARENT_REG. */
11728 parent_flag == flag)
55e7f3b5
JW
11729 return 0;
11730
5327ed3d 11731 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
11732 if (err)
11733 return err;
11734
5327ed3d 11735 return flag;
55e7f3b5
JW
11736}
11737
8e9cd9ce 11738/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
11739 * straight-line code between a state and its parent. When we arrive at an
11740 * equivalent state (jump target or such) we didn't arrive by the straight-line
11741 * code, so read marks in the state must propagate to the parent regardless
11742 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 11743 * in mark_reg_read() is for.
8e9cd9ce 11744 */
f4d7e40a
AS
11745static int propagate_liveness(struct bpf_verifier_env *env,
11746 const struct bpf_verifier_state *vstate,
11747 struct bpf_verifier_state *vparent)
dc503a8a 11748{
3f8cafa4 11749 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 11750 struct bpf_func_state *state, *parent;
3f8cafa4 11751 int i, frame, err = 0;
dc503a8a 11752
f4d7e40a
AS
11753 if (vparent->curframe != vstate->curframe) {
11754 WARN(1, "propagate_live: parent frame %d current frame %d\n",
11755 vparent->curframe, vstate->curframe);
11756 return -EFAULT;
11757 }
dc503a8a
EC
11758 /* Propagate read liveness of registers... */
11759 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 11760 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
11761 parent = vparent->frame[frame];
11762 state = vstate->frame[frame];
11763 parent_reg = parent->regs;
11764 state_reg = state->regs;
83d16312
JK
11765 /* We don't need to worry about FP liveness, it's read-only */
11766 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
11767 err = propagate_liveness_reg(env, &state_reg[i],
11768 &parent_reg[i]);
5327ed3d 11769 if (err < 0)
3f8cafa4 11770 return err;
5327ed3d
JW
11771 if (err == REG_LIVE_READ64)
11772 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 11773 }
f4d7e40a 11774
1b04aee7 11775 /* Propagate stack slots. */
f4d7e40a
AS
11776 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11777 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
11778 parent_reg = &parent->stack[i].spilled_ptr;
11779 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
11780 err = propagate_liveness_reg(env, state_reg,
11781 parent_reg);
5327ed3d 11782 if (err < 0)
3f8cafa4 11783 return err;
dc503a8a
EC
11784 }
11785 }
5327ed3d 11786 return 0;
dc503a8a
EC
11787}
11788
a3ce685d
AS
11789/* find precise scalars in the previous equivalent state and
11790 * propagate them into the current state
11791 */
11792static int propagate_precision(struct bpf_verifier_env *env,
11793 const struct bpf_verifier_state *old)
11794{
11795 struct bpf_reg_state *state_reg;
11796 struct bpf_func_state *state;
11797 int i, err = 0;
11798
11799 state = old->frame[old->curframe];
11800 state_reg = state->regs;
11801 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11802 if (state_reg->type != SCALAR_VALUE ||
11803 !state_reg->precise)
11804 continue;
11805 if (env->log.level & BPF_LOG_LEVEL2)
11806 verbose(env, "propagating r%d\n", i);
11807 err = mark_chain_precision(env, i);
11808 if (err < 0)
11809 return err;
11810 }
11811
11812 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 11813 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
11814 continue;
11815 state_reg = &state->stack[i].spilled_ptr;
11816 if (state_reg->type != SCALAR_VALUE ||
11817 !state_reg->precise)
11818 continue;
11819 if (env->log.level & BPF_LOG_LEVEL2)
11820 verbose(env, "propagating fp%d\n",
11821 (-i - 1) * BPF_REG_SIZE);
11822 err = mark_chain_precision_stack(env, i);
11823 if (err < 0)
11824 return err;
11825 }
11826 return 0;
11827}
11828
2589726d
AS
11829static bool states_maybe_looping(struct bpf_verifier_state *old,
11830 struct bpf_verifier_state *cur)
11831{
11832 struct bpf_func_state *fold, *fcur;
11833 int i, fr = cur->curframe;
11834
11835 if (old->curframe != fr)
11836 return false;
11837
11838 fold = old->frame[fr];
11839 fcur = cur->frame[fr];
11840 for (i = 0; i < MAX_BPF_REG; i++)
11841 if (memcmp(&fold->regs[i], &fcur->regs[i],
11842 offsetof(struct bpf_reg_state, parent)))
11843 return false;
11844 return true;
11845}
11846
11847
58e2af8b 11848static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 11849{
58e2af8b 11850 struct bpf_verifier_state_list *new_sl;
9f4686c4 11851 struct bpf_verifier_state_list *sl, **pprev;
679c782d 11852 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 11853 int i, j, err, states_cnt = 0;
10d274e8 11854 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 11855
b5dc0163 11856 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 11857 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
11858 /* this 'insn_idx' instruction wasn't marked, so we will not
11859 * be doing state search here
11860 */
11861 return 0;
11862
2589726d
AS
11863 /* bpf progs typically have pruning point every 4 instructions
11864 * http://vger.kernel.org/bpfconf2019.html#session-1
11865 * Do not add new state for future pruning if the verifier hasn't seen
11866 * at least 2 jumps and at least 8 instructions.
11867 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11868 * In tests that amounts to up to 50% reduction into total verifier
11869 * memory consumption and 20% verifier time speedup.
11870 */
11871 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11872 env->insn_processed - env->prev_insn_processed >= 8)
11873 add_new_state = true;
11874
a8f500af
AS
11875 pprev = explored_state(env, insn_idx);
11876 sl = *pprev;
11877
9242b5f5
AS
11878 clean_live_states(env, insn_idx, cur);
11879
a8f500af 11880 while (sl) {
dc2a4ebc
AS
11881 states_cnt++;
11882 if (sl->state.insn_idx != insn_idx)
11883 goto next;
bfc6bb74 11884
2589726d 11885 if (sl->state.branches) {
bfc6bb74
AS
11886 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11887
11888 if (frame->in_async_callback_fn &&
11889 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11890 /* Different async_entry_cnt means that the verifier is
11891 * processing another entry into async callback.
11892 * Seeing the same state is not an indication of infinite
11893 * loop or infinite recursion.
11894 * But finding the same state doesn't mean that it's safe
11895 * to stop processing the current state. The previous state
11896 * hasn't yet reached bpf_exit, since state.branches > 0.
11897 * Checking in_async_callback_fn alone is not enough either.
11898 * Since the verifier still needs to catch infinite loops
11899 * inside async callbacks.
11900 */
11901 } else if (states_maybe_looping(&sl->state, cur) &&
11902 states_equal(env, &sl->state, cur)) {
2589726d
AS
11903 verbose_linfo(env, insn_idx, "; ");
11904 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11905 return -EINVAL;
11906 }
11907 /* if the verifier is processing a loop, avoid adding new state
11908 * too often, since different loop iterations have distinct
11909 * states and may not help future pruning.
11910 * This threshold shouldn't be too low to make sure that
11911 * a loop with large bound will be rejected quickly.
11912 * The most abusive loop will be:
11913 * r1 += 1
11914 * if r1 < 1000000 goto pc-2
11915 * 1M insn_procssed limit / 100 == 10k peak states.
11916 * This threshold shouldn't be too high either, since states
11917 * at the end of the loop are likely to be useful in pruning.
11918 */
11919 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11920 env->insn_processed - env->prev_insn_processed < 100)
11921 add_new_state = false;
11922 goto miss;
11923 }
638f5b90 11924 if (states_equal(env, &sl->state, cur)) {
9f4686c4 11925 sl->hit_cnt++;
f1bca824 11926 /* reached equivalent register/stack state,
dc503a8a
EC
11927 * prune the search.
11928 * Registers read by the continuation are read by us.
8e9cd9ce
EC
11929 * If we have any write marks in env->cur_state, they
11930 * will prevent corresponding reads in the continuation
11931 * from reaching our parent (an explored_state). Our
11932 * own state will get the read marks recorded, but
11933 * they'll be immediately forgotten as we're pruning
11934 * this state and will pop a new one.
f1bca824 11935 */
f4d7e40a 11936 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
11937
11938 /* if previous state reached the exit with precision and
11939 * current state is equivalent to it (except precsion marks)
11940 * the precision needs to be propagated back in
11941 * the current state.
11942 */
11943 err = err ? : push_jmp_history(env, cur);
11944 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
11945 if (err)
11946 return err;
f1bca824 11947 return 1;
dc503a8a 11948 }
2589726d
AS
11949miss:
11950 /* when new state is not going to be added do not increase miss count.
11951 * Otherwise several loop iterations will remove the state
11952 * recorded earlier. The goal of these heuristics is to have
11953 * states from some iterations of the loop (some in the beginning
11954 * and some at the end) to help pruning.
11955 */
11956 if (add_new_state)
11957 sl->miss_cnt++;
9f4686c4
AS
11958 /* heuristic to determine whether this state is beneficial
11959 * to keep checking from state equivalence point of view.
11960 * Higher numbers increase max_states_per_insn and verification time,
11961 * but do not meaningfully decrease insn_processed.
11962 */
11963 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11964 /* the state is unlikely to be useful. Remove it to
11965 * speed up verification
11966 */
11967 *pprev = sl->next;
11968 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
11969 u32 br = sl->state.branches;
11970
11971 WARN_ONCE(br,
11972 "BUG live_done but branches_to_explore %d\n",
11973 br);
9f4686c4
AS
11974 free_verifier_state(&sl->state, false);
11975 kfree(sl);
11976 env->peak_states--;
11977 } else {
11978 /* cannot free this state, since parentage chain may
11979 * walk it later. Add it for free_list instead to
11980 * be freed at the end of verification
11981 */
11982 sl->next = env->free_list;
11983 env->free_list = sl;
11984 }
11985 sl = *pprev;
11986 continue;
11987 }
dc2a4ebc 11988next:
9f4686c4
AS
11989 pprev = &sl->next;
11990 sl = *pprev;
f1bca824
AS
11991 }
11992
06ee7115
AS
11993 if (env->max_states_per_insn < states_cnt)
11994 env->max_states_per_insn = states_cnt;
11995
2c78ee89 11996 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 11997 return push_jmp_history(env, cur);
ceefbc96 11998
2589726d 11999 if (!add_new_state)
b5dc0163 12000 return push_jmp_history(env, cur);
ceefbc96 12001
2589726d
AS
12002 /* There were no equivalent states, remember the current one.
12003 * Technically the current state is not proven to be safe yet,
f4d7e40a 12004 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 12005 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 12006 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
12007 * again on the way to bpf_exit.
12008 * When looping the sl->state.branches will be > 0 and this state
12009 * will not be considered for equivalence until branches == 0.
f1bca824 12010 */
638f5b90 12011 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
12012 if (!new_sl)
12013 return -ENOMEM;
06ee7115
AS
12014 env->total_states++;
12015 env->peak_states++;
2589726d
AS
12016 env->prev_jmps_processed = env->jmps_processed;
12017 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
12018
12019 /* add new state to the head of linked list */
679c782d
EC
12020 new = &new_sl->state;
12021 err = copy_verifier_state(new, cur);
1969db47 12022 if (err) {
679c782d 12023 free_verifier_state(new, false);
1969db47
AS
12024 kfree(new_sl);
12025 return err;
12026 }
dc2a4ebc 12027 new->insn_idx = insn_idx;
2589726d
AS
12028 WARN_ONCE(new->branches != 1,
12029 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 12030
2589726d 12031 cur->parent = new;
b5dc0163
AS
12032 cur->first_insn_idx = insn_idx;
12033 clear_jmp_history(cur);
5d839021
AS
12034 new_sl->next = *explored_state(env, insn_idx);
12035 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
12036 /* connect new state to parentage chain. Current frame needs all
12037 * registers connected. Only r6 - r9 of the callers are alive (pushed
12038 * to the stack implicitly by JITs) so in callers' frames connect just
12039 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12040 * the state of the call instruction (with WRITTEN set), and r0 comes
12041 * from callee with its full parentage chain, anyway.
12042 */
8e9cd9ce
EC
12043 /* clear write marks in current state: the writes we did are not writes
12044 * our child did, so they don't screen off its reads from us.
12045 * (There are no read marks in current state, because reads always mark
12046 * their parent and current state never has children yet. Only
12047 * explored_states can get read marks.)
12048 */
eea1c227
AS
12049 for (j = 0; j <= cur->curframe; j++) {
12050 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12051 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12052 for (i = 0; i < BPF_REG_FP; i++)
12053 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12054 }
f4d7e40a
AS
12055
12056 /* all stack frames are accessible from callee, clear them all */
12057 for (j = 0; j <= cur->curframe; j++) {
12058 struct bpf_func_state *frame = cur->frame[j];
679c782d 12059 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 12060
679c782d 12061 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 12062 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
12063 frame->stack[i].spilled_ptr.parent =
12064 &newframe->stack[i].spilled_ptr;
12065 }
f4d7e40a 12066 }
f1bca824
AS
12067 return 0;
12068}
12069
c64b7983
JS
12070/* Return true if it's OK to have the same insn return a different type. */
12071static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12072{
c25b2ae1 12073 switch (base_type(type)) {
c64b7983
JS
12074 case PTR_TO_CTX:
12075 case PTR_TO_SOCKET:
46f8bc92 12076 case PTR_TO_SOCK_COMMON:
655a51e5 12077 case PTR_TO_TCP_SOCK:
fada7fdc 12078 case PTR_TO_XDP_SOCK:
2a02759e 12079 case PTR_TO_BTF_ID:
c64b7983
JS
12080 return false;
12081 default:
12082 return true;
12083 }
12084}
12085
12086/* If an instruction was previously used with particular pointer types, then we
12087 * need to be careful to avoid cases such as the below, where it may be ok
12088 * for one branch accessing the pointer, but not ok for the other branch:
12089 *
12090 * R1 = sock_ptr
12091 * goto X;
12092 * ...
12093 * R1 = some_other_valid_ptr;
12094 * goto X;
12095 * ...
12096 * R2 = *(u32 *)(R1 + 0);
12097 */
12098static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12099{
12100 return src != prev && (!reg_type_mismatch_ok(src) ||
12101 !reg_type_mismatch_ok(prev));
12102}
12103
58e2af8b 12104static int do_check(struct bpf_verifier_env *env)
17a52670 12105{
6f8a57cc 12106 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 12107 struct bpf_verifier_state *state = env->cur_state;
17a52670 12108 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 12109 struct bpf_reg_state *regs;
06ee7115 12110 int insn_cnt = env->prog->len;
17a52670 12111 bool do_print_state = false;
b5dc0163 12112 int prev_insn_idx = -1;
17a52670 12113
17a52670
AS
12114 for (;;) {
12115 struct bpf_insn *insn;
12116 u8 class;
12117 int err;
12118
b5dc0163 12119 env->prev_insn_idx = prev_insn_idx;
c08435ec 12120 if (env->insn_idx >= insn_cnt) {
61bd5218 12121 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 12122 env->insn_idx, insn_cnt);
17a52670
AS
12123 return -EFAULT;
12124 }
12125
c08435ec 12126 insn = &insns[env->insn_idx];
17a52670
AS
12127 class = BPF_CLASS(insn->code);
12128
06ee7115 12129 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
12130 verbose(env,
12131 "BPF program is too large. Processed %d insn\n",
06ee7115 12132 env->insn_processed);
17a52670
AS
12133 return -E2BIG;
12134 }
12135
c08435ec 12136 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
12137 if (err < 0)
12138 return err;
12139 if (err == 1) {
12140 /* found equivalent state, can prune the search */
06ee7115 12141 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 12142 if (do_print_state)
979d63d5
DB
12143 verbose(env, "\nfrom %d to %d%s: safe\n",
12144 env->prev_insn_idx, env->insn_idx,
12145 env->cur_state->speculative ?
