bpf: offload: add map offload infrastructure
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
cc8b0b92
AS
23#include <linux/bsearch.h>
24#include <linux/sort.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34
JK
28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29#define BPF_PROG_TYPE(_id, _name) \
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
32#include <linux/bpf_types.h>
33#undef BPF_PROG_TYPE
34#undef BPF_MAP_TYPE
35};
36
51580e79
AS
37/* bpf_check() is a static code analyzer that walks eBPF program
38 * instruction by instruction and updates register/stack state.
39 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
40 *
41 * The first pass is depth-first-search to check that the program is a DAG.
42 * It rejects the following programs:
43 * - larger than BPF_MAXINSNS insns
44 * - if loop is present (detected via back-edge)
45 * - unreachable insns exist (shouldn't be a forest. program = one function)
46 * - out of bounds or malformed jumps
47 * The second pass is all possible path descent from the 1st insn.
48 * Since it's analyzing all pathes through the program, the length of the
eba38a96 49 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
50 * insn is less then 4K, but there are too many branches that change stack/regs.
51 * Number of 'branches to be analyzed' is limited to 1k
52 *
53 * On entry to each instruction, each register has a type, and the instruction
54 * changes the types of the registers depending on instruction semantics.
55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
56 * copied to R1.
57 *
58 * All registers are 64-bit.
59 * R0 - return register
60 * R1-R5 argument passing registers
61 * R6-R9 callee saved registers
62 * R10 - frame pointer read-only
63 *
64 * At the start of BPF program the register R1 contains a pointer to bpf_context
65 * and has type PTR_TO_CTX.
66 *
67 * Verifier tracks arithmetic operations on pointers in case:
68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70 * 1st insn copies R10 (which has FRAME_PTR) type into R1
71 * and 2nd arithmetic instruction is pattern matched to recognize
72 * that it wants to construct a pointer to some element within stack.
73 * So after 2nd insn, the register R1 has type PTR_TO_STACK
74 * (and -20 constant is saved for further stack bounds checking).
75 * Meaning that this reg is a pointer to stack plus known immediate constant.
76 *
f1174f77 77 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 78 * means the register has some value, but it's not a valid pointer.
f1174f77 79 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
80 *
81 * When verifier sees load or store instructions the type of base register
f1174f77 82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
83 * types recognized by check_mem_access() function.
84 *
85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86 * and the range of [ptr, ptr + map's value_size) is accessible.
87 *
88 * registers used to pass values to function calls are checked against
89 * function argument constraints.
90 *
91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92 * It means that the register type passed to this function must be
93 * PTR_TO_STACK and it will be used inside the function as
94 * 'pointer to map element key'
95 *
96 * For example the argument constraints for bpf_map_lookup_elem():
97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98 * .arg1_type = ARG_CONST_MAP_PTR,
99 * .arg2_type = ARG_PTR_TO_MAP_KEY,
100 *
101 * ret_type says that this function returns 'pointer to map elem value or null'
102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103 * 2nd argument should be a pointer to stack, which will be used inside
104 * the helper function as a pointer to map element key.
105 *
106 * On the kernel side the helper function looks like:
107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
108 * {
109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110 * void *key = (void *) (unsigned long) r2;
111 * void *value;
112 *
113 * here kernel can access 'key' and 'map' pointers safely, knowing that
114 * [key, key + map->key_size) bytes are valid and were initialized on
115 * the stack of eBPF program.
116 * }
117 *
118 * Corresponding eBPF program may look like:
119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123 * here verifier looks at prototype of map_lookup_elem() and sees:
124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
126 *
127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129 * and were initialized prior to this call.
130 * If it's ok, then verifier allows this BPF_CALL insn and looks at
131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133 * returns ether pointer to map value or NULL.
134 *
135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136 * insn, the register holding that pointer in the true branch changes state to
137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138 * branch. See check_cond_jmp_op().
139 *
140 * After the call R0 is set to return type of the function and registers R1-R5
141 * are set to NOT_INIT to indicate that they are no longer readable.
142 */
143
17a52670 144/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 145struct bpf_verifier_stack_elem {
17a52670
AS
146 /* verifer state is 'st'
147 * before processing instruction 'insn_idx'
148 * and after processing instruction 'prev_insn_idx'
149 */
58e2af8b 150 struct bpf_verifier_state st;
17a52670
AS
151 int insn_idx;
152 int prev_insn_idx;
58e2af8b 153 struct bpf_verifier_stack_elem *next;
cbd35700
AS
154};
155
8e17c1b1 156#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
157#define BPF_COMPLEXITY_LIMIT_STACK 1024
158
fad73a1a
MKL
159#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
160
33ff9823
DB
161struct bpf_call_arg_meta {
162 struct bpf_map *map_ptr;
435faee1 163 bool raw_mode;
36bbef52 164 bool pkt_access;
435faee1
DB
165 int regno;
166 int access_size;
33ff9823
DB
167};
168
cbd35700
AS
169static DEFINE_MUTEX(bpf_verifier_lock);
170
171/* log_level controls verbosity level of eBPF verifier.
430e68d1
QM
172 * bpf_verifier_log_write() is used to dump the verification trace to the log,
173 * so the user can figure out what's wrong with the program
cbd35700 174 */
430e68d1
QM
175__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
176 const char *fmt, ...)
cbd35700 177{
61bd5218 178 struct bpf_verifer_log *log = &env->log;
a2a7d570 179 unsigned int n;
cbd35700
AS
180 va_list args;
181
a2a7d570 182 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
183 return;
184
185 va_start(args, fmt);
a2a7d570 186 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 187 va_end(args);
a2a7d570
JK
188
189 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
190 "verifier log line truncated - local buffer too short\n");
191
192 n = min(log->len_total - log->len_used - 1, n);
193 log->kbuf[n] = '\0';
194
195 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
196 log->len_used += n;
197 else
198 log->ubuf = NULL;
cbd35700 199}
430e68d1
QM
200EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
201/* Historically bpf_verifier_log_write was called verbose, but the name was too
202 * generic for symbol export. The function was renamed, but not the calls in
203 * the verifier to avoid complicating backports. Hence the alias below.
204 */
205static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
206 const char *fmt, ...)
207 __attribute__((alias("bpf_verifier_log_write")));
cbd35700 208
de8f3a83
DB
209static bool type_is_pkt_pointer(enum bpf_reg_type type)
210{
211 return type == PTR_TO_PACKET ||
212 type == PTR_TO_PACKET_META;
213}
214
17a52670
AS
215/* string representation of 'enum bpf_reg_type' */
216static const char * const reg_type_str[] = {
217 [NOT_INIT] = "?",
f1174f77 218 [SCALAR_VALUE] = "inv",
17a52670
AS
219 [PTR_TO_CTX] = "ctx",
220 [CONST_PTR_TO_MAP] = "map_ptr",
221 [PTR_TO_MAP_VALUE] = "map_value",
222 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 223 [PTR_TO_STACK] = "fp",
969bf05e 224 [PTR_TO_PACKET] = "pkt",
de8f3a83 225 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 226 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
227};
228
4e92024a
AS
229static void print_liveness(struct bpf_verifier_env *env,
230 enum bpf_reg_liveness live)
231{
232 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
233 verbose(env, "_");
234 if (live & REG_LIVE_READ)
235 verbose(env, "r");
236 if (live & REG_LIVE_WRITTEN)
237 verbose(env, "w");
238}
239
f4d7e40a
AS
240static struct bpf_func_state *func(struct bpf_verifier_env *env,
241 const struct bpf_reg_state *reg)
242{
243 struct bpf_verifier_state *cur = env->cur_state;
244
245 return cur->frame[reg->frameno];
246}
247
61bd5218 248static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 249 const struct bpf_func_state *state)
17a52670 250{
f4d7e40a 251 const struct bpf_reg_state *reg;
17a52670
AS
252 enum bpf_reg_type t;
253 int i;
254
f4d7e40a
AS
255 if (state->frameno)
256 verbose(env, " frame%d:", state->frameno);
17a52670 257 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
258 reg = &state->regs[i];
259 t = reg->type;
17a52670
AS
260 if (t == NOT_INIT)
261 continue;
4e92024a
AS
262 verbose(env, " R%d", i);
263 print_liveness(env, reg->live);
264 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
265 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
266 tnum_is_const(reg->var_off)) {
267 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 268 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
269 if (t == PTR_TO_STACK)
270 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 271 } else {
61bd5218 272 verbose(env, "(id=%d", reg->id);
f1174f77 273 if (t != SCALAR_VALUE)
61bd5218 274 verbose(env, ",off=%d", reg->off);
de8f3a83 275 if (type_is_pkt_pointer(t))
61bd5218 276 verbose(env, ",r=%d", reg->range);
f1174f77
EC
277 else if (t == CONST_PTR_TO_MAP ||
278 t == PTR_TO_MAP_VALUE ||
279 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 280 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
281 reg->map_ptr->key_size,
282 reg->map_ptr->value_size);
7d1238f2
EC
283 if (tnum_is_const(reg->var_off)) {
284 /* Typically an immediate SCALAR_VALUE, but
285 * could be a pointer whose offset is too big
286 * for reg->off
287 */
61bd5218 288 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
289 } else {
290 if (reg->smin_value != reg->umin_value &&
291 reg->smin_value != S64_MIN)
61bd5218 292 verbose(env, ",smin_value=%lld",
7d1238f2
EC
293 (long long)reg->smin_value);
294 if (reg->smax_value != reg->umax_value &&
295 reg->smax_value != S64_MAX)
61bd5218 296 verbose(env, ",smax_value=%lld",
7d1238f2
EC
297 (long long)reg->smax_value);
298 if (reg->umin_value != 0)
61bd5218 299 verbose(env, ",umin_value=%llu",
7d1238f2
EC
300 (unsigned long long)reg->umin_value);
301 if (reg->umax_value != U64_MAX)
61bd5218 302 verbose(env, ",umax_value=%llu",
7d1238f2
EC
303 (unsigned long long)reg->umax_value);
304 if (!tnum_is_unknown(reg->var_off)) {
305 char tn_buf[48];
f1174f77 306
7d1238f2 307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 308 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 309 }
f1174f77 310 }
61bd5218 311 verbose(env, ")");
f1174f77 312 }
17a52670 313 }
638f5b90 314 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
4e92024a
AS
315 if (state->stack[i].slot_type[0] == STACK_SPILL) {
316 verbose(env, " fp%d",
317 (-i - 1) * BPF_REG_SIZE);
318 print_liveness(env, state->stack[i].spilled_ptr.live);
319 verbose(env, "=%s",
638f5b90 320 reg_type_str[state->stack[i].spilled_ptr.type]);
4e92024a 321 }
cc2b14d5
AS
322 if (state->stack[i].slot_type[0] == STACK_ZERO)
323 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
17a52670 324 }
61bd5218 325 verbose(env, "\n");
17a52670
AS
326}
327
f4d7e40a
AS
328static int copy_stack_state(struct bpf_func_state *dst,
329 const struct bpf_func_state *src)
17a52670 330{
638f5b90
AS
331 if (!src->stack)
332 return 0;
333 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
334 /* internal bug, make state invalid to reject the program */
335 memset(dst, 0, sizeof(*dst));
336 return -EFAULT;
337 }
338 memcpy(dst->stack, src->stack,
339 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
340 return 0;
341}
342
343/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
344 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 345 * the program calls into realloc_func_state() to grow the stack size.
638f5b90
AS
346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
347 * which this function copies over. It points to previous bpf_verifier_state
348 * which is never reallocated
349 */
f4d7e40a
AS
350static int realloc_func_state(struct bpf_func_state *state, int size,
351 bool copy_old)
638f5b90
AS
352{
353 u32 old_size = state->allocated_stack;
354 struct bpf_stack_state *new_stack;
355 int slot = size / BPF_REG_SIZE;
356
357 if (size <= old_size || !size) {
358 if (copy_old)
359 return 0;
360 state->allocated_stack = slot * BPF_REG_SIZE;
361 if (!size && old_size) {
362 kfree(state->stack);
363 state->stack = NULL;
364 }
365 return 0;
366 }
367 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
368 GFP_KERNEL);
369 if (!new_stack)
370 return -ENOMEM;
371 if (copy_old) {
372 if (state->stack)
373 memcpy(new_stack, state->stack,
374 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
375 memset(new_stack + old_size / BPF_REG_SIZE, 0,
376 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
377 }
378 state->allocated_stack = slot * BPF_REG_SIZE;
379 kfree(state->stack);
380 state->stack = new_stack;
381 return 0;
382}
383
f4d7e40a
AS
384static void free_func_state(struct bpf_func_state *state)
385{
5896351e
AS
386 if (!state)
387 return;
f4d7e40a
AS
388 kfree(state->stack);
389 kfree(state);
390}
391
1969db47
AS
392static void free_verifier_state(struct bpf_verifier_state *state,
393 bool free_self)
638f5b90 394{
f4d7e40a
AS
395 int i;
396
397 for (i = 0; i <= state->curframe; i++) {
398 free_func_state(state->frame[i]);
399 state->frame[i] = NULL;
400 }
1969db47
AS
401 if (free_self)
402 kfree(state);
638f5b90
AS
403}
404
405/* copy verifier state from src to dst growing dst stack space
406 * when necessary to accommodate larger src stack
407 */
f4d7e40a
AS
408static int copy_func_state(struct bpf_func_state *dst,
409 const struct bpf_func_state *src)
638f5b90
AS
410{
411 int err;
412
f4d7e40a 413 err = realloc_func_state(dst, src->allocated_stack, false);
638f5b90
AS
414 if (err)
415 return err;
f4d7e40a 416 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
638f5b90
AS
417 return copy_stack_state(dst, src);
418}
419
f4d7e40a
AS
420static int copy_verifier_state(struct bpf_verifier_state *dst_state,
421 const struct bpf_verifier_state *src)
422{
423 struct bpf_func_state *dst;
424 int i, err;
425
426 /* if dst has more stack frames then src frame, free them */
427 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
428 free_func_state(dst_state->frame[i]);
429 dst_state->frame[i] = NULL;
430 }
431 dst_state->curframe = src->curframe;
432 dst_state->parent = src->parent;
433 for (i = 0; i <= src->curframe; i++) {
434 dst = dst_state->frame[i];
435 if (!dst) {
436 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
437 if (!dst)
438 return -ENOMEM;
439 dst_state->frame[i] = dst;
440 }
441 err = copy_func_state(dst, src->frame[i]);
442 if (err)
443 return err;
444 }
445 return 0;
446}
447
638f5b90
AS
448static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
449 int *insn_idx)
450{
451 struct bpf_verifier_state *cur = env->cur_state;
452 struct bpf_verifier_stack_elem *elem, *head = env->head;
453 int err;
17a52670
AS
454
455 if (env->head == NULL)
638f5b90 456 return -ENOENT;
17a52670 457
638f5b90
AS
458 if (cur) {
459 err = copy_verifier_state(cur, &head->st);
460 if (err)
461 return err;
462 }
463 if (insn_idx)
464 *insn_idx = head->insn_idx;
17a52670 465 if (prev_insn_idx)
638f5b90
AS
466 *prev_insn_idx = head->prev_insn_idx;
467 elem = head->next;
1969db47 468 free_verifier_state(&head->st, false);
638f5b90 469 kfree(head);
17a52670
AS
470 env->head = elem;
471 env->stack_size--;
638f5b90 472 return 0;
17a52670
AS
473}
474
58e2af8b
JK
475static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
476 int insn_idx, int prev_insn_idx)
17a52670 477{
638f5b90 478 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 479 struct bpf_verifier_stack_elem *elem;
638f5b90 480 int err;
17a52670 481
638f5b90 482 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
483 if (!elem)
484 goto err;
485
17a52670
AS
486 elem->insn_idx = insn_idx;
487 elem->prev_insn_idx = prev_insn_idx;
488 elem->next = env->head;
489 env->head = elem;
490 env->stack_size++;
1969db47
AS
491 err = copy_verifier_state(&elem->st, cur);
492 if (err)
493 goto err;
07016151 494 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 495 verbose(env, "BPF program is too complex\n");
17a52670
AS
496 goto err;
497 }
498 return &elem->st;
499err:
5896351e
AS
500 free_verifier_state(env->cur_state, true);
501 env->cur_state = NULL;
17a52670 502 /* pop all elements and return */
638f5b90 503 while (!pop_stack(env, NULL, NULL));
17a52670
AS
504 return NULL;
505}
506
507#define CALLER_SAVED_REGS 6
508static const int caller_saved[CALLER_SAVED_REGS] = {
509 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
510};
f4d7e40a
AS
511#define CALLEE_SAVED_REGS 5
512static const int callee_saved[CALLEE_SAVED_REGS] = {
513 BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
514};
17a52670 515
f1174f77
EC
516static void __mark_reg_not_init(struct bpf_reg_state *reg);
517
b03c9f9f
EC
518/* Mark the unknown part of a register (variable offset or scalar value) as
519 * known to have the value @imm.
520 */
521static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
522{
523 reg->id = 0;
524 reg->var_off = tnum_const(imm);
525 reg->smin_value = (s64)imm;
526 reg->smax_value = (s64)imm;
527 reg->umin_value = imm;
528 reg->umax_value = imm;
529}
530
f1174f77
EC
531/* Mark the 'variable offset' part of a register as zero. This should be
532 * used only on registers holding a pointer type.
533 */
534static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 535{
b03c9f9f 536 __mark_reg_known(reg, 0);
f1174f77 537}
a9789ef9 538
cc2b14d5
AS
539static void __mark_reg_const_zero(struct bpf_reg_state *reg)
540{
541 __mark_reg_known(reg, 0);
542 reg->off = 0;
543 reg->type = SCALAR_VALUE;
544}
545
61bd5218
JK
546static void mark_reg_known_zero(struct bpf_verifier_env *env,
547 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
548{
549 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 550 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
551 /* Something bad happened, let's kill all regs */
552 for (regno = 0; regno < MAX_BPF_REG; regno++)
553 __mark_reg_not_init(regs + regno);
554 return;
555 }
556 __mark_reg_known_zero(regs + regno);
557}
558
de8f3a83
DB
559static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
560{
561 return type_is_pkt_pointer(reg->type);
562}
563
564static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
565{
566 return reg_is_pkt_pointer(reg) ||
567 reg->type == PTR_TO_PACKET_END;
568}
569
570/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
571static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
572 enum bpf_reg_type which)
573{
574 /* The register can already have a range from prior markings.
575 * This is fine as long as it hasn't been advanced from its
576 * origin.
577 */
578 return reg->type == which &&
579 reg->id == 0 &&
580 reg->off == 0 &&
581 tnum_equals_const(reg->var_off, 0);
582}
583
b03c9f9f
EC
584/* Attempts to improve min/max values based on var_off information */
585static void __update_reg_bounds(struct bpf_reg_state *reg)
586{
587 /* min signed is max(sign bit) | min(other bits) */
588 reg->smin_value = max_t(s64, reg->smin_value,
589 reg->var_off.value | (reg->var_off.mask & S64_MIN));
590 /* max signed is min(sign bit) | max(other bits) */
591 reg->smax_value = min_t(s64, reg->smax_value,
592 reg->var_off.value | (reg->var_off.mask & S64_MAX));
593 reg->umin_value = max(reg->umin_value, reg->var_off.value);
594 reg->umax_value = min(reg->umax_value,
595 reg->var_off.value | reg->var_off.mask);
596}
597
598/* Uses signed min/max values to inform unsigned, and vice-versa */
599static void __reg_deduce_bounds(struct bpf_reg_state *reg)
600{
601 /* Learn sign from signed bounds.
602 * If we cannot cross the sign boundary, then signed and unsigned bounds
603 * are the same, so combine. This works even in the negative case, e.g.
604 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
605 */
606 if (reg->smin_value >= 0 || reg->smax_value < 0) {
607 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
608 reg->umin_value);
609 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
610 reg->umax_value);
611 return;
612 }
613 /* Learn sign from unsigned bounds. Signed bounds cross the sign
614 * boundary, so we must be careful.
615 */
616 if ((s64)reg->umax_value >= 0) {
617 /* Positive. We can't learn anything from the smin, but smax
618 * is positive, hence safe.
619 */
620 reg->smin_value = reg->umin_value;
621 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
622 reg->umax_value);
623 } else if ((s64)reg->umin_value < 0) {
624 /* Negative. We can't learn anything from the smax, but smin
625 * is negative, hence safe.
