treewide: Add missing includes masked by cgroup -> bpf dependency
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
8fb33b60 50 * Since it's analyzing all paths through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 135 * returns either pointer to map value or NULL.
51580e79
AS
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
23a2d70c
YS
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
e6ac2450
MKL
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
33ff9823
DB
243struct bpf_call_arg_meta {
244 struct bpf_map *map_ptr;
435faee1 245 bool raw_mode;
36bbef52 246 bool pkt_access;
435faee1
DB
247 int regno;
248 int access_size;
457f4436 249 int mem_size;
10060503 250 u64 msize_max_value;
1b986589 251 int ref_obj_id;
3e8ce298 252 int map_uid;
d83525ca 253 int func_id;
22dc4a0f 254 struct btf *btf;
eaa6bcb7 255 u32 btf_id;
22dc4a0f 256 struct btf *ret_btf;
eaa6bcb7 257 u32 ret_btf_id;
69c087ba 258 u32 subprogno;
33ff9823
DB
259};
260
8580ac94
AS
261struct btf *btf_vmlinux;
262
cbd35700
AS
263static DEFINE_MUTEX(bpf_verifier_lock);
264
d9762e84
MKL
265static const struct bpf_line_info *
266find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267{
268 const struct bpf_line_info *linfo;
269 const struct bpf_prog *prog;
270 u32 i, nr_linfo;
271
272 prog = env->prog;
273 nr_linfo = prog->aux->nr_linfo;
274
275 if (!nr_linfo || insn_off >= prog->len)
276 return NULL;
277
278 linfo = prog->aux->linfo;
279 for (i = 1; i < nr_linfo; i++)
280 if (insn_off < linfo[i].insn_off)
281 break;
282
283 return &linfo[i - 1];
284}
285
77d2e05a
MKL
286void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 va_list args)
cbd35700 288{
a2a7d570 289 unsigned int n;
cbd35700 290
a2a7d570 291 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
292
293 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 "verifier log line truncated - local buffer too short\n");
295
296 n = min(log->len_total - log->len_used - 1, n);
297 log->kbuf[n] = '\0';
298
8580ac94
AS
299 if (log->level == BPF_LOG_KERNEL) {
300 pr_err("BPF:%s\n", log->kbuf);
301 return;
302 }
a2a7d570
JK
303 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
304 log->len_used += n;
305 else
306 log->ubuf = NULL;
cbd35700 307}
abe08840 308
6f8a57cc
AN
309static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
310{
311 char zero = 0;
312
313 if (!bpf_verifier_log_needed(log))
314 return;
315
316 log->len_used = new_pos;
317 if (put_user(zero, log->ubuf + new_pos))
318 log->ubuf = NULL;
319}
320
abe08840
JO
321/* log_level controls verbosity level of eBPF verifier.
322 * bpf_verifier_log_write() is used to dump the verification trace to the log,
323 * so the user can figure out what's wrong with the program
430e68d1 324 */
abe08840
JO
325__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
326 const char *fmt, ...)
327{
328 va_list args;
329
77d2e05a
MKL
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
abe08840 333 va_start(args, fmt);
77d2e05a 334 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
335 va_end(args);
336}
337EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
338
339__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
340{
77d2e05a 341 struct bpf_verifier_env *env = private_data;
abe08840
JO
342 va_list args;
343
77d2e05a
MKL
344 if (!bpf_verifier_log_needed(&env->log))
345 return;
346
abe08840 347 va_start(args, fmt);
77d2e05a 348 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
349 va_end(args);
350}
cbd35700 351
9e15db66
AS
352__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
353 const char *fmt, ...)
354{
355 va_list args;
356
357 if (!bpf_verifier_log_needed(log))
358 return;
359
360 va_start(args, fmt);
361 bpf_verifier_vlog(log, fmt, args);
362 va_end(args);
363}
364
d9762e84
MKL
365static const char *ltrim(const char *s)
366{
367 while (isspace(*s))
368 s++;
369
370 return s;
371}
372
373__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 u32 insn_off,
375 const char *prefix_fmt, ...)
376{
377 const struct bpf_line_info *linfo;
378
379 if (!bpf_verifier_log_needed(&env->log))
380 return;
381
382 linfo = find_linfo(env, insn_off);
383 if (!linfo || linfo == env->prev_linfo)
384 return;
385
386 if (prefix_fmt) {
387 va_list args;
388
389 va_start(args, prefix_fmt);
390 bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 va_end(args);
392 }
393
394 verbose(env, "%s\n",
395 ltrim(btf_name_by_offset(env->prog->aux->btf,
396 linfo->line_off)));
397
398 env->prev_linfo = linfo;
399}
400
bc2591d6
YS
401static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 struct bpf_reg_state *reg,
403 struct tnum *range, const char *ctx,
404 const char *reg_name)
405{
406 char tn_buf[48];
407
408 verbose(env, "At %s the register %s ", ctx, reg_name);
409 if (!tnum_is_unknown(reg->var_off)) {
410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 verbose(env, "has value %s", tn_buf);
412 } else {
413 verbose(env, "has unknown scalar value");
414 }
415 tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 verbose(env, " should have been in %s\n", tn_buf);
417}
418
de8f3a83
DB
419static bool type_is_pkt_pointer(enum bpf_reg_type type)
420{
421 return type == PTR_TO_PACKET ||
422 type == PTR_TO_PACKET_META;
423}
424
46f8bc92
MKL
425static bool type_is_sk_pointer(enum bpf_reg_type type)
426{
427 return type == PTR_TO_SOCKET ||
655a51e5 428 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
429 type == PTR_TO_TCP_SOCK ||
430 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
431}
432
cac616db
JF
433static bool reg_type_not_null(enum bpf_reg_type type)
434{
435 return type == PTR_TO_SOCKET ||
436 type == PTR_TO_TCP_SOCK ||
437 type == PTR_TO_MAP_VALUE ||
69c087ba 438 type == PTR_TO_MAP_KEY ||
01c66c48 439 type == PTR_TO_SOCK_COMMON;
cac616db
JF
440}
441
840b9615
JS
442static bool reg_type_may_be_null(enum bpf_reg_type type)
443{
fd978bf7 444 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 445 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 446 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 447 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 448 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
449 type == PTR_TO_MEM_OR_NULL ||
450 type == PTR_TO_RDONLY_BUF_OR_NULL ||
451 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
452}
453
d83525ca
AS
454static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455{
456 return reg->type == PTR_TO_MAP_VALUE &&
457 map_value_has_spin_lock(reg->map_ptr);
458}
459
cba368c1
MKL
460static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461{
462 return type == PTR_TO_SOCKET ||
463 type == PTR_TO_SOCKET_OR_NULL ||
464 type == PTR_TO_TCP_SOCK ||
457f4436
AN
465 type == PTR_TO_TCP_SOCK_OR_NULL ||
466 type == PTR_TO_MEM ||
467 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
468}
469
1b986589 470static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 471{
1b986589 472 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
473}
474
fd1b0d60
LB
475static bool arg_type_may_be_null(enum bpf_arg_type type)
476{
477 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
478 type == ARG_PTR_TO_MEM_OR_NULL ||
479 type == ARG_PTR_TO_CTX_OR_NULL ||
480 type == ARG_PTR_TO_SOCKET_OR_NULL ||
69c087ba
YS
481 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
482 type == ARG_PTR_TO_STACK_OR_NULL;
fd1b0d60
LB
483}
484
fd978bf7
JS
485/* Determine whether the function releases some resources allocated by another
486 * function call. The first reference type argument will be assumed to be
487 * released by release_reference().
488 */
489static bool is_release_function(enum bpf_func_id func_id)
490{
457f4436
AN
491 return func_id == BPF_FUNC_sk_release ||
492 func_id == BPF_FUNC_ringbuf_submit ||
493 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
494}
495
64d85290 496static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
497{
498 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 499 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 500 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
501 func_id == BPF_FUNC_map_lookup_elem ||
502 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
503}
504
505static bool is_acquire_function(enum bpf_func_id func_id,
506 const struct bpf_map *map)
507{
508 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
509
510 if (func_id == BPF_FUNC_sk_lookup_tcp ||
511 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
512 func_id == BPF_FUNC_skc_lookup_tcp ||
513 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
514 return true;
515
516 if (func_id == BPF_FUNC_map_lookup_elem &&
517 (map_type == BPF_MAP_TYPE_SOCKMAP ||
518 map_type == BPF_MAP_TYPE_SOCKHASH))
519 return true;
520
521 return false;
46f8bc92
MKL
522}
523
1b986589
MKL
524static bool is_ptr_cast_function(enum bpf_func_id func_id)
525{
526 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
527 func_id == BPF_FUNC_sk_fullsock ||
528 func_id == BPF_FUNC_skc_to_tcp_sock ||
529 func_id == BPF_FUNC_skc_to_tcp6_sock ||
530 func_id == BPF_FUNC_skc_to_udp6_sock ||
531 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
532 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
533}
534
39491867
BJ
535static bool is_cmpxchg_insn(const struct bpf_insn *insn)
536{
537 return BPF_CLASS(insn->code) == BPF_STX &&
538 BPF_MODE(insn->code) == BPF_ATOMIC &&
539 insn->imm == BPF_CMPXCHG;
540}
541
17a52670
AS
542/* string representation of 'enum bpf_reg_type' */
543static const char * const reg_type_str[] = {
544 [NOT_INIT] = "?",
f1174f77 545 [SCALAR_VALUE] = "inv",
17a52670
AS
546 [PTR_TO_CTX] = "ctx",
547 [CONST_PTR_TO_MAP] = "map_ptr",
548 [PTR_TO_MAP_VALUE] = "map_value",
549 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 550 [PTR_TO_STACK] = "fp",
969bf05e 551 [PTR_TO_PACKET] = "pkt",
de8f3a83 552 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 553 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 554 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
555 [PTR_TO_SOCKET] = "sock",
556 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
557 [PTR_TO_SOCK_COMMON] = "sock_common",
558 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
559 [PTR_TO_TCP_SOCK] = "tcp_sock",
560 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 561 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 562 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 563 [PTR_TO_BTF_ID] = "ptr_",
b121b341 564 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 565 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
566 [PTR_TO_MEM] = "mem",
567 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
568 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
569 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
570 [PTR_TO_RDWR_BUF] = "rdwr_buf",
571 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
572 [PTR_TO_FUNC] = "func",
573 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
574};
575
8efea21d
EC
576static char slot_type_char[] = {
577 [STACK_INVALID] = '?',
578 [STACK_SPILL] = 'r',
579 [STACK_MISC] = 'm',
580 [STACK_ZERO] = '0',
581};
582
4e92024a
AS
583static void print_liveness(struct bpf_verifier_env *env,
584 enum bpf_reg_liveness live)
585{
9242b5f5 586 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
587 verbose(env, "_");
588 if (live & REG_LIVE_READ)
589 verbose(env, "r");
590 if (live & REG_LIVE_WRITTEN)
591 verbose(env, "w");
9242b5f5
AS
592 if (live & REG_LIVE_DONE)
593 verbose(env, "D");
4e92024a
AS
594}
595
f4d7e40a
AS
596static struct bpf_func_state *func(struct bpf_verifier_env *env,
597 const struct bpf_reg_state *reg)
598{
599 struct bpf_verifier_state *cur = env->cur_state;
600
601 return cur->frame[reg->frameno];
602}
603
22dc4a0f 604static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 605{
22dc4a0f 606 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
607}
608
27113c59
MKL
609/* The reg state of a pointer or a bounded scalar was saved when
610 * it was spilled to the stack.
611 */
612static bool is_spilled_reg(const struct bpf_stack_state *stack)
613{
614 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
615}
616
354e8f19
MKL
617static void scrub_spilled_slot(u8 *stype)
618{
619 if (*stype != STACK_INVALID)
620 *stype = STACK_MISC;
621}
622
61bd5218 623static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 624 const struct bpf_func_state *state)
17a52670 625{
f4d7e40a 626 const struct bpf_reg_state *reg;
17a52670
AS
627 enum bpf_reg_type t;
628 int i;
629
f4d7e40a
AS
630 if (state->frameno)
631 verbose(env, " frame%d:", state->frameno);
17a52670 632 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
633 reg = &state->regs[i];
634 t = reg->type;
17a52670
AS
635 if (t == NOT_INIT)
636 continue;
4e92024a
AS
637 verbose(env, " R%d", i);
638 print_liveness(env, reg->live);
639 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
640 if (t == SCALAR_VALUE && reg->precise)
641 verbose(env, "P");
f1174f77
EC
642 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
643 tnum_is_const(reg->var_off)) {
644 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 645 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 646 } else {
eaa6bcb7
HL
647 if (t == PTR_TO_BTF_ID ||
648 t == PTR_TO_BTF_ID_OR_NULL ||
649 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 650 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
651 verbose(env, "(id=%d", reg->id);
652 if (reg_type_may_be_refcounted_or_null(t))
653 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 654 if (t != SCALAR_VALUE)
61bd5218 655 verbose(env, ",off=%d", reg->off);
de8f3a83 656 if (type_is_pkt_pointer(t))
61bd5218 657 verbose(env, ",r=%d", reg->range);
f1174f77 658 else if (t == CONST_PTR_TO_MAP ||
69c087ba 659 t == PTR_TO_MAP_KEY ||
f1174f77
EC
660 t == PTR_TO_MAP_VALUE ||
661 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 662 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
663 reg->map_ptr->key_size,
664 reg->map_ptr->value_size);
7d1238f2
EC
665 if (tnum_is_const(reg->var_off)) {
666 /* Typically an immediate SCALAR_VALUE, but
667 * could be a pointer whose offset is too big
668 * for reg->off
669 */
61bd5218 670 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
671 } else {
672 if (reg->smin_value != reg->umin_value &&
673 reg->smin_value != S64_MIN)
61bd5218 674 verbose(env, ",smin_value=%lld",
7d1238f2
EC
675 (long long)reg->smin_value);
676 if (reg->smax_value != reg->umax_value &&
677 reg->smax_value != S64_MAX)
61bd5218 678 verbose(env, ",smax_value=%lld",
7d1238f2
EC
679 (long long)reg->smax_value);
680 if (reg->umin_value != 0)
61bd5218 681 verbose(env, ",umin_value=%llu",
7d1238f2
EC
682 (unsigned long long)reg->umin_value);
683 if (reg->umax_value != U64_MAX)
61bd5218 684 verbose(env, ",umax_value=%llu",
7d1238f2
EC
685 (unsigned long long)reg->umax_value);
686 if (!tnum_is_unknown(reg->var_off)) {
687 char tn_buf[48];
f1174f77 688
7d1238f2 689 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 690 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 691 }
3f50f132
JF
692 if (reg->s32_min_value != reg->smin_value &&
693 reg->s32_min_value != S32_MIN)
694 verbose(env, ",s32_min_value=%d",
695 (int)(reg->s32_min_value));
696 if (reg->s32_max_value != reg->smax_value &&
697 reg->s32_max_value != S32_MAX)
698 verbose(env, ",s32_max_value=%d",
699 (int)(reg->s32_max_value));
700 if (reg->u32_min_value != reg->umin_value &&
701 reg->u32_min_value != U32_MIN)
702 verbose(env, ",u32_min_value=%d",
703 (int)(reg->u32_min_value));
704 if (reg->u32_max_value != reg->umax_value &&
705 reg->u32_max_value != U32_MAX)
706 verbose(env, ",u32_max_value=%d",
707 (int)(reg->u32_max_value));
f1174f77 708 }
61bd5218 709 verbose(env, ")");
f1174f77 710 }
17a52670 711 }
638f5b90 712 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
713 char types_buf[BPF_REG_SIZE + 1];
714 bool valid = false;
715 int j;
716
717 for (j = 0; j < BPF_REG_SIZE; j++) {
718 if (state->stack[i].slot_type[j] != STACK_INVALID)
719 valid = true;
720 types_buf[j] = slot_type_char[
721 state->stack[i].slot_type[j]];
722 }
723 types_buf[BPF_REG_SIZE] = 0;
724 if (!valid)
725 continue;
726 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
727 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 728 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
729 reg = &state->stack[i].spilled_ptr;
730 t = reg->type;
731 verbose(env, "=%s", reg_type_str[t]);
732 if (t == SCALAR_VALUE && reg->precise)
733 verbose(env, "P");
734 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
735 verbose(env, "%lld", reg->var_off.value + reg->off);
736 } else {
8efea21d 737 verbose(env, "=%s", types_buf);
b5dc0163 738 }
17a52670 739 }
fd978bf7
JS
740 if (state->acquired_refs && state->refs[0].id) {
741 verbose(env, " refs=%d", state->refs[0].id);
742 for (i = 1; i < state->acquired_refs; i++)
743 if (state->refs[i].id)
744 verbose(env, ",%d", state->refs[i].id);
745 }
bfc6bb74
AS
746 if (state->in_callback_fn)
747 verbose(env, " cb");
748 if (state->in_async_callback_fn)
749 verbose(env, " async_cb");
61bd5218 750 verbose(env, "\n");
17a52670
AS
751}
752
c69431aa
LB
753/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
754 * small to hold src. This is different from krealloc since we don't want to preserve
755 * the contents of dst.
756 *
757 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
758 * not be allocated.
638f5b90 759 */
c69431aa 760static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 761{
c69431aa
LB
762 size_t bytes;
763
764 if (ZERO_OR_NULL_PTR(src))
765 goto out;
766
767 if (unlikely(check_mul_overflow(n, size, &bytes)))
768 return NULL;
769
770 if (ksize(dst) < bytes) {
771 kfree(dst);
772 dst = kmalloc_track_caller(bytes, flags);
773 if (!dst)
774 return NULL;
775 }
776
777 memcpy(dst, src, bytes);
778out:
779 return dst ? dst : ZERO_SIZE_PTR;
780}
781
782/* resize an array from old_n items to new_n items. the array is reallocated if it's too
783 * small to hold new_n items. new items are zeroed out if the array grows.
784 *
785 * Contrary to krealloc_array, does not free arr if new_n is zero.
786 */
787static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
788{
789 if (!new_n || old_n == new_n)
790 goto out;
791
792 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
793 if (!arr)
794 return NULL;
795
796 if (new_n > old_n)
797 memset(arr + old_n * size, 0, (new_n - old_n) * size);
798
799out:
800 return arr ? arr : ZERO_SIZE_PTR;
801}
802
803static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
804{
805 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
806 sizeof(struct bpf_reference_state), GFP_KERNEL);
807 if (!dst->refs)
808 return -ENOMEM;
809
810 dst->acquired_refs = src->acquired_refs;
811 return 0;
812}
813
814static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
815{
816 size_t n = src->allocated_stack / BPF_REG_SIZE;
817
818 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
819 GFP_KERNEL);
820 if (!dst->stack)
821 return -ENOMEM;
822
823 dst->allocated_stack = src->allocated_stack;
824 return 0;
825}
826
827static int resize_reference_state(struct bpf_func_state *state, size_t n)
828{
829 state->refs = realloc_array(state->refs, state->acquired_refs, n,
830 sizeof(struct bpf_reference_state));
831 if (!state->refs)
832 return -ENOMEM;
833
834 state->acquired_refs = n;
835 return 0;
836}
837
838static int grow_stack_state(struct bpf_func_state *state, int size)
839{
840 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
841
842 if (old_n >= n)
843 return 0;
844
845 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
846 if (!state->stack)
847 return -ENOMEM;
848
849 state->allocated_stack = size;
850 return 0;
fd978bf7
JS
851}
852
853/* Acquire a pointer id from the env and update the state->refs to include
854 * this new pointer reference.
855 * On success, returns a valid pointer id to associate with the register
856 * On failure, returns a negative errno.
638f5b90 857 */
fd978bf7 858static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 859{
fd978bf7
JS
860 struct bpf_func_state *state = cur_func(env);
861 int new_ofs = state->acquired_refs;
862 int id, err;
863
c69431aa 864 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
865 if (err)
866 return err;
867 id = ++env->id_gen;
868 state->refs[new_ofs].id = id;
869 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 870
fd978bf7
JS
871 return id;
872}
873
874/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 875static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
876{
877 int i, last_idx;
878
fd978bf7
JS
879 last_idx = state->acquired_refs - 1;
880 for (i = 0; i < state->acquired_refs; i++) {
881 if (state->refs[i].id == ptr_id) {
882 if (last_idx && i != last_idx)
883 memcpy(&state->refs[i], &state->refs[last_idx],
884 sizeof(*state->refs));
885 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
886 state->acquired_refs--;
638f5b90 887 return 0;
638f5b90 888 }
638f5b90 889 }
46f8bc92 890 return -EINVAL;
fd978bf7
JS
891}
892
f4d7e40a
AS
893static void free_func_state(struct bpf_func_state *state)
894{
5896351e
AS
895 if (!state)
896 return;
fd978bf7 897 kfree(state->refs);
f4d7e40a
AS
898 kfree(state->stack);
899 kfree(state);
900}
901
b5dc0163
AS
902static void clear_jmp_history(struct bpf_verifier_state *state)
903{
904 kfree(state->jmp_history);
905 state->jmp_history = NULL;
906 state->jmp_history_cnt = 0;
907}
908
1969db47
AS
909static void free_verifier_state(struct bpf_verifier_state *state,
910 bool free_self)
638f5b90 911{
f4d7e40a
AS
912 int i;
913
914 for (i = 0; i <= state->curframe; i++) {
915 free_func_state(state->frame[i]);
916 state->frame[i] = NULL;
917 }
b5dc0163 918 clear_jmp_history(state);
1969db47
AS
919 if (free_self)
920 kfree(state);
638f5b90
AS
921}
922
923/* copy verifier state from src to dst growing dst stack space
924 * when necessary to accommodate larger src stack
925 */
f4d7e40a
AS
926static int copy_func_state(struct bpf_func_state *dst,
927 const struct bpf_func_state *src)
638f5b90
AS
928{
929 int err;
930
fd978bf7
JS
931 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
932 err = copy_reference_state(dst, src);
638f5b90
AS
933 if (err)
934 return err;
638f5b90
AS
935 return copy_stack_state(dst, src);
936}
937
f4d7e40a
AS
938static int copy_verifier_state(struct bpf_verifier_state *dst_state,
939 const struct bpf_verifier_state *src)
940{
941 struct bpf_func_state *dst;
942 int i, err;
943
06ab6a50
LB
944 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
945 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
946 GFP_USER);
947 if (!dst_state->jmp_history)
948 return -ENOMEM;
b5dc0163
AS
949 dst_state->jmp_history_cnt = src->jmp_history_cnt;
950
f4d7e40a
AS
951 /* if dst has more stack frames then src frame, free them */
952 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
953 free_func_state(dst_state->frame[i]);
954 dst_state->frame[i] = NULL;
955 }
979d63d5 956 dst_state->speculative = src->speculative;
f4d7e40a 957 dst_state->curframe = src->curframe;
d83525ca 958 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
959 dst_state->branches = src->branches;
960 dst_state->parent = src->parent;
b5dc0163
AS
961 dst_state->first_insn_idx = src->first_insn_idx;
962 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
963 for (i = 0; i <= src->curframe; i++) {
964 dst = dst_state->frame[i];
965 if (!dst) {
966 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
967 if (!dst)
968 return -ENOMEM;
969 dst_state->frame[i] = dst;
970 }
971 err = copy_func_state(dst, src->frame[i]);
972 if (err)
973 return err;
974 }
975 return 0;
976}
977
2589726d
AS
978static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
979{
980 while (st) {
981 u32 br = --st->branches;
982
983 /* WARN_ON(br > 1) technically makes sense here,
984 * but see comment in push_stack(), hence:
985 */
986 WARN_ONCE((int)br < 0,
987 "BUG update_branch_counts:branches_to_explore=%d\n",
988 br);
989 if (br)
990 break;
991 st = st->parent;
992 }
993}
994
638f5b90 995static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 996 int *insn_idx, bool pop_log)
638f5b90
AS
997{
998 struct bpf_verifier_state *cur = env->cur_state;
999 struct bpf_verifier_stack_elem *elem, *head = env->head;
1000 int err;
17a52670
AS
1001
1002 if (env->head == NULL)
638f5b90 1003 return -ENOENT;
17a52670 1004
638f5b90
AS
1005 if (cur) {
1006 err = copy_verifier_state(cur, &head->st);
1007 if (err)
1008 return err;
1009 }
6f8a57cc
AN
1010 if (pop_log)
1011 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1012 if (insn_idx)
1013 *insn_idx = head->insn_idx;
17a52670 1014 if (prev_insn_idx)
638f5b90
AS
1015 *prev_insn_idx = head->prev_insn_idx;
1016 elem = head->next;
1969db47 1017 free_verifier_state(&head->st, false);
638f5b90 1018 kfree(head);
17a52670
AS
1019 env->head = elem;
1020 env->stack_size--;
638f5b90 1021 return 0;
17a52670
AS
1022}
1023
58e2af8b 1024static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1025 int insn_idx, int prev_insn_idx,
1026 bool speculative)
17a52670 1027{
638f5b90 1028 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1029 struct bpf_verifier_stack_elem *elem;
638f5b90 1030 int err;
17a52670 1031
638f5b90 1032 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1033 if (!elem)
1034 goto err;
1035
17a52670
AS
1036 elem->insn_idx = insn_idx;
1037 elem->prev_insn_idx = prev_insn_idx;
1038 elem->next = env->head;
6f8a57cc 1039 elem->log_pos = env->log.len_used;
17a52670
AS
1040 env->head = elem;
1041 env->stack_size++;
1969db47
AS
1042 err = copy_verifier_state(&elem->st, cur);
1043 if (err)
1044 goto err;
979d63d5 1045 elem->st.speculative |= speculative;
b285fcb7
AS
1046 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1047 verbose(env, "The sequence of %d jumps is too complex.\n",
1048 env->stack_size);
17a52670
AS
1049 goto err;
1050 }
2589726d
AS
1051 if (elem->st.parent) {
1052 ++elem->st.parent->branches;
1053 /* WARN_ON(branches > 2) technically makes sense here,
1054 * but
1055 * 1. speculative states will bump 'branches' for non-branch
1056 * instructions
1057 * 2. is_state_visited() heuristics may decide not to create
1058 * a new state for a sequence of branches and all such current
1059 * and cloned states will be pointing to a single parent state
1060 * which might have large 'branches' count.
1061 */
1062 }
17a52670
AS
1063 return &elem->st;
1064err:
5896351e
AS
1065 free_verifier_state(env->cur_state, true);
1066 env->cur_state = NULL;
17a52670 1067 /* pop all elements and return */
6f8a57cc 1068 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1069 return NULL;
1070}
1071
1072#define CALLER_SAVED_REGS 6
1073static const int caller_saved[CALLER_SAVED_REGS] = {
1074 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1075};
1076
f54c7898
DB
1077static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1078 struct bpf_reg_state *reg);
f1174f77 1079
e688c3db
AS
1080/* This helper doesn't clear reg->id */
1081static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1082{
b03c9f9f
EC
1083 reg->var_off = tnum_const(imm);
1084 reg->smin_value = (s64)imm;
1085 reg->smax_value = (s64)imm;
1086 reg->umin_value = imm;
1087 reg->umax_value = imm;
3f50f132
JF
1088
1089 reg->s32_min_value = (s32)imm;
1090 reg->s32_max_value = (s32)imm;
1091 reg->u32_min_value = (u32)imm;
1092 reg->u32_max_value = (u32)imm;
1093}
1094
e688c3db
AS
1095/* Mark the unknown part of a register (variable offset or scalar value) as
1096 * known to have the value @imm.
1097 */
1098static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1099{
1100 /* Clear id, off, and union(map_ptr, range) */
1101 memset(((u8 *)reg) + sizeof(reg->type), 0,
1102 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1103 ___mark_reg_known(reg, imm);
1104}
1105
3f50f132
JF
1106static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1107{
1108 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1109 reg->s32_min_value = (s32)imm;
1110 reg->s32_max_value = (s32)imm;
1111 reg->u32_min_value = (u32)imm;
1112 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1113}
1114
f1174f77
EC
1115/* Mark the 'variable offset' part of a register as zero. This should be
1116 * used only on registers holding a pointer type.
1117 */
1118static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1119{
b03c9f9f 1120 __mark_reg_known(reg, 0);
f1174f77 1121}
a9789ef9 1122
cc2b14d5
AS
1123static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1124{
1125 __mark_reg_known(reg, 0);
cc2b14d5
AS
1126 reg->type = SCALAR_VALUE;
1127}
1128
61bd5218
JK
1129static void mark_reg_known_zero(struct bpf_verifier_env *env,
1130 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1131{
1132 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1133 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1134 /* Something bad happened, let's kill all regs */
1135 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1136 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1137 return;
1138 }
1139 __mark_reg_known_zero(regs + regno);
1140}
1141
4ddb7416
DB
1142static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1143{
1144 switch (reg->type) {
1145 case PTR_TO_MAP_VALUE_OR_NULL: {
1146 const struct bpf_map *map = reg->map_ptr;
1147
1148 if (map->inner_map_meta) {
1149 reg->type = CONST_PTR_TO_MAP;
1150 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1151 /* transfer reg's id which is unique for every map_lookup_elem
1152 * as UID of the inner map.
1153 */
34d11a44
AS
1154 if (map_value_has_timer(map->inner_map_meta))
1155 reg->map_uid = reg->id;
4ddb7416
DB
1156 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1157 reg->type = PTR_TO_XDP_SOCK;
1158 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1159 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1160 reg->type = PTR_TO_SOCKET;
1161 } else {
1162 reg->type = PTR_TO_MAP_VALUE;
1163 }
1164 break;
1165 }
1166 case PTR_TO_SOCKET_OR_NULL:
1167 reg->type = PTR_TO_SOCKET;
1168 break;
1169 case PTR_TO_SOCK_COMMON_OR_NULL:
1170 reg->type = PTR_TO_SOCK_COMMON;
1171 break;
1172 case PTR_TO_TCP_SOCK_OR_NULL:
1173 reg->type = PTR_TO_TCP_SOCK;
1174 break;
1175 case PTR_TO_BTF_ID_OR_NULL:
1176 reg->type = PTR_TO_BTF_ID;
1177 break;
1178 case PTR_TO_MEM_OR_NULL:
1179 reg->type = PTR_TO_MEM;
1180 break;
1181 case PTR_TO_RDONLY_BUF_OR_NULL:
1182 reg->type = PTR_TO_RDONLY_BUF;
1183 break;
1184 case PTR_TO_RDWR_BUF_OR_NULL:
1185 reg->type = PTR_TO_RDWR_BUF;
1186 break;
1187 default:
33ccec5f 1188 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1189 }
1190}
1191
de8f3a83
DB
1192static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1193{
1194 return type_is_pkt_pointer(reg->type);
1195}
1196
1197static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1198{
1199 return reg_is_pkt_pointer(reg) ||
1200 reg->type == PTR_TO_PACKET_END;
1201}
1202
1203/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1204static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1205 enum bpf_reg_type which)
1206{
1207 /* The register can already have a range from prior markings.
1208 * This is fine as long as it hasn't been advanced from its
1209 * origin.
1210 */
1211 return reg->type == which &&
1212 reg->id == 0 &&
1213 reg->off == 0 &&
1214 tnum_equals_const(reg->var_off, 0);
1215}
1216
3f50f132
JF
1217/* Reset the min/max bounds of a register */
1218static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1219{
1220 reg->smin_value = S64_MIN;
1221 reg->smax_value = S64_MAX;
1222 reg->umin_value = 0;
1223 reg->umax_value = U64_MAX;
1224
1225 reg->s32_min_value = S32_MIN;
1226 reg->s32_max_value = S32_MAX;
1227 reg->u32_min_value = 0;
1228 reg->u32_max_value = U32_MAX;
1229}
1230
1231static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1232{
1233 reg->smin_value = S64_MIN;
1234 reg->smax_value = S64_MAX;
1235 reg->umin_value = 0;
1236 reg->umax_value = U64_MAX;
1237}
1238
1239static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1240{
1241 reg->s32_min_value = S32_MIN;
1242 reg->s32_max_value = S32_MAX;
1243 reg->u32_min_value = 0;
1244 reg->u32_max_value = U32_MAX;
1245}
1246
1247static void __update_reg32_bounds(struct bpf_reg_state *reg)
1248{
1249 struct tnum var32_off = tnum_subreg(reg->var_off);
1250
1251 /* min signed is max(sign bit) | min(other bits) */
1252 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1253 var32_off.value | (var32_off.mask & S32_MIN));
1254 /* max signed is min(sign bit) | max(other bits) */
1255 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1256 var32_off.value | (var32_off.mask & S32_MAX));
1257 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1258 reg->u32_max_value = min(reg->u32_max_value,
1259 (u32)(var32_off.value | var32_off.mask));
1260}
1261
1262static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1263{
1264 /* min signed is max(sign bit) | min(other bits) */
1265 reg->smin_value = max_t(s64, reg->smin_value,
1266 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1267 /* max signed is min(sign bit) | max(other bits) */
1268 reg->smax_value = min_t(s64, reg->smax_value,
1269 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1270 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1271 reg->umax_value = min(reg->umax_value,
1272 reg->var_off.value | reg->var_off.mask);
1273}
1274
3f50f132
JF
1275static void __update_reg_bounds(struct bpf_reg_state *reg)
1276{
1277 __update_reg32_bounds(reg);
1278 __update_reg64_bounds(reg);
1279}
1280
b03c9f9f 1281/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1282static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1283{
1284 /* Learn sign from signed bounds.
1285 * If we cannot cross the sign boundary, then signed and unsigned bounds
1286 * are the same, so combine. This works even in the negative case, e.g.
1287 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1288 */
1289 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1290 reg->s32_min_value = reg->u32_min_value =
1291 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1292 reg->s32_max_value = reg->u32_max_value =
1293 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1294 return;
1295 }
1296 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1297 * boundary, so we must be careful.
1298 */
1299 if ((s32)reg->u32_max_value >= 0) {
1300 /* Positive. We can't learn anything from the smin, but smax
1301 * is positive, hence safe.
1302 */
1303 reg->s32_min_value = reg->u32_min_value;
1304 reg->s32_max_value = reg->u32_max_value =
1305 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1306 } else if ((s32)reg->u32_min_value < 0) {
1307 /* Negative. We can't learn anything from the smax, but smin
1308 * is negative, hence safe.
1309 */
1310 reg->s32_min_value = reg->u32_min_value =
1311 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1312 reg->s32_max_value = reg->u32_max_value;
1313 }
1314}
1315
1316static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1317{
1318 /* Learn sign from signed bounds.
1319 * If we cannot cross the sign boundary, then signed and unsigned bounds
1320 * are the same, so combine. This works even in the negative case, e.g.
1321 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1322 */
1323 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1324 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1325 reg->umin_value);
1326 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1327 reg->umax_value);
1328 return;
1329 }
1330 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1331 * boundary, so we must be careful.
1332 */
1333 if ((s64)reg->umax_value >= 0) {
1334 /* Positive. We can't learn anything from the smin, but smax
1335 * is positive, hence safe.
1336 */
1337 reg->smin_value = reg->umin_value;
1338 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1339 reg->umax_value);
1340 } else if ((s64)reg->umin_value < 0) {
1341 /* Negative. We can't learn anything from the smax, but smin
1342 * is negative, hence safe.
1343 */
1344 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1345 reg->umin_value);
1346 reg->smax_value = reg->umax_value;
1347 }
1348}
1349
3f50f132
JF
1350static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1351{
1352 __reg32_deduce_bounds(reg);
1353 __reg64_deduce_bounds(reg);
1354}
1355
b03c9f9f
EC
1356/* Attempts to improve var_off based on unsigned min/max information */
1357static void __reg_bound_offset(struct bpf_reg_state *reg)
1358{
3f50f132
JF
1359 struct tnum var64_off = tnum_intersect(reg->var_off,
1360 tnum_range(reg->umin_value,
1361 reg->umax_value));
1362 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1363 tnum_range(reg->u32_min_value,
1364 reg->u32_max_value));
1365
1366 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1367}
1368
3f50f132 1369static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1370{
3f50f132
JF
1371 reg->umin_value = reg->u32_min_value;
1372 reg->umax_value = reg->u32_max_value;
1373 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1374 * but must be positive otherwise set to worse case bounds
1375 * and refine later from tnum.
1376 */
3a71dc36 1377 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1378 reg->smax_value = reg->s32_max_value;
1379 else
1380 reg->smax_value = U32_MAX;
3a71dc36
JF
1381 if (reg->s32_min_value >= 0)
1382 reg->smin_value = reg->s32_min_value;
1383 else
1384 reg->smin_value = 0;
3f50f132
JF
1385}
1386
1387static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1388{
1389 /* special case when 64-bit register has upper 32-bit register
1390 * zeroed. Typically happens after zext or <<32, >>32 sequence
1391 * allowing us to use 32-bit bounds directly,
1392 */
1393 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1394 __reg_assign_32_into_64(reg);
1395 } else {
1396 /* Otherwise the best we can do is push lower 32bit known and
1397 * unknown bits into register (var_off set from jmp logic)
1398 * then learn as much as possible from the 64-bit tnum
1399 * known and unknown bits. The previous smin/smax bounds are
1400 * invalid here because of jmp32 compare so mark them unknown
1401 * so they do not impact tnum bounds calculation.
1402 */
1403 __mark_reg64_unbounded(reg);
1404 __update_reg_bounds(reg);
1405 }
1406
1407 /* Intersecting with the old var_off might have improved our bounds
1408 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1409 * then new var_off is (0; 0x7f...fc) which improves our umax.
1410 */
1411 __reg_deduce_bounds(reg);
1412 __reg_bound_offset(reg);
1413 __update_reg_bounds(reg);
1414}
1415
1416static bool __reg64_bound_s32(s64 a)
1417{
388e2c0b 1418 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1419}
1420
1421static bool __reg64_bound_u32(u64 a)
1422{
b9979db8 1423 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1424}
1425
1426static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1427{
1428 __mark_reg32_unbounded(reg);
1429
b0270958 1430 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1431 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1432 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1433 }
10bf4e83 1434 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1435 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1436 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1437 }
3f50f132
JF
1438
1439 /* Intersecting with the old var_off might have improved our bounds
1440 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1441 * then new var_off is (0; 0x7f...fc) which improves our umax.
1442 */
1443 __reg_deduce_bounds(reg);
1444 __reg_bound_offset(reg);
1445 __update_reg_bounds(reg);
b03c9f9f
EC
1446}
1447
f1174f77 1448/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1449static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1450 struct bpf_reg_state *reg)
f1174f77 1451{
a9c676bc
AS
1452 /*
1453 * Clear type, id, off, and union(map_ptr, range) and
1454 * padding between 'type' and union
1455 */
1456 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1457 reg->type = SCALAR_VALUE;
f1174f77 1458 reg->var_off = tnum_unknown;
f4d7e40a 1459 reg->frameno = 0;
2c78ee89 1460 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1461 __mark_reg_unbounded(reg);
f1174f77
EC
1462}
1463
61bd5218
JK
1464static void mark_reg_unknown(struct bpf_verifier_env *env,
1465 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1466{
1467 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1468 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1469 /* Something bad happened, let's kill all regs except FP */
1470 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1471 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1472 return;
1473 }
f54c7898 1474 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1475}
1476
f54c7898
DB
1477static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1478 struct bpf_reg_state *reg)
f1174f77 1479{
f54c7898 1480 __mark_reg_unknown(env, reg);
f1174f77
EC
1481 reg->type = NOT_INIT;
1482}
1483
61bd5218
JK
1484static void mark_reg_not_init(struct bpf_verifier_env *env,
1485 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1486{
1487 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1488 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1489 /* Something bad happened, let's kill all regs except FP */
1490 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1491 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1492 return;
1493 }
f54c7898 1494 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1495}
1496
41c48f3a
AI
1497static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1498 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1499 enum bpf_reg_type reg_type,
1500 struct btf *btf, u32 btf_id)
41c48f3a
AI
1501{
1502 if (reg_type == SCALAR_VALUE) {
1503 mark_reg_unknown(env, regs, regno);
1504 return;
1505 }
1506 mark_reg_known_zero(env, regs, regno);
1507 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1508 regs[regno].btf = btf;
41c48f3a
AI
1509 regs[regno].btf_id = btf_id;
1510}
1511
5327ed3d 1512#define DEF_NOT_SUBREG (0)
61bd5218 1513static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1514 struct bpf_func_state *state)
17a52670 1515{
f4d7e40a 1516 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1517 int i;
1518
dc503a8a 1519 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1520 mark_reg_not_init(env, regs, i);
dc503a8a 1521 regs[i].live = REG_LIVE_NONE;
679c782d 1522 regs[i].parent = NULL;
5327ed3d 1523 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1524 }
17a52670
AS
1525
1526 /* frame pointer */
f1174f77 1527 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1528 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1529 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1530}
1531
f4d7e40a
AS
1532#define BPF_MAIN_FUNC (-1)
1533static void init_func_state(struct bpf_verifier_env *env,
1534 struct bpf_func_state *state,
1535 int callsite, int frameno, int subprogno)
1536{
1537 state->callsite = callsite;
1538 state->frameno = frameno;
1539 state->subprogno = subprogno;
1540 init_reg_state(env, state);
1541}
1542
bfc6bb74
AS
1543/* Similar to push_stack(), but for async callbacks */
1544static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1545 int insn_idx, int prev_insn_idx,
1546 int subprog)
1547{
1548 struct bpf_verifier_stack_elem *elem;
1549 struct bpf_func_state *frame;
1550
1551 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1552 if (!elem)
1553 goto err;
1554
1555 elem->insn_idx = insn_idx;
1556 elem->prev_insn_idx = prev_insn_idx;
1557 elem->next = env->head;
1558 elem->log_pos = env->log.len_used;
1559 env->head = elem;
1560 env->stack_size++;
1561 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1562 verbose(env,
1563 "The sequence of %d jumps is too complex for async cb.\n",
1564 env->stack_size);
1565 goto err;
1566 }
1567 /* Unlike push_stack() do not copy_verifier_state().
1568 * The caller state doesn't matter.
1569 * This is async callback. It starts in a fresh stack.
1570 * Initialize it similar to do_check_common().
1571 */
1572 elem->st.branches = 1;
1573 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1574 if (!frame)
1575 goto err;
1576 init_func_state(env, frame,
1577 BPF_MAIN_FUNC /* callsite */,
1578 0 /* frameno within this callchain */,
1579 subprog /* subprog number within this prog */);
1580 elem->st.frame[0] = frame;
1581 return &elem->st;
1582err:
1583 free_verifier_state(env->cur_state, true);
1584 env->cur_state = NULL;
1585 /* pop all elements and return */
1586 while (!pop_stack(env, NULL, NULL, false));
1587 return NULL;
1588}
1589
1590
17a52670
AS
1591enum reg_arg_type {
1592 SRC_OP, /* register is used as source operand */
1593 DST_OP, /* register is used as destination operand */
1594 DST_OP_NO_MARK /* same as above, check only, don't mark */
1595};
1596
cc8b0b92
AS
1597static int cmp_subprogs(const void *a, const void *b)
1598{
9c8105bd
JW
1599 return ((struct bpf_subprog_info *)a)->start -
1600 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1601}
1602
1603static int find_subprog(struct bpf_verifier_env *env, int off)
1604{
9c8105bd 1605 struct bpf_subprog_info *p;
cc8b0b92 1606
9c8105bd
JW
1607 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1608 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1609 if (!p)
1610 return -ENOENT;
9c8105bd 1611 return p - env->subprog_info;
cc8b0b92
AS
1612
1613}
1614
1615static int add_subprog(struct bpf_verifier_env *env, int off)
1616{
1617 int insn_cnt = env->prog->len;
1618 int ret;
1619
1620 if (off >= insn_cnt || off < 0) {
1621 verbose(env, "call to invalid destination\n");
1622 return -EINVAL;
1623 }
1624 ret = find_subprog(env, off);
1625 if (ret >= 0)
282a0f46 1626 return ret;
4cb3d99c 1627 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1628 verbose(env, "too many subprograms\n");
1629 return -E2BIG;
1630 }
e6ac2450 1631 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1632 env->subprog_info[env->subprog_cnt++].start = off;
1633 sort(env->subprog_info, env->subprog_cnt,
1634 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1635 return env->subprog_cnt - 1;
cc8b0b92
AS
1636}
1637
2357672c
KKD
1638#define MAX_KFUNC_DESCS 256
1639#define MAX_KFUNC_BTFS 256
1640
e6ac2450
MKL
1641struct bpf_kfunc_desc {
1642 struct btf_func_model func_model;
1643 u32 func_id;
1644 s32 imm;
2357672c
KKD
1645 u16 offset;
1646};
1647
1648struct bpf_kfunc_btf {
1649 struct btf *btf;
1650 struct module *module;
1651 u16 offset;
e6ac2450
MKL
1652};
1653
e6ac2450
MKL
1654struct bpf_kfunc_desc_tab {
1655 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1656 u32 nr_descs;
1657};
1658
2357672c
KKD
1659struct bpf_kfunc_btf_tab {
1660 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1661 u32 nr_descs;
1662};
1663
1664static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1665{
1666 const struct bpf_kfunc_desc *d0 = a;
1667 const struct bpf_kfunc_desc *d1 = b;
1668
1669 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1670 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1671}
1672
1673static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1674{
1675 const struct bpf_kfunc_btf *d0 = a;
1676 const struct bpf_kfunc_btf *d1 = b;
1677
1678 return d0->offset - d1->offset;
e6ac2450
MKL
1679}
1680
1681static const struct bpf_kfunc_desc *
2357672c 1682find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1683{
1684 struct bpf_kfunc_desc desc = {
1685 .func_id = func_id,
2357672c 1686 .offset = offset,
e6ac2450
MKL
1687 };
1688 struct bpf_kfunc_desc_tab *tab;
1689
1690 tab = prog->aux->kfunc_tab;
1691 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1692 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1693}
1694
1695static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1696 s16 offset, struct module **btf_modp)
1697{
1698 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1699 struct bpf_kfunc_btf_tab *tab;
1700 struct bpf_kfunc_btf *b;
1701 struct module *mod;
1702 struct btf *btf;
1703 int btf_fd;
1704
1705 tab = env->prog->aux->kfunc_btf_tab;
1706 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1707 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1708 if (!b) {
1709 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1710 verbose(env, "too many different module BTFs\n");
1711 return ERR_PTR(-E2BIG);
1712 }
1713
1714 if (bpfptr_is_null(env->fd_array)) {
1715 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1716 return ERR_PTR(-EPROTO);
1717 }
1718
1719 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1720 offset * sizeof(btf_fd),
1721 sizeof(btf_fd)))
1722 return ERR_PTR(-EFAULT);
1723
1724 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1725 if (IS_ERR(btf)) {
1726 verbose(env, "invalid module BTF fd specified\n");
2357672c 1727 return btf;
588cd7ef 1728 }
2357672c
KKD
1729
1730 if (!btf_is_module(btf)) {
1731 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1732 btf_put(btf);
1733 return ERR_PTR(-EINVAL);
1734 }
1735
1736 mod = btf_try_get_module(btf);
1737 if (!mod) {
1738 btf_put(btf);
1739 return ERR_PTR(-ENXIO);
1740 }
1741
1742 b = &tab->descs[tab->nr_descs++];
1743 b->btf = btf;
1744 b->module = mod;
1745 b->offset = offset;
1746
1747 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1748 kfunc_btf_cmp_by_off, NULL);
1749 }
1750 if (btf_modp)
1751 *btf_modp = b->module;
1752 return b->btf;
e6ac2450
MKL
1753}
1754
2357672c
KKD
1755void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1756{
1757 if (!tab)
1758 return;
1759
1760 while (tab->nr_descs--) {
1761 module_put(tab->descs[tab->nr_descs].module);
1762 btf_put(tab->descs[tab->nr_descs].btf);
1763 }
1764 kfree(tab);
1765}
1766
1767static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1768 u32 func_id, s16 offset,
1769 struct module **btf_modp)
1770{
2357672c
KKD
1771 if (offset) {
1772 if (offset < 0) {
1773 /* In the future, this can be allowed to increase limit
1774 * of fd index into fd_array, interpreted as u16.
1775 */
1776 verbose(env, "negative offset disallowed for kernel module function call\n");
1777 return ERR_PTR(-EINVAL);
1778 }
1779
588cd7ef 1780 return __find_kfunc_desc_btf(env, offset, btf_modp);
2357672c
KKD
1781 }
1782 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
1783}
1784
2357672c 1785static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
1786{
1787 const struct btf_type *func, *func_proto;
2357672c 1788 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
1789 struct bpf_kfunc_desc_tab *tab;
1790 struct bpf_prog_aux *prog_aux;
1791 struct bpf_kfunc_desc *desc;
1792 const char *func_name;
2357672c 1793 struct btf *desc_btf;
e6ac2450
MKL
1794 unsigned long addr;
1795 int err;
1796
1797 prog_aux = env->prog->aux;
1798 tab = prog_aux->kfunc_tab;
2357672c 1799 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
1800 if (!tab) {
1801 if (!btf_vmlinux) {
1802 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1803 return -ENOTSUPP;
1804 }
1805
1806 if (!env->prog->jit_requested) {
1807 verbose(env, "JIT is required for calling kernel function\n");
1808 return -ENOTSUPP;
1809 }
1810
1811 if (!bpf_jit_supports_kfunc_call()) {
1812 verbose(env, "JIT does not support calling kernel function\n");
1813 return -ENOTSUPP;
1814 }
1815
1816 if (!env->prog->gpl_compatible) {
1817 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1818 return -EINVAL;
1819 }
1820
1821 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1822 if (!tab)
1823 return -ENOMEM;
1824 prog_aux->kfunc_tab = tab;
1825 }
1826
a5d82727
KKD
1827 /* func_id == 0 is always invalid, but instead of returning an error, be
1828 * conservative and wait until the code elimination pass before returning
1829 * error, so that invalid calls that get pruned out can be in BPF programs
1830 * loaded from userspace. It is also required that offset be untouched
1831 * for such calls.
1832 */
1833 if (!func_id && !offset)
1834 return 0;
1835
2357672c
KKD
1836 if (!btf_tab && offset) {
1837 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1838 if (!btf_tab)
1839 return -ENOMEM;
1840 prog_aux->kfunc_btf_tab = btf_tab;
1841 }
1842
1843 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1844 if (IS_ERR(desc_btf)) {
1845 verbose(env, "failed to find BTF for kernel function\n");
1846 return PTR_ERR(desc_btf);
1847 }
1848
1849 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
1850 return 0;
1851
1852 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1853 verbose(env, "too many different kernel function calls\n");
1854 return -E2BIG;
1855 }
1856
2357672c 1857 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
1858 if (!func || !btf_type_is_func(func)) {
1859 verbose(env, "kernel btf_id %u is not a function\n",
1860 func_id);
1861 return -EINVAL;
1862 }
2357672c 1863 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
1864 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1865 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1866 func_id);
1867 return -EINVAL;
1868 }
1869
2357672c 1870 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
1871 addr = kallsyms_lookup_name(func_name);
1872 if (!addr) {
1873 verbose(env, "cannot find address for kernel function %s\n",
1874 func_name);
1875 return -EINVAL;
1876 }
1877
1878 desc = &tab->descs[tab->nr_descs++];
1879 desc->func_id = func_id;
3d717fad 1880 desc->imm = BPF_CALL_IMM(addr);
2357672c
KKD
1881 desc->offset = offset;
1882 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
1883 func_proto, func_name,
1884 &desc->func_model);
1885 if (!err)
1886 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 1887 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
1888 return err;
1889}
1890
1891static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1892{
1893 const struct bpf_kfunc_desc *d0 = a;
1894 const struct bpf_kfunc_desc *d1 = b;
1895
1896 if (d0->imm > d1->imm)
1897 return 1;
1898 else if (d0->imm < d1->imm)
1899 return -1;
1900 return 0;
1901}
1902
1903static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1904{
1905 struct bpf_kfunc_desc_tab *tab;
1906
1907 tab = prog->aux->kfunc_tab;
1908 if (!tab)
1909 return;
1910
1911 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1912 kfunc_desc_cmp_by_imm, NULL);
1913}
1914
1915bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1916{
1917 return !!prog->aux->kfunc_tab;
1918}
1919
1920const struct btf_func_model *
1921bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1922 const struct bpf_insn *insn)
1923{
1924 const struct bpf_kfunc_desc desc = {
1925 .imm = insn->imm,
1926 };
1927 const struct bpf_kfunc_desc *res;
1928 struct bpf_kfunc_desc_tab *tab;
1929
1930 tab = prog->aux->kfunc_tab;
1931 res = bsearch(&desc, tab->descs, tab->nr_descs,
1932 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1933
1934 return res ? &res->func_model : NULL;
1935}
1936
1937static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 1938{
9c8105bd 1939 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 1940 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 1941 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 1942
f910cefa
JW
1943 /* Add entry function. */
1944 ret = add_subprog(env, 0);
e6ac2450 1945 if (ret)
f910cefa
JW
1946 return ret;
1947
e6ac2450
MKL
1948 for (i = 0; i < insn_cnt; i++, insn++) {
1949 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1950 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 1951 continue;
e6ac2450 1952
2c78ee89 1953 if (!env->bpf_capable) {
e6ac2450 1954 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1955 return -EPERM;
1956 }
e6ac2450 1957
3990ed4c 1958 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 1959 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 1960 else
2357672c 1961 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 1962
cc8b0b92
AS
1963 if (ret < 0)
1964 return ret;
1965 }
1966
4cb3d99c
JW
1967 /* Add a fake 'exit' subprog which could simplify subprog iteration
1968 * logic. 'subprog_cnt' should not be increased.
1969 */
1970 subprog[env->subprog_cnt].start = insn_cnt;
1971
06ee7115 1972 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1973 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1974 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 1975
e6ac2450
MKL
1976 return 0;
1977}
1978
1979static int check_subprogs(struct bpf_verifier_env *env)
1980{
1981 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1982 struct bpf_subprog_info *subprog = env->subprog_info;
1983 struct bpf_insn *insn = env->prog->insnsi;
1984 int insn_cnt = env->prog->len;
1985
cc8b0b92 1986 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1987 subprog_start = subprog[cur_subprog].start;
1988 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1989 for (i = 0; i < insn_cnt; i++) {
1990 u8 code = insn[i].code;
1991
7f6e4312
MF
1992 if (code == (BPF_JMP | BPF_CALL) &&
1993 insn[i].imm == BPF_FUNC_tail_call &&
1994 insn[i].src_reg != BPF_PSEUDO_CALL)
1995 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1996 if (BPF_CLASS(code) == BPF_LD &&
1997 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1998 subprog[cur_subprog].has_ld_abs = true;
092ed096 1999 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2000 goto next;
2001 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2002 goto next;
2003 off = i + insn[i].off + 1;
2004 if (off < subprog_start || off >= subprog_end) {
2005 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2006 return -EINVAL;
2007 }
2008next:
2009 if (i == subprog_end - 1) {
2010 /* to avoid fall-through from one subprog into another
2011 * the last insn of the subprog should be either exit
2012 * or unconditional jump back
2013 */
2014 if (code != (BPF_JMP | BPF_EXIT) &&
2015 code != (BPF_JMP | BPF_JA)) {
2016 verbose(env, "last insn is not an exit or jmp\n");
2017 return -EINVAL;
2018 }
2019 subprog_start = subprog_end;
4cb3d99c
JW
2020 cur_subprog++;
2021 if (cur_subprog < env->subprog_cnt)
9c8105bd 2022 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2023 }
2024 }
2025 return 0;
2026}
2027
679c782d
EC
2028/* Parentage chain of this register (or stack slot) should take care of all
2029 * issues like callee-saved registers, stack slot allocation time, etc.