12146 " (speculative execution)" : "");
f1bca824 12147 else
c08435ec 12148 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
12149 }
12150 goto process_bpf_exit;
12151 }
12152
c3494801
AS
12153 if (signal_pending(current))
12154 return -EAGAIN;
12155
3c2ce60b
DB
12156 if (need_resched())
12157 cond_resched();
12158
2e576648
CL
12159 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12160 verbose(env, "\nfrom %d to %d%s:",
12161 env->prev_insn_idx, env->insn_idx,
12162 env->cur_state->speculative ?
12163 " (speculative execution)" : "");
12164 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
12165 do_print_state = false;
12166 }
12167
06ee7115 12168 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 12169 const struct bpf_insn_cbs cbs = {
e6ac2450 12170 .cb_call = disasm_kfunc_name,
7105e828 12171 .cb_print = verbose,
abe08840 12172 .private_data = env,
7105e828
DB
12173 };
12174
2e576648
CL
12175 if (verifier_state_scratched(env))
12176 print_insn_state(env, state->frame[state->curframe]);
12177
c08435ec 12178 verbose_linfo(env, env->insn_idx, "; ");
2e576648 12179 env->prev_log_len = env->log.len_used;
c08435ec 12180 verbose(env, "%d: ", env->insn_idx);
abe08840 12181 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
12182 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12183 env->prev_log_len = env->log.len_used;
17a52670
AS
12184 }
12185
cae1927c 12186 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
12187 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12188 env->prev_insn_idx);
cae1927c
JK
12189 if (err)
12190 return err;
12191 }
13a27dfc 12192
638f5b90 12193 regs = cur_regs(env);
fe9a5ca7 12194 sanitize_mark_insn_seen(env);
b5dc0163 12195 prev_insn_idx = env->insn_idx;
fd978bf7 12196
17a52670 12197 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 12198 err = check_alu_op(env, insn);
17a52670
AS
12199 if (err)
12200 return err;
12201
12202 } else if (class == BPF_LDX) {
3df126f3 12203 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
12204
12205 /* check for reserved fields is already done */
12206
17a52670 12207 /* check src operand */
dc503a8a 12208 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12209 if (err)
12210 return err;
12211
dc503a8a 12212 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
12213 if (err)
12214 return err;
12215
725f9dcd
AS
12216 src_reg_type = regs[insn->src_reg].type;
12217
17a52670
AS
12218 /* check that memory (src_reg + off) is readable,
12219 * the state of dst_reg will be updated by this func
12220 */
c08435ec
DB
12221 err = check_mem_access(env, env->insn_idx, insn->src_reg,
12222 insn->off, BPF_SIZE(insn->code),
12223 BPF_READ, insn->dst_reg, false);
17a52670
AS
12224 if (err)
12225 return err;
12226
c08435ec 12227 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
12228
12229 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
12230 /* saw a valid insn
12231 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 12232 * save type to validate intersecting paths
9bac3d6d 12233 */
3df126f3 12234 *prev_src_type = src_reg_type;
9bac3d6d 12235
c64b7983 12236 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
12237 /* ABuser program is trying to use the same insn
12238 * dst_reg = *(u32*) (src_reg + off)
12239 * with different pointer types:
12240 * src_reg == ctx in one branch and
12241 * src_reg == stack|map in some other branch.
12242 * Reject it.
12243 */
61bd5218 12244 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
12245 return -EINVAL;
12246 }
12247
17a52670 12248 } else if (class == BPF_STX) {
3df126f3 12249 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 12250
91c960b0
BJ
12251 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12252 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
12253 if (err)
12254 return err;
c08435ec 12255 env->insn_idx++;
17a52670
AS
12256 continue;
12257 }
12258
5ca419f2
BJ
12259 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12260 verbose(env, "BPF_STX uses reserved fields\n");
12261 return -EINVAL;
12262 }
12263
17a52670 12264 /* check src1 operand */
dc503a8a 12265 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12266 if (err)
12267 return err;
12268 /* check src2 operand */
dc503a8a 12269 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12270 if (err)
12271 return err;
12272
d691f9e8
AS
12273 dst_reg_type = regs[insn->dst_reg].type;
12274
17a52670 12275 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
12276 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12277 insn->off, BPF_SIZE(insn->code),
12278 BPF_WRITE, insn->src_reg, false);
17a52670
AS
12279 if (err)
12280 return err;
12281
c08435ec 12282 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
12283
12284 if (*prev_dst_type == NOT_INIT) {
12285 *prev_dst_type = dst_reg_type;
c64b7983 12286 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 12287 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
12288 return -EINVAL;
12289 }
12290
17a52670
AS
12291 } else if (class == BPF_ST) {
12292 if (BPF_MODE(insn->code) != BPF_MEM ||
12293 insn->src_reg != BPF_REG_0) {
61bd5218 12294 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
12295 return -EINVAL;
12296 }
12297 /* check src operand */
dc503a8a 12298 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12299 if (err)
12300 return err;
12301
f37a8cb8 12302 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 12303 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f 12304 insn->dst_reg,
c25b2ae1 12305 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
12306 return -EACCES;
12307 }
12308
17a52670 12309 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
12310 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12311 insn->off, BPF_SIZE(insn->code),
12312 BPF_WRITE, -1, false);
17a52670
AS
12313 if (err)
12314 return err;
12315
092ed096 12316 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
12317 u8 opcode = BPF_OP(insn->code);
12318
2589726d 12319 env->jmps_processed++;
17a52670
AS
12320 if (opcode == BPF_CALL) {
12321 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
12322 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12323 && insn->off != 0) ||
f4d7e40a 12324 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
12325 insn->src_reg != BPF_PSEUDO_CALL &&
12326 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
12327 insn->dst_reg != BPF_REG_0 ||
12328 class == BPF_JMP32) {
61bd5218 12329 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
12330 return -EINVAL;
12331 }
12332
d83525ca
AS
12333 if (env->cur_state->active_spin_lock &&
12334 (insn->src_reg == BPF_PSEUDO_CALL ||
12335 insn->imm != BPF_FUNC_spin_unlock)) {
12336 verbose(env, "function calls are not allowed while holding a lock\n");
12337 return -EINVAL;
12338 }
f4d7e40a 12339 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 12340 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 12341 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 12342 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 12343 else
69c087ba 12344 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
12345 if (err)
12346 return err;
17a52670
AS
12347 } else if (opcode == BPF_JA) {
12348 if (BPF_SRC(insn->code) != BPF_K ||
12349 insn->imm != 0 ||
12350 insn->src_reg != BPF_REG_0 ||
092ed096
JW
12351 insn->dst_reg != BPF_REG_0 ||
12352 class == BPF_JMP32) {
61bd5218 12353 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
12354 return -EINVAL;
12355 }
12356
c08435ec 12357 env->insn_idx += insn->off + 1;
17a52670
AS
12358 continue;
12359
12360 } else if (opcode == BPF_EXIT) {
12361 if (BPF_SRC(insn->code) != BPF_K ||
12362 insn->imm != 0 ||
12363 insn->src_reg != BPF_REG_0 ||
092ed096
JW
12364 insn->dst_reg != BPF_REG_0 ||
12365 class == BPF_JMP32) {
61bd5218 12366 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
12367 return -EINVAL;
12368 }
12369
d83525ca
AS
12370 if (env->cur_state->active_spin_lock) {
12371 verbose(env, "bpf_spin_unlock is missing\n");
12372 return -EINVAL;
12373 }
12374
9d9d00ac
KKD
12375 /* We must do check_reference_leak here before
12376 * prepare_func_exit to handle the case when
12377 * state->curframe > 0, it may be a callback
12378 * function, for which reference_state must
12379 * match caller reference state when it exits.
12380 */
12381 err = check_reference_leak(env);
12382 if (err)
12383 return err;
12384
f4d7e40a
AS
12385 if (state->curframe) {
12386 /* exit from nested function */
c08435ec 12387 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
12388 if (err)
12389 return err;
12390 do_print_state = true;
12391 continue;
12392 }
12393
390ee7e2
AS
12394 err = check_return_code(env);
12395 if (err)
12396 return err;
f1bca824 12397process_bpf_exit:
0f55f9ed 12398 mark_verifier_state_scratched(env);
2589726d 12399 update_branch_counts(env, env->cur_state);
b5dc0163 12400 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 12401 &env->insn_idx, pop_log);
638f5b90
AS
12402 if (err < 0) {
12403 if (err != -ENOENT)
12404 return err;
17a52670
AS
12405 break;
12406 } else {
12407 do_print_state = true;
12408 continue;
12409 }
12410 } else {
c08435ec 12411 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
12412 if (err)
12413 return err;
12414 }
12415 } else if (class == BPF_LD) {
12416 u8 mode = BPF_MODE(insn->code);
12417
12418 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
12419 err = check_ld_abs(env, insn);
12420 if (err)
12421 return err;
12422
17a52670
AS
12423 } else if (mode == BPF_IMM) {
12424 err = check_ld_imm(env, insn);
12425 if (err)
12426 return err;
12427
c08435ec 12428 env->insn_idx++;
fe9a5ca7 12429 sanitize_mark_insn_seen(env);
17a52670 12430 } else {
61bd5218 12431 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
12432 return -EINVAL;
12433 }
12434 } else {
61bd5218 12435 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
12436 return -EINVAL;
12437 }
12438
c08435ec 12439 env->insn_idx++;
17a52670
AS
12440 }
12441
12442 return 0;
12443}
12444
541c3bad
AN
12445static int find_btf_percpu_datasec(struct btf *btf)
12446{
12447 const struct btf_type *t;
12448 const char *tname;
12449 int i, n;
12450
12451 /*
12452 * Both vmlinux and module each have their own ".data..percpu"
12453 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12454 * types to look at only module's own BTF types.
12455 */
12456 n = btf_nr_types(btf);
12457 if (btf_is_module(btf))
12458 i = btf_nr_types(btf_vmlinux);
12459 else
12460 i = 1;
12461
12462 for(; i < n; i++) {
12463 t = btf_type_by_id(btf, i);
12464 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12465 continue;
12466
12467 tname = btf_name_by_offset(btf, t->name_off);
12468 if (!strcmp(tname, ".data..percpu"))
12469 return i;
12470 }
12471
12472 return -ENOENT;
12473}
12474
4976b718
HL
12475/* replace pseudo btf_id with kernel symbol address */
12476static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12477 struct bpf_insn *insn,
12478 struct bpf_insn_aux_data *aux)
12479{
eaa6bcb7
HL
12480 const struct btf_var_secinfo *vsi;
12481 const struct btf_type *datasec;
541c3bad 12482 struct btf_mod_pair *btf_mod;
4976b718
HL
12483 const struct btf_type *t;
12484 const char *sym_name;
eaa6bcb7 12485 bool percpu = false;
f16e6313 12486 u32 type, id = insn->imm;
541c3bad 12487 struct btf *btf;
f16e6313 12488 s32 datasec_id;
4976b718 12489 u64 addr;
541c3bad 12490 int i, btf_fd, err;
4976b718 12491
541c3bad
AN
12492 btf_fd = insn[1].imm;
12493 if (btf_fd) {
12494 btf = btf_get_by_fd(btf_fd);
12495 if (IS_ERR(btf)) {
12496 verbose(env, "invalid module BTF object FD specified.\n");
12497 return -EINVAL;
12498 }
12499 } else {
12500 if (!btf_vmlinux) {
12501 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12502 return -EINVAL;
12503 }
12504 btf = btf_vmlinux;
12505 btf_get(btf);
4976b718
HL
12506 }
12507
541c3bad 12508 t = btf_type_by_id(btf, id);
4976b718
HL
12509 if (!t) {
12510 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
12511 err = -ENOENT;
12512 goto err_put;
4976b718
HL
12513 }
12514
12515 if (!btf_type_is_var(t)) {
541c3bad
AN
12516 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12517 err = -EINVAL;
12518 goto err_put;
4976b718
HL
12519 }
12520
541c3bad 12521 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
12522 addr = kallsyms_lookup_name(sym_name);
12523 if (!addr) {
12524 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12525 sym_name);
541c3bad
AN
12526 err = -ENOENT;
12527 goto err_put;
4976b718
HL
12528 }
12529
541c3bad 12530 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 12531 if (datasec_id > 0) {
541c3bad 12532 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
12533 for_each_vsi(i, datasec, vsi) {
12534 if (vsi->type == id) {
12535 percpu = true;
12536 break;
12537 }
12538 }
12539 }
12540
4976b718
HL
12541 insn[0].imm = (u32)addr;
12542 insn[1].imm = addr >> 32;
12543
12544 type = t->type;
541c3bad 12545 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 12546 if (percpu) {
5844101a 12547 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 12548 aux->btf_var.btf = btf;
eaa6bcb7
HL
12549 aux->btf_var.btf_id = type;
12550 } else if (!btf_type_is_struct(t)) {
4976b718
HL
12551 const struct btf_type *ret;
12552 const char *tname;
12553 u32 tsize;
12554
12555 /* resolve the type size of ksym. */
541c3bad 12556 ret = btf_resolve_size(btf, t, &tsize);
4976b718 12557 if (IS_ERR(ret)) {
541c3bad 12558 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
12559 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12560 tname, PTR_ERR(ret));
541c3bad
AN
12561 err = -EINVAL;
12562 goto err_put;
4976b718 12563 }
34d3a78c 12564 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
12565 aux->btf_var.mem_size = tsize;
12566 } else {
12567 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 12568 aux->btf_var.btf = btf;
4976b718
HL
12569 aux->btf_var.btf_id = type;
12570 }
541c3bad
AN
12571
12572 /* check whether we recorded this BTF (and maybe module) already */
12573 for (i = 0; i < env->used_btf_cnt; i++) {
12574 if (env->used_btfs[i].btf == btf) {
12575 btf_put(btf);
12576 return 0;
12577 }
12578 }
12579
12580 if (env->used_btf_cnt >= MAX_USED_BTFS) {
12581 err = -E2BIG;
12582 goto err_put;
12583 }
12584
12585 btf_mod = &env->used_btfs[env->used_btf_cnt];
12586 btf_mod->btf = btf;
12587 btf_mod->module = NULL;
12588
12589 /* if we reference variables from kernel module, bump its refcount */
12590 if (btf_is_module(btf)) {
12591 btf_mod->module = btf_try_get_module(btf);
12592 if (!btf_mod->module) {
12593 err = -ENXIO;
12594 goto err_put;
12595 }
12596 }
12597
12598 env->used_btf_cnt++;
12599
4976b718 12600 return 0;
541c3bad
AN
12601err_put:
12602 btf_put(btf);
12603 return err;
4976b718
HL
12604}
12605
d83525ca
AS
12606static bool is_tracing_prog_type(enum bpf_prog_type type)
12607{
12608 switch (type) {
12609 case BPF_PROG_TYPE_KPROBE:
12610 case BPF_PROG_TYPE_TRACEPOINT:
12611 case BPF_PROG_TYPE_PERF_EVENT:
12612 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 12613 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
12614 return true;
12615 default:
12616 return false;
12617 }
12618}
12619
61bd5218
JK
12620static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12621 struct bpf_map *map,
fdc15d38
AS
12622 struct bpf_prog *prog)
12623
12624{
7e40781c 12625 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 12626
db559117 12627 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
12628 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12629 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12630 return -EINVAL;
12631 }
12632
12633 if (is_tracing_prog_type(prog_type)) {
12634 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12635 return -EINVAL;
12636 }
12637
12638 if (prog->aux->sleepable) {
12639 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12640 return -EINVAL;
12641 }
d83525ca
AS
12642 }
12643
db559117 12644 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
12645 if (is_tracing_prog_type(prog_type)) {
12646 verbose(env, "tracing progs cannot use bpf_timer yet\n");
12647 return -EINVAL;
12648 }
12649 }
12650
a3884572 12651 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 12652 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
12653 verbose(env, "offload device mismatch between prog and map\n");
12654 return -EINVAL;
12655 }
12656
85d33df3
MKL
12657 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12658 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12659 return -EINVAL;
12660 }
12661
1e6c62a8
AS
12662 if (prog->aux->sleepable)
12663 switch (map->map_type) {
12664 case BPF_MAP_TYPE_HASH:
12665 case BPF_MAP_TYPE_LRU_HASH:
12666 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
12667 case BPF_MAP_TYPE_PERCPU_HASH:
12668 case BPF_MAP_TYPE_PERCPU_ARRAY:
12669 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12670 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12671 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 12672 case BPF_MAP_TYPE_RINGBUF:
583c1f42 12673 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
12674 case BPF_MAP_TYPE_INODE_STORAGE:
12675 case BPF_MAP_TYPE_SK_STORAGE:
12676 case BPF_MAP_TYPE_TASK_STORAGE:
ba90c2cc 12677 break;
1e6c62a8
AS
12678 default:
12679 verbose(env,
ba90c2cc 12680 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
12681 return -EINVAL;
12682 }
12683
fdc15d38
AS
12684 return 0;
12685}
12686
b741f163
RG
12687static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12688{
12689 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12690 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12691}
12692
4976b718
HL
12693/* find and rewrite pseudo imm in ld_imm64 instructions:
12694 *
12695 * 1. if it accesses map FD, replace it with actual map pointer.