626 */
627 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
628 reg->umin_value);
629 reg->smax_value = reg->umax_value;
630 }
631}
632
633/* Attempts to improve var_off based on unsigned min/max information */
634static void __reg_bound_offset(struct bpf_reg_state *reg)
635{
636 reg->var_off = tnum_intersect(reg->var_off,
637 tnum_range(reg->umin_value,
638 reg->umax_value));
639}
640
641/* Reset the min/max bounds of a register */
642static void __mark_reg_unbounded(struct bpf_reg_state *reg)
643{
644 reg->smin_value = S64_MIN;
645 reg->smax_value = S64_MAX;
646 reg->umin_value = 0;
647 reg->umax_value = U64_MAX;
648}
649
f1174f77
EC
650/* Mark a register as having a completely unknown (scalar) value. */
651static void __mark_reg_unknown(struct bpf_reg_state *reg)
652{
653 reg->type = SCALAR_VALUE;
654 reg->id = 0;
655 reg->off = 0;
656 reg->var_off = tnum_unknown;
f4d7e40a 657 reg->frameno = 0;
b03c9f9f 658 __mark_reg_unbounded(reg);
f1174f77
EC
659}
660
61bd5218
JK
661static void mark_reg_unknown(struct bpf_verifier_env *env,
662 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
663{
664 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 665 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
666 /* Something bad happened, let's kill all regs except FP */
667 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
668 __mark_reg_not_init(regs + regno);
669 return;
670 }
671 __mark_reg_unknown(regs + regno);
672}
673
674static void __mark_reg_not_init(struct bpf_reg_state *reg)
675{
676 __mark_reg_unknown(reg);
677 reg->type = NOT_INIT;
678}
679
61bd5218
JK
680static void mark_reg_not_init(struct bpf_verifier_env *env,
681 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
682{
683 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 684 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
685 /* Something bad happened, let's kill all regs except FP */
686 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
687 __mark_reg_not_init(regs + regno);
688 return;
689 }
690 __mark_reg_not_init(regs + regno);
a9789ef9
DB
691}
692
61bd5218 693static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 694 struct bpf_func_state *state)
17a52670 695{
f4d7e40a 696 struct bpf_reg_state *regs = state->regs;
17a52670
AS
697 int i;
698
dc503a8a 699 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 700 mark_reg_not_init(env, regs, i);
dc503a8a
EC
701 regs[i].live = REG_LIVE_NONE;
702 }
17a52670
AS
703
704 /* frame pointer */
f1174f77 705 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 706 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 707 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
708
709 /* 1st arg to a function */
710 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 711 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
712}
713
f4d7e40a
AS
714#define BPF_MAIN_FUNC (-1)
715static void init_func_state(struct bpf_verifier_env *env,
716 struct bpf_func_state *state,
717 int callsite, int frameno, int subprogno)
718{
719 state->callsite = callsite;
720 state->frameno = frameno;
721 state->subprogno = subprogno;
722 init_reg_state(env, state);
723}
724
17a52670
AS
725enum reg_arg_type {
726 SRC_OP, /* register is used as source operand */
727 DST_OP, /* register is used as destination operand */
728 DST_OP_NO_MARK /* same as above, check only, don't mark */
729};
730
cc8b0b92
AS
731static int cmp_subprogs(const void *a, const void *b)
732{
733 return *(int *)a - *(int *)b;
734}
735
736static int find_subprog(struct bpf_verifier_env *env, int off)
737{
738 u32 *p;
739
740 p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
741 sizeof(env->subprog_starts[0]), cmp_subprogs);
742 if (!p)
743 return -ENOENT;
744 return p - env->subprog_starts;
745
746}
747
748static int add_subprog(struct bpf_verifier_env *env, int off)
749{
750 int insn_cnt = env->prog->len;
751 int ret;
752
753 if (off >= insn_cnt || off < 0) {
754 verbose(env, "call to invalid destination\n");
755 return -EINVAL;
756 }
757 ret = find_subprog(env, off);
758 if (ret >= 0)
759 return 0;
760 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
761 verbose(env, "too many subprograms\n");
762 return -E2BIG;
763 }
764 env->subprog_starts[env->subprog_cnt++] = off;
765 sort(env->subprog_starts, env->subprog_cnt,
766 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
767 return 0;
768}
769
770static int check_subprogs(struct bpf_verifier_env *env)
771{
772 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
773 struct bpf_insn *insn = env->prog->insnsi;
774 int insn_cnt = env->prog->len;
775
776 /* determine subprog starts. The end is one before the next starts */
777 for (i = 0; i < insn_cnt; i++) {
778 if (insn[i].code != (BPF_JMP | BPF_CALL))
779 continue;
780 if (insn[i].src_reg != BPF_PSEUDO_CALL)
781 continue;
782 if (!env->allow_ptr_leaks) {
783 verbose(env, "function calls to other bpf functions are allowed for root only\n");
784 return -EPERM;
785 }
786 if (bpf_prog_is_dev_bound(env->prog->aux)) {
e90004d5 787 verbose(env, "function calls in offloaded programs are not supported yet\n");
cc8b0b92
AS
788 return -EINVAL;
789 }
790 ret = add_subprog(env, i + insn[i].imm + 1);
791 if (ret < 0)
792 return ret;
793 }
794
795 if (env->log.level > 1)
796 for (i = 0; i < env->subprog_cnt; i++)
797 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);
798
799 /* now check that all jumps are within the same subprog */
800 subprog_start = 0;
801 if (env->subprog_cnt == cur_subprog)
802 subprog_end = insn_cnt;
803 else
804 subprog_end = env->subprog_starts[cur_subprog++];
805 for (i = 0; i < insn_cnt; i++) {
806 u8 code = insn[i].code;
807
808 if (BPF_CLASS(code) != BPF_JMP)
809 goto next;
810 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
811 goto next;
812 off = i + insn[i].off + 1;
813 if (off < subprog_start || off >= subprog_end) {
814 verbose(env, "jump out of range from insn %d to %d\n", i, off);
815 return -EINVAL;
816 }
817next:
818 if (i == subprog_end - 1) {
819 /* to avoid fall-through from one subprog into another
820 * the last insn of the subprog should be either exit
821 * or unconditional jump back
822 */
823 if (code != (BPF_JMP | BPF_EXIT) &&
824 code != (BPF_JMP | BPF_JA)) {
825 verbose(env, "last insn is not an exit or jmp\n");
826 return -EINVAL;
827 }
828 subprog_start = subprog_end;
829 if (env->subprog_cnt == cur_subprog)
830 subprog_end = insn_cnt;
831 else
832 subprog_end = env->subprog_starts[cur_subprog++];
833 }
834 }
835 return 0;
836}
837
fa2d41ad 838static
f4d7e40a
AS
839struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
840 const struct bpf_verifier_state *state,
841 struct bpf_verifier_state *parent,
842 u32 regno)
dc503a8a 843{
f4d7e40a
AS
844 struct bpf_verifier_state *tmp = NULL;
845
846 /* 'parent' could be a state of caller and
847 * 'state' could be a state of callee. In such case
848 * parent->curframe < state->curframe
849 * and it's ok for r1 - r5 registers
850 *
851 * 'parent' could be a callee's state after it bpf_exit-ed.
852 * In such case parent->curframe > state->curframe
853 * and it's ok for r0 only
854 */
855 if (parent->curframe == state->curframe ||
856 (parent->curframe < state->curframe &&
857 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
858 (parent->curframe > state->curframe &&
859 regno == BPF_REG_0))
860 return parent;
861
862 if (parent->curframe > state->curframe &&
863 regno >= BPF_REG_6) {
864 /* for callee saved regs we have to skip the whole chain
865 * of states that belong to callee and mark as LIVE_READ
866 * the registers before the call
867 */
868 tmp = parent;
869 while (tmp && tmp->curframe != state->curframe) {
870 tmp = tmp->parent;
871 }
872 if (!tmp)
873 goto bug;
874 parent = tmp;
875 } else {
876 goto bug;
877 }
878 return parent;
879bug:
880 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
881 verbose(env, "regno %d parent frame %d current frame %d\n",
882 regno, parent->curframe, state->curframe);
fa2d41ad 883 return NULL;
f4d7e40a
AS
884}
885
886static int mark_reg_read(struct bpf_verifier_env *env,
887 const struct bpf_verifier_state *state,
888 struct bpf_verifier_state *parent,
889 u32 regno)
890{
891 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a 892
8fe2d6cc
AS
893 if (regno == BPF_REG_FP)
894 /* We don't need to worry about FP liveness because it's read-only */
f4d7e40a 895 return 0;
8fe2d6cc 896
dc503a8a
EC
897 while (parent) {
898 /* if read wasn't screened by an earlier write ... */
f4d7e40a 899 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
dc503a8a 900 break;
f4d7e40a
AS
901 parent = skip_callee(env, state, parent, regno);
902 if (!parent)
903 return -EFAULT;
dc503a8a 904 /* ... then we depend on parent's value */
f4d7e40a 905 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
dc503a8a
EC
906 state = parent;
907 parent = state->parent;
f4d7e40a 908 writes = true;
dc503a8a 909 }
f4d7e40a 910 return 0;
dc503a8a
EC
911}
912
913static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
914 enum reg_arg_type t)
915{
f4d7e40a
AS
916 struct bpf_verifier_state *vstate = env->cur_state;
917 struct bpf_func_state *state = vstate->frame[vstate->curframe];
918 struct bpf_reg_state *regs = state->regs;
dc503a8a 919
17a52670 920 if (regno >= MAX_BPF_REG) {
61bd5218 921 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
922 return -EINVAL;
923 }
924
925 if (t == SRC_OP) {
926 /* check whether register used as source operand can be read */
927 if (regs[regno].type == NOT_INIT) {
61bd5218 928 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
929 return -EACCES;
930 }
f4d7e40a 931 return mark_reg_read(env, vstate, vstate->parent, regno);
17a52670
AS
932 } else {
933 /* check whether register used as dest operand can be written to */
934 if (regno == BPF_REG_FP) {
61bd5218 935 verbose(env, "frame pointer is read only\n");
17a52670
AS
936 return -EACCES;
937 }
dc503a8a 938 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 939 if (t == DST_OP)
61bd5218 940 mark_reg_unknown(env, regs, regno);
17a52670
AS
941 }
942 return 0;
943}
944
1be7f75d
AS
945static bool is_spillable_regtype(enum bpf_reg_type type)
946{
947 switch (type) {
948 case PTR_TO_MAP_VALUE:
949 case PTR_TO_MAP_VALUE_OR_NULL:
950 case PTR_TO_STACK:
951 case PTR_TO_CTX:
969bf05e 952 case PTR_TO_PACKET:
de8f3a83 953 case PTR_TO_PACKET_META:
969bf05e 954 case PTR_TO_PACKET_END:
1be7f75d
AS
955 case CONST_PTR_TO_MAP:
956 return true;
957 default:
958 return false;
959 }
960}
961
cc2b14d5
AS
962/* Does this register contain a constant zero? */
963static bool register_is_null(struct bpf_reg_state *reg)
964{
965 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
966}
967
17a52670
AS
968/* check_stack_read/write functions track spill/fill of registers,
969 * stack boundary and alignment are checked in check_mem_access()
970 */
61bd5218 971static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a
AS
972 struct bpf_func_state *state, /* func where register points to */
973 int off, int size, int value_regno)
17a52670 974{
f4d7e40a 975 struct bpf_func_state *cur; /* state of the current function */
638f5b90 976 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 977 enum bpf_reg_type type;
638f5b90 978
f4d7e40a
AS
979 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
980 true);
638f5b90
AS
981 if (err)
982 return err;
9c399760
AS
983 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
984 * so it's aligned access and [off, off + size) are within stack limits
985 */
638f5b90
AS
986 if (!env->allow_ptr_leaks &&
987 state->stack[spi].slot_type[0] == STACK_SPILL &&
988 size != BPF_REG_SIZE) {
989 verbose(env, "attempt to corrupt spilled pointer on stack\n");
990 return -EACCES;
991 }
17a52670 992
f4d7e40a 993 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 994 if (value_regno >= 0 &&
f4d7e40a 995 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
996
997 /* register containing pointer is being spilled into stack */
9c399760 998 if (size != BPF_REG_SIZE) {
61bd5218 999 verbose(env, "invalid size of register spill\n");
17a52670
AS
1000 return -EACCES;
1001 }
1002
f4d7e40a
AS
1003 if (state != cur && type == PTR_TO_STACK) {
1004 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1005 return -EINVAL;
1006 }
1007
17a52670 1008 /* save register state */
f4d7e40a 1009 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1010 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1011
9c399760 1012 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 1013 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 1014 } else {
cc2b14d5
AS
1015 u8 type = STACK_MISC;
1016
17a52670 1017 /* regular write of data into stack */
638f5b90 1018 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760 1019
cc2b14d5
AS
1020 /* only mark the slot as written if all 8 bytes were written
1021 * otherwise read propagation may incorrectly stop too soon
1022 * when stack slots are partially written.
1023 * This heuristic means that read propagation will be
1024 * conservative, since it will add reg_live_read marks
1025 * to stack slots all the way to first state when programs
1026 * writes+reads less than 8 bytes
1027 */
1028 if (size == BPF_REG_SIZE)
1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030
1031 /* when we zero initialize stack slots mark them as such */
1032 if (value_regno >= 0 &&
1033 register_is_null(&cur->regs[value_regno]))
1034 type = STACK_ZERO;
1035
9c399760 1036 for (i = 0; i < size; i++)
638f5b90 1037 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1038 type;
17a52670
AS
1039 }
1040 return 0;
1041}
1042
f4d7e40a
AS
1043/* registers of every function are unique and mark_reg_read() propagates
1044 * the liveness in the following cases:
1045 * - from callee into caller for R1 - R5 that were used as arguments
1046 * - from caller into callee for R0 that used as result of the call
1047 * - from caller to the same caller skipping states of the callee for R6 - R9,
1048 * since R6 - R9 are callee saved by implicit function prologue and
1049 * caller's R6 != callee's R6, so when we propagate liveness up to
1050 * parent states we need to skip callee states for R6 - R9.
1051 *
1052 * stack slot marking is different, since stacks of caller and callee are
1053 * accessible in both (since caller can pass a pointer to caller's stack to
1054 * callee which can pass it to another function), hence mark_stack_slot_read()
1055 * has to propagate the stack liveness to all parent states at given frame number.
1056 * Consider code:
1057 * f1() {
1058 * ptr = fp - 8;
1059 * *ptr = ctx;
1060 * call f2 {
1061 * .. = *ptr;
1062 * }
1063 * .. = *ptr;
1064 * }
1065 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1066 * to mark liveness at the f1's frame and not f2's frame.
1067 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1068 * to propagate liveness to f2 states at f1's frame level and further into
1069 * f1 states at f1's frame level until write into that stack slot
1070 */
1071static void mark_stack_slot_read(struct bpf_verifier_env *env,
1072 const struct bpf_verifier_state *state,
1073 struct bpf_verifier_state *parent,
1074 int slot, int frameno)
dc503a8a 1075{
f4d7e40a 1076 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1077
1078 while (parent) {
cc2b14d5
AS
1079 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1080 /* since LIVE_WRITTEN mark is only done for full 8-byte
1081 * write the read marks are conservative and parent
1082 * state may not even have the stack allocated. In such case
1083 * end the propagation, since the loop reached beginning
1084 * of the function
1085 */
1086 break;
dc503a8a 1087 /* if read wasn't screened by an earlier write ... */
f4d7e40a 1088 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
1089 break;
1090 /* ... then we depend on parent's value */
f4d7e40a 1091 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
1092 state = parent;
1093 parent = state->parent;
f4d7e40a 1094 writes = true;
dc503a8a
EC
1095 }
1096}
1097
61bd5218 1098static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1099 struct bpf_func_state *reg_state /* func where register points to */,
1100 int off, int size, int value_regno)
17a52670 1101{
f4d7e40a
AS
1102 struct bpf_verifier_state *vstate = env->cur_state;
1103 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1104 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1105 u8 *stype;
17a52670 1106
f4d7e40a 1107 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1108 verbose(env, "invalid read from stack off %d+0 size %d\n",
1109 off, size);
1110 return -EACCES;
1111 }
f4d7e40a 1112 stype = reg_state->stack[spi].slot_type;
17a52670 1113
638f5b90 1114 if (stype[0] == STACK_SPILL) {
9c399760 1115 if (size != BPF_REG_SIZE) {
61bd5218 1116 verbose(env, "invalid size of register spill\n");
17a52670
AS
1117 return -EACCES;
1118 }
9c399760 1119 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1120 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1121 verbose(env, "corrupted spill memory\n");
17a52670
AS
1122 return -EACCES;
1123 }
1124 }
1125
dc503a8a 1126 if (value_regno >= 0) {
17a52670 1127 /* restore register state from stack */
f4d7e40a 1128 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1129 /* mark reg as written since spilled pointer state likely
1130 * has its liveness marks cleared by is_state_visited()
1131 * which resets stack/reg liveness for state transitions
1132 */
1133 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1134 }
cc2b14d5
AS
1135 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1136 reg_state->frameno);
17a52670
AS
1137 return 0;
1138 } else {
cc2b14d5
AS
1139 int zeros = 0;
1140
17a52670 1141 for (i = 0; i < size; i++) {
cc2b14d5
AS
1142 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1143 continue;
1144 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1145 zeros++;
1146 continue;
17a52670 1147 }
cc2b14d5
AS
1148 verbose(env, "invalid read from stack off %d+%d size %d\n",
1149 off, i, size);
1150 return -EACCES;
1151 }
1152 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1153 reg_state->frameno);
1154 if (value_regno >= 0) {
1155 if (zeros == size) {
1156 /* any size read into register is zero extended,
1157 * so the whole register == const_zero
1158 */
1159 __mark_reg_const_zero(&state->regs[value_regno]);
1160 } else {
1161 /* have read misc data from the stack */
1162 mark_reg_unknown(env, state->regs, value_regno);
1163 }
1164 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1165 }
17a52670
AS
1166 return 0;
1167 }
1168}
1169
1170/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1171static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1172 int size, bool zero_size_allowed)
17a52670 1173{
638f5b90
AS
1174 struct bpf_reg_state *regs = cur_regs(env);
1175 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1176
9fd29c08
YS
1177 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1178 off + size > map->value_size) {
61bd5218 1179 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1180 map->value_size, off, size);
1181 return -EACCES;
1182 }
1183 return 0;
1184}
1185
f1174f77
EC
1186/* check read/write into a map element with possible variable offset */
1187static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1188 int off, int size, bool zero_size_allowed)
dbcfe5f7 1189{
f4d7e40a
AS
1190 struct bpf_verifier_state *vstate = env->cur_state;
1191 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1192 struct bpf_reg_state *reg = &state->regs[regno];
1193 int err;
1194
f1174f77
EC
1195 /* We may have adjusted the register to this map value, so we
1196 * need to try adding each of min_value and max_value to off
1197 * to make sure our theoretical access will be safe.
dbcfe5f7 1198 */
61bd5218
JK
1199 if (env->log.level)
1200 print_verifier_state(env, state);
dbcfe5f7
GB
1201 /* The minimum value is only important with signed
1202 * comparisons where we can't assume the floor of a
1203 * value is 0. If we are using signed variables for our
1204 * index'es we need to make sure that whatever we use
1205 * will have a set floor within our range.
1206 */
b03c9f9f 1207 if (reg->smin_value < 0) {
61bd5218 1208 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1209 regno);
1210 return -EACCES;
1211 }
9fd29c08
YS
1212 err = __check_map_access(env, regno, reg->smin_value + off, size,
1213 zero_size_allowed);
dbcfe5f7 1214 if (err) {
61bd5218
JK
1215 verbose(env, "R%d min value is outside of the array range\n",
1216 regno);
dbcfe5f7
GB
1217 return err;
1218 }
1219
b03c9f9f
EC
1220 /* If we haven't set a max value then we need to bail since we can't be
1221 * sure we won't do bad things.
1222 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1223 */
b03c9f9f 1224 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1225 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1226 regno);
1227 return -EACCES;
1228 }
9fd29c08
YS
1229 err = __check_map_access(env, regno, reg->umax_value + off, size,
1230 zero_size_allowed);
f1174f77 1231 if (err)
61bd5218
JK
1232 verbose(env, "R%d max value is outside of the array range\n",
1233 regno);
f1174f77 1234 return err;
dbcfe5f7
GB
1235}
1236
969bf05e
AS
1237#define MAX_PACKET_OFF 0xffff
1238
58e2af8b 1239static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1240 const struct bpf_call_arg_meta *meta,
1241 enum bpf_access_type t)
4acf6c0b 1242{
36bbef52 1243 switch (env->prog->type) {
3a0af8fd
TG
1244 case BPF_PROG_TYPE_LWT_IN:
1245 case BPF_PROG_TYPE_LWT_OUT:
1246 /* dst_input() and dst_output() can't write for now */
1247 if (t == BPF_WRITE)
1248 return false;
7e57fbb2 1249 /* fallthrough */
36bbef52
DB
1250 case BPF_PROG_TYPE_SCHED_CLS:
1251 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1252 case BPF_PROG_TYPE_XDP:
3a0af8fd 1253 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1254 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
1255 if (meta)
1256 return meta->pkt_access;
1257
1258 env->seen_direct_write = true;
4acf6c0b
BB
1259 return true;
1260 default:
1261 return false;
1262 }
1263}
1264
f1174f77 1265static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1266 int off, int size, bool zero_size_allowed)
969bf05e 1267{
638f5b90 1268 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1269 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1270
9fd29c08
YS
1271 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1272 (u64)off + size > reg->range) {
61bd5218 1273 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1274 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1275 return -EACCES;
1276 }
1277 return 0;
1278}
1279
f1174f77 1280static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1281 int size, bool zero_size_allowed)
f1174f77 1282{
638f5b90 1283 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1284 struct bpf_reg_state *reg = &regs[regno];
1285 int err;
1286
1287 /* We may have added a variable offset to the packet pointer; but any
1288 * reg->range we have comes after that. We are only checking the fixed
1289 * offset.
1290 */
1291
1292 /* We don't allow negative numbers, because we aren't tracking enough
1293 * detail to prove they're safe.
1294 */
b03c9f9f 1295 if (reg->smin_value < 0) {
61bd5218 1296 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1297 regno);
1298 return -EACCES;
1299 }
9fd29c08 1300 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1301 if (err) {
61bd5218 1302 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1303 return err;
1304 }
1305 return err;
1306}
1307
1308/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1309static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1310 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1311{
f96da094
DB
1312 struct bpf_insn_access_aux info = {
1313 .reg_type = *reg_type,
1314 };
31fd8581 1315
4f9218aa
JK
1316 if (env->ops->is_valid_access &&
1317 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
1318 /* A non zero info.ctx_field_size indicates that this field is a
1319 * candidate for later verifier transformation to load the whole
1320 * field and then apply a mask when accessed with a narrower
1321 * access than actual ctx access size. A zero info.ctx_field_size
1322 * will only allow for whole field access and rejects any other
1323 * type of narrower access.
31fd8581 1324 */
23994631 1325 *reg_type = info.reg_type;
31fd8581 1326
4f9218aa 1327 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1328 /* remember the offset of last byte accessed in ctx */
1329 if (env->prog->aux->max_ctx_offset < off + size)
1330 env->prog->aux->max_ctx_offset = off + size;
17a52670 1331 return 0;
32bbe007 1332 }
17a52670 1333
61bd5218 1334 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1335 return -EACCES;
1336}
1337
4cabc5b1
DB
1338static bool __is_pointer_value(bool allow_ptr_leaks,
1339 const struct bpf_reg_state *reg)
1be7f75d 1340{
4cabc5b1 1341 if (allow_ptr_leaks)
1be7f75d
AS
1342 return false;
1343
f1174f77 1344 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1345}
1346
4cabc5b1
DB
1347static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1348{
638f5b90 1349 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1350}
1351
61bd5218
JK
1352static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1353 const struct bpf_reg_state *reg,
d1174416 1354 int off, int size, bool strict)
969bf05e 1355{
f1174f77 1356 struct tnum reg_off;
e07b98d9 1357 int ip_align;
d1174416
DM
1358
1359 /* Byte size accesses are always allowed. */
1360 if (!strict || size == 1)
1361 return 0;
1362
e4eda884
DM
1363 /* For platforms that do not have a Kconfig enabling
1364 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1365 * NET_IP_ALIGN is universally set to '2'. And on platforms
1366 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1367 * to this code only in strict mode where we want to emulate
1368 * the NET_IP_ALIGN==2 checking. Therefore use an
1369 * unconditional IP align value of '2'.
e07b98d9 1370 */
e4eda884 1371 ip_align = 2;
f1174f77
EC
1372
1373 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1374 if (!tnum_is_aligned(reg_off, size)) {
1375 char tn_buf[48];
1376
1377 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1378 verbose(env,
1379 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1380 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1381 return -EACCES;
1382 }
79adffcd 1383
969bf05e
AS
1384 return 0;
1385}
1386
61bd5218
JK
1387static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1388 const struct bpf_reg_state *reg,
f1174f77
EC
1389 const char *pointer_desc,
1390 int off, int size, bool strict)
79adffcd 1391{
f1174f77
EC
1392 struct tnum reg_off;
1393
1394 /* Byte size accesses are always allowed. */
1395 if (!strict || size == 1)
1396 return 0;
1397
1398 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1399 if (!tnum_is_aligned(reg_off, size)) {
1400 char tn_buf[48];
1401
1402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1403 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1404 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1405 return -EACCES;
1406 }
1407
969bf05e
AS
1408 return 0;
1409}
1410
e07b98d9
DM
1411static int check_ptr_alignment(struct bpf_verifier_env *env,
1412 const struct bpf_reg_state *reg,
79adffcd
DB
1413 int off, int size)
1414{
e07b98d9 1415 bool strict = env->strict_alignment;
f1174f77 1416 const char *pointer_desc = "";
d1174416 1417
79adffcd
DB
1418 switch (reg->type) {
1419 case PTR_TO_PACKET:
de8f3a83
DB
1420 case PTR_TO_PACKET_META:
1421 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1422 * right in front, treat it the very same way.
