bpf: powerpc64: add JIT support for multi-function programs
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
cc8b0b92
AS
23#include <linux/bsearch.h>
24#include <linux/sort.h>
c195651e 25#include <linux/perf_event.h>
51580e79 26
f4ac7e0b
JK
27#include "disasm.h"
28
00176a34
JK
29static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30#define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32#define BPF_MAP_TYPE(_id, _ops)
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
f1174f77 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
84 * types recognized by check_mem_access() function.
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
143 */
144
17a52670 145/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 146struct bpf_verifier_stack_elem {
17a52670
AS
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
150 */
58e2af8b 151 struct bpf_verifier_state st;
17a52670
AS
152 int insn_idx;
153 int prev_insn_idx;
58e2af8b 154 struct bpf_verifier_stack_elem *next;
cbd35700
AS
155};
156
8e17c1b1 157#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
158#define BPF_COMPLEXITY_LIMIT_STACK 1024
159
fad73a1a
MKL
160#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161
33ff9823
DB
162struct bpf_call_arg_meta {
163 struct bpf_map *map_ptr;
435faee1 164 bool raw_mode;
36bbef52 165 bool pkt_access;
435faee1
DB
166 int regno;
167 int access_size;
849fa506
YS
168 s64 msize_smax_value;
169 u64 msize_umax_value;
33ff9823
DB
170};
171
cbd35700
AS
172static DEFINE_MUTEX(bpf_verifier_lock);
173
77d2e05a
MKL
174void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
175 va_list args)
cbd35700 176{
a2a7d570 177 unsigned int n;
cbd35700 178
a2a7d570 179 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
180
181 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
182 "verifier log line truncated - local buffer too short\n");
183
184 n = min(log->len_total - log->len_used - 1, n);
185 log->kbuf[n] = '\0';
186
187 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
188 log->len_used += n;
189 else
190 log->ubuf = NULL;
cbd35700 191}
abe08840
JO
192
193/* log_level controls verbosity level of eBPF verifier.
194 * bpf_verifier_log_write() is used to dump the verification trace to the log,
195 * so the user can figure out what's wrong with the program
430e68d1 196 */
abe08840
JO
197__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
198 const char *fmt, ...)
199{
200 va_list args;
201
77d2e05a
MKL
202 if (!bpf_verifier_log_needed(&env->log))
203 return;
204
abe08840 205 va_start(args, fmt);
77d2e05a 206 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
207 va_end(args);
208}
209EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
210
211__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
212{
77d2e05a 213 struct bpf_verifier_env *env = private_data;
abe08840
JO
214 va_list args;
215
77d2e05a
MKL
216 if (!bpf_verifier_log_needed(&env->log))
217 return;
218
abe08840 219 va_start(args, fmt);
77d2e05a 220 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
221 va_end(args);
222}
cbd35700 223
de8f3a83
DB
224static bool type_is_pkt_pointer(enum bpf_reg_type type)
225{
226 return type == PTR_TO_PACKET ||
227 type == PTR_TO_PACKET_META;
228}
229
17a52670
AS
230/* string representation of 'enum bpf_reg_type' */
231static const char * const reg_type_str[] = {
232 [NOT_INIT] = "?",
f1174f77 233 [SCALAR_VALUE] = "inv",
17a52670
AS
234 [PTR_TO_CTX] = "ctx",
235 [CONST_PTR_TO_MAP] = "map_ptr",
236 [PTR_TO_MAP_VALUE] = "map_value",
237 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 238 [PTR_TO_STACK] = "fp",
969bf05e 239 [PTR_TO_PACKET] = "pkt",
de8f3a83 240 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 241 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
242};
243
4e92024a
AS
244static void print_liveness(struct bpf_verifier_env *env,
245 enum bpf_reg_liveness live)
246{
247 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
248 verbose(env, "_");
249 if (live & REG_LIVE_READ)
250 verbose(env, "r");
251 if (live & REG_LIVE_WRITTEN)
252 verbose(env, "w");
253}
254
f4d7e40a
AS
255static struct bpf_func_state *func(struct bpf_verifier_env *env,
256 const struct bpf_reg_state *reg)
257{
258 struct bpf_verifier_state *cur = env->cur_state;
259
260 return cur->frame[reg->frameno];
261}
262
61bd5218 263static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 264 const struct bpf_func_state *state)
17a52670 265{
f4d7e40a 266 const struct bpf_reg_state *reg;
17a52670
AS
267 enum bpf_reg_type t;
268 int i;
269
f4d7e40a
AS
270 if (state->frameno)
271 verbose(env, " frame%d:", state->frameno);
17a52670 272 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
273 reg = &state->regs[i];
274 t = reg->type;
17a52670
AS
275 if (t == NOT_INIT)
276 continue;
4e92024a
AS
277 verbose(env, " R%d", i);
278 print_liveness(env, reg->live);
279 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
280 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
281 tnum_is_const(reg->var_off)) {
282 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 283 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
284 if (t == PTR_TO_STACK)
285 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 286 } else {
61bd5218 287 verbose(env, "(id=%d", reg->id);
f1174f77 288 if (t != SCALAR_VALUE)
61bd5218 289 verbose(env, ",off=%d", reg->off);
de8f3a83 290 if (type_is_pkt_pointer(t))
61bd5218 291 verbose(env, ",r=%d", reg->range);
f1174f77
EC
292 else if (t == CONST_PTR_TO_MAP ||
293 t == PTR_TO_MAP_VALUE ||
294 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 295 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
296 reg->map_ptr->key_size,
297 reg->map_ptr->value_size);
7d1238f2
EC
298 if (tnum_is_const(reg->var_off)) {
299 /* Typically an immediate SCALAR_VALUE, but
300 * could be a pointer whose offset is too big
301 * for reg->off
302 */
61bd5218 303 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
304 } else {
305 if (reg->smin_value != reg->umin_value &&
306 reg->smin_value != S64_MIN)
61bd5218 307 verbose(env, ",smin_value=%lld",
7d1238f2
EC
308 (long long)reg->smin_value);
309 if (reg->smax_value != reg->umax_value &&
310 reg->smax_value != S64_MAX)
61bd5218 311 verbose(env, ",smax_value=%lld",
7d1238f2
EC
312 (long long)reg->smax_value);
313 if (reg->umin_value != 0)
61bd5218 314 verbose(env, ",umin_value=%llu",
7d1238f2
EC
315 (unsigned long long)reg->umin_value);
316 if (reg->umax_value != U64_MAX)
61bd5218 317 verbose(env, ",umax_value=%llu",
7d1238f2
EC
318 (unsigned long long)reg->umax_value);
319 if (!tnum_is_unknown(reg->var_off)) {
320 char tn_buf[48];
f1174f77 321
7d1238f2 322 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 323 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 324 }
f1174f77 325 }
61bd5218 326 verbose(env, ")");
f1174f77 327 }
17a52670 328 }
638f5b90 329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
4e92024a
AS
330 if (state->stack[i].slot_type[0] == STACK_SPILL) {
331 verbose(env, " fp%d",
332 (-i - 1) * BPF_REG_SIZE);
333 print_liveness(env, state->stack[i].spilled_ptr.live);
334 verbose(env, "=%s",
638f5b90 335 reg_type_str[state->stack[i].spilled_ptr.type]);
4e92024a 336 }
cc2b14d5
AS
337 if (state->stack[i].slot_type[0] == STACK_ZERO)
338 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
17a52670 339 }
61bd5218 340 verbose(env, "\n");
17a52670
AS
341}
342
f4d7e40a
AS
343static int copy_stack_state(struct bpf_func_state *dst,
344 const struct bpf_func_state *src)
17a52670 345{
638f5b90
AS
346 if (!src->stack)
347 return 0;
348 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
349 /* internal bug, make state invalid to reject the program */
350 memset(dst, 0, sizeof(*dst));
351 return -EFAULT;
352 }
353 memcpy(dst->stack, src->stack,
354 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
355 return 0;
356}
357
358/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 360 * the program calls into realloc_func_state() to grow the stack size.
638f5b90
AS
361 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362 * which this function copies over. It points to previous bpf_verifier_state
363 * which is never reallocated
364 */
f4d7e40a
AS
365static int realloc_func_state(struct bpf_func_state *state, int size,
366 bool copy_old)
638f5b90
AS
367{
368 u32 old_size = state->allocated_stack;
369 struct bpf_stack_state *new_stack;
370 int slot = size / BPF_REG_SIZE;
371
372 if (size <= old_size || !size) {
373 if (copy_old)
374 return 0;
375 state->allocated_stack = slot * BPF_REG_SIZE;
376 if (!size && old_size) {
377 kfree(state->stack);
378 state->stack = NULL;
379 }
380 return 0;
381 }
382 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
383 GFP_KERNEL);
384 if (!new_stack)
385 return -ENOMEM;
386 if (copy_old) {
387 if (state->stack)
388 memcpy(new_stack, state->stack,
389 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
390 memset(new_stack + old_size / BPF_REG_SIZE, 0,
391 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
392 }
393 state->allocated_stack = slot * BPF_REG_SIZE;
394 kfree(state->stack);
395 state->stack = new_stack;
396 return 0;
397}
398
f4d7e40a
AS
399static void free_func_state(struct bpf_func_state *state)
400{
5896351e
AS
401 if (!state)
402 return;
f4d7e40a
AS
403 kfree(state->stack);
404 kfree(state);
405}
406
1969db47
AS
407static void free_verifier_state(struct bpf_verifier_state *state,
408 bool free_self)
638f5b90 409{
f4d7e40a
AS
410 int i;
411
412 for (i = 0; i <= state->curframe; i++) {
413 free_func_state(state->frame[i]);
414 state->frame[i] = NULL;
415 }
1969db47
AS
416 if (free_self)
417 kfree(state);
638f5b90
AS
418}
419
420/* copy verifier state from src to dst growing dst stack space
421 * when necessary to accommodate larger src stack
422 */
f4d7e40a
AS
423static int copy_func_state(struct bpf_func_state *dst,
424 const struct bpf_func_state *src)
638f5b90
AS
425{
426 int err;
427
f4d7e40a 428 err = realloc_func_state(dst, src->allocated_stack, false);
638f5b90
AS
429 if (err)
430 return err;
f4d7e40a 431 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
638f5b90
AS
432 return copy_stack_state(dst, src);
433}
434
f4d7e40a
AS
435static int copy_verifier_state(struct bpf_verifier_state *dst_state,
436 const struct bpf_verifier_state *src)
437{
438 struct bpf_func_state *dst;
439 int i, err;
440
441 /* if dst has more stack frames then src frame, free them */
442 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
443 free_func_state(dst_state->frame[i]);
444 dst_state->frame[i] = NULL;
445 }
446 dst_state->curframe = src->curframe;
447 dst_state->parent = src->parent;
448 for (i = 0; i <= src->curframe; i++) {
449 dst = dst_state->frame[i];
450 if (!dst) {
451 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
452 if (!dst)
453 return -ENOMEM;
454 dst_state->frame[i] = dst;
455 }
456 err = copy_func_state(dst, src->frame[i]);
457 if (err)
458 return err;
459 }
460 return 0;
461}
462
638f5b90
AS
463static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
464 int *insn_idx)
465{
466 struct bpf_verifier_state *cur = env->cur_state;
467 struct bpf_verifier_stack_elem *elem, *head = env->head;
468 int err;
17a52670
AS
469
470 if (env->head == NULL)
638f5b90 471 return -ENOENT;
17a52670 472
638f5b90
AS
473 if (cur) {
474 err = copy_verifier_state(cur, &head->st);
475 if (err)
476 return err;
477 }
478 if (insn_idx)
479 *insn_idx = head->insn_idx;
17a52670 480 if (prev_insn_idx)
638f5b90
AS
481 *prev_insn_idx = head->prev_insn_idx;
482 elem = head->next;
1969db47 483 free_verifier_state(&head->st, false);
638f5b90 484 kfree(head);
17a52670
AS
485 env->head = elem;
486 env->stack_size--;
638f5b90 487 return 0;
17a52670
AS
488}
489
58e2af8b
JK
490static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
491 int insn_idx, int prev_insn_idx)
17a52670 492{
638f5b90 493 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 494 struct bpf_verifier_stack_elem *elem;
638f5b90 495 int err;
17a52670 496
638f5b90 497 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
498 if (!elem)
499 goto err;
500
17a52670
AS
501 elem->insn_idx = insn_idx;
502 elem->prev_insn_idx = prev_insn_idx;
503 elem->next = env->head;
504 env->head = elem;
505 env->stack_size++;
1969db47
AS
506 err = copy_verifier_state(&elem->st, cur);
507 if (err)
508 goto err;
07016151 509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 510 verbose(env, "BPF program is too complex\n");
17a52670
AS
511 goto err;
512 }
513 return &elem->st;
514err:
5896351e
AS
515 free_verifier_state(env->cur_state, true);
516 env->cur_state = NULL;
17a52670 517 /* pop all elements and return */
638f5b90 518 while (!pop_stack(env, NULL, NULL));
17a52670
AS
519 return NULL;
520}
521
522#define CALLER_SAVED_REGS 6
523static const int caller_saved[CALLER_SAVED_REGS] = {
524 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
525};
526
f1174f77
EC
527static void __mark_reg_not_init(struct bpf_reg_state *reg);
528
b03c9f9f
EC
529/* Mark the unknown part of a register (variable offset or scalar value) as
530 * known to have the value @imm.