12696 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12697 *
12698 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 12699 */
4976b718 12700static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
12701{
12702 struct bpf_insn *insn = env->prog->insnsi;
12703 int insn_cnt = env->prog->len;
fdc15d38 12704 int i, j, err;
0246e64d 12705
f1f7714e 12706 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
12707 if (err)
12708 return err;
12709
0246e64d 12710 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 12711 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 12712 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 12713 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
12714 return -EINVAL;
12715 }
12716
0246e64d 12717 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 12718 struct bpf_insn_aux_data *aux;
0246e64d
AS
12719 struct bpf_map *map;
12720 struct fd f;
d8eca5bb 12721 u64 addr;
387544bf 12722 u32 fd;
0246e64d
AS
12723
12724 if (i == insn_cnt - 1 || insn[1].code != 0 ||
12725 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12726 insn[1].off != 0) {
61bd5218 12727 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
12728 return -EINVAL;
12729 }
12730
d8eca5bb 12731 if (insn[0].src_reg == 0)
0246e64d
AS
12732 /* valid generic load 64-bit imm */
12733 goto next_insn;
12734
4976b718
HL
12735 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12736 aux = &env->insn_aux_data[i];
12737 err = check_pseudo_btf_id(env, insn, aux);
12738 if (err)
12739 return err;
12740 goto next_insn;
12741 }
12742
69c087ba
YS
12743 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12744 aux = &env->insn_aux_data[i];
12745 aux->ptr_type = PTR_TO_FUNC;
12746 goto next_insn;
12747 }
12748
d8eca5bb
DB
12749 /* In final convert_pseudo_ld_imm64() step, this is
12750 * converted into regular 64-bit imm load insn.
12751 */
387544bf
AS
12752 switch (insn[0].src_reg) {
12753 case BPF_PSEUDO_MAP_VALUE:
12754 case BPF_PSEUDO_MAP_IDX_VALUE:
12755 break;
12756 case BPF_PSEUDO_MAP_FD:
12757 case BPF_PSEUDO_MAP_IDX:
12758 if (insn[1].imm == 0)
12759 break;
12760 fallthrough;
12761 default:
12762 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
12763 return -EINVAL;
12764 }
12765
387544bf
AS
12766 switch (insn[0].src_reg) {
12767 case BPF_PSEUDO_MAP_IDX_VALUE:
12768 case BPF_PSEUDO_MAP_IDX:
12769 if (bpfptr_is_null(env->fd_array)) {
12770 verbose(env, "fd_idx without fd_array is invalid\n");
12771 return -EPROTO;
12772 }
12773 if (copy_from_bpfptr_offset(&fd, env->fd_array,
12774 insn[0].imm * sizeof(fd),
12775 sizeof(fd)))
12776 return -EFAULT;
12777 break;
12778 default:
12779 fd = insn[0].imm;
12780 break;
12781 }
12782
12783 f = fdget(fd);
c2101297 12784 map = __bpf_map_get(f);
0246e64d 12785 if (IS_ERR(map)) {
61bd5218 12786 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 12787 insn[0].imm);
0246e64d
AS
12788 return PTR_ERR(map);
12789 }
12790
61bd5218 12791 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
12792 if (err) {
12793 fdput(f);
12794 return err;
12795 }
12796
d8eca5bb 12797 aux = &env->insn_aux_data[i];
387544bf
AS
12798 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12799 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
12800 addr = (unsigned long)map;
12801 } else {
12802 u32 off = insn[1].imm;
12803
12804 if (off >= BPF_MAX_VAR_OFF) {
12805 verbose(env, "direct value offset of %u is not allowed\n", off);
12806 fdput(f);
12807 return -EINVAL;
12808 }
12809
12810 if (!map->ops->map_direct_value_addr) {
12811 verbose(env, "no direct value access support for this map type\n");
12812 fdput(f);
12813 return -EINVAL;
12814 }
12815
12816 err = map->ops->map_direct_value_addr(map, &addr, off);
12817 if (err) {
12818 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12819 map->value_size, off);
12820 fdput(f);
12821 return err;
12822 }
12823
12824 aux->map_off = off;
12825 addr += off;
12826 }
12827
12828 insn[0].imm = (u32)addr;
12829 insn[1].imm = addr >> 32;
0246e64d
AS
12830
12831 /* check whether we recorded this map already */
d8eca5bb 12832 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 12833 if (env->used_maps[j] == map) {
d8eca5bb 12834 aux->map_index = j;
0246e64d
AS
12835 fdput(f);
12836 goto next_insn;
12837 }
d8eca5bb 12838 }
0246e64d
AS
12839
12840 if (env->used_map_cnt >= MAX_USED_MAPS) {
12841 fdput(f);
12842 return -E2BIG;
12843 }
12844
0246e64d
AS
12845 /* hold the map. If the program is rejected by verifier,
12846 * the map will be released by release_maps() or it
12847 * will be used by the valid program until it's unloaded
ab7f5bf0 12848 * and all maps are released in free_used_maps()
0246e64d 12849 */
1e0bd5a0 12850 bpf_map_inc(map);
d8eca5bb
DB
12851
12852 aux->map_index = env->used_map_cnt;
92117d84
AS
12853 env->used_maps[env->used_map_cnt++] = map;
12854
b741f163 12855 if (bpf_map_is_cgroup_storage(map) &&
e4730423 12856 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 12857 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
12858 fdput(f);
12859 return -EBUSY;
12860 }
12861
0246e64d
AS
12862 fdput(f);
12863next_insn:
12864 insn++;
12865 i++;
5e581dad
DB
12866 continue;
12867 }
12868
12869 /* Basic sanity check before we invest more work here. */
12870 if (!bpf_opcode_in_insntable(insn->code)) {
12871 verbose(env, "unknown opcode %02x\n", insn->code);
12872 return -EINVAL;
0246e64d
AS
12873 }
12874 }
12875
12876 /* now all pseudo BPF_LD_IMM64 instructions load valid
12877 * 'struct bpf_map *' into a register instead of user map_fd.
12878 * These pointers will be used later by verifier to validate map access.
12879 */
12880 return 0;
12881}
12882
12883/* drop refcnt of maps used by the rejected program */
58e2af8b 12884static void release_maps(struct bpf_verifier_env *env)
0246e64d 12885{
a2ea0746
DB
12886 __bpf_free_used_maps(env->prog->aux, env->used_maps,
12887 env->used_map_cnt);
0246e64d
AS
12888}
12889
541c3bad
AN
12890/* drop refcnt of maps used by the rejected program */
12891static void release_btfs(struct bpf_verifier_env *env)
12892{
12893 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12894 env->used_btf_cnt);
12895}
12896
0246e64d 12897/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 12898static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
12899{
12900 struct bpf_insn *insn = env->prog->insnsi;
12901 int insn_cnt = env->prog->len;
12902 int i;
12903
69c087ba
YS
12904 for (i = 0; i < insn_cnt; i++, insn++) {
12905 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12906 continue;
12907 if (insn->src_reg == BPF_PSEUDO_FUNC)
12908 continue;
12909 insn->src_reg = 0;
12910 }
0246e64d
AS
12911}
12912
8041902d
AS
12913/* single env->prog->insni[off] instruction was replaced with the range
12914 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
12915 * [0, off) and [off, end) to new locations, so the patched range stays zero
12916 */
75f0fc7b
HF
12917static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12918 struct bpf_insn_aux_data *new_data,
12919 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 12920{
75f0fc7b 12921 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 12922 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 12923 u32 old_seen = old_data[off].seen;
b325fbca 12924 u32 prog_len;
c131187d 12925 int i;
8041902d 12926
b325fbca
JW
12927 /* aux info at OFF always needs adjustment, no matter fast path
12928 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12929 * original insn at old prog.
12930 */
12931 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12932
8041902d 12933 if (cnt == 1)
75f0fc7b 12934 return;
b325fbca 12935 prog_len = new_prog->len;
75f0fc7b 12936
8041902d
AS
12937 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12938 memcpy(new_data + off + cnt - 1, old_data + off,
12939 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 12940 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
12941 /* Expand insni[off]'s seen count to the patched range. */
12942 new_data[i].seen = old_seen;
b325fbca
JW
12943 new_data[i].zext_dst = insn_has_def32(env, insn + i);
12944 }
8041902d
AS
12945 env->insn_aux_data = new_data;
12946 vfree(old_data);
8041902d
AS
12947}
12948
cc8b0b92
AS
12949static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12950{
12951 int i;
12952
12953 if (len == 1)
12954 return;
4cb3d99c
JW
12955 /* NOTE: fake 'exit' subprog should be updated as well. */
12956 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 12957 if (env->subprog_info[i].start <= off)
cc8b0b92 12958 continue;
9c8105bd 12959 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
12960 }
12961}
12962
7506d211 12963static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
12964{
12965 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12966 int i, sz = prog->aux->size_poke_tab;
12967 struct bpf_jit_poke_descriptor *desc;
12968
12969 for (i = 0; i < sz; i++) {
12970 desc = &tab[i];
7506d211
JF
12971 if (desc->insn_idx <= off)
12972 continue;
a748c697
MF
12973 desc->insn_idx += len - 1;
12974 }
12975}
12976
8041902d
AS
12977static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12978 const struct bpf_insn *patch, u32 len)
12979{
12980 struct bpf_prog *new_prog;
75f0fc7b
HF
12981 struct bpf_insn_aux_data *new_data = NULL;
12982
12983 if (len > 1) {
12984 new_data = vzalloc(array_size(env->prog->len + len - 1,
12985 sizeof(struct bpf_insn_aux_data)));
12986 if (!new_data)
12987 return NULL;
12988 }
8041902d
AS
12989
12990 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
12991 if (IS_ERR(new_prog)) {
12992 if (PTR_ERR(new_prog) == -ERANGE)
12993 verbose(env,
12994 "insn %d cannot be patched due to 16-bit range\n",
12995 env->insn_aux_data[off].orig_idx);
75f0fc7b 12996 vfree(new_data);
8041902d 12997 return NULL;
4f73379e 12998 }
75f0fc7b 12999 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 13000 adjust_subprog_starts(env, off, len);
7506d211 13001 adjust_poke_descs(new_prog, off, len);
8041902d
AS
13002 return new_prog;
13003}
13004
52875a04
JK
13005static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13006 u32 off, u32 cnt)
13007{
13008 int i, j;
13009
13010 /* find first prog starting at or after off (first to remove) */
13011 for (i = 0; i < env->subprog_cnt; i++)
13012 if (env->subprog_info[i].start >= off)
13013 break;
13014 /* find first prog starting at or after off + cnt (first to stay) */
13015 for (j = i; j < env->subprog_cnt; j++)
13016 if (env->subprog_info[j].start >= off + cnt)
13017 break;
13018 /* if j doesn't start exactly at off + cnt, we are just removing
13019 * the front of previous prog
13020 */
13021 if (env->subprog_info[j].start != off + cnt)
13022 j--;
13023
13024 if (j > i) {
13025 struct bpf_prog_aux *aux = env->prog->aux;
13026 int move;
13027
13028 /* move fake 'exit' subprog as well */
13029 move = env->subprog_cnt + 1 - j;
13030
13031 memmove(env->subprog_info + i,
13032 env->subprog_info + j,
13033 sizeof(*env->subprog_info) * move);
13034 env->subprog_cnt -= j - i;
13035
13036 /* remove func_info */
13037 if (aux->func_info) {
13038 move = aux->func_info_cnt - j;
13039
13040 memmove(aux->func_info + i,
13041 aux->func_info + j,
13042 sizeof(*aux->func_info) * move);
13043 aux->func_info_cnt -= j - i;
13044 /* func_info->insn_off is set after all code rewrites,
13045 * in adjust_btf_func() - no need to adjust
13046 */
13047 }
13048 } else {
13049 /* convert i from "first prog to remove" to "first to adjust" */
13050 if (env->subprog_info[i].start == off)
13051 i++;
13052 }
13053
13054 /* update fake 'exit' subprog as well */
13055 for (; i <= env->subprog_cnt; i++)
13056 env->subprog_info[i].start -= cnt;
13057
13058 return 0;
13059}
13060
13061static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13062 u32 cnt)
13063{
13064 struct bpf_prog *prog = env->prog;
13065 u32 i, l_off, l_cnt, nr_linfo;
13066 struct bpf_line_info *linfo;
13067
13068 nr_linfo = prog->aux->nr_linfo;
13069 if (!nr_linfo)
13070 return 0;
13071
13072 linfo = prog->aux->linfo;
13073
13074 /* find first line info to remove, count lines to be removed */
13075 for (i = 0; i < nr_linfo; i++)
13076 if (linfo[i].insn_off >= off)
13077 break;
13078
13079 l_off = i;
13080 l_cnt = 0;
13081 for (; i < nr_linfo; i++)
13082 if (linfo[i].insn_off < off + cnt)
13083 l_cnt++;
13084 else
13085 break;
13086
13087 /* First live insn doesn't match first live linfo, it needs to "inherit"
13088 * last removed linfo. prog is already modified, so prog->len == off
13089 * means no live instructions after (tail of the program was removed).