1423 */
61bd5218 1424 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1425 case PTR_TO_MAP_VALUE:
1426 pointer_desc = "value ";
1427 break;
1428 case PTR_TO_CTX:
1429 pointer_desc = "context ";
1430 break;
1431 case PTR_TO_STACK:
1432 pointer_desc = "stack ";
a5ec6ae1
JH
1433 /* The stack spill tracking logic in check_stack_write()
1434 * and check_stack_read() relies on stack accesses being
1435 * aligned.
1436 */
1437 strict = true;
f1174f77 1438 break;
79adffcd 1439 default:
f1174f77 1440 break;
79adffcd 1441 }
61bd5218
JK
1442 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1443 strict);
79adffcd
DB
1444}
1445
f4d7e40a
AS
1446static int update_stack_depth(struct bpf_verifier_env *env,
1447 const struct bpf_func_state *func,
1448 int off)
1449{
70a87ffe 1450 u16 stack = env->subprog_stack_depth[func->subprogno];
f4d7e40a
AS
1451
1452 if (stack >= -off)
1453 return 0;
1454
1455 /* update known max for given subprogram */
1456 env->subprog_stack_depth[func->subprogno] = -off;
70a87ffe
AS
1457 return 0;
1458}
f4d7e40a 1459
70a87ffe
AS
1460/* starting from main bpf function walk all instructions of the function
1461 * and recursively walk all callees that given function can call.
1462 * Ignore jump and exit insns.
1463 * Since recursion is prevented by check_cfg() this algorithm
1464 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1465 */
1466static int check_max_stack_depth(struct bpf_verifier_env *env)
1467{
1468 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
1469 struct bpf_insn *insn = env->prog->insnsi;
1470 int insn_cnt = env->prog->len;
1471 int ret_insn[MAX_CALL_FRAMES];
1472 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1473
70a87ffe
AS
1474process_func:
1475 /* round up to 32-bytes, since this is granularity
1476 * of interpreter stack size
1477 */
1478 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1479 if (depth > MAX_BPF_STACK) {
f4d7e40a 1480 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1481 frame + 1, depth);
f4d7e40a
AS
1482 return -EACCES;
1483 }
70a87ffe
AS
1484continue_func:
1485 if (env->subprog_cnt == subprog)
1486 subprog_end = insn_cnt;
1487 else
1488 subprog_end = env->subprog_starts[subprog];
1489 for (; i < subprog_end; i++) {
1490 if (insn[i].code != (BPF_JMP | BPF_CALL))
1491 continue;
1492 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1493 continue;
1494 /* remember insn and function to return to */
1495 ret_insn[frame] = i + 1;
1496 ret_prog[frame] = subprog;
1497
1498 /* find the callee */
1499 i = i + insn[i].imm + 1;
1500 subprog = find_subprog(env, i);
1501 if (subprog < 0) {
1502 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1503 i);
1504 return -EFAULT;
1505 }
1506 subprog++;
1507 frame++;
1508 if (frame >= MAX_CALL_FRAMES) {
1509 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1510 return -EFAULT;
1511 }
1512 goto process_func;
1513 }
1514 /* end of for() loop means the last insn of the 'subprog'
1515 * was reached. Doesn't matter whether it was JA or EXIT
1516 */
1517 if (frame == 0)
1518 return 0;
1519 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1520 frame--;
1521 i = ret_insn[frame];
1522 subprog = ret_prog[frame];
1523 goto continue_func;
f4d7e40a
AS
1524}
1525
19d28fbd 1526#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1527static int get_callee_stack_depth(struct bpf_verifier_env *env,
1528 const struct bpf_insn *insn, int idx)
1529{
1530 int start = idx + insn->imm + 1, subprog;
1531
1532 subprog = find_subprog(env, start);
1533 if (subprog < 0) {
1534 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1535 start);
1536 return -EFAULT;
1537 }
1538 subprog++;
1539 return env->subprog_stack_depth[subprog];
1540}
19d28fbd 1541#endif
1ea47e01 1542
0c17d1d2
JH
1543/* truncate register to smaller size (in bytes)
1544 * must be called with size < BPF_REG_SIZE
1545 */
1546static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1547{
1548 u64 mask;
1549
1550 /* clear high bits in bit representation */
1551 reg->var_off = tnum_cast(reg->var_off, size);
1552
1553 /* fix arithmetic bounds */
1554 mask = ((u64)1 << (size * 8)) - 1;
1555 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1556 reg->umin_value &= mask;
1557 reg->umax_value &= mask;
1558 } else {
1559 reg->umin_value = 0;
1560 reg->umax_value = mask;
1561 }
1562 reg->smin_value = reg->umin_value;
1563 reg->smax_value = reg->umax_value;
1564}
1565
17a52670
AS
1566/* check whether memory at (regno + off) is accessible for t = (read | write)
1567 * if t==write, value_regno is a register which value is stored into memory
1568 * if t==read, value_regno is a register which will receive the value from memory
1569 * if t==write && value_regno==-1, some unknown value is stored into memory
1570 * if t==read && value_regno==-1, don't care what we read from memory
1571 */
31fd8581 1572static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1573 int bpf_size, enum bpf_access_type t,
1574 int value_regno)
1575{
638f5b90
AS
1576 struct bpf_reg_state *regs = cur_regs(env);
1577 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1578 struct bpf_func_state *state;
17a52670
AS
1579 int size, err = 0;
1580
1581 size = bpf_size_to_bytes(bpf_size);
1582 if (size < 0)
1583 return size;
1584
f1174f77 1585 /* alignment checks will add in reg->off themselves */
e07b98d9 1586 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1587 if (err)
1588 return err;
17a52670 1589
f1174f77
EC
1590 /* for access checks, reg->off is just part of off */
1591 off += reg->off;
1592
1593 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1594 if (t == BPF_WRITE && value_regno >= 0 &&
1595 is_pointer_value(env, value_regno)) {
61bd5218 1596 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1597 return -EACCES;
1598 }
48461135 1599
9fd29c08 1600 err = check_map_access(env, regno, off, size, false);
17a52670 1601 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1602 mark_reg_unknown(env, regs, value_regno);
17a52670 1603
1a0dc1ac 1604 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1605 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1606
1be7f75d
AS
1607 if (t == BPF_WRITE && value_regno >= 0 &&
1608 is_pointer_value(env, value_regno)) {
61bd5218 1609 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1610 return -EACCES;
1611 }
f1174f77
EC
1612 /* ctx accesses must be at a fixed offset, so that we can
1613 * determine what type of data were returned.
1614 */
28e33f9d 1615 if (reg->off) {
f8ddadc4
DM
1616 verbose(env,
1617 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1618 regno, reg->off, off - reg->off);
1619 return -EACCES;
1620 }
1621 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1622 char tn_buf[48];
1623
1624 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1625 verbose(env,
1626 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1627 tn_buf, off, size);
1628 return -EACCES;
1629 }
31fd8581 1630 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1631 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1632 /* ctx access returns either a scalar, or a
de8f3a83
DB
1633 * PTR_TO_PACKET[_META,_END]. In the latter
1634 * case, we know the offset is zero.
f1174f77
EC
1635 */
1636 if (reg_type == SCALAR_VALUE)
638f5b90 1637 mark_reg_unknown(env, regs, value_regno);
f1174f77 1638 else
638f5b90 1639 mark_reg_known_zero(env, regs,
61bd5218 1640 value_regno);
638f5b90
AS
1641 regs[value_regno].id = 0;
1642 regs[value_regno].off = 0;
1643 regs[value_regno].range = 0;
1644 regs[value_regno].type = reg_type;
969bf05e 1645 }
17a52670 1646
f1174f77
EC
1647 } else if (reg->type == PTR_TO_STACK) {
1648 /* stack accesses must be at a fixed offset, so that we can
1649 * determine what type of data were returned.
1650 * See check_stack_read().
1651 */
1652 if (!tnum_is_const(reg->var_off)) {
1653 char tn_buf[48];
1654
1655 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1656 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1657 tn_buf, off, size);
1658 return -EACCES;
1659 }
1660 off += reg->var_off.value;
17a52670 1661 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1662 verbose(env, "invalid stack off=%d size=%d\n", off,
1663 size);
17a52670
AS
1664 return -EACCES;
1665 }
8726679a 1666
f4d7e40a
AS
1667 state = func(env, reg);
1668 err = update_stack_depth(env, state, off);
1669 if (err)
1670 return err;
8726679a 1671
638f5b90 1672 if (t == BPF_WRITE)
61bd5218
JK
1673 err = check_stack_write(env, state, off, size,
1674 value_regno);
638f5b90 1675 else
61bd5218
JK
1676 err = check_stack_read(env, state, off, size,
1677 value_regno);
de8f3a83 1678 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1679 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1680 verbose(env, "cannot write into packet\n");
969bf05e
AS
1681 return -EACCES;
1682 }
4acf6c0b
BB
1683 if (t == BPF_WRITE && value_regno >= 0 &&
1684 is_pointer_value(env, value_regno)) {
61bd5218
JK
1685 verbose(env, "R%d leaks addr into packet\n",
1686 value_regno);
4acf6c0b
BB
1687 return -EACCES;
1688 }
9fd29c08 1689 err = check_packet_access(env, regno, off, size, false);
969bf05e 1690 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1691 mark_reg_unknown(env, regs, value_regno);
17a52670 1692 } else {
61bd5218
JK
1693 verbose(env, "R%d invalid mem access '%s'\n", regno,
1694 reg_type_str[reg->type]);
17a52670
AS
1695 return -EACCES;
1696 }
969bf05e 1697
f1174f77 1698 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1699 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1700 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1701 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1702 }
17a52670
AS
1703 return err;
1704}
1705
31fd8581 1706static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1707{
17a52670
AS
1708 int err;
1709
1710 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1711 insn->imm != 0) {
61bd5218 1712 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1713 return -EINVAL;
1714 }
1715
1716 /* check src1 operand */
dc503a8a 1717 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1718 if (err)
1719 return err;
1720
1721 /* check src2 operand */
dc503a8a 1722 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1723 if (err)
1724 return err;
1725
6bdf6abc 1726 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1727 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1728 return -EACCES;
1729 }
1730
17a52670 1731 /* check whether atomic_add can read the memory */
31fd8581 1732 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1733 BPF_SIZE(insn->code), BPF_READ, -1);
1734 if (err)
1735 return err;
1736
1737 /* check whether atomic_add can write into the same memory */
31fd8581 1738 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1739 BPF_SIZE(insn->code), BPF_WRITE, -1);
1740}
1741
1742/* when register 'regno' is passed into function that will read 'access_size'
1743 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1744 * and all elements of stack are initialized.
1745 * Unlike most pointer bounds-checking functions, this one doesn't take an
1746 * 'off' argument, so it has to add in reg->off itself.
17a52670 1747 */
58e2af8b 1748static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1749 int access_size, bool zero_size_allowed,
1750 struct bpf_call_arg_meta *meta)
17a52670 1751{
914cb781 1752 struct bpf_reg_state *reg = cur_regs(env) + regno;
f4d7e40a 1753 struct bpf_func_state *state = func(env, reg);
638f5b90 1754 int off, i, slot, spi;
17a52670 1755
914cb781 1756 if (reg->type != PTR_TO_STACK) {
f1174f77 1757 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1758 if (zero_size_allowed && access_size == 0 &&
914cb781 1759 register_is_null(reg))
8e2fe1d9
DB
1760 return 0;
1761
61bd5218 1762 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 1763 reg_type_str[reg->type],
8e2fe1d9 1764 reg_type_str[PTR_TO_STACK]);
17a52670 1765 return -EACCES;
8e2fe1d9 1766 }
17a52670 1767
f1174f77 1768 /* Only allow fixed-offset stack reads */
914cb781 1769 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
1770 char tn_buf[48];
1771
914cb781 1772 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1773 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1774 regno, tn_buf);
ea25f914 1775 return -EACCES;
f1174f77 1776 }
914cb781 1777 off = reg->off + reg->var_off.value;
17a52670 1778 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1779 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1780 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1781 regno, off, access_size);
1782 return -EACCES;
1783 }
1784
435faee1
DB
1785 if (meta && meta->raw_mode) {
1786 meta->access_size = access_size;
1787 meta->regno = regno;
1788 return 0;
1789 }
1790
17a52670 1791 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
1792 u8 *stype;
1793
638f5b90
AS
1794 slot = -(off + i) - 1;
1795 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
1796 if (state->allocated_stack <= slot)
1797 goto err;
1798 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1799 if (*stype == STACK_MISC)
1800 goto mark;
1801 if (*stype == STACK_ZERO) {
1802 /* helper can write anything into the stack */
1803 *stype = STACK_MISC;
1804 goto mark;
17a52670 1805 }
cc2b14d5
AS
1806err:
1807 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1808 off, i, access_size);
1809 return -EACCES;
1810mark:
1811 /* reading any byte out of 8-byte 'spill_slot' will cause
1812 * the whole slot to be marked as 'read'
1813 */
1814 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1815 spi, state->frameno);
17a52670 1816 }
f4d7e40a 1817 return update_stack_depth(env, state, off);
17a52670
AS
1818}
1819
06c1c049
GB
1820static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1821 int access_size, bool zero_size_allowed,
1822 struct bpf_call_arg_meta *meta)
1823{
638f5b90 1824 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1825
f1174f77 1826 switch (reg->type) {
06c1c049 1827 case PTR_TO_PACKET:
de8f3a83 1828 case PTR_TO_PACKET_META:
9fd29c08
YS
1829 return check_packet_access(env, regno, reg->off, access_size,
1830 zero_size_allowed);
06c1c049 1831 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1832 return check_map_access(env, regno, reg->off, access_size,
1833 zero_size_allowed);
f1174f77 1834 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1835 return check_stack_boundary(env, regno, access_size,
1836 zero_size_allowed, meta);
1837 }
1838}
1839
58e2af8b 1840static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1841 enum bpf_arg_type arg_type,
1842 struct bpf_call_arg_meta *meta)
17a52670 1843{
638f5b90 1844 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1845 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1846 int err = 0;
1847
80f1d68c 1848 if (arg_type == ARG_DONTCARE)
17a52670
AS
1849 return 0;
1850
dc503a8a
EC
1851 err = check_reg_arg(env, regno, SRC_OP);
1852 if (err)
1853 return err;
17a52670 1854
1be7f75d
AS
1855 if (arg_type == ARG_ANYTHING) {
1856 if (is_pointer_value(env, regno)) {
61bd5218
JK
1857 verbose(env, "R%d leaks addr into helper function\n",
1858 regno);
1be7f75d
AS
1859 return -EACCES;
1860 }
80f1d68c 1861 return 0;
1be7f75d 1862 }
80f1d68c 1863
de8f3a83 1864 if (type_is_pkt_pointer(type) &&
3a0af8fd 1865 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1866 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1867 return -EACCES;
1868 }
1869
8e2fe1d9 1870 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1871 arg_type == ARG_PTR_TO_MAP_VALUE) {
1872 expected_type = PTR_TO_STACK;
de8f3a83
DB
1873 if (!type_is_pkt_pointer(type) &&
1874 type != expected_type)
6841de8b 1875 goto err_type;
39f19ebb
AS
1876 } else if (arg_type == ARG_CONST_SIZE ||
1877 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1878 expected_type = SCALAR_VALUE;
1879 if (type != expected_type)
6841de8b 1880 goto err_type;
17a52670
AS
1881 } else if (arg_type == ARG_CONST_MAP_PTR) {
1882 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1883 if (type != expected_type)
1884 goto err_type;
608cd71a
AS
1885 } else if (arg_type == ARG_PTR_TO_CTX) {
1886 expected_type = PTR_TO_CTX;
6841de8b
AS
1887 if (type != expected_type)
1888 goto err_type;
39f19ebb 1889 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1890 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1891 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1892 expected_type = PTR_TO_STACK;
1893 /* One exception here. In case function allows for NULL to be
f1174f77 1894 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1895 * happens during stack boundary checking.
1896 */
914cb781 1897 if (register_is_null(reg) &&
db1ac496 1898 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1899 /* final test in check_stack_boundary() */;
de8f3a83
DB
1900 else if (!type_is_pkt_pointer(type) &&
1901 type != PTR_TO_MAP_VALUE &&
f1174f77 1902 type != expected_type)
6841de8b 1903 goto err_type;
39f19ebb 1904 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1905 } else {
61bd5218 1906 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1907 return -EFAULT;
1908 }
1909
17a52670
AS
1910 if (arg_type == ARG_CONST_MAP_PTR) {
1911 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1912 meta->map_ptr = reg->map_ptr;
17a52670
AS
1913 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1914 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1915 * check that [key, key + map->key_size) are within
1916 * stack limits and initialized
1917 */
33ff9823 1918 if (!meta->map_ptr) {
17a52670
AS
1919 /* in function declaration map_ptr must come before
1920 * map_key, so that it's verified and known before
1921 * we have to check map_key here. Otherwise it means
1922 * that kernel subsystem misconfigured verifier
1923 */
61bd5218 1924 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1925 return -EACCES;
1926 }
de8f3a83 1927 if (type_is_pkt_pointer(type))
f1174f77 1928 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1929 meta->map_ptr->key_size,
1930 false);
6841de8b
AS
1931 else
1932 err = check_stack_boundary(env, regno,
1933 meta->map_ptr->key_size,
1934 false, NULL);
17a52670
AS
1935 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1936 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1937 * check [value, value + map->value_size) validity
1938 */
33ff9823 1939 if (!meta->map_ptr) {
17a52670 1940 /* kernel subsystem misconfigured verifier */
61bd5218 1941 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1942 return -EACCES;
1943 }
de8f3a83 1944 if (type_is_pkt_pointer(type))
f1174f77 1945 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1946 meta->map_ptr->value_size,
1947 false);
6841de8b
AS
1948 else
1949 err = check_stack_boundary(env, regno,
1950 meta->map_ptr->value_size,
1951 false, NULL);
39f19ebb
AS
1952 } else if (arg_type == ARG_CONST_SIZE ||
1953 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1954 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1955
17a52670
AS
1956 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1957 * from stack pointer 'buf'. Check it
1958 * note: regno == len, regno - 1 == buf
1959 */
1960 if (regno == 0) {
1961 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1962 verbose(env,
1963 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1964 return -EACCES;
1965 }
06c1c049 1966
f1174f77
EC
1967 /* The register is SCALAR_VALUE; the access check
1968 * happens using its boundaries.
06c1c049 1969 */
f1174f77
EC
1970
1971 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1972 /* For unprivileged variable accesses, disable raw
1973 * mode so that the program is required to
1974 * initialize all the memory that the helper could
1975 * just partially fill up.
1976 */
1977 meta = NULL;
1978
b03c9f9f 1979 if (reg->smin_value < 0) {
61bd5218 1980 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1981 regno);
1982 return -EACCES;
1983 }
06c1c049 1984
b03c9f9f 1985 if (reg->umin_value == 0) {
f1174f77
EC
1986 err = check_helper_mem_access(env, regno - 1, 0,
1987 zero_size_allowed,
1988 meta);
06c1c049
GB
1989 if (err)
1990 return err;
06c1c049 1991 }
f1174f77 1992
b03c9f9f 1993 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1994 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1995 regno);
1996 return -EACCES;
1997 }
1998 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1999 reg->umax_value,
f1174f77 2000 zero_size_allowed, meta);
17a52670
AS
2001 }
2002
2003 return err;
6841de8b 2004err_type:
61bd5218 2005 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2006 reg_type_str[type], reg_type_str[expected_type]);
2007 return -EACCES;
17a52670
AS
2008}
2009
61bd5218
JK
2010static int check_map_func_compatibility(struct bpf_verifier_env *env,
2011 struct bpf_map *map, int func_id)
35578d79 2012{
35578d79
KX
2013 if (!map)
2014 return 0;
2015
6aff67c8
AS
2016 /* We need a two way check, first is from map perspective ... */
2017 switch (map->map_type) {
2018 case BPF_MAP_TYPE_PROG_ARRAY:
2019 if (func_id != BPF_FUNC_tail_call)
2020 goto error;
2021 break;
2022 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2023 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2024 func_id != BPF_FUNC_perf_event_output &&
2025 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2026 goto error;
2027 break;
2028 case BPF_MAP_TYPE_STACK_TRACE:
2029 if (func_id != BPF_FUNC_get_stackid)
2030 goto error;
2031 break;
4ed8ec52 2032 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2033 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2034 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2035 goto error;
2036 break;
546ac1ff
JF
2037 /* devmap returns a pointer to a live net_device ifindex that we cannot
2038 * allow to be modified from bpf side. So do not allow lookup elements
2039 * for now.