2030 */
f4d7e40a 2031static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2032 const struct bpf_reg_state *state,
5327ed3d 2033 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2034{
2035 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2036 int cnt = 0;
dc503a8a
EC
2037
2038 while (parent) {
2039 /* if read wasn't screened by an earlier write ... */
679c782d 2040 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2041 break;
9242b5f5
AS
2042 if (parent->live & REG_LIVE_DONE) {
2043 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2044 reg_type_str[parent->type],
2045 parent->var_off.value, parent->off);
2046 return -EFAULT;
2047 }
5327ed3d
JW
2048 /* The first condition is more likely to be true than the
2049 * second, checked it first.
2050 */
2051 if ((parent->live & REG_LIVE_READ) == flag ||
2052 parent->live & REG_LIVE_READ64)
25af32da
AS
2053 /* The parentage chain never changes and
2054 * this parent was already marked as LIVE_READ.
2055 * There is no need to keep walking the chain again and
2056 * keep re-marking all parents as LIVE_READ.
2057 * This case happens when the same register is read
2058 * multiple times without writes into it in-between.
5327ed3d
JW
2059 * Also, if parent has the stronger REG_LIVE_READ64 set,
2060 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2061 */
2062 break;
dc503a8a 2063 /* ... then we depend on parent's value */
5327ed3d
JW
2064 parent->live |= flag;
2065 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2066 if (flag == REG_LIVE_READ64)
2067 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2068 state = parent;
2069 parent = state->parent;
f4d7e40a 2070 writes = true;
06ee7115 2071 cnt++;
dc503a8a 2072 }
06ee7115
AS
2073
2074 if (env->longest_mark_read_walk < cnt)
2075 env->longest_mark_read_walk = cnt;
f4d7e40a 2076 return 0;
dc503a8a
EC
2077}
2078
5327ed3d
JW
2079/* This function is supposed to be used by the following 32-bit optimization
2080 * code only. It returns TRUE if the source or destination register operates
2081 * on 64-bit, otherwise return FALSE.
2082 */
2083static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2084 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2085{
2086 u8 code, class, op;
2087
2088 code = insn->code;
2089 class = BPF_CLASS(code);
2090 op = BPF_OP(code);
2091 if (class == BPF_JMP) {
2092 /* BPF_EXIT for "main" will reach here. Return TRUE
2093 * conservatively.
2094 */
2095 if (op == BPF_EXIT)
2096 return true;
2097 if (op == BPF_CALL) {
2098 /* BPF to BPF call will reach here because of marking
2099 * caller saved clobber with DST_OP_NO_MARK for which we
2100 * don't care the register def because they are anyway
2101 * marked as NOT_INIT already.
2102 */
2103 if (insn->src_reg == BPF_PSEUDO_CALL)
2104 return false;
2105 /* Helper call will reach here because of arg type
2106 * check, conservatively return TRUE.
2107 */
2108 if (t == SRC_OP)
2109 return true;
2110
2111 return false;
2112 }
2113 }
2114
2115 if (class == BPF_ALU64 || class == BPF_JMP ||
2116 /* BPF_END always use BPF_ALU class. */
2117 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2118 return true;
2119
2120 if (class == BPF_ALU || class == BPF_JMP32)
2121 return false;
2122
2123 if (class == BPF_LDX) {
2124 if (t != SRC_OP)
2125 return BPF_SIZE(code) == BPF_DW;
2126 /* LDX source must be ptr. */
2127 return true;
2128 }
2129
2130 if (class == BPF_STX) {
83a28819
IL
2131 /* BPF_STX (including atomic variants) has multiple source
2132 * operands, one of which is a ptr. Check whether the caller is
2133 * asking about it.
2134 */
2135 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2136 return true;
2137 return BPF_SIZE(code) == BPF_DW;
2138 }
2139
2140 if (class == BPF_LD) {
2141 u8 mode = BPF_MODE(code);
2142
2143 /* LD_IMM64 */
2144 if (mode == BPF_IMM)
2145 return true;
2146
2147 /* Both LD_IND and LD_ABS return 32-bit data. */
2148 if (t != SRC_OP)
2149 return false;
2150
2151 /* Implicit ctx ptr. */
2152 if (regno == BPF_REG_6)
2153 return true;
2154
2155 /* Explicit source could be any width. */
2156 return true;
2157 }
2158
2159 if (class == BPF_ST)
2160 /* The only source register for BPF_ST is a ptr. */
2161 return true;
2162
2163 /* Conservatively return true at default. */
2164 return true;
2165}
2166
83a28819
IL
2167/* Return the regno defined by the insn, or -1. */
2168static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2169{
83a28819
IL
2170 switch (BPF_CLASS(insn->code)) {
2171 case BPF_JMP:
2172 case BPF_JMP32:
2173 case BPF_ST:
2174 return -1;
2175 case BPF_STX:
2176 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2177 (insn->imm & BPF_FETCH)) {
2178 if (insn->imm == BPF_CMPXCHG)
2179 return BPF_REG_0;
2180 else
2181 return insn->src_reg;
2182 } else {
2183 return -1;
2184 }
2185 default:
2186 return insn->dst_reg;
2187 }
b325fbca
JW
2188}
2189
2190/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2191static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2192{
83a28819
IL
2193 int dst_reg = insn_def_regno(insn);
2194
2195 if (dst_reg == -1)
b325fbca
JW
2196 return false;
2197
83a28819 2198 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2199}
2200
5327ed3d
JW
2201static void mark_insn_zext(struct bpf_verifier_env *env,
2202 struct bpf_reg_state *reg)
2203{
2204 s32 def_idx = reg->subreg_def;
2205
2206 if (def_idx == DEF_NOT_SUBREG)
2207 return;
2208
2209 env->insn_aux_data[def_idx - 1].zext_dst = true;
2210 /* The dst will be zero extended, so won't be sub-register anymore. */
2211 reg->subreg_def = DEF_NOT_SUBREG;
2212}
2213
dc503a8a 2214static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2215 enum reg_arg_type t)
2216{
f4d7e40a
AS
2217 struct bpf_verifier_state *vstate = env->cur_state;
2218 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2219 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2220 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2221 bool rw64;
dc503a8a 2222
17a52670 2223 if (regno >= MAX_BPF_REG) {
61bd5218 2224 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2225 return -EINVAL;
2226 }
2227
c342dc10 2228 reg = &regs[regno];
5327ed3d 2229 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2230 if (t == SRC_OP) {
2231 /* check whether register used as source operand can be read */
c342dc10 2232 if (reg->type == NOT_INIT) {
61bd5218 2233 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2234 return -EACCES;
2235 }
679c782d 2236 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2237 if (regno == BPF_REG_FP)
2238 return 0;
2239
5327ed3d
JW
2240 if (rw64)
2241 mark_insn_zext(env, reg);
2242
2243 return mark_reg_read(env, reg, reg->parent,
2244 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2245 } else {
2246 /* check whether register used as dest operand can be written to */
2247 if (regno == BPF_REG_FP) {
61bd5218 2248 verbose(env, "frame pointer is read only\n");
17a52670
AS
2249 return -EACCES;
2250 }
c342dc10 2251 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2252 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2253 if (t == DST_OP)
61bd5218 2254 mark_reg_unknown(env, regs, regno);
17a52670
AS
2255 }
2256 return 0;
2257}
2258
b5dc0163
AS
2259/* for any branch, call, exit record the history of jmps in the given state */
2260static int push_jmp_history(struct bpf_verifier_env *env,
2261 struct bpf_verifier_state *cur)
2262{
2263 u32 cnt = cur->jmp_history_cnt;
2264 struct bpf_idx_pair *p;
2265
2266 cnt++;
2267 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2268 if (!p)
2269 return -ENOMEM;
2270 p[cnt - 1].idx = env->insn_idx;
2271 p[cnt - 1].prev_idx = env->prev_insn_idx;
2272 cur->jmp_history = p;
2273 cur->jmp_history_cnt = cnt;
2274 return 0;
2275}
2276
2277/* Backtrack one insn at a time. If idx is not at the top of recorded
2278 * history then previous instruction came from straight line execution.
2279 */
2280static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2281 u32 *history)
2282{
2283 u32 cnt = *history;
2284
2285 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2286 i = st->jmp_history[cnt - 1].prev_idx;
2287 (*history)--;
2288 } else {
2289 i--;
2290 }
2291 return i;
2292}
2293
e6ac2450
MKL
2294static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2295{
2296 const struct btf_type *func;
2357672c 2297 struct btf *desc_btf;
e6ac2450
MKL
2298
2299 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2300 return NULL;
2301
2357672c
KKD
2302 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2303 if (IS_ERR(desc_btf))
2304 return "<error>";
2305
2306 func = btf_type_by_id(desc_btf, insn->imm);
2307 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2308}
2309
b5dc0163
AS
2310/* For given verifier state backtrack_insn() is called from the last insn to
2311 * the first insn. Its purpose is to compute a bitmask of registers and
2312 * stack slots that needs precision in the parent verifier state.
2313 */
2314static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2315 u32 *reg_mask, u64 *stack_mask)
2316{
2317 const struct bpf_insn_cbs cbs = {
e6ac2450 2318 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2319 .cb_print = verbose,
2320 .private_data = env,
2321 };
2322 struct bpf_insn *insn = env->prog->insnsi + idx;
2323 u8 class = BPF_CLASS(insn->code);
2324 u8 opcode = BPF_OP(insn->code);
2325 u8 mode = BPF_MODE(insn->code);
2326 u32 dreg = 1u << insn->dst_reg;
2327 u32 sreg = 1u << insn->src_reg;
2328 u32 spi;
2329
2330 if (insn->code == 0)
2331 return 0;
2332 if (env->log.level & BPF_LOG_LEVEL) {
2333 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2334 verbose(env, "%d: ", idx);
2335 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2336 }
2337
2338 if (class == BPF_ALU || class == BPF_ALU64) {
2339 if (!(*reg_mask & dreg))
2340 return 0;
2341 if (opcode == BPF_MOV) {
2342 if (BPF_SRC(insn->code) == BPF_X) {
2343 /* dreg = sreg
2344 * dreg needs precision after this insn
2345 * sreg needs precision before this insn
2346 */
2347 *reg_mask &= ~dreg;
2348 *reg_mask |= sreg;
2349 } else {
2350 /* dreg = K
2351 * dreg needs precision after this insn.
2352 * Corresponding register is already marked
2353 * as precise=true in this verifier state.
2354 * No further markings in parent are necessary
2355 */
2356 *reg_mask &= ~dreg;
2357 }
2358 } else {
2359 if (BPF_SRC(insn->code) == BPF_X) {
2360 /* dreg += sreg
2361 * both dreg and sreg need precision
2362 * before this insn
2363 */
2364 *reg_mask |= sreg;
2365 } /* else dreg += K
2366 * dreg still needs precision before this insn
2367 */
2368 }
2369 } else if (class == BPF_LDX) {
2370 if (!(*reg_mask & dreg))
2371 return 0;
2372 *reg_mask &= ~dreg;
2373
2374 /* scalars can only be spilled into stack w/o losing precision.
2375 * Load from any other memory can be zero extended.
2376 * The desire to keep that precision is already indicated
2377 * by 'precise' mark in corresponding register of this state.
2378 * No further tracking necessary.
2379 */
2380 if (insn->src_reg != BPF_REG_FP)
2381 return 0;
2382 if (BPF_SIZE(insn->code) != BPF_DW)
2383 return 0;
2384
2385 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2386 * that [fp - off] slot contains scalar that needs to be
2387 * tracked with precision
2388 */
2389 spi = (-insn->off - 1) / BPF_REG_SIZE;
2390 if (spi >= 64) {
2391 verbose(env, "BUG spi %d\n", spi);
2392 WARN_ONCE(1, "verifier backtracking bug");
2393 return -EFAULT;
2394 }
2395 *stack_mask |= 1ull << spi;
b3b50f05 2396 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2397 if (*reg_mask & dreg)
b3b50f05 2398 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2399 * to access memory. It means backtracking
2400 * encountered a case of pointer subtraction.
2401 */
2402 return -ENOTSUPP;
2403 /* scalars can only be spilled into stack */
2404 if (insn->dst_reg != BPF_REG_FP)
2405 return 0;
2406 if (BPF_SIZE(insn->code) != BPF_DW)
2407 return 0;
2408 spi = (-insn->off - 1) / BPF_REG_SIZE;
2409 if (spi >= 64) {
2410 verbose(env, "BUG spi %d\n", spi);
2411 WARN_ONCE(1, "verifier backtracking bug");
2412 return -EFAULT;
2413 }
2414 if (!(*stack_mask & (1ull << spi)))
2415 return 0;
2416 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2417 if (class == BPF_STX)
2418 *reg_mask |= sreg;
b5dc0163
AS
2419 } else if (class == BPF_JMP || class == BPF_JMP32) {
2420 if (opcode == BPF_CALL) {
2421 if (insn->src_reg == BPF_PSEUDO_CALL)
2422 return -ENOTSUPP;
2423 /* regular helper call sets R0 */
2424 *reg_mask &= ~1;
2425 if (*reg_mask & 0x3f) {
2426 /* if backtracing was looking for registers R1-R5
2427 * they should have been found already.
2428 */
2429 verbose(env, "BUG regs %x\n", *reg_mask);
2430 WARN_ONCE(1, "verifier backtracking bug");
2431 return -EFAULT;
2432 }
2433 } else if (opcode == BPF_EXIT) {
2434 return -ENOTSUPP;
2435 }
2436 } else if (class == BPF_LD) {
2437 if (!(*reg_mask & dreg))
2438 return 0;
2439 *reg_mask &= ~dreg;
2440 /* It's ld_imm64 or ld_abs or ld_ind.
2441 * For ld_imm64 no further tracking of precision
2442 * into parent is necessary
2443 */
2444 if (mode == BPF_IND || mode == BPF_ABS)
2445 /* to be analyzed */
2446 return -ENOTSUPP;
b5dc0163
AS
2447 }
2448 return 0;
2449}
2450
2451/* the scalar precision tracking algorithm:
2452 * . at the start all registers have precise=false.
2453 * . scalar ranges are tracked as normal through alu and jmp insns.
2454 * . once precise value of the scalar register is used in:
2455 * . ptr + scalar alu
2456 * . if (scalar cond K|scalar)
2457 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2458 * backtrack through the verifier states and mark all registers and
2459 * stack slots with spilled constants that these scalar regisers
2460 * should be precise.
2461 * . during state pruning two registers (or spilled stack slots)
2462 * are equivalent if both are not precise.
2463 *
2464 * Note the verifier cannot simply walk register parentage chain,
2465 * since many different registers and stack slots could have been
2466 * used to compute single precise scalar.
2467 *
2468 * The approach of starting with precise=true for all registers and then
2469 * backtrack to mark a register as not precise when the verifier detects
2470 * that program doesn't care about specific value (e.g., when helper
2471 * takes register as ARG_ANYTHING parameter) is not safe.
2472 *
2473 * It's ok to walk single parentage chain of the verifier states.
2474 * It's possible that this backtracking will go all the way till 1st insn.
2475 * All other branches will be explored for needing precision later.
2476 *
2477 * The backtracking needs to deal with cases like:
2478 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2479 * r9 -= r8
2480 * r5 = r9
2481 * if r5 > 0x79f goto pc+7
2482 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2483 * r5 += 1
2484 * ...
2485 * call bpf_perf_event_output#25
2486 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2487 *
2488 * and this case:
2489 * r6 = 1
2490 * call foo // uses callee's r6 inside to compute r0
2491 * r0 += r6
2492 * if r0 == 0 goto
2493 *
2494 * to track above reg_mask/stack_mask needs to be independent for each frame.
2495 *
2496 * Also if parent's curframe > frame where backtracking started,
2497 * the verifier need to mark registers in both frames, otherwise callees
2498 * may incorrectly prune callers. This is similar to
2499 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2500 *
2501 * For now backtracking falls back into conservative marking.
2502 */
2503static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2504 struct bpf_verifier_state *st)
2505{
2506 struct bpf_func_state *func;
2507 struct bpf_reg_state *reg;
2508 int i, j;
2509
2510 /* big hammer: mark all scalars precise in this path.
2511 * pop_stack may still get !precise scalars.
2512 */
2513 for (; st; st = st->parent)
2514 for (i = 0; i <= st->curframe; i++) {
2515 func = st->frame[i];
2516 for (j = 0; j < BPF_REG_FP; j++) {
2517 reg = &func->regs[j];
2518 if (reg->type != SCALAR_VALUE)
2519 continue;
2520 reg->precise = true;
2521 }
2522 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2523 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2524 continue;
2525 reg = &func->stack[j].spilled_ptr;
2526 if (reg->type != SCALAR_VALUE)
2527 continue;
2528 reg->precise = true;
2529 }
2530 }
2531}
2532
a3ce685d
AS
2533static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2534 int spi)
b5dc0163
AS
2535{
2536 struct bpf_verifier_state *st = env->cur_state;
2537 int first_idx = st->first_insn_idx;
2538 int last_idx = env->insn_idx;
2539 struct bpf_func_state *func;
2540 struct bpf_reg_state *reg;
a3ce685d
AS
2541 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2542 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2543 bool skip_first = true;
a3ce685d 2544 bool new_marks = false;
b5dc0163
AS
2545 int i, err;
2546
2c78ee89 2547 if (!env->bpf_capable)
b5dc0163
AS
2548 return 0;
2549
2550 func = st->frame[st->curframe];
a3ce685d
AS
2551 if (regno >= 0) {
2552 reg = &func->regs[regno];
2553 if (reg->type != SCALAR_VALUE) {
2554 WARN_ONCE(1, "backtracing misuse");
2555 return -EFAULT;
2556 }
2557 if (!reg->precise)
2558 new_marks = true;
2559 else
2560 reg_mask = 0;
2561 reg->precise = true;
b5dc0163 2562 }
b5dc0163 2563
a3ce685d 2564 while (spi >= 0) {
27113c59 2565 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2566 stack_mask = 0;
2567 break;
2568 }
2569 reg = &func->stack[spi].spilled_ptr;
2570 if (reg->type != SCALAR_VALUE) {
2571 stack_mask = 0;
2572 break;
2573 }
2574 if (!reg->precise)
2575 new_marks = true;
2576 else
2577 stack_mask = 0;
2578 reg->precise = true;
2579 break;
2580 }
2581
2582 if (!new_marks)
2583 return 0;
2584 if (!reg_mask && !stack_mask)
2585 return 0;
b5dc0163
AS
2586 for (;;) {
2587 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2588 u32 history = st->jmp_history_cnt;
2589
2590 if (env->log.level & BPF_LOG_LEVEL)
2591 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2592 for (i = last_idx;;) {
2593 if (skip_first) {
2594 err = 0;
2595 skip_first = false;
2596 } else {
2597 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2598 }
2599 if (err == -ENOTSUPP) {
2600 mark_all_scalars_precise(env, st);
2601 return 0;
2602 } else if (err) {
2603 return err;
2604 }
2605 if (!reg_mask && !stack_mask)
2606 /* Found assignment(s) into tracked register in this state.
2607 * Since this state is already marked, just return.
2608 * Nothing to be tracked further in the parent state.
2609 */
2610 return 0;
2611 if (i == first_idx)
2612 break;
2613 i = get_prev_insn_idx(st, i, &history);
2614 if (i >= env->prog->len) {
2615 /* This can happen if backtracking reached insn 0
2616 * and there are still reg_mask or stack_mask
2617 * to backtrack.
2618 * It means the backtracking missed the spot where
2619 * particular register was initialized with a constant.
2620 */
2621 verbose(env, "BUG backtracking idx %d\n", i);
2622 WARN_ONCE(1, "verifier backtracking bug");
2623 return -EFAULT;
2624 }
2625 }
2626 st = st->parent;
2627 if (!st)
2628 break;
2629
a3ce685d 2630 new_marks = false;
b5dc0163
AS
2631 func = st->frame[st->curframe];
2632 bitmap_from_u64(mask, reg_mask);
2633 for_each_set_bit(i, mask, 32) {
2634 reg = &func->regs[i];
a3ce685d
AS
2635 if (reg->type != SCALAR_VALUE) {
2636 reg_mask &= ~(1u << i);
b5dc0163 2637 continue;
a3ce685d 2638 }
b5dc0163
AS
2639 if (!reg->precise)
2640 new_marks = true;
2641 reg->precise = true;
2642 }
2643
2644 bitmap_from_u64(mask, stack_mask);
2645 for_each_set_bit(i, mask, 64) {
2646 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2647 /* the sequence of instructions:
2648 * 2: (bf) r3 = r10
2649 * 3: (7b) *(u64 *)(r3 -8) = r0
2650 * 4: (79) r4 = *(u64 *)(r10 -8)
2651 * doesn't contain jmps. It's backtracked
2652 * as a single block.
2653 * During backtracking insn 3 is not recognized as
2654 * stack access, so at the end of backtracking
2655 * stack slot fp-8 is still marked in stack_mask.
2656 * However the parent state may not have accessed
2657 * fp-8 and it's "unallocated" stack space.
2658 * In such case fallback to conservative.
b5dc0163 2659 */
2339cd6c
AS
2660 mark_all_scalars_precise(env, st);
2661 return 0;
b5dc0163
AS
2662 }
2663
27113c59 2664 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2665 stack_mask &= ~(1ull << i);
b5dc0163 2666 continue;
a3ce685d 2667 }
b5dc0163 2668 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2669 if (reg->type != SCALAR_VALUE) {
2670 stack_mask &= ~(1ull << i);
b5dc0163 2671 continue;
a3ce685d 2672 }
b5dc0163
AS
2673 if (!reg->precise)
2674 new_marks = true;
2675 reg->precise = true;
2676 }
2677 if (env->log.level & BPF_LOG_LEVEL) {
2678 print_verifier_state(env, func);
2679 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2680 new_marks ? "didn't have" : "already had",
2681 reg_mask, stack_mask);
2682 }
2683
a3ce685d
AS
2684 if (!reg_mask && !stack_mask)
2685 break;
b5dc0163
AS
2686 if (!new_marks)
2687 break;
2688
2689 last_idx = st->last_insn_idx;
2690 first_idx = st->first_insn_idx;
2691 }
2692 return 0;
2693}
2694
a3ce685d
AS
2695static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2696{
2697 return __mark_chain_precision(env, regno, -1);
2698}
2699
2700static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2701{
2702 return __mark_chain_precision(env, -1, spi);
2703}
b5dc0163 2704
1be7f75d
AS
2705static bool is_spillable_regtype(enum bpf_reg_type type)
2706{
2707 switch (type) {
2708 case PTR_TO_MAP_VALUE:
2709 case PTR_TO_MAP_VALUE_OR_NULL:
2710 case PTR_TO_STACK:
2711 case PTR_TO_CTX:
969bf05e 2712 case PTR_TO_PACKET:
de8f3a83 2713 case PTR_TO_PACKET_META:
969bf05e 2714 case PTR_TO_PACKET_END:
d58e468b 2715 case PTR_TO_FLOW_KEYS:
1be7f75d 2716 case CONST_PTR_TO_MAP:
c64b7983
JS
2717 case PTR_TO_SOCKET:
2718 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2719 case PTR_TO_SOCK_COMMON:
2720 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2721 case PTR_TO_TCP_SOCK:
2722 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2723 case PTR_TO_XDP_SOCK:
65726b5b 2724 case PTR_TO_BTF_ID:
b121b341 2725 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2726 case PTR_TO_RDONLY_BUF:
2727 case PTR_TO_RDONLY_BUF_OR_NULL:
2728 case PTR_TO_RDWR_BUF:
2729 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2730 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2731 case PTR_TO_MEM:
2732 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2733 case PTR_TO_FUNC:
2734 case PTR_TO_MAP_KEY:
1be7f75d
AS
2735 return true;
2736 default:
2737 return false;
2738 }
2739}
2740
cc2b14d5
AS
2741/* Does this register contain a constant zero? */
2742static bool register_is_null(struct bpf_reg_state *reg)
2743{
2744 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2745}
2746
f7cf25b2
AS
2747static bool register_is_const(struct bpf_reg_state *reg)
2748{
2749 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2750}
2751
5689d49b
YS
2752static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2753{
2754 return tnum_is_unknown(reg->var_off) &&
2755 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2756 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2757 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2758 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2759}
2760
2761static bool register_is_bounded(struct bpf_reg_state *reg)
2762{
2763 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2764}
2765
6e7e63cb
JH
2766static bool __is_pointer_value(bool allow_ptr_leaks,
2767 const struct bpf_reg_state *reg)
2768{
2769 if (allow_ptr_leaks)
2770 return false;
2771
2772 return reg->type != SCALAR_VALUE;
2773}
2774
f7cf25b2 2775static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2776 int spi, struct bpf_reg_state *reg,
2777 int size)
f7cf25b2
AS
2778{
2779 int i;
2780
2781 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2782 if (size == BPF_REG_SIZE)
2783 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 2784
354e8f19
MKL
2785 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2786 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 2787
354e8f19
MKL
2788 /* size < 8 bytes spill */
2789 for (; i; i--)
2790 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
2791}
2792
01f810ac 2793/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2794 * stack boundary and alignment are checked in check_mem_access()
2795 */
01f810ac
AM
2796static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2797 /* stack frame we're writing to */
2798 struct bpf_func_state *state,
2799 int off, int size, int value_regno,
2800 int insn_idx)
17a52670 2801{
f4d7e40a 2802 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2803 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2804 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2805 struct bpf_reg_state *reg = NULL;
638f5b90 2806
c69431aa 2807 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2808 if (err)
2809 return err;
9c399760
AS
2810 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2811 * so it's aligned access and [off, off + size) are within stack limits
2812 */
638f5b90
AS
2813 if (!env->allow_ptr_leaks &&
2814 state->stack[spi].slot_type[0] == STACK_SPILL &&
2815 size != BPF_REG_SIZE) {
2816 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2817 return -EACCES;
2818 }
17a52670 2819
f4d7e40a 2820 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2821 if (value_regno >= 0)
2822 reg = &cur->regs[value_regno];
2039f26f
DB
2823 if (!env->bypass_spec_v4) {
2824 bool sanitize = reg && is_spillable_regtype(reg->type);
2825
2826 for (i = 0; i < size; i++) {
2827 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2828 sanitize = true;
2829 break;
2830 }
2831 }
2832
2833 if (sanitize)
2834 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2835 }
17a52670 2836
354e8f19 2837 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 2838 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2839 if (dst_reg != BPF_REG_FP) {
2840 /* The backtracking logic can only recognize explicit
2841 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2842 * scalar via different register has to be conservative.
b5dc0163
AS
2843 * Backtrack from here and mark all registers as precise
2844 * that contributed into 'reg' being a constant.
2845 */
2846 err = mark_chain_precision(env, value_regno);
2847 if (err)
2848 return err;
2849 }
354e8f19 2850 save_register_state(state, spi, reg, size);
f7cf25b2 2851 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2852 /* register containing pointer is being spilled into stack */
9c399760 2853 if (size != BPF_REG_SIZE) {
f7cf25b2 2854 verbose_linfo(env, insn_idx, "; ");
61bd5218 2855 verbose(env, "invalid size of register spill\n");
17a52670
AS
2856 return -EACCES;
2857 }
f7cf25b2 2858 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2859 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2860 return -EINVAL;
2861 }
354e8f19 2862 save_register_state(state, spi, reg, size);
9c399760 2863 } else {
cc2b14d5
AS
2864 u8 type = STACK_MISC;
2865
679c782d
EC
2866 /* regular write of data into stack destroys any spilled ptr */
2867 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 2868 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 2869 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 2870 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 2871 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 2872
cc2b14d5
AS
2873 /* only mark the slot as written if all 8 bytes were written
2874 * otherwise read propagation may incorrectly stop too soon
2875 * when stack slots are partially written.
2876 * This heuristic means that read propagation will be
2877 * conservative, since it will add reg_live_read marks
2878 * to stack slots all the way to first state when programs
2879 * writes+reads less than 8 bytes
2880 */
2881 if (size == BPF_REG_SIZE)
2882 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2883
2884 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2885 if (reg && register_is_null(reg)) {
2886 /* backtracking doesn't work for STACK_ZERO yet. */
2887 err = mark_chain_precision(env, value_regno);
2888 if (err)
2889 return err;
cc2b14d5 2890 type = STACK_ZERO;
b5dc0163 2891 }
cc2b14d5 2892
0bae2d4d 2893 /* Mark slots affected by this stack write. */
9c399760 2894 for (i = 0; i < size; i++)
638f5b90 2895 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2896 type;
17a52670
AS
2897 }
2898 return 0;
2899}
2900
01f810ac
AM
2901/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2902 * known to contain a variable offset.
2903 * This function checks whether the write is permitted and conservatively
2904 * tracks the effects of the write, considering that each stack slot in the
2905 * dynamic range is potentially written to.
2906 *
2907 * 'off' includes 'regno->off'.
2908 * 'value_regno' can be -1, meaning that an unknown value is being written to
2909 * the stack.
2910 *
2911 * Spilled pointers in range are not marked as written because we don't know
2912 * what's going to be actually written. This means that read propagation for
2913 * future reads cannot be terminated by this write.
2914 *
2915 * For privileged programs, uninitialized stack slots are considered
2916 * initialized by this write (even though we don't know exactly what offsets
2917 * are going to be written to). The idea is that we don't want the verifier to
2918 * reject future reads that access slots written to through variable offsets.
2919 */
2920static int check_stack_write_var_off(struct bpf_verifier_env *env,
2921 /* func where register points to */
2922 struct bpf_func_state *state,
2923 int ptr_regno, int off, int size,
2924 int value_regno, int insn_idx)
2925{
2926 struct bpf_func_state *cur; /* state of the current function */
2927 int min_off, max_off;
2928 int i, err;
2929 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2930 bool writing_zero = false;
2931 /* set if the fact that we're writing a zero is used to let any
2932 * stack slots remain STACK_ZERO
2933 */
2934 bool zero_used = false;
2935
2936 cur = env->cur_state->frame[env->cur_state->curframe];
2937 ptr_reg = &cur->regs[ptr_regno];
2938 min_off = ptr_reg->smin_value + off;
2939 max_off = ptr_reg->smax_value + off + size;
2940 if (value_regno >= 0)
2941 value_reg = &cur->regs[value_regno];
2942 if (value_reg && register_is_null(value_reg))
2943 writing_zero = true;
2944
c69431aa 2945 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
2946 if (err)
2947 return err;
2948
2949
2950 /* Variable offset writes destroy any spilled pointers in range. */
2951 for (i = min_off; i < max_off; i++) {
2952 u8 new_type, *stype;
2953 int slot, spi;
2954
2955 slot = -i - 1;
2956 spi = slot / BPF_REG_SIZE;
2957 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2958
2959 if (!env->allow_ptr_leaks
2960 && *stype != NOT_INIT
2961 && *stype != SCALAR_VALUE) {
2962 /* Reject the write if there's are spilled pointers in
2963 * range. If we didn't reject here, the ptr status
2964 * would be erased below (even though not all slots are
2965 * actually overwritten), possibly opening the door to
2966 * leaks.
2967 */
2968 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2969 insn_idx, i);
2970 return -EINVAL;
2971 }
2972
2973 /* Erase all spilled pointers. */
2974 state->stack[spi].spilled_ptr.type = NOT_INIT;
2975
2976 /* Update the slot type. */
2977 new_type = STACK_MISC;
2978 if (writing_zero && *stype == STACK_ZERO) {
2979 new_type = STACK_ZERO;
2980 zero_used = true;
2981 }
2982 /* If the slot is STACK_INVALID, we check whether it's OK to
2983 * pretend that it will be initialized by this write. The slot
2984 * might not actually be written to, and so if we mark it as
2985 * initialized future reads might leak uninitialized memory.
2986 * For privileged programs, we will accept such reads to slots
2987 * that may or may not be written because, if we're reject
2988 * them, the error would be too confusing.
2989 */
2990 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2991 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2992 insn_idx, i);
2993 return -EINVAL;
2994 }
2995 *stype = new_type;
2996 }
2997 if (zero_used) {
2998 /* backtracking doesn't work for STACK_ZERO yet. */
2999 err = mark_chain_precision(env, value_regno);
3000 if (err)
3001 return err;
3002 }
3003 return 0;
3004}
3005
3006/* When register 'dst_regno' is assigned some values from stack[min_off,
3007 * max_off), we set the register's type according to the types of the
3008 * respective stack slots. If all the stack values are known to be zeros, then
3009 * so is the destination reg. Otherwise, the register is considered to be
3010 * SCALAR. This function does not deal with register filling; the caller must
3011 * ensure that all spilled registers in the stack range have been marked as
3012 * read.
3013 */
3014static void mark_reg_stack_read(struct bpf_verifier_env *env,
3015 /* func where src register points to */
3016 struct bpf_func_state *ptr_state,
3017 int min_off, int max_off, int dst_regno)
3018{
3019 struct bpf_verifier_state *vstate = env->cur_state;
3020 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3021 int i, slot, spi;
3022 u8 *stype;
3023 int zeros = 0;
3024
3025 for (i = min_off; i < max_off; i++) {
3026 slot = -i - 1;
3027 spi = slot / BPF_REG_SIZE;
3028 stype = ptr_state->stack[spi].slot_type;
3029 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3030 break;
3031 zeros++;
3032 }
3033 if (zeros == max_off - min_off) {
3034 /* any access_size read into register is zero extended,
3035 * so the whole register == const_zero
3036 */
3037 __mark_reg_const_zero(&state->regs[dst_regno]);
3038 /* backtracking doesn't support STACK_ZERO yet,
3039 * so mark it precise here, so that later
3040 * backtracking can stop here.
3041 * Backtracking may not need this if this register
3042 * doesn't participate in pointer adjustment.
3043 * Forward propagation of precise flag is not
3044 * necessary either. This mark is only to stop
3045 * backtracking. Any register that contributed
3046 * to const 0 was marked precise before spill.
3047 */
3048 state->regs[dst_regno].precise = true;
3049 } else {
3050 /* have read misc data from the stack */
3051 mark_reg_unknown(env, state->regs, dst_regno);
3052 }
3053 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3054}
3055
3056/* Read the stack at 'off' and put the results into the register indicated by
3057 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3058 * spilled reg.
3059 *
3060 * 'dst_regno' can be -1, meaning that the read value is not going to a
3061 * register.
3062 *
3063 * The access is assumed to be within the current stack bounds.
3064 */
3065static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3066 /* func where src register points to */
3067 struct bpf_func_state *reg_state,
3068 int off, int size, int dst_regno)
17a52670 3069{
f4d7e40a
AS
3070 struct bpf_verifier_state *vstate = env->cur_state;
3071 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3072 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3073 struct bpf_reg_state *reg;
354e8f19 3074 u8 *stype, type;
17a52670 3075
f4d7e40a 3076 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3077 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3078
27113c59 3079 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3080 u8 spill_size = 1;
3081
3082 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3083 spill_size++;
354e8f19 3084
f30d4968 3085 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3086 if (reg->type != SCALAR_VALUE) {
3087 verbose_linfo(env, env->insn_idx, "; ");
3088 verbose(env, "invalid size of register fill\n");
3089 return -EACCES;
3090 }
354e8f19
MKL
3091
3092 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3093 if (dst_regno < 0)
3094 return 0;
3095
f30d4968 3096 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3097 /* The earlier check_reg_arg() has decided the
3098 * subreg_def for this insn. Save it first.
3099 */
3100 s32 subreg_def = state->regs[dst_regno].subreg_def;
3101
3102 state->regs[dst_regno] = *reg;
3103 state->regs[dst_regno].subreg_def = subreg_def;
3104 } else {
3105 for (i = 0; i < size; i++) {
3106 type = stype[(slot - i) % BPF_REG_SIZE];
3107 if (type == STACK_SPILL)
3108 continue;
3109 if (type == STACK_MISC)
3110 continue;
3111 verbose(env, "invalid read from stack off %d+%d size %d\n",
3112 off, i, size);
3113 return -EACCES;
3114 }
01f810ac 3115 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3116 }
354e8f19 3117 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3118 return 0;
17a52670 3119 }
17a52670 3120
01f810ac 3121 if (dst_regno >= 0) {
17a52670 3122 /* restore register state from stack */
01f810ac 3123 state->regs[dst_regno] = *reg;
2f18f62e
AS
3124 /* mark reg as written since spilled pointer state likely
3125 * has its liveness marks cleared by is_state_visited()
3126 * which resets stack/reg liveness for state transitions
3127 */
01f810ac 3128 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3129 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3130 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3131 * it is acceptable to use this value as a SCALAR_VALUE
3132 * (e.g. for XADD).
3133 * We must not allow unprivileged callers to do that
3134 * with spilled pointers.
3135 */
3136 verbose(env, "leaking pointer from stack off %d\n",
3137 off);
3138 return -EACCES;
dc503a8a 3139 }
f7cf25b2 3140 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3141 } else {
3142 for (i = 0; i < size; i++) {
01f810ac
AM
3143 type = stype[(slot - i) % BPF_REG_SIZE];
3144 if (type == STACK_MISC)
cc2b14d5 3145 continue;
01f810ac 3146 if (type == STACK_ZERO)
cc2b14d5 3147 continue;
cc2b14d5
AS
3148 verbose(env, "invalid read from stack off %d+%d size %d\n",
3149 off, i, size);
3150 return -EACCES;
3151 }
f7cf25b2 3152 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3153 if (dst_regno >= 0)
3154 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3155 }
f7cf25b2 3156 return 0;
17a52670
AS
3157}
3158
01f810ac
AM
3159enum stack_access_src {
3160 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3161 ACCESS_HELPER = 2, /* the access is performed by a helper */
3162};
3163
3164static int check_stack_range_initialized(struct bpf_verifier_env *env,
3165 int regno, int off, int access_size,
3166 bool zero_size_allowed,
3167 enum stack_access_src type,
3168 struct bpf_call_arg_meta *meta);
3169
3170static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3171{
3172 return cur_regs(env) + regno;
3173}
3174
3175/* Read the stack at 'ptr_regno + off' and put the result into the register
3176 * 'dst_regno'.
3177 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3178 * but not its variable offset.
3179 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3180 *
3181 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3182 * filling registers (i.e. reads of spilled register cannot be detected when
3183 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3184 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3185 * offset; for a fixed offset check_stack_read_fixed_off should be used
3186 * instead.
3187 */
3188static int check_stack_read_var_off(struct bpf_verifier_env *env,
3189 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3190{
01f810ac
AM
3191 /* The state of the source register. */
3192 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3193 struct bpf_func_state *ptr_state = func(env, reg);
3194 int err;
3195 int min_off, max_off;
3196
3197 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3198 */
01f810ac
AM
3199 err = check_stack_range_initialized(env, ptr_regno, off, size,
3200 false, ACCESS_DIRECT, NULL);
3201 if (err)
3202 return err;
3203
3204 min_off = reg->smin_value + off;
3205 max_off = reg->smax_value + off;
3206 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3207 return 0;
3208}
3209
3210/* check_stack_read dispatches to check_stack_read_fixed_off or
3211 * check_stack_read_var_off.
3212 *
3213 * The caller must ensure that the offset falls within the allocated stack
3214 * bounds.
3215 *
3216 * 'dst_regno' is a register which will receive the value from the stack. It
3217 * can be -1, meaning that the read value is not going to a register.
3218 */
3219static int check_stack_read(struct bpf_verifier_env *env,
3220 int ptr_regno, int off, int size,
3221 int dst_regno)
3222{
3223 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3224 struct bpf_func_state *state = func(env, reg);
3225 int err;
3226 /* Some accesses are only permitted with a static offset. */
3227 bool var_off = !tnum_is_const(reg->var_off);
3228
3229 /* The offset is required to be static when reads don't go to a
3230 * register, in order to not leak pointers (see
3231 * check_stack_read_fixed_off).
3232 */
3233 if (dst_regno < 0 && var_off) {
e4298d25
DB
3234 char tn_buf[48];
3235
3236 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3237 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3238 tn_buf, off, size);
3239 return -EACCES;
3240 }
01f810ac
AM
3241 /* Variable offset is prohibited for unprivileged mode for simplicity
3242 * since it requires corresponding support in Spectre masking for stack
3243 * ALU. See also retrieve_ptr_limit().
3244 */
3245 if (!env->bypass_spec_v1 && var_off) {
3246 char tn_buf[48];
e4298d25 3247
01f810ac
AM
3248 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3249 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3250 ptr_regno, tn_buf);
e4298d25
DB
3251 return -EACCES;
3252 }
3253
01f810ac
AM
3254 if (!var_off) {
3255 off += reg->var_off.value;
3256 err = check_stack_read_fixed_off(env, state, off, size,
3257 dst_regno);
3258 } else {
3259 /* Variable offset stack reads need more conservative handling
3260 * than fixed offset ones. Note that dst_regno >= 0 on this
3261 * branch.
3262 */
3263 err = check_stack_read_var_off(env, ptr_regno, off, size,
3264 dst_regno);
3265 }
3266 return err;
3267}
3268
3269
3270/* check_stack_write dispatches to check_stack_write_fixed_off or
3271 * check_stack_write_var_off.
3272 *
3273 * 'ptr_regno' is the register used as a pointer into the stack.
3274 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3275 * 'value_regno' is the register whose value we're writing to the stack. It can
3276 * be -1, meaning that we're not writing from a register.
3277 *
3278 * The caller must ensure that the offset falls within the maximum stack size.
3279 */
3280static int check_stack_write(struct bpf_verifier_env *env,
3281 int ptr_regno, int off, int size,
3282 int value_regno, int insn_idx)
3283{
3284 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3285 struct bpf_func_state *state = func(env, reg);
3286 int err;
3287
3288 if (tnum_is_const(reg->var_off)) {
3289 off += reg->var_off.value;
3290 err = check_stack_write_fixed_off(env, state, off, size,
3291 value_regno, insn_idx);
3292 } else {
3293 /* Variable offset stack reads need more conservative handling
3294 * than fixed offset ones.
3295 */
3296 err = check_stack_write_var_off(env, state,
3297 ptr_regno, off, size,
3298 value_regno, insn_idx);
3299 }
3300 return err;
e4298d25
DB
3301}
3302
591fe988
DB
3303static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3304 int off, int size, enum bpf_access_type type)
3305{
3306 struct bpf_reg_state *regs = cur_regs(env);
3307 struct bpf_map *map = regs[regno].map_ptr;
3308 u32 cap = bpf_map_flags_to_cap(map);
3309
3310 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3311 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3312 map->value_size, off, size);
3313 return -EACCES;
3314 }
3315
3316 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3317 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3318 map->value_size, off, size);
3319 return -EACCES;
3320 }
3321
3322 return 0;
3323}
3324
457f4436
AN
3325/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3326static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3327 int off, int size, u32 mem_size,
3328 bool zero_size_allowed)
17a52670 3329{
457f4436
AN
3330 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3331 struct bpf_reg_state *reg;
3332
3333 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3334 return 0;
17a52670 3335
457f4436
AN
3336 reg = &cur_regs(env)[regno];
3337 switch (reg->type) {
69c087ba
YS
3338 case PTR_TO_MAP_KEY:
3339 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3340 mem_size, off, size);
3341 break;
457f4436 3342 case PTR_TO_MAP_VALUE:
61bd5218 3343 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3344 mem_size, off, size);
3345 break;
3346 case PTR_TO_PACKET:
3347 case PTR_TO_PACKET_META:
3348 case PTR_TO_PACKET_END:
3349 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3350 off, size, regno, reg->id, off, mem_size);
3351 break;
3352 case PTR_TO_MEM:
3353 default:
3354 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3355 mem_size, off, size);
17a52670 3356 }
457f4436
AN
3357
3358 return -EACCES;
17a52670
AS
3359}
3360
457f4436
AN
3361/* check read/write into a memory region with possible variable offset */
3362static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3363 int off, int size, u32 mem_size,
3364 bool zero_size_allowed)
dbcfe5f7 3365{
f4d7e40a
AS
3366 struct bpf_verifier_state *vstate = env->cur_state;
3367 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3368 struct bpf_reg_state *reg = &state->regs[regno];
3369 int err;
3370
457f4436 3371 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3372 * need to try adding each of min_value and max_value to off
3373 * to make sure our theoretical access will be safe.
dbcfe5f7 3374 */
06ee7115 3375 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 3376 print_verifier_state(env, state);
b7137c4e 3377
dbcfe5f7
GB
3378 /* The minimum value is only important with signed
3379 * comparisons where we can't assume the floor of a
3380 * value is 0. If we are using signed variables for our
3381 * index'es we need to make sure that whatever we use
3382 * will have a set floor within our range.
3383 */
b7137c4e
DB
3384 if (reg->smin_value < 0 &&
3385 (reg->smin_value == S64_MIN ||
3386 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3387 reg->smin_value + off < 0)) {
61bd5218 3388 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3389 regno);
3390 return -EACCES;
3391 }
457f4436
AN
3392 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3393 mem_size, zero_size_allowed);
dbcfe5f7 3394 if (err) {
457f4436 3395 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3396 regno);
dbcfe5f7
GB
3397 return err;
3398 }
3399
b03c9f9f
EC
3400 /* If we haven't set a max value then we need to bail since we can't be
3401 * sure we won't do bad things.
3402 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3403 */
b03c9f9f 3404 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3405 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3406 regno);
3407 return -EACCES;
3408 }
457f4436
AN
3409 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3410 mem_size, zero_size_allowed);
3411 if (err) {
3412 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3413 regno);
457f4436
AN
3414 return err;
3415 }
3416
3417 return 0;
3418}
d83525ca 3419
457f4436
AN
3420/* check read/write into a map element with possible variable offset */
3421static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3422 int off, int size, bool zero_size_allowed)
3423{
3424 struct bpf_verifier_state *vstate = env->cur_state;
3425 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3426 struct bpf_reg_state *reg = &state->regs[regno];
3427 struct bpf_map *map = reg->map_ptr;
3428 int err;
3429
3430 err = check_mem_region_access(env, regno, off, size, map->value_size,
3431 zero_size_allowed);
3432 if (err)
3433 return err;
3434
3435 if (map_value_has_spin_lock(map)) {
3436 u32 lock = map->spin_lock_off;
d83525ca
AS
3437
3438 /* if any part of struct bpf_spin_lock can be touched by
3439 * load/store reject this program.
3440 * To check that [x1, x2) overlaps with [y1, y2)
3441 * it is sufficient to check x1 < y2 && y1 < x2.
3442 */
3443 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3444 lock < reg->umax_value + off + size) {
3445 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3446 return -EACCES;
3447 }
3448 }
68134668
AS
3449 if (map_value_has_timer(map)) {
3450 u32 t = map->timer_off;
3451
3452 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3453 t < reg->umax_value + off + size) {
3454 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3455 return -EACCES;
3456 }
3457 }
f1174f77 3458 return err;
dbcfe5f7
GB
3459}
3460
969bf05e
AS
3461#define MAX_PACKET_OFF 0xffff
3462
7e40781c
UP
3463static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3464{
3aac1ead 3465 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3466}
3467
58e2af8b 3468static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3469 const struct bpf_call_arg_meta *meta,
3470 enum bpf_access_type t)
4acf6c0b 3471{
7e40781c
UP
3472 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3473
3474 switch (prog_type) {
5d66fa7d 3475 /* Program types only with direct read access go here! */
3a0af8fd
TG
3476 case BPF_PROG_TYPE_LWT_IN:
3477 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3478 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3479 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3480 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3481 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3482 if (t == BPF_WRITE)
3483 return false;
8731745e 3484 fallthrough;
5d66fa7d
DB
3485
3486 /* Program types with direct read + write access go here! */
36bbef52
DB
3487 case BPF_PROG_TYPE_SCHED_CLS:
3488 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3489 case BPF_PROG_TYPE_XDP:
3a0af8fd 3490 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3491 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3492 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3493 if (meta)
3494 return meta->pkt_access;
3495
3496 env->seen_direct_write = true;
4acf6c0b 3497 return true;
0d01da6a
SF
3498
3499 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3500 if (t == BPF_WRITE)
3501 env->seen_direct_write = true;
3502
3503 return true;
3504
4acf6c0b
BB
3505 default:
3506 return false;
3507 }
3508}
3509
f1174f77 3510static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3511 int size, bool zero_size_allowed)
f1174f77 3512{
638f5b90 3513 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3514 struct bpf_reg_state *reg = &regs[regno];
3515 int err;
3516
3517 /* We may have added a variable offset to the packet pointer; but any
3518 * reg->range we have comes after that. We are only checking the fixed
3519 * offset.
3520 */
3521
3522 /* We don't allow negative numbers, because we aren't tracking enough
3523 * detail to prove they're safe.
3524 */
b03c9f9f 3525 if (reg->smin_value < 0) {
61bd5218 3526 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3527 regno);
3528 return -EACCES;
3529 }
6d94e741
AS
3530
3531 err = reg->range < 0 ? -EINVAL :
3532 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3533 zero_size_allowed);
f1174f77 3534 if (err) {
61bd5218 3535 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3536 return err;
3537 }
e647815a 3538
457f4436 3539 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3540 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3541 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3542 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3543 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3544 */
3545 env->prog->aux->max_pkt_offset =
3546 max_t(u32, env->prog->aux->max_pkt_offset,
3547 off + reg->umax_value + size - 1);
3548
f1174f77
EC
3549 return err;
3550}
3551
3552/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3553static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3554 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3555 struct btf **btf, u32 *btf_id)
17a52670 3556{
f96da094
DB
3557 struct bpf_insn_access_aux info = {
3558 .reg_type = *reg_type,
9e15db66 3559 .log = &env->log,
f96da094 3560 };
31fd8581 3561
4f9218aa 3562 if (env->ops->is_valid_access &&
5e43f899 3563 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3564 /* A non zero info.ctx_field_size indicates that this field is a
3565 * candidate for later verifier transformation to load the whole
3566 * field and then apply a mask when accessed with a narrower
3567 * access than actual ctx access size. A zero info.ctx_field_size
3568 * will only allow for whole field access and rejects any other
3569 * type of narrower access.
31fd8581 3570 */
23994631 3571 *reg_type = info.reg_type;
31fd8581 3572
22dc4a0f
AN
3573 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3574 *btf = info.btf;
9e15db66 3575 *btf_id = info.btf_id;
22dc4a0f 3576 } else {
9e15db66 3577 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3578 }
32bbe007
AS
3579 /* remember the offset of last byte accessed in ctx */
3580 if (env->prog->aux->max_ctx_offset < off + size)
3581 env->prog->aux->max_ctx_offset = off + size;
17a52670 3582 return 0;
32bbe007 3583 }
17a52670 3584
61bd5218 3585 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3586 return -EACCES;
3587}
3588
d58e468b
PP
3589static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3590 int size)
3591{
3592 if (size < 0 || off < 0 ||
3593 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3594 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3595 off, size);
3596 return -EACCES;
3597 }
3598 return 0;
3599}
3600
5f456649
MKL
3601static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3602 u32 regno, int off, int size,
3603 enum bpf_access_type t)
c64b7983
JS
3604{
3605 struct bpf_reg_state *regs = cur_regs(env);
3606 struct bpf_reg_state *reg = &regs[regno];
5f456649 3607 struct bpf_insn_access_aux info = {};
46f8bc92 3608 bool valid;
c64b7983
JS
3609
3610 if (reg->smin_value < 0) {
3611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3612 regno);
3613 return -EACCES;
3614 }
3615
46f8bc92
MKL
3616 switch (reg->type) {
3617 case PTR_TO_SOCK_COMMON:
3618 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3619 break;
3620 case PTR_TO_SOCKET:
3621 valid = bpf_sock_is_valid_access(off, size, t, &info);
3622 break;
655a51e5
MKL
3623 case PTR_TO_TCP_SOCK:
3624 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3625 break;
fada7fdc
JL
3626 case PTR_TO_XDP_SOCK:
3627 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3628 break;
46f8bc92
MKL
3629 default:
3630 valid = false;
c64b7983
JS
3631 }
3632
5f456649 3633
46f8bc92
MKL
3634 if (valid) {
3635 env->insn_aux_data[insn_idx].ctx_field_size =
3636 info.ctx_field_size;
3637 return 0;
3638 }
3639
3640 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3641 regno, reg_type_str[reg->type], off, size);
3642
3643 return -EACCES;
c64b7983
JS
3644}
3645
4cabc5b1
DB
3646static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3647{
2a159c6f 3648 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3649}
3650
f37a8cb8
DB
3651static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3652{
2a159c6f 3653 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3654
46f8bc92
MKL
3655 return reg->type == PTR_TO_CTX;
3656}
3657
3658static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3659{
3660 const struct bpf_reg_state *reg = reg_state(env, regno);
3661
3662 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3663}
3664
ca369602
DB
3665static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3666{
2a159c6f 3667 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3668
3669 return type_is_pkt_pointer(reg->type);
3670}
3671
4b5defde
DB
3672static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3673{
3674 const struct bpf_reg_state *reg = reg_state(env, regno);
3675
3676 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3677 return reg->type == PTR_TO_FLOW_KEYS;
3678}
3679
61bd5218
JK
3680static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3681 const struct bpf_reg_state *reg,
d1174416 3682 int off, int size, bool strict)
969bf05e 3683{
f1174f77 3684 struct tnum reg_off;
e07b98d9 3685 int ip_align;
d1174416
DM
3686
3687 /* Byte size accesses are always allowed. */
3688 if (!strict || size == 1)
3689 return 0;
3690
e4eda884
DM
3691 /* For platforms that do not have a Kconfig enabling
3692 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3693 * NET_IP_ALIGN is universally set to '2'. And on platforms
3694 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3695 * to this code only in strict mode where we want to emulate
3696 * the NET_IP_ALIGN==2 checking. Therefore use an
3697 * unconditional IP align value of '2'.
e07b98d9 3698 */
e4eda884 3699 ip_align = 2;
f1174f77
EC
3700
3701 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3702 if (!tnum_is_aligned(reg_off, size)) {
3703 char tn_buf[48];
3704
3705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3706 verbose(env,
3707 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3708 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3709 return -EACCES;
3710 }
79adffcd 3711
969bf05e
AS
3712 return 0;
3713}
3714
61bd5218
JK
3715static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3716 const struct bpf_reg_state *reg,
f1174f77
EC
3717 const char *pointer_desc,
3718 int off, int size, bool strict)
79adffcd 3719{
f1174f77
EC
3720 struct tnum reg_off;
3721
3722 /* Byte size accesses are always allowed. */
3723 if (!strict || size == 1)
3724 return 0;
3725
3726 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3727 if (!tnum_is_aligned(reg_off, size)) {
3728 char tn_buf[48];
3729
3730 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3731 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3732 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3733 return -EACCES;
3734 }
3735
969bf05e
AS
3736 return 0;
3737}
3738
e07b98d9 3739static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3740 const struct bpf_reg_state *reg, int off,
3741 int size, bool strict_alignment_once)
79adffcd 3742{
ca369602 3743 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3744 const char *pointer_desc = "";
d1174416 3745
79adffcd
DB
3746 switch (reg->type) {
3747 case PTR_TO_PACKET:
de8f3a83
DB
3748 case PTR_TO_PACKET_META:
3749 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3750 * right in front, treat it the very same way.
3751 */
61bd5218 3752 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3753 case PTR_TO_FLOW_KEYS:
3754 pointer_desc = "flow keys ";
3755 break;
69c087ba
YS
3756 case PTR_TO_MAP_KEY:
3757 pointer_desc = "key ";
3758 break;
f1174f77
EC
3759 case PTR_TO_MAP_VALUE:
3760 pointer_desc = "value ";
3761 break;
3762 case PTR_TO_CTX:
3763 pointer_desc = "context ";
3764 break;
3765 case PTR_TO_STACK:
3766 pointer_desc = "stack ";
01f810ac
AM
3767 /* The stack spill tracking logic in check_stack_write_fixed_off()
3768 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3769 * aligned.