13090 */
13091 if (prog->len != off && l_cnt &&
13092 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13093 l_cnt--;
13094 linfo[--i].insn_off = off + cnt;
13095 }
13096
13097 /* remove the line info which refer to the removed instructions */
13098 if (l_cnt) {
13099 memmove(linfo + l_off, linfo + i,
13100 sizeof(*linfo) * (nr_linfo - i));
13101
13102 prog->aux->nr_linfo -= l_cnt;
13103 nr_linfo = prog->aux->nr_linfo;
13104 }
13105
13106 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
13107 for (i = l_off; i < nr_linfo; i++)
13108 linfo[i].insn_off -= cnt;
13109
13110 /* fix up all subprogs (incl. 'exit') which start >= off */
13111 for (i = 0; i <= env->subprog_cnt; i++)
13112 if (env->subprog_info[i].linfo_idx > l_off) {
13113 /* program may have started in the removed region but
13114 * may not be fully removed
13115 */
13116 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13117 env->subprog_info[i].linfo_idx -= l_cnt;
13118 else
13119 env->subprog_info[i].linfo_idx = l_off;
13120 }
13121
13122 return 0;
13123}
13124
13125static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13126{
13127 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13128 unsigned int orig_prog_len = env->prog->len;
13129 int err;
13130
08ca90af
JK
13131 if (bpf_prog_is_dev_bound(env->prog->aux))
13132 bpf_prog_offload_remove_insns(env, off, cnt);
13133
52875a04
JK
13134 err = bpf_remove_insns(env->prog, off, cnt);
13135 if (err)
13136 return err;
13137
13138 err = adjust_subprog_starts_after_remove(env, off, cnt);
13139 if (err)
13140 return err;
13141
13142 err = bpf_adj_linfo_after_remove(env, off, cnt);
13143 if (err)
13144 return err;
13145
13146 memmove(aux_data + off, aux_data + off + cnt,
13147 sizeof(*aux_data) * (orig_prog_len - off - cnt));
13148
13149 return 0;
13150}
13151
2a5418a1
DB
13152/* The verifier does more data flow analysis than llvm and will not
13153 * explore branches that are dead at run time. Malicious programs can
13154 * have dead code too. Therefore replace all dead at-run-time code
13155 * with 'ja -1'.
13156 *
13157 * Just nops are not optimal, e.g. if they would sit at the end of the
13158 * program and through another bug we would manage to jump there, then
13159 * we'd execute beyond program memory otherwise. Returning exception
13160 * code also wouldn't work since we can have subprogs where the dead
13161 * code could be located.
c131187d
AS
13162 */
13163static void sanitize_dead_code(struct bpf_verifier_env *env)
13164{
13165 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 13166 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
13167 struct bpf_insn *insn = env->prog->insnsi;
13168 const int insn_cnt = env->prog->len;
13169 int i;
13170
13171 for (i = 0; i < insn_cnt; i++) {
13172 if (aux_data[i].seen)
13173 continue;
2a5418a1 13174 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 13175 aux_data[i].zext_dst = false;
c131187d
AS
13176 }
13177}
13178
e2ae4ca2
JK
13179static bool insn_is_cond_jump(u8 code)
13180{
13181 u8 op;
13182
092ed096
JW
13183 if (BPF_CLASS(code) == BPF_JMP32)
13184 return true;
13185
e2ae4ca2
JK
13186 if (BPF_CLASS(code) != BPF_JMP)
13187 return false;
13188
13189 op = BPF_OP(code);
13190 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13191}
13192
13193static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13194{
13195 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13196 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13197 struct bpf_insn *insn = env->prog->insnsi;
13198 const int insn_cnt = env->prog->len;
13199 int i;
13200
13201 for (i = 0; i < insn_cnt; i++, insn++) {
13202 if (!insn_is_cond_jump(insn->code))
13203 continue;
13204
13205 if (!aux_data[i + 1].seen)
13206 ja.off = insn->off;
13207 else if (!aux_data[i + 1 + insn->off].seen)
13208 ja.off = 0;
13209 else
13210 continue;
13211
08ca90af
JK
13212 if (bpf_prog_is_dev_bound(env->prog->aux))
13213 bpf_prog_offload_replace_insn(env, i, &ja);
13214
e2ae4ca2
JK
13215 memcpy(insn, &ja, sizeof(ja));
13216 }
13217}
13218
52875a04
JK
13219static int opt_remove_dead_code(struct bpf_verifier_env *env)
13220{
13221 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13222 int insn_cnt = env->prog->len;
13223 int i, err;
13224
13225 for (i = 0; i < insn_cnt; i++) {
13226 int j;
13227
13228 j = 0;
13229 while (i + j < insn_cnt && !aux_data[i + j].seen)
13230 j++;
13231 if (!j)
13232 continue;
13233
13234 err = verifier_remove_insns(env, i, j);
13235 if (err)
13236 return err;
13237 insn_cnt = env->prog->len;
13238 }
13239
13240 return 0;
13241}
13242
a1b14abc
JK
13243static int opt_remove_nops(struct bpf_verifier_env *env)
13244{
13245 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13246 struct bpf_insn *insn = env->prog->insnsi;
13247 int insn_cnt = env->prog->len;
13248 int i, err;
13249
13250 for (i = 0; i < insn_cnt; i++) {
13251 if (memcmp(&insn[i], &ja, sizeof(ja)))
13252 continue;
13253
13254 err = verifier_remove_insns(env, i, 1);
13255 if (err)
13256 return err;
13257 insn_cnt--;
13258 i--;
13259 }
13260
13261 return 0;
13262}
13263
d6c2308c
JW
13264static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13265 const union bpf_attr *attr)
a4b1d3c1 13266{
d6c2308c 13267 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 13268 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 13269 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 13270 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 13271 struct bpf_prog *new_prog;
d6c2308c 13272 bool rnd_hi32;
a4b1d3c1 13273
d6c2308c 13274 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 13275 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
13276 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13277 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13278 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
13279 for (i = 0; i < len; i++) {
13280 int adj_idx = i + delta;
13281 struct bpf_insn insn;
83a28819 13282 int load_reg;
a4b1d3c1 13283
d6c2308c 13284 insn = insns[adj_idx];
83a28819 13285 load_reg = insn_def_regno(&insn);
d6c2308c
JW
13286 if (!aux[adj_idx].zext_dst) {
13287 u8 code, class;
13288 u32 imm_rnd;
13289
13290 if (!rnd_hi32)
13291 continue;
13292
13293 code = insn.code;
13294 class = BPF_CLASS(code);
83a28819 13295 if (load_reg == -1)
d6c2308c
JW
13296 continue;
13297
13298 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
13299 * BPF_STX + SRC_OP, so it is safe to pass NULL
13300 * here.
d6c2308c 13301 */
83a28819 13302 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
13303 if (class == BPF_LD &&
13304 BPF_MODE(code) == BPF_IMM)
13305 i++;
13306 continue;
13307 }
13308
13309 /* ctx load could be transformed into wider load. */
13310 if (class == BPF_LDX &&
13311 aux[adj_idx].ptr_type == PTR_TO_CTX)
13312 continue;
13313
a251c17a 13314 imm_rnd = get_random_u32();
d6c2308c
JW
13315 rnd_hi32_patch[0] = insn;
13316 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 13317 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
13318 patch = rnd_hi32_patch;
13319 patch_len = 4;
13320 goto apply_patch_buffer;
13321 }
13322
39491867
BJ
13323 /* Add in an zero-extend instruction if a) the JIT has requested
13324 * it or b) it's a CMPXCHG.
13325 *
13326 * The latter is because: BPF_CMPXCHG always loads a value into
13327 * R0, therefore always zero-extends. However some archs'
13328 * equivalent instruction only does this load when the
13329 * comparison is successful. This detail of CMPXCHG is
13330 * orthogonal to the general zero-extension behaviour of the
13331 * CPU, so it's treated independently of bpf_jit_needs_zext.
13332 */
13333 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
13334 continue;
13335
83a28819
IL
13336 if (WARN_ON(load_reg == -1)) {
13337 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13338 return -EFAULT;
b2e37a71
IL
13339 }
13340
a4b1d3c1 13341 zext_patch[0] = insn;
b2e37a71
IL
13342 zext_patch[1].dst_reg = load_reg;
13343 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
13344 patch = zext_patch;
13345 patch_len = 2;
13346apply_patch_buffer:
13347 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
13348 if (!new_prog)
13349 return -ENOMEM;
13350 env->prog = new_prog;
13351 insns = new_prog->insnsi;
13352 aux = env->insn_aux_data;
d6c2308c 13353 delta += patch_len - 1;
a4b1d3c1
JW
13354 }
13355
13356 return 0;
13357}
13358
c64b7983
JS
13359/* convert load instructions that access fields of a context type into a
13360 * sequence of instructions that access fields of the underlying structure:
13361 * struct __sk_buff -> struct sk_buff
13362 * struct bpf_sock_ops -> struct sock
9bac3d6d 13363 */
58e2af8b 13364static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 13365{
00176a34 13366 const struct bpf_verifier_ops *ops = env->ops;
f96da094 13367 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 13368 const int insn_cnt = env->prog->len;
36bbef52 13369 struct bpf_insn insn_buf[16], *insn;
46f53a65 13370 u32 target_size, size_default, off;
9bac3d6d 13371 struct bpf_prog *new_prog;
d691f9e8 13372 enum bpf_access_type type;
f96da094 13373 bool is_narrower_load;
9bac3d6d 13374
b09928b9
DB
13375 if (ops->gen_prologue || env->seen_direct_write) {
13376 if (!ops->gen_prologue) {
13377 verbose(env, "bpf verifier is misconfigured\n");
13378 return -EINVAL;
13379 }
36bbef52
DB
13380 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13381 env->prog);
13382 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 13383 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
13384 return -EINVAL;
13385 } else if (cnt) {
8041902d 13386 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
13387 if (!new_prog)
13388 return -ENOMEM;
8041902d 13389
36bbef52 13390 env->prog = new_prog;
3df126f3 13391 delta += cnt - 1;
36bbef52
DB
13392 }
13393 }
13394
c64b7983 13395 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
13396 return 0;
13397
3df126f3 13398 insn = env->prog->insnsi + delta;
36bbef52 13399
9bac3d6d 13400 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 13401 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 13402 bool ctx_access;
c64b7983 13403
62c7989b
DB
13404 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13405 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13406 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 13407 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 13408 type = BPF_READ;
2039f26f
DB
13409 ctx_access = true;
13410 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13411 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13412 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13413 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13414 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13415 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13416 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13417 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 13418 type = BPF_WRITE;
2039f26f
DB
13419 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13420 } else {
9bac3d6d 13421 continue;
2039f26f 13422 }
9bac3d6d 13423
af86ca4e 13424 if (type == BPF_WRITE &&
2039f26f 13425 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 13426 struct bpf_insn patch[] = {
af86ca4e 13427 *insn,
2039f26f 13428 BPF_ST_NOSPEC(),
af86ca4e
AS
13429 };
13430
13431 cnt = ARRAY_SIZE(patch);
13432 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13433 if (!new_prog)
13434 return -ENOMEM;
13435
13436 delta += cnt - 1;
13437 env->prog = new_prog;
13438 insn = new_prog->insnsi + i + delta;
13439 continue;
13440 }
13441
2039f26f
DB
13442 if (!ctx_access)
13443 continue;
13444
6efe152d 13445 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
13446 case PTR_TO_CTX:
13447 if (!ops->convert_ctx_access)
13448 continue;
13449 convert_ctx_access = ops->convert_ctx_access;
13450 break;
13451 case PTR_TO_SOCKET:
46f8bc92 13452 case PTR_TO_SOCK_COMMON:
c64b7983
JS
13453 convert_ctx_access = bpf_sock_convert_ctx_access;
13454 break;
655a51e5
MKL
13455 case PTR_TO_TCP_SOCK:
13456 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13457 break;
fada7fdc
JL
13458 case PTR_TO_XDP_SOCK:
13459 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13460 break;
2a02759e 13461 case PTR_TO_BTF_ID:
6efe152d 13462 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
27ae7997
MKL
13463 if (type == BPF_READ) {
13464 insn->code = BPF_LDX | BPF_PROBE_MEM |
13465 BPF_SIZE((insn)->code);
13466 env->prog->aux->num_exentries++;
2a02759e 13467 }
2a02759e 13468 continue;
c64b7983 13469 default:
9bac3d6d 13470 continue;
c64b7983 13471 }
9bac3d6d 13472
31fd8581 13473 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 13474 size = BPF_LDST_BYTES(insn);
31fd8581
YS
13475
13476 /* If the read access is a narrower load of the field,
13477 * convert to a 4/8-byte load, to minimum program type specific
13478 * convert_ctx_access changes. If conversion is successful,
13479 * we will apply proper mask to the result.
13480 */
f96da094 13481 is_narrower_load = size < ctx_field_size;
46f53a65
AI
13482 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13483 off = insn->off;
31fd8581 13484 if (is_narrower_load) {
f96da094
DB
13485 u8 size_code;
13486
13487 if (type == BPF_WRITE) {
61bd5218 13488 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
13489 return -EINVAL;
13490 }
31fd8581 13491
f96da094 13492 size_code = BPF_H;
31fd8581
YS
13493 if (ctx_field_size == 4)
13494 size_code = BPF_W;
13495 else if (ctx_field_size == 8)
13496 size_code = BPF_DW;
f96da094 13497
bc23105c 13498 insn->off = off & ~(size_default - 1);
31fd8581
YS
13499 insn->code = BPF_LDX | BPF_MEM | size_code;
13500 }
f96da094
DB
13501
13502 target_size = 0;
c64b7983
JS
13503 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13504 &target_size);
f96da094
DB
13505 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13506 (ctx_field_size && !target_size)) {
61bd5218 13507 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
13508 return -EINVAL;
13509 }
f96da094
DB
13510
13511 if (is_narrower_load && size < target_size) {
d895a0f1
IL
13512 u8 shift = bpf_ctx_narrow_access_offset(
13513 off, size, size_default) * 8;
d7af7e49
AI
13514 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13515 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13516 return -EINVAL;
13517 }
46f53a65
AI
13518 if (ctx_field_size <= 4) {
13519 if (shift)
13520 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13521 insn->dst_reg,
13522 shift);
31fd8581 13523 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 13524 (1 << size * 8) - 1);
46f53a65
AI
13525 } else {
13526 if (shift)
13527 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13528 insn->dst_reg,
13529 shift);
31fd8581 13530 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 13531 (1ULL << size * 8) - 1);
46f53a65 13532 }
31fd8581 13533 }
9bac3d6d 13534
8041902d 13535 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
13536 if (!new_prog)
13537 return -ENOMEM;
13538
3df126f3 13539 delta += cnt - 1;
9bac3d6d
AS
13540
13541 /* keep walking new program and skip insns we just inserted */
13542 env->prog = new_prog;
3df126f3 13543 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
13544 }
13545
13546 return 0;
13547}
13548
1c2a088a
AS
13549static int jit_subprogs(struct bpf_verifier_env *env)
13550{
13551 struct bpf_prog *prog = env->prog, **func, *tmp;
13552 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 13553 struct bpf_map *map_ptr;
7105e828 13554 struct bpf_insn *insn;
1c2a088a 13555 void *old_bpf_func;
c4c0bdc0 13556 int err, num_exentries;
1c2a088a 13557
f910cefa 13558 if (env->subprog_cnt <= 1)
1c2a088a
AS
13559 return 0;
13560
7105e828 13561 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 13562 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 13563 continue;
69c087ba 13564
c7a89784
DB
13565 /* Upon error here we cannot fall back to interpreter but
13566 * need a hard reject of the program. Thus -EFAULT is
13567 * propagated in any case.
