bpf, docs: BPF Iterator Document
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34 30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 31#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 34#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
35#include <linux/bpf_types.h>
36#undef BPF_PROG_TYPE
37#undef BPF_MAP_TYPE
f2e10bff 38#undef BPF_LINK_TYPE
00176a34
JK
39};
40
51580e79
AS
41/* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
8fb33b60 52 * Since it's analyzing all paths through the program, the length of the
eba38a96 53 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
f1174f77 81 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 82 * means the register has some value, but it's not a valid pointer.
f1174f77 83 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
84 *
85 * When verifier sees load or store instructions the type of base register
c64b7983
JS
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
51580e79
AS
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 137 * returns either pointer to map value or NULL.
51580e79
AS
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
164 */
165
17a52670 166/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 167struct bpf_verifier_stack_elem {
17a52670
AS
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
58e2af8b 172 struct bpf_verifier_state st;
17a52670
AS
173 int insn_idx;
174 int prev_insn_idx;
58e2af8b 175 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
cbd35700
AS
178};
179
b285fcb7 180#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
d2e4c1e6
DB
183#define BPF_MAP_KEY_POISON (1ULL << 63)
184#define BPF_MAP_KEY_SEEN (1ULL << 62)
185
c93552c4
DB
186#define BPF_MAP_PTR_UNPRIV 1UL
187#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
bc34dee6
JK
191static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193
c93552c4
DB
194static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
197}
198
199static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200{
d2e4c1e6 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
202}
203
204static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 const struct bpf_map *map, bool unpriv)
206{
207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
209 aux->map_ptr_state = (unsigned long)map |
210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211}
212
213static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214{
215 return aux->map_key_state & BPF_MAP_KEY_POISON;
216}
217
218static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219{
220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221}
222
223static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224{
225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226}
227
228static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229{
230 bool poisoned = bpf_map_key_poisoned(aux);
231
232 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 234}
fad73a1a 235
23a2d70c
YS
236static bool bpf_pseudo_call(const struct bpf_insn *insn)
237{
238 return insn->code == (BPF_JMP | BPF_CALL) &&
239 insn->src_reg == BPF_PSEUDO_CALL;
240}
241
e6ac2450
MKL
242static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243{
244 return insn->code == (BPF_JMP | BPF_CALL) &&
245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246}
247
33ff9823
DB
248struct bpf_call_arg_meta {
249 struct bpf_map *map_ptr;
435faee1 250 bool raw_mode;
36bbef52 251 bool pkt_access;
8f14852e 252 u8 release_regno;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
3e8ce298 258 int map_uid;
d83525ca 259 int func_id;
22dc4a0f 260 struct btf *btf;
eaa6bcb7 261 u32 btf_id;
22dc4a0f 262 struct btf *ret_btf;
eaa6bcb7 263 u32 ret_btf_id;
69c087ba 264 u32 subprogno;
aa3496ac 265 struct btf_field *kptr_field;
97e03f52 266 u8 uninit_dynptr_regno;
33ff9823
DB
267};
268
8580ac94
AS
269struct btf *btf_vmlinux;
270
cbd35700
AS
271static DEFINE_MUTEX(bpf_verifier_lock);
272
d9762e84
MKL
273static const struct bpf_line_info *
274find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275{
276 const struct bpf_line_info *linfo;
277 const struct bpf_prog *prog;
278 u32 i, nr_linfo;
279
280 prog = env->prog;
281 nr_linfo = prog->aux->nr_linfo;
282
283 if (!nr_linfo || insn_off >= prog->len)
284 return NULL;
285
286 linfo = prog->aux->linfo;
287 for (i = 1; i < nr_linfo; i++)
288 if (insn_off < linfo[i].insn_off)
289 break;
290
291 return &linfo[i - 1];
292}
293
77d2e05a
MKL
294void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 va_list args)
cbd35700 296{
a2a7d570 297 unsigned int n;
cbd35700 298
a2a7d570 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
300
301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 "verifier log line truncated - local buffer too short\n");
303
8580ac94 304 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
305 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306
307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
308 return;
309 }
436d404c
HT
310
311 n = min(log->len_total - log->len_used - 1, n);
312 log->kbuf[n] = '\0';
a2a7d570
JK
313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 log->len_used += n;
315 else
316 log->ubuf = NULL;
cbd35700 317}
abe08840 318
6f8a57cc
AN
319static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320{
321 char zero = 0;
322
323 if (!bpf_verifier_log_needed(log))
324 return;
325
326 log->len_used = new_pos;
327 if (put_user(zero, log->ubuf + new_pos))
328 log->ubuf = NULL;
329}
330
abe08840
JO
331/* log_level controls verbosity level of eBPF verifier.
332 * bpf_verifier_log_write() is used to dump the verification trace to the log,
333 * so the user can figure out what's wrong with the program
430e68d1 334 */
abe08840
JO
335__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 const char *fmt, ...)
337{
338 va_list args;
339
77d2e05a
MKL
340 if (!bpf_verifier_log_needed(&env->log))
341 return;
342
abe08840 343 va_start(args, fmt);
77d2e05a 344 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
345 va_end(args);
346}
347EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348
349__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350{
77d2e05a 351 struct bpf_verifier_env *env = private_data;
abe08840
JO
352 va_list args;
353
77d2e05a
MKL
354 if (!bpf_verifier_log_needed(&env->log))
355 return;
356
abe08840 357 va_start(args, fmt);
77d2e05a 358 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
359 va_end(args);
360}
cbd35700 361
9e15db66
AS
362__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 const char *fmt, ...)
364{
365 va_list args;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 va_start(args, fmt);
371 bpf_verifier_vlog(log, fmt, args);
372 va_end(args);
373}
84c6ac41 374EXPORT_SYMBOL_GPL(bpf_log);
9e15db66 375
d9762e84
MKL
376static const char *ltrim(const char *s)
377{
378 while (isspace(*s))
379 s++;
380
381 return s;
382}
383
384__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 u32 insn_off,
386 const char *prefix_fmt, ...)
387{
388 const struct bpf_line_info *linfo;
389
390 if (!bpf_verifier_log_needed(&env->log))
391 return;
392
393 linfo = find_linfo(env, insn_off);
394 if (!linfo || linfo == env->prev_linfo)
395 return;
396
397 if (prefix_fmt) {
398 va_list args;
399
400 va_start(args, prefix_fmt);
401 bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 va_end(args);
403 }
404
405 verbose(env, "%s\n",
406 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 linfo->line_off)));
408
409 env->prev_linfo = linfo;
410}
411
bc2591d6
YS
412static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 struct bpf_reg_state *reg,
414 struct tnum *range, const char *ctx,
415 const char *reg_name)
416{
417 char tn_buf[48];
418
419 verbose(env, "At %s the register %s ", ctx, reg_name);
420 if (!tnum_is_unknown(reg->var_off)) {
421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 verbose(env, "has value %s", tn_buf);
423 } else {
424 verbose(env, "has unknown scalar value");
425 }
426 tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 verbose(env, " should have been in %s\n", tn_buf);
428}
429
de8f3a83
DB
430static bool type_is_pkt_pointer(enum bpf_reg_type type)
431{
0c9a7a7e 432 type = base_type(type);
de8f3a83
DB
433 return type == PTR_TO_PACKET ||
434 type == PTR_TO_PACKET_META;
435}
436
46f8bc92
MKL
437static bool type_is_sk_pointer(enum bpf_reg_type type)
438{
439 return type == PTR_TO_SOCKET ||
655a51e5 440 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
443}
444
cac616db
JF
445static bool reg_type_not_null(enum bpf_reg_type type)
446{
447 return type == PTR_TO_SOCKET ||
448 type == PTR_TO_TCP_SOCK ||
449 type == PTR_TO_MAP_VALUE ||
69c087ba 450 type == PTR_TO_MAP_KEY ||
01c66c48 451 type == PTR_TO_SOCK_COMMON;
cac616db
JF
452}
453
4e814da0
KKD
454static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
455{
456 struct btf_record *rec = NULL;
457 struct btf_struct_meta *meta;
458
459 if (reg->type == PTR_TO_MAP_VALUE) {
460 rec = reg->map_ptr->record;
461 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
462 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
463 if (meta)
464 rec = meta->record;
465 }
466 return rec;
467}
468
d83525ca
AS
469static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
470{
4e814da0 471 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
472}
473
20b2aff4
HL
474static bool type_is_rdonly_mem(u32 type)
475{
476 return type & MEM_RDONLY;
cba368c1
MKL
477}
478
48946bd6 479static bool type_may_be_null(u32 type)
fd1b0d60 480{
48946bd6 481 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
482}
483
64d85290
JS
484static bool is_acquire_function(enum bpf_func_id func_id,
485 const struct bpf_map *map)
486{
487 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
488
489 if (func_id == BPF_FUNC_sk_lookup_tcp ||
490 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 491 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
492 func_id == BPF_FUNC_ringbuf_reserve ||
493 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
494 return true;
495
496 if (func_id == BPF_FUNC_map_lookup_elem &&
497 (map_type == BPF_MAP_TYPE_SOCKMAP ||
498 map_type == BPF_MAP_TYPE_SOCKHASH))
499 return true;
500
501 return false;
46f8bc92
MKL
502}
503
1b986589
MKL
504static bool is_ptr_cast_function(enum bpf_func_id func_id)
505{
506 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
507 func_id == BPF_FUNC_sk_fullsock ||
508 func_id == BPF_FUNC_skc_to_tcp_sock ||
509 func_id == BPF_FUNC_skc_to_tcp6_sock ||
510 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 511 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
512 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
513 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
514}
515
88374342 516static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
517{
518 return func_id == BPF_FUNC_dynptr_data;
519}
520
be2ef816
AN
521static bool is_callback_calling_function(enum bpf_func_id func_id)
522{
523 return func_id == BPF_FUNC_for_each_map_elem ||
524 func_id == BPF_FUNC_timer_set_callback ||
525 func_id == BPF_FUNC_find_vma ||
526 func_id == BPF_FUNC_loop ||
527 func_id == BPF_FUNC_user_ringbuf_drain;
528}
529
9bb00b28
YS
530static bool is_storage_get_function(enum bpf_func_id func_id)
531{
532 return func_id == BPF_FUNC_sk_storage_get ||
533 func_id == BPF_FUNC_inode_storage_get ||
534 func_id == BPF_FUNC_task_storage_get ||
535 func_id == BPF_FUNC_cgrp_storage_get;
536}
537
b2d8ef19
DM
538static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
539 const struct bpf_map *map)
540{
541 int ref_obj_uses = 0;
542
543 if (is_ptr_cast_function(func_id))
544 ref_obj_uses++;
545 if (is_acquire_function(func_id, map))
546 ref_obj_uses++;
88374342 547 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
548 ref_obj_uses++;
549
550 return ref_obj_uses > 1;
551}
552
39491867
BJ
553static bool is_cmpxchg_insn(const struct bpf_insn *insn)
554{
555 return BPF_CLASS(insn->code) == BPF_STX &&
556 BPF_MODE(insn->code) == BPF_ATOMIC &&
557 insn->imm == BPF_CMPXCHG;
558}
559
c25b2ae1
HL
560/* string representation of 'enum bpf_reg_type'
561 *
562 * Note that reg_type_str() can not appear more than once in a single verbose()
563 * statement.
564 */
565static const char *reg_type_str(struct bpf_verifier_env *env,
566 enum bpf_reg_type type)
567{
ef66c547 568 char postfix[16] = {0}, prefix[64] = {0};
c25b2ae1
HL
569 static const char * const str[] = {
570 [NOT_INIT] = "?",
7df5072c 571 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
572 [PTR_TO_CTX] = "ctx",
573 [CONST_PTR_TO_MAP] = "map_ptr",
574 [PTR_TO_MAP_VALUE] = "map_value",
575 [PTR_TO_STACK] = "fp",
576 [PTR_TO_PACKET] = "pkt",
577 [PTR_TO_PACKET_META] = "pkt_meta",
578 [PTR_TO_PACKET_END] = "pkt_end",
579 [PTR_TO_FLOW_KEYS] = "flow_keys",
580 [PTR_TO_SOCKET] = "sock",
581 [PTR_TO_SOCK_COMMON] = "sock_common",
582 [PTR_TO_TCP_SOCK] = "tcp_sock",
583 [PTR_TO_TP_BUFFER] = "tp_buffer",
584 [PTR_TO_XDP_SOCK] = "xdp_sock",
585 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 586 [PTR_TO_MEM] = "mem",
20b2aff4 587 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
588 [PTR_TO_FUNC] = "func",
589 [PTR_TO_MAP_KEY] = "map_key",
20571567 590 [PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
591 };
592
593 if (type & PTR_MAYBE_NULL) {
5844101a 594 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
595 strncpy(postfix, "or_null_", 16);
596 else
597 strncpy(postfix, "_or_null", 16);
598 }
599
9bb00b28 600 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
ef66c547
DV
601 type & MEM_RDONLY ? "rdonly_" : "",
602 type & MEM_RINGBUF ? "ringbuf_" : "",
603 type & MEM_USER ? "user_" : "",
604 type & MEM_PERCPU ? "percpu_" : "",
9bb00b28 605 type & MEM_RCU ? "rcu_" : "",
3f00c523
DV
606 type & PTR_UNTRUSTED ? "untrusted_" : "",
607 type & PTR_TRUSTED ? "trusted_" : ""
ef66c547 608 );
20b2aff4
HL
609
610 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
611 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
612 return env->type_str_buf;
613}
17a52670 614
8efea21d
EC
615static char slot_type_char[] = {
616 [STACK_INVALID] = '?',
617 [STACK_SPILL] = 'r',
618 [STACK_MISC] = 'm',
619 [STACK_ZERO] = '0',
97e03f52 620 [STACK_DYNPTR] = 'd',
8efea21d
EC
621};
622
4e92024a
AS
623static void print_liveness(struct bpf_verifier_env *env,
624 enum bpf_reg_liveness live)
625{
9242b5f5 626 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
627 verbose(env, "_");
628 if (live & REG_LIVE_READ)
629 verbose(env, "r");
630 if (live & REG_LIVE_WRITTEN)
631 verbose(env, "w");
9242b5f5
AS
632 if (live & REG_LIVE_DONE)
633 verbose(env, "D");
4e92024a
AS
634}
635
97e03f52
JK
636static int get_spi(s32 off)
637{
638 return (-off - 1) / BPF_REG_SIZE;
639}
640
641static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
642{
643 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
644
645 /* We need to check that slots between [spi - nr_slots + 1, spi] are
646 * within [0, allocated_stack).
647 *
648 * Please note that the spi grows downwards. For example, a dynptr
649 * takes the size of two stack slots; the first slot will be at
650 * spi and the second slot will be at spi - 1.
651 */
652 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
653}
654
f4d7e40a
AS
655static struct bpf_func_state *func(struct bpf_verifier_env *env,
656 const struct bpf_reg_state *reg)
657{
658 struct bpf_verifier_state *cur = env->cur_state;
659
660 return cur->frame[reg->frameno];
661}
662
22dc4a0f 663static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 664{
22dc4a0f 665 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
666}
667
0f55f9ed
CL
668static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
669{
670 env->scratched_regs |= 1U << regno;
671}
672
673static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
674{
343e5375 675 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
676}
677
678static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
679{
680 return (env->scratched_regs >> regno) & 1;
681}
682
683static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
684{
685 return (env->scratched_stack_slots >> regno) & 1;
686}
687
688static bool verifier_state_scratched(const struct bpf_verifier_env *env)
689{
690 return env->scratched_regs || env->scratched_stack_slots;
691}
692
693static void mark_verifier_state_clean(struct bpf_verifier_env *env)
694{
695 env->scratched_regs = 0U;
343e5375 696 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
697}
698
699/* Used for printing the entire verifier state. */
700static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
701{
702 env->scratched_regs = ~0U;
343e5375 703 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
704}
705
97e03f52
JK
706static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
707{
708 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
709 case DYNPTR_TYPE_LOCAL:
710 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
711 case DYNPTR_TYPE_RINGBUF:
712 return BPF_DYNPTR_TYPE_RINGBUF;
97e03f52
JK
713 default:
714 return BPF_DYNPTR_TYPE_INVALID;
715 }
716}
717
bc34dee6
JK
718static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
719{
720 return type == BPF_DYNPTR_TYPE_RINGBUF;
721}
722
97e03f52
JK
723static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
724 enum bpf_arg_type arg_type, int insn_idx)
725{
726 struct bpf_func_state *state = func(env, reg);
727 enum bpf_dynptr_type type;
bc34dee6 728 int spi, i, id;
97e03f52
JK
729
730 spi = get_spi(reg->off);
731
732 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
733 return -EINVAL;
734
735 for (i = 0; i < BPF_REG_SIZE; i++) {
736 state->stack[spi].slot_type[i] = STACK_DYNPTR;
737 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
738 }
739
740 type = arg_to_dynptr_type(arg_type);
741 if (type == BPF_DYNPTR_TYPE_INVALID)
742 return -EINVAL;
743
744 state->stack[spi].spilled_ptr.dynptr.first_slot = true;
745 state->stack[spi].spilled_ptr.dynptr.type = type;
746 state->stack[spi - 1].spilled_ptr.dynptr.type = type;
747
bc34dee6
JK
748 if (dynptr_type_refcounted(type)) {
749 /* The id is used to track proper releasing */
750 id = acquire_reference_state(env, insn_idx);
751 if (id < 0)
752 return id;
753
754 state->stack[spi].spilled_ptr.id = id;
755 state->stack[spi - 1].spilled_ptr.id = id;
756 }
757
97e03f52
JK
758 return 0;
759}
760
761static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
762{
763 struct bpf_func_state *state = func(env, reg);
764 int spi, i;
765
766 spi = get_spi(reg->off);
767
768 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
769 return -EINVAL;
770
771 for (i = 0; i < BPF_REG_SIZE; i++) {
772 state->stack[spi].slot_type[i] = STACK_INVALID;
773 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
774 }
775
bc34dee6
JK
776 /* Invalidate any slices associated with this dynptr */
777 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
778 release_reference(env, state->stack[spi].spilled_ptr.id);
779 state->stack[spi].spilled_ptr.id = 0;
780 state->stack[spi - 1].spilled_ptr.id = 0;
781 }
782
97e03f52
JK
783 state->stack[spi].spilled_ptr.dynptr.first_slot = false;
784 state->stack[spi].spilled_ptr.dynptr.type = 0;
785 state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
786
787 return 0;
788}
789
790static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
791{
792 struct bpf_func_state *state = func(env, reg);
793 int spi = get_spi(reg->off);
794 int i;
795
796 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
797 return true;
798
799 for (i = 0; i < BPF_REG_SIZE; i++) {
800 if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
801 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
802 return false;
803 }
804
805 return true;
806}
807
b8d31762
RS
808bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
809 struct bpf_reg_state *reg)
97e03f52
JK
810{
811 struct bpf_func_state *state = func(env, reg);
812 int spi = get_spi(reg->off);
813 int i;
814
815 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
816 !state->stack[spi].spilled_ptr.dynptr.first_slot)
817 return false;
818
819 for (i = 0; i < BPF_REG_SIZE; i++) {
820 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
821 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
822 return false;
823 }
824
e9e315b4
RS
825 return true;
826}
827
b8d31762
RS
828bool is_dynptr_type_expected(struct bpf_verifier_env *env,
829 struct bpf_reg_state *reg,
830 enum bpf_arg_type arg_type)
e9e315b4
RS
831{
832 struct bpf_func_state *state = func(env, reg);
833 enum bpf_dynptr_type dynptr_type;
834 int spi = get_spi(reg->off);
835
97e03f52
JK
836 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
837 if (arg_type == ARG_PTR_TO_DYNPTR)
838 return true;
839
e9e315b4
RS
840 dynptr_type = arg_to_dynptr_type(arg_type);
841
842 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
97e03f52
JK
843}
844
27113c59
MKL
845/* The reg state of a pointer or a bounded scalar was saved when
846 * it was spilled to the stack.
847 */
848static bool is_spilled_reg(const struct bpf_stack_state *stack)
849{
850 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
851}
852
354e8f19
MKL
853static void scrub_spilled_slot(u8 *stype)
854{
855 if (*stype != STACK_INVALID)
856 *stype = STACK_MISC;
857}
858
61bd5218 859static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
860 const struct bpf_func_state *state,
861 bool print_all)
17a52670 862{
f4d7e40a 863 const struct bpf_reg_state *reg;
17a52670
AS
864 enum bpf_reg_type t;
865 int i;
866
f4d7e40a
AS
867 if (state->frameno)
868 verbose(env, " frame%d:", state->frameno);
17a52670 869 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
870 reg = &state->regs[i];
871 t = reg->type;
17a52670
AS
872 if (t == NOT_INIT)
873 continue;
0f55f9ed
CL
874 if (!print_all && !reg_scratched(env, i))
875 continue;
4e92024a
AS
876 verbose(env, " R%d", i);
877 print_liveness(env, reg->live);
7df5072c 878 verbose(env, "=");
b5dc0163
AS
879 if (t == SCALAR_VALUE && reg->precise)
880 verbose(env, "P");
f1174f77
EC
881 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
882 tnum_is_const(reg->var_off)) {
883 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 884 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 885 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 886 } else {
7df5072c
ML
887 const char *sep = "";
888
889 verbose(env, "%s", reg_type_str(env, t));
5844101a 890 if (base_type(t) == PTR_TO_BTF_ID)
22dc4a0f 891 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
7df5072c
ML
892 verbose(env, "(");
893/*
894 * _a stands for append, was shortened to avoid multiline statements below.
895 * This macro is used to output a comma separated list of attributes.
896 */
897#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
898
899 if (reg->id)
900 verbose_a("id=%d", reg->id);
a28ace78 901 if (reg->ref_obj_id)
7df5072c 902 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
f1174f77 903 if (t != SCALAR_VALUE)
7df5072c 904 verbose_a("off=%d", reg->off);
de8f3a83 905 if (type_is_pkt_pointer(t))
7df5072c 906 verbose_a("r=%d", reg->range);
c25b2ae1
HL
907 else if (base_type(t) == CONST_PTR_TO_MAP ||
908 base_type(t) == PTR_TO_MAP_KEY ||
909 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
910 verbose_a("ks=%d,vs=%d",
911 reg->map_ptr->key_size,
912 reg->map_ptr->value_size);
7d1238f2
EC
913 if (tnum_is_const(reg->var_off)) {
914 /* Typically an immediate SCALAR_VALUE, but
915 * could be a pointer whose offset is too big
916 * for reg->off
917 */
7df5072c 918 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
919 } else {
920 if (reg->smin_value != reg->umin_value &&
921 reg->smin_value != S64_MIN)
7df5072c 922 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
923 if (reg->smax_value != reg->umax_value &&
924 reg->smax_value != S64_MAX)
7df5072c 925 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 926 if (reg->umin_value != 0)
7df5072c 927 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 928 if (reg->umax_value != U64_MAX)
7df5072c 929 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
930 if (!tnum_is_unknown(reg->var_off)) {
931 char tn_buf[48];
f1174f77 932
7d1238f2 933 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 934 verbose_a("var_off=%s", tn_buf);
7d1238f2 935 }
3f50f132
JF
936 if (reg->s32_min_value != reg->smin_value &&
937 reg->s32_min_value != S32_MIN)
7df5072c 938 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
939 if (reg->s32_max_value != reg->smax_value &&
940 reg->s32_max_value != S32_MAX)
7df5072c 941 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
942 if (reg->u32_min_value != reg->umin_value &&
943 reg->u32_min_value != U32_MIN)
7df5072c 944 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
945 if (reg->u32_max_value != reg->umax_value &&
946 reg->u32_max_value != U32_MAX)
7df5072c 947 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 948 }
7df5072c
ML
949#undef verbose_a
950
61bd5218 951 verbose(env, ")");
f1174f77 952 }
17a52670 953 }
638f5b90 954 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
955 char types_buf[BPF_REG_SIZE + 1];
956 bool valid = false;
957 int j;
958
959 for (j = 0; j < BPF_REG_SIZE; j++) {
960 if (state->stack[i].slot_type[j] != STACK_INVALID)
961 valid = true;
962 types_buf[j] = slot_type_char[
963 state->stack[i].slot_type[j]];
964 }
965 types_buf[BPF_REG_SIZE] = 0;
966 if (!valid)
967 continue;
0f55f9ed
CL
968 if (!print_all && !stack_slot_scratched(env, i))
969 continue;
8efea21d
EC
970 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
971 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 972 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
973 reg = &state->stack[i].spilled_ptr;
974 t = reg->type;
7df5072c 975 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
976 if (t == SCALAR_VALUE && reg->precise)
977 verbose(env, "P");
978 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
979 verbose(env, "%lld", reg->var_off.value + reg->off);
980 } else {
8efea21d 981 verbose(env, "=%s", types_buf);
b5dc0163 982 }
17a52670 983 }
fd978bf7
JS
984 if (state->acquired_refs && state->refs[0].id) {
985 verbose(env, " refs=%d", state->refs[0].id);
986 for (i = 1; i < state->acquired_refs; i++)
987 if (state->refs[i].id)
988 verbose(env, ",%d", state->refs[i].id);
989 }
bfc6bb74
AS
990 if (state->in_callback_fn)
991 verbose(env, " cb");
992 if (state->in_async_callback_fn)
993 verbose(env, " async_cb");
61bd5218 994 verbose(env, "\n");
0f55f9ed 995 mark_verifier_state_clean(env);
17a52670
AS
996}
997
2e576648
CL
998static inline u32 vlog_alignment(u32 pos)
999{
1000 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1001 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1002}
1003
1004static void print_insn_state(struct bpf_verifier_env *env,
1005 const struct bpf_func_state *state)
1006{
1007 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1008 /* remove new line character */
1009 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1010 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1011 } else {
1012 verbose(env, "%d:", env->insn_idx);
1013 }
1014 print_verifier_state(env, state, false);
17a52670
AS
1015}
1016
c69431aa
LB
1017/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1018 * small to hold src. This is different from krealloc since we don't want to preserve
1019 * the contents of dst.
1020 *
1021 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1022 * not be allocated.
638f5b90 1023 */
c69431aa 1024static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1025{
c69431aa
LB
1026 size_t bytes;
1027
1028 if (ZERO_OR_NULL_PTR(src))
1029 goto out;
1030
1031 if (unlikely(check_mul_overflow(n, size, &bytes)))
1032 return NULL;
1033
ceb35b66 1034 if (ksize(dst) < ksize(src)) {
c69431aa 1035 kfree(dst);
ceb35b66 1036 dst = kmalloc_track_caller(kmalloc_size_roundup(bytes), flags);
c69431aa
LB
1037 if (!dst)
1038 return NULL;
1039 }
1040
1041 memcpy(dst, src, bytes);
1042out:
1043 return dst ? dst : ZERO_SIZE_PTR;
1044}
1045
1046/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1047 * small to hold new_n items. new items are zeroed out if the array grows.
1048 *
1049 * Contrary to krealloc_array, does not free arr if new_n is zero.
1050 */
1051static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1052{
ceb35b66 1053 size_t alloc_size;
42378a9c
KC
1054 void *new_arr;
1055
c69431aa
LB
1056 if (!new_n || old_n == new_n)
1057 goto out;
1058
ceb35b66
KC
1059 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1060 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
42378a9c
KC
1061 if (!new_arr) {
1062 kfree(arr);
c69431aa 1063 return NULL;
42378a9c
KC
1064 }
1065 arr = new_arr;
c69431aa
LB
1066
1067 if (new_n > old_n)
1068 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1069
1070out:
1071 return arr ? arr : ZERO_SIZE_PTR;
1072}
1073
1074static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1075{
1076 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1077 sizeof(struct bpf_reference_state), GFP_KERNEL);
1078 if (!dst->refs)
1079 return -ENOMEM;
1080
1081 dst->acquired_refs = src->acquired_refs;
1082 return 0;
1083}
1084
1085static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1086{
1087 size_t n = src->allocated_stack / BPF_REG_SIZE;
1088
1089 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1090 GFP_KERNEL);
1091 if (!dst->stack)
1092 return -ENOMEM;
1093
1094 dst->allocated_stack = src->allocated_stack;
1095 return 0;
1096}
1097
1098static int resize_reference_state(struct bpf_func_state *state, size_t n)
1099{
1100 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1101 sizeof(struct bpf_reference_state));
1102 if (!state->refs)
1103 return -ENOMEM;
1104
1105 state->acquired_refs = n;
1106 return 0;
1107}
1108
1109static int grow_stack_state(struct bpf_func_state *state, int size)
1110{
1111 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1112
1113 if (old_n >= n)
1114 return 0;
1115
1116 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1117 if (!state->stack)
1118 return -ENOMEM;
1119
1120 state->allocated_stack = size;
1121 return 0;
fd978bf7
JS
1122}
1123
1124/* Acquire a pointer id from the env and update the state->refs to include
1125 * this new pointer reference.
1126 * On success, returns a valid pointer id to associate with the register
1127 * On failure, returns a negative errno.
638f5b90 1128 */
fd978bf7 1129static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1130{
fd978bf7
JS
1131 struct bpf_func_state *state = cur_func(env);
1132 int new_ofs = state->acquired_refs;
1133 int id, err;
1134
c69431aa 1135 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1136 if (err)
1137 return err;
1138 id = ++env->id_gen;
1139 state->refs[new_ofs].id = id;
1140 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1141 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1142
fd978bf7
JS
1143 return id;
1144}
1145
1146/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1147static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1148{
1149 int i, last_idx;
1150
fd978bf7
JS
1151 last_idx = state->acquired_refs - 1;
1152 for (i = 0; i < state->acquired_refs; i++) {
1153 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1154 /* Cannot release caller references in callbacks */
1155 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1156 return -EINVAL;
fd978bf7
JS
1157 if (last_idx && i != last_idx)
1158 memcpy(&state->refs[i], &state->refs[last_idx],
1159 sizeof(*state->refs));
1160 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1161 state->acquired_refs--;
638f5b90 1162 return 0;
638f5b90 1163 }
638f5b90 1164 }
46f8bc92 1165 return -EINVAL;
fd978bf7
JS
1166}
1167
f4d7e40a
AS
1168static void free_func_state(struct bpf_func_state *state)
1169{
5896351e
AS
1170 if (!state)
1171 return;
fd978bf7 1172 kfree(state->refs);
f4d7e40a
AS
1173 kfree(state->stack);
1174 kfree(state);
1175}
1176
b5dc0163
AS
1177static void clear_jmp_history(struct bpf_verifier_state *state)
1178{
1179 kfree(state->jmp_history);
1180 state->jmp_history = NULL;
1181 state->jmp_history_cnt = 0;
1182}
1183
1969db47
AS
1184static void free_verifier_state(struct bpf_verifier_state *state,
1185 bool free_self)
638f5b90 1186{
f4d7e40a
AS
1187 int i;
1188
1189 for (i = 0; i <= state->curframe; i++) {
1190 free_func_state(state->frame[i]);
1191 state->frame[i] = NULL;
1192 }
b5dc0163 1193 clear_jmp_history(state);
1969db47
AS
1194 if (free_self)
1195 kfree(state);
638f5b90
AS
1196}
1197
1198/* copy verifier state from src to dst growing dst stack space
1199 * when necessary to accommodate larger src stack
1200 */
f4d7e40a
AS
1201static int copy_func_state(struct bpf_func_state *dst,
1202 const struct bpf_func_state *src)
638f5b90
AS
1203{
1204 int err;
1205
fd978bf7
JS
1206 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1207 err = copy_reference_state(dst, src);
638f5b90
AS
1208 if (err)
1209 return err;
638f5b90
AS
1210 return copy_stack_state(dst, src);
1211}
1212
f4d7e40a
AS
1213static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1214 const struct bpf_verifier_state *src)
1215{
1216 struct bpf_func_state *dst;
1217 int i, err;
1218
06ab6a50
LB
1219 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1220 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1221 GFP_USER);
1222 if (!dst_state->jmp_history)
1223 return -ENOMEM;
b5dc0163
AS
1224 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1225
f4d7e40a
AS
1226 /* if dst has more stack frames then src frame, free them */
1227 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1228 free_func_state(dst_state->frame[i]);
1229 dst_state->frame[i] = NULL;
1230 }
979d63d5 1231 dst_state->speculative = src->speculative;
9bb00b28 1232 dst_state->active_rcu_lock = src->active_rcu_lock;
f4d7e40a 1233 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1234 dst_state->active_lock.ptr = src->active_lock.ptr;
1235 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1236 dst_state->branches = src->branches;
1237 dst_state->parent = src->parent;
b5dc0163
AS
1238 dst_state->first_insn_idx = src->first_insn_idx;
1239 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1240 for (i = 0; i <= src->curframe; i++) {
1241 dst = dst_state->frame[i];
1242 if (!dst) {
1243 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1244 if (!dst)
1245 return -ENOMEM;
1246 dst_state->frame[i] = dst;
1247 }
1248 err = copy_func_state(dst, src->frame[i]);
1249 if (err)
1250 return err;
1251 }
1252 return 0;
1253}
1254
2589726d
AS
1255static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1256{
1257 while (st) {
1258 u32 br = --st->branches;
1259
1260 /* WARN_ON(br > 1) technically makes sense here,
1261 * but see comment in push_stack(), hence:
1262 */
1263 WARN_ONCE((int)br < 0,
1264 "BUG update_branch_counts:branches_to_explore=%d\n",
1265 br);
1266 if (br)
1267 break;
1268 st = st->parent;
1269 }
1270}
1271
638f5b90 1272static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1273 int *insn_idx, bool pop_log)
638f5b90
AS
1274{
1275 struct bpf_verifier_state *cur = env->cur_state;
1276 struct bpf_verifier_stack_elem *elem, *head = env->head;
1277 int err;
17a52670
AS
1278
1279 if (env->head == NULL)
638f5b90 1280 return -ENOENT;
17a52670 1281
638f5b90
AS
1282 if (cur) {
1283 err = copy_verifier_state(cur, &head->st);
1284 if (err)
1285 return err;
1286 }
6f8a57cc
AN
1287 if (pop_log)
1288 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1289 if (insn_idx)
1290 *insn_idx = head->insn_idx;
17a52670 1291 if (prev_insn_idx)
638f5b90
AS
1292 *prev_insn_idx = head->prev_insn_idx;
1293 elem = head->next;
1969db47 1294 free_verifier_state(&head->st, false);
638f5b90 1295 kfree(head);
17a52670
AS
1296 env->head = elem;
1297 env->stack_size--;
638f5b90 1298 return 0;
17a52670
AS
1299}
1300
58e2af8b 1301static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1302 int insn_idx, int prev_insn_idx,
1303 bool speculative)
17a52670 1304{
638f5b90 1305 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1306 struct bpf_verifier_stack_elem *elem;
638f5b90 1307 int err;
17a52670 1308
638f5b90 1309 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1310 if (!elem)
1311 goto err;
1312
17a52670
AS
1313 elem->insn_idx = insn_idx;
1314 elem->prev_insn_idx = prev_insn_idx;
1315 elem->next = env->head;
6f8a57cc 1316 elem->log_pos = env->log.len_used;
17a52670
AS
1317 env->head = elem;
1318 env->stack_size++;
1969db47
AS
1319 err = copy_verifier_state(&elem->st, cur);
1320 if (err)
1321 goto err;
979d63d5 1322 elem->st.speculative |= speculative;
b285fcb7
AS
1323 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1324 verbose(env, "The sequence of %d jumps is too complex.\n",
1325 env->stack_size);
17a52670
AS
1326 goto err;
1327 }
2589726d
AS
1328 if (elem->st.parent) {
1329 ++elem->st.parent->branches;
1330 /* WARN_ON(branches > 2) technically makes sense here,
1331 * but
1332 * 1. speculative states will bump 'branches' for non-branch
1333 * instructions
1334 * 2. is_state_visited() heuristics may decide not to create
1335 * a new state for a sequence of branches and all such current
1336 * and cloned states will be pointing to a single parent state
1337 * which might have large 'branches' count.
1338 */
1339 }
17a52670
AS
1340 return &elem->st;
1341err:
5896351e
AS
1342 free_verifier_state(env->cur_state, true);
1343 env->cur_state = NULL;
17a52670 1344 /* pop all elements and return */
6f8a57cc 1345 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1346 return NULL;
1347}
1348
1349#define CALLER_SAVED_REGS 6
1350static const int caller_saved[CALLER_SAVED_REGS] = {
1351 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1352};
1353
f54c7898
DB
1354static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1355 struct bpf_reg_state *reg);
f1174f77 1356
e688c3db
AS
1357/* This helper doesn't clear reg->id */
1358static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1359{
b03c9f9f
EC
1360 reg->var_off = tnum_const(imm);
1361 reg->smin_value = (s64)imm;
1362 reg->smax_value = (s64)imm;
1363 reg->umin_value = imm;
1364 reg->umax_value = imm;
3f50f132
JF
1365
1366 reg->s32_min_value = (s32)imm;
1367 reg->s32_max_value = (s32)imm;
1368 reg->u32_min_value = (u32)imm;
1369 reg->u32_max_value = (u32)imm;
1370}
1371
e688c3db
AS
1372/* Mark the unknown part of a register (variable offset or scalar value) as
1373 * known to have the value @imm.
1374 */
1375static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1376{
1377 /* Clear id, off, and union(map_ptr, range) */
1378 memset(((u8 *)reg) + sizeof(reg->type), 0,
1379 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1380 ___mark_reg_known(reg, imm);
1381}
1382
3f50f132
JF
1383static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1384{
1385 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1386 reg->s32_min_value = (s32)imm;
1387 reg->s32_max_value = (s32)imm;
1388 reg->u32_min_value = (u32)imm;
1389 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1390}
1391
f1174f77
EC
1392/* Mark the 'variable offset' part of a register as zero. This should be
1393 * used only on registers holding a pointer type.
1394 */
1395static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1396{
b03c9f9f 1397 __mark_reg_known(reg, 0);
f1174f77 1398}
a9789ef9 1399
cc2b14d5
AS
1400static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1401{
1402 __mark_reg_known(reg, 0);
cc2b14d5
AS
1403 reg->type = SCALAR_VALUE;
1404}
1405
61bd5218
JK
1406static void mark_reg_known_zero(struct bpf_verifier_env *env,
1407 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1408{
1409 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1410 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1411 /* Something bad happened, let's kill all regs */
1412 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1413 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1414 return;
1415 }
1416 __mark_reg_known_zero(regs + regno);
1417}
1418
4ddb7416
DB
1419static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1420{
c25b2ae1 1421 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1422 const struct bpf_map *map = reg->map_ptr;
1423
1424 if (map->inner_map_meta) {
1425 reg->type = CONST_PTR_TO_MAP;
1426 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1427 /* transfer reg's id which is unique for every map_lookup_elem
1428 * as UID of the inner map.
1429 */
db559117 1430 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1431 reg->map_uid = reg->id;
4ddb7416
DB
1432 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1433 reg->type = PTR_TO_XDP_SOCK;
1434 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1435 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1436 reg->type = PTR_TO_SOCKET;
1437 } else {
1438 reg->type = PTR_TO_MAP_VALUE;
1439 }
c25b2ae1 1440 return;
4ddb7416 1441 }
c25b2ae1
HL
1442
1443 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1444}
1445
de8f3a83
DB
1446static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1447{
1448 return type_is_pkt_pointer(reg->type);
1449}
1450
1451static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1452{
1453 return reg_is_pkt_pointer(reg) ||
1454 reg->type == PTR_TO_PACKET_END;
1455}
1456
1457/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1458static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1459 enum bpf_reg_type which)
1460{
1461 /* The register can already have a range from prior markings.
1462 * This is fine as long as it hasn't been advanced from its
1463 * origin.
1464 */
1465 return reg->type == which &&
1466 reg->id == 0 &&
1467 reg->off == 0 &&
1468 tnum_equals_const(reg->var_off, 0);
1469}
1470
3f50f132
JF
1471/* Reset the min/max bounds of a register */
1472static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1473{
1474 reg->smin_value = S64_MIN;
1475 reg->smax_value = S64_MAX;
1476 reg->umin_value = 0;
1477 reg->umax_value = U64_MAX;
1478
1479 reg->s32_min_value = S32_MIN;
1480 reg->s32_max_value = S32_MAX;
1481 reg->u32_min_value = 0;
1482 reg->u32_max_value = U32_MAX;
1483}
1484
1485static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1486{
1487 reg->smin_value = S64_MIN;
1488 reg->smax_value = S64_MAX;
1489 reg->umin_value = 0;
1490 reg->umax_value = U64_MAX;
1491}
1492
1493static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1494{
1495 reg->s32_min_value = S32_MIN;
1496 reg->s32_max_value = S32_MAX;
1497 reg->u32_min_value = 0;
1498 reg->u32_max_value = U32_MAX;
1499}
1500
1501static void __update_reg32_bounds(struct bpf_reg_state *reg)
1502{
1503 struct tnum var32_off = tnum_subreg(reg->var_off);
1504
1505 /* min signed is max(sign bit) | min(other bits) */
1506 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1507 var32_off.value | (var32_off.mask & S32_MIN));
1508 /* max signed is min(sign bit) | max(other bits) */
1509 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1510 var32_off.value | (var32_off.mask & S32_MAX));
1511 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1512 reg->u32_max_value = min(reg->u32_max_value,
1513 (u32)(var32_off.value | var32_off.mask));
1514}
1515
1516static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1517{
1518 /* min signed is max(sign bit) | min(other bits) */
1519 reg->smin_value = max_t(s64, reg->smin_value,
1520 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1521 /* max signed is min(sign bit) | max(other bits) */
1522 reg->smax_value = min_t(s64, reg->smax_value,
1523 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1524 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1525 reg->umax_value = min(reg->umax_value,
1526 reg->var_off.value | reg->var_off.mask);
1527}
1528
3f50f132
JF
1529static void __update_reg_bounds(struct bpf_reg_state *reg)
1530{
1531 __update_reg32_bounds(reg);
1532 __update_reg64_bounds(reg);
1533}
1534
b03c9f9f 1535/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1536static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1537{
1538 /* Learn sign from signed bounds.
1539 * If we cannot cross the sign boundary, then signed and unsigned bounds
1540 * are the same, so combine. This works even in the negative case, e.g.
1541 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1542 */
1543 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1544 reg->s32_min_value = reg->u32_min_value =
1545 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1546 reg->s32_max_value = reg->u32_max_value =
1547 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1548 return;
1549 }
1550 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1551 * boundary, so we must be careful.
1552 */
1553 if ((s32)reg->u32_max_value >= 0) {
1554 /* Positive. We can't learn anything from the smin, but smax
1555 * is positive, hence safe.
1556 */
1557 reg->s32_min_value = reg->u32_min_value;
1558 reg->s32_max_value = reg->u32_max_value =
1559 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1560 } else if ((s32)reg->u32_min_value < 0) {
1561 /* Negative. We can't learn anything from the smax, but smin
1562 * is negative, hence safe.
1563 */
1564 reg->s32_min_value = reg->u32_min_value =
1565 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1566 reg->s32_max_value = reg->u32_max_value;
1567 }
1568}
1569
1570static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1571{
1572 /* Learn sign from signed bounds.
1573 * If we cannot cross the sign boundary, then signed and unsigned bounds
1574 * are the same, so combine. This works even in the negative case, e.g.
1575 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1576 */
1577 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1578 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1579 reg->umin_value);
1580 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1581 reg->umax_value);
1582 return;
1583 }
1584 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1585 * boundary, so we must be careful.
1586 */
1587 if ((s64)reg->umax_value >= 0) {
1588 /* Positive. We can't learn anything from the smin, but smax
1589 * is positive, hence safe.
1590 */
1591 reg->smin_value = reg->umin_value;
1592 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1593 reg->umax_value);
1594 } else if ((s64)reg->umin_value < 0) {
1595 /* Negative. We can't learn anything from the smax, but smin
1596 * is negative, hence safe.
1597 */
1598 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1599 reg->umin_value);
1600 reg->smax_value = reg->umax_value;
1601 }
1602}
1603
3f50f132
JF
1604static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1605{
1606 __reg32_deduce_bounds(reg);
1607 __reg64_deduce_bounds(reg);
1608}
1609
b03c9f9f
EC
1610/* Attempts to improve var_off based on unsigned min/max information */
1611static void __reg_bound_offset(struct bpf_reg_state *reg)
1612{
3f50f132
JF
1613 struct tnum var64_off = tnum_intersect(reg->var_off,
1614 tnum_range(reg->umin_value,
1615 reg->umax_value));
1616 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1617 tnum_range(reg->u32_min_value,
1618 reg->u32_max_value));
1619
1620 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1621}
1622
3844d153
DB
1623static void reg_bounds_sync(struct bpf_reg_state *reg)
1624{
1625 /* We might have learned new bounds from the var_off. */
1626 __update_reg_bounds(reg);
1627 /* We might have learned something about the sign bit. */
1628 __reg_deduce_bounds(reg);
1629 /* We might have learned some bits from the bounds. */
1630 __reg_bound_offset(reg);
1631 /* Intersecting with the old var_off might have improved our bounds
1632 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1633 * then new var_off is (0; 0x7f...fc) which improves our umax.
1634 */
1635 __update_reg_bounds(reg);
1636}
1637
e572ff80
DB
1638static bool __reg32_bound_s64(s32 a)
1639{
1640 return a >= 0 && a <= S32_MAX;
1641}
1642
3f50f132 1643static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1644{
3f50f132
JF
1645 reg->umin_value = reg->u32_min_value;
1646 reg->umax_value = reg->u32_max_value;
e572ff80
DB
1647
1648 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1649 * be positive otherwise set to worse case bounds and refine later
1650 * from tnum.
3f50f132 1651 */
e572ff80
DB
1652 if (__reg32_bound_s64(reg->s32_min_value) &&
1653 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 1654 reg->smin_value = reg->s32_min_value;
e572ff80
DB
1655 reg->smax_value = reg->s32_max_value;
1656 } else {
3a71dc36 1657 reg->smin_value = 0;
e572ff80
DB
1658 reg->smax_value = U32_MAX;
1659 }
3f50f132
JF
1660}
1661
1662static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1663{
1664 /* special case when 64-bit register has upper 32-bit register
1665 * zeroed. Typically happens after zext or <<32, >>32 sequence
1666 * allowing us to use 32-bit bounds directly,
1667 */
1668 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1669 __reg_assign_32_into_64(reg);
1670 } else {
1671 /* Otherwise the best we can do is push lower 32bit known and
1672 * unknown bits into register (var_off set from jmp logic)
1673 * then learn as much as possible from the 64-bit tnum
1674 * known and unknown bits. The previous smin/smax bounds are
1675 * invalid here because of jmp32 compare so mark them unknown
1676 * so they do not impact tnum bounds calculation.
1677 */
1678 __mark_reg64_unbounded(reg);
3f50f132 1679 }
3844d153 1680 reg_bounds_sync(reg);
3f50f132
JF
1681}
1682
1683static bool __reg64_bound_s32(s64 a)
1684{
388e2c0b 1685 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1686}
1687
1688static bool __reg64_bound_u32(u64 a)
1689{
b9979db8 1690 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1691}
1692
1693static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1694{
1695 __mark_reg32_unbounded(reg);
b0270958 1696 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1697 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1698 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1699 }
10bf4e83 1700 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1701 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1702 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1703 }
3844d153 1704 reg_bounds_sync(reg);
b03c9f9f
EC
1705}
1706
f1174f77 1707/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1708static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1709 struct bpf_reg_state *reg)
f1174f77 1710{
a9c676bc
AS
1711 /*
1712 * Clear type, id, off, and union(map_ptr, range) and
1713 * padding between 'type' and union
1714 */
1715 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1716 reg->type = SCALAR_VALUE;
f1174f77 1717 reg->var_off = tnum_unknown;
f4d7e40a 1718 reg->frameno = 0;
be2ef816 1719 reg->precise = !env->bpf_capable;
b03c9f9f 1720 __mark_reg_unbounded(reg);
f1174f77
EC
1721}
1722
61bd5218
JK
1723static void mark_reg_unknown(struct bpf_verifier_env *env,
1724 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1725{
1726 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1727 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1728 /* Something bad happened, let's kill all regs except FP */
1729 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1730 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1731 return;
1732 }
f54c7898 1733 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1734}
1735
f54c7898
DB
1736static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1737 struct bpf_reg_state *reg)
f1174f77 1738{
f54c7898 1739 __mark_reg_unknown(env, reg);
f1174f77
EC
1740 reg->type = NOT_INIT;
1741}
1742
61bd5218
JK
1743static void mark_reg_not_init(struct bpf_verifier_env *env,
1744 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1745{
1746 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1747 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1748 /* Something bad happened, let's kill all regs except FP */
1749 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1750 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1751 return;
1752 }
f54c7898 1753 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1754}
1755
41c48f3a
AI
1756static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1757 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 1758 enum bpf_reg_type reg_type,
c6f1bfe8
YS
1759 struct btf *btf, u32 btf_id,
1760 enum bpf_type_flag flag)
41c48f3a
AI
1761{
1762 if (reg_type == SCALAR_VALUE) {
1763 mark_reg_unknown(env, regs, regno);
1764 return;
1765 }
1766 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 1767 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 1768 regs[regno].btf = btf;
41c48f3a
AI
1769 regs[regno].btf_id = btf_id;
1770}
1771
5327ed3d 1772#define DEF_NOT_SUBREG (0)
61bd5218 1773static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1774 struct bpf_func_state *state)
17a52670 1775{
f4d7e40a 1776 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1777 int i;
1778
dc503a8a 1779 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1780 mark_reg_not_init(env, regs, i);
dc503a8a 1781 regs[i].live = REG_LIVE_NONE;
679c782d 1782 regs[i].parent = NULL;
5327ed3d 1783 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1784 }
17a52670
AS
1785
1786 /* frame pointer */
f1174f77 1787 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1788 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1789 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1790}
1791
f4d7e40a
AS
1792#define BPF_MAIN_FUNC (-1)
1793static void init_func_state(struct bpf_verifier_env *env,
1794 struct bpf_func_state *state,
1795 int callsite, int frameno, int subprogno)
1796{
1797 state->callsite = callsite;
1798 state->frameno = frameno;
1799 state->subprogno = subprogno;
1bfe26fb 1800 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 1801 init_reg_state(env, state);
0f55f9ed 1802 mark_verifier_state_scratched(env);
f4d7e40a
AS
1803}
1804
bfc6bb74
AS
1805/* Similar to push_stack(), but for async callbacks */
1806static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1807 int insn_idx, int prev_insn_idx,
1808 int subprog)
1809{
1810 struct bpf_verifier_stack_elem *elem;
1811 struct bpf_func_state *frame;
1812
1813 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1814 if (!elem)
1815 goto err;
1816
1817 elem->insn_idx = insn_idx;
1818 elem->prev_insn_idx = prev_insn_idx;
1819 elem->next = env->head;
1820 elem->log_pos = env->log.len_used;
1821 env->head = elem;
1822 env->stack_size++;
1823 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1824 verbose(env,
1825 "The sequence of %d jumps is too complex for async cb.\n",
1826 env->stack_size);
1827 goto err;
1828 }
1829 /* Unlike push_stack() do not copy_verifier_state().
1830 * The caller state doesn't matter.
1831 * This is async callback. It starts in a fresh stack.
1832 * Initialize it similar to do_check_common().
1833 */
1834 elem->st.branches = 1;
1835 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1836 if (!frame)
1837 goto err;
1838 init_func_state(env, frame,
1839 BPF_MAIN_FUNC /* callsite */,
1840 0 /* frameno within this callchain */,
1841 subprog /* subprog number within this prog */);
1842 elem->st.frame[0] = frame;
1843 return &elem->st;
1844err:
1845 free_verifier_state(env->cur_state, true);
1846 env->cur_state = NULL;
1847 /* pop all elements and return */
1848 while (!pop_stack(env, NULL, NULL, false));
1849 return NULL;
1850}
1851
1852
17a52670
AS
1853enum reg_arg_type {
1854 SRC_OP, /* register is used as source operand */
1855 DST_OP, /* register is used as destination operand */
1856 DST_OP_NO_MARK /* same as above, check only, don't mark */
1857};
1858
cc8b0b92
AS
1859static int cmp_subprogs(const void *a, const void *b)
1860{
9c8105bd
JW
1861 return ((struct bpf_subprog_info *)a)->start -
1862 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1863}
1864
1865static int find_subprog(struct bpf_verifier_env *env, int off)
1866{
9c8105bd 1867 struct bpf_subprog_info *p;
cc8b0b92 1868
9c8105bd
JW
1869 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1870 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1871 if (!p)
1872 return -ENOENT;
9c8105bd 1873 return p - env->subprog_info;
cc8b0b92
AS
1874
1875}
1876
1877static int add_subprog(struct bpf_verifier_env *env, int off)
1878{
1879 int insn_cnt = env->prog->len;
1880 int ret;
1881
1882 if (off >= insn_cnt || off < 0) {
1883 verbose(env, "call to invalid destination\n");
1884 return -EINVAL;
1885 }
1886 ret = find_subprog(env, off);
1887 if (ret >= 0)
282a0f46 1888 return ret;
4cb3d99c 1889 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1890 verbose(env, "too many subprograms\n");
1891 return -E2BIG;
1892 }
e6ac2450 1893 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1894 env->subprog_info[env->subprog_cnt++].start = off;
1895 sort(env->subprog_info, env->subprog_cnt,
1896 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1897 return env->subprog_cnt - 1;
cc8b0b92
AS
1898}
1899
2357672c
KKD
1900#define MAX_KFUNC_DESCS 256
1901#define MAX_KFUNC_BTFS 256
1902
e6ac2450
MKL
1903struct bpf_kfunc_desc {
1904 struct btf_func_model func_model;
1905 u32 func_id;
1906 s32 imm;
2357672c
KKD
1907 u16 offset;
1908};
1909
1910struct bpf_kfunc_btf {
1911 struct btf *btf;
1912 struct module *module;
1913 u16 offset;
e6ac2450
MKL
1914};
1915
e6ac2450
MKL
1916struct bpf_kfunc_desc_tab {
1917 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1918 u32 nr_descs;
1919};
1920
2357672c
KKD
1921struct bpf_kfunc_btf_tab {
1922 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1923 u32 nr_descs;
1924};
1925
1926static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1927{
1928 const struct bpf_kfunc_desc *d0 = a;
1929 const struct bpf_kfunc_desc *d1 = b;
1930
1931 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1932 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1933}
1934
1935static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1936{
1937 const struct bpf_kfunc_btf *d0 = a;
1938 const struct bpf_kfunc_btf *d1 = b;
1939
1940 return d0->offset - d1->offset;
e6ac2450
MKL
1941}
1942
1943static const struct bpf_kfunc_desc *
2357672c 1944find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1945{
1946 struct bpf_kfunc_desc desc = {
1947 .func_id = func_id,
2357672c 1948 .offset = offset,
e6ac2450
MKL
1949 };
1950 struct bpf_kfunc_desc_tab *tab;
1951
1952 tab = prog->aux->kfunc_tab;
1953 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1954 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1955}
1956
1957static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 1958 s16 offset)
2357672c
KKD
1959{
1960 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1961 struct bpf_kfunc_btf_tab *tab;
1962 struct bpf_kfunc_btf *b;
1963 struct module *mod;
1964 struct btf *btf;
1965 int btf_fd;
1966
1967 tab = env->prog->aux->kfunc_btf_tab;
1968 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1969 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1970 if (!b) {
1971 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1972 verbose(env, "too many different module BTFs\n");
1973 return ERR_PTR(-E2BIG);
1974 }
1975
1976 if (bpfptr_is_null(env->fd_array)) {
1977 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1978 return ERR_PTR(-EPROTO);
1979 }
1980
1981 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1982 offset * sizeof(btf_fd),
1983 sizeof(btf_fd)))
1984 return ERR_PTR(-EFAULT);
1985
1986 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1987 if (IS_ERR(btf)) {
1988 verbose(env, "invalid module BTF fd specified\n");
2357672c 1989 return btf;
588cd7ef 1990 }
2357672c
KKD
1991
1992 if (!btf_is_module(btf)) {
1993 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1994 btf_put(btf);
1995 return ERR_PTR(-EINVAL);
1996 }
1997
1998 mod = btf_try_get_module(btf);
1999 if (!mod) {
2000 btf_put(btf);
2001 return ERR_PTR(-ENXIO);
2002 }
2003
2004 b = &tab->descs[tab->nr_descs++];
2005 b->btf = btf;
2006 b->module = mod;
2007 b->offset = offset;
2008
2009 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2010 kfunc_btf_cmp_by_off, NULL);
2011 }
2357672c 2012 return b->btf;
e6ac2450
MKL
2013}
2014
2357672c
KKD
2015void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2016{
2017 if (!tab)
2018 return;
2019
2020 while (tab->nr_descs--) {
2021 module_put(tab->descs[tab->nr_descs].module);
2022 btf_put(tab->descs[tab->nr_descs].btf);
2023 }
2024 kfree(tab);
2025}
2026
43bf0878 2027static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2028{
2357672c
KKD
2029 if (offset) {
2030 if (offset < 0) {
2031 /* In the future, this can be allowed to increase limit
2032 * of fd index into fd_array, interpreted as u16.
2033 */
2034 verbose(env, "negative offset disallowed for kernel module function call\n");
2035 return ERR_PTR(-EINVAL);
2036 }
2037
b202d844 2038 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2039 }
2040 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2041}
2042
2357672c 2043static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2044{
2045 const struct btf_type *func, *func_proto;
2357672c 2046 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2047 struct bpf_kfunc_desc_tab *tab;
2048 struct bpf_prog_aux *prog_aux;
2049 struct bpf_kfunc_desc *desc;
2050 const char *func_name;
2357672c 2051 struct btf *desc_btf;
8cbf062a 2052 unsigned long call_imm;
e6ac2450
MKL
2053 unsigned long addr;
2054 int err;
2055
2056 prog_aux = env->prog->aux;
2057 tab = prog_aux->kfunc_tab;
2357672c 2058 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2059 if (!tab) {
2060 if (!btf_vmlinux) {
2061 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2062 return -ENOTSUPP;
2063 }
2064
2065 if (!env->prog->jit_requested) {
2066 verbose(env, "JIT is required for calling kernel function\n");
2067 return -ENOTSUPP;
2068 }
2069
2070 if (!bpf_jit_supports_kfunc_call()) {
2071 verbose(env, "JIT does not support calling kernel function\n");
2072 return -ENOTSUPP;
2073 }
2074
2075 if (!env->prog->gpl_compatible) {
2076 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2077 return -EINVAL;
2078 }
2079
2080 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2081 if (!tab)
2082 return -ENOMEM;
2083 prog_aux->kfunc_tab = tab;
2084 }
2085
a5d82727
KKD
2086 /* func_id == 0 is always invalid, but instead of returning an error, be
2087 * conservative and wait until the code elimination pass before returning
2088 * error, so that invalid calls that get pruned out can be in BPF programs
2089 * loaded from userspace. It is also required that offset be untouched
2090 * for such calls.
2091 */
2092 if (!func_id && !offset)
2093 return 0;
2094
2357672c
KKD
2095 if (!btf_tab && offset) {
2096 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2097 if (!btf_tab)
2098 return -ENOMEM;
2099 prog_aux->kfunc_btf_tab = btf_tab;
2100 }
2101
43bf0878 2102 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2103 if (IS_ERR(desc_btf)) {
2104 verbose(env, "failed to find BTF for kernel function\n");
2105 return PTR_ERR(desc_btf);
2106 }
2107
2108 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2109 return 0;
2110
2111 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2112 verbose(env, "too many different kernel function calls\n");
2113 return -E2BIG;
2114 }
2115
2357672c 2116 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2117 if (!func || !btf_type_is_func(func)) {
2118 verbose(env, "kernel btf_id %u is not a function\n",
2119 func_id);
2120 return -EINVAL;
2121 }
2357672c 2122 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2123 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2124 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2125 func_id);
2126 return -EINVAL;
2127 }
2128
2357672c 2129 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2130 addr = kallsyms_lookup_name(func_name);
2131 if (!addr) {
2132 verbose(env, "cannot find address for kernel function %s\n",
2133 func_name);
2134 return -EINVAL;
2135 }
2136
8cbf062a
HT
2137 call_imm = BPF_CALL_IMM(addr);
2138 /* Check whether or not the relative offset overflows desc->imm */
2139 if ((unsigned long)(s32)call_imm != call_imm) {
2140 verbose(env, "address of kernel function %s is out of range\n",
2141 func_name);
2142 return -EINVAL;
2143 }
2144
e6ac2450
MKL
2145 desc = &tab->descs[tab->nr_descs++];
2146 desc->func_id = func_id;
8cbf062a 2147 desc->imm = call_imm;
2357672c
KKD
2148 desc->offset = offset;
2149 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2150 func_proto, func_name,
2151 &desc->func_model);
2152 if (!err)
2153 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2154 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2155 return err;
2156}
2157
2158static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2159{
2160 const struct bpf_kfunc_desc *d0 = a;
2161 const struct bpf_kfunc_desc *d1 = b;
2162
2163 if (d0->imm > d1->imm)
2164 return 1;
2165 else if (d0->imm < d1->imm)
2166 return -1;
2167 return 0;
2168}
2169
2170static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2171{
2172 struct bpf_kfunc_desc_tab *tab;
2173
2174 tab = prog->aux->kfunc_tab;
2175 if (!tab)
2176 return;
2177
2178 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2179 kfunc_desc_cmp_by_imm, NULL);
2180}
2181
2182bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2183{
2184 return !!prog->aux->kfunc_tab;
2185}
2186
2187const struct btf_func_model *
2188bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2189 const struct bpf_insn *insn)
2190{
2191 const struct bpf_kfunc_desc desc = {
2192 .imm = insn->imm,
2193 };
2194 const struct bpf_kfunc_desc *res;
2195 struct bpf_kfunc_desc_tab *tab;
2196
2197 tab = prog->aux->kfunc_tab;
2198 res = bsearch(&desc, tab->descs, tab->nr_descs,
2199 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2200
2201 return res ? &res->func_model : NULL;
2202}
2203
2204static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2205{
9c8105bd 2206 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2207 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2208 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2209
f910cefa
JW
2210 /* Add entry function. */
2211 ret = add_subprog(env, 0);
e6ac2450 2212 if (ret)
f910cefa
JW
2213 return ret;
2214
e6ac2450
MKL
2215 for (i = 0; i < insn_cnt; i++, insn++) {
2216 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2217 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2218 continue;
e6ac2450 2219
2c78ee89 2220 if (!env->bpf_capable) {
e6ac2450 2221 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2222 return -EPERM;
2223 }
e6ac2450 2224
3990ed4c 2225 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2226 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2227 else
2357672c 2228 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2229
cc8b0b92
AS
2230 if (ret < 0)
2231 return ret;
2232 }
2233
4cb3d99c
JW
2234 /* Add a fake 'exit' subprog which could simplify subprog iteration
2235 * logic. 'subprog_cnt' should not be increased.
2236 */
2237 subprog[env->subprog_cnt].start = insn_cnt;
2238
06ee7115 2239 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2240 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2241 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2242
e6ac2450
MKL
2243 return 0;
2244}
2245
2246static int check_subprogs(struct bpf_verifier_env *env)
2247{
2248 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2249 struct bpf_subprog_info *subprog = env->subprog_info;
2250 struct bpf_insn *insn = env->prog->insnsi;
2251 int insn_cnt = env->prog->len;
2252
cc8b0b92 2253 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2254 subprog_start = subprog[cur_subprog].start;
2255 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2256 for (i = 0; i < insn_cnt; i++) {
2257 u8 code = insn[i].code;
2258
7f6e4312
MF
2259 if (code == (BPF_JMP | BPF_CALL) &&
2260 insn[i].imm == BPF_FUNC_tail_call &&
2261 insn[i].src_reg != BPF_PSEUDO_CALL)
2262 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2263 if (BPF_CLASS(code) == BPF_LD &&
2264 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2265 subprog[cur_subprog].has_ld_abs = true;
092ed096 2266 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2267 goto next;
2268 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2269 goto next;
2270 off = i + insn[i].off + 1;
2271 if (off < subprog_start || off >= subprog_end) {
2272 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2273 return -EINVAL;
2274 }
2275next:
2276 if (i == subprog_end - 1) {
2277 /* to avoid fall-through from one subprog into another
2278 * the last insn of the subprog should be either exit
2279 * or unconditional jump back
2280 */
2281 if (code != (BPF_JMP | BPF_EXIT) &&
2282 code != (BPF_JMP | BPF_JA)) {
2283 verbose(env, "last insn is not an exit or jmp\n");
2284 return -EINVAL;
2285 }
2286 subprog_start = subprog_end;
4cb3d99c
JW
2287 cur_subprog++;
2288 if (cur_subprog < env->subprog_cnt)
9c8105bd 2289 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2290 }
2291 }
2292 return 0;
2293}
2294
679c782d
EC
2295/* Parentage chain of this register (or stack slot) should take care of all
2296 * issues like callee-saved registers, stack slot allocation time, etc.
2297 */
f4d7e40a 2298static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2299 const struct bpf_reg_state *state,
5327ed3d 2300 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2301{
2302 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2303 int cnt = 0;
dc503a8a
EC
2304
2305 while (parent) {
2306 /* if read wasn't screened by an earlier write ... */
679c782d 2307 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2308 break;
9242b5f5
AS
2309 if (parent->live & REG_LIVE_DONE) {
2310 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2311 reg_type_str(env, parent->type),
9242b5f5
AS
2312 parent->var_off.value, parent->off);
2313 return -EFAULT;
2314 }
5327ed3d
JW
2315 /* The first condition is more likely to be true than the
2316 * second, checked it first.
2317 */
2318 if ((parent->live & REG_LIVE_READ) == flag ||
2319 parent->live & REG_LIVE_READ64)
25af32da
AS
2320 /* The parentage chain never changes and
2321 * this parent was already marked as LIVE_READ.
2322 * There is no need to keep walking the chain again and
2323 * keep re-marking all parents as LIVE_READ.
2324 * This case happens when the same register is read
2325 * multiple times without writes into it in-between.
5327ed3d
JW
2326 * Also, if parent has the stronger REG_LIVE_READ64 set,
2327 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2328 */
2329 break;
dc503a8a 2330 /* ... then we depend on parent's value */
5327ed3d
JW
2331 parent->live |= flag;
2332 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2333 if (flag == REG_LIVE_READ64)
2334 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2335 state = parent;
2336 parent = state->parent;
f4d7e40a 2337 writes = true;
06ee7115 2338 cnt++;
dc503a8a 2339 }
06ee7115
AS
2340
2341 if (env->longest_mark_read_walk < cnt)
2342 env->longest_mark_read_walk = cnt;
f4d7e40a 2343 return 0;
dc503a8a
EC
2344}
2345
5327ed3d
JW
2346/* This function is supposed to be used by the following 32-bit optimization
2347 * code only. It returns TRUE if the source or destination register operates
2348 * on 64-bit, otherwise return FALSE.
2349 */
2350static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2351 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2352{
2353 u8 code, class, op;
2354
2355 code = insn->code;
2356 class = BPF_CLASS(code);
2357 op = BPF_OP(code);
2358 if (class == BPF_JMP) {
2359 /* BPF_EXIT for "main" will reach here. Return TRUE
2360 * conservatively.
2361 */
2362 if (op == BPF_EXIT)
2363 return true;
2364 if (op == BPF_CALL) {
2365 /* BPF to BPF call will reach here because of marking
2366 * caller saved clobber with DST_OP_NO_MARK for which we
2367 * don't care the register def because they are anyway
2368 * marked as NOT_INIT already.
2369 */
2370 if (insn->src_reg == BPF_PSEUDO_CALL)
2371 return false;
2372 /* Helper call will reach here because of arg type
2373 * check, conservatively return TRUE.
2374 */
2375 if (t == SRC_OP)
2376 return true;
2377
2378 return false;
2379 }
2380 }
2381
2382 if (class == BPF_ALU64 || class == BPF_JMP ||
2383 /* BPF_END always use BPF_ALU class. */
2384 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2385 return true;
2386
2387 if (class == BPF_ALU || class == BPF_JMP32)
2388 return false;
2389
2390 if (class == BPF_LDX) {
2391 if (t != SRC_OP)
2392 return BPF_SIZE(code) == BPF_DW;
2393 /* LDX source must be ptr. */
2394 return true;
2395 }
2396
2397 if (class == BPF_STX) {
83a28819
IL
2398 /* BPF_STX (including atomic variants) has multiple source
2399 * operands, one of which is a ptr. Check whether the caller is
2400 * asking about it.