531 */
532static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
533{
534 reg->id = 0;
535 reg->var_off = tnum_const(imm);
536 reg->smin_value = (s64)imm;
537 reg->smax_value = (s64)imm;
538 reg->umin_value = imm;
539 reg->umax_value = imm;
540}
541
f1174f77
EC
542/* Mark the 'variable offset' part of a register as zero. This should be
543 * used only on registers holding a pointer type.
544 */
545static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 546{
b03c9f9f 547 __mark_reg_known(reg, 0);
f1174f77 548}
a9789ef9 549
cc2b14d5
AS
550static void __mark_reg_const_zero(struct bpf_reg_state *reg)
551{
552 __mark_reg_known(reg, 0);
553 reg->off = 0;
554 reg->type = SCALAR_VALUE;
555}
556
61bd5218
JK
557static void mark_reg_known_zero(struct bpf_verifier_env *env,
558 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
559{
560 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 561 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
562 /* Something bad happened, let's kill all regs */
563 for (regno = 0; regno < MAX_BPF_REG; regno++)
564 __mark_reg_not_init(regs + regno);
565 return;
566 }
567 __mark_reg_known_zero(regs + regno);
568}
569
de8f3a83
DB
570static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
571{
572 return type_is_pkt_pointer(reg->type);
573}
574
575static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
576{
577 return reg_is_pkt_pointer(reg) ||
578 reg->type == PTR_TO_PACKET_END;
579}
580
581/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
583 enum bpf_reg_type which)
584{
585 /* The register can already have a range from prior markings.
586 * This is fine as long as it hasn't been advanced from its
587 * origin.
588 */
589 return reg->type == which &&
590 reg->id == 0 &&
591 reg->off == 0 &&
592 tnum_equals_const(reg->var_off, 0);
593}
594
b03c9f9f
EC
595/* Attempts to improve min/max values based on var_off information */
596static void __update_reg_bounds(struct bpf_reg_state *reg)
597{
598 /* min signed is max(sign bit) | min(other bits) */
599 reg->smin_value = max_t(s64, reg->smin_value,
600 reg->var_off.value | (reg->var_off.mask & S64_MIN));
601 /* max signed is min(sign bit) | max(other bits) */
602 reg->smax_value = min_t(s64, reg->smax_value,
603 reg->var_off.value | (reg->var_off.mask & S64_MAX));
604 reg->umin_value = max(reg->umin_value, reg->var_off.value);
605 reg->umax_value = min(reg->umax_value,
606 reg->var_off.value | reg->var_off.mask);
607}
608
609/* Uses signed min/max values to inform unsigned, and vice-versa */
610static void __reg_deduce_bounds(struct bpf_reg_state *reg)
611{
612 /* Learn sign from signed bounds.
613 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 * are the same, so combine. This works even in the negative case, e.g.
615 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
616 */
617 if (reg->smin_value >= 0 || reg->smax_value < 0) {
618 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
619 reg->umin_value);
620 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
621 reg->umax_value);
622 return;
623 }
624 /* Learn sign from unsigned bounds. Signed bounds cross the sign
625 * boundary, so we must be careful.
626 */
627 if ((s64)reg->umax_value >= 0) {
628 /* Positive. We can't learn anything from the smin, but smax
629 * is positive, hence safe.
630 */
631 reg->smin_value = reg->umin_value;
632 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
633 reg->umax_value);
634 } else if ((s64)reg->umin_value < 0) {
635 /* Negative. We can't learn anything from the smax, but smin
636 * is negative, hence safe.
637 */
638 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
639 reg->umin_value);
640 reg->smax_value = reg->umax_value;
641 }
642}
643
644/* Attempts to improve var_off based on unsigned min/max information */
645static void __reg_bound_offset(struct bpf_reg_state *reg)
646{
647 reg->var_off = tnum_intersect(reg->var_off,
648 tnum_range(reg->umin_value,
649 reg->umax_value));
650}
651
652/* Reset the min/max bounds of a register */
653static void __mark_reg_unbounded(struct bpf_reg_state *reg)
654{
655 reg->smin_value = S64_MIN;
656 reg->smax_value = S64_MAX;
657 reg->umin_value = 0;
658 reg->umax_value = U64_MAX;
659}
660
f1174f77
EC
661/* Mark a register as having a completely unknown (scalar) value. */
662static void __mark_reg_unknown(struct bpf_reg_state *reg)
663{
664 reg->type = SCALAR_VALUE;
665 reg->id = 0;
666 reg->off = 0;
667 reg->var_off = tnum_unknown;
f4d7e40a 668 reg->frameno = 0;
b03c9f9f 669 __mark_reg_unbounded(reg);
f1174f77
EC
670}
671
61bd5218
JK
672static void mark_reg_unknown(struct bpf_verifier_env *env,
673 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
674{
675 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 676 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
677 /* Something bad happened, let's kill all regs except FP */
678 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
679 __mark_reg_not_init(regs + regno);
680 return;
681 }
682 __mark_reg_unknown(regs + regno);
683}
684
685static void __mark_reg_not_init(struct bpf_reg_state *reg)
686{
687 __mark_reg_unknown(reg);
688 reg->type = NOT_INIT;
689}
690
61bd5218
JK
691static void mark_reg_not_init(struct bpf_verifier_env *env,
692 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
693{
694 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 695 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
696 /* Something bad happened, let's kill all regs except FP */
697 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
698 __mark_reg_not_init(regs + regno);
699 return;
700 }
701 __mark_reg_not_init(regs + regno);
a9789ef9
DB
702}
703
61bd5218 704static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 705 struct bpf_func_state *state)
17a52670 706{
f4d7e40a 707 struct bpf_reg_state *regs = state->regs;
17a52670
AS
708 int i;
709
dc503a8a 710 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 711 mark_reg_not_init(env, regs, i);
dc503a8a
EC
712 regs[i].live = REG_LIVE_NONE;
713 }
17a52670
AS
714
715 /* frame pointer */
f1174f77 716 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 717 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 718 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
719
720 /* 1st arg to a function */
721 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 722 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
723}
724
f4d7e40a
AS
725#define BPF_MAIN_FUNC (-1)
726static void init_func_state(struct bpf_verifier_env *env,
727 struct bpf_func_state *state,
728 int callsite, int frameno, int subprogno)
729{
730 state->callsite = callsite;
731 state->frameno = frameno;
732 state->subprogno = subprogno;
733 init_reg_state(env, state);
734}
735
17a52670
AS
736enum reg_arg_type {
737 SRC_OP, /* register is used as source operand */
738 DST_OP, /* register is used as destination operand */
739 DST_OP_NO_MARK /* same as above, check only, don't mark */
740};
741
cc8b0b92
AS
742static int cmp_subprogs(const void *a, const void *b)
743{
9c8105bd
JW
744 return ((struct bpf_subprog_info *)a)->start -
745 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
746}
747
748static int find_subprog(struct bpf_verifier_env *env, int off)
749{
9c8105bd 750 struct bpf_subprog_info *p;
cc8b0b92 751
9c8105bd
JW
752 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
753 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
754 if (!p)
755 return -ENOENT;
9c8105bd 756 return p - env->subprog_info;
cc8b0b92
AS
757
758}
759
760static int add_subprog(struct bpf_verifier_env *env, int off)
761{
762 int insn_cnt = env->prog->len;
763 int ret;
764
765 if (off >= insn_cnt || off < 0) {
766 verbose(env, "call to invalid destination\n");
767 return -EINVAL;
768 }
769 ret = find_subprog(env, off);
770 if (ret >= 0)
771 return 0;
4cb3d99c 772 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
773 verbose(env, "too many subprograms\n");
774 return -E2BIG;
775 }
9c8105bd
JW
776 env->subprog_info[env->subprog_cnt++].start = off;
777 sort(env->subprog_info, env->subprog_cnt,
778 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
779 return 0;
780}
781
782static int check_subprogs(struct bpf_verifier_env *env)
783{
784 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 785 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
786 struct bpf_insn *insn = env->prog->insnsi;
787 int insn_cnt = env->prog->len;
788
f910cefa
JW
789 /* Add entry function. */
790 ret = add_subprog(env, 0);
791 if (ret < 0)
792 return ret;
793
cc8b0b92
AS
794 /* determine subprog starts. The end is one before the next starts */
795 for (i = 0; i < insn_cnt; i++) {
796 if (insn[i].code != (BPF_JMP | BPF_CALL))
797 continue;
798 if (insn[i].src_reg != BPF_PSEUDO_CALL)
799 continue;
800 if (!env->allow_ptr_leaks) {
801 verbose(env, "function calls to other bpf functions are allowed for root only\n");
802 return -EPERM;
803 }
804 if (bpf_prog_is_dev_bound(env->prog->aux)) {
e90004d5 805 verbose(env, "function calls in offloaded programs are not supported yet\n");
cc8b0b92
AS
806 return -EINVAL;
807 }
808 ret = add_subprog(env, i + insn[i].imm + 1);
809 if (ret < 0)
810 return ret;
811 }
812
4cb3d99c
JW
813 /* Add a fake 'exit' subprog which could simplify subprog iteration
814 * logic. 'subprog_cnt' should not be increased.
815 */
816 subprog[env->subprog_cnt].start = insn_cnt;
817
cc8b0b92
AS
818 if (env->log.level > 1)
819 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 820 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
821
822 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
823 subprog_start = subprog[cur_subprog].start;
824 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
825 for (i = 0; i < insn_cnt; i++) {
826 u8 code = insn[i].code;
827
828 if (BPF_CLASS(code) != BPF_JMP)
829 goto next;
830 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
831 goto next;
832 off = i + insn[i].off + 1;
833 if (off < subprog_start || off >= subprog_end) {
834 verbose(env, "jump out of range from insn %d to %d\n", i, off);
835 return -EINVAL;
836 }
837next:
838 if (i == subprog_end - 1) {
839 /* to avoid fall-through from one subprog into another
840 * the last insn of the subprog should be either exit
841 * or unconditional jump back
842 */
843 if (code != (BPF_JMP | BPF_EXIT) &&
844 code != (BPF_JMP | BPF_JA)) {
845 verbose(env, "last insn is not an exit or jmp\n");
846 return -EINVAL;
847 }
848 subprog_start = subprog_end;
4cb3d99c
JW
849 cur_subprog++;
850 if (cur_subprog < env->subprog_cnt)
9c8105bd 851 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
852 }
853 }
854 return 0;
855}
856
fa2d41ad 857static
f4d7e40a
AS
858struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
859 const struct bpf_verifier_state *state,
860 struct bpf_verifier_state *parent,
861 u32 regno)
dc503a8a 862{
f4d7e40a
AS
863 struct bpf_verifier_state *tmp = NULL;
864
865 /* 'parent' could be a state of caller and
866 * 'state' could be a state of callee. In such case
867 * parent->curframe < state->curframe
868 * and it's ok for r1 - r5 registers
869 *
870 * 'parent' could be a callee's state after it bpf_exit-ed.