3770 */
3771 strict = true;
f1174f77 3772 break;
c64b7983
JS
3773 case PTR_TO_SOCKET:
3774 pointer_desc = "sock ";
3775 break;
46f8bc92
MKL
3776 case PTR_TO_SOCK_COMMON:
3777 pointer_desc = "sock_common ";
3778 break;
655a51e5
MKL
3779 case PTR_TO_TCP_SOCK:
3780 pointer_desc = "tcp_sock ";
3781 break;
fada7fdc
JL
3782 case PTR_TO_XDP_SOCK:
3783 pointer_desc = "xdp_sock ";
3784 break;
79adffcd 3785 default:
f1174f77 3786 break;
79adffcd 3787 }
61bd5218
JK
3788 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3789 strict);
79adffcd
DB
3790}
3791
f4d7e40a
AS
3792static int update_stack_depth(struct bpf_verifier_env *env,
3793 const struct bpf_func_state *func,
3794 int off)
3795{
9c8105bd 3796 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3797
3798 if (stack >= -off)
3799 return 0;
3800
3801 /* update known max for given subprogram */
9c8105bd 3802 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3803 return 0;
3804}
f4d7e40a 3805
70a87ffe
AS
3806/* starting from main bpf function walk all instructions of the function
3807 * and recursively walk all callees that given function can call.
3808 * Ignore jump and exit insns.
3809 * Since recursion is prevented by check_cfg() this algorithm
3810 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3811 */
3812static int check_max_stack_depth(struct bpf_verifier_env *env)
3813{
9c8105bd
JW
3814 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3815 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3816 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3817 bool tail_call_reachable = false;
70a87ffe
AS
3818 int ret_insn[MAX_CALL_FRAMES];
3819 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3820 int j;
f4d7e40a 3821
70a87ffe 3822process_func:
7f6e4312
MF
3823 /* protect against potential stack overflow that might happen when
3824 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3825 * depth for such case down to 256 so that the worst case scenario
3826 * would result in 8k stack size (32 which is tailcall limit * 256 =
3827 * 8k).
3828 *
3829 * To get the idea what might happen, see an example:
3830 * func1 -> sub rsp, 128
3831 * subfunc1 -> sub rsp, 256
3832 * tailcall1 -> add rsp, 256
3833 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3834 * subfunc2 -> sub rsp, 64
3835 * subfunc22 -> sub rsp, 128
3836 * tailcall2 -> add rsp, 128
3837 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3838 *
3839 * tailcall will unwind the current stack frame but it will not get rid
3840 * of caller's stack as shown on the example above.
3841 */
3842 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3843 verbose(env,
3844 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3845 depth);
3846 return -EACCES;
3847 }
70a87ffe
AS
3848 /* round up to 32-bytes, since this is granularity
3849 * of interpreter stack size
3850 */
9c8105bd 3851 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3852 if (depth > MAX_BPF_STACK) {
f4d7e40a 3853 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3854 frame + 1, depth);
f4d7e40a
AS
3855 return -EACCES;
3856 }
70a87ffe 3857continue_func:
4cb3d99c 3858 subprog_end = subprog[idx + 1].start;
70a87ffe 3859 for (; i < subprog_end; i++) {
7ddc80a4
AS
3860 int next_insn;
3861
69c087ba 3862 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3863 continue;
3864 /* remember insn and function to return to */
3865 ret_insn[frame] = i + 1;
9c8105bd 3866 ret_prog[frame] = idx;
70a87ffe
AS
3867
3868 /* find the callee */
7ddc80a4
AS
3869 next_insn = i + insn[i].imm + 1;
3870 idx = find_subprog(env, next_insn);
9c8105bd 3871 if (idx < 0) {
70a87ffe 3872 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 3873 next_insn);
70a87ffe
AS
3874 return -EFAULT;
3875 }
7ddc80a4
AS
3876 if (subprog[idx].is_async_cb) {
3877 if (subprog[idx].has_tail_call) {
3878 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3879 return -EFAULT;
3880 }
3881 /* async callbacks don't increase bpf prog stack size */
3882 continue;
3883 }
3884 i = next_insn;
ebf7d1f5
MF
3885
3886 if (subprog[idx].has_tail_call)
3887 tail_call_reachable = true;
3888
70a87ffe
AS
3889 frame++;
3890 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3891 verbose(env, "the call stack of %d frames is too deep !\n",
3892 frame);
3893 return -E2BIG;
70a87ffe
AS
3894 }
3895 goto process_func;
3896 }
ebf7d1f5
MF
3897 /* if tail call got detected across bpf2bpf calls then mark each of the
3898 * currently present subprog frames as tail call reachable subprogs;
3899 * this info will be utilized by JIT so that we will be preserving the
3900 * tail call counter throughout bpf2bpf calls combined with tailcalls
3901 */
3902 if (tail_call_reachable)
3903 for (j = 0; j < frame; j++)
3904 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
3905 if (subprog[0].tail_call_reachable)
3906 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 3907
70a87ffe
AS
3908 /* end of for() loop means the last insn of the 'subprog'
3909 * was reached. Doesn't matter whether it was JA or EXIT
3910 */
3911 if (frame == 0)
3912 return 0;
9c8105bd 3913 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3914 frame--;
3915 i = ret_insn[frame];
9c8105bd 3916 idx = ret_prog[frame];
70a87ffe 3917 goto continue_func;
f4d7e40a
AS
3918}
3919
19d28fbd 3920#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3921static int get_callee_stack_depth(struct bpf_verifier_env *env,
3922 const struct bpf_insn *insn, int idx)
3923{
3924 int start = idx + insn->imm + 1, subprog;
3925
3926 subprog = find_subprog(env, start);
3927 if (subprog < 0) {
3928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3929 start);
3930 return -EFAULT;
3931 }
9c8105bd 3932 return env->subprog_info[subprog].stack_depth;
1ea47e01 3933}
19d28fbd 3934#endif
1ea47e01 3935
51c39bb1
AS
3936int check_ctx_reg(struct bpf_verifier_env *env,
3937 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3938{
3939 /* Access to ctx or passing it to a helper is only allowed in
3940 * its original, unmodified form.
3941 */
3942
3943 if (reg->off) {
3944 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3945 regno, reg->off);
3946 return -EACCES;
3947 }
3948
3949 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3950 char tn_buf[48];
3951
3952 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3953 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3954 return -EACCES;
3955 }
3956
3957 return 0;
3958}
3959
afbf21dc
YS
3960static int __check_buffer_access(struct bpf_verifier_env *env,
3961 const char *buf_info,
3962 const struct bpf_reg_state *reg,
3963 int regno, int off, int size)
9df1c28b
MM
3964{
3965 if (off < 0) {
3966 verbose(env,
4fc00b79 3967 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3968 regno, buf_info, off, size);
9df1c28b
MM
3969 return -EACCES;
3970 }
3971 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3972 char tn_buf[48];
3973
3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975 verbose(env,
4fc00b79 3976 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3977 regno, off, tn_buf);
3978 return -EACCES;
3979 }
afbf21dc
YS
3980
3981 return 0;
3982}
3983
3984static int check_tp_buffer_access(struct bpf_verifier_env *env,
3985 const struct bpf_reg_state *reg,
3986 int regno, int off, int size)
3987{
3988 int err;
3989
3990 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3991 if (err)
3992 return err;
3993
9df1c28b
MM
3994 if (off + size > env->prog->aux->max_tp_access)
3995 env->prog->aux->max_tp_access = off + size;
3996
3997 return 0;
3998}
3999
afbf21dc
YS
4000static int check_buffer_access(struct bpf_verifier_env *env,
4001 const struct bpf_reg_state *reg,
4002 int regno, int off, int size,
4003 bool zero_size_allowed,
4004 const char *buf_info,
4005 u32 *max_access)
4006{
4007 int err;
4008
4009 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4010 if (err)
4011 return err;
4012
4013 if (off + size > *max_access)
4014 *max_access = off + size;
4015
4016 return 0;
4017}
4018
3f50f132
JF
4019/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4020static void zext_32_to_64(struct bpf_reg_state *reg)
4021{
4022 reg->var_off = tnum_subreg(reg->var_off);
4023 __reg_assign_32_into_64(reg);
4024}
9df1c28b 4025
0c17d1d2
JH
4026/* truncate register to smaller size (in bytes)
4027 * must be called with size < BPF_REG_SIZE
4028 */
4029static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4030{
4031 u64 mask;
4032
4033 /* clear high bits in bit representation */
4034 reg->var_off = tnum_cast(reg->var_off, size);
4035
4036 /* fix arithmetic bounds */
4037 mask = ((u64)1 << (size * 8)) - 1;
4038 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4039 reg->umin_value &= mask;
4040 reg->umax_value &= mask;
4041 } else {
4042 reg->umin_value = 0;
4043 reg->umax_value = mask;
4044 }
4045 reg->smin_value = reg->umin_value;
4046 reg->smax_value = reg->umax_value;
3f50f132
JF
4047
4048 /* If size is smaller than 32bit register the 32bit register
4049 * values are also truncated so we push 64-bit bounds into
4050 * 32-bit bounds. Above were truncated < 32-bits already.
4051 */
4052 if (size >= 4)
4053 return;
4054 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4055}
4056
a23740ec
AN
4057static bool bpf_map_is_rdonly(const struct bpf_map *map)
4058{
353050be
DB
4059 /* A map is considered read-only if the following condition are true:
4060 *
4061 * 1) BPF program side cannot change any of the map content. The
4062 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4063 * and was set at map creation time.
4064 * 2) The map value(s) have been initialized from user space by a
4065 * loader and then "frozen", such that no new map update/delete
4066 * operations from syscall side are possible for the rest of
4067 * the map's lifetime from that point onwards.
4068 * 3) Any parallel/pending map update/delete operations from syscall
4069 * side have been completed. Only after that point, it's safe to
4070 * assume that map value(s) are immutable.
4071 */
4072 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4073 READ_ONCE(map->frozen) &&
4074 !bpf_map_write_active(map);
a23740ec
AN
4075}
4076
4077static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4078{
4079 void *ptr;
4080 u64 addr;
4081 int err;
4082
4083 err = map->ops->map_direct_value_addr(map, &addr, off);
4084 if (err)
4085 return err;
2dedd7d2 4086 ptr = (void *)(long)addr + off;
a23740ec
AN
4087
4088 switch (size) {
4089 case sizeof(u8):
4090 *val = (u64)*(u8 *)ptr;
4091 break;
4092 case sizeof(u16):
4093 *val = (u64)*(u16 *)ptr;
4094 break;
4095 case sizeof(u32):
4096 *val = (u64)*(u32 *)ptr;
4097 break;
4098 case sizeof(u64):
4099 *val = *(u64 *)ptr;
4100 break;
4101 default:
4102 return -EINVAL;
4103 }
4104 return 0;
4105}
4106
9e15db66
AS
4107static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4108 struct bpf_reg_state *regs,
4109 int regno, int off, int size,
4110 enum bpf_access_type atype,
4111 int value_regno)
4112{
4113 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4114 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4115 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
4116 u32 btf_id;
4117 int ret;
4118
9e15db66
AS
4119 if (off < 0) {
4120 verbose(env,
4121 "R%d is ptr_%s invalid negative access: off=%d\n",
4122 regno, tname, off);
4123 return -EACCES;
4124 }
4125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4126 char tn_buf[48];
4127
4128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4129 verbose(env,
4130 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4131 regno, tname, off, tn_buf);
4132 return -EACCES;
4133 }
4134
27ae7997 4135 if (env->ops->btf_struct_access) {
22dc4a0f
AN
4136 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4137 off, size, atype, &btf_id);
27ae7997
MKL
4138 } else {
4139 if (atype != BPF_READ) {
4140 verbose(env, "only read is supported\n");
4141 return -EACCES;
4142 }
4143
22dc4a0f
AN
4144 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4145 atype, &btf_id);
27ae7997
MKL
4146 }
4147
9e15db66
AS
4148 if (ret < 0)
4149 return ret;
4150
41c48f3a 4151 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 4152 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
4153
4154 return 0;
4155}
4156
4157static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4158 struct bpf_reg_state *regs,
4159 int regno, int off, int size,
4160 enum bpf_access_type atype,
4161 int value_regno)
4162{
4163 struct bpf_reg_state *reg = regs + regno;
4164 struct bpf_map *map = reg->map_ptr;
4165 const struct btf_type *t;
4166 const char *tname;
4167 u32 btf_id;
4168 int ret;
4169
4170 if (!btf_vmlinux) {
4171 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4172 return -ENOTSUPP;
4173 }
4174
4175 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4176 verbose(env, "map_ptr access not supported for map type %d\n",
4177 map->map_type);
4178 return -ENOTSUPP;
4179 }
4180
4181 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4182 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4183
4184 if (!env->allow_ptr_to_map_access) {
4185 verbose(env,
4186 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4187 tname);
4188 return -EPERM;
9e15db66 4189 }
27ae7997 4190
41c48f3a
AI
4191 if (off < 0) {
4192 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4193 regno, tname, off);
4194 return -EACCES;
4195 }
4196
4197 if (atype != BPF_READ) {
4198 verbose(env, "only read from %s is supported\n", tname);
4199 return -EACCES;
4200 }
4201
22dc4a0f 4202 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
4203 if (ret < 0)
4204 return ret;
4205
4206 if (value_regno >= 0)
22dc4a0f 4207 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 4208
9e15db66
AS
4209 return 0;
4210}
4211
01f810ac
AM
4212/* Check that the stack access at the given offset is within bounds. The
4213 * maximum valid offset is -1.
4214 *
4215 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4216 * -state->allocated_stack for reads.
4217 */
4218static int check_stack_slot_within_bounds(int off,
4219 struct bpf_func_state *state,
4220 enum bpf_access_type t)
4221{
4222 int min_valid_off;
4223
4224 if (t == BPF_WRITE)
4225 min_valid_off = -MAX_BPF_STACK;
4226 else
4227 min_valid_off = -state->allocated_stack;
4228
4229 if (off < min_valid_off || off > -1)
4230 return -EACCES;
4231 return 0;
4232}
4233
4234/* Check that the stack access at 'regno + off' falls within the maximum stack
4235 * bounds.
4236 *
4237 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4238 */
4239static int check_stack_access_within_bounds(
4240 struct bpf_verifier_env *env,
4241 int regno, int off, int access_size,
4242 enum stack_access_src src, enum bpf_access_type type)
4243{
4244 struct bpf_reg_state *regs = cur_regs(env);
4245 struct bpf_reg_state *reg = regs + regno;
4246 struct bpf_func_state *state = func(env, reg);
4247 int min_off, max_off;
4248 int err;
4249 char *err_extra;
4250
4251 if (src == ACCESS_HELPER)
4252 /* We don't know if helpers are reading or writing (or both). */
4253 err_extra = " indirect access to";
4254 else if (type == BPF_READ)
4255 err_extra = " read from";
4256 else
4257 err_extra = " write to";
4258
4259 if (tnum_is_const(reg->var_off)) {
4260 min_off = reg->var_off.value + off;
4261 if (access_size > 0)
4262 max_off = min_off + access_size - 1;
4263 else
4264 max_off = min_off;
4265 } else {
4266 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4267 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4268 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4269 err_extra, regno);
4270 return -EACCES;
4271 }
4272 min_off = reg->smin_value + off;
4273 if (access_size > 0)
4274 max_off = reg->smax_value + off + access_size - 1;
4275 else
4276 max_off = min_off;
4277 }
4278
4279 err = check_stack_slot_within_bounds(min_off, state, type);
4280 if (!err)
4281 err = check_stack_slot_within_bounds(max_off, state, type);
4282
4283 if (err) {
4284 if (tnum_is_const(reg->var_off)) {
4285 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4286 err_extra, regno, off, access_size);
4287 } else {
4288 char tn_buf[48];
4289
4290 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4291 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4292 err_extra, regno, tn_buf, access_size);
4293 }
4294 }
4295 return err;
4296}
41c48f3a 4297
17a52670
AS
4298/* check whether memory at (regno + off) is accessible for t = (read | write)
4299 * if t==write, value_regno is a register which value is stored into memory
4300 * if t==read, value_regno is a register which will receive the value from memory
4301 * if t==write && value_regno==-1, some unknown value is stored into memory
4302 * if t==read && value_regno==-1, don't care what we read from memory
4303 */
ca369602
DB
4304static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4305 int off, int bpf_size, enum bpf_access_type t,
4306 int value_regno, bool strict_alignment_once)
17a52670 4307{
638f5b90
AS
4308 struct bpf_reg_state *regs = cur_regs(env);
4309 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4310 struct bpf_func_state *state;
17a52670
AS
4311 int size, err = 0;
4312
4313 size = bpf_size_to_bytes(bpf_size);
4314 if (size < 0)
4315 return size;
4316
f1174f77 4317 /* alignment checks will add in reg->off themselves */
ca369602 4318 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4319 if (err)
4320 return err;
17a52670 4321
f1174f77
EC
4322 /* for access checks, reg->off is just part of off */
4323 off += reg->off;
4324
69c087ba
YS
4325 if (reg->type == PTR_TO_MAP_KEY) {
4326 if (t == BPF_WRITE) {
4327 verbose(env, "write to change key R%d not allowed\n", regno);
4328 return -EACCES;
4329 }
4330
4331 err = check_mem_region_access(env, regno, off, size,
4332 reg->map_ptr->key_size, false);
4333 if (err)
4334 return err;
4335 if (value_regno >= 0)
4336 mark_reg_unknown(env, regs, value_regno);
4337 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4338 if (t == BPF_WRITE && value_regno >= 0 &&
4339 is_pointer_value(env, value_regno)) {
61bd5218 4340 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4341 return -EACCES;
4342 }
591fe988
DB
4343 err = check_map_access_type(env, regno, off, size, t);
4344 if (err)
4345 return err;
9fd29c08 4346 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4347 if (!err && t == BPF_READ && value_regno >= 0) {
4348 struct bpf_map *map = reg->map_ptr;
4349
4350 /* if map is read-only, track its contents as scalars */
4351 if (tnum_is_const(reg->var_off) &&
4352 bpf_map_is_rdonly(map) &&
4353 map->ops->map_direct_value_addr) {
4354 int map_off = off + reg->var_off.value;
4355 u64 val = 0;
4356
4357 err = bpf_map_direct_read(map, map_off, size,
4358 &val);
4359 if (err)
4360 return err;
4361
4362 regs[value_regno].type = SCALAR_VALUE;
4363 __mark_reg_known(&regs[value_regno], val);
4364 } else {
4365 mark_reg_unknown(env, regs, value_regno);
4366 }
4367 }
457f4436
AN
4368 } else if (reg->type == PTR_TO_MEM) {
4369 if (t == BPF_WRITE && value_regno >= 0 &&
4370 is_pointer_value(env, value_regno)) {
4371 verbose(env, "R%d leaks addr into mem\n", value_regno);
4372 return -EACCES;
4373 }
4374 err = check_mem_region_access(env, regno, off, size,
4375 reg->mem_size, false);
4376 if (!err && t == BPF_READ && value_regno >= 0)
4377 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4378 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4379 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4380 struct btf *btf = NULL;
9e15db66 4381 u32 btf_id = 0;
19de99f7 4382
1be7f75d
AS
4383 if (t == BPF_WRITE && value_regno >= 0 &&
4384 is_pointer_value(env, value_regno)) {
61bd5218 4385 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4386 return -EACCES;
4387 }
f1174f77 4388
58990d1f
DB
4389 err = check_ctx_reg(env, reg, regno);
4390 if (err < 0)
4391 return err;
4392
22dc4a0f 4393 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4394 if (err)
4395 verbose_linfo(env, insn_idx, "; ");
969bf05e 4396 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4397 /* ctx access returns either a scalar, or a
de8f3a83
DB
4398 * PTR_TO_PACKET[_META,_END]. In the latter
4399 * case, we know the offset is zero.
f1174f77 4400 */
46f8bc92 4401 if (reg_type == SCALAR_VALUE) {
638f5b90 4402 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4403 } else {
638f5b90 4404 mark_reg_known_zero(env, regs,
61bd5218 4405 value_regno);
46f8bc92
MKL
4406 if (reg_type_may_be_null(reg_type))
4407 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4408 /* A load of ctx field could have different
4409 * actual load size with the one encoded in the
4410 * insn. When the dst is PTR, it is for sure not
4411 * a sub-register.
4412 */
4413 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4414 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4415 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4416 regs[value_regno].btf = btf;
9e15db66 4417 regs[value_regno].btf_id = btf_id;
22dc4a0f 4418 }
46f8bc92 4419 }
638f5b90 4420 regs[value_regno].type = reg_type;
969bf05e 4421 }
17a52670 4422
f1174f77 4423 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4424 /* Basic bounds checks. */
4425 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4426 if (err)
4427 return err;
8726679a 4428
f4d7e40a
AS
4429 state = func(env, reg);
4430 err = update_stack_depth(env, state, off);
4431 if (err)
4432 return err;
8726679a 4433
01f810ac
AM
4434 if (t == BPF_READ)
4435 err = check_stack_read(env, regno, off, size,
61bd5218 4436 value_regno);
01f810ac
AM
4437 else
4438 err = check_stack_write(env, regno, off, size,
4439 value_regno, insn_idx);
de8f3a83 4440 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4441 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4442 verbose(env, "cannot write into packet\n");
969bf05e
AS
4443 return -EACCES;
4444 }
4acf6c0b
BB
4445 if (t == BPF_WRITE && value_regno >= 0 &&
4446 is_pointer_value(env, value_regno)) {
61bd5218
JK
4447 verbose(env, "R%d leaks addr into packet\n",
4448 value_regno);
4acf6c0b
BB
4449 return -EACCES;
4450 }
9fd29c08 4451 err = check_packet_access(env, regno, off, size, false);
969bf05e 4452 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4453 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4454 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4455 if (t == BPF_WRITE && value_regno >= 0 &&
4456 is_pointer_value(env, value_regno)) {
4457 verbose(env, "R%d leaks addr into flow keys\n",
4458 value_regno);
4459 return -EACCES;
4460 }
4461
4462 err = check_flow_keys_access(env, off, size);
4463 if (!err && t == BPF_READ && value_regno >= 0)
4464 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4465 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4466 if (t == BPF_WRITE) {
46f8bc92
MKL
4467 verbose(env, "R%d cannot write into %s\n",
4468 regno, reg_type_str[reg->type]);
c64b7983
JS
4469 return -EACCES;
4470 }
5f456649 4471 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4472 if (!err && value_regno >= 0)
4473 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4474 } else if (reg->type == PTR_TO_TP_BUFFER) {
4475 err = check_tp_buffer_access(env, reg, regno, off, size);
4476 if (!err && t == BPF_READ && value_regno >= 0)
4477 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4478 } else if (reg->type == PTR_TO_BTF_ID) {
4479 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4480 value_regno);
41c48f3a
AI
4481 } else if (reg->type == CONST_PTR_TO_MAP) {
4482 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4483 value_regno);
afbf21dc
YS
4484 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4485 if (t == BPF_WRITE) {
4486 verbose(env, "R%d cannot write into %s\n",
4487 regno, reg_type_str[reg->type]);
4488 return -EACCES;
4489 }
f6dfbe31
CIK
4490 err = check_buffer_access(env, reg, regno, off, size, false,
4491 "rdonly",
afbf21dc
YS
4492 &env->prog->aux->max_rdonly_access);
4493 if (!err && value_regno >= 0)
4494 mark_reg_unknown(env, regs, value_regno);
4495 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4496 err = check_buffer_access(env, reg, regno, off, size, false,
4497 "rdwr",
afbf21dc
YS
4498 &env->prog->aux->max_rdwr_access);
4499 if (!err && t == BPF_READ && value_regno >= 0)
4500 mark_reg_unknown(env, regs, value_regno);
17a52670 4501 } else {
61bd5218
JK
4502 verbose(env, "R%d invalid mem access '%s'\n", regno,
4503 reg_type_str[reg->type]);
17a52670
AS
4504 return -EACCES;
4505 }
969bf05e 4506
f1174f77 4507 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4508 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4509 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4510 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4511 }
17a52670
AS
4512 return err;
4513}
4514
91c960b0 4515static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4516{
5ffa2550 4517 int load_reg;
17a52670
AS
4518 int err;
4519
5ca419f2
BJ
4520 switch (insn->imm) {
4521 case BPF_ADD:
4522 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4523 case BPF_AND:
4524 case BPF_AND | BPF_FETCH:
4525 case BPF_OR:
4526 case BPF_OR | BPF_FETCH:
4527 case BPF_XOR:
4528 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4529 case BPF_XCHG:
4530 case BPF_CMPXCHG:
5ca419f2
BJ
4531 break;
4532 default:
91c960b0
BJ
4533 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4534 return -EINVAL;
4535 }
4536
4537 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4538 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4539 return -EINVAL;
4540 }
4541
4542 /* check src1 operand */
dc503a8a 4543 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4544 if (err)
4545 return err;
4546
4547 /* check src2 operand */
dc503a8a 4548 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4549 if (err)
4550 return err;
4551
5ffa2550
BJ
4552 if (insn->imm == BPF_CMPXCHG) {
4553 /* Check comparison of R0 with memory location */
4554 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4555 if (err)
4556 return err;
4557 }
4558
6bdf6abc 4559 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4560 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4561 return -EACCES;
4562 }
4563
ca369602 4564 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4565 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4566 is_flow_key_reg(env, insn->dst_reg) ||
4567 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4568 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4569 insn->dst_reg,
4570 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4571 return -EACCES;
4572 }
4573
37086bfd
BJ
4574 if (insn->imm & BPF_FETCH) {
4575 if (insn->imm == BPF_CMPXCHG)
4576 load_reg = BPF_REG_0;
4577 else
4578 load_reg = insn->src_reg;
4579
4580 /* check and record load of old value */
4581 err = check_reg_arg(env, load_reg, DST_OP);
4582 if (err)
4583 return err;
4584 } else {
4585 /* This instruction accesses a memory location but doesn't
4586 * actually load it into a register.
4587 */
4588 load_reg = -1;
4589 }
4590
91c960b0 4591 /* check whether we can read the memory */
31fd8581 4592 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4593 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4594 if (err)
4595 return err;
4596
91c960b0 4597 /* check whether we can write into the same memory */
5ca419f2
BJ
4598 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4599 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4600 if (err)
4601 return err;
4602
5ca419f2 4603 return 0;
17a52670
AS
4604}
4605
01f810ac
AM
4606/* When register 'regno' is used to read the stack (either directly or through
4607 * a helper function) make sure that it's within stack boundary and, depending
4608 * on the access type, that all elements of the stack are initialized.
4609 *
4610 * 'off' includes 'regno->off', but not its dynamic part (if any).
4611 *
4612 * All registers that have been spilled on the stack in the slots within the
4613 * read offsets are marked as read.
4614 */
4615static int check_stack_range_initialized(
4616 struct bpf_verifier_env *env, int regno, int off,
4617 int access_size, bool zero_size_allowed,
4618 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4619{
4620 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4621 struct bpf_func_state *state = func(env, reg);
4622 int err, min_off, max_off, i, j, slot, spi;
4623 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4624 enum bpf_access_type bounds_check_type;
4625 /* Some accesses can write anything into the stack, others are
4626 * read-only.
4627 */
4628 bool clobber = false;
2011fccf 4629
01f810ac
AM
4630 if (access_size == 0 && !zero_size_allowed) {
4631 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4632 return -EACCES;
4633 }
2011fccf 4634
01f810ac
AM
4635 if (type == ACCESS_HELPER) {
4636 /* The bounds checks for writes are more permissive than for
4637 * reads. However, if raw_mode is not set, we'll do extra
4638 * checks below.
4639 */
4640 bounds_check_type = BPF_WRITE;
4641 clobber = true;
4642 } else {
4643 bounds_check_type = BPF_READ;
4644 }
4645 err = check_stack_access_within_bounds(env, regno, off, access_size,
4646 type, bounds_check_type);
4647 if (err)
4648 return err;
4649
17a52670 4650
2011fccf 4651 if (tnum_is_const(reg->var_off)) {
01f810ac 4652 min_off = max_off = reg->var_off.value + off;
2011fccf 4653 } else {
088ec26d
AI
4654 /* Variable offset is prohibited for unprivileged mode for
4655 * simplicity since it requires corresponding support in
4656 * Spectre masking for stack ALU.
4657 * See also retrieve_ptr_limit().
4658 */
2c78ee89 4659 if (!env->bypass_spec_v1) {
088ec26d 4660 char tn_buf[48];
f1174f77 4661
088ec26d 4662 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4663 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4664 regno, err_extra, tn_buf);
088ec26d
AI
4665 return -EACCES;
4666 }
f2bcd05e
AI
4667 /* Only initialized buffer on stack is allowed to be accessed
4668 * with variable offset. With uninitialized buffer it's hard to
4669 * guarantee that whole memory is marked as initialized on
4670 * helper return since specific bounds are unknown what may
4671 * cause uninitialized stack leaking.
4672 */
4673 if (meta && meta->raw_mode)
4674 meta = NULL;
4675
01f810ac
AM
4676 min_off = reg->smin_value + off;
4677 max_off = reg->smax_value + off;
17a52670
AS
4678 }
4679
435faee1
DB
4680 if (meta && meta->raw_mode) {
4681 meta->access_size = access_size;
4682 meta->regno = regno;
4683 return 0;
4684 }
4685
2011fccf 4686 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4687 u8 *stype;
4688
2011fccf 4689 slot = -i - 1;
638f5b90 4690 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4691 if (state->allocated_stack <= slot)
4692 goto err;
4693 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4694 if (*stype == STACK_MISC)
4695 goto mark;
4696 if (*stype == STACK_ZERO) {
01f810ac
AM
4697 if (clobber) {
4698 /* helper can write anything into the stack */
4699 *stype = STACK_MISC;
4700 }
cc2b14d5 4701 goto mark;
17a52670 4702 }
1d68f22b 4703
27113c59 4704 if (is_spilled_reg(&state->stack[spi]) &&
1d68f22b
YS
4705 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4706 goto mark;
4707
27113c59 4708 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
4709 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4710 env->allow_ptr_leaks)) {
01f810ac
AM
4711 if (clobber) {
4712 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4713 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 4714 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 4715 }
f7cf25b2
AS
4716 goto mark;
4717 }
4718
cc2b14d5 4719err:
2011fccf 4720 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4721 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4722 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4723 } else {
4724 char tn_buf[48];
4725
4726 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4727 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4728 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4729 }
cc2b14d5
AS
4730 return -EACCES;
4731mark:
4732 /* reading any byte out of 8-byte 'spill_slot' will cause
4733 * the whole slot to be marked as 'read'
4734 */
679c782d 4735 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4736 state->stack[spi].spilled_ptr.parent,
4737 REG_LIVE_READ64);
17a52670 4738 }
2011fccf 4739 return update_stack_depth(env, state, min_off);
17a52670
AS
4740}
4741
06c1c049
GB
4742static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4743 int access_size, bool zero_size_allowed,
4744 struct bpf_call_arg_meta *meta)
4745{
638f5b90 4746 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4747
f1174f77 4748 switch (reg->type) {
06c1c049 4749 case PTR_TO_PACKET:
de8f3a83 4750 case PTR_TO_PACKET_META:
9fd29c08
YS
4751 return check_packet_access(env, regno, reg->off, access_size,
4752 zero_size_allowed);
69c087ba
YS
4753 case PTR_TO_MAP_KEY:
4754 return check_mem_region_access(env, regno, reg->off, access_size,
4755 reg->map_ptr->key_size, false);
06c1c049 4756 case PTR_TO_MAP_VALUE:
591fe988
DB
4757 if (check_map_access_type(env, regno, reg->off, access_size,
4758 meta && meta->raw_mode ? BPF_WRITE :
4759 BPF_READ))
4760 return -EACCES;
9fd29c08
YS
4761 return check_map_access(env, regno, reg->off, access_size,
4762 zero_size_allowed);
457f4436
AN
4763 case PTR_TO_MEM:
4764 return check_mem_region_access(env, regno, reg->off,
4765 access_size, reg->mem_size,
4766 zero_size_allowed);
afbf21dc
YS
4767 case PTR_TO_RDONLY_BUF:
4768 if (meta && meta->raw_mode)
4769 return -EACCES;
4770 return check_buffer_access(env, reg, regno, reg->off,
4771 access_size, zero_size_allowed,
4772 "rdonly",
4773 &env->prog->aux->max_rdonly_access);
4774 case PTR_TO_RDWR_BUF:
4775 return check_buffer_access(env, reg, regno, reg->off,
4776 access_size, zero_size_allowed,
4777 "rdwr",
4778 &env->prog->aux->max_rdwr_access);
0d004c02 4779 case PTR_TO_STACK:
01f810ac
AM
4780 return check_stack_range_initialized(
4781 env,
4782 regno, reg->off, access_size,
4783 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4784 default: /* scalar_value or invalid ptr */
4785 /* Allow zero-byte read from NULL, regardless of pointer type */
4786 if (zero_size_allowed && access_size == 0 &&
4787 register_is_null(reg))
4788 return 0;
4789
4790 verbose(env, "R%d type=%s expected=%s\n", regno,
4791 reg_type_str[reg->type],
4792 reg_type_str[PTR_TO_STACK]);
4793 return -EACCES;
06c1c049
GB
4794 }
4795}
4796
e5069b9c
DB
4797int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4798 u32 regno, u32 mem_size)
4799{
4800 if (register_is_null(reg))
4801 return 0;
4802
4803 if (reg_type_may_be_null(reg->type)) {
4804 /* Assuming that the register contains a value check if the memory
4805 * access is safe. Temporarily save and restore the register's state as
4806 * the conversion shouldn't be visible to a caller.
4807 */
4808 const struct bpf_reg_state saved_reg = *reg;
4809 int rv;
4810
4811 mark_ptr_not_null_reg(reg);
4812 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4813 *reg = saved_reg;
4814 return rv;
4815 }
4816
4817 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4818}
4819
d83525ca
AS
4820/* Implementation details:
4821 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4822 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4823 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4824 * value_or_null->value transition, since the verifier only cares about
4825 * the range of access to valid map value pointer and doesn't care about actual
4826 * address of the map element.
4827 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4828 * reg->id > 0 after value_or_null->value transition. By doing so
4829 * two bpf_map_lookups will be considered two different pointers that
4830 * point to different bpf_spin_locks.
4831 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4832 * dead-locks.
4833 * Since only one bpf_spin_lock is allowed the checks are simpler than
4834 * reg_is_refcounted() logic. The verifier needs to remember only
4835 * one spin_lock instead of array of acquired_refs.
4836 * cur_state->active_spin_lock remembers which map value element got locked
4837 * and clears it after bpf_spin_unlock.
4838 */
4839static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4840 bool is_lock)
4841{
4842 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4843 struct bpf_verifier_state *cur = env->cur_state;
4844 bool is_const = tnum_is_const(reg->var_off);
4845 struct bpf_map *map = reg->map_ptr;
4846 u64 val = reg->var_off.value;
4847
d83525ca
AS
4848 if (!is_const) {
4849 verbose(env,
4850 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4851 regno);
4852 return -EINVAL;
4853 }
4854 if (!map->btf) {
4855 verbose(env,
4856 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4857 map->name);
4858 return -EINVAL;
4859 }
4860 if (!map_value_has_spin_lock(map)) {
4861 if (map->spin_lock_off == -E2BIG)
4862 verbose(env,
4863 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4864 map->name);
4865 else if (map->spin_lock_off == -ENOENT)
4866 verbose(env,
4867 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4868 map->name);
4869 else
4870 verbose(env,
4871 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4872 map->name);
4873 return -EINVAL;
4874 }
4875 if (map->spin_lock_off != val + reg->off) {
4876 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4877 val + reg->off);
4878 return -EINVAL;
4879 }
4880 if (is_lock) {
4881 if (cur->active_spin_lock) {
4882 verbose(env,
4883 "Locking two bpf_spin_locks are not allowed\n");
4884 return -EINVAL;
4885 }
4886 cur->active_spin_lock = reg->id;
4887 } else {
4888 if (!cur->active_spin_lock) {
4889 verbose(env, "bpf_spin_unlock without taking a lock\n");
4890 return -EINVAL;
4891 }
4892 if (cur->active_spin_lock != reg->id) {
4893 verbose(env, "bpf_spin_unlock of different lock\n");
4894 return -EINVAL;
4895 }
4896 cur->active_spin_lock = 0;
4897 }
4898 return 0;
4899}
4900
b00628b1
AS
4901static int process_timer_func(struct bpf_verifier_env *env, int regno,
4902 struct bpf_call_arg_meta *meta)
4903{
4904 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4905 bool is_const = tnum_is_const(reg->var_off);
4906 struct bpf_map *map = reg->map_ptr;
4907 u64 val = reg->var_off.value;
4908
4909 if (!is_const) {
4910 verbose(env,
4911 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4912 regno);
4913 return -EINVAL;
4914 }
4915 if (!map->btf) {
4916 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4917 map->name);
4918 return -EINVAL;
4919 }
68134668
AS
4920 if (!map_value_has_timer(map)) {
4921 if (map->timer_off == -E2BIG)
4922 verbose(env,
4923 "map '%s' has more than one 'struct bpf_timer'\n",
4924 map->name);
4925 else if (map->timer_off == -ENOENT)
4926 verbose(env,
4927 "map '%s' doesn't have 'struct bpf_timer'\n",
4928 map->name);
4929 else
4930 verbose(env,
4931 "map '%s' is not a struct type or bpf_timer is mangled\n",
4932 map->name);
4933 return -EINVAL;
4934 }
4935 if (map->timer_off != val + reg->off) {
4936 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4937 val + reg->off, map->timer_off);
b00628b1
AS
4938 return -EINVAL;
4939 }
4940 if (meta->map_ptr) {
4941 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4942 return -EFAULT;
4943 }
3e8ce298 4944 meta->map_uid = reg->map_uid;
b00628b1
AS
4945 meta->map_ptr = map;
4946 return 0;
4947}
4948
90133415
DB
4949static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4950{
4951 return type == ARG_PTR_TO_MEM ||
4952 type == ARG_PTR_TO_MEM_OR_NULL ||
4953 type == ARG_PTR_TO_UNINIT_MEM;
4954}
4955
4956static bool arg_type_is_mem_size(enum bpf_arg_type type)
4957{
4958 return type == ARG_CONST_SIZE ||
4959 type == ARG_CONST_SIZE_OR_ZERO;
4960}
4961
457f4436
AN
4962static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4963{
4964 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4965}
4966
57c3bb72
AI
4967static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4968{
4969 return type == ARG_PTR_TO_INT ||
4970 type == ARG_PTR_TO_LONG;
4971}
4972
4973static int int_ptr_type_to_size(enum bpf_arg_type type)
4974{
4975 if (type == ARG_PTR_TO_INT)
4976 return sizeof(u32);
4977 else if (type == ARG_PTR_TO_LONG)
4978 return sizeof(u64);
4979
4980 return -EINVAL;
4981}
4982
912f442c
LB
4983static int resolve_map_arg_type(struct bpf_verifier_env *env,
4984 const struct bpf_call_arg_meta *meta,
4985 enum bpf_arg_type *arg_type)
4986{
4987 if (!meta->map_ptr) {
4988 /* kernel subsystem misconfigured verifier */
4989 verbose(env, "invalid map_ptr to access map->type\n");
4990 return -EACCES;
4991 }
4992
4993 switch (meta->map_ptr->map_type) {
4994 case BPF_MAP_TYPE_SOCKMAP:
4995 case BPF_MAP_TYPE_SOCKHASH:
4996 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 4997 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
4998 } else {
4999 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5000 return -EINVAL;
5001 }
5002 break;
9330986c
JK
5003 case BPF_MAP_TYPE_BLOOM_FILTER:
5004 if (meta->func_id == BPF_FUNC_map_peek_elem)
5005 *arg_type = ARG_PTR_TO_MAP_VALUE;
5006 break;
912f442c
LB
5007 default:
5008 break;
5009 }
5010 return 0;
5011}
5012
f79e7ea5
LB
5013struct bpf_reg_types {
5014 const enum bpf_reg_type types[10];
1df8f55a 5015 u32 *btf_id;
f79e7ea5
LB
5016};
5017
5018static const struct bpf_reg_types map_key_value_types = {
5019 .types = {
5020 PTR_TO_STACK,
5021 PTR_TO_PACKET,
5022 PTR_TO_PACKET_META,
69c087ba 5023 PTR_TO_MAP_KEY,
f79e7ea5
LB
5024 PTR_TO_MAP_VALUE,
5025 },
5026};
5027
5028static const struct bpf_reg_types sock_types = {
5029 .types = {
5030 PTR_TO_SOCK_COMMON,
5031 PTR_TO_SOCKET,
5032 PTR_TO_TCP_SOCK,
5033 PTR_TO_XDP_SOCK,
5034 },
5035};
5036
49a2a4d4 5037#ifdef CONFIG_NET
1df8f55a
MKL
5038static const struct bpf_reg_types btf_id_sock_common_types = {
5039 .types = {
5040 PTR_TO_SOCK_COMMON,
5041 PTR_TO_SOCKET,
5042 PTR_TO_TCP_SOCK,
5043 PTR_TO_XDP_SOCK,
5044 PTR_TO_BTF_ID,
5045 },
5046 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5047};
49a2a4d4 5048#endif
1df8f55a 5049
f79e7ea5
LB
5050static const struct bpf_reg_types mem_types = {
5051 .types = {
5052 PTR_TO_STACK,
5053 PTR_TO_PACKET,
5054 PTR_TO_PACKET_META,
69c087ba 5055 PTR_TO_MAP_KEY,
f79e7ea5
LB
5056 PTR_TO_MAP_VALUE,
5057 PTR_TO_MEM,
5058 PTR_TO_RDONLY_BUF,
5059 PTR_TO_RDWR_BUF,
5060 },
5061};
5062
5063static const struct bpf_reg_types int_ptr_types = {
5064 .types = {
5065 PTR_TO_STACK,
5066 PTR_TO_PACKET,
5067 PTR_TO_PACKET_META,
69c087ba 5068 PTR_TO_MAP_KEY,
f79e7ea5
LB
5069 PTR_TO_MAP_VALUE,
5070 },
5071};
5072
5073static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5074static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5075static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5076static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5077static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5078static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5079static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 5080static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
5081static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5082static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5083static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5084static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 5085
0789e13b 5086static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
5087 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5088 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5089 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
5090 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
5091 [ARG_CONST_SIZE] = &scalar_types,
5092 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5093 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5094 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5095 [ARG_PTR_TO_CTX] = &context_types,
5096 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
5097 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5098#ifdef CONFIG_NET
1df8f55a 5099 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5100#endif
f79e7ea5
LB
5101 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5102 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
5103 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5104 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5105 [ARG_PTR_TO_MEM] = &mem_types,
5106 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
5107 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5108 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5109 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
5110 [ARG_PTR_TO_INT] = &int_ptr_types,
5111 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5112 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba
YS
5113 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5114 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
fff13c4b 5115 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5116 [ARG_PTR_TO_TIMER] = &timer_types,
f79e7ea5
LB
5117};
5118
5119static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
5120 enum bpf_arg_type arg_type,
5121 const u32 *arg_btf_id)
f79e7ea5
LB
5122{
5123 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5124 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5125 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5126 int i, j;
5127
a968d5e2
MKL
5128 compatible = compatible_reg_types[arg_type];
5129 if (!compatible) {
5130 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5131 return -EFAULT;
5132 }
5133
f79e7ea5
LB
5134 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5135 expected = compatible->types[i];
5136 if (expected == NOT_INIT)
5137 break;
5138
5139 if (type == expected)
a968d5e2 5140 goto found;
f79e7ea5
LB
5141 }
5142
5143 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5144 for (j = 0; j + 1 < i; j++)
5145 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5146 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5147 return -EACCES;
a968d5e2
MKL
5148
5149found:
5150 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
5151 if (!arg_btf_id) {
5152 if (!compatible->btf_id) {
5153 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5154 return -EFAULT;
5155 }
5156 arg_btf_id = compatible->btf_id;
5157 }
5158
22dc4a0f
AN
5159 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5160 btf_vmlinux, *arg_btf_id)) {
a968d5e2 5161 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
5162 regno, kernel_type_name(reg->btf, reg->btf_id),
5163 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
5164 return -EACCES;
5165 }
5166
5167 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5168 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5169 regno);
5170 return -EACCES;
5171 }
5172 }
5173
5174 return 0;
f79e7ea5
LB
5175}
5176
af7ec138
YS
5177static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5178 struct bpf_call_arg_meta *meta,
5179 const struct bpf_func_proto *fn)
17a52670 5180{
af7ec138 5181 u32 regno = BPF_REG_1 + arg;
638f5b90 5182 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5183 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5184 enum bpf_reg_type type = reg->type;
17a52670
AS
5185 int err = 0;
5186
80f1d68c 5187 if (arg_type == ARG_DONTCARE)
17a52670
AS
5188 return 0;
5189
dc503a8a
EC
5190 err = check_reg_arg(env, regno, SRC_OP);
5191 if (err)
5192 return err;
17a52670 5193
1be7f75d
AS
5194 if (arg_type == ARG_ANYTHING) {
5195 if (is_pointer_value(env, regno)) {
61bd5218
JK
5196 verbose(env, "R%d leaks addr into helper function\n",
5197 regno);
1be7f75d
AS
5198 return -EACCES;
5199 }
80f1d68c 5200 return 0;
1be7f75d 5201 }
80f1d68c 5202
de8f3a83 5203 if (type_is_pkt_pointer(type) &&
3a0af8fd 5204 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5205 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5206 return -EACCES;
5207 }
5208
912f442c
LB
5209 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5210 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5211 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5212 err = resolve_map_arg_type(env, meta, &arg_type);
5213 if (err)
5214 return err;
5215 }
5216
fd1b0d60
LB
5217 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5218 /* A NULL register has a SCALAR_VALUE type, so skip
5219 * type checking.
5220 */
5221 goto skip_type_check;
5222
a968d5e2 5223 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
5224 if (err)
5225 return err;
5226
a968d5e2 5227 if (type == PTR_TO_CTX) {
feec7040
LB
5228 err = check_ctx_reg(env, reg, regno);
5229 if (err < 0)
5230 return err;
d7b9454a
LB
5231 }
5232
fd1b0d60 5233skip_type_check:
02f7c958 5234 if (reg->ref_obj_id) {
457f4436
AN
5235 if (meta->ref_obj_id) {
5236 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5237 regno, reg->ref_obj_id,
5238 meta->ref_obj_id);
5239 return -EFAULT;
5240 }
5241 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5242 }
5243
17a52670
AS
5244 if (arg_type == ARG_CONST_MAP_PTR) {
5245 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5246 if (meta->map_ptr) {
5247 /* Use map_uid (which is unique id of inner map) to reject:
5248 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5249 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5250 * if (inner_map1 && inner_map2) {
5251 * timer = bpf_map_lookup_elem(inner_map1);
5252 * if (timer)
5253 * // mismatch would have been allowed
5254 * bpf_timer_init(timer, inner_map2);
5255 * }
5256 *
5257 * Comparing map_ptr is enough to distinguish normal and outer maps.
5258 */
5259 if (meta->map_ptr != reg->map_ptr ||
5260 meta->map_uid != reg->map_uid) {
5261 verbose(env,
5262 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5263 meta->map_uid, reg->map_uid);
5264 return -EINVAL;
5265 }
b00628b1 5266 }
33ff9823 5267 meta->map_ptr = reg->map_ptr;
3e8ce298 5268 meta->map_uid = reg->map_uid;
17a52670
AS
5269 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5270 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5271 * check that [key, key + map->key_size) are within
5272 * stack limits and initialized
5273 */
33ff9823 5274 if (!meta->map_ptr) {
17a52670
AS
5275 /* in function declaration map_ptr must come before
5276 * map_key, so that it's verified and known before
5277 * we have to check map_key here. Otherwise it means
5278 * that kernel subsystem misconfigured verifier
5279 */
61bd5218 5280 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5281 return -EACCES;
5282 }
d71962f3
PC
5283 err = check_helper_mem_access(env, regno,
5284 meta->map_ptr->key_size, false,
5285 NULL);
2ea864c5 5286 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
5287 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5288 !register_is_null(reg)) ||
2ea864c5 5289 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
5290 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5291 * check [value, value + map->value_size) validity
5292 */
33ff9823 5293 if (!meta->map_ptr) {
17a52670 5294 /* kernel subsystem misconfigured verifier */
61bd5218 5295 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5296 return -EACCES;
5297 }
2ea864c5 5298 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
5299 err = check_helper_mem_access(env, regno,
5300 meta->map_ptr->value_size, false,
2ea864c5 5301 meta);
eaa6bcb7
HL
5302 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5303 if (!reg->btf_id) {
5304 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5305 return -EACCES;
5306 }
22dc4a0f 5307 meta->ret_btf = reg->btf;
eaa6bcb7 5308 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
5309 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5310 if (meta->func_id == BPF_FUNC_spin_lock) {
5311 if (process_spin_lock(env, regno, true))
5312 return -EACCES;
5313 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5314 if (process_spin_lock(env, regno, false))
5315 return -EACCES;
5316 } else {
5317 verbose(env, "verifier internal error\n");
5318 return -EFAULT;
5319 }
b00628b1
AS
5320 } else if (arg_type == ARG_PTR_TO_TIMER) {
5321 if (process_timer_func(env, regno, meta))
5322 return -EACCES;
69c087ba
YS
5323 } else if (arg_type == ARG_PTR_TO_FUNC) {
5324 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5325 } else if (arg_type_is_mem_ptr(arg_type)) {
5326 /* The access to this pointer is only checked when we hit the
5327 * next is_mem_size argument below.
5328 */
5329 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5330 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5331 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5332
10060503
JF
5333 /* This is used to refine r0 return value bounds for helpers
5334 * that enforce this value as an upper bound on return values.
5335 * See do_refine_retval_range() for helpers that can refine
5336 * the return value. C type of helper is u32 so we pull register
5337 * bound from umax_value however, if negative verifier errors
5338 * out. Only upper bounds can be learned because retval is an
5339 * int type and negative retvals are allowed.
849fa506 5340 */
10060503 5341 meta->msize_max_value = reg->umax_value;
849fa506 5342
f1174f77
EC
5343 /* The register is SCALAR_VALUE; the access check
5344 * happens using its boundaries.
06c1c049 5345 */
f1174f77 5346 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5347 /* For unprivileged variable accesses, disable raw
5348 * mode so that the program is required to
5349 * initialize all the memory that the helper could
5350 * just partially fill up.
5351 */
5352 meta = NULL;
5353
b03c9f9f 5354 if (reg->smin_value < 0) {
61bd5218 5355 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5356 regno);
5357 return -EACCES;
5358 }
06c1c049 5359
b03c9f9f 5360 if (reg->umin_value == 0) {
f1174f77
EC
5361 err = check_helper_mem_access(env, regno - 1, 0,
5362 zero_size_allowed,
5363 meta);
06c1c049
GB
5364 if (err)
5365 return err;
06c1c049 5366 }
f1174f77 5367
b03c9f9f 5368 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5369 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5370 regno);
5371 return -EACCES;
5372 }
5373 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5374 reg->umax_value,
f1174f77 5375 zero_size_allowed, meta);
b5dc0163
AS
5376 if (!err)
5377 err = mark_chain_precision(env, regno);
457f4436
AN
5378 } else if (arg_type_is_alloc_size(arg_type)) {
5379 if (!tnum_is_const(reg->var_off)) {
28a8add6 5380 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5381 regno);
5382 return -EACCES;
5383 }
5384 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5385 } else if (arg_type_is_int_ptr(arg_type)) {
5386 int size = int_ptr_type_to_size(arg_type);
5387
5388 err = check_helper_mem_access(env, regno, size, false, meta);
5389 if (err)
5390 return err;
5391 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5392 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5393 struct bpf_map *map = reg->map_ptr;
5394 int map_off;
5395 u64 map_addr;
5396 char *str_ptr;
5397
a8fad73e 5398 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5399 verbose(env, "R%d does not point to a readonly map'\n", regno);
5400 return -EACCES;
5401 }
5402
5403 if (!tnum_is_const(reg->var_off)) {
5404 verbose(env, "R%d is not a constant address'\n", regno);
5405 return -EACCES;
5406 }
5407
5408 if (!map->ops->map_direct_value_addr) {
5409 verbose(env, "no direct value access support for this map type\n");
5410 return -EACCES;
5411 }
5412
5413 err = check_map_access(env, regno, reg->off,
5414 map->value_size - reg->off, false);
5415 if (err)
5416 return err;
5417
5418 map_off = reg->off + reg->var_off.value;
5419 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5420 if (err) {
5421 verbose(env, "direct value access on string failed\n");
5422 return err;
5423 }
5424
5425 str_ptr = (char *)(long)(map_addr);
5426 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5427 verbose(env, "string is not zero-terminated\n");
5428 return -EINVAL;
5429 }
17a52670
AS
5430 }
5431
5432 return err;
5433}
5434
0126240f
LB
5435static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5436{
5437 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5438 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5439
5440 if (func_id != BPF_FUNC_map_update_elem)
5441 return false;
5442
5443 /* It's not possible to get access to a locked struct sock in these
5444 * contexts, so updating is safe.
5445 */
5446 switch (type) {
5447 case BPF_PROG_TYPE_TRACING:
5448 if (eatype == BPF_TRACE_ITER)
5449 return true;
5450 break;
5451 case BPF_PROG_TYPE_SOCKET_FILTER:
5452 case BPF_PROG_TYPE_SCHED_CLS:
5453 case BPF_PROG_TYPE_SCHED_ACT:
5454 case BPF_PROG_TYPE_XDP:
5455 case BPF_PROG_TYPE_SK_REUSEPORT:
5456 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5457 case BPF_PROG_TYPE_SK_LOOKUP:
5458 return true;
5459 default:
5460 break;
5461 }
5462
5463 verbose(env, "cannot update sockmap in this context\n");
5464 return false;
5465}
5466
e411901c
MF
5467static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5468{
5469 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5470}
5471
61bd5218
JK
5472static int check_map_func_compatibility(struct bpf_verifier_env *env,
5473 struct bpf_map *map, int func_id)
35578d79 5474{
35578d79
KX
5475 if (!map)
5476 return 0;
5477
6aff67c8
AS
5478 /* We need a two way check, first is from map perspective ... */
5479 switch (map->map_type) {
5480 case BPF_MAP_TYPE_PROG_ARRAY:
5481 if (func_id != BPF_FUNC_tail_call)
5482 goto error;
5483 break;
5484 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5485 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5486 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5487 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5488 func_id != BPF_FUNC_perf_event_read_value &&
5489 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5490 goto error;
5491 break;
457f4436
AN
5492 case BPF_MAP_TYPE_RINGBUF:
5493 if (func_id != BPF_FUNC_ringbuf_output &&
5494 func_id != BPF_FUNC_ringbuf_reserve &&
457f4436
AN
5495 func_id != BPF_FUNC_ringbuf_query)
5496 goto error;
5497 break;
6aff67c8
AS
5498 case BPF_MAP_TYPE_STACK_TRACE:
5499 if (func_id != BPF_FUNC_get_stackid)
5500 goto error;
5501 break;
4ed8ec52 5502 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5503 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5504 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5505 goto error;
5506 break;
cd339431 5507 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5508 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5509 if (func_id != BPF_FUNC_get_local_storage)
5510 goto error;
5511 break;
546ac1ff 5512 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5513 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5514 if (func_id != BPF_FUNC_redirect_map &&
5515 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5516 goto error;
5517 break;
fbfc504a
BT
5518 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5519 * appear.