2401 */
2402 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2403 return true;
2404 return BPF_SIZE(code) == BPF_DW;
2405 }
2406
2407 if (class == BPF_LD) {
2408 u8 mode = BPF_MODE(code);
2409
2410 /* LD_IMM64 */
2411 if (mode == BPF_IMM)
2412 return true;
2413
2414 /* Both LD_IND and LD_ABS return 32-bit data. */
2415 if (t != SRC_OP)
2416 return false;
2417
2418 /* Implicit ctx ptr. */
2419 if (regno == BPF_REG_6)
2420 return true;
2421
2422 /* Explicit source could be any width. */
2423 return true;
2424 }
2425
2426 if (class == BPF_ST)
2427 /* The only source register for BPF_ST is a ptr. */
2428 return true;
2429
2430 /* Conservatively return true at default. */
2431 return true;
2432}
2433
83a28819
IL
2434/* Return the regno defined by the insn, or -1. */
2435static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2436{
83a28819
IL
2437 switch (BPF_CLASS(insn->code)) {
2438 case BPF_JMP:
2439 case BPF_JMP32:
2440 case BPF_ST:
2441 return -1;
2442 case BPF_STX:
2443 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2444 (insn->imm & BPF_FETCH)) {
2445 if (insn->imm == BPF_CMPXCHG)
2446 return BPF_REG_0;
2447 else
2448 return insn->src_reg;
2449 } else {
2450 return -1;
2451 }
2452 default:
2453 return insn->dst_reg;
2454 }
b325fbca
JW
2455}
2456
2457/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2458static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2459{
83a28819
IL
2460 int dst_reg = insn_def_regno(insn);
2461
2462 if (dst_reg == -1)
b325fbca
JW
2463 return false;
2464
83a28819 2465 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2466}
2467
5327ed3d
JW
2468static void mark_insn_zext(struct bpf_verifier_env *env,
2469 struct bpf_reg_state *reg)
2470{
2471 s32 def_idx = reg->subreg_def;
2472
2473 if (def_idx == DEF_NOT_SUBREG)
2474 return;
2475
2476 env->insn_aux_data[def_idx - 1].zext_dst = true;
2477 /* The dst will be zero extended, so won't be sub-register anymore. */
2478 reg->subreg_def = DEF_NOT_SUBREG;
2479}
2480
dc503a8a 2481static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2482 enum reg_arg_type t)
2483{
f4d7e40a
AS
2484 struct bpf_verifier_state *vstate = env->cur_state;
2485 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2486 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2487 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2488 bool rw64;
dc503a8a 2489
17a52670 2490 if (regno >= MAX_BPF_REG) {
61bd5218 2491 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2492 return -EINVAL;
2493 }
2494
0f55f9ed
CL
2495 mark_reg_scratched(env, regno);
2496
c342dc10 2497 reg = &regs[regno];
5327ed3d 2498 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2499 if (t == SRC_OP) {
2500 /* check whether register used as source operand can be read */
c342dc10 2501 if (reg->type == NOT_INIT) {
61bd5218 2502 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2503 return -EACCES;
2504 }
679c782d 2505 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2506 if (regno == BPF_REG_FP)
2507 return 0;
2508
5327ed3d
JW
2509 if (rw64)
2510 mark_insn_zext(env, reg);
2511
2512 return mark_reg_read(env, reg, reg->parent,
2513 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2514 } else {
2515 /* check whether register used as dest operand can be written to */
2516 if (regno == BPF_REG_FP) {
61bd5218 2517 verbose(env, "frame pointer is read only\n");
17a52670
AS
2518 return -EACCES;
2519 }
c342dc10 2520 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2521 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2522 if (t == DST_OP)
61bd5218 2523 mark_reg_unknown(env, regs, regno);
17a52670
AS
2524 }
2525 return 0;
2526}
2527
b5dc0163
AS
2528/* for any branch, call, exit record the history of jmps in the given state */
2529static int push_jmp_history(struct bpf_verifier_env *env,
2530 struct bpf_verifier_state *cur)
2531{
2532 u32 cnt = cur->jmp_history_cnt;
2533 struct bpf_idx_pair *p;
ceb35b66 2534 size_t alloc_size;
b5dc0163
AS
2535
2536 cnt++;
ceb35b66
KC
2537 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2538 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
b5dc0163
AS
2539 if (!p)
2540 return -ENOMEM;
2541 p[cnt - 1].idx = env->insn_idx;
2542 p[cnt - 1].prev_idx = env->prev_insn_idx;
2543 cur->jmp_history = p;
2544 cur->jmp_history_cnt = cnt;
2545 return 0;
2546}
2547
2548/* Backtrack one insn at a time. If idx is not at the top of recorded
2549 * history then previous instruction came from straight line execution.
2550 */
2551static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2552 u32 *history)
2553{
2554 u32 cnt = *history;
2555
2556 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2557 i = st->jmp_history[cnt - 1].prev_idx;
2558 (*history)--;
2559 } else {
2560 i--;
2561 }
2562 return i;
2563}
2564
e6ac2450
MKL
2565static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2566{
2567 const struct btf_type *func;
2357672c 2568 struct btf *desc_btf;
e6ac2450
MKL
2569
2570 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2571 return NULL;
2572
43bf0878 2573 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
2574 if (IS_ERR(desc_btf))
2575 return "<error>";
2576
2577 func = btf_type_by_id(desc_btf, insn->imm);
2578 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2579}
2580
b5dc0163
AS
2581/* For given verifier state backtrack_insn() is called from the last insn to
2582 * the first insn. Its purpose is to compute a bitmask of registers and
2583 * stack slots that needs precision in the parent verifier state.
2584 */
2585static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2586 u32 *reg_mask, u64 *stack_mask)
2587{
2588 const struct bpf_insn_cbs cbs = {
e6ac2450 2589 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2590 .cb_print = verbose,
2591 .private_data = env,
2592 };
2593 struct bpf_insn *insn = env->prog->insnsi + idx;
2594 u8 class = BPF_CLASS(insn->code);
2595 u8 opcode = BPF_OP(insn->code);
2596 u8 mode = BPF_MODE(insn->code);
2597 u32 dreg = 1u << insn->dst_reg;
2598 u32 sreg = 1u << insn->src_reg;
2599 u32 spi;
2600
2601 if (insn->code == 0)
2602 return 0;
496f3324 2603 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
2604 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2605 verbose(env, "%d: ", idx);
2606 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2607 }
2608
2609 if (class == BPF_ALU || class == BPF_ALU64) {
2610 if (!(*reg_mask & dreg))
2611 return 0;
2612 if (opcode == BPF_MOV) {
2613 if (BPF_SRC(insn->code) == BPF_X) {
2614 /* dreg = sreg
2615 * dreg needs precision after this insn
2616 * sreg needs precision before this insn
2617 */
2618 *reg_mask &= ~dreg;
2619 *reg_mask |= sreg;
2620 } else {
2621 /* dreg = K
2622 * dreg needs precision after this insn.
2623 * Corresponding register is already marked
2624 * as precise=true in this verifier state.
2625 * No further markings in parent are necessary
2626 */
2627 *reg_mask &= ~dreg;
2628 }
2629 } else {
2630 if (BPF_SRC(insn->code) == BPF_X) {
2631 /* dreg += sreg
2632 * both dreg and sreg need precision
2633 * before this insn
2634 */
2635 *reg_mask |= sreg;
2636 } /* else dreg += K
2637 * dreg still needs precision before this insn
2638 */
2639 }
2640 } else if (class == BPF_LDX) {
2641 if (!(*reg_mask & dreg))
2642 return 0;
2643 *reg_mask &= ~dreg;
2644
2645 /* scalars can only be spilled into stack w/o losing precision.
2646 * Load from any other memory can be zero extended.
2647 * The desire to keep that precision is already indicated
2648 * by 'precise' mark in corresponding register of this state.
2649 * No further tracking necessary.
2650 */
2651 if (insn->src_reg != BPF_REG_FP)
2652 return 0;
b5dc0163
AS
2653
2654 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2655 * that [fp - off] slot contains scalar that needs to be
2656 * tracked with precision
2657 */
2658 spi = (-insn->off - 1) / BPF_REG_SIZE;
2659 if (spi >= 64) {
2660 verbose(env, "BUG spi %d\n", spi);
2661 WARN_ONCE(1, "verifier backtracking bug");
2662 return -EFAULT;
2663 }
2664 *stack_mask |= 1ull << spi;
b3b50f05 2665 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2666 if (*reg_mask & dreg)
b3b50f05 2667 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2668 * to access memory. It means backtracking
2669 * encountered a case of pointer subtraction.
2670 */
2671 return -ENOTSUPP;
2672 /* scalars can only be spilled into stack */
2673 if (insn->dst_reg != BPF_REG_FP)
2674 return 0;
b5dc0163
AS
2675 spi = (-insn->off - 1) / BPF_REG_SIZE;
2676 if (spi >= 64) {
2677 verbose(env, "BUG spi %d\n", spi);
2678 WARN_ONCE(1, "verifier backtracking bug");
2679 return -EFAULT;
2680 }
2681 if (!(*stack_mask & (1ull << spi)))
2682 return 0;
2683 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2684 if (class == BPF_STX)
2685 *reg_mask |= sreg;
b5dc0163
AS
2686 } else if (class == BPF_JMP || class == BPF_JMP32) {
2687 if (opcode == BPF_CALL) {
2688 if (insn->src_reg == BPF_PSEUDO_CALL)
2689 return -ENOTSUPP;
be2ef816
AN
2690 /* BPF helpers that invoke callback subprogs are
2691 * equivalent to BPF_PSEUDO_CALL above
2692 */
2693 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2694 return -ENOTSUPP;
b5dc0163
AS
2695 /* regular helper call sets R0 */
2696 *reg_mask &= ~1;
2697 if (*reg_mask & 0x3f) {
2698 /* if backtracing was looking for registers R1-R5
2699 * they should have been found already.
2700 */
2701 verbose(env, "BUG regs %x\n", *reg_mask);
2702 WARN_ONCE(1, "verifier backtracking bug");
2703 return -EFAULT;
2704 }
2705 } else if (opcode == BPF_EXIT) {
2706 return -ENOTSUPP;
2707 }
2708 } else if (class == BPF_LD) {
2709 if (!(*reg_mask & dreg))
2710 return 0;
2711 *reg_mask &= ~dreg;
2712 /* It's ld_imm64 or ld_abs or ld_ind.
2713 * For ld_imm64 no further tracking of precision
2714 * into parent is necessary
2715 */
2716 if (mode == BPF_IND || mode == BPF_ABS)
2717 /* to be analyzed */
2718 return -ENOTSUPP;
b5dc0163
AS
2719 }
2720 return 0;
2721}
2722
2723/* the scalar precision tracking algorithm:
2724 * . at the start all registers have precise=false.
2725 * . scalar ranges are tracked as normal through alu and jmp insns.
2726 * . once precise value of the scalar register is used in:
2727 * . ptr + scalar alu
2728 * . if (scalar cond K|scalar)
2729 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2730 * backtrack through the verifier states and mark all registers and
2731 * stack slots with spilled constants that these scalar regisers
2732 * should be precise.
2733 * . during state pruning two registers (or spilled stack slots)
2734 * are equivalent if both are not precise.
2735 *
2736 * Note the verifier cannot simply walk register parentage chain,
2737 * since many different registers and stack slots could have been
2738 * used to compute single precise scalar.
2739 *
2740 * The approach of starting with precise=true for all registers and then
2741 * backtrack to mark a register as not precise when the verifier detects
2742 * that program doesn't care about specific value (e.g., when helper
2743 * takes register as ARG_ANYTHING parameter) is not safe.
2744 *
2745 * It's ok to walk single parentage chain of the verifier states.
2746 * It's possible that this backtracking will go all the way till 1st insn.
2747 * All other branches will be explored for needing precision later.
2748 *
2749 * The backtracking needs to deal with cases like:
2750 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2751 * r9 -= r8
2752 * r5 = r9
2753 * if r5 > 0x79f goto pc+7
2754 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2755 * r5 += 1
2756 * ...
2757 * call bpf_perf_event_output#25
2758 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2759 *
2760 * and this case:
2761 * r6 = 1
2762 * call foo // uses callee's r6 inside to compute r0
2763 * r0 += r6
2764 * if r0 == 0 goto
2765 *
2766 * to track above reg_mask/stack_mask needs to be independent for each frame.
2767 *
2768 * Also if parent's curframe > frame where backtracking started,
2769 * the verifier need to mark registers in both frames, otherwise callees
2770 * may incorrectly prune callers. This is similar to
2771 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2772 *
2773 * For now backtracking falls back into conservative marking.
2774 */
2775static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2776 struct bpf_verifier_state *st)
2777{
2778 struct bpf_func_state *func;
2779 struct bpf_reg_state *reg;
2780 int i, j;
2781
2782 /* big hammer: mark all scalars precise in this path.
2783 * pop_stack may still get !precise scalars.
f63181b6
AN
2784 * We also skip current state and go straight to first parent state,
2785 * because precision markings in current non-checkpointed state are
2786 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 2787 */
f63181b6 2788 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
2789 for (i = 0; i <= st->curframe; i++) {
2790 func = st->frame[i];
2791 for (j = 0; j < BPF_REG_FP; j++) {
2792 reg = &func->regs[j];
2793 if (reg->type != SCALAR_VALUE)
2794 continue;
2795 reg->precise = true;
2796 }
2797 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2798 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2799 continue;
2800 reg = &func->stack[j].spilled_ptr;
2801 if (reg->type != SCALAR_VALUE)
2802 continue;
2803 reg->precise = true;
2804 }
2805 }
f63181b6 2806 }
b5dc0163
AS
2807}
2808
7a830b53
AN
2809static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2810{
2811 struct bpf_func_state *func;
2812 struct bpf_reg_state *reg;
2813 int i, j;
2814
2815 for (i = 0; i <= st->curframe; i++) {
2816 func = st->frame[i];
2817 for (j = 0; j < BPF_REG_FP; j++) {
2818 reg = &func->regs[j];
2819 if (reg->type != SCALAR_VALUE)
2820 continue;
2821 reg->precise = false;
2822 }
2823 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2824 if (!is_spilled_reg(&func->stack[j]))
2825 continue;
2826 reg = &func->stack[j].spilled_ptr;
2827 if (reg->type != SCALAR_VALUE)
2828 continue;
2829 reg->precise = false;
2830 }
2831 }
2832}
2833
f63181b6
AN
2834/*
2835 * __mark_chain_precision() backtracks BPF program instruction sequence and
2836 * chain of verifier states making sure that register *regno* (if regno >= 0)
2837 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2838 * SCALARS, as well as any other registers and slots that contribute to
2839 * a tracked state of given registers/stack slots, depending on specific BPF
2840 * assembly instructions (see backtrack_insns() for exact instruction handling
2841 * logic). This backtracking relies on recorded jmp_history and is able to
2842 * traverse entire chain of parent states. This process ends only when all the
2843 * necessary registers/slots and their transitive dependencies are marked as
2844 * precise.
2845 *
2846 * One important and subtle aspect is that precise marks *do not matter* in
2847 * the currently verified state (current state). It is important to understand
2848 * why this is the case.
2849 *
2850 * First, note that current state is the state that is not yet "checkpointed",
2851 * i.e., it is not yet put into env->explored_states, and it has no children
2852 * states as well. It's ephemeral, and can end up either a) being discarded if
2853 * compatible explored state is found at some point or BPF_EXIT instruction is
2854 * reached or b) checkpointed and put into env->explored_states, branching out
2855 * into one or more children states.
2856 *
2857 * In the former case, precise markings in current state are completely
2858 * ignored by state comparison code (see regsafe() for details). Only
2859 * checkpointed ("old") state precise markings are important, and if old
2860 * state's register/slot is precise, regsafe() assumes current state's
2861 * register/slot as precise and checks value ranges exactly and precisely. If
2862 * states turn out to be compatible, current state's necessary precise
2863 * markings and any required parent states' precise markings are enforced
2864 * after the fact with propagate_precision() logic, after the fact. But it's
2865 * important to realize that in this case, even after marking current state
2866 * registers/slots as precise, we immediately discard current state. So what
2867 * actually matters is any of the precise markings propagated into current
2868 * state's parent states, which are always checkpointed (due to b) case above).
2869 * As such, for scenario a) it doesn't matter if current state has precise
2870 * markings set or not.
2871 *
2872 * Now, for the scenario b), checkpointing and forking into child(ren)
2873 * state(s). Note that before current state gets to checkpointing step, any
2874 * processed instruction always assumes precise SCALAR register/slot
2875 * knowledge: if precise value or range is useful to prune jump branch, BPF
2876 * verifier takes this opportunity enthusiastically. Similarly, when
2877 * register's value is used to calculate offset or memory address, exact
2878 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2879 * what we mentioned above about state comparison ignoring precise markings
2880 * during state comparison, BPF verifier ignores and also assumes precise
2881 * markings *at will* during instruction verification process. But as verifier
2882 * assumes precision, it also propagates any precision dependencies across
2883 * parent states, which are not yet finalized, so can be further restricted
2884 * based on new knowledge gained from restrictions enforced by their children
2885 * states. This is so that once those parent states are finalized, i.e., when
2886 * they have no more active children state, state comparison logic in
2887 * is_state_visited() would enforce strict and precise SCALAR ranges, if
2888 * required for correctness.
2889 *
2890 * To build a bit more intuition, note also that once a state is checkpointed,
2891 * the path we took to get to that state is not important. This is crucial
2892 * property for state pruning. When state is checkpointed and finalized at
2893 * some instruction index, it can be correctly and safely used to "short
2894 * circuit" any *compatible* state that reaches exactly the same instruction
2895 * index. I.e., if we jumped to that instruction from a completely different
2896 * code path than original finalized state was derived from, it doesn't
2897 * matter, current state can be discarded because from that instruction
2898 * forward having a compatible state will ensure we will safely reach the
2899 * exit. States describe preconditions for further exploration, but completely
2900 * forget the history of how we got here.
2901 *
2902 * This also means that even if we needed precise SCALAR range to get to
2903 * finalized state, but from that point forward *that same* SCALAR register is
2904 * never used in a precise context (i.e., it's precise value is not needed for
2905 * correctness), it's correct and safe to mark such register as "imprecise"
2906 * (i.e., precise marking set to false). This is what we rely on when we do
2907 * not set precise marking in current state. If no child state requires
2908 * precision for any given SCALAR register, it's safe to dictate that it can
2909 * be imprecise. If any child state does require this register to be precise,
2910 * we'll mark it precise later retroactively during precise markings
2911 * propagation from child state to parent states.
7a830b53
AN
2912 *
2913 * Skipping precise marking setting in current state is a mild version of
2914 * relying on the above observation. But we can utilize this property even
2915 * more aggressively by proactively forgetting any precise marking in the
2916 * current state (which we inherited from the parent state), right before we
2917 * checkpoint it and branch off into new child state. This is done by
2918 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2919 * finalized states which help in short circuiting more future states.
f63181b6 2920 */
529409ea 2921static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
a3ce685d 2922 int spi)
b5dc0163
AS
2923{
2924 struct bpf_verifier_state *st = env->cur_state;
2925 int first_idx = st->first_insn_idx;
2926 int last_idx = env->insn_idx;
2927 struct bpf_func_state *func;
2928 struct bpf_reg_state *reg;
a3ce685d
AS
2929 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2930 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2931 bool skip_first = true;
a3ce685d 2932 bool new_marks = false;
b5dc0163
AS
2933 int i, err;
2934
2c78ee89 2935 if (!env->bpf_capable)
b5dc0163
AS
2936 return 0;
2937
f63181b6
AN
2938 /* Do sanity checks against current state of register and/or stack
2939 * slot, but don't set precise flag in current state, as precision
2940 * tracking in the current state is unnecessary.
2941 */
529409ea 2942 func = st->frame[frame];
a3ce685d
AS
2943 if (regno >= 0) {
2944 reg = &func->regs[regno];
2945 if (reg->type != SCALAR_VALUE) {
2946 WARN_ONCE(1, "backtracing misuse");
2947 return -EFAULT;
2948 }
f63181b6 2949 new_marks = true;
b5dc0163 2950 }
b5dc0163 2951
a3ce685d 2952 while (spi >= 0) {
27113c59 2953 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2954 stack_mask = 0;
2955 break;
2956 }
2957 reg = &func->stack[spi].spilled_ptr;
2958 if (reg->type != SCALAR_VALUE) {
2959 stack_mask = 0;
2960 break;
2961 }
f63181b6 2962 new_marks = true;
a3ce685d
AS
2963 break;
2964 }
2965
2966 if (!new_marks)
2967 return 0;
2968 if (!reg_mask && !stack_mask)
2969 return 0;
be2ef816 2970
b5dc0163
AS
2971 for (;;) {
2972 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2973 u32 history = st->jmp_history_cnt;
2974
496f3324 2975 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163 2976 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
be2ef816
AN
2977
2978 if (last_idx < 0) {
2979 /* we are at the entry into subprog, which
2980 * is expected for global funcs, but only if
2981 * requested precise registers are R1-R5
2982 * (which are global func's input arguments)
2983 */
2984 if (st->curframe == 0 &&
2985 st->frame[0]->subprogno > 0 &&
2986 st->frame[0]->callsite == BPF_MAIN_FUNC &&
2987 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2988 bitmap_from_u64(mask, reg_mask);
2989 for_each_set_bit(i, mask, 32) {
2990 reg = &st->frame[0]->regs[i];
2991 if (reg->type != SCALAR_VALUE) {
2992 reg_mask &= ~(1u << i);
2993 continue;
2994 }
2995 reg->precise = true;
2996 }
2997 return 0;
2998 }
2999
3000 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3001 st->frame[0]->subprogno, reg_mask, stack_mask);
3002 WARN_ONCE(1, "verifier backtracking bug");
3003 return -EFAULT;
3004 }
3005
b5dc0163
AS
3006 for (i = last_idx;;) {
3007 if (skip_first) {
3008 err = 0;
3009 skip_first = false;
3010 } else {
3011 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3012 }
3013 if (err == -ENOTSUPP) {
3014 mark_all_scalars_precise(env, st);
3015 return 0;
3016 } else if (err) {
3017 return err;
3018 }
3019 if (!reg_mask && !stack_mask)
3020 /* Found assignment(s) into tracked register in this state.
3021 * Since this state is already marked, just return.
3022 * Nothing to be tracked further in the parent state.
3023 */
3024 return 0;
3025 if (i == first_idx)
3026 break;
3027 i = get_prev_insn_idx(st, i, &history);
3028 if (i >= env->prog->len) {
3029 /* This can happen if backtracking reached insn 0
3030 * and there are still reg_mask or stack_mask
3031 * to backtrack.
3032 * It means the backtracking missed the spot where
3033 * particular register was initialized with a constant.
3034 */
3035 verbose(env, "BUG backtracking idx %d\n", i);
3036 WARN_ONCE(1, "verifier backtracking bug");
3037 return -EFAULT;
3038 }
3039 }
3040 st = st->parent;
3041 if (!st)
3042 break;
3043
a3ce685d 3044 new_marks = false;
529409ea 3045 func = st->frame[frame];
b5dc0163
AS
3046 bitmap_from_u64(mask, reg_mask);
3047 for_each_set_bit(i, mask, 32) {
3048 reg = &func->regs[i];
a3ce685d
AS
3049 if (reg->type != SCALAR_VALUE) {
3050 reg_mask &= ~(1u << i);
b5dc0163 3051 continue;
a3ce685d 3052 }
b5dc0163
AS
3053 if (!reg->precise)
3054 new_marks = true;
3055 reg->precise = true;
3056 }
3057
3058 bitmap_from_u64(mask, stack_mask);
3059 for_each_set_bit(i, mask, 64) {
3060 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
3061 /* the sequence of instructions:
3062 * 2: (bf) r3 = r10
3063 * 3: (7b) *(u64 *)(r3 -8) = r0
3064 * 4: (79) r4 = *(u64 *)(r10 -8)
3065 * doesn't contain jmps. It's backtracked
3066 * as a single block.
3067 * During backtracking insn 3 is not recognized as
3068 * stack access, so at the end of backtracking
3069 * stack slot fp-8 is still marked in stack_mask.
3070 * However the parent state may not have accessed
3071 * fp-8 and it's "unallocated" stack space.
3072 * In such case fallback to conservative.
b5dc0163 3073 */
2339cd6c
AS
3074 mark_all_scalars_precise(env, st);
3075 return 0;
b5dc0163
AS
3076 }
3077
27113c59 3078 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 3079 stack_mask &= ~(1ull << i);
b5dc0163 3080 continue;
a3ce685d 3081 }
b5dc0163 3082 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
3083 if (reg->type != SCALAR_VALUE) {
3084 stack_mask &= ~(1ull << i);
b5dc0163 3085 continue;
a3ce685d 3086 }
b5dc0163
AS
3087 if (!reg->precise)
3088 new_marks = true;
3089 reg->precise = true;
3090 }
496f3324 3091 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 3092 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
3093 new_marks ? "didn't have" : "already had",
3094 reg_mask, stack_mask);
2e576648 3095 print_verifier_state(env, func, true);
b5dc0163
AS
3096 }
3097
a3ce685d
AS
3098 if (!reg_mask && !stack_mask)
3099 break;
b5dc0163
AS
3100 if (!new_marks)
3101 break;
3102
3103 last_idx = st->last_insn_idx;
3104 first_idx = st->first_insn_idx;
3105 }
3106 return 0;
3107}
3108
eb1f7f71 3109int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 3110{
529409ea 3111 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
a3ce685d
AS
3112}
3113
529409ea 3114static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
a3ce685d 3115{
529409ea 3116 return __mark_chain_precision(env, frame, regno, -1);
a3ce685d
AS
3117}
3118
529409ea 3119static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
a3ce685d 3120{
529409ea 3121 return __mark_chain_precision(env, frame, -1, spi);
a3ce685d 3122}
b5dc0163 3123
1be7f75d
AS
3124static bool is_spillable_regtype(enum bpf_reg_type type)
3125{
c25b2ae1 3126 switch (base_type(type)) {
1be7f75d 3127 case PTR_TO_MAP_VALUE:
1be7f75d
AS
3128 case PTR_TO_STACK:
3129 case PTR_TO_CTX:
969bf05e 3130 case PTR_TO_PACKET:
de8f3a83 3131 case PTR_TO_PACKET_META:
969bf05e 3132 case PTR_TO_PACKET_END:
d58e468b 3133 case PTR_TO_FLOW_KEYS:
1be7f75d 3134 case CONST_PTR_TO_MAP:
c64b7983 3135 case PTR_TO_SOCKET:
46f8bc92 3136 case PTR_TO_SOCK_COMMON:
655a51e5 3137 case PTR_TO_TCP_SOCK:
fada7fdc 3138 case PTR_TO_XDP_SOCK:
65726b5b 3139 case PTR_TO_BTF_ID:
20b2aff4 3140 case PTR_TO_BUF:
744ea4e3 3141 case PTR_TO_MEM:
69c087ba
YS
3142 case PTR_TO_FUNC:
3143 case PTR_TO_MAP_KEY:
1be7f75d
AS
3144 return true;
3145 default:
3146 return false;
3147 }
3148}
3149
cc2b14d5
AS
3150/* Does this register contain a constant zero? */
3151static bool register_is_null(struct bpf_reg_state *reg)
3152{
3153 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3154}
3155
f7cf25b2
AS
3156static bool register_is_const(struct bpf_reg_state *reg)
3157{
3158 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3159}
3160
5689d49b
YS
3161static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3162{
3163 return tnum_is_unknown(reg->var_off) &&
3164 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3165 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3166 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3167 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3168}
3169
3170static bool register_is_bounded(struct bpf_reg_state *reg)
3171{
3172 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3173}
3174
6e7e63cb
JH
3175static bool __is_pointer_value(bool allow_ptr_leaks,
3176 const struct bpf_reg_state *reg)
3177{
3178 if (allow_ptr_leaks)
3179 return false;
3180
3181 return reg->type != SCALAR_VALUE;
3182}
3183
f7cf25b2 3184static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
3185 int spi, struct bpf_reg_state *reg,
3186 int size)
f7cf25b2
AS
3187{
3188 int i;
3189
3190 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
3191 if (size == BPF_REG_SIZE)
3192 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3193
354e8f19
MKL
3194 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3195 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3196
354e8f19
MKL
3197 /* size < 8 bytes spill */
3198 for (; i; i--)
3199 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3200}
3201
01f810ac 3202/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3203 * stack boundary and alignment are checked in check_mem_access()
3204 */
01f810ac
AM
3205static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3206 /* stack frame we're writing to */
3207 struct bpf_func_state *state,
3208 int off, int size, int value_regno,
3209 int insn_idx)
17a52670 3210{
f4d7e40a 3211 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3212 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 3213 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 3214 struct bpf_reg_state *reg = NULL;
638f5b90 3215
c69431aa 3216 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3217 if (err)
3218 return err;
9c399760
AS
3219 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3220 * so it's aligned access and [off, off + size) are within stack limits
3221 */
638f5b90
AS
3222 if (!env->allow_ptr_leaks &&
3223 state->stack[spi].slot_type[0] == STACK_SPILL &&
3224 size != BPF_REG_SIZE) {
3225 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3226 return -EACCES;
3227 }
17a52670 3228
f4d7e40a 3229 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3230 if (value_regno >= 0)
3231 reg = &cur->regs[value_regno];
2039f26f
DB
3232 if (!env->bypass_spec_v4) {
3233 bool sanitize = reg && is_spillable_regtype(reg->type);
3234
3235 for (i = 0; i < size; i++) {
3236 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3237 sanitize = true;
3238 break;
3239 }
3240 }
3241
3242 if (sanitize)
3243 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3244 }
17a52670 3245
0f55f9ed 3246 mark_stack_slot_scratched(env, spi);
354e8f19 3247 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3248 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3249 if (dst_reg != BPF_REG_FP) {
3250 /* The backtracking logic can only recognize explicit
3251 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3252 * scalar via different register has to be conservative.
b5dc0163
AS
3253 * Backtrack from here and mark all registers as precise
3254 * that contributed into 'reg' being a constant.
3255 */
3256 err = mark_chain_precision(env, value_regno);
3257 if (err)
3258 return err;
3259 }
354e8f19 3260 save_register_state(state, spi, reg, size);
f7cf25b2 3261 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3262 /* register containing pointer is being spilled into stack */
9c399760 3263 if (size != BPF_REG_SIZE) {
f7cf25b2 3264 verbose_linfo(env, insn_idx, "; ");
61bd5218 3265 verbose(env, "invalid size of register spill\n");
17a52670
AS
3266 return -EACCES;
3267 }
f7cf25b2 3268 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3269 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3270 return -EINVAL;
3271 }
354e8f19 3272 save_register_state(state, spi, reg, size);
9c399760 3273 } else {
cc2b14d5
AS
3274 u8 type = STACK_MISC;
3275
679c782d
EC
3276 /* regular write of data into stack destroys any spilled ptr */
3277 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 3278 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 3279 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 3280 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3281 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3282
cc2b14d5
AS
3283 /* only mark the slot as written if all 8 bytes were written
3284 * otherwise read propagation may incorrectly stop too soon
3285 * when stack slots are partially written.
3286 * This heuristic means that read propagation will be
3287 * conservative, since it will add reg_live_read marks
3288 * to stack slots all the way to first state when programs
3289 * writes+reads less than 8 bytes
3290 */
3291 if (size == BPF_REG_SIZE)
3292 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3293
3294 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
3295 if (reg && register_is_null(reg)) {
3296 /* backtracking doesn't work for STACK_ZERO yet. */
3297 err = mark_chain_precision(env, value_regno);
3298 if (err)
3299 return err;
cc2b14d5 3300 type = STACK_ZERO;
b5dc0163 3301 }
cc2b14d5 3302
0bae2d4d 3303 /* Mark slots affected by this stack write. */
9c399760 3304 for (i = 0; i < size; i++)
638f5b90 3305 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3306 type;
17a52670
AS
3307 }
3308 return 0;
3309}
3310
01f810ac
AM
3311/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3312 * known to contain a variable offset.
3313 * This function checks whether the write is permitted and conservatively
3314 * tracks the effects of the write, considering that each stack slot in the
3315 * dynamic range is potentially written to.
3316 *
3317 * 'off' includes 'regno->off'.
3318 * 'value_regno' can be -1, meaning that an unknown value is being written to
3319 * the stack.
3320 *
3321 * Spilled pointers in range are not marked as written because we don't know
3322 * what's going to be actually written. This means that read propagation for
3323 * future reads cannot be terminated by this write.
3324 *
3325 * For privileged programs, uninitialized stack slots are considered
3326 * initialized by this write (even though we don't know exactly what offsets
3327 * are going to be written to). The idea is that we don't want the verifier to
3328 * reject future reads that access slots written to through variable offsets.
3329 */
3330static int check_stack_write_var_off(struct bpf_verifier_env *env,
3331 /* func where register points to */
3332 struct bpf_func_state *state,
3333 int ptr_regno, int off, int size,
3334 int value_regno, int insn_idx)
3335{
3336 struct bpf_func_state *cur; /* state of the current function */
3337 int min_off, max_off;
3338 int i, err;
3339 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3340 bool writing_zero = false;
3341 /* set if the fact that we're writing a zero is used to let any
3342 * stack slots remain STACK_ZERO
3343 */
3344 bool zero_used = false;
3345
3346 cur = env->cur_state->frame[env->cur_state->curframe];
3347 ptr_reg = &cur->regs[ptr_regno];
3348 min_off = ptr_reg->smin_value + off;
3349 max_off = ptr_reg->smax_value + off + size;
3350 if (value_regno >= 0)
3351 value_reg = &cur->regs[value_regno];
3352 if (value_reg && register_is_null(value_reg))
3353 writing_zero = true;
3354
c69431aa 3355 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3356 if (err)
3357 return err;
3358
3359
3360 /* Variable offset writes destroy any spilled pointers in range. */
3361 for (i = min_off; i < max_off; i++) {
3362 u8 new_type, *stype;
3363 int slot, spi;
3364
3365 slot = -i - 1;
3366 spi = slot / BPF_REG_SIZE;
3367 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 3368 mark_stack_slot_scratched(env, spi);
01f810ac 3369
f5e477a8
KKD
3370 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3371 /* Reject the write if range we may write to has not
3372 * been initialized beforehand. If we didn't reject
3373 * here, the ptr status would be erased below (even
3374 * though not all slots are actually overwritten),
3375 * possibly opening the door to leaks.
3376 *
3377 * We do however catch STACK_INVALID case below, and
3378 * only allow reading possibly uninitialized memory
3379 * later for CAP_PERFMON, as the write may not happen to
3380 * that slot.
01f810ac
AM
3381 */
3382 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3383 insn_idx, i);
3384 return -EINVAL;
3385 }
3386
3387 /* Erase all spilled pointers. */
3388 state->stack[spi].spilled_ptr.type = NOT_INIT;
3389
3390 /* Update the slot type. */
3391 new_type = STACK_MISC;
3392 if (writing_zero && *stype == STACK_ZERO) {
3393 new_type = STACK_ZERO;
3394 zero_used = true;
3395 }
3396 /* If the slot is STACK_INVALID, we check whether it's OK to
3397 * pretend that it will be initialized by this write. The slot
3398 * might not actually be written to, and so if we mark it as
3399 * initialized future reads might leak uninitialized memory.
3400 * For privileged programs, we will accept such reads to slots
3401 * that may or may not be written because, if we're reject
3402 * them, the error would be too confusing.
3403 */
3404 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3405 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3406 insn_idx, i);
3407 return -EINVAL;
3408 }
3409 *stype = new_type;
3410 }
3411 if (zero_used) {
3412 /* backtracking doesn't work for STACK_ZERO yet. */
3413 err = mark_chain_precision(env, value_regno);
3414 if (err)
3415 return err;
3416 }
3417 return 0;
3418}
3419
3420/* When register 'dst_regno' is assigned some values from stack[min_off,
3421 * max_off), we set the register's type according to the types of the
3422 * respective stack slots. If all the stack values are known to be zeros, then
3423 * so is the destination reg. Otherwise, the register is considered to be
3424 * SCALAR. This function does not deal with register filling; the caller must
3425 * ensure that all spilled registers in the stack range have been marked as
3426 * read.
3427 */
3428static void mark_reg_stack_read(struct bpf_verifier_env *env,
3429 /* func where src register points to */
3430 struct bpf_func_state *ptr_state,
3431 int min_off, int max_off, int dst_regno)
3432{
3433 struct bpf_verifier_state *vstate = env->cur_state;
3434 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3435 int i, slot, spi;
3436 u8 *stype;
3437 int zeros = 0;
3438
3439 for (i = min_off; i < max_off; i++) {
3440 slot = -i - 1;
3441 spi = slot / BPF_REG_SIZE;
3442 stype = ptr_state->stack[spi].slot_type;
3443 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3444 break;
3445 zeros++;
3446 }
3447 if (zeros == max_off - min_off) {
3448 /* any access_size read into register is zero extended,
3449 * so the whole register == const_zero
3450 */
3451 __mark_reg_const_zero(&state->regs[dst_regno]);
3452 /* backtracking doesn't support STACK_ZERO yet,
3453 * so mark it precise here, so that later
3454 * backtracking can stop here.
3455 * Backtracking may not need this if this register
3456 * doesn't participate in pointer adjustment.
3457 * Forward propagation of precise flag is not
3458 * necessary either. This mark is only to stop
3459 * backtracking. Any register that contributed
3460 * to const 0 was marked precise before spill.
3461 */
3462 state->regs[dst_regno].precise = true;
3463 } else {
3464 /* have read misc data from the stack */
3465 mark_reg_unknown(env, state->regs, dst_regno);
3466 }
3467 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3468}
3469
3470/* Read the stack at 'off' and put the results into the register indicated by
3471 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3472 * spilled reg.
3473 *
3474 * 'dst_regno' can be -1, meaning that the read value is not going to a
3475 * register.
3476 *
3477 * The access is assumed to be within the current stack bounds.
3478 */
3479static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3480 /* func where src register points to */
3481 struct bpf_func_state *reg_state,
3482 int off, int size, int dst_regno)
17a52670 3483{
f4d7e40a
AS
3484 struct bpf_verifier_state *vstate = env->cur_state;
3485 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3486 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3487 struct bpf_reg_state *reg;
354e8f19 3488 u8 *stype, type;
17a52670 3489
f4d7e40a 3490 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3491 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3492
27113c59 3493 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3494 u8 spill_size = 1;
3495
3496 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3497 spill_size++;
354e8f19 3498
f30d4968 3499 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3500 if (reg->type != SCALAR_VALUE) {
3501 verbose_linfo(env, env->insn_idx, "; ");
3502 verbose(env, "invalid size of register fill\n");
3503 return -EACCES;
3504 }
354e8f19
MKL
3505
3506 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3507 if (dst_regno < 0)
3508 return 0;
3509
f30d4968 3510 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3511 /* The earlier check_reg_arg() has decided the
3512 * subreg_def for this insn. Save it first.
3513 */
3514 s32 subreg_def = state->regs[dst_regno].subreg_def;
3515
3516 state->regs[dst_regno] = *reg;
3517 state->regs[dst_regno].subreg_def = subreg_def;
3518 } else {
3519 for (i = 0; i < size; i++) {
3520 type = stype[(slot - i) % BPF_REG_SIZE];
3521 if (type == STACK_SPILL)
3522 continue;
3523 if (type == STACK_MISC)
3524 continue;
3525 verbose(env, "invalid read from stack off %d+%d size %d\n",
3526 off, i, size);
3527 return -EACCES;
3528 }
01f810ac 3529 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3530 }
354e8f19 3531 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3532 return 0;
17a52670 3533 }
17a52670 3534
01f810ac 3535 if (dst_regno >= 0) {
17a52670 3536 /* restore register state from stack */
01f810ac 3537 state->regs[dst_regno] = *reg;
2f18f62e
AS
3538 /* mark reg as written since spilled pointer state likely
3539 * has its liveness marks cleared by is_state_visited()
3540 * which resets stack/reg liveness for state transitions
3541 */
01f810ac 3542 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3543 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3544 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3545 * it is acceptable to use this value as a SCALAR_VALUE
3546 * (e.g. for XADD).
3547 * We must not allow unprivileged callers to do that
3548 * with spilled pointers.
3549 */
3550 verbose(env, "leaking pointer from stack off %d\n",
3551 off);
3552 return -EACCES;
dc503a8a 3553 }
f7cf25b2 3554 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3555 } else {
3556 for (i = 0; i < size; i++) {
01f810ac
AM
3557 type = stype[(slot - i) % BPF_REG_SIZE];
3558 if (type == STACK_MISC)
cc2b14d5 3559 continue;
01f810ac 3560 if (type == STACK_ZERO)
cc2b14d5 3561 continue;
cc2b14d5
AS
3562 verbose(env, "invalid read from stack off %d+%d size %d\n",
3563 off, i, size);
3564 return -EACCES;
3565 }
f7cf25b2 3566 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3567 if (dst_regno >= 0)
3568 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3569 }
f7cf25b2 3570 return 0;
17a52670
AS
3571}
3572
61df10c7 3573enum bpf_access_src {
01f810ac
AM
3574 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3575 ACCESS_HELPER = 2, /* the access is performed by a helper */
3576};
3577
3578static int check_stack_range_initialized(struct bpf_verifier_env *env,
3579 int regno, int off, int access_size,
3580 bool zero_size_allowed,
61df10c7 3581 enum bpf_access_src type,
01f810ac
AM
3582 struct bpf_call_arg_meta *meta);
3583
3584static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3585{
3586 return cur_regs(env) + regno;
3587}
3588
3589/* Read the stack at 'ptr_regno + off' and put the result into the register
3590 * 'dst_regno'.
3591 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3592 * but not its variable offset.
3593 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3594 *
3595 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3596 * filling registers (i.e. reads of spilled register cannot be detected when
3597 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3598 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3599 * offset; for a fixed offset check_stack_read_fixed_off should be used
3600 * instead.
3601 */
3602static int check_stack_read_var_off(struct bpf_verifier_env *env,
3603 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3604{
01f810ac
AM
3605 /* The state of the source register. */
3606 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3607 struct bpf_func_state *ptr_state = func(env, reg);
3608 int err;
3609 int min_off, max_off;
3610
3611 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3612 */
01f810ac
AM
3613 err = check_stack_range_initialized(env, ptr_regno, off, size,
3614 false, ACCESS_DIRECT, NULL);
3615 if (err)
3616 return err;
3617
3618 min_off = reg->smin_value + off;
3619 max_off = reg->smax_value + off;
3620 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3621 return 0;
3622}
3623
3624/* check_stack_read dispatches to check_stack_read_fixed_off or
3625 * check_stack_read_var_off.
3626 *
3627 * The caller must ensure that the offset falls within the allocated stack
3628 * bounds.
3629 *
3630 * 'dst_regno' is a register which will receive the value from the stack. It
3631 * can be -1, meaning that the read value is not going to a register.
3632 */
3633static int check_stack_read(struct bpf_verifier_env *env,
3634 int ptr_regno, int off, int size,
3635 int dst_regno)
3636{
3637 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3638 struct bpf_func_state *state = func(env, reg);
3639 int err;
3640 /* Some accesses are only permitted with a static offset. */
3641 bool var_off = !tnum_is_const(reg->var_off);
3642
3643 /* The offset is required to be static when reads don't go to a
3644 * register, in order to not leak pointers (see
3645 * check_stack_read_fixed_off).
3646 */
3647 if (dst_regno < 0 && var_off) {
e4298d25
DB
3648 char tn_buf[48];
3649
3650 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3651 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3652 tn_buf, off, size);
3653 return -EACCES;
3654 }
01f810ac
AM
3655 /* Variable offset is prohibited for unprivileged mode for simplicity
3656 * since it requires corresponding support in Spectre masking for stack
3657 * ALU. See also retrieve_ptr_limit().
3658 */
3659 if (!env->bypass_spec_v1 && var_off) {
3660 char tn_buf[48];
e4298d25 3661
01f810ac
AM
3662 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3663 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3664 ptr_regno, tn_buf);
e4298d25
DB
3665 return -EACCES;
3666 }
3667
01f810ac
AM
3668 if (!var_off) {
3669 off += reg->var_off.value;
3670 err = check_stack_read_fixed_off(env, state, off, size,
3671 dst_regno);
3672 } else {
3673 /* Variable offset stack reads need more conservative handling
3674 * than fixed offset ones. Note that dst_regno >= 0 on this
3675 * branch.
3676 */
3677 err = check_stack_read_var_off(env, ptr_regno, off, size,
3678 dst_regno);
3679 }
3680 return err;
3681}
3682
3683
3684/* check_stack_write dispatches to check_stack_write_fixed_off or
3685 * check_stack_write_var_off.
3686 *
3687 * 'ptr_regno' is the register used as a pointer into the stack.
3688 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3689 * 'value_regno' is the register whose value we're writing to the stack. It can
3690 * be -1, meaning that we're not writing from a register.
3691 *
3692 * The caller must ensure that the offset falls within the maximum stack size.
3693 */
3694static int check_stack_write(struct bpf_verifier_env *env,
3695 int ptr_regno, int off, int size,
3696 int value_regno, int insn_idx)
3697{
3698 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3699 struct bpf_func_state *state = func(env, reg);
3700 int err;
3701
3702 if (tnum_is_const(reg->var_off)) {
3703 off += reg->var_off.value;
3704 err = check_stack_write_fixed_off(env, state, off, size,
3705 value_regno, insn_idx);
3706 } else {
3707 /* Variable offset stack reads need more conservative handling
3708 * than fixed offset ones.
3709 */
3710 err = check_stack_write_var_off(env, state,
3711 ptr_regno, off, size,
3712 value_regno, insn_idx);
3713 }
3714 return err;
e4298d25
DB
3715}
3716
591fe988
DB
3717static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3718 int off, int size, enum bpf_access_type type)
3719{
3720 struct bpf_reg_state *regs = cur_regs(env);
3721 struct bpf_map *map = regs[regno].map_ptr;
3722 u32 cap = bpf_map_flags_to_cap(map);
3723
3724 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3725 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3726 map->value_size, off, size);
3727 return -EACCES;
3728 }
3729
3730 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3731 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3732 map->value_size, off, size);
3733 return -EACCES;
3734 }
3735
3736 return 0;
3737}
3738
457f4436
AN
3739/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3740static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3741 int off, int size, u32 mem_size,
3742 bool zero_size_allowed)
17a52670 3743{
457f4436
AN
3744 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3745 struct bpf_reg_state *reg;
3746
3747 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3748 return 0;
17a52670 3749
457f4436
AN
3750 reg = &cur_regs(env)[regno];
3751 switch (reg->type) {
69c087ba
YS
3752 case PTR_TO_MAP_KEY:
3753 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3754 mem_size, off, size);
3755 break;
457f4436 3756 case PTR_TO_MAP_VALUE:
61bd5218 3757 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3758 mem_size, off, size);
3759 break;
3760 case PTR_TO_PACKET:
3761 case PTR_TO_PACKET_META:
3762 case PTR_TO_PACKET_END:
3763 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3764 off, size, regno, reg->id, off, mem_size);
3765 break;
3766 case PTR_TO_MEM:
3767 default:
3768 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3769 mem_size, off, size);
17a52670 3770 }
457f4436
AN
3771
3772 return -EACCES;
17a52670
AS
3773}
3774
457f4436
AN
3775/* check read/write into a memory region with possible variable offset */
3776static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3777 int off, int size, u32 mem_size,
3778 bool zero_size_allowed)
dbcfe5f7 3779{
f4d7e40a
AS
3780 struct bpf_verifier_state *vstate = env->cur_state;
3781 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3782 struct bpf_reg_state *reg = &state->regs[regno];
3783 int err;
3784
457f4436 3785 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3786 * need to try adding each of min_value and max_value to off
3787 * to make sure our theoretical access will be safe.
2e576648
CL
3788 *
3789 * The minimum value is only important with signed
dbcfe5f7
GB
3790 * comparisons where we can't assume the floor of a
3791 * value is 0. If we are using signed variables for our
3792 * index'es we need to make sure that whatever we use
3793 * will have a set floor within our range.
3794 */
b7137c4e
DB
3795 if (reg->smin_value < 0 &&
3796 (reg->smin_value == S64_MIN ||
3797 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3798 reg->smin_value + off < 0)) {
61bd5218 3799 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3800 regno);
3801 return -EACCES;
3802 }
457f4436
AN
3803 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3804 mem_size, zero_size_allowed);
dbcfe5f7 3805 if (err) {
457f4436 3806 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3807 regno);
dbcfe5f7
GB
3808 return err;
3809 }
3810
b03c9f9f
EC
3811 /* If we haven't set a max value then we need to bail since we can't be
3812 * sure we won't do bad things.
3813 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3814 */
b03c9f9f 3815 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3816 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3817 regno);
3818 return -EACCES;
3819 }
457f4436
AN
3820 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3821 mem_size, zero_size_allowed);
3822 if (err) {
3823 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3824 regno);
457f4436
AN
3825 return err;
3826 }
3827
3828 return 0;
3829}
d83525ca 3830
e9147b44
KKD
3831static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3832 const struct bpf_reg_state *reg, int regno,
3833 bool fixed_off_ok)
3834{
3835 /* Access to this pointer-typed register or passing it to a helper
3836 * is only allowed in its original, unmodified form.
3837 */
3838
3839 if (reg->off < 0) {
3840 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3841 reg_type_str(env, reg->type), regno, reg->off);
3842 return -EACCES;
3843 }
3844
3845 if (!fixed_off_ok && reg->off) {
3846 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3847 reg_type_str(env, reg->type), regno, reg->off);
3848 return -EACCES;
3849 }
3850
3851 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3852 char tn_buf[48];
3853
3854 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3855 verbose(env, "variable %s access var_off=%s disallowed\n",
3856 reg_type_str(env, reg->type), tn_buf);
3857 return -EACCES;
3858 }
3859
3860 return 0;
3861}
3862
3863int check_ptr_off_reg(struct bpf_verifier_env *env,
3864 const struct bpf_reg_state *reg, int regno)
3865{
3866 return __check_ptr_off_reg(env, reg, regno, false);
3867}
3868
61df10c7 3869static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 3870 struct btf_field *kptr_field,
61df10c7
KKD
3871 struct bpf_reg_state *reg, u32 regno)
3872{
aa3496ac 3873 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
3f00c523 3874 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
61df10c7
KKD
3875 const char *reg_name = "";
3876
6efe152d 3877 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 3878 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3879 perm_flags |= PTR_UNTRUSTED;
3880
3881 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
3882 goto bad_type;
3883
3884 if (!btf_is_kernel(reg->btf)) {
3885 verbose(env, "R%d must point to kernel BTF\n", regno);
3886 return -EINVAL;
3887 }
3888 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
3889 reg_name = kernel_type_name(reg->btf, reg->btf_id);
3890
c0a5a21c
KKD
3891 /* For ref_ptr case, release function check should ensure we get one
3892 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3893 * normal store of unreferenced kptr, we must ensure var_off is zero.
3894 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3895 * reg->off and reg->ref_obj_id are not needed here.
3896 */
61df10c7
KKD
3897 if (__check_ptr_off_reg(env, reg, regno, true))
3898 return -EACCES;
3899
3900 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
3901 * we also need to take into account the reg->off.
3902 *
3903 * We want to support cases like:
3904 *
3905 * struct foo {
3906 * struct bar br;
3907 * struct baz bz;
3908 * };
3909 *
3910 * struct foo *v;
3911 * v = func(); // PTR_TO_BTF_ID
3912 * val->foo = v; // reg->off is zero, btf and btf_id match type
3913 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3914 * // first member type of struct after comparison fails
3915 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3916 * // to match type
3917 *
3918 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
3919 * is zero. We must also ensure that btf_struct_ids_match does not walk
3920 * the struct to match type against first member of struct, i.e. reject
3921 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3922 * strict mode to true for type match.
61df10c7
KKD
3923 */
3924 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
3925 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3926 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
3927 goto bad_type;
3928 return 0;
3929bad_type:
3930 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3931 reg_type_str(env, reg->type), reg_name);
6efe152d 3932 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 3933 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3934 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3935 targ_name);
3936 else
3937 verbose(env, "\n");
61df10c7
KKD
3938 return -EINVAL;
3939}
3940
3941static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3942 int value_regno, int insn_idx,
aa3496ac 3943 struct btf_field *kptr_field)
61df10c7
KKD
3944{
3945 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3946 int class = BPF_CLASS(insn->code);
3947 struct bpf_reg_state *val_reg;
3948
3949 /* Things we already checked for in check_map_access and caller:
3950 * - Reject cases where variable offset may touch kptr
3951 * - size of access (must be BPF_DW)
3952 * - tnum_is_const(reg->var_off)
aa3496ac 3953 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
3954 */
3955 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3956 if (BPF_MODE(insn->code) != BPF_MEM) {
3957 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3958 return -EACCES;
3959 }
3960
6efe152d
KKD
3961 /* We only allow loading referenced kptr, since it will be marked as
3962 * untrusted, similar to unreferenced kptr.
3963 */
aa3496ac 3964 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 3965 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
3966 return -EACCES;
3967 }
3968
61df10c7
KKD
3969 if (class == BPF_LDX) {
3970 val_reg = reg_state(env, value_regno);
3971 /* We can simply mark the value_regno receiving the pointer
3972 * value from map as PTR_TO_BTF_ID, with the correct type.
3973 */
aa3496ac
KKD
3974 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
3975 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
3976 /* For mark_ptr_or_null_reg */
3977 val_reg->id = ++env->id_gen;
3978 } else if (class == BPF_STX) {
3979 val_reg = reg_state(env, value_regno);
3980 if (!register_is_null(val_reg) &&
aa3496ac 3981 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
3982 return -EACCES;
3983 } else if (class == BPF_ST) {
3984 if (insn->imm) {
3985 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 3986 kptr_field->offset);
61df10c7
KKD
3987 return -EACCES;
3988 }
3989 } else {
3990 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3991 return -EACCES;
3992 }
3993 return 0;
3994}
3995
457f4436
AN
3996/* check read/write into a map element with possible variable offset */
3997static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
3998 int off, int size, bool zero_size_allowed,
3999 enum bpf_access_src src)
457f4436
AN
4000{
4001 struct bpf_verifier_state *vstate = env->cur_state;
4002 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4003 struct bpf_reg_state *reg = &state->regs[regno];
4004 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
4005 struct btf_record *rec;
4006 int err, i;
457f4436
AN
4007
4008 err = check_mem_region_access(env, regno, off, size, map->value_size,
4009 zero_size_allowed);
4010 if (err)
4011 return err;
4012
aa3496ac
KKD
4013 if (IS_ERR_OR_NULL(map->record))
4014 return 0;
4015 rec = map->record;
4016 for (i = 0; i < rec->cnt; i++) {
4017 struct btf_field *field = &rec->fields[i];
4018 u32 p = field->offset;
d83525ca 4019
db559117
KKD
4020 /* If any part of a field can be touched by load/store, reject
4021 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
4022 * it is sufficient to check x1 < y2 && y1 < x2.
4023 */
aa3496ac
KKD
4024 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4025 p < reg->umax_value + off + size) {
4026 switch (field->type) {
4027 case BPF_KPTR_UNREF:
4028 case BPF_KPTR_REF:
61df10c7
KKD
4029 if (src != ACCESS_DIRECT) {
4030 verbose(env, "kptr cannot be accessed indirectly by helper\n");
4031 return -EACCES;
4032 }
4033 if (!tnum_is_const(reg->var_off)) {
4034 verbose(env, "kptr access cannot have variable offset\n");
4035 return -EACCES;
4036 }
4037 if (p != off + reg->var_off.value) {
4038 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4039 p, off + reg->var_off.value);
4040 return -EACCES;
4041 }
4042 if (size != bpf_size_to_bytes(BPF_DW)) {
4043 verbose(env, "kptr access size must be BPF_DW\n");
4044 return -EACCES;
4045 }
4046 break;
aa3496ac 4047 default:
db559117
KKD
4048 verbose(env, "%s cannot be accessed directly by load/store\n",
4049 btf_field_type_name(field->type));
aa3496ac 4050 return -EACCES;
61df10c7
KKD
4051 }
4052 }
4053 }
aa3496ac 4054 return 0;
dbcfe5f7
GB
4055}
4056
969bf05e
AS
4057#define MAX_PACKET_OFF 0xffff
4058
58e2af8b 4059static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
4060 const struct bpf_call_arg_meta *meta,
4061 enum bpf_access_type t)
4acf6c0b 4062{
7e40781c
UP
4063 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4064
4065 switch (prog_type) {
5d66fa7d 4066 /* Program types only with direct read access go here! */
3a0af8fd
TG
4067 case BPF_PROG_TYPE_LWT_IN:
4068 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 4069 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 4070 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 4071 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 4072 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
4073 if (t == BPF_WRITE)
4074 return false;
8731745e 4075 fallthrough;
5d66fa7d
DB
4076
4077 /* Program types with direct read + write access go here! */
36bbef52
DB
4078 case BPF_PROG_TYPE_SCHED_CLS:
4079 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 4080 case BPF_PROG_TYPE_XDP:
3a0af8fd 4081 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 4082 case BPF_PROG_TYPE_SK_SKB:
4f738adb 4083 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
4084 if (meta)
4085 return meta->pkt_access;
4086
4087 env->seen_direct_write = true;
4acf6c0b 4088 return true;
0d01da6a
SF
4089
4090 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4091 if (t == BPF_WRITE)
4092 env->seen_direct_write = true;
4093
4094 return true;
4095
4acf6c0b
BB
4096 default:
4097 return false;
4098 }
4099}
4100
f1174f77 4101static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 4102 int size, bool zero_size_allowed)
f1174f77 4103{
638f5b90 4104 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
4105 struct bpf_reg_state *reg = &regs[regno];
4106 int err;
4107
4108 /* We may have added a variable offset to the packet pointer; but any
4109 * reg->range we have comes after that. We are only checking the fixed
4110 * offset.
4111 */
4112
4113 /* We don't allow negative numbers, because we aren't tracking enough
4114 * detail to prove they're safe.
4115 */
b03c9f9f 4116 if (reg->smin_value < 0) {
61bd5218 4117 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
4118 regno);
4119 return -EACCES;
4120 }
6d94e741
AS
4121
4122 err = reg->range < 0 ? -EINVAL :
4123 __check_mem_access(env, regno, off, size, reg->range,
457f4436 4124 zero_size_allowed);
f1174f77 4125 if (err) {
61bd5218 4126 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
4127 return err;
4128 }
e647815a 4129
457f4436 4130 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
4131 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4132 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 4133 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
4134 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4135 */
4136 env->prog->aux->max_pkt_offset =
4137 max_t(u32, env->prog->aux->max_pkt_offset,
4138 off + reg->umax_value + size - 1);
4139
f1174f77
EC
4140 return err;
4141}
4142
4143/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 4144static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 4145 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 4146 struct btf **btf, u32 *btf_id)
17a52670 4147{
f96da094
DB
4148 struct bpf_insn_access_aux info = {
4149 .reg_type = *reg_type,
9e15db66 4150 .log = &env->log,
f96da094 4151 };
31fd8581 4152
4f9218aa 4153 if (env->ops->is_valid_access &&
5e43f899 4154 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
4155 /* A non zero info.ctx_field_size indicates that this field is a
4156 * candidate for later verifier transformation to load the whole
4157 * field and then apply a mask when accessed with a narrower
4158 * access than actual ctx access size. A zero info.ctx_field_size
4159 * will only allow for whole field access and rejects any other
4160 * type of narrower access.
31fd8581 4161 */
23994631 4162 *reg_type = info.reg_type;
31fd8581 4163
c25b2ae1 4164 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4165 *btf = info.btf;
9e15db66 4166 *btf_id = info.btf_id;
22dc4a0f 4167 } else {
9e15db66 4168 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 4169 }
32bbe007
AS
4170 /* remember the offset of last byte accessed in ctx */
4171 if (env->prog->aux->max_ctx_offset < off + size)
4172 env->prog->aux->max_ctx_offset = off + size;
17a52670 4173 return 0;
32bbe007 4174 }
17a52670 4175
61bd5218 4176 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
4177 return -EACCES;
4178}
4179
d58e468b
PP
4180static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4181 int size)
4182{
4183 if (size < 0 || off < 0 ||
4184 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4185 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4186 off, size);
4187 return -EACCES;
4188 }
4189 return 0;
4190}
4191
5f456649
MKL
4192static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4193 u32 regno, int off, int size,
4194 enum bpf_access_type t)
c64b7983
JS
4195{
4196 struct bpf_reg_state *regs = cur_regs(env);
4197 struct bpf_reg_state *reg = &regs[regno];
5f456649 4198 struct bpf_insn_access_aux info = {};
46f8bc92 4199 bool valid;
c64b7983
JS
4200
4201 if (reg->smin_value < 0) {
4202 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4203 regno);
4204 return -EACCES;
4205 }
4206
46f8bc92
MKL
4207 switch (reg->type) {
4208 case PTR_TO_SOCK_COMMON:
4209 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4210 break;
4211 case PTR_TO_SOCKET:
4212 valid = bpf_sock_is_valid_access(off, size, t, &info);
4213 break;
655a51e5
MKL
4214 case PTR_TO_TCP_SOCK:
4215 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4216 break;
fada7fdc
JL
4217 case PTR_TO_XDP_SOCK:
4218 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4219 break;
46f8bc92
MKL
4220 default:
4221 valid = false;
c64b7983
JS
4222 }
4223
5f456649 4224
46f8bc92
MKL
4225 if (valid) {
4226 env->insn_aux_data[insn_idx].ctx_field_size =
4227 info.ctx_field_size;
4228 return 0;
4229 }
4230
4231 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4232 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4233
4234 return -EACCES;
c64b7983
JS
4235}
4236
4cabc5b1
DB
4237static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4238{
2a159c6f 4239 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4240}
4241
f37a8cb8
DB
4242static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4243{
2a159c6f 4244 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4245
46f8bc92
MKL
4246 return reg->type == PTR_TO_CTX;
4247}
4248
4249static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4250{
4251 const struct bpf_reg_state *reg = reg_state(env, regno);
4252
4253 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4254}
4255
ca369602
DB
4256static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4257{
2a159c6f 4258 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4259
4260 return type_is_pkt_pointer(reg->type);
4261}
4262
4b5defde
DB
4263static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4264{
4265 const struct bpf_reg_state *reg = reg_state(env, regno);
4266
4267 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4268 return reg->type == PTR_TO_FLOW_KEYS;
4269}
4270
9bb00b28
YS
4271static bool is_trusted_reg(const struct bpf_reg_state *reg)
4272{
4273 /* A referenced register is always trusted. */
4274 if (reg->ref_obj_id)
4275 return true;
4276
4277 /* If a register is not referenced, it is trusted if it has the
fca1aa75 4278 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
9bb00b28
YS
4279 * other type modifiers may be safe, but we elect to take an opt-in
4280 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4281 * not.
4282 *
4283 * Eventually, we should make PTR_TRUSTED the single source of truth
4284 * for whether a register is trusted.
4285 */
4286 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4287 !bpf_type_has_unsafe_modifiers(reg->type);
4288}
4289
fca1aa75
YS
4290static bool is_rcu_reg(const struct bpf_reg_state *reg)
4291{
4292 return reg->type & MEM_RCU;
4293}
4294
61bd5218
JK
4295static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4296 const struct bpf_reg_state *reg,
d1174416 4297 int off, int size, bool strict)
969bf05e 4298{
f1174f77 4299 struct tnum reg_off;
e07b98d9 4300 int ip_align;
d1174416
DM
4301
4302 /* Byte size accesses are always allowed. */
4303 if (!strict || size == 1)
4304 return 0;
4305
e4eda884
DM
4306 /* For platforms that do not have a Kconfig enabling
4307 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4308 * NET_IP_ALIGN is universally set to '2'. And on platforms
4309 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4310 * to this code only in strict mode where we want to emulate
4311 * the NET_IP_ALIGN==2 checking. Therefore use an
4312 * unconditional IP align value of '2'.
e07b98d9 4313 */
e4eda884 4314 ip_align = 2;
f1174f77
EC
4315
4316 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4317 if (!tnum_is_aligned(reg_off, size)) {
4318 char tn_buf[48];
4319
4320 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
4321 verbose(env,
4322 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 4323 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
4324 return -EACCES;
4325 }
79adffcd 4326
969bf05e
AS
4327 return 0;
4328}
4329
61bd5218
JK
4330static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4331 const struct bpf_reg_state *reg,
f1174f77
EC
4332 const char *pointer_desc,
4333 int off, int size, bool strict)
79adffcd 4334{
f1174f77
EC
4335 struct tnum reg_off;
4336
4337 /* Byte size accesses are always allowed. */
4338 if (!strict || size == 1)
4339 return 0;
4340
4341 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4342 if (!tnum_is_aligned(reg_off, size)) {
4343 char tn_buf[48];
4344
4345 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4346 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 4347 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
4348 return -EACCES;
4349 }
4350
969bf05e
AS
4351 return 0;
4352}
4353
e07b98d9 4354static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
4355 const struct bpf_reg_state *reg, int off,
4356 int size, bool strict_alignment_once)
79adffcd 4357{
ca369602 4358 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 4359 const char *pointer_desc = "";
d1174416 4360
79adffcd
DB
4361 switch (reg->type) {
4362 case PTR_TO_PACKET:
de8f3a83
DB
4363 case PTR_TO_PACKET_META:
4364 /* Special case, because of NET_IP_ALIGN. Given metadata sits
4365 * right in front, treat it the very same way.
4366 */
61bd5218 4367 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
4368 case PTR_TO_FLOW_KEYS:
4369 pointer_desc = "flow keys ";
4370 break;
69c087ba
YS
4371 case PTR_TO_MAP_KEY:
4372 pointer_desc = "key ";
4373 break;
f1174f77
EC
4374 case PTR_TO_MAP_VALUE:
4375 pointer_desc = "value ";
4376 break;
4377 case PTR_TO_CTX:
4378 pointer_desc = "context ";
4379 break;
4380 case PTR_TO_STACK:
4381 pointer_desc = "stack ";
01f810ac
AM
4382 /* The stack spill tracking logic in check_stack_write_fixed_off()
4383 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
4384 * aligned.
4385 */
4386 strict = true;
f1174f77 4387 break;
c64b7983
JS
4388 case PTR_TO_SOCKET:
4389 pointer_desc = "sock ";
4390 break;
46f8bc92
MKL
4391 case PTR_TO_SOCK_COMMON:
4392 pointer_desc = "sock_common ";
4393 break;
655a51e5
MKL
4394 case PTR_TO_TCP_SOCK:
4395 pointer_desc = "tcp_sock ";
4396 break;
fada7fdc
JL
4397 case PTR_TO_XDP_SOCK:
4398 pointer_desc = "xdp_sock ";
4399 break;
79adffcd 4400 default:
f1174f77 4401 break;
79adffcd 4402 }
61bd5218
JK
4403 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4404 strict);
79adffcd
DB
4405}
4406
f4d7e40a
AS
4407static int update_stack_depth(struct bpf_verifier_env *env,
4408 const struct bpf_func_state *func,
4409 int off)
4410{
9c8105bd 4411 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
4412
4413 if (stack >= -off)
4414 return 0;
4415
4416 /* update known max for given subprogram */
9c8105bd 4417 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
4418 return 0;
4419}
f4d7e40a 4420
70a87ffe
AS
4421/* starting from main bpf function walk all instructions of the function
4422 * and recursively walk all callees that given function can call.
4423 * Ignore jump and exit insns.
4424 * Since recursion is prevented by check_cfg() this algorithm
4425 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4426 */
4427static int check_max_stack_depth(struct bpf_verifier_env *env)
4428{
9c8105bd
JW
4429 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4430 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 4431 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 4432 bool tail_call_reachable = false;
70a87ffe
AS
4433 int ret_insn[MAX_CALL_FRAMES];
4434 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 4435 int j;
f4d7e40a 4436
70a87ffe 4437process_func:
7f6e4312
MF
4438 /* protect against potential stack overflow that might happen when
4439 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4440 * depth for such case down to 256 so that the worst case scenario
4441 * would result in 8k stack size (32 which is tailcall limit * 256 =
4442 * 8k).
4443 *
4444 * To get the idea what might happen, see an example:
4445 * func1 -> sub rsp, 128
4446 * subfunc1 -> sub rsp, 256
4447 * tailcall1 -> add rsp, 256
4448 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4449 * subfunc2 -> sub rsp, 64
4450 * subfunc22 -> sub rsp, 128
4451 * tailcall2 -> add rsp, 128
4452 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4453 *
4454 * tailcall will unwind the current stack frame but it will not get rid
4455 * of caller's stack as shown on the example above.