2040 */
2041 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2042 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2043 goto error;
2044 break;
6710e112
JDB
2045 /* Restrict bpf side of cpumap, open when use-cases appear */
2046 case BPF_MAP_TYPE_CPUMAP:
2047 if (func_id != BPF_FUNC_redirect_map)
2048 goto error;
2049 break;
56f668df 2050 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2051 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2052 if (func_id != BPF_FUNC_map_lookup_elem)
2053 goto error;
16a43625 2054 break;
174a79ff
JF
2055 case BPF_MAP_TYPE_SOCKMAP:
2056 if (func_id != BPF_FUNC_sk_redirect_map &&
2057 func_id != BPF_FUNC_sock_map_update &&
2058 func_id != BPF_FUNC_map_delete_elem)
2059 goto error;
2060 break;
6aff67c8
AS
2061 default:
2062 break;
2063 }
2064
2065 /* ... and second from the function itself. */
2066 switch (func_id) {
2067 case BPF_FUNC_tail_call:
2068 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2069 goto error;
f4d7e40a
AS
2070 if (env->subprog_cnt) {
2071 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2072 return -EINVAL;
2073 }
6aff67c8
AS
2074 break;
2075 case BPF_FUNC_perf_event_read:
2076 case BPF_FUNC_perf_event_output:
908432ca 2077 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2078 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2079 goto error;
2080 break;
2081 case BPF_FUNC_get_stackid:
2082 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2083 goto error;
2084 break;
60d20f91 2085 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2086 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2087 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2088 goto error;
2089 break;
97f91a7c 2090 case BPF_FUNC_redirect_map:
9c270af3
JDB
2091 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2092 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
2093 goto error;
2094 break;
174a79ff
JF
2095 case BPF_FUNC_sk_redirect_map:
2096 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2097 goto error;
2098 break;
2099 case BPF_FUNC_sock_map_update:
2100 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2101 goto error;
2102 break;
6aff67c8
AS
2103 default:
2104 break;
35578d79
KX
2105 }
2106
2107 return 0;
6aff67c8 2108error:
61bd5218 2109 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2110 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2111 return -EINVAL;
35578d79
KX
2112}
2113
435faee1
DB
2114static int check_raw_mode(const struct bpf_func_proto *fn)
2115{
2116 int count = 0;
2117
39f19ebb 2118 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2119 count++;
39f19ebb 2120 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2121 count++;
39f19ebb 2122 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2123 count++;
39f19ebb 2124 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2125 count++;
39f19ebb 2126 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2127 count++;
2128
2129 return count > 1 ? -EINVAL : 0;
2130}
2131
de8f3a83
DB
2132/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2133 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2134 */
f4d7e40a
AS
2135static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2136 struct bpf_func_state *state)
969bf05e 2137{
58e2af8b 2138 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2139 int i;
2140
2141 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2142 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2143 mark_reg_unknown(env, regs, i);
969bf05e 2144
638f5b90
AS
2145 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2146 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2147 continue;
638f5b90 2148 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
2149 if (reg_is_pkt_pointer_any(reg))
2150 __mark_reg_unknown(reg);
969bf05e
AS
2151 }
2152}
2153
f4d7e40a
AS
2154static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2155{
2156 struct bpf_verifier_state *vstate = env->cur_state;
2157 int i;
2158
2159 for (i = 0; i <= vstate->curframe; i++)
2160 __clear_all_pkt_pointers(env, vstate->frame[i]);
2161}
2162
2163static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2164 int *insn_idx)
2165{
2166 struct bpf_verifier_state *state = env->cur_state;
2167 struct bpf_func_state *caller, *callee;
2168 int i, subprog, target_insn;
2169
aada9ce6 2170 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2171 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2172 state->curframe + 2);
f4d7e40a
AS
2173 return -E2BIG;
2174 }
2175
2176 target_insn = *insn_idx + insn->imm;
2177 subprog = find_subprog(env, target_insn + 1);
2178 if (subprog < 0) {
2179 verbose(env, "verifier bug. No program starts at insn %d\n",
2180 target_insn + 1);
2181 return -EFAULT;
2182 }
2183
2184 caller = state->frame[state->curframe];
2185 if (state->frame[state->curframe + 1]) {
2186 verbose(env, "verifier bug. Frame %d already allocated\n",
2187 state->curframe + 1);
2188 return -EFAULT;
2189 }
2190
2191 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2192 if (!callee)
2193 return -ENOMEM;
2194 state->frame[state->curframe + 1] = callee;
2195
2196 /* callee cannot access r0, r6 - r9 for reading and has to write
2197 * into its own stack before reading from it.
2198 * callee can read/write into caller's stack
2199 */
2200 init_func_state(env, callee,
2201 /* remember the callsite, it will be used by bpf_exit */
2202 *insn_idx /* callsite */,
2203 state->curframe + 1 /* frameno within this callchain */,
2204 subprog + 1 /* subprog number within this prog */);
2205
2206 /* copy r1 - r5 args that callee can access */
2207 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2208 callee->regs[i] = caller->regs[i];
2209
2210 /* after the call regsiters r0 - r5 were scratched */
2211 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2212 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2213 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2214 }
2215
2216 /* only increment it after check_reg_arg() finished */
2217 state->curframe++;
2218
2219 /* and go analyze first insn of the callee */
2220 *insn_idx = target_insn;
2221
2222 if (env->log.level) {
2223 verbose(env, "caller:\n");
2224 print_verifier_state(env, caller);
2225 verbose(env, "callee:\n");
2226 print_verifier_state(env, callee);
2227 }
2228 return 0;
2229}
2230
2231static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2232{
2233 struct bpf_verifier_state *state = env->cur_state;
2234 struct bpf_func_state *caller, *callee;
2235 struct bpf_reg_state *r0;
2236
2237 callee = state->frame[state->curframe];
2238 r0 = &callee->regs[BPF_REG_0];
2239 if (r0->type == PTR_TO_STACK) {
2240 /* technically it's ok to return caller's stack pointer
2241 * (or caller's caller's pointer) back to the caller,
2242 * since these pointers are valid. Only current stack
2243 * pointer will be invalid as soon as function exits,
2244 * but let's be conservative
2245 */
2246 verbose(env, "cannot return stack pointer to the caller\n");
2247 return -EINVAL;
2248 }
2249
2250 state->curframe--;
2251 caller = state->frame[state->curframe];
2252 /* return to the caller whatever r0 had in the callee */
2253 caller->regs[BPF_REG_0] = *r0;
2254
2255 *insn_idx = callee->callsite + 1;
2256 if (env->log.level) {
2257 verbose(env, "returning from callee:\n");
2258 print_verifier_state(env, callee);
2259 verbose(env, "to caller at %d:\n", *insn_idx);
2260 print_verifier_state(env, caller);
2261 }
2262 /* clear everything in the callee */
2263 free_func_state(callee);
2264 state->frame[state->curframe + 1] = NULL;
2265 return 0;
2266}
2267
2268static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2269{
17a52670 2270 const struct bpf_func_proto *fn = NULL;
638f5b90 2271 struct bpf_reg_state *regs;
33ff9823 2272 struct bpf_call_arg_meta meta;
969bf05e 2273 bool changes_data;
17a52670
AS
2274 int i, err;
2275
2276 /* find function prototype */
2277 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2278 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2279 func_id);
17a52670
AS
2280 return -EINVAL;
2281 }
2282
00176a34
JK
2283 if (env->ops->get_func_proto)
2284 fn = env->ops->get_func_proto(func_id);
17a52670
AS
2285
2286 if (!fn) {
61bd5218
JK
2287 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2288 func_id);
17a52670
AS
2289 return -EINVAL;
2290 }
2291
2292 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2293 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 2294 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
2295 return -EINVAL;
2296 }
2297
04514d13 2298 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2299 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2300 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2301 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2302 func_id_name(func_id), func_id);
2303 return -EINVAL;
2304 }
969bf05e 2305
33ff9823 2306 memset(&meta, 0, sizeof(meta));
36bbef52 2307 meta.pkt_access = fn->pkt_access;
33ff9823 2308
435faee1
DB
2309 /* We only support one arg being in raw mode at the moment, which
2310 * is sufficient for the helper functions we have right now.
2311 */
2312 err = check_raw_mode(fn);
2313 if (err) {
61bd5218 2314 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2315 func_id_name(func_id), func_id);
435faee1
DB
2316 return err;
2317 }
2318
17a52670 2319 /* check args */
33ff9823 2320 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2321 if (err)
2322 return err;
33ff9823 2323 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2324 if (err)
2325 return err;
b2157399
AS
2326 if (func_id == BPF_FUNC_tail_call) {
2327 if (meta.map_ptr == NULL) {
2328 verbose(env, "verifier bug\n");
2329 return -EINVAL;
2330 }
2331 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2332 }
33ff9823 2333 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2334 if (err)
2335 return err;
33ff9823 2336 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2337 if (err)
2338 return err;
33ff9823 2339 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2340 if (err)
2341 return err;
2342
435faee1
DB
2343 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2344 * is inferred from register state.
2345 */
2346 for (i = 0; i < meta.access_size; i++) {
31fd8581 2347 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
2348 if (err)
2349 return err;
2350 }
2351
638f5b90 2352 regs = cur_regs(env);
17a52670 2353 /* reset caller saved regs */
dc503a8a 2354 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2355 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2356 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2357 }
17a52670 2358
dc503a8a 2359 /* update return register (already marked as written above) */
17a52670 2360 if (fn->ret_type == RET_INTEGER) {
f1174f77 2361 /* sets type to SCALAR_VALUE */
61bd5218 2362 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2363 } else if (fn->ret_type == RET_VOID) {
2364 regs[BPF_REG_0].type = NOT_INIT;
2365 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
2366 struct bpf_insn_aux_data *insn_aux;
2367
17a52670 2368 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 2369 /* There is no offset yet applied, variable or fixed */
61bd5218 2370 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 2371 regs[BPF_REG_0].off = 0;
17a52670
AS
2372 /* remember map_ptr, so that check_map_access()
2373 * can check 'value_size' boundary of memory access
2374 * to map element returned from bpf_map_lookup_elem()
2375 */
33ff9823 2376 if (meta.map_ptr == NULL) {
61bd5218
JK
2377 verbose(env,
2378 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2379 return -EINVAL;
2380 }
33ff9823 2381 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 2382 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
2383 insn_aux = &env->insn_aux_data[insn_idx];
2384 if (!insn_aux->map_ptr)
2385 insn_aux->map_ptr = meta.map_ptr;
2386 else if (insn_aux->map_ptr != meta.map_ptr)
2387 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 2388 } else {
61bd5218 2389 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2390 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2391 return -EINVAL;
2392 }
04fd61ab 2393
61bd5218 2394 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2395 if (err)
2396 return err;
04fd61ab 2397
969bf05e
AS
2398 if (changes_data)
2399 clear_all_pkt_pointers(env);
2400 return 0;
2401}
2402
b03c9f9f
EC
2403static bool signed_add_overflows(s64 a, s64 b)
2404{
2405 /* Do the add in u64, where overflow is well-defined */
2406 s64 res = (s64)((u64)a + (u64)b);
2407
2408 if (b < 0)
2409 return res > a;
2410 return res < a;
2411}
2412
2413static bool signed_sub_overflows(s64 a, s64 b)
2414{
2415 /* Do the sub in u64, where overflow is well-defined */
2416 s64 res = (s64)((u64)a - (u64)b);
2417
2418 if (b < 0)
2419 return res < a;
2420 return res > a;
969bf05e
AS
2421}
2422
bb7f0f98
AS
2423static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2424 const struct bpf_reg_state *reg,
2425 enum bpf_reg_type type)
2426{
2427 bool known = tnum_is_const(reg->var_off);
2428 s64 val = reg->var_off.value;
2429 s64 smin = reg->smin_value;
2430
2431 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2432 verbose(env, "math between %s pointer and %lld is not allowed\n",
2433 reg_type_str[type], val);
2434 return false;
2435 }
2436
2437 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2438 verbose(env, "%s pointer offset %d is not allowed\n",
2439 reg_type_str[type], reg->off);
2440 return false;
2441 }
2442
2443 if (smin == S64_MIN) {
2444 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2445 reg_type_str[type]);
2446 return false;
2447 }
2448
2449 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2450 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2451 smin, reg_type_str[type]);
2452 return false;
2453 }
2454
2455 return true;
2456}
2457
f1174f77 2458/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2459 * Caller should also handle BPF_MOV case separately.
2460 * If we return -EACCES, caller may want to try again treating pointer as a
2461 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2462 */
2463static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2464 struct bpf_insn *insn,
2465 const struct bpf_reg_state *ptr_reg,
2466 const struct bpf_reg_state *off_reg)
969bf05e 2467{
f4d7e40a
AS
2468 struct bpf_verifier_state *vstate = env->cur_state;
2469 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2470 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2471 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2472 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2473 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2474 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2475 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2476 u8 opcode = BPF_OP(insn->code);
f1174f77 2477 u32 dst = insn->dst_reg;
969bf05e 2478
f1174f77 2479 dst_reg = &regs[dst];
969bf05e 2480
b03c9f9f 2481 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f4d7e40a 2482 print_verifier_state(env, state);
61bd5218
JK
2483 verbose(env,
2484 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
2485 return -EINVAL;
2486 }
2487 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
f4d7e40a 2488 print_verifier_state(env, state);
61bd5218
JK
2489 verbose(env,
2490 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
2491 return -EINVAL;
2492 }
2493
2494 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2495 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
2496 verbose(env,
2497 "R%d 32-bit pointer arithmetic prohibited\n",
2498 dst);
f1174f77 2499 return -EACCES;
969bf05e
AS
2500 }
2501
f1174f77 2502 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
2503 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2504 dst);
f1174f77
EC
2505 return -EACCES;
2506 }
2507 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
2508 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2509 dst);
f1174f77
EC
2510 return -EACCES;
2511 }
2512 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
2513 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2514 dst);
f1174f77
EC
2515 return -EACCES;
2516 }
2517
2518 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2519 * The id may be overwritten later if we create a new variable offset.
969bf05e 2520 */
f1174f77
EC
2521 dst_reg->type = ptr_reg->type;
2522 dst_reg->id = ptr_reg->id;
969bf05e 2523
bb7f0f98
AS
2524 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2525 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2526 return -EINVAL;
2527
f1174f77
EC
2528 switch (opcode) {
2529 case BPF_ADD:
2530 /* We can take a fixed offset as long as it doesn't overflow
2531 * the s32 'off' field
969bf05e 2532 */
b03c9f9f
EC
2533 if (known && (ptr_reg->off + smin_val ==
2534 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 2535 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
2536 dst_reg->smin_value = smin_ptr;
2537 dst_reg->smax_value = smax_ptr;
2538 dst_reg->umin_value = umin_ptr;
2539 dst_reg->umax_value = umax_ptr;
f1174f77 2540 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 2541 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
2542 dst_reg->range = ptr_reg->range;
2543 break;
2544 }
f1174f77
EC
2545 /* A new variable offset is created. Note that off_reg->off
2546 * == 0, since it's a scalar.
2547 * dst_reg gets the pointer type and since some positive
2548 * integer value was added to the pointer, give it a new 'id'
2549 * if it's a PTR_TO_PACKET.
2550 * this creates a new 'base' pointer, off_reg (variable) gets
2551 * added into the variable offset, and we copy the fixed offset
2552 * from ptr_reg.
969bf05e 2553 */
b03c9f9f
EC
2554 if (signed_add_overflows(smin_ptr, smin_val) ||
2555 signed_add_overflows(smax_ptr, smax_val)) {
2556 dst_reg->smin_value = S64_MIN;
2557 dst_reg->smax_value = S64_MAX;
2558 } else {
2559 dst_reg->smin_value = smin_ptr + smin_val;
2560 dst_reg->smax_value = smax_ptr + smax_val;
2561 }
2562 if (umin_ptr + umin_val < umin_ptr ||
2563 umax_ptr + umax_val < umax_ptr) {
2564 dst_reg->umin_value = 0;
2565 dst_reg->umax_value = U64_MAX;
2566 } else {
2567 dst_reg->umin_value = umin_ptr + umin_val;
2568 dst_reg->umax_value = umax_ptr + umax_val;
2569 }
f1174f77
EC
2570 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2571 dst_reg->off = ptr_reg->off;
de8f3a83 2572 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2573 dst_reg->id = ++env->id_gen;
2574 /* something was added to pkt_ptr, set range to zero */
2575 dst_reg->range = 0;
2576 }
2577 break;
2578 case BPF_SUB:
2579 if (dst_reg == off_reg) {
2580 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2581 verbose(env, "R%d tried to subtract pointer from scalar\n",
2582 dst);
f1174f77
EC
2583 return -EACCES;
2584 }
2585 /* We don't allow subtraction from FP, because (according to
2586 * test_verifier.c test "invalid fp arithmetic", JITs might not
2587 * be able to deal with it.
969bf05e 2588 */
f1174f77 2589 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2590 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2591 dst);
f1174f77
EC
2592 return -EACCES;
2593 }
b03c9f9f
EC
2594 if (known && (ptr_reg->off - smin_val ==
2595 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2596 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2597 dst_reg->smin_value = smin_ptr;
2598 dst_reg->smax_value = smax_ptr;
2599 dst_reg->umin_value = umin_ptr;
2600 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2601 dst_reg->var_off = ptr_reg->var_off;
2602 dst_reg->id = ptr_reg->id;
b03c9f9f 2603 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2604 dst_reg->range = ptr_reg->range;
2605 break;
2606 }
f1174f77
EC
2607 /* A new variable offset is created. If the subtrahend is known
2608 * nonnegative, then any reg->range we had before is still good.
969bf05e 2609 */
b03c9f9f
EC
2610 if (signed_sub_overflows(smin_ptr, smax_val) ||
2611 signed_sub_overflows(smax_ptr, smin_val)) {
2612 /* Overflow possible, we know nothing */
2613 dst_reg->smin_value = S64_MIN;
2614 dst_reg->smax_value = S64_MAX;
2615 } else {
2616 dst_reg->smin_value = smin_ptr - smax_val;
2617 dst_reg->smax_value = smax_ptr - smin_val;
2618 }
2619 if (umin_ptr < umax_val) {
2620 /* Overflow possible, we know nothing */
2621 dst_reg->umin_value = 0;
2622 dst_reg->umax_value = U64_MAX;
2623 } else {
2624 /* Cannot overflow (as long as bounds are consistent) */
2625 dst_reg->umin_value = umin_ptr - umax_val;
2626 dst_reg->umax_value = umax_ptr - umin_val;
2627 }
f1174f77
EC
2628 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2629 dst_reg->off = ptr_reg->off;
de8f3a83 2630 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2631 dst_reg->id = ++env->id_gen;
2632 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2633 if (smin_val < 0)
f1174f77 2634 dst_reg->range = 0;
43188702 2635 }
f1174f77
EC
2636 break;
2637 case BPF_AND:
2638 case BPF_OR:
2639 case BPF_XOR:
82abbf8d
AS
2640 /* bitwise ops on pointers are troublesome, prohibit. */
2641 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2642 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2643 return -EACCES;
2644 default:
2645 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2646 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2647 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2648 return -EACCES;
43188702
JF
2649 }
2650
bb7f0f98
AS
2651 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2652 return -EINVAL;
2653
b03c9f9f
EC
2654 __update_reg_bounds(dst_reg);
2655 __reg_deduce_bounds(dst_reg);
2656 __reg_bound_offset(dst_reg);
43188702
JF
2657 return 0;
2658}
2659
468f6eaf
JH
2660/* WARNING: This function does calculations on 64-bit values, but the actual
2661 * execution may occur on 32-bit values. Therefore, things like bitshifts
2662 * need extra checks in the 32-bit case.
2663 */
f1174f77
EC
2664static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2665 struct bpf_insn *insn,
2666 struct bpf_reg_state *dst_reg,
2667 struct bpf_reg_state src_reg)
969bf05e 2668{
638f5b90 2669 struct bpf_reg_state *regs = cur_regs(env);
48461135 2670 u8 opcode = BPF_OP(insn->code);
f1174f77 2671 bool src_known, dst_known;
b03c9f9f
EC
2672 s64 smin_val, smax_val;
2673 u64 umin_val, umax_val;
468f6eaf 2674 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2675
b03c9f9f
EC
2676 smin_val = src_reg.smin_value;
2677 smax_val = src_reg.smax_value;
2678 umin_val = src_reg.umin_value;
2679 umax_val = src_reg.umax_value;
f1174f77
EC
2680 src_known = tnum_is_const(src_reg.var_off);
2681 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2682
bb7f0f98
AS
2683 if (!src_known &&
2684 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2685 __mark_reg_unknown(dst_reg);
2686 return 0;
2687 }
2688
48461135
JB
2689 switch (opcode) {
2690 case BPF_ADD:
b03c9f9f
EC
2691 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2692 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2693 dst_reg->smin_value = S64_MIN;
2694 dst_reg->smax_value = S64_MAX;
2695 } else {
2696 dst_reg->smin_value += smin_val;
2697 dst_reg->smax_value += smax_val;
2698 }
2699 if (dst_reg->umin_value + umin_val < umin_val ||
2700 dst_reg->umax_value + umax_val < umax_val) {
2701 dst_reg->umin_value = 0;
2702 dst_reg->umax_value = U64_MAX;
2703 } else {
2704 dst_reg->umin_value += umin_val;
2705 dst_reg->umax_value += umax_val;
2706 }
f1174f77 2707 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2708 break;
2709 case BPF_SUB:
b03c9f9f
EC
2710 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2711 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2712 /* Overflow possible, we know nothing */
2713 dst_reg->smin_value = S64_MIN;
2714 dst_reg->smax_value = S64_MAX;
2715 } else {
2716 dst_reg->smin_value -= smax_val;
2717 dst_reg->smax_value -= smin_val;
2718 }
2719 if (dst_reg->umin_value < umax_val) {
2720 /* Overflow possible, we know nothing */
2721 dst_reg->umin_value = 0;
2722 dst_reg->umax_value = U64_MAX;
2723 } else {
2724 /* Cannot overflow (as long as bounds are consistent) */
2725 dst_reg->umin_value -= umax_val;
2726 dst_reg->umax_value -= umin_val;
2727 }
f1174f77 2728 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2729 break;
2730 case BPF_MUL:
b03c9f9f
EC
2731 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2732 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2733 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2734 __mark_reg_unbounded(dst_reg);
2735 __update_reg_bounds(dst_reg);
f1174f77
EC
2736 break;
2737 }
b03c9f9f
EC
2738 /* Both values are positive, so we can work with unsigned and
2739 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2740 */
b03c9f9f
EC
2741 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2742 /* Potential overflow, we know nothing */
2743 __mark_reg_unbounded(dst_reg);
2744 /* (except what we can learn from the var_off) */
2745 __update_reg_bounds(dst_reg);
2746 break;
2747 }
2748 dst_reg->umin_value *= umin_val;
2749 dst_reg->umax_value *= umax_val;
2750 if (dst_reg->umax_value > S64_MAX) {
2751 /* Overflow possible, we know nothing */
2752 dst_reg->smin_value = S64_MIN;
2753 dst_reg->smax_value = S64_MAX;
2754 } else {
2755 dst_reg->smin_value = dst_reg->umin_value;
2756 dst_reg->smax_value = dst_reg->umax_value;
2757 }
48461135
JB
2758 break;
2759 case BPF_AND:
f1174f77 2760 if (src_known && dst_known) {
b03c9f9f
EC
2761 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2762 src_reg.var_off.value);
f1174f77
EC
2763 break;
2764 }
b03c9f9f
EC
2765 /* We get our minimum from the var_off, since that's inherently
2766 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2767 */
f1174f77 2768 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2769 dst_reg->umin_value = dst_reg->var_off.value;
2770 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2771 if (dst_reg->smin_value < 0 || smin_val < 0) {
2772 /* Lose signed bounds when ANDing negative numbers,
2773 * ain't nobody got time for that.
2774 */
2775 dst_reg->smin_value = S64_MIN;
2776 dst_reg->smax_value = S64_MAX;
2777 } else {
2778 /* ANDing two positives gives a positive, so safe to
2779 * cast result into s64.