871 * In such case parent->curframe > state->curframe
872 * and it's ok for r0 only
873 */
874 if (parent->curframe == state->curframe ||
875 (parent->curframe < state->curframe &&
876 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
877 (parent->curframe > state->curframe &&
878 regno == BPF_REG_0))
879 return parent;
880
881 if (parent->curframe > state->curframe &&
882 regno >= BPF_REG_6) {
883 /* for callee saved regs we have to skip the whole chain
884 * of states that belong to callee and mark as LIVE_READ
885 * the registers before the call
886 */
887 tmp = parent;
888 while (tmp && tmp->curframe != state->curframe) {
889 tmp = tmp->parent;
890 }
891 if (!tmp)
892 goto bug;
893 parent = tmp;
894 } else {
895 goto bug;
896 }
897 return parent;
898bug:
899 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
900 verbose(env, "regno %d parent frame %d current frame %d\n",
901 regno, parent->curframe, state->curframe);
fa2d41ad 902 return NULL;
f4d7e40a
AS
903}
904
905static int mark_reg_read(struct bpf_verifier_env *env,
906 const struct bpf_verifier_state *state,
907 struct bpf_verifier_state *parent,
908 u32 regno)
909{
910 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a 911
8fe2d6cc
AS
912 if (regno == BPF_REG_FP)
913 /* We don't need to worry about FP liveness because it's read-only */
f4d7e40a 914 return 0;
8fe2d6cc 915
dc503a8a
EC
916 while (parent) {
917 /* if read wasn't screened by an earlier write ... */
f4d7e40a 918 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
dc503a8a 919 break;
f4d7e40a
AS
920 parent = skip_callee(env, state, parent, regno);
921 if (!parent)
922 return -EFAULT;
dc503a8a 923 /* ... then we depend on parent's value */
f4d7e40a 924 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
dc503a8a
EC
925 state = parent;
926 parent = state->parent;
f4d7e40a 927 writes = true;
dc503a8a 928 }
f4d7e40a 929 return 0;
dc503a8a
EC
930}
931
932static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
933 enum reg_arg_type t)
934{
f4d7e40a
AS
935 struct bpf_verifier_state *vstate = env->cur_state;
936 struct bpf_func_state *state = vstate->frame[vstate->curframe];
937 struct bpf_reg_state *regs = state->regs;
dc503a8a 938
17a52670 939 if (regno >= MAX_BPF_REG) {
61bd5218 940 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
941 return -EINVAL;
942 }
943
944 if (t == SRC_OP) {
945 /* check whether register used as source operand can be read */
946 if (regs[regno].type == NOT_INIT) {
61bd5218 947 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
948 return -EACCES;
949 }
f4d7e40a 950 return mark_reg_read(env, vstate, vstate->parent, regno);
17a52670
AS
951 } else {
952 /* check whether register used as dest operand can be written to */
953 if (regno == BPF_REG_FP) {
61bd5218 954 verbose(env, "frame pointer is read only\n");
17a52670
AS
955 return -EACCES;
956 }
dc503a8a 957 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 958 if (t == DST_OP)
61bd5218 959 mark_reg_unknown(env, regs, regno);
17a52670
AS
960 }
961 return 0;
962}
963
1be7f75d
AS
964static bool is_spillable_regtype(enum bpf_reg_type type)
965{
966 switch (type) {
967 case PTR_TO_MAP_VALUE:
968 case PTR_TO_MAP_VALUE_OR_NULL:
969 case PTR_TO_STACK:
970 case PTR_TO_CTX:
969bf05e 971 case PTR_TO_PACKET:
de8f3a83 972 case PTR_TO_PACKET_META:
969bf05e 973 case PTR_TO_PACKET_END:
1be7f75d
AS
974 case CONST_PTR_TO_MAP:
975 return true;
976 default:
977 return false;
978 }
979}
980
cc2b14d5
AS
981/* Does this register contain a constant zero? */
982static bool register_is_null(struct bpf_reg_state *reg)
983{
984 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
985}
986
17a52670
AS
987/* check_stack_read/write functions track spill/fill of registers,
988 * stack boundary and alignment are checked in check_mem_access()
989 */
61bd5218 990static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a
AS
991 struct bpf_func_state *state, /* func where register points to */
992 int off, int size, int value_regno)
17a52670 993{
f4d7e40a 994 struct bpf_func_state *cur; /* state of the current function */
638f5b90 995 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 996 enum bpf_reg_type type;
638f5b90 997
f4d7e40a
AS
998 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
999 true);
638f5b90
AS
1000 if (err)
1001 return err;
9c399760
AS
1002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 * so it's aligned access and [off, off + size) are within stack limits
1004 */
638f5b90
AS
1005 if (!env->allow_ptr_leaks &&
1006 state->stack[spi].slot_type[0] == STACK_SPILL &&
1007 size != BPF_REG_SIZE) {
1008 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1009 return -EACCES;
1010 }
17a52670 1011
f4d7e40a 1012 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1013 if (value_regno >= 0 &&
f4d7e40a 1014 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1015
1016 /* register containing pointer is being spilled into stack */
9c399760 1017 if (size != BPF_REG_SIZE) {
61bd5218 1018 verbose(env, "invalid size of register spill\n");
17a52670
AS
1019 return -EACCES;
1020 }
1021
f4d7e40a
AS
1022 if (state != cur && type == PTR_TO_STACK) {
1023 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1024 return -EINVAL;
1025 }
1026
17a52670 1027 /* save register state */
f4d7e40a 1028 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1030
9c399760 1031 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 1032 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 1033 } else {
cc2b14d5
AS
1034 u8 type = STACK_MISC;
1035
17a52670 1036 /* regular write of data into stack */
638f5b90 1037 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760 1038
cc2b14d5
AS
1039 /* only mark the slot as written if all 8 bytes were written
1040 * otherwise read propagation may incorrectly stop too soon
1041 * when stack slots are partially written.
1042 * This heuristic means that read propagation will be
1043 * conservative, since it will add reg_live_read marks
1044 * to stack slots all the way to first state when programs
1045 * writes+reads less than 8 bytes
1046 */
1047 if (size == BPF_REG_SIZE)
1048 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1049
1050 /* when we zero initialize stack slots mark them as such */
1051 if (value_regno >= 0 &&
1052 register_is_null(&cur->regs[value_regno]))
1053 type = STACK_ZERO;
1054
9c399760 1055 for (i = 0; i < size; i++)
638f5b90 1056 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1057 type;
17a52670
AS
1058 }
1059 return 0;
1060}
1061
f4d7e40a
AS
1062/* registers of every function are unique and mark_reg_read() propagates
1063 * the liveness in the following cases:
1064 * - from callee into caller for R1 - R5 that were used as arguments
1065 * - from caller into callee for R0 that used as result of the call
1066 * - from caller to the same caller skipping states of the callee for R6 - R9,
1067 * since R6 - R9 are callee saved by implicit function prologue and
1068 * caller's R6 != callee's R6, so when we propagate liveness up to
1069 * parent states we need to skip callee states for R6 - R9.
1070 *
1071 * stack slot marking is different, since stacks of caller and callee are
1072 * accessible in both (since caller can pass a pointer to caller's stack to
1073 * callee which can pass it to another function), hence mark_stack_slot_read()
1074 * has to propagate the stack liveness to all parent states at given frame number.
1075 * Consider code:
1076 * f1() {
1077 * ptr = fp - 8;
1078 * *ptr = ctx;
1079 * call f2 {
1080 * .. = *ptr;
1081 * }
1082 * .. = *ptr;
1083 * }
1084 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085 * to mark liveness at the f1's frame and not f2's frame.
1086 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087 * to propagate liveness to f2 states at f1's frame level and further into
1088 * f1 states at f1's frame level until write into that stack slot
1089 */
1090static void mark_stack_slot_read(struct bpf_verifier_env *env,
1091 const struct bpf_verifier_state *state,
1092 struct bpf_verifier_state *parent,
1093 int slot, int frameno)
dc503a8a 1094{
f4d7e40a 1095 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1096
1097 while (parent) {
cc2b14d5
AS
1098 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1099 /* since LIVE_WRITTEN mark is only done for full 8-byte
1100 * write the read marks are conservative and parent
1101 * state may not even have the stack allocated. In such case
1102 * end the propagation, since the loop reached beginning
1103 * of the function
1104 */
1105 break;
dc503a8a 1106 /* if read wasn't screened by an earlier write ... */
f4d7e40a 1107 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
1108 break;
1109 /* ... then we depend on parent's value */
f4d7e40a 1110 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
1111 state = parent;
1112 parent = state->parent;
f4d7e40a 1113 writes = true;
dc503a8a
EC
1114 }
1115}
1116
61bd5218 1117static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1118 struct bpf_func_state *reg_state /* func where register points to */,
1119 int off, int size, int value_regno)
17a52670 1120{
f4d7e40a
AS
1121 struct bpf_verifier_state *vstate = env->cur_state;
1122 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1123 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1124 u8 *stype;
17a52670 1125
f4d7e40a 1126 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1127 verbose(env, "invalid read from stack off %d+0 size %d\n",
1128 off, size);
1129 return -EACCES;
1130 }
f4d7e40a 1131 stype = reg_state->stack[spi].slot_type;
17a52670 1132
638f5b90 1133 if (stype[0] == STACK_SPILL) {
9c399760 1134 if (size != BPF_REG_SIZE) {
61bd5218 1135 verbose(env, "invalid size of register spill\n");
17a52670
AS
1136 return -EACCES;
1137 }
9c399760 1138 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1139 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1140 verbose(env, "corrupted spill memory\n");
17a52670
AS
1141 return -EACCES;
1142 }
1143 }
1144
dc503a8a 1145 if (value_regno >= 0) {
17a52670 1146 /* restore register state from stack */
f4d7e40a 1147 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1148 /* mark reg as written since spilled pointer state likely
1149 * has its liveness marks cleared by is_state_visited()
1150 * which resets stack/reg liveness for state transitions
1151 */
1152 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1153 }
cc2b14d5
AS
1154 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1155 reg_state->frameno);
17a52670
AS
1156 return 0;
1157 } else {
cc2b14d5
AS
1158 int zeros = 0;
1159
17a52670 1160 for (i = 0; i < size; i++) {
cc2b14d5
AS
1161 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1162 continue;
1163 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1164 zeros++;
1165 continue;
17a52670 1166 }
cc2b14d5
AS
1167 verbose(env, "invalid read from stack off %d+%d size %d\n",
1168 off, i, size);
1169 return -EACCES;
1170 }
1171 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1172 reg_state->frameno);
1173 if (value_regno >= 0) {
1174 if (zeros == size) {
1175 /* any size read into register is zero extended,
1176 * so the whole register == const_zero
1177 */
1178 __mark_reg_const_zero(&state->regs[value_regno]);
1179 } else {
1180 /* have read misc data from the stack */
1181 mark_reg_unknown(env, state->regs, value_regno);
1182 }
1183 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1184 }
17a52670
AS
1185 return 0;
1186 }
1187}
1188
1189/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1190static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1191 int size, bool zero_size_allowed)
17a52670 1192{
638f5b90
AS
1193 struct bpf_reg_state *regs = cur_regs(env);
1194 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1195
9fd29c08
YS
1196 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1197 off + size > map->value_size) {
61bd5218 1198 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1199 map->value_size, off, size);
1200 return -EACCES;
1201 }
1202 return 0;
1203}
1204
f1174f77
EC
1205/* check read/write into a map element with possible variable offset */
1206static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1207 int off, int size, bool zero_size_allowed)
dbcfe5f7 1208{
f4d7e40a
AS
1209 struct bpf_verifier_state *vstate = env->cur_state;
1210 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1211 struct bpf_reg_state *reg = &state->regs[regno];
1212 int err;
1213
f1174f77
EC
1214 /* We may have adjusted the register to this map value, so we
1215 * need to try adding each of min_value and max_value to off
1216 * to make sure our theoretical access will be safe.
dbcfe5f7 1217 */
61bd5218
JK
1218 if (env->log.level)
1219 print_verifier_state(env, state);
dbcfe5f7
GB
1220 /* The minimum value is only important with signed
1221 * comparisons where we can't assume the floor of a
1222 * value is 0. If we are using signed variables for our
1223 * index'es we need to make sure that whatever we use
1224 * will have a set floor within our range.
1225 */
b03c9f9f 1226 if (reg->smin_value < 0) {
61bd5218 1227 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1228 regno);
1229 return -EACCES;
1230 }
9fd29c08
YS
1231 err = __check_map_access(env, regno, reg->smin_value + off, size,
1232 zero_size_allowed);
dbcfe5f7 1233 if (err) {
61bd5218
JK
1234 verbose(env, "R%d min value is outside of the array range\n",
1235 regno);
dbcfe5f7
GB
1236 return err;
1237 }
1238
b03c9f9f
EC
1239 /* If we haven't set a max value then we need to bail since we can't be
1240 * sure we won't do bad things.