4456 */
4457 if (idx && subprog[idx].has_tail_call && depth >= 256) {
4458 verbose(env,
4459 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4460 depth);
4461 return -EACCES;
4462 }
70a87ffe
AS
4463 /* round up to 32-bytes, since this is granularity
4464 * of interpreter stack size
4465 */
9c8105bd 4466 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 4467 if (depth > MAX_BPF_STACK) {
f4d7e40a 4468 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 4469 frame + 1, depth);
f4d7e40a
AS
4470 return -EACCES;
4471 }
70a87ffe 4472continue_func:
4cb3d99c 4473 subprog_end = subprog[idx + 1].start;
70a87ffe 4474 for (; i < subprog_end; i++) {
7ddc80a4
AS
4475 int next_insn;
4476
69c087ba 4477 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
4478 continue;
4479 /* remember insn and function to return to */
4480 ret_insn[frame] = i + 1;
9c8105bd 4481 ret_prog[frame] = idx;
70a87ffe
AS
4482
4483 /* find the callee */
7ddc80a4
AS
4484 next_insn = i + insn[i].imm + 1;
4485 idx = find_subprog(env, next_insn);
9c8105bd 4486 if (idx < 0) {
70a87ffe 4487 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 4488 next_insn);
70a87ffe
AS
4489 return -EFAULT;
4490 }
7ddc80a4
AS
4491 if (subprog[idx].is_async_cb) {
4492 if (subprog[idx].has_tail_call) {
4493 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4494 return -EFAULT;
4495 }
4496 /* async callbacks don't increase bpf prog stack size */
4497 continue;
4498 }
4499 i = next_insn;
ebf7d1f5
MF
4500
4501 if (subprog[idx].has_tail_call)
4502 tail_call_reachable = true;
4503
70a87ffe
AS
4504 frame++;
4505 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
4506 verbose(env, "the call stack of %d frames is too deep !\n",
4507 frame);
4508 return -E2BIG;
70a87ffe
AS
4509 }
4510 goto process_func;
4511 }
ebf7d1f5
MF
4512 /* if tail call got detected across bpf2bpf calls then mark each of the
4513 * currently present subprog frames as tail call reachable subprogs;
4514 * this info will be utilized by JIT so that we will be preserving the
4515 * tail call counter throughout bpf2bpf calls combined with tailcalls
4516 */
4517 if (tail_call_reachable)
4518 for (j = 0; j < frame; j++)
4519 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
4520 if (subprog[0].tail_call_reachable)
4521 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 4522
70a87ffe
AS
4523 /* end of for() loop means the last insn of the 'subprog'
4524 * was reached. Doesn't matter whether it was JA or EXIT
4525 */
4526 if (frame == 0)
4527 return 0;
9c8105bd 4528 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
4529 frame--;
4530 i = ret_insn[frame];
9c8105bd 4531 idx = ret_prog[frame];
70a87ffe 4532 goto continue_func;
f4d7e40a
AS
4533}
4534
19d28fbd 4535#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
4536static int get_callee_stack_depth(struct bpf_verifier_env *env,
4537 const struct bpf_insn *insn, int idx)
4538{
4539 int start = idx + insn->imm + 1, subprog;
4540
4541 subprog = find_subprog(env, start);
4542 if (subprog < 0) {
4543 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4544 start);
4545 return -EFAULT;
4546 }
9c8105bd 4547 return env->subprog_info[subprog].stack_depth;
1ea47e01 4548}
19d28fbd 4549#endif
1ea47e01 4550
afbf21dc
YS
4551static int __check_buffer_access(struct bpf_verifier_env *env,
4552 const char *buf_info,
4553 const struct bpf_reg_state *reg,
4554 int regno, int off, int size)
9df1c28b
MM
4555{
4556 if (off < 0) {
4557 verbose(env,
4fc00b79 4558 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 4559 regno, buf_info, off, size);
9df1c28b
MM
4560 return -EACCES;
4561 }
4562 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4563 char tn_buf[48];
4564
4565 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4566 verbose(env,
4fc00b79 4567 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
4568 regno, off, tn_buf);
4569 return -EACCES;
4570 }
afbf21dc
YS
4571
4572 return 0;
4573}
4574
4575static int check_tp_buffer_access(struct bpf_verifier_env *env,
4576 const struct bpf_reg_state *reg,
4577 int regno, int off, int size)
4578{
4579 int err;
4580
4581 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4582 if (err)
4583 return err;
4584
9df1c28b
MM
4585 if (off + size > env->prog->aux->max_tp_access)
4586 env->prog->aux->max_tp_access = off + size;
4587
4588 return 0;
4589}
4590
afbf21dc
YS
4591static int check_buffer_access(struct bpf_verifier_env *env,
4592 const struct bpf_reg_state *reg,
4593 int regno, int off, int size,
4594 bool zero_size_allowed,
afbf21dc
YS
4595 u32 *max_access)
4596{
44e9a741 4597 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
4598 int err;
4599
4600 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4601 if (err)
4602 return err;
4603
4604 if (off + size > *max_access)
4605 *max_access = off + size;
4606
4607 return 0;
4608}
4609
3f50f132
JF
4610/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4611static void zext_32_to_64(struct bpf_reg_state *reg)
4612{
4613 reg->var_off = tnum_subreg(reg->var_off);
4614 __reg_assign_32_into_64(reg);
4615}
9df1c28b 4616
0c17d1d2
JH
4617/* truncate register to smaller size (in bytes)
4618 * must be called with size < BPF_REG_SIZE
4619 */
4620static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4621{
4622 u64 mask;
4623
4624 /* clear high bits in bit representation */
4625 reg->var_off = tnum_cast(reg->var_off, size);
4626
4627 /* fix arithmetic bounds */
4628 mask = ((u64)1 << (size * 8)) - 1;
4629 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4630 reg->umin_value &= mask;
4631 reg->umax_value &= mask;
4632 } else {
4633 reg->umin_value = 0;
4634 reg->umax_value = mask;
4635 }
4636 reg->smin_value = reg->umin_value;
4637 reg->smax_value = reg->umax_value;
3f50f132
JF
4638
4639 /* If size is smaller than 32bit register the 32bit register
4640 * values are also truncated so we push 64-bit bounds into
4641 * 32-bit bounds. Above were truncated < 32-bits already.
4642 */
4643 if (size >= 4)
4644 return;
4645 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4646}
4647
a23740ec
AN
4648static bool bpf_map_is_rdonly(const struct bpf_map *map)
4649{
353050be
DB
4650 /* A map is considered read-only if the following condition are true:
4651 *
4652 * 1) BPF program side cannot change any of the map content. The
4653 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4654 * and was set at map creation time.
4655 * 2) The map value(s) have been initialized from user space by a
4656 * loader and then "frozen", such that no new map update/delete
4657 * operations from syscall side are possible for the rest of
4658 * the map's lifetime from that point onwards.
4659 * 3) Any parallel/pending map update/delete operations from syscall
4660 * side have been completed. Only after that point, it's safe to
4661 * assume that map value(s) are immutable.
4662 */
4663 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4664 READ_ONCE(map->frozen) &&
4665 !bpf_map_write_active(map);
a23740ec
AN
4666}
4667
4668static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4669{
4670 void *ptr;
4671 u64 addr;
4672 int err;
4673
4674 err = map->ops->map_direct_value_addr(map, &addr, off);
4675 if (err)
4676 return err;
2dedd7d2 4677 ptr = (void *)(long)addr + off;
a23740ec
AN
4678
4679 switch (size) {
4680 case sizeof(u8):
4681 *val = (u64)*(u8 *)ptr;
4682 break;
4683 case sizeof(u16):
4684 *val = (u64)*(u16 *)ptr;
4685 break;
4686 case sizeof(u32):
4687 *val = (u64)*(u32 *)ptr;
4688 break;
4689 case sizeof(u64):
4690 *val = *(u64 *)ptr;
4691 break;
4692 default:
4693 return -EINVAL;
4694 }
4695 return 0;
4696}
4697
9e15db66
AS
4698static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4699 struct bpf_reg_state *regs,
4700 int regno, int off, int size,
4701 enum bpf_access_type atype,
4702 int value_regno)
4703{
4704 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4705 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4706 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 4707 enum bpf_type_flag flag = 0;
9e15db66
AS
4708 u32 btf_id;
4709 int ret;
4710
c67cae55
AS
4711 if (!env->allow_ptr_leaks) {
4712 verbose(env,
4713 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4714 tname);
4715 return -EPERM;
4716 }
4717 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4718 verbose(env,
4719 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4720 tname);
4721 return -EINVAL;
4722 }
9e15db66
AS
4723 if (off < 0) {
4724 verbose(env,
4725 "R%d is ptr_%s invalid negative access: off=%d\n",
4726 regno, tname, off);
4727 return -EACCES;
4728 }
4729 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4730 char tn_buf[48];
4731
4732 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4733 verbose(env,
4734 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4735 regno, tname, off, tn_buf);
4736 return -EACCES;
4737 }
4738
c6f1bfe8
YS
4739 if (reg->type & MEM_USER) {
4740 verbose(env,
4741 "R%d is ptr_%s access user memory: off=%d\n",
4742 regno, tname, off);
4743 return -EACCES;
4744 }
4745
5844101a
HL
4746 if (reg->type & MEM_PERCPU) {
4747 verbose(env,
4748 "R%d is ptr_%s access percpu memory: off=%d\n",
4749 regno, tname, off);
4750 return -EACCES;
4751 }
4752
282de143
KKD
4753 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4754 if (!btf_is_kernel(reg->btf)) {
4755 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4756 return -EFAULT;
4757 }
6728aea7 4758 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997 4759 } else {
282de143
KKD
4760 /* Writes are permitted with default btf_struct_access for
4761 * program allocated objects (which always have ref_obj_id > 0),
4762 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4763 */
4764 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
27ae7997
MKL
4765 verbose(env, "only read is supported\n");
4766 return -EACCES;
4767 }
4768
282de143
KKD
4769 if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4770 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4771 return -EFAULT;
4772 }
4773
6728aea7 4774 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997
MKL
4775 }
4776
9e15db66
AS
4777 if (ret < 0)
4778 return ret;
4779
6efe152d
KKD
4780 /* If this is an untrusted pointer, all pointers formed by walking it
4781 * also inherit the untrusted flag.
4782 */
4783 if (type_flag(reg->type) & PTR_UNTRUSTED)
4784 flag |= PTR_UNTRUSTED;
4785
9bb00b28
YS
4786 /* By default any pointer obtained from walking a trusted pointer is
4787 * no longer trusted except the rcu case below.
4788 */
3f00c523
DV
4789 flag &= ~PTR_TRUSTED;
4790
9bb00b28
YS
4791 if (flag & MEM_RCU) {
4792 /* Mark value register as MEM_RCU only if it is protected by
fca1aa75 4793 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
9bb00b28 4794 * itself can already indicate trustedness inside the rcu
fca1aa75
YS
4795 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
4796 * it could be null in some cases.
9bb00b28 4797 */
fca1aa75
YS
4798 if (!env->cur_state->active_rcu_lock ||
4799 !(is_trusted_reg(reg) || is_rcu_reg(reg)))
9bb00b28
YS
4800 flag &= ~MEM_RCU;
4801 else
fca1aa75 4802 flag |= PTR_MAYBE_NULL;
9bb00b28
YS
4803 } else if (reg->type & MEM_RCU) {
4804 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
4805 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
4806 */
4807 flag |= PTR_UNTRUSTED;
4808 }
4809
41c48f3a 4810 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 4811 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
4812
4813 return 0;
4814}
4815
4816static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4817 struct bpf_reg_state *regs,
4818 int regno, int off, int size,
4819 enum bpf_access_type atype,
4820 int value_regno)
4821{
4822 struct bpf_reg_state *reg = regs + regno;
4823 struct bpf_map *map = reg->map_ptr;
6728aea7 4824 struct bpf_reg_state map_reg;
c6f1bfe8 4825 enum bpf_type_flag flag = 0;
41c48f3a
AI
4826 const struct btf_type *t;
4827 const char *tname;
4828 u32 btf_id;
4829 int ret;
4830
4831 if (!btf_vmlinux) {
4832 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4833 return -ENOTSUPP;
4834 }
4835
4836 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4837 verbose(env, "map_ptr access not supported for map type %d\n",
4838 map->map_type);
4839 return -ENOTSUPP;
4840 }
4841
4842 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4843 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4844
c67cae55 4845 if (!env->allow_ptr_leaks) {
41c48f3a 4846 verbose(env,
c67cae55 4847 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
41c48f3a
AI
4848 tname);
4849 return -EPERM;
9e15db66 4850 }
27ae7997 4851
41c48f3a
AI
4852 if (off < 0) {
4853 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4854 regno, tname, off);
4855 return -EACCES;
4856 }
4857
4858 if (atype != BPF_READ) {
4859 verbose(env, "only read from %s is supported\n", tname);
4860 return -EACCES;
4861 }
4862
6728aea7
KKD
4863 /* Simulate access to a PTR_TO_BTF_ID */
4864 memset(&map_reg, 0, sizeof(map_reg));
4865 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4866 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
41c48f3a
AI
4867 if (ret < 0)
4868 return ret;
4869
4870 if (value_regno >= 0)
c6f1bfe8 4871 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 4872
9e15db66
AS
4873 return 0;
4874}
4875
01f810ac
AM
4876/* Check that the stack access at the given offset is within bounds. The
4877 * maximum valid offset is -1.
4878 *
4879 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4880 * -state->allocated_stack for reads.
4881 */
4882static int check_stack_slot_within_bounds(int off,
4883 struct bpf_func_state *state,
4884 enum bpf_access_type t)
4885{
4886 int min_valid_off;
4887
4888 if (t == BPF_WRITE)
4889 min_valid_off = -MAX_BPF_STACK;
4890 else
4891 min_valid_off = -state->allocated_stack;
4892
4893 if (off < min_valid_off || off > -1)
4894 return -EACCES;
4895 return 0;
4896}
4897
4898/* Check that the stack access at 'regno + off' falls within the maximum stack
4899 * bounds.
4900 *
4901 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4902 */
4903static int check_stack_access_within_bounds(
4904 struct bpf_verifier_env *env,
4905 int regno, int off, int access_size,
61df10c7 4906 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
4907{
4908 struct bpf_reg_state *regs = cur_regs(env);
4909 struct bpf_reg_state *reg = regs + regno;
4910 struct bpf_func_state *state = func(env, reg);
4911 int min_off, max_off;
4912 int err;
4913 char *err_extra;
4914
4915 if (src == ACCESS_HELPER)
4916 /* We don't know if helpers are reading or writing (or both). */
4917 err_extra = " indirect access to";
4918 else if (type == BPF_READ)
4919 err_extra = " read from";
4920 else
4921 err_extra = " write to";
4922
4923 if (tnum_is_const(reg->var_off)) {
4924 min_off = reg->var_off.value + off;
4925 if (access_size > 0)
4926 max_off = min_off + access_size - 1;
4927 else
4928 max_off = min_off;
4929 } else {
4930 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4931 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4932 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4933 err_extra, regno);
4934 return -EACCES;
4935 }
4936 min_off = reg->smin_value + off;
4937 if (access_size > 0)
4938 max_off = reg->smax_value + off + access_size - 1;
4939 else
4940 max_off = min_off;
4941 }
4942
4943 err = check_stack_slot_within_bounds(min_off, state, type);
4944 if (!err)
4945 err = check_stack_slot_within_bounds(max_off, state, type);
4946
4947 if (err) {
4948 if (tnum_is_const(reg->var_off)) {
4949 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4950 err_extra, regno, off, access_size);
4951 } else {
4952 char tn_buf[48];
4953
4954 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4955 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4956 err_extra, regno, tn_buf, access_size);
4957 }
4958 }
4959 return err;
4960}
41c48f3a 4961
17a52670
AS
4962/* check whether memory at (regno + off) is accessible for t = (read | write)
4963 * if t==write, value_regno is a register which value is stored into memory
4964 * if t==read, value_regno is a register which will receive the value from memory
4965 * if t==write && value_regno==-1, some unknown value is stored into memory
4966 * if t==read && value_regno==-1, don't care what we read from memory
4967 */
ca369602
DB
4968static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4969 int off, int bpf_size, enum bpf_access_type t,
4970 int value_regno, bool strict_alignment_once)
17a52670 4971{
638f5b90
AS
4972 struct bpf_reg_state *regs = cur_regs(env);
4973 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4974 struct bpf_func_state *state;
17a52670
AS
4975 int size, err = 0;
4976
4977 size = bpf_size_to_bytes(bpf_size);
4978 if (size < 0)
4979 return size;
4980
f1174f77 4981 /* alignment checks will add in reg->off themselves */
ca369602 4982 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4983 if (err)
4984 return err;
17a52670 4985
f1174f77
EC
4986 /* for access checks, reg->off is just part of off */
4987 off += reg->off;
4988
69c087ba
YS
4989 if (reg->type == PTR_TO_MAP_KEY) {
4990 if (t == BPF_WRITE) {
4991 verbose(env, "write to change key R%d not allowed\n", regno);
4992 return -EACCES;
4993 }
4994
4995 err = check_mem_region_access(env, regno, off, size,
4996 reg->map_ptr->key_size, false);
4997 if (err)
4998 return err;
4999 if (value_regno >= 0)
5000 mark_reg_unknown(env, regs, value_regno);
5001 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 5002 struct btf_field *kptr_field = NULL;
61df10c7 5003
1be7f75d
AS
5004 if (t == BPF_WRITE && value_regno >= 0 &&
5005 is_pointer_value(env, value_regno)) {
61bd5218 5006 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
5007 return -EACCES;
5008 }
591fe988
DB
5009 err = check_map_access_type(env, regno, off, size, t);
5010 if (err)
5011 return err;
61df10c7
KKD
5012 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5013 if (err)
5014 return err;
5015 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
5016 kptr_field = btf_record_find(reg->map_ptr->record,
5017 off + reg->var_off.value, BPF_KPTR);
5018 if (kptr_field) {
5019 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 5020 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
5021 struct bpf_map *map = reg->map_ptr;
5022
5023 /* if map is read-only, track its contents as scalars */
5024 if (tnum_is_const(reg->var_off) &&
5025 bpf_map_is_rdonly(map) &&
5026 map->ops->map_direct_value_addr) {
5027 int map_off = off + reg->var_off.value;
5028 u64 val = 0;
5029
5030 err = bpf_map_direct_read(map, map_off, size,
5031 &val);
5032 if (err)
5033 return err;
5034
5035 regs[value_regno].type = SCALAR_VALUE;
5036 __mark_reg_known(&regs[value_regno], val);
5037 } else {
5038 mark_reg_unknown(env, regs, value_regno);
5039 }
5040 }
34d3a78c
HL
5041 } else if (base_type(reg->type) == PTR_TO_MEM) {
5042 bool rdonly_mem = type_is_rdonly_mem(reg->type);
5043
5044 if (type_may_be_null(reg->type)) {
5045 verbose(env, "R%d invalid mem access '%s'\n", regno,
5046 reg_type_str(env, reg->type));
5047 return -EACCES;
5048 }
5049
5050 if (t == BPF_WRITE && rdonly_mem) {
5051 verbose(env, "R%d cannot write into %s\n",
5052 regno, reg_type_str(env, reg->type));
5053 return -EACCES;
5054 }
5055
457f4436
AN
5056 if (t == BPF_WRITE && value_regno >= 0 &&
5057 is_pointer_value(env, value_regno)) {
5058 verbose(env, "R%d leaks addr into mem\n", value_regno);
5059 return -EACCES;
5060 }
34d3a78c 5061
457f4436
AN
5062 err = check_mem_region_access(env, regno, off, size,
5063 reg->mem_size, false);
34d3a78c 5064 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 5065 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 5066 } else if (reg->type == PTR_TO_CTX) {
f1174f77 5067 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 5068 struct btf *btf = NULL;
9e15db66 5069 u32 btf_id = 0;
19de99f7 5070
1be7f75d
AS
5071 if (t == BPF_WRITE && value_regno >= 0 &&
5072 is_pointer_value(env, value_regno)) {
61bd5218 5073 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
5074 return -EACCES;
5075 }
f1174f77 5076
be80a1d3 5077 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
5078 if (err < 0)
5079 return err;
5080
c6f1bfe8
YS
5081 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5082 &btf_id);
9e15db66
AS
5083 if (err)
5084 verbose_linfo(env, insn_idx, "; ");
969bf05e 5085 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 5086 /* ctx access returns either a scalar, or a
de8f3a83
DB
5087 * PTR_TO_PACKET[_META,_END]. In the latter
5088 * case, we know the offset is zero.
f1174f77 5089 */
46f8bc92 5090 if (reg_type == SCALAR_VALUE) {
638f5b90 5091 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5092 } else {
638f5b90 5093 mark_reg_known_zero(env, regs,
61bd5218 5094 value_regno);
c25b2ae1 5095 if (type_may_be_null(reg_type))
46f8bc92 5096 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
5097 /* A load of ctx field could have different
5098 * actual load size with the one encoded in the
5099 * insn. When the dst is PTR, it is for sure not
5100 * a sub-register.
5101 */
5102 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 5103 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5104 regs[value_regno].btf = btf;
9e15db66 5105 regs[value_regno].btf_id = btf_id;
22dc4a0f 5106 }
46f8bc92 5107 }
638f5b90 5108 regs[value_regno].type = reg_type;
969bf05e 5109 }
17a52670 5110
f1174f77 5111 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
5112 /* Basic bounds checks. */
5113 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
5114 if (err)
5115 return err;
8726679a 5116
f4d7e40a
AS
5117 state = func(env, reg);
5118 err = update_stack_depth(env, state, off);
5119 if (err)
5120 return err;
8726679a 5121
01f810ac
AM
5122 if (t == BPF_READ)
5123 err = check_stack_read(env, regno, off, size,
61bd5218 5124 value_regno);
01f810ac
AM
5125 else
5126 err = check_stack_write(env, regno, off, size,
5127 value_regno, insn_idx);
de8f3a83 5128 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 5129 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 5130 verbose(env, "cannot write into packet\n");
969bf05e
AS
5131 return -EACCES;
5132 }
4acf6c0b
BB
5133 if (t == BPF_WRITE && value_regno >= 0 &&
5134 is_pointer_value(env, value_regno)) {
61bd5218
JK
5135 verbose(env, "R%d leaks addr into packet\n",
5136 value_regno);
4acf6c0b
BB
5137 return -EACCES;
5138 }
9fd29c08 5139 err = check_packet_access(env, regno, off, size, false);
969bf05e 5140 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 5141 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
5142 } else if (reg->type == PTR_TO_FLOW_KEYS) {
5143 if (t == BPF_WRITE && value_regno >= 0 &&
5144 is_pointer_value(env, value_regno)) {
5145 verbose(env, "R%d leaks addr into flow keys\n",
5146 value_regno);
5147 return -EACCES;
5148 }
5149
5150 err = check_flow_keys_access(env, off, size);
5151 if (!err && t == BPF_READ && value_regno >= 0)
5152 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5153 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 5154 if (t == BPF_WRITE) {
46f8bc92 5155 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 5156 regno, reg_type_str(env, reg->type));
c64b7983
JS
5157 return -EACCES;
5158 }
5f456649 5159 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
5160 if (!err && value_regno >= 0)
5161 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
5162 } else if (reg->type == PTR_TO_TP_BUFFER) {
5163 err = check_tp_buffer_access(env, reg, regno, off, size);
5164 if (!err && t == BPF_READ && value_regno >= 0)
5165 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
5166 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5167 !type_may_be_null(reg->type)) {
9e15db66
AS
5168 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5169 value_regno);
41c48f3a
AI
5170 } else if (reg->type == CONST_PTR_TO_MAP) {
5171 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5172 value_regno);
20b2aff4
HL
5173 } else if (base_type(reg->type) == PTR_TO_BUF) {
5174 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
5175 u32 *max_access;
5176
5177 if (rdonly_mem) {
5178 if (t == BPF_WRITE) {
5179 verbose(env, "R%d cannot write into %s\n",
5180 regno, reg_type_str(env, reg->type));
5181 return -EACCES;
5182 }
20b2aff4
HL
5183 max_access = &env->prog->aux->max_rdonly_access;
5184 } else {
20b2aff4 5185 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 5186 }
20b2aff4 5187
f6dfbe31 5188 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 5189 max_access);
20b2aff4
HL
5190
5191 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 5192 mark_reg_unknown(env, regs, value_regno);
17a52670 5193 } else {
61bd5218 5194 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 5195 reg_type_str(env, reg->type));
17a52670
AS
5196 return -EACCES;
5197 }
969bf05e 5198
f1174f77 5199 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 5200 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 5201 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 5202 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 5203 }
17a52670
AS
5204 return err;
5205}
5206
91c960b0 5207static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 5208{
5ffa2550 5209 int load_reg;
17a52670
AS
5210 int err;
5211
5ca419f2
BJ
5212 switch (insn->imm) {
5213 case BPF_ADD:
5214 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
5215 case BPF_AND:
5216 case BPF_AND | BPF_FETCH:
5217 case BPF_OR:
5218 case BPF_OR | BPF_FETCH:
5219 case BPF_XOR:
5220 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
5221 case BPF_XCHG:
5222 case BPF_CMPXCHG:
5ca419f2
BJ
5223 break;
5224 default:
91c960b0
BJ
5225 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5226 return -EINVAL;
5227 }
5228
5229 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5230 verbose(env, "invalid atomic operand size\n");
17a52670
AS
5231 return -EINVAL;
5232 }
5233
5234 /* check src1 operand */
dc503a8a 5235 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5236 if (err)
5237 return err;
5238
5239 /* check src2 operand */
dc503a8a 5240 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5241 if (err)
5242 return err;
5243
5ffa2550
BJ
5244 if (insn->imm == BPF_CMPXCHG) {
5245 /* Check comparison of R0 with memory location */
a82fe085
DB
5246 const u32 aux_reg = BPF_REG_0;
5247
5248 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
5249 if (err)
5250 return err;
a82fe085
DB
5251
5252 if (is_pointer_value(env, aux_reg)) {
5253 verbose(env, "R%d leaks addr into mem\n", aux_reg);
5254 return -EACCES;
5255 }
5ffa2550
BJ
5256 }
5257
6bdf6abc 5258 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5259 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
5260 return -EACCES;
5261 }
5262
ca369602 5263 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 5264 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
5265 is_flow_key_reg(env, insn->dst_reg) ||
5266 is_sk_reg(env, insn->dst_reg)) {
91c960b0 5267 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 5268 insn->dst_reg,
c25b2ae1 5269 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
5270 return -EACCES;
5271 }
5272
37086bfd
BJ
5273 if (insn->imm & BPF_FETCH) {
5274 if (insn->imm == BPF_CMPXCHG)
5275 load_reg = BPF_REG_0;
5276 else
5277 load_reg = insn->src_reg;
5278
5279 /* check and record load of old value */
5280 err = check_reg_arg(env, load_reg, DST_OP);
5281 if (err)
5282 return err;
5283 } else {
5284 /* This instruction accesses a memory location but doesn't
5285 * actually load it into a register.
5286 */
5287 load_reg = -1;
5288 }
5289
7d3baf0a
DB
5290 /* Check whether we can read the memory, with second call for fetch
5291 * case to simulate the register fill.
5292 */
31fd8581 5293 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
5294 BPF_SIZE(insn->code), BPF_READ, -1, true);
5295 if (!err && load_reg >= 0)
5296 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5297 BPF_SIZE(insn->code), BPF_READ, load_reg,
5298 true);
17a52670
AS
5299 if (err)
5300 return err;
5301
7d3baf0a 5302 /* Check whether we can write into the same memory. */
5ca419f2
BJ
5303 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5304 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5305 if (err)
5306 return err;
5307
5ca419f2 5308 return 0;
17a52670
AS
5309}
5310
01f810ac
AM
5311/* When register 'regno' is used to read the stack (either directly or through
5312 * a helper function) make sure that it's within stack boundary and, depending
5313 * on the access type, that all elements of the stack are initialized.
5314 *
5315 * 'off' includes 'regno->off', but not its dynamic part (if any).
5316 *
5317 * All registers that have been spilled on the stack in the slots within the
5318 * read offsets are marked as read.
5319 */
5320static int check_stack_range_initialized(
5321 struct bpf_verifier_env *env, int regno, int off,
5322 int access_size, bool zero_size_allowed,
61df10c7 5323 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
5324{
5325 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
5326 struct bpf_func_state *state = func(env, reg);
5327 int err, min_off, max_off, i, j, slot, spi;
5328 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5329 enum bpf_access_type bounds_check_type;
5330 /* Some accesses can write anything into the stack, others are
5331 * read-only.
5332 */
5333 bool clobber = false;
2011fccf 5334
01f810ac
AM
5335 if (access_size == 0 && !zero_size_allowed) {
5336 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
5337 return -EACCES;
5338 }
2011fccf 5339
01f810ac
AM
5340 if (type == ACCESS_HELPER) {
5341 /* The bounds checks for writes are more permissive than for
5342 * reads. However, if raw_mode is not set, we'll do extra
5343 * checks below.
5344 */
5345 bounds_check_type = BPF_WRITE;
5346 clobber = true;
5347 } else {
5348 bounds_check_type = BPF_READ;
5349 }
5350 err = check_stack_access_within_bounds(env, regno, off, access_size,
5351 type, bounds_check_type);
5352 if (err)
5353 return err;
5354
17a52670 5355
2011fccf 5356 if (tnum_is_const(reg->var_off)) {
01f810ac 5357 min_off = max_off = reg->var_off.value + off;
2011fccf 5358 } else {
088ec26d
AI
5359 /* Variable offset is prohibited for unprivileged mode for
5360 * simplicity since it requires corresponding support in
5361 * Spectre masking for stack ALU.
5362 * See also retrieve_ptr_limit().
5363 */
2c78ee89 5364 if (!env->bypass_spec_v1) {
088ec26d 5365 char tn_buf[48];
f1174f77 5366
088ec26d 5367 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5368 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5369 regno, err_extra, tn_buf);
088ec26d
AI
5370 return -EACCES;
5371 }
f2bcd05e
AI
5372 /* Only initialized buffer on stack is allowed to be accessed
5373 * with variable offset. With uninitialized buffer it's hard to
5374 * guarantee that whole memory is marked as initialized on
5375 * helper return since specific bounds are unknown what may
5376 * cause uninitialized stack leaking.
5377 */
5378 if (meta && meta->raw_mode)
5379 meta = NULL;
5380
01f810ac
AM
5381 min_off = reg->smin_value + off;
5382 max_off = reg->smax_value + off;
17a52670
AS
5383 }
5384
435faee1
DB
5385 if (meta && meta->raw_mode) {
5386 meta->access_size = access_size;
5387 meta->regno = regno;
5388 return 0;
5389 }
5390
2011fccf 5391 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
5392 u8 *stype;
5393
2011fccf 5394 slot = -i - 1;
638f5b90 5395 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
5396 if (state->allocated_stack <= slot)
5397 goto err;
5398 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5399 if (*stype == STACK_MISC)
5400 goto mark;
5401 if (*stype == STACK_ZERO) {
01f810ac
AM
5402 if (clobber) {
5403 /* helper can write anything into the stack */
5404 *stype = STACK_MISC;
5405 }
cc2b14d5 5406 goto mark;
17a52670 5407 }
1d68f22b 5408
27113c59 5409 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
5410 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5411 env->allow_ptr_leaks)) {
01f810ac
AM
5412 if (clobber) {
5413 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5414 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 5415 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 5416 }
f7cf25b2
AS
5417 goto mark;
5418 }
5419
cc2b14d5 5420err:
2011fccf 5421 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
5422 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5423 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
5424 } else {
5425 char tn_buf[48];
5426
5427 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5428 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5429 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 5430 }
cc2b14d5
AS
5431 return -EACCES;
5432mark:
5433 /* reading any byte out of 8-byte 'spill_slot' will cause
5434 * the whole slot to be marked as 'read'
5435 */
679c782d 5436 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
5437 state->stack[spi].spilled_ptr.parent,
5438 REG_LIVE_READ64);
261f4664
KKD
5439 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5440 * be sure that whether stack slot is written to or not. Hence,
5441 * we must still conservatively propagate reads upwards even if
5442 * helper may write to the entire memory range.
5443 */
17a52670 5444 }
2011fccf 5445 return update_stack_depth(env, state, min_off);
17a52670
AS
5446}
5447
06c1c049
GB
5448static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5449 int access_size, bool zero_size_allowed,
5450 struct bpf_call_arg_meta *meta)
5451{
638f5b90 5452 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 5453 u32 *max_access;
06c1c049 5454
20b2aff4 5455 switch (base_type(reg->type)) {
06c1c049 5456 case PTR_TO_PACKET:
de8f3a83 5457 case PTR_TO_PACKET_META:
9fd29c08
YS
5458 return check_packet_access(env, regno, reg->off, access_size,
5459 zero_size_allowed);
69c087ba 5460 case PTR_TO_MAP_KEY:
7b3552d3
KKD
5461 if (meta && meta->raw_mode) {
5462 verbose(env, "R%d cannot write into %s\n", regno,
5463 reg_type_str(env, reg->type));
5464 return -EACCES;
5465 }
69c087ba
YS
5466 return check_mem_region_access(env, regno, reg->off, access_size,
5467 reg->map_ptr->key_size, false);
06c1c049 5468 case PTR_TO_MAP_VALUE:
591fe988
DB
5469 if (check_map_access_type(env, regno, reg->off, access_size,
5470 meta && meta->raw_mode ? BPF_WRITE :
5471 BPF_READ))
5472 return -EACCES;
9fd29c08 5473 return check_map_access(env, regno, reg->off, access_size,
61df10c7 5474 zero_size_allowed, ACCESS_HELPER);
457f4436 5475 case PTR_TO_MEM:
97e6d7da
KKD
5476 if (type_is_rdonly_mem(reg->type)) {
5477 if (meta && meta->raw_mode) {
5478 verbose(env, "R%d cannot write into %s\n", regno,
5479 reg_type_str(env, reg->type));
5480 return -EACCES;
5481 }
5482 }
457f4436
AN
5483 return check_mem_region_access(env, regno, reg->off,
5484 access_size, reg->mem_size,
5485 zero_size_allowed);
20b2aff4
HL
5486 case PTR_TO_BUF:
5487 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
5488 if (meta && meta->raw_mode) {
5489 verbose(env, "R%d cannot write into %s\n", regno,
5490 reg_type_str(env, reg->type));
20b2aff4 5491 return -EACCES;
97e6d7da 5492 }
20b2aff4 5493
20b2aff4
HL
5494 max_access = &env->prog->aux->max_rdonly_access;
5495 } else {
20b2aff4
HL
5496 max_access = &env->prog->aux->max_rdwr_access;
5497 }
afbf21dc
YS
5498 return check_buffer_access(env, reg, regno, reg->off,
5499 access_size, zero_size_allowed,
44e9a741 5500 max_access);
0d004c02 5501 case PTR_TO_STACK:
01f810ac
AM
5502 return check_stack_range_initialized(
5503 env,
5504 regno, reg->off, access_size,
5505 zero_size_allowed, ACCESS_HELPER, meta);
15baa55f
BT
5506 case PTR_TO_CTX:
5507 /* in case the function doesn't know how to access the context,
5508 * (because we are in a program of type SYSCALL for example), we
5509 * can not statically check its size.
5510 * Dynamically check it now.
5511 */
5512 if (!env->ops->convert_ctx_access) {
5513 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5514 int offset = access_size - 1;
5515
5516 /* Allow zero-byte read from PTR_TO_CTX */
5517 if (access_size == 0)
5518 return zero_size_allowed ? 0 : -EACCES;
5519
5520 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5521 atype, -1, false);
5522 }
5523
5524 fallthrough;
0d004c02
LB
5525 default: /* scalar_value or invalid ptr */
5526 /* Allow zero-byte read from NULL, regardless of pointer type */
5527 if (zero_size_allowed && access_size == 0 &&
5528 register_is_null(reg))
5529 return 0;
5530
c25b2ae1
HL
5531 verbose(env, "R%d type=%s ", regno,
5532 reg_type_str(env, reg->type));
5533 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 5534 return -EACCES;
06c1c049
GB
5535 }
5536}
5537
d583691c
KKD
5538static int check_mem_size_reg(struct bpf_verifier_env *env,
5539 struct bpf_reg_state *reg, u32 regno,
5540 bool zero_size_allowed,
5541 struct bpf_call_arg_meta *meta)
5542{
5543 int err;
5544
5545 /* This is used to refine r0 return value bounds for helpers
5546 * that enforce this value as an upper bound on return values.
5547 * See do_refine_retval_range() for helpers that can refine
5548 * the return value. C type of helper is u32 so we pull register
5549 * bound from umax_value however, if negative verifier errors
5550 * out. Only upper bounds can be learned because retval is an
5551 * int type and negative retvals are allowed.
5552 */
be77354a 5553 meta->msize_max_value = reg->umax_value;
d583691c
KKD
5554
5555 /* The register is SCALAR_VALUE; the access check
5556 * happens using its boundaries.
5557 */
5558 if (!tnum_is_const(reg->var_off))
5559 /* For unprivileged variable accesses, disable raw
5560 * mode so that the program is required to
5561 * initialize all the memory that the helper could
5562 * just partially fill up.
5563 */
5564 meta = NULL;
5565
5566 if (reg->smin_value < 0) {
5567 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5568 regno);
5569 return -EACCES;
5570 }
5571
5572 if (reg->umin_value == 0) {
5573 err = check_helper_mem_access(env, regno - 1, 0,
5574 zero_size_allowed,
5575 meta);
5576 if (err)
5577 return err;
5578 }
5579
5580 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5581 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5582 regno);
5583 return -EACCES;
5584 }
5585 err = check_helper_mem_access(env, regno - 1,
5586 reg->umax_value,
5587 zero_size_allowed, meta);
5588 if (!err)
5589 err = mark_chain_precision(env, regno);
5590 return err;
5591}
5592
e5069b9c
DB
5593int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5594 u32 regno, u32 mem_size)
5595{
be77354a
KKD
5596 bool may_be_null = type_may_be_null(reg->type);
5597 struct bpf_reg_state saved_reg;
5598 struct bpf_call_arg_meta meta;
5599 int err;
5600
e5069b9c
DB
5601 if (register_is_null(reg))
5602 return 0;
5603
be77354a
KKD
5604 memset(&meta, 0, sizeof(meta));
5605 /* Assuming that the register contains a value check if the memory
5606 * access is safe. Temporarily save and restore the register's state as
5607 * the conversion shouldn't be visible to a caller.
5608 */
5609 if (may_be_null) {
5610 saved_reg = *reg;
e5069b9c 5611 mark_ptr_not_null_reg(reg);
e5069b9c
DB
5612 }
5613
be77354a
KKD
5614 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5615 /* Check access for BPF_WRITE */
5616 meta.raw_mode = true;
5617 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5618
5619 if (may_be_null)
5620 *reg = saved_reg;
5621
5622 return err;
e5069b9c
DB
5623}
5624
00b85860
KKD
5625static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5626 u32 regno)
d583691c
KKD
5627{
5628 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5629 bool may_be_null = type_may_be_null(mem_reg->type);
5630 struct bpf_reg_state saved_reg;
be77354a 5631 struct bpf_call_arg_meta meta;
d583691c
KKD
5632 int err;
5633
5634 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5635
be77354a
KKD
5636 memset(&meta, 0, sizeof(meta));
5637
d583691c
KKD
5638 if (may_be_null) {
5639 saved_reg = *mem_reg;
5640 mark_ptr_not_null_reg(mem_reg);
5641 }
5642
be77354a
KKD
5643 err = check_mem_size_reg(env, reg, regno, true, &meta);
5644 /* Check access for BPF_WRITE */
5645 meta.raw_mode = true;
5646 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
5647
5648 if (may_be_null)
5649 *mem_reg = saved_reg;
5650 return err;
5651}
5652
d83525ca 5653/* Implementation details:
4e814da0
KKD
5654 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5655 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 5656 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
5657 * Two separate bpf_obj_new will also have different reg->id.
5658 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5659 * clears reg->id after value_or_null->value transition, since the verifier only
5660 * cares about the range of access to valid map value pointer and doesn't care
5661 * about actual address of the map element.
d83525ca
AS
5662 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5663 * reg->id > 0 after value_or_null->value transition. By doing so
5664 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
5665 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5666 * returned from bpf_obj_new.
d83525ca
AS
5667 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5668 * dead-locks.
5669 * Since only one bpf_spin_lock is allowed the checks are simpler than
5670 * reg_is_refcounted() logic. The verifier needs to remember only
5671 * one spin_lock instead of array of acquired_refs.
d0d78c1d 5672 * cur_state->active_lock remembers which map value element or allocated
4e814da0 5673 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
5674 */
5675static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5676 bool is_lock)
5677{
5678 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5679 struct bpf_verifier_state *cur = env->cur_state;
5680 bool is_const = tnum_is_const(reg->var_off);
d83525ca 5681 u64 val = reg->var_off.value;
4e814da0
KKD
5682 struct bpf_map *map = NULL;
5683 struct btf *btf = NULL;
5684 struct btf_record *rec;
d83525ca 5685
d83525ca
AS
5686 if (!is_const) {
5687 verbose(env,
5688 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5689 regno);
5690 return -EINVAL;
5691 }
4e814da0
KKD
5692 if (reg->type == PTR_TO_MAP_VALUE) {
5693 map = reg->map_ptr;
5694 if (!map->btf) {
5695 verbose(env,
5696 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5697 map->name);
5698 return -EINVAL;
5699 }
5700 } else {
5701 btf = reg->btf;
d83525ca 5702 }
4e814da0
KKD
5703
5704 rec = reg_btf_record(reg);
5705 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5706 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5707 map ? map->name : "kptr");
d83525ca
AS
5708 return -EINVAL;
5709 }
4e814da0 5710 if (rec->spin_lock_off != val + reg->off) {
db559117 5711 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 5712 val + reg->off, rec->spin_lock_off);
d83525ca
AS
5713 return -EINVAL;
5714 }
5715 if (is_lock) {
d0d78c1d 5716 if (cur->active_lock.ptr) {
d83525ca
AS
5717 verbose(env,
5718 "Locking two bpf_spin_locks are not allowed\n");
5719 return -EINVAL;
5720 }
d0d78c1d
KKD
5721 if (map)
5722 cur->active_lock.ptr = map;
5723 else
5724 cur->active_lock.ptr = btf;
5725 cur->active_lock.id = reg->id;
d83525ca 5726 } else {
534e86bc 5727 struct bpf_func_state *fstate = cur_func(env);
d0d78c1d 5728 void *ptr;
534e86bc 5729 int i;
d0d78c1d
KKD
5730
5731 if (map)
5732 ptr = map;
5733 else
5734 ptr = btf;
5735
5736 if (!cur->active_lock.ptr) {
d83525ca
AS
5737 verbose(env, "bpf_spin_unlock without taking a lock\n");
5738 return -EINVAL;
5739 }
d0d78c1d
KKD
5740 if (cur->active_lock.ptr != ptr ||
5741 cur->active_lock.id != reg->id) {
d83525ca
AS
5742 verbose(env, "bpf_spin_unlock of different lock\n");
5743 return -EINVAL;
5744 }
d0d78c1d
KKD
5745 cur->active_lock.ptr = NULL;
5746 cur->active_lock.id = 0;
534e86bc 5747
1f82dffc 5748 for (i = fstate->acquired_refs - 1; i >= 0; i--) {
534e86bc
KKD
5749 int err;
5750
5751 /* Complain on error because this reference state cannot
5752 * be freed before this point, as bpf_spin_lock critical
5753 * section does not allow functions that release the
5754 * allocated object immediately.
5755 */
5756 if (!fstate->refs[i].release_on_unlock)
5757 continue;
5758 err = release_reference(env, fstate->refs[i].id);
5759 if (err) {
5760 verbose(env, "failed to release release_on_unlock reference");
5761 return err;
5762 }
5763 }
d83525ca
AS
5764 }
5765 return 0;
5766}
5767
b00628b1
AS
5768static int process_timer_func(struct bpf_verifier_env *env, int regno,
5769 struct bpf_call_arg_meta *meta)
5770{
5771 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5772 bool is_const = tnum_is_const(reg->var_off);
5773 struct bpf_map *map = reg->map_ptr;
5774 u64 val = reg->var_off.value;
5775
5776 if (!is_const) {
5777 verbose(env,
5778 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5779 regno);
5780 return -EINVAL;
5781 }
5782 if (!map->btf) {
5783 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5784 map->name);
5785 return -EINVAL;
5786 }
db559117
KKD
5787 if (!btf_record_has_field(map->record, BPF_TIMER)) {
5788 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
5789 return -EINVAL;
5790 }
db559117 5791 if (map->record->timer_off != val + reg->off) {
68134668 5792 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 5793 val + reg->off, map->record->timer_off);
b00628b1
AS
5794 return -EINVAL;
5795 }
5796 if (meta->map_ptr) {
5797 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5798 return -EFAULT;
5799 }
3e8ce298 5800 meta->map_uid = reg->map_uid;
b00628b1
AS
5801 meta->map_ptr = map;
5802 return 0;
5803}
5804
c0a5a21c
KKD
5805static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5806 struct bpf_call_arg_meta *meta)
5807{
5808 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 5809 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 5810 struct btf_field *kptr_field;
c0a5a21c 5811 u32 kptr_off;
c0a5a21c
KKD
5812
5813 if (!tnum_is_const(reg->var_off)) {
5814 verbose(env,
5815 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5816 regno);
5817 return -EINVAL;
5818 }
5819 if (!map_ptr->btf) {
5820 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5821 map_ptr->name);
5822 return -EINVAL;
5823 }
aa3496ac
KKD
5824 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5825 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
5826 return -EINVAL;
5827 }
5828
5829 meta->map_ptr = map_ptr;
5830 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
5831 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5832 if (!kptr_field) {
c0a5a21c
KKD
5833 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5834 return -EACCES;
5835 }
aa3496ac 5836 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
5837 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5838 return -EACCES;
5839 }
aa3496ac 5840 meta->kptr_field = kptr_field;
c0a5a21c
KKD
5841 return 0;
5842}
5843
90133415
DB
5844static bool arg_type_is_mem_size(enum bpf_arg_type type)
5845{
5846 return type == ARG_CONST_SIZE ||
5847 type == ARG_CONST_SIZE_OR_ZERO;
5848}
5849
8f14852e
KKD
5850static bool arg_type_is_release(enum bpf_arg_type type)
5851{
5852 return type & OBJ_RELEASE;
5853}
5854
97e03f52
JK
5855static bool arg_type_is_dynptr(enum bpf_arg_type type)
5856{
5857 return base_type(type) == ARG_PTR_TO_DYNPTR;
5858}
5859
57c3bb72
AI
5860static int int_ptr_type_to_size(enum bpf_arg_type type)
5861{
5862 if (type == ARG_PTR_TO_INT)
5863 return sizeof(u32);
5864 else if (type == ARG_PTR_TO_LONG)
5865 return sizeof(u64);
5866
5867 return -EINVAL;
5868}
5869
912f442c
LB
5870static int resolve_map_arg_type(struct bpf_verifier_env *env,
5871 const struct bpf_call_arg_meta *meta,
5872 enum bpf_arg_type *arg_type)
5873{
5874 if (!meta->map_ptr) {
5875 /* kernel subsystem misconfigured verifier */
5876 verbose(env, "invalid map_ptr to access map->type\n");
5877 return -EACCES;
5878 }
5879
5880 switch (meta->map_ptr->map_type) {
5881 case BPF_MAP_TYPE_SOCKMAP:
5882 case BPF_MAP_TYPE_SOCKHASH:
5883 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5884 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5885 } else {
5886 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5887 return -EINVAL;
5888 }
5889 break;
9330986c
JK
5890 case BPF_MAP_TYPE_BLOOM_FILTER:
5891 if (meta->func_id == BPF_FUNC_map_peek_elem)
5892 *arg_type = ARG_PTR_TO_MAP_VALUE;
5893 break;
912f442c
LB
5894 default:
5895 break;
5896 }
5897 return 0;
5898}
5899
f79e7ea5
LB
5900struct bpf_reg_types {
5901 const enum bpf_reg_type types[10];
1df8f55a 5902 u32 *btf_id;
f79e7ea5
LB
5903};
5904
f79e7ea5
LB
5905static const struct bpf_reg_types sock_types = {
5906 .types = {
5907 PTR_TO_SOCK_COMMON,
5908 PTR_TO_SOCKET,
5909 PTR_TO_TCP_SOCK,
5910 PTR_TO_XDP_SOCK,
5911 },
5912};
5913
49a2a4d4 5914#ifdef CONFIG_NET
1df8f55a
MKL
5915static const struct bpf_reg_types btf_id_sock_common_types = {
5916 .types = {
5917 PTR_TO_SOCK_COMMON,
5918 PTR_TO_SOCKET,
5919 PTR_TO_TCP_SOCK,
5920 PTR_TO_XDP_SOCK,
5921 PTR_TO_BTF_ID,
3f00c523 5922 PTR_TO_BTF_ID | PTR_TRUSTED,
1df8f55a
MKL
5923 },
5924 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5925};
49a2a4d4 5926#endif
1df8f55a 5927
f79e7ea5
LB
5928static const struct bpf_reg_types mem_types = {
5929 .types = {
5930 PTR_TO_STACK,
5931 PTR_TO_PACKET,
5932 PTR_TO_PACKET_META,
69c087ba 5933 PTR_TO_MAP_KEY,
f79e7ea5
LB
5934 PTR_TO_MAP_VALUE,
5935 PTR_TO_MEM,
894f2a8b 5936 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 5937 PTR_TO_BUF,
f79e7ea5
LB
5938 },
5939};
5940
5941static const struct bpf_reg_types int_ptr_types = {
5942 .types = {
5943 PTR_TO_STACK,
5944 PTR_TO_PACKET,
5945 PTR_TO_PACKET_META,
69c087ba 5946 PTR_TO_MAP_KEY,
f79e7ea5
LB
5947 PTR_TO_MAP_VALUE,
5948 },
5949};
5950
4e814da0
KKD
5951static const struct bpf_reg_types spin_lock_types = {
5952 .types = {
5953 PTR_TO_MAP_VALUE,
5954 PTR_TO_BTF_ID | MEM_ALLOC,
5955 }
5956};
5957
f79e7ea5
LB
5958static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5959static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5960static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 5961static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5 5962static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
3f00c523
DV
5963static const struct bpf_reg_types btf_ptr_types = {
5964 .types = {
5965 PTR_TO_BTF_ID,
5966 PTR_TO_BTF_ID | PTR_TRUSTED,
fca1aa75 5967 PTR_TO_BTF_ID | MEM_RCU,
3f00c523
DV
5968 },
5969};
5970static const struct bpf_reg_types percpu_btf_ptr_types = {
5971 .types = {
5972 PTR_TO_BTF_ID | MEM_PERCPU,
5973 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
5974 }
5975};
69c087ba
YS
5976static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5977static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5978static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5979static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 5980static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
5981static const struct bpf_reg_types dynptr_types = {
5982 .types = {
5983 PTR_TO_STACK,
5984 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5985 }
5986};
f79e7ea5 5987
0789e13b 5988static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
5989 [ARG_PTR_TO_MAP_KEY] = &mem_types,
5990 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
5991 [ARG_CONST_SIZE] = &scalar_types,
5992 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5993 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5994 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5995 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 5996 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5997#ifdef CONFIG_NET
1df8f55a 5998 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5999#endif
f79e7ea5 6000 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
6001 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
6002 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
6003 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 6004 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
6005 [ARG_PTR_TO_INT] = &int_ptr_types,
6006 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 6007 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 6008 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 6009 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 6010 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 6011 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 6012 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 6013 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
6014};
6015
6016static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 6017 enum bpf_arg_type arg_type,
c0a5a21c
KKD
6018 const u32 *arg_btf_id,
6019 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
6020{
6021 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6022 enum bpf_reg_type expected, type = reg->type;
a968d5e2 6023 const struct bpf_reg_types *compatible;
f79e7ea5
LB
6024 int i, j;
6025
48946bd6 6026 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
6027 if (!compatible) {
6028 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6029 return -EFAULT;
6030 }
6031
216e3cd2
HL
6032 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6033 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6034 *
6035 * Same for MAYBE_NULL:
6036 *
6037 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6038 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6039 *
6040 * Therefore we fold these flags depending on the arg_type before comparison.
6041 */
6042 if (arg_type & MEM_RDONLY)
6043 type &= ~MEM_RDONLY;
6044 if (arg_type & PTR_MAYBE_NULL)
6045 type &= ~PTR_MAYBE_NULL;
6046
f79e7ea5
LB
6047 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6048 expected = compatible->types[i];
6049 if (expected == NOT_INIT)
6050 break;
6051
6052 if (type == expected)
a968d5e2 6053 goto found;
f79e7ea5
LB
6054 }
6055
216e3cd2 6056 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 6057 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
6058 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6059 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 6060 return -EACCES;
a968d5e2
MKL
6061
6062found:
3f00c523 6063 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
2ab3b380
KKD
6064 /* For bpf_sk_release, it needs to match against first member
6065 * 'struct sock_common', hence make an exception for it. This
6066 * allows bpf_sk_release to work for multiple socket types.
6067 */
6068 bool strict_type_match = arg_type_is_release(arg_type) &&
6069 meta->func_id != BPF_FUNC_sk_release;
6070
1df8f55a
MKL
6071 if (!arg_btf_id) {
6072 if (!compatible->btf_id) {
6073 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6074 return -EFAULT;
6075 }
6076 arg_btf_id = compatible->btf_id;
6077 }
6078
c0a5a21c 6079 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 6080 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 6081 return -EACCES;
47e34cb7
DM
6082 } else {
6083 if (arg_btf_id == BPF_PTR_POISON) {
6084 verbose(env, "verifier internal error:");
6085 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6086 regno);
6087 return -EACCES;
6088 }
6089
6090 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6091 btf_vmlinux, *arg_btf_id,
6092 strict_type_match)) {
6093 verbose(env, "R%d is of type %s but %s is expected\n",
6094 regno, kernel_type_name(reg->btf, reg->btf_id),
6095 kernel_type_name(btf_vmlinux, *arg_btf_id));
6096 return -EACCES;
6097 }
a968d5e2 6098 }
4e814da0
KKD
6099 } else if (type_is_alloc(reg->type)) {
6100 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6101 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6102 return -EFAULT;
6103 }
a968d5e2
MKL
6104 }
6105
6106 return 0;
f79e7ea5
LB
6107}
6108
25b35dd2
KKD
6109int check_func_arg_reg_off(struct bpf_verifier_env *env,
6110 const struct bpf_reg_state *reg, int regno,
8f14852e 6111 enum bpf_arg_type arg_type)
25b35dd2
KKD
6112{
6113 enum bpf_reg_type type = reg->type;
8f14852e 6114 bool fixed_off_ok = false;
25b35dd2
KKD
6115
6116 switch ((u32)type) {
25b35dd2 6117 /* Pointer types where reg offset is explicitly allowed: */
97e03f52
JK
6118 case PTR_TO_STACK:
6119 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
6120 verbose(env, "cannot pass in dynptr at an offset\n");
6121 return -EINVAL;
6122 }
6123 fallthrough;
25b35dd2
KKD
6124 case PTR_TO_PACKET:
6125 case PTR_TO_PACKET_META:
6126 case PTR_TO_MAP_KEY:
6127 case PTR_TO_MAP_VALUE:
6128 case PTR_TO_MEM:
6129 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 6130 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
6131 case PTR_TO_BUF:
6132 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 6133 case SCALAR_VALUE:
25b35dd2
KKD
6134 /* Some of the argument types nevertheless require a
6135 * zero register offset.
6136 */
894f2a8b 6137 if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM)
25b35dd2
KKD
6138 return 0;
6139 break;
6140 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6141 * fixed offset.
6142 */
6143 case PTR_TO_BTF_ID:
282de143 6144 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 6145 case PTR_TO_BTF_ID | PTR_TRUSTED:
fca1aa75 6146 case PTR_TO_BTF_ID | MEM_RCU:
3f00c523 6147 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
24d5bb80 6148 /* When referenced PTR_TO_BTF_ID is passed to release function,
8f14852e
KKD
6149 * it's fixed offset must be 0. In the other cases, fixed offset
6150 * can be non-zero.
24d5bb80 6151 */
8f14852e 6152 if (arg_type_is_release(arg_type) && reg->off) {
24d5bb80
KKD
6153 verbose(env, "R%d must have zero offset when passed to release func\n",
6154 regno);
6155 return -EINVAL;
6156 }
8f14852e
KKD
6157 /* For arg is release pointer, fixed_off_ok must be false, but
6158 * we already checked and rejected reg->off != 0 above, so set
6159 * to true to allow fixed offset for all other cases.
24d5bb80 6160 */
25b35dd2
KKD
6161 fixed_off_ok = true;
6162 break;
6163 default:
6164 break;
6165 }
6166 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
6167}
6168
34d4ef57
JK
6169static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6170{
6171 struct bpf_func_state *state = func(env, reg);
6172 int spi = get_spi(reg->off);
6173
6174 return state->stack[spi].spilled_ptr.id;
6175}
6176
af7ec138
YS
6177static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6178 struct bpf_call_arg_meta *meta,
6179 const struct bpf_func_proto *fn)
17a52670 6180{
af7ec138 6181 u32 regno = BPF_REG_1 + arg;
638f5b90 6182 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 6183 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 6184 enum bpf_reg_type type = reg->type;
508362ac 6185 u32 *arg_btf_id = NULL;
17a52670
AS
6186 int err = 0;
6187
80f1d68c 6188 if (arg_type == ARG_DONTCARE)
17a52670
AS
6189 return 0;
6190
dc503a8a
EC
6191 err = check_reg_arg(env, regno, SRC_OP);
6192 if (err)
6193 return err;
17a52670 6194
1be7f75d
AS
6195 if (arg_type == ARG_ANYTHING) {
6196 if (is_pointer_value(env, regno)) {
61bd5218
JK
6197 verbose(env, "R%d leaks addr into helper function\n",
6198 regno);
1be7f75d
AS
6199 return -EACCES;
6200 }
80f1d68c 6201 return 0;
1be7f75d 6202 }
80f1d68c 6203
de8f3a83 6204 if (type_is_pkt_pointer(type) &&
3a0af8fd 6205 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 6206 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
6207 return -EACCES;
6208 }
6209
16d1e00c 6210 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
6211 err = resolve_map_arg_type(env, meta, &arg_type);
6212 if (err)
6213 return err;
6214 }
6215
48946bd6 6216 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
6217 /* A NULL register has a SCALAR_VALUE type, so skip
6218 * type checking.
6219 */
6220 goto skip_type_check;
6221
508362ac 6222 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
6223 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6224 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
6225 arg_btf_id = fn->arg_btf_id[arg];
6226
6227 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
6228 if (err)
6229 return err;
6230
8f14852e 6231 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
6232 if (err)
6233 return err;
d7b9454a 6234
fd1b0d60 6235skip_type_check:
8f14852e 6236 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
6237 if (arg_type_is_dynptr(arg_type)) {
6238 struct bpf_func_state *state = func(env, reg);
6239 int spi = get_spi(reg->off);
6240
6241 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6242 !state->stack[spi].spilled_ptr.id) {
6243 verbose(env, "arg %d is an unacquired reference\n", regno);
6244 return -EINVAL;
6245 }
6246 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
6247 verbose(env, "R%d must be referenced when passed to release function\n",
6248 regno);
6249 return -EINVAL;
6250 }
6251 if (meta->release_regno) {
6252 verbose(env, "verifier internal error: more than one release argument\n");
6253 return -EFAULT;
6254 }
6255 meta->release_regno = regno;
6256 }
6257
02f7c958 6258 if (reg->ref_obj_id) {
457f4436
AN
6259 if (meta->ref_obj_id) {
6260 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6261 regno, reg->ref_obj_id,
6262 meta->ref_obj_id);
6263 return -EFAULT;
6264 }
6265 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
6266 }
6267
8ab4cdcf
JK
6268 switch (base_type(arg_type)) {
6269 case ARG_CONST_MAP_PTR:
17a52670 6270 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
6271 if (meta->map_ptr) {
6272 /* Use map_uid (which is unique id of inner map) to reject:
6273 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6274 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6275 * if (inner_map1 && inner_map2) {
6276 * timer = bpf_map_lookup_elem(inner_map1);
6277 * if (timer)
6278 * // mismatch would have been allowed
6279 * bpf_timer_init(timer, inner_map2);
6280 * }
6281 *
6282 * Comparing map_ptr is enough to distinguish normal and outer maps.
6283 */
6284 if (meta->map_ptr != reg->map_ptr ||
6285 meta->map_uid != reg->map_uid) {
6286 verbose(env,
6287 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6288 meta->map_uid, reg->map_uid);
6289 return -EINVAL;
6290 }
b00628b1 6291 }
33ff9823 6292 meta->map_ptr = reg->map_ptr;
3e8ce298 6293 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
6294 break;
6295 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
6296 /* bpf_map_xxx(..., map_ptr, ..., key) call:
6297 * check that [key, key + map->key_size) are within
6298 * stack limits and initialized
6299 */
33ff9823 6300 if (!meta->map_ptr) {
17a52670
AS
6301 /* in function declaration map_ptr must come before
6302 * map_key, so that it's verified and known before
6303 * we have to check map_key here. Otherwise it means
6304 * that kernel subsystem misconfigured verifier
6305 */
61bd5218 6306 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
6307 return -EACCES;
6308 }
d71962f3
PC
6309 err = check_helper_mem_access(env, regno,
6310 meta->map_ptr->key_size, false,
6311 NULL);
8ab4cdcf
JK
6312 break;
6313 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
6314 if (type_may_be_null(arg_type) && register_is_null(reg))
6315 return 0;
6316
17a52670
AS
6317 /* bpf_map_xxx(..., map_ptr, ..., value) call:
6318 * check [value, value + map->value_size) validity
6319 */
33ff9823 6320 if (!meta->map_ptr) {
17a52670 6321 /* kernel subsystem misconfigured verifier */
61bd5218 6322 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
6323 return -EACCES;
6324 }
16d1e00c 6325 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
6326 err = check_helper_mem_access(env, regno,
6327 meta->map_ptr->value_size, false,
2ea864c5 6328 meta);
8ab4cdcf
JK
6329 break;
6330 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
6331 if (!reg->btf_id) {
6332 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6333 return -EACCES;
6334 }
22dc4a0f 6335 meta->ret_btf = reg->btf;
eaa6bcb7 6336 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
6337 break;
6338 case ARG_PTR_TO_SPIN_LOCK:
c18f0b6a
LB
6339 if (meta->func_id == BPF_FUNC_spin_lock) {
6340 if (process_spin_lock(env, regno, true))
6341 return -EACCES;
6342 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
6343 if (process_spin_lock(env, regno, false))
6344 return -EACCES;
6345 } else {
6346 verbose(env, "verifier internal error\n");
6347 return -EFAULT;
6348 }
8ab4cdcf
JK
6349 break;
6350 case ARG_PTR_TO_TIMER:
b00628b1
AS
6351 if (process_timer_func(env, regno, meta))
6352 return -EACCES;
8ab4cdcf
JK
6353 break;
6354 case ARG_PTR_TO_FUNC:
69c087ba 6355 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
6356 break;
6357 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
6358 /* The access to this pointer is only checked when we hit the
6359 * next is_mem_size argument below.
6360 */
16d1e00c 6361 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
6362 if (arg_type & MEM_FIXED_SIZE) {
6363 err = check_helper_mem_access(env, regno,
6364 fn->arg_size[arg], false,
6365 meta);
6366 }
8ab4cdcf
JK
6367 break;
6368 case ARG_CONST_SIZE:
6369 err = check_mem_size_reg(env, reg, regno, false, meta);
6370 break;
6371 case ARG_CONST_SIZE_OR_ZERO:
6372 err = check_mem_size_reg(env, reg, regno, true, meta);
6373 break;
6374 case ARG_PTR_TO_DYNPTR:
20571567
DV
6375 /* We only need to check for initialized / uninitialized helper
6376 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6377 * assumption is that if it is, that a helper function
6378 * initialized the dynptr on behalf of the BPF program.
6379 */
6380 if (base_type(reg->type) == PTR_TO_DYNPTR)
6381 break;
97e03f52
JK
6382 if (arg_type & MEM_UNINIT) {
6383 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6384 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6385 return -EINVAL;
6386 }
6387
6388 /* We only support one dynptr being uninitialized at the moment,
6389 * which is sufficient for the helper functions we have right now.
6390 */
6391 if (meta->uninit_dynptr_regno) {
6392 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6393 return -EFAULT;
6394 }
6395
6396 meta->uninit_dynptr_regno = regno;
e9e315b4
RS
6397 } else if (!is_dynptr_reg_valid_init(env, reg)) {
6398 verbose(env,
6399 "Expected an initialized dynptr as arg #%d\n",
6400 arg + 1);
6401 return -EINVAL;
6402 } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
97e03f52
JK
6403 const char *err_extra = "";
6404
6405 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6406 case DYNPTR_TYPE_LOCAL:
e9e315b4 6407 err_extra = "local";
97e03f52 6408 break;
bc34dee6 6409 case DYNPTR_TYPE_RINGBUF:
e9e315b4 6410 err_extra = "ringbuf";
bc34dee6 6411 break;
97e03f52 6412 default:
e9e315b4 6413 err_extra = "<unknown>";
97e03f52
JK
6414 break;
6415 }
e9e315b4
RS
6416 verbose(env,
6417 "Expected a dynptr of type %s as arg #%d\n",
97e03f52
JK
6418 err_extra, arg + 1);
6419 return -EINVAL;
6420 }
8ab4cdcf
JK
6421 break;
6422 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 6423 if (!tnum_is_const(reg->var_off)) {
28a8add6 6424 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
6425 regno);
6426 return -EACCES;
6427 }
6428 meta->mem_size = reg->var_off.value;
2fc31465
KKD
6429 err = mark_chain_precision(env, regno);
6430 if (err)
6431 return err;
8ab4cdcf
JK
6432 break;
6433 case ARG_PTR_TO_INT:
6434 case ARG_PTR_TO_LONG:
6435 {
57c3bb72
AI
6436 int size = int_ptr_type_to_size(arg_type);
6437
6438 err = check_helper_mem_access(env, regno, size, false, meta);
6439 if (err)
6440 return err;
6441 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
6442 break;
6443 }
6444 case ARG_PTR_TO_CONST_STR:
6445 {
fff13c4b
FR
6446 struct bpf_map *map = reg->map_ptr;
6447 int map_off;
6448 u64 map_addr;
6449 char *str_ptr;
6450
a8fad73e 6451 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
6452 verbose(env, "R%d does not point to a readonly map'\n", regno);
6453 return -EACCES;
6454 }
6455
6456 if (!tnum_is_const(reg->var_off)) {
6457 verbose(env, "R%d is not a constant address'\n", regno);
6458 return -EACCES;
6459 }
6460
6461 if (!map->ops->map_direct_value_addr) {
6462 verbose(env, "no direct value access support for this map type\n");
6463 return -EACCES;
6464 }
6465
6466 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
6467 map->value_size - reg->off, false,
6468 ACCESS_HELPER);
fff13c4b
FR
6469 if (err)
6470 return err;
6471
6472 map_off = reg->off + reg->var_off.value;
6473 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6474 if (err) {
6475 verbose(env, "direct value access on string failed\n");
6476 return err;
6477 }
6478
6479 str_ptr = (char *)(long)(map_addr);
6480 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6481 verbose(env, "string is not zero-terminated\n");
6482 return -EINVAL;
6483 }
8ab4cdcf
JK
6484 break;
6485 }
6486 case ARG_PTR_TO_KPTR:
c0a5a21c
KKD
6487 if (process_kptr_func(env, regno, meta))
6488 return -EACCES;
8ab4cdcf 6489 break;
17a52670
AS
6490 }
6491
6492 return err;
6493}
6494
0126240f
LB
6495static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6496{
6497 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 6498 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
6499
6500 if (func_id != BPF_FUNC_map_update_elem)
6501 return false;
6502
6503 /* It's not possible to get access to a locked struct sock in these
6504 * contexts, so updating is safe.