5520 */
6710e112
JDB
5521 case BPF_MAP_TYPE_CPUMAP:
5522 if (func_id != BPF_FUNC_redirect_map)
5523 goto error;
5524 break;
fada7fdc
JL
5525 case BPF_MAP_TYPE_XSKMAP:
5526 if (func_id != BPF_FUNC_redirect_map &&
5527 func_id != BPF_FUNC_map_lookup_elem)
5528 goto error;
5529 break;
56f668df 5530 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5531 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5532 if (func_id != BPF_FUNC_map_lookup_elem)
5533 goto error;
16a43625 5534 break;
174a79ff
JF
5535 case BPF_MAP_TYPE_SOCKMAP:
5536 if (func_id != BPF_FUNC_sk_redirect_map &&
5537 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5538 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5539 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5540 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5541 func_id != BPF_FUNC_map_lookup_elem &&
5542 !may_update_sockmap(env, func_id))
174a79ff
JF
5543 goto error;
5544 break;
81110384
JF
5545 case BPF_MAP_TYPE_SOCKHASH:
5546 if (func_id != BPF_FUNC_sk_redirect_hash &&
5547 func_id != BPF_FUNC_sock_hash_update &&
5548 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5549 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5550 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5551 func_id != BPF_FUNC_map_lookup_elem &&
5552 !may_update_sockmap(env, func_id))
81110384
JF
5553 goto error;
5554 break;
2dbb9b9e
MKL
5555 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5556 if (func_id != BPF_FUNC_sk_select_reuseport)
5557 goto error;
5558 break;
f1a2e44a
MV
5559 case BPF_MAP_TYPE_QUEUE:
5560 case BPF_MAP_TYPE_STACK:
5561 if (func_id != BPF_FUNC_map_peek_elem &&
5562 func_id != BPF_FUNC_map_pop_elem &&
5563 func_id != BPF_FUNC_map_push_elem)
5564 goto error;
5565 break;
6ac99e8f
MKL
5566 case BPF_MAP_TYPE_SK_STORAGE:
5567 if (func_id != BPF_FUNC_sk_storage_get &&
5568 func_id != BPF_FUNC_sk_storage_delete)
5569 goto error;
5570 break;
8ea63684
KS
5571 case BPF_MAP_TYPE_INODE_STORAGE:
5572 if (func_id != BPF_FUNC_inode_storage_get &&
5573 func_id != BPF_FUNC_inode_storage_delete)
5574 goto error;
5575 break;
4cf1bc1f
KS
5576 case BPF_MAP_TYPE_TASK_STORAGE:
5577 if (func_id != BPF_FUNC_task_storage_get &&
5578 func_id != BPF_FUNC_task_storage_delete)
5579 goto error;
5580 break;
9330986c
JK
5581 case BPF_MAP_TYPE_BLOOM_FILTER:
5582 if (func_id != BPF_FUNC_map_peek_elem &&
5583 func_id != BPF_FUNC_map_push_elem)
5584 goto error;
5585 break;
6aff67c8
AS
5586 default:
5587 break;
5588 }
5589
5590 /* ... and second from the function itself. */
5591 switch (func_id) {
5592 case BPF_FUNC_tail_call:
5593 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5594 goto error;
e411901c
MF
5595 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5596 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5597 return -EINVAL;
5598 }
6aff67c8
AS
5599 break;
5600 case BPF_FUNC_perf_event_read:
5601 case BPF_FUNC_perf_event_output:
908432ca 5602 case BPF_FUNC_perf_event_read_value:
a7658e1a 5603 case BPF_FUNC_skb_output:
d831ee84 5604 case BPF_FUNC_xdp_output:
6aff67c8
AS
5605 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5606 goto error;
5607 break;
5b029a32
DB
5608 case BPF_FUNC_ringbuf_output:
5609 case BPF_FUNC_ringbuf_reserve:
5610 case BPF_FUNC_ringbuf_query:
5611 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5612 goto error;
5613 break;
6aff67c8
AS
5614 case BPF_FUNC_get_stackid:
5615 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5616 goto error;
5617 break;
60d20f91 5618 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5619 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5620 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5621 goto error;
5622 break;
97f91a7c 5623 case BPF_FUNC_redirect_map:
9c270af3 5624 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5625 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5626 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5627 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5628 goto error;
5629 break;
174a79ff 5630 case BPF_FUNC_sk_redirect_map:
4f738adb 5631 case BPF_FUNC_msg_redirect_map:
81110384 5632 case BPF_FUNC_sock_map_update:
174a79ff
JF
5633 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5634 goto error;
5635 break;
81110384
JF
5636 case BPF_FUNC_sk_redirect_hash:
5637 case BPF_FUNC_msg_redirect_hash:
5638 case BPF_FUNC_sock_hash_update:
5639 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5640 goto error;
5641 break;
cd339431 5642 case BPF_FUNC_get_local_storage:
b741f163
RG
5643 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5644 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5645 goto error;
5646 break;
2dbb9b9e 5647 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5648 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5649 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5650 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5651 goto error;
5652 break;
f1a2e44a 5653 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
5654 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5655 map->map_type != BPF_MAP_TYPE_STACK)
5656 goto error;
5657 break;
9330986c
JK
5658 case BPF_FUNC_map_peek_elem:
5659 case BPF_FUNC_map_push_elem:
5660 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5661 map->map_type != BPF_MAP_TYPE_STACK &&
5662 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5663 goto error;
5664 break;
6ac99e8f
MKL
5665 case BPF_FUNC_sk_storage_get:
5666 case BPF_FUNC_sk_storage_delete:
5667 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5668 goto error;
5669 break;
8ea63684
KS
5670 case BPF_FUNC_inode_storage_get:
5671 case BPF_FUNC_inode_storage_delete:
5672 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5673 goto error;
5674 break;
4cf1bc1f
KS
5675 case BPF_FUNC_task_storage_get:
5676 case BPF_FUNC_task_storage_delete:
5677 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5678 goto error;
5679 break;
6aff67c8
AS
5680 default:
5681 break;
35578d79
KX
5682 }
5683
5684 return 0;
6aff67c8 5685error:
61bd5218 5686 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5687 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5688 return -EINVAL;
35578d79
KX
5689}
5690
90133415 5691static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5692{
5693 int count = 0;
5694
39f19ebb 5695 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5696 count++;
39f19ebb 5697 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5698 count++;
39f19ebb 5699 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5700 count++;
39f19ebb 5701 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5702 count++;
39f19ebb 5703 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5704 count++;
5705
90133415
DB
5706 /* We only support one arg being in raw mode at the moment,
5707 * which is sufficient for the helper functions we have
5708 * right now.
5709 */
5710 return count <= 1;
5711}
5712
5713static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5714 enum bpf_arg_type arg_next)
5715{
5716 return (arg_type_is_mem_ptr(arg_curr) &&
5717 !arg_type_is_mem_size(arg_next)) ||
5718 (!arg_type_is_mem_ptr(arg_curr) &&
5719 arg_type_is_mem_size(arg_next));
5720}
5721
5722static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5723{
5724 /* bpf_xxx(..., buf, len) call will access 'len'
5725 * bytes from memory 'buf'. Both arg types need
5726 * to be paired, so make sure there's no buggy
5727 * helper function specification.
5728 */
5729 if (arg_type_is_mem_size(fn->arg1_type) ||
5730 arg_type_is_mem_ptr(fn->arg5_type) ||
5731 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5732 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5733 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5734 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5735 return false;
5736
5737 return true;
5738}
5739
1b986589 5740static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5741{
5742 int count = 0;
5743
1b986589 5744 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5745 count++;
1b986589 5746 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5747 count++;
1b986589 5748 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5749 count++;
1b986589 5750 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5751 count++;
1b986589 5752 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5753 count++;
5754
1b986589
MKL
5755 /* A reference acquiring function cannot acquire
5756 * another refcounted ptr.
5757 */
64d85290 5758 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5759 return false;
5760
fd978bf7
JS
5761 /* We only support one arg being unreferenced at the moment,
5762 * which is sufficient for the helper functions we have right now.
5763 */
5764 return count <= 1;
5765}
5766
9436ef6e
LB
5767static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5768{
5769 int i;
5770
1df8f55a 5771 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5772 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5773 return false;
5774
1df8f55a
MKL
5775 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5776 return false;
5777 }
5778
9436ef6e
LB
5779 return true;
5780}
5781
1b986589 5782static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5783{
5784 return check_raw_mode_ok(fn) &&
fd978bf7 5785 check_arg_pair_ok(fn) &&
9436ef6e 5786 check_btf_id_ok(fn) &&
1b986589 5787 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5788}
5789
de8f3a83
DB
5790/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5791 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5792 */
f4d7e40a
AS
5793static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5794 struct bpf_func_state *state)
969bf05e 5795{
58e2af8b 5796 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5797 int i;
5798
5799 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5800 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5801 mark_reg_unknown(env, regs, i);
969bf05e 5802
f3709f69
JS
5803 bpf_for_each_spilled_reg(i, state, reg) {
5804 if (!reg)
969bf05e 5805 continue;
de8f3a83 5806 if (reg_is_pkt_pointer_any(reg))
f54c7898 5807 __mark_reg_unknown(env, reg);
969bf05e
AS
5808 }
5809}
5810
f4d7e40a
AS
5811static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5812{
5813 struct bpf_verifier_state *vstate = env->cur_state;
5814 int i;
5815
5816 for (i = 0; i <= vstate->curframe; i++)
5817 __clear_all_pkt_pointers(env, vstate->frame[i]);
5818}
5819
6d94e741
AS
5820enum {
5821 AT_PKT_END = -1,
5822 BEYOND_PKT_END = -2,
5823};
5824
5825static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5826{
5827 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5828 struct bpf_reg_state *reg = &state->regs[regn];
5829
5830 if (reg->type != PTR_TO_PACKET)
5831 /* PTR_TO_PACKET_META is not supported yet */
5832 return;
5833
5834 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5835 * How far beyond pkt_end it goes is unknown.
5836 * if (!range_open) it's the case of pkt >= pkt_end
5837 * if (range_open) it's the case of pkt > pkt_end
5838 * hence this pointer is at least 1 byte bigger than pkt_end
5839 */
5840 if (range_open)
5841 reg->range = BEYOND_PKT_END;
5842 else
5843 reg->range = AT_PKT_END;
5844}
5845
fd978bf7 5846static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5847 struct bpf_func_state *state,
5848 int ref_obj_id)
fd978bf7
JS
5849{
5850 struct bpf_reg_state *regs = state->regs, *reg;
5851 int i;
5852
5853 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5854 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5855 mark_reg_unknown(env, regs, i);
5856
5857 bpf_for_each_spilled_reg(i, state, reg) {
5858 if (!reg)
5859 continue;
1b986589 5860 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5861 __mark_reg_unknown(env, reg);
fd978bf7
JS
5862 }
5863}
5864
5865/* The pointer with the specified id has released its reference to kernel
5866 * resources. Identify all copies of the same pointer and clear the reference.
5867 */
5868static int release_reference(struct bpf_verifier_env *env,
1b986589 5869 int ref_obj_id)
fd978bf7
JS
5870{
5871 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5872 int err;
fd978bf7
JS
5873 int i;
5874
1b986589
MKL
5875 err = release_reference_state(cur_func(env), ref_obj_id);
5876 if (err)
5877 return err;
5878
fd978bf7 5879 for (i = 0; i <= vstate->curframe; i++)
1b986589 5880 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5881
1b986589 5882 return 0;
fd978bf7
JS
5883}
5884
51c39bb1
AS
5885static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5886 struct bpf_reg_state *regs)
5887{
5888 int i;
5889
5890 /* after the call registers r0 - r5 were scratched */
5891 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5892 mark_reg_not_init(env, regs, caller_saved[i]);
5893 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5894 }
5895}
5896
14351375
YS
5897typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5898 struct bpf_func_state *caller,
5899 struct bpf_func_state *callee,
5900 int insn_idx);
5901
5902static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5903 int *insn_idx, int subprog,
5904 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5905{
5906 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5907 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5908 struct bpf_func_state *caller, *callee;
14351375 5909 int err;
51c39bb1 5910 bool is_global = false;
f4d7e40a 5911
aada9ce6 5912 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5913 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5914 state->curframe + 2);
f4d7e40a
AS
5915 return -E2BIG;
5916 }
5917
f4d7e40a
AS
5918 caller = state->frame[state->curframe];
5919 if (state->frame[state->curframe + 1]) {
5920 verbose(env, "verifier bug. Frame %d already allocated\n",
5921 state->curframe + 1);
5922 return -EFAULT;
5923 }
5924
51c39bb1
AS
5925 func_info_aux = env->prog->aux->func_info_aux;
5926 if (func_info_aux)
5927 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5928 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5929 if (err == -EFAULT)
5930 return err;
5931 if (is_global) {
5932 if (err) {
5933 verbose(env, "Caller passes invalid args into func#%d\n",
5934 subprog);
5935 return err;
5936 } else {
5937 if (env->log.level & BPF_LOG_LEVEL)
5938 verbose(env,
5939 "Func#%d is global and valid. Skipping.\n",
5940 subprog);
5941 clear_caller_saved_regs(env, caller->regs);
5942
45159b27 5943 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 5944 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 5945 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
5946
5947 /* continue with next insn after call */
5948 return 0;
5949 }
5950 }
5951
bfc6bb74
AS
5952 if (insn->code == (BPF_JMP | BPF_CALL) &&
5953 insn->imm == BPF_FUNC_timer_set_callback) {
5954 struct bpf_verifier_state *async_cb;
5955
5956 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 5957 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
5958 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5959 *insn_idx, subprog);
5960 if (!async_cb)
5961 return -EFAULT;
5962 callee = async_cb->frame[0];
5963 callee->async_entry_cnt = caller->async_entry_cnt + 1;
5964
5965 /* Convert bpf_timer_set_callback() args into timer callback args */
5966 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5967 if (err)
5968 return err;
5969
5970 clear_caller_saved_regs(env, caller->regs);
5971 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5972 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5973 /* continue with next insn after call */
5974 return 0;
5975 }
5976
f4d7e40a
AS
5977 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5978 if (!callee)
5979 return -ENOMEM;
5980 state->frame[state->curframe + 1] = callee;
5981
5982 /* callee cannot access r0, r6 - r9 for reading and has to write
5983 * into its own stack before reading from it.
5984 * callee can read/write into caller's stack
5985 */
5986 init_func_state(env, callee,
5987 /* remember the callsite, it will be used by bpf_exit */
5988 *insn_idx /* callsite */,
5989 state->curframe + 1 /* frameno within this callchain */,
f910cefa 5990 subprog /* subprog number within this prog */);
f4d7e40a 5991
fd978bf7 5992 /* Transfer references to the callee */
c69431aa 5993 err = copy_reference_state(callee, caller);
fd978bf7
JS
5994 if (err)
5995 return err;
5996
14351375
YS
5997 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5998 if (err)
5999 return err;
f4d7e40a 6000
51c39bb1 6001 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6002
6003 /* only increment it after check_reg_arg() finished */
6004 state->curframe++;
6005
6006 /* and go analyze first insn of the callee */
14351375 6007 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6008
06ee7115 6009 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6010 verbose(env, "caller:\n");
6011 print_verifier_state(env, caller);
6012 verbose(env, "callee:\n");
6013 print_verifier_state(env, callee);
6014 }
6015 return 0;
6016}
6017
314ee05e
YS
6018int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6019 struct bpf_func_state *caller,
6020 struct bpf_func_state *callee)
6021{
6022 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6023 * void *callback_ctx, u64 flags);
6024 * callback_fn(struct bpf_map *map, void *key, void *value,
6025 * void *callback_ctx);
6026 */
6027 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6028
6029 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6030 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6031 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6032
6033 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6034 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6035 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6036
6037 /* pointer to stack or null */
6038 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6039
6040 /* unused */
6041 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6042 return 0;
6043}
6044
14351375
YS
6045static int set_callee_state(struct bpf_verifier_env *env,
6046 struct bpf_func_state *caller,
6047 struct bpf_func_state *callee, int insn_idx)
6048{
6049 int i;
6050
6051 /* copy r1 - r5 args that callee can access. The copy includes parent
6052 * pointers, which connects us up to the liveness chain
6053 */
6054 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6055 callee->regs[i] = caller->regs[i];
6056 return 0;
6057}
6058
6059static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6060 int *insn_idx)
6061{
6062 int subprog, target_insn;
6063
6064 target_insn = *insn_idx + insn->imm + 1;
6065 subprog = find_subprog(env, target_insn);
6066 if (subprog < 0) {
6067 verbose(env, "verifier bug. No program starts at insn %d\n",
6068 target_insn);
6069 return -EFAULT;
6070 }
6071
6072 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6073}
6074
69c087ba
YS
6075static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6076 struct bpf_func_state *caller,
6077 struct bpf_func_state *callee,
6078 int insn_idx)
6079{
6080 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6081 struct bpf_map *map;
6082 int err;
6083
6084 if (bpf_map_ptr_poisoned(insn_aux)) {
6085 verbose(env, "tail_call abusing map_ptr\n");
6086 return -EINVAL;
6087 }
6088
6089 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6090 if (!map->ops->map_set_for_each_callback_args ||
6091 !map->ops->map_for_each_callback) {
6092 verbose(env, "callback function not allowed for map\n");
6093 return -ENOTSUPP;
6094 }
6095
6096 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6097 if (err)
6098 return err;
6099
6100 callee->in_callback_fn = true;
6101 return 0;
6102}
6103
b00628b1
AS
6104static int set_timer_callback_state(struct bpf_verifier_env *env,
6105 struct bpf_func_state *caller,
6106 struct bpf_func_state *callee,
6107 int insn_idx)
6108{
6109 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6110
6111 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6112 * callback_fn(struct bpf_map *map, void *key, void *value);
6113 */
6114 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6115 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6116 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6117
6118 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6119 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6120 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6121
6122 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6123 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6124 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6125
6126 /* unused */
6127 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6128 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6129 callee->in_async_callback_fn = true;
b00628b1
AS
6130 return 0;
6131}
6132
f4d7e40a
AS
6133static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6134{
6135 struct bpf_verifier_state *state = env->cur_state;
6136 struct bpf_func_state *caller, *callee;
6137 struct bpf_reg_state *r0;
fd978bf7 6138 int err;
f4d7e40a
AS
6139
6140 callee = state->frame[state->curframe];
6141 r0 = &callee->regs[BPF_REG_0];
6142 if (r0->type == PTR_TO_STACK) {
6143 /* technically it's ok to return caller's stack pointer
6144 * (or caller's caller's pointer) back to the caller,
6145 * since these pointers are valid. Only current stack
6146 * pointer will be invalid as soon as function exits,
6147 * but let's be conservative
6148 */
6149 verbose(env, "cannot return stack pointer to the caller\n");
6150 return -EINVAL;
6151 }
6152
6153 state->curframe--;
6154 caller = state->frame[state->curframe];
69c087ba
YS
6155 if (callee->in_callback_fn) {
6156 /* enforce R0 return value range [0, 1]. */
6157 struct tnum range = tnum_range(0, 1);
6158
6159 if (r0->type != SCALAR_VALUE) {
6160 verbose(env, "R0 not a scalar value\n");
6161 return -EACCES;
6162 }
6163 if (!tnum_in(range, r0->var_off)) {
6164 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6165 return -EINVAL;
6166 }
6167 } else {
6168 /* return to the caller whatever r0 had in the callee */
6169 caller->regs[BPF_REG_0] = *r0;
6170 }
f4d7e40a 6171
fd978bf7 6172 /* Transfer references to the caller */
c69431aa 6173 err = copy_reference_state(caller, callee);
fd978bf7
JS
6174 if (err)
6175 return err;
6176
f4d7e40a 6177 *insn_idx = callee->callsite + 1;
06ee7115 6178 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6179 verbose(env, "returning from callee:\n");
6180 print_verifier_state(env, callee);
6181 verbose(env, "to caller at %d:\n", *insn_idx);
6182 print_verifier_state(env, caller);
6183 }
6184 /* clear everything in the callee */
6185 free_func_state(callee);
6186 state->frame[state->curframe + 1] = NULL;
6187 return 0;
6188}
6189
849fa506
YS
6190static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6191 int func_id,
6192 struct bpf_call_arg_meta *meta)
6193{
6194 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6195
6196 if (ret_type != RET_INTEGER ||
6197 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6198 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6199 func_id != BPF_FUNC_probe_read_str &&
6200 func_id != BPF_FUNC_probe_read_kernel_str &&
6201 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6202 return;
6203
10060503 6204 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6205 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6206 ret_reg->smin_value = -MAX_ERRNO;
6207 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
6208 __reg_deduce_bounds(ret_reg);
6209 __reg_bound_offset(ret_reg);
10060503 6210 __update_reg_bounds(ret_reg);
849fa506
YS
6211}
6212
c93552c4
DB
6213static int
6214record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6215 int func_id, int insn_idx)
6216{
6217 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6218 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6219
6220 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
6221 func_id != BPF_FUNC_map_lookup_elem &&
6222 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
6223 func_id != BPF_FUNC_map_delete_elem &&
6224 func_id != BPF_FUNC_map_push_elem &&
6225 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 6226 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
6227 func_id != BPF_FUNC_for_each_map_elem &&
6228 func_id != BPF_FUNC_redirect_map)
c93552c4 6229 return 0;
09772d92 6230
591fe988 6231 if (map == NULL) {
c93552c4
DB
6232 verbose(env, "kernel subsystem misconfigured verifier\n");
6233 return -EINVAL;
6234 }
6235
591fe988
DB
6236 /* In case of read-only, some additional restrictions
6237 * need to be applied in order to prevent altering the
6238 * state of the map from program side.
6239 */
6240 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6241 (func_id == BPF_FUNC_map_delete_elem ||
6242 func_id == BPF_FUNC_map_update_elem ||
6243 func_id == BPF_FUNC_map_push_elem ||
6244 func_id == BPF_FUNC_map_pop_elem)) {
6245 verbose(env, "write into map forbidden\n");
6246 return -EACCES;
6247 }
6248
d2e4c1e6 6249 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 6250 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 6251 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 6252 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 6253 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 6254 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
6255 return 0;
6256}
6257
d2e4c1e6
DB
6258static int
6259record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6260 int func_id, int insn_idx)
6261{
6262 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6263 struct bpf_reg_state *regs = cur_regs(env), *reg;
6264 struct bpf_map *map = meta->map_ptr;
6265 struct tnum range;
6266 u64 val;
cc52d914 6267 int err;
d2e4c1e6
DB
6268
6269 if (func_id != BPF_FUNC_tail_call)
6270 return 0;
6271 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6272 verbose(env, "kernel subsystem misconfigured verifier\n");
6273 return -EINVAL;
6274 }
6275
6276 range = tnum_range(0, map->max_entries - 1);
6277 reg = &regs[BPF_REG_3];
6278
6279 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6280 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6281 return 0;
6282 }
6283
cc52d914
DB
6284 err = mark_chain_precision(env, BPF_REG_3);
6285 if (err)
6286 return err;
6287
d2e4c1e6
DB
6288 val = reg->var_off.value;
6289 if (bpf_map_key_unseen(aux))
6290 bpf_map_key_store(aux, val);
6291 else if (!bpf_map_key_poisoned(aux) &&
6292 bpf_map_key_immediate(aux) != val)
6293 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6294 return 0;
6295}
6296
fd978bf7
JS
6297static int check_reference_leak(struct bpf_verifier_env *env)
6298{
6299 struct bpf_func_state *state = cur_func(env);
6300 int i;
6301
6302 for (i = 0; i < state->acquired_refs; i++) {
6303 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6304 state->refs[i].id, state->refs[i].insn_idx);
6305 }
6306 return state->acquired_refs ? -EINVAL : 0;
6307}
6308
7b15523a
FR
6309static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6310 struct bpf_reg_state *regs)
6311{
6312 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6313 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6314 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6315 int err, fmt_map_off, num_args;
6316 u64 fmt_addr;
6317 char *fmt;
6318
6319 /* data must be an array of u64 */
6320 if (data_len_reg->var_off.value % 8)
6321 return -EINVAL;
6322 num_args = data_len_reg->var_off.value / 8;
6323
6324 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6325 * and map_direct_value_addr is set.
6326 */
6327 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6328 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6329 fmt_map_off);
8e8ee109
FR
6330 if (err) {
6331 verbose(env, "verifier bug\n");
6332 return -EFAULT;
6333 }
7b15523a
FR
6334 fmt = (char *)(long)fmt_addr + fmt_map_off;
6335
6336 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6337 * can focus on validating the format specifiers.
6338 */
48cac3f4 6339 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
6340 if (err < 0)
6341 verbose(env, "Invalid format string\n");
6342
6343 return err;
6344}
6345
9b99edca
JO
6346static int check_get_func_ip(struct bpf_verifier_env *env)
6347{
6348 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6349 enum bpf_prog_type type = resolve_prog_type(env->prog);
6350 int func_id = BPF_FUNC_get_func_ip;
6351
6352 if (type == BPF_PROG_TYPE_TRACING) {
6353 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6354 eatype != BPF_MODIFY_RETURN) {
6355 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6356 func_id_name(func_id), func_id);
6357 return -ENOTSUPP;
6358 }
6359 return 0;
9ffd9f3f
JO
6360 } else if (type == BPF_PROG_TYPE_KPROBE) {
6361 return 0;
9b99edca
JO
6362 }
6363
6364 verbose(env, "func %s#%d not supported for program type %d\n",
6365 func_id_name(func_id), func_id, type);
6366 return -ENOTSUPP;
6367}
6368
69c087ba
YS
6369static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6370 int *insn_idx_p)
17a52670 6371{
17a52670 6372 const struct bpf_func_proto *fn = NULL;
638f5b90 6373 struct bpf_reg_state *regs;
33ff9823 6374 struct bpf_call_arg_meta meta;
69c087ba 6375 int insn_idx = *insn_idx_p;
969bf05e 6376 bool changes_data;
69c087ba 6377 int i, err, func_id;
17a52670
AS
6378
6379 /* find function prototype */
69c087ba 6380 func_id = insn->imm;
17a52670 6381 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
6382 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6383 func_id);
17a52670
AS
6384 return -EINVAL;
6385 }
6386
00176a34 6387 if (env->ops->get_func_proto)
5e43f899 6388 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 6389 if (!fn) {
61bd5218
JK
6390 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6391 func_id);
17a52670
AS
6392 return -EINVAL;
6393 }
6394
6395 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 6396 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 6397 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
6398 return -EINVAL;
6399 }
6400
eae2e83e
JO
6401 if (fn->allowed && !fn->allowed(env->prog)) {
6402 verbose(env, "helper call is not allowed in probe\n");
6403 return -EINVAL;
6404 }
6405
04514d13 6406 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 6407 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
6408 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6409 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6410 func_id_name(func_id), func_id);
6411 return -EINVAL;
6412 }
969bf05e 6413
33ff9823 6414 memset(&meta, 0, sizeof(meta));
36bbef52 6415 meta.pkt_access = fn->pkt_access;
33ff9823 6416
1b986589 6417 err = check_func_proto(fn, func_id);
435faee1 6418 if (err) {
61bd5218 6419 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6420 func_id_name(func_id), func_id);
435faee1
DB
6421 return err;
6422 }
6423
d83525ca 6424 meta.func_id = func_id;
17a52670 6425 /* check args */
523a4cf4 6426 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6427 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6428 if (err)
6429 return err;
6430 }
17a52670 6431
c93552c4
DB
6432 err = record_func_map(env, &meta, func_id, insn_idx);
6433 if (err)
6434 return err;
6435
d2e4c1e6
DB
6436 err = record_func_key(env, &meta, func_id, insn_idx);
6437 if (err)
6438 return err;
6439
435faee1
DB
6440 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6441 * is inferred from register state.
6442 */
6443 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6444 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6445 BPF_WRITE, -1, false);
435faee1
DB
6446 if (err)
6447 return err;
6448 }
6449
fd978bf7
JS
6450 if (func_id == BPF_FUNC_tail_call) {
6451 err = check_reference_leak(env);
6452 if (err) {
6453 verbose(env, "tail_call would lead to reference leak\n");
6454 return err;
6455 }
6456 } else if (is_release_function(func_id)) {
1b986589 6457 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6458 if (err) {
6459 verbose(env, "func %s#%d reference has not been acquired before\n",
6460 func_id_name(func_id), func_id);
fd978bf7 6461 return err;
46f8bc92 6462 }
fd978bf7
JS
6463 }
6464
638f5b90 6465 regs = cur_regs(env);
cd339431
RG
6466
6467 /* check that flags argument in get_local_storage(map, flags) is 0,
6468 * this is required because get_local_storage() can't return an error.
6469 */
6470 if (func_id == BPF_FUNC_get_local_storage &&
6471 !register_is_null(&regs[BPF_REG_2])) {
6472 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6473 return -EINVAL;
6474 }
6475
69c087ba
YS
6476 if (func_id == BPF_FUNC_for_each_map_elem) {
6477 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6478 set_map_elem_callback_state);
6479 if (err < 0)
6480 return -EINVAL;
6481 }
6482
b00628b1
AS
6483 if (func_id == BPF_FUNC_timer_set_callback) {
6484 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6485 set_timer_callback_state);
6486 if (err < 0)
6487 return -EINVAL;
6488 }
6489
7b15523a
FR
6490 if (func_id == BPF_FUNC_snprintf) {
6491 err = check_bpf_snprintf_call(env, regs);
6492 if (err < 0)
6493 return err;
6494 }
6495
17a52670 6496 /* reset caller saved regs */
dc503a8a 6497 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6498 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6499 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6500 }
17a52670 6501
5327ed3d
JW
6502 /* helper call returns 64-bit value. */
6503 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6504
dc503a8a 6505 /* update return register (already marked as written above) */
17a52670 6506 if (fn->ret_type == RET_INTEGER) {
f1174f77 6507 /* sets type to SCALAR_VALUE */
61bd5218 6508 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6509 } else if (fn->ret_type == RET_VOID) {
6510 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6511 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6512 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6513 /* There is no offset yet applied, variable or fixed */
61bd5218 6514 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6515 /* remember map_ptr, so that check_map_access()
6516 * can check 'value_size' boundary of memory access
6517 * to map element returned from bpf_map_lookup_elem()
6518 */
33ff9823 6519 if (meta.map_ptr == NULL) {
61bd5218
JK
6520 verbose(env,
6521 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6522 return -EINVAL;
6523 }
33ff9823 6524 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 6525 regs[BPF_REG_0].map_uid = meta.map_uid;
4d31f301
DB
6526 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6527 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6528 if (map_value_has_spin_lock(meta.map_ptr))
6529 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6530 } else {
6531 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6532 }
c64b7983
JS
6533 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6534 mark_reg_known_zero(env, regs, BPF_REG_0);
6535 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6536 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6537 mark_reg_known_zero(env, regs, BPF_REG_0);
6538 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6539 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6540 mark_reg_known_zero(env, regs, BPF_REG_0);
6541 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6542 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6543 mark_reg_known_zero(env, regs, BPF_REG_0);
6544 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6545 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6546 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6547 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6548 const struct btf_type *t;
6549
6550 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6551 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6552 if (!btf_type_is_struct(t)) {
6553 u32 tsize;
6554 const struct btf_type *ret;
6555 const char *tname;
6556
6557 /* resolve the type size of ksym. */
22dc4a0f 6558 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6559 if (IS_ERR(ret)) {
22dc4a0f 6560 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6561 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6562 tname, PTR_ERR(ret));
6563 return -EINVAL;
6564 }
63d9b80d
HL
6565 regs[BPF_REG_0].type =
6566 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6567 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6568 regs[BPF_REG_0].mem_size = tsize;
6569 } else {
63d9b80d
HL
6570 regs[BPF_REG_0].type =
6571 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6572 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6573 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6574 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6575 }
3ca1032a
KS
6576 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6577 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6578 int ret_btf_id;
6579
6580 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6581 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6582 PTR_TO_BTF_ID :
6583 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6584 ret_btf_id = *fn->ret_btf_id;
6585 if (ret_btf_id == 0) {
6586 verbose(env, "invalid return type %d of func %s#%d\n",
6587 fn->ret_type, func_id_name(func_id), func_id);
6588 return -EINVAL;
6589 }
22dc4a0f
AN
6590 /* current BPF helper definitions are only coming from
6591 * built-in code with type IDs from vmlinux BTF
6592 */
6593 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6594 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6595 } else {
61bd5218 6596 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6597 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6598 return -EINVAL;
6599 }
04fd61ab 6600
93c230e3
MKL
6601 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6602 regs[BPF_REG_0].id = ++env->id_gen;
6603
0f3adc28 6604 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6605 /* For release_reference() */
6606 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6607 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6608 int id = acquire_reference_state(env, insn_idx);
6609
6610 if (id < 0)
6611 return id;
6612 /* For mark_ptr_or_null_reg() */
6613 regs[BPF_REG_0].id = id;
6614 /* For release_reference() */
6615 regs[BPF_REG_0].ref_obj_id = id;
6616 }
1b986589 6617
849fa506
YS
6618 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6619
61bd5218 6620 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6621 if (err)
6622 return err;
04fd61ab 6623
fa28dcb8
SL
6624 if ((func_id == BPF_FUNC_get_stack ||
6625 func_id == BPF_FUNC_get_task_stack) &&
6626 !env->prog->has_callchain_buf) {
c195651e
YS
6627 const char *err_str;
6628
6629#ifdef CONFIG_PERF_EVENTS
6630 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6631 err_str = "cannot get callchain buffer for func %s#%d\n";
6632#else
6633 err = -ENOTSUPP;
6634 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6635#endif
6636 if (err) {
6637 verbose(env, err_str, func_id_name(func_id), func_id);
6638 return err;
6639 }
6640
6641 env->prog->has_callchain_buf = true;
6642 }
6643
5d99cb2c
SL
6644 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6645 env->prog->call_get_stack = true;
6646
9b99edca
JO
6647 if (func_id == BPF_FUNC_get_func_ip) {
6648 if (check_get_func_ip(env))
6649 return -ENOTSUPP;
6650 env->prog->call_get_func_ip = true;
6651 }
6652
969bf05e
AS
6653 if (changes_data)
6654 clear_all_pkt_pointers(env);
6655 return 0;
6656}
6657
e6ac2450
MKL
6658/* mark_btf_func_reg_size() is used when the reg size is determined by
6659 * the BTF func_proto's return value size and argument.
6660 */
6661static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6662 size_t reg_size)
6663{
6664 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6665
6666 if (regno == BPF_REG_0) {
6667 /* Function return value */
6668 reg->live |= REG_LIVE_WRITTEN;
6669 reg->subreg_def = reg_size == sizeof(u64) ?
6670 DEF_NOT_SUBREG : env->insn_idx + 1;
6671 } else {
6672 /* Function argument */
6673 if (reg_size == sizeof(u64)) {
6674 mark_insn_zext(env, reg);
6675 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6676 } else {
6677 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6678 }
6679 }
6680}
6681
6682static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6683{
6684 const struct btf_type *t, *func, *func_proto, *ptr_type;
6685 struct bpf_reg_state *regs = cur_regs(env);
6686 const char *func_name, *ptr_type_name;
6687 u32 i, nargs, func_id, ptr_type_id;
2357672c 6688 struct module *btf_mod = NULL;
e6ac2450 6689 const struct btf_param *args;
2357672c 6690 struct btf *desc_btf;
e6ac2450
MKL
6691 int err;
6692
a5d82727
KKD
6693 /* skip for now, but return error when we find this in fixup_kfunc_call */
6694 if (!insn->imm)
6695 return 0;
6696
2357672c
KKD
6697 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6698 if (IS_ERR(desc_btf))
6699 return PTR_ERR(desc_btf);
6700
e6ac2450 6701 func_id = insn->imm;
2357672c
KKD
6702 func = btf_type_by_id(desc_btf, func_id);
6703 func_name = btf_name_by_offset(desc_btf, func->name_off);
6704 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
6705
6706 if (!env->ops->check_kfunc_call ||
2357672c 6707 !env->ops->check_kfunc_call(func_id, btf_mod)) {
e6ac2450
MKL
6708 verbose(env, "calling kernel function %s is not allowed\n",
6709 func_name);
6710 return -EACCES;
6711 }
6712
6713 /* Check the arguments */
2357672c 6714 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
e6ac2450
MKL
6715 if (err)
6716 return err;
6717
6718 for (i = 0; i < CALLER_SAVED_REGS; i++)
6719 mark_reg_not_init(env, regs, caller_saved[i]);
6720
6721 /* Check return type */
2357672c 6722 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
e6ac2450
MKL
6723 if (btf_type_is_scalar(t)) {
6724 mark_reg_unknown(env, regs, BPF_REG_0);
6725 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6726 } else if (btf_type_is_ptr(t)) {
2357672c 6727 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
6728 &ptr_type_id);
6729 if (!btf_type_is_struct(ptr_type)) {
2357672c 6730 ptr_type_name = btf_name_by_offset(desc_btf,
e6ac2450
MKL
6731 ptr_type->name_off);
6732 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6733 func_name, btf_type_str(ptr_type),
6734 ptr_type_name);
6735 return -EINVAL;
6736 }
6737 mark_reg_known_zero(env, regs, BPF_REG_0);
2357672c 6738 regs[BPF_REG_0].btf = desc_btf;
e6ac2450
MKL
6739 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6740 regs[BPF_REG_0].btf_id = ptr_type_id;
6741 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6742 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6743
6744 nargs = btf_type_vlen(func_proto);
6745 args = (const struct btf_param *)(func_proto + 1);
6746 for (i = 0; i < nargs; i++) {
6747 u32 regno = i + 1;
6748
2357672c 6749 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
6750 if (btf_type_is_ptr(t))
6751 mark_btf_func_reg_size(env, regno, sizeof(void *));
6752 else
6753 /* scalar. ensured by btf_check_kfunc_arg_match() */
6754 mark_btf_func_reg_size(env, regno, t->size);
6755 }
6756
6757 return 0;
6758}
6759
b03c9f9f
EC
6760static bool signed_add_overflows(s64 a, s64 b)
6761{
6762 /* Do the add in u64, where overflow is well-defined */
6763 s64 res = (s64)((u64)a + (u64)b);
6764
6765 if (b < 0)
6766 return res > a;
6767 return res < a;
6768}
6769
bc895e8b 6770static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6771{
6772 /* Do the add in u32, where overflow is well-defined */
6773 s32 res = (s32)((u32)a + (u32)b);
6774
6775 if (b < 0)
6776 return res > a;
6777 return res < a;
6778}
6779
bc895e8b 6780static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6781{
6782 /* Do the sub in u64, where overflow is well-defined */
6783 s64 res = (s64)((u64)a - (u64)b);
6784
6785 if (b < 0)
6786 return res < a;
6787 return res > a;
969bf05e
AS
6788}
6789
3f50f132
JF
6790static bool signed_sub32_overflows(s32 a, s32 b)
6791{
bc895e8b 6792 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6793 s32 res = (s32)((u32)a - (u32)b);
6794
6795 if (b < 0)
6796 return res < a;
6797 return res > a;
6798}
6799
bb7f0f98
AS
6800static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6801 const struct bpf_reg_state *reg,
6802 enum bpf_reg_type type)
6803{
6804 bool known = tnum_is_const(reg->var_off);
6805 s64 val = reg->var_off.value;
6806 s64 smin = reg->smin_value;
6807
6808 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6809 verbose(env, "math between %s pointer and %lld is not allowed\n",
6810 reg_type_str[type], val);
6811 return false;
6812 }
6813
6814 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6815 verbose(env, "%s pointer offset %d is not allowed\n",
6816 reg_type_str[type], reg->off);
6817 return false;
6818 }
6819
6820 if (smin == S64_MIN) {
6821 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6822 reg_type_str[type]);
6823 return false;
6824 }
6825
6826 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6827 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6828 smin, reg_type_str[type]);
6829 return false;
6830 }
6831
6832 return true;
6833}
6834
979d63d5
DB
6835static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6836{
6837 return &env->insn_aux_data[env->insn_idx];
6838}
6839
a6aaece0
DB
6840enum {
6841 REASON_BOUNDS = -1,
6842 REASON_TYPE = -2,
6843 REASON_PATHS = -3,
6844 REASON_LIMIT = -4,
6845 REASON_STACK = -5,
6846};
6847
979d63d5 6848static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 6849 u32 *alu_limit, bool mask_to_left)
979d63d5 6850{
7fedb63a 6851 u32 max = 0, ptr_limit = 0;
979d63d5
DB
6852
6853 switch (ptr_reg->type) {
6854 case PTR_TO_STACK:
1b1597e6 6855 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
6856 * left direction, see BPF_REG_FP. Also, unknown scalar
6857 * offset where we would need to deal with min/max bounds is
6858 * currently prohibited for unprivileged.
1b1597e6
PK
6859 */
6860 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 6861 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 6862 break;
979d63d5 6863 case PTR_TO_MAP_VALUE:
1b1597e6 6864 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
6865 ptr_limit = (mask_to_left ?
6866 ptr_reg->smin_value :
6867 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 6868 break;
979d63d5 6869 default:
a6aaece0 6870 return REASON_TYPE;
979d63d5 6871 }
b658bbb8
DB
6872
6873 if (ptr_limit >= max)
a6aaece0 6874 return REASON_LIMIT;
b658bbb8
DB
6875 *alu_limit = ptr_limit;
6876 return 0;
979d63d5
DB
6877}
6878
d3bd7413
DB
6879static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6880 const struct bpf_insn *insn)
6881{
2c78ee89 6882 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6883}
6884
6885static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6886 u32 alu_state, u32 alu_limit)
6887{
6888 /* If we arrived here from different branches with different
6889 * state or limits to sanitize, then this won't work.
6890 */
6891 if (aux->alu_state &&
6892 (aux->alu_state != alu_state ||
6893 aux->alu_limit != alu_limit))
a6aaece0 6894 return REASON_PATHS;
d3bd7413 6895
e6ac5933 6896 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
6897 aux->alu_state = alu_state;
6898 aux->alu_limit = alu_limit;
6899 return 0;
6900}
6901
6902static int sanitize_val_alu(struct bpf_verifier_env *env,
6903 struct bpf_insn *insn)
6904{
6905 struct bpf_insn_aux_data *aux = cur_aux(env);
6906
6907 if (can_skip_alu_sanitation(env, insn))
6908 return 0;
6909
6910 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6911}
6912
f5288193
DB
6913static bool sanitize_needed(u8 opcode)
6914{
6915 return opcode == BPF_ADD || opcode == BPF_SUB;
6916}
6917
3d0220f6
DB
6918struct bpf_sanitize_info {
6919 struct bpf_insn_aux_data aux;
bb01a1bb 6920 bool mask_to_left;
3d0220f6
DB
6921};
6922
9183671a
DB
6923static struct bpf_verifier_state *
6924sanitize_speculative_path(struct bpf_verifier_env *env,
6925 const struct bpf_insn *insn,
6926 u32 next_idx, u32 curr_idx)
6927{
6928 struct bpf_verifier_state *branch;
6929 struct bpf_reg_state *regs;
6930
6931 branch = push_stack(env, next_idx, curr_idx, true);
6932 if (branch && insn) {
6933 regs = branch->frame[branch->curframe]->regs;
6934 if (BPF_SRC(insn->code) == BPF_K) {
6935 mark_reg_unknown(env, regs, insn->dst_reg);
6936 } else if (BPF_SRC(insn->code) == BPF_X) {
6937 mark_reg_unknown(env, regs, insn->dst_reg);
6938 mark_reg_unknown(env, regs, insn->src_reg);
6939 }
6940 }
6941 return branch;
6942}
6943
979d63d5
DB
6944static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6945 struct bpf_insn *insn,
6946 const struct bpf_reg_state *ptr_reg,
6f55b2f2 6947 const struct bpf_reg_state *off_reg,
979d63d5 6948 struct bpf_reg_state *dst_reg,
3d0220f6 6949 struct bpf_sanitize_info *info,
7fedb63a 6950 const bool commit_window)
979d63d5 6951{
3d0220f6 6952 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 6953 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 6954 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 6955 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
6956 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6957 u8 opcode = BPF_OP(insn->code);
6958 u32 alu_state, alu_limit;
6959 struct bpf_reg_state tmp;
6960 bool ret;
f232326f 6961 int err;
979d63d5 6962
d3bd7413 6963 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
6964 return 0;
6965
6966 /* We already marked aux for masking from non-speculative
6967 * paths, thus we got here in the first place. We only care
6968 * to explore bad access from here.
6969 */
6970 if (vstate->speculative)
6971 goto do_sim;
6972
bb01a1bb
DB
6973 if (!commit_window) {
6974 if (!tnum_is_const(off_reg->var_off) &&
6975 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6976 return REASON_BOUNDS;
6977
6978 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6979 (opcode == BPF_SUB && !off_is_neg);
6980 }
6981
6982 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
6983 if (err < 0)
6984 return err;
6985
7fedb63a
DB
6986 if (commit_window) {
6987 /* In commit phase we narrow the masking window based on
6988 * the observed pointer move after the simulated operation.
6989 */
3d0220f6
DB
6990 alu_state = info->aux.alu_state;
6991 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
6992 } else {
6993 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 6994 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
6995 alu_state |= ptr_is_dst_reg ?
6996 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
6997
6998 /* Limit pruning on unknown scalars to enable deep search for
6999 * potential masking differences from other program paths.
7000 */
7001 if (!off_is_imm)
7002 env->explore_alu_limits = true;
7fedb63a
DB
7003 }
7004
f232326f
PK
7005 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7006 if (err < 0)
7007 return err;
979d63d5 7008do_sim:
7fedb63a
DB
7009 /* If we're in commit phase, we're done here given we already
7010 * pushed the truncated dst_reg into the speculative verification
7011 * stack.
a7036191
DB
7012 *
7013 * Also, when register is a known constant, we rewrite register-based
7014 * operation to immediate-based, and thus do not need masking (and as
7015 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7016 */
a7036191 7017 if (commit_window || off_is_imm)
7fedb63a
DB
7018 return 0;
7019
979d63d5
DB
7020 /* Simulate and find potential out-of-bounds access under
7021 * speculative execution from truncation as a result of
7022 * masking when off was not within expected range. If off
7023 * sits in dst, then we temporarily need to move ptr there
7024 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7025 * for cases where we use K-based arithmetic in one direction
7026 * and truncated reg-based in the other in order to explore
7027 * bad access.
7028 */
7029 if (!ptr_is_dst_reg) {
7030 tmp = *dst_reg;
7031 *dst_reg = *ptr_reg;
7032 }
9183671a
DB
7033 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7034 env->insn_idx);
0803278b 7035 if (!ptr_is_dst_reg && ret)
979d63d5 7036 *dst_reg = tmp;
a6aaece0
DB
7037 return !ret ? REASON_STACK : 0;
7038}
7039
fe9a5ca7
DB
7040static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7041{
7042 struct bpf_verifier_state *vstate = env->cur_state;
7043
7044 /* If we simulate paths under speculation, we don't update the
7045 * insn as 'seen' such that when we verify unreachable paths in
7046 * the non-speculative domain, sanitize_dead_code() can still
7047 * rewrite/sanitize them.
7048 */
7049 if (!vstate->speculative)
7050 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7051}
7052
a6aaece0
DB
7053static int sanitize_err(struct bpf_verifier_env *env,
7054 const struct bpf_insn *insn, int reason,
7055 const struct bpf_reg_state *off_reg,
7056 const struct bpf_reg_state *dst_reg)
7057{
7058 static const char *err = "pointer arithmetic with it prohibited for !root";
7059 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7060 u32 dst = insn->dst_reg, src = insn->src_reg;
7061
7062 switch (reason) {
7063 case REASON_BOUNDS:
7064 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7065 off_reg == dst_reg ? dst : src, err);
7066 break;
7067 case REASON_TYPE:
7068 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7069 off_reg == dst_reg ? src : dst, err);
7070 break;
7071 case REASON_PATHS:
7072 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7073 dst, op, err);
7074 break;
7075 case REASON_LIMIT:
7076 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7077 dst, op, err);
7078 break;
7079 case REASON_STACK:
7080 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7081 dst, err);
7082 break;
7083 default:
7084 verbose(env, "verifier internal error: unknown reason (%d)\n",
7085 reason);
7086 break;
7087 }
7088
7089 return -EACCES;
979d63d5
DB
7090}
7091
01f810ac
AM
7092/* check that stack access falls within stack limits and that 'reg' doesn't
7093 * have a variable offset.
7094 *
7095 * Variable offset is prohibited for unprivileged mode for simplicity since it
7096 * requires corresponding support in Spectre masking for stack ALU. See also
7097 * retrieve_ptr_limit().
7098 *
7099 *
7100 * 'off' includes 'reg->off'.
7101 */
7102static int check_stack_access_for_ptr_arithmetic(
7103 struct bpf_verifier_env *env,
7104 int regno,
7105 const struct bpf_reg_state *reg,
7106 int off)
7107{
7108 if (!tnum_is_const(reg->var_off)) {
7109 char tn_buf[48];
7110
7111 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7112 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7113 regno, tn_buf, off);
7114 return -EACCES;
7115 }
7116
7117 if (off >= 0 || off < -MAX_BPF_STACK) {
7118 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7119 "prohibited for !root; off=%d\n", regno, off);
7120 return -EACCES;
7121 }
7122
7123 return 0;
7124}
7125
073815b7
DB
7126static int sanitize_check_bounds(struct bpf_verifier_env *env,
7127 const struct bpf_insn *insn,
7128 const struct bpf_reg_state *dst_reg)
7129{
7130 u32 dst = insn->dst_reg;
7131
7132 /* For unprivileged we require that resulting offset must be in bounds
7133 * in order to be able to sanitize access later on.
7134 */
7135 if (env->bypass_spec_v1)
7136 return 0;
7137
7138 switch (dst_reg->type) {
7139 case PTR_TO_STACK:
7140 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7141 dst_reg->off + dst_reg->var_off.value))
7142 return -EACCES;
7143 break;
7144 case PTR_TO_MAP_VALUE:
7145 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7146 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7147 "prohibited for !root\n", dst);
7148 return -EACCES;
7149 }
7150 break;
7151 default:
7152 break;
7153 }
7154
7155 return 0;
7156}
01f810ac 7157
f1174f77 7158/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
7159 * Caller should also handle BPF_MOV case separately.
7160 * If we return -EACCES, caller may want to try again treating pointer as a
7161 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7162 */
7163static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7164 struct bpf_insn *insn,
7165 const struct bpf_reg_state *ptr_reg,
7166 const struct bpf_reg_state *off_reg)
969bf05e 7167{
f4d7e40a
AS
7168 struct bpf_verifier_state *vstate = env->cur_state;
7169 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7170 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 7171 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
7172 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7173 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7174 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7175 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 7176 struct bpf_sanitize_info info = {};
969bf05e 7177 u8 opcode = BPF_OP(insn->code);
24c109bb 7178 u32 dst = insn->dst_reg;
979d63d5 7179 int ret;
969bf05e 7180
f1174f77 7181 dst_reg = &regs[dst];
969bf05e 7182
6f16101e
DB
7183 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7184 smin_val > smax_val || umin_val > umax_val) {
7185 /* Taint dst register if offset had invalid bounds derived from
7186 * e.g. dead branches.
7187 */
f54c7898 7188 __mark_reg_unknown(env, dst_reg);
6f16101e 7189 return 0;
f1174f77
EC
7190 }
7191
7192 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7193 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
7194 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7195 __mark_reg_unknown(env, dst_reg);
7196 return 0;
7197 }
7198
82abbf8d
AS
7199 verbose(env,
7200 "R%d 32-bit pointer arithmetic prohibited\n",
7201 dst);
f1174f77 7202 return -EACCES;
969bf05e
AS
7203 }
7204
aad2eeaf
JS
7205 switch (ptr_reg->type) {
7206 case PTR_TO_MAP_VALUE_OR_NULL:
7207 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7208 dst, reg_type_str[ptr_reg->type]);
f1174f77 7209 return -EACCES;
aad2eeaf 7210 case CONST_PTR_TO_MAP:
7c696732
YS
7211 /* smin_val represents the known value */
7212 if (known && smin_val == 0 && opcode == BPF_ADD)
7213 break;
8731745e 7214 fallthrough;
aad2eeaf 7215 case PTR_TO_PACKET_END:
c64b7983
JS
7216 case PTR_TO_SOCKET:
7217 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7218 case PTR_TO_SOCK_COMMON:
7219 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7220 case PTR_TO_TCP_SOCK:
7221 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7222 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
7223 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7224 dst, reg_type_str[ptr_reg->type]);
f1174f77 7225 return -EACCES;
aad2eeaf
JS
7226 default:
7227 break;
f1174f77
EC
7228 }
7229
7230 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7231 * The id may be overwritten later if we create a new variable offset.
969bf05e 7232 */
f1174f77
EC
7233 dst_reg->type = ptr_reg->type;
7234 dst_reg->id = ptr_reg->id;
969bf05e 7235
bb7f0f98
AS
7236 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7237 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7238 return -EINVAL;
7239
3f50f132
JF
7240 /* pointer types do not carry 32-bit bounds at the moment. */
7241 __mark_reg32_unbounded(dst_reg);
7242
7fedb63a
DB
7243 if (sanitize_needed(opcode)) {
7244 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 7245 &info, false);
a6aaece0
DB
7246 if (ret < 0)
7247 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 7248 }
a6aaece0 7249
f1174f77
EC
7250 switch (opcode) {
7251 case BPF_ADD:
7252 /* We can take a fixed offset as long as it doesn't overflow
7253 * the s32 'off' field
969bf05e 7254 */
b03c9f9f
EC
7255 if (known && (ptr_reg->off + smin_val ==
7256 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 7257 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
7258 dst_reg->smin_value = smin_ptr;
7259 dst_reg->smax_value = smax_ptr;
7260 dst_reg->umin_value = umin_ptr;
7261 dst_reg->umax_value = umax_ptr;
f1174f77 7262 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 7263 dst_reg->off = ptr_reg->off + smin_val;
0962590e 7264 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7265 break;
7266 }
f1174f77
EC
7267 /* A new variable offset is created. Note that off_reg->off
7268 * == 0, since it's a scalar.
7269 * dst_reg gets the pointer type and since some positive
7270 * integer value was added to the pointer, give it a new 'id'
7271 * if it's a PTR_TO_PACKET.
7272 * this creates a new 'base' pointer, off_reg (variable) gets
7273 * added into the variable offset, and we copy the fixed offset
7274 * from ptr_reg.
969bf05e 7275 */
b03c9f9f
EC
7276 if (signed_add_overflows(smin_ptr, smin_val) ||
7277 signed_add_overflows(smax_ptr, smax_val)) {
7278 dst_reg->smin_value = S64_MIN;
7279 dst_reg->smax_value = S64_MAX;
7280 } else {
7281 dst_reg->smin_value = smin_ptr + smin_val;
7282 dst_reg->smax_value = smax_ptr + smax_val;
7283 }
7284 if (umin_ptr + umin_val < umin_ptr ||
7285 umax_ptr + umax_val < umax_ptr) {
7286 dst_reg->umin_value = 0;
7287 dst_reg->umax_value = U64_MAX;
7288 } else {
7289 dst_reg->umin_value = umin_ptr + umin_val;
7290 dst_reg->umax_value = umax_ptr + umax_val;
7291 }
f1174f77
EC
7292 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7293 dst_reg->off = ptr_reg->off;
0962590e 7294 dst_reg->raw = ptr_reg->raw;
de8f3a83 7295 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7296 dst_reg->id = ++env->id_gen;
7297 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 7298 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
7299 }
7300 break;
7301 case BPF_SUB:
7302 if (dst_reg == off_reg) {
7303 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
7304 verbose(env, "R%d tried to subtract pointer from scalar\n",
7305 dst);
f1174f77
EC
7306 return -EACCES;
7307 }
7308 /* We don't allow subtraction from FP, because (according to
7309 * test_verifier.c test "invalid fp arithmetic", JITs might not
7310 * be able to deal with it.
969bf05e 7311 */
f1174f77 7312 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
7313 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7314 dst);
f1174f77
EC
7315 return -EACCES;
7316 }
b03c9f9f
EC
7317 if (known && (ptr_reg->off - smin_val ==
7318 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 7319 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
7320 dst_reg->smin_value = smin_ptr;
7321 dst_reg->smax_value = smax_ptr;
7322 dst_reg->umin_value = umin_ptr;
7323 dst_reg->umax_value = umax_ptr;
f1174f77
EC
7324 dst_reg->var_off = ptr_reg->var_off;
7325 dst_reg->id = ptr_reg->id;
b03c9f9f 7326 dst_reg->off = ptr_reg->off - smin_val;
0962590e 7327 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7328 break;
7329 }
f1174f77
EC
7330 /* A new variable offset is created. If the subtrahend is known
7331 * nonnegative, then any reg->range we had before is still good.