1241 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1242 */
b03c9f9f 1243 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1244 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1245 regno);
1246 return -EACCES;
1247 }
9fd29c08
YS
1248 err = __check_map_access(env, regno, reg->umax_value + off, size,
1249 zero_size_allowed);
f1174f77 1250 if (err)
61bd5218
JK
1251 verbose(env, "R%d max value is outside of the array range\n",
1252 regno);
f1174f77 1253 return err;
dbcfe5f7
GB
1254}
1255
969bf05e
AS
1256#define MAX_PACKET_OFF 0xffff
1257
58e2af8b 1258static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1259 const struct bpf_call_arg_meta *meta,
1260 enum bpf_access_type t)
4acf6c0b 1261{
36bbef52 1262 switch (env->prog->type) {
3a0af8fd
TG
1263 case BPF_PROG_TYPE_LWT_IN:
1264 case BPF_PROG_TYPE_LWT_OUT:
1265 /* dst_input() and dst_output() can't write for now */
1266 if (t == BPF_WRITE)
1267 return false;
7e57fbb2 1268 /* fallthrough */
36bbef52
DB
1269 case BPF_PROG_TYPE_SCHED_CLS:
1270 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1271 case BPF_PROG_TYPE_XDP:
3a0af8fd 1272 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1273 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1274 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1275 if (meta)
1276 return meta->pkt_access;
1277
1278 env->seen_direct_write = true;
4acf6c0b
BB
1279 return true;
1280 default:
1281 return false;
1282 }
1283}
1284
f1174f77 1285static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1286 int off, int size, bool zero_size_allowed)
969bf05e 1287{
638f5b90 1288 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1289 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1290
9fd29c08
YS
1291 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1292 (u64)off + size > reg->range) {
61bd5218 1293 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1294 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1295 return -EACCES;
1296 }
1297 return 0;
1298}
1299
f1174f77 1300static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1301 int size, bool zero_size_allowed)
f1174f77 1302{
638f5b90 1303 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1304 struct bpf_reg_state *reg = &regs[regno];
1305 int err;
1306
1307 /* We may have added a variable offset to the packet pointer; but any
1308 * reg->range we have comes after that. We are only checking the fixed
1309 * offset.
1310 */
1311
1312 /* We don't allow negative numbers, because we aren't tracking enough
1313 * detail to prove they're safe.
1314 */
b03c9f9f 1315 if (reg->smin_value < 0) {
61bd5218 1316 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1317 regno);
1318 return -EACCES;
1319 }
9fd29c08 1320 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1321 if (err) {
61bd5218 1322 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1323 return err;
1324 }
1325 return err;
1326}
1327
1328/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1329static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1330 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1331{
f96da094
DB
1332 struct bpf_insn_access_aux info = {
1333 .reg_type = *reg_type,
1334 };
31fd8581 1335
4f9218aa 1336 if (env->ops->is_valid_access &&
5e43f899 1337 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1338 /* A non zero info.ctx_field_size indicates that this field is a
1339 * candidate for later verifier transformation to load the whole
1340 * field and then apply a mask when accessed with a narrower
1341 * access than actual ctx access size. A zero info.ctx_field_size
1342 * will only allow for whole field access and rejects any other
1343 * type of narrower access.
31fd8581 1344 */
23994631 1345 *reg_type = info.reg_type;
31fd8581 1346
4f9218aa 1347 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1348 /* remember the offset of last byte accessed in ctx */
1349 if (env->prog->aux->max_ctx_offset < off + size)
1350 env->prog->aux->max_ctx_offset = off + size;
17a52670 1351 return 0;
32bbe007 1352 }
17a52670 1353
61bd5218 1354 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1355 return -EACCES;
1356}
1357
4cabc5b1
DB
1358static bool __is_pointer_value(bool allow_ptr_leaks,
1359 const struct bpf_reg_state *reg)
1be7f75d 1360{
4cabc5b1 1361 if (allow_ptr_leaks)
1be7f75d
AS
1362 return false;
1363
f1174f77 1364 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1365}
1366
4cabc5b1
DB
1367static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1368{
638f5b90 1369 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1370}
1371
f37a8cb8
DB
1372static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1373{
1374 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1375
1376 return reg->type == PTR_TO_CTX;
1377}
1378
ca369602
DB
1379static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1380{
1381 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1382
1383 return type_is_pkt_pointer(reg->type);
1384}
1385
61bd5218
JK
1386static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1387 const struct bpf_reg_state *reg,
d1174416 1388 int off, int size, bool strict)
969bf05e 1389{
f1174f77 1390 struct tnum reg_off;
e07b98d9 1391 int ip_align;
d1174416
DM
1392
1393 /* Byte size accesses are always allowed. */
1394 if (!strict || size == 1)
1395 return 0;
1396
e4eda884
DM
1397 /* For platforms that do not have a Kconfig enabling
1398 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1399 * NET_IP_ALIGN is universally set to '2'. And on platforms
1400 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1401 * to this code only in strict mode where we want to emulate
1402 * the NET_IP_ALIGN==2 checking. Therefore use an
1403 * unconditional IP align value of '2'.
e07b98d9 1404 */
e4eda884 1405 ip_align = 2;
f1174f77
EC
1406
1407 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1408 if (!tnum_is_aligned(reg_off, size)) {
1409 char tn_buf[48];
1410
1411 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1412 verbose(env,
1413 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1414 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1415 return -EACCES;
1416 }
79adffcd 1417
969bf05e
AS
1418 return 0;
1419}
1420
61bd5218
JK
1421static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1422 const struct bpf_reg_state *reg,
f1174f77
EC
1423 const char *pointer_desc,
1424 int off, int size, bool strict)
79adffcd 1425{
f1174f77
EC
1426 struct tnum reg_off;
1427
1428 /* Byte size accesses are always allowed. */
1429 if (!strict || size == 1)
1430 return 0;
1431
1432 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1433 if (!tnum_is_aligned(reg_off, size)) {
1434 char tn_buf[48];
1435
1436 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1437 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1438 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1439 return -EACCES;
1440 }
1441
969bf05e
AS
1442 return 0;
1443}
1444
e07b98d9 1445static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1446 const struct bpf_reg_state *reg, int off,
1447 int size, bool strict_alignment_once)
79adffcd 1448{
ca369602 1449 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1450 const char *pointer_desc = "";
d1174416 1451
79adffcd
DB
1452 switch (reg->type) {
1453 case PTR_TO_PACKET:
de8f3a83
DB
1454 case PTR_TO_PACKET_META:
1455 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1456 * right in front, treat it the very same way.
1457 */
61bd5218 1458 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1459 case PTR_TO_MAP_VALUE:
1460 pointer_desc = "value ";
1461 break;
1462 case PTR_TO_CTX:
1463 pointer_desc = "context ";
1464 break;
1465 case PTR_TO_STACK:
1466 pointer_desc = "stack ";
a5ec6ae1
JH
1467 /* The stack spill tracking logic in check_stack_write()
1468 * and check_stack_read() relies on stack accesses being
1469 * aligned.
1470 */
1471 strict = true;
f1174f77 1472 break;
79adffcd 1473 default:
f1174f77 1474 break;
79adffcd 1475 }
61bd5218
JK
1476 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1477 strict);
79adffcd
DB
1478}
1479
f4d7e40a
AS
1480static int update_stack_depth(struct bpf_verifier_env *env,
1481 const struct bpf_func_state *func,
1482 int off)
1483{
9c8105bd 1484 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1485
1486 if (stack >= -off)
1487 return 0;
1488
1489 /* update known max for given subprogram */
9c8105bd 1490 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1491 return 0;
1492}
f4d7e40a 1493
70a87ffe
AS
1494/* starting from main bpf function walk all instructions of the function
1495 * and recursively walk all callees that given function can call.
1496 * Ignore jump and exit insns.
1497 * Since recursion is prevented by check_cfg() this algorithm
1498 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1499 */
1500static int check_max_stack_depth(struct bpf_verifier_env *env)
1501{
9c8105bd
JW
1502 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1503 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1504 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1505 int ret_insn[MAX_CALL_FRAMES];
1506 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1507
70a87ffe
AS
1508process_func:
1509 /* round up to 32-bytes, since this is granularity
1510 * of interpreter stack size
1511 */
9c8105bd 1512 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1513 if (depth > MAX_BPF_STACK) {
f4d7e40a 1514 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1515 frame + 1, depth);
f4d7e40a
AS
1516 return -EACCES;
1517 }
70a87ffe 1518continue_func:
4cb3d99c 1519 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1520 for (; i < subprog_end; i++) {
1521 if (insn[i].code != (BPF_JMP | BPF_CALL))
1522 continue;
1523 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1524 continue;
1525 /* remember insn and function to return to */
1526 ret_insn[frame] = i + 1;
9c8105bd 1527 ret_prog[frame] = idx;
70a87ffe
AS
1528
1529 /* find the callee */
1530 i = i + insn[i].imm + 1;
9c8105bd
JW
1531 idx = find_subprog(env, i);
1532 if (idx < 0) {
70a87ffe
AS
1533 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1534 i);
1535 return -EFAULT;
1536 }
70a87ffe
AS
1537 frame++;
1538 if (frame >= MAX_CALL_FRAMES) {
1539 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1540 return -EFAULT;
1541 }
1542 goto process_func;
1543 }
1544 /* end of for() loop means the last insn of the 'subprog'
1545 * was reached. Doesn't matter whether it was JA or EXIT
1546 */
1547 if (frame == 0)
1548 return 0;
9c8105bd 1549 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1550 frame--;
1551 i = ret_insn[frame];
9c8105bd 1552 idx = ret_prog[frame];
70a87ffe 1553 goto continue_func;
f4d7e40a
AS
1554}
1555
19d28fbd 1556#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1557static int get_callee_stack_depth(struct bpf_verifier_env *env,
1558 const struct bpf_insn *insn, int idx)
1559{
1560 int start = idx + insn->imm + 1, subprog;
1561
1562 subprog = find_subprog(env, start);
1563 if (subprog < 0) {
1564 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1565 start);
1566 return -EFAULT;
1567 }
9c8105bd 1568 return env->subprog_info[subprog].stack_depth;
1ea47e01 1569}
19d28fbd 1570#endif
1ea47e01 1571
0c17d1d2
JH
1572/* truncate register to smaller size (in bytes)
1573 * must be called with size < BPF_REG_SIZE
1574 */
1575static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1576{
1577 u64 mask;
1578
1579 /* clear high bits in bit representation */
1580 reg->var_off = tnum_cast(reg->var_off, size);
1581
1582 /* fix arithmetic bounds */
1583 mask = ((u64)1 << (size * 8)) - 1;
1584 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1585 reg->umin_value &= mask;
1586 reg->umax_value &= mask;
1587 } else {
1588 reg->umin_value = 0;
1589 reg->umax_value = mask;
1590 }
1591 reg->smin_value = reg->umin_value;
1592 reg->smax_value = reg->umax_value;
1593}
1594
17a52670
AS
1595/* check whether memory at (regno + off) is accessible for t = (read | write)
1596 * if t==write, value_regno is a register which value is stored into memory
1597 * if t==read, value_regno is a register which will receive the value from memory
1598 * if t==write && value_regno==-1, some unknown value is stored into memory
1599 * if t==read && value_regno==-1, don't care what we read from memory
1600 */
ca369602
DB
1601static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1602 int off, int bpf_size, enum bpf_access_type t,
1603 int value_regno, bool strict_alignment_once)
17a52670 1604{
638f5b90
AS
1605 struct bpf_reg_state *regs = cur_regs(env);
1606 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1607 struct bpf_func_state *state;
17a52670
AS
1608 int size, err = 0;
1609
1610 size = bpf_size_to_bytes(bpf_size);
1611 if (size < 0)
1612 return size;
1613
f1174f77 1614 /* alignment checks will add in reg->off themselves */
ca369602 1615 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1616 if (err)
1617 return err;
17a52670 1618
f1174f77
EC
1619 /* for access checks, reg->off is just part of off */
1620 off += reg->off;
1621
1622 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1623 if (t == BPF_WRITE && value_regno >= 0 &&
1624 is_pointer_value(env, value_regno)) {
61bd5218 1625 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1626 return -EACCES;
1627 }
48461135 1628
9fd29c08 1629 err = check_map_access(env, regno, off, size, false);
17a52670 1630 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1631 mark_reg_unknown(env, regs, value_regno);
17a52670 1632
1a0dc1ac 1633 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1634 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1635
1be7f75d
AS
1636 if (t == BPF_WRITE && value_regno >= 0 &&
1637 is_pointer_value(env, value_regno)) {
61bd5218 1638 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1639 return -EACCES;
1640 }
f1174f77
EC
1641 /* ctx accesses must be at a fixed offset, so that we can
1642 * determine what type of data were returned.