6505 */
6506 switch (type) {
6507 case BPF_PROG_TYPE_TRACING:
6508 if (eatype == BPF_TRACE_ITER)
6509 return true;
6510 break;
6511 case BPF_PROG_TYPE_SOCKET_FILTER:
6512 case BPF_PROG_TYPE_SCHED_CLS:
6513 case BPF_PROG_TYPE_SCHED_ACT:
6514 case BPF_PROG_TYPE_XDP:
6515 case BPF_PROG_TYPE_SK_REUSEPORT:
6516 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6517 case BPF_PROG_TYPE_SK_LOOKUP:
6518 return true;
6519 default:
6520 break;
6521 }
6522
6523 verbose(env, "cannot update sockmap in this context\n");
6524 return false;
6525}
6526
e411901c
MF
6527static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6528{
95acd881
TA
6529 return env->prog->jit_requested &&
6530 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
6531}
6532
61bd5218
JK
6533static int check_map_func_compatibility(struct bpf_verifier_env *env,
6534 struct bpf_map *map, int func_id)
35578d79 6535{
35578d79
KX
6536 if (!map)
6537 return 0;
6538
6aff67c8
AS
6539 /* We need a two way check, first is from map perspective ... */
6540 switch (map->map_type) {
6541 case BPF_MAP_TYPE_PROG_ARRAY:
6542 if (func_id != BPF_FUNC_tail_call)
6543 goto error;
6544 break;
6545 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6546 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 6547 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 6548 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
6549 func_id != BPF_FUNC_perf_event_read_value &&
6550 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
6551 goto error;
6552 break;
457f4436
AN
6553 case BPF_MAP_TYPE_RINGBUF:
6554 if (func_id != BPF_FUNC_ringbuf_output &&
6555 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
6556 func_id != BPF_FUNC_ringbuf_query &&
6557 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6558 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6559 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
6560 goto error;
6561 break;
583c1f42 6562 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
6563 if (func_id != BPF_FUNC_user_ringbuf_drain)
6564 goto error;
6565 break;
6aff67c8
AS
6566 case BPF_MAP_TYPE_STACK_TRACE:
6567 if (func_id != BPF_FUNC_get_stackid)
6568 goto error;
6569 break;
4ed8ec52 6570 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 6571 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 6572 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
6573 goto error;
6574 break;
cd339431 6575 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 6576 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
6577 if (func_id != BPF_FUNC_get_local_storage)
6578 goto error;
6579 break;
546ac1ff 6580 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 6581 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
6582 if (func_id != BPF_FUNC_redirect_map &&
6583 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
6584 goto error;
6585 break;
fbfc504a
BT
6586 /* Restrict bpf side of cpumap and xskmap, open when use-cases
6587 * appear.
6588 */
6710e112
JDB
6589 case BPF_MAP_TYPE_CPUMAP:
6590 if (func_id != BPF_FUNC_redirect_map)
6591 goto error;
6592 break;
fada7fdc
JL
6593 case BPF_MAP_TYPE_XSKMAP:
6594 if (func_id != BPF_FUNC_redirect_map &&
6595 func_id != BPF_FUNC_map_lookup_elem)
6596 goto error;
6597 break;
56f668df 6598 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 6599 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
6600 if (func_id != BPF_FUNC_map_lookup_elem)
6601 goto error;
16a43625 6602 break;
174a79ff
JF
6603 case BPF_MAP_TYPE_SOCKMAP:
6604 if (func_id != BPF_FUNC_sk_redirect_map &&
6605 func_id != BPF_FUNC_sock_map_update &&
4f738adb 6606 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6607 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 6608 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6609 func_id != BPF_FUNC_map_lookup_elem &&
6610 !may_update_sockmap(env, func_id))
174a79ff
JF
6611 goto error;
6612 break;
81110384
JF
6613 case BPF_MAP_TYPE_SOCKHASH:
6614 if (func_id != BPF_FUNC_sk_redirect_hash &&
6615 func_id != BPF_FUNC_sock_hash_update &&
6616 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6617 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 6618 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6619 func_id != BPF_FUNC_map_lookup_elem &&
6620 !may_update_sockmap(env, func_id))
81110384
JF
6621 goto error;
6622 break;
2dbb9b9e
MKL
6623 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6624 if (func_id != BPF_FUNC_sk_select_reuseport)
6625 goto error;
6626 break;
f1a2e44a
MV
6627 case BPF_MAP_TYPE_QUEUE:
6628 case BPF_MAP_TYPE_STACK:
6629 if (func_id != BPF_FUNC_map_peek_elem &&
6630 func_id != BPF_FUNC_map_pop_elem &&
6631 func_id != BPF_FUNC_map_push_elem)
6632 goto error;
6633 break;
6ac99e8f
MKL
6634 case BPF_MAP_TYPE_SK_STORAGE:
6635 if (func_id != BPF_FUNC_sk_storage_get &&
6636 func_id != BPF_FUNC_sk_storage_delete)
6637 goto error;
6638 break;
8ea63684
KS
6639 case BPF_MAP_TYPE_INODE_STORAGE:
6640 if (func_id != BPF_FUNC_inode_storage_get &&
6641 func_id != BPF_FUNC_inode_storage_delete)
6642 goto error;
6643 break;
4cf1bc1f
KS
6644 case BPF_MAP_TYPE_TASK_STORAGE:
6645 if (func_id != BPF_FUNC_task_storage_get &&
6646 func_id != BPF_FUNC_task_storage_delete)
6647 goto error;
6648 break;
c4bcfb38
YS
6649 case BPF_MAP_TYPE_CGRP_STORAGE:
6650 if (func_id != BPF_FUNC_cgrp_storage_get &&
6651 func_id != BPF_FUNC_cgrp_storage_delete)
6652 goto error;
6653 break;
9330986c
JK
6654 case BPF_MAP_TYPE_BLOOM_FILTER:
6655 if (func_id != BPF_FUNC_map_peek_elem &&
6656 func_id != BPF_FUNC_map_push_elem)
6657 goto error;
6658 break;
6aff67c8
AS
6659 default:
6660 break;
6661 }
6662
6663 /* ... and second from the function itself. */
6664 switch (func_id) {
6665 case BPF_FUNC_tail_call:
6666 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6667 goto error;
e411901c
MF
6668 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6669 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
6670 return -EINVAL;
6671 }
6aff67c8
AS
6672 break;
6673 case BPF_FUNC_perf_event_read:
6674 case BPF_FUNC_perf_event_output:
908432ca 6675 case BPF_FUNC_perf_event_read_value:
a7658e1a 6676 case BPF_FUNC_skb_output:
d831ee84 6677 case BPF_FUNC_xdp_output:
6aff67c8
AS
6678 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6679 goto error;
6680 break;
5b029a32
DB
6681 case BPF_FUNC_ringbuf_output:
6682 case BPF_FUNC_ringbuf_reserve:
6683 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
6684 case BPF_FUNC_ringbuf_reserve_dynptr:
6685 case BPF_FUNC_ringbuf_submit_dynptr:
6686 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
6687 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6688 goto error;
6689 break;
20571567
DV
6690 case BPF_FUNC_user_ringbuf_drain:
6691 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6692 goto error;
6693 break;
6aff67c8
AS
6694 case BPF_FUNC_get_stackid:
6695 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6696 goto error;
6697 break;
60d20f91 6698 case BPF_FUNC_current_task_under_cgroup:
747ea55e 6699 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
6700 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6701 goto error;
6702 break;
97f91a7c 6703 case BPF_FUNC_redirect_map:
9c270af3 6704 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 6705 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
6706 map->map_type != BPF_MAP_TYPE_CPUMAP &&
6707 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
6708 goto error;
6709 break;
174a79ff 6710 case BPF_FUNC_sk_redirect_map:
4f738adb 6711 case BPF_FUNC_msg_redirect_map:
81110384 6712 case BPF_FUNC_sock_map_update:
174a79ff
JF
6713 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6714 goto error;
6715 break;
81110384
JF
6716 case BPF_FUNC_sk_redirect_hash:
6717 case BPF_FUNC_msg_redirect_hash:
6718 case BPF_FUNC_sock_hash_update:
6719 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
6720 goto error;
6721 break;
cd339431 6722 case BPF_FUNC_get_local_storage:
b741f163
RG
6723 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6724 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
6725 goto error;
6726 break;
2dbb9b9e 6727 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
6728 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6729 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6730 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
6731 goto error;
6732 break;
f1a2e44a 6733 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
6734 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6735 map->map_type != BPF_MAP_TYPE_STACK)
6736 goto error;
6737 break;
9330986c
JK
6738 case BPF_FUNC_map_peek_elem:
6739 case BPF_FUNC_map_push_elem:
6740 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6741 map->map_type != BPF_MAP_TYPE_STACK &&
6742 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6743 goto error;
6744 break;
07343110
FZ
6745 case BPF_FUNC_map_lookup_percpu_elem:
6746 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6747 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6748 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6749 goto error;
6750 break;
6ac99e8f
MKL
6751 case BPF_FUNC_sk_storage_get:
6752 case BPF_FUNC_sk_storage_delete:
6753 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6754 goto error;
6755 break;
8ea63684
KS
6756 case BPF_FUNC_inode_storage_get:
6757 case BPF_FUNC_inode_storage_delete:
6758 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6759 goto error;
6760 break;
4cf1bc1f
KS
6761 case BPF_FUNC_task_storage_get:
6762 case BPF_FUNC_task_storage_delete:
6763 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6764 goto error;
6765 break;
c4bcfb38
YS
6766 case BPF_FUNC_cgrp_storage_get:
6767 case BPF_FUNC_cgrp_storage_delete:
6768 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6769 goto error;
6770 break;
6aff67c8
AS
6771 default:
6772 break;
35578d79
KX
6773 }
6774
6775 return 0;
6aff67c8 6776error:
61bd5218 6777 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 6778 map->map_type, func_id_name(func_id), func_id);
6aff67c8 6779 return -EINVAL;
35578d79
KX
6780}
6781
90133415 6782static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
6783{
6784 int count = 0;
6785
39f19ebb 6786 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6787 count++;
39f19ebb 6788 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6789 count++;
39f19ebb 6790 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6791 count++;
39f19ebb 6792 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6793 count++;
39f19ebb 6794 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
6795 count++;
6796
90133415
DB
6797 /* We only support one arg being in raw mode at the moment,
6798 * which is sufficient for the helper functions we have
6799 * right now.
6800 */
6801 return count <= 1;
6802}
6803
508362ac 6804static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 6805{
508362ac
MM
6806 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6807 bool has_size = fn->arg_size[arg] != 0;
6808 bool is_next_size = false;
6809
6810 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6811 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6812
6813 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6814 return is_next_size;
6815
6816 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
6817}
6818
6819static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6820{
6821 /* bpf_xxx(..., buf, len) call will access 'len'
6822 * bytes from memory 'buf'. Both arg types need
6823 * to be paired, so make sure there's no buggy
6824 * helper function specification.
6825 */
6826 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
6827 check_args_pair_invalid(fn, 0) ||
6828 check_args_pair_invalid(fn, 1) ||
6829 check_args_pair_invalid(fn, 2) ||
6830 check_args_pair_invalid(fn, 3) ||
6831 check_args_pair_invalid(fn, 4))
90133415
DB
6832 return false;
6833
6834 return true;
6835}
6836
9436ef6e
LB
6837static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6838{
6839 int i;
6840
1df8f55a 6841 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
6842 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
6843 return !!fn->arg_btf_id[i];
6844 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
6845 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
6846 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6847 /* arg_btf_id and arg_size are in a union. */
6848 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6849 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
6850 return false;
6851 }
6852
9436ef6e
LB
6853 return true;
6854}
6855
0c9a7a7e 6856static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
6857{
6858 return check_raw_mode_ok(fn) &&
fd978bf7 6859 check_arg_pair_ok(fn) &&
b2d8ef19 6860 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
6861}
6862
de8f3a83
DB
6863/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6864 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 6865 */
b239da34 6866static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 6867{
b239da34
KKD
6868 struct bpf_func_state *state;
6869 struct bpf_reg_state *reg;
969bf05e 6870
b239da34 6871 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
de8f3a83 6872 if (reg_is_pkt_pointer_any(reg))
f54c7898 6873 __mark_reg_unknown(env, reg);
b239da34 6874 }));
f4d7e40a
AS
6875}
6876
6d94e741
AS
6877enum {
6878 AT_PKT_END = -1,
6879 BEYOND_PKT_END = -2,
6880};
6881
6882static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6883{
6884 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6885 struct bpf_reg_state *reg = &state->regs[regn];
6886
6887 if (reg->type != PTR_TO_PACKET)
6888 /* PTR_TO_PACKET_META is not supported yet */
6889 return;
6890
6891 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6892 * How far beyond pkt_end it goes is unknown.
6893 * if (!range_open) it's the case of pkt >= pkt_end
6894 * if (range_open) it's the case of pkt > pkt_end
6895 * hence this pointer is at least 1 byte bigger than pkt_end
6896 */
6897 if (range_open)
6898 reg->range = BEYOND_PKT_END;
6899 else
6900 reg->range = AT_PKT_END;
6901}
6902
fd978bf7
JS
6903/* The pointer with the specified id has released its reference to kernel
6904 * resources. Identify all copies of the same pointer and clear the reference.
6905 */
6906static int release_reference(struct bpf_verifier_env *env,
1b986589 6907 int ref_obj_id)
fd978bf7 6908{
b239da34
KKD
6909 struct bpf_func_state *state;
6910 struct bpf_reg_state *reg;
1b986589 6911 int err;
fd978bf7 6912
1b986589
MKL
6913 err = release_reference_state(cur_func(env), ref_obj_id);
6914 if (err)
6915 return err;
6916
b239da34 6917 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
f1db2081
YL
6918 if (reg->ref_obj_id == ref_obj_id) {
6919 if (!env->allow_ptr_leaks)
6920 __mark_reg_not_init(env, reg);
6921 else
6922 __mark_reg_unknown(env, reg);
6923 }
b239da34 6924 }));
fd978bf7 6925
1b986589 6926 return 0;
fd978bf7
JS
6927}
6928
51c39bb1
AS
6929static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6930 struct bpf_reg_state *regs)
6931{
6932 int i;
6933
6934 /* after the call registers r0 - r5 were scratched */
6935 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6936 mark_reg_not_init(env, regs, caller_saved[i]);
6937 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6938 }
6939}
6940
14351375
YS
6941typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6942 struct bpf_func_state *caller,
6943 struct bpf_func_state *callee,
6944 int insn_idx);
6945
be2ef816
AN
6946static int set_callee_state(struct bpf_verifier_env *env,
6947 struct bpf_func_state *caller,
6948 struct bpf_func_state *callee, int insn_idx);
6949
14351375
YS
6950static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6951 int *insn_idx, int subprog,
6952 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
6953{
6954 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 6955 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 6956 struct bpf_func_state *caller, *callee;
14351375 6957 int err;
51c39bb1 6958 bool is_global = false;
f4d7e40a 6959
aada9ce6 6960 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 6961 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 6962 state->curframe + 2);
f4d7e40a
AS
6963 return -E2BIG;
6964 }
6965
f4d7e40a
AS
6966 caller = state->frame[state->curframe];
6967 if (state->frame[state->curframe + 1]) {
6968 verbose(env, "verifier bug. Frame %d already allocated\n",
6969 state->curframe + 1);
6970 return -EFAULT;
6971 }
6972
51c39bb1
AS
6973 func_info_aux = env->prog->aux->func_info_aux;
6974 if (func_info_aux)
6975 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 6976 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
6977 if (err == -EFAULT)
6978 return err;
6979 if (is_global) {
6980 if (err) {
6981 verbose(env, "Caller passes invalid args into func#%d\n",
6982 subprog);
6983 return err;
6984 } else {
6985 if (env->log.level & BPF_LOG_LEVEL)
6986 verbose(env,
6987 "Func#%d is global and valid. Skipping.\n",
6988 subprog);
6989 clear_caller_saved_regs(env, caller->regs);
6990
45159b27 6991 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 6992 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 6993 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
6994
6995 /* continue with next insn after call */
6996 return 0;
6997 }
6998 }
6999
be2ef816
AN
7000 /* set_callee_state is used for direct subprog calls, but we are
7001 * interested in validating only BPF helpers that can call subprogs as
7002 * callbacks
7003 */
7004 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7005 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7006 func_id_name(insn->imm), insn->imm);
7007 return -EFAULT;
7008 }
7009
bfc6bb74 7010 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 7011 insn->src_reg == 0 &&
bfc6bb74
AS
7012 insn->imm == BPF_FUNC_timer_set_callback) {
7013 struct bpf_verifier_state *async_cb;
7014
7015 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 7016 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
7017 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7018 *insn_idx, subprog);
7019 if (!async_cb)
7020 return -EFAULT;
7021 callee = async_cb->frame[0];
7022 callee->async_entry_cnt = caller->async_entry_cnt + 1;
7023
7024 /* Convert bpf_timer_set_callback() args into timer callback args */
7025 err = set_callee_state_cb(env, caller, callee, *insn_idx);
7026 if (err)
7027 return err;
7028
7029 clear_caller_saved_regs(env, caller->regs);
7030 mark_reg_unknown(env, caller->regs, BPF_REG_0);
7031 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7032 /* continue with next insn after call */
7033 return 0;
7034 }
7035
f4d7e40a
AS
7036 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7037 if (!callee)
7038 return -ENOMEM;
7039 state->frame[state->curframe + 1] = callee;
7040
7041 /* callee cannot access r0, r6 - r9 for reading and has to write
7042 * into its own stack before reading from it.
7043 * callee can read/write into caller's stack
7044 */
7045 init_func_state(env, callee,
7046 /* remember the callsite, it will be used by bpf_exit */
7047 *insn_idx /* callsite */,
7048 state->curframe + 1 /* frameno within this callchain */,
f910cefa 7049 subprog /* subprog number within this prog */);
f4d7e40a 7050
fd978bf7 7051 /* Transfer references to the callee */
c69431aa 7052 err = copy_reference_state(callee, caller);
fd978bf7 7053 if (err)
eb86559a 7054 goto err_out;
fd978bf7 7055
14351375
YS
7056 err = set_callee_state_cb(env, caller, callee, *insn_idx);
7057 if (err)
eb86559a 7058 goto err_out;
f4d7e40a 7059
51c39bb1 7060 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
7061
7062 /* only increment it after check_reg_arg() finished */
7063 state->curframe++;
7064
7065 /* and go analyze first insn of the callee */
14351375 7066 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 7067
06ee7115 7068 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 7069 verbose(env, "caller:\n");
0f55f9ed 7070 print_verifier_state(env, caller, true);
f4d7e40a 7071 verbose(env, "callee:\n");
0f55f9ed 7072 print_verifier_state(env, callee, true);
f4d7e40a
AS
7073 }
7074 return 0;
eb86559a
WY
7075
7076err_out:
7077 free_func_state(callee);
7078 state->frame[state->curframe + 1] = NULL;
7079 return err;
f4d7e40a
AS
7080}
7081
314ee05e
YS
7082int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7083 struct bpf_func_state *caller,
7084 struct bpf_func_state *callee)
7085{
7086 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7087 * void *callback_ctx, u64 flags);
7088 * callback_fn(struct bpf_map *map, void *key, void *value,
7089 * void *callback_ctx);
7090 */
7091 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7092
7093 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7094 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7095 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7096
7097 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7098 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7099 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7100
7101 /* pointer to stack or null */
7102 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7103
7104 /* unused */
7105 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7106 return 0;
7107}
7108
14351375
YS
7109static int set_callee_state(struct bpf_verifier_env *env,
7110 struct bpf_func_state *caller,
7111 struct bpf_func_state *callee, int insn_idx)
7112{
7113 int i;
7114
7115 /* copy r1 - r5 args that callee can access. The copy includes parent
7116 * pointers, which connects us up to the liveness chain
7117 */
7118 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7119 callee->regs[i] = caller->regs[i];
7120 return 0;
7121}
7122
7123static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7124 int *insn_idx)
7125{
7126 int subprog, target_insn;
7127
7128 target_insn = *insn_idx + insn->imm + 1;
7129 subprog = find_subprog(env, target_insn);
7130 if (subprog < 0) {
7131 verbose(env, "verifier bug. No program starts at insn %d\n",
7132 target_insn);
7133 return -EFAULT;
7134 }
7135
7136 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7137}
7138
69c087ba
YS
7139static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7140 struct bpf_func_state *caller,
7141 struct bpf_func_state *callee,
7142 int insn_idx)
7143{
7144 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7145 struct bpf_map *map;
7146 int err;
7147
7148 if (bpf_map_ptr_poisoned(insn_aux)) {
7149 verbose(env, "tail_call abusing map_ptr\n");
7150 return -EINVAL;
7151 }
7152
7153 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7154 if (!map->ops->map_set_for_each_callback_args ||
7155 !map->ops->map_for_each_callback) {
7156 verbose(env, "callback function not allowed for map\n");
7157 return -ENOTSUPP;
7158 }
7159
7160 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7161 if (err)
7162 return err;
7163
7164 callee->in_callback_fn = true;
1bfe26fb 7165 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
7166 return 0;
7167}
7168
e6f2dd0f
JK
7169static int set_loop_callback_state(struct bpf_verifier_env *env,
7170 struct bpf_func_state *caller,
7171 struct bpf_func_state *callee,
7172 int insn_idx)
7173{
7174 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7175 * u64 flags);
7176 * callback_fn(u32 index, void *callback_ctx);
7177 */
7178 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7179 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7180
7181 /* unused */
7182 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7183 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7184 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7185
7186 callee->in_callback_fn = true;
1bfe26fb 7187 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
7188 return 0;
7189}
7190
b00628b1
AS
7191static int set_timer_callback_state(struct bpf_verifier_env *env,
7192 struct bpf_func_state *caller,
7193 struct bpf_func_state *callee,
7194 int insn_idx)
7195{
7196 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7197
7198 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7199 * callback_fn(struct bpf_map *map, void *key, void *value);
7200 */
7201 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7202 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7203 callee->regs[BPF_REG_1].map_ptr = map_ptr;
7204
7205 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7206 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7207 callee->regs[BPF_REG_2].map_ptr = map_ptr;
7208
7209 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7210 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7211 callee->regs[BPF_REG_3].map_ptr = map_ptr;
7212
7213 /* unused */
7214 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7215 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 7216 callee->in_async_callback_fn = true;
1bfe26fb 7217 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
7218 return 0;
7219}
7220
7c7e3d31
SL
7221static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7222 struct bpf_func_state *caller,
7223 struct bpf_func_state *callee,
7224 int insn_idx)
7225{
7226 /* bpf_find_vma(struct task_struct *task, u64 addr,
7227 * void *callback_fn, void *callback_ctx, u64 flags)
7228 * (callback_fn)(struct task_struct *task,
7229 * struct vm_area_struct *vma, void *callback_ctx);
7230 */
7231 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7232
7233 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7234 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7235 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 7236 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
7237
7238 /* pointer to stack or null */
7239 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7240
7241 /* unused */
7242 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7243 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7244 callee->in_callback_fn = true;
1bfe26fb 7245 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
7246 return 0;
7247}
7248
20571567
DV
7249static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7250 struct bpf_func_state *caller,
7251 struct bpf_func_state *callee,
7252 int insn_idx)
7253{
7254 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7255 * callback_ctx, u64 flags);
7256 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
7257 */
7258 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7259 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
7260 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7261 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7262
7263 /* unused */
7264 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7265 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7266 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7267
7268 callee->in_callback_fn = true;
c92a7a52 7269 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
7270 return 0;
7271}
7272
f4d7e40a
AS
7273static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7274{
7275 struct bpf_verifier_state *state = env->cur_state;
7276 struct bpf_func_state *caller, *callee;
7277 struct bpf_reg_state *r0;
fd978bf7 7278 int err;
f4d7e40a
AS
7279
7280 callee = state->frame[state->curframe];
7281 r0 = &callee->regs[BPF_REG_0];
7282 if (r0->type == PTR_TO_STACK) {
7283 /* technically it's ok to return caller's stack pointer
7284 * (or caller's caller's pointer) back to the caller,
7285 * since these pointers are valid. Only current stack
7286 * pointer will be invalid as soon as function exits,
7287 * but let's be conservative
7288 */
7289 verbose(env, "cannot return stack pointer to the caller\n");
7290 return -EINVAL;
7291 }
7292
eb86559a 7293 caller = state->frame[state->curframe - 1];
69c087ba
YS
7294 if (callee->in_callback_fn) {
7295 /* enforce R0 return value range [0, 1]. */
1bfe26fb 7296 struct tnum range = callee->callback_ret_range;
69c087ba
YS
7297
7298 if (r0->type != SCALAR_VALUE) {
7299 verbose(env, "R0 not a scalar value\n");
7300 return -EACCES;
7301 }
7302 if (!tnum_in(range, r0->var_off)) {
7303 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7304 return -EINVAL;
7305 }
7306 } else {
7307 /* return to the caller whatever r0 had in the callee */
7308 caller->regs[BPF_REG_0] = *r0;
7309 }
f4d7e40a 7310
9d9d00ac
KKD
7311 /* callback_fn frame should have released its own additions to parent's
7312 * reference state at this point, or check_reference_leak would
7313 * complain, hence it must be the same as the caller. There is no need
7314 * to copy it back.
7315 */
7316 if (!callee->in_callback_fn) {
7317 /* Transfer references to the caller */
7318 err = copy_reference_state(caller, callee);
7319 if (err)
7320 return err;
7321 }
fd978bf7 7322
f4d7e40a 7323 *insn_idx = callee->callsite + 1;
06ee7115 7324 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 7325 verbose(env, "returning from callee:\n");
0f55f9ed 7326 print_verifier_state(env, callee, true);
f4d7e40a 7327 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 7328 print_verifier_state(env, caller, true);
f4d7e40a
AS
7329 }
7330 /* clear everything in the callee */
7331 free_func_state(callee);
eb86559a 7332 state->frame[state->curframe--] = NULL;
f4d7e40a
AS
7333 return 0;
7334}
7335
849fa506
YS
7336static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7337 int func_id,
7338 struct bpf_call_arg_meta *meta)
7339{
7340 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7341
7342 if (ret_type != RET_INTEGER ||
7343 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 7344 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
7345 func_id != BPF_FUNC_probe_read_str &&
7346 func_id != BPF_FUNC_probe_read_kernel_str &&
7347 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
7348 return;
7349
10060503 7350 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 7351 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
7352 ret_reg->smin_value = -MAX_ERRNO;
7353 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 7354 reg_bounds_sync(ret_reg);
849fa506
YS
7355}
7356
c93552c4
DB
7357static int
7358record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7359 int func_id, int insn_idx)
7360{
7361 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 7362 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
7363
7364 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
7365 func_id != BPF_FUNC_map_lookup_elem &&
7366 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
7367 func_id != BPF_FUNC_map_delete_elem &&
7368 func_id != BPF_FUNC_map_push_elem &&
7369 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 7370 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 7371 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
7372 func_id != BPF_FUNC_redirect_map &&
7373 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 7374 return 0;
09772d92 7375
591fe988 7376 if (map == NULL) {
c93552c4
DB
7377 verbose(env, "kernel subsystem misconfigured verifier\n");
7378 return -EINVAL;
7379 }
7380
591fe988
DB
7381 /* In case of read-only, some additional restrictions
7382 * need to be applied in order to prevent altering the
7383 * state of the map from program side.
7384 */
7385 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7386 (func_id == BPF_FUNC_map_delete_elem ||
7387 func_id == BPF_FUNC_map_update_elem ||
7388 func_id == BPF_FUNC_map_push_elem ||
7389 func_id == BPF_FUNC_map_pop_elem)) {
7390 verbose(env, "write into map forbidden\n");
7391 return -EACCES;
7392 }
7393
d2e4c1e6 7394 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 7395 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 7396 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 7397 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 7398 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 7399 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
7400 return 0;
7401}
7402
d2e4c1e6
DB
7403static int
7404record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7405 int func_id, int insn_idx)
7406{
7407 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7408 struct bpf_reg_state *regs = cur_regs(env), *reg;
7409 struct bpf_map *map = meta->map_ptr;
a657182a 7410 u64 val, max;
cc52d914 7411 int err;
d2e4c1e6
DB
7412
7413 if (func_id != BPF_FUNC_tail_call)
7414 return 0;
7415 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7416 verbose(env, "kernel subsystem misconfigured verifier\n");
7417 return -EINVAL;
7418 }
7419
d2e4c1e6 7420 reg = &regs[BPF_REG_3];
a657182a
DB
7421 val = reg->var_off.value;
7422 max = map->max_entries;
d2e4c1e6 7423
a657182a 7424 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
7425 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7426 return 0;
7427 }
7428
cc52d914
DB
7429 err = mark_chain_precision(env, BPF_REG_3);
7430 if (err)
7431 return err;
d2e4c1e6
DB
7432 if (bpf_map_key_unseen(aux))
7433 bpf_map_key_store(aux, val);
7434 else if (!bpf_map_key_poisoned(aux) &&
7435 bpf_map_key_immediate(aux) != val)
7436 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7437 return 0;
7438}
7439
fd978bf7
JS
7440static int check_reference_leak(struct bpf_verifier_env *env)
7441{
7442 struct bpf_func_state *state = cur_func(env);
9d9d00ac 7443 bool refs_lingering = false;
fd978bf7
JS
7444 int i;
7445
9d9d00ac
KKD
7446 if (state->frameno && !state->in_callback_fn)
7447 return 0;
7448
fd978bf7 7449 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
7450 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7451 continue;
fd978bf7
JS
7452 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7453 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 7454 refs_lingering = true;
fd978bf7 7455 }
9d9d00ac 7456 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
7457}
7458
7b15523a
FR
7459static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7460 struct bpf_reg_state *regs)
7461{
7462 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7463 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7464 struct bpf_map *fmt_map = fmt_reg->map_ptr;
7465 int err, fmt_map_off, num_args;
7466 u64 fmt_addr;
7467 char *fmt;
7468
7469 /* data must be an array of u64 */
7470 if (data_len_reg->var_off.value % 8)
7471 return -EINVAL;
7472 num_args = data_len_reg->var_off.value / 8;
7473
7474 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7475 * and map_direct_value_addr is set.
7476 */
7477 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7478 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7479 fmt_map_off);
8e8ee109
FR
7480 if (err) {
7481 verbose(env, "verifier bug\n");
7482 return -EFAULT;
7483 }
7b15523a
FR
7484 fmt = (char *)(long)fmt_addr + fmt_map_off;
7485
7486 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7487 * can focus on validating the format specifiers.
7488 */
48cac3f4 7489 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
7490 if (err < 0)
7491 verbose(env, "Invalid format string\n");
7492
7493 return err;
7494}
7495
9b99edca
JO
7496static int check_get_func_ip(struct bpf_verifier_env *env)
7497{
9b99edca
JO
7498 enum bpf_prog_type type = resolve_prog_type(env->prog);
7499 int func_id = BPF_FUNC_get_func_ip;
7500
7501 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 7502 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
7503 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7504 func_id_name(func_id), func_id);
7505 return -ENOTSUPP;
7506 }
7507 return 0;
9ffd9f3f
JO
7508 } else if (type == BPF_PROG_TYPE_KPROBE) {
7509 return 0;
9b99edca
JO
7510 }
7511
7512 verbose(env, "func %s#%d not supported for program type %d\n",
7513 func_id_name(func_id), func_id, type);
7514 return -ENOTSUPP;
7515}
7516
1ade2371
EZ
7517static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7518{
7519 return &env->insn_aux_data[env->insn_idx];
7520}
7521
7522static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7523{
7524 struct bpf_reg_state *regs = cur_regs(env);
7525 struct bpf_reg_state *reg = &regs[BPF_REG_4];
7526 bool reg_is_null = register_is_null(reg);
7527
7528 if (reg_is_null)
7529 mark_chain_precision(env, BPF_REG_4);
7530
7531 return reg_is_null;
7532}
7533
7534static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7535{
7536 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7537
7538 if (!state->initialized) {
7539 state->initialized = 1;
7540 state->fit_for_inline = loop_flag_is_zero(env);
7541 state->callback_subprogno = subprogno;
7542 return;
7543 }
7544
7545 if (!state->fit_for_inline)
7546 return;
7547
7548 state->fit_for_inline = (loop_flag_is_zero(env) &&
7549 state->callback_subprogno == subprogno);
7550}
7551
69c087ba
YS
7552static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7553 int *insn_idx_p)
17a52670 7554{
aef9d4a3 7555 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 7556 const struct bpf_func_proto *fn = NULL;
3c480732 7557 enum bpf_return_type ret_type;
c25b2ae1 7558 enum bpf_type_flag ret_flag;
638f5b90 7559 struct bpf_reg_state *regs;
33ff9823 7560 struct bpf_call_arg_meta meta;
69c087ba 7561 int insn_idx = *insn_idx_p;
969bf05e 7562 bool changes_data;
69c087ba 7563 int i, err, func_id;
17a52670
AS
7564
7565 /* find function prototype */
69c087ba 7566 func_id = insn->imm;
17a52670 7567 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
7568 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7569 func_id);
17a52670
AS
7570 return -EINVAL;
7571 }
7572
00176a34 7573 if (env->ops->get_func_proto)
5e43f899 7574 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 7575 if (!fn) {
61bd5218
JK
7576 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7577 func_id);
17a52670
AS
7578 return -EINVAL;
7579 }
7580
7581 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 7582 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 7583 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
7584 return -EINVAL;
7585 }
7586
eae2e83e
JO
7587 if (fn->allowed && !fn->allowed(env->prog)) {
7588 verbose(env, "helper call is not allowed in probe\n");
7589 return -EINVAL;
7590 }
7591
01685c5b
YS
7592 if (!env->prog->aux->sleepable && fn->might_sleep) {
7593 verbose(env, "helper call might sleep in a non-sleepable prog\n");
7594 return -EINVAL;
7595 }
7596
04514d13 7597 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 7598 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
7599 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7600 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7601 func_id_name(func_id), func_id);
7602 return -EINVAL;
7603 }
969bf05e 7604
33ff9823 7605 memset(&meta, 0, sizeof(meta));
36bbef52 7606 meta.pkt_access = fn->pkt_access;
33ff9823 7607
0c9a7a7e 7608 err = check_func_proto(fn, func_id);
435faee1 7609 if (err) {
61bd5218 7610 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 7611 func_id_name(func_id), func_id);
435faee1
DB
7612 return err;
7613 }
7614
9bb00b28
YS
7615 if (env->cur_state->active_rcu_lock) {
7616 if (fn->might_sleep) {
7617 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
7618 func_id_name(func_id), func_id);
7619 return -EINVAL;
7620 }
7621
7622 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
7623 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
7624 }
7625
d83525ca 7626 meta.func_id = func_id;
17a52670 7627 /* check args */
523a4cf4 7628 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 7629 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
7630 if (err)
7631 return err;
7632 }
17a52670 7633
c93552c4
DB
7634 err = record_func_map(env, &meta, func_id, insn_idx);
7635 if (err)
7636 return err;
7637
d2e4c1e6
DB
7638 err = record_func_key(env, &meta, func_id, insn_idx);
7639 if (err)
7640 return err;
7641
435faee1
DB
7642 /* Mark slots with STACK_MISC in case of raw mode, stack offset
7643 * is inferred from register state.
7644 */
7645 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
7646 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7647 BPF_WRITE, -1, false);
435faee1
DB
7648 if (err)
7649 return err;
7650 }
7651
8f14852e
KKD
7652 regs = cur_regs(env);
7653
97e03f52
JK
7654 if (meta.uninit_dynptr_regno) {
7655 /* we write BPF_DW bits (8 bytes) at a time */
7656 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7657 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7658 i, BPF_DW, BPF_WRITE, -1, false);
7659 if (err)
7660 return err;
7661 }
7662
7663 err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7664 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7665 insn_idx);
7666 if (err)
7667 return err;
7668 }
7669
8f14852e
KKD
7670 if (meta.release_regno) {
7671 err = -EINVAL;
97e03f52
JK
7672 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7673 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7674 else if (meta.ref_obj_id)
8f14852e
KKD
7675 err = release_reference(env, meta.ref_obj_id);
7676 /* meta.ref_obj_id can only be 0 if register that is meant to be
7677 * released is NULL, which must be > R0.
7678 */
7679 else if (register_is_null(&regs[meta.release_regno]))
7680 err = 0;
46f8bc92
MKL
7681 if (err) {
7682 verbose(env, "func %s#%d reference has not been acquired before\n",
7683 func_id_name(func_id), func_id);
fd978bf7 7684 return err;
46f8bc92 7685 }
fd978bf7
JS
7686 }
7687
e6f2dd0f
JK
7688 switch (func_id) {
7689 case BPF_FUNC_tail_call:
7690 err = check_reference_leak(env);
7691 if (err) {
7692 verbose(env, "tail_call would lead to reference leak\n");
7693 return err;
7694 }
7695 break;
7696 case BPF_FUNC_get_local_storage:
7697 /* check that flags argument in get_local_storage(map, flags) is 0,
7698 * this is required because get_local_storage() can't return an error.
7699 */
7700 if (!register_is_null(&regs[BPF_REG_2])) {
7701 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7702 return -EINVAL;
7703 }
7704 break;
7705 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
7706 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7707 set_map_elem_callback_state);
e6f2dd0f
JK
7708 break;
7709 case BPF_FUNC_timer_set_callback:
b00628b1
AS
7710 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7711 set_timer_callback_state);
e6f2dd0f
JK
7712 break;
7713 case BPF_FUNC_find_vma:
7c7e3d31
SL
7714 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7715 set_find_vma_callback_state);
e6f2dd0f
JK
7716 break;
7717 case BPF_FUNC_snprintf:
7b15523a 7718 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
7719 break;
7720 case BPF_FUNC_loop:
1ade2371 7721 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
7722 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7723 set_loop_callback_state);
7724 break;
263ae152
JK
7725 case BPF_FUNC_dynptr_from_mem:
7726 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7727 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7728 reg_type_str(env, regs[BPF_REG_1].type));
7729 return -EACCES;
7730 }
69fd337a
SF
7731 break;
7732 case BPF_FUNC_set_retval:
aef9d4a3
SF
7733 if (prog_type == BPF_PROG_TYPE_LSM &&
7734 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
7735 if (!env->prog->aux->attach_func_proto->type) {
7736 /* Make sure programs that attach to void
7737 * hooks don't try to modify return value.
7738 */
7739 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7740 return -EINVAL;
7741 }
7742 }
7743 break;
88374342
JK
7744 case BPF_FUNC_dynptr_data:
7745 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7746 if (arg_type_is_dynptr(fn->arg_type[i])) {
20571567
DV
7747 struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7748
88374342
JK
7749 if (meta.ref_obj_id) {
7750 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7751 return -EFAULT;
7752 }
20571567
DV
7753
7754 if (base_type(reg->type) != PTR_TO_DYNPTR)
7755 /* Find the id of the dynptr we're
7756 * tracking the reference of
7757 */
7758 meta.ref_obj_id = stack_slot_get_id(env, reg);
88374342
JK
7759 break;
7760 }
7761 }
7762 if (i == MAX_BPF_FUNC_REG_ARGS) {
7763 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7764 return -EFAULT;
7765 }
7766 break;
20571567
DV
7767 case BPF_FUNC_user_ringbuf_drain:
7768 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7769 set_user_ringbuf_callback_state);
7770 break;
7b15523a
FR
7771 }
7772
e6f2dd0f
JK
7773 if (err)
7774 return err;
7775
17a52670 7776 /* reset caller saved regs */
dc503a8a 7777 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7778 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7779 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7780 }
17a52670 7781
5327ed3d
JW
7782 /* helper call returns 64-bit value. */
7783 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7784
dc503a8a 7785 /* update return register (already marked as written above) */
3c480732 7786 ret_type = fn->ret_type;
0c9a7a7e
JK
7787 ret_flag = type_flag(ret_type);
7788
7789 switch (base_type(ret_type)) {
7790 case RET_INTEGER:
f1174f77 7791 /* sets type to SCALAR_VALUE */
61bd5218 7792 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
7793 break;
7794 case RET_VOID:
17a52670 7795 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
7796 break;
7797 case RET_PTR_TO_MAP_VALUE:
f1174f77 7798 /* There is no offset yet applied, variable or fixed */
61bd5218 7799 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
7800 /* remember map_ptr, so that check_map_access()
7801 * can check 'value_size' boundary of memory access
7802 * to map element returned from bpf_map_lookup_elem()
7803 */
33ff9823 7804 if (meta.map_ptr == NULL) {
61bd5218
JK
7805 verbose(env,
7806 "kernel subsystem misconfigured verifier\n");
17a52670
AS
7807 return -EINVAL;
7808 }
33ff9823 7809 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 7810 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
7811 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7812 if (!type_may_be_null(ret_type) &&
db559117 7813 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 7814 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 7815 }
0c9a7a7e
JK
7816 break;
7817 case RET_PTR_TO_SOCKET:
c64b7983 7818 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7819 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
7820 break;
7821 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 7822 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7823 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
7824 break;
7825 case RET_PTR_TO_TCP_SOCK:
655a51e5 7826 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7827 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 7828 break;
2de2669b 7829 case RET_PTR_TO_MEM:
457f4436 7830 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7831 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 7832 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
7833 break;
7834 case RET_PTR_TO_MEM_OR_BTF_ID:
7835 {
eaa6bcb7
HL
7836 const struct btf_type *t;
7837
7838 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 7839 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
7840 if (!btf_type_is_struct(t)) {
7841 u32 tsize;
7842 const struct btf_type *ret;
7843 const char *tname;
7844
7845 /* resolve the type size of ksym. */
22dc4a0f 7846 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 7847 if (IS_ERR(ret)) {
22dc4a0f 7848 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
7849 verbose(env, "unable to resolve the size of type '%s': %ld\n",
7850 tname, PTR_ERR(ret));
7851 return -EINVAL;
7852 }
c25b2ae1 7853 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
7854 regs[BPF_REG_0].mem_size = tsize;
7855 } else {
34d3a78c
HL
7856 /* MEM_RDONLY may be carried from ret_flag, but it
7857 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7858 * it will confuse the check of PTR_TO_BTF_ID in
7859 * check_mem_access().
7860 */
7861 ret_flag &= ~MEM_RDONLY;
7862
c25b2ae1 7863 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 7864 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
7865 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7866 }
0c9a7a7e
JK
7867 break;
7868 }
7869 case RET_PTR_TO_BTF_ID:
7870 {
c0a5a21c 7871 struct btf *ret_btf;
af7ec138
YS
7872 int ret_btf_id;
7873
7874 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7875 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 7876 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
7877 ret_btf = meta.kptr_field->kptr.btf;
7878 ret_btf_id = meta.kptr_field->kptr.btf_id;
c0a5a21c 7879 } else {
47e34cb7
DM
7880 if (fn->ret_btf_id == BPF_PTR_POISON) {
7881 verbose(env, "verifier internal error:");
7882 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7883 func_id_name(func_id));
7884 return -EINVAL;
7885 }
c0a5a21c
KKD
7886 ret_btf = btf_vmlinux;
7887 ret_btf_id = *fn->ret_btf_id;
7888 }
af7ec138 7889 if (ret_btf_id == 0) {
3c480732
HL
7890 verbose(env, "invalid return type %u of func %s#%d\n",
7891 base_type(ret_type), func_id_name(func_id),
7892 func_id);
af7ec138
YS
7893 return -EINVAL;
7894 }
c0a5a21c 7895 regs[BPF_REG_0].btf = ret_btf;
af7ec138 7896 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
7897 break;
7898 }
7899 default:
3c480732
HL
7900 verbose(env, "unknown return type %u of func %s#%d\n",
7901 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
7902 return -EINVAL;
7903 }
04fd61ab 7904
c25b2ae1 7905 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
7906 regs[BPF_REG_0].id = ++env->id_gen;
7907
b2d8ef19
DM
7908 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7909 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7910 func_id_name(func_id), func_id);
7911 return -EFAULT;
7912 }
7913
88374342 7914 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
7915 /* For release_reference() */
7916 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 7917 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
7918 int id = acquire_reference_state(env, insn_idx);
7919
7920 if (id < 0)
7921 return id;
7922 /* For mark_ptr_or_null_reg() */
7923 regs[BPF_REG_0].id = id;
7924 /* For release_reference() */
7925 regs[BPF_REG_0].ref_obj_id = id;
7926 }
1b986589 7927
849fa506
YS
7928 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7929
61bd5218 7930 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
7931 if (err)
7932 return err;
04fd61ab 7933
fa28dcb8
SL
7934 if ((func_id == BPF_FUNC_get_stack ||
7935 func_id == BPF_FUNC_get_task_stack) &&
7936 !env->prog->has_callchain_buf) {
c195651e
YS
7937 const char *err_str;
7938
7939#ifdef CONFIG_PERF_EVENTS
7940 err = get_callchain_buffers(sysctl_perf_event_max_stack);
7941 err_str = "cannot get callchain buffer for func %s#%d\n";
7942#else
7943 err = -ENOTSUPP;
7944 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7945#endif
7946 if (err) {
7947 verbose(env, err_str, func_id_name(func_id), func_id);
7948 return err;
7949 }
7950
7951 env->prog->has_callchain_buf = true;
7952 }
7953
5d99cb2c
SL
7954 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7955 env->prog->call_get_stack = true;
7956
9b99edca
JO
7957 if (func_id == BPF_FUNC_get_func_ip) {
7958 if (check_get_func_ip(env))
7959 return -ENOTSUPP;
7960 env->prog->call_get_func_ip = true;
7961 }
7962
969bf05e
AS
7963 if (changes_data)
7964 clear_all_pkt_pointers(env);
7965 return 0;
7966}
7967
e6ac2450
MKL
7968/* mark_btf_func_reg_size() is used when the reg size is determined by
7969 * the BTF func_proto's return value size and argument.
7970 */
7971static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7972 size_t reg_size)
7973{
7974 struct bpf_reg_state *reg = &cur_regs(env)[regno];
7975
7976 if (regno == BPF_REG_0) {
7977 /* Function return value */
7978 reg->live |= REG_LIVE_WRITTEN;
7979 reg->subreg_def = reg_size == sizeof(u64) ?
7980 DEF_NOT_SUBREG : env->insn_idx + 1;
7981 } else {
7982 /* Function argument */
7983 if (reg_size == sizeof(u64)) {
7984 mark_insn_zext(env, reg);
7985 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7986 } else {
7987 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7988 }
7989 }
7990}
7991
00b85860
KKD
7992struct bpf_kfunc_call_arg_meta {
7993 /* In parameters */
7994 struct btf *btf;
7995 u32 func_id;
7996 u32 kfunc_flags;
7997 const struct btf_type *func_proto;
7998 const char *func_name;
7999 /* Out parameters */
8000 u32 ref_obj_id;
8001 u8 release_regno;
8002 bool r0_rdonly;
fd264ca0 8003 u32 ret_btf_id;
00b85860 8004 u64 r0_size;
a50388db
KKD
8005 struct {
8006 u64 value;
8007 bool found;
8008 } arg_constant;
ac9f0605
KKD
8009 struct {
8010 struct btf *btf;
8011 u32 btf_id;
8012 } arg_obj_drop;
8cab76ec
KKD
8013 struct {
8014 struct btf_field *field;
8015 } arg_list_head;
00b85860 8016};
e6ac2450 8017
00b85860
KKD
8018static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8019{
8020 return meta->kfunc_flags & KF_ACQUIRE;
8021}
a5d82727 8022
00b85860
KKD
8023static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8024{
8025 return meta->kfunc_flags & KF_RET_NULL;
8026}
2357672c 8027
00b85860
KKD
8028static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8029{
8030 return meta->kfunc_flags & KF_RELEASE;
8031}
e6ac2450 8032
00b85860
KKD
8033static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8034{
8035 return meta->kfunc_flags & KF_TRUSTED_ARGS;
8036}
4dd48c6f 8037
00b85860
KKD
8038static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8039{
8040 return meta->kfunc_flags & KF_SLEEPABLE;
8041}
5c073f26 8042
00b85860
KKD
8043static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8044{
8045 return meta->kfunc_flags & KF_DESTRUCTIVE;
8046}
eb1f7f71 8047
fca1aa75
YS
8048static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8049{
8050 return meta->kfunc_flags & KF_RCU;
8051}
8052
00b85860
KKD
8053static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8054{
8055 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8056}
e6ac2450 8057
a50388db
KKD
8058static bool __kfunc_param_match_suffix(const struct btf *btf,
8059 const struct btf_param *arg,
8060 const char *suffix)
00b85860 8061{
a50388db 8062 int suffix_len = strlen(suffix), len;
00b85860 8063 const char *param_name;
e6ac2450 8064
00b85860
KKD
8065 /* In the future, this can be ported to use BTF tagging */
8066 param_name = btf_name_by_offset(btf, arg->name_off);
8067 if (str_is_empty(param_name))
8068 return false;
8069 len = strlen(param_name);
a50388db 8070 if (len < suffix_len)
00b85860 8071 return false;
a50388db
KKD
8072 param_name += len - suffix_len;
8073 return !strncmp(param_name, suffix, suffix_len);
8074}
5c073f26 8075
a50388db
KKD
8076static bool is_kfunc_arg_mem_size(const struct btf *btf,
8077 const struct btf_param *arg,
8078 const struct bpf_reg_state *reg)
8079{
8080 const struct btf_type *t;
5c073f26 8081
a50388db
KKD
8082 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8083 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860 8084 return false;
eb1f7f71 8085
a50388db
KKD
8086 return __kfunc_param_match_suffix(btf, arg, "__sz");
8087}
eb1f7f71 8088
a50388db
KKD
8089static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8090{
8091 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860 8092}
eb1f7f71 8093
958cf2e2
KKD
8094static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8095{
8096 return __kfunc_param_match_suffix(btf, arg, "__ign");
8097}
5c073f26 8098
ac9f0605
KKD
8099static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8100{
8101 return __kfunc_param_match_suffix(btf, arg, "__alloc");
8102}
e6ac2450 8103
00b85860
KKD
8104static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8105 const struct btf_param *arg,
8106 const char *name)
8107{
8108 int len, target_len = strlen(name);
8109 const char *param_name;
e6ac2450 8110
00b85860
KKD
8111 param_name = btf_name_by_offset(btf, arg->name_off);
8112 if (str_is_empty(param_name))
8113 return false;
8114 len = strlen(param_name);
8115 if (len != target_len)
8116 return false;
8117 if (strcmp(param_name, name))
8118 return false;
e6ac2450 8119
00b85860 8120 return true;
e6ac2450
MKL
8121}
8122
00b85860
KKD
8123enum {
8124 KF_ARG_DYNPTR_ID,
8cab76ec
KKD
8125 KF_ARG_LIST_HEAD_ID,
8126 KF_ARG_LIST_NODE_ID,
00b85860 8127};
b03c9f9f 8128
00b85860
KKD
8129BTF_ID_LIST(kf_arg_btf_ids)
8130BTF_ID(struct, bpf_dynptr_kern)
8cab76ec
KKD
8131BTF_ID(struct, bpf_list_head)
8132BTF_ID(struct, bpf_list_node)
b03c9f9f 8133
8cab76ec
KKD
8134static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8135 const struct btf_param *arg, int type)
3f50f132 8136{
00b85860
KKD
8137 const struct btf_type *t;
8138 u32 res_id;
3f50f132 8139
00b85860
KKD
8140 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8141 if (!t)
8142 return false;
8143 if (!btf_type_is_ptr(t))
8144 return false;
8145 t = btf_type_skip_modifiers(btf, t->type, &res_id);
8146 if (!t)
8147 return false;
8cab76ec 8148 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
3f50f132
JF
8149}
8150
8cab76ec 8151static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
b03c9f9f 8152{
8cab76ec 8153 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
969bf05e
AS
8154}
8155
8cab76ec 8156static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
3f50f132 8157{
8cab76ec 8158 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
3f50f132
JF
8159}
8160
8cab76ec 8161static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
bb7f0f98 8162{
8cab76ec 8163 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
00b85860
KKD
8164}
8165
8166/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8167static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8168 const struct btf *btf,
8169 const struct btf_type *t, int rec)
8170{
8171 const struct btf_type *member_type;
8172 const struct btf_member *member;
8173 u32 i;
8174
8175 if (!btf_type_is_struct(t))
8176 return false;
8177
8178 for_each_member(i, t, member) {
8179 const struct btf_array *array;
8180
8181 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8182 if (btf_type_is_struct(member_type)) {
8183 if (rec >= 3) {
8184 verbose(env, "max struct nesting depth exceeded\n");
8185 return false;
8186 }
8187 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8188 return false;
8189 continue;
8190 }
8191 if (btf_type_is_array(member_type)) {
8192 array = btf_array(member_type);
8193 if (!array->nelems)
8194 return false;
8195 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8196 if (!btf_type_is_scalar(member_type))
8197 return false;
8198 continue;
8199 }
8200 if (!btf_type_is_scalar(member_type))
8201 return false;
8202 }
8203 return true;
8204}
8205
8206
8207static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8208#ifdef CONFIG_NET
8209 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8210 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8211 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8212#endif
8213};
8214
8215enum kfunc_ptr_arg_type {
8216 KF_ARG_PTR_TO_CTX,
ac9f0605 8217 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
00b85860
KKD
8218 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */
8219 KF_ARG_PTR_TO_DYNPTR,
8cab76ec
KKD
8220 KF_ARG_PTR_TO_LIST_HEAD,
8221 KF_ARG_PTR_TO_LIST_NODE,
00b85860
KKD
8222 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
8223 KF_ARG_PTR_TO_MEM,
8224 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
8225};
8226
ac9f0605
KKD
8227enum special_kfunc_type {
8228 KF_bpf_obj_new_impl,
8229 KF_bpf_obj_drop_impl,
8cab76ec
KKD
8230 KF_bpf_list_push_front,
8231 KF_bpf_list_push_back,
8232 KF_bpf_list_pop_front,
8233 KF_bpf_list_pop_back,
fd264ca0 8234 KF_bpf_cast_to_kern_ctx,
a35b9af4 8235 KF_bpf_rdonly_cast,
9bb00b28
YS
8236 KF_bpf_rcu_read_lock,
8237 KF_bpf_rcu_read_unlock,
ac9f0605
KKD
8238};
8239
8240BTF_SET_START(special_kfunc_set)
8241BTF_ID(func, bpf_obj_new_impl)
8242BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
8243BTF_ID(func, bpf_list_push_front)
8244BTF_ID(func, bpf_list_push_back)
8245BTF_ID(func, bpf_list_pop_front)
8246BTF_ID(func, bpf_list_pop_back)
fd264ca0 8247BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 8248BTF_ID(func, bpf_rdonly_cast)
ac9f0605
KKD
8249BTF_SET_END(special_kfunc_set)
8250
8251BTF_ID_LIST(special_kfunc_list)
8252BTF_ID(func, bpf_obj_new_impl)
8253BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
8254BTF_ID(func, bpf_list_push_front)
8255BTF_ID(func, bpf_list_push_back)
8256BTF_ID(func, bpf_list_pop_front)
8257BTF_ID(func, bpf_list_pop_back)
fd264ca0 8258BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 8259BTF_ID(func, bpf_rdonly_cast)
9bb00b28
YS
8260BTF_ID(func, bpf_rcu_read_lock)
8261BTF_ID(func, bpf_rcu_read_unlock)
8262
8263static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8264{
8265 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8266}
8267
8268static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8269{
8270 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8271}
ac9f0605 8272
00b85860
KKD
8273static enum kfunc_ptr_arg_type
8274get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8275 struct bpf_kfunc_call_arg_meta *meta,
8276 const struct btf_type *t, const struct btf_type *ref_t,
8277 const char *ref_tname, const struct btf_param *args,
8278 int argno, int nargs)
8279{
8280 u32 regno = argno + 1;
8281 struct bpf_reg_state *regs = cur_regs(env);
8282 struct bpf_reg_state *reg = &regs[regno];
8283 bool arg_mem_size = false;
8284
fd264ca0
YS
8285 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8286 return KF_ARG_PTR_TO_CTX;
8287
00b85860
KKD
8288 /* In this function, we verify the kfunc's BTF as per the argument type,
8289 * leaving the rest of the verification with respect to the register
8290 * type to our caller. When a set of conditions hold in the BTF type of
8291 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8292 */
8293 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8294 return KF_ARG_PTR_TO_CTX;
8295
ac9f0605
KKD
8296 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8297 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8298
00b85860
KKD
8299 if (is_kfunc_arg_kptr_get(meta, argno)) {
8300 if (!btf_type_is_ptr(ref_t)) {
8301 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8302 return -EINVAL;
8303 }
8304 ref_t = btf_type_by_id(meta->btf, ref_t->type);
8305 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8306 if (!btf_type_is_struct(ref_t)) {
8307 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8308 meta->func_name, btf_type_str(ref_t), ref_tname);
8309 return -EINVAL;
8310 }
8311 return KF_ARG_PTR_TO_KPTR;
8312 }
8313
8314 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8315 return KF_ARG_PTR_TO_DYNPTR;
8316
8cab76ec
KKD
8317 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8318 return KF_ARG_PTR_TO_LIST_HEAD;
8319
8320 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8321 return KF_ARG_PTR_TO_LIST_NODE;
8322
00b85860
KKD
8323 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8324 if (!btf_type_is_struct(ref_t)) {
8325 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8326 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8327 return -EINVAL;
8328 }
8329 return KF_ARG_PTR_TO_BTF_ID;
8330 }
8331
8332 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8333 arg_mem_size = true;
8334
8335 /* This is the catch all argument type of register types supported by
8336 * check_helper_mem_access. However, we only allow when argument type is
8337 * pointer to scalar, or struct composed (recursively) of scalars. When
8338 * arg_mem_size is true, the pointer can be void *.
8339 */
8340 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8341 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8342 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8343 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8344 return -EINVAL;
8345 }
8346 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8347}
8348
8349static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8350 struct bpf_reg_state *reg,
8351 const struct btf_type *ref_t,
8352 const char *ref_tname, u32 ref_id,
8353 struct bpf_kfunc_call_arg_meta *meta,
8354 int argno)
8355{
8356 const struct btf_type *reg_ref_t;
8357 bool strict_type_match = false;
8358 const struct btf *reg_btf;
8359 const char *reg_ref_tname;
8360 u32 reg_ref_id;
8361
3f00c523 8362 if (base_type(reg->type) == PTR_TO_BTF_ID) {
00b85860
KKD
8363 reg_btf = reg->btf;
8364 reg_ref_id = reg->btf_id;
8365 } else {
8366 reg_btf = btf_vmlinux;
8367 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8368 }
8369
8370 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8371 strict_type_match = true;
8372
8373 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8374 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8375 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8376 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8377 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8378 btf_type_str(reg_ref_t), reg_ref_tname);
8379 return -EINVAL;
8380 }
8381 return 0;
8382}
8383
8384static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8385 struct bpf_reg_state *reg,
8386 const struct btf_type *ref_t,
8387 const char *ref_tname,
8388 struct bpf_kfunc_call_arg_meta *meta,
8389 int argno)
8390{
8391 struct btf_field *kptr_field;
8392
8393 /* check_func_arg_reg_off allows var_off for
8394 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8395 * off_desc.
8396 */
8397 if (!tnum_is_const(reg->var_off)) {
8398 verbose(env, "arg#0 must have constant offset\n");
8399 return -EINVAL;
8400 }
8401
8402 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8403 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8404 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8405 reg->off + reg->var_off.value);
8406 return -EINVAL;
8407 }
8408
8409 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8410 kptr_field->kptr.btf_id, true)) {
8411 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8412 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8413 return -EINVAL;
8414 }
8415 return 0;
8416}
8417
534e86bc
KKD
8418static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8419{
8420 struct bpf_func_state *state = cur_func(env);
8421 struct bpf_reg_state *reg;
8422 int i;
8423
8424 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8425 * subprogs, no global functions. This means that the references would
8426 * not be released inside the critical section but they may be added to
8427 * the reference state, and the acquired_refs are never copied out for a
8428 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8429 * critical sections.
8430 */
8431 if (!ref_obj_id) {
8432 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8433 return -EFAULT;
8434 }
8435 for (i = 0; i < state->acquired_refs; i++) {
8436 if (state->refs[i].id == ref_obj_id) {
8437 if (state->refs[i].release_on_unlock) {
8438 verbose(env, "verifier internal error: expected false release_on_unlock");
8439 return -EFAULT;
8440 }
8441 state->refs[i].release_on_unlock = true;
8442 /* Now mark everyone sharing same ref_obj_id as untrusted */
8443 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8444 if (reg->ref_obj_id == ref_obj_id)
8445 reg->type |= PTR_UNTRUSTED;
8446 }));
8447 return 0;
8448 }
8449 }
8450 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8451 return -EFAULT;
8452}
8453
8cab76ec
KKD
8454/* Implementation details:
8455 *
8456 * Each register points to some region of memory, which we define as an
8457 * allocation. Each allocation may embed a bpf_spin_lock which protects any
8458 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8459 * allocation. The lock and the data it protects are colocated in the same
8460 * memory region.
8461 *
8462 * Hence, everytime a register holds a pointer value pointing to such
8463 * allocation, the verifier preserves a unique reg->id for it.
8464 *
8465 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8466 * bpf_spin_lock is called.
8467 *
8468 * To enable this, lock state in the verifier captures two values:
8469 * active_lock.ptr = Register's type specific pointer
8470 * active_lock.id = A unique ID for each register pointer value
8471 *
8472 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8473 * supported register types.
8474 *
8475 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8476 * allocated objects is the reg->btf pointer.
8477 *
8478 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8479 * can establish the provenance of the map value statically for each distinct
8480 * lookup into such maps. They always contain a single map value hence unique
8481 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8482 *
8483 * So, in case of global variables, they use array maps with max_entries = 1,
8484 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8485 * into the same map value as max_entries is 1, as described above).
8486 *
8487 * In case of inner map lookups, the inner map pointer has same map_ptr as the
8488 * outer map pointer (in verifier context), but each lookup into an inner map
8489 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8490 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8491 * will get different reg->id assigned to each lookup, hence different
8492 * active_lock.id.
8493 *
8494 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8495 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8496 * returned from bpf_obj_new. Each allocation receives a new reg->id.
8497 */
8498static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8499{
8500 void *ptr;
8501 u32 id;
8502
8503 switch ((int)reg->type) {
8504 case PTR_TO_MAP_VALUE:
8505 ptr = reg->map_ptr;
8506 break;
8507 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 8508 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8cab76ec
KKD
8509 ptr = reg->btf;
8510 break;
8511 default:
8512 verbose(env, "verifier internal error: unknown reg type for lock check\n");
8513 return -EFAULT;
8514 }
8515 id = reg->id;
8516
8517 if (!env->cur_state->active_lock.ptr)
8518 return -EINVAL;
8519 if (env->cur_state->active_lock.ptr != ptr ||
8520 env->cur_state->active_lock.id != id) {
8521 verbose(env, "held lock and object are not in the same allocation\n");
8522 return -EINVAL;
8523 }
8524 return 0;
8525}
8526
8527static bool is_bpf_list_api_kfunc(u32 btf_id)
8528{
8529 return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8530 btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8531 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8532 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8533}
8534
8535static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8536 struct bpf_reg_state *reg, u32 regno,
8537 struct bpf_kfunc_call_arg_meta *meta)
8538{
8539 struct btf_field *field;
8540 struct btf_record *rec;
8541 u32 list_head_off;
8542
8543 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8544 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8545 return -EFAULT;
8546 }
8547
8548 if (!tnum_is_const(reg->var_off)) {
8549 verbose(env,
8550 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8551 regno);
8552 return -EINVAL;
8553 }
8554
8555 rec = reg_btf_record(reg);
8556 list_head_off = reg->off + reg->var_off.value;
8557 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8558 if (!field) {
8559 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8560 return -EINVAL;
8561 }
8562
8563 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8564 if (check_reg_allocation_locked(env, reg)) {
8565 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8566 rec->spin_lock_off);
8567 return -EINVAL;
8568 }
8569
8570 if (meta->arg_list_head.field) {
8571 verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8572 return -EFAULT;
8573 }
8574 meta->arg_list_head.field = field;
8575 return 0;
8576}
8577
8578static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
8579 struct bpf_reg_state *reg, u32 regno,
8580 struct bpf_kfunc_call_arg_meta *meta)
8581{
8582 const struct btf_type *et, *t;
8583 struct btf_field *field;
8584 struct btf_record *rec;
8585 u32 list_node_off;
8586
8587 if (meta->btf != btf_vmlinux ||
8588 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
8589 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
8590 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
8591 return -EFAULT;
8592 }
8593
8594 if (!tnum_is_const(reg->var_off)) {
8595 verbose(env,
8596 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
8597 regno);
8598 return -EINVAL;
8599 }
8600
8601 rec = reg_btf_record(reg);
8602 list_node_off = reg->off + reg->var_off.value;
8603 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
8604 if (!field || field->offset != list_node_off) {
8605 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
8606 return -EINVAL;
8607 }
8608
8609 field = meta->arg_list_head.field;
8610
8611 et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id);
8612 t = btf_type_by_id(reg->btf, reg->btf_id);
8613 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf,
8614 field->list_head.value_btf_id, true)) {
8615 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
8616 "in struct %s, but arg is at offset=%d in struct %s\n",
8617 field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off),
8618 list_node_off, btf_name_by_offset(reg->btf, t->name_off));
8619 return -EINVAL;
8620 }
8621
8622 if (list_node_off != field->list_head.node_offset) {
8623 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
8624 list_node_off, field->list_head.node_offset,
8625 btf_name_by_offset(field->list_head.btf, et->name_off));
8626 return -EINVAL;
8627 }
534e86bc
KKD
8628 /* Set arg#1 for expiration after unlock */
8629 return ref_set_release_on_unlock(env, reg->ref_obj_id);
8cab76ec
KKD
8630}
8631
00b85860
KKD
8632static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8633{
8634 const char *func_name = meta->func_name, *ref_tname;
8635 const struct btf *btf = meta->btf;
8636 const struct btf_param *args;
8637 u32 i, nargs;
8638 int ret;
8639
8640 args = (const struct btf_param *)(meta->func_proto + 1);
8641 nargs = btf_type_vlen(meta->func_proto);
8642 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8643 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8644 MAX_BPF_FUNC_REG_ARGS);
8645 return -EINVAL;
8646 }
8647
8648 /* Check that BTF function arguments match actual types that the
8649 * verifier sees.