969bf05e 7332 */
b03c9f9f
EC
7333 if (signed_sub_overflows(smin_ptr, smax_val) ||
7334 signed_sub_overflows(smax_ptr, smin_val)) {
7335 /* Overflow possible, we know nothing */
7336 dst_reg->smin_value = S64_MIN;
7337 dst_reg->smax_value = S64_MAX;
7338 } else {
7339 dst_reg->smin_value = smin_ptr - smax_val;
7340 dst_reg->smax_value = smax_ptr - smin_val;
7341 }
7342 if (umin_ptr < umax_val) {
7343 /* Overflow possible, we know nothing */
7344 dst_reg->umin_value = 0;
7345 dst_reg->umax_value = U64_MAX;
7346 } else {
7347 /* Cannot overflow (as long as bounds are consistent) */
7348 dst_reg->umin_value = umin_ptr - umax_val;
7349 dst_reg->umax_value = umax_ptr - umin_val;
7350 }
f1174f77
EC
7351 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7352 dst_reg->off = ptr_reg->off;
0962590e 7353 dst_reg->raw = ptr_reg->raw;
de8f3a83 7354 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7355 dst_reg->id = ++env->id_gen;
7356 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 7357 if (smin_val < 0)
22dc4a0f 7358 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 7359 }
f1174f77
EC
7360 break;
7361 case BPF_AND:
7362 case BPF_OR:
7363 case BPF_XOR:
82abbf8d
AS
7364 /* bitwise ops on pointers are troublesome, prohibit. */
7365 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7366 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
7367 return -EACCES;
7368 default:
7369 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
7370 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7371 dst, bpf_alu_string[opcode >> 4]);
f1174f77 7372 return -EACCES;
43188702
JF
7373 }
7374
bb7f0f98
AS
7375 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7376 return -EINVAL;
7377
b03c9f9f
EC
7378 __update_reg_bounds(dst_reg);
7379 __reg_deduce_bounds(dst_reg);
7380 __reg_bound_offset(dst_reg);
0d6303db 7381
073815b7
DB
7382 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7383 return -EACCES;
7fedb63a
DB
7384 if (sanitize_needed(opcode)) {
7385 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 7386 &info, true);
7fedb63a
DB
7387 if (ret < 0)
7388 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
7389 }
7390
43188702
JF
7391 return 0;
7392}
7393
3f50f132
JF
7394static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7395 struct bpf_reg_state *src_reg)
7396{
7397 s32 smin_val = src_reg->s32_min_value;
7398 s32 smax_val = src_reg->s32_max_value;
7399 u32 umin_val = src_reg->u32_min_value;
7400 u32 umax_val = src_reg->u32_max_value;
7401
7402 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7403 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7404 dst_reg->s32_min_value = S32_MIN;
7405 dst_reg->s32_max_value = S32_MAX;
7406 } else {
7407 dst_reg->s32_min_value += smin_val;
7408 dst_reg->s32_max_value += smax_val;
7409 }
7410 if (dst_reg->u32_min_value + umin_val < umin_val ||
7411 dst_reg->u32_max_value + umax_val < umax_val) {
7412 dst_reg->u32_min_value = 0;
7413 dst_reg->u32_max_value = U32_MAX;
7414 } else {
7415 dst_reg->u32_min_value += umin_val;
7416 dst_reg->u32_max_value += umax_val;
7417 }
7418}
7419
07cd2631
JF
7420static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7421 struct bpf_reg_state *src_reg)
7422{
7423 s64 smin_val = src_reg->smin_value;
7424 s64 smax_val = src_reg->smax_value;
7425 u64 umin_val = src_reg->umin_value;
7426 u64 umax_val = src_reg->umax_value;
7427
7428 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7429 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7430 dst_reg->smin_value = S64_MIN;
7431 dst_reg->smax_value = S64_MAX;
7432 } else {
7433 dst_reg->smin_value += smin_val;
7434 dst_reg->smax_value += smax_val;
7435 }
7436 if (dst_reg->umin_value + umin_val < umin_val ||
7437 dst_reg->umax_value + umax_val < umax_val) {
7438 dst_reg->umin_value = 0;
7439 dst_reg->umax_value = U64_MAX;
7440 } else {
7441 dst_reg->umin_value += umin_val;
7442 dst_reg->umax_value += umax_val;
7443 }
3f50f132
JF
7444}
7445
7446static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7447 struct bpf_reg_state *src_reg)
7448{
7449 s32 smin_val = src_reg->s32_min_value;
7450 s32 smax_val = src_reg->s32_max_value;
7451 u32 umin_val = src_reg->u32_min_value;
7452 u32 umax_val = src_reg->u32_max_value;
7453
7454 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7455 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7456 /* Overflow possible, we know nothing */
7457 dst_reg->s32_min_value = S32_MIN;
7458 dst_reg->s32_max_value = S32_MAX;
7459 } else {
7460 dst_reg->s32_min_value -= smax_val;
7461 dst_reg->s32_max_value -= smin_val;
7462 }
7463 if (dst_reg->u32_min_value < umax_val) {
7464 /* Overflow possible, we know nothing */
7465 dst_reg->u32_min_value = 0;
7466 dst_reg->u32_max_value = U32_MAX;
7467 } else {
7468 /* Cannot overflow (as long as bounds are consistent) */
7469 dst_reg->u32_min_value -= umax_val;
7470 dst_reg->u32_max_value -= umin_val;
7471 }
07cd2631
JF
7472}
7473
7474static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7475 struct bpf_reg_state *src_reg)
7476{
7477 s64 smin_val = src_reg->smin_value;
7478 s64 smax_val = src_reg->smax_value;
7479 u64 umin_val = src_reg->umin_value;
7480 u64 umax_val = src_reg->umax_value;
7481
7482 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7483 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7484 /* Overflow possible, we know nothing */
7485 dst_reg->smin_value = S64_MIN;
7486 dst_reg->smax_value = S64_MAX;
7487 } else {
7488 dst_reg->smin_value -= smax_val;
7489 dst_reg->smax_value -= smin_val;
7490 }
7491 if (dst_reg->umin_value < umax_val) {
7492 /* Overflow possible, we know nothing */
7493 dst_reg->umin_value = 0;
7494 dst_reg->umax_value = U64_MAX;
7495 } else {
7496 /* Cannot overflow (as long as bounds are consistent) */
7497 dst_reg->umin_value -= umax_val;
7498 dst_reg->umax_value -= umin_val;
7499 }
3f50f132
JF
7500}
7501
7502static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7503 struct bpf_reg_state *src_reg)
7504{
7505 s32 smin_val = src_reg->s32_min_value;
7506 u32 umin_val = src_reg->u32_min_value;
7507 u32 umax_val = src_reg->u32_max_value;
7508
7509 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7510 /* Ain't nobody got time to multiply that sign */
7511 __mark_reg32_unbounded(dst_reg);
7512 return;
7513 }
7514 /* Both values are positive, so we can work with unsigned and
7515 * copy the result to signed (unless it exceeds S32_MAX).
7516 */
7517 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7518 /* Potential overflow, we know nothing */
7519 __mark_reg32_unbounded(dst_reg);
7520 return;
7521 }
7522 dst_reg->u32_min_value *= umin_val;
7523 dst_reg->u32_max_value *= umax_val;
7524 if (dst_reg->u32_max_value > S32_MAX) {
7525 /* Overflow possible, we know nothing */
7526 dst_reg->s32_min_value = S32_MIN;
7527 dst_reg->s32_max_value = S32_MAX;
7528 } else {
7529 dst_reg->s32_min_value = dst_reg->u32_min_value;
7530 dst_reg->s32_max_value = dst_reg->u32_max_value;
7531 }
07cd2631
JF
7532}
7533
7534static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7535 struct bpf_reg_state *src_reg)
7536{
7537 s64 smin_val = src_reg->smin_value;
7538 u64 umin_val = src_reg->umin_value;
7539 u64 umax_val = src_reg->umax_value;
7540
07cd2631
JF
7541 if (smin_val < 0 || dst_reg->smin_value < 0) {
7542 /* Ain't nobody got time to multiply that sign */
3f50f132 7543 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7544 return;
7545 }
7546 /* Both values are positive, so we can work with unsigned and
7547 * copy the result to signed (unless it exceeds S64_MAX).
7548 */
7549 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7550 /* Potential overflow, we know nothing */
3f50f132 7551 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7552 return;
7553 }
7554 dst_reg->umin_value *= umin_val;
7555 dst_reg->umax_value *= umax_val;
7556 if (dst_reg->umax_value > S64_MAX) {
7557 /* Overflow possible, we know nothing */
7558 dst_reg->smin_value = S64_MIN;
7559 dst_reg->smax_value = S64_MAX;
7560 } else {
7561 dst_reg->smin_value = dst_reg->umin_value;
7562 dst_reg->smax_value = dst_reg->umax_value;
7563 }
7564}
7565
3f50f132
JF
7566static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7567 struct bpf_reg_state *src_reg)
7568{
7569 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7570 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7571 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7572 s32 smin_val = src_reg->s32_min_value;
7573 u32 umax_val = src_reg->u32_max_value;
7574
049c4e13
DB
7575 if (src_known && dst_known) {
7576 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7577 return;
049c4e13 7578 }
3f50f132
JF
7579
7580 /* We get our minimum from the var_off, since that's inherently
7581 * bitwise. Our maximum is the minimum of the operands' maxima.
7582 */
7583 dst_reg->u32_min_value = var32_off.value;
7584 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7585 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7586 /* Lose signed bounds when ANDing negative numbers,
7587 * ain't nobody got time for that.
7588 */
7589 dst_reg->s32_min_value = S32_MIN;
7590 dst_reg->s32_max_value = S32_MAX;
7591 } else {
7592 /* ANDing two positives gives a positive, so safe to
7593 * cast result into s64.
7594 */
7595 dst_reg->s32_min_value = dst_reg->u32_min_value;
7596 dst_reg->s32_max_value = dst_reg->u32_max_value;
7597 }
3f50f132
JF
7598}
7599
07cd2631
JF
7600static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7601 struct bpf_reg_state *src_reg)
7602{
3f50f132
JF
7603 bool src_known = tnum_is_const(src_reg->var_off);
7604 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7605 s64 smin_val = src_reg->smin_value;
7606 u64 umax_val = src_reg->umax_value;
7607
3f50f132 7608 if (src_known && dst_known) {
4fbb38a3 7609 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7610 return;
7611 }
7612
07cd2631
JF
7613 /* We get our minimum from the var_off, since that's inherently
7614 * bitwise. Our maximum is the minimum of the operands' maxima.
7615 */
07cd2631
JF
7616 dst_reg->umin_value = dst_reg->var_off.value;
7617 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7618 if (dst_reg->smin_value < 0 || smin_val < 0) {
7619 /* Lose signed bounds when ANDing negative numbers,
7620 * ain't nobody got time for that.
7621 */
7622 dst_reg->smin_value = S64_MIN;
7623 dst_reg->smax_value = S64_MAX;
7624 } else {
7625 /* ANDing two positives gives a positive, so safe to
7626 * cast result into s64.
7627 */
7628 dst_reg->smin_value = dst_reg->umin_value;
7629 dst_reg->smax_value = dst_reg->umax_value;
7630 }
7631 /* We may learn something more from the var_off */
7632 __update_reg_bounds(dst_reg);
7633}
7634
3f50f132
JF
7635static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7636 struct bpf_reg_state *src_reg)
7637{
7638 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7639 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7640 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7641 s32 smin_val = src_reg->s32_min_value;
7642 u32 umin_val = src_reg->u32_min_value;
3f50f132 7643
049c4e13
DB
7644 if (src_known && dst_known) {
7645 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7646 return;
049c4e13 7647 }
3f50f132
JF
7648
7649 /* We get our maximum from the var_off, and our minimum is the
7650 * maximum of the operands' minima
7651 */
7652 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7653 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7654 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7655 /* Lose signed bounds when ORing negative numbers,
7656 * ain't nobody got time for that.
7657 */
7658 dst_reg->s32_min_value = S32_MIN;
7659 dst_reg->s32_max_value = S32_MAX;
7660 } else {
7661 /* ORing two positives gives a positive, so safe to
7662 * cast result into s64.
7663 */
5b9fbeb7
DB
7664 dst_reg->s32_min_value = dst_reg->u32_min_value;
7665 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7666 }
7667}
7668
07cd2631
JF
7669static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7670 struct bpf_reg_state *src_reg)
7671{
3f50f132
JF
7672 bool src_known = tnum_is_const(src_reg->var_off);
7673 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7674 s64 smin_val = src_reg->smin_value;
7675 u64 umin_val = src_reg->umin_value;
7676
3f50f132 7677 if (src_known && dst_known) {
4fbb38a3 7678 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7679 return;
7680 }
7681
07cd2631
JF
7682 /* We get our maximum from the var_off, and our minimum is the
7683 * maximum of the operands' minima
7684 */
07cd2631
JF
7685 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7686 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7687 if (dst_reg->smin_value < 0 || smin_val < 0) {
7688 /* Lose signed bounds when ORing negative numbers,
7689 * ain't nobody got time for that.
7690 */
7691 dst_reg->smin_value = S64_MIN;
7692 dst_reg->smax_value = S64_MAX;
7693 } else {
7694 /* ORing two positives gives a positive, so safe to
7695 * cast result into s64.
7696 */
7697 dst_reg->smin_value = dst_reg->umin_value;
7698 dst_reg->smax_value = dst_reg->umax_value;
7699 }
7700 /* We may learn something more from the var_off */
7701 __update_reg_bounds(dst_reg);
7702}
7703
2921c90d
YS
7704static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7705 struct bpf_reg_state *src_reg)
7706{
7707 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7708 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7709 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7710 s32 smin_val = src_reg->s32_min_value;
7711
049c4e13
DB
7712 if (src_known && dst_known) {
7713 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 7714 return;
049c4e13 7715 }
2921c90d
YS
7716
7717 /* We get both minimum and maximum from the var32_off. */
7718 dst_reg->u32_min_value = var32_off.value;
7719 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7720
7721 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7722 /* XORing two positive sign numbers gives a positive,
7723 * so safe to cast u32 result into s32.
7724 */
7725 dst_reg->s32_min_value = dst_reg->u32_min_value;
7726 dst_reg->s32_max_value = dst_reg->u32_max_value;
7727 } else {
7728 dst_reg->s32_min_value = S32_MIN;
7729 dst_reg->s32_max_value = S32_MAX;
7730 }
7731}
7732
7733static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7734 struct bpf_reg_state *src_reg)
7735{
7736 bool src_known = tnum_is_const(src_reg->var_off);
7737 bool dst_known = tnum_is_const(dst_reg->var_off);
7738 s64 smin_val = src_reg->smin_value;
7739
7740 if (src_known && dst_known) {
7741 /* dst_reg->var_off.value has been updated earlier */
7742 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7743 return;
7744 }
7745
7746 /* We get both minimum and maximum from the var_off. */
7747 dst_reg->umin_value = dst_reg->var_off.value;
7748 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7749
7750 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7751 /* XORing two positive sign numbers gives a positive,
7752 * so safe to cast u64 result into s64.
7753 */
7754 dst_reg->smin_value = dst_reg->umin_value;
7755 dst_reg->smax_value = dst_reg->umax_value;
7756 } else {
7757 dst_reg->smin_value = S64_MIN;
7758 dst_reg->smax_value = S64_MAX;
7759 }
7760
7761 __update_reg_bounds(dst_reg);
7762}
7763
3f50f132
JF
7764static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7765 u64 umin_val, u64 umax_val)
07cd2631 7766{
07cd2631
JF
7767 /* We lose all sign bit information (except what we can pick
7768 * up from var_off)
7769 */
3f50f132
JF
7770 dst_reg->s32_min_value = S32_MIN;
7771 dst_reg->s32_max_value = S32_MAX;
7772 /* If we might shift our top bit out, then we know nothing */
7773 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7774 dst_reg->u32_min_value = 0;
7775 dst_reg->u32_max_value = U32_MAX;
7776 } else {
7777 dst_reg->u32_min_value <<= umin_val;
7778 dst_reg->u32_max_value <<= umax_val;
7779 }
7780}
7781
7782static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7783 struct bpf_reg_state *src_reg)
7784{
7785 u32 umax_val = src_reg->u32_max_value;
7786 u32 umin_val = src_reg->u32_min_value;
7787 /* u32 alu operation will zext upper bits */
7788 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7789
7790 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7791 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7792 /* Not required but being careful mark reg64 bounds as unknown so
7793 * that we are forced to pick them up from tnum and zext later and
7794 * if some path skips this step we are still safe.
7795 */
7796 __mark_reg64_unbounded(dst_reg);
7797 __update_reg32_bounds(dst_reg);
7798}
7799
7800static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7801 u64 umin_val, u64 umax_val)
7802{
7803 /* Special case <<32 because it is a common compiler pattern to sign
7804 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7805 * positive we know this shift will also be positive so we can track
7806 * bounds correctly. Otherwise we lose all sign bit information except
7807 * what we can pick up from var_off. Perhaps we can generalize this
7808 * later to shifts of any length.
7809 */
7810 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7811 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7812 else
7813 dst_reg->smax_value = S64_MAX;
7814
7815 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7816 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7817 else
7818 dst_reg->smin_value = S64_MIN;
7819
07cd2631
JF
7820 /* If we might shift our top bit out, then we know nothing */
7821 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7822 dst_reg->umin_value = 0;
7823 dst_reg->umax_value = U64_MAX;
7824 } else {
7825 dst_reg->umin_value <<= umin_val;
7826 dst_reg->umax_value <<= umax_val;
7827 }
3f50f132
JF
7828}
7829
7830static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7831 struct bpf_reg_state *src_reg)
7832{
7833 u64 umax_val = src_reg->umax_value;
7834 u64 umin_val = src_reg->umin_value;
7835
7836 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7837 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7838 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7839
07cd2631
JF
7840 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7841 /* We may learn something more from the var_off */
7842 __update_reg_bounds(dst_reg);
7843}
7844
3f50f132
JF
7845static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7846 struct bpf_reg_state *src_reg)
7847{
7848 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7849 u32 umax_val = src_reg->u32_max_value;
7850 u32 umin_val = src_reg->u32_min_value;
7851
7852 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7853 * be negative, then either:
7854 * 1) src_reg might be zero, so the sign bit of the result is
7855 * unknown, so we lose our signed bounds
7856 * 2) it's known negative, thus the unsigned bounds capture the
7857 * signed bounds
7858 * 3) the signed bounds cross zero, so they tell us nothing
7859 * about the result
7860 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7861 * unsigned bounds capture the signed bounds.
3f50f132
JF
7862 * Thus, in all cases it suffices to blow away our signed bounds
7863 * and rely on inferring new ones from the unsigned bounds and
7864 * var_off of the result.
7865 */
7866 dst_reg->s32_min_value = S32_MIN;
7867 dst_reg->s32_max_value = S32_MAX;
7868
7869 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7870 dst_reg->u32_min_value >>= umax_val;
7871 dst_reg->u32_max_value >>= umin_val;
7872
7873 __mark_reg64_unbounded(dst_reg);
7874 __update_reg32_bounds(dst_reg);
7875}
7876
07cd2631
JF
7877static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7878 struct bpf_reg_state *src_reg)
7879{
7880 u64 umax_val = src_reg->umax_value;
7881 u64 umin_val = src_reg->umin_value;
7882
7883 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7884 * be negative, then either:
7885 * 1) src_reg might be zero, so the sign bit of the result is
7886 * unknown, so we lose our signed bounds
7887 * 2) it's known negative, thus the unsigned bounds capture the
7888 * signed bounds
7889 * 3) the signed bounds cross zero, so they tell us nothing
7890 * about the result
7891 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7892 * unsigned bounds capture the signed bounds.
07cd2631
JF
7893 * Thus, in all cases it suffices to blow away our signed bounds
7894 * and rely on inferring new ones from the unsigned bounds and
7895 * var_off of the result.
7896 */
7897 dst_reg->smin_value = S64_MIN;
7898 dst_reg->smax_value = S64_MAX;
7899 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7900 dst_reg->umin_value >>= umax_val;
7901 dst_reg->umax_value >>= umin_val;
3f50f132
JF
7902
7903 /* Its not easy to operate on alu32 bounds here because it depends
7904 * on bits being shifted in. Take easy way out and mark unbounded
7905 * so we can recalculate later from tnum.
7906 */
7907 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7908 __update_reg_bounds(dst_reg);
7909}
7910
3f50f132
JF
7911static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7912 struct bpf_reg_state *src_reg)
07cd2631 7913{
3f50f132 7914 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
7915
7916 /* Upon reaching here, src_known is true and
7917 * umax_val is equal to umin_val.
7918 */
3f50f132
JF
7919 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7920 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 7921
3f50f132
JF
7922 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7923
7924 /* blow away the dst_reg umin_value/umax_value and rely on
7925 * dst_reg var_off to refine the result.
7926 */
7927 dst_reg->u32_min_value = 0;
7928 dst_reg->u32_max_value = U32_MAX;
7929
7930 __mark_reg64_unbounded(dst_reg);
7931 __update_reg32_bounds(dst_reg);
7932}
7933
7934static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7935 struct bpf_reg_state *src_reg)
7936{
7937 u64 umin_val = src_reg->umin_value;
7938
7939 /* Upon reaching here, src_known is true and umax_val is equal
7940 * to umin_val.
7941 */
7942 dst_reg->smin_value >>= umin_val;
7943 dst_reg->smax_value >>= umin_val;
7944
7945 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
7946
7947 /* blow away the dst_reg umin_value/umax_value and rely on
7948 * dst_reg var_off to refine the result.
7949 */
7950 dst_reg->umin_value = 0;
7951 dst_reg->umax_value = U64_MAX;
3f50f132
JF
7952
7953 /* Its not easy to operate on alu32 bounds here because it depends
7954 * on bits being shifted in from upper 32-bits. Take easy way out
7955 * and mark unbounded so we can recalculate later from tnum.
7956 */
7957 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7958 __update_reg_bounds(dst_reg);
7959}
7960
468f6eaf
JH
7961/* WARNING: This function does calculations on 64-bit values, but the actual
7962 * execution may occur on 32-bit values. Therefore, things like bitshifts
7963 * need extra checks in the 32-bit case.
7964 */
f1174f77
EC
7965static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7966 struct bpf_insn *insn,
7967 struct bpf_reg_state *dst_reg,
7968 struct bpf_reg_state src_reg)
969bf05e 7969{
638f5b90 7970 struct bpf_reg_state *regs = cur_regs(env);
48461135 7971 u8 opcode = BPF_OP(insn->code);
b0b3fb67 7972 bool src_known;
b03c9f9f
EC
7973 s64 smin_val, smax_val;
7974 u64 umin_val, umax_val;
3f50f132
JF
7975 s32 s32_min_val, s32_max_val;
7976 u32 u32_min_val, u32_max_val;
468f6eaf 7977 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 7978 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 7979 int ret;
b799207e 7980
b03c9f9f
EC
7981 smin_val = src_reg.smin_value;
7982 smax_val = src_reg.smax_value;
7983 umin_val = src_reg.umin_value;
7984 umax_val = src_reg.umax_value;
f23cc643 7985
3f50f132
JF
7986 s32_min_val = src_reg.s32_min_value;
7987 s32_max_val = src_reg.s32_max_value;
7988 u32_min_val = src_reg.u32_min_value;
7989 u32_max_val = src_reg.u32_max_value;
7990
7991 if (alu32) {
7992 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
7993 if ((src_known &&
7994 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7995 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7996 /* Taint dst register if offset had invalid bounds
7997 * derived from e.g. dead branches.
7998 */
7999 __mark_reg_unknown(env, dst_reg);
8000 return 0;
8001 }
8002 } else {
8003 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
8004 if ((src_known &&
8005 (smin_val != smax_val || umin_val != umax_val)) ||
8006 smin_val > smax_val || umin_val > umax_val) {
8007 /* Taint dst register if offset had invalid bounds
8008 * derived from e.g. dead branches.
8009 */
8010 __mark_reg_unknown(env, dst_reg);
8011 return 0;
8012 }
6f16101e
DB
8013 }
8014
bb7f0f98
AS
8015 if (!src_known &&
8016 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8017 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8018 return 0;
8019 }
8020
f5288193
DB
8021 if (sanitize_needed(opcode)) {
8022 ret = sanitize_val_alu(env, insn);
8023 if (ret < 0)
8024 return sanitize_err(env, insn, ret, NULL, NULL);
8025 }
8026
3f50f132
JF
8027 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8028 * There are two classes of instructions: The first class we track both
8029 * alu32 and alu64 sign/unsigned bounds independently this provides the
8030 * greatest amount of precision when alu operations are mixed with jmp32
8031 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8032 * and BPF_OR. This is possible because these ops have fairly easy to
8033 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8034 * See alu32 verifier tests for examples. The second class of
8035 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8036 * with regards to tracking sign/unsigned bounds because the bits may
8037 * cross subreg boundaries in the alu64 case. When this happens we mark
8038 * the reg unbounded in the subreg bound space and use the resulting
8039 * tnum to calculate an approximation of the sign/unsigned bounds.
8040 */
48461135
JB
8041 switch (opcode) {
8042 case BPF_ADD:
3f50f132 8043 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 8044 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 8045 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
8046 break;
8047 case BPF_SUB:
3f50f132 8048 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 8049 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 8050 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
8051 break;
8052 case BPF_MUL:
3f50f132
JF
8053 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8054 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 8055 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
8056 break;
8057 case BPF_AND:
3f50f132
JF
8058 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8059 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 8060 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
8061 break;
8062 case BPF_OR:
3f50f132
JF
8063 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8064 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 8065 scalar_min_max_or(dst_reg, &src_reg);
48461135 8066 break;
2921c90d
YS
8067 case BPF_XOR:
8068 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8069 scalar32_min_max_xor(dst_reg, &src_reg);
8070 scalar_min_max_xor(dst_reg, &src_reg);
8071 break;
48461135 8072 case BPF_LSH:
468f6eaf
JH
8073 if (umax_val >= insn_bitness) {
8074 /* Shifts greater than 31 or 63 are undefined.
8075 * This includes shifts by a negative number.
b03c9f9f 8076 */
61bd5218 8077 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8078 break;
8079 }
3f50f132
JF
8080 if (alu32)
8081 scalar32_min_max_lsh(dst_reg, &src_reg);
8082 else
8083 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
8084 break;
8085 case BPF_RSH:
468f6eaf
JH
8086 if (umax_val >= insn_bitness) {
8087 /* Shifts greater than 31 or 63 are undefined.
8088 * This includes shifts by a negative number.
b03c9f9f 8089 */
61bd5218 8090 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8091 break;
8092 }
3f50f132
JF
8093 if (alu32)
8094 scalar32_min_max_rsh(dst_reg, &src_reg);
8095 else
8096 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 8097 break;
9cbe1f5a
YS
8098 case BPF_ARSH:
8099 if (umax_val >= insn_bitness) {
8100 /* Shifts greater than 31 or 63 are undefined.
8101 * This includes shifts by a negative number.
8102 */
8103 mark_reg_unknown(env, regs, insn->dst_reg);
8104 break;
8105 }
3f50f132
JF
8106 if (alu32)
8107 scalar32_min_max_arsh(dst_reg, &src_reg);
8108 else
8109 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 8110 break;
48461135 8111 default:
61bd5218 8112 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
8113 break;
8114 }
8115
3f50f132
JF
8116 /* ALU32 ops are zero extended into 64bit register */
8117 if (alu32)
8118 zext_32_to_64(dst_reg);
468f6eaf 8119
294f2fc6 8120 __update_reg_bounds(dst_reg);
b03c9f9f
EC
8121 __reg_deduce_bounds(dst_reg);
8122 __reg_bound_offset(dst_reg);
f1174f77
EC
8123 return 0;
8124}
8125
8126/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8127 * and var_off.
8128 */
8129static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8130 struct bpf_insn *insn)
8131{
f4d7e40a
AS
8132 struct bpf_verifier_state *vstate = env->cur_state;
8133 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8134 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
8135 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8136 u8 opcode = BPF_OP(insn->code);
b5dc0163 8137 int err;
f1174f77
EC
8138
8139 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
8140 src_reg = NULL;
8141 if (dst_reg->type != SCALAR_VALUE)
8142 ptr_reg = dst_reg;
75748837
AS
8143 else
8144 /* Make sure ID is cleared otherwise dst_reg min/max could be
8145 * incorrectly propagated into other registers by find_equal_scalars()
8146 */
8147 dst_reg->id = 0;
f1174f77
EC
8148 if (BPF_SRC(insn->code) == BPF_X) {
8149 src_reg = &regs[insn->src_reg];
f1174f77
EC
8150 if (src_reg->type != SCALAR_VALUE) {
8151 if (dst_reg->type != SCALAR_VALUE) {
8152 /* Combining two pointers by any ALU op yields
82abbf8d
AS
8153 * an arbitrary scalar. Disallow all math except
8154 * pointer subtraction
f1174f77 8155 */
dd066823 8156 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
8157 mark_reg_unknown(env, regs, insn->dst_reg);
8158 return 0;
f1174f77 8159 }
82abbf8d
AS
8160 verbose(env, "R%d pointer %s pointer prohibited\n",
8161 insn->dst_reg,
8162 bpf_alu_string[opcode >> 4]);
8163 return -EACCES;
f1174f77
EC
8164 } else {
8165 /* scalar += pointer
8166 * This is legal, but we have to reverse our
8167 * src/dest handling in computing the range
8168 */
b5dc0163
AS
8169 err = mark_chain_precision(env, insn->dst_reg);
8170 if (err)
8171 return err;
82abbf8d
AS
8172 return adjust_ptr_min_max_vals(env, insn,
8173 src_reg, dst_reg);
f1174f77
EC
8174 }
8175 } else if (ptr_reg) {
8176 /* pointer += scalar */
b5dc0163
AS
8177 err = mark_chain_precision(env, insn->src_reg);
8178 if (err)
8179 return err;
82abbf8d
AS
8180 return adjust_ptr_min_max_vals(env, insn,
8181 dst_reg, src_reg);
f1174f77
EC
8182 }
8183 } else {
8184 /* Pretend the src is a reg with a known value, since we only
8185 * need to be able to read from this state.
8186 */
8187 off_reg.type = SCALAR_VALUE;
b03c9f9f 8188 __mark_reg_known(&off_reg, insn->imm);
f1174f77 8189 src_reg = &off_reg;
82abbf8d
AS
8190 if (ptr_reg) /* pointer += K */
8191 return adjust_ptr_min_max_vals(env, insn,
8192 ptr_reg, src_reg);
f1174f77
EC
8193 }
8194
8195 /* Got here implies adding two SCALAR_VALUEs */
8196 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 8197 print_verifier_state(env, state);
61bd5218 8198 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
8199 return -EINVAL;
8200 }
8201 if (WARN_ON(!src_reg)) {
f4d7e40a 8202 print_verifier_state(env, state);
61bd5218 8203 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
8204 return -EINVAL;
8205 }
8206 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
8207}
8208
17a52670 8209/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 8210static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8211{
638f5b90 8212 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
8213 u8 opcode = BPF_OP(insn->code);
8214 int err;
8215
8216 if (opcode == BPF_END || opcode == BPF_NEG) {
8217 if (opcode == BPF_NEG) {
8218 if (BPF_SRC(insn->code) != 0 ||
8219 insn->src_reg != BPF_REG_0 ||
8220 insn->off != 0 || insn->imm != 0) {
61bd5218 8221 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
8222 return -EINVAL;
8223 }
8224 } else {
8225 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
8226 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8227 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 8228 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
8229 return -EINVAL;
8230 }
8231 }
8232
8233 /* check src operand */
dc503a8a 8234 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8235 if (err)
8236 return err;
8237
1be7f75d 8238 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 8239 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
8240 insn->dst_reg);
8241 return -EACCES;
8242 }
8243
17a52670 8244 /* check dest operand */
dc503a8a 8245 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8246 if (err)
8247 return err;
8248
8249 } else if (opcode == BPF_MOV) {
8250
8251 if (BPF_SRC(insn->code) == BPF_X) {
8252 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8253 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8254 return -EINVAL;
8255 }
8256
8257 /* check src operand */
dc503a8a 8258 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8259 if (err)
8260 return err;
8261 } else {
8262 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8263 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8264 return -EINVAL;
8265 }
8266 }
8267
fbeb1603
AF
8268 /* check dest operand, mark as required later */
8269 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8270 if (err)
8271 return err;
8272
8273 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
8274 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8275 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8276
17a52670
AS
8277 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8278 /* case: R1 = R2
8279 * copy register state to dest reg
8280 */
75748837
AS
8281 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8282 /* Assign src and dst registers the same ID
8283 * that will be used by find_equal_scalars()
8284 * to propagate min/max range.
8285 */
8286 src_reg->id = ++env->id_gen;
e434b8cd
JW
8287 *dst_reg = *src_reg;
8288 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8289 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 8290 } else {
f1174f77 8291 /* R1 = (u32) R2 */
1be7f75d 8292 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
8293 verbose(env,
8294 "R%d partial copy of pointer\n",
1be7f75d
AS
8295 insn->src_reg);
8296 return -EACCES;
e434b8cd
JW
8297 } else if (src_reg->type == SCALAR_VALUE) {
8298 *dst_reg = *src_reg;
75748837
AS
8299 /* Make sure ID is cleared otherwise
8300 * dst_reg min/max could be incorrectly
8301 * propagated into src_reg by find_equal_scalars()
8302 */
8303 dst_reg->id = 0;
e434b8cd 8304 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8305 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
8306 } else {
8307 mark_reg_unknown(env, regs,
8308 insn->dst_reg);
1be7f75d 8309 }
3f50f132 8310 zext_32_to_64(dst_reg);
17a52670
AS
8311 }
8312 } else {
8313 /* case: R = imm
8314 * remember the value we stored into this reg
8315 */
fbeb1603
AF
8316 /* clear any state __mark_reg_known doesn't set */
8317 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 8318 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
8319 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8320 __mark_reg_known(regs + insn->dst_reg,
8321 insn->imm);
8322 } else {
8323 __mark_reg_known(regs + insn->dst_reg,
8324 (u32)insn->imm);
8325 }
17a52670
AS
8326 }
8327
8328 } else if (opcode > BPF_END) {
61bd5218 8329 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
8330 return -EINVAL;
8331
8332 } else { /* all other ALU ops: and, sub, xor, add, ... */
8333
17a52670
AS
8334 if (BPF_SRC(insn->code) == BPF_X) {
8335 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8336 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8337 return -EINVAL;
8338 }
8339 /* check src1 operand */
dc503a8a 8340 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8341 if (err)
8342 return err;
8343 } else {
8344 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8345 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8346 return -EINVAL;
8347 }
8348 }
8349
8350 /* check src2 operand */
dc503a8a 8351 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8352 if (err)
8353 return err;
8354
8355 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8356 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 8357 verbose(env, "div by zero\n");
17a52670
AS
8358 return -EINVAL;
8359 }
8360
229394e8
RV
8361 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8362 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8363 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8364
8365 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 8366 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
8367 return -EINVAL;
8368 }
8369 }
8370
1a0dc1ac 8371 /* check dest operand */
dc503a8a 8372 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
8373 if (err)
8374 return err;
8375
f1174f77 8376 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
8377 }
8378
8379 return 0;
8380}
8381
c6a9efa1
PC
8382static void __find_good_pkt_pointers(struct bpf_func_state *state,
8383 struct bpf_reg_state *dst_reg,
6d94e741 8384 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
8385{
8386 struct bpf_reg_state *reg;
8387 int i;
8388
8389 for (i = 0; i < MAX_BPF_REG; i++) {
8390 reg = &state->regs[i];
8391 if (reg->type == type && reg->id == dst_reg->id)
8392 /* keep the maximum range already checked */
8393 reg->range = max(reg->range, new_range);
8394 }
8395
8396 bpf_for_each_spilled_reg(i, state, reg) {
8397 if (!reg)
8398 continue;
8399 if (reg->type == type && reg->id == dst_reg->id)
8400 reg->range = max(reg->range, new_range);
8401 }
8402}
8403
f4d7e40a 8404static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 8405 struct bpf_reg_state *dst_reg,
f8ddadc4 8406 enum bpf_reg_type type,
fb2a311a 8407 bool range_right_open)
969bf05e 8408{
6d94e741 8409 int new_range, i;
2d2be8ca 8410
fb2a311a
DB
8411 if (dst_reg->off < 0 ||
8412 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
8413 /* This doesn't give us any range */
8414 return;
8415
b03c9f9f
EC
8416 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8417 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
8418 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8419 * than pkt_end, but that's because it's also less than pkt.
8420 */
8421 return;
8422
fb2a311a
DB
8423 new_range = dst_reg->off;
8424 if (range_right_open)
8425 new_range--;
8426
8427 /* Examples for register markings:
2d2be8ca 8428 *
fb2a311a 8429 * pkt_data in dst register:
2d2be8ca
DB
8430 *
8431 * r2 = r3;
8432 * r2 += 8;
8433 * if (r2 > pkt_end) goto <handle exception>
8434 * <access okay>
8435 *
b4e432f1
DB
8436 * r2 = r3;
8437 * r2 += 8;
8438 * if (r2 < pkt_end) goto <access okay>
8439 * <handle exception>
8440 *
2d2be8ca
DB
8441 * Where:
8442 * r2 == dst_reg, pkt_end == src_reg
8443 * r2=pkt(id=n,off=8,r=0)
8444 * r3=pkt(id=n,off=0,r=0)
8445 *
fb2a311a 8446 * pkt_data in src register:
2d2be8ca
DB
8447 *
8448 * r2 = r3;
8449 * r2 += 8;
8450 * if (pkt_end >= r2) goto <access okay>
8451 * <handle exception>
8452 *
b4e432f1
DB
8453 * r2 = r3;
8454 * r2 += 8;
8455 * if (pkt_end <= r2) goto <handle exception>
8456 * <access okay>
8457 *
2d2be8ca
DB
8458 * Where:
8459 * pkt_end == dst_reg, r2 == src_reg
8460 * r2=pkt(id=n,off=8,r=0)
8461 * r3=pkt(id=n,off=0,r=0)
8462 *
8463 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8464 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8465 * and [r3, r3 + 8-1) respectively is safe to access depending on
8466 * the check.
969bf05e 8467 */
2d2be8ca 8468
f1174f77
EC
8469 /* If our ids match, then we must have the same max_value. And we
8470 * don't care about the other reg's fixed offset, since if it's too big
8471 * the range won't allow anything.
8472 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8473 */
c6a9efa1
PC
8474 for (i = 0; i <= vstate->curframe; i++)
8475 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8476 new_range);
969bf05e
AS
8477}
8478
3f50f132 8479static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8480{
3f50f132
JF
8481 struct tnum subreg = tnum_subreg(reg->var_off);
8482 s32 sval = (s32)val;
a72dafaf 8483
3f50f132
JF
8484 switch (opcode) {
8485 case BPF_JEQ:
8486 if (tnum_is_const(subreg))
8487 return !!tnum_equals_const(subreg, val);
8488 break;
8489 case BPF_JNE:
8490 if (tnum_is_const(subreg))
8491 return !tnum_equals_const(subreg, val);
8492 break;
8493 case BPF_JSET:
8494 if ((~subreg.mask & subreg.value) & val)
8495 return 1;
8496 if (!((subreg.mask | subreg.value) & val))
8497 return 0;
8498 break;
8499 case BPF_JGT:
8500 if (reg->u32_min_value > val)
8501 return 1;
8502 else if (reg->u32_max_value <= val)
8503 return 0;
8504 break;
8505 case BPF_JSGT:
8506 if (reg->s32_min_value > sval)
8507 return 1;
ee114dd6 8508 else if (reg->s32_max_value <= sval)
3f50f132
JF
8509 return 0;
8510 break;
8511 case BPF_JLT:
8512 if (reg->u32_max_value < val)
8513 return 1;
8514 else if (reg->u32_min_value >= val)
8515 return 0;
8516 break;
8517 case BPF_JSLT:
8518 if (reg->s32_max_value < sval)
8519 return 1;
8520 else if (reg->s32_min_value >= sval)
8521 return 0;
8522 break;
8523 case BPF_JGE:
8524 if (reg->u32_min_value >= val)
8525 return 1;
8526 else if (reg->u32_max_value < val)
8527 return 0;
8528 break;
8529 case BPF_JSGE:
8530 if (reg->s32_min_value >= sval)
8531 return 1;
8532 else if (reg->s32_max_value < sval)
8533 return 0;
8534 break;
8535 case BPF_JLE:
8536 if (reg->u32_max_value <= val)
8537 return 1;
8538 else if (reg->u32_min_value > val)
8539 return 0;
8540 break;
8541 case BPF_JSLE:
8542 if (reg->s32_max_value <= sval)
8543 return 1;
8544 else if (reg->s32_min_value > sval)
8545 return 0;
8546 break;
8547 }
4f7b3e82 8548
3f50f132
JF
8549 return -1;
8550}
092ed096 8551
3f50f132
JF
8552
8553static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8554{
8555 s64 sval = (s64)val;
a72dafaf 8556
4f7b3e82
AS
8557 switch (opcode) {
8558 case BPF_JEQ:
8559 if (tnum_is_const(reg->var_off))
8560 return !!tnum_equals_const(reg->var_off, val);
8561 break;
8562 case BPF_JNE:
8563 if (tnum_is_const(reg->var_off))
8564 return !tnum_equals_const(reg->var_off, val);
8565 break;
960ea056
JK
8566 case BPF_JSET:
8567 if ((~reg->var_off.mask & reg->var_off.value) & val)
8568 return 1;
8569 if (!((reg->var_off.mask | reg->var_off.value) & val))
8570 return 0;
8571 break;
4f7b3e82
AS
8572 case BPF_JGT:
8573 if (reg->umin_value > val)
8574 return 1;
8575 else if (reg->umax_value <= val)
8576 return 0;
8577 break;
8578 case BPF_JSGT:
a72dafaf 8579 if (reg->smin_value > sval)
4f7b3e82 8580 return 1;
ee114dd6 8581 else if (reg->smax_value <= sval)
4f7b3e82
AS
8582 return 0;
8583 break;
8584 case BPF_JLT:
8585 if (reg->umax_value < val)
8586 return 1;
8587 else if (reg->umin_value >= val)
8588 return 0;
8589 break;
8590 case BPF_JSLT:
a72dafaf 8591 if (reg->smax_value < sval)
4f7b3e82 8592 return 1;
a72dafaf 8593 else if (reg->smin_value >= sval)
4f7b3e82
AS
8594 return 0;
8595 break;
8596 case BPF_JGE:
8597 if (reg->umin_value >= val)
8598 return 1;
8599 else if (reg->umax_value < val)
8600 return 0;
8601 break;
8602 case BPF_JSGE:
a72dafaf 8603 if (reg->smin_value >= sval)
4f7b3e82 8604 return 1;
a72dafaf 8605 else if (reg->smax_value < sval)
4f7b3e82
AS
8606 return 0;
8607 break;
8608 case BPF_JLE:
8609 if (reg->umax_value <= val)
8610 return 1;
8611 else if (reg->umin_value > val)
8612 return 0;
8613 break;
8614 case BPF_JSLE:
a72dafaf 8615 if (reg->smax_value <= sval)
4f7b3e82 8616 return 1;
a72dafaf 8617 else if (reg->smin_value > sval)
4f7b3e82
AS
8618 return 0;
8619 break;
8620 }
8621
8622 return -1;
8623}
8624
3f50f132
JF
8625/* compute branch direction of the expression "if (reg opcode val) goto target;"
8626 * and return:
8627 * 1 - branch will be taken and "goto target" will be executed
8628 * 0 - branch will not be taken and fall-through to next insn
8629 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8630 * range [0,10]
604dca5e 8631 */
3f50f132
JF
8632static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8633 bool is_jmp32)
604dca5e 8634{
cac616db
JF
8635 if (__is_pointer_value(false, reg)) {
8636 if (!reg_type_not_null(reg->type))
8637 return -1;
8638
8639 /* If pointer is valid tests against zero will fail so we can
8640 * use this to direct branch taken.
8641 */
8642 if (val != 0)
8643 return -1;
8644
8645 switch (opcode) {
8646 case BPF_JEQ:
8647 return 0;
8648 case BPF_JNE:
8649 return 1;
8650 default:
8651 return -1;
8652 }
8653 }
604dca5e 8654
3f50f132
JF
8655 if (is_jmp32)
8656 return is_branch32_taken(reg, val, opcode);
8657 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8658}
8659
6d94e741
AS
8660static int flip_opcode(u32 opcode)
8661{
8662 /* How can we transform "a <op> b" into "b <op> a"? */
8663 static const u8 opcode_flip[16] = {
8664 /* these stay the same */
8665 [BPF_JEQ >> 4] = BPF_JEQ,
8666 [BPF_JNE >> 4] = BPF_JNE,
8667 [BPF_JSET >> 4] = BPF_JSET,
8668 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8669 [BPF_JGE >> 4] = BPF_JLE,
8670 [BPF_JGT >> 4] = BPF_JLT,
8671 [BPF_JLE >> 4] = BPF_JGE,
8672 [BPF_JLT >> 4] = BPF_JGT,
8673 [BPF_JSGE >> 4] = BPF_JSLE,
8674 [BPF_JSGT >> 4] = BPF_JSLT,
8675 [BPF_JSLE >> 4] = BPF_JSGE,
8676 [BPF_JSLT >> 4] = BPF_JSGT
8677 };
8678 return opcode_flip[opcode >> 4];
8679}
8680
8681static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8682 struct bpf_reg_state *src_reg,
8683 u8 opcode)
8684{
8685 struct bpf_reg_state *pkt;
8686
8687 if (src_reg->type == PTR_TO_PACKET_END) {
8688 pkt = dst_reg;
8689 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8690 pkt = src_reg;
8691 opcode = flip_opcode(opcode);
8692 } else {
8693 return -1;
8694 }
8695
8696 if (pkt->range >= 0)
8697 return -1;
8698
8699 switch (opcode) {
8700 case BPF_JLE:
8701 /* pkt <= pkt_end */
8702 fallthrough;
8703 case BPF_JGT:
8704 /* pkt > pkt_end */
8705 if (pkt->range == BEYOND_PKT_END)
8706 /* pkt has at last one extra byte beyond pkt_end */
8707 return opcode == BPF_JGT;
8708 break;
8709 case BPF_JLT:
8710 /* pkt < pkt_end */
8711 fallthrough;
8712 case BPF_JGE:
8713 /* pkt >= pkt_end */
8714 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8715 return opcode == BPF_JGE;
8716 break;
8717 }
8718 return -1;
8719}
8720
48461135
JB
8721/* Adjusts the register min/max values in the case that the dst_reg is the
8722 * variable register that we are working on, and src_reg is a constant or we're
8723 * simply doing a BPF_K check.
f1174f77 8724 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8725 */
8726static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8727 struct bpf_reg_state *false_reg,
8728 u64 val, u32 val32,
092ed096 8729 u8 opcode, bool is_jmp32)
48461135 8730{
3f50f132
JF
8731 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8732 struct tnum false_64off = false_reg->var_off;
8733 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8734 struct tnum true_64off = true_reg->var_off;
8735 s64 sval = (s64)val;
8736 s32 sval32 = (s32)val32;
a72dafaf 8737
f1174f77
EC
8738 /* If the dst_reg is a pointer, we can't learn anything about its
8739 * variable offset from the compare (unless src_reg were a pointer into
8740 * the same object, but we don't bother with that.
8741 * Since false_reg and true_reg have the same type by construction, we
8742 * only need to check one of them for pointerness.
8743 */
8744 if (__is_pointer_value(false, false_reg))
8745 return;
4cabc5b1 8746
48461135
JB
8747 switch (opcode) {
8748 case BPF_JEQ:
48461135 8749 case BPF_JNE:
a72dafaf
JW
8750 {
8751 struct bpf_reg_state *reg =
8752 opcode == BPF_JEQ ? true_reg : false_reg;
8753
e688c3db
AS
8754 /* JEQ/JNE comparison doesn't change the register equivalence.
8755 * r1 = r2;
8756 * if (r1 == 42) goto label;
8757 * ...
8758 * label: // here both r1 and r2 are known to be 42.
8759 *
8760 * Hence when marking register as known preserve it's ID.
48461135 8761 */
3f50f132
JF
8762 if (is_jmp32)
8763 __mark_reg32_known(reg, val32);
8764 else
e688c3db 8765 ___mark_reg_known(reg, val);
48461135 8766 break;
a72dafaf 8767 }
960ea056 8768 case BPF_JSET:
3f50f132
JF
8769 if (is_jmp32) {
8770 false_32off = tnum_and(false_32off, tnum_const(~val32));
8771 if (is_power_of_2(val32))
8772 true_32off = tnum_or(true_32off,
8773 tnum_const(val32));
8774 } else {
8775 false_64off = tnum_and(false_64off, tnum_const(~val));
8776 if (is_power_of_2(val))
8777 true_64off = tnum_or(true_64off,
8778 tnum_const(val));
8779 }
960ea056 8780 break;
48461135 8781 case BPF_JGE:
a72dafaf
JW
8782 case BPF_JGT:
8783 {
3f50f132
JF
8784 if (is_jmp32) {
8785 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8786 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8787
8788 false_reg->u32_max_value = min(false_reg->u32_max_value,
8789 false_umax);
8790 true_reg->u32_min_value = max(true_reg->u32_min_value,
8791 true_umin);
8792 } else {
8793 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8794 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8795
8796 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8797 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8798 }
b03c9f9f 8799 break;
a72dafaf 8800 }
48461135 8801 case BPF_JSGE:
a72dafaf
JW
8802 case BPF_JSGT:
8803 {
3f50f132
JF
8804 if (is_jmp32) {
8805 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8806 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8807
3f50f132
JF
8808 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8809 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8810 } else {
8811 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8812 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8813
8814 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8815 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8816 }
48461135 8817 break;
a72dafaf 8818 }
b4e432f1 8819 case BPF_JLE:
a72dafaf
JW
8820 case BPF_JLT:
8821 {
3f50f132
JF
8822 if (is_jmp32) {
8823 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8824 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8825
8826 false_reg->u32_min_value = max(false_reg->u32_min_value,
8827 false_umin);
8828 true_reg->u32_max_value = min(true_reg->u32_max_value,
8829 true_umax);
8830 } else {
8831 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8832 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8833
8834 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8835 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8836 }
b4e432f1 8837 break;
a72dafaf 8838 }
b4e432f1 8839 case BPF_JSLE:
a72dafaf
JW
8840 case BPF_JSLT:
8841 {
3f50f132
JF
8842 if (is_jmp32) {
8843 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8844 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8845
3f50f132
JF
8846 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8847 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8848 } else {
8849 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8850 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8851
8852 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8853 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8854 }
b4e432f1 8855 break;
a72dafaf 8856 }
48461135 8857 default:
0fc31b10 8858 return;
48461135
JB
8859 }
8860
3f50f132
JF
8861 if (is_jmp32) {
8862 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8863 tnum_subreg(false_32off));
8864 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8865 tnum_subreg(true_32off));
8866 __reg_combine_32_into_64(false_reg);
8867 __reg_combine_32_into_64(true_reg);
8868 } else {
8869 false_reg->var_off = false_64off;
8870 true_reg->var_off = true_64off;
8871 __reg_combine_64_into_32(false_reg);
8872 __reg_combine_64_into_32(true_reg);
8873 }
48461135
JB
8874}
8875
f1174f77
EC
8876/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8877 * the variable reg.
48461135
JB
8878 */
8879static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8880 struct bpf_reg_state *false_reg,
8881 u64 val, u32 val32,
092ed096 8882 u8 opcode, bool is_jmp32)
48461135 8883{
6d94e741 8884 opcode = flip_opcode(opcode);
0fc31b10
JH
8885 /* This uses zero as "not present in table"; luckily the zero opcode,
8886 * BPF_JA, can't get here.
b03c9f9f 8887 */
0fc31b10 8888 if (opcode)
3f50f132 8889 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8890}
8891
8892/* Regs are known to be equal, so intersect their min/max/var_off */
8893static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8894 struct bpf_reg_state *dst_reg)
8895{
b03c9f9f
EC
8896 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8897 dst_reg->umin_value);
8898 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8899 dst_reg->umax_value);
8900 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8901 dst_reg->smin_value);
8902 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8903 dst_reg->smax_value);
f1174f77
EC
8904 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8905 dst_reg->var_off);
b03c9f9f
EC
8906 /* We might have learned new bounds from the var_off. */
8907 __update_reg_bounds(src_reg);
8908 __update_reg_bounds(dst_reg);
8909 /* We might have learned something about the sign bit. */
8910 __reg_deduce_bounds(src_reg);
8911 __reg_deduce_bounds(dst_reg);
8912 /* We might have learned some bits from the bounds. */
8913 __reg_bound_offset(src_reg);
8914 __reg_bound_offset(dst_reg);
8915 /* Intersecting with the old var_off might have improved our bounds
8916 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8917 * then new var_off is (0; 0x7f...fc) which improves our umax.
8918 */
8919 __update_reg_bounds(src_reg);
8920 __update_reg_bounds(dst_reg);
f1174f77
EC
8921}
8922
8923static void reg_combine_min_max(struct bpf_reg_state *true_src,
8924 struct bpf_reg_state *true_dst,
8925 struct bpf_reg_state *false_src,
8926 struct bpf_reg_state *false_dst,
8927 u8 opcode)
8928{
8929 switch (opcode) {
8930 case BPF_JEQ:
8931 __reg_combine_min_max(true_src, true_dst);
8932 break;
8933 case BPF_JNE:
8934 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 8935 break;
4cabc5b1 8936 }
48461135
JB
8937}
8938
fd978bf7
JS
8939static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8940 struct bpf_reg_state *reg, u32 id,
840b9615 8941 bool is_null)
57a09bf0 8942{
93c230e3
MKL
8943 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8944 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
8945 /* Old offset (both fixed and variable parts) should
8946 * have been known-zero, because we don't allow pointer
8947 * arithmetic on pointers that might be NULL.
8948 */
b03c9f9f
EC
8949 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8950 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 8951 reg->off)) {
b03c9f9f
EC
8952 __mark_reg_known_zero(reg);
8953 reg->off = 0;
f1174f77
EC
8954 }
8955 if (is_null) {
8956 reg->type = SCALAR_VALUE;
1b986589
MKL
8957 /* We don't need id and ref_obj_id from this point
8958 * onwards anymore, thus we should better reset it,
8959 * so that state pruning has chances to take effect.
8960 */
8961 reg->id = 0;
8962 reg->ref_obj_id = 0;
4ddb7416
DB
8963
8964 return;
8965 }
8966
8967 mark_ptr_not_null_reg(reg);
8968
8969 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
8970 /* For not-NULL ptr, reg->ref_obj_id will be reset
8971 * in release_reg_references().
8972 *
8973 * reg->id is still used by spin_lock ptr. Other
8974 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
8975 */
8976 reg->id = 0;
56f668df 8977 }
57a09bf0
TG
8978 }
8979}
8980
c6a9efa1
PC
8981static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8982 bool is_null)
8983{
8984 struct bpf_reg_state *reg;
8985 int i;
8986
8987 for (i = 0; i < MAX_BPF_REG; i++)
8988 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8989
8990 bpf_for_each_spilled_reg(i, state, reg) {
8991 if (!reg)
8992 continue;
8993 mark_ptr_or_null_reg(state, reg, id, is_null);
8994 }
8995}
8996
57a09bf0
TG
8997/* The logic is similar to find_good_pkt_pointers(), both could eventually
8998 * be folded together at some point.