1643 */
28e33f9d 1644 if (reg->off) {
f8ddadc4
DM
1645 verbose(env,
1646 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1647 regno, reg->off, off - reg->off);
1648 return -EACCES;
1649 }
1650 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1651 char tn_buf[48];
1652
1653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1654 verbose(env,
1655 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1656 tn_buf, off, size);
1657 return -EACCES;
1658 }
31fd8581 1659 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1660 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1661 /* ctx access returns either a scalar, or a
de8f3a83
DB
1662 * PTR_TO_PACKET[_META,_END]. In the latter
1663 * case, we know the offset is zero.
f1174f77
EC
1664 */
1665 if (reg_type == SCALAR_VALUE)
638f5b90 1666 mark_reg_unknown(env, regs, value_regno);
f1174f77 1667 else
638f5b90 1668 mark_reg_known_zero(env, regs,
61bd5218 1669 value_regno);
638f5b90
AS
1670 regs[value_regno].id = 0;
1671 regs[value_regno].off = 0;
1672 regs[value_regno].range = 0;
1673 regs[value_regno].type = reg_type;
969bf05e 1674 }
17a52670 1675
f1174f77
EC
1676 } else if (reg->type == PTR_TO_STACK) {
1677 /* stack accesses must be at a fixed offset, so that we can
1678 * determine what type of data were returned.
1679 * See check_stack_read().
1680 */
1681 if (!tnum_is_const(reg->var_off)) {
1682 char tn_buf[48];
1683
1684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1685 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1686 tn_buf, off, size);
1687 return -EACCES;
1688 }
1689 off += reg->var_off.value;
17a52670 1690 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1691 verbose(env, "invalid stack off=%d size=%d\n", off,
1692 size);
17a52670
AS
1693 return -EACCES;
1694 }
8726679a 1695
f4d7e40a
AS
1696 state = func(env, reg);
1697 err = update_stack_depth(env, state, off);
1698 if (err)
1699 return err;
8726679a 1700
638f5b90 1701 if (t == BPF_WRITE)
61bd5218
JK
1702 err = check_stack_write(env, state, off, size,
1703 value_regno);
638f5b90 1704 else
61bd5218
JK
1705 err = check_stack_read(env, state, off, size,
1706 value_regno);
de8f3a83 1707 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1708 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1709 verbose(env, "cannot write into packet\n");
969bf05e
AS
1710 return -EACCES;
1711 }
4acf6c0b
BB
1712 if (t == BPF_WRITE && value_regno >= 0 &&
1713 is_pointer_value(env, value_regno)) {
61bd5218
JK
1714 verbose(env, "R%d leaks addr into packet\n",
1715 value_regno);
4acf6c0b
BB
1716 return -EACCES;
1717 }
9fd29c08 1718 err = check_packet_access(env, regno, off, size, false);
969bf05e 1719 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1720 mark_reg_unknown(env, regs, value_regno);
17a52670 1721 } else {
61bd5218
JK
1722 verbose(env, "R%d invalid mem access '%s'\n", regno,
1723 reg_type_str[reg->type]);
17a52670
AS
1724 return -EACCES;
1725 }
969bf05e 1726
f1174f77 1727 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1728 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1729 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1730 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1731 }
17a52670
AS
1732 return err;
1733}
1734
31fd8581 1735static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1736{
17a52670
AS
1737 int err;
1738
1739 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1740 insn->imm != 0) {
61bd5218 1741 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1742 return -EINVAL;
1743 }
1744
1745 /* check src1 operand */
dc503a8a 1746 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1747 if (err)
1748 return err;
1749
1750 /* check src2 operand */
dc503a8a 1751 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1752 if (err)
1753 return err;
1754
6bdf6abc 1755 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1756 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1757 return -EACCES;
1758 }
1759
ca369602
DB
1760 if (is_ctx_reg(env, insn->dst_reg) ||
1761 is_pkt_reg(env, insn->dst_reg)) {
1762 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1763 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1764 "context" : "packet");
f37a8cb8
DB
1765 return -EACCES;
1766 }
1767
17a52670 1768 /* check whether atomic_add can read the memory */
31fd8581 1769 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1770 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1771 if (err)
1772 return err;
1773
1774 /* check whether atomic_add can write into the same memory */
31fd8581 1775 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1776 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1777}
1778
1779/* when register 'regno' is passed into function that will read 'access_size'
1780 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1781 * and all elements of stack are initialized.
1782 * Unlike most pointer bounds-checking functions, this one doesn't take an
1783 * 'off' argument, so it has to add in reg->off itself.
17a52670 1784 */
58e2af8b 1785static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1786 int access_size, bool zero_size_allowed,
1787 struct bpf_call_arg_meta *meta)
17a52670 1788{
914cb781 1789 struct bpf_reg_state *reg = cur_regs(env) + regno;
f4d7e40a 1790 struct bpf_func_state *state = func(env, reg);
638f5b90 1791 int off, i, slot, spi;
17a52670 1792
914cb781 1793 if (reg->type != PTR_TO_STACK) {
f1174f77 1794 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1795 if (zero_size_allowed && access_size == 0 &&
914cb781 1796 register_is_null(reg))
8e2fe1d9
DB
1797 return 0;
1798
61bd5218 1799 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 1800 reg_type_str[reg->type],
8e2fe1d9 1801 reg_type_str[PTR_TO_STACK]);
17a52670 1802 return -EACCES;
8e2fe1d9 1803 }
17a52670 1804
f1174f77 1805 /* Only allow fixed-offset stack reads */
914cb781 1806 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
1807 char tn_buf[48];
1808
914cb781 1809 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1810 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1811 regno, tn_buf);
ea25f914 1812 return -EACCES;
f1174f77 1813 }
914cb781 1814 off = reg->off + reg->var_off.value;
17a52670 1815 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1816 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1817 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1818 regno, off, access_size);
1819 return -EACCES;
1820 }
1821
435faee1
DB
1822 if (meta && meta->raw_mode) {
1823 meta->access_size = access_size;
1824 meta->regno = regno;
1825 return 0;
1826 }
1827
17a52670 1828 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
1829 u8 *stype;
1830
638f5b90
AS
1831 slot = -(off + i) - 1;
1832 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
1833 if (state->allocated_stack <= slot)
1834 goto err;
1835 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1836 if (*stype == STACK_MISC)
1837 goto mark;
1838 if (*stype == STACK_ZERO) {
1839 /* helper can write anything into the stack */
1840 *stype = STACK_MISC;
1841 goto mark;
17a52670 1842 }
cc2b14d5
AS
1843err:
1844 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1845 off, i, access_size);
1846 return -EACCES;
1847mark:
1848 /* reading any byte out of 8-byte 'spill_slot' will cause
1849 * the whole slot to be marked as 'read'
1850 */
1851 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1852 spi, state->frameno);
17a52670 1853 }
f4d7e40a 1854 return update_stack_depth(env, state, off);
17a52670
AS
1855}
1856
06c1c049
GB
1857static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1858 int access_size, bool zero_size_allowed,
1859 struct bpf_call_arg_meta *meta)
1860{
638f5b90 1861 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1862
f1174f77 1863 switch (reg->type) {
06c1c049 1864 case PTR_TO_PACKET:
de8f3a83 1865 case PTR_TO_PACKET_META:
9fd29c08
YS
1866 return check_packet_access(env, regno, reg->off, access_size,
1867 zero_size_allowed);
06c1c049 1868 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1869 return check_map_access(env, regno, reg->off, access_size,
1870 zero_size_allowed);
f1174f77 1871 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1872 return check_stack_boundary(env, regno, access_size,
1873 zero_size_allowed, meta);
1874 }
1875}
1876
90133415
DB
1877static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1878{
1879 return type == ARG_PTR_TO_MEM ||
1880 type == ARG_PTR_TO_MEM_OR_NULL ||
1881 type == ARG_PTR_TO_UNINIT_MEM;
1882}
1883
1884static bool arg_type_is_mem_size(enum bpf_arg_type type)
1885{
1886 return type == ARG_CONST_SIZE ||
1887 type == ARG_CONST_SIZE_OR_ZERO;
1888}
1889
58e2af8b 1890static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1891 enum bpf_arg_type arg_type,
1892 struct bpf_call_arg_meta *meta)
17a52670 1893{
638f5b90 1894 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1895 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1896 int err = 0;
1897
80f1d68c 1898 if (arg_type == ARG_DONTCARE)
17a52670
AS
1899 return 0;
1900
dc503a8a
EC
1901 err = check_reg_arg(env, regno, SRC_OP);
1902 if (err)
1903 return err;
17a52670 1904
1be7f75d
AS
1905 if (arg_type == ARG_ANYTHING) {
1906 if (is_pointer_value(env, regno)) {
61bd5218
JK
1907 verbose(env, "R%d leaks addr into helper function\n",
1908 regno);
1be7f75d
AS
1909 return -EACCES;
1910 }
80f1d68c 1911 return 0;
1be7f75d 1912 }
80f1d68c 1913
de8f3a83 1914 if (type_is_pkt_pointer(type) &&
3a0af8fd 1915 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1916 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1917 return -EACCES;
1918 }
1919
8e2fe1d9 1920 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1921 arg_type == ARG_PTR_TO_MAP_VALUE) {
1922 expected_type = PTR_TO_STACK;
d71962f3 1923 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 1924 type != expected_type)
6841de8b 1925 goto err_type;
39f19ebb
AS
1926 } else if (arg_type == ARG_CONST_SIZE ||
1927 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1928 expected_type = SCALAR_VALUE;
1929 if (type != expected_type)
6841de8b 1930 goto err_type;
17a52670
AS
1931 } else if (arg_type == ARG_CONST_MAP_PTR) {
1932 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1933 if (type != expected_type)
1934 goto err_type;
608cd71a
AS
1935 } else if (arg_type == ARG_PTR_TO_CTX) {
1936 expected_type = PTR_TO_CTX;
6841de8b
AS
1937 if (type != expected_type)
1938 goto err_type;
90133415 1939 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
1940 expected_type = PTR_TO_STACK;
1941 /* One exception here. In case function allows for NULL to be
f1174f77 1942 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1943 * happens during stack boundary checking.
1944 */
914cb781 1945 if (register_is_null(reg) &&
db1ac496 1946 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1947 /* final test in check_stack_boundary() */;
de8f3a83
DB
1948 else if (!type_is_pkt_pointer(type) &&
1949 type != PTR_TO_MAP_VALUE &&
f1174f77 1950 type != expected_type)
6841de8b 1951 goto err_type;
39f19ebb 1952 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1953 } else {
61bd5218 1954 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1955 return -EFAULT;
1956 }
1957
17a52670
AS
1958 if (arg_type == ARG_CONST_MAP_PTR) {
1959 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1960 meta->map_ptr = reg->map_ptr;
17a52670
AS
1961 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1962 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1963 * check that [key, key + map->key_size) are within
1964 * stack limits and initialized
1965 */
33ff9823 1966 if (!meta->map_ptr) {
17a52670
AS
1967 /* in function declaration map_ptr must come before
1968 * map_key, so that it's verified and known before
1969 * we have to check map_key here. Otherwise it means
1970 * that kernel subsystem misconfigured verifier
1971 */
61bd5218 1972 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1973 return -EACCES;
1974 }
d71962f3
PC
1975 err = check_helper_mem_access(env, regno,
1976 meta->map_ptr->key_size, false,
1977 NULL);
17a52670
AS
1978 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1979 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1980 * check [value, value + map->value_size) validity
1981 */
33ff9823 1982 if (!meta->map_ptr) {
17a52670 1983 /* kernel subsystem misconfigured verifier */
61bd5218 1984 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1985 return -EACCES;
1986 }
d71962f3
PC
1987 err = check_helper_mem_access(env, regno,
1988 meta->map_ptr->value_size, false,
1989 NULL);
90133415 1990 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 1991 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1992
849fa506
YS
1993 /* remember the mem_size which may be used later
1994 * to refine return values.
1995 */
1996 meta->msize_smax_value = reg->smax_value;
1997 meta->msize_umax_value = reg->umax_value;
1998
f1174f77
EC
1999 /* The register is SCALAR_VALUE; the access check
2000 * happens using its boundaries.
06c1c049 2001 */
f1174f77 2002 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2003 /* For unprivileged variable accesses, disable raw
2004 * mode so that the program is required to
2005 * initialize all the memory that the helper could
2006 * just partially fill up.