8650 */
8651 for (i = 0; i < nargs; i++) {
8652 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8653 const struct btf_type *t, *ref_t, *resolve_ret;
8654 enum bpf_arg_type arg_type = ARG_DONTCARE;
8655 u32 regno = i + 1, ref_id, type_size;
8656 bool is_ret_buf_sz = false;
8657 int kf_arg_type;
8658
8659 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
8660
8661 if (is_kfunc_arg_ignore(btf, &args[i]))
8662 continue;
8663
00b85860
KKD
8664 if (btf_type_is_scalar(t)) {
8665 if (reg->type != SCALAR_VALUE) {
8666 verbose(env, "R%d is not a scalar\n", regno);
8667 return -EINVAL;
8668 }
a50388db
KKD
8669
8670 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8671 if (meta->arg_constant.found) {
8672 verbose(env, "verifier internal error: only one constant argument permitted\n");
8673 return -EFAULT;
8674 }
8675 if (!tnum_is_const(reg->var_off)) {
8676 verbose(env, "R%d must be a known constant\n", regno);
8677 return -EINVAL;
8678 }
8679 ret = mark_chain_precision(env, regno);
8680 if (ret < 0)
8681 return ret;
8682 meta->arg_constant.found = true;
8683 meta->arg_constant.value = reg->var_off.value;
8684 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
8685 meta->r0_rdonly = true;
8686 is_ret_buf_sz = true;
8687 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8688 is_ret_buf_sz = true;
8689 }
8690
8691 if (is_ret_buf_sz) {
8692 if (meta->r0_size) {
8693 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8694 return -EINVAL;
8695 }
8696
8697 if (!tnum_is_const(reg->var_off)) {
8698 verbose(env, "R%d is not a const\n", regno);
8699 return -EINVAL;
8700 }
8701
8702 meta->r0_size = reg->var_off.value;
8703 ret = mark_chain_precision(env, regno);
8704 if (ret)
8705 return ret;
8706 }
8707 continue;
8708 }
8709
8710 if (!btf_type_is_ptr(t)) {
8711 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8712 return -EINVAL;
8713 }
8714
8715 if (reg->ref_obj_id) {
8716 if (is_kfunc_release(meta) && meta->ref_obj_id) {
8717 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8718 regno, reg->ref_obj_id,
8719 meta->ref_obj_id);
8720 return -EFAULT;
8721 }
8722 meta->ref_obj_id = reg->ref_obj_id;
8723 if (is_kfunc_release(meta))
8724 meta->release_regno = regno;
8725 }
8726
8727 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8728 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8729
8730 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8731 if (kf_arg_type < 0)
8732 return kf_arg_type;
8733
8734 switch (kf_arg_type) {
ac9f0605 8735 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860 8736 case KF_ARG_PTR_TO_BTF_ID:
fca1aa75 8737 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
00b85860 8738 break;
3f00c523
DV
8739
8740 if (!is_trusted_reg(reg)) {
fca1aa75
YS
8741 if (!is_kfunc_rcu(meta)) {
8742 verbose(env, "R%d must be referenced or trusted\n", regno);
8743 return -EINVAL;
8744 }
8745 if (!is_rcu_reg(reg)) {
8746 verbose(env, "R%d must be a rcu pointer\n", regno);
8747 return -EINVAL;
8748 }
00b85860 8749 }
fca1aa75 8750
00b85860
KKD
8751 fallthrough;
8752 case KF_ARG_PTR_TO_CTX:
8753 /* Trusted arguments have the same offset checks as release arguments */
8754 arg_type |= OBJ_RELEASE;
8755 break;
8756 case KF_ARG_PTR_TO_KPTR:
8757 case KF_ARG_PTR_TO_DYNPTR:
8cab76ec
KKD
8758 case KF_ARG_PTR_TO_LIST_HEAD:
8759 case KF_ARG_PTR_TO_LIST_NODE:
00b85860
KKD
8760 case KF_ARG_PTR_TO_MEM:
8761 case KF_ARG_PTR_TO_MEM_SIZE:
8762 /* Trusted by default */
8763 break;
8764 default:
8765 WARN_ON_ONCE(1);
8766 return -EFAULT;
8767 }
8768
8769 if (is_kfunc_release(meta) && reg->ref_obj_id)
8770 arg_type |= OBJ_RELEASE;
8771 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8772 if (ret < 0)
8773 return ret;
8774
8775 switch (kf_arg_type) {
8776 case KF_ARG_PTR_TO_CTX:
8777 if (reg->type != PTR_TO_CTX) {
8778 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8779 return -EINVAL;
8780 }
fd264ca0
YS
8781
8782 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8783 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
8784 if (ret < 0)
8785 return -EINVAL;
8786 meta->ret_btf_id = ret;
8787 }
00b85860 8788 break;
ac9f0605
KKD
8789 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8790 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8791 verbose(env, "arg#%d expected pointer to allocated object\n", i);
8792 return -EINVAL;
8793 }
8794 if (!reg->ref_obj_id) {
8795 verbose(env, "allocated object must be referenced\n");
8796 return -EINVAL;
8797 }
8798 if (meta->btf == btf_vmlinux &&
8799 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8800 meta->arg_obj_drop.btf = reg->btf;
8801 meta->arg_obj_drop.btf_id = reg->btf_id;
8802 }
8803 break;
00b85860
KKD
8804 case KF_ARG_PTR_TO_KPTR:
8805 if (reg->type != PTR_TO_MAP_VALUE) {
8806 verbose(env, "arg#0 expected pointer to map value\n");
8807 return -EINVAL;
8808 }
8809 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8810 if (ret < 0)
8811 return ret;
8812 break;
8813 case KF_ARG_PTR_TO_DYNPTR:
8814 if (reg->type != PTR_TO_STACK) {
8815 verbose(env, "arg#%d expected pointer to stack\n", i);
8816 return -EINVAL;
8817 }
8818
8819 if (!is_dynptr_reg_valid_init(env, reg)) {
8820 verbose(env, "arg#%d pointer type %s %s must be valid and initialized\n",
8821 i, btf_type_str(ref_t), ref_tname);
8822 return -EINVAL;
8823 }
8824
8825 if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
8826 verbose(env, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
8827 i, btf_type_str(ref_t), ref_tname);
8828 return -EINVAL;
8829 }
8830 break;
8cab76ec
KKD
8831 case KF_ARG_PTR_TO_LIST_HEAD:
8832 if (reg->type != PTR_TO_MAP_VALUE &&
8833 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8834 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
8835 return -EINVAL;
8836 }
8837 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
8838 verbose(env, "allocated object must be referenced\n");
8839 return -EINVAL;
8840 }
8841 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
8842 if (ret < 0)
8843 return ret;
8844 break;
8845 case KF_ARG_PTR_TO_LIST_NODE:
8846 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8847 verbose(env, "arg#%d expected pointer to allocated object\n", i);
8848 return -EINVAL;
8849 }
8850 if (!reg->ref_obj_id) {
8851 verbose(env, "allocated object must be referenced\n");
8852 return -EINVAL;
8853 }
8854 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
8855 if (ret < 0)
8856 return ret;
8857 break;
00b85860
KKD
8858 case KF_ARG_PTR_TO_BTF_ID:
8859 /* Only base_type is checked, further checks are done here */
3f00c523 8860 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
fca1aa75 8861 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
3f00c523
DV
8862 !reg2btf_ids[base_type(reg->type)]) {
8863 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
8864 verbose(env, "expected %s or socket\n",
8865 reg_type_str(env, base_type(reg->type) |
8866 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
00b85860
KKD
8867 return -EINVAL;
8868 }
8869 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
8870 if (ret < 0)
8871 return ret;
8872 break;
8873 case KF_ARG_PTR_TO_MEM:
8874 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
8875 if (IS_ERR(resolve_ret)) {
8876 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
8877 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
8878 return -EINVAL;
8879 }
8880 ret = check_mem_reg(env, reg, regno, type_size);
8881 if (ret < 0)
8882 return ret;
8883 break;
8884 case KF_ARG_PTR_TO_MEM_SIZE:
8885 ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
8886 if (ret < 0) {
8887 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
8888 return ret;
8889 }
8890 /* Skip next '__sz' argument */
8891 i++;
8892 break;
8893 }
8894 }
8895
8896 if (is_kfunc_release(meta) && !meta->release_regno) {
8897 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
8898 func_name);
8899 return -EINVAL;
8900 }
8901
8902 return 0;
8903}
8904
5c073f26
KKD
8905static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8906 int *insn_idx_p)
e6ac2450
MKL
8907{
8908 const struct btf_type *t, *func, *func_proto, *ptr_type;
8909 struct bpf_reg_state *regs = cur_regs(env);
8910 const char *func_name, *ptr_type_name;
9bb00b28 8911 bool sleepable, rcu_lock, rcu_unlock;
00b85860 8912 struct bpf_kfunc_call_arg_meta meta;
e6ac2450 8913 u32 i, nargs, func_id, ptr_type_id;
5c073f26 8914 int err, insn_idx = *insn_idx_p;
e6ac2450 8915 const struct btf_param *args;
a35b9af4 8916 const struct btf_type *ret_t;
2357672c 8917 struct btf *desc_btf;
a4703e31 8918 u32 *kfunc_flags;
e6ac2450 8919
a5d82727
KKD
8920 /* skip for now, but return error when we find this in fixup_kfunc_call */
8921 if (!insn->imm)
8922 return 0;
8923
43bf0878 8924 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
8925 if (IS_ERR(desc_btf))
8926 return PTR_ERR(desc_btf);
8927
e6ac2450 8928 func_id = insn->imm;
2357672c
KKD
8929 func = btf_type_by_id(desc_btf, func_id);
8930 func_name = btf_name_by_offset(desc_btf, func->name_off);
8931 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 8932
a4703e31
KKD
8933 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
8934 if (!kfunc_flags) {
e6ac2450
MKL
8935 verbose(env, "calling kernel function %s is not allowed\n",
8936 func_name);
8937 return -EACCES;
8938 }
00b85860
KKD
8939
8940 /* Prepare kfunc call metadata */
8941 memset(&meta, 0, sizeof(meta));
8942 meta.btf = desc_btf;
8943 meta.func_id = func_id;
8944 meta.kfunc_flags = *kfunc_flags;
8945 meta.func_proto = func_proto;
8946 meta.func_name = func_name;
8947
8948 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
8949 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
8950 return -EACCES;
8951 }
8952
9bb00b28
YS
8953 sleepable = is_kfunc_sleepable(&meta);
8954 if (sleepable && !env->prog->aux->sleepable) {
00b85860
KKD
8955 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
8956 return -EACCES;
8957 }
eb1f7f71 8958
9bb00b28
YS
8959 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
8960 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
8961 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
8962 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
8963 return -EACCES;
8964 }
8965
8966 if (env->cur_state->active_rcu_lock) {
8967 struct bpf_func_state *state;
8968 struct bpf_reg_state *reg;
8969
8970 if (rcu_lock) {
8971 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
8972 return -EINVAL;
8973 } else if (rcu_unlock) {
8974 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8975 if (reg->type & MEM_RCU) {
fca1aa75 8976 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9bb00b28
YS
8977 reg->type |= PTR_UNTRUSTED;
8978 }
8979 }));
8980 env->cur_state->active_rcu_lock = false;
8981 } else if (sleepable) {
8982 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
8983 return -EACCES;
8984 }
8985 } else if (rcu_lock) {
8986 env->cur_state->active_rcu_lock = true;
8987 } else if (rcu_unlock) {
8988 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
8989 return -EINVAL;
8990 }
8991
e6ac2450 8992 /* Check the arguments */
00b85860 8993 err = check_kfunc_args(env, &meta);
5c073f26 8994 if (err < 0)
e6ac2450 8995 return err;
5c073f26 8996 /* In case of release function, we get register number of refcounted
00b85860 8997 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 8998 */
00b85860
KKD
8999 if (meta.release_regno) {
9000 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
9001 if (err) {
9002 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9003 func_name, func_id);
9004 return err;
9005 }
9006 }
e6ac2450
MKL
9007
9008 for (i = 0; i < CALLER_SAVED_REGS; i++)
9009 mark_reg_not_init(env, regs, caller_saved[i]);
9010
9011 /* Check return type */
2357672c 9012 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
5c073f26 9013
00b85860 9014 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2
KKD
9015 /* Only exception is bpf_obj_new_impl */
9016 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9017 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9018 return -EINVAL;
9019 }
5c073f26
KKD
9020 }
9021
e6ac2450
MKL
9022 if (btf_type_is_scalar(t)) {
9023 mark_reg_unknown(env, regs, BPF_REG_0);
9024 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9025 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
9026 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9027
9028 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9029 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
958cf2e2
KKD
9030 struct btf *ret_btf;
9031 u32 ret_btf_id;
9032
e181d3f1
KKD
9033 if (unlikely(!bpf_global_ma_set))
9034 return -ENOMEM;
9035
958cf2e2
KKD
9036 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9037 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9038 return -EINVAL;
9039 }
9040
9041 ret_btf = env->prog->aux->btf;
9042 ret_btf_id = meta.arg_constant.value;
9043
9044 /* This may be NULL due to user not supplying a BTF */
9045 if (!ret_btf) {
9046 verbose(env, "bpf_obj_new requires prog BTF\n");
9047 return -EINVAL;
9048 }
9049
9050 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9051 if (!ret_t || !__btf_type_is_struct(ret_t)) {
9052 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9053 return -EINVAL;
9054 }
9055
9056 mark_reg_known_zero(env, regs, BPF_REG_0);
9057 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9058 regs[BPF_REG_0].btf = ret_btf;
9059 regs[BPF_REG_0].btf_id = ret_btf_id;
9060
9061 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9062 env->insn_aux_data[insn_idx].kptr_struct_meta =
9063 btf_find_struct_meta(ret_btf, ret_btf_id);
ac9f0605
KKD
9064 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9065 env->insn_aux_data[insn_idx].kptr_struct_meta =
9066 btf_find_struct_meta(meta.arg_obj_drop.btf,
9067 meta.arg_obj_drop.btf_id);
8cab76ec
KKD
9068 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9069 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9070 struct btf_field *field = meta.arg_list_head.field;
9071
9072 mark_reg_known_zero(env, regs, BPF_REG_0);
9073 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9074 regs[BPF_REG_0].btf = field->list_head.btf;
9075 regs[BPF_REG_0].btf_id = field->list_head.value_btf_id;
9076 regs[BPF_REG_0].off = field->list_head.node_offset;
fd264ca0
YS
9077 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9078 mark_reg_known_zero(env, regs, BPF_REG_0);
9079 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9080 regs[BPF_REG_0].btf = desc_btf;
9081 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
a35b9af4
YS
9082 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9083 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9084 if (!ret_t || !btf_type_is_struct(ret_t)) {
9085 verbose(env,
9086 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9087 return -EINVAL;
9088 }
9089
9090 mark_reg_known_zero(env, regs, BPF_REG_0);
9091 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9092 regs[BPF_REG_0].btf = desc_btf;
9093 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
958cf2e2
KKD
9094 } else {
9095 verbose(env, "kernel function %s unhandled dynamic return type\n",
9096 meta.func_name);
9097 return -EFAULT;
9098 }
9099 } else if (!__btf_type_is_struct(ptr_type)) {
eb1f7f71
BT
9100 if (!meta.r0_size) {
9101 ptr_type_name = btf_name_by_offset(desc_btf,
9102 ptr_type->name_off);
9103 verbose(env,
9104 "kernel function %s returns pointer type %s %s is not supported\n",
9105 func_name,
9106 btf_type_str(ptr_type),
9107 ptr_type_name);
9108 return -EINVAL;
9109 }
9110
9111 mark_reg_known_zero(env, regs, BPF_REG_0);
9112 regs[BPF_REG_0].type = PTR_TO_MEM;
9113 regs[BPF_REG_0].mem_size = meta.r0_size;
9114
9115 if (meta.r0_rdonly)
9116 regs[BPF_REG_0].type |= MEM_RDONLY;
9117
9118 /* Ensures we don't access the memory after a release_reference() */
9119 if (meta.ref_obj_id)
9120 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9121 } else {
9122 mark_reg_known_zero(env, regs, BPF_REG_0);
9123 regs[BPF_REG_0].btf = desc_btf;
9124 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9125 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 9126 }
958cf2e2 9127
00b85860 9128 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
9129 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9130 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9131 regs[BPF_REG_0].id = ++env->id_gen;
9132 }
e6ac2450 9133 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 9134 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
9135 int id = acquire_reference_state(env, insn_idx);
9136
9137 if (id < 0)
9138 return id;
00b85860
KKD
9139 if (is_kfunc_ret_null(&meta))
9140 regs[BPF_REG_0].id = id;
5c073f26
KKD
9141 regs[BPF_REG_0].ref_obj_id = id;
9142 }
00b85860
KKD
9143 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9144 regs[BPF_REG_0].id = ++env->id_gen;
e6ac2450
MKL
9145 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9146
9147 nargs = btf_type_vlen(func_proto);
9148 args = (const struct btf_param *)(func_proto + 1);
9149 for (i = 0; i < nargs; i++) {
9150 u32 regno = i + 1;
9151
2357672c 9152 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
9153 if (btf_type_is_ptr(t))
9154 mark_btf_func_reg_size(env, regno, sizeof(void *));
9155 else
9156 /* scalar. ensured by btf_check_kfunc_arg_match() */
9157 mark_btf_func_reg_size(env, regno, t->size);
9158 }
9159
9160 return 0;
9161}
9162
b03c9f9f
EC
9163static bool signed_add_overflows(s64 a, s64 b)
9164{
9165 /* Do the add in u64, where overflow is well-defined */
9166 s64 res = (s64)((u64)a + (u64)b);
9167
9168 if (b < 0)
9169 return res > a;
9170 return res < a;
9171}
9172
bc895e8b 9173static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
9174{
9175 /* Do the add in u32, where overflow is well-defined */
9176 s32 res = (s32)((u32)a + (u32)b);
9177
9178 if (b < 0)
9179 return res > a;
9180 return res < a;
9181}
9182
bc895e8b 9183static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
9184{
9185 /* Do the sub in u64, where overflow is well-defined */
9186 s64 res = (s64)((u64)a - (u64)b);
9187
9188 if (b < 0)
9189 return res < a;
9190 return res > a;
969bf05e
AS
9191}
9192
3f50f132
JF
9193static bool signed_sub32_overflows(s32 a, s32 b)
9194{
bc895e8b 9195 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
9196 s32 res = (s32)((u32)a - (u32)b);
9197
9198 if (b < 0)
9199 return res < a;
9200 return res > a;
9201}
9202
bb7f0f98
AS
9203static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9204 const struct bpf_reg_state *reg,
9205 enum bpf_reg_type type)
9206{
9207 bool known = tnum_is_const(reg->var_off);
9208 s64 val = reg->var_off.value;
9209 s64 smin = reg->smin_value;
9210
9211 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9212 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 9213 reg_type_str(env, type), val);
bb7f0f98
AS
9214 return false;
9215 }
9216
9217 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9218 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 9219 reg_type_str(env, type), reg->off);
bb7f0f98
AS
9220 return false;
9221 }
9222
9223 if (smin == S64_MIN) {
9224 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 9225 reg_type_str(env, type));
bb7f0f98
AS
9226 return false;
9227 }
9228
9229 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9230 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 9231 smin, reg_type_str(env, type));
bb7f0f98
AS
9232 return false;
9233 }
9234
9235 return true;
9236}
9237
a6aaece0
DB
9238enum {
9239 REASON_BOUNDS = -1,
9240 REASON_TYPE = -2,
9241 REASON_PATHS = -3,
9242 REASON_LIMIT = -4,
9243 REASON_STACK = -5,
9244};
9245
979d63d5 9246static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 9247 u32 *alu_limit, bool mask_to_left)
979d63d5 9248{
7fedb63a 9249 u32 max = 0, ptr_limit = 0;
979d63d5
DB
9250
9251 switch (ptr_reg->type) {
9252 case PTR_TO_STACK:
1b1597e6 9253 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
9254 * left direction, see BPF_REG_FP. Also, unknown scalar
9255 * offset where we would need to deal with min/max bounds is
9256 * currently prohibited for unprivileged.
1b1597e6
PK
9257 */
9258 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 9259 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 9260 break;
979d63d5 9261 case PTR_TO_MAP_VALUE:
1b1597e6 9262 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
9263 ptr_limit = (mask_to_left ?
9264 ptr_reg->smin_value :
9265 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 9266 break;
979d63d5 9267 default:
a6aaece0 9268 return REASON_TYPE;
979d63d5 9269 }
b658bbb8
DB
9270
9271 if (ptr_limit >= max)
a6aaece0 9272 return REASON_LIMIT;
b658bbb8
DB
9273 *alu_limit = ptr_limit;
9274 return 0;
979d63d5
DB
9275}
9276
d3bd7413
DB
9277static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9278 const struct bpf_insn *insn)
9279{
2c78ee89 9280 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
9281}
9282
9283static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9284 u32 alu_state, u32 alu_limit)
9285{
9286 /* If we arrived here from different branches with different
9287 * state or limits to sanitize, then this won't work.
9288 */
9289 if (aux->alu_state &&
9290 (aux->alu_state != alu_state ||
9291 aux->alu_limit != alu_limit))
a6aaece0 9292 return REASON_PATHS;
d3bd7413 9293
e6ac5933 9294 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
9295 aux->alu_state = alu_state;
9296 aux->alu_limit = alu_limit;
9297 return 0;
9298}
9299
9300static int sanitize_val_alu(struct bpf_verifier_env *env,
9301 struct bpf_insn *insn)
9302{
9303 struct bpf_insn_aux_data *aux = cur_aux(env);
9304
9305 if (can_skip_alu_sanitation(env, insn))
9306 return 0;
9307
9308 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9309}
9310
f5288193
DB
9311static bool sanitize_needed(u8 opcode)
9312{
9313 return opcode == BPF_ADD || opcode == BPF_SUB;
9314}
9315
3d0220f6
DB
9316struct bpf_sanitize_info {
9317 struct bpf_insn_aux_data aux;
bb01a1bb 9318 bool mask_to_left;
3d0220f6
DB
9319};
9320
9183671a
DB
9321static struct bpf_verifier_state *
9322sanitize_speculative_path(struct bpf_verifier_env *env,
9323 const struct bpf_insn *insn,
9324 u32 next_idx, u32 curr_idx)
9325{
9326 struct bpf_verifier_state *branch;
9327 struct bpf_reg_state *regs;
9328
9329 branch = push_stack(env, next_idx, curr_idx, true);
9330 if (branch && insn) {
9331 regs = branch->frame[branch->curframe]->regs;
9332 if (BPF_SRC(insn->code) == BPF_K) {
9333 mark_reg_unknown(env, regs, insn->dst_reg);
9334 } else if (BPF_SRC(insn->code) == BPF_X) {
9335 mark_reg_unknown(env, regs, insn->dst_reg);
9336 mark_reg_unknown(env, regs, insn->src_reg);
9337 }
9338 }
9339 return branch;
9340}
9341
979d63d5
DB
9342static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9343 struct bpf_insn *insn,
9344 const struct bpf_reg_state *ptr_reg,
6f55b2f2 9345 const struct bpf_reg_state *off_reg,
979d63d5 9346 struct bpf_reg_state *dst_reg,
3d0220f6 9347 struct bpf_sanitize_info *info,
7fedb63a 9348 const bool commit_window)
979d63d5 9349{
3d0220f6 9350 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 9351 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 9352 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 9353 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
9354 bool ptr_is_dst_reg = ptr_reg == dst_reg;
9355 u8 opcode = BPF_OP(insn->code);
9356 u32 alu_state, alu_limit;
9357 struct bpf_reg_state tmp;
9358 bool ret;
f232326f 9359 int err;
979d63d5 9360
d3bd7413 9361 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
9362 return 0;
9363
9364 /* We already marked aux for masking from non-speculative
9365 * paths, thus we got here in the first place. We only care
9366 * to explore bad access from here.
9367 */
9368 if (vstate->speculative)
9369 goto do_sim;
9370
bb01a1bb
DB
9371 if (!commit_window) {
9372 if (!tnum_is_const(off_reg->var_off) &&
9373 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9374 return REASON_BOUNDS;
9375
9376 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
9377 (opcode == BPF_SUB && !off_is_neg);
9378 }
9379
9380 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
9381 if (err < 0)
9382 return err;
9383
7fedb63a
DB
9384 if (commit_window) {
9385 /* In commit phase we narrow the masking window based on
9386 * the observed pointer move after the simulated operation.
9387 */
3d0220f6
DB
9388 alu_state = info->aux.alu_state;
9389 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
9390 } else {
9391 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 9392 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
9393 alu_state |= ptr_is_dst_reg ?
9394 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
9395
9396 /* Limit pruning on unknown scalars to enable deep search for
9397 * potential masking differences from other program paths.
9398 */
9399 if (!off_is_imm)
9400 env->explore_alu_limits = true;
7fedb63a
DB
9401 }
9402
f232326f
PK
9403 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9404 if (err < 0)
9405 return err;
979d63d5 9406do_sim:
7fedb63a
DB
9407 /* If we're in commit phase, we're done here given we already
9408 * pushed the truncated dst_reg into the speculative verification
9409 * stack.
a7036191
DB
9410 *
9411 * Also, when register is a known constant, we rewrite register-based
9412 * operation to immediate-based, and thus do not need masking (and as
9413 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 9414 */
a7036191 9415 if (commit_window || off_is_imm)
7fedb63a
DB
9416 return 0;
9417
979d63d5
DB
9418 /* Simulate and find potential out-of-bounds access under
9419 * speculative execution from truncation as a result of
9420 * masking when off was not within expected range. If off
9421 * sits in dst, then we temporarily need to move ptr there
9422 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9423 * for cases where we use K-based arithmetic in one direction
9424 * and truncated reg-based in the other in order to explore
9425 * bad access.
9426 */
9427 if (!ptr_is_dst_reg) {
9428 tmp = *dst_reg;
9429 *dst_reg = *ptr_reg;
9430 }
9183671a
DB
9431 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9432 env->insn_idx);
0803278b 9433 if (!ptr_is_dst_reg && ret)
979d63d5 9434 *dst_reg = tmp;
a6aaece0
DB
9435 return !ret ? REASON_STACK : 0;
9436}
9437
fe9a5ca7
DB
9438static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9439{
9440 struct bpf_verifier_state *vstate = env->cur_state;
9441
9442 /* If we simulate paths under speculation, we don't update the
9443 * insn as 'seen' such that when we verify unreachable paths in
9444 * the non-speculative domain, sanitize_dead_code() can still
9445 * rewrite/sanitize them.
9446 */
9447 if (!vstate->speculative)
9448 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9449}
9450
a6aaece0
DB
9451static int sanitize_err(struct bpf_verifier_env *env,
9452 const struct bpf_insn *insn, int reason,
9453 const struct bpf_reg_state *off_reg,
9454 const struct bpf_reg_state *dst_reg)
9455{
9456 static const char *err = "pointer arithmetic with it prohibited for !root";
9457 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9458 u32 dst = insn->dst_reg, src = insn->src_reg;
9459
9460 switch (reason) {
9461 case REASON_BOUNDS:
9462 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9463 off_reg == dst_reg ? dst : src, err);
9464 break;
9465 case REASON_TYPE:
9466 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9467 off_reg == dst_reg ? src : dst, err);
9468 break;
9469 case REASON_PATHS:
9470 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9471 dst, op, err);
9472 break;
9473 case REASON_LIMIT:
9474 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9475 dst, op, err);
9476 break;
9477 case REASON_STACK:
9478 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9479 dst, err);
9480 break;
9481 default:
9482 verbose(env, "verifier internal error: unknown reason (%d)\n",
9483 reason);
9484 break;
9485 }
9486
9487 return -EACCES;
979d63d5
DB
9488}
9489
01f810ac
AM
9490/* check that stack access falls within stack limits and that 'reg' doesn't
9491 * have a variable offset.
9492 *
9493 * Variable offset is prohibited for unprivileged mode for simplicity since it
9494 * requires corresponding support in Spectre masking for stack ALU. See also
9495 * retrieve_ptr_limit().
9496 *
9497 *
9498 * 'off' includes 'reg->off'.
9499 */
9500static int check_stack_access_for_ptr_arithmetic(
9501 struct bpf_verifier_env *env,
9502 int regno,
9503 const struct bpf_reg_state *reg,
9504 int off)
9505{
9506 if (!tnum_is_const(reg->var_off)) {
9507 char tn_buf[48];
9508
9509 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9510 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9511 regno, tn_buf, off);
9512 return -EACCES;
9513 }
9514
9515 if (off >= 0 || off < -MAX_BPF_STACK) {
9516 verbose(env, "R%d stack pointer arithmetic goes out of range, "
9517 "prohibited for !root; off=%d\n", regno, off);
9518 return -EACCES;
9519 }
9520
9521 return 0;
9522}
9523
073815b7
DB
9524static int sanitize_check_bounds(struct bpf_verifier_env *env,
9525 const struct bpf_insn *insn,
9526 const struct bpf_reg_state *dst_reg)
9527{
9528 u32 dst = insn->dst_reg;
9529
9530 /* For unprivileged we require that resulting offset must be in bounds
9531 * in order to be able to sanitize access later on.
9532 */
9533 if (env->bypass_spec_v1)
9534 return 0;
9535
9536 switch (dst_reg->type) {
9537 case PTR_TO_STACK:
9538 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9539 dst_reg->off + dst_reg->var_off.value))
9540 return -EACCES;
9541 break;
9542 case PTR_TO_MAP_VALUE:
61df10c7 9543 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
9544 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9545 "prohibited for !root\n", dst);
9546 return -EACCES;
9547 }
9548 break;
9549 default:
9550 break;
9551 }
9552
9553 return 0;
9554}
01f810ac 9555
f1174f77 9556/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
9557 * Caller should also handle BPF_MOV case separately.
9558 * If we return -EACCES, caller may want to try again treating pointer as a
9559 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
9560 */
9561static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9562 struct bpf_insn *insn,
9563 const struct bpf_reg_state *ptr_reg,
9564 const struct bpf_reg_state *off_reg)
969bf05e 9565{
f4d7e40a
AS
9566 struct bpf_verifier_state *vstate = env->cur_state;
9567 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9568 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 9569 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
9570 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9571 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9572 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9573 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 9574 struct bpf_sanitize_info info = {};
969bf05e 9575 u8 opcode = BPF_OP(insn->code);
24c109bb 9576 u32 dst = insn->dst_reg;
979d63d5 9577 int ret;
969bf05e 9578
f1174f77 9579 dst_reg = &regs[dst];
969bf05e 9580
6f16101e
DB
9581 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9582 smin_val > smax_val || umin_val > umax_val) {
9583 /* Taint dst register if offset had invalid bounds derived from
9584 * e.g. dead branches.
9585 */
f54c7898 9586 __mark_reg_unknown(env, dst_reg);
6f16101e 9587 return 0;
f1174f77
EC
9588 }
9589
9590 if (BPF_CLASS(insn->code) != BPF_ALU64) {
9591 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
9592 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9593 __mark_reg_unknown(env, dst_reg);
9594 return 0;
9595 }
9596
82abbf8d
AS
9597 verbose(env,
9598 "R%d 32-bit pointer arithmetic prohibited\n",
9599 dst);
f1174f77 9600 return -EACCES;
969bf05e
AS
9601 }
9602
c25b2ae1 9603 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 9604 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 9605 dst, reg_type_str(env, ptr_reg->type));
f1174f77 9606 return -EACCES;
c25b2ae1
HL
9607 }
9608
9609 switch (base_type(ptr_reg->type)) {
aad2eeaf 9610 case CONST_PTR_TO_MAP:
7c696732
YS
9611 /* smin_val represents the known value */
9612 if (known && smin_val == 0 && opcode == BPF_ADD)
9613 break;
8731745e 9614 fallthrough;
aad2eeaf 9615 case PTR_TO_PACKET_END:
c64b7983 9616 case PTR_TO_SOCKET:
46f8bc92 9617 case PTR_TO_SOCK_COMMON:
655a51e5 9618 case PTR_TO_TCP_SOCK:
fada7fdc 9619 case PTR_TO_XDP_SOCK:
aad2eeaf 9620 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 9621 dst, reg_type_str(env, ptr_reg->type));
f1174f77 9622 return -EACCES;
aad2eeaf
JS
9623 default:
9624 break;
f1174f77
EC
9625 }
9626
9627 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9628 * The id may be overwritten later if we create a new variable offset.
969bf05e 9629 */
f1174f77
EC
9630 dst_reg->type = ptr_reg->type;
9631 dst_reg->id = ptr_reg->id;
969bf05e 9632
bb7f0f98
AS
9633 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9634 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9635 return -EINVAL;
9636
3f50f132
JF
9637 /* pointer types do not carry 32-bit bounds at the moment. */
9638 __mark_reg32_unbounded(dst_reg);
9639
7fedb63a
DB
9640 if (sanitize_needed(opcode)) {
9641 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 9642 &info, false);
a6aaece0
DB
9643 if (ret < 0)
9644 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 9645 }
a6aaece0 9646
f1174f77
EC
9647 switch (opcode) {
9648 case BPF_ADD:
9649 /* We can take a fixed offset as long as it doesn't overflow
9650 * the s32 'off' field
969bf05e 9651 */
b03c9f9f
EC
9652 if (known && (ptr_reg->off + smin_val ==
9653 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 9654 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
9655 dst_reg->smin_value = smin_ptr;
9656 dst_reg->smax_value = smax_ptr;
9657 dst_reg->umin_value = umin_ptr;
9658 dst_reg->umax_value = umax_ptr;
f1174f77 9659 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 9660 dst_reg->off = ptr_reg->off + smin_val;
0962590e 9661 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
9662 break;
9663 }
f1174f77
EC
9664 /* A new variable offset is created. Note that off_reg->off
9665 * == 0, since it's a scalar.
9666 * dst_reg gets the pointer type and since some positive
9667 * integer value was added to the pointer, give it a new 'id'
9668 * if it's a PTR_TO_PACKET.
9669 * this creates a new 'base' pointer, off_reg (variable) gets
9670 * added into the variable offset, and we copy the fixed offset
9671 * from ptr_reg.
969bf05e 9672 */
b03c9f9f
EC
9673 if (signed_add_overflows(smin_ptr, smin_val) ||
9674 signed_add_overflows(smax_ptr, smax_val)) {
9675 dst_reg->smin_value = S64_MIN;
9676 dst_reg->smax_value = S64_MAX;
9677 } else {
9678 dst_reg->smin_value = smin_ptr + smin_val;
9679 dst_reg->smax_value = smax_ptr + smax_val;
9680 }
9681 if (umin_ptr + umin_val < umin_ptr ||
9682 umax_ptr + umax_val < umax_ptr) {
9683 dst_reg->umin_value = 0;
9684 dst_reg->umax_value = U64_MAX;
9685 } else {
9686 dst_reg->umin_value = umin_ptr + umin_val;
9687 dst_reg->umax_value = umax_ptr + umax_val;
9688 }
f1174f77
EC
9689 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9690 dst_reg->off = ptr_reg->off;
0962590e 9691 dst_reg->raw = ptr_reg->raw;
de8f3a83 9692 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
9693 dst_reg->id = ++env->id_gen;
9694 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 9695 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
9696 }
9697 break;
9698 case BPF_SUB:
9699 if (dst_reg == off_reg) {
9700 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
9701 verbose(env, "R%d tried to subtract pointer from scalar\n",
9702 dst);
f1174f77
EC
9703 return -EACCES;
9704 }
9705 /* We don't allow subtraction from FP, because (according to
9706 * test_verifier.c test "invalid fp arithmetic", JITs might not
9707 * be able to deal with it.
969bf05e 9708 */
f1174f77 9709 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
9710 verbose(env, "R%d subtraction from stack pointer prohibited\n",
9711 dst);
f1174f77
EC
9712 return -EACCES;
9713 }
b03c9f9f
EC
9714 if (known && (ptr_reg->off - smin_val ==
9715 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 9716 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
9717 dst_reg->smin_value = smin_ptr;
9718 dst_reg->smax_value = smax_ptr;
9719 dst_reg->umin_value = umin_ptr;
9720 dst_reg->umax_value = umax_ptr;
f1174f77
EC
9721 dst_reg->var_off = ptr_reg->var_off;
9722 dst_reg->id = ptr_reg->id;
b03c9f9f 9723 dst_reg->off = ptr_reg->off - smin_val;
0962590e 9724 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
9725 break;
9726 }
f1174f77
EC
9727 /* A new variable offset is created. If the subtrahend is known
9728 * nonnegative, then any reg->range we had before is still good.
969bf05e 9729 */
b03c9f9f
EC
9730 if (signed_sub_overflows(smin_ptr, smax_val) ||
9731 signed_sub_overflows(smax_ptr, smin_val)) {
9732 /* Overflow possible, we know nothing */
9733 dst_reg->smin_value = S64_MIN;
9734 dst_reg->smax_value = S64_MAX;
9735 } else {
9736 dst_reg->smin_value = smin_ptr - smax_val;
9737 dst_reg->smax_value = smax_ptr - smin_val;
9738 }
9739 if (umin_ptr < umax_val) {
9740 /* Overflow possible, we know nothing */
9741 dst_reg->umin_value = 0;
9742 dst_reg->umax_value = U64_MAX;
9743 } else {
9744 /* Cannot overflow (as long as bounds are consistent) */
9745 dst_reg->umin_value = umin_ptr - umax_val;
9746 dst_reg->umax_value = umax_ptr - umin_val;
9747 }
f1174f77
EC
9748 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9749 dst_reg->off = ptr_reg->off;
0962590e 9750 dst_reg->raw = ptr_reg->raw;
de8f3a83 9751 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
9752 dst_reg->id = ++env->id_gen;
9753 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 9754 if (smin_val < 0)
22dc4a0f 9755 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 9756 }
f1174f77
EC
9757 break;
9758 case BPF_AND:
9759 case BPF_OR:
9760 case BPF_XOR:
82abbf8d
AS
9761 /* bitwise ops on pointers are troublesome, prohibit. */
9762 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9763 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
9764 return -EACCES;
9765 default:
9766 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
9767 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9768 dst, bpf_alu_string[opcode >> 4]);
f1174f77 9769 return -EACCES;
43188702
JF
9770 }
9771
bb7f0f98
AS
9772 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9773 return -EINVAL;
3844d153 9774 reg_bounds_sync(dst_reg);
073815b7
DB
9775 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9776 return -EACCES;
7fedb63a
DB
9777 if (sanitize_needed(opcode)) {
9778 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 9779 &info, true);
7fedb63a
DB
9780 if (ret < 0)
9781 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
9782 }
9783
43188702
JF
9784 return 0;
9785}
9786
3f50f132
JF
9787static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9788 struct bpf_reg_state *src_reg)
9789{
9790 s32 smin_val = src_reg->s32_min_value;
9791 s32 smax_val = src_reg->s32_max_value;
9792 u32 umin_val = src_reg->u32_min_value;
9793 u32 umax_val = src_reg->u32_max_value;
9794
9795 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9796 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9797 dst_reg->s32_min_value = S32_MIN;
9798 dst_reg->s32_max_value = S32_MAX;
9799 } else {
9800 dst_reg->s32_min_value += smin_val;
9801 dst_reg->s32_max_value += smax_val;
9802 }
9803 if (dst_reg->u32_min_value + umin_val < umin_val ||
9804 dst_reg->u32_max_value + umax_val < umax_val) {
9805 dst_reg->u32_min_value = 0;
9806 dst_reg->u32_max_value = U32_MAX;
9807 } else {
9808 dst_reg->u32_min_value += umin_val;
9809 dst_reg->u32_max_value += umax_val;
9810 }
9811}
9812
07cd2631
JF
9813static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9814 struct bpf_reg_state *src_reg)
9815{
9816 s64 smin_val = src_reg->smin_value;
9817 s64 smax_val = src_reg->smax_value;
9818 u64 umin_val = src_reg->umin_value;
9819 u64 umax_val = src_reg->umax_value;
9820
9821 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9822 signed_add_overflows(dst_reg->smax_value, smax_val)) {
9823 dst_reg->smin_value = S64_MIN;
9824 dst_reg->smax_value = S64_MAX;
9825 } else {
9826 dst_reg->smin_value += smin_val;
9827 dst_reg->smax_value += smax_val;
9828 }
9829 if (dst_reg->umin_value + umin_val < umin_val ||
9830 dst_reg->umax_value + umax_val < umax_val) {
9831 dst_reg->umin_value = 0;
9832 dst_reg->umax_value = U64_MAX;
9833 } else {
9834 dst_reg->umin_value += umin_val;
9835 dst_reg->umax_value += umax_val;
9836 }
3f50f132
JF
9837}
9838
9839static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
9840 struct bpf_reg_state *src_reg)
9841{
9842 s32 smin_val = src_reg->s32_min_value;
9843 s32 smax_val = src_reg->s32_max_value;
9844 u32 umin_val = src_reg->u32_min_value;
9845 u32 umax_val = src_reg->u32_max_value;
9846
9847 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
9848 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
9849 /* Overflow possible, we know nothing */
9850 dst_reg->s32_min_value = S32_MIN;
9851 dst_reg->s32_max_value = S32_MAX;
9852 } else {
9853 dst_reg->s32_min_value -= smax_val;
9854 dst_reg->s32_max_value -= smin_val;
9855 }
9856 if (dst_reg->u32_min_value < umax_val) {
9857 /* Overflow possible, we know nothing */
9858 dst_reg->u32_min_value = 0;
9859 dst_reg->u32_max_value = U32_MAX;
9860 } else {
9861 /* Cannot overflow (as long as bounds are consistent) */
9862 dst_reg->u32_min_value -= umax_val;
9863 dst_reg->u32_max_value -= umin_val;
9864 }
07cd2631
JF
9865}
9866
9867static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
9868 struct bpf_reg_state *src_reg)
9869{
9870 s64 smin_val = src_reg->smin_value;
9871 s64 smax_val = src_reg->smax_value;
9872 u64 umin_val = src_reg->umin_value;
9873 u64 umax_val = src_reg->umax_value;
9874
9875 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
9876 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
9877 /* Overflow possible, we know nothing */
9878 dst_reg->smin_value = S64_MIN;
9879 dst_reg->smax_value = S64_MAX;
9880 } else {
9881 dst_reg->smin_value -= smax_val;
9882 dst_reg->smax_value -= smin_val;
9883 }
9884 if (dst_reg->umin_value < umax_val) {
9885 /* Overflow possible, we know nothing */
9886 dst_reg->umin_value = 0;
9887 dst_reg->umax_value = U64_MAX;
9888 } else {
9889 /* Cannot overflow (as long as bounds are consistent) */
9890 dst_reg->umin_value -= umax_val;
9891 dst_reg->umax_value -= umin_val;
9892 }
3f50f132
JF
9893}
9894
9895static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
9896 struct bpf_reg_state *src_reg)
9897{
9898 s32 smin_val = src_reg->s32_min_value;
9899 u32 umin_val = src_reg->u32_min_value;
9900 u32 umax_val = src_reg->u32_max_value;
9901
9902 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
9903 /* Ain't nobody got time to multiply that sign */
9904 __mark_reg32_unbounded(dst_reg);
9905 return;
9906 }
9907 /* Both values are positive, so we can work with unsigned and
9908 * copy the result to signed (unless it exceeds S32_MAX).
9909 */
9910 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
9911 /* Potential overflow, we know nothing */
9912 __mark_reg32_unbounded(dst_reg);
9913 return;
9914 }
9915 dst_reg->u32_min_value *= umin_val;
9916 dst_reg->u32_max_value *= umax_val;
9917 if (dst_reg->u32_max_value > S32_MAX) {
9918 /* Overflow possible, we know nothing */
9919 dst_reg->s32_min_value = S32_MIN;
9920 dst_reg->s32_max_value = S32_MAX;
9921 } else {
9922 dst_reg->s32_min_value = dst_reg->u32_min_value;
9923 dst_reg->s32_max_value = dst_reg->u32_max_value;
9924 }
07cd2631
JF
9925}
9926
9927static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
9928 struct bpf_reg_state *src_reg)
9929{
9930 s64 smin_val = src_reg->smin_value;
9931 u64 umin_val = src_reg->umin_value;
9932 u64 umax_val = src_reg->umax_value;
9933
07cd2631
JF
9934 if (smin_val < 0 || dst_reg->smin_value < 0) {
9935 /* Ain't nobody got time to multiply that sign */
3f50f132 9936 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
9937 return;
9938 }
9939 /* Both values are positive, so we can work with unsigned and
9940 * copy the result to signed (unless it exceeds S64_MAX).
9941 */
9942 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
9943 /* Potential overflow, we know nothing */
3f50f132 9944 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
9945 return;
9946 }
9947 dst_reg->umin_value *= umin_val;
9948 dst_reg->umax_value *= umax_val;
9949 if (dst_reg->umax_value > S64_MAX) {
9950 /* Overflow possible, we know nothing */
9951 dst_reg->smin_value = S64_MIN;
9952 dst_reg->smax_value = S64_MAX;
9953 } else {
9954 dst_reg->smin_value = dst_reg->umin_value;
9955 dst_reg->smax_value = dst_reg->umax_value;
9956 }
9957}
9958
3f50f132
JF
9959static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
9960 struct bpf_reg_state *src_reg)
9961{
9962 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9963 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9964 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9965 s32 smin_val = src_reg->s32_min_value;
9966 u32 umax_val = src_reg->u32_max_value;
9967
049c4e13
DB
9968 if (src_known && dst_known) {
9969 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 9970 return;
049c4e13 9971 }
3f50f132
JF
9972
9973 /* We get our minimum from the var_off, since that's inherently
9974 * bitwise. Our maximum is the minimum of the operands' maxima.
9975 */
9976 dst_reg->u32_min_value = var32_off.value;
9977 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
9978 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9979 /* Lose signed bounds when ANDing negative numbers,
9980 * ain't nobody got time for that.
9981 */
9982 dst_reg->s32_min_value = S32_MIN;
9983 dst_reg->s32_max_value = S32_MAX;
9984 } else {
9985 /* ANDing two positives gives a positive, so safe to
9986 * cast result into s64.
9987 */
9988 dst_reg->s32_min_value = dst_reg->u32_min_value;
9989 dst_reg->s32_max_value = dst_reg->u32_max_value;
9990 }
3f50f132
JF
9991}
9992
07cd2631
JF
9993static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
9994 struct bpf_reg_state *src_reg)
9995{
3f50f132
JF
9996 bool src_known = tnum_is_const(src_reg->var_off);
9997 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
9998 s64 smin_val = src_reg->smin_value;
9999 u64 umax_val = src_reg->umax_value;
10000
3f50f132 10001 if (src_known && dst_known) {
4fbb38a3 10002 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
10003 return;
10004 }
10005
07cd2631
JF
10006 /* We get our minimum from the var_off, since that's inherently
10007 * bitwise. Our maximum is the minimum of the operands' maxima.
10008 */
07cd2631
JF
10009 dst_reg->umin_value = dst_reg->var_off.value;
10010 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10011 if (dst_reg->smin_value < 0 || smin_val < 0) {
10012 /* Lose signed bounds when ANDing negative numbers,
10013 * ain't nobody got time for that.
10014 */
10015 dst_reg->smin_value = S64_MIN;
10016 dst_reg->smax_value = S64_MAX;
10017 } else {
10018 /* ANDing two positives gives a positive, so safe to
10019 * cast result into s64.
10020 */
10021 dst_reg->smin_value = dst_reg->umin_value;
10022 dst_reg->smax_value = dst_reg->umax_value;
10023 }
10024 /* We may learn something more from the var_off */
10025 __update_reg_bounds(dst_reg);
10026}
10027
3f50f132
JF
10028static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10029 struct bpf_reg_state *src_reg)
10030{
10031 bool src_known = tnum_subreg_is_const(src_reg->var_off);
10032 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10033 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
10034 s32 smin_val = src_reg->s32_min_value;
10035 u32 umin_val = src_reg->u32_min_value;
3f50f132 10036
049c4e13
DB
10037 if (src_known && dst_known) {
10038 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 10039 return;
049c4e13 10040 }
3f50f132
JF
10041
10042 /* We get our maximum from the var_off, and our minimum is the
10043 * maximum of the operands' minima
10044 */
10045 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10046 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10047 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10048 /* Lose signed bounds when ORing negative numbers,
10049 * ain't nobody got time for that.
10050 */
10051 dst_reg->s32_min_value = S32_MIN;
10052 dst_reg->s32_max_value = S32_MAX;
10053 } else {
10054 /* ORing two positives gives a positive, so safe to
10055 * cast result into s64.
10056 */
5b9fbeb7
DB
10057 dst_reg->s32_min_value = dst_reg->u32_min_value;
10058 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
10059 }
10060}
10061
07cd2631
JF
10062static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10063 struct bpf_reg_state *src_reg)
10064{
3f50f132
JF
10065 bool src_known = tnum_is_const(src_reg->var_off);
10066 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
10067 s64 smin_val = src_reg->smin_value;
10068 u64 umin_val = src_reg->umin_value;
10069
3f50f132 10070 if (src_known && dst_known) {
4fbb38a3 10071 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
10072 return;
10073 }
10074
07cd2631
JF
10075 /* We get our maximum from the var_off, and our minimum is the
10076 * maximum of the operands' minima
10077 */
07cd2631
JF
10078 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10079 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10080 if (dst_reg->smin_value < 0 || smin_val < 0) {
10081 /* Lose signed bounds when ORing negative numbers,
10082 * ain't nobody got time for that.
10083 */
10084 dst_reg->smin_value = S64_MIN;
10085 dst_reg->smax_value = S64_MAX;
10086 } else {
10087 /* ORing two positives gives a positive, so safe to
10088 * cast result into s64.
10089 */
10090 dst_reg->smin_value = dst_reg->umin_value;
10091 dst_reg->smax_value = dst_reg->umax_value;
10092 }
10093 /* We may learn something more from the var_off */
10094 __update_reg_bounds(dst_reg);
10095}
10096
2921c90d
YS
10097static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10098 struct bpf_reg_state *src_reg)
10099{
10100 bool src_known = tnum_subreg_is_const(src_reg->var_off);
10101 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10102 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10103 s32 smin_val = src_reg->s32_min_value;
10104
049c4e13
DB
10105 if (src_known && dst_known) {
10106 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 10107 return;
049c4e13 10108 }
2921c90d
YS
10109
10110 /* We get both minimum and maximum from the var32_off. */
10111 dst_reg->u32_min_value = var32_off.value;
10112 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10113
10114 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10115 /* XORing two positive sign numbers gives a positive,
10116 * so safe to cast u32 result into s32.
10117 */
10118 dst_reg->s32_min_value = dst_reg->u32_min_value;
10119 dst_reg->s32_max_value = dst_reg->u32_max_value;
10120 } else {
10121 dst_reg->s32_min_value = S32_MIN;
10122 dst_reg->s32_max_value = S32_MAX;
10123 }
10124}
10125
10126static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10127 struct bpf_reg_state *src_reg)
10128{
10129 bool src_known = tnum_is_const(src_reg->var_off);
10130 bool dst_known = tnum_is_const(dst_reg->var_off);
10131 s64 smin_val = src_reg->smin_value;
10132
10133 if (src_known && dst_known) {
10134 /* dst_reg->var_off.value has been updated earlier */
10135 __mark_reg_known(dst_reg, dst_reg->var_off.value);
10136 return;
10137 }
10138
10139 /* We get both minimum and maximum from the var_off. */
10140 dst_reg->umin_value = dst_reg->var_off.value;
10141 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10142
10143 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10144 /* XORing two positive sign numbers gives a positive,
10145 * so safe to cast u64 result into s64.
10146 */
10147 dst_reg->smin_value = dst_reg->umin_value;
10148 dst_reg->smax_value = dst_reg->umax_value;
10149 } else {
10150 dst_reg->smin_value = S64_MIN;
10151 dst_reg->smax_value = S64_MAX;
10152 }
10153
10154 __update_reg_bounds(dst_reg);
10155}
10156
3f50f132
JF
10157static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10158 u64 umin_val, u64 umax_val)
07cd2631 10159{
07cd2631
JF
10160 /* We lose all sign bit information (except what we can pick
10161 * up from var_off)
10162 */
3f50f132
JF
10163 dst_reg->s32_min_value = S32_MIN;
10164 dst_reg->s32_max_value = S32_MAX;
10165 /* If we might shift our top bit out, then we know nothing */
10166 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10167 dst_reg->u32_min_value = 0;
10168 dst_reg->u32_max_value = U32_MAX;
10169 } else {
10170 dst_reg->u32_min_value <<= umin_val;
10171 dst_reg->u32_max_value <<= umax_val;
10172 }
10173}
10174
10175static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10176 struct bpf_reg_state *src_reg)
10177{
10178 u32 umax_val = src_reg->u32_max_value;
10179 u32 umin_val = src_reg->u32_min_value;
10180 /* u32 alu operation will zext upper bits */
10181 struct tnum subreg = tnum_subreg(dst_reg->var_off);
10182
10183 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10184 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10185 /* Not required but being careful mark reg64 bounds as unknown so
10186 * that we are forced to pick them up from tnum and zext later and
10187 * if some path skips this step we are still safe.
10188 */
10189 __mark_reg64_unbounded(dst_reg);
10190 __update_reg32_bounds(dst_reg);
10191}
10192
10193static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10194 u64 umin_val, u64 umax_val)
10195{
10196 /* Special case <<32 because it is a common compiler pattern to sign
10197 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10198 * positive we know this shift will also be positive so we can track
10199 * bounds correctly. Otherwise we lose all sign bit information except
10200 * what we can pick up from var_off. Perhaps we can generalize this
10201 * later to shifts of any length.
10202 */
10203 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10204 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10205 else
10206 dst_reg->smax_value = S64_MAX;
10207
10208 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10209 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10210 else
10211 dst_reg->smin_value = S64_MIN;
10212
07cd2631
JF
10213 /* If we might shift our top bit out, then we know nothing */
10214 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10215 dst_reg->umin_value = 0;
10216 dst_reg->umax_value = U64_MAX;
10217 } else {
10218 dst_reg->umin_value <<= umin_val;
10219 dst_reg->umax_value <<= umax_val;
10220 }
3f50f132
JF
10221}
10222
10223static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10224 struct bpf_reg_state *src_reg)
10225{
10226 u64 umax_val = src_reg->umax_value;
10227 u64 umin_val = src_reg->umin_value;
10228
10229 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
10230 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10231 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10232
07cd2631
JF
10233 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10234 /* We may learn something more from the var_off */
10235 __update_reg_bounds(dst_reg);
10236}
10237
3f50f132
JF
10238static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10239 struct bpf_reg_state *src_reg)
10240{
10241 struct tnum subreg = tnum_subreg(dst_reg->var_off);
10242 u32 umax_val = src_reg->u32_max_value;
10243 u32 umin_val = src_reg->u32_min_value;
10244
10245 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
10246 * be negative, then either:
10247 * 1) src_reg might be zero, so the sign bit of the result is
10248 * unknown, so we lose our signed bounds
10249 * 2) it's known negative, thus the unsigned bounds capture the
10250 * signed bounds
10251 * 3) the signed bounds cross zero, so they tell us nothing
10252 * about the result
10253 * If the value in dst_reg is known nonnegative, then again the
18b24d78 10254 * unsigned bounds capture the signed bounds.
3f50f132
JF
10255 * Thus, in all cases it suffices to blow away our signed bounds
10256 * and rely on inferring new ones from the unsigned bounds and
10257 * var_off of the result.
10258 */
10259 dst_reg->s32_min_value = S32_MIN;
10260 dst_reg->s32_max_value = S32_MAX;
10261
10262 dst_reg->var_off = tnum_rshift(subreg, umin_val);
10263 dst_reg->u32_min_value >>= umax_val;
10264 dst_reg->u32_max_value >>= umin_val;
10265
10266 __mark_reg64_unbounded(dst_reg);
10267 __update_reg32_bounds(dst_reg);
10268}
10269
07cd2631
JF
10270static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10271 struct bpf_reg_state *src_reg)
10272{
10273 u64 umax_val = src_reg->umax_value;
10274 u64 umin_val = src_reg->umin_value;
10275
10276 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
10277 * be negative, then either:
10278 * 1) src_reg might be zero, so the sign bit of the result is
10279 * unknown, so we lose our signed bounds
10280 * 2) it's known negative, thus the unsigned bounds capture the
10281 * signed bounds
10282 * 3) the signed bounds cross zero, so they tell us nothing
10283 * about the result
10284 * If the value in dst_reg is known nonnegative, then again the
18b24d78 10285 * unsigned bounds capture the signed bounds.
07cd2631
JF
10286 * Thus, in all cases it suffices to blow away our signed bounds
10287 * and rely on inferring new ones from the unsigned bounds and
10288 * var_off of the result.
10289 */
10290 dst_reg->smin_value = S64_MIN;
10291 dst_reg->smax_value = S64_MAX;
10292 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10293 dst_reg->umin_value >>= umax_val;
10294 dst_reg->umax_value >>= umin_val;
3f50f132
JF
10295
10296 /* Its not easy to operate on alu32 bounds here because it depends
10297 * on bits being shifted in. Take easy way out and mark unbounded
10298 * so we can recalculate later from tnum.
10299 */
10300 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
10301 __update_reg_bounds(dst_reg);
10302}
10303
3f50f132
JF
10304static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10305 struct bpf_reg_state *src_reg)
07cd2631 10306{
3f50f132 10307 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
10308
10309 /* Upon reaching here, src_known is true and
10310 * umax_val is equal to umin_val.
10311 */
3f50f132
JF
10312 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10313 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 10314
3f50f132
JF
10315 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10316
10317 /* blow away the dst_reg umin_value/umax_value and rely on
10318 * dst_reg var_off to refine the result.
10319 */
10320 dst_reg->u32_min_value = 0;
10321 dst_reg->u32_max_value = U32_MAX;
10322
10323 __mark_reg64_unbounded(dst_reg);
10324 __update_reg32_bounds(dst_reg);
10325}
10326
10327static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10328 struct bpf_reg_state *src_reg)
10329{
10330 u64 umin_val = src_reg->umin_value;
10331
10332 /* Upon reaching here, src_known is true and umax_val is equal
10333 * to umin_val.
10334 */
10335 dst_reg->smin_value >>= umin_val;
10336 dst_reg->smax_value >>= umin_val;
10337
10338 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
10339
10340 /* blow away the dst_reg umin_value/umax_value and rely on
10341 * dst_reg var_off to refine the result.
10342 */
10343 dst_reg->umin_value = 0;
10344 dst_reg->umax_value = U64_MAX;
3f50f132
JF
10345
10346 /* Its not easy to operate on alu32 bounds here because it depends
10347 * on bits being shifted in from upper 32-bits. Take easy way out
10348 * and mark unbounded so we can recalculate later from tnum.
10349 */
10350 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
10351 __update_reg_bounds(dst_reg);
10352}
10353
468f6eaf
JH
10354/* WARNING: This function does calculations on 64-bit values, but the actual
10355 * execution may occur on 32-bit values. Therefore, things like bitshifts
10356 * need extra checks in the 32-bit case.
10357 */
f1174f77
EC
10358static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10359 struct bpf_insn *insn,
10360 struct bpf_reg_state *dst_reg,
10361 struct bpf_reg_state src_reg)
969bf05e 10362{
638f5b90 10363 struct bpf_reg_state *regs = cur_regs(env);
48461135 10364 u8 opcode = BPF_OP(insn->code);
b0b3fb67 10365 bool src_known;
b03c9f9f
EC
10366 s64 smin_val, smax_val;
10367 u64 umin_val, umax_val;
3f50f132
JF
10368 s32 s32_min_val, s32_max_val;
10369 u32 u32_min_val, u32_max_val;
468f6eaf 10370 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 10371 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 10372 int ret;
b799207e 10373
b03c9f9f
EC
10374 smin_val = src_reg.smin_value;
10375 smax_val = src_reg.smax_value;
10376 umin_val = src_reg.umin_value;
10377 umax_val = src_reg.umax_value;
f23cc643 10378
3f50f132
JF
10379 s32_min_val = src_reg.s32_min_value;
10380 s32_max_val = src_reg.s32_max_value;
10381 u32_min_val = src_reg.u32_min_value;
10382 u32_max_val = src_reg.u32_max_value;
10383
10384 if (alu32) {
10385 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
10386 if ((src_known &&
10387 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10388 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10389 /* Taint dst register if offset had invalid bounds
10390 * derived from e.g. dead branches.
10391 */
10392 __mark_reg_unknown(env, dst_reg);
10393 return 0;
10394 }
10395 } else {
10396 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
10397 if ((src_known &&
10398 (smin_val != smax_val || umin_val != umax_val)) ||
10399 smin_val > smax_val || umin_val > umax_val) {
10400 /* Taint dst register if offset had invalid bounds
10401 * derived from e.g. dead branches.
10402 */
10403 __mark_reg_unknown(env, dst_reg);
10404 return 0;
10405 }
6f16101e
DB
10406 }
10407
bb7f0f98
AS
10408 if (!src_known &&
10409 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 10410 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
10411 return 0;
10412 }
10413
f5288193
DB
10414 if (sanitize_needed(opcode)) {
10415 ret = sanitize_val_alu(env, insn);
10416 if (ret < 0)
10417 return sanitize_err(env, insn, ret, NULL, NULL);
10418 }
10419
3f50f132
JF
10420 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10421 * There are two classes of instructions: The first class we track both
10422 * alu32 and alu64 sign/unsigned bounds independently this provides the
10423 * greatest amount of precision when alu operations are mixed with jmp32
10424 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10425 * and BPF_OR. This is possible because these ops have fairly easy to
10426 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10427 * See alu32 verifier tests for examples. The second class of
10428 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10429 * with regards to tracking sign/unsigned bounds because the bits may
10430 * cross subreg boundaries in the alu64 case. When this happens we mark
10431 * the reg unbounded in the subreg bound space and use the resulting
10432 * tnum to calculate an approximation of the sign/unsigned bounds.
10433 */
48461135
JB
10434 switch (opcode) {
10435 case BPF_ADD:
3f50f132 10436 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 10437 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 10438 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
10439 break;
10440 case BPF_SUB:
3f50f132 10441 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 10442 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 10443 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
10444 break;
10445 case BPF_MUL:
3f50f132
JF
10446 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10447 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 10448 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
10449 break;
10450 case BPF_AND:
3f50f132
JF
10451 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10452 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 10453 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
10454 break;
10455 case BPF_OR:
3f50f132
JF
10456 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10457 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 10458 scalar_min_max_or(dst_reg, &src_reg);
48461135 10459 break;
2921c90d
YS
10460 case BPF_XOR:
10461 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10462 scalar32_min_max_xor(dst_reg, &src_reg);
10463 scalar_min_max_xor(dst_reg, &src_reg);
10464 break;
48461135 10465 case BPF_LSH:
468f6eaf
JH
10466 if (umax_val >= insn_bitness) {
10467 /* Shifts greater than 31 or 63 are undefined.
10468 * This includes shifts by a negative number.
b03c9f9f 10469 */
61bd5218 10470 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
10471 break;
10472 }
3f50f132
JF
10473 if (alu32)
10474 scalar32_min_max_lsh(dst_reg, &src_reg);
10475 else
10476 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
10477 break;
10478 case BPF_RSH:
468f6eaf
JH
10479 if (umax_val >= insn_bitness) {
10480 /* Shifts greater than 31 or 63 are undefined.
10481 * This includes shifts by a negative number.
b03c9f9f 10482 */
61bd5218 10483 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
10484 break;
10485 }
3f50f132
JF
10486 if (alu32)
10487 scalar32_min_max_rsh(dst_reg, &src_reg);
10488 else
10489 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 10490 break;
9cbe1f5a
YS
10491 case BPF_ARSH:
10492 if (umax_val >= insn_bitness) {
10493 /* Shifts greater than 31 or 63 are undefined.
10494 * This includes shifts by a negative number.
10495 */
10496 mark_reg_unknown(env, regs, insn->dst_reg);
10497 break;
10498 }
3f50f132
JF
10499 if (alu32)
10500 scalar32_min_max_arsh(dst_reg, &src_reg);
10501 else
10502 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 10503 break;
48461135 10504 default:
61bd5218 10505 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
10506 break;
10507 }
10508
3f50f132
JF
10509 /* ALU32 ops are zero extended into 64bit register */
10510 if (alu32)
10511 zext_32_to_64(dst_reg);
3844d153 10512 reg_bounds_sync(dst_reg);
f1174f77
EC
10513 return 0;
10514}
10515
10516/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10517 * and var_off.
10518 */
10519static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10520 struct bpf_insn *insn)
10521{
f4d7e40a
AS
10522 struct bpf_verifier_state *vstate = env->cur_state;
10523 struct bpf_func_state *state = vstate->frame[vstate->curframe];
10524 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
10525 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10526 u8 opcode = BPF_OP(insn->code);
b5dc0163 10527 int err;
f1174f77
EC
10528
10529 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
10530 src_reg = NULL;
10531 if (dst_reg->type != SCALAR_VALUE)
10532 ptr_reg = dst_reg;
75748837
AS
10533 else
10534 /* Make sure ID is cleared otherwise dst_reg min/max could be
10535 * incorrectly propagated into other registers by find_equal_scalars()
10536 */
10537 dst_reg->id = 0;
f1174f77
EC
10538 if (BPF_SRC(insn->code) == BPF_X) {
10539 src_reg = &regs[insn->src_reg];
f1174f77
EC
10540 if (src_reg->type != SCALAR_VALUE) {
10541 if (dst_reg->type != SCALAR_VALUE) {
10542 /* Combining two pointers by any ALU op yields
82abbf8d
AS
10543 * an arbitrary scalar. Disallow all math except
10544 * pointer subtraction
f1174f77 10545 */
dd066823 10546 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
10547 mark_reg_unknown(env, regs, insn->dst_reg);
10548 return 0;
f1174f77 10549 }
82abbf8d
AS
10550 verbose(env, "R%d pointer %s pointer prohibited\n",
10551 insn->dst_reg,
10552 bpf_alu_string[opcode >> 4]);
10553 return -EACCES;
f1174f77
EC
10554 } else {
10555 /* scalar += pointer
10556 * This is legal, but we have to reverse our
10557 * src/dest handling in computing the range
10558 */
b5dc0163
AS
10559 err = mark_chain_precision(env, insn->dst_reg);
10560 if (err)
10561 return err;
82abbf8d
AS
10562 return adjust_ptr_min_max_vals(env, insn,
10563 src_reg, dst_reg);
f1174f77
EC
10564 }
10565 } else if (ptr_reg) {
10566 /* pointer += scalar */
b5dc0163
AS
10567 err = mark_chain_precision(env, insn->src_reg);
10568 if (err)
10569 return err;
82abbf8d
AS
10570 return adjust_ptr_min_max_vals(env, insn,
10571 dst_reg, src_reg);
a3b666bf
AN
10572 } else if (dst_reg->precise) {
10573 /* if dst_reg is precise, src_reg should be precise as well */
10574 err = mark_chain_precision(env, insn->src_reg);
10575 if (err)
10576 return err;
f1174f77
EC
10577 }
10578 } else {
10579 /* Pretend the src is a reg with a known value, since we only
10580 * need to be able to read from this state.
10581 */
10582 off_reg.type = SCALAR_VALUE;
b03c9f9f 10583 __mark_reg_known(&off_reg, insn->imm);
f1174f77 10584 src_reg = &off_reg;
82abbf8d
AS
10585 if (ptr_reg) /* pointer += K */
10586 return adjust_ptr_min_max_vals(env, insn,
10587 ptr_reg, src_reg);
f1174f77
EC
10588 }
10589
10590 /* Got here implies adding two SCALAR_VALUEs */
10591 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 10592 print_verifier_state(env, state, true);
61bd5218 10593 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
10594 return -EINVAL;
10595 }
10596 if (WARN_ON(!src_reg)) {
0f55f9ed 10597 print_verifier_state(env, state, true);
61bd5218 10598 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
10599 return -EINVAL;
10600 }
10601 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
10602}
10603
17a52670 10604/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 10605static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 10606{
638f5b90 10607 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
10608 u8 opcode = BPF_OP(insn->code);
10609 int err;
10610
10611 if (opcode == BPF_END || opcode == BPF_NEG) {
10612 if (opcode == BPF_NEG) {
395e942d 10613 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
10614 insn->src_reg != BPF_REG_0 ||
10615 insn->off != 0 || insn->imm != 0) {
61bd5218 10616 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
10617 return -EINVAL;
10618 }
10619 } else {
10620 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
10621 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10622 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 10623 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
10624 return -EINVAL;
10625 }
10626 }
10627
10628 /* check src operand */
dc503a8a 10629 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10630 if (err)
10631 return err;
10632
1be7f75d 10633 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 10634 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
10635 insn->dst_reg);
10636 return -EACCES;
10637 }
10638
17a52670 10639 /* check dest operand */
dc503a8a 10640 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
10641 if (err)
10642 return err;
10643
10644 } else if (opcode == BPF_MOV) {
10645
10646 if (BPF_SRC(insn->code) == BPF_X) {
10647 if (insn->imm != 0 || insn->off != 0) {
61bd5218 10648 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
10649 return -EINVAL;
10650 }
10651
10652 /* check src operand */
dc503a8a 10653 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10654 if (err)
10655 return err;
10656 } else {
10657 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 10658 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
10659 return -EINVAL;
10660 }
10661 }
10662
fbeb1603
AF
10663 /* check dest operand, mark as required later */
10664 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
10665 if (err)
10666 return err;
10667
10668 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
10669 struct bpf_reg_state *src_reg = regs + insn->src_reg;
10670 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10671
17a52670
AS
10672 if (BPF_CLASS(insn->code) == BPF_ALU64) {
10673 /* case: R1 = R2
10674 * copy register state to dest reg
10675 */
75748837
AS
10676 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10677 /* Assign src and dst registers the same ID
10678 * that will be used by find_equal_scalars()
10679 * to propagate min/max range.