13568 */
1c2a088a
AS
13569 subprog = find_subprog(env, i + insn->imm + 1);
13570 if (subprog < 0) {
13571 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13572 i + insn->imm + 1);
13573 return -EFAULT;
13574 }
13575 /* temporarily remember subprog id inside insn instead of
13576 * aux_data, since next loop will split up all insns into funcs
13577 */
f910cefa 13578 insn->off = subprog;
1c2a088a
AS
13579 /* remember original imm in case JIT fails and fallback
13580 * to interpreter will be needed
13581 */
13582 env->insn_aux_data[i].call_imm = insn->imm;
13583 /* point imm to __bpf_call_base+1 from JITs point of view */
13584 insn->imm = 1;
3990ed4c
MKL
13585 if (bpf_pseudo_func(insn))
13586 /* jit (e.g. x86_64) may emit fewer instructions
13587 * if it learns a u32 imm is the same as a u64 imm.
13588 * Force a non zero here.
13589 */
13590 insn[1].imm = 1;
1c2a088a
AS
13591 }
13592
c454a46b
MKL
13593 err = bpf_prog_alloc_jited_linfo(prog);
13594 if (err)
13595 goto out_undo_insn;
13596
13597 err = -ENOMEM;
6396bb22 13598 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 13599 if (!func)
c7a89784 13600 goto out_undo_insn;
1c2a088a 13601
f910cefa 13602 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 13603 subprog_start = subprog_end;
4cb3d99c 13604 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
13605
13606 len = subprog_end - subprog_start;
fb7dd8bc 13607 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
13608 * hence main prog stats include the runtime of subprogs.
13609 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 13610 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
13611 */
13612 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
13613 if (!func[i])
13614 goto out_free;
13615 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13616 len * sizeof(struct bpf_insn));
4f74d809 13617 func[i]->type = prog->type;
1c2a088a 13618 func[i]->len = len;
4f74d809
DB
13619 if (bpf_prog_calc_tag(func[i]))
13620 goto out_free;
1c2a088a 13621 func[i]->is_func = 1;
ba64e7d8 13622 func[i]->aux->func_idx = i;
f263a814 13623 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
13624 func[i]->aux->btf = prog->aux->btf;
13625 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 13626 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
13627 func[i]->aux->poke_tab = prog->aux->poke_tab;
13628 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 13629
a748c697 13630 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 13631 struct bpf_jit_poke_descriptor *poke;
a748c697 13632
f263a814
JF
13633 poke = &prog->aux->poke_tab[j];
13634 if (poke->insn_idx < subprog_end &&
13635 poke->insn_idx >= subprog_start)
13636 poke->aux = func[i]->aux;
a748c697
MF
13637 }
13638
1c2a088a 13639 func[i]->aux->name[0] = 'F';
9c8105bd 13640 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 13641 func[i]->jit_requested = 1;
d2a3b7c5 13642 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 13643 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 13644 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
13645 func[i]->aux->linfo = prog->aux->linfo;
13646 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13647 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13648 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
13649 num_exentries = 0;
13650 insn = func[i]->insnsi;
13651 for (j = 0; j < func[i]->len; j++, insn++) {
13652 if (BPF_CLASS(insn->code) == BPF_LDX &&
13653 BPF_MODE(insn->code) == BPF_PROBE_MEM)
13654 num_exentries++;
13655 }
13656 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 13657 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
13658 func[i] = bpf_int_jit_compile(func[i]);
13659 if (!func[i]->jited) {
13660 err = -ENOTSUPP;
13661 goto out_free;
13662 }
13663 cond_resched();
13664 }
a748c697 13665
1c2a088a
AS
13666 /* at this point all bpf functions were successfully JITed
13667 * now populate all bpf_calls with correct addresses and
13668 * run last pass of JIT
13669 */
f910cefa 13670 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
13671 insn = func[i]->insnsi;
13672 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 13673 if (bpf_pseudo_func(insn)) {
3990ed4c 13674 subprog = insn->off;
69c087ba
YS
13675 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13676 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13677 continue;
13678 }
23a2d70c 13679 if (!bpf_pseudo_call(insn))
1c2a088a
AS
13680 continue;
13681 subprog = insn->off;
3d717fad 13682 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 13683 }
2162fed4
SD
13684
13685 /* we use the aux data to keep a list of the start addresses
13686 * of the JITed images for each function in the program
13687 *
13688 * for some architectures, such as powerpc64, the imm field
13689 * might not be large enough to hold the offset of the start
13690 * address of the callee's JITed image from __bpf_call_base
13691 *
13692 * in such cases, we can lookup the start address of a callee
13693 * by using its subprog id, available from the off field of
13694 * the call instruction, as an index for this list
13695 */
13696 func[i]->aux->func = func;
13697 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 13698 }
f910cefa 13699 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
13700 old_bpf_func = func[i]->bpf_func;
13701 tmp = bpf_int_jit_compile(func[i]);
13702 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13703 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 13704 err = -ENOTSUPP;
1c2a088a
AS
13705 goto out_free;
13706 }
13707 cond_resched();
13708 }
13709
13710 /* finally lock prog and jit images for all functions and
13711 * populate kallsysm
13712 */
f910cefa 13713 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
13714 bpf_prog_lock_ro(func[i]);
13715 bpf_prog_kallsyms_add(func[i]);
13716 }
7105e828
DB
13717
13718 /* Last step: make now unused interpreter insns from main
13719 * prog consistent for later dump requests, so they can
13720 * later look the same as if they were interpreted only.
13721 */
13722 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
13723 if (bpf_pseudo_func(insn)) {
13724 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
13725 insn[1].imm = insn->off;
13726 insn->off = 0;
69c087ba
YS
13727 continue;
13728 }
23a2d70c 13729 if (!bpf_pseudo_call(insn))
7105e828
DB
13730 continue;
13731 insn->off = env->insn_aux_data[i].call_imm;
13732 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 13733 insn->imm = subprog;
7105e828
DB
13734 }
13735
1c2a088a
AS
13736 prog->jited = 1;
13737 prog->bpf_func = func[0]->bpf_func;
d00c6473 13738 prog->jited_len = func[0]->jited_len;
1c2a088a 13739 prog->aux->func = func;
f910cefa 13740 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 13741 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
13742 return 0;
13743out_free:
f263a814
JF
13744 /* We failed JIT'ing, so at this point we need to unregister poke
13745 * descriptors from subprogs, so that kernel is not attempting to
13746 * patch it anymore as we're freeing the subprog JIT memory.
13747 */
13748 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13749 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13750 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13751 }
13752 /* At this point we're guaranteed that poke descriptors are not
13753 * live anymore. We can just unlink its descriptor table as it's
13754 * released with the main prog.
13755 */
a748c697
MF
13756 for (i = 0; i < env->subprog_cnt; i++) {
13757 if (!func[i])
13758 continue;
f263a814 13759 func[i]->aux->poke_tab = NULL;
a748c697
MF
13760 bpf_jit_free(func[i]);
13761 }
1c2a088a 13762 kfree(func);
c7a89784 13763out_undo_insn:
1c2a088a
AS
13764 /* cleanup main prog to be interpreted */
13765 prog->jit_requested = 0;
d2a3b7c5 13766 prog->blinding_requested = 0;
1c2a088a 13767 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 13768 if (!bpf_pseudo_call(insn))
1c2a088a
AS
13769 continue;
13770 insn->off = 0;
13771 insn->imm = env->insn_aux_data[i].call_imm;
13772 }
e16301fb 13773 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
13774 return err;
13775}
13776
1ea47e01
AS
13777static int fixup_call_args(struct bpf_verifier_env *env)
13778{
19d28fbd 13779#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
13780 struct bpf_prog *prog = env->prog;
13781 struct bpf_insn *insn = prog->insnsi;
e6ac2450 13782 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 13783 int i, depth;
19d28fbd 13784#endif
e4052d06 13785 int err = 0;
1ea47e01 13786
e4052d06
QM
13787 if (env->prog->jit_requested &&
13788 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
13789 err = jit_subprogs(env);
13790 if (err == 0)
1c2a088a 13791 return 0;
c7a89784
DB
13792 if (err == -EFAULT)
13793 return err;
19d28fbd
DM
13794 }
13795#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
13796 if (has_kfunc_call) {
13797 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13798 return -EINVAL;
13799 }
e411901c
MF
13800 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13801 /* When JIT fails the progs with bpf2bpf calls and tail_calls
13802 * have to be rejected, since interpreter doesn't support them yet.
13803 */
13804 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13805 return -EINVAL;
13806 }
1ea47e01 13807 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
13808 if (bpf_pseudo_func(insn)) {
13809 /* When JIT fails the progs with callback calls
13810 * have to be rejected, since interpreter doesn't support them yet.
13811 */
13812 verbose(env, "callbacks are not allowed in non-JITed programs\n");
13813 return -EINVAL;
13814 }
13815
23a2d70c 13816 if (!bpf_pseudo_call(insn))
1ea47e01
AS
13817 continue;
13818 depth = get_callee_stack_depth(env, insn, i);
13819 if (depth < 0)
13820 return depth;
13821 bpf_patch_call_args(insn, depth);
13822 }
19d28fbd
DM
13823 err = 0;
13824#endif
13825 return err;
1ea47e01
AS
13826}
13827
e6ac2450
MKL
13828static int fixup_kfunc_call(struct bpf_verifier_env *env,
13829 struct bpf_insn *insn)
13830{
13831 const struct bpf_kfunc_desc *desc;
13832
a5d82727
KKD
13833 if (!insn->imm) {
13834 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13835 return -EINVAL;
13836 }
13837
e6ac2450
MKL
13838 /* insn->imm has the btf func_id. Replace it with
13839 * an address (relative to __bpf_base_call).
13840 */
2357672c 13841 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
13842 if (!desc) {
13843 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13844 insn->imm);
13845 return -EFAULT;
13846 }
13847
13848 insn->imm = desc->imm;
13849
13850 return 0;
13851}
13852
e6ac5933
BJ
13853/* Do various post-verification rewrites in a single program pass.
13854 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 13855 */
e6ac5933 13856static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 13857{
79741b3b 13858 struct bpf_prog *prog = env->prog;
f92c1e18 13859 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 13860 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 13861 struct bpf_insn *insn = prog->insnsi;
e245c5c6 13862 const struct bpf_func_proto *fn;
79741b3b 13863 const int insn_cnt = prog->len;
09772d92 13864 const struct bpf_map_ops *ops;
c93552c4 13865 struct bpf_insn_aux_data *aux;
81ed18ab
AS
13866 struct bpf_insn insn_buf[16];
13867 struct bpf_prog *new_prog;
13868 struct bpf_map *map_ptr;
d2e4c1e6 13869 int i, ret, cnt, delta = 0;
e245c5c6 13870
79741b3b 13871 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 13872 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
13873 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13874 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13875 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 13876 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 13877 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
13878 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13879 struct bpf_insn *patchlet;
13880 struct bpf_insn chk_and_div[] = {
9b00f1b7 13881 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
13882 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13883 BPF_JNE | BPF_K, insn->src_reg,
13884 0, 2, 0),
f6b1b3bf
DB
13885 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13886 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13887 *insn,
13888 };
e88b2c6e 13889 struct bpf_insn chk_and_mod[] = {
9b00f1b7 13890 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
13891 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13892 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 13893 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 13894 *insn,
9b00f1b7
DB
13895 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13896 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 13897 };
f6b1b3bf 13898
e88b2c6e
DB
13899 patchlet = isdiv ? chk_and_div : chk_and_mod;
13900 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 13901 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
13902
13903 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
13904 if (!new_prog)
13905 return -ENOMEM;
13906
13907 delta += cnt - 1;
13908 env->prog = prog = new_prog;
13909 insn = new_prog->insnsi + i + delta;
13910 continue;
13911 }
13912
e6ac5933 13913 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
13914 if (BPF_CLASS(insn->code) == BPF_LD &&
13915 (BPF_MODE(insn->code) == BPF_ABS ||
13916 BPF_MODE(insn->code) == BPF_IND)) {
13917 cnt = env->ops->gen_ld_abs(insn, insn_buf);
13918 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13919 verbose(env, "bpf verifier is misconfigured\n");
13920 return -EINVAL;
13921 }
13922
13923 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13924 if (!new_prog)
13925 return -ENOMEM;
13926
13927 delta += cnt - 1;
13928 env->prog = prog = new_prog;
13929 insn = new_prog->insnsi + i + delta;
13930 continue;
13931 }
13932
e6ac5933 13933 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
13934 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13935 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13936 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13937 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 13938 struct bpf_insn *patch = &insn_buf[0];
801c6058 13939 bool issrc, isneg, isimm;
979d63d5
DB
13940 u32 off_reg;
13941
13942 aux = &env->insn_aux_data[i + delta];
3612af78
DB
13943 if (!aux->alu_state ||
13944 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
13945 continue;
13946
13947 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13948 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13949 BPF_ALU_SANITIZE_SRC;
801c6058 13950 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
13951
13952 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
13953 if (isimm) {
13954 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13955 } else {
13956 if (isneg)
13957 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13958 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13959 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13960 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13961 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13962 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13963 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13964 }
b9b34ddb
DB
13965 if (!issrc)
13966 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13967 insn->src_reg = BPF_REG_AX;
979d63d5
DB
13968 if (isneg)
13969 insn->code = insn->code == code_add ?
13970 code_sub : code_add;
13971 *patch++ = *insn;
801c6058 13972 if (issrc && isneg && !isimm)
979d63d5
DB
13973 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13974 cnt = patch - insn_buf;
13975
13976 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13977 if (!new_prog)
13978 return -ENOMEM;
13979
13980 delta += cnt - 1;
13981 env->prog = prog = new_prog;
13982 insn = new_prog->insnsi + i + delta;
13983 continue;
13984 }
13985
79741b3b
AS
13986 if (insn->code != (BPF_JMP | BPF_CALL))
13987 continue;
cc8b0b92
AS
13988 if (insn->src_reg == BPF_PSEUDO_CALL)
13989 continue;
e6ac2450
MKL
13990 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13991 ret = fixup_kfunc_call(env, insn);
13992 if (ret)
13993 return ret;
13994 continue;
13995 }
e245c5c6 13996
79741b3b
AS
13997 if (insn->imm == BPF_FUNC_get_route_realm)
13998 prog->dst_needed = 1;
13999 if (insn->imm == BPF_FUNC_get_prandom_u32)
14000 bpf_user_rnd_init_once();
9802d865
JB
14001 if (insn->imm == BPF_FUNC_override_return)
14002 prog->kprobe_override = 1;
79741b3b 14003 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
14004 /* If we tail call into other programs, we
14005 * cannot make any assumptions since they can
14006 * be replaced dynamically during runtime in
14007 * the program array.