2007 */
2008 meta = NULL;
2009
b03c9f9f 2010 if (reg->smin_value < 0) {
61bd5218 2011 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2012 regno);
2013 return -EACCES;
2014 }
06c1c049 2015
b03c9f9f 2016 if (reg->umin_value == 0) {
f1174f77
EC
2017 err = check_helper_mem_access(env, regno - 1, 0,
2018 zero_size_allowed,
2019 meta);
06c1c049
GB
2020 if (err)
2021 return err;
06c1c049 2022 }
f1174f77 2023
b03c9f9f 2024 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2025 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2026 regno);
2027 return -EACCES;
2028 }
2029 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2030 reg->umax_value,
f1174f77 2031 zero_size_allowed, meta);
17a52670
AS
2032 }
2033
2034 return err;
6841de8b 2035err_type:
61bd5218 2036 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2037 reg_type_str[type], reg_type_str[expected_type]);
2038 return -EACCES;
17a52670
AS
2039}
2040
61bd5218
JK
2041static int check_map_func_compatibility(struct bpf_verifier_env *env,
2042 struct bpf_map *map, int func_id)
35578d79 2043{
35578d79
KX
2044 if (!map)
2045 return 0;
2046
6aff67c8
AS
2047 /* We need a two way check, first is from map perspective ... */
2048 switch (map->map_type) {
2049 case BPF_MAP_TYPE_PROG_ARRAY:
2050 if (func_id != BPF_FUNC_tail_call)
2051 goto error;
2052 break;
2053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2054 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2055 func_id != BPF_FUNC_perf_event_output &&
2056 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2057 goto error;
2058 break;
2059 case BPF_MAP_TYPE_STACK_TRACE:
2060 if (func_id != BPF_FUNC_get_stackid)
2061 goto error;
2062 break;
4ed8ec52 2063 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2064 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2065 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2066 goto error;
2067 break;
546ac1ff
JF
2068 /* devmap returns a pointer to a live net_device ifindex that we cannot
2069 * allow to be modified from bpf side. So do not allow lookup elements
2070 * for now.
2071 */
2072 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2073 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2074 goto error;
2075 break;
fbfc504a
BT
2076 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2077 * appear.
2078 */
6710e112 2079 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2080 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2081 if (func_id != BPF_FUNC_redirect_map)
2082 goto error;
2083 break;
56f668df 2084 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2085 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2086 if (func_id != BPF_FUNC_map_lookup_elem)
2087 goto error;
16a43625 2088 break;
174a79ff
JF
2089 case BPF_MAP_TYPE_SOCKMAP:
2090 if (func_id != BPF_FUNC_sk_redirect_map &&
2091 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2092 func_id != BPF_FUNC_map_delete_elem &&
2093 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2094 goto error;
2095 break;
81110384
JF
2096 case BPF_MAP_TYPE_SOCKHASH:
2097 if (func_id != BPF_FUNC_sk_redirect_hash &&
2098 func_id != BPF_FUNC_sock_hash_update &&
2099 func_id != BPF_FUNC_map_delete_elem &&
2100 func_id != BPF_FUNC_msg_redirect_hash)
2101 goto error;
2102 break;
6aff67c8
AS
2103 default:
2104 break;
2105 }
2106
2107 /* ... and second from the function itself. */
2108 switch (func_id) {
2109 case BPF_FUNC_tail_call:
2110 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2111 goto error;
f910cefa 2112 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2113 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2114 return -EINVAL;
2115 }
6aff67c8
AS
2116 break;
2117 case BPF_FUNC_perf_event_read:
2118 case BPF_FUNC_perf_event_output:
908432ca 2119 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2120 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2121 goto error;
2122 break;
2123 case BPF_FUNC_get_stackid:
2124 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2125 goto error;
2126 break;
60d20f91 2127 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2128 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2129 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2130 goto error;
2131 break;
97f91a7c 2132 case BPF_FUNC_redirect_map:
9c270af3 2133 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2134 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2135 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2136 goto error;
2137 break;
174a79ff 2138 case BPF_FUNC_sk_redirect_map:
4f738adb 2139 case BPF_FUNC_msg_redirect_map:
81110384 2140 case BPF_FUNC_sock_map_update:
174a79ff
JF
2141 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2142 goto error;
2143 break;
81110384
JF
2144 case BPF_FUNC_sk_redirect_hash:
2145 case BPF_FUNC_msg_redirect_hash:
2146 case BPF_FUNC_sock_hash_update:
2147 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2148 goto error;
2149 break;
6aff67c8
AS
2150 default:
2151 break;
35578d79
KX
2152 }
2153
2154 return 0;
6aff67c8 2155error:
61bd5218 2156 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2157 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2158 return -EINVAL;
35578d79
KX
2159}
2160
90133415 2161static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2162{
2163 int count = 0;
2164
39f19ebb 2165 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2166 count++;
39f19ebb 2167 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2168 count++;
39f19ebb 2169 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2170 count++;
39f19ebb 2171 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2172 count++;
39f19ebb 2173 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2174 count++;
2175
90133415
DB
2176 /* We only support one arg being in raw mode at the moment,
2177 * which is sufficient for the helper functions we have
2178 * right now.
2179 */
2180 return count <= 1;
2181}
2182
2183static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2184 enum bpf_arg_type arg_next)
2185{
2186 return (arg_type_is_mem_ptr(arg_curr) &&
2187 !arg_type_is_mem_size(arg_next)) ||
2188 (!arg_type_is_mem_ptr(arg_curr) &&
2189 arg_type_is_mem_size(arg_next));
2190}
2191
2192static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2193{
2194 /* bpf_xxx(..., buf, len) call will access 'len'
2195 * bytes from memory 'buf'. Both arg types need
2196 * to be paired, so make sure there's no buggy
2197 * helper function specification.
2198 */
2199 if (arg_type_is_mem_size(fn->arg1_type) ||
2200 arg_type_is_mem_ptr(fn->arg5_type) ||
2201 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2202 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2203 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2204 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2205 return false;
2206
2207 return true;
2208}
2209
2210static int check_func_proto(const struct bpf_func_proto *fn)
2211{
2212 return check_raw_mode_ok(fn) &&
2213 check_arg_pair_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2214}
2215
de8f3a83
DB
2216/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2217 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2218 */
f4d7e40a
AS
2219static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2220 struct bpf_func_state *state)
969bf05e 2221{
58e2af8b 2222 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2223 int i;
2224
2225 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2226 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2227 mark_reg_unknown(env, regs, i);
969bf05e 2228
638f5b90
AS
2229 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2230 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2231 continue;
638f5b90 2232 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
2233 if (reg_is_pkt_pointer_any(reg))
2234 __mark_reg_unknown(reg);
969bf05e
AS
2235 }
2236}
2237
f4d7e40a
AS
2238static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2239{
2240 struct bpf_verifier_state *vstate = env->cur_state;
2241 int i;
2242
2243 for (i = 0; i <= vstate->curframe; i++)
2244 __clear_all_pkt_pointers(env, vstate->frame[i]);
2245}
2246
2247static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2248 int *insn_idx)
2249{
2250 struct bpf_verifier_state *state = env->cur_state;
2251 struct bpf_func_state *caller, *callee;
2252 int i, subprog, target_insn;
2253
aada9ce6 2254 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2255 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2256 state->curframe + 2);
f4d7e40a
AS
2257 return -E2BIG;
2258 }
2259
2260 target_insn = *insn_idx + insn->imm;
2261 subprog = find_subprog(env, target_insn + 1);
2262 if (subprog < 0) {
2263 verbose(env, "verifier bug. No program starts at insn %d\n",
2264 target_insn + 1);
2265 return -EFAULT;
2266 }
2267
2268 caller = state->frame[state->curframe];
2269 if (state->frame[state->curframe + 1]) {
2270 verbose(env, "verifier bug. Frame %d already allocated\n",
2271 state->curframe + 1);
2272 return -EFAULT;
2273 }
2274
2275 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2276 if (!callee)
2277 return -ENOMEM;
2278 state->frame[state->curframe + 1] = callee;
2279
2280 /* callee cannot access r0, r6 - r9 for reading and has to write
2281 * into its own stack before reading from it.
2282 * callee can read/write into caller's stack
2283 */
2284 init_func_state(env, callee,
2285 /* remember the callsite, it will be used by bpf_exit */
2286 *insn_idx /* callsite */,
2287 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2288 subprog /* subprog number within this prog */);
f4d7e40a
AS
2289
2290 /* copy r1 - r5 args that callee can access */
2291 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2292 callee->regs[i] = caller->regs[i];
2293
2294 /* after the call regsiters r0 - r5 were scratched */
2295 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2296 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2297 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2298 }
2299
2300 /* only increment it after check_reg_arg() finished */
2301 state->curframe++;
2302
2303 /* and go analyze first insn of the callee */
2304 *insn_idx = target_insn;
2305
2306 if (env->log.level) {
2307 verbose(env, "caller:\n");
2308 print_verifier_state(env, caller);
2309 verbose(env, "callee:\n");
2310 print_verifier_state(env, callee);
2311 }
2312 return 0;
2313}
2314
2315static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2316{
2317 struct bpf_verifier_state *state = env->cur_state;
2318 struct bpf_func_state *caller, *callee;
2319 struct bpf_reg_state *r0;
2320
2321 callee = state->frame[state->curframe];
2322 r0 = &callee->regs[BPF_REG_0];
2323 if (r0->type == PTR_TO_STACK) {
2324 /* technically it's ok to return caller's stack pointer
2325 * (or caller's caller's pointer) back to the caller,
2326 * since these pointers are valid. Only current stack
2327 * pointer will be invalid as soon as function exits,
2328 * but let's be conservative
2329 */
2330 verbose(env, "cannot return stack pointer to the caller\n");
2331 return -EINVAL;
2332 }
2333
2334 state->curframe--;
2335 caller = state->frame[state->curframe];
2336 /* return to the caller whatever r0 had in the callee */
2337 caller->regs[BPF_REG_0] = *r0;
2338
2339 *insn_idx = callee->callsite + 1;
2340 if (env->log.level) {
2341 verbose(env, "returning from callee:\n");
2342 print_verifier_state(env, callee);
2343 verbose(env, "to caller at %d:\n", *insn_idx);
2344 print_verifier_state(env, caller);
2345 }
2346 /* clear everything in the callee */
2347 free_func_state(callee);
2348 state->frame[state->curframe + 1] = NULL;
2349 return 0;
2350}
2351
849fa506
YS
2352static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2353 int func_id,
2354 struct bpf_call_arg_meta *meta)
2355{
2356 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2357
2358 if (ret_type != RET_INTEGER ||
2359 (func_id != BPF_FUNC_get_stack &&
2360 func_id != BPF_FUNC_probe_read_str))
2361 return;
2362
2363 ret_reg->smax_value = meta->msize_smax_value;
2364 ret_reg->umax_value = meta->msize_umax_value;
2365 __reg_deduce_bounds(ret_reg);
2366 __reg_bound_offset(ret_reg);
2367}
2368
f4d7e40a 2369static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2370{
17a52670 2371 const struct bpf_func_proto *fn = NULL;
638f5b90 2372 struct bpf_reg_state *regs;
33ff9823 2373 struct bpf_call_arg_meta meta;
969bf05e 2374 bool changes_data;
17a52670
AS
2375 int i, err;
2376
2377 /* find function prototype */
2378 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2379 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2380 func_id);
17a52670
AS
2381 return -EINVAL;
2382 }
2383
00176a34 2384 if (env->ops->get_func_proto)
5e43f899 2385 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2386 if (!fn) {
61bd5218
JK
2387 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2388 func_id);
17a52670
AS
2389 return -EINVAL;
2390 }
2391
2392 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2393 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 2394 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
2395 return -EINVAL;
2396 }
2397
04514d13 2398 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2399 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2400 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2401 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2402 func_id_name(func_id), func_id);
2403 return -EINVAL;
2404 }
969bf05e 2405
33ff9823 2406 memset(&meta, 0, sizeof(meta));
36bbef52 2407 meta.pkt_access = fn->pkt_access;
33ff9823 2408
90133415 2409 err = check_func_proto(fn);
435faee1 2410 if (err) {
61bd5218 2411 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2412 func_id_name(func_id), func_id);
435faee1
DB
2413 return err;
2414 }
2415
17a52670 2416 /* check args */
33ff9823 2417 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2418 if (err)
2419 return err;
33ff9823 2420 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2421 if (err)
2422 return err;
b2157399
AS
2423 if (func_id == BPF_FUNC_tail_call) {
2424 if (meta.map_ptr == NULL) {
2425 verbose(env, "verifier bug\n");
2426 return -EINVAL;
2427 }
2428 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2429 }
33ff9823 2430 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2431 if (err)
2432 return err;
33ff9823 2433 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2434 if (err)
2435 return err;
33ff9823 2436 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2437 if (err)
2438 return err;
2439
435faee1
DB
2440 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2441 * is inferred from register state.