10680 */
10681 src_reg->id = ++env->id_gen;
e434b8cd
JW
10682 *dst_reg = *src_reg;
10683 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 10684 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 10685 } else {
f1174f77 10686 /* R1 = (u32) R2 */
1be7f75d 10687 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
10688 verbose(env,
10689 "R%d partial copy of pointer\n",
1be7f75d
AS
10690 insn->src_reg);
10691 return -EACCES;
e434b8cd
JW
10692 } else if (src_reg->type == SCALAR_VALUE) {
10693 *dst_reg = *src_reg;
75748837
AS
10694 /* Make sure ID is cleared otherwise
10695 * dst_reg min/max could be incorrectly
10696 * propagated into src_reg by find_equal_scalars()
10697 */
10698 dst_reg->id = 0;
e434b8cd 10699 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 10700 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
10701 } else {
10702 mark_reg_unknown(env, regs,
10703 insn->dst_reg);
1be7f75d 10704 }
3f50f132 10705 zext_32_to_64(dst_reg);
3844d153 10706 reg_bounds_sync(dst_reg);
17a52670
AS
10707 }
10708 } else {
10709 /* case: R = imm
10710 * remember the value we stored into this reg
10711 */
fbeb1603
AF
10712 /* clear any state __mark_reg_known doesn't set */
10713 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 10714 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
10715 if (BPF_CLASS(insn->code) == BPF_ALU64) {
10716 __mark_reg_known(regs + insn->dst_reg,
10717 insn->imm);
10718 } else {
10719 __mark_reg_known(regs + insn->dst_reg,
10720 (u32)insn->imm);
10721 }
17a52670
AS
10722 }
10723
10724 } else if (opcode > BPF_END) {
61bd5218 10725 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
10726 return -EINVAL;
10727
10728 } else { /* all other ALU ops: and, sub, xor, add, ... */
10729
17a52670
AS
10730 if (BPF_SRC(insn->code) == BPF_X) {
10731 if (insn->imm != 0 || insn->off != 0) {
61bd5218 10732 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
10733 return -EINVAL;
10734 }
10735 /* check src1 operand */
dc503a8a 10736 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10737 if (err)
10738 return err;
10739 } else {
10740 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 10741 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
10742 return -EINVAL;
10743 }
10744 }
10745
10746 /* check src2 operand */
dc503a8a 10747 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10748 if (err)
10749 return err;
10750
10751 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10752 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 10753 verbose(env, "div by zero\n");
17a52670
AS
10754 return -EINVAL;
10755 }
10756
229394e8
RV
10757 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10758 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10759 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10760
10761 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 10762 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
10763 return -EINVAL;
10764 }
10765 }
10766
1a0dc1ac 10767 /* check dest operand */
dc503a8a 10768 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
10769 if (err)
10770 return err;
10771
f1174f77 10772 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
10773 }
10774
10775 return 0;
10776}
10777
f4d7e40a 10778static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 10779 struct bpf_reg_state *dst_reg,
f8ddadc4 10780 enum bpf_reg_type type,
fb2a311a 10781 bool range_right_open)
969bf05e 10782{
b239da34
KKD
10783 struct bpf_func_state *state;
10784 struct bpf_reg_state *reg;
10785 int new_range;
2d2be8ca 10786
fb2a311a
DB
10787 if (dst_reg->off < 0 ||
10788 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
10789 /* This doesn't give us any range */
10790 return;
10791
b03c9f9f
EC
10792 if (dst_reg->umax_value > MAX_PACKET_OFF ||
10793 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
10794 /* Risk of overflow. For instance, ptr + (1<<63) may be less
10795 * than pkt_end, but that's because it's also less than pkt.
10796 */
10797 return;
10798
fb2a311a
DB
10799 new_range = dst_reg->off;
10800 if (range_right_open)
2fa7d94a 10801 new_range++;
fb2a311a
DB
10802
10803 /* Examples for register markings:
2d2be8ca 10804 *
fb2a311a 10805 * pkt_data in dst register:
2d2be8ca
DB
10806 *
10807 * r2 = r3;
10808 * r2 += 8;
10809 * if (r2 > pkt_end) goto <handle exception>
10810 * <access okay>
10811 *
b4e432f1
DB
10812 * r2 = r3;
10813 * r2 += 8;
10814 * if (r2 < pkt_end) goto <access okay>
10815 * <handle exception>
10816 *
2d2be8ca
DB
10817 * Where:
10818 * r2 == dst_reg, pkt_end == src_reg
10819 * r2=pkt(id=n,off=8,r=0)
10820 * r3=pkt(id=n,off=0,r=0)
10821 *
fb2a311a 10822 * pkt_data in src register:
2d2be8ca
DB
10823 *
10824 * r2 = r3;
10825 * r2 += 8;
10826 * if (pkt_end >= r2) goto <access okay>
10827 * <handle exception>
10828 *
b4e432f1
DB
10829 * r2 = r3;
10830 * r2 += 8;
10831 * if (pkt_end <= r2) goto <handle exception>
10832 * <access okay>
10833 *
2d2be8ca
DB
10834 * Where:
10835 * pkt_end == dst_reg, r2 == src_reg
10836 * r2=pkt(id=n,off=8,r=0)
10837 * r3=pkt(id=n,off=0,r=0)
10838 *
10839 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
10840 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
10841 * and [r3, r3 + 8-1) respectively is safe to access depending on
10842 * the check.
969bf05e 10843 */
2d2be8ca 10844
f1174f77
EC
10845 /* If our ids match, then we must have the same max_value. And we
10846 * don't care about the other reg's fixed offset, since if it's too big
10847 * the range won't allow anything.
10848 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
10849 */
b239da34
KKD
10850 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10851 if (reg->type == type && reg->id == dst_reg->id)
10852 /* keep the maximum range already checked */
10853 reg->range = max(reg->range, new_range);
10854 }));
969bf05e
AS
10855}
10856
3f50f132 10857static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 10858{
3f50f132
JF
10859 struct tnum subreg = tnum_subreg(reg->var_off);
10860 s32 sval = (s32)val;
a72dafaf 10861
3f50f132
JF
10862 switch (opcode) {
10863 case BPF_JEQ:
10864 if (tnum_is_const(subreg))
10865 return !!tnum_equals_const(subreg, val);
10866 break;
10867 case BPF_JNE:
10868 if (tnum_is_const(subreg))
10869 return !tnum_equals_const(subreg, val);
10870 break;
10871 case BPF_JSET:
10872 if ((~subreg.mask & subreg.value) & val)
10873 return 1;
10874 if (!((subreg.mask | subreg.value) & val))
10875 return 0;
10876 break;
10877 case BPF_JGT:
10878 if (reg->u32_min_value > val)
10879 return 1;
10880 else if (reg->u32_max_value <= val)
10881 return 0;
10882 break;
10883 case BPF_JSGT:
10884 if (reg->s32_min_value > sval)
10885 return 1;
ee114dd6 10886 else if (reg->s32_max_value <= sval)
3f50f132
JF
10887 return 0;
10888 break;
10889 case BPF_JLT:
10890 if (reg->u32_max_value < val)
10891 return 1;
10892 else if (reg->u32_min_value >= val)
10893 return 0;
10894 break;
10895 case BPF_JSLT:
10896 if (reg->s32_max_value < sval)
10897 return 1;
10898 else if (reg->s32_min_value >= sval)
10899 return 0;
10900 break;
10901 case BPF_JGE:
10902 if (reg->u32_min_value >= val)
10903 return 1;
10904 else if (reg->u32_max_value < val)
10905 return 0;
10906 break;
10907 case BPF_JSGE:
10908 if (reg->s32_min_value >= sval)
10909 return 1;
10910 else if (reg->s32_max_value < sval)
10911 return 0;
10912 break;
10913 case BPF_JLE:
10914 if (reg->u32_max_value <= val)
10915 return 1;
10916 else if (reg->u32_min_value > val)
10917 return 0;
10918 break;
10919 case BPF_JSLE:
10920 if (reg->s32_max_value <= sval)
10921 return 1;
10922 else if (reg->s32_min_value > sval)
10923 return 0;
10924 break;
10925 }
4f7b3e82 10926
3f50f132
JF
10927 return -1;
10928}
092ed096 10929
3f50f132
JF
10930
10931static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
10932{
10933 s64 sval = (s64)val;
a72dafaf 10934
4f7b3e82
AS
10935 switch (opcode) {
10936 case BPF_JEQ:
10937 if (tnum_is_const(reg->var_off))
10938 return !!tnum_equals_const(reg->var_off, val);
10939 break;
10940 case BPF_JNE:
10941 if (tnum_is_const(reg->var_off))
10942 return !tnum_equals_const(reg->var_off, val);
10943 break;
960ea056
JK
10944 case BPF_JSET:
10945 if ((~reg->var_off.mask & reg->var_off.value) & val)
10946 return 1;
10947 if (!((reg->var_off.mask | reg->var_off.value) & val))
10948 return 0;
10949 break;
4f7b3e82
AS
10950 case BPF_JGT:
10951 if (reg->umin_value > val)
10952 return 1;
10953 else if (reg->umax_value <= val)
10954 return 0;
10955 break;
10956 case BPF_JSGT:
a72dafaf 10957 if (reg->smin_value > sval)
4f7b3e82 10958 return 1;
ee114dd6 10959 else if (reg->smax_value <= sval)
4f7b3e82
AS
10960 return 0;
10961 break;
10962 case BPF_JLT:
10963 if (reg->umax_value < val)
10964 return 1;
10965 else if (reg->umin_value >= val)
10966 return 0;
10967 break;
10968 case BPF_JSLT:
a72dafaf 10969 if (reg->smax_value < sval)
4f7b3e82 10970 return 1;
a72dafaf 10971 else if (reg->smin_value >= sval)
4f7b3e82
AS
10972 return 0;
10973 break;
10974 case BPF_JGE:
10975 if (reg->umin_value >= val)
10976 return 1;
10977 else if (reg->umax_value < val)
10978 return 0;
10979 break;
10980 case BPF_JSGE:
a72dafaf 10981 if (reg->smin_value >= sval)
4f7b3e82 10982 return 1;
a72dafaf 10983 else if (reg->smax_value < sval)
4f7b3e82
AS
10984 return 0;
10985 break;
10986 case BPF_JLE:
10987 if (reg->umax_value <= val)
10988 return 1;
10989 else if (reg->umin_value > val)
10990 return 0;
10991 break;
10992 case BPF_JSLE:
a72dafaf 10993 if (reg->smax_value <= sval)
4f7b3e82 10994 return 1;
a72dafaf 10995 else if (reg->smin_value > sval)
4f7b3e82
AS
10996 return 0;
10997 break;
10998 }
10999
11000 return -1;
11001}
11002
3f50f132
JF
11003/* compute branch direction of the expression "if (reg opcode val) goto target;"
11004 * and return:
11005 * 1 - branch will be taken and "goto target" will be executed
11006 * 0 - branch will not be taken and fall-through to next insn
11007 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11008 * range [0,10]
604dca5e 11009 */
3f50f132
JF
11010static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11011 bool is_jmp32)
604dca5e 11012{
cac616db
JF
11013 if (__is_pointer_value(false, reg)) {
11014 if (!reg_type_not_null(reg->type))
11015 return -1;
11016
11017 /* If pointer is valid tests against zero will fail so we can
11018 * use this to direct branch taken.
11019 */
11020 if (val != 0)
11021 return -1;
11022
11023 switch (opcode) {
11024 case BPF_JEQ:
11025 return 0;
11026 case BPF_JNE:
11027 return 1;
11028 default:
11029 return -1;
11030 }
11031 }
604dca5e 11032
3f50f132
JF
11033 if (is_jmp32)
11034 return is_branch32_taken(reg, val, opcode);
11035 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
11036}
11037
6d94e741
AS
11038static int flip_opcode(u32 opcode)
11039{
11040 /* How can we transform "a <op> b" into "b <op> a"? */
11041 static const u8 opcode_flip[16] = {
11042 /* these stay the same */
11043 [BPF_JEQ >> 4] = BPF_JEQ,
11044 [BPF_JNE >> 4] = BPF_JNE,
11045 [BPF_JSET >> 4] = BPF_JSET,
11046 /* these swap "lesser" and "greater" (L and G in the opcodes) */
11047 [BPF_JGE >> 4] = BPF_JLE,
11048 [BPF_JGT >> 4] = BPF_JLT,
11049 [BPF_JLE >> 4] = BPF_JGE,
11050 [BPF_JLT >> 4] = BPF_JGT,
11051 [BPF_JSGE >> 4] = BPF_JSLE,
11052 [BPF_JSGT >> 4] = BPF_JSLT,
11053 [BPF_JSLE >> 4] = BPF_JSGE,
11054 [BPF_JSLT >> 4] = BPF_JSGT
11055 };
11056 return opcode_flip[opcode >> 4];
11057}
11058
11059static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11060 struct bpf_reg_state *src_reg,
11061 u8 opcode)
11062{
11063 struct bpf_reg_state *pkt;
11064
11065 if (src_reg->type == PTR_TO_PACKET_END) {
11066 pkt = dst_reg;
11067 } else if (dst_reg->type == PTR_TO_PACKET_END) {
11068 pkt = src_reg;
11069 opcode = flip_opcode(opcode);
11070 } else {
11071 return -1;
11072 }
11073
11074 if (pkt->range >= 0)
11075 return -1;
11076
11077 switch (opcode) {
11078 case BPF_JLE:
11079 /* pkt <= pkt_end */
11080 fallthrough;
11081 case BPF_JGT:
11082 /* pkt > pkt_end */
11083 if (pkt->range == BEYOND_PKT_END)
11084 /* pkt has at last one extra byte beyond pkt_end */
11085 return opcode == BPF_JGT;
11086 break;
11087 case BPF_JLT:
11088 /* pkt < pkt_end */
11089 fallthrough;
11090 case BPF_JGE:
11091 /* pkt >= pkt_end */
11092 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11093 return opcode == BPF_JGE;
11094 break;
11095 }
11096 return -1;
11097}
11098
48461135
JB
11099/* Adjusts the register min/max values in the case that the dst_reg is the
11100 * variable register that we are working on, and src_reg is a constant or we're
11101 * simply doing a BPF_K check.
f1174f77 11102 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
11103 */
11104static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
11105 struct bpf_reg_state *false_reg,
11106 u64 val, u32 val32,
092ed096 11107 u8 opcode, bool is_jmp32)
48461135 11108{
3f50f132
JF
11109 struct tnum false_32off = tnum_subreg(false_reg->var_off);
11110 struct tnum false_64off = false_reg->var_off;
11111 struct tnum true_32off = tnum_subreg(true_reg->var_off);
11112 struct tnum true_64off = true_reg->var_off;
11113 s64 sval = (s64)val;
11114 s32 sval32 = (s32)val32;
a72dafaf 11115
f1174f77
EC
11116 /* If the dst_reg is a pointer, we can't learn anything about its
11117 * variable offset from the compare (unless src_reg were a pointer into
11118 * the same object, but we don't bother with that.
11119 * Since false_reg and true_reg have the same type by construction, we
11120 * only need to check one of them for pointerness.
11121 */
11122 if (__is_pointer_value(false, false_reg))
11123 return;
4cabc5b1 11124
48461135 11125 switch (opcode) {
a12ca627
DB
11126 /* JEQ/JNE comparison doesn't change the register equivalence.
11127 *
11128 * r1 = r2;
11129 * if (r1 == 42) goto label;
11130 * ...
11131 * label: // here both r1 and r2 are known to be 42.
11132 *
11133 * Hence when marking register as known preserve it's ID.
11134 */
48461135 11135 case BPF_JEQ:
a12ca627
DB
11136 if (is_jmp32) {
11137 __mark_reg32_known(true_reg, val32);
11138 true_32off = tnum_subreg(true_reg->var_off);
11139 } else {
11140 ___mark_reg_known(true_reg, val);
11141 true_64off = true_reg->var_off;
11142 }
11143 break;
48461135 11144 case BPF_JNE:
a12ca627
DB
11145 if (is_jmp32) {
11146 __mark_reg32_known(false_reg, val32);
11147 false_32off = tnum_subreg(false_reg->var_off);
11148 } else {
11149 ___mark_reg_known(false_reg, val);
11150 false_64off = false_reg->var_off;
11151 }
48461135 11152 break;
960ea056 11153 case BPF_JSET:
3f50f132
JF
11154 if (is_jmp32) {
11155 false_32off = tnum_and(false_32off, tnum_const(~val32));
11156 if (is_power_of_2(val32))
11157 true_32off = tnum_or(true_32off,
11158 tnum_const(val32));
11159 } else {
11160 false_64off = tnum_and(false_64off, tnum_const(~val));
11161 if (is_power_of_2(val))
11162 true_64off = tnum_or(true_64off,
11163 tnum_const(val));
11164 }
960ea056 11165 break;
48461135 11166 case BPF_JGE:
a72dafaf
JW
11167 case BPF_JGT:
11168 {
3f50f132
JF
11169 if (is_jmp32) {
11170 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
11171 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11172
11173 false_reg->u32_max_value = min(false_reg->u32_max_value,
11174 false_umax);
11175 true_reg->u32_min_value = max(true_reg->u32_min_value,
11176 true_umin);
11177 } else {
11178 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
11179 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11180
11181 false_reg->umax_value = min(false_reg->umax_value, false_umax);
11182 true_reg->umin_value = max(true_reg->umin_value, true_umin);
11183 }
b03c9f9f 11184 break;
a72dafaf 11185 }
48461135 11186 case BPF_JSGE:
a72dafaf
JW
11187 case BPF_JSGT:
11188 {
3f50f132
JF
11189 if (is_jmp32) {
11190 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
11191 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 11192
3f50f132
JF
11193 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11194 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11195 } else {
11196 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
11197 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11198
11199 false_reg->smax_value = min(false_reg->smax_value, false_smax);
11200 true_reg->smin_value = max(true_reg->smin_value, true_smin);
11201 }
48461135 11202 break;
a72dafaf 11203 }
b4e432f1 11204 case BPF_JLE:
a72dafaf
JW
11205 case BPF_JLT:
11206 {
3f50f132
JF
11207 if (is_jmp32) {
11208 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
11209 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11210
11211 false_reg->u32_min_value = max(false_reg->u32_min_value,
11212 false_umin);
11213 true_reg->u32_max_value = min(true_reg->u32_max_value,
11214 true_umax);
11215 } else {
11216 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
11217 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11218
11219 false_reg->umin_value = max(false_reg->umin_value, false_umin);
11220 true_reg->umax_value = min(true_reg->umax_value, true_umax);
11221 }
b4e432f1 11222 break;
a72dafaf 11223 }
b4e432f1 11224 case BPF_JSLE:
a72dafaf
JW
11225 case BPF_JSLT:
11226 {
3f50f132
JF
11227 if (is_jmp32) {
11228 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
11229 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 11230
3f50f132
JF
11231 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11232 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11233 } else {
11234 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
11235 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11236
11237 false_reg->smin_value = max(false_reg->smin_value, false_smin);
11238 true_reg->smax_value = min(true_reg->smax_value, true_smax);
11239 }
b4e432f1 11240 break;
a72dafaf 11241 }
48461135 11242 default:
0fc31b10 11243 return;
48461135
JB
11244 }
11245
3f50f132
JF
11246 if (is_jmp32) {
11247 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11248 tnum_subreg(false_32off));
11249 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11250 tnum_subreg(true_32off));
11251 __reg_combine_32_into_64(false_reg);
11252 __reg_combine_32_into_64(true_reg);
11253 } else {
11254 false_reg->var_off = false_64off;
11255 true_reg->var_off = true_64off;
11256 __reg_combine_64_into_32(false_reg);
11257 __reg_combine_64_into_32(true_reg);
11258 }
48461135
JB
11259}
11260
f1174f77
EC
11261/* Same as above, but for the case that dst_reg holds a constant and src_reg is
11262 * the variable reg.
48461135
JB
11263 */
11264static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
11265 struct bpf_reg_state *false_reg,
11266 u64 val, u32 val32,
092ed096 11267 u8 opcode, bool is_jmp32)
48461135 11268{
6d94e741 11269 opcode = flip_opcode(opcode);
0fc31b10
JH
11270 /* This uses zero as "not present in table"; luckily the zero opcode,
11271 * BPF_JA, can't get here.
b03c9f9f 11272 */
0fc31b10 11273 if (opcode)
3f50f132 11274 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
11275}
11276
11277/* Regs are known to be equal, so intersect their min/max/var_off */
11278static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11279 struct bpf_reg_state *dst_reg)
11280{
b03c9f9f
EC
11281 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11282 dst_reg->umin_value);
11283 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11284 dst_reg->umax_value);
11285 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11286 dst_reg->smin_value);
11287 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11288 dst_reg->smax_value);
f1174f77
EC
11289 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11290 dst_reg->var_off);
3844d153
DB
11291 reg_bounds_sync(src_reg);
11292 reg_bounds_sync(dst_reg);
f1174f77
EC
11293}
11294
11295static void reg_combine_min_max(struct bpf_reg_state *true_src,
11296 struct bpf_reg_state *true_dst,
11297 struct bpf_reg_state *false_src,
11298 struct bpf_reg_state *false_dst,
11299 u8 opcode)
11300{
11301 switch (opcode) {
11302 case BPF_JEQ:
11303 __reg_combine_min_max(true_src, true_dst);
11304 break;
11305 case BPF_JNE:
11306 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 11307 break;
4cabc5b1 11308 }
48461135
JB
11309}
11310
fd978bf7
JS
11311static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11312 struct bpf_reg_state *reg, u32 id,
840b9615 11313 bool is_null)
57a09bf0 11314{
c25b2ae1 11315 if (type_may_be_null(reg->type) && reg->id == id &&
fca1aa75 11316 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
df57f38a
KKD
11317 /* Old offset (both fixed and variable parts) should have been
11318 * known-zero, because we don't allow pointer arithmetic on
11319 * pointers that might be NULL. If we see this happening, don't
11320 * convert the register.
11321 *
11322 * But in some cases, some helpers that return local kptrs
11323 * advance offset for the returned pointer. In those cases, it
11324 * is fine to expect to see reg->off.
11325 */
11326 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11327 return;
11328 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
e60b0d12 11329 return;
f1174f77
EC
11330 if (is_null) {
11331 reg->type = SCALAR_VALUE;
1b986589
MKL
11332 /* We don't need id and ref_obj_id from this point
11333 * onwards anymore, thus we should better reset it,
11334 * so that state pruning has chances to take effect.
11335 */
11336 reg->id = 0;
11337 reg->ref_obj_id = 0;
4ddb7416
DB
11338
11339 return;
11340 }
11341
11342 mark_ptr_not_null_reg(reg);
11343
11344 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 11345 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 11346 * in release_reference().
1b986589
MKL
11347 *
11348 * reg->id is still used by spin_lock ptr. Other
11349 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
11350 */
11351 reg->id = 0;
56f668df 11352 }
57a09bf0
TG
11353 }
11354}
11355
11356/* The logic is similar to find_good_pkt_pointers(), both could eventually
11357 * be folded together at some point.
11358 */
840b9615
JS
11359static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11360 bool is_null)
57a09bf0 11361{
f4d7e40a 11362 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 11363 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 11364 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 11365 u32 id = regs[regno].id;
57a09bf0 11366
1b986589
MKL
11367 if (ref_obj_id && ref_obj_id == id && is_null)
11368 /* regs[regno] is in the " == NULL" branch.
11369 * No one could have freed the reference state before
11370 * doing the NULL check.
11371 */
11372 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 11373
b239da34
KKD
11374 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11375 mark_ptr_or_null_reg(state, reg, id, is_null);
11376 }));
57a09bf0
TG
11377}
11378
5beca081
DB
11379static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11380 struct bpf_reg_state *dst_reg,
11381 struct bpf_reg_state *src_reg,
11382 struct bpf_verifier_state *this_branch,
11383 struct bpf_verifier_state *other_branch)
11384{
11385 if (BPF_SRC(insn->code) != BPF_X)
11386 return false;
11387
092ed096
JW
11388 /* Pointers are always 64-bit. */
11389 if (BPF_CLASS(insn->code) == BPF_JMP32)
11390 return false;
11391
5beca081
DB
11392 switch (BPF_OP(insn->code)) {
11393 case BPF_JGT:
11394 if ((dst_reg->type == PTR_TO_PACKET &&
11395 src_reg->type == PTR_TO_PACKET_END) ||
11396 (dst_reg->type == PTR_TO_PACKET_META &&
11397 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11398 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11399 find_good_pkt_pointers(this_branch, dst_reg,
11400 dst_reg->type, false);
6d94e741 11401 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
11402 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11403 src_reg->type == PTR_TO_PACKET) ||
11404 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11405 src_reg->type == PTR_TO_PACKET_META)) {
11406 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
11407 find_good_pkt_pointers(other_branch, src_reg,
11408 src_reg->type, true);
6d94e741 11409 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
11410 } else {
11411 return false;
11412 }
11413 break;
11414 case BPF_JLT:
11415 if ((dst_reg->type == PTR_TO_PACKET &&
11416 src_reg->type == PTR_TO_PACKET_END) ||
11417 (dst_reg->type == PTR_TO_PACKET_META &&
11418 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11419 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11420 find_good_pkt_pointers(other_branch, dst_reg,
11421 dst_reg->type, true);
6d94e741 11422 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
11423 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11424 src_reg->type == PTR_TO_PACKET) ||
11425 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11426 src_reg->type == PTR_TO_PACKET_META)) {
11427 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
11428 find_good_pkt_pointers(this_branch, src_reg,
11429 src_reg->type, false);
6d94e741 11430 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
11431 } else {
11432 return false;
11433 }
11434 break;
11435 case BPF_JGE:
11436 if ((dst_reg->type == PTR_TO_PACKET &&
11437 src_reg->type == PTR_TO_PACKET_END) ||
11438 (dst_reg->type == PTR_TO_PACKET_META &&
11439 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11440 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11441 find_good_pkt_pointers(this_branch, dst_reg,
11442 dst_reg->type, true);
6d94e741 11443 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
11444 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11445 src_reg->type == PTR_TO_PACKET) ||
11446 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11447 src_reg->type == PTR_TO_PACKET_META)) {
11448 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11449 find_good_pkt_pointers(other_branch, src_reg,
11450 src_reg->type, false);
6d94e741 11451 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
11452 } else {
11453 return false;
11454 }
11455 break;
11456 case BPF_JLE:
11457 if ((dst_reg->type == PTR_TO_PACKET &&
11458 src_reg->type == PTR_TO_PACKET_END) ||
11459 (dst_reg->type == PTR_TO_PACKET_META &&
11460 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11461 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11462 find_good_pkt_pointers(other_branch, dst_reg,
11463 dst_reg->type, false);
6d94e741 11464 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
11465 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11466 src_reg->type == PTR_TO_PACKET) ||
11467 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11468 src_reg->type == PTR_TO_PACKET_META)) {
11469 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11470 find_good_pkt_pointers(this_branch, src_reg,
11471 src_reg->type, true);
6d94e741 11472 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
11473 } else {
11474 return false;
11475 }
11476 break;
11477 default:
11478 return false;
11479 }
11480
11481 return true;
11482}
11483
75748837
AS
11484static void find_equal_scalars(struct bpf_verifier_state *vstate,
11485 struct bpf_reg_state *known_reg)
11486{
11487 struct bpf_func_state *state;
11488 struct bpf_reg_state *reg;
75748837 11489
b239da34
KKD
11490 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11491 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11492 *reg = *known_reg;
11493 }));
75748837
AS
11494}
11495
58e2af8b 11496static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
11497 struct bpf_insn *insn, int *insn_idx)
11498{
f4d7e40a
AS
11499 struct bpf_verifier_state *this_branch = env->cur_state;
11500 struct bpf_verifier_state *other_branch;
11501 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 11502 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 11503 struct bpf_reg_state *eq_branch_regs;
17a52670 11504 u8 opcode = BPF_OP(insn->code);
092ed096 11505 bool is_jmp32;
fb8d251e 11506 int pred = -1;
17a52670
AS
11507 int err;
11508
092ed096
JW
11509 /* Only conditional jumps are expected to reach here. */
11510 if (opcode == BPF_JA || opcode > BPF_JSLE) {
11511 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
11512 return -EINVAL;
11513 }
11514
11515 if (BPF_SRC(insn->code) == BPF_X) {
11516 if (insn->imm != 0) {
092ed096 11517 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
11518 return -EINVAL;
11519 }
11520
11521 /* check src1 operand */
dc503a8a 11522 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11523 if (err)
11524 return err;
1be7f75d
AS
11525
11526 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 11527 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
11528 insn->src_reg);
11529 return -EACCES;
11530 }
fb8d251e 11531 src_reg = &regs[insn->src_reg];
17a52670
AS
11532 } else {
11533 if (insn->src_reg != BPF_REG_0) {
092ed096 11534 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
11535 return -EINVAL;
11536 }
11537 }
11538
11539 /* check src2 operand */
dc503a8a 11540 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11541 if (err)
11542 return err;
11543
1a0dc1ac 11544 dst_reg = &regs[insn->dst_reg];
092ed096 11545 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 11546
3f50f132
JF
11547 if (BPF_SRC(insn->code) == BPF_K) {
11548 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11549 } else if (src_reg->type == SCALAR_VALUE &&
11550 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11551 pred = is_branch_taken(dst_reg,
11552 tnum_subreg(src_reg->var_off).value,
11553 opcode,
11554 is_jmp32);
11555 } else if (src_reg->type == SCALAR_VALUE &&
11556 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11557 pred = is_branch_taken(dst_reg,
11558 src_reg->var_off.value,
11559 opcode,
11560 is_jmp32);
6d94e741
AS
11561 } else if (reg_is_pkt_pointer_any(dst_reg) &&
11562 reg_is_pkt_pointer_any(src_reg) &&
11563 !is_jmp32) {
11564 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
11565 }
11566
b5dc0163 11567 if (pred >= 0) {
cac616db
JF
11568 /* If we get here with a dst_reg pointer type it is because
11569 * above is_branch_taken() special cased the 0 comparison.
11570 */
11571 if (!__is_pointer_value(false, dst_reg))
11572 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
11573 if (BPF_SRC(insn->code) == BPF_X && !err &&
11574 !__is_pointer_value(false, src_reg))
b5dc0163
AS
11575 err = mark_chain_precision(env, insn->src_reg);
11576 if (err)
11577 return err;
11578 }
9183671a 11579
fb8d251e 11580 if (pred == 1) {
9183671a
DB
11581 /* Only follow the goto, ignore fall-through. If needed, push
11582 * the fall-through branch for simulation under speculative
11583 * execution.
11584 */
11585 if (!env->bypass_spec_v1 &&
11586 !sanitize_speculative_path(env, insn, *insn_idx + 1,
11587 *insn_idx))
11588 return -EFAULT;
fb8d251e
AS
11589 *insn_idx += insn->off;
11590 return 0;
11591 } else if (pred == 0) {
9183671a
DB
11592 /* Only follow the fall-through branch, since that's where the
11593 * program will go. If needed, push the goto branch for
11594 * simulation under speculative execution.
fb8d251e 11595 */
9183671a
DB
11596 if (!env->bypass_spec_v1 &&
11597 !sanitize_speculative_path(env, insn,
11598 *insn_idx + insn->off + 1,
11599 *insn_idx))
11600 return -EFAULT;
fb8d251e 11601 return 0;
17a52670
AS
11602 }
11603
979d63d5
DB
11604 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11605 false);
17a52670
AS
11606 if (!other_branch)
11607 return -EFAULT;
f4d7e40a 11608 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 11609
48461135
JB
11610 /* detect if we are comparing against a constant value so we can adjust
11611 * our min/max values for our dst register.
f1174f77 11612 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
11613 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11614 * because otherwise the different base pointers mean the offsets aren't
f1174f77 11615 * comparable.
48461135
JB
11616 */
11617 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 11618 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 11619
f1174f77 11620 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
11621 src_reg->type == SCALAR_VALUE) {
11622 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
11623 (is_jmp32 &&
11624 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 11625 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 11626 dst_reg,
3f50f132
JF
11627 src_reg->var_off.value,
11628 tnum_subreg(src_reg->var_off).value,
092ed096
JW
11629 opcode, is_jmp32);
11630 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
11631 (is_jmp32 &&
11632 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 11633 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 11634 src_reg,
3f50f132
JF
11635 dst_reg->var_off.value,
11636 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
11637 opcode, is_jmp32);
11638 else if (!is_jmp32 &&
11639 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 11640 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
11641 reg_combine_min_max(&other_branch_regs[insn->src_reg],
11642 &other_branch_regs[insn->dst_reg],
092ed096 11643 src_reg, dst_reg, opcode);
e688c3db
AS
11644 if (src_reg->id &&
11645 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
11646 find_equal_scalars(this_branch, src_reg);
11647 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11648 }
11649
f1174f77
EC
11650 }
11651 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 11652 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
11653 dst_reg, insn->imm, (u32)insn->imm,
11654 opcode, is_jmp32);
48461135
JB
11655 }
11656
e688c3db
AS
11657 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11658 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
11659 find_equal_scalars(this_branch, dst_reg);
11660 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11661 }
11662
befae758
EZ
11663 /* if one pointer register is compared to another pointer
11664 * register check if PTR_MAYBE_NULL could be lifted.
11665 * E.g. register A - maybe null
11666 * register B - not null
11667 * for JNE A, B, ... - A is not null in the false branch;
11668 * for JEQ A, B, ... - A is not null in the true branch.
11669 */
11670 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11671 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11672 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
11673 eq_branch_regs = NULL;
11674 switch (opcode) {
11675 case BPF_JEQ:
11676 eq_branch_regs = other_branch_regs;
11677 break;
11678 case BPF_JNE:
11679 eq_branch_regs = regs;
11680 break;
11681 default:
11682 /* do nothing */
11683 break;
11684 }
11685 if (eq_branch_regs) {
11686 if (type_may_be_null(src_reg->type))
11687 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11688 else
11689 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11690 }
11691 }
11692
092ed096
JW
11693 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11694 * NOTE: these optimizations below are related with pointer comparison
11695 * which will never be JMP32.
11696 */
11697 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 11698 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 11699 type_may_be_null(dst_reg->type)) {
840b9615 11700 /* Mark all identical registers in each branch as either
57a09bf0
TG
11701 * safe or unknown depending R == 0 or R != 0 conditional.
11702 */
840b9615
JS
11703 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11704 opcode == BPF_JNE);
11705 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11706 opcode == BPF_JEQ);
5beca081
DB
11707 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11708 this_branch, other_branch) &&
11709 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
11710 verbose(env, "R%d pointer comparison prohibited\n",
11711 insn->dst_reg);
1be7f75d 11712 return -EACCES;
17a52670 11713 }
06ee7115 11714 if (env->log.level & BPF_LOG_LEVEL)
2e576648 11715 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
11716 return 0;
11717}
11718
17a52670 11719/* verify BPF_LD_IMM64 instruction */
58e2af8b 11720static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 11721{
d8eca5bb 11722 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 11723 struct bpf_reg_state *regs = cur_regs(env);
4976b718 11724 struct bpf_reg_state *dst_reg;
d8eca5bb 11725 struct bpf_map *map;
17a52670
AS
11726 int err;
11727
11728 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 11729 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
11730 return -EINVAL;
11731 }
11732 if (insn->off != 0) {
61bd5218 11733 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
11734 return -EINVAL;
11735 }
11736
dc503a8a 11737 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
11738 if (err)
11739 return err;
11740
4976b718 11741 dst_reg = &regs[insn->dst_reg];
6b173873 11742 if (insn->src_reg == 0) {
6b173873
JK
11743 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11744
4976b718 11745 dst_reg->type = SCALAR_VALUE;
b03c9f9f 11746 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 11747 return 0;
6b173873 11748 }
17a52670 11749
d400a6cf
DB
11750 /* All special src_reg cases are listed below. From this point onwards
11751 * we either succeed and assign a corresponding dst_reg->type after
11752 * zeroing the offset, or fail and reject the program.
11753 */
11754 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 11755
d400a6cf 11756 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 11757 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 11758 switch (base_type(dst_reg->type)) {
4976b718
HL
11759 case PTR_TO_MEM:
11760 dst_reg->mem_size = aux->btf_var.mem_size;
11761 break;
11762 case PTR_TO_BTF_ID:
22dc4a0f 11763 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
11764 dst_reg->btf_id = aux->btf_var.btf_id;
11765 break;
11766 default:
11767 verbose(env, "bpf verifier is misconfigured\n");
11768 return -EFAULT;
11769 }
11770 return 0;
11771 }
11772
69c087ba
YS
11773 if (insn->src_reg == BPF_PSEUDO_FUNC) {
11774 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
11775 u32 subprogno = find_subprog(env,
11776 env->insn_idx + insn->imm + 1);
69c087ba
YS
11777
11778 if (!aux->func_info) {
11779 verbose(env, "missing btf func_info\n");
11780 return -EINVAL;
11781 }
11782 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11783 verbose(env, "callback function not static\n");
11784 return -EINVAL;
11785 }
11786
11787 dst_reg->type = PTR_TO_FUNC;
11788 dst_reg->subprogno = subprogno;
11789 return 0;
11790 }
11791
d8eca5bb 11792 map = env->used_maps[aux->map_index];
4976b718 11793 dst_reg->map_ptr = map;
d8eca5bb 11794
387544bf
AS
11795 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11796 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
11797 dst_reg->type = PTR_TO_MAP_VALUE;
11798 dst_reg->off = aux->map_off;
d0d78c1d
KKD
11799 WARN_ON_ONCE(map->max_entries != 1);
11800 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
11801 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11802 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 11803 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
11804 } else {
11805 verbose(env, "bpf verifier is misconfigured\n");
11806 return -EINVAL;
11807 }
17a52670 11808
17a52670
AS
11809 return 0;
11810}
11811
96be4325
DB
11812static bool may_access_skb(enum bpf_prog_type type)
11813{
11814 switch (type) {
11815 case BPF_PROG_TYPE_SOCKET_FILTER:
11816 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 11817 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
11818 return true;
11819 default:
11820 return false;
11821 }
11822}
11823
ddd872bc
AS
11824/* verify safety of LD_ABS|LD_IND instructions:
11825 * - they can only appear in the programs where ctx == skb
11826 * - since they are wrappers of function calls, they scratch R1-R5 registers,
11827 * preserve R6-R9, and store return value into R0
11828 *
11829 * Implicit input:
11830 * ctx == skb == R6 == CTX
11831 *
11832 * Explicit input:
11833 * SRC == any register
11834 * IMM == 32-bit immediate
11835 *
11836 * Output:
11837 * R0 - 8/16/32-bit skb data converted to cpu endianness
11838 */
58e2af8b 11839static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 11840{
638f5b90 11841 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 11842 static const int ctx_reg = BPF_REG_6;
ddd872bc 11843 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
11844 int i, err;
11845
7e40781c 11846 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 11847 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
11848 return -EINVAL;
11849 }
11850
e0cea7ce
DB
11851 if (!env->ops->gen_ld_abs) {
11852 verbose(env, "bpf verifier is misconfigured\n");
11853 return -EINVAL;
11854 }
11855
ddd872bc 11856 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 11857 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 11858 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 11859 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
11860 return -EINVAL;
11861 }
11862
11863 /* check whether implicit source operand (register R6) is readable */
6d4f151a 11864 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
11865 if (err)
11866 return err;
11867
fd978bf7
JS
11868 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
11869 * gen_ld_abs() may terminate the program at runtime, leading to
11870 * reference leak.
11871 */
11872 err = check_reference_leak(env);
11873 if (err) {
11874 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
11875 return err;
11876 }
11877
d0d78c1d 11878 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
11879 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
11880 return -EINVAL;
11881 }
11882
9bb00b28
YS
11883 if (env->cur_state->active_rcu_lock) {
11884 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
11885 return -EINVAL;
11886 }
11887
6d4f151a 11888 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
11889 verbose(env,
11890 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
11891 return -EINVAL;
11892 }
11893
11894 if (mode == BPF_IND) {
11895 /* check explicit source operand */
dc503a8a 11896 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
11897 if (err)
11898 return err;
11899 }
11900
be80a1d3 11901 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
11902 if (err < 0)
11903 return err;
11904
ddd872bc 11905 /* reset caller saved regs to unreadable */
dc503a8a 11906 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 11907 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
11908 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11909 }
ddd872bc
AS
11910
11911 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
11912 * the value fetched from the packet.
11913 * Already marked as written above.
ddd872bc 11914 */
61bd5218 11915 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
11916 /* ld_abs load up to 32-bit skb data. */
11917 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
11918 return 0;
11919}
11920
390ee7e2
AS
11921static int check_return_code(struct bpf_verifier_env *env)
11922{
5cf1e914 11923 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 11924 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
11925 struct bpf_reg_state *reg;
11926 struct tnum range = tnum_range(0, 1);
7e40781c 11927 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 11928 int err;
bfc6bb74
AS
11929 struct bpf_func_state *frame = env->cur_state->frame[0];
11930 const bool is_subprog = frame->subprogno;
27ae7997 11931
9e4e01df 11932 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
11933 if (!is_subprog) {
11934 switch (prog_type) {
11935 case BPF_PROG_TYPE_LSM:
11936 if (prog->expected_attach_type == BPF_LSM_CGROUP)
11937 /* See below, can be 0 or 0-1 depending on hook. */
11938 break;
11939 fallthrough;
11940 case BPF_PROG_TYPE_STRUCT_OPS:
11941 if (!prog->aux->attach_func_proto->type)
11942 return 0;
11943 break;
11944 default:
11945 break;
11946 }
11947 }
27ae7997 11948
8fb33b60 11949 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
11950 * to return the value from eBPF program.
11951 * Make sure that it's readable at this time
11952 * of bpf_exit, which means that program wrote
11953 * something into it earlier
11954 */
11955 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
11956 if (err)
11957 return err;
11958
11959 if (is_pointer_value(env, BPF_REG_0)) {
11960 verbose(env, "R0 leaks addr as return value\n");
11961 return -EACCES;
11962 }
390ee7e2 11963
f782e2c3 11964 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
11965
11966 if (frame->in_async_callback_fn) {
11967 /* enforce return zero from async callbacks like timer */
11968 if (reg->type != SCALAR_VALUE) {
11969 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 11970 reg_type_str(env, reg->type));
bfc6bb74
AS
11971 return -EINVAL;
11972 }
11973
11974 if (!tnum_in(tnum_const(0), reg->var_off)) {
11975 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
11976 return -EINVAL;
11977 }
11978 return 0;
11979 }
11980
f782e2c3
DB
11981 if (is_subprog) {
11982 if (reg->type != SCALAR_VALUE) {
11983 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 11984 reg_type_str(env, reg->type));
f782e2c3
DB
11985 return -EINVAL;
11986 }
11987 return 0;
11988 }
11989
7e40781c 11990 switch (prog_type) {
983695fa
DB
11991 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
11992 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
11993 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
11994 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
11995 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
11996 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
11997 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 11998 range = tnum_range(1, 1);
77241217
SF
11999 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12000 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12001 range = tnum_range(0, 3);
ed4ed404 12002 break;
390ee7e2 12003 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 12004 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12005 range = tnum_range(0, 3);
12006 enforce_attach_type_range = tnum_range(2, 3);
12007 }
ed4ed404 12008 break;
390ee7e2
AS
12009 case BPF_PROG_TYPE_CGROUP_SOCK:
12010 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 12011 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 12012 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 12013 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 12014 break;
15ab09bd
AS
12015 case BPF_PROG_TYPE_RAW_TRACEPOINT:
12016 if (!env->prog->aux->attach_btf_id)
12017 return 0;
12018 range = tnum_const(0);
12019 break;
15d83c4d 12020 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
12021 switch (env->prog->expected_attach_type) {
12022 case BPF_TRACE_FENTRY:
12023 case BPF_TRACE_FEXIT:
12024 range = tnum_const(0);
12025 break;
12026 case BPF_TRACE_RAW_TP:
12027 case BPF_MODIFY_RETURN:
15d83c4d 12028 return 0;
2ec0616e
DB
12029 case BPF_TRACE_ITER:
12030 break;
e92888c7
YS
12031 default:
12032 return -ENOTSUPP;
12033 }
15d83c4d 12034 break;
e9ddbb77
JS
12035 case BPF_PROG_TYPE_SK_LOOKUP:
12036 range = tnum_range(SK_DROP, SK_PASS);
12037 break;
69fd337a
SF
12038
12039 case BPF_PROG_TYPE_LSM:
12040 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12041 /* Regular BPF_PROG_TYPE_LSM programs can return
12042 * any value.
12043 */
12044 return 0;
12045 }
12046 if (!env->prog->aux->attach_func_proto->type) {
12047 /* Make sure programs that attach to void
12048 * hooks don't try to modify return value.
12049 */
12050 range = tnum_range(1, 1);
12051 }
12052 break;
12053
e92888c7
YS
12054 case BPF_PROG_TYPE_EXT:
12055 /* freplace program can return anything as its return value
12056 * depends on the to-be-replaced kernel func or bpf program.
12057 */
390ee7e2
AS
12058 default:
12059 return 0;
12060 }
12061
390ee7e2 12062 if (reg->type != SCALAR_VALUE) {
61bd5218 12063 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 12064 reg_type_str(env, reg->type));
390ee7e2
AS
12065 return -EINVAL;
12066 }
12067
12068 if (!tnum_in(range, reg->var_off)) {
bc2591d6 12069 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 12070 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 12071 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
12072 !prog->aux->attach_func_proto->type)
12073 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
12074 return -EINVAL;
12075 }
5cf1e914 12076
12077 if (!tnum_is_unknown(enforce_attach_type_range) &&
12078 tnum_in(enforce_attach_type_range, reg->var_off))
12079 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
12080 return 0;
12081}
12082
475fb78f
AS
12083/* non-recursive DFS pseudo code
12084 * 1 procedure DFS-iterative(G,v):
12085 * 2 label v as discovered
12086 * 3 let S be a stack
12087 * 4 S.push(v)
12088 * 5 while S is not empty
b6d20799 12089 * 6 t <- S.peek()
475fb78f
AS
12090 * 7 if t is what we're looking for:
12091 * 8 return t
12092 * 9 for all edges e in G.adjacentEdges(t) do
12093 * 10 if edge e is already labelled
12094 * 11 continue with the next edge
12095 * 12 w <- G.adjacentVertex(t,e)
12096 * 13 if vertex w is not discovered and not explored
12097 * 14 label e as tree-edge
12098 * 15 label w as discovered
12099 * 16 S.push(w)
12100 * 17 continue at 5
12101 * 18 else if vertex w is discovered
12102 * 19 label e as back-edge
12103 * 20 else
12104 * 21 // vertex w is explored
12105 * 22 label e as forward- or cross-edge
12106 * 23 label t as explored
12107 * 24 S.pop()
12108 *
12109 * convention:
12110 * 0x10 - discovered
12111 * 0x11 - discovered and fall-through edge labelled
12112 * 0x12 - discovered and fall-through and branch edges labelled
12113 * 0x20 - explored
12114 */
12115
12116enum {
12117 DISCOVERED = 0x10,
12118 EXPLORED = 0x20,
12119 FALLTHROUGH = 1,
12120 BRANCH = 2,
12121};
12122
dc2a4ebc
AS
12123static u32 state_htab_size(struct bpf_verifier_env *env)
12124{
12125 return env->prog->len;
12126}
12127
5d839021
AS
12128static struct bpf_verifier_state_list **explored_state(
12129 struct bpf_verifier_env *env,
12130 int idx)
12131{
dc2a4ebc
AS
12132 struct bpf_verifier_state *cur = env->cur_state;
12133 struct bpf_func_state *state = cur->frame[cur->curframe];
12134
12135 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
12136}
12137
12138static void init_explored_state(struct bpf_verifier_env *env, int idx)
12139{
a8f500af 12140 env->insn_aux_data[idx].prune_point = true;
5d839021 12141}
f1bca824 12142
59e2e27d
WAF
12143enum {
12144 DONE_EXPLORING = 0,
12145 KEEP_EXPLORING = 1,
12146};
12147
475fb78f
AS
12148/* t, w, e - match pseudo-code above:
12149 * t - index of current instruction
12150 * w - next instruction
12151 * e - edge
12152 */
2589726d
AS
12153static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12154 bool loop_ok)
475fb78f 12155{
7df737e9
AS
12156 int *insn_stack = env->cfg.insn_stack;
12157 int *insn_state = env->cfg.insn_state;
12158
475fb78f 12159 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 12160 return DONE_EXPLORING;
475fb78f
AS
12161
12162 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 12163 return DONE_EXPLORING;
475fb78f
AS
12164
12165 if (w < 0 || w >= env->prog->len) {
d9762e84 12166 verbose_linfo(env, t, "%d: ", t);
61bd5218 12167 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
12168 return -EINVAL;
12169 }
12170
f1bca824
AS
12171 if (e == BRANCH)
12172 /* mark branch target for state pruning */
5d839021 12173 init_explored_state(env, w);
f1bca824 12174
475fb78f
AS
12175 if (insn_state[w] == 0) {
12176 /* tree-edge */
12177 insn_state[t] = DISCOVERED | e;
12178 insn_state[w] = DISCOVERED;
7df737e9 12179 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 12180 return -E2BIG;
7df737e9 12181 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 12182 return KEEP_EXPLORING;
475fb78f 12183 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 12184 if (loop_ok && env->bpf_capable)
59e2e27d 12185 return DONE_EXPLORING;
d9762e84
MKL
12186 verbose_linfo(env, t, "%d: ", t);
12187 verbose_linfo(env, w, "%d: ", w);
61bd5218 12188 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
12189 return -EINVAL;
12190 } else if (insn_state[w] == EXPLORED) {
12191 /* forward- or cross-edge */
12192 insn_state[t] = DISCOVERED | e;
12193 } else {
61bd5218 12194 verbose(env, "insn state internal bug\n");
475fb78f
AS
12195 return -EFAULT;
12196 }
59e2e27d
WAF
12197 return DONE_EXPLORING;
12198}
12199
efdb22de
YS
12200static int visit_func_call_insn(int t, int insn_cnt,
12201 struct bpf_insn *insns,
12202 struct bpf_verifier_env *env,
12203 bool visit_callee)
12204{
12205 int ret;
12206
12207 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12208 if (ret)
12209 return ret;
12210
12211 if (t + 1 < insn_cnt)
12212 init_explored_state(env, t + 1);
12213 if (visit_callee) {
12214 init_explored_state(env, t);
86fc6ee6
AS
12215 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12216 /* It's ok to allow recursion from CFG point of
12217 * view. __check_func_call() will do the actual
12218 * check.
12219 */
12220 bpf_pseudo_func(insns + t));
efdb22de
YS
12221 }
12222 return ret;
12223}
12224
59e2e27d
WAF
12225/* Visits the instruction at index t and returns one of the following:
12226 * < 0 - an error occurred
12227 * DONE_EXPLORING - the instruction was fully explored
12228 * KEEP_EXPLORING - there is still work to be done before it is fully explored
12229 */
12230static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
12231{
12232 struct bpf_insn *insns = env->prog->insnsi;
12233 int ret;
12234
69c087ba
YS
12235 if (bpf_pseudo_func(insns + t))
12236 return visit_func_call_insn(t, insn_cnt, insns, env, true);
12237
59e2e27d
WAF
12238 /* All non-branch instructions have a single fall-through edge. */
12239 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12240 BPF_CLASS(insns[t].code) != BPF_JMP32)
12241 return push_insn(t, t + 1, FALLTHROUGH, env, false);
12242
12243 switch (BPF_OP(insns[t].code)) {
12244 case BPF_EXIT:
12245 return DONE_EXPLORING;
12246
12247 case BPF_CALL:
bfc6bb74
AS
12248 if (insns[t].imm == BPF_FUNC_timer_set_callback)
12249 /* Mark this call insn to trigger is_state_visited() check
12250 * before call itself is processed by __check_func_call().
12251 * Otherwise new async state will be pushed for further
12252 * exploration.
12253 */
12254 init_explored_state(env, t);
efdb22de
YS
12255 return visit_func_call_insn(t, insn_cnt, insns, env,
12256 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
12257
12258 case BPF_JA:
12259 if (BPF_SRC(insns[t].code) != BPF_K)
12260 return -EINVAL;
12261
12262 /* unconditional jump with single edge */
12263 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12264 true);
12265 if (ret)
12266 return ret;
12267
12268 /* unconditional jmp is not a good pruning point,
12269 * but it's marked, since backtracking needs
12270 * to record jmp history in is_state_visited().
12271 */
12272 init_explored_state(env, t + insns[t].off + 1);
12273 /* tell verifier to check for equivalent states
12274 * after every call and jump
12275 */
12276 if (t + 1 < insn_cnt)
12277 init_explored_state(env, t + 1);
12278
12279 return ret;
12280
12281 default:
12282 /* conditional jump with two edges */
12283 init_explored_state(env, t);
12284 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12285 if (ret)
12286 return ret;
12287
12288 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12289 }
475fb78f
AS
12290}
12291
12292/* non-recursive depth-first-search to detect loops in BPF program
12293 * loop == back-edge in directed graph
12294 */
58e2af8b 12295static int check_cfg(struct bpf_verifier_env *env)
475fb78f 12296{
475fb78f 12297 int insn_cnt = env->prog->len;
7df737e9 12298 int *insn_stack, *insn_state;
475fb78f 12299 int ret = 0;
59e2e27d 12300 int i;
475fb78f 12301
7df737e9 12302 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
12303 if (!insn_state)
12304 return -ENOMEM;
12305
7df737e9 12306 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 12307 if (!insn_stack) {
71dde681 12308 kvfree(insn_state);
475fb78f
AS
12309 return -ENOMEM;
12310 }
12311
12312 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12313 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 12314 env->cfg.cur_stack = 1;
475fb78f 12315
59e2e27d
WAF
12316 while (env->cfg.cur_stack > 0) {
12317 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 12318
59e2e27d
WAF
12319 ret = visit_insn(t, insn_cnt, env);
12320 switch (ret) {
12321 case DONE_EXPLORING:
12322 insn_state[t] = EXPLORED;
12323 env->cfg.cur_stack--;
12324 break;
12325 case KEEP_EXPLORING:
12326 break;
12327 default:
12328 if (ret > 0) {
12329 verbose(env, "visit_insn internal bug\n");
12330 ret = -EFAULT;
475fb78f 12331 }
475fb78f 12332 goto err_free;
59e2e27d 12333 }
475fb78f
AS
12334 }
12335
59e2e27d 12336 if (env->cfg.cur_stack < 0) {
61bd5218 12337 verbose(env, "pop stack internal bug\n");
475fb78f
AS
12338 ret = -EFAULT;
12339 goto err_free;
12340 }
475fb78f 12341
475fb78f
AS
12342 for (i = 0; i < insn_cnt; i++) {
12343 if (insn_state[i] != EXPLORED) {
61bd5218 12344 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
12345 ret = -EINVAL;
12346 goto err_free;
12347 }
12348 }
12349 ret = 0; /* cfg looks good */
12350
12351err_free:
71dde681
AS
12352 kvfree(insn_state);
12353 kvfree(insn_stack);
7df737e9 12354 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
12355 return ret;
12356}
12357
09b28d76
AS
12358static int check_abnormal_return(struct bpf_verifier_env *env)
12359{
12360 int i;
12361
12362 for (i = 1; i < env->subprog_cnt; i++) {
12363 if (env->subprog_info[i].has_ld_abs) {
12364 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12365 return -EINVAL;
12366 }
12367 if (env->subprog_info[i].has_tail_call) {
12368 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12369 return -EINVAL;
12370 }
12371 }
12372 return 0;
12373}
12374
838e9690
YS
12375/* The minimum supported BTF func info size */
12376#define MIN_BPF_FUNCINFO_SIZE 8
12377#define MAX_FUNCINFO_REC_SIZE 252
12378
c454a46b
MKL
12379static int check_btf_func(struct bpf_verifier_env *env,
12380 const union bpf_attr *attr,
af2ac3e1 12381 bpfptr_t uattr)
838e9690 12382{
09b28d76 12383 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 12384 u32 i, nfuncs, urec_size, min_size;
838e9690 12385 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 12386 struct bpf_func_info *krecord;
8c1b6e69 12387 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
12388 struct bpf_prog *prog;
12389 const struct btf *btf;
af2ac3e1 12390 bpfptr_t urecord;
d0b2818e 12391 u32 prev_offset = 0;
09b28d76 12392 bool scalar_return;
e7ed83d6 12393 int ret = -ENOMEM;
838e9690
YS
12394
12395 nfuncs = attr->func_info_cnt;
09b28d76
AS
12396 if (!nfuncs) {
12397 if (check_abnormal_return(env))
12398 return -EINVAL;
838e9690 12399 return 0;
09b28d76 12400 }
838e9690
YS
12401
12402 if (nfuncs != env->subprog_cnt) {
12403 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12404 return -EINVAL;
12405 }
12406
12407 urec_size = attr->func_info_rec_size;
12408 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12409 urec_size > MAX_FUNCINFO_REC_SIZE ||
12410 urec_size % sizeof(u32)) {
12411 verbose(env, "invalid func info rec size %u\n", urec_size);
12412 return -EINVAL;
12413 }
12414
c454a46b
MKL
12415 prog = env->prog;
12416 btf = prog->aux->btf;
838e9690 12417
af2ac3e1 12418 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
12419 min_size = min_t(u32, krec_size, urec_size);
12420
ba64e7d8 12421 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
12422 if (!krecord)
12423 return -ENOMEM;
8c1b6e69
AS
12424 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12425 if (!info_aux)
12426 goto err_free;
ba64e7d8 12427
838e9690
YS
12428 for (i = 0; i < nfuncs; i++) {
12429 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12430 if (ret) {
12431 if (ret == -E2BIG) {
12432 verbose(env, "nonzero tailing record in func info");
12433 /* set the size kernel expects so loader can zero
12434 * out the rest of the record.
12435 */
af2ac3e1
AS
12436 if (copy_to_bpfptr_offset(uattr,
12437 offsetof(union bpf_attr, func_info_rec_size),
12438 &min_size, sizeof(min_size)))
838e9690
YS
12439 ret = -EFAULT;
12440 }
c454a46b 12441 goto err_free;
838e9690
YS
12442 }
12443
af2ac3e1 12444 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 12445 ret = -EFAULT;
c454a46b 12446 goto err_free;
838e9690
YS
12447 }
12448
d30d42e0 12449 /* check insn_off */
09b28d76 12450 ret = -EINVAL;
838e9690 12451 if (i == 0) {
d30d42e0 12452 if (krecord[i].insn_off) {
838e9690 12453 verbose(env,
d30d42e0
MKL
12454 "nonzero insn_off %u for the first func info record",
12455 krecord[i].insn_off);
c454a46b 12456 goto err_free;
838e9690 12457 }
d30d42e0 12458 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
12459 verbose(env,
12460 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 12461 krecord[i].insn_off, prev_offset);
c454a46b 12462 goto err_free;
838e9690
YS
12463 }
12464
d30d42e0 12465 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 12466 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 12467 goto err_free;
838e9690
YS
12468 }
12469
12470 /* check type_id */
ba64e7d8 12471 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 12472 if (!type || !btf_type_is_func(type)) {
838e9690 12473 verbose(env, "invalid type id %d in func info",
ba64e7d8 12474 krecord[i].type_id);
c454a46b 12475 goto err_free;
838e9690 12476 }
51c39bb1 12477 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
12478
12479 func_proto = btf_type_by_id(btf, type->type);
12480 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12481 /* btf_func_check() already verified it during BTF load */
12482 goto err_free;
12483 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12484 scalar_return =
6089fb32 12485 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
12486 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12487 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12488 goto err_free;
12489 }
12490 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12491 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12492 goto err_free;
12493 }
12494
d30d42e0 12495 prev_offset = krecord[i].insn_off;
af2ac3e1 12496 bpfptr_add(&urecord, urec_size);
838e9690
YS
12497 }
12498
ba64e7d8
YS
12499 prog->aux->func_info = krecord;
12500 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 12501 prog->aux->func_info_aux = info_aux;
838e9690
YS
12502 return 0;
12503
c454a46b 12504err_free:
ba64e7d8 12505 kvfree(krecord);
8c1b6e69 12506 kfree(info_aux);
838e9690
YS
12507 return ret;
12508}
12509
ba64e7d8
YS
12510static void adjust_btf_func(struct bpf_verifier_env *env)
12511{
8c1b6e69 12512 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
12513 int i;
12514
8c1b6e69 12515 if (!aux->func_info)
ba64e7d8
YS
12516 return;
12517
12518 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 12519 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
12520}
12521
1b773d00 12522#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
12523#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
12524
12525static int check_btf_line(struct bpf_verifier_env *env,
12526 const union bpf_attr *attr,
af2ac3e1 12527 bpfptr_t uattr)
c454a46b
MKL
12528{
12529 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12530 struct bpf_subprog_info *sub;
12531 struct bpf_line_info *linfo;
12532 struct bpf_prog *prog;
12533 const struct btf *btf;
af2ac3e1 12534 bpfptr_t ulinfo;
c454a46b
MKL
12535 int err;
12536
12537 nr_linfo = attr->line_info_cnt;
12538 if (!nr_linfo)
12539 return 0;
0e6491b5
BC
12540 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12541 return -EINVAL;
c454a46b
MKL
12542
12543 rec_size = attr->line_info_rec_size;
12544 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12545 rec_size > MAX_LINEINFO_REC_SIZE ||
12546 rec_size & (sizeof(u32) - 1))
12547 return -EINVAL;
12548
12549 /* Need to zero it in case the userspace may
12550 * pass in a smaller bpf_line_info object.
12551 */
12552 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12553 GFP_KERNEL | __GFP_NOWARN);
12554 if (!linfo)
12555 return -ENOMEM;
12556
12557 prog = env->prog;
12558 btf = prog->aux->btf;
12559
12560 s = 0;
12561 sub = env->subprog_info;
af2ac3e1 12562 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
12563 expected_size = sizeof(struct bpf_line_info);
12564 ncopy = min_t(u32, expected_size, rec_size);
12565 for (i = 0; i < nr_linfo; i++) {
12566 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12567 if (err) {
12568 if (err == -E2BIG) {
12569 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
12570 if (copy_to_bpfptr_offset(uattr,
12571 offsetof(union bpf_attr, line_info_rec_size),
12572 &expected_size, sizeof(expected_size)))
c454a46b
MKL
12573 err = -EFAULT;
12574 }
12575 goto err_free;
12576 }
12577
af2ac3e1 12578 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
12579 err = -EFAULT;
12580 goto err_free;
12581 }
12582
12583 /*
12584 * Check insn_off to ensure
12585 * 1) strictly increasing AND
12586 * 2) bounded by prog->len
12587 *
12588 * The linfo[0].insn_off == 0 check logically falls into
12589 * the later "missing bpf_line_info for func..." case
12590 * because the first linfo[0].insn_off must be the
12591 * first sub also and the first sub must have
12592 * subprog_info[0].start == 0.
12593 */
12594 if ((i && linfo[i].insn_off <= prev_offset) ||
12595 linfo[i].insn_off >= prog->len) {
12596 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12597 i, linfo[i].insn_off, prev_offset,
12598 prog->len);
12599 err = -EINVAL;
12600 goto err_free;
12601 }
12602
fdbaa0be
MKL
12603 if (!prog->insnsi[linfo[i].insn_off].code) {
12604 verbose(env,
12605 "Invalid insn code at line_info[%u].insn_off\n",
12606 i);
12607 err = -EINVAL;
12608 goto err_free;
12609 }
12610
23127b33
MKL
12611 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12612 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
12613 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12614 err = -EINVAL;
12615 goto err_free;
12616 }
12617
12618 if (s != env->subprog_cnt) {
12619 if (linfo[i].insn_off == sub[s].start) {
12620 sub[s].linfo_idx = i;
12621 s++;
12622 } else if (sub[s].start < linfo[i].insn_off) {
12623 verbose(env, "missing bpf_line_info for func#%u\n", s);
12624 err = -EINVAL;
12625 goto err_free;
12626 }
12627 }
12628
12629 prev_offset = linfo[i].insn_off;
af2ac3e1 12630 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
12631 }
12632
12633 if (s != env->subprog_cnt) {
12634 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12635 env->subprog_cnt - s, s);
12636 err = -EINVAL;
12637 goto err_free;
12638 }
12639
12640 prog->aux->linfo = linfo;
12641 prog->aux->nr_linfo = nr_linfo;
12642
12643 return 0;
12644
12645err_free:
12646 kvfree(linfo);
12647 return err;
12648}
12649
fbd94c7a
AS
12650#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
12651#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
12652
12653static int check_core_relo(struct bpf_verifier_env *env,
12654 const union bpf_attr *attr,
12655 bpfptr_t uattr)
12656{
12657 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12658 struct bpf_core_relo core_relo = {};
12659 struct bpf_prog *prog = env->prog;
12660 const struct btf *btf = prog->aux->btf;
12661 struct bpf_core_ctx ctx = {
12662 .log = &env->log,
12663 .btf = btf,
12664 };
12665 bpfptr_t u_core_relo;
12666 int err;
12667
12668 nr_core_relo = attr->core_relo_cnt;
12669 if (!nr_core_relo)
12670 return 0;
12671 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12672 return -EINVAL;
12673
12674 rec_size = attr->core_relo_rec_size;
12675 if (rec_size < MIN_CORE_RELO_SIZE ||
12676 rec_size > MAX_CORE_RELO_SIZE ||
12677 rec_size % sizeof(u32))
12678 return -EINVAL;
12679
12680 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12681 expected_size = sizeof(struct bpf_core_relo);
12682 ncopy = min_t(u32, expected_size, rec_size);
12683
12684 /* Unlike func_info and line_info, copy and apply each CO-RE
12685 * relocation record one at a time.
12686 */
12687 for (i = 0; i < nr_core_relo; i++) {
12688 /* future proofing when sizeof(bpf_core_relo) changes */
12689 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12690 if (err) {
12691 if (err == -E2BIG) {
12692 verbose(env, "nonzero tailing record in core_relo");
12693 if (copy_to_bpfptr_offset(uattr,
12694 offsetof(union bpf_attr, core_relo_rec_size),
12695 &expected_size, sizeof(expected_size)))
12696 err = -EFAULT;
12697 }
12698 break;
12699 }
12700
12701 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12702 err = -EFAULT;
12703 break;
12704 }
12705
12706 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12707 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12708 i, core_relo.insn_off, prog->len);
12709 err = -EINVAL;
12710 break;
12711 }
12712
12713 err = bpf_core_apply(&ctx, &core_relo, i,
12714 &prog->insnsi[core_relo.insn_off / 8]);
12715 if (err)
12716 break;
12717 bpfptr_add(&u_core_relo, rec_size);
12718 }
12719 return err;
12720}
12721
c454a46b
MKL
12722static int check_btf_info(struct bpf_verifier_env *env,
12723 const union bpf_attr *attr,
af2ac3e1 12724 bpfptr_t uattr)
c454a46b
MKL
12725{
12726 struct btf *btf;
12727 int err;
12728
09b28d76
AS
12729 if (!attr->func_info_cnt && !attr->line_info_cnt) {
12730 if (check_abnormal_return(env))
12731 return -EINVAL;
c454a46b 12732 return 0;
09b28d76 12733 }
c454a46b
MKL
12734
12735 btf = btf_get_by_fd(attr->prog_btf_fd);
12736 if (IS_ERR(btf))
12737 return PTR_ERR(btf);
350a5c4d
AS
12738 if (btf_is_kernel(btf)) {
12739 btf_put(btf);
12740 return -EACCES;
12741 }
c454a46b
MKL
12742 env->prog->aux->btf = btf;
12743
12744 err = check_btf_func(env, attr, uattr);
12745 if (err)
12746 return err;
12747
12748 err = check_btf_line(env, attr, uattr);
12749 if (err)
12750 return err;
12751
fbd94c7a
AS
12752 err = check_core_relo(env, attr, uattr);
12753 if (err)
12754 return err;
12755
c454a46b 12756 return 0;
ba64e7d8
YS
12757}
12758
f1174f77
EC
12759/* check %cur's range satisfies %old's */
12760static bool range_within(struct bpf_reg_state *old,
12761 struct bpf_reg_state *cur)
12762{
b03c9f9f
EC
12763 return old->umin_value <= cur->umin_value &&
12764 old->umax_value >= cur->umax_value &&
12765 old->smin_value <= cur->smin_value &&
fd675184
DB
12766 old->smax_value >= cur->smax_value &&
12767 old->u32_min_value <= cur->u32_min_value &&
12768 old->u32_max_value >= cur->u32_max_value &&
12769 old->s32_min_value <= cur->s32_min_value &&
12770 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
12771}
12772
f1174f77
EC
12773/* If in the old state two registers had the same id, then they need to have
12774 * the same id in the new state as well. But that id could be different from
12775 * the old state, so we need to track the mapping from old to new ids.
12776 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12777 * regs with old id 5 must also have new id 9 for the new state to be safe. But
12778 * regs with a different old id could still have new id 9, we don't care about
12779 * that.