2780 */
2781 dst_reg->smin_value = dst_reg->umin_value;
2782 dst_reg->smax_value = dst_reg->umax_value;
2783 }
2784 /* We may learn something more from the var_off */
2785 __update_reg_bounds(dst_reg);
f1174f77
EC
2786 break;
2787 case BPF_OR:
2788 if (src_known && dst_known) {
b03c9f9f
EC
2789 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2790 src_reg.var_off.value);
f1174f77
EC
2791 break;
2792 }
b03c9f9f
EC
2793 /* We get our maximum from the var_off, and our minimum is the
2794 * maximum of the operands' minima
f1174f77
EC
2795 */
2796 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2797 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2798 dst_reg->umax_value = dst_reg->var_off.value |
2799 dst_reg->var_off.mask;
2800 if (dst_reg->smin_value < 0 || smin_val < 0) {
2801 /* Lose signed bounds when ORing negative numbers,
2802 * ain't nobody got time for that.
2803 */
2804 dst_reg->smin_value = S64_MIN;
2805 dst_reg->smax_value = S64_MAX;
f1174f77 2806 } else {
b03c9f9f
EC
2807 /* ORing two positives gives a positive, so safe to
2808 * cast result into s64.
2809 */
2810 dst_reg->smin_value = dst_reg->umin_value;
2811 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2812 }
b03c9f9f
EC
2813 /* We may learn something more from the var_off */
2814 __update_reg_bounds(dst_reg);
48461135
JB
2815 break;
2816 case BPF_LSH:
468f6eaf
JH
2817 if (umax_val >= insn_bitness) {
2818 /* Shifts greater than 31 or 63 are undefined.
2819 * This includes shifts by a negative number.
b03c9f9f 2820 */
61bd5218 2821 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2822 break;
2823 }
b03c9f9f
EC
2824 /* We lose all sign bit information (except what we can pick
2825 * up from var_off)
48461135 2826 */
b03c9f9f
EC
2827 dst_reg->smin_value = S64_MIN;
2828 dst_reg->smax_value = S64_MAX;
2829 /* If we might shift our top bit out, then we know nothing */
2830 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2831 dst_reg->umin_value = 0;
2832 dst_reg->umax_value = U64_MAX;
d1174416 2833 } else {
b03c9f9f
EC
2834 dst_reg->umin_value <<= umin_val;
2835 dst_reg->umax_value <<= umax_val;
d1174416 2836 }
b03c9f9f
EC
2837 if (src_known)
2838 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2839 else
2840 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2841 /* We may learn something more from the var_off */
2842 __update_reg_bounds(dst_reg);
48461135
JB
2843 break;
2844 case BPF_RSH:
468f6eaf
JH
2845 if (umax_val >= insn_bitness) {
2846 /* Shifts greater than 31 or 63 are undefined.
2847 * This includes shifts by a negative number.
b03c9f9f 2848 */
61bd5218 2849 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2850 break;
2851 }
4374f256
EC
2852 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2853 * be negative, then either:
2854 * 1) src_reg might be zero, so the sign bit of the result is
2855 * unknown, so we lose our signed bounds
2856 * 2) it's known negative, thus the unsigned bounds capture the
2857 * signed bounds
2858 * 3) the signed bounds cross zero, so they tell us nothing
2859 * about the result
2860 * If the value in dst_reg is known nonnegative, then again the
2861 * unsigned bounts capture the signed bounds.
2862 * Thus, in all cases it suffices to blow away our signed bounds
2863 * and rely on inferring new ones from the unsigned bounds and
2864 * var_off of the result.
2865 */
2866 dst_reg->smin_value = S64_MIN;
2867 dst_reg->smax_value = S64_MAX;
f1174f77 2868 if (src_known)
b03c9f9f
EC
2869 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2870 umin_val);
f1174f77 2871 else
b03c9f9f
EC
2872 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2873 dst_reg->umin_value >>= umax_val;
2874 dst_reg->umax_value >>= umin_val;
2875 /* We may learn something more from the var_off */
2876 __update_reg_bounds(dst_reg);
48461135
JB
2877 break;
2878 default:
61bd5218 2879 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2880 break;
2881 }
2882
468f6eaf
JH
2883 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2884 /* 32-bit ALU ops are (32,32)->32 */
2885 coerce_reg_to_size(dst_reg, 4);
2886 coerce_reg_to_size(&src_reg, 4);
2887 }
2888
b03c9f9f
EC
2889 __reg_deduce_bounds(dst_reg);
2890 __reg_bound_offset(dst_reg);
f1174f77
EC
2891 return 0;
2892}
2893
2894/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2895 * and var_off.
2896 */
2897static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2898 struct bpf_insn *insn)
2899{
f4d7e40a
AS
2900 struct bpf_verifier_state *vstate = env->cur_state;
2901 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2902 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
2903 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2904 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
2905
2906 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2907 src_reg = NULL;
2908 if (dst_reg->type != SCALAR_VALUE)
2909 ptr_reg = dst_reg;
2910 if (BPF_SRC(insn->code) == BPF_X) {
2911 src_reg = &regs[insn->src_reg];
f1174f77
EC
2912 if (src_reg->type != SCALAR_VALUE) {
2913 if (dst_reg->type != SCALAR_VALUE) {
2914 /* Combining two pointers by any ALU op yields
82abbf8d
AS
2915 * an arbitrary scalar. Disallow all math except
2916 * pointer subtraction
f1174f77 2917 */
82abbf8d
AS
2918 if (opcode == BPF_SUB){
2919 mark_reg_unknown(env, regs, insn->dst_reg);
2920 return 0;
f1174f77 2921 }
82abbf8d
AS
2922 verbose(env, "R%d pointer %s pointer prohibited\n",
2923 insn->dst_reg,
2924 bpf_alu_string[opcode >> 4]);
2925 return -EACCES;
f1174f77
EC
2926 } else {
2927 /* scalar += pointer
2928 * This is legal, but we have to reverse our
2929 * src/dest handling in computing the range
2930 */
82abbf8d
AS
2931 return adjust_ptr_min_max_vals(env, insn,
2932 src_reg, dst_reg);
f1174f77
EC
2933 }
2934 } else if (ptr_reg) {
2935 /* pointer += scalar */
82abbf8d
AS
2936 return adjust_ptr_min_max_vals(env, insn,
2937 dst_reg, src_reg);
f1174f77
EC
2938 }
2939 } else {
2940 /* Pretend the src is a reg with a known value, since we only
2941 * need to be able to read from this state.
2942 */
2943 off_reg.type = SCALAR_VALUE;
b03c9f9f 2944 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2945 src_reg = &off_reg;
82abbf8d
AS
2946 if (ptr_reg) /* pointer += K */
2947 return adjust_ptr_min_max_vals(env, insn,
2948 ptr_reg, src_reg);
f1174f77
EC
2949 }
2950
2951 /* Got here implies adding two SCALAR_VALUEs */
2952 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 2953 print_verifier_state(env, state);
61bd5218 2954 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2955 return -EINVAL;
2956 }
2957 if (WARN_ON(!src_reg)) {
f4d7e40a 2958 print_verifier_state(env, state);
61bd5218 2959 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2960 return -EINVAL;
2961 }
2962 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2963}
2964
17a52670 2965/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2966static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2967{
638f5b90 2968 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2969 u8 opcode = BPF_OP(insn->code);
2970 int err;
2971
2972 if (opcode == BPF_END || opcode == BPF_NEG) {
2973 if (opcode == BPF_NEG) {
2974 if (BPF_SRC(insn->code) != 0 ||
2975 insn->src_reg != BPF_REG_0 ||
2976 insn->off != 0 || insn->imm != 0) {
61bd5218 2977 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2978 return -EINVAL;
2979 }
2980 } else {
2981 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2982 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2983 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2984 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2985 return -EINVAL;
2986 }
2987 }
2988
2989 /* check src operand */
dc503a8a 2990 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2991 if (err)
2992 return err;
2993
1be7f75d 2994 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2995 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2996 insn->dst_reg);
2997 return -EACCES;
2998 }
2999
17a52670 3000 /* check dest operand */
dc503a8a 3001 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3002 if (err)
3003 return err;
3004
3005 } else if (opcode == BPF_MOV) {
3006
3007 if (BPF_SRC(insn->code) == BPF_X) {
3008 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3009 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3010 return -EINVAL;
3011 }
3012
3013 /* check src operand */
dc503a8a 3014 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3015 if (err)
3016 return err;
3017 } else {
3018 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3019 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3020 return -EINVAL;
3021 }
3022 }
3023
3024 /* check dest operand */
dc503a8a 3025 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3026 if (err)
3027 return err;
3028
3029 if (BPF_SRC(insn->code) == BPF_X) {
3030 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3031 /* case: R1 = R2
3032 * copy register state to dest reg
3033 */
3034 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3035 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3036 } else {
f1174f77 3037 /* R1 = (u32) R2 */
1be7f75d 3038 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3039 verbose(env,
3040 "R%d partial copy of pointer\n",
1be7f75d
AS
3041 insn->src_reg);
3042 return -EACCES;
3043 }
61bd5218 3044 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3045 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3046 }
3047 } else {
3048 /* case: R = imm
3049 * remember the value we stored into this reg
3050 */
f1174f77 3051 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3052 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3053 __mark_reg_known(regs + insn->dst_reg,
3054 insn->imm);
3055 } else {
3056 __mark_reg_known(regs + insn->dst_reg,
3057 (u32)insn->imm);
3058 }
17a52670
AS
3059 }
3060
3061 } else if (opcode > BPF_END) {
61bd5218 3062 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3063 return -EINVAL;
3064
3065 } else { /* all other ALU ops: and, sub, xor, add, ... */
3066
17a52670
AS
3067 if (BPF_SRC(insn->code) == BPF_X) {
3068 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3069 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3070 return -EINVAL;
3071 }
3072 /* check src1 operand */
dc503a8a 3073 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3074 if (err)
3075 return err;
3076 } else {
3077 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3078 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3079 return -EINVAL;
3080 }
3081 }
3082
3083 /* check src2 operand */
dc503a8a 3084 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3085 if (err)
3086 return err;
3087
3088 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3089 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3090 verbose(env, "div by zero\n");
17a52670
AS
3091 return -EINVAL;
3092 }
3093
229394e8
RV
3094 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3095 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3096 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3097
3098 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3099 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3100 return -EINVAL;
3101 }
3102 }
3103
1a0dc1ac 3104 /* check dest operand */
dc503a8a 3105 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3106 if (err)
3107 return err;
3108
f1174f77 3109 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3110 }
3111
3112 return 0;
3113}
3114
f4d7e40a 3115static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3116 struct bpf_reg_state *dst_reg,
f8ddadc4 3117 enum bpf_reg_type type,
fb2a311a 3118 bool range_right_open)
969bf05e 3119{
f4d7e40a 3120 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3121 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3122 u16 new_range;
f4d7e40a 3123 int i, j;
2d2be8ca 3124
fb2a311a
DB
3125 if (dst_reg->off < 0 ||
3126 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3127 /* This doesn't give us any range */
3128 return;
3129
b03c9f9f
EC
3130 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3131 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3132 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3133 * than pkt_end, but that's because it's also less than pkt.
3134 */
3135 return;
3136
fb2a311a
DB
3137 new_range = dst_reg->off;
3138 if (range_right_open)
3139 new_range--;
3140
3141 /* Examples for register markings:
2d2be8ca 3142 *
fb2a311a 3143 * pkt_data in dst register:
2d2be8ca
DB
3144 *
3145 * r2 = r3;
3146 * r2 += 8;
3147 * if (r2 > pkt_end) goto <handle exception>
3148 * <access okay>
3149 *
b4e432f1
DB
3150 * r2 = r3;
3151 * r2 += 8;
3152 * if (r2 < pkt_end) goto <access okay>
3153 * <handle exception>
3154 *
2d2be8ca
DB
3155 * Where:
3156 * r2 == dst_reg, pkt_end == src_reg
3157 * r2=pkt(id=n,off=8,r=0)
3158 * r3=pkt(id=n,off=0,r=0)
3159 *
fb2a311a 3160 * pkt_data in src register:
2d2be8ca
DB
3161 *
3162 * r2 = r3;
3163 * r2 += 8;
3164 * if (pkt_end >= r2) goto <access okay>
3165 * <handle exception>
3166 *
b4e432f1
DB
3167 * r2 = r3;
3168 * r2 += 8;
3169 * if (pkt_end <= r2) goto <handle exception>
3170 * <access okay>
3171 *
2d2be8ca
DB
3172 * Where:
3173 * pkt_end == dst_reg, r2 == src_reg
3174 * r2=pkt(id=n,off=8,r=0)
3175 * r3=pkt(id=n,off=0,r=0)
3176 *
3177 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3178 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3179 * and [r3, r3 + 8-1) respectively is safe to access depending on
3180 * the check.
969bf05e 3181 */
2d2be8ca 3182
f1174f77
EC
3183 /* If our ids match, then we must have the same max_value. And we
3184 * don't care about the other reg's fixed offset, since if it's too big
3185 * the range won't allow anything.
3186 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3187 */
969bf05e 3188 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3189 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3190 /* keep the maximum range already checked */
fb2a311a 3191 regs[i].range = max(regs[i].range, new_range);
969bf05e 3192
f4d7e40a
AS
3193 for (j = 0; j <= vstate->curframe; j++) {
3194 state = vstate->frame[j];
3195 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3196 if (state->stack[i].slot_type[0] != STACK_SPILL)
3197 continue;
3198 reg = &state->stack[i].spilled_ptr;
3199 if (reg->type == type && reg->id == dst_reg->id)
3200 reg->range = max(reg->range, new_range);
3201 }
969bf05e
AS
3202 }
3203}
3204
48461135
JB
3205/* Adjusts the register min/max values in the case that the dst_reg is the
3206 * variable register that we are working on, and src_reg is a constant or we're
3207 * simply doing a BPF_K check.
f1174f77 3208 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3209 */
3210static void reg_set_min_max(struct bpf_reg_state *true_reg,
3211 struct bpf_reg_state *false_reg, u64 val,
3212 u8 opcode)
3213{
f1174f77
EC
3214 /* If the dst_reg is a pointer, we can't learn anything about its
3215 * variable offset from the compare (unless src_reg were a pointer into
3216 * the same object, but we don't bother with that.
3217 * Since false_reg and true_reg have the same type by construction, we
3218 * only need to check one of them for pointerness.
3219 */
3220 if (__is_pointer_value(false, false_reg))
3221 return;
4cabc5b1 3222
48461135
JB
3223 switch (opcode) {
3224 case BPF_JEQ:
3225 /* If this is false then we know nothing Jon Snow, but if it is
3226 * true then we know for sure.
3227 */
b03c9f9f 3228 __mark_reg_known(true_reg, val);
48461135
JB
3229 break;
3230 case BPF_JNE:
3231 /* If this is true we know nothing Jon Snow, but if it is false
3232 * we know the value for sure;
3233 */
b03c9f9f 3234 __mark_reg_known(false_reg, val);
48461135
JB
3235 break;
3236 case BPF_JGT:
b03c9f9f
EC
3237 false_reg->umax_value = min(false_reg->umax_value, val);
3238 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3239 break;
48461135 3240 case BPF_JSGT:
b03c9f9f
EC
3241 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3242 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3243 break;
b4e432f1
DB
3244 case BPF_JLT:
3245 false_reg->umin_value = max(false_reg->umin_value, val);
3246 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3247 break;
3248 case BPF_JSLT:
3249 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3250 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3251 break;
48461135 3252 case BPF_JGE:
b03c9f9f
EC
3253 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3254 true_reg->umin_value = max(true_reg->umin_value, val);
3255 break;
48461135 3256 case BPF_JSGE:
b03c9f9f
EC
3257 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3258 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3259 break;
b4e432f1
DB
3260 case BPF_JLE:
3261 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3262 true_reg->umax_value = min(true_reg->umax_value, val);
3263 break;
3264 case BPF_JSLE:
3265 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3266 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3267 break;
48461135
JB
3268 default:
3269 break;
3270 }
3271
b03c9f9f
EC
3272 __reg_deduce_bounds(false_reg);
3273 __reg_deduce_bounds(true_reg);
3274 /* We might have learned some bits from the bounds. */
3275 __reg_bound_offset(false_reg);
3276 __reg_bound_offset(true_reg);
3277 /* Intersecting with the old var_off might have improved our bounds
3278 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3279 * then new var_off is (0; 0x7f...fc) which improves our umax.
3280 */
3281 __update_reg_bounds(false_reg);
3282 __update_reg_bounds(true_reg);
48461135
JB
3283}
3284
f1174f77
EC
3285/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3286 * the variable reg.
48461135
JB
3287 */
3288static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3289 struct bpf_reg_state *false_reg, u64 val,
3290 u8 opcode)
3291{
f1174f77
EC
3292 if (__is_pointer_value(false, false_reg))
3293 return;
4cabc5b1 3294
48461135
JB
3295 switch (opcode) {
3296 case BPF_JEQ:
3297 /* If this is false then we know nothing Jon Snow, but if it is
3298 * true then we know for sure.
3299 */
b03c9f9f 3300 __mark_reg_known(true_reg, val);
48461135
JB
3301 break;
3302 case BPF_JNE:
3303 /* If this is true we know nothing Jon Snow, but if it is false
3304 * we know the value for sure;
3305 */
b03c9f9f 3306 __mark_reg_known(false_reg, val);
48461135
JB
3307 break;
3308 case BPF_JGT:
b03c9f9f
EC
3309 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3310 false_reg->umin_value = max(false_reg->umin_value, val);
3311 break;
48461135 3312 case BPF_JSGT:
b03c9f9f
EC
3313 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3314 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3315 break;
b4e432f1
DB
3316 case BPF_JLT:
3317 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3318 false_reg->umax_value = min(false_reg->umax_value, val);
3319 break;
3320 case BPF_JSLT:
3321 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3322 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3323 break;
48461135 3324 case BPF_JGE:
b03c9f9f
EC
3325 true_reg->umax_value = min(true_reg->umax_value, val);
3326 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3327 break;
48461135 3328 case BPF_JSGE:
b03c9f9f
EC
3329 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3330 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3331 break;
b4e432f1
DB
3332 case BPF_JLE:
3333 true_reg->umin_value = max(true_reg->umin_value, val);
3334 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3335 break;
3336 case BPF_JSLE:
3337 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3338 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3339 break;
48461135
JB
3340 default:
3341 break;
3342 }
3343
b03c9f9f
EC
3344 __reg_deduce_bounds(false_reg);
3345 __reg_deduce_bounds(true_reg);
3346 /* We might have learned some bits from the bounds. */
3347 __reg_bound_offset(false_reg);
3348 __reg_bound_offset(true_reg);
3349 /* Intersecting with the old var_off might have improved our bounds
3350 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3351 * then new var_off is (0; 0x7f...fc) which improves our umax.
3352 */
3353 __update_reg_bounds(false_reg);
3354 __update_reg_bounds(true_reg);
f1174f77
EC
3355}
3356
3357/* Regs are known to be equal, so intersect their min/max/var_off */
3358static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3359 struct bpf_reg_state *dst_reg)
3360{
b03c9f9f
EC
3361 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3362 dst_reg->umin_value);
3363 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3364 dst_reg->umax_value);
3365 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3366 dst_reg->smin_value);
3367 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3368 dst_reg->smax_value);
f1174f77
EC
3369 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3370 dst_reg->var_off);
b03c9f9f
EC
3371 /* We might have learned new bounds from the var_off. */
3372 __update_reg_bounds(src_reg);
3373 __update_reg_bounds(dst_reg);
3374 /* We might have learned something about the sign bit. */
3375 __reg_deduce_bounds(src_reg);
3376 __reg_deduce_bounds(dst_reg);
3377 /* We might have learned some bits from the bounds. */
3378 __reg_bound_offset(src_reg);
3379 __reg_bound_offset(dst_reg);
3380 /* Intersecting with the old var_off might have improved our bounds
3381 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3382 * then new var_off is (0; 0x7f...fc) which improves our umax.
3383 */
3384 __update_reg_bounds(src_reg);
3385 __update_reg_bounds(dst_reg);
f1174f77
EC
3386}
3387
3388static void reg_combine_min_max(struct bpf_reg_state *true_src,
3389 struct bpf_reg_state *true_dst,
3390 struct bpf_reg_state *false_src,
3391 struct bpf_reg_state *false_dst,
3392 u8 opcode)
3393{
3394 switch (opcode) {
3395 case BPF_JEQ:
3396 __reg_combine_min_max(true_src, true_dst);
3397 break;
3398 case BPF_JNE:
3399 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3400 break;
4cabc5b1 3401 }
48461135
JB
3402}
3403
57a09bf0 3404static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 3405 bool is_null)
57a09bf0
TG
3406{
3407 struct bpf_reg_state *reg = &regs[regno];
3408
3409 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
3410 /* Old offset (both fixed and variable parts) should
3411 * have been known-zero, because we don't allow pointer
3412 * arithmetic on pointers that might be NULL.
3413 */
b03c9f9f
EC
3414 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3415 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3416 reg->off)) {
b03c9f9f
EC
3417 __mark_reg_known_zero(reg);
3418 reg->off = 0;
f1174f77
EC
3419 }
3420 if (is_null) {
3421 reg->type = SCALAR_VALUE;
56f668df
MKL
3422 } else if (reg->map_ptr->inner_map_meta) {
3423 reg->type = CONST_PTR_TO_MAP;
3424 reg->map_ptr = reg->map_ptr->inner_map_meta;
3425 } else {
f1174f77 3426 reg->type = PTR_TO_MAP_VALUE;
56f668df 3427 }
a08dd0da
DB
3428 /* We don't need id from this point onwards anymore, thus we
3429 * should better reset it, so that state pruning has chances
3430 * to take effect.
3431 */
3432 reg->id = 0;
57a09bf0
TG
3433 }
3434}
3435
3436/* The logic is similar to find_good_pkt_pointers(), both could eventually
3437 * be folded together at some point.