14008 */
14009 prog->cb_access = 1;
e411901c
MF
14010 if (!allow_tail_call_in_subprogs(env))
14011 prog->aux->stack_depth = MAX_BPF_STACK;
14012 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 14013
79741b3b 14014 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 14015 * conditional branch in the interpreter for every normal
79741b3b
AS
14016 * call and to prevent accidental JITing by JIT compiler
14017 * that doesn't support bpf_tail_call yet
e245c5c6 14018 */
79741b3b 14019 insn->imm = 0;
71189fa9 14020 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 14021
c93552c4 14022 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 14023 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 14024 prog->jit_requested &&
d2e4c1e6
DB
14025 !bpf_map_key_poisoned(aux) &&
14026 !bpf_map_ptr_poisoned(aux) &&
14027 !bpf_map_ptr_unpriv(aux)) {
14028 struct bpf_jit_poke_descriptor desc = {
14029 .reason = BPF_POKE_REASON_TAIL_CALL,
14030 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14031 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 14032 .insn_idx = i + delta,
d2e4c1e6
DB
14033 };
14034
14035 ret = bpf_jit_add_poke_descriptor(prog, &desc);
14036 if (ret < 0) {
14037 verbose(env, "adding tail call poke descriptor failed\n");
14038 return ret;
14039 }
14040
14041 insn->imm = ret + 1;
14042 continue;
14043 }
14044
c93552c4
DB
14045 if (!bpf_map_ptr_unpriv(aux))
14046 continue;
14047
b2157399
AS
14048 /* instead of changing every JIT dealing with tail_call
14049 * emit two extra insns:
14050 * if (index >= max_entries) goto out;
14051 * index &= array->index_mask;
14052 * to avoid out-of-bounds cpu speculation
14053 */
c93552c4 14054 if (bpf_map_ptr_poisoned(aux)) {
40950343 14055 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
14056 return -EINVAL;
14057 }
c93552c4 14058
d2e4c1e6 14059 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
14060 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14061 map_ptr->max_entries, 2);
14062 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14063 container_of(map_ptr,
14064 struct bpf_array,
14065 map)->index_mask);
14066 insn_buf[2] = *insn;
14067 cnt = 3;
14068 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14069 if (!new_prog)
14070 return -ENOMEM;
14071
14072 delta += cnt - 1;
14073 env->prog = prog = new_prog;
14074 insn = new_prog->insnsi + i + delta;
79741b3b
AS
14075 continue;
14076 }
e245c5c6 14077
b00628b1
AS
14078 if (insn->imm == BPF_FUNC_timer_set_callback) {
14079 /* The verifier will process callback_fn as many times as necessary
14080 * with different maps and the register states prepared by
14081 * set_timer_callback_state will be accurate.
14082 *
14083 * The following use case is valid:
14084 * map1 is shared by prog1, prog2, prog3.
14085 * prog1 calls bpf_timer_init for some map1 elements
14086 * prog2 calls bpf_timer_set_callback for some map1 elements.
14087 * Those that were not bpf_timer_init-ed will return -EINVAL.
14088 * prog3 calls bpf_timer_start for some map1 elements.
14089 * Those that were not both bpf_timer_init-ed and
14090 * bpf_timer_set_callback-ed will return -EINVAL.
14091 */
14092 struct bpf_insn ld_addrs[2] = {
14093 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14094 };
14095
14096 insn_buf[0] = ld_addrs[0];
14097 insn_buf[1] = ld_addrs[1];
14098 insn_buf[2] = *insn;
14099 cnt = 3;
14100
14101 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14102 if (!new_prog)
14103 return -ENOMEM;
14104
14105 delta += cnt - 1;
14106 env->prog = prog = new_prog;
14107 insn = new_prog->insnsi + i + delta;
14108 goto patch_call_imm;
14109 }
14110
b00fa38a
JK
14111 if (insn->imm == BPF_FUNC_task_storage_get ||
14112 insn->imm == BPF_FUNC_sk_storage_get ||
c4bcfb38
YS
14113 insn->imm == BPF_FUNC_inode_storage_get ||
14114 insn->imm == BPF_FUNC_cgrp_storage_get) {
b00fa38a 14115 if (env->prog->aux->sleepable)
d56c9fe6 14116 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a 14117 else
d56c9fe6 14118 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
b00fa38a
JK
14119 insn_buf[1] = *insn;
14120 cnt = 2;
14121
14122 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14123 if (!new_prog)
14124 return -ENOMEM;
14125
14126 delta += cnt - 1;
14127 env->prog = prog = new_prog;
14128 insn = new_prog->insnsi + i + delta;
14129 goto patch_call_imm;
14130 }
14131
89c63074 14132 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
14133 * and other inlining handlers are currently limited to 64 bit
14134 * only.
89c63074 14135 */
60b58afc 14136 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
14137 (insn->imm == BPF_FUNC_map_lookup_elem ||
14138 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
14139 insn->imm == BPF_FUNC_map_delete_elem ||
14140 insn->imm == BPF_FUNC_map_push_elem ||
14141 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 14142 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 14143 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
14144 insn->imm == BPF_FUNC_for_each_map_elem ||
14145 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
14146 aux = &env->insn_aux_data[i + delta];
14147 if (bpf_map_ptr_poisoned(aux))
14148 goto patch_call_imm;
14149
d2e4c1e6 14150 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
14151 ops = map_ptr->ops;
14152 if (insn->imm == BPF_FUNC_map_lookup_elem &&
14153 ops->map_gen_lookup) {
14154 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
14155 if (cnt == -EOPNOTSUPP)
14156 goto patch_map_ops_generic;
14157 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
14158 verbose(env, "bpf verifier is misconfigured\n");
14159 return -EINVAL;
14160 }
81ed18ab 14161
09772d92
DB
14162 new_prog = bpf_patch_insn_data(env, i + delta,
14163 insn_buf, cnt);
14164 if (!new_prog)
14165 return -ENOMEM;
81ed18ab 14166
09772d92
DB
14167 delta += cnt - 1;
14168 env->prog = prog = new_prog;
14169 insn = new_prog->insnsi + i + delta;
14170 continue;
14171 }
81ed18ab 14172
09772d92
DB
14173 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14174 (void *(*)(struct bpf_map *map, void *key))NULL));
14175 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14176 (int (*)(struct bpf_map *map, void *key))NULL));
14177 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14178 (int (*)(struct bpf_map *map, void *key, void *value,
14179 u64 flags))NULL));
84430d42
DB
14180 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14181 (int (*)(struct bpf_map *map, void *value,
14182 u64 flags))NULL));
14183 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14184 (int (*)(struct bpf_map *map, void *value))NULL));
14185 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14186 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
14187 BUILD_BUG_ON(!__same_type(ops->map_redirect,
14188 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
0640c77c
AI
14189 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14190 (int (*)(struct bpf_map *map,
14191 bpf_callback_t callback_fn,
14192 void *callback_ctx,
14193 u64 flags))NULL));
07343110
FZ
14194 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14195 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 14196
4a8f87e6 14197patch_map_ops_generic:
09772d92
DB
14198 switch (insn->imm) {
14199 case BPF_FUNC_map_lookup_elem:
3d717fad 14200 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
14201 continue;
14202 case BPF_FUNC_map_update_elem:
3d717fad 14203 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
14204 continue;
14205 case BPF_FUNC_map_delete_elem:
3d717fad 14206 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 14207 continue;
84430d42 14208 case BPF_FUNC_map_push_elem:
3d717fad 14209 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
14210 continue;
14211 case BPF_FUNC_map_pop_elem:
3d717fad 14212 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
14213 continue;
14214 case BPF_FUNC_map_peek_elem:
3d717fad 14215 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 14216 continue;
e6a4750f 14217 case BPF_FUNC_redirect_map:
3d717fad 14218 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 14219 continue;
0640c77c
AI
14220 case BPF_FUNC_for_each_map_elem:
14221 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 14222 continue;
07343110
FZ
14223 case BPF_FUNC_map_lookup_percpu_elem:
14224 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14225 continue;
09772d92 14226 }
81ed18ab 14227
09772d92 14228 goto patch_call_imm;
81ed18ab
AS
14229 }
14230
e6ac5933 14231 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
14232 if (prog->jit_requested && BITS_PER_LONG == 64 &&
14233 insn->imm == BPF_FUNC_jiffies64) {
14234 struct bpf_insn ld_jiffies_addr[2] = {
14235 BPF_LD_IMM64(BPF_REG_0,
14236 (unsigned long)&jiffies),
14237 };
14238
14239 insn_buf[0] = ld_jiffies_addr[0];
14240 insn_buf[1] = ld_jiffies_addr[1];
14241 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14242 BPF_REG_0, 0);
14243 cnt = 3;
14244
14245 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14246 cnt);
14247 if (!new_prog)
14248 return -ENOMEM;
14249
14250 delta += cnt - 1;
14251 env->prog = prog = new_prog;
14252 insn = new_prog->insnsi + i + delta;
14253 continue;
14254 }
14255
f92c1e18
JO
14256 /* Implement bpf_get_func_arg inline. */
14257 if (prog_type == BPF_PROG_TYPE_TRACING &&
14258 insn->imm == BPF_FUNC_get_func_arg) {
14259 /* Load nr_args from ctx - 8 */
14260 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14261 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14262 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14263 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14264 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14265 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14266 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14267 insn_buf[7] = BPF_JMP_A(1);
14268 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14269 cnt = 9;
14270
14271 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14272 if (!new_prog)
14273 return -ENOMEM;
14274
14275 delta += cnt - 1;
14276 env->prog = prog = new_prog;
14277 insn = new_prog->insnsi + i + delta;
14278 continue;
14279 }
14280
14281 /* Implement bpf_get_func_ret inline. */
14282 if (prog_type == BPF_PROG_TYPE_TRACING &&
14283 insn->imm == BPF_FUNC_get_func_ret) {
14284 if (eatype == BPF_TRACE_FEXIT ||
14285 eatype == BPF_MODIFY_RETURN) {
14286 /* Load nr_args from ctx - 8 */
14287 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14288 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14289 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14290 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14291 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14292 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14293 cnt = 6;
14294 } else {
14295 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14296 cnt = 1;
14297 }
14298
14299 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14300 if (!new_prog)
14301 return -ENOMEM;
14302
14303 delta += cnt - 1;
14304 env->prog = prog = new_prog;
14305 insn = new_prog->insnsi + i + delta;
14306 continue;
14307 }
14308
14309 /* Implement get_func_arg_cnt inline. */
14310 if (prog_type == BPF_PROG_TYPE_TRACING &&
14311 insn->imm == BPF_FUNC_get_func_arg_cnt) {
14312 /* Load nr_args from ctx - 8 */
14313 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14314
14315 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14316 if (!new_prog)
14317 return -ENOMEM;
14318
14319 env->prog = prog = new_prog;
14320 insn = new_prog->insnsi + i + delta;
14321 continue;
14322 }
14323
f705ec76 14324 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
14325 if (prog_type == BPF_PROG_TYPE_TRACING &&
14326 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
14327 /* Load IP address from ctx - 16 */
14328 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
14329
14330 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14331 if (!new_prog)
14332 return -ENOMEM;
14333
14334 env->prog = prog = new_prog;
14335 insn = new_prog->insnsi + i + delta;
14336 continue;
14337 }
14338
81ed18ab 14339patch_call_imm:
5e43f899 14340 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
14341 /* all functions that have prototype and verifier allowed
14342 * programs to call them, must be real in-kernel functions
14343 */
14344 if (!fn->func) {
61bd5218
JK
14345 verbose(env,
14346 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
14347 func_id_name(insn->imm), insn->imm);
14348 return -EFAULT;
e245c5c6 14349 }
79741b3b 14350 insn->imm = fn->func - __bpf_call_base;
e245c5c6 14351 }
e245c5c6 14352
d2e4c1e6
DB
14353 /* Since poke tab is now finalized, publish aux to tracker. */
14354 for (i = 0; i < prog->aux->size_poke_tab; i++) {
14355 map_ptr = prog->aux->poke_tab[i].tail_call.map;
14356 if (!map_ptr->ops->map_poke_track ||
14357 !map_ptr->ops->map_poke_untrack ||
14358 !map_ptr->ops->map_poke_run) {
14359 verbose(env, "bpf verifier is misconfigured\n");
14360 return -EINVAL;
14361 }
14362
14363 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14364 if (ret < 0) {
14365 verbose(env, "tracking tail call prog failed\n");
14366 return ret;
14367 }
14368 }
14369
e6ac2450
MKL
14370 sort_kfunc_descs_by_imm(env->prog);
14371
79741b3b
AS
14372 return 0;
14373}
e245c5c6 14374
1ade2371
EZ
14375static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14376 int position,
14377 s32 stack_base,
14378 u32 callback_subprogno,
14379 u32 *cnt)
14380{
14381 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14382 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14383 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14384 int reg_loop_max = BPF_REG_6;
14385 int reg_loop_cnt = BPF_REG_7;
14386 int reg_loop_ctx = BPF_REG_8;
14387
14388 struct bpf_prog *new_prog;
14389 u32 callback_start;
14390 u32 call_insn_offset;
14391 s32 callback_offset;
14392
14393 /* This represents an inlined version of bpf_iter.c:bpf_loop,
14394 * be careful to modify this code in sync.
14395 */
14396 struct bpf_insn insn_buf[] = {
14397 /* Return error and jump to the end of the patch if
14398 * expected number of iterations is too big.
14399 */
14400 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14401 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14402 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14403 /* spill R6, R7, R8 to use these as loop vars */
14404 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14405 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14406 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14407 /* initialize loop vars */
14408 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14409 BPF_MOV32_IMM(reg_loop_cnt, 0),
14410 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14411 /* loop header,
14412 * if reg_loop_cnt >= reg_loop_max skip the loop body
14413 */
14414 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14415 /* callback call,
14416 * correct callback offset would be set after patching
14417 */
14418 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14419 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14420 BPF_CALL_REL(0),
14421 /* increment loop counter */
14422 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14423 /* jump to loop header if callback returned 0 */
14424 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14425 /* return value of bpf_loop,
14426 * set R0 to the number of iterations
14427 */
14428 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14429 /* restore original values of R6, R7, R8 */
14430 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14431 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14432 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14433 };
14434
14435 *cnt = ARRAY_SIZE(insn_buf);
14436 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14437 if (!new_prog)
14438 return new_prog;
14439
14440 /* callback start is known only after patching */
14441 callback_start = env->subprog_info[callback_subprogno].start;
14442 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14443 call_insn_offset = position + 12;
14444 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 14445 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
14446
14447 return new_prog;
14448}
14449
14450static bool is_bpf_loop_call(struct bpf_insn *insn)
14451{
14452 return insn->code == (BPF_JMP | BPF_CALL) &&
14453 insn->src_reg == 0 &&
14454 insn->imm == BPF_FUNC_loop;
14455}
14456
14457/* For all sub-programs in the program (including main) check
14458 * insn_aux_data to see if there are bpf_loop calls that require
14459 * inlining. If such calls are found the calls are replaced with a
14460 * sequence of instructions produced by `inline_bpf_loop` function and
14461 * subprog stack_depth is increased by the size of 3 registers.
14462 * This stack space is used to spill values of the R6, R7, R8. These
14463 * registers are used to store the loop bound, counter and context
14464 * variables.