12780 * So we look through our idmap to see if this old id has been seen before. If
12781 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 12782 */
c9e73e3d 12783static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 12784{
f1174f77 12785 unsigned int i;
969bf05e 12786
c9e73e3d 12787 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
12788 if (!idmap[i].old) {
12789 /* Reached an empty slot; haven't seen this id before */
12790 idmap[i].old = old_id;
12791 idmap[i].cur = cur_id;
12792 return true;
12793 }
12794 if (idmap[i].old == old_id)
12795 return idmap[i].cur == cur_id;
12796 }
12797 /* We ran out of idmap slots, which should be impossible */
12798 WARN_ON_ONCE(1);
12799 return false;
12800}
12801
9242b5f5
AS
12802static void clean_func_state(struct bpf_verifier_env *env,
12803 struct bpf_func_state *st)
12804{
12805 enum bpf_reg_liveness live;
12806 int i, j;
12807
12808 for (i = 0; i < BPF_REG_FP; i++) {
12809 live = st->regs[i].live;
12810 /* liveness must not touch this register anymore */
12811 st->regs[i].live |= REG_LIVE_DONE;
12812 if (!(live & REG_LIVE_READ))
12813 /* since the register is unused, clear its state
12814 * to make further comparison simpler
12815 */
f54c7898 12816 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
12817 }
12818
12819 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12820 live = st->stack[i].spilled_ptr.live;
12821 /* liveness must not touch this stack slot anymore */
12822 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12823 if (!(live & REG_LIVE_READ)) {
f54c7898 12824 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
12825 for (j = 0; j < BPF_REG_SIZE; j++)
12826 st->stack[i].slot_type[j] = STACK_INVALID;
12827 }
12828 }
12829}
12830
12831static void clean_verifier_state(struct bpf_verifier_env *env,
12832 struct bpf_verifier_state *st)
12833{
12834 int i;
12835
12836 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
12837 /* all regs in this state in all frames were already marked */
12838 return;
12839
12840 for (i = 0; i <= st->curframe; i++)
12841 clean_func_state(env, st->frame[i]);
12842}
12843
12844/* the parentage chains form a tree.
12845 * the verifier states are added to state lists at given insn and
12846 * pushed into state stack for future exploration.
12847 * when the verifier reaches bpf_exit insn some of the verifer states
12848 * stored in the state lists have their final liveness state already,
12849 * but a lot of states will get revised from liveness point of view when
12850 * the verifier explores other branches.
12851 * Example:
12852 * 1: r0 = 1
12853 * 2: if r1 == 100 goto pc+1
12854 * 3: r0 = 2
12855 * 4: exit
12856 * when the verifier reaches exit insn the register r0 in the state list of
12857 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
12858 * of insn 2 and goes exploring further. At the insn 4 it will walk the
12859 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
12860 *
12861 * Since the verifier pushes the branch states as it sees them while exploring
12862 * the program the condition of walking the branch instruction for the second
12863 * time means that all states below this branch were already explored and
8fb33b60 12864 * their final liveness marks are already propagated.
9242b5f5
AS
12865 * Hence when the verifier completes the search of state list in is_state_visited()
12866 * we can call this clean_live_states() function to mark all liveness states
12867 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
12868 * will not be used.
12869 * This function also clears the registers and stack for states that !READ
12870 * to simplify state merging.
12871 *
12872 * Important note here that walking the same branch instruction in the callee
12873 * doesn't meant that the states are DONE. The verifier has to compare
12874 * the callsites
12875 */
12876static void clean_live_states(struct bpf_verifier_env *env, int insn,
12877 struct bpf_verifier_state *cur)
12878{
12879 struct bpf_verifier_state_list *sl;
12880 int i;
12881
5d839021 12882 sl = *explored_state(env, insn);
a8f500af 12883 while (sl) {
2589726d
AS
12884 if (sl->state.branches)
12885 goto next;
dc2a4ebc
AS
12886 if (sl->state.insn_idx != insn ||
12887 sl->state.curframe != cur->curframe)
9242b5f5
AS
12888 goto next;
12889 for (i = 0; i <= cur->curframe; i++)
12890 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
12891 goto next;
12892 clean_verifier_state(env, &sl->state);
12893next:
12894 sl = sl->next;
12895 }
12896}
12897
f1174f77 12898/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
12899static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
12900 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 12901{
f4d7e40a
AS
12902 bool equal;
12903
dc503a8a
EC
12904 if (!(rold->live & REG_LIVE_READ))
12905 /* explored state didn't use this */
12906 return true;
12907
679c782d 12908 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
12909
12910 if (rold->type == PTR_TO_STACK)
12911 /* two stack pointers are equal only if they're pointing to
12912 * the same stack frame, since fp-8 in foo != fp-8 in bar
12913 */
12914 return equal && rold->frameno == rcur->frameno;
12915
12916 if (equal)
969bf05e
AS
12917 return true;
12918
f1174f77
EC
12919 if (rold->type == NOT_INIT)
12920 /* explored state can't have used this */
969bf05e 12921 return true;
f1174f77
EC
12922 if (rcur->type == NOT_INIT)
12923 return false;
c25b2ae1 12924 switch (base_type(rold->type)) {
f1174f77 12925 case SCALAR_VALUE:
e042aa53
DB
12926 if (env->explore_alu_limits)
12927 return false;
f1174f77 12928 if (rcur->type == SCALAR_VALUE) {
f63181b6 12929 if (!rold->precise)
b5dc0163 12930 return true;
f1174f77
EC
12931 /* new val must satisfy old val knowledge */
12932 return range_within(rold, rcur) &&
12933 tnum_in(rold->var_off, rcur->var_off);
12934 } else {
179d1c56
JH
12935 /* We're trying to use a pointer in place of a scalar.
12936 * Even if the scalar was unbounded, this could lead to
12937 * pointer leaks because scalars are allowed to leak
12938 * while pointers are not. We could make this safe in
12939 * special cases if root is calling us, but it's
12940 * probably not worth the hassle.
f1174f77 12941 */
179d1c56 12942 return false;
f1174f77 12943 }
69c087ba 12944 case PTR_TO_MAP_KEY:
f1174f77 12945 case PTR_TO_MAP_VALUE:
c25b2ae1
HL
12946 /* a PTR_TO_MAP_VALUE could be safe to use as a
12947 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
12948 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
12949 * checked, doing so could have affected others with the same
12950 * id, and we can't check for that because we lost the id when
12951 * we converted to a PTR_TO_MAP_VALUE.
12952 */
12953 if (type_may_be_null(rold->type)) {
12954 if (!type_may_be_null(rcur->type))
12955 return false;
12956 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
12957 return false;
12958 /* Check our ids match any regs they're supposed to */
12959 return check_ids(rold->id, rcur->id, idmap);
12960 }
12961
1b688a19
EC
12962 /* If the new min/max/var_off satisfy the old ones and
12963 * everything else matches, we are OK.
d83525ca
AS
12964 * 'id' is not compared, since it's only used for maps with
12965 * bpf_spin_lock inside map element and in such cases if
12966 * the rest of the prog is valid for one map element then
12967 * it's valid for all map elements regardless of the key
12968 * used in bpf_map_lookup()
1b688a19
EC
12969 */
12970 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
12971 range_within(rold, rcur) &&
12972 tnum_in(rold->var_off, rcur->var_off);
de8f3a83 12973 case PTR_TO_PACKET_META:
f1174f77 12974 case PTR_TO_PACKET:
de8f3a83 12975 if (rcur->type != rold->type)
f1174f77
EC
12976 return false;
12977 /* We must have at least as much range as the old ptr
12978 * did, so that any accesses which were safe before are
12979 * still safe. This is true even if old range < old off,
12980 * since someone could have accessed through (ptr - k), or
12981 * even done ptr -= k in a register, to get a safe access.
12982 */
12983 if (rold->range > rcur->range)
12984 return false;
12985 /* If the offsets don't match, we can't trust our alignment;
12986 * nor can we be sure that we won't fall out of range.
12987 */
12988 if (rold->off != rcur->off)
12989 return false;
12990 /* id relations must be preserved */
12991 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
12992 return false;
12993 /* new val must satisfy old val knowledge */
12994 return range_within(rold, rcur) &&
12995 tnum_in(rold->var_off, rcur->var_off);
12996 case PTR_TO_CTX:
12997 case CONST_PTR_TO_MAP:
f1174f77 12998 case PTR_TO_PACKET_END:
d58e468b 12999 case PTR_TO_FLOW_KEYS:
c64b7983 13000 case PTR_TO_SOCKET:
46f8bc92 13001 case PTR_TO_SOCK_COMMON:
655a51e5 13002 case PTR_TO_TCP_SOCK:
fada7fdc 13003 case PTR_TO_XDP_SOCK:
f1174f77
EC
13004 /* Only valid matches are exact, which memcmp() above
13005 * would have accepted
13006 */
13007 default:
13008 /* Don't know what's going on, just say it's not safe */
13009 return false;
13010 }
969bf05e 13011
f1174f77
EC
13012 /* Shouldn't get here; if we do, say it's not safe */
13013 WARN_ON_ONCE(1);
969bf05e
AS
13014 return false;
13015}
13016
e042aa53
DB
13017static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13018 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
13019{
13020 int i, spi;
13021
638f5b90
AS
13022 /* walk slots of the explored stack and ignore any additional
13023 * slots in the current stack, since explored(safe) state
13024 * didn't use them
13025 */
13026 for (i = 0; i < old->allocated_stack; i++) {
13027 spi = i / BPF_REG_SIZE;
13028
b233920c
AS
13029 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13030 i += BPF_REG_SIZE - 1;
cc2b14d5 13031 /* explored state didn't use this */
fd05e57b 13032 continue;
b233920c 13033 }
cc2b14d5 13034
638f5b90
AS
13035 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13036 continue;
19e2dbb7
AS
13037
13038 /* explored stack has more populated slots than current stack
13039 * and these slots were used
13040 */
13041 if (i >= cur->allocated_stack)
13042 return false;
13043
cc2b14d5
AS
13044 /* if old state was safe with misc data in the stack
13045 * it will be safe with zero-initialized stack.
13046 * The opposite is not true
13047 */
13048 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13049 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13050 continue;
638f5b90
AS
13051 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13052 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13053 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 13054 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
13055 * this verifier states are not equivalent,
13056 * return false to continue verification of this path
13057 */
13058 return false;
27113c59 13059 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 13060 continue;
27113c59 13061 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 13062 continue;
e042aa53
DB
13063 if (!regsafe(env, &old->stack[spi].spilled_ptr,
13064 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
13065 /* when explored and current stack slot are both storing
13066 * spilled registers, check that stored pointers types
13067 * are the same as well.
13068 * Ex: explored safe path could have stored
13069 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13070 * but current path has stored:
13071 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13072 * such verifier states are not equivalent.
13073 * return false to continue verification of this path
13074 */
13075 return false;
13076 }
13077 return true;
13078}
13079
fd978bf7
JS
13080static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
13081{
13082 if (old->acquired_refs != cur->acquired_refs)
13083 return false;
13084 return !memcmp(old->refs, cur->refs,
13085 sizeof(*old->refs) * old->acquired_refs);
13086}
13087
f1bca824
AS
13088/* compare two verifier states
13089 *
13090 * all states stored in state_list are known to be valid, since
13091 * verifier reached 'bpf_exit' instruction through them
13092 *
13093 * this function is called when verifier exploring different branches of
13094 * execution popped from the state stack. If it sees an old state that has
13095 * more strict register state and more strict stack state then this execution
13096 * branch doesn't need to be explored further, since verifier already
13097 * concluded that more strict state leads to valid finish.
13098 *
13099 * Therefore two states are equivalent if register state is more conservative
13100 * and explored stack state is more conservative than the current one.
13101 * Example:
13102 * explored current
13103 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13104 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13105 *
13106 * In other words if current stack state (one being explored) has more
13107 * valid slots than old one that already passed validation, it means
13108 * the verifier can stop exploring and conclude that current state is valid too
13109 *
13110 * Similarly with registers. If explored state has register type as invalid
13111 * whereas register type in current state is meaningful, it means that
13112 * the current state will reach 'bpf_exit' instruction safely
13113 */
c9e73e3d 13114static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 13115 struct bpf_func_state *cur)
f1bca824
AS
13116{
13117 int i;
13118
c9e73e3d
LB
13119 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13120 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
13121 if (!regsafe(env, &old->regs[i], &cur->regs[i],
13122 env->idmap_scratch))
c9e73e3d 13123 return false;
f1bca824 13124
e042aa53 13125 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 13126 return false;
fd978bf7
JS
13127
13128 if (!refsafe(old, cur))
c9e73e3d
LB
13129 return false;
13130
13131 return true;
f1bca824
AS
13132}
13133
f4d7e40a
AS
13134static bool states_equal(struct bpf_verifier_env *env,
13135 struct bpf_verifier_state *old,
13136 struct bpf_verifier_state *cur)
13137{
13138 int i;
13139
13140 if (old->curframe != cur->curframe)
13141 return false;
13142
979d63d5
DB
13143 /* Verification state from speculative execution simulation
13144 * must never prune a non-speculative execution one.
13145 */
13146 if (old->speculative && !cur->speculative)
13147 return false;
13148
d0d78c1d
KKD
13149 if (old->active_lock.ptr != cur->active_lock.ptr ||
13150 old->active_lock.id != cur->active_lock.id)
d83525ca
AS
13151 return false;
13152
9bb00b28 13153 if (old->active_rcu_lock != cur->active_rcu_lock)
d83525ca
AS
13154 return false;
13155
f4d7e40a
AS
13156 /* for states to be equal callsites have to be the same
13157 * and all frame states need to be equivalent
13158 */
13159 for (i = 0; i <= old->curframe; i++) {
13160 if (old->frame[i]->callsite != cur->frame[i]->callsite)
13161 return false;
c9e73e3d 13162 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
13163 return false;
13164 }
13165 return true;
13166}
13167
5327ed3d
JW
13168/* Return 0 if no propagation happened. Return negative error code if error
13169 * happened. Otherwise, return the propagated bit.
13170 */
55e7f3b5
JW
13171static int propagate_liveness_reg(struct bpf_verifier_env *env,
13172 struct bpf_reg_state *reg,
13173 struct bpf_reg_state *parent_reg)
13174{
5327ed3d
JW
13175 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13176 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
13177 int err;
13178
5327ed3d
JW
13179 /* When comes here, read flags of PARENT_REG or REG could be any of
13180 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13181 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13182 */
13183 if (parent_flag == REG_LIVE_READ64 ||
13184 /* Or if there is no read flag from REG. */
13185 !flag ||
13186 /* Or if the read flag from REG is the same as PARENT_REG. */
13187 parent_flag == flag)
55e7f3b5
JW
13188 return 0;
13189
5327ed3d 13190 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
13191 if (err)
13192 return err;
13193
5327ed3d 13194 return flag;
55e7f3b5
JW
13195}
13196
8e9cd9ce 13197/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
13198 * straight-line code between a state and its parent. When we arrive at an
13199 * equivalent state (jump target or such) we didn't arrive by the straight-line
13200 * code, so read marks in the state must propagate to the parent regardless
13201 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 13202 * in mark_reg_read() is for.
8e9cd9ce 13203 */
f4d7e40a
AS
13204static int propagate_liveness(struct bpf_verifier_env *env,
13205 const struct bpf_verifier_state *vstate,
13206 struct bpf_verifier_state *vparent)
dc503a8a 13207{
3f8cafa4 13208 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 13209 struct bpf_func_state *state, *parent;
3f8cafa4 13210 int i, frame, err = 0;
dc503a8a 13211
f4d7e40a
AS
13212 if (vparent->curframe != vstate->curframe) {
13213 WARN(1, "propagate_live: parent frame %d current frame %d\n",
13214 vparent->curframe, vstate->curframe);
13215 return -EFAULT;
13216 }
dc503a8a
EC
13217 /* Propagate read liveness of registers... */
13218 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 13219 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
13220 parent = vparent->frame[frame];
13221 state = vstate->frame[frame];
13222 parent_reg = parent->regs;
13223 state_reg = state->regs;
83d16312
JK
13224 /* We don't need to worry about FP liveness, it's read-only */
13225 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
13226 err = propagate_liveness_reg(env, &state_reg[i],
13227 &parent_reg[i]);
5327ed3d 13228 if (err < 0)
3f8cafa4 13229 return err;
5327ed3d
JW
13230 if (err == REG_LIVE_READ64)
13231 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 13232 }
f4d7e40a 13233
1b04aee7 13234 /* Propagate stack slots. */
f4d7e40a
AS
13235 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13236 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
13237 parent_reg = &parent->stack[i].spilled_ptr;
13238 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
13239 err = propagate_liveness_reg(env, state_reg,
13240 parent_reg);
5327ed3d 13241 if (err < 0)
3f8cafa4 13242 return err;
dc503a8a
EC
13243 }
13244 }
5327ed3d 13245 return 0;
dc503a8a
EC
13246}
13247
a3ce685d
AS
13248/* find precise scalars in the previous equivalent state and
13249 * propagate them into the current state
13250 */
13251static int propagate_precision(struct bpf_verifier_env *env,
13252 const struct bpf_verifier_state *old)
13253{
13254 struct bpf_reg_state *state_reg;
13255 struct bpf_func_state *state;
529409ea 13256 int i, err = 0, fr;
a3ce685d 13257
529409ea
AN
13258 for (fr = old->curframe; fr >= 0; fr--) {
13259 state = old->frame[fr];
13260 state_reg = state->regs;
13261 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13262 if (state_reg->type != SCALAR_VALUE ||
13263 !state_reg->precise)
13264 continue;
13265 if (env->log.level & BPF_LOG_LEVEL2)
13266 verbose(env, "frame %d: propagating r%d\n", i, fr);
13267 err = mark_chain_precision_frame(env, fr, i);
13268 if (err < 0)
13269 return err;
13270 }
a3ce685d 13271
529409ea
AN
13272 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13273 if (!is_spilled_reg(&state->stack[i]))
13274 continue;
13275 state_reg = &state->stack[i].spilled_ptr;
13276 if (state_reg->type != SCALAR_VALUE ||
13277 !state_reg->precise)
13278 continue;
13279 if (env->log.level & BPF_LOG_LEVEL2)
13280 verbose(env, "frame %d: propagating fp%d\n",
13281 (-i - 1) * BPF_REG_SIZE, fr);
13282 err = mark_chain_precision_stack_frame(env, fr, i);
13283 if (err < 0)
13284 return err;
13285 }
a3ce685d
AS
13286 }
13287 return 0;
13288}
13289
2589726d
AS
13290static bool states_maybe_looping(struct bpf_verifier_state *old,
13291 struct bpf_verifier_state *cur)
13292{
13293 struct bpf_func_state *fold, *fcur;
13294 int i, fr = cur->curframe;
13295
13296 if (old->curframe != fr)
13297 return false;
13298
13299 fold = old->frame[fr];
13300 fcur = cur->frame[fr];
13301 for (i = 0; i < MAX_BPF_REG; i++)
13302 if (memcmp(&fold->regs[i], &fcur->regs[i],
13303 offsetof(struct bpf_reg_state, parent)))
13304 return false;
13305 return true;
13306}
13307
13308
58e2af8b 13309static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 13310{
58e2af8b 13311 struct bpf_verifier_state_list *new_sl;
9f4686c4 13312 struct bpf_verifier_state_list *sl, **pprev;
679c782d 13313 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 13314 int i, j, err, states_cnt = 0;
10d274e8 13315 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 13316
b5dc0163 13317 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 13318 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
13319 /* this 'insn_idx' instruction wasn't marked, so we will not
13320 * be doing state search here
13321 */
13322 return 0;
13323
2589726d
AS
13324 /* bpf progs typically have pruning point every 4 instructions
13325 * http://vger.kernel.org/bpfconf2019.html#session-1
13326 * Do not add new state for future pruning if the verifier hasn't seen
13327 * at least 2 jumps and at least 8 instructions.
13328 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13329 * In tests that amounts to up to 50% reduction into total verifier
13330 * memory consumption and 20% verifier time speedup.
13331 */
13332 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13333 env->insn_processed - env->prev_insn_processed >= 8)
13334 add_new_state = true;
13335
a8f500af
AS
13336 pprev = explored_state(env, insn_idx);
13337 sl = *pprev;
13338
9242b5f5
AS
13339 clean_live_states(env, insn_idx, cur);
13340
a8f500af 13341 while (sl) {
dc2a4ebc
AS
13342 states_cnt++;
13343 if (sl->state.insn_idx != insn_idx)
13344 goto next;
bfc6bb74 13345
2589726d 13346 if (sl->state.branches) {
bfc6bb74
AS
13347 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13348
13349 if (frame->in_async_callback_fn &&
13350 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13351 /* Different async_entry_cnt means that the verifier is
13352 * processing another entry into async callback.
13353 * Seeing the same state is not an indication of infinite
13354 * loop or infinite recursion.
13355 * But finding the same state doesn't mean that it's safe
13356 * to stop processing the current state. The previous state
13357 * hasn't yet reached bpf_exit, since state.branches > 0.
13358 * Checking in_async_callback_fn alone is not enough either.
13359 * Since the verifier still needs to catch infinite loops
13360 * inside async callbacks.
13361 */
13362 } else if (states_maybe_looping(&sl->state, cur) &&
13363 states_equal(env, &sl->state, cur)) {
2589726d
AS
13364 verbose_linfo(env, insn_idx, "; ");
13365 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13366 return -EINVAL;
13367 }
13368 /* if the verifier is processing a loop, avoid adding new state
13369 * too often, since different loop iterations have distinct
13370 * states and may not help future pruning.
13371 * This threshold shouldn't be too low to make sure that
13372 * a loop with large bound will be rejected quickly.
13373 * The most abusive loop will be:
13374 * r1 += 1
13375 * if r1 < 1000000 goto pc-2
13376 * 1M insn_procssed limit / 100 == 10k peak states.
13377 * This threshold shouldn't be too high either, since states
13378 * at the end of the loop are likely to be useful in pruning.
13379 */
13380 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13381 env->insn_processed - env->prev_insn_processed < 100)
13382 add_new_state = false;
13383 goto miss;
13384 }
638f5b90 13385 if (states_equal(env, &sl->state, cur)) {
9f4686c4 13386 sl->hit_cnt++;
f1bca824 13387 /* reached equivalent register/stack state,
dc503a8a
EC
13388 * prune the search.
13389 * Registers read by the continuation are read by us.
8e9cd9ce
EC
13390 * If we have any write marks in env->cur_state, they
13391 * will prevent corresponding reads in the continuation
13392 * from reaching our parent (an explored_state). Our
13393 * own state will get the read marks recorded, but
13394 * they'll be immediately forgotten as we're pruning
13395 * this state and will pop a new one.
f1bca824 13396 */
f4d7e40a 13397 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
13398
13399 /* if previous state reached the exit with precision and
13400 * current state is equivalent to it (except precsion marks)
13401 * the precision needs to be propagated back in
13402 * the current state.
13403 */
13404 err = err ? : push_jmp_history(env, cur);
13405 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
13406 if (err)
13407 return err;
f1bca824 13408 return 1;
dc503a8a 13409 }
2589726d
AS
13410miss:
13411 /* when new state is not going to be added do not increase miss count.
13412 * Otherwise several loop iterations will remove the state
13413 * recorded earlier. The goal of these heuristics is to have
13414 * states from some iterations of the loop (some in the beginning
13415 * and some at the end) to help pruning.
13416 */
13417 if (add_new_state)
13418 sl->miss_cnt++;
9f4686c4
AS
13419 /* heuristic to determine whether this state is beneficial
13420 * to keep checking from state equivalence point of view.
13421 * Higher numbers increase max_states_per_insn and verification time,
13422 * but do not meaningfully decrease insn_processed.
13423 */
13424 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13425 /* the state is unlikely to be useful. Remove it to
13426 * speed up verification
13427 */
13428 *pprev = sl->next;
13429 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
13430 u32 br = sl->state.branches;
13431
13432 WARN_ONCE(br,
13433 "BUG live_done but branches_to_explore %d\n",
13434 br);
9f4686c4
AS
13435 free_verifier_state(&sl->state, false);
13436 kfree(sl);
13437 env->peak_states--;
13438 } else {
13439 /* cannot free this state, since parentage chain may
13440 * walk it later. Add it for free_list instead to
13441 * be freed at the end of verification
13442 */
13443 sl->next = env->free_list;
13444 env->free_list = sl;
13445 }
13446 sl = *pprev;
13447 continue;
13448 }
dc2a4ebc 13449next:
9f4686c4
AS
13450 pprev = &sl->next;
13451 sl = *pprev;
f1bca824
AS
13452 }
13453
06ee7115
AS
13454 if (env->max_states_per_insn < states_cnt)
13455 env->max_states_per_insn = states_cnt;
13456
2c78ee89 13457 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 13458 return push_jmp_history(env, cur);
ceefbc96 13459
2589726d 13460 if (!add_new_state)
b5dc0163 13461 return push_jmp_history(env, cur);
ceefbc96 13462
2589726d
AS
13463 /* There were no equivalent states, remember the current one.
13464 * Technically the current state is not proven to be safe yet,
f4d7e40a 13465 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 13466 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 13467 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
13468 * again on the way to bpf_exit.
13469 * When looping the sl->state.branches will be > 0 and this state
13470 * will not be considered for equivalence until branches == 0.
f1bca824 13471 */
638f5b90 13472 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
13473 if (!new_sl)
13474 return -ENOMEM;
06ee7115
AS
13475 env->total_states++;
13476 env->peak_states++;
2589726d
AS
13477 env->prev_jmps_processed = env->jmps_processed;
13478 env->prev_insn_processed = env->insn_processed;
f1bca824 13479
7a830b53
AN
13480 /* forget precise markings we inherited, see __mark_chain_precision */
13481 if (env->bpf_capable)
13482 mark_all_scalars_imprecise(env, cur);
13483
f1bca824 13484 /* add new state to the head of linked list */
679c782d
EC
13485 new = &new_sl->state;
13486 err = copy_verifier_state(new, cur);
1969db47 13487 if (err) {
679c782d 13488 free_verifier_state(new, false);
1969db47
AS
13489 kfree(new_sl);
13490 return err;
13491 }
dc2a4ebc 13492 new->insn_idx = insn_idx;
2589726d
AS
13493 WARN_ONCE(new->branches != 1,
13494 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 13495
2589726d 13496 cur->parent = new;
b5dc0163
AS
13497 cur->first_insn_idx = insn_idx;
13498 clear_jmp_history(cur);
5d839021
AS
13499 new_sl->next = *explored_state(env, insn_idx);
13500 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
13501 /* connect new state to parentage chain. Current frame needs all
13502 * registers connected. Only r6 - r9 of the callers are alive (pushed
13503 * to the stack implicitly by JITs) so in callers' frames connect just
13504 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13505 * the state of the call instruction (with WRITTEN set), and r0 comes
13506 * from callee with its full parentage chain, anyway.
13507 */
8e9cd9ce
EC
13508 /* clear write marks in current state: the writes we did are not writes
13509 * our child did, so they don't screen off its reads from us.
13510 * (There are no read marks in current state, because reads always mark
13511 * their parent and current state never has children yet. Only
13512 * explored_states can get read marks.)
13513 */
eea1c227
AS
13514 for (j = 0; j <= cur->curframe; j++) {
13515 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13516 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13517 for (i = 0; i < BPF_REG_FP; i++)
13518 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13519 }
f4d7e40a
AS
13520
13521 /* all stack frames are accessible from callee, clear them all */
13522 for (j = 0; j <= cur->curframe; j++) {
13523 struct bpf_func_state *frame = cur->frame[j];
679c782d 13524 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 13525
679c782d 13526 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 13527 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
13528 frame->stack[i].spilled_ptr.parent =
13529 &newframe->stack[i].spilled_ptr;
13530 }
f4d7e40a 13531 }
f1bca824
AS
13532 return 0;
13533}
13534
c64b7983
JS
13535/* Return true if it's OK to have the same insn return a different type. */
13536static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13537{
c25b2ae1 13538 switch (base_type(type)) {
c64b7983
JS
13539 case PTR_TO_CTX:
13540 case PTR_TO_SOCKET:
46f8bc92 13541 case PTR_TO_SOCK_COMMON:
655a51e5 13542 case PTR_TO_TCP_SOCK:
fada7fdc 13543 case PTR_TO_XDP_SOCK:
2a02759e 13544 case PTR_TO_BTF_ID:
c64b7983
JS
13545 return false;
13546 default:
13547 return true;
13548 }
13549}
13550
13551/* If an instruction was previously used with particular pointer types, then we
13552 * need to be careful to avoid cases such as the below, where it may be ok
13553 * for one branch accessing the pointer, but not ok for the other branch:
13554 *
13555 * R1 = sock_ptr
13556 * goto X;
13557 * ...
13558 * R1 = some_other_valid_ptr;
13559 * goto X;
13560 * ...
13561 * R2 = *(u32 *)(R1 + 0);
13562 */
13563static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13564{
13565 return src != prev && (!reg_type_mismatch_ok(src) ||
13566 !reg_type_mismatch_ok(prev));
13567}
13568
58e2af8b 13569static int do_check(struct bpf_verifier_env *env)
17a52670 13570{
6f8a57cc 13571 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 13572 struct bpf_verifier_state *state = env->cur_state;
17a52670 13573 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 13574 struct bpf_reg_state *regs;
06ee7115 13575 int insn_cnt = env->prog->len;
17a52670 13576 bool do_print_state = false;
b5dc0163 13577 int prev_insn_idx = -1;
17a52670 13578
17a52670
AS
13579 for (;;) {
13580 struct bpf_insn *insn;
13581 u8 class;
13582 int err;
13583
b5dc0163 13584 env->prev_insn_idx = prev_insn_idx;
c08435ec 13585 if (env->insn_idx >= insn_cnt) {
61bd5218 13586 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 13587 env->insn_idx, insn_cnt);
17a52670
AS
13588 return -EFAULT;
13589 }
13590
c08435ec 13591 insn = &insns[env->insn_idx];
17a52670
AS
13592 class = BPF_CLASS(insn->code);
13593
06ee7115 13594 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
13595 verbose(env,
13596 "BPF program is too large. Processed %d insn\n",
06ee7115 13597 env->insn_processed);
17a52670
AS
13598 return -E2BIG;
13599 }
13600
c08435ec 13601 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
13602 if (err < 0)
13603 return err;
13604 if (err == 1) {
13605 /* found equivalent state, can prune the search */
06ee7115 13606 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 13607 if (do_print_state)
979d63d5
DB
13608 verbose(env, "\nfrom %d to %d%s: safe\n",
13609 env->prev_insn_idx, env->insn_idx,
13610 env->cur_state->speculative ?
13611 " (speculative execution)" : "");
f1bca824 13612 else
c08435ec 13613 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
13614 }
13615 goto process_bpf_exit;
13616 }
13617
c3494801
AS
13618 if (signal_pending(current))
13619 return -EAGAIN;
13620
3c2ce60b
DB
13621 if (need_resched())
13622 cond_resched();
13623
2e576648
CL
13624 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13625 verbose(env, "\nfrom %d to %d%s:",
13626 env->prev_insn_idx, env->insn_idx,
13627 env->cur_state->speculative ?
13628 " (speculative execution)" : "");
13629 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
13630 do_print_state = false;
13631 }
13632
06ee7115 13633 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 13634 const struct bpf_insn_cbs cbs = {
e6ac2450 13635 .cb_call = disasm_kfunc_name,
7105e828 13636 .cb_print = verbose,
abe08840 13637 .private_data = env,
7105e828
DB
13638 };
13639
2e576648
CL
13640 if (verifier_state_scratched(env))
13641 print_insn_state(env, state->frame[state->curframe]);
13642
c08435ec 13643 verbose_linfo(env, env->insn_idx, "; ");
2e576648 13644 env->prev_log_len = env->log.len_used;
c08435ec 13645 verbose(env, "%d: ", env->insn_idx);
abe08840 13646 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
13647 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13648 env->prev_log_len = env->log.len_used;
17a52670
AS
13649 }
13650
cae1927c 13651 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
13652 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13653 env->prev_insn_idx);
cae1927c
JK
13654 if (err)
13655 return err;
13656 }
13a27dfc 13657
638f5b90 13658 regs = cur_regs(env);
fe9a5ca7 13659 sanitize_mark_insn_seen(env);
b5dc0163 13660 prev_insn_idx = env->insn_idx;
fd978bf7 13661
17a52670 13662 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 13663 err = check_alu_op(env, insn);
17a52670
AS
13664 if (err)
13665 return err;
13666
13667 } else if (class == BPF_LDX) {
3df126f3 13668 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
13669
13670 /* check for reserved fields is already done */
13671
17a52670 13672 /* check src operand */
dc503a8a 13673 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13674 if (err)
13675 return err;
13676
dc503a8a 13677 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
13678 if (err)
13679 return err;
13680
725f9dcd
AS
13681 src_reg_type = regs[insn->src_reg].type;
13682
17a52670
AS
13683 /* check that memory (src_reg + off) is readable,
13684 * the state of dst_reg will be updated by this func
13685 */
c08435ec
DB
13686 err = check_mem_access(env, env->insn_idx, insn->src_reg,
13687 insn->off, BPF_SIZE(insn->code),
13688 BPF_READ, insn->dst_reg, false);
17a52670
AS
13689 if (err)
13690 return err;
13691
c08435ec 13692 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
13693
13694 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
13695 /* saw a valid insn
13696 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 13697 * save type to validate intersecting paths
9bac3d6d 13698 */
3df126f3 13699 *prev_src_type = src_reg_type;
9bac3d6d 13700
c64b7983 13701 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
13702 /* ABuser program is trying to use the same insn
13703 * dst_reg = *(u32*) (src_reg + off)
13704 * with different pointer types:
13705 * src_reg == ctx in one branch and
13706 * src_reg == stack|map in some other branch.
13707 * Reject it.
13708 */
61bd5218 13709 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
13710 return -EINVAL;
13711 }
13712
17a52670 13713 } else if (class == BPF_STX) {
3df126f3 13714 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 13715
91c960b0
BJ
13716 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13717 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
13718 if (err)
13719 return err;
c08435ec 13720 env->insn_idx++;
17a52670
AS
13721 continue;
13722 }
13723
5ca419f2
BJ
13724 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13725 verbose(env, "BPF_STX uses reserved fields\n");
13726 return -EINVAL;
13727 }
13728
17a52670 13729 /* check src1 operand */
dc503a8a 13730 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13731 if (err)
13732 return err;
13733 /* check src2 operand */
dc503a8a 13734 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13735 if (err)
13736 return err;
13737
d691f9e8
AS
13738 dst_reg_type = regs[insn->dst_reg].type;
13739
17a52670 13740 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
13741 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13742 insn->off, BPF_SIZE(insn->code),
13743 BPF_WRITE, insn->src_reg, false);
17a52670
AS
13744 if (err)
13745 return err;
13746
c08435ec 13747 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
13748
13749 if (*prev_dst_type == NOT_INIT) {
13750 *prev_dst_type = dst_reg_type;
c64b7983 13751 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 13752 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
13753 return -EINVAL;
13754 }
13755
17a52670
AS
13756 } else if (class == BPF_ST) {
13757 if (BPF_MODE(insn->code) != BPF_MEM ||
13758 insn->src_reg != BPF_REG_0) {
61bd5218 13759 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
13760 return -EINVAL;
13761 }
13762 /* check src operand */
dc503a8a 13763 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13764 if (err)
13765 return err;
13766
f37a8cb8 13767 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 13768 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f 13769 insn->dst_reg,
c25b2ae1 13770 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
13771 return -EACCES;
13772 }
13773
17a52670 13774 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
13775 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13776 insn->off, BPF_SIZE(insn->code),
13777 BPF_WRITE, -1, false);
17a52670
AS
13778 if (err)
13779 return err;
13780
092ed096 13781 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
13782 u8 opcode = BPF_OP(insn->code);
13783
2589726d 13784 env->jmps_processed++;
17a52670
AS
13785 if (opcode == BPF_CALL) {
13786 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
13787 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13788 && insn->off != 0) ||
f4d7e40a 13789 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
13790 insn->src_reg != BPF_PSEUDO_CALL &&
13791 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
13792 insn->dst_reg != BPF_REG_0 ||
13793 class == BPF_JMP32) {
61bd5218 13794 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
13795 return -EINVAL;
13796 }
13797
8cab76ec
KKD
13798 if (env->cur_state->active_lock.ptr) {
13799 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
13800 (insn->src_reg == BPF_PSEUDO_CALL) ||
13801 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
13802 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
13803 verbose(env, "function calls are not allowed while holding a lock\n");
13804 return -EINVAL;
13805 }
d83525ca 13806 }
f4d7e40a 13807 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 13808 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 13809 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 13810 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 13811 else
69c087ba 13812 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
13813 if (err)
13814 return err;
17a52670
AS
13815 } else if (opcode == BPF_JA) {
13816 if (BPF_SRC(insn->code) != BPF_K ||
13817 insn->imm != 0 ||
13818 insn->src_reg != BPF_REG_0 ||
092ed096
JW
13819 insn->dst_reg != BPF_REG_0 ||
13820 class == BPF_JMP32) {
61bd5218 13821 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
13822 return -EINVAL;
13823 }
13824
c08435ec 13825 env->insn_idx += insn->off + 1;
17a52670
AS
13826 continue;
13827
13828 } else if (opcode == BPF_EXIT) {
13829 if (BPF_SRC(insn->code) != BPF_K ||
13830 insn->imm != 0 ||
13831 insn->src_reg != BPF_REG_0 ||
092ed096
JW
13832 insn->dst_reg != BPF_REG_0 ||
13833 class == BPF_JMP32) {
61bd5218 13834 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
13835 return -EINVAL;
13836 }
13837
d0d78c1d 13838 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
13839 verbose(env, "bpf_spin_unlock is missing\n");
13840 return -EINVAL;
13841 }
13842
9bb00b28
YS
13843 if (env->cur_state->active_rcu_lock) {
13844 verbose(env, "bpf_rcu_read_unlock is missing\n");
13845 return -EINVAL;
13846 }
13847
9d9d00ac
KKD
13848 /* We must do check_reference_leak here before
13849 * prepare_func_exit to handle the case when
13850 * state->curframe > 0, it may be a callback
13851 * function, for which reference_state must
13852 * match caller reference state when it exits.
13853 */
13854 err = check_reference_leak(env);
13855 if (err)
13856 return err;
13857
f4d7e40a
AS
13858 if (state->curframe) {
13859 /* exit from nested function */
c08435ec 13860 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
13861 if (err)
13862 return err;
13863 do_print_state = true;
13864 continue;
13865 }
13866
390ee7e2
AS
13867 err = check_return_code(env);
13868 if (err)
13869 return err;
f1bca824 13870process_bpf_exit:
0f55f9ed 13871 mark_verifier_state_scratched(env);
2589726d 13872 update_branch_counts(env, env->cur_state);
b5dc0163 13873 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 13874 &env->insn_idx, pop_log);
638f5b90
AS
13875 if (err < 0) {
13876 if (err != -ENOENT)
13877 return err;
17a52670
AS
13878 break;
13879 } else {
13880 do_print_state = true;
13881 continue;
13882 }
13883 } else {
c08435ec 13884 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
13885 if (err)
13886 return err;
13887 }
13888 } else if (class == BPF_LD) {
13889 u8 mode = BPF_MODE(insn->code);
13890
13891 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
13892 err = check_ld_abs(env, insn);
13893 if (err)
13894 return err;
13895
17a52670
AS
13896 } else if (mode == BPF_IMM) {
13897 err = check_ld_imm(env, insn);
13898 if (err)
13899 return err;
13900
c08435ec 13901 env->insn_idx++;
fe9a5ca7 13902 sanitize_mark_insn_seen(env);
17a52670 13903 } else {
61bd5218 13904 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
13905 return -EINVAL;
13906 }
13907 } else {
61bd5218 13908 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
13909 return -EINVAL;
13910 }
13911
c08435ec 13912 env->insn_idx++;
17a52670
AS
13913 }
13914
13915 return 0;
13916}
13917
541c3bad
AN
13918static int find_btf_percpu_datasec(struct btf *btf)
13919{
13920 const struct btf_type *t;
13921 const char *tname;
13922 int i, n;
13923
13924 /*
13925 * Both vmlinux and module each have their own ".data..percpu"
13926 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
13927 * types to look at only module's own BTF types.
13928 */
13929 n = btf_nr_types(btf);
13930 if (btf_is_module(btf))
13931 i = btf_nr_types(btf_vmlinux);
13932 else
13933 i = 1;
13934
13935 for(; i < n; i++) {
13936 t = btf_type_by_id(btf, i);
13937 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
13938 continue;
13939
13940 tname = btf_name_by_offset(btf, t->name_off);
13941 if (!strcmp(tname, ".data..percpu"))
13942 return i;
13943 }
13944
13945 return -ENOENT;
13946}
13947
4976b718
HL
13948/* replace pseudo btf_id with kernel symbol address */
13949static int check_pseudo_btf_id(struct bpf_verifier_env *env,
13950 struct bpf_insn *insn,
13951 struct bpf_insn_aux_data *aux)
13952{
eaa6bcb7
HL
13953 const struct btf_var_secinfo *vsi;
13954 const struct btf_type *datasec;
541c3bad 13955 struct btf_mod_pair *btf_mod;
4976b718
HL
13956 const struct btf_type *t;
13957 const char *sym_name;
eaa6bcb7 13958 bool percpu = false;
f16e6313 13959 u32 type, id = insn->imm;
541c3bad 13960 struct btf *btf;
f16e6313 13961 s32 datasec_id;
4976b718 13962 u64 addr;
541c3bad 13963 int i, btf_fd, err;
4976b718 13964
541c3bad
AN
13965 btf_fd = insn[1].imm;
13966 if (btf_fd) {
13967 btf = btf_get_by_fd(btf_fd);
13968 if (IS_ERR(btf)) {
13969 verbose(env, "invalid module BTF object FD specified.\n");
13970 return -EINVAL;
13971 }
13972 } else {
13973 if (!btf_vmlinux) {
13974 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
13975 return -EINVAL;
13976 }
13977 btf = btf_vmlinux;
13978 btf_get(btf);
4976b718
HL
13979 }
13980
541c3bad 13981 t = btf_type_by_id(btf, id);
4976b718
HL
13982 if (!t) {
13983 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
13984 err = -ENOENT;
13985 goto err_put;
4976b718
HL
13986 }
13987
13988 if (!btf_type_is_var(t)) {
541c3bad
AN
13989 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
13990 err = -EINVAL;
13991 goto err_put;
4976b718
HL
13992 }
13993
541c3bad 13994 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
13995 addr = kallsyms_lookup_name(sym_name);
13996 if (!addr) {
13997 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
13998 sym_name);
541c3bad
AN
13999 err = -ENOENT;
14000 goto err_put;
4976b718
HL
14001 }
14002
541c3bad 14003 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 14004 if (datasec_id > 0) {
541c3bad 14005 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
14006 for_each_vsi(i, datasec, vsi) {
14007 if (vsi->type == id) {
14008 percpu = true;
14009 break;
14010 }
14011 }
14012 }
14013
4976b718
HL
14014 insn[0].imm = (u32)addr;
14015 insn[1].imm = addr >> 32;
14016
14017 type = t->type;
541c3bad 14018 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 14019 if (percpu) {
5844101a 14020 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 14021 aux->btf_var.btf = btf;
eaa6bcb7
HL
14022 aux->btf_var.btf_id = type;
14023 } else if (!btf_type_is_struct(t)) {
4976b718
HL
14024 const struct btf_type *ret;
14025 const char *tname;
14026 u32 tsize;
14027
14028 /* resolve the type size of ksym. */
541c3bad 14029 ret = btf_resolve_size(btf, t, &tsize);
4976b718 14030 if (IS_ERR(ret)) {
541c3bad 14031 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
14032 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14033 tname, PTR_ERR(ret));
541c3bad
AN
14034 err = -EINVAL;
14035 goto err_put;
4976b718 14036 }
34d3a78c 14037 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
14038 aux->btf_var.mem_size = tsize;
14039 } else {
14040 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 14041 aux->btf_var.btf = btf;
4976b718
HL
14042 aux->btf_var.btf_id = type;
14043 }
541c3bad
AN
14044
14045 /* check whether we recorded this BTF (and maybe module) already */
14046 for (i = 0; i < env->used_btf_cnt; i++) {
14047 if (env->used_btfs[i].btf == btf) {
14048 btf_put(btf);
14049 return 0;
14050 }
14051 }
14052
14053 if (env->used_btf_cnt >= MAX_USED_BTFS) {
14054 err = -E2BIG;
14055 goto err_put;
14056 }
14057
14058 btf_mod = &env->used_btfs[env->used_btf_cnt];
14059 btf_mod->btf = btf;
14060 btf_mod->module = NULL;
14061
14062 /* if we reference variables from kernel module, bump its refcount */
14063 if (btf_is_module(btf)) {
14064 btf_mod->module = btf_try_get_module(btf);
14065 if (!btf_mod->module) {
14066 err = -ENXIO;
14067 goto err_put;
14068 }
14069 }
14070
14071 env->used_btf_cnt++;
14072
4976b718 14073 return 0;
541c3bad
AN
14074err_put:
14075 btf_put(btf);
14076 return err;
4976b718
HL
14077}
14078
d83525ca
AS
14079static bool is_tracing_prog_type(enum bpf_prog_type type)
14080{
14081 switch (type) {
14082 case BPF_PROG_TYPE_KPROBE:
14083 case BPF_PROG_TYPE_TRACEPOINT:
14084 case BPF_PROG_TYPE_PERF_EVENT:
14085 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 14086 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
14087 return true;
14088 default:
14089 return false;
14090 }
14091}
14092
61bd5218
JK
14093static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14094 struct bpf_map *map,
fdc15d38
AS
14095 struct bpf_prog *prog)
14096
14097{
7e40781c 14098 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 14099
f0c5941f
KKD
14100 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14101 if (is_tracing_prog_type(prog_type)) {
14102 verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14103 return -EINVAL;
14104 }
14105 }
14106
db559117 14107 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
14108 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14109 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14110 return -EINVAL;
14111 }
14112
14113 if (is_tracing_prog_type(prog_type)) {
14114 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14115 return -EINVAL;
14116 }
14117
14118 if (prog->aux->sleepable) {
14119 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14120 return -EINVAL;
14121 }
d83525ca
AS
14122 }
14123
db559117 14124 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
14125 if (is_tracing_prog_type(prog_type)) {
14126 verbose(env, "tracing progs cannot use bpf_timer yet\n");
14127 return -EINVAL;
14128 }
14129 }
14130
a3884572 14131 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 14132 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
14133 verbose(env, "offload device mismatch between prog and map\n");
14134 return -EINVAL;
14135 }
14136
85d33df3
MKL
14137 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14138 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14139 return -EINVAL;
14140 }
14141
1e6c62a8
AS
14142 if (prog->aux->sleepable)
14143 switch (map->map_type) {
14144 case BPF_MAP_TYPE_HASH:
14145 case BPF_MAP_TYPE_LRU_HASH:
14146 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
14147 case BPF_MAP_TYPE_PERCPU_HASH:
14148 case BPF_MAP_TYPE_PERCPU_ARRAY:
14149 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14150 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14151 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 14152 case BPF_MAP_TYPE_RINGBUF:
583c1f42 14153 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
14154 case BPF_MAP_TYPE_INODE_STORAGE:
14155 case BPF_MAP_TYPE_SK_STORAGE:
14156 case BPF_MAP_TYPE_TASK_STORAGE:
ba90c2cc 14157 break;
1e6c62a8
AS
14158 default:
14159 verbose(env,
ba90c2cc 14160 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
14161 return -EINVAL;
14162 }
14163
fdc15d38
AS
14164 return 0;
14165}
14166
b741f163
RG
14167static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14168{
14169 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14170 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14171}
14172
4976b718
HL
14173/* find and rewrite pseudo imm in ld_imm64 instructions:
14174 *
14175 * 1. if it accesses map FD, replace it with actual map pointer.
14176 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14177 *
14178 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 14179 */
4976b718 14180static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
14181{
14182 struct bpf_insn *insn = env->prog->insnsi;
14183 int insn_cnt = env->prog->len;
fdc15d38 14184 int i, j, err;
0246e64d 14185
f1f7714e 14186 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
14187 if (err)
14188 return err;
14189
0246e64d 14190 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 14191 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 14192 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 14193 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
14194 return -EINVAL;
14195 }
14196
0246e64d 14197 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 14198 struct bpf_insn_aux_data *aux;
0246e64d
AS
14199 struct bpf_map *map;
14200 struct fd f;
d8eca5bb 14201 u64 addr;
387544bf 14202 u32 fd;
0246e64d
AS
14203
14204 if (i == insn_cnt - 1 || insn[1].code != 0 ||
14205 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14206 insn[1].off != 0) {
61bd5218 14207 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
14208 return -EINVAL;
14209 }
14210
d8eca5bb 14211 if (insn[0].src_reg == 0)
0246e64d
AS
14212 /* valid generic load 64-bit imm */
14213 goto next_insn;
14214
4976b718
HL
14215 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14216 aux = &env->insn_aux_data[i];
14217 err = check_pseudo_btf_id(env, insn, aux);
14218 if (err)
14219 return err;
14220 goto next_insn;
14221 }
14222
69c087ba
YS
14223 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14224 aux = &env->insn_aux_data[i];
14225 aux->ptr_type = PTR_TO_FUNC;
14226 goto next_insn;
14227 }
14228
d8eca5bb
DB
14229 /* In final convert_pseudo_ld_imm64() step, this is
14230 * converted into regular 64-bit imm load insn.
14231 */
387544bf
AS
14232 switch (insn[0].src_reg) {
14233 case BPF_PSEUDO_MAP_VALUE:
14234 case BPF_PSEUDO_MAP_IDX_VALUE:
14235 break;
14236 case BPF_PSEUDO_MAP_FD:
14237 case BPF_PSEUDO_MAP_IDX:
14238 if (insn[1].imm == 0)
14239 break;
14240 fallthrough;
14241 default:
14242 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
14243 return -EINVAL;
14244 }
14245
387544bf
AS
14246 switch (insn[0].src_reg) {
14247 case BPF_PSEUDO_MAP_IDX_VALUE:
14248 case BPF_PSEUDO_MAP_IDX:
14249 if (bpfptr_is_null(env->fd_array)) {
14250 verbose(env, "fd_idx without fd_array is invalid\n");
14251 return -EPROTO;
14252 }
14253 if (copy_from_bpfptr_offset(&fd, env->fd_array,
14254 insn[0].imm * sizeof(fd),
14255 sizeof(fd)))
14256 return -EFAULT;
14257 break;
14258 default:
14259 fd = insn[0].imm;
14260 break;
14261 }
14262
14263 f = fdget(fd);
c2101297 14264 map = __bpf_map_get(f);
0246e64d 14265 if (IS_ERR(map)) {
61bd5218 14266 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 14267 insn[0].imm);
0246e64d
AS
14268 return PTR_ERR(map);
14269 }
14270
61bd5218 14271 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
14272 if (err) {
14273 fdput(f);
14274 return err;
14275 }
14276
d8eca5bb 14277 aux = &env->insn_aux_data[i];
387544bf
AS
14278 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14279 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
14280 addr = (unsigned long)map;
14281 } else {
14282 u32 off = insn[1].imm;
14283
14284 if (off >= BPF_MAX_VAR_OFF) {
14285 verbose(env, "direct value offset of %u is not allowed\n", off);
14286 fdput(f);
14287 return -EINVAL;
14288 }
14289
14290 if (!map->ops->map_direct_value_addr) {
14291 verbose(env, "no direct value access support for this map type\n");
14292 fdput(f);
14293 return -EINVAL;
14294 }
14295
14296 err = map->ops->map_direct_value_addr(map, &addr, off);
14297 if (err) {
14298 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14299 map->value_size, off);
14300 fdput(f);
14301 return err;
14302 }
14303
14304 aux->map_off = off;
14305 addr += off;
14306 }
14307
14308 insn[0].imm = (u32)addr;
14309 insn[1].imm = addr >> 32;
0246e64d
AS
14310
14311 /* check whether we recorded this map already */
d8eca5bb 14312 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 14313 if (env->used_maps[j] == map) {
d8eca5bb 14314 aux->map_index = j;
0246e64d
AS
14315 fdput(f);
14316 goto next_insn;
14317 }
d8eca5bb 14318 }
0246e64d
AS
14319
14320 if (env->used_map_cnt >= MAX_USED_MAPS) {
14321 fdput(f);
14322 return -E2BIG;
14323 }
14324
0246e64d
AS
14325 /* hold the map. If the program is rejected by verifier,
14326 * the map will be released by release_maps() or it
14327 * will be used by the valid program until it's unloaded
ab7f5bf0 14328 * and all maps are released in free_used_maps()
0246e64d 14329 */
1e0bd5a0 14330 bpf_map_inc(map);
d8eca5bb
DB
14331
14332 aux->map_index = env->used_map_cnt;
92117d84
AS
14333 env->used_maps[env->used_map_cnt++] = map;
14334
b741f163 14335 if (bpf_map_is_cgroup_storage(map) &&
e4730423 14336 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 14337 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
14338 fdput(f);
14339 return -EBUSY;
14340 }
14341
0246e64d
AS
14342 fdput(f);
14343next_insn:
14344 insn++;
14345 i++;
5e581dad
DB
14346 continue;
14347 }
14348
14349 /* Basic sanity check before we invest more work here. */
14350 if (!bpf_opcode_in_insntable(insn->code)) {
14351 verbose(env, "unknown opcode %02x\n", insn->code);
14352 return -EINVAL;
0246e64d
AS
14353 }
14354 }
14355
14356 /* now all pseudo BPF_LD_IMM64 instructions load valid
14357 * 'struct bpf_map *' into a register instead of user map_fd.
14358 * These pointers will be used later by verifier to validate map access.
14359 */
14360 return 0;
14361}
14362
14363/* drop refcnt of maps used by the rejected program */
58e2af8b 14364static void release_maps(struct bpf_verifier_env *env)
0246e64d 14365{
a2ea0746
DB
14366 __bpf_free_used_maps(env->prog->aux, env->used_maps,
14367 env->used_map_cnt);
0246e64d
AS
14368}
14369
541c3bad
AN
14370/* drop refcnt of maps used by the rejected program */
14371static void release_btfs(struct bpf_verifier_env *env)
14372{
14373 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14374 env->used_btf_cnt);
14375}
14376
0246e64d 14377/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 14378static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
14379{
14380 struct bpf_insn *insn = env->prog->insnsi;
14381 int insn_cnt = env->prog->len;
14382 int i;
14383
69c087ba
YS
14384 for (i = 0; i < insn_cnt; i++, insn++) {
14385 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14386 continue;
14387 if (insn->src_reg == BPF_PSEUDO_FUNC)
14388 continue;
14389 insn->src_reg = 0;
14390 }
0246e64d
AS
14391}
14392
8041902d
AS
14393/* single env->prog->insni[off] instruction was replaced with the range
14394 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
14395 * [0, off) and [off, end) to new locations, so the patched range stays zero
14396 */
75f0fc7b
HF
14397static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14398 struct bpf_insn_aux_data *new_data,
14399 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 14400{
75f0fc7b 14401 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 14402 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 14403 u32 old_seen = old_data[off].seen;
b325fbca 14404 u32 prog_len;
c131187d 14405 int i;
8041902d 14406
b325fbca
JW
14407 /* aux info at OFF always needs adjustment, no matter fast path
14408 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14409 * original insn at old prog.
14410 */
14411 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14412
8041902d 14413 if (cnt == 1)
75f0fc7b 14414 return;
b325fbca 14415 prog_len = new_prog->len;
75f0fc7b 14416
8041902d
AS
14417 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14418 memcpy(new_data + off + cnt - 1, old_data + off,
14419 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 14420 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
14421 /* Expand insni[off]'s seen count to the patched range. */
14422 new_data[i].seen = old_seen;
b325fbca
JW
14423 new_data[i].zext_dst = insn_has_def32(env, insn + i);
14424 }
8041902d
AS
14425 env->insn_aux_data = new_data;
14426 vfree(old_data);
8041902d
AS
14427}
14428
cc8b0b92
AS
14429static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14430{
14431 int i;
14432
14433 if (len == 1)
14434 return;
4cb3d99c
JW
14435 /* NOTE: fake 'exit' subprog should be updated as well. */
14436 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 14437 if (env->subprog_info[i].start <= off)
cc8b0b92 14438 continue;
9c8105bd 14439 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
14440 }
14441}
14442
7506d211 14443static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
14444{
14445 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14446 int i, sz = prog->aux->size_poke_tab;
14447 struct bpf_jit_poke_descriptor *desc;
14448
14449 for (i = 0; i < sz; i++) {
14450 desc = &tab[i];
7506d211
JF
14451 if (desc->insn_idx <= off)
14452 continue;
a748c697
MF
14453 desc->insn_idx += len - 1;
14454 }
14455}
14456
8041902d
AS
14457static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14458 const struct bpf_insn *patch, u32 len)
14459{
14460 struct bpf_prog *new_prog;
75f0fc7b
HF
14461 struct bpf_insn_aux_data *new_data = NULL;
14462
14463 if (len > 1) {
14464 new_data = vzalloc(array_size(env->prog->len + len - 1,
14465 sizeof(struct bpf_insn_aux_data)));
14466 if (!new_data)
14467 return NULL;
14468 }
8041902d
AS
14469
14470 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
14471 if (IS_ERR(new_prog)) {
14472 if (PTR_ERR(new_prog) == -ERANGE)
14473 verbose(env,
14474 "insn %d cannot be patched due to 16-bit range\n",
14475 env->insn_aux_data[off].orig_idx);
75f0fc7b 14476 vfree(new_data);
8041902d 14477 return NULL;
4f73379e 14478 }
75f0fc7b 14479 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 14480 adjust_subprog_starts(env, off, len);
7506d211 14481 adjust_poke_descs(new_prog, off, len);
8041902d
AS
14482 return new_prog;
14483}
14484
52875a04
JK
14485static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14486 u32 off, u32 cnt)
14487{
14488 int i, j;
14489
14490 /* find first prog starting at or after off (first to remove) */
14491 for (i = 0; i < env->subprog_cnt; i++)
14492 if (env->subprog_info[i].start >= off)
14493 break;
14494 /* find first prog starting at or after off + cnt (first to stay) */
14495 for (j = i; j < env->subprog_cnt; j++)
14496 if (env->subprog_info[j].start >= off + cnt)
14497 break;
14498 /* if j doesn't start exactly at off + cnt, we are just removing
14499 * the front of previous prog
14500 */
14501 if (env->subprog_info[j].start != off + cnt)
14502 j--;
14503
14504 if (j > i) {
14505 struct bpf_prog_aux *aux = env->prog->aux;
14506 int move;
14507
14508 /* move fake 'exit' subprog as well */
14509 move = env->subprog_cnt + 1 - j;
14510
14511 memmove(env->subprog_info + i,
14512 env->subprog_info + j,
14513 sizeof(*env->subprog_info) * move);
14514 env->subprog_cnt -= j - i;
14515
14516 /* remove func_info */
14517 if (aux->func_info) {
14518 move = aux->func_info_cnt - j;
14519
14520 memmove(aux->func_info + i,
14521 aux->func_info + j,
14522 sizeof(*aux->func_info) * move);
14523 aux->func_info_cnt -= j - i;
14524 /* func_info->insn_off is set after all code rewrites,
14525 * in adjust_btf_func() - no need to adjust
14526 */
14527 }
14528 } else {
14529 /* convert i from "first prog to remove" to "first to adjust" */
14530 if (env->subprog_info[i].start == off)
14531 i++;
14532 }
14533
14534 /* update fake 'exit' subprog as well */
14535 for (; i <= env->subprog_cnt; i++)
14536 env->subprog_info[i].start -= cnt;
14537
14538 return 0;
14539}
14540
14541static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14542 u32 cnt)
14543{
14544 struct bpf_prog *prog = env->prog;
14545 u32 i, l_off, l_cnt, nr_linfo;
14546 struct bpf_line_info *linfo;
14547
14548 nr_linfo = prog->aux->nr_linfo;
14549 if (!nr_linfo)
14550 return 0;
14551
14552 linfo = prog->aux->linfo;
14553
14554 /* find first line info to remove, count lines to be removed */
14555 for (i = 0; i < nr_linfo; i++)
14556 if (linfo[i].insn_off >= off)
14557 break;
14558
14559 l_off = i;
14560 l_cnt = 0;
14561 for (; i < nr_linfo; i++)
14562 if (linfo[i].insn_off < off + cnt)
14563 l_cnt++;
14564 else
14565 break;
14566
14567 /* First live insn doesn't match first live linfo, it needs to "inherit"
14568 * last removed linfo. prog is already modified, so prog->len == off
14569 * means no live instructions after (tail of the program was removed).
14570 */
14571 if (prog->len != off && l_cnt &&
14572 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14573 l_cnt--;
14574 linfo[--i].insn_off = off + cnt;
14575 }
14576
14577 /* remove the line info which refer to the removed instructions */
14578 if (l_cnt) {
14579 memmove(linfo + l_off, linfo + i,
14580 sizeof(*linfo) * (nr_linfo - i));
14581
14582 prog->aux->nr_linfo -= l_cnt;
14583 nr_linfo = prog->aux->nr_linfo;
14584 }
14585
14586 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
14587 for (i = l_off; i < nr_linfo; i++)
14588 linfo[i].insn_off -= cnt;
14589
14590 /* fix up all subprogs (incl. 'exit') which start >= off */
14591 for (i = 0; i <= env->subprog_cnt; i++)
14592 if (env->subprog_info[i].linfo_idx > l_off) {
14593 /* program may have started in the removed region but
14594 * may not be fully removed
14595 */
14596 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14597 env->subprog_info[i].linfo_idx -= l_cnt;
14598 else
14599 env->subprog_info[i].linfo_idx = l_off;
14600 }
14601
14602 return 0;
14603}
14604
14605static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14606{
14607 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14608 unsigned int orig_prog_len = env->prog->len;
14609 int err;
14610
08ca90af
JK
14611 if (bpf_prog_is_dev_bound(env->prog->aux))
14612 bpf_prog_offload_remove_insns(env, off, cnt);
14613
52875a04
JK
14614 err = bpf_remove_insns(env->prog, off, cnt);
14615 if (err)
14616 return err;
14617
14618 err = adjust_subprog_starts_after_remove(env, off, cnt);
14619 if (err)
14620 return err;
14621
14622 err = bpf_adj_linfo_after_remove(env, off, cnt);
14623 if (err)
14624 return err;
14625
14626 memmove(aux_data + off, aux_data + off + cnt,
14627 sizeof(*aux_data) * (orig_prog_len - off - cnt));
14628
14629 return 0;
14630}
14631
2a5418a1
DB
14632/* The verifier does more data flow analysis than llvm and will not
14633 * explore branches that are dead at run time. Malicious programs can
14634 * have dead code too. Therefore replace all dead at-run-time code
14635 * with 'ja -1'.
14636 *
14637 * Just nops are not optimal, e.g. if they would sit at the end of the
14638 * program and through another bug we would manage to jump there, then
14639 * we'd execute beyond program memory otherwise. Returning exception
14640 * code also wouldn't work since we can have subprogs where the dead
14641 * code could be located.
c131187d
AS
14642 */
14643static void sanitize_dead_code(struct bpf_verifier_env *env)
14644{
14645 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 14646 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
14647 struct bpf_insn *insn = env->prog->insnsi;
14648 const int insn_cnt = env->prog->len;
14649 int i;
14650
14651 for (i = 0; i < insn_cnt; i++) {
14652 if (aux_data[i].seen)
14653 continue;
2a5418a1 14654 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 14655 aux_data[i].zext_dst = false;
c131187d
AS
14656 }
14657}
14658
e2ae4ca2
JK
14659static bool insn_is_cond_jump(u8 code)
14660{
14661 u8 op;
14662
092ed096
JW
14663 if (BPF_CLASS(code) == BPF_JMP32)
14664 return true;
14665
e2ae4ca2
JK
14666 if (BPF_CLASS(code) != BPF_JMP)
14667 return false;
14668
14669 op = BPF_OP(code);
14670 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14671}
14672
14673static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14674{
14675 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14676 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14677 struct bpf_insn *insn = env->prog->insnsi;
14678 const int insn_cnt = env->prog->len;
14679 int i;
14680
14681 for (i = 0; i < insn_cnt; i++, insn++) {
14682 if (!insn_is_cond_jump(insn->code))
14683 continue;
14684
14685 if (!aux_data[i + 1].seen)
14686 ja.off = insn->off;
14687 else if (!aux_data[i + 1 + insn->off].seen)
14688 ja.off = 0;
14689 else
14690 continue;
14691
08ca90af
JK
14692 if (bpf_prog_is_dev_bound(env->prog->aux))
14693 bpf_prog_offload_replace_insn(env, i, &ja);
14694
e2ae4ca2
JK
14695 memcpy(insn, &ja, sizeof(ja));
14696 }
14697}
14698
52875a04
JK
14699static int opt_remove_dead_code(struct bpf_verifier_env *env)
14700{
14701 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14702 int insn_cnt = env->prog->len;
14703 int i, err;
14704
14705 for (i = 0; i < insn_cnt; i++) {
14706 int j;
14707
14708 j = 0;
14709 while (i + j < insn_cnt && !aux_data[i + j].seen)
14710 j++;
14711 if (!j)
14712 continue;
14713
14714 err = verifier_remove_insns(env, i, j);
14715 if (err)
14716 return err;
14717 insn_cnt = env->prog->len;
14718 }
14719
14720 return 0;
14721}
14722
a1b14abc
JK
14723static int opt_remove_nops(struct bpf_verifier_env *env)
14724{
14725 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14726 struct bpf_insn *insn = env->prog->insnsi;
14727 int insn_cnt = env->prog->len;
14728 int i, err;
14729
14730 for (i = 0; i < insn_cnt; i++) {
14731 if (memcmp(&insn[i], &ja, sizeof(ja)))
14732 continue;
14733
14734 err = verifier_remove_insns(env, i, 1);
14735 if (err)
14736 return err;
14737 insn_cnt--;
14738 i--;
14739 }
14740
14741 return 0;
14742}
14743
d6c2308c
JW
14744static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14745 const union bpf_attr *attr)
a4b1d3c1 14746{
d6c2308c 14747 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 14748 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 14749 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 14750 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 14751 struct bpf_prog *new_prog;
d6c2308c 14752 bool rnd_hi32;
a4b1d3c1 14753
d6c2308c 14754 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 14755 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
14756 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14757 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14758 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
14759 for (i = 0; i < len; i++) {
14760 int adj_idx = i + delta;
14761 struct bpf_insn insn;
83a28819 14762 int load_reg;
a4b1d3c1 14763
d6c2308c 14764 insn = insns[adj_idx];
83a28819 14765 load_reg = insn_def_regno(&insn);
d6c2308c
JW
14766 if (!aux[adj_idx].zext_dst) {
14767 u8 code, class;
14768 u32 imm_rnd;
14769
14770 if (!rnd_hi32)
14771 continue;
14772
14773 code = insn.code;
14774 class = BPF_CLASS(code);
83a28819 14775 if (load_reg == -1)
d6c2308c
JW
14776 continue;
14777
14778 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
14779 * BPF_STX + SRC_OP, so it is safe to pass NULL
14780 * here.
d6c2308c 14781 */
83a28819 14782 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
14783 if (class == BPF_LD &&
14784 BPF_MODE(code) == BPF_IMM)
14785 i++;
14786 continue;
14787 }
14788
14789 /* ctx load could be transformed into wider load. */
14790 if (class == BPF_LDX &&
14791 aux[adj_idx].ptr_type == PTR_TO_CTX)
14792 continue;
14793
a251c17a 14794 imm_rnd = get_random_u32();
d6c2308c
JW
14795 rnd_hi32_patch[0] = insn;
14796 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 14797 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
14798 patch = rnd_hi32_patch;
14799 patch_len = 4;
14800 goto apply_patch_buffer;
14801 }
14802
39491867
BJ
14803 /* Add in an zero-extend instruction if a) the JIT has requested
14804 * it or b) it's a CMPXCHG.
14805 *
14806 * The latter is because: BPF_CMPXCHG always loads a value into
14807 * R0, therefore always zero-extends. However some archs'
14808 * equivalent instruction only does this load when the
14809 * comparison is successful. This detail of CMPXCHG is
14810 * orthogonal to the general zero-extension behaviour of the
14811 * CPU, so it's treated independently of bpf_jit_needs_zext.