2442 */
2443 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2444 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2445 BPF_WRITE, -1, false);
435faee1
DB
2446 if (err)
2447 return err;
2448 }
2449
638f5b90 2450 regs = cur_regs(env);
17a52670 2451 /* reset caller saved regs */
dc503a8a 2452 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2453 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2454 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2455 }
17a52670 2456
dc503a8a 2457 /* update return register (already marked as written above) */
17a52670 2458 if (fn->ret_type == RET_INTEGER) {
f1174f77 2459 /* sets type to SCALAR_VALUE */
61bd5218 2460 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2461 } else if (fn->ret_type == RET_VOID) {
2462 regs[BPF_REG_0].type = NOT_INIT;
2463 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
2464 struct bpf_insn_aux_data *insn_aux;
2465
17a52670 2466 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 2467 /* There is no offset yet applied, variable or fixed */
61bd5218 2468 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 2469 regs[BPF_REG_0].off = 0;
17a52670
AS
2470 /* remember map_ptr, so that check_map_access()
2471 * can check 'value_size' boundary of memory access
2472 * to map element returned from bpf_map_lookup_elem()
2473 */
33ff9823 2474 if (meta.map_ptr == NULL) {
61bd5218
JK
2475 verbose(env,
2476 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2477 return -EINVAL;
2478 }
33ff9823 2479 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 2480 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
2481 insn_aux = &env->insn_aux_data[insn_idx];
2482 if (!insn_aux->map_ptr)
2483 insn_aux->map_ptr = meta.map_ptr;
2484 else if (insn_aux->map_ptr != meta.map_ptr)
2485 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 2486 } else {
61bd5218 2487 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2488 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2489 return -EINVAL;
2490 }
04fd61ab 2491
849fa506
YS
2492 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2493
61bd5218 2494 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2495 if (err)
2496 return err;
04fd61ab 2497
c195651e
YS
2498 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2499 const char *err_str;
2500
2501#ifdef CONFIG_PERF_EVENTS
2502 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2503 err_str = "cannot get callchain buffer for func %s#%d\n";
2504#else
2505 err = -ENOTSUPP;
2506 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2507#endif
2508 if (err) {
2509 verbose(env, err_str, func_id_name(func_id), func_id);
2510 return err;
2511 }
2512
2513 env->prog->has_callchain_buf = true;
2514 }
2515
969bf05e
AS
2516 if (changes_data)
2517 clear_all_pkt_pointers(env);
2518 return 0;
2519}
2520
b03c9f9f
EC
2521static bool signed_add_overflows(s64 a, s64 b)
2522{
2523 /* Do the add in u64, where overflow is well-defined */
2524 s64 res = (s64)((u64)a + (u64)b);
2525
2526 if (b < 0)
2527 return res > a;
2528 return res < a;
2529}
2530
2531static bool signed_sub_overflows(s64 a, s64 b)
2532{
2533 /* Do the sub in u64, where overflow is well-defined */
2534 s64 res = (s64)((u64)a - (u64)b);
2535
2536 if (b < 0)
2537 return res < a;
2538 return res > a;
969bf05e
AS
2539}
2540
bb7f0f98
AS
2541static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2542 const struct bpf_reg_state *reg,
2543 enum bpf_reg_type type)
2544{
2545 bool known = tnum_is_const(reg->var_off);
2546 s64 val = reg->var_off.value;
2547 s64 smin = reg->smin_value;
2548
2549 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2550 verbose(env, "math between %s pointer and %lld is not allowed\n",
2551 reg_type_str[type], val);
2552 return false;
2553 }
2554
2555 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2556 verbose(env, "%s pointer offset %d is not allowed\n",
2557 reg_type_str[type], reg->off);
2558 return false;
2559 }
2560
2561 if (smin == S64_MIN) {
2562 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2563 reg_type_str[type]);
2564 return false;
2565 }
2566
2567 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2568 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2569 smin, reg_type_str[type]);
2570 return false;
2571 }
2572
2573 return true;
2574}
2575
f1174f77 2576/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2577 * Caller should also handle BPF_MOV case separately.
2578 * If we return -EACCES, caller may want to try again treating pointer as a
2579 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2580 */
2581static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2582 struct bpf_insn *insn,
2583 const struct bpf_reg_state *ptr_reg,
2584 const struct bpf_reg_state *off_reg)
969bf05e 2585{
f4d7e40a
AS
2586 struct bpf_verifier_state *vstate = env->cur_state;
2587 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2588 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2589 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2590 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2591 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2592 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2593 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2594 u8 opcode = BPF_OP(insn->code);
f1174f77 2595 u32 dst = insn->dst_reg;
969bf05e 2596
f1174f77 2597 dst_reg = &regs[dst];
969bf05e 2598
6f16101e
DB
2599 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2600 smin_val > smax_val || umin_val > umax_val) {
2601 /* Taint dst register if offset had invalid bounds derived from
2602 * e.g. dead branches.
2603 */
2604 __mark_reg_unknown(dst_reg);
2605 return 0;
f1174f77
EC
2606 }
2607
2608 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2609 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
2610 verbose(env,
2611 "R%d 32-bit pointer arithmetic prohibited\n",
2612 dst);
f1174f77 2613 return -EACCES;
969bf05e
AS
2614 }
2615
f1174f77 2616 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
2617 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2618 dst);
f1174f77
EC
2619 return -EACCES;
2620 }
2621 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
2622 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2623 dst);
f1174f77
EC
2624 return -EACCES;
2625 }
2626 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
2627 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2628 dst);
f1174f77
EC
2629 return -EACCES;
2630 }
2631
2632 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2633 * The id may be overwritten later if we create a new variable offset.
969bf05e 2634 */
f1174f77
EC
2635 dst_reg->type = ptr_reg->type;
2636 dst_reg->id = ptr_reg->id;
969bf05e 2637
bb7f0f98
AS
2638 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2639 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2640 return -EINVAL;
2641
f1174f77
EC
2642 switch (opcode) {
2643 case BPF_ADD:
2644 /* We can take a fixed offset as long as it doesn't overflow
2645 * the s32 'off' field
969bf05e 2646 */
b03c9f9f
EC
2647 if (known && (ptr_reg->off + smin_val ==
2648 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 2649 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
2650 dst_reg->smin_value = smin_ptr;
2651 dst_reg->smax_value = smax_ptr;
2652 dst_reg->umin_value = umin_ptr;
2653 dst_reg->umax_value = umax_ptr;
f1174f77 2654 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 2655 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
2656 dst_reg->range = ptr_reg->range;
2657 break;
2658 }
f1174f77
EC
2659 /* A new variable offset is created. Note that off_reg->off
2660 * == 0, since it's a scalar.
2661 * dst_reg gets the pointer type and since some positive
2662 * integer value was added to the pointer, give it a new 'id'
2663 * if it's a PTR_TO_PACKET.
2664 * this creates a new 'base' pointer, off_reg (variable) gets
2665 * added into the variable offset, and we copy the fixed offset
2666 * from ptr_reg.
969bf05e 2667 */
b03c9f9f
EC
2668 if (signed_add_overflows(smin_ptr, smin_val) ||
2669 signed_add_overflows(smax_ptr, smax_val)) {
2670 dst_reg->smin_value = S64_MIN;
2671 dst_reg->smax_value = S64_MAX;
2672 } else {
2673 dst_reg->smin_value = smin_ptr + smin_val;
2674 dst_reg->smax_value = smax_ptr + smax_val;
2675 }
2676 if (umin_ptr + umin_val < umin_ptr ||
2677 umax_ptr + umax_val < umax_ptr) {
2678 dst_reg->umin_value = 0;
2679 dst_reg->umax_value = U64_MAX;
2680 } else {
2681 dst_reg->umin_value = umin_ptr + umin_val;
2682 dst_reg->umax_value = umax_ptr + umax_val;
2683 }
f1174f77
EC
2684 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2685 dst_reg->off = ptr_reg->off;
de8f3a83 2686 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2687 dst_reg->id = ++env->id_gen;
2688 /* something was added to pkt_ptr, set range to zero */
2689 dst_reg->range = 0;
2690 }
2691 break;
2692 case BPF_SUB:
2693 if (dst_reg == off_reg) {
2694 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2695 verbose(env, "R%d tried to subtract pointer from scalar\n",
2696 dst);
f1174f77
EC
2697 return -EACCES;
2698 }
2699 /* We don't allow subtraction from FP, because (according to
2700 * test_verifier.c test "invalid fp arithmetic", JITs might not
2701 * be able to deal with it.
969bf05e 2702 */
f1174f77 2703 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2704 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2705 dst);
f1174f77
EC
2706 return -EACCES;
2707 }
b03c9f9f
EC
2708 if (known && (ptr_reg->off - smin_val ==
2709 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2710 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2711 dst_reg->smin_value = smin_ptr;
2712 dst_reg->smax_value = smax_ptr;
2713 dst_reg->umin_value = umin_ptr;
2714 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2715 dst_reg->var_off = ptr_reg->var_off;
2716 dst_reg->id = ptr_reg->id;
b03c9f9f 2717 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2718 dst_reg->range = ptr_reg->range;
2719 break;
2720 }
f1174f77
EC
2721 /* A new variable offset is created. If the subtrahend is known
2722 * nonnegative, then any reg->range we had before is still good.
969bf05e 2723 */
b03c9f9f
EC
2724 if (signed_sub_overflows(smin_ptr, smax_val) ||
2725 signed_sub_overflows(smax_ptr, smin_val)) {
2726 /* Overflow possible, we know nothing */
2727 dst_reg->smin_value = S64_MIN;
2728 dst_reg->smax_value = S64_MAX;
2729 } else {
2730 dst_reg->smin_value = smin_ptr - smax_val;
2731 dst_reg->smax_value = smax_ptr - smin_val;
2732 }
2733 if (umin_ptr < umax_val) {
2734 /* Overflow possible, we know nothing */
2735 dst_reg->umin_value = 0;
2736 dst_reg->umax_value = U64_MAX;
2737 } else {
2738 /* Cannot overflow (as long as bounds are consistent) */
2739 dst_reg->umin_value = umin_ptr - umax_val;
2740 dst_reg->umax_value = umax_ptr - umin_val;
2741 }
f1174f77
EC
2742 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2743 dst_reg->off = ptr_reg->off;
de8f3a83 2744 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2745 dst_reg->id = ++env->id_gen;
2746 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2747 if (smin_val < 0)
f1174f77 2748 dst_reg->range = 0;
43188702 2749 }
f1174f77
EC
2750 break;
2751 case BPF_AND:
2752 case BPF_OR:
2753 case BPF_XOR:
82abbf8d
AS
2754 /* bitwise ops on pointers are troublesome, prohibit. */
2755 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2756 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2757 return -EACCES;
2758 default:
2759 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2760 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2761 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2762 return -EACCES;
43188702
JF
2763 }
2764
bb7f0f98
AS
2765 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2766 return -EINVAL;
2767
b03c9f9f
EC
2768 __update_reg_bounds(dst_reg);
2769 __reg_deduce_bounds(dst_reg);
2770 __reg_bound_offset(dst_reg);
43188702
JF
2771 return 0;
2772}
2773
468f6eaf
JH
2774/* WARNING: This function does calculations on 64-bit values, but the actual
2775 * execution may occur on 32-bit values. Therefore, things like bitshifts
2776 * need extra checks in the 32-bit case.
2777 */
f1174f77
EC
2778static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2779 struct bpf_insn *insn,
2780 struct bpf_reg_state *dst_reg,
2781 struct bpf_reg_state src_reg)
969bf05e 2782{
638f5b90 2783 struct bpf_reg_state *regs = cur_regs(env);
48461135 2784 u8 opcode = BPF_OP(insn->code);
f1174f77 2785 bool src_known, dst_known;
b03c9f9f
EC
2786 s64 smin_val, smax_val;
2787 u64 umin_val, umax_val;
468f6eaf 2788 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2789
b03c9f9f
EC
2790 smin_val = src_reg.smin_value;
2791 smax_val = src_reg.smax_value;
2792 umin_val = src_reg.umin_value;
2793 umax_val = src_reg.umax_value;
f1174f77
EC
2794 src_known = tnum_is_const(src_reg.var_off);
2795 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2796
6f16101e
DB
2797 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2798 smin_val > smax_val || umin_val > umax_val) {
2799 /* Taint dst register if offset had invalid bounds derived from
2800 * e.g. dead branches.