3438 */
f4d7e40a 3439static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
f1174f77 3440 bool is_null)
57a09bf0 3441{
f4d7e40a 3442 struct bpf_func_state *state = vstate->frame[vstate->curframe];
57a09bf0 3443 struct bpf_reg_state *regs = state->regs;
a08dd0da 3444 u32 id = regs[regno].id;
f4d7e40a 3445 int i, j;
57a09bf0
TG
3446
3447 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 3448 mark_map_reg(regs, i, id, is_null);
57a09bf0 3449
f4d7e40a
AS
3450 for (j = 0; j <= vstate->curframe; j++) {
3451 state = vstate->frame[j];
3452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3453 if (state->stack[i].slot_type[0] != STACK_SPILL)
3454 continue;
3455 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3456 }
57a09bf0
TG
3457 }
3458}
3459
5beca081
DB
3460static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3461 struct bpf_reg_state *dst_reg,
3462 struct bpf_reg_state *src_reg,
3463 struct bpf_verifier_state *this_branch,
3464 struct bpf_verifier_state *other_branch)
3465{
3466 if (BPF_SRC(insn->code) != BPF_X)
3467 return false;
3468
3469 switch (BPF_OP(insn->code)) {
3470 case BPF_JGT:
3471 if ((dst_reg->type == PTR_TO_PACKET &&
3472 src_reg->type == PTR_TO_PACKET_END) ||
3473 (dst_reg->type == PTR_TO_PACKET_META &&
3474 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3475 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3476 find_good_pkt_pointers(this_branch, dst_reg,
3477 dst_reg->type, false);
3478 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3479 src_reg->type == PTR_TO_PACKET) ||
3480 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3481 src_reg->type == PTR_TO_PACKET_META)) {
3482 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3483 find_good_pkt_pointers(other_branch, src_reg,
3484 src_reg->type, true);
3485 } else {
3486 return false;
3487 }
3488 break;
3489 case BPF_JLT:
3490 if ((dst_reg->type == PTR_TO_PACKET &&
3491 src_reg->type == PTR_TO_PACKET_END) ||
3492 (dst_reg->type == PTR_TO_PACKET_META &&
3493 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3494 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3495 find_good_pkt_pointers(other_branch, dst_reg,
3496 dst_reg->type, true);
3497 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3498 src_reg->type == PTR_TO_PACKET) ||
3499 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3500 src_reg->type == PTR_TO_PACKET_META)) {
3501 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3502 find_good_pkt_pointers(this_branch, src_reg,
3503 src_reg->type, false);
3504 } else {
3505 return false;
3506 }
3507 break;
3508 case BPF_JGE:
3509 if ((dst_reg->type == PTR_TO_PACKET &&
3510 src_reg->type == PTR_TO_PACKET_END) ||
3511 (dst_reg->type == PTR_TO_PACKET_META &&
3512 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3513 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3514 find_good_pkt_pointers(this_branch, dst_reg,
3515 dst_reg->type, true);
3516 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3517 src_reg->type == PTR_TO_PACKET) ||
3518 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3519 src_reg->type == PTR_TO_PACKET_META)) {
3520 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3521 find_good_pkt_pointers(other_branch, src_reg,
3522 src_reg->type, false);
3523 } else {
3524 return false;
3525 }
3526 break;
3527 case BPF_JLE:
3528 if ((dst_reg->type == PTR_TO_PACKET &&
3529 src_reg->type == PTR_TO_PACKET_END) ||
3530 (dst_reg->type == PTR_TO_PACKET_META &&
3531 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3532 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3533 find_good_pkt_pointers(other_branch, dst_reg,
3534 dst_reg->type, false);
3535 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3536 src_reg->type == PTR_TO_PACKET) ||
3537 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3538 src_reg->type == PTR_TO_PACKET_META)) {
3539 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3540 find_good_pkt_pointers(this_branch, src_reg,
3541 src_reg->type, true);
3542 } else {
3543 return false;
3544 }
3545 break;
3546 default:
3547 return false;
3548 }
3549
3550 return true;
3551}
3552
58e2af8b 3553static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3554 struct bpf_insn *insn, int *insn_idx)
3555{
f4d7e40a
AS
3556 struct bpf_verifier_state *this_branch = env->cur_state;
3557 struct bpf_verifier_state *other_branch;
3558 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3559 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
3560 u8 opcode = BPF_OP(insn->code);
3561 int err;
3562
b4e432f1 3563 if (opcode > BPF_JSLE) {
61bd5218 3564 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3565 return -EINVAL;
3566 }
3567
3568 if (BPF_SRC(insn->code) == BPF_X) {
3569 if (insn->imm != 0) {
61bd5218 3570 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3571 return -EINVAL;
3572 }
3573
3574 /* check src1 operand */
dc503a8a 3575 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3576 if (err)
3577 return err;
1be7f75d
AS
3578
3579 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3580 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3581 insn->src_reg);
3582 return -EACCES;
3583 }
17a52670
AS
3584 } else {
3585 if (insn->src_reg != BPF_REG_0) {
61bd5218 3586 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3587 return -EINVAL;
3588 }
3589 }
3590
3591 /* check src2 operand */
dc503a8a 3592 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3593 if (err)
3594 return err;
3595
1a0dc1ac
AS
3596 dst_reg = &regs[insn->dst_reg];
3597
17a52670
AS
3598 /* detect if R == 0 where R was initialized to zero earlier */
3599 if (BPF_SRC(insn->code) == BPF_K &&
3600 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 3601 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
3602 tnum_is_const(dst_reg->var_off)) {
3603 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3604 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
3605 /* if (imm == imm) goto pc+off;
3606 * only follow the goto, ignore fall-through
3607 */
3608 *insn_idx += insn->off;
3609 return 0;
3610 } else {
3611 /* if (imm != imm) goto pc+off;
3612 * only follow fall-through branch, since
3613 * that's where the program will go
3614 */
3615 return 0;
3616 }
3617 }
3618
3619 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3620 if (!other_branch)
3621 return -EFAULT;
f4d7e40a 3622 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 3623
48461135
JB
3624 /* detect if we are comparing against a constant value so we can adjust
3625 * our min/max values for our dst register.
f1174f77
EC
3626 * this is only legit if both are scalars (or pointers to the same
3627 * object, I suppose, but we don't support that right now), because
3628 * otherwise the different base pointers mean the offsets aren't
3629 * comparable.
48461135
JB
3630 */
3631 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3632 if (dst_reg->type == SCALAR_VALUE &&
3633 regs[insn->src_reg].type == SCALAR_VALUE) {
3634 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 3635 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
3636 dst_reg, regs[insn->src_reg].var_off.value,
3637 opcode);
3638 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 3639 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
3640 &regs[insn->src_reg],
3641 dst_reg->var_off.value, opcode);
3642 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3643 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
3644 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3645 &other_branch_regs[insn->dst_reg],
f1174f77
EC
3646 &regs[insn->src_reg],
3647 &regs[insn->dst_reg], opcode);
3648 }
3649 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 3650 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
3651 dst_reg, insn->imm, opcode);
3652 }
3653
58e2af8b 3654 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3655 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3656 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3657 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3658 /* Mark all identical map registers in each branch as either
3659 * safe or unknown depending R == 0 or R != 0 conditional.
3660 */
f1174f77
EC
3661 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3662 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3663 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3664 this_branch, other_branch) &&
3665 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3666 verbose(env, "R%d pointer comparison prohibited\n",
3667 insn->dst_reg);
1be7f75d 3668 return -EACCES;
17a52670 3669 }
61bd5218 3670 if (env->log.level)
f4d7e40a 3671 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
3672 return 0;
3673}
3674
0246e64d
AS
3675/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3676static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3677{
3678 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3679
3680 return (struct bpf_map *) (unsigned long) imm64;
3681}
3682
17a52670 3683/* verify BPF_LD_IMM64 instruction */
58e2af8b 3684static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3685{
638f5b90 3686 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3687 int err;
3688
3689 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3690 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3691 return -EINVAL;
3692 }
3693 if (insn->off != 0) {
61bd5218 3694 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3695 return -EINVAL;
3696 }
3697
dc503a8a 3698 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3699 if (err)
3700 return err;
3701
6b173873 3702 if (insn->src_reg == 0) {
6b173873
JK
3703 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3704
f1174f77 3705 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3706 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3707 return 0;
6b173873 3708 }
17a52670
AS
3709
3710 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3711 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3712
3713 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3714 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3715 return 0;
3716}
3717
96be4325
DB
3718static bool may_access_skb(enum bpf_prog_type type)
3719{
3720 switch (type) {
3721 case BPF_PROG_TYPE_SOCKET_FILTER:
3722 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3723 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3724 return true;
3725 default:
3726 return false;
3727 }
3728}
3729
ddd872bc
AS
3730/* verify safety of LD_ABS|LD_IND instructions:
3731 * - they can only appear in the programs where ctx == skb
3732 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3733 * preserve R6-R9, and store return value into R0
3734 *
3735 * Implicit input:
3736 * ctx == skb == R6 == CTX
3737 *
3738 * Explicit input:
3739 * SRC == any register
3740 * IMM == 32-bit immediate
3741 *
3742 * Output:
3743 * R0 - 8/16/32-bit skb data converted to cpu endianness
3744 */
58e2af8b 3745static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3746{
638f5b90 3747 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3748 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3749 int i, err;
3750
24701ece 3751 if (!may_access_skb(env->prog->type)) {
61bd5218 3752 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3753 return -EINVAL;
3754 }
3755
f4d7e40a
AS
3756 if (env->subprog_cnt) {
3757 /* when program has LD_ABS insn JITs and interpreter assume
3758 * that r1 == ctx == skb which is not the case for callees
3759 * that can have arbitrary arguments. It's problematic
3760 * for main prog as well since JITs would need to analyze
3761 * all functions in order to make proper register save/restore
3762 * decisions in the main prog. Hence disallow LD_ABS with calls
3763 */
3764 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3765 return -EINVAL;
3766 }
3767
ddd872bc 3768 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3769 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3770 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3771 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3772 return -EINVAL;
3773 }
3774
3775 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3776 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3777 if (err)
3778 return err;
3779
3780 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3781 verbose(env,
3782 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3783 return -EINVAL;
3784 }
3785
3786 if (mode == BPF_IND) {
3787 /* check explicit source operand */
dc503a8a 3788 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3789 if (err)
3790 return err;
3791 }
3792
3793 /* reset caller saved regs to unreadable */
dc503a8a 3794 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3795 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3796 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3797 }
ddd872bc
AS
3798
3799 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3800 * the value fetched from the packet.
3801 * Already marked as written above.
ddd872bc 3802 */
61bd5218 3803 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3804 return 0;
3805}
3806
390ee7e2
AS
3807static int check_return_code(struct bpf_verifier_env *env)
3808{
3809 struct bpf_reg_state *reg;
3810 struct tnum range = tnum_range(0, 1);
3811
3812 switch (env->prog->type) {
3813 case BPF_PROG_TYPE_CGROUP_SKB:
3814 case BPF_PROG_TYPE_CGROUP_SOCK:
3815 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3816 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3817 break;
3818 default:
3819 return 0;
3820 }
3821
638f5b90 3822 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3823 if (reg->type != SCALAR_VALUE) {
61bd5218 3824 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3825 reg_type_str[reg->type]);
3826 return -EINVAL;
3827 }
3828
3829 if (!tnum_in(range, reg->var_off)) {
61bd5218 3830 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3831 if (!tnum_is_unknown(reg->var_off)) {
3832 char tn_buf[48];
3833
3834 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3835 verbose(env, "has value %s", tn_buf);
390ee7e2 3836 } else {
61bd5218 3837 verbose(env, "has unknown scalar value");
390ee7e2 3838 }
61bd5218 3839 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3840 return -EINVAL;
3841 }
3842 return 0;
3843}
3844
475fb78f
AS
3845/* non-recursive DFS pseudo code
3846 * 1 procedure DFS-iterative(G,v):
3847 * 2 label v as discovered
3848 * 3 let S be a stack
3849 * 4 S.push(v)
3850 * 5 while S is not empty
3851 * 6 t <- S.pop()
3852 * 7 if t is what we're looking for:
3853 * 8 return t
3854 * 9 for all edges e in G.adjacentEdges(t) do
3855 * 10 if edge e is already labelled
3856 * 11 continue with the next edge
3857 * 12 w <- G.adjacentVertex(t,e)
3858 * 13 if vertex w is not discovered and not explored
3859 * 14 label e as tree-edge
3860 * 15 label w as discovered
3861 * 16 S.push(w)
3862 * 17 continue at 5
3863 * 18 else if vertex w is discovered
3864 * 19 label e as back-edge
3865 * 20 else
3866 * 21 // vertex w is explored
3867 * 22 label e as forward- or cross-edge
3868 * 23 label t as explored
3869 * 24 S.pop()
3870 *
3871 * convention:
3872 * 0x10 - discovered
3873 * 0x11 - discovered and fall-through edge labelled
3874 * 0x12 - discovered and fall-through and branch edges labelled
3875 * 0x20 - explored
3876 */
3877
3878enum {
3879 DISCOVERED = 0x10,
3880 EXPLORED = 0x20,
3881 FALLTHROUGH = 1,
3882 BRANCH = 2,
3883};
3884
58e2af8b 3885#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3886
475fb78f
AS
3887static int *insn_stack; /* stack of insns to process */
3888static int cur_stack; /* current stack index */
3889static int *insn_state;
3890
3891/* t, w, e - match pseudo-code above:
3892 * t - index of current instruction
3893 * w - next instruction
3894 * e - edge
3895 */
58e2af8b 3896static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3897{
3898 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3899 return 0;
3900
3901 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3902 return 0;
3903
3904 if (w < 0 || w >= env->prog->len) {
61bd5218 3905 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3906 return -EINVAL;
3907 }
3908
f1bca824
AS
3909 if (e == BRANCH)
3910 /* mark branch target for state pruning */
3911 env->explored_states[w] = STATE_LIST_MARK;
3912
475fb78f
AS
3913 if (insn_state[w] == 0) {
3914 /* tree-edge */
3915 insn_state[t] = DISCOVERED | e;
3916 insn_state[w] = DISCOVERED;
3917 if (cur_stack >= env->prog->len)
3918 return -E2BIG;
3919 insn_stack[cur_stack++] = w;
3920 return 1;
3921 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3922 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3923 return -EINVAL;
3924 } else if (insn_state[w] == EXPLORED) {
3925 /* forward- or cross-edge */
3926 insn_state[t] = DISCOVERED | e;
3927 } else {
61bd5218 3928 verbose(env, "insn state internal bug\n");
475fb78f
AS
3929 return -EFAULT;
3930 }
3931 return 0;
3932}
3933
3934/* non-recursive depth-first-search to detect loops in BPF program
3935 * loop == back-edge in directed graph
3936 */
58e2af8b 3937static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3938{
3939 struct bpf_insn *insns = env->prog->insnsi;
3940 int insn_cnt = env->prog->len;
3941 int ret = 0;
3942 int i, t;
3943
cc8b0b92
AS
3944 ret = check_subprogs(env);
3945 if (ret < 0)
3946 return ret;
3947
475fb78f
AS
3948 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3949 if (!insn_state)
3950 return -ENOMEM;
3951
3952 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3953 if (!insn_stack) {
3954 kfree(insn_state);
3955 return -ENOMEM;
3956 }
3957
3958 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3959 insn_stack[0] = 0; /* 0 is the first instruction */
3960 cur_stack = 1;
3961
3962peek_stack:
3963 if (cur_stack == 0)
3964 goto check_state;
3965 t = insn_stack[cur_stack - 1];
3966
3967 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3968 u8 opcode = BPF_OP(insns[t].code);
3969
3970 if (opcode == BPF_EXIT) {
3971 goto mark_explored;
3972 } else if (opcode == BPF_CALL) {
3973 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3974 if (ret == 1)
3975 goto peek_stack;
3976 else if (ret < 0)
3977 goto err_free;
07016151
DB
3978 if (t + 1 < insn_cnt)
3979 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
3980 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
3981 env->explored_states[t] = STATE_LIST_MARK;
3982 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
3983 if (ret == 1)
3984 goto peek_stack;
3985 else if (ret < 0)
3986 goto err_free;
3987 }
475fb78f
AS
3988 } else if (opcode == BPF_JA) {
3989 if (BPF_SRC(insns[t].code) != BPF_K) {
3990 ret = -EINVAL;
3991 goto err_free;
3992 }
3993 /* unconditional jump with single edge */
3994 ret = push_insn(t, t + insns[t].off + 1,
3995 FALLTHROUGH, env);
3996 if (ret == 1)
3997 goto peek_stack;
3998 else if (ret < 0)
3999 goto err_free;
f1bca824
AS
4000 /* tell verifier to check for equivalent states
4001 * after every call and jump
4002 */
c3de6317
AS
4003 if (t + 1 < insn_cnt)
4004 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4005 } else {
4006 /* conditional jump with two edges */
3c2ce60b 4007 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4008 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4009 if (ret == 1)
4010 goto peek_stack;
4011 else if (ret < 0)
4012 goto err_free;
4013
4014 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4015 if (ret == 1)
4016 goto peek_stack;
4017 else if (ret < 0)
4018 goto err_free;
4019 }
4020 } else {
4021 /* all other non-branch instructions with single
4022 * fall-through edge
4023 */
4024 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4025 if (ret == 1)
4026 goto peek_stack;
4027 else if (ret < 0)
4028 goto err_free;
4029 }
4030
4031mark_explored:
4032 insn_state[t] = EXPLORED;
4033 if (cur_stack-- <= 0) {
61bd5218 4034 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4035 ret = -EFAULT;
4036 goto err_free;
4037 }
4038 goto peek_stack;
4039
4040check_state:
4041 for (i = 0; i < insn_cnt; i++) {
4042 if (insn_state[i] != EXPLORED) {
61bd5218 4043 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4044 ret = -EINVAL;
4045 goto err_free;
4046 }
4047 }
4048 ret = 0; /* cfg looks good */
4049
4050err_free:
4051 kfree(insn_state);
4052 kfree(insn_stack);
4053 return ret;
4054}
4055
f1174f77
EC
4056/* check %cur's range satisfies %old's */
4057static bool range_within(struct bpf_reg_state *old,
4058 struct bpf_reg_state *cur)
4059{
b03c9f9f
EC
4060 return old->umin_value <= cur->umin_value &&
4061 old->umax_value >= cur->umax_value &&
4062 old->smin_value <= cur->smin_value &&
4063 old->smax_value >= cur->smax_value;
f1174f77
EC
4064}
4065
4066/* Maximum number of register states that can exist at once */
4067#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4068struct idpair {
4069 u32 old;
4070 u32 cur;
4071};
4072
4073/* If in the old state two registers had the same id, then they need to have
4074 * the same id in the new state as well. But that id could be different from
4075 * the old state, so we need to track the mapping from old to new ids.
4076 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4077 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4078 * regs with a different old id could still have new id 9, we don't care about
4079 * that.
4080 * So we look through our idmap to see if this old id has been seen before. If
4081 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4082 */
f1174f77 4083static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4084{
f1174f77 4085 unsigned int i;
969bf05e 4086
f1174f77
EC
4087 for (i = 0; i < ID_MAP_SIZE; i++) {
4088 if (!idmap[i].old) {
4089 /* Reached an empty slot; haven't seen this id before */
4090 idmap[i].old = old_id;
4091 idmap[i].cur = cur_id;
4092 return true;
4093 }
4094 if (idmap[i].old == old_id)
4095 return idmap[i].cur == cur_id;
4096 }
4097 /* We ran out of idmap slots, which should be impossible */
4098 WARN_ON_ONCE(1);
4099 return false;
4100}
4101
4102/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4103static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4104 struct idpair *idmap)
f1174f77 4105{
f4d7e40a
AS
4106 bool equal;
4107
dc503a8a
EC
4108 if (!(rold->live & REG_LIVE_READ))
4109 /* explored state didn't use this */
4110 return true;
4111
f4d7e40a
AS
4112 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4113
4114 if (rold->type == PTR_TO_STACK)
4115 /* two stack pointers are equal only if they're pointing to
4116 * the same stack frame, since fp-8 in foo != fp-8 in bar
4117 */
4118 return equal && rold->frameno == rcur->frameno;
4119
4120 if (equal)
969bf05e
AS
4121 return true;
4122
f1174f77
EC
4123 if (rold->type == NOT_INIT)
4124 /* explored state can't have used this */
969bf05e 4125 return true;
f1174f77
EC
4126 if (rcur->type == NOT_INIT)
4127 return false;
4128 switch (rold->type) {
4129 case SCALAR_VALUE:
4130 if (rcur->type == SCALAR_VALUE) {
4131 /* new val must satisfy old val knowledge */
4132 return range_within(rold, rcur) &&
4133 tnum_in(rold->var_off, rcur->var_off);
4134 } else {
179d1c56
JH
4135 /* We're trying to use a pointer in place of a scalar.
4136 * Even if the scalar was unbounded, this could lead to
4137 * pointer leaks because scalars are allowed to leak
4138 * while pointers are not. We could make this safe in
4139 * special cases if root is calling us, but it's
4140 * probably not worth the hassle.
f1174f77 4141 */
179d1c56 4142 return false;
f1174f77
EC
4143 }
4144 case PTR_TO_MAP_VALUE:
1b688a19
EC
4145 /* If the new min/max/var_off satisfy the old ones and
4146 * everything else matches, we are OK.
4147 * We don't care about the 'id' value, because nothing
4148 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4149 */
4150 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4151 range_within(rold, rcur) &&
4152 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4153 case PTR_TO_MAP_VALUE_OR_NULL:
4154 /* a PTR_TO_MAP_VALUE could be safe to use as a
4155 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4156 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4157 * checked, doing so could have affected others with the same
4158 * id, and we can't check for that because we lost the id when
4159 * we converted to a PTR_TO_MAP_VALUE.
4160 */
4161 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4162 return false;
4163 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4164 return false;
4165 /* Check our ids match any regs they're supposed to */
4166 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4167 case PTR_TO_PACKET_META:
f1174f77 4168 case PTR_TO_PACKET:
de8f3a83 4169 if (rcur->type != rold->type)
f1174f77
EC
4170 return false;
4171 /* We must have at least as much range as the old ptr
4172 * did, so that any accesses which were safe before are
4173 * still safe. This is true even if old range < old off,
4174 * since someone could have accessed through (ptr - k), or
4175 * even done ptr -= k in a register, to get a safe access.
4176 */
4177 if (rold->range > rcur->range)
4178 return false;
4179 /* If the offsets don't match, we can't trust our alignment;
4180 * nor can we be sure that we won't fall out of range.
4181 */
4182 if (rold->off != rcur->off)
4183 return false;
4184 /* id relations must be preserved */
4185 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4186 return false;
4187 /* new val must satisfy old val knowledge */
4188 return range_within(rold, rcur) &&
4189 tnum_in(rold->var_off, rcur->var_off);
4190 case PTR_TO_CTX:
4191 case CONST_PTR_TO_MAP:
f1174f77
EC
4192 case PTR_TO_PACKET_END:
4193 /* Only valid matches are exact, which memcmp() above
4194 * would have accepted
4195 */
4196 default:
4197 /* Don't know what's going on, just say it's not safe */
4198 return false;
4199 }
969bf05e 4200
f1174f77
EC
4201 /* Shouldn't get here; if we do, say it's not safe */
4202 WARN_ON_ONCE(1);
969bf05e
AS
4203 return false;
4204}
4205
f4d7e40a
AS
4206static bool stacksafe(struct bpf_func_state *old,
4207 struct bpf_func_state *cur,
638f5b90
AS
4208 struct idpair *idmap)
4209{
4210 int i, spi;
4211
4212 /* if explored stack has more populated slots than current stack
4213 * such stacks are not equivalent
4214 */
4215 if (old->allocated_stack > cur->allocated_stack)
4216 return false;
4217
4218 /* walk slots of the explored stack and ignore any additional
4219 * slots in the current stack, since explored(safe) state
4220 * didn't use them
4221 */
4222 for (i = 0; i < old->allocated_stack; i++) {
4223 spi = i / BPF_REG_SIZE;
4224
cc2b14d5
AS
4225 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4226 /* explored state didn't use this */
fd05e57b 4227 continue;
cc2b14d5 4228
638f5b90
AS
4229 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4230 continue;
cc2b14d5
AS
4231 /* if old state was safe with misc data in the stack
4232 * it will be safe with zero-initialized stack.