14812 */
14813 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
14814 continue;
14815
83a28819
IL
14816 if (WARN_ON(load_reg == -1)) {
14817 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14818 return -EFAULT;
b2e37a71
IL
14819 }
14820
a4b1d3c1 14821 zext_patch[0] = insn;
b2e37a71
IL
14822 zext_patch[1].dst_reg = load_reg;
14823 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
14824 patch = zext_patch;
14825 patch_len = 2;
14826apply_patch_buffer:
14827 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
14828 if (!new_prog)
14829 return -ENOMEM;
14830 env->prog = new_prog;
14831 insns = new_prog->insnsi;
14832 aux = env->insn_aux_data;
d6c2308c 14833 delta += patch_len - 1;
a4b1d3c1
JW
14834 }
14835
14836 return 0;
14837}
14838
c64b7983
JS
14839/* convert load instructions that access fields of a context type into a
14840 * sequence of instructions that access fields of the underlying structure:
14841 * struct __sk_buff -> struct sk_buff
14842 * struct bpf_sock_ops -> struct sock
9bac3d6d 14843 */
58e2af8b 14844static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 14845{
00176a34 14846 const struct bpf_verifier_ops *ops = env->ops;
f96da094 14847 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 14848 const int insn_cnt = env->prog->len;
36bbef52 14849 struct bpf_insn insn_buf[16], *insn;
46f53a65 14850 u32 target_size, size_default, off;
9bac3d6d 14851 struct bpf_prog *new_prog;
d691f9e8 14852 enum bpf_access_type type;
f96da094 14853 bool is_narrower_load;
9bac3d6d 14854
b09928b9
DB
14855 if (ops->gen_prologue || env->seen_direct_write) {
14856 if (!ops->gen_prologue) {
14857 verbose(env, "bpf verifier is misconfigured\n");
14858 return -EINVAL;
14859 }
36bbef52
DB
14860 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
14861 env->prog);
14862 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 14863 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
14864 return -EINVAL;
14865 } else if (cnt) {
8041902d 14866 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
14867 if (!new_prog)
14868 return -ENOMEM;
8041902d 14869
36bbef52 14870 env->prog = new_prog;
3df126f3 14871 delta += cnt - 1;
36bbef52
DB
14872 }
14873 }
14874
c64b7983 14875 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
14876 return 0;
14877
3df126f3 14878 insn = env->prog->insnsi + delta;
36bbef52 14879
9bac3d6d 14880 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 14881 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 14882 bool ctx_access;
c64b7983 14883
62c7989b
DB
14884 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
14885 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
14886 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 14887 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 14888 type = BPF_READ;
2039f26f
DB
14889 ctx_access = true;
14890 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
14891 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
14892 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
14893 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
14894 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
14895 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
14896 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
14897 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 14898 type = BPF_WRITE;
2039f26f
DB
14899 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
14900 } else {
9bac3d6d 14901 continue;
2039f26f 14902 }
9bac3d6d 14903
af86ca4e 14904 if (type == BPF_WRITE &&
2039f26f 14905 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 14906 struct bpf_insn patch[] = {
af86ca4e 14907 *insn,
2039f26f 14908 BPF_ST_NOSPEC(),
af86ca4e
AS
14909 };
14910
14911 cnt = ARRAY_SIZE(patch);
14912 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
14913 if (!new_prog)
14914 return -ENOMEM;
14915
14916 delta += cnt - 1;
14917 env->prog = new_prog;
14918 insn = new_prog->insnsi + i + delta;
14919 continue;
14920 }
14921
2039f26f
DB
14922 if (!ctx_access)
14923 continue;
14924
6efe152d 14925 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
14926 case PTR_TO_CTX:
14927 if (!ops->convert_ctx_access)
14928 continue;
14929 convert_ctx_access = ops->convert_ctx_access;
14930 break;
14931 case PTR_TO_SOCKET:
46f8bc92 14932 case PTR_TO_SOCK_COMMON:
c64b7983
JS
14933 convert_ctx_access = bpf_sock_convert_ctx_access;
14934 break;
655a51e5
MKL
14935 case PTR_TO_TCP_SOCK:
14936 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
14937 break;
fada7fdc
JL
14938 case PTR_TO_XDP_SOCK:
14939 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
14940 break;
2a02759e 14941 case PTR_TO_BTF_ID:
6efe152d 14942 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
282de143
KKD
14943 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
14944 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
14945 * be said once it is marked PTR_UNTRUSTED, hence we must handle
14946 * any faults for loads into such types. BPF_WRITE is disallowed
14947 * for this case.
14948 */
14949 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
27ae7997
MKL
14950 if (type == BPF_READ) {
14951 insn->code = BPF_LDX | BPF_PROBE_MEM |
14952 BPF_SIZE((insn)->code);
14953 env->prog->aux->num_exentries++;
2a02759e 14954 }
2a02759e 14955 continue;
c64b7983 14956 default:
9bac3d6d 14957 continue;
c64b7983 14958 }
9bac3d6d 14959
31fd8581 14960 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 14961 size = BPF_LDST_BYTES(insn);
31fd8581
YS
14962
14963 /* If the read access is a narrower load of the field,
14964 * convert to a 4/8-byte load, to minimum program type specific
14965 * convert_ctx_access changes. If conversion is successful,
14966 * we will apply proper mask to the result.
14967 */
f96da094 14968 is_narrower_load = size < ctx_field_size;
46f53a65
AI
14969 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
14970 off = insn->off;
31fd8581 14971 if (is_narrower_load) {
f96da094
DB
14972 u8 size_code;
14973
14974 if (type == BPF_WRITE) {
61bd5218 14975 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
14976 return -EINVAL;
14977 }
31fd8581 14978
f96da094 14979 size_code = BPF_H;
31fd8581
YS
14980 if (ctx_field_size == 4)
14981 size_code = BPF_W;
14982 else if (ctx_field_size == 8)
14983 size_code = BPF_DW;
f96da094 14984
bc23105c 14985 insn->off = off & ~(size_default - 1);
31fd8581
YS
14986 insn->code = BPF_LDX | BPF_MEM | size_code;
14987 }
f96da094
DB
14988
14989 target_size = 0;
c64b7983
JS
14990 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
14991 &target_size);
f96da094
DB
14992 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
14993 (ctx_field_size && !target_size)) {
61bd5218 14994 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
14995 return -EINVAL;
14996 }
f96da094
DB
14997
14998 if (is_narrower_load && size < target_size) {
d895a0f1
IL
14999 u8 shift = bpf_ctx_narrow_access_offset(
15000 off, size, size_default) * 8;
d7af7e49
AI
15001 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15002 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15003 return -EINVAL;
15004 }
46f53a65
AI
15005 if (ctx_field_size <= 4) {
15006 if (shift)
15007 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15008 insn->dst_reg,
15009 shift);
31fd8581 15010 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 15011 (1 << size * 8) - 1);
46f53a65
AI
15012 } else {
15013 if (shift)
15014 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15015 insn->dst_reg,
15016 shift);
31fd8581 15017 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 15018 (1ULL << size * 8) - 1);
46f53a65 15019 }
31fd8581 15020 }
9bac3d6d 15021
8041902d 15022 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
15023 if (!new_prog)
15024 return -ENOMEM;
15025
3df126f3 15026 delta += cnt - 1;
9bac3d6d
AS
15027
15028 /* keep walking new program and skip insns we just inserted */
15029 env->prog = new_prog;
3df126f3 15030 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
15031 }
15032
15033 return 0;
15034}
15035
1c2a088a
AS
15036static int jit_subprogs(struct bpf_verifier_env *env)
15037{
15038 struct bpf_prog *prog = env->prog, **func, *tmp;
15039 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 15040 struct bpf_map *map_ptr;
7105e828 15041 struct bpf_insn *insn;
1c2a088a 15042 void *old_bpf_func;
c4c0bdc0 15043 int err, num_exentries;
1c2a088a 15044
f910cefa 15045 if (env->subprog_cnt <= 1)
1c2a088a
AS
15046 return 0;
15047
7105e828 15048 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 15049 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 15050 continue;
69c087ba 15051
c7a89784
DB
15052 /* Upon error here we cannot fall back to interpreter but
15053 * need a hard reject of the program. Thus -EFAULT is
15054 * propagated in any case.
15055 */
1c2a088a
AS
15056 subprog = find_subprog(env, i + insn->imm + 1);
15057 if (subprog < 0) {
15058 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15059 i + insn->imm + 1);
15060 return -EFAULT;
15061 }
15062 /* temporarily remember subprog id inside insn instead of
15063 * aux_data, since next loop will split up all insns into funcs
15064 */
f910cefa 15065 insn->off = subprog;
1c2a088a
AS
15066 /* remember original imm in case JIT fails and fallback
15067 * to interpreter will be needed
15068 */
15069 env->insn_aux_data[i].call_imm = insn->imm;
15070 /* point imm to __bpf_call_base+1 from JITs point of view */
15071 insn->imm = 1;
3990ed4c
MKL
15072 if (bpf_pseudo_func(insn))
15073 /* jit (e.g. x86_64) may emit fewer instructions
15074 * if it learns a u32 imm is the same as a u64 imm.
15075 * Force a non zero here.
15076 */
15077 insn[1].imm = 1;
1c2a088a
AS
15078 }
15079
c454a46b
MKL
15080 err = bpf_prog_alloc_jited_linfo(prog);
15081 if (err)
15082 goto out_undo_insn;
15083
15084 err = -ENOMEM;
6396bb22 15085 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 15086 if (!func)
c7a89784 15087 goto out_undo_insn;
1c2a088a 15088
f910cefa 15089 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 15090 subprog_start = subprog_end;
4cb3d99c 15091 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
15092
15093 len = subprog_end - subprog_start;
fb7dd8bc 15094 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
15095 * hence main prog stats include the runtime of subprogs.
15096 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 15097 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
15098 */
15099 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
15100 if (!func[i])
15101 goto out_free;
15102 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15103 len * sizeof(struct bpf_insn));
4f74d809 15104 func[i]->type = prog->type;
1c2a088a 15105 func[i]->len = len;
4f74d809
DB
15106 if (bpf_prog_calc_tag(func[i]))
15107 goto out_free;
1c2a088a 15108 func[i]->is_func = 1;
ba64e7d8 15109 func[i]->aux->func_idx = i;
f263a814 15110 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
15111 func[i]->aux->btf = prog->aux->btf;
15112 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 15113 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
15114 func[i]->aux->poke_tab = prog->aux->poke_tab;
15115 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 15116
a748c697 15117 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 15118 struct bpf_jit_poke_descriptor *poke;
a748c697 15119
f263a814
JF
15120 poke = &prog->aux->poke_tab[j];
15121 if (poke->insn_idx < subprog_end &&
15122 poke->insn_idx >= subprog_start)
15123 poke->aux = func[i]->aux;
a748c697
MF
15124 }
15125
1c2a088a 15126 func[i]->aux->name[0] = 'F';
9c8105bd 15127 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 15128 func[i]->jit_requested = 1;
d2a3b7c5 15129 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 15130 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 15131 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
15132 func[i]->aux->linfo = prog->aux->linfo;
15133 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15134 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15135 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
15136 num_exentries = 0;
15137 insn = func[i]->insnsi;
15138 for (j = 0; j < func[i]->len; j++, insn++) {
15139 if (BPF_CLASS(insn->code) == BPF_LDX &&
15140 BPF_MODE(insn->code) == BPF_PROBE_MEM)
15141 num_exentries++;
15142 }
15143 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 15144 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
15145 func[i] = bpf_int_jit_compile(func[i]);
15146 if (!func[i]->jited) {
15147 err = -ENOTSUPP;
15148 goto out_free;
15149 }
15150 cond_resched();
15151 }
a748c697 15152
1c2a088a
AS
15153 /* at this point all bpf functions were successfully JITed
15154 * now populate all bpf_calls with correct addresses and
15155 * run last pass of JIT
15156 */
f910cefa 15157 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
15158 insn = func[i]->insnsi;
15159 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 15160 if (bpf_pseudo_func(insn)) {
3990ed4c 15161 subprog = insn->off;
69c087ba
YS
15162 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15163 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15164 continue;
15165 }
23a2d70c 15166 if (!bpf_pseudo_call(insn))
1c2a088a
AS
15167 continue;
15168 subprog = insn->off;
3d717fad 15169 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 15170 }
2162fed4
SD
15171
15172 /* we use the aux data to keep a list of the start addresses
15173 * of the JITed images for each function in the program
15174 *
15175 * for some architectures, such as powerpc64, the imm field
15176 * might not be large enough to hold the offset of the start
15177 * address of the callee's JITed image from __bpf_call_base
15178 *
15179 * in such cases, we can lookup the start address of a callee
15180 * by using its subprog id, available from the off field of
15181 * the call instruction, as an index for this list
15182 */
15183 func[i]->aux->func = func;
15184 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 15185 }
f910cefa 15186 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
15187 old_bpf_func = func[i]->bpf_func;
15188 tmp = bpf_int_jit_compile(func[i]);
15189 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15190 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 15191 err = -ENOTSUPP;
1c2a088a
AS
15192 goto out_free;
15193 }
15194 cond_resched();
15195 }
15196
15197 /* finally lock prog and jit images for all functions and
15198 * populate kallsysm
15199 */
f910cefa 15200 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
15201 bpf_prog_lock_ro(func[i]);
15202 bpf_prog_kallsyms_add(func[i]);
15203 }
7105e828
DB
15204
15205 /* Last step: make now unused interpreter insns from main
15206 * prog consistent for later dump requests, so they can
15207 * later look the same as if they were interpreted only.
15208 */
15209 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
15210 if (bpf_pseudo_func(insn)) {
15211 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
15212 insn[1].imm = insn->off;
15213 insn->off = 0;
69c087ba
YS
15214 continue;
15215 }
23a2d70c 15216 if (!bpf_pseudo_call(insn))
7105e828
DB
15217 continue;
15218 insn->off = env->insn_aux_data[i].call_imm;
15219 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 15220 insn->imm = subprog;
7105e828
DB
15221 }
15222
1c2a088a
AS
15223 prog->jited = 1;
15224 prog->bpf_func = func[0]->bpf_func;
d00c6473 15225 prog->jited_len = func[0]->jited_len;
1c2a088a 15226 prog->aux->func = func;
f910cefa 15227 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 15228 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
15229 return 0;
15230out_free:
f263a814
JF
15231 /* We failed JIT'ing, so at this point we need to unregister poke
15232 * descriptors from subprogs, so that kernel is not attempting to
15233 * patch it anymore as we're freeing the subprog JIT memory.
15234 */
15235 for (i = 0; i < prog->aux->size_poke_tab; i++) {
15236 map_ptr = prog->aux->poke_tab[i].tail_call.map;
15237 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15238 }
15239 /* At this point we're guaranteed that poke descriptors are not
15240 * live anymore. We can just unlink its descriptor table as it's
15241 * released with the main prog.
15242 */
a748c697
MF
15243 for (i = 0; i < env->subprog_cnt; i++) {
15244 if (!func[i])
15245 continue;
f263a814 15246 func[i]->aux->poke_tab = NULL;
a748c697
MF
15247 bpf_jit_free(func[i]);
15248 }
1c2a088a 15249 kfree(func);
c7a89784 15250out_undo_insn:
1c2a088a
AS
15251 /* cleanup main prog to be interpreted */
15252 prog->jit_requested = 0;
d2a3b7c5 15253 prog->blinding_requested = 0;
1c2a088a 15254 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 15255 if (!bpf_pseudo_call(insn))
1c2a088a
AS
15256 continue;
15257 insn->off = 0;
15258 insn->imm = env->insn_aux_data[i].call_imm;
15259 }
e16301fb 15260 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
15261 return err;
15262}
15263
1ea47e01
AS
15264static int fixup_call_args(struct bpf_verifier_env *env)
15265{
19d28fbd 15266#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
15267 struct bpf_prog *prog = env->prog;
15268 struct bpf_insn *insn = prog->insnsi;
e6ac2450 15269 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 15270 int i, depth;
19d28fbd 15271#endif
e4052d06 15272 int err = 0;
1ea47e01 15273
e4052d06
QM
15274 if (env->prog->jit_requested &&
15275 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
15276 err = jit_subprogs(env);
15277 if (err == 0)
1c2a088a 15278 return 0;
c7a89784
DB
15279 if (err == -EFAULT)
15280 return err;
19d28fbd
DM
15281 }
15282#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
15283 if (has_kfunc_call) {
15284 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15285 return -EINVAL;
15286 }
e411901c
MF
15287 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15288 /* When JIT fails the progs with bpf2bpf calls and tail_calls
15289 * have to be rejected, since interpreter doesn't support them yet.
15290 */
15291 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15292 return -EINVAL;
15293 }
1ea47e01 15294 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
15295 if (bpf_pseudo_func(insn)) {
15296 /* When JIT fails the progs with callback calls
15297 * have to be rejected, since interpreter doesn't support them yet.
15298 */
15299 verbose(env, "callbacks are not allowed in non-JITed programs\n");
15300 return -EINVAL;
15301 }
15302
23a2d70c 15303 if (!bpf_pseudo_call(insn))
1ea47e01
AS
15304 continue;
15305 depth = get_callee_stack_depth(env, insn, i);
15306 if (depth < 0)
15307 return depth;
15308 bpf_patch_call_args(insn, depth);
15309 }
19d28fbd
DM
15310 err = 0;
15311#endif
15312 return err;
1ea47e01
AS
15313}
15314
958cf2e2
KKD
15315static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15316 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
15317{
15318 const struct bpf_kfunc_desc *desc;
15319
a5d82727
KKD
15320 if (!insn->imm) {
15321 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15322 return -EINVAL;
15323 }
15324
e6ac2450
MKL
15325 /* insn->imm has the btf func_id. Replace it with
15326 * an address (relative to __bpf_base_call).
15327 */
2357672c 15328 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
15329 if (!desc) {
15330 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15331 insn->imm);
15332 return -EFAULT;
15333 }
15334
958cf2e2 15335 *cnt = 0;
e6ac2450 15336 insn->imm = desc->imm;
958cf2e2
KKD
15337 if (insn->off)
15338 return 0;
15339 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15340 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15341 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15342 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 15343
958cf2e2
KKD
15344 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15345 insn_buf[1] = addr[0];
15346 insn_buf[2] = addr[1];
15347 insn_buf[3] = *insn;
15348 *cnt = 4;
ac9f0605
KKD
15349 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15350 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15351 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15352
15353 insn_buf[0] = addr[0];
15354 insn_buf[1] = addr[1];
15355 insn_buf[2] = *insn;
15356 *cnt = 3;
a35b9af4
YS
15357 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15358 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
fd264ca0
YS
15359 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15360 *cnt = 1;
958cf2e2 15361 }
e6ac2450
MKL
15362 return 0;
15363}
15364
e6ac5933
BJ
15365/* Do various post-verification rewrites in a single program pass.
15366 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 15367 */
e6ac5933 15368static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 15369{
79741b3b 15370 struct bpf_prog *prog = env->prog;
f92c1e18 15371 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 15372 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 15373 struct bpf_insn *insn = prog->insnsi;
e245c5c6 15374 const struct bpf_func_proto *fn;
79741b3b 15375 const int insn_cnt = prog->len;
09772d92 15376 const struct bpf_map_ops *ops;
c93552c4 15377 struct bpf_insn_aux_data *aux;
81ed18ab
AS
15378 struct bpf_insn insn_buf[16];
15379 struct bpf_prog *new_prog;
15380 struct bpf_map *map_ptr;
d2e4c1e6 15381 int i, ret, cnt, delta = 0;
e245c5c6 15382
79741b3b 15383 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 15384 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
15385 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15386 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15387 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 15388 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 15389 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
15390 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15391 struct bpf_insn *patchlet;
15392 struct bpf_insn chk_and_div[] = {
9b00f1b7 15393 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
15394 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15395 BPF_JNE | BPF_K, insn->src_reg,
15396 0, 2, 0),
f6b1b3bf
DB
15397 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15398 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15399 *insn,
15400 };
e88b2c6e 15401 struct bpf_insn chk_and_mod[] = {
9b00f1b7 15402 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
15403 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15404 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 15405 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 15406 *insn,
9b00f1b7
DB
15407 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15408 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 15409 };
f6b1b3bf 15410
e88b2c6e
DB
15411 patchlet = isdiv ? chk_and_div : chk_and_mod;
15412 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 15413 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
15414
15415 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
15416 if (!new_prog)
15417 return -ENOMEM;
15418
15419 delta += cnt - 1;
15420 env->prog = prog = new_prog;
15421 insn = new_prog->insnsi + i + delta;
15422 continue;
15423 }
15424
e6ac5933 15425 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
15426 if (BPF_CLASS(insn->code) == BPF_LD &&
15427 (BPF_MODE(insn->code) == BPF_ABS ||
15428 BPF_MODE(insn->code) == BPF_IND)) {
15429 cnt = env->ops->gen_ld_abs(insn, insn_buf);
15430 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15431 verbose(env, "bpf verifier is misconfigured\n");
15432 return -EINVAL;
15433 }
15434
15435 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15436 if (!new_prog)
15437 return -ENOMEM;
15438
15439 delta += cnt - 1;
15440 env->prog = prog = new_prog;
15441 insn = new_prog->insnsi + i + delta;
15442 continue;
15443 }
15444
e6ac5933 15445 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
15446 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15447 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15448 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15449 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 15450 struct bpf_insn *patch = &insn_buf[0];
801c6058 15451 bool issrc, isneg, isimm;
979d63d5
DB
15452 u32 off_reg;
15453
15454 aux = &env->insn_aux_data[i + delta];
3612af78
DB
15455 if (!aux->alu_state ||
15456 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
15457 continue;
15458
15459 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15460 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15461 BPF_ALU_SANITIZE_SRC;
801c6058 15462 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
15463
15464 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
15465 if (isimm) {
15466 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15467 } else {
15468 if (isneg)
15469 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15470 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15471 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15472 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15473 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15474 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15475 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15476 }
b9b34ddb
DB
15477 if (!issrc)
15478 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15479 insn->src_reg = BPF_REG_AX;
979d63d5
DB
15480 if (isneg)
15481 insn->code = insn->code == code_add ?
15482 code_sub : code_add;
15483 *patch++ = *insn;
801c6058 15484 if (issrc && isneg && !isimm)
979d63d5
DB
15485 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15486 cnt = patch - insn_buf;
15487
15488 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15489 if (!new_prog)
15490 return -ENOMEM;
15491
15492 delta += cnt - 1;
15493 env->prog = prog = new_prog;
15494 insn = new_prog->insnsi + i + delta;
15495 continue;
15496 }
15497
79741b3b
AS
15498 if (insn->code != (BPF_JMP | BPF_CALL))
15499 continue;
cc8b0b92
AS
15500 if (insn->src_reg == BPF_PSEUDO_CALL)
15501 continue;
e6ac2450 15502 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 15503 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
15504 if (ret)
15505 return ret;
958cf2e2
KKD
15506 if (cnt == 0)
15507 continue;
15508
15509 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15510 if (!new_prog)
15511 return -ENOMEM;
15512
15513 delta += cnt - 1;
15514 env->prog = prog = new_prog;
15515 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
15516 continue;
15517 }
e245c5c6 15518
79741b3b
AS
15519 if (insn->imm == BPF_FUNC_get_route_realm)
15520 prog->dst_needed = 1;
15521 if (insn->imm == BPF_FUNC_get_prandom_u32)
15522 bpf_user_rnd_init_once();
9802d865
JB
15523 if (insn->imm == BPF_FUNC_override_return)
15524 prog->kprobe_override = 1;
79741b3b 15525 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
15526 /* If we tail call into other programs, we
15527 * cannot make any assumptions since they can
15528 * be replaced dynamically during runtime in
15529 * the program array.
15530 */
15531 prog->cb_access = 1;
e411901c
MF
15532 if (!allow_tail_call_in_subprogs(env))
15533 prog->aux->stack_depth = MAX_BPF_STACK;
15534 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 15535
79741b3b 15536 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 15537 * conditional branch in the interpreter for every normal
79741b3b
AS
15538 * call and to prevent accidental JITing by JIT compiler
15539 * that doesn't support bpf_tail_call yet
e245c5c6 15540 */
79741b3b 15541 insn->imm = 0;
71189fa9 15542 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 15543
c93552c4 15544 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 15545 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 15546 prog->jit_requested &&
d2e4c1e6
DB
15547 !bpf_map_key_poisoned(aux) &&
15548 !bpf_map_ptr_poisoned(aux) &&
15549 !bpf_map_ptr_unpriv(aux)) {
15550 struct bpf_jit_poke_descriptor desc = {
15551 .reason = BPF_POKE_REASON_TAIL_CALL,
15552 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15553 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 15554 .insn_idx = i + delta,
d2e4c1e6
DB
15555 };
15556
15557 ret = bpf_jit_add_poke_descriptor(prog, &desc);
15558 if (ret < 0) {
15559 verbose(env, "adding tail call poke descriptor failed\n");
15560 return ret;
15561 }
15562
15563 insn->imm = ret + 1;
15564 continue;
15565 }
15566
c93552c4
DB
15567 if (!bpf_map_ptr_unpriv(aux))
15568 continue;
15569
b2157399
AS
15570 /* instead of changing every JIT dealing with tail_call
15571 * emit two extra insns:
15572 * if (index >= max_entries) goto out;
15573 * index &= array->index_mask;
15574 * to avoid out-of-bounds cpu speculation
15575 */
c93552c4 15576 if (bpf_map_ptr_poisoned(aux)) {
40950343 15577 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
15578 return -EINVAL;
15579 }
c93552c4 15580
d2e4c1e6 15581 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
15582 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15583 map_ptr->max_entries, 2);
15584 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15585 container_of(map_ptr,
15586 struct bpf_array,
15587 map)->index_mask);
15588 insn_buf[2] = *insn;
15589 cnt = 3;
15590 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15591 if (!new_prog)
15592 return -ENOMEM;
15593
15594 delta += cnt - 1;
15595 env->prog = prog = new_prog;
15596 insn = new_prog->insnsi + i + delta;
79741b3b
AS
15597 continue;
15598 }
e245c5c6 15599
b00628b1
AS
15600 if (insn->imm == BPF_FUNC_timer_set_callback) {
15601 /* The verifier will process callback_fn as many times as necessary
15602 * with different maps and the register states prepared by
15603 * set_timer_callback_state will be accurate.
15604 *
15605 * The following use case is valid:
15606 * map1 is shared by prog1, prog2, prog3.
15607 * prog1 calls bpf_timer_init for some map1 elements
15608 * prog2 calls bpf_timer_set_callback for some map1 elements.
15609 * Those that were not bpf_timer_init-ed will return -EINVAL.
15610 * prog3 calls bpf_timer_start for some map1 elements.
15611 * Those that were not both bpf_timer_init-ed and
15612 * bpf_timer_set_callback-ed will return -EINVAL.
15613 */
15614 struct bpf_insn ld_addrs[2] = {
15615 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15616 };
15617
15618 insn_buf[0] = ld_addrs[0];
15619 insn_buf[1] = ld_addrs[1];
15620 insn_buf[2] = *insn;
15621 cnt = 3;
15622
15623 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15624 if (!new_prog)
15625 return -ENOMEM;
15626
15627 delta += cnt - 1;
15628 env->prog = prog = new_prog;
15629 insn = new_prog->insnsi + i + delta;
15630 goto patch_call_imm;
15631 }
15632
9bb00b28
YS
15633 if (is_storage_get_function(insn->imm)) {
15634 if (!env->prog->aux->sleepable ||
15635 env->insn_aux_data[i + delta].storage_get_func_atomic)
d56c9fe6 15636 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
9bb00b28
YS
15637 else
15638 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a
JK
15639 insn_buf[1] = *insn;
15640 cnt = 2;
15641
15642 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15643 if (!new_prog)
15644 return -ENOMEM;
15645
15646 delta += cnt - 1;
15647 env->prog = prog = new_prog;
15648 insn = new_prog->insnsi + i + delta;
15649 goto patch_call_imm;
15650 }
15651
89c63074 15652 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
15653 * and other inlining handlers are currently limited to 64 bit
15654 * only.
89c63074 15655 */
60b58afc 15656 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
15657 (insn->imm == BPF_FUNC_map_lookup_elem ||
15658 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
15659 insn->imm == BPF_FUNC_map_delete_elem ||
15660 insn->imm == BPF_FUNC_map_push_elem ||
15661 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 15662 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 15663 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
15664 insn->imm == BPF_FUNC_for_each_map_elem ||
15665 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
15666 aux = &env->insn_aux_data[i + delta];
15667 if (bpf_map_ptr_poisoned(aux))
15668 goto patch_call_imm;
15669
d2e4c1e6 15670 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
15671 ops = map_ptr->ops;
15672 if (insn->imm == BPF_FUNC_map_lookup_elem &&
15673 ops->map_gen_lookup) {
15674 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
15675 if (cnt == -EOPNOTSUPP)
15676 goto patch_map_ops_generic;
15677 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
15678 verbose(env, "bpf verifier is misconfigured\n");
15679 return -EINVAL;
15680 }
81ed18ab 15681
09772d92
DB
15682 new_prog = bpf_patch_insn_data(env, i + delta,
15683 insn_buf, cnt);
15684 if (!new_prog)
15685 return -ENOMEM;
81ed18ab 15686
09772d92
DB
15687 delta += cnt - 1;
15688 env->prog = prog = new_prog;
15689 insn = new_prog->insnsi + i + delta;
15690 continue;
15691 }
81ed18ab 15692
09772d92
DB
15693 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15694 (void *(*)(struct bpf_map *map, void *key))NULL));
15695 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15696 (int (*)(struct bpf_map *map, void *key))NULL));
15697 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15698 (int (*)(struct bpf_map *map, void *key, void *value,
15699 u64 flags))NULL));
84430d42
DB
15700 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15701 (int (*)(struct bpf_map *map, void *value,
15702 u64 flags))NULL));
15703 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15704 (int (*)(struct bpf_map *map, void *value))NULL));
15705 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15706 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 15707 BUILD_BUG_ON(!__same_type(ops->map_redirect,
32637e33 15708 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c
AI
15709 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15710 (int (*)(struct bpf_map *map,
15711 bpf_callback_t callback_fn,
15712 void *callback_ctx,
15713 u64 flags))NULL));
07343110
FZ
15714 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15715 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 15716
4a8f87e6 15717patch_map_ops_generic:
09772d92
DB
15718 switch (insn->imm) {
15719 case BPF_FUNC_map_lookup_elem:
3d717fad 15720 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
15721 continue;
15722 case BPF_FUNC_map_update_elem:
3d717fad 15723 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
15724 continue;
15725 case BPF_FUNC_map_delete_elem:
3d717fad 15726 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 15727 continue;
84430d42 15728 case BPF_FUNC_map_push_elem:
3d717fad 15729 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
15730 continue;
15731 case BPF_FUNC_map_pop_elem:
3d717fad 15732 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
15733 continue;
15734 case BPF_FUNC_map_peek_elem:
3d717fad 15735 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 15736 continue;
e6a4750f 15737 case BPF_FUNC_redirect_map:
3d717fad 15738 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 15739 continue;
0640c77c
AI
15740 case BPF_FUNC_for_each_map_elem:
15741 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 15742 continue;
07343110
FZ
15743 case BPF_FUNC_map_lookup_percpu_elem:
15744 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15745 continue;
09772d92 15746 }
81ed18ab 15747
09772d92 15748 goto patch_call_imm;
81ed18ab
AS
15749 }
15750
e6ac5933 15751 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
15752 if (prog->jit_requested && BITS_PER_LONG == 64 &&
15753 insn->imm == BPF_FUNC_jiffies64) {
15754 struct bpf_insn ld_jiffies_addr[2] = {
15755 BPF_LD_IMM64(BPF_REG_0,
15756 (unsigned long)&jiffies),
15757 };
15758
15759 insn_buf[0] = ld_jiffies_addr[0];
15760 insn_buf[1] = ld_jiffies_addr[1];
15761 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15762 BPF_REG_0, 0);
15763 cnt = 3;
15764
15765 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15766 cnt);
15767 if (!new_prog)
15768 return -ENOMEM;
15769
15770 delta += cnt - 1;
15771 env->prog = prog = new_prog;
15772 insn = new_prog->insnsi + i + delta;
15773 continue;
15774 }
15775
f92c1e18
JO
15776 /* Implement bpf_get_func_arg inline. */
15777 if (prog_type == BPF_PROG_TYPE_TRACING &&
15778 insn->imm == BPF_FUNC_get_func_arg) {
15779 /* Load nr_args from ctx - 8 */
15780 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15781 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15782 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15783 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15784 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15785 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15786 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15787 insn_buf[7] = BPF_JMP_A(1);
15788 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15789 cnt = 9;
15790
15791 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15792 if (!new_prog)
15793 return -ENOMEM;
15794
15795 delta += cnt - 1;
15796 env->prog = prog = new_prog;
15797 insn = new_prog->insnsi + i + delta;
15798 continue;
15799 }
15800
15801 /* Implement bpf_get_func_ret inline. */
15802 if (prog_type == BPF_PROG_TYPE_TRACING &&
15803 insn->imm == BPF_FUNC_get_func_ret) {
15804 if (eatype == BPF_TRACE_FEXIT ||
15805 eatype == BPF_MODIFY_RETURN) {
15806 /* Load nr_args from ctx - 8 */
15807 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15808 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15809 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15810 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15811 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15812 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15813 cnt = 6;
15814 } else {
15815 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15816 cnt = 1;
15817 }
15818
15819 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15820 if (!new_prog)
15821 return -ENOMEM;
15822
15823 delta += cnt - 1;
15824 env->prog = prog = new_prog;
15825 insn = new_prog->insnsi + i + delta;
15826 continue;
15827 }
15828
15829 /* Implement get_func_arg_cnt inline. */
15830 if (prog_type == BPF_PROG_TYPE_TRACING &&
15831 insn->imm == BPF_FUNC_get_func_arg_cnt) {
15832 /* Load nr_args from ctx - 8 */
15833 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15834
15835 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15836 if (!new_prog)
15837 return -ENOMEM;
15838
15839 env->prog = prog = new_prog;
15840 insn = new_prog->insnsi + i + delta;
15841 continue;
15842 }
15843
f705ec76 15844 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
15845 if (prog_type == BPF_PROG_TYPE_TRACING &&
15846 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
15847 /* Load IP address from ctx - 16 */
15848 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
15849
15850 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15851 if (!new_prog)
15852 return -ENOMEM;
15853
15854 env->prog = prog = new_prog;
15855 insn = new_prog->insnsi + i + delta;
15856 continue;
15857 }
15858
81ed18ab 15859patch_call_imm:
5e43f899 15860 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
15861 /* all functions that have prototype and verifier allowed
15862 * programs to call them, must be real in-kernel functions
15863 */
15864 if (!fn->func) {
61bd5218
JK
15865 verbose(env,
15866 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
15867 func_id_name(insn->imm), insn->imm);
15868 return -EFAULT;
e245c5c6 15869 }
79741b3b 15870 insn->imm = fn->func - __bpf_call_base;
e245c5c6 15871 }
e245c5c6 15872
d2e4c1e6
DB
15873 /* Since poke tab is now finalized, publish aux to tracker. */
15874 for (i = 0; i < prog->aux->size_poke_tab; i++) {
15875 map_ptr = prog->aux->poke_tab[i].tail_call.map;
15876 if (!map_ptr->ops->map_poke_track ||
15877 !map_ptr->ops->map_poke_untrack ||
15878 !map_ptr->ops->map_poke_run) {
15879 verbose(env, "bpf verifier is misconfigured\n");
15880 return -EINVAL;
15881 }
15882
15883 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
15884 if (ret < 0) {
15885 verbose(env, "tracking tail call prog failed\n");
15886 return ret;
15887 }
15888 }
15889
e6ac2450
MKL
15890 sort_kfunc_descs_by_imm(env->prog);
15891
79741b3b
AS
15892 return 0;
15893}
e245c5c6 15894
1ade2371
EZ
15895static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
15896 int position,
15897 s32 stack_base,
15898 u32 callback_subprogno,
15899 u32 *cnt)
15900{
15901 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
15902 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
15903 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
15904 int reg_loop_max = BPF_REG_6;
15905 int reg_loop_cnt = BPF_REG_7;
15906 int reg_loop_ctx = BPF_REG_8;
15907
15908 struct bpf_prog *new_prog;
15909 u32 callback_start;
15910 u32 call_insn_offset;
15911 s32 callback_offset;
15912
15913 /* This represents an inlined version of bpf_iter.c:bpf_loop,
15914 * be careful to modify this code in sync.
15915 */
15916 struct bpf_insn insn_buf[] = {
15917 /* Return error and jump to the end of the patch if
15918 * expected number of iterations is too big.
15919 */
15920 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
15921 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
15922 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
15923 /* spill R6, R7, R8 to use these as loop vars */
15924 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
15925 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
15926 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
15927 /* initialize loop vars */
15928 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
15929 BPF_MOV32_IMM(reg_loop_cnt, 0),
15930 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
15931 /* loop header,
15932 * if reg_loop_cnt >= reg_loop_max skip the loop body
15933 */
15934 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
15935 /* callback call,
15936 * correct callback offset would be set after patching
15937 */
15938 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
15939 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
15940 BPF_CALL_REL(0),
15941 /* increment loop counter */
15942 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
15943 /* jump to loop header if callback returned 0 */
15944 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
15945 /* return value of bpf_loop,
15946 * set R0 to the number of iterations
15947 */
15948 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
15949 /* restore original values of R6, R7, R8 */
15950 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
15951 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
15952 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
15953 };
15954
15955 *cnt = ARRAY_SIZE(insn_buf);
15956 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
15957 if (!new_prog)
15958 return new_prog;
15959
15960 /* callback start is known only after patching */
15961 callback_start = env->subprog_info[callback_subprogno].start;
15962 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
15963 call_insn_offset = position + 12;
15964 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 15965 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
15966
15967 return new_prog;
15968}
15969
15970static bool is_bpf_loop_call(struct bpf_insn *insn)
15971{
15972 return insn->code == (BPF_JMP | BPF_CALL) &&
15973 insn->src_reg == 0 &&
15974 insn->imm == BPF_FUNC_loop;
15975}
15976
15977/* For all sub-programs in the program (including main) check
15978 * insn_aux_data to see if there are bpf_loop calls that require
15979 * inlining. If such calls are found the calls are replaced with a
15980 * sequence of instructions produced by `inline_bpf_loop` function and
15981 * subprog stack_depth is increased by the size of 3 registers.
15982 * This stack space is used to spill values of the R6, R7, R8. These
15983 * registers are used to store the loop bound, counter and context
15984 * variables.
15985 */
15986static int optimize_bpf_loop(struct bpf_verifier_env *env)
15987{
15988 struct bpf_subprog_info *subprogs = env->subprog_info;
15989 int i, cur_subprog = 0, cnt, delta = 0;
15990 struct bpf_insn *insn = env->prog->insnsi;
15991 int insn_cnt = env->prog->len;
15992 u16 stack_depth = subprogs[cur_subprog].stack_depth;
15993 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
15994 u16 stack_depth_extra = 0;
15995
15996 for (i = 0; i < insn_cnt; i++, insn++) {
15997 struct bpf_loop_inline_state *inline_state =
15998 &env->insn_aux_data[i + delta].loop_inline_state;
15999
16000 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16001 struct bpf_prog *new_prog;
16002
16003 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16004 new_prog = inline_bpf_loop(env,
16005 i + delta,
16006 -(stack_depth + stack_depth_extra),
16007 inline_state->callback_subprogno,
16008 &cnt);
16009 if (!new_prog)
16010 return -ENOMEM;
16011
16012 delta += cnt - 1;
16013 env->prog = new_prog;
16014 insn = new_prog->insnsi + i + delta;
16015 }
16016
16017 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16018 subprogs[cur_subprog].stack_depth += stack_depth_extra;
16019 cur_subprog++;
16020 stack_depth = subprogs[cur_subprog].stack_depth;
16021 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16022 stack_depth_extra = 0;
16023 }
16024 }
16025
16026 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16027
16028 return 0;
16029}
16030
58e2af8b 16031static void free_states(struct bpf_verifier_env *env)
f1bca824 16032{
58e2af8b 16033 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
16034 int i;
16035
9f4686c4
AS
16036 sl = env->free_list;
16037 while (sl) {
16038 sln = sl->next;
16039 free_verifier_state(&sl->state, false);
16040 kfree(sl);
16041 sl = sln;
16042 }
51c39bb1 16043 env->free_list = NULL;
9f4686c4 16044
f1bca824
AS
16045 if (!env->explored_states)
16046 return;
16047
dc2a4ebc 16048 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
16049 sl = env->explored_states[i];
16050
a8f500af
AS
16051 while (sl) {
16052 sln = sl->next;
16053 free_verifier_state(&sl->state, false);
16054 kfree(sl);
16055 sl = sln;
16056 }
51c39bb1 16057 env->explored_states[i] = NULL;
f1bca824 16058 }
51c39bb1 16059}
f1bca824 16060
51c39bb1
AS
16061static int do_check_common(struct bpf_verifier_env *env, int subprog)
16062{
6f8a57cc 16063 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
16064 struct bpf_verifier_state *state;
16065 struct bpf_reg_state *regs;
16066 int ret, i;
16067
16068 env->prev_linfo = NULL;
16069 env->pass_cnt++;
16070
16071 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16072 if (!state)
16073 return -ENOMEM;
16074 state->curframe = 0;
16075 state->speculative = false;
16076 state->branches = 1;
16077 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16078 if (!state->frame[0]) {
16079 kfree(state);
16080 return -ENOMEM;
16081 }
16082 env->cur_state = state;
16083 init_func_state(env, state->frame[0],
16084 BPF_MAIN_FUNC /* callsite */,
16085 0 /* frameno */,
16086 subprog);
be2ef816
AN
16087 state->first_insn_idx = env->subprog_info[subprog].start;
16088 state->last_insn_idx = -1;
51c39bb1
AS
16089
16090 regs = state->frame[state->curframe]->regs;
be8704ff 16091 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
16092 ret = btf_prepare_func_args(env, subprog, regs);
16093 if (ret)
16094 goto out;
16095 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16096 if (regs[i].type == PTR_TO_CTX)
16097 mark_reg_known_zero(env, regs, i);
16098 else if (regs[i].type == SCALAR_VALUE)
16099 mark_reg_unknown(env, regs, i);
cf9f2f8d 16100 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
16101 const u32 mem_size = regs[i].mem_size;
16102
16103 mark_reg_known_zero(env, regs, i);
16104 regs[i].mem_size = mem_size;
16105 regs[i].id = ++env->id_gen;
16106 }
51c39bb1
AS
16107 }
16108 } else {
16109 /* 1st arg to a function */
16110 regs[BPF_REG_1].type = PTR_TO_CTX;
16111 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 16112 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
16113 if (ret == -EFAULT)
16114 /* unlikely verifier bug. abort.
16115 * ret == 0 and ret < 0 are sadly acceptable for
16116 * main() function due to backward compatibility.
16117 * Like socket filter program may be written as:
16118 * int bpf_prog(struct pt_regs *ctx)
16119 * and never dereference that ctx in the program.
16120 * 'struct pt_regs' is a type mismatch for socket
16121 * filter that should be using 'struct __sk_buff'.
16122 */
16123 goto out;
16124 }
16125
16126 ret = do_check(env);
16127out:
f59bbfc2
AS
16128 /* check for NULL is necessary, since cur_state can be freed inside
16129 * do_check() under memory pressure.
16130 */
16131 if (env->cur_state) {
16132 free_verifier_state(env->cur_state, true);
16133 env->cur_state = NULL;
16134 }
6f8a57cc
AN
16135 while (!pop_stack(env, NULL, NULL, false));
16136 if (!ret && pop_log)
16137 bpf_vlog_reset(&env->log, 0);
51c39bb1 16138 free_states(env);
51c39bb1
AS
16139 return ret;
16140}
16141
16142/* Verify all global functions in a BPF program one by one based on their BTF.
16143 * All global functions must pass verification. Otherwise the whole program is rejected.
16144 * Consider:
16145 * int bar(int);
16146 * int foo(int f)
16147 * {
16148 * return bar(f);
16149 * }
16150 * int bar(int b)
16151 * {
16152 * ...
16153 * }
16154 * foo() will be verified first for R1=any_scalar_value. During verification it
16155 * will be assumed that bar() already verified successfully and call to bar()
16156 * from foo() will be checked for type match only. Later bar() will be verified
16157 * independently to check that it's safe for R1=any_scalar_value.
16158 */
16159static int do_check_subprogs(struct bpf_verifier_env *env)
16160{
16161 struct bpf_prog_aux *aux = env->prog->aux;
16162 int i, ret;
16163
16164 if (!aux->func_info)
16165 return 0;
16166
16167 for (i = 1; i < env->subprog_cnt; i++) {
16168 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16169 continue;
16170 env->insn_idx = env->subprog_info[i].start;
16171 WARN_ON_ONCE(env->insn_idx == 0);
16172 ret = do_check_common(env, i);
16173 if (ret) {
16174 return ret;
16175 } else if (env->log.level & BPF_LOG_LEVEL) {
16176 verbose(env,
16177 "Func#%d is safe for any args that match its prototype\n",
16178 i);
16179 }
16180 }
16181 return 0;
16182}
16183
16184static int do_check_main(struct bpf_verifier_env *env)
16185{
16186 int ret;
16187
16188 env->insn_idx = 0;
16189 ret = do_check_common(env, 0);
16190 if (!ret)
16191 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16192 return ret;
16193}
16194
16195
06ee7115
AS
16196static void print_verification_stats(struct bpf_verifier_env *env)
16197{
16198 int i;
16199
16200 if (env->log.level & BPF_LOG_STATS) {
16201 verbose(env, "verification time %lld usec\n",
16202 div_u64(env->verification_time, 1000));
16203 verbose(env, "stack depth ");
16204 for (i = 0; i < env->subprog_cnt; i++) {
16205 u32 depth = env->subprog_info[i].stack_depth;
16206
16207 verbose(env, "%d", depth);
16208 if (i + 1 < env->subprog_cnt)
16209 verbose(env, "+");
16210 }
16211 verbose(env, "\n");
16212 }
16213 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16214 "total_states %d peak_states %d mark_read %d\n",
16215 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16216 env->max_states_per_insn, env->total_states,
16217 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
16218}
16219
27ae7997
MKL
16220static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16221{
16222 const struct btf_type *t, *func_proto;
16223 const struct bpf_struct_ops *st_ops;
16224 const struct btf_member *member;
16225 struct bpf_prog *prog = env->prog;
16226 u32 btf_id, member_idx;
16227 const char *mname;
16228
12aa8a94
THJ
16229 if (!prog->gpl_compatible) {
16230 verbose(env, "struct ops programs must have a GPL compatible license\n");
16231 return -EINVAL;
16232 }
16233
27ae7997
MKL
16234 btf_id = prog->aux->attach_btf_id;
16235 st_ops = bpf_struct_ops_find(btf_id);
16236 if (!st_ops) {
16237 verbose(env, "attach_btf_id %u is not a supported struct\n",
16238 btf_id);
16239 return -ENOTSUPP;
16240 }
16241
16242 t = st_ops->type;
16243 member_idx = prog->expected_attach_type;
16244 if (member_idx >= btf_type_vlen(t)) {
16245 verbose(env, "attach to invalid member idx %u of struct %s\n",
16246 member_idx, st_ops->name);
16247 return -EINVAL;
16248 }
16249
16250 member = &btf_type_member(t)[member_idx];
16251 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16252 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16253 NULL);
16254 if (!func_proto) {
16255 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16256 mname, member_idx, st_ops->name);
16257 return -EINVAL;
16258 }
16259
16260 if (st_ops->check_member) {
16261 int err = st_ops->check_member(t, member);
16262
16263 if (err) {
16264 verbose(env, "attach to unsupported member %s of struct %s\n",
16265 mname, st_ops->name);
16266 return err;
16267 }
16268 }
16269
16270 prog->aux->attach_func_proto = func_proto;
16271 prog->aux->attach_func_name = mname;
16272 env->ops = st_ops->verifier_ops;
16273
16274 return 0;
16275}
6ba43b76
KS
16276#define SECURITY_PREFIX "security_"
16277
f7b12b6f 16278static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 16279{
69191754 16280 if (within_error_injection_list(addr) ||
f7b12b6f 16281 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 16282 return 0;
6ba43b76 16283
6ba43b76
KS
16284 return -EINVAL;
16285}
27ae7997 16286
1e6c62a8
AS
16287/* list of non-sleepable functions that are otherwise on
16288 * ALLOW_ERROR_INJECTION list
16289 */
16290BTF_SET_START(btf_non_sleepable_error_inject)
16291/* Three functions below can be called from sleepable and non-sleepable context.
16292 * Assume non-sleepable from bpf safety point of view.
16293 */
9dd3d069 16294BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
16295BTF_ID(func, should_fail_alloc_page)
16296BTF_ID(func, should_failslab)
16297BTF_SET_END(btf_non_sleepable_error_inject)
16298
16299static int check_non_sleepable_error_inject(u32 btf_id)
16300{
16301 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16302}
16303
f7b12b6f
THJ
16304int bpf_check_attach_target(struct bpf_verifier_log *log,
16305 const struct bpf_prog *prog,
16306 const struct bpf_prog *tgt_prog,
16307 u32 btf_id,
16308 struct bpf_attach_target_info *tgt_info)
38207291 16309{
be8704ff 16310 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 16311 const char prefix[] = "btf_trace_";
5b92a28a 16312 int ret = 0, subprog = -1, i;
38207291 16313 const struct btf_type *t;
5b92a28a 16314 bool conservative = true;
38207291 16315 const char *tname;
5b92a28a 16316 struct btf *btf;
f7b12b6f 16317 long addr = 0;
38207291 16318
f1b9509c 16319 if (!btf_id) {
efc68158 16320 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
16321 return -EINVAL;
16322 }
22dc4a0f 16323 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 16324 if (!btf) {
efc68158 16325 bpf_log(log,
5b92a28a
AS
16326 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16327 return -EINVAL;
16328 }
16329 t = btf_type_by_id(btf, btf_id);
f1b9509c 16330 if (!t) {
efc68158 16331 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
16332 return -EINVAL;
16333 }
5b92a28a 16334 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 16335 if (!tname) {
efc68158 16336 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
16337 return -EINVAL;
16338 }
5b92a28a
AS
16339 if (tgt_prog) {
16340 struct bpf_prog_aux *aux = tgt_prog->aux;
16341
16342 for (i = 0; i < aux->func_info_cnt; i++)
16343 if (aux->func_info[i].type_id == btf_id) {
16344 subprog = i;
16345 break;
16346 }
16347 if (subprog == -1) {
efc68158 16348 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
16349 return -EINVAL;
16350 }
16351 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
16352 if (prog_extension) {
16353 if (conservative) {
efc68158 16354 bpf_log(log,
be8704ff
AS
16355 "Cannot replace static functions\n");
16356 return -EINVAL;
16357 }
16358 if (!prog->jit_requested) {
efc68158 16359 bpf_log(log,
be8704ff
AS
16360 "Extension programs should be JITed\n");
16361 return -EINVAL;
16362 }
be8704ff
AS
16363 }
16364 if (!tgt_prog->jited) {
efc68158 16365 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
16366 return -EINVAL;
16367 }
16368 if (tgt_prog->type == prog->type) {
16369 /* Cannot fentry/fexit another fentry/fexit program.
16370 * Cannot attach program extension to another extension.
16371 * It's ok to attach fentry/fexit to extension program.
16372 */
efc68158 16373 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
16374 return -EINVAL;
16375 }
16376 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16377 prog_extension &&
16378 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16379 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16380 /* Program extensions can extend all program types
16381 * except fentry/fexit. The reason is the following.
16382 * The fentry/fexit programs are used for performance
16383 * analysis, stats and can be attached to any program
16384 * type except themselves. When extension program is
16385 * replacing XDP function it is necessary to allow
16386 * performance analysis of all functions. Both original
16387 * XDP program and its program extension. Hence
16388 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16389 * allowed. If extending of fentry/fexit was allowed it
16390 * would be possible to create long call chain
16391 * fentry->extension->fentry->extension beyond
16392 * reasonable stack size. Hence extending fentry is not
16393 * allowed.
16394 */
efc68158 16395 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
16396 return -EINVAL;
16397 }
5b92a28a 16398 } else {
be8704ff 16399 if (prog_extension) {
efc68158 16400 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
16401 return -EINVAL;
16402 }
5b92a28a 16403 }
f1b9509c
AS
16404
16405 switch (prog->expected_attach_type) {
16406 case BPF_TRACE_RAW_TP:
5b92a28a 16407 if (tgt_prog) {
efc68158 16408 bpf_log(log,
5b92a28a
AS
16409 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16410 return -EINVAL;
16411 }
38207291 16412 if (!btf_type_is_typedef(t)) {
efc68158 16413 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
16414 btf_id);
16415 return -EINVAL;
16416 }
f1b9509c 16417 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 16418 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
16419 btf_id, tname);
16420 return -EINVAL;
16421 }
16422 tname += sizeof(prefix) - 1;
5b92a28a 16423 t = btf_type_by_id(btf, t->type);
38207291
MKL
16424 if (!btf_type_is_ptr(t))
16425 /* should never happen in valid vmlinux build */
16426 return -EINVAL;
5b92a28a 16427 t = btf_type_by_id(btf, t->type);
38207291
MKL
16428 if (!btf_type_is_func_proto(t))
16429 /* should never happen in valid vmlinux build */
16430 return -EINVAL;
16431
f7b12b6f 16432 break;
15d83c4d
YS
16433 case BPF_TRACE_ITER:
16434 if (!btf_type_is_func(t)) {
efc68158 16435 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
16436 btf_id);
16437 return -EINVAL;
16438 }
16439 t = btf_type_by_id(btf, t->type);
16440 if (!btf_type_is_func_proto(t))
16441 return -EINVAL;
f7b12b6f
THJ
16442 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16443 if (ret)
16444 return ret;
16445 break;
be8704ff
AS
16446 default:
16447 if (!prog_extension)
16448 return -EINVAL;
df561f66 16449 fallthrough;
ae240823 16450 case BPF_MODIFY_RETURN:
9e4e01df 16451 case BPF_LSM_MAC:
69fd337a 16452 case BPF_LSM_CGROUP:
fec56f58
AS
16453 case BPF_TRACE_FENTRY:
16454 case BPF_TRACE_FEXIT:
16455 if (!btf_type_is_func(t)) {
efc68158 16456 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
16457 btf_id);
16458 return -EINVAL;
16459 }
be8704ff 16460 if (prog_extension &&
efc68158 16461 btf_check_type_match(log, prog, btf, t))
be8704ff 16462 return -EINVAL;
5b92a28a 16463 t = btf_type_by_id(btf, t->type);
fec56f58
AS
16464 if (!btf_type_is_func_proto(t))
16465 return -EINVAL;
f7b12b6f 16466
4a1e7c0c
THJ
16467 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16468 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16469 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16470 return -EINVAL;
16471
f7b12b6f 16472 if (tgt_prog && conservative)
5b92a28a 16473 t = NULL;
f7b12b6f
THJ
16474
16475 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 16476 if (ret < 0)
f7b12b6f
THJ
16477 return ret;
16478
5b92a28a 16479 if (tgt_prog) {
e9eeec58
YS
16480 if (subprog == 0)
16481 addr = (long) tgt_prog->bpf_func;
16482 else
16483 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
16484 } else {
16485 addr = kallsyms_lookup_name(tname);
16486 if (!addr) {
efc68158 16487 bpf_log(log,
5b92a28a
AS
16488 "The address of function %s cannot be found\n",
16489 tname);
f7b12b6f 16490 return -ENOENT;
5b92a28a 16491 }
fec56f58 16492 }
18644cec 16493
1e6c62a8
AS
16494 if (prog->aux->sleepable) {
16495 ret = -EINVAL;
16496 switch (prog->type) {
16497 case BPF_PROG_TYPE_TRACING:
16498 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
16499 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16500 */
16501 if (!check_non_sleepable_error_inject(btf_id) &&
16502 within_error_injection_list(addr))
16503 ret = 0;
16504 break;
16505 case BPF_PROG_TYPE_LSM:
16506 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
16507 * Only some of them are sleepable.
16508 */
423f1610 16509 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
16510 ret = 0;
16511 break;
16512 default:
16513 break;
16514 }
f7b12b6f
THJ
16515 if (ret) {
16516 bpf_log(log, "%s is not sleepable\n", tname);
16517 return ret;
16518 }
1e6c62a8 16519 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 16520 if (tgt_prog) {
efc68158 16521 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
16522 return -EINVAL;
16523 }
16524 ret = check_attach_modify_return(addr, tname);
16525 if (ret) {
16526 bpf_log(log, "%s() is not modifiable\n", tname);
16527 return ret;
1af9270e 16528 }
18644cec 16529 }
f7b12b6f
THJ
16530
16531 break;
16532 }
16533 tgt_info->tgt_addr = addr;
16534 tgt_info->tgt_name = tname;
16535 tgt_info->tgt_type = t;
16536 return 0;
16537}
16538
35e3815f
JO
16539BTF_SET_START(btf_id_deny)
16540BTF_ID_UNUSED
16541#ifdef CONFIG_SMP
16542BTF_ID(func, migrate_disable)
16543BTF_ID(func, migrate_enable)
16544#endif
16545#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16546BTF_ID(func, rcu_read_unlock_strict)
16547#endif
16548BTF_SET_END(btf_id_deny)
16549
f7b12b6f
THJ
16550static int check_attach_btf_id(struct bpf_verifier_env *env)
16551{
16552 struct bpf_prog *prog = env->prog;
3aac1ead 16553 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
16554 struct bpf_attach_target_info tgt_info = {};
16555 u32 btf_id = prog->aux->attach_btf_id;
16556 struct bpf_trampoline *tr;
16557 int ret;
16558 u64 key;
16559
79a7f8bd
AS
16560 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16561 if (prog->aux->sleepable)
16562 /* attach_btf_id checked to be zero already */
16563 return 0;
16564 verbose(env, "Syscall programs can only be sleepable\n");
16565 return -EINVAL;
16566 }
16567
f7b12b6f 16568 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
64ad7556
DK
16569 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16570 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
f7b12b6f
THJ
16571 return -EINVAL;
16572 }
16573
16574 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16575 return check_struct_ops_btf_id(env);
16576
16577 if (prog->type != BPF_PROG_TYPE_TRACING &&
16578 prog->type != BPF_PROG_TYPE_LSM &&
16579 prog->type != BPF_PROG_TYPE_EXT)
16580 return 0;
16581
16582 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16583 if (ret)
fec56f58 16584 return ret;
f7b12b6f
THJ
16585
16586 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
16587 /* to make freplace equivalent to their targets, they need to
16588 * inherit env->ops and expected_attach_type for the rest of the
16589 * verification
16590 */
f7b12b6f
THJ
16591 env->ops = bpf_verifier_ops[tgt_prog->type];
16592 prog->expected_attach_type = tgt_prog->expected_attach_type;
16593 }
16594
16595 /* store info about the attachment target that will be used later */
16596 prog->aux->attach_func_proto = tgt_info.tgt_type;
16597 prog->aux->attach_func_name = tgt_info.tgt_name;
16598
4a1e7c0c
THJ
16599 if (tgt_prog) {
16600 prog->aux->saved_dst_prog_type = tgt_prog->type;
16601 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16602 }
16603
f7b12b6f
THJ
16604 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16605 prog->aux->attach_btf_trace = true;
16606 return 0;
16607 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16608 if (!bpf_iter_prog_supported(prog))
16609 return -EINVAL;
16610 return 0;
16611 }
16612
16613 if (prog->type == BPF_PROG_TYPE_LSM) {
16614 ret = bpf_lsm_verify_prog(&env->log, prog);
16615 if (ret < 0)
16616 return ret;
35e3815f
JO
16617 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
16618 btf_id_set_contains(&btf_id_deny, btf_id)) {
16619 return -EINVAL;
38207291 16620 }
f7b12b6f 16621
22dc4a0f 16622 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
16623 tr = bpf_trampoline_get(key, &tgt_info);
16624 if (!tr)
16625 return -ENOMEM;
16626
3aac1ead 16627 prog->aux->dst_trampoline = tr;
f7b12b6f 16628 return 0;
38207291
MKL
16629}
16630
76654e67
AM
16631struct btf *bpf_get_btf_vmlinux(void)
16632{
16633 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16634 mutex_lock(&bpf_verifier_lock);
16635 if (!btf_vmlinux)
16636 btf_vmlinux = btf_parse_vmlinux();
16637 mutex_unlock(&bpf_verifier_lock);
16638 }
16639 return btf_vmlinux;
16640}
16641
af2ac3e1 16642int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 16643{
06ee7115 16644 u64 start_time = ktime_get_ns();
58e2af8b 16645 struct bpf_verifier_env *env;
b9193c1b 16646 struct bpf_verifier_log *log;
9e4c24e7 16647 int i, len, ret = -EINVAL;
e2ae4ca2 16648 bool is_priv;
51580e79 16649
eba0c929
AB
16650 /* no program is valid */
16651 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16652 return -EINVAL;
16653
58e2af8b 16654 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
16655 * allocate/free it every time bpf_check() is called
16656 */
58e2af8b 16657 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
16658 if (!env)
16659 return -ENOMEM;
61bd5218 16660 log = &env->log;
cbd35700 16661
9e4c24e7 16662 len = (*prog)->len;
fad953ce 16663 env->insn_aux_data =
9e4c24e7 16664 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
16665 ret = -ENOMEM;
16666 if (!env->insn_aux_data)
16667 goto err_free_env;
9e4c24e7
JK
16668 for (i = 0; i < len; i++)
16669 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 16670 env->prog = *prog;
00176a34 16671 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 16672 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 16673 is_priv = bpf_capable();
0246e64d 16674
76654e67 16675 bpf_get_btf_vmlinux();
8580ac94 16676
cbd35700 16677 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
16678 if (!is_priv)
16679 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
16680
16681 if (attr->log_level || attr->log_buf || attr->log_size) {
16682 /* user requested verbose verifier output
16683 * and supplied buffer to store the verification trace
16684 */
e7bf8249
JK
16685 log->level = attr->log_level;
16686 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16687 log->len_total = attr->log_size;
cbd35700 16688
e7bf8249 16689 /* log attributes have to be sane */
866de407
HT
16690 if (!bpf_verifier_log_attr_valid(log)) {
16691 ret = -EINVAL;
3df126f3 16692 goto err_unlock;
866de407 16693 }
cbd35700 16694 }
1ad2f583 16695
0f55f9ed
CL
16696 mark_verifier_state_clean(env);
16697
8580ac94
AS
16698 if (IS_ERR(btf_vmlinux)) {
16699 /* Either gcc or pahole or kernel are broken. */
16700 verbose(env, "in-kernel BTF is malformed\n");
16701 ret = PTR_ERR(btf_vmlinux);
38207291 16702 goto skip_full_check;
8580ac94
AS
16703 }
16704
1ad2f583
DB
16705 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16706 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 16707 env->strict_alignment = true;
e9ee9efc
DM
16708 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16709 env->strict_alignment = false;
cbd35700 16710
2c78ee89 16711 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 16712 env->allow_uninit_stack = bpf_allow_uninit_stack();
2c78ee89
AS
16713 env->bypass_spec_v1 = bpf_bypass_spec_v1();
16714 env->bypass_spec_v4 = bpf_bypass_spec_v4();
16715 env->bpf_capable = bpf_capable();
9bb00b28
YS
16716 env->rcu_tag_supported = btf_vmlinux &&
16717 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
e2ae4ca2 16718
10d274e8
AS
16719 if (is_priv)
16720 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16721
dc2a4ebc 16722 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 16723 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
16724 GFP_USER);
16725 ret = -ENOMEM;
16726 if (!env->explored_states)
16727 goto skip_full_check;
16728
e6ac2450
MKL
16729 ret = add_subprog_and_kfunc(env);
16730 if (ret < 0)
16731 goto skip_full_check;
16732
d9762e84 16733 ret = check_subprogs(env);
475fb78f
AS
16734 if (ret < 0)
16735 goto skip_full_check;
16736
c454a46b 16737 ret = check_btf_info(env, attr, uattr);
838e9690
YS
16738 if (ret < 0)
16739 goto skip_full_check;
16740
be8704ff
AS
16741 ret = check_attach_btf_id(env);
16742 if (ret)
16743 goto skip_full_check;
16744
4976b718
HL
16745 ret = resolve_pseudo_ldimm64(env);
16746 if (ret < 0)
16747 goto skip_full_check;
16748
ceb11679
YZ
16749 if (bpf_prog_is_dev_bound(env->prog->aux)) {
16750 ret = bpf_prog_offload_verifier_prep(env->prog);
16751 if (ret)
16752 goto skip_full_check;
16753 }
16754
d9762e84
MKL
16755 ret = check_cfg(env);
16756 if (ret < 0)
16757 goto skip_full_check;
16758
51c39bb1
AS
16759 ret = do_check_subprogs(env);
16760 ret = ret ?: do_check_main(env);
cbd35700 16761
c941ce9c
QM
16762 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16763 ret = bpf_prog_offload_finalize(env);
16764
0246e64d 16765skip_full_check:
51c39bb1 16766 kvfree(env->explored_states);
0246e64d 16767
c131187d 16768 if (ret == 0)
9b38c405 16769 ret = check_max_stack_depth(env);
c131187d 16770
9b38c405 16771 /* instruction rewrites happen after this point */
1ade2371
EZ
16772 if (ret == 0)
16773 ret = optimize_bpf_loop(env);
16774
e2ae4ca2
JK
16775 if (is_priv) {
16776 if (ret == 0)
16777 opt_hard_wire_dead_code_branches(env);
52875a04
JK
16778 if (ret == 0)
16779 ret = opt_remove_dead_code(env);
a1b14abc
JK
16780 if (ret == 0)
16781 ret = opt_remove_nops(env);
52875a04
JK
16782 } else {
16783 if (ret == 0)
16784 sanitize_dead_code(env);
e2ae4ca2
JK
16785 }
16786
9bac3d6d
AS
16787 if (ret == 0)
16788 /* program is valid, convert *(u32*)(ctx + off) accesses */
16789 ret = convert_ctx_accesses(env);
16790
e245c5c6 16791 if (ret == 0)
e6ac5933 16792 ret = do_misc_fixups(env);
e245c5c6 16793
a4b1d3c1
JW
16794 /* do 32-bit optimization after insn patching has done so those patched
16795 * insns could be handled correctly.
16796 */
d6c2308c
JW
16797 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16798 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16799 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16800 : false;
a4b1d3c1
JW
16801 }
16802
1ea47e01
AS
16803 if (ret == 0)
16804 ret = fixup_call_args(env);
16805
06ee7115
AS
16806 env->verification_time = ktime_get_ns() - start_time;
16807 print_verification_stats(env);
aba64c7d 16808 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 16809
a2a7d570 16810 if (log->level && bpf_verifier_log_full(log))
cbd35700 16811 ret = -ENOSPC;
a2a7d570 16812 if (log->level && !log->ubuf) {
cbd35700 16813 ret = -EFAULT;
a2a7d570 16814 goto err_release_maps;
cbd35700
AS
16815 }
16816
541c3bad
AN
16817 if (ret)
16818 goto err_release_maps;
16819
16820 if (env->used_map_cnt) {
0246e64d 16821 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
16822 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
16823 sizeof(env->used_maps[0]),
16824 GFP_KERNEL);
0246e64d 16825
9bac3d6d 16826 if (!env->prog->aux->used_maps) {
0246e64d 16827 ret = -ENOMEM;
a2a7d570 16828 goto err_release_maps;
0246e64d
AS
16829 }
16830
9bac3d6d 16831 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 16832 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 16833 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
16834 }
16835 if (env->used_btf_cnt) {
16836 /* if program passed verifier, update used_btfs in bpf_prog_aux */
16837 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
16838 sizeof(env->used_btfs[0]),
16839 GFP_KERNEL);
16840 if (!env->prog->aux->used_btfs) {
16841 ret = -ENOMEM;
16842 goto err_release_maps;
16843 }
0246e64d 16844
541c3bad
AN
16845 memcpy(env->prog->aux->used_btfs, env->used_btfs,
16846 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
16847 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
16848 }
16849 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
16850 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
16851 * bpf_ld_imm64 instructions
16852 */
16853 convert_pseudo_ld_imm64(env);
16854 }
cbd35700 16855
541c3bad 16856 adjust_btf_func(env);
ba64e7d8 16857
a2a7d570 16858err_release_maps:
9bac3d6d 16859 if (!env->prog->aux->used_maps)
0246e64d 16860 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 16861 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
16862 */
16863 release_maps(env);
541c3bad
AN
16864 if (!env->prog->aux->used_btfs)
16865 release_btfs(env);
03f87c0b
THJ
16866
16867 /* extension progs temporarily inherit the attach_type of their targets
16868 for verification purposes, so set it back to zero before returning
16869 */
16870 if (env->prog->type == BPF_PROG_TYPE_EXT)
16871 env->prog->expected_attach_type = 0;
16872
9bac3d6d 16873 *prog = env->prog;
3df126f3 16874err_unlock:
45a73c17
AS
16875 if (!is_priv)
16876 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
16877 vfree(env->insn_aux_data);
16878err_free_env:
16879 kfree(env);
51580e79
AS
16880 return ret;
16881}