8999 */
840b9615
JS
9000static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9001 bool is_null)
57a09bf0 9002{
f4d7e40a 9003 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 9004 struct bpf_reg_state *regs = state->regs;
1b986589 9005 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 9006 u32 id = regs[regno].id;
c6a9efa1 9007 int i;
57a09bf0 9008
1b986589
MKL
9009 if (ref_obj_id && ref_obj_id == id && is_null)
9010 /* regs[regno] is in the " == NULL" branch.
9011 * No one could have freed the reference state before
9012 * doing the NULL check.
9013 */
9014 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9015
c6a9efa1
PC
9016 for (i = 0; i <= vstate->curframe; i++)
9017 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
9018}
9019
5beca081
DB
9020static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9021 struct bpf_reg_state *dst_reg,
9022 struct bpf_reg_state *src_reg,
9023 struct bpf_verifier_state *this_branch,
9024 struct bpf_verifier_state *other_branch)
9025{
9026 if (BPF_SRC(insn->code) != BPF_X)
9027 return false;
9028
092ed096
JW
9029 /* Pointers are always 64-bit. */
9030 if (BPF_CLASS(insn->code) == BPF_JMP32)
9031 return false;
9032
5beca081
DB
9033 switch (BPF_OP(insn->code)) {
9034 case BPF_JGT:
9035 if ((dst_reg->type == PTR_TO_PACKET &&
9036 src_reg->type == PTR_TO_PACKET_END) ||
9037 (dst_reg->type == PTR_TO_PACKET_META &&
9038 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9039 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9040 find_good_pkt_pointers(this_branch, dst_reg,
9041 dst_reg->type, false);
6d94e741 9042 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9043 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9044 src_reg->type == PTR_TO_PACKET) ||
9045 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9046 src_reg->type == PTR_TO_PACKET_META)) {
9047 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9048 find_good_pkt_pointers(other_branch, src_reg,
9049 src_reg->type, true);
6d94e741 9050 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9051 } else {
9052 return false;
9053 }
9054 break;
9055 case BPF_JLT:
9056 if ((dst_reg->type == PTR_TO_PACKET &&
9057 src_reg->type == PTR_TO_PACKET_END) ||
9058 (dst_reg->type == PTR_TO_PACKET_META &&
9059 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9060 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9061 find_good_pkt_pointers(other_branch, dst_reg,
9062 dst_reg->type, true);
6d94e741 9063 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
9064 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9065 src_reg->type == PTR_TO_PACKET) ||
9066 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9067 src_reg->type == PTR_TO_PACKET_META)) {
9068 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9069 find_good_pkt_pointers(this_branch, src_reg,
9070 src_reg->type, false);
6d94e741 9071 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
9072 } else {
9073 return false;
9074 }
9075 break;
9076 case BPF_JGE:
9077 if ((dst_reg->type == PTR_TO_PACKET &&
9078 src_reg->type == PTR_TO_PACKET_END) ||
9079 (dst_reg->type == PTR_TO_PACKET_META &&
9080 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9081 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9082 find_good_pkt_pointers(this_branch, dst_reg,
9083 dst_reg->type, true);
6d94e741 9084 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
9085 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9086 src_reg->type == PTR_TO_PACKET) ||
9087 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9088 src_reg->type == PTR_TO_PACKET_META)) {
9089 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9090 find_good_pkt_pointers(other_branch, src_reg,
9091 src_reg->type, false);
6d94e741 9092 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
9093 } else {
9094 return false;
9095 }
9096 break;
9097 case BPF_JLE:
9098 if ((dst_reg->type == PTR_TO_PACKET &&
9099 src_reg->type == PTR_TO_PACKET_END) ||
9100 (dst_reg->type == PTR_TO_PACKET_META &&
9101 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9102 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9103 find_good_pkt_pointers(other_branch, dst_reg,
9104 dst_reg->type, false);
6d94e741 9105 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
9106 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9107 src_reg->type == PTR_TO_PACKET) ||
9108 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9109 src_reg->type == PTR_TO_PACKET_META)) {
9110 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9111 find_good_pkt_pointers(this_branch, src_reg,
9112 src_reg->type, true);
6d94e741 9113 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
9114 } else {
9115 return false;
9116 }
9117 break;
9118 default:
9119 return false;
9120 }
9121
9122 return true;
9123}
9124
75748837
AS
9125static void find_equal_scalars(struct bpf_verifier_state *vstate,
9126 struct bpf_reg_state *known_reg)
9127{
9128 struct bpf_func_state *state;
9129 struct bpf_reg_state *reg;
9130 int i, j;
9131
9132 for (i = 0; i <= vstate->curframe; i++) {
9133 state = vstate->frame[i];
9134 for (j = 0; j < MAX_BPF_REG; j++) {
9135 reg = &state->regs[j];
9136 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9137 *reg = *known_reg;
9138 }
9139
9140 bpf_for_each_spilled_reg(j, state, reg) {
9141 if (!reg)
9142 continue;
9143 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9144 *reg = *known_reg;
9145 }
9146 }
9147}
9148
58e2af8b 9149static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
9150 struct bpf_insn *insn, int *insn_idx)
9151{
f4d7e40a
AS
9152 struct bpf_verifier_state *this_branch = env->cur_state;
9153 struct bpf_verifier_state *other_branch;
9154 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 9155 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 9156 u8 opcode = BPF_OP(insn->code);
092ed096 9157 bool is_jmp32;
fb8d251e 9158 int pred = -1;
17a52670
AS
9159 int err;
9160
092ed096
JW
9161 /* Only conditional jumps are expected to reach here. */
9162 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9163 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
9164 return -EINVAL;
9165 }
9166
9167 if (BPF_SRC(insn->code) == BPF_X) {
9168 if (insn->imm != 0) {
092ed096 9169 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9170 return -EINVAL;
9171 }
9172
9173 /* check src1 operand */
dc503a8a 9174 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9175 if (err)
9176 return err;
1be7f75d
AS
9177
9178 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 9179 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
9180 insn->src_reg);
9181 return -EACCES;
9182 }
fb8d251e 9183 src_reg = &regs[insn->src_reg];
17a52670
AS
9184 } else {
9185 if (insn->src_reg != BPF_REG_0) {
092ed096 9186 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9187 return -EINVAL;
9188 }
9189 }
9190
9191 /* check src2 operand */
dc503a8a 9192 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9193 if (err)
9194 return err;
9195
1a0dc1ac 9196 dst_reg = &regs[insn->dst_reg];
092ed096 9197 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 9198
3f50f132
JF
9199 if (BPF_SRC(insn->code) == BPF_K) {
9200 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9201 } else if (src_reg->type == SCALAR_VALUE &&
9202 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9203 pred = is_branch_taken(dst_reg,
9204 tnum_subreg(src_reg->var_off).value,
9205 opcode,
9206 is_jmp32);
9207 } else if (src_reg->type == SCALAR_VALUE &&
9208 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9209 pred = is_branch_taken(dst_reg,
9210 src_reg->var_off.value,
9211 opcode,
9212 is_jmp32);
6d94e741
AS
9213 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9214 reg_is_pkt_pointer_any(src_reg) &&
9215 !is_jmp32) {
9216 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
9217 }
9218
b5dc0163 9219 if (pred >= 0) {
cac616db
JF
9220 /* If we get here with a dst_reg pointer type it is because
9221 * above is_branch_taken() special cased the 0 comparison.
9222 */
9223 if (!__is_pointer_value(false, dst_reg))
9224 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
9225 if (BPF_SRC(insn->code) == BPF_X && !err &&
9226 !__is_pointer_value(false, src_reg))
b5dc0163
AS
9227 err = mark_chain_precision(env, insn->src_reg);
9228 if (err)
9229 return err;
9230 }
9183671a 9231
fb8d251e 9232 if (pred == 1) {
9183671a
DB
9233 /* Only follow the goto, ignore fall-through. If needed, push
9234 * the fall-through branch for simulation under speculative
9235 * execution.
9236 */
9237 if (!env->bypass_spec_v1 &&
9238 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9239 *insn_idx))
9240 return -EFAULT;
fb8d251e
AS
9241 *insn_idx += insn->off;
9242 return 0;
9243 } else if (pred == 0) {
9183671a
DB
9244 /* Only follow the fall-through branch, since that's where the
9245 * program will go. If needed, push the goto branch for
9246 * simulation under speculative execution.
fb8d251e 9247 */
9183671a
DB
9248 if (!env->bypass_spec_v1 &&
9249 !sanitize_speculative_path(env, insn,
9250 *insn_idx + insn->off + 1,
9251 *insn_idx))
9252 return -EFAULT;
fb8d251e 9253 return 0;
17a52670
AS
9254 }
9255
979d63d5
DB
9256 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9257 false);
17a52670
AS
9258 if (!other_branch)
9259 return -EFAULT;
f4d7e40a 9260 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 9261
48461135
JB
9262 /* detect if we are comparing against a constant value so we can adjust
9263 * our min/max values for our dst register.
f1174f77
EC
9264 * this is only legit if both are scalars (or pointers to the same
9265 * object, I suppose, but we don't support that right now), because
9266 * otherwise the different base pointers mean the offsets aren't
9267 * comparable.
48461135
JB
9268 */
9269 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 9270 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 9271
f1174f77 9272 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
9273 src_reg->type == SCALAR_VALUE) {
9274 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
9275 (is_jmp32 &&
9276 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 9277 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 9278 dst_reg,
3f50f132
JF
9279 src_reg->var_off.value,
9280 tnum_subreg(src_reg->var_off).value,
092ed096
JW
9281 opcode, is_jmp32);
9282 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
9283 (is_jmp32 &&
9284 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 9285 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 9286 src_reg,
3f50f132
JF
9287 dst_reg->var_off.value,
9288 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
9289 opcode, is_jmp32);
9290 else if (!is_jmp32 &&
9291 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 9292 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
9293 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9294 &other_branch_regs[insn->dst_reg],
092ed096 9295 src_reg, dst_reg, opcode);
e688c3db
AS
9296 if (src_reg->id &&
9297 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
9298 find_equal_scalars(this_branch, src_reg);
9299 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9300 }
9301
f1174f77
EC
9302 }
9303 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 9304 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
9305 dst_reg, insn->imm, (u32)insn->imm,
9306 opcode, is_jmp32);
48461135
JB
9307 }
9308
e688c3db
AS
9309 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9310 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
9311 find_equal_scalars(this_branch, dst_reg);
9312 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9313 }
9314
092ed096
JW
9315 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9316 * NOTE: these optimizations below are related with pointer comparison
9317 * which will never be JMP32.
9318 */
9319 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 9320 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
9321 reg_type_may_be_null(dst_reg->type)) {
9322 /* Mark all identical registers in each branch as either
57a09bf0
TG
9323 * safe or unknown depending R == 0 or R != 0 conditional.
9324 */
840b9615
JS
9325 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9326 opcode == BPF_JNE);
9327 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9328 opcode == BPF_JEQ);
5beca081
DB
9329 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9330 this_branch, other_branch) &&
9331 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
9332 verbose(env, "R%d pointer comparison prohibited\n",
9333 insn->dst_reg);
1be7f75d 9334 return -EACCES;
17a52670 9335 }
06ee7115 9336 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 9337 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
9338 return 0;
9339}
9340
17a52670 9341/* verify BPF_LD_IMM64 instruction */
58e2af8b 9342static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9343{
d8eca5bb 9344 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 9345 struct bpf_reg_state *regs = cur_regs(env);
4976b718 9346 struct bpf_reg_state *dst_reg;
d8eca5bb 9347 struct bpf_map *map;
17a52670
AS
9348 int err;
9349
9350 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 9351 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
9352 return -EINVAL;
9353 }
9354 if (insn->off != 0) {
61bd5218 9355 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
9356 return -EINVAL;
9357 }
9358
dc503a8a 9359 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9360 if (err)
9361 return err;
9362
4976b718 9363 dst_reg = &regs[insn->dst_reg];
6b173873 9364 if (insn->src_reg == 0) {
6b173873
JK
9365 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9366
4976b718 9367 dst_reg->type = SCALAR_VALUE;
b03c9f9f 9368 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 9369 return 0;
6b173873 9370 }
17a52670 9371
4976b718
HL
9372 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9373 mark_reg_known_zero(env, regs, insn->dst_reg);
9374
9375 dst_reg->type = aux->btf_var.reg_type;
9376 switch (dst_reg->type) {
9377 case PTR_TO_MEM:
9378 dst_reg->mem_size = aux->btf_var.mem_size;
9379 break;
9380 case PTR_TO_BTF_ID:
eaa6bcb7 9381 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 9382 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
9383 dst_reg->btf_id = aux->btf_var.btf_id;
9384 break;
9385 default:
9386 verbose(env, "bpf verifier is misconfigured\n");
9387 return -EFAULT;
9388 }
9389 return 0;
9390 }
9391
69c087ba
YS
9392 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9393 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
9394 u32 subprogno = find_subprog(env,
9395 env->insn_idx + insn->imm + 1);
69c087ba
YS
9396
9397 if (!aux->func_info) {
9398 verbose(env, "missing btf func_info\n");
9399 return -EINVAL;
9400 }
9401 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9402 verbose(env, "callback function not static\n");
9403 return -EINVAL;
9404 }
9405
9406 dst_reg->type = PTR_TO_FUNC;
9407 dst_reg->subprogno = subprogno;
9408 return 0;
9409 }
9410
d8eca5bb
DB
9411 map = env->used_maps[aux->map_index];
9412 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 9413 dst_reg->map_ptr = map;
d8eca5bb 9414
387544bf
AS
9415 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9416 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
9417 dst_reg->type = PTR_TO_MAP_VALUE;
9418 dst_reg->off = aux->map_off;
d8eca5bb 9419 if (map_value_has_spin_lock(map))
4976b718 9420 dst_reg->id = ++env->id_gen;
387544bf
AS
9421 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9422 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 9423 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
9424 } else {
9425 verbose(env, "bpf verifier is misconfigured\n");
9426 return -EINVAL;
9427 }
17a52670 9428
17a52670
AS
9429 return 0;
9430}
9431
96be4325
DB
9432static bool may_access_skb(enum bpf_prog_type type)
9433{
9434 switch (type) {
9435 case BPF_PROG_TYPE_SOCKET_FILTER:
9436 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 9437 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
9438 return true;
9439 default:
9440 return false;
9441 }
9442}
9443
ddd872bc
AS
9444/* verify safety of LD_ABS|LD_IND instructions:
9445 * - they can only appear in the programs where ctx == skb
9446 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9447 * preserve R6-R9, and store return value into R0
9448 *
9449 * Implicit input:
9450 * ctx == skb == R6 == CTX
9451 *
9452 * Explicit input:
9453 * SRC == any register
9454 * IMM == 32-bit immediate
9455 *
9456 * Output:
9457 * R0 - 8/16/32-bit skb data converted to cpu endianness
9458 */
58e2af8b 9459static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9460{
638f5b90 9461 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9462 static const int ctx_reg = BPF_REG_6;
ddd872bc 9463 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9464 int i, err;
9465
7e40781c 9466 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9467 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9468 return -EINVAL;
9469 }
9470
e0cea7ce
DB
9471 if (!env->ops->gen_ld_abs) {
9472 verbose(env, "bpf verifier is misconfigured\n");
9473 return -EINVAL;
9474 }
9475
ddd872bc 9476 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9477 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9478 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9479 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9480 return -EINVAL;
9481 }
9482
9483 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9484 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9485 if (err)
9486 return err;
9487
fd978bf7
JS
9488 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9489 * gen_ld_abs() may terminate the program at runtime, leading to
9490 * reference leak.
9491 */
9492 err = check_reference_leak(env);
9493 if (err) {
9494 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9495 return err;
9496 }
9497
d83525ca
AS
9498 if (env->cur_state->active_spin_lock) {
9499 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9500 return -EINVAL;
9501 }
9502
6d4f151a 9503 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9504 verbose(env,
9505 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9506 return -EINVAL;
9507 }
9508
9509 if (mode == BPF_IND) {
9510 /* check explicit source operand */
dc503a8a 9511 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9512 if (err)
9513 return err;
9514 }
9515
6d4f151a
DB
9516 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9517 if (err < 0)
9518 return err;
9519
ddd872bc 9520 /* reset caller saved regs to unreadable */
dc503a8a 9521 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9522 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9523 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9524 }
ddd872bc
AS
9525
9526 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9527 * the value fetched from the packet.
9528 * Already marked as written above.
ddd872bc 9529 */
61bd5218 9530 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9531 /* ld_abs load up to 32-bit skb data. */
9532 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9533 return 0;
9534}
9535
390ee7e2
AS
9536static int check_return_code(struct bpf_verifier_env *env)
9537{
5cf1e914 9538 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9539 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9540 struct bpf_reg_state *reg;
9541 struct tnum range = tnum_range(0, 1);
7e40781c 9542 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9543 int err;
bfc6bb74
AS
9544 struct bpf_func_state *frame = env->cur_state->frame[0];
9545 const bool is_subprog = frame->subprogno;
27ae7997 9546
9e4e01df 9547 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9548 if (!is_subprog &&
9549 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9550 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9551 !prog->aux->attach_func_proto->type)
9552 return 0;
9553
8fb33b60 9554 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9555 * to return the value from eBPF program.
9556 * Make sure that it's readable at this time
9557 * of bpf_exit, which means that program wrote
9558 * something into it earlier
9559 */
9560 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9561 if (err)
9562 return err;
9563
9564 if (is_pointer_value(env, BPF_REG_0)) {
9565 verbose(env, "R0 leaks addr as return value\n");
9566 return -EACCES;
9567 }
390ee7e2 9568
f782e2c3 9569 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
9570
9571 if (frame->in_async_callback_fn) {
9572 /* enforce return zero from async callbacks like timer */
9573 if (reg->type != SCALAR_VALUE) {
9574 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9575 reg_type_str[reg->type]);
9576 return -EINVAL;
9577 }
9578
9579 if (!tnum_in(tnum_const(0), reg->var_off)) {
9580 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9581 return -EINVAL;
9582 }
9583 return 0;
9584 }
9585
f782e2c3
DB
9586 if (is_subprog) {
9587 if (reg->type != SCALAR_VALUE) {
9588 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9589 reg_type_str[reg->type]);
9590 return -EINVAL;
9591 }
9592 return 0;
9593 }
9594
7e40781c 9595 switch (prog_type) {
983695fa
DB
9596 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9597 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9598 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9599 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9600 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9601 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9602 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9603 range = tnum_range(1, 1);
77241217
SF
9604 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9605 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9606 range = tnum_range(0, 3);
ed4ed404 9607 break;
390ee7e2 9608 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9609 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9610 range = tnum_range(0, 3);
9611 enforce_attach_type_range = tnum_range(2, 3);
9612 }
ed4ed404 9613 break;
390ee7e2
AS
9614 case BPF_PROG_TYPE_CGROUP_SOCK:
9615 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9616 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9617 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9618 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9619 break;
15ab09bd
AS
9620 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9621 if (!env->prog->aux->attach_btf_id)
9622 return 0;
9623 range = tnum_const(0);
9624 break;
15d83c4d 9625 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9626 switch (env->prog->expected_attach_type) {
9627 case BPF_TRACE_FENTRY:
9628 case BPF_TRACE_FEXIT:
9629 range = tnum_const(0);
9630 break;
9631 case BPF_TRACE_RAW_TP:
9632 case BPF_MODIFY_RETURN:
15d83c4d 9633 return 0;
2ec0616e
DB
9634 case BPF_TRACE_ITER:
9635 break;
e92888c7
YS
9636 default:
9637 return -ENOTSUPP;
9638 }
15d83c4d 9639 break;
e9ddbb77
JS
9640 case BPF_PROG_TYPE_SK_LOOKUP:
9641 range = tnum_range(SK_DROP, SK_PASS);
9642 break;
e92888c7
YS
9643 case BPF_PROG_TYPE_EXT:
9644 /* freplace program can return anything as its return value
9645 * depends on the to-be-replaced kernel func or bpf program.
9646 */
390ee7e2
AS
9647 default:
9648 return 0;
9649 }
9650
390ee7e2 9651 if (reg->type != SCALAR_VALUE) {
61bd5218 9652 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9653 reg_type_str[reg->type]);
9654 return -EINVAL;
9655 }
9656
9657 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9658 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9659 return -EINVAL;
9660 }
5cf1e914 9661
9662 if (!tnum_is_unknown(enforce_attach_type_range) &&
9663 tnum_in(enforce_attach_type_range, reg->var_off))
9664 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9665 return 0;
9666}
9667
475fb78f
AS
9668/* non-recursive DFS pseudo code
9669 * 1 procedure DFS-iterative(G,v):
9670 * 2 label v as discovered
9671 * 3 let S be a stack
9672 * 4 S.push(v)
9673 * 5 while S is not empty
9674 * 6 t <- S.pop()
9675 * 7 if t is what we're looking for:
9676 * 8 return t
9677 * 9 for all edges e in G.adjacentEdges(t) do
9678 * 10 if edge e is already labelled
9679 * 11 continue with the next edge
9680 * 12 w <- G.adjacentVertex(t,e)
9681 * 13 if vertex w is not discovered and not explored
9682 * 14 label e as tree-edge
9683 * 15 label w as discovered
9684 * 16 S.push(w)
9685 * 17 continue at 5
9686 * 18 else if vertex w is discovered
9687 * 19 label e as back-edge
9688 * 20 else
9689 * 21 // vertex w is explored
9690 * 22 label e as forward- or cross-edge
9691 * 23 label t as explored
9692 * 24 S.pop()
9693 *
9694 * convention:
9695 * 0x10 - discovered
9696 * 0x11 - discovered and fall-through edge labelled
9697 * 0x12 - discovered and fall-through and branch edges labelled
9698 * 0x20 - explored
9699 */
9700
9701enum {
9702 DISCOVERED = 0x10,
9703 EXPLORED = 0x20,
9704 FALLTHROUGH = 1,
9705 BRANCH = 2,
9706};
9707
dc2a4ebc
AS
9708static u32 state_htab_size(struct bpf_verifier_env *env)
9709{
9710 return env->prog->len;
9711}
9712
5d839021
AS
9713static struct bpf_verifier_state_list **explored_state(
9714 struct bpf_verifier_env *env,
9715 int idx)
9716{
dc2a4ebc
AS
9717 struct bpf_verifier_state *cur = env->cur_state;
9718 struct bpf_func_state *state = cur->frame[cur->curframe];
9719
9720 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9721}
9722
9723static void init_explored_state(struct bpf_verifier_env *env, int idx)
9724{
a8f500af 9725 env->insn_aux_data[idx].prune_point = true;
5d839021 9726}
f1bca824 9727
59e2e27d
WAF
9728enum {
9729 DONE_EXPLORING = 0,
9730 KEEP_EXPLORING = 1,
9731};
9732
475fb78f
AS
9733/* t, w, e - match pseudo-code above:
9734 * t - index of current instruction
9735 * w - next instruction
9736 * e - edge
9737 */
2589726d
AS
9738static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9739 bool loop_ok)
475fb78f 9740{
7df737e9
AS
9741 int *insn_stack = env->cfg.insn_stack;
9742 int *insn_state = env->cfg.insn_state;
9743
475fb78f 9744 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9745 return DONE_EXPLORING;
475fb78f
AS
9746
9747 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9748 return DONE_EXPLORING;
475fb78f
AS
9749
9750 if (w < 0 || w >= env->prog->len) {
d9762e84 9751 verbose_linfo(env, t, "%d: ", t);
61bd5218 9752 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9753 return -EINVAL;
9754 }
9755
f1bca824
AS
9756 if (e == BRANCH)
9757 /* mark branch target for state pruning */
5d839021 9758 init_explored_state(env, w);
f1bca824 9759
475fb78f
AS
9760 if (insn_state[w] == 0) {
9761 /* tree-edge */
9762 insn_state[t] = DISCOVERED | e;
9763 insn_state[w] = DISCOVERED;
7df737e9 9764 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9765 return -E2BIG;
7df737e9 9766 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9767 return KEEP_EXPLORING;
475fb78f 9768 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9769 if (loop_ok && env->bpf_capable)
59e2e27d 9770 return DONE_EXPLORING;
d9762e84
MKL
9771 verbose_linfo(env, t, "%d: ", t);
9772 verbose_linfo(env, w, "%d: ", w);
61bd5218 9773 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9774 return -EINVAL;
9775 } else if (insn_state[w] == EXPLORED) {
9776 /* forward- or cross-edge */
9777 insn_state[t] = DISCOVERED | e;
9778 } else {
61bd5218 9779 verbose(env, "insn state internal bug\n");
475fb78f
AS
9780 return -EFAULT;
9781 }
59e2e27d
WAF
9782 return DONE_EXPLORING;
9783}
9784
efdb22de
YS
9785static int visit_func_call_insn(int t, int insn_cnt,
9786 struct bpf_insn *insns,
9787 struct bpf_verifier_env *env,
9788 bool visit_callee)
9789{
9790 int ret;
9791
9792 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9793 if (ret)
9794 return ret;
9795
9796 if (t + 1 < insn_cnt)
9797 init_explored_state(env, t + 1);
9798 if (visit_callee) {
9799 init_explored_state(env, t);
86fc6ee6
AS
9800 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9801 /* It's ok to allow recursion from CFG point of
9802 * view. __check_func_call() will do the actual
9803 * check.
9804 */
9805 bpf_pseudo_func(insns + t));
efdb22de
YS
9806 }
9807 return ret;
9808}
9809
59e2e27d
WAF
9810/* Visits the instruction at index t and returns one of the following:
9811 * < 0 - an error occurred
9812 * DONE_EXPLORING - the instruction was fully explored
9813 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9814 */
9815static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9816{
9817 struct bpf_insn *insns = env->prog->insnsi;
9818 int ret;
9819
69c087ba
YS
9820 if (bpf_pseudo_func(insns + t))
9821 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9822
59e2e27d
WAF
9823 /* All non-branch instructions have a single fall-through edge. */
9824 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9825 BPF_CLASS(insns[t].code) != BPF_JMP32)
9826 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9827
9828 switch (BPF_OP(insns[t].code)) {
9829 case BPF_EXIT:
9830 return DONE_EXPLORING;
9831
9832 case BPF_CALL:
bfc6bb74
AS
9833 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9834 /* Mark this call insn to trigger is_state_visited() check
9835 * before call itself is processed by __check_func_call().
9836 * Otherwise new async state will be pushed for further
9837 * exploration.
9838 */
9839 init_explored_state(env, t);
efdb22de
YS
9840 return visit_func_call_insn(t, insn_cnt, insns, env,
9841 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9842
9843 case BPF_JA:
9844 if (BPF_SRC(insns[t].code) != BPF_K)
9845 return -EINVAL;
9846
9847 /* unconditional jump with single edge */
9848 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9849 true);
9850 if (ret)
9851 return ret;
9852
9853 /* unconditional jmp is not a good pruning point,
9854 * but it's marked, since backtracking needs
9855 * to record jmp history in is_state_visited().
9856 */
9857 init_explored_state(env, t + insns[t].off + 1);
9858 /* tell verifier to check for equivalent states
9859 * after every call and jump
9860 */
9861 if (t + 1 < insn_cnt)
9862 init_explored_state(env, t + 1);
9863
9864 return ret;
9865
9866 default:
9867 /* conditional jump with two edges */
9868 init_explored_state(env, t);
9869 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9870 if (ret)
9871 return ret;
9872
9873 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9874 }
475fb78f
AS
9875}
9876
9877/* non-recursive depth-first-search to detect loops in BPF program
9878 * loop == back-edge in directed graph
9879 */
58e2af8b 9880static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9881{
475fb78f 9882 int insn_cnt = env->prog->len;
7df737e9 9883 int *insn_stack, *insn_state;
475fb78f 9884 int ret = 0;
59e2e27d 9885 int i;
475fb78f 9886
7df737e9 9887 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9888 if (!insn_state)
9889 return -ENOMEM;
9890
7df737e9 9891 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 9892 if (!insn_stack) {
71dde681 9893 kvfree(insn_state);
475fb78f
AS
9894 return -ENOMEM;
9895 }
9896
9897 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9898 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 9899 env->cfg.cur_stack = 1;
475fb78f 9900
59e2e27d
WAF
9901 while (env->cfg.cur_stack > 0) {
9902 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 9903
59e2e27d
WAF
9904 ret = visit_insn(t, insn_cnt, env);
9905 switch (ret) {
9906 case DONE_EXPLORING:
9907 insn_state[t] = EXPLORED;
9908 env->cfg.cur_stack--;
9909 break;
9910 case KEEP_EXPLORING:
9911 break;
9912 default:
9913 if (ret > 0) {
9914 verbose(env, "visit_insn internal bug\n");
9915 ret = -EFAULT;
475fb78f 9916 }
475fb78f 9917 goto err_free;
59e2e27d 9918 }
475fb78f
AS
9919 }
9920
59e2e27d 9921 if (env->cfg.cur_stack < 0) {
61bd5218 9922 verbose(env, "pop stack internal bug\n");
475fb78f
AS
9923 ret = -EFAULT;
9924 goto err_free;
9925 }
475fb78f 9926
475fb78f
AS
9927 for (i = 0; i < insn_cnt; i++) {
9928 if (insn_state[i] != EXPLORED) {
61bd5218 9929 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
9930 ret = -EINVAL;
9931 goto err_free;
9932 }
9933 }
9934 ret = 0; /* cfg looks good */
9935
9936err_free:
71dde681
AS
9937 kvfree(insn_state);
9938 kvfree(insn_stack);
7df737e9 9939 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
9940 return ret;
9941}
9942
09b28d76
AS
9943static int check_abnormal_return(struct bpf_verifier_env *env)
9944{
9945 int i;
9946
9947 for (i = 1; i < env->subprog_cnt; i++) {
9948 if (env->subprog_info[i].has_ld_abs) {
9949 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9950 return -EINVAL;
9951 }
9952 if (env->subprog_info[i].has_tail_call) {
9953 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9954 return -EINVAL;
9955 }
9956 }
9957 return 0;
9958}
9959
838e9690
YS
9960/* The minimum supported BTF func info size */
9961#define MIN_BPF_FUNCINFO_SIZE 8
9962#define MAX_FUNCINFO_REC_SIZE 252
9963
c454a46b
MKL
9964static int check_btf_func(struct bpf_verifier_env *env,
9965 const union bpf_attr *attr,
af2ac3e1 9966 bpfptr_t uattr)
838e9690 9967{
09b28d76 9968 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 9969 u32 i, nfuncs, urec_size, min_size;
838e9690 9970 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 9971 struct bpf_func_info *krecord;
8c1b6e69 9972 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
9973 struct bpf_prog *prog;
9974 const struct btf *btf;
af2ac3e1 9975 bpfptr_t urecord;
d0b2818e 9976 u32 prev_offset = 0;
09b28d76 9977 bool scalar_return;
e7ed83d6 9978 int ret = -ENOMEM;
838e9690
YS
9979
9980 nfuncs = attr->func_info_cnt;
09b28d76
AS
9981 if (!nfuncs) {
9982 if (check_abnormal_return(env))
9983 return -EINVAL;
838e9690 9984 return 0;
09b28d76 9985 }
838e9690
YS
9986
9987 if (nfuncs != env->subprog_cnt) {
9988 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9989 return -EINVAL;
9990 }
9991
9992 urec_size = attr->func_info_rec_size;
9993 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9994 urec_size > MAX_FUNCINFO_REC_SIZE ||
9995 urec_size % sizeof(u32)) {
9996 verbose(env, "invalid func info rec size %u\n", urec_size);
9997 return -EINVAL;
9998 }
9999
c454a46b
MKL
10000 prog = env->prog;
10001 btf = prog->aux->btf;
838e9690 10002
af2ac3e1 10003 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
10004 min_size = min_t(u32, krec_size, urec_size);
10005
ba64e7d8 10006 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
10007 if (!krecord)
10008 return -ENOMEM;
8c1b6e69
AS
10009 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10010 if (!info_aux)
10011 goto err_free;
ba64e7d8 10012
838e9690
YS
10013 for (i = 0; i < nfuncs; i++) {
10014 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10015 if (ret) {
10016 if (ret == -E2BIG) {
10017 verbose(env, "nonzero tailing record in func info");
10018 /* set the size kernel expects so loader can zero
10019 * out the rest of the record.
10020 */
af2ac3e1
AS
10021 if (copy_to_bpfptr_offset(uattr,
10022 offsetof(union bpf_attr, func_info_rec_size),
10023 &min_size, sizeof(min_size)))
838e9690
YS
10024 ret = -EFAULT;
10025 }
c454a46b 10026 goto err_free;
838e9690
YS
10027 }
10028
af2ac3e1 10029 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10030 ret = -EFAULT;
c454a46b 10031 goto err_free;
838e9690
YS
10032 }
10033
d30d42e0 10034 /* check insn_off */
09b28d76 10035 ret = -EINVAL;
838e9690 10036 if (i == 0) {
d30d42e0 10037 if (krecord[i].insn_off) {
838e9690 10038 verbose(env,
d30d42e0
MKL
10039 "nonzero insn_off %u for the first func info record",
10040 krecord[i].insn_off);
c454a46b 10041 goto err_free;
838e9690 10042 }
d30d42e0 10043 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
10044 verbose(env,
10045 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 10046 krecord[i].insn_off, prev_offset);
c454a46b 10047 goto err_free;
838e9690
YS
10048 }
10049
d30d42e0 10050 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 10051 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 10052 goto err_free;
838e9690
YS
10053 }
10054
10055 /* check type_id */
ba64e7d8 10056 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 10057 if (!type || !btf_type_is_func(type)) {
838e9690 10058 verbose(env, "invalid type id %d in func info",
ba64e7d8 10059 krecord[i].type_id);
c454a46b 10060 goto err_free;
838e9690 10061 }
51c39bb1 10062 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
10063
10064 func_proto = btf_type_by_id(btf, type->type);
10065 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10066 /* btf_func_check() already verified it during BTF load */
10067 goto err_free;
10068 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10069 scalar_return =
10070 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10071 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10072 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10073 goto err_free;
10074 }
10075 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10076 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10077 goto err_free;
10078 }
10079
d30d42e0 10080 prev_offset = krecord[i].insn_off;
af2ac3e1 10081 bpfptr_add(&urecord, urec_size);
838e9690
YS
10082 }
10083
ba64e7d8
YS
10084 prog->aux->func_info = krecord;
10085 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 10086 prog->aux->func_info_aux = info_aux;
838e9690
YS
10087 return 0;
10088
c454a46b 10089err_free:
ba64e7d8 10090 kvfree(krecord);
8c1b6e69 10091 kfree(info_aux);
838e9690
YS
10092 return ret;
10093}
10094
ba64e7d8
YS
10095static void adjust_btf_func(struct bpf_verifier_env *env)
10096{
8c1b6e69 10097 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
10098 int i;
10099
8c1b6e69 10100 if (!aux->func_info)
ba64e7d8
YS
10101 return;
10102
10103 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 10104 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
10105}
10106
c454a46b
MKL
10107#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10108 sizeof(((struct bpf_line_info *)(0))->line_col))
10109#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10110
10111static int check_btf_line(struct bpf_verifier_env *env,
10112 const union bpf_attr *attr,
af2ac3e1 10113 bpfptr_t uattr)
c454a46b
MKL
10114{
10115 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10116 struct bpf_subprog_info *sub;
10117 struct bpf_line_info *linfo;
10118 struct bpf_prog *prog;
10119 const struct btf *btf;
af2ac3e1 10120 bpfptr_t ulinfo;
c454a46b
MKL
10121 int err;
10122
10123 nr_linfo = attr->line_info_cnt;
10124 if (!nr_linfo)
10125 return 0;
0e6491b5
BC
10126 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10127 return -EINVAL;
c454a46b
MKL
10128
10129 rec_size = attr->line_info_rec_size;
10130 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10131 rec_size > MAX_LINEINFO_REC_SIZE ||
10132 rec_size & (sizeof(u32) - 1))
10133 return -EINVAL;
10134
10135 /* Need to zero it in case the userspace may
10136 * pass in a smaller bpf_line_info object.
10137 */
10138 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10139 GFP_KERNEL | __GFP_NOWARN);
10140 if (!linfo)
10141 return -ENOMEM;
10142
10143 prog = env->prog;
10144 btf = prog->aux->btf;
10145
10146 s = 0;
10147 sub = env->subprog_info;
af2ac3e1 10148 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
10149 expected_size = sizeof(struct bpf_line_info);
10150 ncopy = min_t(u32, expected_size, rec_size);
10151 for (i = 0; i < nr_linfo; i++) {
10152 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10153 if (err) {
10154 if (err == -E2BIG) {
10155 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
10156 if (copy_to_bpfptr_offset(uattr,
10157 offsetof(union bpf_attr, line_info_rec_size),
10158 &expected_size, sizeof(expected_size)))
c454a46b
MKL
10159 err = -EFAULT;
10160 }
10161 goto err_free;
10162 }
10163
af2ac3e1 10164 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
10165 err = -EFAULT;
10166 goto err_free;
10167 }
10168
10169 /*
10170 * Check insn_off to ensure
10171 * 1) strictly increasing AND
10172 * 2) bounded by prog->len
10173 *
10174 * The linfo[0].insn_off == 0 check logically falls into
10175 * the later "missing bpf_line_info for func..." case
10176 * because the first linfo[0].insn_off must be the
10177 * first sub also and the first sub must have
10178 * subprog_info[0].start == 0.
10179 */
10180 if ((i && linfo[i].insn_off <= prev_offset) ||
10181 linfo[i].insn_off >= prog->len) {
10182 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10183 i, linfo[i].insn_off, prev_offset,
10184 prog->len);
10185 err = -EINVAL;
10186 goto err_free;
10187 }
10188
fdbaa0be
MKL
10189 if (!prog->insnsi[linfo[i].insn_off].code) {
10190 verbose(env,
10191 "Invalid insn code at line_info[%u].insn_off\n",
10192 i);
10193 err = -EINVAL;
10194 goto err_free;
10195 }
10196
23127b33
MKL
10197 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10198 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
10199 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10200 err = -EINVAL;
10201 goto err_free;
10202 }
10203
10204 if (s != env->subprog_cnt) {
10205 if (linfo[i].insn_off == sub[s].start) {
10206 sub[s].linfo_idx = i;
10207 s++;
10208 } else if (sub[s].start < linfo[i].insn_off) {
10209 verbose(env, "missing bpf_line_info for func#%u\n", s);
10210 err = -EINVAL;
10211 goto err_free;
10212 }
10213 }
10214
10215 prev_offset = linfo[i].insn_off;
af2ac3e1 10216 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
10217 }
10218
10219 if (s != env->subprog_cnt) {
10220 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10221 env->subprog_cnt - s, s);
10222 err = -EINVAL;
10223 goto err_free;
10224 }
10225
10226 prog->aux->linfo = linfo;
10227 prog->aux->nr_linfo = nr_linfo;
10228
10229 return 0;
10230
10231err_free:
10232 kvfree(linfo);
10233 return err;
10234}
10235
10236static int check_btf_info(struct bpf_verifier_env *env,
10237 const union bpf_attr *attr,
af2ac3e1 10238 bpfptr_t uattr)
c454a46b
MKL
10239{
10240 struct btf *btf;
10241 int err;
10242
09b28d76
AS
10243 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10244 if (check_abnormal_return(env))
10245 return -EINVAL;
c454a46b 10246 return 0;
09b28d76 10247 }
c454a46b
MKL
10248
10249 btf = btf_get_by_fd(attr->prog_btf_fd);
10250 if (IS_ERR(btf))
10251 return PTR_ERR(btf);
350a5c4d
AS
10252 if (btf_is_kernel(btf)) {
10253 btf_put(btf);
10254 return -EACCES;
10255 }
c454a46b
MKL
10256 env->prog->aux->btf = btf;
10257
10258 err = check_btf_func(env, attr, uattr);
10259 if (err)
10260 return err;
10261
10262 err = check_btf_line(env, attr, uattr);
10263 if (err)
10264 return err;
10265
10266 return 0;
ba64e7d8
YS
10267}
10268
f1174f77
EC
10269/* check %cur's range satisfies %old's */
10270static bool range_within(struct bpf_reg_state *old,
10271 struct bpf_reg_state *cur)
10272{
b03c9f9f
EC
10273 return old->umin_value <= cur->umin_value &&
10274 old->umax_value >= cur->umax_value &&
10275 old->smin_value <= cur->smin_value &&
fd675184
DB
10276 old->smax_value >= cur->smax_value &&
10277 old->u32_min_value <= cur->u32_min_value &&
10278 old->u32_max_value >= cur->u32_max_value &&
10279 old->s32_min_value <= cur->s32_min_value &&
10280 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
10281}
10282
f1174f77
EC
10283/* If in the old state two registers had the same id, then they need to have
10284 * the same id in the new state as well. But that id could be different from
10285 * the old state, so we need to track the mapping from old to new ids.
10286 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10287 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10288 * regs with a different old id could still have new id 9, we don't care about
10289 * that.
10290 * So we look through our idmap to see if this old id has been seen before. If
10291 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 10292 */
c9e73e3d 10293static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 10294{
f1174f77 10295 unsigned int i;
969bf05e 10296
c9e73e3d 10297 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
10298 if (!idmap[i].old) {
10299 /* Reached an empty slot; haven't seen this id before */
10300 idmap[i].old = old_id;
10301 idmap[i].cur = cur_id;
10302 return true;
10303 }
10304 if (idmap[i].old == old_id)
10305 return idmap[i].cur == cur_id;
10306 }
10307 /* We ran out of idmap slots, which should be impossible */
10308 WARN_ON_ONCE(1);
10309 return false;
10310}
10311
9242b5f5
AS
10312static void clean_func_state(struct bpf_verifier_env *env,
10313 struct bpf_func_state *st)
10314{
10315 enum bpf_reg_liveness live;
10316 int i, j;
10317
10318 for (i = 0; i < BPF_REG_FP; i++) {
10319 live = st->regs[i].live;
10320 /* liveness must not touch this register anymore */
10321 st->regs[i].live |= REG_LIVE_DONE;
10322 if (!(live & REG_LIVE_READ))
10323 /* since the register is unused, clear its state
10324 * to make further comparison simpler
10325 */
f54c7898 10326 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
10327 }
10328
10329 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10330 live = st->stack[i].spilled_ptr.live;
10331 /* liveness must not touch this stack slot anymore */
10332 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10333 if (!(live & REG_LIVE_READ)) {
f54c7898 10334 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
10335 for (j = 0; j < BPF_REG_SIZE; j++)
10336 st->stack[i].slot_type[j] = STACK_INVALID;
10337 }
10338 }
10339}
10340
10341static void clean_verifier_state(struct bpf_verifier_env *env,
10342 struct bpf_verifier_state *st)
10343{
10344 int i;
10345
10346 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10347 /* all regs in this state in all frames were already marked */
10348 return;
10349
10350 for (i = 0; i <= st->curframe; i++)
10351 clean_func_state(env, st->frame[i]);
10352}
10353
10354/* the parentage chains form a tree.
10355 * the verifier states are added to state lists at given insn and
10356 * pushed into state stack for future exploration.
10357 * when the verifier reaches bpf_exit insn some of the verifer states
10358 * stored in the state lists have their final liveness state already,
10359 * but a lot of states will get revised from liveness point of view when
10360 * the verifier explores other branches.
10361 * Example:
10362 * 1: r0 = 1
10363 * 2: if r1 == 100 goto pc+1
10364 * 3: r0 = 2
10365 * 4: exit
10366 * when the verifier reaches exit insn the register r0 in the state list of
10367 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10368 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10369 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10370 *
10371 * Since the verifier pushes the branch states as it sees them while exploring
10372 * the program the condition of walking the branch instruction for the second
10373 * time means that all states below this branch were already explored and
8fb33b60 10374 * their final liveness marks are already propagated.
9242b5f5
AS
10375 * Hence when the verifier completes the search of state list in is_state_visited()
10376 * we can call this clean_live_states() function to mark all liveness states
10377 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10378 * will not be used.
10379 * This function also clears the registers and stack for states that !READ
10380 * to simplify state merging.
10381 *
10382 * Important note here that walking the same branch instruction in the callee
10383 * doesn't meant that the states are DONE. The verifier has to compare
10384 * the callsites
10385 */
10386static void clean_live_states(struct bpf_verifier_env *env, int insn,
10387 struct bpf_verifier_state *cur)
10388{
10389 struct bpf_verifier_state_list *sl;
10390 int i;
10391
5d839021 10392 sl = *explored_state(env, insn);
a8f500af 10393 while (sl) {
2589726d
AS
10394 if (sl->state.branches)
10395 goto next;
dc2a4ebc
AS
10396 if (sl->state.insn_idx != insn ||
10397 sl->state.curframe != cur->curframe)
9242b5f5
AS
10398 goto next;
10399 for (i = 0; i <= cur->curframe; i++)
10400 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10401 goto next;
10402 clean_verifier_state(env, &sl->state);
10403next:
10404 sl = sl->next;
10405 }
10406}
10407
f1174f77 10408/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
10409static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10410 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 10411{
f4d7e40a
AS
10412 bool equal;
10413
dc503a8a
EC
10414 if (!(rold->live & REG_LIVE_READ))
10415 /* explored state didn't use this */
10416 return true;
10417
679c782d 10418 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
10419
10420 if (rold->type == PTR_TO_STACK)
10421 /* two stack pointers are equal only if they're pointing to
10422 * the same stack frame, since fp-8 in foo != fp-8 in bar
10423 */
10424 return equal && rold->frameno == rcur->frameno;
10425
10426 if (equal)
969bf05e
AS
10427 return true;
10428
f1174f77
EC
10429 if (rold->type == NOT_INIT)
10430 /* explored state can't have used this */
969bf05e 10431 return true;
f1174f77
EC
10432 if (rcur->type == NOT_INIT)
10433 return false;
10434 switch (rold->type) {
10435 case SCALAR_VALUE:
e042aa53
DB
10436 if (env->explore_alu_limits)
10437 return false;
f1174f77 10438 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
10439 if (!rold->precise && !rcur->precise)
10440 return true;
f1174f77
EC
10441 /* new val must satisfy old val knowledge */
10442 return range_within(rold, rcur) &&
10443 tnum_in(rold->var_off, rcur->var_off);
10444 } else {
179d1c56
JH
10445 /* We're trying to use a pointer in place of a scalar.
10446 * Even if the scalar was unbounded, this could lead to
10447 * pointer leaks because scalars are allowed to leak
10448 * while pointers are not. We could make this safe in
10449 * special cases if root is calling us, but it's
10450 * probably not worth the hassle.
f1174f77 10451 */
179d1c56 10452 return false;
f1174f77 10453 }
69c087ba 10454 case PTR_TO_MAP_KEY:
f1174f77 10455 case PTR_TO_MAP_VALUE:
1b688a19
EC
10456 /* If the new min/max/var_off satisfy the old ones and
10457 * everything else matches, we are OK.
d83525ca
AS
10458 * 'id' is not compared, since it's only used for maps with
10459 * bpf_spin_lock inside map element and in such cases if
10460 * the rest of the prog is valid for one map element then
10461 * it's valid for all map elements regardless of the key
10462 * used in bpf_map_lookup()
1b688a19
EC
10463 */
10464 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10465 range_within(rold, rcur) &&
10466 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
10467 case PTR_TO_MAP_VALUE_OR_NULL:
10468 /* a PTR_TO_MAP_VALUE could be safe to use as a
10469 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10470 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10471 * checked, doing so could have affected others with the same
10472 * id, and we can't check for that because we lost the id when
10473 * we converted to a PTR_TO_MAP_VALUE.
10474 */
10475 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10476 return false;
10477 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10478 return false;
10479 /* Check our ids match any regs they're supposed to */
10480 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 10481 case PTR_TO_PACKET_META:
f1174f77 10482 case PTR_TO_PACKET:
de8f3a83 10483 if (rcur->type != rold->type)
f1174f77
EC
10484 return false;
10485 /* We must have at least as much range as the old ptr
10486 * did, so that any accesses which were safe before are
10487 * still safe. This is true even if old range < old off,
10488 * since someone could have accessed through (ptr - k), or
10489 * even done ptr -= k in a register, to get a safe access.
10490 */
10491 if (rold->range > rcur->range)
10492 return false;
10493 /* If the offsets don't match, we can't trust our alignment;
10494 * nor can we be sure that we won't fall out of range.
10495 */
10496 if (rold->off != rcur->off)
10497 return false;
10498 /* id relations must be preserved */
10499 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10500 return false;
10501 /* new val must satisfy old val knowledge */
10502 return range_within(rold, rcur) &&
10503 tnum_in(rold->var_off, rcur->var_off);
10504 case PTR_TO_CTX:
10505 case CONST_PTR_TO_MAP:
f1174f77 10506 case PTR_TO_PACKET_END:
d58e468b 10507 case PTR_TO_FLOW_KEYS:
c64b7983
JS
10508 case PTR_TO_SOCKET:
10509 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10510 case PTR_TO_SOCK_COMMON:
10511 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10512 case PTR_TO_TCP_SOCK:
10513 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10514 case PTR_TO_XDP_SOCK:
f1174f77
EC
10515 /* Only valid matches are exact, which memcmp() above
10516 * would have accepted
10517 */
10518 default:
10519 /* Don't know what's going on, just say it's not safe */
10520 return false;
10521 }
969bf05e 10522
f1174f77
EC
10523 /* Shouldn't get here; if we do, say it's not safe */
10524 WARN_ON_ONCE(1);
969bf05e
AS
10525 return false;
10526}
10527
e042aa53
DB
10528static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10529 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
10530{
10531 int i, spi;
10532
638f5b90
AS
10533 /* walk slots of the explored stack and ignore any additional
10534 * slots in the current stack, since explored(safe) state
10535 * didn't use them
10536 */
10537 for (i = 0; i < old->allocated_stack; i++) {
10538 spi = i / BPF_REG_SIZE;
10539
b233920c
AS
10540 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10541 i += BPF_REG_SIZE - 1;
cc2b14d5 10542 /* explored state didn't use this */
fd05e57b 10543 continue;
b233920c 10544 }
cc2b14d5 10545
638f5b90
AS
10546 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10547 continue;
19e2dbb7
AS
10548
10549 /* explored stack has more populated slots than current stack
10550 * and these slots were used
10551 */
10552 if (i >= cur->allocated_stack)
10553 return false;
10554
cc2b14d5
AS
10555 /* if old state was safe with misc data in the stack
10556 * it will be safe with zero-initialized stack.
10557 * The opposite is not true
10558 */
10559 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10560 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10561 continue;
638f5b90
AS
10562 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10563 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10564 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10565 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10566 * this verifier states are not equivalent,
10567 * return false to continue verification of this path
10568 */
10569 return false;
27113c59 10570 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 10571 continue;
27113c59 10572 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 10573 continue;
e042aa53
DB
10574 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10575 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
10576 /* when explored and current stack slot are both storing
10577 * spilled registers, check that stored pointers types
10578 * are the same as well.
10579 * Ex: explored safe path could have stored
10580 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10581 * but current path has stored:
10582 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10583 * such verifier states are not equivalent.
10584 * return false to continue verification of this path
10585 */
10586 return false;
10587 }
10588 return true;
10589}
10590
fd978bf7
JS
10591static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10592{
10593 if (old->acquired_refs != cur->acquired_refs)
10594 return false;
10595 return !memcmp(old->refs, cur->refs,
10596 sizeof(*old->refs) * old->acquired_refs);
10597}
10598
f1bca824
AS
10599/* compare two verifier states
10600 *
10601 * all states stored in state_list are known to be valid, since
10602 * verifier reached 'bpf_exit' instruction through them
10603 *
10604 * this function is called when verifier exploring different branches of
10605 * execution popped from the state stack. If it sees an old state that has
10606 * more strict register state and more strict stack state then this execution
10607 * branch doesn't need to be explored further, since verifier already
10608 * concluded that more strict state leads to valid finish.
10609 *
10610 * Therefore two states are equivalent if register state is more conservative
10611 * and explored stack state is more conservative than the current one.
10612 * Example:
10613 * explored current
10614 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10615 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10616 *
10617 * In other words if current stack state (one being explored) has more
10618 * valid slots than old one that already passed validation, it means
10619 * the verifier can stop exploring and conclude that current state is valid too
10620 *
10621 * Similarly with registers. If explored state has register type as invalid
10622 * whereas register type in current state is meaningful, it means that
10623 * the current state will reach 'bpf_exit' instruction safely
10624 */
c9e73e3d 10625static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 10626 struct bpf_func_state *cur)
f1bca824
AS
10627{
10628 int i;
10629
c9e73e3d
LB
10630 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10631 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
10632 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10633 env->idmap_scratch))
c9e73e3d 10634 return false;
f1bca824 10635
e042aa53 10636 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 10637 return false;
fd978bf7
JS
10638
10639 if (!refsafe(old, cur))
c9e73e3d
LB
10640 return false;
10641
10642 return true;
f1bca824
AS
10643}
10644
f4d7e40a
AS
10645static bool states_equal(struct bpf_verifier_env *env,
10646 struct bpf_verifier_state *old,
10647 struct bpf_verifier_state *cur)
10648{
10649 int i;
10650
10651 if (old->curframe != cur->curframe)
10652 return false;
10653
979d63d5
DB
10654 /* Verification state from speculative execution simulation
10655 * must never prune a non-speculative execution one.
10656 */
10657 if (old->speculative && !cur->speculative)
10658 return false;
10659
d83525ca
AS
10660 if (old->active_spin_lock != cur->active_spin_lock)
10661 return false;
10662
f4d7e40a
AS
10663 /* for states to be equal callsites have to be the same
10664 * and all frame states need to be equivalent
10665 */
10666 for (i = 0; i <= old->curframe; i++) {
10667 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10668 return false;
c9e73e3d 10669 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
10670 return false;
10671 }
10672 return true;
10673}
10674
5327ed3d
JW
10675/* Return 0 if no propagation happened. Return negative error code if error
10676 * happened. Otherwise, return the propagated bit.
10677 */
55e7f3b5
JW
10678static int propagate_liveness_reg(struct bpf_verifier_env *env,
10679 struct bpf_reg_state *reg,
10680 struct bpf_reg_state *parent_reg)
10681{
5327ed3d
JW
10682 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10683 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10684 int err;
10685
5327ed3d
JW
10686 /* When comes here, read flags of PARENT_REG or REG could be any of
10687 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10688 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10689 */
10690 if (parent_flag == REG_LIVE_READ64 ||
10691 /* Or if there is no read flag from REG. */
10692 !flag ||
10693 /* Or if the read flag from REG is the same as PARENT_REG. */
10694 parent_flag == flag)
55e7f3b5
JW
10695 return 0;
10696
5327ed3d 10697 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10698 if (err)
10699 return err;
10700
5327ed3d 10701 return flag;
55e7f3b5
JW
10702}
10703
8e9cd9ce 10704/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10705 * straight-line code between a state and its parent. When we arrive at an
10706 * equivalent state (jump target or such) we didn't arrive by the straight-line
10707 * code, so read marks in the state must propagate to the parent regardless
10708 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10709 * in mark_reg_read() is for.