4233 * The opposite is not true
4234 */
4235 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4236 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4237 continue;
638f5b90
AS
4238 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4239 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4240 /* Ex: old explored (safe) state has STACK_SPILL in
4241 * this stack slot, but current has has STACK_MISC ->
4242 * this verifier states are not equivalent,
4243 * return false to continue verification of this path
4244 */
4245 return false;
4246 if (i % BPF_REG_SIZE)
4247 continue;
4248 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4249 continue;
4250 if (!regsafe(&old->stack[spi].spilled_ptr,
4251 &cur->stack[spi].spilled_ptr,
4252 idmap))
4253 /* when explored and current stack slot are both storing
4254 * spilled registers, check that stored pointers types
4255 * are the same as well.
4256 * Ex: explored safe path could have stored
4257 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4258 * but current path has stored:
4259 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4260 * such verifier states are not equivalent.
4261 * return false to continue verification of this path
4262 */
4263 return false;
4264 }
4265 return true;
4266}
4267
f1bca824
AS
4268/* compare two verifier states
4269 *
4270 * all states stored in state_list are known to be valid, since
4271 * verifier reached 'bpf_exit' instruction through them
4272 *
4273 * this function is called when verifier exploring different branches of
4274 * execution popped from the state stack. If it sees an old state that has
4275 * more strict register state and more strict stack state then this execution
4276 * branch doesn't need to be explored further, since verifier already
4277 * concluded that more strict state leads to valid finish.
4278 *
4279 * Therefore two states are equivalent if register state is more conservative
4280 * and explored stack state is more conservative than the current one.
4281 * Example:
4282 * explored current
4283 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4284 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4285 *
4286 * In other words if current stack state (one being explored) has more
4287 * valid slots than old one that already passed validation, it means
4288 * the verifier can stop exploring and conclude that current state is valid too
4289 *
4290 * Similarly with registers. If explored state has register type as invalid
4291 * whereas register type in current state is meaningful, it means that
4292 * the current state will reach 'bpf_exit' instruction safely
4293 */
f4d7e40a
AS
4294static bool func_states_equal(struct bpf_func_state *old,
4295 struct bpf_func_state *cur)
f1bca824 4296{
f1174f77
EC
4297 struct idpair *idmap;
4298 bool ret = false;
f1bca824
AS
4299 int i;
4300
f1174f77
EC
4301 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4302 /* If we failed to allocate the idmap, just say it's not safe */
4303 if (!idmap)
1a0dc1ac 4304 return false;
f1174f77
EC
4305
4306 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4307 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4308 goto out_free;
f1bca824
AS
4309 }
4310
638f5b90
AS
4311 if (!stacksafe(old, cur, idmap))
4312 goto out_free;
f1174f77
EC
4313 ret = true;
4314out_free:
4315 kfree(idmap);
4316 return ret;
f1bca824
AS
4317}
4318
f4d7e40a
AS
4319static bool states_equal(struct bpf_verifier_env *env,
4320 struct bpf_verifier_state *old,
4321 struct bpf_verifier_state *cur)
4322{
4323 int i;
4324
4325 if (old->curframe != cur->curframe)
4326 return false;
4327
4328 /* for states to be equal callsites have to be the same
4329 * and all frame states need to be equivalent
4330 */
4331 for (i = 0; i <= old->curframe; i++) {
4332 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4333 return false;
4334 if (!func_states_equal(old->frame[i], cur->frame[i]))
4335 return false;
4336 }
4337 return true;
4338}
4339
8e9cd9ce 4340/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4341 * straight-line code between a state and its parent. When we arrive at an
4342 * equivalent state (jump target or such) we didn't arrive by the straight-line
4343 * code, so read marks in the state must propagate to the parent regardless
4344 * of the state's write marks. That's what 'parent == state->parent' comparison
4345 * in mark_reg_read() and mark_stack_slot_read() is for.
8e9cd9ce 4346 */
f4d7e40a
AS
4347static int propagate_liveness(struct bpf_verifier_env *env,
4348 const struct bpf_verifier_state *vstate,
4349 struct bpf_verifier_state *vparent)
dc503a8a 4350{
f4d7e40a
AS
4351 int i, frame, err = 0;
4352 struct bpf_func_state *state, *parent;
dc503a8a 4353
f4d7e40a
AS
4354 if (vparent->curframe != vstate->curframe) {
4355 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4356 vparent->curframe, vstate->curframe);
4357 return -EFAULT;
4358 }
dc503a8a
EC
4359 /* Propagate read liveness of registers... */
4360 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4361 /* We don't need to worry about FP liveness because it's read-only */
4362 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4363 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4364 continue;
f4d7e40a
AS
4365 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4366 err = mark_reg_read(env, vstate, vparent, i);
4367 if (err)
4368 return err;
dc503a8a
EC
4369 }
4370 }
f4d7e40a 4371
dc503a8a 4372 /* ... and stack slots */
f4d7e40a
AS
4373 for (frame = 0; frame <= vstate->curframe; frame++) {
4374 state = vstate->frame[frame];
4375 parent = vparent->frame[frame];
4376 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4377 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4378 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4379 continue;
4380 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4381 mark_stack_slot_read(env, vstate, vparent, i, frame);
dc503a8a
EC
4382 }
4383 }
f4d7e40a 4384 return err;
dc503a8a
EC
4385}
4386
58e2af8b 4387static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4388{
58e2af8b
JK
4389 struct bpf_verifier_state_list *new_sl;
4390 struct bpf_verifier_state_list *sl;
638f5b90 4391 struct bpf_verifier_state *cur = env->cur_state;
f4d7e40a 4392 int i, j, err;
f1bca824
AS
4393
4394 sl = env->explored_states[insn_idx];
4395 if (!sl)
4396 /* this 'insn_idx' instruction wasn't marked, so we will not
4397 * be doing state search here
4398 */
4399 return 0;
4400
4401 while (sl != STATE_LIST_MARK) {
638f5b90 4402 if (states_equal(env, &sl->state, cur)) {
f1bca824 4403 /* reached equivalent register/stack state,
dc503a8a
EC
4404 * prune the search.
4405 * Registers read by the continuation are read by us.
8e9cd9ce
EC
4406 * If we have any write marks in env->cur_state, they
4407 * will prevent corresponding reads in the continuation
4408 * from reaching our parent (an explored_state). Our
4409 * own state will get the read marks recorded, but
4410 * they'll be immediately forgotten as we're pruning
4411 * this state and will pop a new one.
f1bca824 4412 */
f4d7e40a
AS
4413 err = propagate_liveness(env, &sl->state, cur);
4414 if (err)
4415 return err;
f1bca824 4416 return 1;
dc503a8a 4417 }
f1bca824
AS
4418 sl = sl->next;
4419 }
4420
4421 /* there were no equivalent states, remember current one.
4422 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
4423 * but it will either reach outer most bpf_exit (which means it's safe)
4424 * or it will be rejected. Since there are no loops, we won't be
4425 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4426 * again on the way to bpf_exit
f1bca824 4427 */
638f5b90 4428 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
4429 if (!new_sl)
4430 return -ENOMEM;
4431
4432 /* add new state to the head of linked list */
1969db47
AS
4433 err = copy_verifier_state(&new_sl->state, cur);
4434 if (err) {
4435 free_verifier_state(&new_sl->state, false);
4436 kfree(new_sl);
4437 return err;
4438 }
f1bca824
AS
4439 new_sl->next = env->explored_states[insn_idx];
4440 env->explored_states[insn_idx] = new_sl;
dc503a8a 4441 /* connect new state to parentage chain */
638f5b90 4442 cur->parent = &new_sl->state;
8e9cd9ce
EC
4443 /* clear write marks in current state: the writes we did are not writes
4444 * our child did, so they don't screen off its reads from us.
4445 * (There are no read marks in current state, because reads always mark
4446 * their parent and current state never has children yet. Only
4447 * explored_states can get read marks.)
4448 */
dc503a8a 4449 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
4450 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4451
4452 /* all stack frames are accessible from callee, clear them all */
4453 for (j = 0; j <= cur->curframe; j++) {
4454 struct bpf_func_state *frame = cur->frame[j];
4455
4456 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
cc2b14d5 4457 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f4d7e40a 4458 }
f1bca824
AS
4459 return 0;
4460}
4461
58e2af8b 4462static int do_check(struct bpf_verifier_env *env)
17a52670 4463{
638f5b90 4464 struct bpf_verifier_state *state;
17a52670 4465 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 4466 struct bpf_reg_state *regs;
f4d7e40a 4467 int insn_cnt = env->prog->len, i;
17a52670
AS
4468 int insn_idx, prev_insn_idx = 0;
4469 int insn_processed = 0;
4470 bool do_print_state = false;
4471
638f5b90
AS
4472 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4473 if (!state)
4474 return -ENOMEM;
f4d7e40a 4475 state->curframe = 0;
dc503a8a 4476 state->parent = NULL;
f4d7e40a
AS
4477 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4478 if (!state->frame[0]) {
4479 kfree(state);
4480 return -ENOMEM;
4481 }
4482 env->cur_state = state;
4483 init_func_state(env, state->frame[0],
4484 BPF_MAIN_FUNC /* callsite */,
4485 0 /* frameno */,
4486 0 /* subprogno, zero == main subprog */);
17a52670
AS
4487 insn_idx = 0;
4488 for (;;) {
4489 struct bpf_insn *insn;
4490 u8 class;
4491 int err;
4492
4493 if (insn_idx >= insn_cnt) {
61bd5218 4494 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
4495 insn_idx, insn_cnt);
4496 return -EFAULT;
4497 }
4498
4499 insn = &insns[insn_idx];
4500 class = BPF_CLASS(insn->code);
4501
07016151 4502 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
4503 verbose(env,
4504 "BPF program is too large. Processed %d insn\n",
17a52670
AS
4505 insn_processed);
4506 return -E2BIG;
4507 }
4508
f1bca824
AS
4509 err = is_state_visited(env, insn_idx);
4510 if (err < 0)
4511 return err;
4512 if (err == 1) {
4513 /* found equivalent state, can prune the search */
61bd5218 4514 if (env->log.level) {
f1bca824 4515 if (do_print_state)
61bd5218 4516 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
4517 prev_insn_idx, insn_idx);
4518 else
61bd5218 4519 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
4520 }
4521 goto process_bpf_exit;
4522 }
4523
3c2ce60b
DB
4524 if (need_resched())
4525 cond_resched();
4526
61bd5218
JK
4527 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4528 if (env->log.level > 1)
4529 verbose(env, "%d:", insn_idx);
c5fc9692 4530 else
61bd5218 4531 verbose(env, "\nfrom %d to %d:",
c5fc9692 4532 prev_insn_idx, insn_idx);
f4d7e40a 4533 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
4534 do_print_state = false;
4535 }
4536
61bd5218 4537 if (env->log.level) {
7105e828
DB
4538 const struct bpf_insn_cbs cbs = {
4539 .cb_print = verbose,
4540 };
4541
61bd5218 4542 verbose(env, "%d: ", insn_idx);
7105e828 4543 print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks);
17a52670
AS
4544 }
4545
cae1927c
JK
4546 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4547 err = bpf_prog_offload_verify_insn(env, insn_idx,
4548 prev_insn_idx);
4549 if (err)
4550 return err;
4551 }
13a27dfc 4552
638f5b90 4553 regs = cur_regs(env);
c131187d 4554 env->insn_aux_data[insn_idx].seen = true;
17a52670 4555 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 4556 err = check_alu_op(env, insn);
17a52670
AS
4557 if (err)
4558 return err;
4559
4560 } else if (class == BPF_LDX) {
3df126f3 4561 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
4562
4563 /* check for reserved fields is already done */
4564
17a52670 4565 /* check src operand */
dc503a8a 4566 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4567 if (err)
4568 return err;
4569
dc503a8a 4570 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4571 if (err)
4572 return err;
4573
725f9dcd
AS
4574 src_reg_type = regs[insn->src_reg].type;
4575
17a52670
AS
4576 /* check that memory (src_reg + off) is readable,
4577 * the state of dst_reg will be updated by this func
4578 */
31fd8581 4579 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
4580 BPF_SIZE(insn->code), BPF_READ,
4581 insn->dst_reg);
4582 if (err)
4583 return err;
4584
3df126f3
JK
4585 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4586
4587 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
4588 /* saw a valid insn
4589 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 4590 * save type to validate intersecting paths
9bac3d6d 4591 */
3df126f3 4592 *prev_src_type = src_reg_type;
9bac3d6d 4593
3df126f3 4594 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 4595 (src_reg_type == PTR_TO_CTX ||
3df126f3 4596 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
4597 /* ABuser program is trying to use the same insn
4598 * dst_reg = *(u32*) (src_reg + off)
4599 * with different pointer types:
4600 * src_reg == ctx in one branch and
4601 * src_reg == stack|map in some other branch.
4602 * Reject it.
4603 */
61bd5218 4604 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
4605 return -EINVAL;
4606 }
4607
17a52670 4608 } else if (class == BPF_STX) {
3df126f3 4609 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4610
17a52670 4611 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4612 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4613 if (err)
4614 return err;
4615 insn_idx++;
4616 continue;
4617 }
4618
17a52670 4619 /* check src1 operand */
dc503a8a 4620 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4621 if (err)
4622 return err;
4623 /* check src2 operand */
dc503a8a 4624 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4625 if (err)
4626 return err;
4627
d691f9e8
AS
4628 dst_reg_type = regs[insn->dst_reg].type;
4629
17a52670 4630 /* check that memory (dst_reg + off) is writeable */
31fd8581 4631 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
4632 BPF_SIZE(insn->code), BPF_WRITE,
4633 insn->src_reg);
4634 if (err)
4635 return err;
4636
3df126f3
JK
4637 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4638
4639 if (*prev_dst_type == NOT_INIT) {
4640 *prev_dst_type = dst_reg_type;
4641 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4642 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4643 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4644 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4645 return -EINVAL;
4646 }
4647
17a52670
AS
4648 } else if (class == BPF_ST) {
4649 if (BPF_MODE(insn->code) != BPF_MEM ||
4650 insn->src_reg != BPF_REG_0) {
61bd5218 4651 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4652 return -EINVAL;
4653 }
4654 /* check src operand */
dc503a8a 4655 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4656 if (err)
4657 return err;
4658
4659 /* check that memory (dst_reg + off) is writeable */
31fd8581 4660 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
4661 BPF_SIZE(insn->code), BPF_WRITE,
4662 -1);
4663 if (err)
4664 return err;
4665
4666 } else if (class == BPF_JMP) {
4667 u8 opcode = BPF_OP(insn->code);
4668
4669 if (opcode == BPF_CALL) {
4670 if (BPF_SRC(insn->code) != BPF_K ||
4671 insn->off != 0 ||
f4d7e40a
AS
4672 (insn->src_reg != BPF_REG_0 &&
4673 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 4674 insn->dst_reg != BPF_REG_0) {
61bd5218 4675 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4676 return -EINVAL;
4677 }
4678
f4d7e40a
AS
4679 if (insn->src_reg == BPF_PSEUDO_CALL)
4680 err = check_func_call(env, insn, &insn_idx);
4681 else
4682 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
4683 if (err)
4684 return err;
4685
4686 } else if (opcode == BPF_JA) {
4687 if (BPF_SRC(insn->code) != BPF_K ||
4688 insn->imm != 0 ||
4689 insn->src_reg != BPF_REG_0 ||
4690 insn->dst_reg != BPF_REG_0) {
61bd5218 4691 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4692 return -EINVAL;
4693 }
4694
4695 insn_idx += insn->off + 1;
4696 continue;
4697
4698 } else if (opcode == BPF_EXIT) {
4699 if (BPF_SRC(insn->code) != BPF_K ||
4700 insn->imm != 0 ||
4701 insn->src_reg != BPF_REG_0 ||
4702 insn->dst_reg != BPF_REG_0) {
61bd5218 4703 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4704 return -EINVAL;
4705 }
4706
f4d7e40a
AS
4707 if (state->curframe) {
4708 /* exit from nested function */
4709 prev_insn_idx = insn_idx;
4710 err = prepare_func_exit(env, &insn_idx);
4711 if (err)
4712 return err;
4713 do_print_state = true;
4714 continue;
4715 }
4716
17a52670
AS
4717 /* eBPF calling convetion is such that R0 is used
4718 * to return the value from eBPF program.
4719 * Make sure that it's readable at this time
4720 * of bpf_exit, which means that program wrote
4721 * something into it earlier
4722 */
dc503a8a 4723 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4724 if (err)
4725 return err;
4726
1be7f75d 4727 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4728 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4729 return -EACCES;
4730 }
4731
390ee7e2
AS
4732 err = check_return_code(env);
4733 if (err)
4734 return err;
f1bca824 4735process_bpf_exit:
638f5b90
AS
4736 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4737 if (err < 0) {
4738 if (err != -ENOENT)
4739 return err;
17a52670
AS
4740 break;
4741 } else {
4742 do_print_state = true;
4743 continue;
4744 }
4745 } else {
4746 err = check_cond_jmp_op(env, insn, &insn_idx);
4747 if (err)
4748 return err;
4749 }
4750 } else if (class == BPF_LD) {
4751 u8 mode = BPF_MODE(insn->code);
4752
4753 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4754 err = check_ld_abs(env, insn);
4755 if (err)
4756 return err;
4757
17a52670
AS
4758 } else if (mode == BPF_IMM) {
4759 err = check_ld_imm(env, insn);
4760 if (err)
4761 return err;
4762
4763 insn_idx++;
c131187d 4764 env->insn_aux_data[insn_idx].seen = true;
17a52670 4765 } else {
61bd5218 4766 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4767 return -EINVAL;
4768 }
4769 } else {
61bd5218 4770 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4771 return -EINVAL;
4772 }
4773
4774 insn_idx++;
4775 }
4776
f4d7e40a
AS
4777 verbose(env, "processed %d insns, stack depth ", insn_processed);
4778 for (i = 0; i < env->subprog_cnt + 1; i++) {
4779 u32 depth = env->subprog_stack_depth[i];
4780
4781 verbose(env, "%d", depth);
4782 if (i + 1 < env->subprog_cnt + 1)
4783 verbose(env, "+");
4784 }
4785 verbose(env, "\n");
4786 env->prog->aux->stack_depth = env->subprog_stack_depth[0];
17a52670
AS
4787 return 0;
4788}
4789
56f668df
MKL
4790static int check_map_prealloc(struct bpf_map *map)
4791{
4792 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4793 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4794 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4795 !(map->map_flags & BPF_F_NO_PREALLOC);
4796}
4797
61bd5218
JK
4798static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4799 struct bpf_map *map,
fdc15d38
AS
4800 struct bpf_prog *prog)
4801
4802{
56f668df
MKL
4803 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4804 * preallocated hash maps, since doing memory allocation
4805 * in overflow_handler can crash depending on where nmi got
4806 * triggered.
4807 */
4808 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4809 if (!check_map_prealloc(map)) {
61bd5218 4810 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4811 return -EINVAL;
4812 }
4813 if (map->inner_map_meta &&
4814 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4815 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4816 return -EINVAL;
4817 }
fdc15d38 4818 }
a3884572
JK
4819
4820 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4821 !bpf_offload_dev_match(prog, map)) {
4822 verbose(env, "offload device mismatch between prog and map\n");
4823 return -EINVAL;
4824 }
4825
fdc15d38
AS
4826 return 0;
4827}
4828
0246e64d
AS
4829/* look for pseudo eBPF instructions that access map FDs and
4830 * replace them with actual map pointers
4831 */
58e2af8b 4832static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4833{
4834 struct bpf_insn *insn = env->prog->insnsi;
4835 int insn_cnt = env->prog->len;
fdc15d38 4836 int i, j, err;
0246e64d 4837
f1f7714e 4838 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4839 if (err)
4840 return err;
4841
0246e64d 4842 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4843 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4844 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4845 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4846 return -EINVAL;
4847 }
4848
d691f9e8
AS
4849 if (BPF_CLASS(insn->code) == BPF_STX &&
4850 ((BPF_MODE(insn->code) != BPF_MEM &&
4851 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4852 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4853 return -EINVAL;
4854 }
4855
0246e64d
AS
4856 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4857 struct bpf_map *map;
4858 struct fd f;
4859
4860 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4861 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4862 insn[1].off != 0) {
61bd5218 4863 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4864 return -EINVAL;
4865 }
4866
4867 if (insn->src_reg == 0)
4868 /* valid generic load 64-bit imm */
4869 goto next_insn;
4870
4871 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4872 verbose(env,
4873 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4874 return -EINVAL;
4875 }
4876
4877 f = fdget(insn->imm);
c2101297 4878 map = __bpf_map_get(f);
0246e64d 4879 if (IS_ERR(map)) {
61bd5218 4880 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4881 insn->imm);
0246e64d
AS
4882 return PTR_ERR(map);
4883 }
4884
61bd5218 4885 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4886 if (err) {
4887 fdput(f);
4888 return err;
4889 }
4890
0246e64d
AS
4891 /* store map pointer inside BPF_LD_IMM64 instruction */
4892 insn[0].imm = (u32) (unsigned long) map;
4893 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4894
4895 /* check whether we recorded this map already */
4896 for (j = 0; j < env->used_map_cnt; j++)
4897 if (env->used_maps[j] == map) {
4898 fdput(f);
4899 goto next_insn;
4900 }
4901
4902 if (env->used_map_cnt >= MAX_USED_MAPS) {
4903 fdput(f);
4904 return -E2BIG;
4905 }
4906
0246e64d
AS
4907 /* hold the map. If the program is rejected by verifier,
4908 * the map will be released by release_maps() or it
4909 * will be used by the valid program until it's unloaded
4910 * and all maps are released in free_bpf_prog_info()
4911 */
92117d84
AS
4912 map = bpf_map_inc(map, false);
4913 if (IS_ERR(map)) {
4914 fdput(f);
4915 return PTR_ERR(map);
4916 }
4917 env->used_maps[env->used_map_cnt++] = map;
4918
0246e64d
AS
4919 fdput(f);
4920next_insn:
4921 insn++;
4922 i++;
4923 }
4924 }
4925
4926 /* now all pseudo BPF_LD_IMM64 instructions load valid
4927 * 'struct bpf_map *' into a register instead of user map_fd.
4928 * These pointers will be used later by verifier to validate map access.