14465 */
14466static int optimize_bpf_loop(struct bpf_verifier_env *env)
14467{
14468 struct bpf_subprog_info *subprogs = env->subprog_info;
14469 int i, cur_subprog = 0, cnt, delta = 0;
14470 struct bpf_insn *insn = env->prog->insnsi;
14471 int insn_cnt = env->prog->len;
14472 u16 stack_depth = subprogs[cur_subprog].stack_depth;
14473 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14474 u16 stack_depth_extra = 0;
14475
14476 for (i = 0; i < insn_cnt; i++, insn++) {
14477 struct bpf_loop_inline_state *inline_state =
14478 &env->insn_aux_data[i + delta].loop_inline_state;
14479
14480 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14481 struct bpf_prog *new_prog;
14482
14483 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14484 new_prog = inline_bpf_loop(env,
14485 i + delta,
14486 -(stack_depth + stack_depth_extra),
14487 inline_state->callback_subprogno,
14488 &cnt);
14489 if (!new_prog)
14490 return -ENOMEM;
14491
14492 delta += cnt - 1;
14493 env->prog = new_prog;
14494 insn = new_prog->insnsi + i + delta;
14495 }
14496
14497 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14498 subprogs[cur_subprog].stack_depth += stack_depth_extra;
14499 cur_subprog++;
14500 stack_depth = subprogs[cur_subprog].stack_depth;
14501 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14502 stack_depth_extra = 0;
14503 }
14504 }
14505
14506 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14507
14508 return 0;
14509}
14510
58e2af8b 14511static void free_states(struct bpf_verifier_env *env)
f1bca824 14512{
58e2af8b 14513 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
14514 int i;
14515
9f4686c4
AS
14516 sl = env->free_list;
14517 while (sl) {
14518 sln = sl->next;
14519 free_verifier_state(&sl->state, false);
14520 kfree(sl);
14521 sl = sln;
14522 }
51c39bb1 14523 env->free_list = NULL;
9f4686c4 14524
f1bca824
AS
14525 if (!env->explored_states)
14526 return;
14527
dc2a4ebc 14528 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
14529 sl = env->explored_states[i];
14530
a8f500af
AS
14531 while (sl) {
14532 sln = sl->next;
14533 free_verifier_state(&sl->state, false);
14534 kfree(sl);
14535 sl = sln;
14536 }
51c39bb1 14537 env->explored_states[i] = NULL;
f1bca824 14538 }
51c39bb1 14539}
f1bca824 14540
51c39bb1
AS
14541static int do_check_common(struct bpf_verifier_env *env, int subprog)
14542{
6f8a57cc 14543 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
14544 struct bpf_verifier_state *state;
14545 struct bpf_reg_state *regs;
14546 int ret, i;
14547
14548 env->prev_linfo = NULL;
14549 env->pass_cnt++;
14550
14551 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14552 if (!state)
14553 return -ENOMEM;
14554 state->curframe = 0;
14555 state->speculative = false;
14556 state->branches = 1;
14557 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14558 if (!state->frame[0]) {
14559 kfree(state);
14560 return -ENOMEM;
14561 }
14562 env->cur_state = state;
14563 init_func_state(env, state->frame[0],
14564 BPF_MAIN_FUNC /* callsite */,
14565 0 /* frameno */,
14566 subprog);
14567
14568 regs = state->frame[state->curframe]->regs;
be8704ff 14569 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
14570 ret = btf_prepare_func_args(env, subprog, regs);
14571 if (ret)
14572 goto out;
14573 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14574 if (regs[i].type == PTR_TO_CTX)
14575 mark_reg_known_zero(env, regs, i);
14576 else if (regs[i].type == SCALAR_VALUE)
14577 mark_reg_unknown(env, regs, i);
cf9f2f8d 14578 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
14579 const u32 mem_size = regs[i].mem_size;
14580
14581 mark_reg_known_zero(env, regs, i);
14582 regs[i].mem_size = mem_size;
14583 regs[i].id = ++env->id_gen;
14584 }
51c39bb1
AS
14585 }
14586 } else {
14587 /* 1st arg to a function */
14588 regs[BPF_REG_1].type = PTR_TO_CTX;
14589 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 14590 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
14591 if (ret == -EFAULT)
14592 /* unlikely verifier bug. abort.
14593 * ret == 0 and ret < 0 are sadly acceptable for
14594 * main() function due to backward compatibility.
14595 * Like socket filter program may be written as:
14596 * int bpf_prog(struct pt_regs *ctx)
14597 * and never dereference that ctx in the program.
14598 * 'struct pt_regs' is a type mismatch for socket
14599 * filter that should be using 'struct __sk_buff'.
14600 */
14601 goto out;
14602 }
14603
14604 ret = do_check(env);
14605out:
f59bbfc2
AS
14606 /* check for NULL is necessary, since cur_state can be freed inside
14607 * do_check() under memory pressure.
14608 */
14609 if (env->cur_state) {
14610 free_verifier_state(env->cur_state, true);
14611 env->cur_state = NULL;
14612 }
6f8a57cc
AN
14613 while (!pop_stack(env, NULL, NULL, false));
14614 if (!ret && pop_log)
14615 bpf_vlog_reset(&env->log, 0);
51c39bb1 14616 free_states(env);
51c39bb1
AS
14617 return ret;
14618}
14619
14620/* Verify all global functions in a BPF program one by one based on their BTF.
14621 * All global functions must pass verification. Otherwise the whole program is rejected.
14622 * Consider:
14623 * int bar(int);
14624 * int foo(int f)
14625 * {
14626 * return bar(f);
14627 * }
14628 * int bar(int b)
14629 * {
14630 * ...
14631 * }
14632 * foo() will be verified first for R1=any_scalar_value. During verification it
14633 * will be assumed that bar() already verified successfully and call to bar()
14634 * from foo() will be checked for type match only. Later bar() will be verified
14635 * independently to check that it's safe for R1=any_scalar_value.
14636 */
14637static int do_check_subprogs(struct bpf_verifier_env *env)
14638{
14639 struct bpf_prog_aux *aux = env->prog->aux;
14640 int i, ret;
14641
14642 if (!aux->func_info)
14643 return 0;
14644
14645 for (i = 1; i < env->subprog_cnt; i++) {
14646 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14647 continue;
14648 env->insn_idx = env->subprog_info[i].start;
14649 WARN_ON_ONCE(env->insn_idx == 0);
14650 ret = do_check_common(env, i);
14651 if (ret) {
14652 return ret;
14653 } else if (env->log.level & BPF_LOG_LEVEL) {
14654 verbose(env,
14655 "Func#%d is safe for any args that match its prototype\n",
14656 i);
14657 }
14658 }
14659 return 0;
14660}
14661
14662static int do_check_main(struct bpf_verifier_env *env)
14663{
14664 int ret;
14665
14666 env->insn_idx = 0;
14667 ret = do_check_common(env, 0);
14668 if (!ret)
14669 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14670 return ret;
14671}
14672
14673
06ee7115
AS
14674static void print_verification_stats(struct bpf_verifier_env *env)
14675{
14676 int i;
14677
14678 if (env->log.level & BPF_LOG_STATS) {
14679 verbose(env, "verification time %lld usec\n",
14680 div_u64(env->verification_time, 1000));
14681 verbose(env, "stack depth ");
14682 for (i = 0; i < env->subprog_cnt; i++) {
14683 u32 depth = env->subprog_info[i].stack_depth;
14684
14685 verbose(env, "%d", depth);
14686 if (i + 1 < env->subprog_cnt)
14687 verbose(env, "+");
14688 }
14689 verbose(env, "\n");
14690 }
14691 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14692 "total_states %d peak_states %d mark_read %d\n",
14693 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14694 env->max_states_per_insn, env->total_states,
14695 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
14696}
14697
27ae7997
MKL
14698static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14699{
14700 const struct btf_type *t, *func_proto;
14701 const struct bpf_struct_ops *st_ops;
14702 const struct btf_member *member;
14703 struct bpf_prog *prog = env->prog;
14704 u32 btf_id, member_idx;
14705 const char *mname;
14706
12aa8a94
THJ
14707 if (!prog->gpl_compatible) {
14708 verbose(env, "struct ops programs must have a GPL compatible license\n");
14709 return -EINVAL;
14710 }
14711
27ae7997
MKL
14712 btf_id = prog->aux->attach_btf_id;
14713 st_ops = bpf_struct_ops_find(btf_id);
14714 if (!st_ops) {
14715 verbose(env, "attach_btf_id %u is not a supported struct\n",
14716 btf_id);
14717 return -ENOTSUPP;
14718 }
14719
14720 t = st_ops->type;
14721 member_idx = prog->expected_attach_type;
14722 if (member_idx >= btf_type_vlen(t)) {
14723 verbose(env, "attach to invalid member idx %u of struct %s\n",
14724 member_idx, st_ops->name);
14725 return -EINVAL;
14726 }
14727
14728 member = &btf_type_member(t)[member_idx];
14729 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14730 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14731 NULL);
14732 if (!func_proto) {
14733 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14734 mname, member_idx, st_ops->name);
14735 return -EINVAL;
14736 }
14737
14738 if (st_ops->check_member) {
14739 int err = st_ops->check_member(t, member);
14740
14741 if (err) {
14742 verbose(env, "attach to unsupported member %s of struct %s\n",
14743 mname, st_ops->name);
14744 return err;
14745 }
14746 }
14747
14748 prog->aux->attach_func_proto = func_proto;
14749 prog->aux->attach_func_name = mname;
14750 env->ops = st_ops->verifier_ops;
14751
14752 return 0;
14753}
6ba43b76
KS
14754#define SECURITY_PREFIX "security_"
14755
f7b12b6f 14756static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 14757{
69191754 14758 if (within_error_injection_list(addr) ||
f7b12b6f 14759 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 14760 return 0;
6ba43b76 14761
6ba43b76
KS
14762 return -EINVAL;
14763}
27ae7997 14764
1e6c62a8
AS
14765/* list of non-sleepable functions that are otherwise on
14766 * ALLOW_ERROR_INJECTION list
14767 */
14768BTF_SET_START(btf_non_sleepable_error_inject)
14769/* Three functions below can be called from sleepable and non-sleepable context.
14770 * Assume non-sleepable from bpf safety point of view.
14771 */
9dd3d069 14772BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
14773BTF_ID(func, should_fail_alloc_page)
14774BTF_ID(func, should_failslab)
14775BTF_SET_END(btf_non_sleepable_error_inject)
14776
14777static int check_non_sleepable_error_inject(u32 btf_id)
14778{
14779 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14780}
14781
f7b12b6f
THJ
14782int bpf_check_attach_target(struct bpf_verifier_log *log,
14783 const struct bpf_prog *prog,
14784 const struct bpf_prog *tgt_prog,
14785 u32 btf_id,
14786 struct bpf_attach_target_info *tgt_info)
38207291 14787{
be8704ff 14788 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 14789 const char prefix[] = "btf_trace_";
5b92a28a 14790 int ret = 0, subprog = -1, i;
38207291 14791 const struct btf_type *t;
5b92a28a 14792 bool conservative = true;
38207291 14793 const char *tname;
5b92a28a 14794 struct btf *btf;
f7b12b6f 14795 long addr = 0;
38207291 14796
f1b9509c 14797 if (!btf_id) {
efc68158 14798 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
14799 return -EINVAL;
14800 }
22dc4a0f 14801 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 14802 if (!btf) {
efc68158 14803 bpf_log(log,
5b92a28a
AS
14804 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14805 return -EINVAL;
14806 }
14807 t = btf_type_by_id(btf, btf_id);
f1b9509c 14808 if (!t) {
efc68158 14809 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
14810 return -EINVAL;
14811 }
5b92a28a 14812 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 14813 if (!tname) {
efc68158 14814 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
14815 return -EINVAL;
14816 }
5b92a28a
AS
14817 if (tgt_prog) {
14818 struct bpf_prog_aux *aux = tgt_prog->aux;
14819
14820 for (i = 0; i < aux->func_info_cnt; i++)
14821 if (aux->func_info[i].type_id == btf_id) {
14822 subprog = i;
14823 break;
14824 }
14825 if (subprog == -1) {
efc68158 14826 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
14827 return -EINVAL;
14828 }
14829 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
14830 if (prog_extension) {
14831 if (conservative) {
efc68158 14832 bpf_log(log,
be8704ff
AS
14833 "Cannot replace static functions\n");
14834 return -EINVAL;
14835 }
14836 if (!prog->jit_requested) {
efc68158 14837 bpf_log(log,
be8704ff
AS
14838 "Extension programs should be JITed\n");
14839 return -EINVAL;
14840 }
be8704ff
AS
14841 }
14842 if (!tgt_prog->jited) {
efc68158 14843 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
14844 return -EINVAL;
14845 }
14846 if (tgt_prog->type == prog->type) {
14847 /* Cannot fentry/fexit another fentry/fexit program.
14848 * Cannot attach program extension to another extension.
14849 * It's ok to attach fentry/fexit to extension program.
14850 */
efc68158 14851 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
14852 return -EINVAL;
14853 }
14854 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14855 prog_extension &&
14856 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14857 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14858 /* Program extensions can extend all program types
14859 * except fentry/fexit. The reason is the following.
14860 * The fentry/fexit programs are used for performance
14861 * analysis, stats and can be attached to any program
14862 * type except themselves. When extension program is
14863 * replacing XDP function it is necessary to allow
14864 * performance analysis of all functions. Both original
14865 * XDP program and its program extension. Hence
14866 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14867 * allowed. If extending of fentry/fexit was allowed it
14868 * would be possible to create long call chain
14869 * fentry->extension->fentry->extension beyond
14870 * reasonable stack size. Hence extending fentry is not
14871 * allowed.