8e9cd9ce 10710 */
f4d7e40a
AS
10711static int propagate_liveness(struct bpf_verifier_env *env,
10712 const struct bpf_verifier_state *vstate,
10713 struct bpf_verifier_state *vparent)
dc503a8a 10714{
3f8cafa4 10715 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10716 struct bpf_func_state *state, *parent;
3f8cafa4 10717 int i, frame, err = 0;
dc503a8a 10718
f4d7e40a
AS
10719 if (vparent->curframe != vstate->curframe) {
10720 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10721 vparent->curframe, vstate->curframe);
10722 return -EFAULT;
10723 }
dc503a8a
EC
10724 /* Propagate read liveness of registers... */
10725 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10726 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10727 parent = vparent->frame[frame];
10728 state = vstate->frame[frame];
10729 parent_reg = parent->regs;
10730 state_reg = state->regs;
83d16312
JK
10731 /* We don't need to worry about FP liveness, it's read-only */
10732 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10733 err = propagate_liveness_reg(env, &state_reg[i],
10734 &parent_reg[i]);
5327ed3d 10735 if (err < 0)
3f8cafa4 10736 return err;
5327ed3d
JW
10737 if (err == REG_LIVE_READ64)
10738 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10739 }
f4d7e40a 10740
1b04aee7 10741 /* Propagate stack slots. */
f4d7e40a
AS
10742 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10743 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10744 parent_reg = &parent->stack[i].spilled_ptr;
10745 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10746 err = propagate_liveness_reg(env, state_reg,
10747 parent_reg);
5327ed3d 10748 if (err < 0)
3f8cafa4 10749 return err;
dc503a8a
EC
10750 }
10751 }
5327ed3d 10752 return 0;
dc503a8a
EC
10753}
10754
a3ce685d
AS
10755/* find precise scalars in the previous equivalent state and
10756 * propagate them into the current state
10757 */
10758static int propagate_precision(struct bpf_verifier_env *env,
10759 const struct bpf_verifier_state *old)
10760{
10761 struct bpf_reg_state *state_reg;
10762 struct bpf_func_state *state;
10763 int i, err = 0;
10764
10765 state = old->frame[old->curframe];
10766 state_reg = state->regs;
10767 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10768 if (state_reg->type != SCALAR_VALUE ||
10769 !state_reg->precise)
10770 continue;
10771 if (env->log.level & BPF_LOG_LEVEL2)
10772 verbose(env, "propagating r%d\n", i);
10773 err = mark_chain_precision(env, i);
10774 if (err < 0)
10775 return err;
10776 }
10777
10778 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 10779 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
10780 continue;
10781 state_reg = &state->stack[i].spilled_ptr;
10782 if (state_reg->type != SCALAR_VALUE ||
10783 !state_reg->precise)
10784 continue;
10785 if (env->log.level & BPF_LOG_LEVEL2)
10786 verbose(env, "propagating fp%d\n",
10787 (-i - 1) * BPF_REG_SIZE);
10788 err = mark_chain_precision_stack(env, i);
10789 if (err < 0)
10790 return err;
10791 }
10792 return 0;
10793}
10794
2589726d
AS
10795static bool states_maybe_looping(struct bpf_verifier_state *old,
10796 struct bpf_verifier_state *cur)
10797{
10798 struct bpf_func_state *fold, *fcur;
10799 int i, fr = cur->curframe;
10800
10801 if (old->curframe != fr)
10802 return false;
10803
10804 fold = old->frame[fr];
10805 fcur = cur->frame[fr];
10806 for (i = 0; i < MAX_BPF_REG; i++)
10807 if (memcmp(&fold->regs[i], &fcur->regs[i],
10808 offsetof(struct bpf_reg_state, parent)))
10809 return false;
10810 return true;
10811}
10812
10813
58e2af8b 10814static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 10815{
58e2af8b 10816 struct bpf_verifier_state_list *new_sl;
9f4686c4 10817 struct bpf_verifier_state_list *sl, **pprev;
679c782d 10818 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 10819 int i, j, err, states_cnt = 0;
10d274e8 10820 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 10821
b5dc0163 10822 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 10823 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
10824 /* this 'insn_idx' instruction wasn't marked, so we will not
10825 * be doing state search here
10826 */
10827 return 0;
10828
2589726d
AS
10829 /* bpf progs typically have pruning point every 4 instructions
10830 * http://vger.kernel.org/bpfconf2019.html#session-1
10831 * Do not add new state for future pruning if the verifier hasn't seen
10832 * at least 2 jumps and at least 8 instructions.
10833 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10834 * In tests that amounts to up to 50% reduction into total verifier
10835 * memory consumption and 20% verifier time speedup.
10836 */
10837 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10838 env->insn_processed - env->prev_insn_processed >= 8)
10839 add_new_state = true;
10840
a8f500af
AS
10841 pprev = explored_state(env, insn_idx);
10842 sl = *pprev;
10843
9242b5f5
AS
10844 clean_live_states(env, insn_idx, cur);
10845
a8f500af 10846 while (sl) {
dc2a4ebc
AS
10847 states_cnt++;
10848 if (sl->state.insn_idx != insn_idx)
10849 goto next;
bfc6bb74 10850
2589726d 10851 if (sl->state.branches) {
bfc6bb74
AS
10852 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10853
10854 if (frame->in_async_callback_fn &&
10855 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10856 /* Different async_entry_cnt means that the verifier is
10857 * processing another entry into async callback.
10858 * Seeing the same state is not an indication of infinite
10859 * loop or infinite recursion.
10860 * But finding the same state doesn't mean that it's safe
10861 * to stop processing the current state. The previous state
10862 * hasn't yet reached bpf_exit, since state.branches > 0.
10863 * Checking in_async_callback_fn alone is not enough either.
10864 * Since the verifier still needs to catch infinite loops
10865 * inside async callbacks.
10866 */
10867 } else if (states_maybe_looping(&sl->state, cur) &&
10868 states_equal(env, &sl->state, cur)) {
2589726d
AS
10869 verbose_linfo(env, insn_idx, "; ");
10870 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10871 return -EINVAL;
10872 }
10873 /* if the verifier is processing a loop, avoid adding new state
10874 * too often, since different loop iterations have distinct
10875 * states and may not help future pruning.
10876 * This threshold shouldn't be too low to make sure that
10877 * a loop with large bound will be rejected quickly.
10878 * The most abusive loop will be:
10879 * r1 += 1
10880 * if r1 < 1000000 goto pc-2
10881 * 1M insn_procssed limit / 100 == 10k peak states.
10882 * This threshold shouldn't be too high either, since states
10883 * at the end of the loop are likely to be useful in pruning.
10884 */
10885 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10886 env->insn_processed - env->prev_insn_processed < 100)
10887 add_new_state = false;
10888 goto miss;
10889 }
638f5b90 10890 if (states_equal(env, &sl->state, cur)) {
9f4686c4 10891 sl->hit_cnt++;
f1bca824 10892 /* reached equivalent register/stack state,
dc503a8a
EC
10893 * prune the search.
10894 * Registers read by the continuation are read by us.
8e9cd9ce
EC
10895 * If we have any write marks in env->cur_state, they
10896 * will prevent corresponding reads in the continuation
10897 * from reaching our parent (an explored_state). Our
10898 * own state will get the read marks recorded, but
10899 * they'll be immediately forgotten as we're pruning
10900 * this state and will pop a new one.
f1bca824 10901 */
f4d7e40a 10902 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
10903
10904 /* if previous state reached the exit with precision and
10905 * current state is equivalent to it (except precsion marks)
10906 * the precision needs to be propagated back in
10907 * the current state.
10908 */
10909 err = err ? : push_jmp_history(env, cur);
10910 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
10911 if (err)
10912 return err;
f1bca824 10913 return 1;
dc503a8a 10914 }
2589726d
AS
10915miss:
10916 /* when new state is not going to be added do not increase miss count.
10917 * Otherwise several loop iterations will remove the state
10918 * recorded earlier. The goal of these heuristics is to have
10919 * states from some iterations of the loop (some in the beginning
10920 * and some at the end) to help pruning.
10921 */
10922 if (add_new_state)
10923 sl->miss_cnt++;
9f4686c4
AS
10924 /* heuristic to determine whether this state is beneficial
10925 * to keep checking from state equivalence point of view.
10926 * Higher numbers increase max_states_per_insn and verification time,
10927 * but do not meaningfully decrease insn_processed.
10928 */
10929 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10930 /* the state is unlikely to be useful. Remove it to
10931 * speed up verification
10932 */
10933 *pprev = sl->next;
10934 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
10935 u32 br = sl->state.branches;
10936
10937 WARN_ONCE(br,
10938 "BUG live_done but branches_to_explore %d\n",
10939 br);
9f4686c4
AS
10940 free_verifier_state(&sl->state, false);
10941 kfree(sl);
10942 env->peak_states--;
10943 } else {
10944 /* cannot free this state, since parentage chain may
10945 * walk it later. Add it for free_list instead to
10946 * be freed at the end of verification
10947 */
10948 sl->next = env->free_list;
10949 env->free_list = sl;
10950 }
10951 sl = *pprev;
10952 continue;
10953 }
dc2a4ebc 10954next:
9f4686c4
AS
10955 pprev = &sl->next;
10956 sl = *pprev;
f1bca824
AS
10957 }
10958
06ee7115
AS
10959 if (env->max_states_per_insn < states_cnt)
10960 env->max_states_per_insn = states_cnt;
10961
2c78ee89 10962 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 10963 return push_jmp_history(env, cur);
ceefbc96 10964
2589726d 10965 if (!add_new_state)
b5dc0163 10966 return push_jmp_history(env, cur);
ceefbc96 10967
2589726d
AS
10968 /* There were no equivalent states, remember the current one.
10969 * Technically the current state is not proven to be safe yet,
f4d7e40a 10970 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 10971 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 10972 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
10973 * again on the way to bpf_exit.
10974 * When looping the sl->state.branches will be > 0 and this state
10975 * will not be considered for equivalence until branches == 0.
f1bca824 10976 */
638f5b90 10977 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
10978 if (!new_sl)
10979 return -ENOMEM;
06ee7115
AS
10980 env->total_states++;
10981 env->peak_states++;
2589726d
AS
10982 env->prev_jmps_processed = env->jmps_processed;
10983 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
10984
10985 /* add new state to the head of linked list */
679c782d
EC
10986 new = &new_sl->state;
10987 err = copy_verifier_state(new, cur);
1969db47 10988 if (err) {
679c782d 10989 free_verifier_state(new, false);
1969db47
AS
10990 kfree(new_sl);
10991 return err;
10992 }
dc2a4ebc 10993 new->insn_idx = insn_idx;
2589726d
AS
10994 WARN_ONCE(new->branches != 1,
10995 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 10996
2589726d 10997 cur->parent = new;
b5dc0163
AS
10998 cur->first_insn_idx = insn_idx;
10999 clear_jmp_history(cur);
5d839021
AS
11000 new_sl->next = *explored_state(env, insn_idx);
11001 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
11002 /* connect new state to parentage chain. Current frame needs all
11003 * registers connected. Only r6 - r9 of the callers are alive (pushed
11004 * to the stack implicitly by JITs) so in callers' frames connect just
11005 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11006 * the state of the call instruction (with WRITTEN set), and r0 comes
11007 * from callee with its full parentage chain, anyway.
11008 */
8e9cd9ce
EC
11009 /* clear write marks in current state: the writes we did are not writes
11010 * our child did, so they don't screen off its reads from us.
11011 * (There are no read marks in current state, because reads always mark
11012 * their parent and current state never has children yet. Only
11013 * explored_states can get read marks.)
11014 */
eea1c227
AS
11015 for (j = 0; j <= cur->curframe; j++) {
11016 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11017 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11018 for (i = 0; i < BPF_REG_FP; i++)
11019 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11020 }
f4d7e40a
AS
11021
11022 /* all stack frames are accessible from callee, clear them all */
11023 for (j = 0; j <= cur->curframe; j++) {
11024 struct bpf_func_state *frame = cur->frame[j];
679c782d 11025 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 11026
679c782d 11027 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 11028 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
11029 frame->stack[i].spilled_ptr.parent =
11030 &newframe->stack[i].spilled_ptr;
11031 }
f4d7e40a 11032 }
f1bca824
AS
11033 return 0;
11034}
11035
c64b7983
JS
11036/* Return true if it's OK to have the same insn return a different type. */
11037static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11038{
11039 switch (type) {
11040 case PTR_TO_CTX:
11041 case PTR_TO_SOCKET:
11042 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
11043 case PTR_TO_SOCK_COMMON:
11044 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
11045 case PTR_TO_TCP_SOCK:
11046 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 11047 case PTR_TO_XDP_SOCK:
2a02759e 11048 case PTR_TO_BTF_ID:
b121b341 11049 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
11050 return false;
11051 default:
11052 return true;
11053 }
11054}
11055
11056/* If an instruction was previously used with particular pointer types, then we
11057 * need to be careful to avoid cases such as the below, where it may be ok
11058 * for one branch accessing the pointer, but not ok for the other branch:
11059 *
11060 * R1 = sock_ptr
11061 * goto X;
11062 * ...
11063 * R1 = some_other_valid_ptr;
11064 * goto X;
11065 * ...
11066 * R2 = *(u32 *)(R1 + 0);
11067 */
11068static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11069{
11070 return src != prev && (!reg_type_mismatch_ok(src) ||
11071 !reg_type_mismatch_ok(prev));
11072}
11073
58e2af8b 11074static int do_check(struct bpf_verifier_env *env)
17a52670 11075{
6f8a57cc 11076 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 11077 struct bpf_verifier_state *state = env->cur_state;
17a52670 11078 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 11079 struct bpf_reg_state *regs;
06ee7115 11080 int insn_cnt = env->prog->len;
17a52670 11081 bool do_print_state = false;
b5dc0163 11082 int prev_insn_idx = -1;
17a52670 11083
17a52670
AS
11084 for (;;) {
11085 struct bpf_insn *insn;
11086 u8 class;
11087 int err;
11088
b5dc0163 11089 env->prev_insn_idx = prev_insn_idx;
c08435ec 11090 if (env->insn_idx >= insn_cnt) {
61bd5218 11091 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 11092 env->insn_idx, insn_cnt);
17a52670
AS
11093 return -EFAULT;
11094 }
11095
c08435ec 11096 insn = &insns[env->insn_idx];
17a52670
AS
11097 class = BPF_CLASS(insn->code);
11098
06ee7115 11099 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
11100 verbose(env,
11101 "BPF program is too large. Processed %d insn\n",
06ee7115 11102 env->insn_processed);
17a52670
AS
11103 return -E2BIG;
11104 }
11105
c08435ec 11106 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
11107 if (err < 0)
11108 return err;
11109 if (err == 1) {
11110 /* found equivalent state, can prune the search */
06ee7115 11111 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 11112 if (do_print_state)
979d63d5
DB
11113 verbose(env, "\nfrom %d to %d%s: safe\n",
11114 env->prev_insn_idx, env->insn_idx,
11115 env->cur_state->speculative ?
11116 " (speculative execution)" : "");
f1bca824 11117 else
c08435ec 11118 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
11119 }
11120 goto process_bpf_exit;
11121 }
11122
c3494801
AS
11123 if (signal_pending(current))
11124 return -EAGAIN;
11125
3c2ce60b
DB
11126 if (need_resched())
11127 cond_resched();
11128
06ee7115
AS
11129 if (env->log.level & BPF_LOG_LEVEL2 ||
11130 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11131 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 11132 verbose(env, "%d:", env->insn_idx);
c5fc9692 11133 else
979d63d5
DB
11134 verbose(env, "\nfrom %d to %d%s:",
11135 env->prev_insn_idx, env->insn_idx,
11136 env->cur_state->speculative ?
11137 " (speculative execution)" : "");
f4d7e40a 11138 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
11139 do_print_state = false;
11140 }
11141
06ee7115 11142 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 11143 const struct bpf_insn_cbs cbs = {
e6ac2450 11144 .cb_call = disasm_kfunc_name,
7105e828 11145 .cb_print = verbose,
abe08840 11146 .private_data = env,
7105e828
DB
11147 };
11148
c08435ec
DB
11149 verbose_linfo(env, env->insn_idx, "; ");
11150 verbose(env, "%d: ", env->insn_idx);
abe08840 11151 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
11152 }
11153
cae1927c 11154 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
11155 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11156 env->prev_insn_idx);
cae1927c
JK
11157 if (err)
11158 return err;
11159 }
13a27dfc 11160
638f5b90 11161 regs = cur_regs(env);
fe9a5ca7 11162 sanitize_mark_insn_seen(env);
b5dc0163 11163 prev_insn_idx = env->insn_idx;
fd978bf7 11164
17a52670 11165 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 11166 err = check_alu_op(env, insn);
17a52670
AS
11167 if (err)
11168 return err;
11169
11170 } else if (class == BPF_LDX) {
3df126f3 11171 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
11172
11173 /* check for reserved fields is already done */
11174
17a52670 11175 /* check src operand */
dc503a8a 11176 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11177 if (err)
11178 return err;
11179
dc503a8a 11180 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
11181 if (err)
11182 return err;
11183
725f9dcd
AS
11184 src_reg_type = regs[insn->src_reg].type;
11185
17a52670
AS
11186 /* check that memory (src_reg + off) is readable,
11187 * the state of dst_reg will be updated by this func
11188 */
c08435ec
DB
11189 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11190 insn->off, BPF_SIZE(insn->code),
11191 BPF_READ, insn->dst_reg, false);
17a52670
AS
11192 if (err)
11193 return err;
11194
c08435ec 11195 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11196
11197 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
11198 /* saw a valid insn
11199 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 11200 * save type to validate intersecting paths
9bac3d6d 11201 */
3df126f3 11202 *prev_src_type = src_reg_type;
9bac3d6d 11203
c64b7983 11204 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
11205 /* ABuser program is trying to use the same insn
11206 * dst_reg = *(u32*) (src_reg + off)
11207 * with different pointer types:
11208 * src_reg == ctx in one branch and
11209 * src_reg == stack|map in some other branch.
11210 * Reject it.
11211 */
61bd5218 11212 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
11213 return -EINVAL;
11214 }
11215
17a52670 11216 } else if (class == BPF_STX) {
3df126f3 11217 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 11218
91c960b0
BJ
11219 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11220 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
11221 if (err)
11222 return err;
c08435ec 11223 env->insn_idx++;
17a52670
AS
11224 continue;
11225 }
11226
5ca419f2
BJ
11227 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11228 verbose(env, "BPF_STX uses reserved fields\n");
11229 return -EINVAL;
11230 }
11231
17a52670 11232 /* check src1 operand */
dc503a8a 11233 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11234 if (err)
11235 return err;
11236 /* check src2 operand */
dc503a8a 11237 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11238 if (err)
11239 return err;
11240
d691f9e8
AS
11241 dst_reg_type = regs[insn->dst_reg].type;
11242
17a52670 11243 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11244 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11245 insn->off, BPF_SIZE(insn->code),
11246 BPF_WRITE, insn->src_reg, false);
17a52670
AS
11247 if (err)
11248 return err;
11249
c08435ec 11250 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11251
11252 if (*prev_dst_type == NOT_INIT) {
11253 *prev_dst_type = dst_reg_type;
c64b7983 11254 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 11255 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
11256 return -EINVAL;
11257 }
11258
17a52670
AS
11259 } else if (class == BPF_ST) {
11260 if (BPF_MODE(insn->code) != BPF_MEM ||
11261 insn->src_reg != BPF_REG_0) {
61bd5218 11262 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
11263 return -EINVAL;
11264 }
11265 /* check src operand */
dc503a8a 11266 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11267 if (err)
11268 return err;
11269
f37a8cb8 11270 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 11271 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
11272 insn->dst_reg,
11273 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
11274 return -EACCES;
11275 }
11276
17a52670 11277 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11278 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11279 insn->off, BPF_SIZE(insn->code),
11280 BPF_WRITE, -1, false);
17a52670
AS
11281 if (err)
11282 return err;
11283
092ed096 11284 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
11285 u8 opcode = BPF_OP(insn->code);
11286
2589726d 11287 env->jmps_processed++;
17a52670
AS
11288 if (opcode == BPF_CALL) {
11289 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
11290 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11291 && insn->off != 0) ||
f4d7e40a 11292 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
11293 insn->src_reg != BPF_PSEUDO_CALL &&
11294 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
11295 insn->dst_reg != BPF_REG_0 ||
11296 class == BPF_JMP32) {
61bd5218 11297 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
11298 return -EINVAL;
11299 }
11300
d83525ca
AS
11301 if (env->cur_state->active_spin_lock &&
11302 (insn->src_reg == BPF_PSEUDO_CALL ||
11303 insn->imm != BPF_FUNC_spin_unlock)) {
11304 verbose(env, "function calls are not allowed while holding a lock\n");
11305 return -EINVAL;
11306 }
f4d7e40a 11307 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 11308 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
11309 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11310 err = check_kfunc_call(env, insn);
f4d7e40a 11311 else
69c087ba 11312 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
11313 if (err)
11314 return err;
17a52670
AS
11315 } else if (opcode == BPF_JA) {
11316 if (BPF_SRC(insn->code) != BPF_K ||
11317 insn->imm != 0 ||
11318 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11319 insn->dst_reg != BPF_REG_0 ||
11320 class == BPF_JMP32) {
61bd5218 11321 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
11322 return -EINVAL;
11323 }
11324
c08435ec 11325 env->insn_idx += insn->off + 1;
17a52670
AS
11326 continue;
11327
11328 } else if (opcode == BPF_EXIT) {
11329 if (BPF_SRC(insn->code) != BPF_K ||
11330 insn->imm != 0 ||
11331 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11332 insn->dst_reg != BPF_REG_0 ||
11333 class == BPF_JMP32) {
61bd5218 11334 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
11335 return -EINVAL;
11336 }
11337
d83525ca
AS
11338 if (env->cur_state->active_spin_lock) {
11339 verbose(env, "bpf_spin_unlock is missing\n");
11340 return -EINVAL;
11341 }
11342
f4d7e40a
AS
11343 if (state->curframe) {
11344 /* exit from nested function */
c08435ec 11345 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
11346 if (err)
11347 return err;
11348 do_print_state = true;
11349 continue;
11350 }
11351
fd978bf7
JS
11352 err = check_reference_leak(env);
11353 if (err)
11354 return err;
11355
390ee7e2
AS
11356 err = check_return_code(env);
11357 if (err)
11358 return err;
f1bca824 11359process_bpf_exit:
2589726d 11360 update_branch_counts(env, env->cur_state);
b5dc0163 11361 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 11362 &env->insn_idx, pop_log);
638f5b90
AS
11363 if (err < 0) {
11364 if (err != -ENOENT)
11365 return err;
17a52670
AS
11366 break;
11367 } else {
11368 do_print_state = true;
11369 continue;
11370 }
11371 } else {
c08435ec 11372 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
11373 if (err)
11374 return err;
11375 }
11376 } else if (class == BPF_LD) {
11377 u8 mode = BPF_MODE(insn->code);
11378
11379 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
11380 err = check_ld_abs(env, insn);
11381 if (err)
11382 return err;
11383
17a52670
AS
11384 } else if (mode == BPF_IMM) {
11385 err = check_ld_imm(env, insn);
11386 if (err)
11387 return err;
11388
c08435ec 11389 env->insn_idx++;
fe9a5ca7 11390 sanitize_mark_insn_seen(env);
17a52670 11391 } else {
61bd5218 11392 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
11393 return -EINVAL;
11394 }
11395 } else {
61bd5218 11396 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
11397 return -EINVAL;
11398 }
11399
c08435ec 11400 env->insn_idx++;
17a52670
AS
11401 }
11402
11403 return 0;
11404}
11405
541c3bad
AN
11406static int find_btf_percpu_datasec(struct btf *btf)
11407{
11408 const struct btf_type *t;
11409 const char *tname;
11410 int i, n;
11411
11412 /*
11413 * Both vmlinux and module each have their own ".data..percpu"
11414 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11415 * types to look at only module's own BTF types.
11416 */
11417 n = btf_nr_types(btf);
11418 if (btf_is_module(btf))
11419 i = btf_nr_types(btf_vmlinux);
11420 else
11421 i = 1;
11422
11423 for(; i < n; i++) {
11424 t = btf_type_by_id(btf, i);
11425 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11426 continue;
11427
11428 tname = btf_name_by_offset(btf, t->name_off);
11429 if (!strcmp(tname, ".data..percpu"))
11430 return i;
11431 }
11432
11433 return -ENOENT;
11434}
11435
4976b718
HL
11436/* replace pseudo btf_id with kernel symbol address */
11437static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11438 struct bpf_insn *insn,
11439 struct bpf_insn_aux_data *aux)
11440{
eaa6bcb7
HL
11441 const struct btf_var_secinfo *vsi;
11442 const struct btf_type *datasec;
541c3bad 11443 struct btf_mod_pair *btf_mod;
4976b718
HL
11444 const struct btf_type *t;
11445 const char *sym_name;
eaa6bcb7 11446 bool percpu = false;
f16e6313 11447 u32 type, id = insn->imm;
541c3bad 11448 struct btf *btf;
f16e6313 11449 s32 datasec_id;
4976b718 11450 u64 addr;
541c3bad 11451 int i, btf_fd, err;
4976b718 11452
541c3bad
AN
11453 btf_fd = insn[1].imm;
11454 if (btf_fd) {
11455 btf = btf_get_by_fd(btf_fd);
11456 if (IS_ERR(btf)) {
11457 verbose(env, "invalid module BTF object FD specified.\n");
11458 return -EINVAL;
11459 }
11460 } else {
11461 if (!btf_vmlinux) {
11462 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11463 return -EINVAL;
11464 }
11465 btf = btf_vmlinux;
11466 btf_get(btf);
4976b718
HL
11467 }
11468
541c3bad 11469 t = btf_type_by_id(btf, id);
4976b718
HL
11470 if (!t) {
11471 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
11472 err = -ENOENT;
11473 goto err_put;
4976b718
HL
11474 }
11475
11476 if (!btf_type_is_var(t)) {
541c3bad
AN
11477 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11478 err = -EINVAL;
11479 goto err_put;
4976b718
HL
11480 }
11481
541c3bad 11482 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11483 addr = kallsyms_lookup_name(sym_name);
11484 if (!addr) {
11485 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11486 sym_name);
541c3bad
AN
11487 err = -ENOENT;
11488 goto err_put;
4976b718
HL
11489 }
11490
541c3bad 11491 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11492 if (datasec_id > 0) {
541c3bad 11493 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11494 for_each_vsi(i, datasec, vsi) {
11495 if (vsi->type == id) {
11496 percpu = true;
11497 break;
11498 }
11499 }
11500 }
11501
4976b718
HL
11502 insn[0].imm = (u32)addr;
11503 insn[1].imm = addr >> 32;
11504
11505 type = t->type;
541c3bad 11506 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
11507 if (percpu) {
11508 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 11509 aux->btf_var.btf = btf;
eaa6bcb7
HL
11510 aux->btf_var.btf_id = type;
11511 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11512 const struct btf_type *ret;
11513 const char *tname;
11514 u32 tsize;
11515
11516 /* resolve the type size of ksym. */
541c3bad 11517 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11518 if (IS_ERR(ret)) {
541c3bad 11519 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11520 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11521 tname, PTR_ERR(ret));
541c3bad
AN
11522 err = -EINVAL;
11523 goto err_put;
4976b718
HL
11524 }
11525 aux->btf_var.reg_type = PTR_TO_MEM;
11526 aux->btf_var.mem_size = tsize;
11527 } else {
11528 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11529 aux->btf_var.btf = btf;
4976b718
HL
11530 aux->btf_var.btf_id = type;
11531 }
541c3bad
AN
11532
11533 /* check whether we recorded this BTF (and maybe module) already */
11534 for (i = 0; i < env->used_btf_cnt; i++) {
11535 if (env->used_btfs[i].btf == btf) {
11536 btf_put(btf);
11537 return 0;
11538 }
11539 }
11540
11541 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11542 err = -E2BIG;
11543 goto err_put;
11544 }
11545
11546 btf_mod = &env->used_btfs[env->used_btf_cnt];
11547 btf_mod->btf = btf;
11548 btf_mod->module = NULL;
11549
11550 /* if we reference variables from kernel module, bump its refcount */
11551 if (btf_is_module(btf)) {
11552 btf_mod->module = btf_try_get_module(btf);
11553 if (!btf_mod->module) {
11554 err = -ENXIO;
11555 goto err_put;
11556 }
11557 }
11558
11559 env->used_btf_cnt++;
11560
4976b718 11561 return 0;
541c3bad
AN
11562err_put:
11563 btf_put(btf);
11564 return err;
4976b718
HL
11565}
11566
56f668df
MKL
11567static int check_map_prealloc(struct bpf_map *map)
11568{
11569 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11570 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11571 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11572 !(map->map_flags & BPF_F_NO_PREALLOC);
11573}
11574
d83525ca
AS
11575static bool is_tracing_prog_type(enum bpf_prog_type type)
11576{
11577 switch (type) {
11578 case BPF_PROG_TYPE_KPROBE:
11579 case BPF_PROG_TYPE_TRACEPOINT:
11580 case BPF_PROG_TYPE_PERF_EVENT:
11581 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11582 return true;
11583 default:
11584 return false;
11585 }
11586}
11587
94dacdbd
TG
11588static bool is_preallocated_map(struct bpf_map *map)
11589{
11590 if (!check_map_prealloc(map))
11591 return false;
11592 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11593 return false;
11594 return true;
11595}
11596
61bd5218
JK
11597static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11598 struct bpf_map *map,
fdc15d38
AS
11599 struct bpf_prog *prog)
11600
11601{
7e40781c 11602 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
11603 /*
11604 * Validate that trace type programs use preallocated hash maps.
11605 *
11606 * For programs attached to PERF events this is mandatory as the
11607 * perf NMI can hit any arbitrary code sequence.
11608 *
11609 * All other trace types using preallocated hash maps are unsafe as
11610 * well because tracepoint or kprobes can be inside locked regions
11611 * of the memory allocator or at a place where a recursion into the
11612 * memory allocator would see inconsistent state.
11613 *
2ed905c5
TG
11614 * On RT enabled kernels run-time allocation of all trace type
11615 * programs is strictly prohibited due to lock type constraints. On
11616 * !RT kernels it is allowed for backwards compatibility reasons for
11617 * now, but warnings are emitted so developers are made aware of
11618 * the unsafety and can fix their programs before this is enforced.
56f668df 11619 */
7e40781c
UP
11620 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11621 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11622 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11623 return -EINVAL;
11624 }
2ed905c5
TG
11625 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11626 verbose(env, "trace type programs can only use preallocated hash map\n");
11627 return -EINVAL;
11628 }
94dacdbd
TG
11629 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11630 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11631 }
a3884572 11632
9e7a4d98
KS
11633 if (map_value_has_spin_lock(map)) {
11634 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11635 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11636 return -EINVAL;
11637 }
11638
11639 if (is_tracing_prog_type(prog_type)) {
11640 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11641 return -EINVAL;
11642 }
11643
11644 if (prog->aux->sleepable) {
11645 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11646 return -EINVAL;
11647 }
d83525ca
AS
11648 }
11649
5e0bc308
DB
11650 if (map_value_has_timer(map)) {
11651 if (is_tracing_prog_type(prog_type)) {
11652 verbose(env, "tracing progs cannot use bpf_timer yet\n");
11653 return -EINVAL;
11654 }
11655 }
11656
a3884572 11657 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11658 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11659 verbose(env, "offload device mismatch between prog and map\n");
11660 return -EINVAL;
11661 }
11662
85d33df3
MKL
11663 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11664 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11665 return -EINVAL;
11666 }
11667
1e6c62a8
AS
11668 if (prog->aux->sleepable)
11669 switch (map->map_type) {
11670 case BPF_MAP_TYPE_HASH:
11671 case BPF_MAP_TYPE_LRU_HASH:
11672 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11673 case BPF_MAP_TYPE_PERCPU_HASH:
11674 case BPF_MAP_TYPE_PERCPU_ARRAY:
11675 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11676 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11677 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11678 if (!is_preallocated_map(map)) {
11679 verbose(env,
638e4b82 11680 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11681 return -EINVAL;
11682 }
11683 break;
ba90c2cc
KS
11684 case BPF_MAP_TYPE_RINGBUF:
11685 break;
1e6c62a8
AS
11686 default:
11687 verbose(env,
ba90c2cc 11688 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11689 return -EINVAL;
11690 }
11691
fdc15d38
AS
11692 return 0;
11693}
11694
b741f163
RG
11695static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11696{
11697 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11698 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11699}
11700
4976b718
HL
11701/* find and rewrite pseudo imm in ld_imm64 instructions:
11702 *
11703 * 1. if it accesses map FD, replace it with actual map pointer.
11704 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11705 *
11706 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11707 */
4976b718 11708static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11709{
11710 struct bpf_insn *insn = env->prog->insnsi;
11711 int insn_cnt = env->prog->len;
fdc15d38 11712 int i, j, err;
0246e64d 11713
f1f7714e 11714 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11715 if (err)
11716 return err;
11717
0246e64d 11718 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11719 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11720 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11721 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11722 return -EINVAL;
11723 }
11724
0246e64d 11725 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11726 struct bpf_insn_aux_data *aux;
0246e64d
AS
11727 struct bpf_map *map;
11728 struct fd f;
d8eca5bb 11729 u64 addr;
387544bf 11730 u32 fd;
0246e64d
AS
11731
11732 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11733 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11734 insn[1].off != 0) {
61bd5218 11735 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11736 return -EINVAL;
11737 }
11738
d8eca5bb 11739 if (insn[0].src_reg == 0)
0246e64d
AS
11740 /* valid generic load 64-bit imm */
11741 goto next_insn;
11742
4976b718
HL
11743 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11744 aux = &env->insn_aux_data[i];
11745 err = check_pseudo_btf_id(env, insn, aux);
11746 if (err)
11747 return err;
11748 goto next_insn;
11749 }
11750
69c087ba
YS
11751 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11752 aux = &env->insn_aux_data[i];
11753 aux->ptr_type = PTR_TO_FUNC;
11754 goto next_insn;
11755 }
11756
d8eca5bb
DB
11757 /* In final convert_pseudo_ld_imm64() step, this is
11758 * converted into regular 64-bit imm load insn.
11759 */
387544bf
AS
11760 switch (insn[0].src_reg) {
11761 case BPF_PSEUDO_MAP_VALUE:
11762 case BPF_PSEUDO_MAP_IDX_VALUE:
11763 break;
11764 case BPF_PSEUDO_MAP_FD:
11765 case BPF_PSEUDO_MAP_IDX:
11766 if (insn[1].imm == 0)
11767 break;
11768 fallthrough;
11769 default:
11770 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11771 return -EINVAL;
11772 }
11773
387544bf
AS
11774 switch (insn[0].src_reg) {
11775 case BPF_PSEUDO_MAP_IDX_VALUE:
11776 case BPF_PSEUDO_MAP_IDX:
11777 if (bpfptr_is_null(env->fd_array)) {
11778 verbose(env, "fd_idx without fd_array is invalid\n");
11779 return -EPROTO;
11780 }
11781 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11782 insn[0].imm * sizeof(fd),
11783 sizeof(fd)))
11784 return -EFAULT;
11785 break;
11786 default:
11787 fd = insn[0].imm;
11788 break;
11789 }
11790
11791 f = fdget(fd);
c2101297 11792 map = __bpf_map_get(f);
0246e64d 11793 if (IS_ERR(map)) {
61bd5218 11794 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11795 insn[0].imm);
0246e64d
AS
11796 return PTR_ERR(map);
11797 }
11798
61bd5218 11799 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11800 if (err) {
11801 fdput(f);
11802 return err;
11803 }
11804
d8eca5bb 11805 aux = &env->insn_aux_data[i];
387544bf
AS
11806 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11807 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
11808 addr = (unsigned long)map;
11809 } else {
11810 u32 off = insn[1].imm;
11811
11812 if (off >= BPF_MAX_VAR_OFF) {
11813 verbose(env, "direct value offset of %u is not allowed\n", off);
11814 fdput(f);
11815 return -EINVAL;
11816 }
11817
11818 if (!map->ops->map_direct_value_addr) {
11819 verbose(env, "no direct value access support for this map type\n");
11820 fdput(f);
11821 return -EINVAL;
11822 }
11823
11824 err = map->ops->map_direct_value_addr(map, &addr, off);
11825 if (err) {
11826 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11827 map->value_size, off);
11828 fdput(f);
11829 return err;
11830 }
11831
11832 aux->map_off = off;
11833 addr += off;
11834 }
11835
11836 insn[0].imm = (u32)addr;
11837 insn[1].imm = addr >> 32;
0246e64d
AS
11838
11839 /* check whether we recorded this map already */
d8eca5bb 11840 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 11841 if (env->used_maps[j] == map) {
d8eca5bb 11842 aux->map_index = j;
0246e64d
AS
11843 fdput(f);
11844 goto next_insn;
11845 }
d8eca5bb 11846 }
0246e64d
AS
11847
11848 if (env->used_map_cnt >= MAX_USED_MAPS) {
11849 fdput(f);
11850 return -E2BIG;
11851 }
11852
0246e64d
AS
11853 /* hold the map. If the program is rejected by verifier,
11854 * the map will be released by release_maps() or it
11855 * will be used by the valid program until it's unloaded
ab7f5bf0 11856 * and all maps are released in free_used_maps()
0246e64d 11857 */
1e0bd5a0 11858 bpf_map_inc(map);
d8eca5bb
DB
11859
11860 aux->map_index = env->used_map_cnt;
92117d84
AS
11861 env->used_maps[env->used_map_cnt++] = map;
11862
b741f163 11863 if (bpf_map_is_cgroup_storage(map) &&
e4730423 11864 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 11865 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
11866 fdput(f);
11867 return -EBUSY;
11868 }
11869
0246e64d
AS
11870 fdput(f);
11871next_insn:
11872 insn++;
11873 i++;
5e581dad
DB
11874 continue;
11875 }
11876
11877 /* Basic sanity check before we invest more work here. */
11878 if (!bpf_opcode_in_insntable(insn->code)) {
11879 verbose(env, "unknown opcode %02x\n", insn->code);
11880 return -EINVAL;
0246e64d
AS
11881 }
11882 }
11883
11884 /* now all pseudo BPF_LD_IMM64 instructions load valid
11885 * 'struct bpf_map *' into a register instead of user map_fd.
11886 * These pointers will be used later by verifier to validate map access.
11887 */
11888 return 0;
11889}
11890
11891/* drop refcnt of maps used by the rejected program */
58e2af8b 11892static void release_maps(struct bpf_verifier_env *env)
0246e64d 11893{
a2ea0746
DB
11894 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11895 env->used_map_cnt);
0246e64d
AS
11896}
11897
541c3bad
AN
11898/* drop refcnt of maps used by the rejected program */
11899static void release_btfs(struct bpf_verifier_env *env)
11900{
11901 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11902 env->used_btf_cnt);
11903}
11904
0246e64d 11905/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 11906static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
11907{
11908 struct bpf_insn *insn = env->prog->insnsi;
11909 int insn_cnt = env->prog->len;
11910 int i;
11911
69c087ba
YS
11912 for (i = 0; i < insn_cnt; i++, insn++) {
11913 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11914 continue;
11915 if (insn->src_reg == BPF_PSEUDO_FUNC)
11916 continue;
11917 insn->src_reg = 0;
11918 }
0246e64d
AS
11919}
11920
8041902d
AS
11921/* single env->prog->insni[off] instruction was replaced with the range
11922 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11923 * [0, off) and [off, end) to new locations, so the patched range stays zero
11924 */
75f0fc7b
HF
11925static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11926 struct bpf_insn_aux_data *new_data,
11927 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 11928{
75f0fc7b 11929 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 11930 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 11931 u32 old_seen = old_data[off].seen;
b325fbca 11932 u32 prog_len;
c131187d 11933 int i;
8041902d 11934
b325fbca
JW
11935 /* aux info at OFF always needs adjustment, no matter fast path
11936 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11937 * original insn at old prog.
11938 */
11939 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11940
8041902d 11941 if (cnt == 1)
75f0fc7b 11942 return;
b325fbca 11943 prog_len = new_prog->len;
75f0fc7b 11944
8041902d
AS
11945 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11946 memcpy(new_data + off + cnt - 1, old_data + off,
11947 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 11948 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
11949 /* Expand insni[off]'s seen count to the patched range. */
11950 new_data[i].seen = old_seen;
b325fbca
JW
11951 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11952 }
8041902d
AS
11953 env->insn_aux_data = new_data;
11954 vfree(old_data);
8041902d
AS
11955}
11956
cc8b0b92
AS
11957static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11958{
11959 int i;
11960
11961 if (len == 1)
11962 return;
4cb3d99c
JW
11963 /* NOTE: fake 'exit' subprog should be updated as well. */
11964 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 11965 if (env->subprog_info[i].start <= off)
cc8b0b92 11966 continue;
9c8105bd 11967 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
11968 }
11969}
11970
7506d211 11971static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
11972{
11973 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11974 int i, sz = prog->aux->size_poke_tab;
11975 struct bpf_jit_poke_descriptor *desc;
11976
11977 for (i = 0; i < sz; i++) {
11978 desc = &tab[i];
7506d211
JF
11979 if (desc->insn_idx <= off)
11980 continue;
a748c697
MF
11981 desc->insn_idx += len - 1;
11982 }
11983}
11984
8041902d
AS
11985static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11986 const struct bpf_insn *patch, u32 len)
11987{
11988 struct bpf_prog *new_prog;
75f0fc7b
HF
11989 struct bpf_insn_aux_data *new_data = NULL;
11990
11991 if (len > 1) {
11992 new_data = vzalloc(array_size(env->prog->len + len - 1,
11993 sizeof(struct bpf_insn_aux_data)));
11994 if (!new_data)
11995 return NULL;
11996 }
8041902d
AS
11997
11998 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
11999 if (IS_ERR(new_prog)) {
12000 if (PTR_ERR(new_prog) == -ERANGE)
12001 verbose(env,
12002 "insn %d cannot be patched due to 16-bit range\n",
12003 env->insn_aux_data[off].orig_idx);
75f0fc7b 12004 vfree(new_data);
8041902d 12005 return NULL;
4f73379e 12006 }
75f0fc7b 12007 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 12008 adjust_subprog_starts(env, off, len);
7506d211 12009 adjust_poke_descs(new_prog, off, len);
8041902d
AS
12010 return new_prog;
12011}
12012
52875a04
JK
12013static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12014 u32 off, u32 cnt)
12015{
12016 int i, j;
12017
12018 /* find first prog starting at or after off (first to remove) */
12019 for (i = 0; i < env->subprog_cnt; i++)
12020 if (env->subprog_info[i].start >= off)
12021 break;
12022 /* find first prog starting at or after off + cnt (first to stay) */
12023 for (j = i; j < env->subprog_cnt; j++)
12024 if (env->subprog_info[j].start >= off + cnt)
12025 break;
12026 /* if j doesn't start exactly at off + cnt, we are just removing
12027 * the front of previous prog
12028 */
12029 if (env->subprog_info[j].start != off + cnt)
12030 j--;
12031
12032 if (j > i) {
12033 struct bpf_prog_aux *aux = env->prog->aux;
12034 int move;
12035
12036 /* move fake 'exit' subprog as well */
12037 move = env->subprog_cnt + 1 - j;
12038
12039 memmove(env->subprog_info + i,
12040 env->subprog_info + j,
12041 sizeof(*env->subprog_info) * move);
12042 env->subprog_cnt -= j - i;
12043
12044 /* remove func_info */
12045 if (aux->func_info) {
12046 move = aux->func_info_cnt - j;
12047
12048 memmove(aux->func_info + i,
12049 aux->func_info + j,
12050 sizeof(*aux->func_info) * move);
12051 aux->func_info_cnt -= j - i;
12052 /* func_info->insn_off is set after all code rewrites,
12053 * in adjust_btf_func() - no need to adjust
12054 */
12055 }
12056 } else {
12057 /* convert i from "first prog to remove" to "first to adjust" */
12058 if (env->subprog_info[i].start == off)
12059 i++;
12060 }
12061
12062 /* update fake 'exit' subprog as well */
12063 for (; i <= env->subprog_cnt; i++)
12064 env->subprog_info[i].start -= cnt;
12065
12066 return 0;
12067}
12068
12069static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12070 u32 cnt)
12071{
12072 struct bpf_prog *prog = env->prog;
12073 u32 i, l_off, l_cnt, nr_linfo;
12074 struct bpf_line_info *linfo;
12075
12076 nr_linfo = prog->aux->nr_linfo;
12077 if (!nr_linfo)
12078 return 0;
12079
12080 linfo = prog->aux->linfo;
12081
12082 /* find first line info to remove, count lines to be removed */
12083 for (i = 0; i < nr_linfo; i++)
12084 if (linfo[i].insn_off >= off)
12085 break;
12086
12087 l_off = i;
12088 l_cnt = 0;
12089 for (; i < nr_linfo; i++)
12090 if (linfo[i].insn_off < off + cnt)
12091 l_cnt++;
12092 else
12093 break;
12094
12095 /* First live insn doesn't match first live linfo, it needs to "inherit"
12096 * last removed linfo. prog is already modified, so prog->len == off
12097 * means no live instructions after (tail of the program was removed).
12098 */
12099 if (prog->len != off && l_cnt &&
12100 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12101 l_cnt--;
12102 linfo[--i].insn_off = off + cnt;
12103 }
12104
12105 /* remove the line info which refer to the removed instructions */
12106 if (l_cnt) {
12107 memmove(linfo + l_off, linfo + i,
12108 sizeof(*linfo) * (nr_linfo - i));
12109
12110 prog->aux->nr_linfo -= l_cnt;
12111 nr_linfo = prog->aux->nr_linfo;
12112 }
12113
12114 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12115 for (i = l_off; i < nr_linfo; i++)
12116 linfo[i].insn_off -= cnt;
12117
12118 /* fix up all subprogs (incl. 'exit') which start >= off */
12119 for (i = 0; i <= env->subprog_cnt; i++)
12120 if (env->subprog_info[i].linfo_idx > l_off) {
12121 /* program may have started in the removed region but
12122 * may not be fully removed
12123 */
12124 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12125 env->subprog_info[i].linfo_idx -= l_cnt;
12126 else
12127 env->subprog_info[i].linfo_idx = l_off;
12128 }
12129
12130 return 0;
12131}
12132
12133static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12134{
12135 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12136 unsigned int orig_prog_len = env->prog->len;
12137 int err;
12138
08ca90af
JK
12139 if (bpf_prog_is_dev_bound(env->prog->aux))
12140 bpf_prog_offload_remove_insns(env, off, cnt);
12141
52875a04
JK
12142 err = bpf_remove_insns(env->prog, off, cnt);
12143 if (err)
12144 return err;
12145
12146 err = adjust_subprog_starts_after_remove(env, off, cnt);
12147 if (err)
12148 return err;
12149
12150 err = bpf_adj_linfo_after_remove(env, off, cnt);
12151 if (err)
12152 return err;
12153
12154 memmove(aux_data + off, aux_data + off + cnt,
12155 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12156
12157 return 0;
12158}
12159
2a5418a1
DB
12160/* The verifier does more data flow analysis than llvm and will not
12161 * explore branches that are dead at run time. Malicious programs can
12162 * have dead code too. Therefore replace all dead at-run-time code
12163 * with 'ja -1'.
12164 *
12165 * Just nops are not optimal, e.g. if they would sit at the end of the
12166 * program and through another bug we would manage to jump there, then
12167 * we'd execute beyond program memory otherwise. Returning exception
12168 * code also wouldn't work since we can have subprogs where the dead
12169 * code could be located.
c131187d
AS
12170 */
12171static void sanitize_dead_code(struct bpf_verifier_env *env)
12172{
12173 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 12174 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
12175 struct bpf_insn *insn = env->prog->insnsi;
12176 const int insn_cnt = env->prog->len;
12177 int i;
12178
12179 for (i = 0; i < insn_cnt; i++) {
12180 if (aux_data[i].seen)
12181 continue;
2a5418a1 12182 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 12183 aux_data[i].zext_dst = false;
c131187d
AS
12184 }
12185}
12186
e2ae4ca2
JK
12187static bool insn_is_cond_jump(u8 code)
12188{
12189 u8 op;
12190
092ed096
JW
12191 if (BPF_CLASS(code) == BPF_JMP32)
12192 return true;
12193
e2ae4ca2
JK
12194 if (BPF_CLASS(code) != BPF_JMP)
12195 return false;
12196
12197 op = BPF_OP(code);
12198 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12199}
12200
12201static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12202{
12203 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12204 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12205 struct bpf_insn *insn = env->prog->insnsi;
12206 const int insn_cnt = env->prog->len;
12207 int i;
12208
12209 for (i = 0; i < insn_cnt; i++, insn++) {
12210 if (!insn_is_cond_jump(insn->code))
12211 continue;
12212
12213 if (!aux_data[i + 1].seen)
12214 ja.off = insn->off;
12215 else if (!aux_data[i + 1 + insn->off].seen)
12216 ja.off = 0;
12217 else
12218 continue;
12219
08ca90af
JK
12220 if (bpf_prog_is_dev_bound(env->prog->aux))
12221 bpf_prog_offload_replace_insn(env, i, &ja);
12222
e2ae4ca2
JK
12223 memcpy(insn, &ja, sizeof(ja));
12224 }
12225}
12226
52875a04
JK
12227static int opt_remove_dead_code(struct bpf_verifier_env *env)
12228{
12229 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12230 int insn_cnt = env->prog->len;
12231 int i, err;
12232
12233 for (i = 0; i < insn_cnt; i++) {
12234 int j;
12235
12236 j = 0;
12237 while (i + j < insn_cnt && !aux_data[i + j].seen)
12238 j++;
12239 if (!j)
12240 continue;
12241
12242 err = verifier_remove_insns(env, i, j);
12243 if (err)
12244 return err;
12245 insn_cnt = env->prog->len;
12246 }
12247
12248 return 0;
12249}
12250
a1b14abc
JK
12251static int opt_remove_nops(struct bpf_verifier_env *env)
12252{
12253 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12254 struct bpf_insn *insn = env->prog->insnsi;
12255 int insn_cnt = env->prog->len;
12256 int i, err;
12257
12258 for (i = 0; i < insn_cnt; i++) {
12259 if (memcmp(&insn[i], &ja, sizeof(ja)))
12260 continue;
12261
12262 err = verifier_remove_insns(env, i, 1);
12263 if (err)
12264 return err;
12265 insn_cnt--;
12266 i--;
12267 }
12268
12269 return 0;
12270}
12271
d6c2308c
JW
12272static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12273 const union bpf_attr *attr)
a4b1d3c1 12274{
d6c2308c 12275 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 12276 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 12277 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 12278 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 12279 struct bpf_prog *new_prog;
d6c2308c 12280 bool rnd_hi32;
a4b1d3c1 12281
d6c2308c 12282 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 12283 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
12284 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12285 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12286 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
12287 for (i = 0; i < len; i++) {
12288 int adj_idx = i + delta;
12289 struct bpf_insn insn;
83a28819 12290 int load_reg;
a4b1d3c1 12291
d6c2308c 12292 insn = insns[adj_idx];
83a28819 12293 load_reg = insn_def_regno(&insn);
d6c2308c
JW
12294 if (!aux[adj_idx].zext_dst) {
12295 u8 code, class;
12296 u32 imm_rnd;
12297
12298 if (!rnd_hi32)
12299 continue;
12300
12301 code = insn.code;
12302 class = BPF_CLASS(code);
83a28819 12303 if (load_reg == -1)
d6c2308c
JW
12304 continue;
12305
12306 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
12307 * BPF_STX + SRC_OP, so it is safe to pass NULL
12308 * here.
d6c2308c 12309 */
83a28819 12310 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
12311 if (class == BPF_LD &&
12312 BPF_MODE(code) == BPF_IMM)
12313 i++;
12314 continue;
12315 }
12316
12317 /* ctx load could be transformed into wider load. */
12318 if (class == BPF_LDX &&
12319 aux[adj_idx].ptr_type == PTR_TO_CTX)
12320 continue;
12321
12322 imm_rnd = get_random_int();
12323 rnd_hi32_patch[0] = insn;
12324 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 12325 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
12326 patch = rnd_hi32_patch;
12327 patch_len = 4;
12328 goto apply_patch_buffer;
12329 }
12330
39491867
BJ
12331 /* Add in an zero-extend instruction if a) the JIT has requested
12332 * it or b) it's a CMPXCHG.
12333 *
12334 * The latter is because: BPF_CMPXCHG always loads a value into
12335 * R0, therefore always zero-extends. However some archs'
12336 * equivalent instruction only does this load when the
12337 * comparison is successful. This detail of CMPXCHG is
12338 * orthogonal to the general zero-extension behaviour of the
12339 * CPU, so it's treated independently of bpf_jit_needs_zext.
12340 */
12341 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
12342 continue;
12343
83a28819
IL
12344 if (WARN_ON(load_reg == -1)) {
12345 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12346 return -EFAULT;
b2e37a71
IL
12347 }
12348
a4b1d3c1 12349 zext_patch[0] = insn;
b2e37a71
IL
12350 zext_patch[1].dst_reg = load_reg;
12351 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
12352 patch = zext_patch;
12353 patch_len = 2;
12354apply_patch_buffer:
12355 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
12356 if (!new_prog)
12357 return -ENOMEM;
12358 env->prog = new_prog;
12359 insns = new_prog->insnsi;
12360 aux = env->insn_aux_data;
d6c2308c 12361 delta += patch_len - 1;
a4b1d3c1
JW
12362 }
12363
12364 return 0;
12365}
12366
c64b7983
JS
12367/* convert load instructions that access fields of a context type into a
12368 * sequence of instructions that access fields of the underlying structure:
12369 * struct __sk_buff -> struct sk_buff
12370 * struct bpf_sock_ops -> struct sock
9bac3d6d 12371 */
58e2af8b 12372static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 12373{
00176a34 12374 const struct bpf_verifier_ops *ops = env->ops;
f96da094 12375 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 12376 const int insn_cnt = env->prog->len;
36bbef52 12377 struct bpf_insn insn_buf[16], *insn;
46f53a65 12378 u32 target_size, size_default, off;
9bac3d6d 12379 struct bpf_prog *new_prog;
d691f9e8 12380 enum bpf_access_type type;
f96da094 12381 bool is_narrower_load;
9bac3d6d 12382
b09928b9
DB
12383 if (ops->gen_prologue || env->seen_direct_write) {
12384 if (!ops->gen_prologue) {
12385 verbose(env, "bpf verifier is misconfigured\n");
12386 return -EINVAL;
12387 }
36bbef52
DB
12388 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12389 env->prog);
12390 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 12391 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
12392 return -EINVAL;
12393 } else if (cnt) {
8041902d 12394 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
12395 if (!new_prog)
12396 return -ENOMEM;
8041902d 12397
36bbef52 12398 env->prog = new_prog;
3df126f3 12399 delta += cnt - 1;
36bbef52
DB
12400 }
12401 }
12402
c64b7983 12403 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
12404 return 0;
12405
3df126f3 12406 insn = env->prog->insnsi + delta;
36bbef52 12407
9bac3d6d 12408 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 12409 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 12410 bool ctx_access;
c64b7983 12411
62c7989b
DB
12412 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12413 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12414 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 12415 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 12416 type = BPF_READ;
2039f26f
DB
12417 ctx_access = true;
12418 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12419 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12420 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12421 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12422 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12423 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12424 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12425 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 12426 type = BPF_WRITE;
2039f26f
DB
12427 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12428 } else {
9bac3d6d 12429 continue;
2039f26f 12430 }
9bac3d6d 12431
af86ca4e 12432 if (type == BPF_WRITE &&
2039f26f 12433 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 12434 struct bpf_insn patch[] = {
af86ca4e 12435 *insn,
2039f26f 12436 BPF_ST_NOSPEC(),
af86ca4e
AS
12437 };
12438
12439 cnt = ARRAY_SIZE(patch);
12440 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12441 if (!new_prog)
12442 return -ENOMEM;
12443
12444 delta += cnt - 1;
12445 env->prog = new_prog;
12446 insn = new_prog->insnsi + i + delta;
12447 continue;
12448 }
12449
2039f26f
DB
12450 if (!ctx_access)
12451 continue;
12452
c64b7983
JS
12453 switch (env->insn_aux_data[i + delta].ptr_type) {
12454 case PTR_TO_CTX:
12455 if (!ops->convert_ctx_access)
12456 continue;
12457 convert_ctx_access = ops->convert_ctx_access;
12458 break;
12459 case PTR_TO_SOCKET:
46f8bc92 12460 case PTR_TO_SOCK_COMMON:
c64b7983
JS
12461 convert_ctx_access = bpf_sock_convert_ctx_access;
12462 break;
655a51e5
MKL
12463 case PTR_TO_TCP_SOCK:
12464 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12465 break;
fada7fdc
JL
12466 case PTR_TO_XDP_SOCK:
12467 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12468 break;
2a02759e 12469 case PTR_TO_BTF_ID:
27ae7997
MKL
12470 if (type == BPF_READ) {
12471 insn->code = BPF_LDX | BPF_PROBE_MEM |
12472 BPF_SIZE((insn)->code);
12473 env->prog->aux->num_exentries++;
7e40781c 12474 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
12475 verbose(env, "Writes through BTF pointers are not allowed\n");
12476 return -EINVAL;
12477 }
2a02759e 12478 continue;
c64b7983 12479 default:
9bac3d6d 12480 continue;
c64b7983 12481 }
9bac3d6d 12482
31fd8581 12483 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 12484 size = BPF_LDST_BYTES(insn);
31fd8581
YS
12485
12486 /* If the read access is a narrower load of the field,
12487 * convert to a 4/8-byte load, to minimum program type specific
12488 * convert_ctx_access changes. If conversion is successful,
12489 * we will apply proper mask to the result.