4929 */
4930 return 0;
4931}
4932
4933/* drop refcnt of maps used by the rejected program */
58e2af8b 4934static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4935{
4936 int i;
4937
4938 for (i = 0; i < env->used_map_cnt; i++)
4939 bpf_map_put(env->used_maps[i]);
4940}
4941
4942/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4943static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4944{
4945 struct bpf_insn *insn = env->prog->insnsi;
4946 int insn_cnt = env->prog->len;
4947 int i;
4948
4949 for (i = 0; i < insn_cnt; i++, insn++)
4950 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4951 insn->src_reg = 0;
4952}
4953
8041902d
AS
4954/* single env->prog->insni[off] instruction was replaced with the range
4955 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4956 * [0, off) and [off, end) to new locations, so the patched range stays zero
4957 */
4958static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4959 u32 off, u32 cnt)
4960{
4961 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4962 int i;
8041902d
AS
4963
4964 if (cnt == 1)
4965 return 0;
4966 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4967 if (!new_data)
4968 return -ENOMEM;
4969 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4970 memcpy(new_data + off + cnt - 1, old_data + off,
4971 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4972 for (i = off; i < off + cnt - 1; i++)
4973 new_data[i].seen = true;
8041902d
AS
4974 env->insn_aux_data = new_data;
4975 vfree(old_data);
4976 return 0;
4977}
4978
cc8b0b92
AS
4979static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
4980{
4981 int i;
4982
4983 if (len == 1)
4984 return;
4985 for (i = 0; i < env->subprog_cnt; i++) {
4986 if (env->subprog_starts[i] < off)
4987 continue;
4988 env->subprog_starts[i] += len - 1;
4989 }
4990}
4991
8041902d
AS
4992static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4993 const struct bpf_insn *patch, u32 len)
4994{
4995 struct bpf_prog *new_prog;
4996
4997 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4998 if (!new_prog)
4999 return NULL;
5000 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5001 return NULL;
cc8b0b92 5002 adjust_subprog_starts(env, off, len);
8041902d
AS
5003 return new_prog;
5004}
5005
c131187d
AS
5006/* The verifier does more data flow analysis than llvm and will not explore
5007 * branches that are dead at run time. Malicious programs can have dead code
5008 * too. Therefore replace all dead at-run-time code with nops.
5009 */
5010static void sanitize_dead_code(struct bpf_verifier_env *env)
5011{
5012 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5013 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
5014 struct bpf_insn *insn = env->prog->insnsi;
5015 const int insn_cnt = env->prog->len;
5016 int i;
5017
5018 for (i = 0; i < insn_cnt; i++) {
5019 if (aux_data[i].seen)
5020 continue;
5021 memcpy(insn + i, &nop, sizeof(nop));
5022 }
5023}
5024
9bac3d6d
AS
5025/* convert load instructions that access fields of 'struct __sk_buff'
5026 * into sequence of instructions that access fields of 'struct sk_buff'
5027 */
58e2af8b 5028static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5029{
00176a34 5030 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5031 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5032 const int insn_cnt = env->prog->len;
36bbef52 5033 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5034 struct bpf_prog *new_prog;
d691f9e8 5035 enum bpf_access_type type;
f96da094
DB
5036 bool is_narrower_load;
5037 u32 target_size;
9bac3d6d 5038
36bbef52
DB
5039 if (ops->gen_prologue) {
5040 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5041 env->prog);
5042 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5043 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5044 return -EINVAL;
5045 } else if (cnt) {
8041902d 5046 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5047 if (!new_prog)
5048 return -ENOMEM;
8041902d 5049
36bbef52 5050 env->prog = new_prog;
3df126f3 5051 delta += cnt - 1;
36bbef52
DB
5052 }
5053 }
5054
5055 if (!ops->convert_ctx_access)
9bac3d6d
AS
5056 return 0;
5057
3df126f3 5058 insn = env->prog->insnsi + delta;
36bbef52 5059
9bac3d6d 5060 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
5061 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5062 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5063 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5064 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5065 type = BPF_READ;
62c7989b
DB
5066 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5067 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5068 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5069 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5070 type = BPF_WRITE;
5071 else
9bac3d6d
AS
5072 continue;
5073
8041902d 5074 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 5075 continue;
9bac3d6d 5076
31fd8581 5077 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5078 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5079
5080 /* If the read access is a narrower load of the field,
5081 * convert to a 4/8-byte load, to minimum program type specific
5082 * convert_ctx_access changes. If conversion is successful,
5083 * we will apply proper mask to the result.
5084 */
f96da094 5085 is_narrower_load = size < ctx_field_size;
31fd8581 5086 if (is_narrower_load) {
f96da094
DB
5087 u32 off = insn->off;
5088 u8 size_code;
5089
5090 if (type == BPF_WRITE) {
61bd5218 5091 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5092 return -EINVAL;
5093 }
31fd8581 5094
f96da094 5095 size_code = BPF_H;
31fd8581
YS
5096 if (ctx_field_size == 4)
5097 size_code = BPF_W;
5098 else if (ctx_field_size == 8)
5099 size_code = BPF_DW;
f96da094 5100
31fd8581
YS
5101 insn->off = off & ~(ctx_field_size - 1);
5102 insn->code = BPF_LDX | BPF_MEM | size_code;
5103 }
f96da094
DB
5104
5105 target_size = 0;
5106 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5107 &target_size);
5108 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5109 (ctx_field_size && !target_size)) {
61bd5218 5110 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5111 return -EINVAL;
5112 }
f96da094
DB
5113
5114 if (is_narrower_load && size < target_size) {
31fd8581
YS
5115 if (ctx_field_size <= 4)
5116 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5117 (1 << size * 8) - 1);
31fd8581
YS
5118 else
5119 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5120 (1 << size * 8) - 1);
31fd8581 5121 }
9bac3d6d 5122
8041902d 5123 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5124 if (!new_prog)
5125 return -ENOMEM;
5126
3df126f3 5127 delta += cnt - 1;
9bac3d6d
AS
5128
5129 /* keep walking new program and skip insns we just inserted */
5130 env->prog = new_prog;
3df126f3 5131 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5132 }
5133
5134 return 0;
5135}
5136
1c2a088a
AS
5137static int jit_subprogs(struct bpf_verifier_env *env)
5138{
5139 struct bpf_prog *prog = env->prog, **func, *tmp;
5140 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5141 struct bpf_insn *insn;
1c2a088a
AS
5142 void *old_bpf_func;
5143 int err = -ENOMEM;
5144
5145 if (env->subprog_cnt == 0)
5146 return 0;
5147
7105e828 5148 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5149 if (insn->code != (BPF_JMP | BPF_CALL) ||
5150 insn->src_reg != BPF_PSEUDO_CALL)
5151 continue;
5152 subprog = find_subprog(env, i + insn->imm + 1);
5153 if (subprog < 0) {
5154 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5155 i + insn->imm + 1);
5156 return -EFAULT;
5157 }
5158 /* temporarily remember subprog id inside insn instead of
5159 * aux_data, since next loop will split up all insns into funcs
5160 */
5161 insn->off = subprog + 1;
5162 /* remember original imm in case JIT fails and fallback
5163 * to interpreter will be needed
5164 */
5165 env->insn_aux_data[i].call_imm = insn->imm;
5166 /* point imm to __bpf_call_base+1 from JITs point of view */
5167 insn->imm = 1;
5168 }
5169
5170 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
5171 if (!func)
5172 return -ENOMEM;
5173
5174 for (i = 0; i <= env->subprog_cnt; i++) {
5175 subprog_start = subprog_end;
5176 if (env->subprog_cnt == i)
5177 subprog_end = prog->len;
5178 else
5179 subprog_end = env->subprog_starts[i];
5180
5181 len = subprog_end - subprog_start;
5182 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5183 if (!func[i])
5184 goto out_free;
5185 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5186 len * sizeof(struct bpf_insn));
4f74d809 5187 func[i]->type = prog->type;
1c2a088a 5188 func[i]->len = len;
4f74d809
DB
5189 if (bpf_prog_calc_tag(func[i]))
5190 goto out_free;
1c2a088a
AS
5191 func[i]->is_func = 1;
5192 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5193 * Long term would need debug info to populate names
5194 */
5195 func[i]->aux->name[0] = 'F';
5196 func[i]->aux->stack_depth = env->subprog_stack_depth[i];
5197 func[i]->jit_requested = 1;
5198 func[i] = bpf_int_jit_compile(func[i]);
5199 if (!func[i]->jited) {
5200 err = -ENOTSUPP;
5201 goto out_free;
5202 }
5203 cond_resched();
5204 }
5205 /* at this point all bpf functions were successfully JITed
5206 * now populate all bpf_calls with correct addresses and
5207 * run last pass of JIT
5208 */
5209 for (i = 0; i <= env->subprog_cnt; i++) {
5210 insn = func[i]->insnsi;
5211 for (j = 0; j < func[i]->len; j++, insn++) {
5212 if (insn->code != (BPF_JMP | BPF_CALL) ||
5213 insn->src_reg != BPF_PSEUDO_CALL)
5214 continue;
5215 subprog = insn->off;
5216 insn->off = 0;
5217 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5218 func[subprog]->bpf_func -
5219 __bpf_call_base;
5220 }
5221 }
5222 for (i = 0; i <= env->subprog_cnt; i++) {
5223 old_bpf_func = func[i]->bpf_func;
5224 tmp = bpf_int_jit_compile(func[i]);
5225 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5226 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5227 err = -EFAULT;
5228 goto out_free;
5229 }
5230 cond_resched();
5231 }
5232
5233 /* finally lock prog and jit images for all functions and
5234 * populate kallsysm
5235 */
5236 for (i = 0; i <= env->subprog_cnt; i++) {
5237 bpf_prog_lock_ro(func[i]);
5238 bpf_prog_kallsyms_add(func[i]);
5239 }
7105e828
DB
5240
5241 /* Last step: make now unused interpreter insns from main
5242 * prog consistent for later dump requests, so they can
5243 * later look the same as if they were interpreted only.
5244 */
5245 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5246 unsigned long addr;
5247
5248 if (insn->code != (BPF_JMP | BPF_CALL) ||
5249 insn->src_reg != BPF_PSEUDO_CALL)
5250 continue;
5251 insn->off = env->insn_aux_data[i].call_imm;
5252 subprog = find_subprog(env, i + insn->off + 1);
5253 addr = (unsigned long)func[subprog + 1]->bpf_func;
5254 addr &= PAGE_MASK;
5255 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5256 addr - __bpf_call_base;
5257 }
5258
1c2a088a
AS
5259 prog->jited = 1;
5260 prog->bpf_func = func[0]->bpf_func;
5261 prog->aux->func = func;
5262 prog->aux->func_cnt = env->subprog_cnt + 1;
5263 return 0;
5264out_free:
5265 for (i = 0; i <= env->subprog_cnt; i++)
5266 if (func[i])
5267 bpf_jit_free(func[i]);
5268 kfree(func);
5269 /* cleanup main prog to be interpreted */
5270 prog->jit_requested = 0;
5271 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5272 if (insn->code != (BPF_JMP | BPF_CALL) ||
5273 insn->src_reg != BPF_PSEUDO_CALL)
5274 continue;
5275 insn->off = 0;
5276 insn->imm = env->insn_aux_data[i].call_imm;
5277 }
5278 return err;
5279}
5280
1ea47e01
AS
5281static int fixup_call_args(struct bpf_verifier_env *env)
5282{
19d28fbd 5283#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5284 struct bpf_prog *prog = env->prog;
5285 struct bpf_insn *insn = prog->insnsi;
5286 int i, depth;
19d28fbd
DM
5287#endif
5288 int err;
1ea47e01 5289
19d28fbd
DM
5290 err = 0;
5291 if (env->prog->jit_requested) {
5292 err = jit_subprogs(env);
5293 if (err == 0)
1c2a088a 5294 return 0;
19d28fbd
DM
5295 }
5296#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5297 for (i = 0; i < prog->len; i++, insn++) {
5298 if (insn->code != (BPF_JMP | BPF_CALL) ||
5299 insn->src_reg != BPF_PSEUDO_CALL)
5300 continue;
5301 depth = get_callee_stack_depth(env, insn, i);
5302 if (depth < 0)
5303 return depth;
5304 bpf_patch_call_args(insn, depth);
5305 }
19d28fbd
DM
5306 err = 0;
5307#endif
5308 return err;
1ea47e01
AS
5309}
5310
79741b3b 5311/* fixup insn->imm field of bpf_call instructions
81ed18ab 5312 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
5313 *
5314 * this function is called after eBPF program passed verification
5315 */
79741b3b 5316static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 5317{
79741b3b
AS
5318 struct bpf_prog *prog = env->prog;
5319 struct bpf_insn *insn = prog->insnsi;
e245c5c6 5320 const struct bpf_func_proto *fn;
79741b3b 5321 const int insn_cnt = prog->len;
81ed18ab
AS
5322 struct bpf_insn insn_buf[16];
5323 struct bpf_prog *new_prog;
5324 struct bpf_map *map_ptr;
5325 int i, cnt, delta = 0;
e245c5c6 5326
79741b3b
AS
5327 for (i = 0; i < insn_cnt; i++, insn++) {
5328 if (insn->code != (BPF_JMP | BPF_CALL))
5329 continue;
cc8b0b92
AS
5330 if (insn->src_reg == BPF_PSEUDO_CALL)
5331 continue;
e245c5c6 5332
79741b3b
AS
5333 if (insn->imm == BPF_FUNC_get_route_realm)
5334 prog->dst_needed = 1;
5335 if (insn->imm == BPF_FUNC_get_prandom_u32)
5336 bpf_user_rnd_init_once();
9802d865
JB
5337 if (insn->imm == BPF_FUNC_override_return)
5338 prog->kprobe_override = 1;
79741b3b 5339 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
5340 /* If we tail call into other programs, we
5341 * cannot make any assumptions since they can
5342 * be replaced dynamically during runtime in
5343 * the program array.
5344 */
5345 prog->cb_access = 1;
80a58d02 5346 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 5347
79741b3b
AS
5348 /* mark bpf_tail_call as different opcode to avoid
5349 * conditional branch in the interpeter for every normal
5350 * call and to prevent accidental JITing by JIT compiler
5351 * that doesn't support bpf_tail_call yet
e245c5c6 5352 */
79741b3b 5353 insn->imm = 0;
71189fa9 5354 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
5355
5356 /* instead of changing every JIT dealing with tail_call
5357 * emit two extra insns:
5358 * if (index >= max_entries) goto out;
5359 * index &= array->index_mask;
5360 * to avoid out-of-bounds cpu speculation
5361 */
5362 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5363 if (map_ptr == BPF_MAP_PTR_POISON) {
5364 verbose(env, "tail_call obusing map_ptr\n");
5365 return -EINVAL;
5366 }
5367 if (!map_ptr->unpriv_array)
5368 continue;
5369 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5370 map_ptr->max_entries, 2);
5371 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5372 container_of(map_ptr,
5373 struct bpf_array,
5374 map)->index_mask);
5375 insn_buf[2] = *insn;
5376 cnt = 3;
5377 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5378 if (!new_prog)
5379 return -ENOMEM;
5380
5381 delta += cnt - 1;
5382 env->prog = prog = new_prog;
5383 insn = new_prog->insnsi + i + delta;
79741b3b
AS
5384 continue;
5385 }
e245c5c6 5386
89c63074
DB
5387 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5388 * handlers are currently limited to 64 bit only.
5389 */
60b58afc 5390 if (prog->jit_requested && BITS_PER_LONG == 64 &&
89c63074 5391 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 5392 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
5393 if (map_ptr == BPF_MAP_PTR_POISON ||
5394 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
5395 goto patch_call_imm;
5396
5397 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5398 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5399 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
5400 return -EINVAL;
5401 }
5402
5403 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5404 cnt);
5405 if (!new_prog)
5406 return -ENOMEM;
5407
5408 delta += cnt - 1;
5409
5410 /* keep walking new program and skip insns we just inserted */
5411 env->prog = prog = new_prog;
5412 insn = new_prog->insnsi + i + delta;
5413 continue;
5414 }
5415
109980b8 5416 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
5417 /* Note, we cannot use prog directly as imm as subsequent
5418 * rewrites would still change the prog pointer. The only
5419 * stable address we can use is aux, which also works with
5420 * prog clones during blinding.
5421 */
5422 u64 addr = (unsigned long)prog->aux;
109980b8
DB
5423 struct bpf_insn r4_ld[] = {
5424 BPF_LD_IMM64(BPF_REG_4, addr),
5425 *insn,
5426 };
5427 cnt = ARRAY_SIZE(r4_ld);
5428
5429 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5430 if (!new_prog)
5431 return -ENOMEM;
5432
5433 delta += cnt - 1;
5434 env->prog = prog = new_prog;
5435 insn = new_prog->insnsi + i + delta;
5436 }
81ed18ab 5437patch_call_imm:
00176a34 5438 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
5439 /* all functions that have prototype and verifier allowed
5440 * programs to call them, must be real in-kernel functions
5441 */
5442 if (!fn->func) {
61bd5218
JK
5443 verbose(env,
5444 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
5445 func_id_name(insn->imm), insn->imm);
5446 return -EFAULT;
e245c5c6 5447 }
79741b3b 5448 insn->imm = fn->func - __bpf_call_base;
e245c5c6 5449 }
e245c5c6 5450
79741b3b
AS
5451 return 0;
5452}
e245c5c6 5453
58e2af8b 5454static void free_states(struct bpf_verifier_env *env)
f1bca824 5455{
58e2af8b 5456 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
5457 int i;
5458
5459 if (!env->explored_states)
5460 return;
5461
5462 for (i = 0; i < env->prog->len; i++) {
5463 sl = env->explored_states[i];
5464
5465 if (sl)
5466 while (sl != STATE_LIST_MARK) {
5467 sln = sl->next;
1969db47 5468 free_verifier_state(&sl->state, false);
f1bca824
AS
5469 kfree(sl);
5470 sl = sln;
5471 }
5472 }
5473
5474 kfree(env->explored_states);
5475}
5476
9bac3d6d 5477int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 5478{
58e2af8b 5479 struct bpf_verifier_env *env;
61bd5218 5480 struct bpf_verifer_log *log;
51580e79
AS
5481 int ret = -EINVAL;
5482
eba0c929
AB
5483 /* no program is valid */
5484 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5485 return -EINVAL;
5486
58e2af8b 5487 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
5488 * allocate/free it every time bpf_check() is called
5489 */
58e2af8b 5490 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
5491 if (!env)
5492 return -ENOMEM;
61bd5218 5493 log = &env->log;
cbd35700 5494
3df126f3
JK
5495 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5496 (*prog)->len);
5497 ret = -ENOMEM;
5498 if (!env->insn_aux_data)
5499 goto err_free_env;
9bac3d6d 5500 env->prog = *prog;
00176a34 5501 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 5502
cbd35700
AS
5503 /* grab the mutex to protect few globals used by verifier */
5504 mutex_lock(&bpf_verifier_lock);
5505
5506 if (attr->log_level || attr->log_buf || attr->log_size) {
5507 /* user requested verbose verifier output
5508 * and supplied buffer to store the verification trace
5509 */
e7bf8249
JK
5510 log->level = attr->log_level;
5511 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5512 log->len_total = attr->log_size;
cbd35700
AS
5513
5514 ret = -EINVAL;
e7bf8249
JK
5515 /* log attributes have to be sane */
5516 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5517 !log->level || !log->ubuf)
3df126f3 5518 goto err_unlock;
cbd35700 5519 }
1ad2f583
DB
5520
5521 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5522 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 5523 env->strict_alignment = true;
cbd35700 5524
cae1927c 5525 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
5526 ret = bpf_prog_offload_verifier_prep(env);
5527 if (ret)
5528 goto err_unlock;
5529 }
5530
0246e64d
AS
5531 ret = replace_map_fd_with_map_ptr(env);
5532 if (ret < 0)
5533 goto skip_full_check;
5534
9bac3d6d 5535 env->explored_states = kcalloc(env->prog->len,
58e2af8b 5536 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
5537 GFP_USER);
5538 ret = -ENOMEM;
5539 if (!env->explored_states)
5540 goto skip_full_check;
5541
cc8b0b92
AS
5542 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5543
475fb78f
AS
5544 ret = check_cfg(env);
5545 if (ret < 0)
5546 goto skip_full_check;
5547
17a52670 5548 ret = do_check(env);
8c01c4f8
CG
5549 if (env->cur_state) {
5550 free_verifier_state(env->cur_state, true);
5551 env->cur_state = NULL;
5552 }
cbd35700 5553
0246e64d 5554skip_full_check:
638f5b90 5555 while (!pop_stack(env, NULL, NULL));
f1bca824 5556 free_states(env);
0246e64d 5557
c131187d
AS
5558 if (ret == 0)
5559 sanitize_dead_code(env);
5560
70a87ffe
AS
5561 if (ret == 0)
5562 ret = check_max_stack_depth(env);
5563
9bac3d6d
AS
5564 if (ret == 0)
5565 /* program is valid, convert *(u32*)(ctx + off) accesses */
5566 ret = convert_ctx_accesses(env);
5567
e245c5c6 5568 if (ret == 0)
79741b3b 5569 ret = fixup_bpf_calls(env);
e245c5c6 5570
1ea47e01
AS
5571 if (ret == 0)
5572 ret = fixup_call_args(env);
5573
a2a7d570 5574 if (log->level && bpf_verifier_log_full(log))
cbd35700 5575 ret = -ENOSPC;
a2a7d570 5576 if (log->level && !log->ubuf) {
cbd35700 5577 ret = -EFAULT;
a2a7d570 5578 goto err_release_maps;
cbd35700
AS
5579 }
5580
0246e64d
AS
5581 if (ret == 0 && env->used_map_cnt) {
5582 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
5583 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5584 sizeof(env->used_maps[0]),
5585 GFP_KERNEL);
0246e64d 5586
9bac3d6d 5587 if (!env->prog->aux->used_maps) {
0246e64d 5588 ret = -ENOMEM;
a2a7d570 5589 goto err_release_maps;
0246e64d
AS
5590 }
5591
9bac3d6d 5592 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 5593 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 5594 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
5595
5596 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5597 * bpf_ld_imm64 instructions
5598 */
5599 convert_pseudo_ld_imm64(env);
5600 }
cbd35700 5601
a2a7d570 5602err_release_maps:
9bac3d6d 5603 if (!env->prog->aux->used_maps)
0246e64d
AS
5604 /* if we didn't copy map pointers into bpf_prog_info, release
5605 * them now. Otherwise free_bpf_prog_info() will release them.
5606 */
5607 release_maps(env);
9bac3d6d 5608 *prog = env->prog;
3df126f3 5609err_unlock:
cbd35700 5610 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
5611 vfree(env->insn_aux_data);
5612err_free_env:
5613 kfree(env);
51580e79
AS
5614 return ret;
5615}