14872 */
efc68158 14873 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
14874 return -EINVAL;
14875 }
5b92a28a 14876 } else {
be8704ff 14877 if (prog_extension) {
efc68158 14878 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
14879 return -EINVAL;
14880 }
5b92a28a 14881 }
f1b9509c
AS
14882
14883 switch (prog->expected_attach_type) {
14884 case BPF_TRACE_RAW_TP:
5b92a28a 14885 if (tgt_prog) {
efc68158 14886 bpf_log(log,
5b92a28a
AS
14887 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14888 return -EINVAL;
14889 }
38207291 14890 if (!btf_type_is_typedef(t)) {
efc68158 14891 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
14892 btf_id);
14893 return -EINVAL;
14894 }
f1b9509c 14895 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 14896 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
14897 btf_id, tname);
14898 return -EINVAL;
14899 }
14900 tname += sizeof(prefix) - 1;
5b92a28a 14901 t = btf_type_by_id(btf, t->type);
38207291
MKL
14902 if (!btf_type_is_ptr(t))
14903 /* should never happen in valid vmlinux build */
14904 return -EINVAL;
5b92a28a 14905 t = btf_type_by_id(btf, t->type);
38207291
MKL
14906 if (!btf_type_is_func_proto(t))
14907 /* should never happen in valid vmlinux build */
14908 return -EINVAL;
14909
f7b12b6f 14910 break;
15d83c4d
YS
14911 case BPF_TRACE_ITER:
14912 if (!btf_type_is_func(t)) {
efc68158 14913 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
14914 btf_id);
14915 return -EINVAL;
14916 }
14917 t = btf_type_by_id(btf, t->type);
14918 if (!btf_type_is_func_proto(t))
14919 return -EINVAL;
f7b12b6f
THJ
14920 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14921 if (ret)
14922 return ret;
14923 break;
be8704ff
AS
14924 default:
14925 if (!prog_extension)
14926 return -EINVAL;
df561f66 14927 fallthrough;
ae240823 14928 case BPF_MODIFY_RETURN:
9e4e01df 14929 case BPF_LSM_MAC:
69fd337a 14930 case BPF_LSM_CGROUP:
fec56f58
AS
14931 case BPF_TRACE_FENTRY:
14932 case BPF_TRACE_FEXIT:
14933 if (!btf_type_is_func(t)) {
efc68158 14934 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
14935 btf_id);
14936 return -EINVAL;
14937 }
be8704ff 14938 if (prog_extension &&
efc68158 14939 btf_check_type_match(log, prog, btf, t))
be8704ff 14940 return -EINVAL;
5b92a28a 14941 t = btf_type_by_id(btf, t->type);
fec56f58
AS
14942 if (!btf_type_is_func_proto(t))
14943 return -EINVAL;
f7b12b6f 14944
4a1e7c0c
THJ
14945 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14946 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14947 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14948 return -EINVAL;
14949
f7b12b6f 14950 if (tgt_prog && conservative)
5b92a28a 14951 t = NULL;
f7b12b6f
THJ
14952
14953 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 14954 if (ret < 0)
f7b12b6f
THJ
14955 return ret;
14956
5b92a28a 14957 if (tgt_prog) {
e9eeec58
YS
14958 if (subprog == 0)
14959 addr = (long) tgt_prog->bpf_func;
14960 else
14961 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
14962 } else {
14963 addr = kallsyms_lookup_name(tname);
14964 if (!addr) {
efc68158 14965 bpf_log(log,
5b92a28a
AS
14966 "The address of function %s cannot be found\n",
14967 tname);
f7b12b6f 14968 return -ENOENT;
5b92a28a 14969 }
fec56f58 14970 }
18644cec 14971
1e6c62a8
AS
14972 if (prog->aux->sleepable) {
14973 ret = -EINVAL;
14974 switch (prog->type) {
14975 case BPF_PROG_TYPE_TRACING:
14976 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
14977 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14978 */
14979 if (!check_non_sleepable_error_inject(btf_id) &&
14980 within_error_injection_list(addr))
14981 ret = 0;
14982 break;
14983 case BPF_PROG_TYPE_LSM:
14984 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
14985 * Only some of them are sleepable.
14986 */
423f1610 14987 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
14988 ret = 0;
14989 break;
14990 default:
14991 break;
14992 }
f7b12b6f
THJ
14993 if (ret) {
14994 bpf_log(log, "%s is not sleepable\n", tname);
14995 return ret;
14996 }
1e6c62a8 14997 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 14998 if (tgt_prog) {
efc68158 14999 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
15000 return -EINVAL;
15001 }
15002 ret = check_attach_modify_return(addr, tname);
15003 if (ret) {
15004 bpf_log(log, "%s() is not modifiable\n", tname);
15005 return ret;
1af9270e 15006 }
18644cec 15007 }
f7b12b6f
THJ
15008
15009 break;
15010 }
15011 tgt_info->tgt_addr = addr;
15012 tgt_info->tgt_name = tname;
15013 tgt_info->tgt_type = t;
15014 return 0;
15015}
15016
35e3815f
JO
15017BTF_SET_START(btf_id_deny)
15018BTF_ID_UNUSED
15019#ifdef CONFIG_SMP
15020BTF_ID(func, migrate_disable)
15021BTF_ID(func, migrate_enable)
15022#endif
15023#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15024BTF_ID(func, rcu_read_unlock_strict)
15025#endif
15026BTF_SET_END(btf_id_deny)
15027
f7b12b6f
THJ
15028static int check_attach_btf_id(struct bpf_verifier_env *env)
15029{
15030 struct bpf_prog *prog = env->prog;
3aac1ead 15031 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
15032 struct bpf_attach_target_info tgt_info = {};
15033 u32 btf_id = prog->aux->attach_btf_id;
15034 struct bpf_trampoline *tr;
15035 int ret;
15036 u64 key;
15037
79a7f8bd
AS
15038 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15039 if (prog->aux->sleepable)
15040 /* attach_btf_id checked to be zero already */
15041 return 0;
15042 verbose(env, "Syscall programs can only be sleepable\n");
15043 return -EINVAL;
15044 }
15045
f7b12b6f 15046 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
64ad7556
DK
15047 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15048 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
f7b12b6f
THJ
15049 return -EINVAL;
15050 }
15051
15052 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15053 return check_struct_ops_btf_id(env);
15054
15055 if (prog->type != BPF_PROG_TYPE_TRACING &&
15056 prog->type != BPF_PROG_TYPE_LSM &&
15057 prog->type != BPF_PROG_TYPE_EXT)
15058 return 0;
15059
15060 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15061 if (ret)
fec56f58 15062 return ret;
f7b12b6f
THJ
15063
15064 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
15065 /* to make freplace equivalent to their targets, they need to
15066 * inherit env->ops and expected_attach_type for the rest of the
15067 * verification
15068 */
f7b12b6f
THJ
15069 env->ops = bpf_verifier_ops[tgt_prog->type];
15070 prog->expected_attach_type = tgt_prog->expected_attach_type;
15071 }
15072
15073 /* store info about the attachment target that will be used later */
15074 prog->aux->attach_func_proto = tgt_info.tgt_type;
15075 prog->aux->attach_func_name = tgt_info.tgt_name;
15076
4a1e7c0c
THJ
15077 if (tgt_prog) {
15078 prog->aux->saved_dst_prog_type = tgt_prog->type;
15079 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15080 }
15081
f7b12b6f
THJ
15082 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15083 prog->aux->attach_btf_trace = true;
15084 return 0;
15085 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15086 if (!bpf_iter_prog_supported(prog))
15087 return -EINVAL;
15088 return 0;
15089 }
15090
15091 if (prog->type == BPF_PROG_TYPE_LSM) {
15092 ret = bpf_lsm_verify_prog(&env->log, prog);
15093 if (ret < 0)
15094 return ret;
35e3815f
JO
15095 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
15096 btf_id_set_contains(&btf_id_deny, btf_id)) {
15097 return -EINVAL;
38207291 15098 }
f7b12b6f 15099
22dc4a0f 15100 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
15101 tr = bpf_trampoline_get(key, &tgt_info);
15102 if (!tr)
15103 return -ENOMEM;
15104
3aac1ead 15105 prog->aux->dst_trampoline = tr;
f7b12b6f 15106 return 0;
38207291
MKL
15107}
15108
76654e67
AM
15109struct btf *bpf_get_btf_vmlinux(void)
15110{
15111 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15112 mutex_lock(&bpf_verifier_lock);
15113 if (!btf_vmlinux)
15114 btf_vmlinux = btf_parse_vmlinux();
15115 mutex_unlock(&bpf_verifier_lock);
15116 }
15117 return btf_vmlinux;
15118}
15119
af2ac3e1 15120int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 15121{
06ee7115 15122 u64 start_time = ktime_get_ns();
58e2af8b 15123 struct bpf_verifier_env *env;
b9193c1b 15124 struct bpf_verifier_log *log;
9e4c24e7 15125 int i, len, ret = -EINVAL;
e2ae4ca2 15126 bool is_priv;
51580e79 15127
eba0c929
AB
15128 /* no program is valid */
15129 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15130 return -EINVAL;
15131
58e2af8b 15132 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
15133 * allocate/free it every time bpf_check() is called
15134 */
58e2af8b 15135 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
15136 if (!env)
15137 return -ENOMEM;
61bd5218 15138 log = &env->log;
cbd35700 15139
9e4c24e7 15140 len = (*prog)->len;
fad953ce 15141 env->insn_aux_data =
9e4c24e7 15142 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
15143 ret = -ENOMEM;
15144 if (!env->insn_aux_data)
15145 goto err_free_env;
9e4c24e7
JK
15146 for (i = 0; i < len; i++)
15147 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 15148 env->prog = *prog;
00176a34 15149 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 15150 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 15151 is_priv = bpf_capable();
0246e64d 15152
76654e67 15153 bpf_get_btf_vmlinux();
8580ac94 15154
cbd35700 15155 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
15156 if (!is_priv)
15157 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
15158
15159 if (attr->log_level || attr->log_buf || attr->log_size) {
15160 /* user requested verbose verifier output
15161 * and supplied buffer to store the verification trace
15162 */
e7bf8249
JK
15163 log->level = attr->log_level;
15164 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15165 log->len_total = attr->log_size;
cbd35700 15166
e7bf8249 15167 /* log attributes have to be sane */
866de407
HT
15168 if (!bpf_verifier_log_attr_valid(log)) {
15169 ret = -EINVAL;
3df126f3 15170 goto err_unlock;
866de407 15171 }
cbd35700 15172 }
1ad2f583 15173
0f55f9ed
CL
15174 mark_verifier_state_clean(env);
15175
8580ac94
AS
15176 if (IS_ERR(btf_vmlinux)) {
15177 /* Either gcc or pahole or kernel are broken. */
15178 verbose(env, "in-kernel BTF is malformed\n");
15179 ret = PTR_ERR(btf_vmlinux);
38207291 15180 goto skip_full_check;
8580ac94
AS
15181 }
15182
1ad2f583
DB
15183 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15184 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 15185 env->strict_alignment = true;
e9ee9efc
DM
15186 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15187 env->strict_alignment = false;
cbd35700 15188
2c78ee89 15189 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 15190 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 15191 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
15192 env->bypass_spec_v1 = bpf_bypass_spec_v1();
15193 env->bypass_spec_v4 = bpf_bypass_spec_v4();
15194 env->bpf_capable = bpf_capable();
e2ae4ca2 15195
10d274e8
AS
15196 if (is_priv)
15197 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15198
dc2a4ebc 15199 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 15200 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
15201 GFP_USER);
15202 ret = -ENOMEM;
15203 if (!env->explored_states)
15204 goto skip_full_check;
15205
e6ac2450
MKL
15206 ret = add_subprog_and_kfunc(env);
15207 if (ret < 0)
15208 goto skip_full_check;
15209
d9762e84 15210 ret = check_subprogs(env);
475fb78f
AS
15211 if (ret < 0)
15212 goto skip_full_check;
15213
c454a46b 15214 ret = check_btf_info(env, attr, uattr);
838e9690
YS
15215 if (ret < 0)
15216 goto skip_full_check;
15217
be8704ff
AS
15218 ret = check_attach_btf_id(env);
15219 if (ret)
15220 goto skip_full_check;
15221
4976b718
HL
15222 ret = resolve_pseudo_ldimm64(env);
15223 if (ret < 0)
15224 goto skip_full_check;
15225
ceb11679
YZ
15226 if (bpf_prog_is_dev_bound(env->prog->aux)) {
15227 ret = bpf_prog_offload_verifier_prep(env->prog);
15228 if (ret)
15229 goto skip_full_check;
15230 }
15231
d9762e84
MKL
15232 ret = check_cfg(env);
15233 if (ret < 0)
15234 goto skip_full_check;
15235
51c39bb1
AS
15236 ret = do_check_subprogs(env);
15237 ret = ret ?: do_check_main(env);
cbd35700 15238
c941ce9c
QM
15239 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15240 ret = bpf_prog_offload_finalize(env);
15241
0246e64d 15242skip_full_check:
51c39bb1 15243 kvfree(env->explored_states);
0246e64d 15244
c131187d 15245 if (ret == 0)
9b38c405 15246 ret = check_max_stack_depth(env);
c131187d 15247
9b38c405 15248 /* instruction rewrites happen after this point */
1ade2371
EZ
15249 if (ret == 0)
15250 ret = optimize_bpf_loop(env);
15251
e2ae4ca2
JK
15252 if (is_priv) {
15253 if (ret == 0)
15254 opt_hard_wire_dead_code_branches(env);
52875a04
JK
15255 if (ret == 0)
15256 ret = opt_remove_dead_code(env);
a1b14abc
JK
15257 if (ret == 0)
15258 ret = opt_remove_nops(env);
52875a04
JK
15259 } else {
15260 if (ret == 0)
15261 sanitize_dead_code(env);
e2ae4ca2
JK
15262 }
15263
9bac3d6d
AS
15264 if (ret == 0)
15265 /* program is valid, convert *(u32*)(ctx + off) accesses */
15266 ret = convert_ctx_accesses(env);
15267
e245c5c6 15268 if (ret == 0)
e6ac5933 15269 ret = do_misc_fixups(env);
e245c5c6 15270
a4b1d3c1
JW
15271 /* do 32-bit optimization after insn patching has done so those patched
15272 * insns could be handled correctly.
15273 */
d6c2308c
JW
15274 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15275 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15276 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15277 : false;
a4b1d3c1
JW
15278 }
15279
1ea47e01
AS
15280 if (ret == 0)
15281 ret = fixup_call_args(env);
15282
06ee7115
AS
15283 env->verification_time = ktime_get_ns() - start_time;
15284 print_verification_stats(env);
aba64c7d 15285 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 15286
a2a7d570 15287 if (log->level && bpf_verifier_log_full(log))
cbd35700 15288 ret = -ENOSPC;
a2a7d570 15289 if (log->level && !log->ubuf) {
cbd35700 15290 ret = -EFAULT;
a2a7d570 15291 goto err_release_maps;
cbd35700
AS
15292 }
15293
541c3bad
AN
15294 if (ret)
15295 goto err_release_maps;
15296
15297 if (env->used_map_cnt) {
0246e64d 15298 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
15299 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15300 sizeof(env->used_maps[0]),
15301 GFP_KERNEL);
0246e64d 15302
9bac3d6d 15303 if (!env->prog->aux->used_maps) {
0246e64d 15304 ret = -ENOMEM;
a2a7d570 15305 goto err_release_maps;
0246e64d
AS
15306 }
15307
9bac3d6d 15308 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 15309 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 15310 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
15311 }
15312 if (env->used_btf_cnt) {
15313 /* if program passed verifier, update used_btfs in bpf_prog_aux */
15314 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15315 sizeof(env->used_btfs[0]),
15316 GFP_KERNEL);
15317 if (!env->prog->aux->used_btfs) {
15318 ret = -ENOMEM;
15319 goto err_release_maps;
15320 }
0246e64d 15321
541c3bad
AN
15322 memcpy(env->prog->aux->used_btfs, env->used_btfs,
15323 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15324 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15325 }
15326 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
15327 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
15328 * bpf_ld_imm64 instructions
15329 */
15330 convert_pseudo_ld_imm64(env);
15331 }
cbd35700 15332
541c3bad 15333 adjust_btf_func(env);
ba64e7d8 15334
a2a7d570 15335err_release_maps:
9bac3d6d 15336 if (!env->prog->aux->used_maps)
0246e64d 15337 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 15338 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
15339 */
15340 release_maps(env);
541c3bad
AN
15341 if (!env->prog->aux->used_btfs)
15342 release_btfs(env);
03f87c0b
THJ
15343
15344 /* extension progs temporarily inherit the attach_type of their targets
15345 for verification purposes, so set it back to zero before returning
15346 */
15347 if (env->prog->type == BPF_PROG_TYPE_EXT)
15348 env->prog->expected_attach_type = 0;
15349
9bac3d6d 15350 *prog = env->prog;
3df126f3 15351err_unlock:
45a73c17
AS
15352 if (!is_priv)
15353 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
15354 vfree(env->insn_aux_data);
15355err_free_env:
15356 kfree(env);
51580e79
AS
15357 return ret;
15358}