12490 */
f96da094 12491 is_narrower_load = size < ctx_field_size;
46f53a65
AI
12492 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12493 off = insn->off;
31fd8581 12494 if (is_narrower_load) {
f96da094
DB
12495 u8 size_code;
12496
12497 if (type == BPF_WRITE) {
61bd5218 12498 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12499 return -EINVAL;
12500 }
31fd8581 12501
f96da094 12502 size_code = BPF_H;
31fd8581
YS
12503 if (ctx_field_size == 4)
12504 size_code = BPF_W;
12505 else if (ctx_field_size == 8)
12506 size_code = BPF_DW;
f96da094 12507
bc23105c 12508 insn->off = off & ~(size_default - 1);
31fd8581
YS
12509 insn->code = BPF_LDX | BPF_MEM | size_code;
12510 }
f96da094
DB
12511
12512 target_size = 0;
c64b7983
JS
12513 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12514 &target_size);
f96da094
DB
12515 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12516 (ctx_field_size && !target_size)) {
61bd5218 12517 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12518 return -EINVAL;
12519 }
f96da094
DB
12520
12521 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12522 u8 shift = bpf_ctx_narrow_access_offset(
12523 off, size, size_default) * 8;
d7af7e49
AI
12524 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12525 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12526 return -EINVAL;
12527 }
46f53a65
AI
12528 if (ctx_field_size <= 4) {
12529 if (shift)
12530 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12531 insn->dst_reg,
12532 shift);
31fd8581 12533 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12534 (1 << size * 8) - 1);
46f53a65
AI
12535 } else {
12536 if (shift)
12537 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12538 insn->dst_reg,
12539 shift);
31fd8581 12540 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12541 (1ULL << size * 8) - 1);
46f53a65 12542 }
31fd8581 12543 }
9bac3d6d 12544
8041902d 12545 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12546 if (!new_prog)
12547 return -ENOMEM;
12548
3df126f3 12549 delta += cnt - 1;
9bac3d6d
AS
12550
12551 /* keep walking new program and skip insns we just inserted */
12552 env->prog = new_prog;
3df126f3 12553 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12554 }
12555
12556 return 0;
12557}
12558
1c2a088a
AS
12559static int jit_subprogs(struct bpf_verifier_env *env)
12560{
12561 struct bpf_prog *prog = env->prog, **func, *tmp;
12562 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12563 struct bpf_map *map_ptr;
7105e828 12564 struct bpf_insn *insn;
1c2a088a 12565 void *old_bpf_func;
c4c0bdc0 12566 int err, num_exentries;
1c2a088a 12567
f910cefa 12568 if (env->subprog_cnt <= 1)
1c2a088a
AS
12569 return 0;
12570
7105e828 12571 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 12572 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 12573 continue;
69c087ba 12574
c7a89784
DB
12575 /* Upon error here we cannot fall back to interpreter but
12576 * need a hard reject of the program. Thus -EFAULT is
12577 * propagated in any case.
12578 */
1c2a088a
AS
12579 subprog = find_subprog(env, i + insn->imm + 1);
12580 if (subprog < 0) {
12581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12582 i + insn->imm + 1);
12583 return -EFAULT;
12584 }
12585 /* temporarily remember subprog id inside insn instead of
12586 * aux_data, since next loop will split up all insns into funcs
12587 */
f910cefa 12588 insn->off = subprog;
1c2a088a
AS
12589 /* remember original imm in case JIT fails and fallback
12590 * to interpreter will be needed
12591 */
12592 env->insn_aux_data[i].call_imm = insn->imm;
12593 /* point imm to __bpf_call_base+1 from JITs point of view */
12594 insn->imm = 1;
3990ed4c
MKL
12595 if (bpf_pseudo_func(insn))
12596 /* jit (e.g. x86_64) may emit fewer instructions
12597 * if it learns a u32 imm is the same as a u64 imm.
12598 * Force a non zero here.
12599 */
12600 insn[1].imm = 1;
1c2a088a
AS
12601 }
12602
c454a46b
MKL
12603 err = bpf_prog_alloc_jited_linfo(prog);
12604 if (err)
12605 goto out_undo_insn;
12606
12607 err = -ENOMEM;
6396bb22 12608 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 12609 if (!func)
c7a89784 12610 goto out_undo_insn;
1c2a088a 12611
f910cefa 12612 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 12613 subprog_start = subprog_end;
4cb3d99c 12614 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
12615
12616 len = subprog_end - subprog_start;
fb7dd8bc 12617 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
12618 * hence main prog stats include the runtime of subprogs.
12619 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 12620 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
12621 */
12622 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
12623 if (!func[i])
12624 goto out_free;
12625 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12626 len * sizeof(struct bpf_insn));
4f74d809 12627 func[i]->type = prog->type;
1c2a088a 12628 func[i]->len = len;
4f74d809
DB
12629 if (bpf_prog_calc_tag(func[i]))
12630 goto out_free;
1c2a088a 12631 func[i]->is_func = 1;
ba64e7d8 12632 func[i]->aux->func_idx = i;
f263a814 12633 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
12634 func[i]->aux->btf = prog->aux->btf;
12635 func[i]->aux->func_info = prog->aux->func_info;
f263a814
JF
12636 func[i]->aux->poke_tab = prog->aux->poke_tab;
12637 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 12638
a748c697 12639 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 12640 struct bpf_jit_poke_descriptor *poke;
a748c697 12641
f263a814
JF
12642 poke = &prog->aux->poke_tab[j];
12643 if (poke->insn_idx < subprog_end &&
12644 poke->insn_idx >= subprog_start)
12645 poke->aux = func[i]->aux;
a748c697
MF
12646 }
12647
1c2a088a
AS
12648 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12649 * Long term would need debug info to populate names
12650 */
12651 func[i]->aux->name[0] = 'F';
9c8105bd 12652 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12653 func[i]->jit_requested = 1;
e6ac2450 12654 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 12655 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
12656 func[i]->aux->linfo = prog->aux->linfo;
12657 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12658 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12659 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12660 num_exentries = 0;
12661 insn = func[i]->insnsi;
12662 for (j = 0; j < func[i]->len; j++, insn++) {
12663 if (BPF_CLASS(insn->code) == BPF_LDX &&
12664 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12665 num_exentries++;
12666 }
12667 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12668 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12669 func[i] = bpf_int_jit_compile(func[i]);
12670 if (!func[i]->jited) {
12671 err = -ENOTSUPP;
12672 goto out_free;
12673 }
12674 cond_resched();
12675 }
a748c697 12676
1c2a088a
AS
12677 /* at this point all bpf functions were successfully JITed
12678 * now populate all bpf_calls with correct addresses and
12679 * run last pass of JIT
12680 */
f910cefa 12681 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12682 insn = func[i]->insnsi;
12683 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 12684 if (bpf_pseudo_func(insn)) {
3990ed4c 12685 subprog = insn->off;
69c087ba
YS
12686 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12687 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12688 continue;
12689 }
23a2d70c 12690 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12691 continue;
12692 subprog = insn->off;
3d717fad 12693 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 12694 }
2162fed4
SD
12695
12696 /* we use the aux data to keep a list of the start addresses
12697 * of the JITed images for each function in the program
12698 *
12699 * for some architectures, such as powerpc64, the imm field
12700 * might not be large enough to hold the offset of the start
12701 * address of the callee's JITed image from __bpf_call_base
12702 *
12703 * in such cases, we can lookup the start address of a callee
12704 * by using its subprog id, available from the off field of
12705 * the call instruction, as an index for this list
12706 */
12707 func[i]->aux->func = func;
12708 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12709 }
f910cefa 12710 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12711 old_bpf_func = func[i]->bpf_func;
12712 tmp = bpf_int_jit_compile(func[i]);
12713 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12714 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12715 err = -ENOTSUPP;
1c2a088a
AS
12716 goto out_free;
12717 }
12718 cond_resched();
12719 }
12720
12721 /* finally lock prog and jit images for all functions and
12722 * populate kallsysm
12723 */
f910cefa 12724 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12725 bpf_prog_lock_ro(func[i]);
12726 bpf_prog_kallsyms_add(func[i]);
12727 }
7105e828
DB
12728
12729 /* Last step: make now unused interpreter insns from main
12730 * prog consistent for later dump requests, so they can
12731 * later look the same as if they were interpreted only.
12732 */
12733 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12734 if (bpf_pseudo_func(insn)) {
12735 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
12736 insn[1].imm = insn->off;
12737 insn->off = 0;
69c087ba
YS
12738 continue;
12739 }
23a2d70c 12740 if (!bpf_pseudo_call(insn))
7105e828
DB
12741 continue;
12742 insn->off = env->insn_aux_data[i].call_imm;
12743 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12744 insn->imm = subprog;
7105e828
DB
12745 }
12746
1c2a088a
AS
12747 prog->jited = 1;
12748 prog->bpf_func = func[0]->bpf_func;
12749 prog->aux->func = func;
f910cefa 12750 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12751 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12752 return 0;
12753out_free:
f263a814
JF
12754 /* We failed JIT'ing, so at this point we need to unregister poke
12755 * descriptors from subprogs, so that kernel is not attempting to
12756 * patch it anymore as we're freeing the subprog JIT memory.
12757 */
12758 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12759 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12760 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12761 }
12762 /* At this point we're guaranteed that poke descriptors are not
12763 * live anymore. We can just unlink its descriptor table as it's
12764 * released with the main prog.
12765 */
a748c697
MF
12766 for (i = 0; i < env->subprog_cnt; i++) {
12767 if (!func[i])
12768 continue;
f263a814 12769 func[i]->aux->poke_tab = NULL;
a748c697
MF
12770 bpf_jit_free(func[i]);
12771 }
1c2a088a 12772 kfree(func);
c7a89784 12773out_undo_insn:
1c2a088a
AS
12774 /* cleanup main prog to be interpreted */
12775 prog->jit_requested = 0;
12776 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12777 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12778 continue;
12779 insn->off = 0;
12780 insn->imm = env->insn_aux_data[i].call_imm;
12781 }
e16301fb 12782 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12783 return err;
12784}
12785
1ea47e01
AS
12786static int fixup_call_args(struct bpf_verifier_env *env)
12787{
19d28fbd 12788#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12789 struct bpf_prog *prog = env->prog;
12790 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12791 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12792 int i, depth;
19d28fbd 12793#endif
e4052d06 12794 int err = 0;
1ea47e01 12795
e4052d06
QM
12796 if (env->prog->jit_requested &&
12797 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12798 err = jit_subprogs(env);
12799 if (err == 0)
1c2a088a 12800 return 0;
c7a89784
DB
12801 if (err == -EFAULT)
12802 return err;
19d28fbd
DM
12803 }
12804#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12805 if (has_kfunc_call) {
12806 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12807 return -EINVAL;
12808 }
e411901c
MF
12809 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12810 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12811 * have to be rejected, since interpreter doesn't support them yet.
12812 */
12813 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12814 return -EINVAL;
12815 }
1ea47e01 12816 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
12817 if (bpf_pseudo_func(insn)) {
12818 /* When JIT fails the progs with callback calls
12819 * have to be rejected, since interpreter doesn't support them yet.
12820 */
12821 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12822 return -EINVAL;
12823 }
12824
23a2d70c 12825 if (!bpf_pseudo_call(insn))
1ea47e01
AS
12826 continue;
12827 depth = get_callee_stack_depth(env, insn, i);
12828 if (depth < 0)
12829 return depth;
12830 bpf_patch_call_args(insn, depth);
12831 }
19d28fbd
DM
12832 err = 0;
12833#endif
12834 return err;
1ea47e01
AS
12835}
12836
e6ac2450
MKL
12837static int fixup_kfunc_call(struct bpf_verifier_env *env,
12838 struct bpf_insn *insn)
12839{
12840 const struct bpf_kfunc_desc *desc;
12841
a5d82727
KKD
12842 if (!insn->imm) {
12843 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12844 return -EINVAL;
12845 }
12846
e6ac2450
MKL
12847 /* insn->imm has the btf func_id. Replace it with
12848 * an address (relative to __bpf_base_call).
12849 */
2357672c 12850 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
12851 if (!desc) {
12852 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12853 insn->imm);
12854 return -EFAULT;
12855 }
12856
12857 insn->imm = desc->imm;
12858
12859 return 0;
12860}
12861
e6ac5933
BJ
12862/* Do various post-verification rewrites in a single program pass.
12863 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 12864 */
e6ac5933 12865static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 12866{
79741b3b 12867 struct bpf_prog *prog = env->prog;
d2e4c1e6 12868 bool expect_blinding = bpf_jit_blinding_enabled(prog);
9b99edca 12869 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 12870 struct bpf_insn *insn = prog->insnsi;
e245c5c6 12871 const struct bpf_func_proto *fn;
79741b3b 12872 const int insn_cnt = prog->len;
09772d92 12873 const struct bpf_map_ops *ops;
c93552c4 12874 struct bpf_insn_aux_data *aux;
81ed18ab
AS
12875 struct bpf_insn insn_buf[16];
12876 struct bpf_prog *new_prog;
12877 struct bpf_map *map_ptr;
d2e4c1e6 12878 int i, ret, cnt, delta = 0;
e245c5c6 12879
79741b3b 12880 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 12881 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
12882 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12883 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12884 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 12885 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 12886 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
12887 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12888 struct bpf_insn *patchlet;
12889 struct bpf_insn chk_and_div[] = {
9b00f1b7 12890 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
12891 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12892 BPF_JNE | BPF_K, insn->src_reg,
12893 0, 2, 0),
f6b1b3bf
DB
12894 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12895 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12896 *insn,
12897 };
e88b2c6e 12898 struct bpf_insn chk_and_mod[] = {
9b00f1b7 12899 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
12900 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12901 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 12902 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 12903 *insn,
9b00f1b7
DB
12904 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12905 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 12906 };
f6b1b3bf 12907
e88b2c6e
DB
12908 patchlet = isdiv ? chk_and_div : chk_and_mod;
12909 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 12910 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
12911
12912 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
12913 if (!new_prog)
12914 return -ENOMEM;
12915
12916 delta += cnt - 1;
12917 env->prog = prog = new_prog;
12918 insn = new_prog->insnsi + i + delta;
12919 continue;
12920 }
12921
e6ac5933 12922 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
12923 if (BPF_CLASS(insn->code) == BPF_LD &&
12924 (BPF_MODE(insn->code) == BPF_ABS ||
12925 BPF_MODE(insn->code) == BPF_IND)) {
12926 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12927 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12928 verbose(env, "bpf verifier is misconfigured\n");
12929 return -EINVAL;
12930 }
12931
12932 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12933 if (!new_prog)
12934 return -ENOMEM;
12935
12936 delta += cnt - 1;
12937 env->prog = prog = new_prog;
12938 insn = new_prog->insnsi + i + delta;
12939 continue;
12940 }
12941
e6ac5933 12942 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
12943 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12944 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12945 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12946 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 12947 struct bpf_insn *patch = &insn_buf[0];
801c6058 12948 bool issrc, isneg, isimm;
979d63d5
DB
12949 u32 off_reg;
12950
12951 aux = &env->insn_aux_data[i + delta];
3612af78
DB
12952 if (!aux->alu_state ||
12953 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
12954 continue;
12955
12956 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12957 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12958 BPF_ALU_SANITIZE_SRC;
801c6058 12959 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
12960
12961 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
12962 if (isimm) {
12963 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12964 } else {
12965 if (isneg)
12966 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12967 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12968 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12969 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12970 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12971 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12972 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12973 }
b9b34ddb
DB
12974 if (!issrc)
12975 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12976 insn->src_reg = BPF_REG_AX;
979d63d5
DB
12977 if (isneg)
12978 insn->code = insn->code == code_add ?
12979 code_sub : code_add;
12980 *patch++ = *insn;
801c6058 12981 if (issrc && isneg && !isimm)
979d63d5
DB
12982 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12983 cnt = patch - insn_buf;
12984
12985 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12986 if (!new_prog)
12987 return -ENOMEM;
12988
12989 delta += cnt - 1;
12990 env->prog = prog = new_prog;
12991 insn = new_prog->insnsi + i + delta;
12992 continue;
12993 }
12994
79741b3b
AS
12995 if (insn->code != (BPF_JMP | BPF_CALL))
12996 continue;
cc8b0b92
AS
12997 if (insn->src_reg == BPF_PSEUDO_CALL)
12998 continue;
e6ac2450
MKL
12999 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13000 ret = fixup_kfunc_call(env, insn);
13001 if (ret)
13002 return ret;
13003 continue;
13004 }
e245c5c6 13005
79741b3b
AS
13006 if (insn->imm == BPF_FUNC_get_route_realm)
13007 prog->dst_needed = 1;
13008 if (insn->imm == BPF_FUNC_get_prandom_u32)
13009 bpf_user_rnd_init_once();
9802d865
JB
13010 if (insn->imm == BPF_FUNC_override_return)
13011 prog->kprobe_override = 1;
79741b3b 13012 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
13013 /* If we tail call into other programs, we
13014 * cannot make any assumptions since they can
13015 * be replaced dynamically during runtime in
13016 * the program array.
13017 */
13018 prog->cb_access = 1;
e411901c
MF
13019 if (!allow_tail_call_in_subprogs(env))
13020 prog->aux->stack_depth = MAX_BPF_STACK;
13021 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 13022
79741b3b 13023 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 13024 * conditional branch in the interpreter for every normal
79741b3b
AS
13025 * call and to prevent accidental JITing by JIT compiler
13026 * that doesn't support bpf_tail_call yet
e245c5c6 13027 */
79741b3b 13028 insn->imm = 0;
71189fa9 13029 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 13030
c93552c4 13031 aux = &env->insn_aux_data[i + delta];
2c78ee89 13032 if (env->bpf_capable && !expect_blinding &&
cc52d914 13033 prog->jit_requested &&
d2e4c1e6
DB
13034 !bpf_map_key_poisoned(aux) &&
13035 !bpf_map_ptr_poisoned(aux) &&
13036 !bpf_map_ptr_unpriv(aux)) {
13037 struct bpf_jit_poke_descriptor desc = {
13038 .reason = BPF_POKE_REASON_TAIL_CALL,
13039 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13040 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 13041 .insn_idx = i + delta,
d2e4c1e6
DB
13042 };
13043
13044 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13045 if (ret < 0) {
13046 verbose(env, "adding tail call poke descriptor failed\n");
13047 return ret;
13048 }
13049
13050 insn->imm = ret + 1;
13051 continue;
13052 }
13053
c93552c4
DB
13054 if (!bpf_map_ptr_unpriv(aux))
13055 continue;
13056
b2157399
AS
13057 /* instead of changing every JIT dealing with tail_call
13058 * emit two extra insns:
13059 * if (index >= max_entries) goto out;
13060 * index &= array->index_mask;
13061 * to avoid out-of-bounds cpu speculation
13062 */
c93552c4 13063 if (bpf_map_ptr_poisoned(aux)) {
40950343 13064 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
13065 return -EINVAL;
13066 }
c93552c4 13067
d2e4c1e6 13068 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
13069 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13070 map_ptr->max_entries, 2);
13071 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13072 container_of(map_ptr,
13073 struct bpf_array,
13074 map)->index_mask);
13075 insn_buf[2] = *insn;
13076 cnt = 3;
13077 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13078 if (!new_prog)
13079 return -ENOMEM;
13080
13081 delta += cnt - 1;
13082 env->prog = prog = new_prog;
13083 insn = new_prog->insnsi + i + delta;
79741b3b
AS
13084 continue;
13085 }
e245c5c6 13086
b00628b1
AS
13087 if (insn->imm == BPF_FUNC_timer_set_callback) {
13088 /* The verifier will process callback_fn as many times as necessary
13089 * with different maps and the register states prepared by
13090 * set_timer_callback_state will be accurate.
13091 *
13092 * The following use case is valid:
13093 * map1 is shared by prog1, prog2, prog3.
13094 * prog1 calls bpf_timer_init for some map1 elements
13095 * prog2 calls bpf_timer_set_callback for some map1 elements.
13096 * Those that were not bpf_timer_init-ed will return -EINVAL.
13097 * prog3 calls bpf_timer_start for some map1 elements.
13098 * Those that were not both bpf_timer_init-ed and
13099 * bpf_timer_set_callback-ed will return -EINVAL.
13100 */
13101 struct bpf_insn ld_addrs[2] = {
13102 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13103 };
13104
13105 insn_buf[0] = ld_addrs[0];
13106 insn_buf[1] = ld_addrs[1];
13107 insn_buf[2] = *insn;
13108 cnt = 3;
13109
13110 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13111 if (!new_prog)
13112 return -ENOMEM;
13113
13114 delta += cnt - 1;
13115 env->prog = prog = new_prog;
13116 insn = new_prog->insnsi + i + delta;
13117 goto patch_call_imm;
13118 }
13119
89c63074 13120 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
13121 * and other inlining handlers are currently limited to 64 bit
13122 * only.
89c63074 13123 */
60b58afc 13124 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
13125 (insn->imm == BPF_FUNC_map_lookup_elem ||
13126 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
13127 insn->imm == BPF_FUNC_map_delete_elem ||
13128 insn->imm == BPF_FUNC_map_push_elem ||
13129 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 13130 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c
AI
13131 insn->imm == BPF_FUNC_redirect_map ||
13132 insn->imm == BPF_FUNC_for_each_map_elem)) {
c93552c4
DB
13133 aux = &env->insn_aux_data[i + delta];
13134 if (bpf_map_ptr_poisoned(aux))
13135 goto patch_call_imm;
13136
d2e4c1e6 13137 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
13138 ops = map_ptr->ops;
13139 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13140 ops->map_gen_lookup) {
13141 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
13142 if (cnt == -EOPNOTSUPP)
13143 goto patch_map_ops_generic;
13144 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
13145 verbose(env, "bpf verifier is misconfigured\n");
13146 return -EINVAL;
13147 }
81ed18ab 13148
09772d92
DB
13149 new_prog = bpf_patch_insn_data(env, i + delta,
13150 insn_buf, cnt);
13151 if (!new_prog)
13152 return -ENOMEM;
81ed18ab 13153
09772d92
DB
13154 delta += cnt - 1;
13155 env->prog = prog = new_prog;
13156 insn = new_prog->insnsi + i + delta;
13157 continue;
13158 }
81ed18ab 13159
09772d92
DB
13160 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13161 (void *(*)(struct bpf_map *map, void *key))NULL));
13162 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13163 (int (*)(struct bpf_map *map, void *key))NULL));
13164 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13165 (int (*)(struct bpf_map *map, void *key, void *value,
13166 u64 flags))NULL));
84430d42
DB
13167 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13168 (int (*)(struct bpf_map *map, void *value,
13169 u64 flags))NULL));
13170 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13171 (int (*)(struct bpf_map *map, void *value))NULL));
13172 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13173 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
13174 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13175 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
0640c77c
AI
13176 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13177 (int (*)(struct bpf_map *map,
13178 bpf_callback_t callback_fn,
13179 void *callback_ctx,
13180 u64 flags))NULL));
e6a4750f 13181
4a8f87e6 13182patch_map_ops_generic:
09772d92
DB
13183 switch (insn->imm) {
13184 case BPF_FUNC_map_lookup_elem:
3d717fad 13185 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
13186 continue;
13187 case BPF_FUNC_map_update_elem:
3d717fad 13188 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
13189 continue;
13190 case BPF_FUNC_map_delete_elem:
3d717fad 13191 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 13192 continue;
84430d42 13193 case BPF_FUNC_map_push_elem:
3d717fad 13194 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
13195 continue;
13196 case BPF_FUNC_map_pop_elem:
3d717fad 13197 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
13198 continue;
13199 case BPF_FUNC_map_peek_elem:
3d717fad 13200 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 13201 continue;
e6a4750f 13202 case BPF_FUNC_redirect_map:
3d717fad 13203 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 13204 continue;
0640c77c
AI
13205 case BPF_FUNC_for_each_map_elem:
13206 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 13207 continue;
09772d92 13208 }
81ed18ab 13209
09772d92 13210 goto patch_call_imm;
81ed18ab
AS
13211 }
13212
e6ac5933 13213 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
13214 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13215 insn->imm == BPF_FUNC_jiffies64) {
13216 struct bpf_insn ld_jiffies_addr[2] = {
13217 BPF_LD_IMM64(BPF_REG_0,
13218 (unsigned long)&jiffies),
13219 };
13220
13221 insn_buf[0] = ld_jiffies_addr[0];
13222 insn_buf[1] = ld_jiffies_addr[1];
13223 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13224 BPF_REG_0, 0);
13225 cnt = 3;
13226
13227 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13228 cnt);
13229 if (!new_prog)
13230 return -ENOMEM;
13231
13232 delta += cnt - 1;
13233 env->prog = prog = new_prog;
13234 insn = new_prog->insnsi + i + delta;
13235 continue;
13236 }
13237
9b99edca
JO
13238 /* Implement bpf_get_func_ip inline. */
13239 if (prog_type == BPF_PROG_TYPE_TRACING &&
13240 insn->imm == BPF_FUNC_get_func_ip) {
13241 /* Load IP address from ctx - 8 */
13242 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13243
13244 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13245 if (!new_prog)
13246 return -ENOMEM;
13247
13248 env->prog = prog = new_prog;
13249 insn = new_prog->insnsi + i + delta;
13250 continue;
13251 }
13252
81ed18ab 13253patch_call_imm:
5e43f899 13254 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
13255 /* all functions that have prototype and verifier allowed
13256 * programs to call them, must be real in-kernel functions
13257 */
13258 if (!fn->func) {
61bd5218
JK
13259 verbose(env,
13260 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
13261 func_id_name(insn->imm), insn->imm);
13262 return -EFAULT;
e245c5c6 13263 }
79741b3b 13264 insn->imm = fn->func - __bpf_call_base;
e245c5c6 13265 }
e245c5c6 13266
d2e4c1e6
DB
13267 /* Since poke tab is now finalized, publish aux to tracker. */
13268 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13269 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13270 if (!map_ptr->ops->map_poke_track ||
13271 !map_ptr->ops->map_poke_untrack ||
13272 !map_ptr->ops->map_poke_run) {
13273 verbose(env, "bpf verifier is misconfigured\n");
13274 return -EINVAL;
13275 }
13276
13277 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13278 if (ret < 0) {
13279 verbose(env, "tracking tail call prog failed\n");
13280 return ret;
13281 }
13282 }
13283
e6ac2450
MKL
13284 sort_kfunc_descs_by_imm(env->prog);
13285
79741b3b
AS
13286 return 0;
13287}
e245c5c6 13288
58e2af8b 13289static void free_states(struct bpf_verifier_env *env)
f1bca824 13290{
58e2af8b 13291 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
13292 int i;
13293
9f4686c4
AS
13294 sl = env->free_list;
13295 while (sl) {
13296 sln = sl->next;
13297 free_verifier_state(&sl->state, false);
13298 kfree(sl);
13299 sl = sln;
13300 }
51c39bb1 13301 env->free_list = NULL;
9f4686c4 13302
f1bca824
AS
13303 if (!env->explored_states)
13304 return;
13305
dc2a4ebc 13306 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
13307 sl = env->explored_states[i];
13308
a8f500af
AS
13309 while (sl) {
13310 sln = sl->next;
13311 free_verifier_state(&sl->state, false);
13312 kfree(sl);
13313 sl = sln;
13314 }
51c39bb1 13315 env->explored_states[i] = NULL;
f1bca824 13316 }
51c39bb1 13317}
f1bca824 13318
51c39bb1
AS
13319static int do_check_common(struct bpf_verifier_env *env, int subprog)
13320{
6f8a57cc 13321 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
13322 struct bpf_verifier_state *state;
13323 struct bpf_reg_state *regs;
13324 int ret, i;
13325
13326 env->prev_linfo = NULL;
13327 env->pass_cnt++;
13328
13329 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13330 if (!state)
13331 return -ENOMEM;
13332 state->curframe = 0;
13333 state->speculative = false;
13334 state->branches = 1;
13335 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13336 if (!state->frame[0]) {
13337 kfree(state);
13338 return -ENOMEM;
13339 }
13340 env->cur_state = state;
13341 init_func_state(env, state->frame[0],
13342 BPF_MAIN_FUNC /* callsite */,
13343 0 /* frameno */,
13344 subprog);
13345
13346 regs = state->frame[state->curframe]->regs;
be8704ff 13347 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
13348 ret = btf_prepare_func_args(env, subprog, regs);
13349 if (ret)
13350 goto out;
13351 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13352 if (regs[i].type == PTR_TO_CTX)
13353 mark_reg_known_zero(env, regs, i);
13354 else if (regs[i].type == SCALAR_VALUE)
13355 mark_reg_unknown(env, regs, i);
e5069b9c
DB
13356 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13357 const u32 mem_size = regs[i].mem_size;
13358
13359 mark_reg_known_zero(env, regs, i);
13360 regs[i].mem_size = mem_size;
13361 regs[i].id = ++env->id_gen;
13362 }
51c39bb1
AS
13363 }
13364 } else {
13365 /* 1st arg to a function */
13366 regs[BPF_REG_1].type = PTR_TO_CTX;
13367 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 13368 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
13369 if (ret == -EFAULT)
13370 /* unlikely verifier bug. abort.
13371 * ret == 0 and ret < 0 are sadly acceptable for
13372 * main() function due to backward compatibility.
13373 * Like socket filter program may be written as:
13374 * int bpf_prog(struct pt_regs *ctx)
13375 * and never dereference that ctx in the program.
13376 * 'struct pt_regs' is a type mismatch for socket
13377 * filter that should be using 'struct __sk_buff'.
13378 */
13379 goto out;
13380 }
13381
13382 ret = do_check(env);
13383out:
f59bbfc2
AS
13384 /* check for NULL is necessary, since cur_state can be freed inside
13385 * do_check() under memory pressure.
13386 */
13387 if (env->cur_state) {
13388 free_verifier_state(env->cur_state, true);
13389 env->cur_state = NULL;
13390 }
6f8a57cc
AN
13391 while (!pop_stack(env, NULL, NULL, false));
13392 if (!ret && pop_log)
13393 bpf_vlog_reset(&env->log, 0);
51c39bb1 13394 free_states(env);
51c39bb1
AS
13395 return ret;
13396}
13397
13398/* Verify all global functions in a BPF program one by one based on their BTF.
13399 * All global functions must pass verification. Otherwise the whole program is rejected.
13400 * Consider:
13401 * int bar(int);
13402 * int foo(int f)
13403 * {
13404 * return bar(f);
13405 * }
13406 * int bar(int b)
13407 * {
13408 * ...
13409 * }
13410 * foo() will be verified first for R1=any_scalar_value. During verification it
13411 * will be assumed that bar() already verified successfully and call to bar()
13412 * from foo() will be checked for type match only. Later bar() will be verified
13413 * independently to check that it's safe for R1=any_scalar_value.
13414 */
13415static int do_check_subprogs(struct bpf_verifier_env *env)
13416{
13417 struct bpf_prog_aux *aux = env->prog->aux;
13418 int i, ret;
13419
13420 if (!aux->func_info)
13421 return 0;
13422
13423 for (i = 1; i < env->subprog_cnt; i++) {
13424 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13425 continue;
13426 env->insn_idx = env->subprog_info[i].start;
13427 WARN_ON_ONCE(env->insn_idx == 0);
13428 ret = do_check_common(env, i);
13429 if (ret) {
13430 return ret;
13431 } else if (env->log.level & BPF_LOG_LEVEL) {
13432 verbose(env,
13433 "Func#%d is safe for any args that match its prototype\n",
13434 i);
13435 }
13436 }
13437 return 0;
13438}
13439
13440static int do_check_main(struct bpf_verifier_env *env)
13441{
13442 int ret;
13443
13444 env->insn_idx = 0;
13445 ret = do_check_common(env, 0);
13446 if (!ret)
13447 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13448 return ret;
13449}
13450
13451
06ee7115
AS
13452static void print_verification_stats(struct bpf_verifier_env *env)
13453{
13454 int i;
13455
13456 if (env->log.level & BPF_LOG_STATS) {
13457 verbose(env, "verification time %lld usec\n",
13458 div_u64(env->verification_time, 1000));
13459 verbose(env, "stack depth ");
13460 for (i = 0; i < env->subprog_cnt; i++) {
13461 u32 depth = env->subprog_info[i].stack_depth;
13462
13463 verbose(env, "%d", depth);
13464 if (i + 1 < env->subprog_cnt)
13465 verbose(env, "+");
13466 }
13467 verbose(env, "\n");
13468 }
13469 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13470 "total_states %d peak_states %d mark_read %d\n",
13471 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13472 env->max_states_per_insn, env->total_states,
13473 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
13474}
13475
27ae7997
MKL
13476static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13477{
13478 const struct btf_type *t, *func_proto;
13479 const struct bpf_struct_ops *st_ops;
13480 const struct btf_member *member;
13481 struct bpf_prog *prog = env->prog;
13482 u32 btf_id, member_idx;
13483 const char *mname;
13484
12aa8a94
THJ
13485 if (!prog->gpl_compatible) {
13486 verbose(env, "struct ops programs must have a GPL compatible license\n");
13487 return -EINVAL;
13488 }
13489
27ae7997
MKL
13490 btf_id = prog->aux->attach_btf_id;
13491 st_ops = bpf_struct_ops_find(btf_id);
13492 if (!st_ops) {
13493 verbose(env, "attach_btf_id %u is not a supported struct\n",
13494 btf_id);
13495 return -ENOTSUPP;
13496 }
13497
13498 t = st_ops->type;
13499 member_idx = prog->expected_attach_type;
13500 if (member_idx >= btf_type_vlen(t)) {
13501 verbose(env, "attach to invalid member idx %u of struct %s\n",
13502 member_idx, st_ops->name);
13503 return -EINVAL;
13504 }
13505
13506 member = &btf_type_member(t)[member_idx];
13507 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13508 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13509 NULL);
13510 if (!func_proto) {
13511 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13512 mname, member_idx, st_ops->name);
13513 return -EINVAL;
13514 }
13515
13516 if (st_ops->check_member) {
13517 int err = st_ops->check_member(t, member);
13518
13519 if (err) {
13520 verbose(env, "attach to unsupported member %s of struct %s\n",
13521 mname, st_ops->name);
13522 return err;
13523 }
13524 }
13525
13526 prog->aux->attach_func_proto = func_proto;
13527 prog->aux->attach_func_name = mname;
13528 env->ops = st_ops->verifier_ops;
13529
13530 return 0;
13531}
6ba43b76
KS
13532#define SECURITY_PREFIX "security_"
13533
f7b12b6f 13534static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 13535{
69191754 13536 if (within_error_injection_list(addr) ||
f7b12b6f 13537 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 13538 return 0;
6ba43b76 13539
6ba43b76
KS
13540 return -EINVAL;
13541}
27ae7997 13542
1e6c62a8
AS
13543/* list of non-sleepable functions that are otherwise on
13544 * ALLOW_ERROR_INJECTION list
13545 */
13546BTF_SET_START(btf_non_sleepable_error_inject)
13547/* Three functions below can be called from sleepable and non-sleepable context.
13548 * Assume non-sleepable from bpf safety point of view.
13549 */
9dd3d069 13550BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
13551BTF_ID(func, should_fail_alloc_page)
13552BTF_ID(func, should_failslab)
13553BTF_SET_END(btf_non_sleepable_error_inject)
13554
13555static int check_non_sleepable_error_inject(u32 btf_id)
13556{
13557 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13558}
13559
f7b12b6f
THJ
13560int bpf_check_attach_target(struct bpf_verifier_log *log,
13561 const struct bpf_prog *prog,
13562 const struct bpf_prog *tgt_prog,
13563 u32 btf_id,
13564 struct bpf_attach_target_info *tgt_info)
38207291 13565{
be8704ff 13566 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 13567 const char prefix[] = "btf_trace_";
5b92a28a 13568 int ret = 0, subprog = -1, i;
38207291 13569 const struct btf_type *t;
5b92a28a 13570 bool conservative = true;
38207291 13571 const char *tname;
5b92a28a 13572 struct btf *btf;
f7b12b6f 13573 long addr = 0;
38207291 13574
f1b9509c 13575 if (!btf_id) {
efc68158 13576 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
13577 return -EINVAL;
13578 }
22dc4a0f 13579 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 13580 if (!btf) {
efc68158 13581 bpf_log(log,
5b92a28a
AS
13582 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13583 return -EINVAL;
13584 }
13585 t = btf_type_by_id(btf, btf_id);
f1b9509c 13586 if (!t) {
efc68158 13587 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
13588 return -EINVAL;
13589 }
5b92a28a 13590 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 13591 if (!tname) {
efc68158 13592 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
13593 return -EINVAL;
13594 }
5b92a28a
AS
13595 if (tgt_prog) {
13596 struct bpf_prog_aux *aux = tgt_prog->aux;
13597
13598 for (i = 0; i < aux->func_info_cnt; i++)
13599 if (aux->func_info[i].type_id == btf_id) {
13600 subprog = i;
13601 break;
13602 }
13603 if (subprog == -1) {
efc68158 13604 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
13605 return -EINVAL;
13606 }
13607 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
13608 if (prog_extension) {
13609 if (conservative) {
efc68158 13610 bpf_log(log,
be8704ff
AS
13611 "Cannot replace static functions\n");
13612 return -EINVAL;
13613 }
13614 if (!prog->jit_requested) {
efc68158 13615 bpf_log(log,
be8704ff
AS
13616 "Extension programs should be JITed\n");
13617 return -EINVAL;
13618 }
be8704ff
AS
13619 }
13620 if (!tgt_prog->jited) {
efc68158 13621 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
13622 return -EINVAL;
13623 }
13624 if (tgt_prog->type == prog->type) {
13625 /* Cannot fentry/fexit another fentry/fexit program.
13626 * Cannot attach program extension to another extension.
13627 * It's ok to attach fentry/fexit to extension program.
13628 */
efc68158 13629 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
13630 return -EINVAL;
13631 }
13632 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13633 prog_extension &&
13634 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13635 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13636 /* Program extensions can extend all program types
13637 * except fentry/fexit. The reason is the following.
13638 * The fentry/fexit programs are used for performance
13639 * analysis, stats and can be attached to any program
13640 * type except themselves. When extension program is
13641 * replacing XDP function it is necessary to allow
13642 * performance analysis of all functions. Both original
13643 * XDP program and its program extension. Hence
13644 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13645 * allowed. If extending of fentry/fexit was allowed it
13646 * would be possible to create long call chain
13647 * fentry->extension->fentry->extension beyond
13648 * reasonable stack size. Hence extending fentry is not
13649 * allowed.
13650 */
efc68158 13651 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
13652 return -EINVAL;
13653 }
5b92a28a 13654 } else {
be8704ff 13655 if (prog_extension) {
efc68158 13656 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
13657 return -EINVAL;
13658 }
5b92a28a 13659 }
f1b9509c
AS
13660
13661 switch (prog->expected_attach_type) {
13662 case BPF_TRACE_RAW_TP:
5b92a28a 13663 if (tgt_prog) {
efc68158 13664 bpf_log(log,
5b92a28a
AS
13665 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13666 return -EINVAL;
13667 }
38207291 13668 if (!btf_type_is_typedef(t)) {
efc68158 13669 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
13670 btf_id);
13671 return -EINVAL;
13672 }
f1b9509c 13673 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 13674 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
13675 btf_id, tname);
13676 return -EINVAL;
13677 }
13678 tname += sizeof(prefix) - 1;
5b92a28a 13679 t = btf_type_by_id(btf, t->type);
38207291
MKL
13680 if (!btf_type_is_ptr(t))
13681 /* should never happen in valid vmlinux build */
13682 return -EINVAL;
5b92a28a 13683 t = btf_type_by_id(btf, t->type);
38207291
MKL
13684 if (!btf_type_is_func_proto(t))
13685 /* should never happen in valid vmlinux build */
13686 return -EINVAL;
13687
f7b12b6f 13688 break;
15d83c4d
YS
13689 case BPF_TRACE_ITER:
13690 if (!btf_type_is_func(t)) {
efc68158 13691 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13692 btf_id);
13693 return -EINVAL;
13694 }
13695 t = btf_type_by_id(btf, t->type);
13696 if (!btf_type_is_func_proto(t))
13697 return -EINVAL;
f7b12b6f
THJ
13698 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13699 if (ret)
13700 return ret;
13701 break;
be8704ff
AS
13702 default:
13703 if (!prog_extension)
13704 return -EINVAL;
df561f66 13705 fallthrough;
ae240823 13706 case BPF_MODIFY_RETURN:
9e4e01df 13707 case BPF_LSM_MAC:
fec56f58
AS
13708 case BPF_TRACE_FENTRY:
13709 case BPF_TRACE_FEXIT:
13710 if (!btf_type_is_func(t)) {
efc68158 13711 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13712 btf_id);
13713 return -EINVAL;
13714 }
be8704ff 13715 if (prog_extension &&
efc68158 13716 btf_check_type_match(log, prog, btf, t))
be8704ff 13717 return -EINVAL;
5b92a28a 13718 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13719 if (!btf_type_is_func_proto(t))
13720 return -EINVAL;
f7b12b6f 13721
4a1e7c0c
THJ
13722 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13723 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13724 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13725 return -EINVAL;
13726
f7b12b6f 13727 if (tgt_prog && conservative)
5b92a28a 13728 t = NULL;
f7b12b6f
THJ
13729
13730 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13731 if (ret < 0)
f7b12b6f
THJ
13732 return ret;
13733
5b92a28a 13734 if (tgt_prog) {
e9eeec58
YS
13735 if (subprog == 0)
13736 addr = (long) tgt_prog->bpf_func;
13737 else
13738 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13739 } else {
13740 addr = kallsyms_lookup_name(tname);
13741 if (!addr) {
efc68158 13742 bpf_log(log,
5b92a28a
AS
13743 "The address of function %s cannot be found\n",
13744 tname);
f7b12b6f 13745 return -ENOENT;
5b92a28a 13746 }
fec56f58 13747 }
18644cec 13748
1e6c62a8
AS
13749 if (prog->aux->sleepable) {
13750 ret = -EINVAL;
13751 switch (prog->type) {
13752 case BPF_PROG_TYPE_TRACING:
13753 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13754 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13755 */
13756 if (!check_non_sleepable_error_inject(btf_id) &&
13757 within_error_injection_list(addr))
13758 ret = 0;
13759 break;
13760 case BPF_PROG_TYPE_LSM:
13761 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13762 * Only some of them are sleepable.
13763 */
423f1610 13764 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
13765 ret = 0;
13766 break;
13767 default:
13768 break;
13769 }
f7b12b6f
THJ
13770 if (ret) {
13771 bpf_log(log, "%s is not sleepable\n", tname);
13772 return ret;
13773 }
1e6c62a8 13774 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 13775 if (tgt_prog) {
efc68158 13776 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
13777 return -EINVAL;
13778 }
13779 ret = check_attach_modify_return(addr, tname);
13780 if (ret) {
13781 bpf_log(log, "%s() is not modifiable\n", tname);
13782 return ret;
1af9270e 13783 }
18644cec 13784 }
f7b12b6f
THJ
13785
13786 break;
13787 }
13788 tgt_info->tgt_addr = addr;
13789 tgt_info->tgt_name = tname;
13790 tgt_info->tgt_type = t;
13791 return 0;
13792}
13793
35e3815f
JO
13794BTF_SET_START(btf_id_deny)
13795BTF_ID_UNUSED
13796#ifdef CONFIG_SMP
13797BTF_ID(func, migrate_disable)
13798BTF_ID(func, migrate_enable)
13799#endif
13800#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13801BTF_ID(func, rcu_read_unlock_strict)
13802#endif
13803BTF_SET_END(btf_id_deny)
13804
f7b12b6f
THJ
13805static int check_attach_btf_id(struct bpf_verifier_env *env)
13806{
13807 struct bpf_prog *prog = env->prog;
3aac1ead 13808 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
13809 struct bpf_attach_target_info tgt_info = {};
13810 u32 btf_id = prog->aux->attach_btf_id;
13811 struct bpf_trampoline *tr;
13812 int ret;
13813 u64 key;
13814
79a7f8bd
AS
13815 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13816 if (prog->aux->sleepable)
13817 /* attach_btf_id checked to be zero already */
13818 return 0;
13819 verbose(env, "Syscall programs can only be sleepable\n");
13820 return -EINVAL;
13821 }
13822
f7b12b6f
THJ
13823 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13824 prog->type != BPF_PROG_TYPE_LSM) {
13825 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13826 return -EINVAL;
13827 }
13828
13829 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13830 return check_struct_ops_btf_id(env);
13831
13832 if (prog->type != BPF_PROG_TYPE_TRACING &&
13833 prog->type != BPF_PROG_TYPE_LSM &&
13834 prog->type != BPF_PROG_TYPE_EXT)
13835 return 0;
13836
13837 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13838 if (ret)
fec56f58 13839 return ret;
f7b12b6f
THJ
13840
13841 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
13842 /* to make freplace equivalent to their targets, they need to
13843 * inherit env->ops and expected_attach_type for the rest of the
13844 * verification
13845 */
f7b12b6f
THJ
13846 env->ops = bpf_verifier_ops[tgt_prog->type];
13847 prog->expected_attach_type = tgt_prog->expected_attach_type;
13848 }
13849
13850 /* store info about the attachment target that will be used later */
13851 prog->aux->attach_func_proto = tgt_info.tgt_type;
13852 prog->aux->attach_func_name = tgt_info.tgt_name;
13853
4a1e7c0c
THJ
13854 if (tgt_prog) {
13855 prog->aux->saved_dst_prog_type = tgt_prog->type;
13856 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13857 }
13858
f7b12b6f
THJ
13859 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13860 prog->aux->attach_btf_trace = true;
13861 return 0;
13862 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13863 if (!bpf_iter_prog_supported(prog))
13864 return -EINVAL;
13865 return 0;
13866 }
13867
13868 if (prog->type == BPF_PROG_TYPE_LSM) {
13869 ret = bpf_lsm_verify_prog(&env->log, prog);
13870 if (ret < 0)
13871 return ret;
35e3815f
JO
13872 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13873 btf_id_set_contains(&btf_id_deny, btf_id)) {
13874 return -EINVAL;
38207291 13875 }
f7b12b6f 13876
22dc4a0f 13877 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
13878 tr = bpf_trampoline_get(key, &tgt_info);
13879 if (!tr)
13880 return -ENOMEM;
13881
3aac1ead 13882 prog->aux->dst_trampoline = tr;
f7b12b6f 13883 return 0;
38207291
MKL
13884}
13885
76654e67
AM
13886struct btf *bpf_get_btf_vmlinux(void)
13887{
13888 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13889 mutex_lock(&bpf_verifier_lock);
13890 if (!btf_vmlinux)
13891 btf_vmlinux = btf_parse_vmlinux();
13892 mutex_unlock(&bpf_verifier_lock);
13893 }
13894 return btf_vmlinux;
13895}
13896
af2ac3e1 13897int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 13898{
06ee7115 13899 u64 start_time = ktime_get_ns();
58e2af8b 13900 struct bpf_verifier_env *env;
b9193c1b 13901 struct bpf_verifier_log *log;
9e4c24e7 13902 int i, len, ret = -EINVAL;
e2ae4ca2 13903 bool is_priv;
51580e79 13904
eba0c929
AB
13905 /* no program is valid */
13906 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13907 return -EINVAL;
13908
58e2af8b 13909 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
13910 * allocate/free it every time bpf_check() is called
13911 */
58e2af8b 13912 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
13913 if (!env)
13914 return -ENOMEM;
61bd5218 13915 log = &env->log;
cbd35700 13916
9e4c24e7 13917 len = (*prog)->len;
fad953ce 13918 env->insn_aux_data =
9e4c24e7 13919 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
13920 ret = -ENOMEM;
13921 if (!env->insn_aux_data)
13922 goto err_free_env;
9e4c24e7
JK
13923 for (i = 0; i < len; i++)
13924 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 13925 env->prog = *prog;
00176a34 13926 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 13927 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 13928 is_priv = bpf_capable();
0246e64d 13929
76654e67 13930 bpf_get_btf_vmlinux();
8580ac94 13931
cbd35700 13932 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
13933 if (!is_priv)
13934 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
13935
13936 if (attr->log_level || attr->log_buf || attr->log_size) {
13937 /* user requested verbose verifier output
13938 * and supplied buffer to store the verification trace
13939 */
e7bf8249
JK
13940 log->level = attr->log_level;
13941 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13942 log->len_total = attr->log_size;
cbd35700
AS
13943
13944 ret = -EINVAL;
e7bf8249 13945 /* log attributes have to be sane */
7a9f5c65 13946 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 13947 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 13948 goto err_unlock;
cbd35700 13949 }
1ad2f583 13950
8580ac94
AS
13951 if (IS_ERR(btf_vmlinux)) {
13952 /* Either gcc or pahole or kernel are broken. */
13953 verbose(env, "in-kernel BTF is malformed\n");
13954 ret = PTR_ERR(btf_vmlinux);
38207291 13955 goto skip_full_check;
8580ac94
AS
13956 }
13957
1ad2f583
DB
13958 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13959 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 13960 env->strict_alignment = true;
e9ee9efc
DM
13961 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13962 env->strict_alignment = false;
cbd35700 13963
2c78ee89 13964 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 13965 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 13966 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
13967 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13968 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13969 env->bpf_capable = bpf_capable();
e2ae4ca2 13970
10d274e8
AS
13971 if (is_priv)
13972 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13973
dc2a4ebc 13974 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 13975 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
13976 GFP_USER);
13977 ret = -ENOMEM;
13978 if (!env->explored_states)
13979 goto skip_full_check;
13980
e6ac2450
MKL
13981 ret = add_subprog_and_kfunc(env);
13982 if (ret < 0)
13983 goto skip_full_check;
13984
d9762e84 13985 ret = check_subprogs(env);
475fb78f
AS
13986 if (ret < 0)
13987 goto skip_full_check;
13988
c454a46b 13989 ret = check_btf_info(env, attr, uattr);
838e9690
YS
13990 if (ret < 0)
13991 goto skip_full_check;
13992
be8704ff
AS
13993 ret = check_attach_btf_id(env);
13994 if (ret)
13995 goto skip_full_check;
13996
4976b718
HL
13997 ret = resolve_pseudo_ldimm64(env);
13998 if (ret < 0)
13999 goto skip_full_check;
14000
ceb11679
YZ
14001 if (bpf_prog_is_dev_bound(env->prog->aux)) {
14002 ret = bpf_prog_offload_verifier_prep(env->prog);
14003 if (ret)
14004 goto skip_full_check;
14005 }
14006
d9762e84
MKL
14007 ret = check_cfg(env);
14008 if (ret < 0)
14009 goto skip_full_check;
14010
51c39bb1
AS
14011 ret = do_check_subprogs(env);
14012 ret = ret ?: do_check_main(env);
cbd35700 14013
c941ce9c
QM
14014 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14015 ret = bpf_prog_offload_finalize(env);
14016
0246e64d 14017skip_full_check:
51c39bb1 14018 kvfree(env->explored_states);
0246e64d 14019
c131187d 14020 if (ret == 0)
9b38c405 14021 ret = check_max_stack_depth(env);
c131187d 14022
9b38c405 14023 /* instruction rewrites happen after this point */
e2ae4ca2
JK
14024 if (is_priv) {
14025 if (ret == 0)
14026 opt_hard_wire_dead_code_branches(env);
52875a04
JK
14027 if (ret == 0)
14028 ret = opt_remove_dead_code(env);
a1b14abc
JK
14029 if (ret == 0)
14030 ret = opt_remove_nops(env);
52875a04
JK
14031 } else {
14032 if (ret == 0)
14033 sanitize_dead_code(env);
e2ae4ca2
JK
14034 }
14035
9bac3d6d
AS
14036 if (ret == 0)
14037 /* program is valid, convert *(u32*)(ctx + off) accesses */
14038 ret = convert_ctx_accesses(env);
14039
e245c5c6 14040 if (ret == 0)
e6ac5933 14041 ret = do_misc_fixups(env);
e245c5c6 14042
a4b1d3c1
JW
14043 /* do 32-bit optimization after insn patching has done so those patched
14044 * insns could be handled correctly.
14045 */
d6c2308c
JW
14046 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14047 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14048 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14049 : false;
a4b1d3c1
JW
14050 }
14051
1ea47e01
AS
14052 if (ret == 0)
14053 ret = fixup_call_args(env);
14054
06ee7115
AS
14055 env->verification_time = ktime_get_ns() - start_time;
14056 print_verification_stats(env);
aba64c7d 14057 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 14058
a2a7d570 14059 if (log->level && bpf_verifier_log_full(log))
cbd35700 14060 ret = -ENOSPC;
a2a7d570 14061 if (log->level && !log->ubuf) {
cbd35700 14062 ret = -EFAULT;
a2a7d570 14063 goto err_release_maps;
cbd35700
AS
14064 }
14065
541c3bad
AN
14066 if (ret)
14067 goto err_release_maps;
14068
14069 if (env->used_map_cnt) {
0246e64d 14070 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
14071 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14072 sizeof(env->used_maps[0]),
14073 GFP_KERNEL);
0246e64d 14074
9bac3d6d 14075 if (!env->prog->aux->used_maps) {
0246e64d 14076 ret = -ENOMEM;
a2a7d570 14077 goto err_release_maps;
0246e64d
AS
14078 }
14079
9bac3d6d 14080 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 14081 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 14082 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
14083 }
14084 if (env->used_btf_cnt) {
14085 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14086 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14087 sizeof(env->used_btfs[0]),
14088 GFP_KERNEL);
14089 if (!env->prog->aux->used_btfs) {
14090 ret = -ENOMEM;
14091 goto err_release_maps;
14092 }
0246e64d 14093
541c3bad
AN
14094 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14095 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14096 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14097 }
14098 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
14099 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14100 * bpf_ld_imm64 instructions
14101 */
14102 convert_pseudo_ld_imm64(env);
14103 }
cbd35700 14104
541c3bad 14105 adjust_btf_func(env);
ba64e7d8 14106
a2a7d570 14107err_release_maps:
9bac3d6d 14108 if (!env->prog->aux->used_maps)
0246e64d 14109 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 14110 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
14111 */
14112 release_maps(env);
541c3bad
AN
14113 if (!env->prog->aux->used_btfs)
14114 release_btfs(env);
03f87c0b
THJ
14115
14116 /* extension progs temporarily inherit the attach_type of their targets
14117 for verification purposes, so set it back to zero before returning
14118 */
14119 if (env->prog->type == BPF_PROG_TYPE_EXT)
14120 env->prog->expected_attach_type = 0;
14121
9bac3d6d 14122 *prog = env->prog;
3df126f3 14123err_unlock:
45a73c17
AS
14124 if (!is_priv)
14125 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
14126 vfree(env->insn_aux_data);
14127err_free_env:
14128 kfree(env);
51580e79
AS
14129 return ret;
14130}