2801 */
2802 __mark_reg_unknown(dst_reg);
2803 return 0;
2804 }
2805
bb7f0f98
AS
2806 if (!src_known &&
2807 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2808 __mark_reg_unknown(dst_reg);
2809 return 0;
2810 }
2811
48461135
JB
2812 switch (opcode) {
2813 case BPF_ADD:
b03c9f9f
EC
2814 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2815 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2816 dst_reg->smin_value = S64_MIN;
2817 dst_reg->smax_value = S64_MAX;
2818 } else {
2819 dst_reg->smin_value += smin_val;
2820 dst_reg->smax_value += smax_val;
2821 }
2822 if (dst_reg->umin_value + umin_val < umin_val ||
2823 dst_reg->umax_value + umax_val < umax_val) {
2824 dst_reg->umin_value = 0;
2825 dst_reg->umax_value = U64_MAX;
2826 } else {
2827 dst_reg->umin_value += umin_val;
2828 dst_reg->umax_value += umax_val;
2829 }
f1174f77 2830 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2831 break;
2832 case BPF_SUB:
b03c9f9f
EC
2833 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2834 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2835 /* Overflow possible, we know nothing */
2836 dst_reg->smin_value = S64_MIN;
2837 dst_reg->smax_value = S64_MAX;
2838 } else {
2839 dst_reg->smin_value -= smax_val;
2840 dst_reg->smax_value -= smin_val;
2841 }
2842 if (dst_reg->umin_value < umax_val) {
2843 /* Overflow possible, we know nothing */
2844 dst_reg->umin_value = 0;
2845 dst_reg->umax_value = U64_MAX;
2846 } else {
2847 /* Cannot overflow (as long as bounds are consistent) */
2848 dst_reg->umin_value -= umax_val;
2849 dst_reg->umax_value -= umin_val;
2850 }
f1174f77 2851 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2852 break;
2853 case BPF_MUL:
b03c9f9f
EC
2854 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2855 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2856 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2857 __mark_reg_unbounded(dst_reg);
2858 __update_reg_bounds(dst_reg);
f1174f77
EC
2859 break;
2860 }
b03c9f9f
EC
2861 /* Both values are positive, so we can work with unsigned and
2862 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2863 */
b03c9f9f
EC
2864 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2865 /* Potential overflow, we know nothing */
2866 __mark_reg_unbounded(dst_reg);
2867 /* (except what we can learn from the var_off) */
2868 __update_reg_bounds(dst_reg);
2869 break;
2870 }
2871 dst_reg->umin_value *= umin_val;
2872 dst_reg->umax_value *= umax_val;
2873 if (dst_reg->umax_value > S64_MAX) {
2874 /* Overflow possible, we know nothing */
2875 dst_reg->smin_value = S64_MIN;
2876 dst_reg->smax_value = S64_MAX;
2877 } else {
2878 dst_reg->smin_value = dst_reg->umin_value;
2879 dst_reg->smax_value = dst_reg->umax_value;
2880 }
48461135
JB
2881 break;
2882 case BPF_AND:
f1174f77 2883 if (src_known && dst_known) {
b03c9f9f
EC
2884 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2885 src_reg.var_off.value);
f1174f77
EC
2886 break;
2887 }
b03c9f9f
EC
2888 /* We get our minimum from the var_off, since that's inherently
2889 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2890 */
f1174f77 2891 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2892 dst_reg->umin_value = dst_reg->var_off.value;
2893 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2894 if (dst_reg->smin_value < 0 || smin_val < 0) {
2895 /* Lose signed bounds when ANDing negative numbers,
2896 * ain't nobody got time for that.
2897 */
2898 dst_reg->smin_value = S64_MIN;
2899 dst_reg->smax_value = S64_MAX;
2900 } else {
2901 /* ANDing two positives gives a positive, so safe to
2902 * cast result into s64.
2903 */
2904 dst_reg->smin_value = dst_reg->umin_value;
2905 dst_reg->smax_value = dst_reg->umax_value;
2906 }
2907 /* We may learn something more from the var_off */
2908 __update_reg_bounds(dst_reg);
f1174f77
EC
2909 break;
2910 case BPF_OR:
2911 if (src_known && dst_known) {
b03c9f9f
EC
2912 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2913 src_reg.var_off.value);
f1174f77
EC
2914 break;
2915 }
b03c9f9f
EC
2916 /* We get our maximum from the var_off, and our minimum is the
2917 * maximum of the operands' minima
f1174f77
EC
2918 */
2919 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2920 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2921 dst_reg->umax_value = dst_reg->var_off.value |
2922 dst_reg->var_off.mask;
2923 if (dst_reg->smin_value < 0 || smin_val < 0) {
2924 /* Lose signed bounds when ORing negative numbers,
2925 * ain't nobody got time for that.
2926 */
2927 dst_reg->smin_value = S64_MIN;
2928 dst_reg->smax_value = S64_MAX;
f1174f77 2929 } else {
b03c9f9f
EC
2930 /* ORing two positives gives a positive, so safe to
2931 * cast result into s64.
2932 */
2933 dst_reg->smin_value = dst_reg->umin_value;
2934 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2935 }
b03c9f9f
EC
2936 /* We may learn something more from the var_off */
2937 __update_reg_bounds(dst_reg);
48461135
JB
2938 break;
2939 case BPF_LSH:
468f6eaf
JH
2940 if (umax_val >= insn_bitness) {
2941 /* Shifts greater than 31 or 63 are undefined.
2942 * This includes shifts by a negative number.
b03c9f9f 2943 */
61bd5218 2944 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2945 break;
2946 }
b03c9f9f
EC
2947 /* We lose all sign bit information (except what we can pick
2948 * up from var_off)
48461135 2949 */
b03c9f9f
EC
2950 dst_reg->smin_value = S64_MIN;
2951 dst_reg->smax_value = S64_MAX;
2952 /* If we might shift our top bit out, then we know nothing */
2953 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2954 dst_reg->umin_value = 0;
2955 dst_reg->umax_value = U64_MAX;
d1174416 2956 } else {
b03c9f9f
EC
2957 dst_reg->umin_value <<= umin_val;
2958 dst_reg->umax_value <<= umax_val;
d1174416 2959 }
afbe1a5b 2960 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
2961 /* We may learn something more from the var_off */
2962 __update_reg_bounds(dst_reg);
48461135
JB
2963 break;
2964 case BPF_RSH:
468f6eaf
JH
2965 if (umax_val >= insn_bitness) {
2966 /* Shifts greater than 31 or 63 are undefined.
2967 * This includes shifts by a negative number.
b03c9f9f 2968 */
61bd5218 2969 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2970 break;
2971 }
4374f256
EC
2972 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2973 * be negative, then either:
2974 * 1) src_reg might be zero, so the sign bit of the result is
2975 * unknown, so we lose our signed bounds
2976 * 2) it's known negative, thus the unsigned bounds capture the
2977 * signed bounds
2978 * 3) the signed bounds cross zero, so they tell us nothing
2979 * about the result
2980 * If the value in dst_reg is known nonnegative, then again the
2981 * unsigned bounts capture the signed bounds.
2982 * Thus, in all cases it suffices to blow away our signed bounds
2983 * and rely on inferring new ones from the unsigned bounds and
2984 * var_off of the result.
2985 */
2986 dst_reg->smin_value = S64_MIN;
2987 dst_reg->smax_value = S64_MAX;
afbe1a5b 2988 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
2989 dst_reg->umin_value >>= umax_val;
2990 dst_reg->umax_value >>= umin_val;
2991 /* We may learn something more from the var_off */
2992 __update_reg_bounds(dst_reg);
48461135 2993 break;
9cbe1f5a
YS
2994 case BPF_ARSH:
2995 if (umax_val >= insn_bitness) {
2996 /* Shifts greater than 31 or 63 are undefined.
2997 * This includes shifts by a negative number.
2998 */
2999 mark_reg_unknown(env, regs, insn->dst_reg);
3000 break;
3001 }
3002
3003 /* Upon reaching here, src_known is true and
3004 * umax_val is equal to umin_val.
3005 */
3006 dst_reg->smin_value >>= umin_val;
3007 dst_reg->smax_value >>= umin_val;
3008 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3009
3010 /* blow away the dst_reg umin_value/umax_value and rely on
3011 * dst_reg var_off to refine the result.
3012 */
3013 dst_reg->umin_value = 0;
3014 dst_reg->umax_value = U64_MAX;
3015 __update_reg_bounds(dst_reg);
3016 break;
48461135 3017 default:
61bd5218 3018 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3019 break;
3020 }
3021
468f6eaf
JH
3022 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3023 /* 32-bit ALU ops are (32,32)->32 */
3024 coerce_reg_to_size(dst_reg, 4);
3025 coerce_reg_to_size(&src_reg, 4);
3026 }
3027
b03c9f9f
EC
3028 __reg_deduce_bounds(dst_reg);
3029 __reg_bound_offset(dst_reg);
f1174f77
EC
3030 return 0;
3031}
3032
3033/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3034 * and var_off.
3035 */
3036static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3037 struct bpf_insn *insn)
3038{
f4d7e40a
AS
3039 struct bpf_verifier_state *vstate = env->cur_state;
3040 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3041 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3042 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3043 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3044
3045 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3046 src_reg = NULL;
3047 if (dst_reg->type != SCALAR_VALUE)
3048 ptr_reg = dst_reg;
3049 if (BPF_SRC(insn->code) == BPF_X) {
3050 src_reg = &regs[insn->src_reg];
f1174f77
EC
3051 if (src_reg->type != SCALAR_VALUE) {
3052 if (dst_reg->type != SCALAR_VALUE) {
3053 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3054 * an arbitrary scalar. Disallow all math except
3055 * pointer subtraction
f1174f77 3056 */
82abbf8d
AS
3057 if (opcode == BPF_SUB){
3058 mark_reg_unknown(env, regs, insn->dst_reg);
3059 return 0;
f1174f77 3060 }
82abbf8d
AS
3061 verbose(env, "R%d pointer %s pointer prohibited\n",
3062 insn->dst_reg,
3063 bpf_alu_string[opcode >> 4]);
3064 return -EACCES;
f1174f77
EC
3065 } else {
3066 /* scalar += pointer
3067 * This is legal, but we have to reverse our
3068 * src/dest handling in computing the range
3069 */
82abbf8d
AS
3070 return adjust_ptr_min_max_vals(env, insn,
3071 src_reg, dst_reg);
f1174f77
EC
3072 }
3073 } else if (ptr_reg) {
3074 /* pointer += scalar */
82abbf8d
AS
3075 return adjust_ptr_min_max_vals(env, insn,
3076 dst_reg, src_reg);
f1174f77
EC
3077 }
3078 } else {
3079 /* Pretend the src is a reg with a known value, since we only
3080 * need to be able to read from this state.
3081 */
3082 off_reg.type = SCALAR_VALUE;
b03c9f9f 3083 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3084 src_reg = &off_reg;
82abbf8d
AS
3085 if (ptr_reg) /* pointer += K */
3086 return adjust_ptr_min_max_vals(env, insn,
3087 ptr_reg, src_reg);
f1174f77
EC
3088 }
3089
3090 /* Got here implies adding two SCALAR_VALUEs */
3091 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3092 print_verifier_state(env, state);
61bd5218 3093 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3094 return -EINVAL;
3095 }
3096 if (WARN_ON(!src_reg)) {
f4d7e40a 3097 print_verifier_state(env, state);
61bd5218 3098 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3099 return -EINVAL;
3100 }
3101 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3102}
3103
17a52670 3104/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3105static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3106{
638f5b90 3107 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3108 u8 opcode = BPF_OP(insn->code);
3109 int err;
3110
3111 if (opcode == BPF_END || opcode == BPF_NEG) {
3112 if (opcode == BPF_NEG) {
3113 if (BPF_SRC(insn->code) != 0 ||
3114 insn->src_reg != BPF_REG_0 ||
3115 insn->off != 0 || insn->imm != 0) {
61bd5218 3116 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3117 return -EINVAL;
3118 }
3119 } else {
3120 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3121 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3122 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3123 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3124 return -EINVAL;
3125 }
3126 }
3127
3128 /* check src operand */
dc503a8a 3129 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3130 if (err)
3131 return err;
3132
1be7f75d 3133 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3134 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3135 insn->dst_reg);
3136 return -EACCES;
3137 }
3138
17a52670 3139 /* check dest operand */
dc503a8a 3140 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3141 if (err)
3142 return err;
3143
3144 } else if (opcode == BPF_MOV) {
3145
3146 if (BPF_SRC(insn->code) == BPF_X) {
3147 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3148 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3149 return -EINVAL;
3150 }
3151
3152 /* check src operand */
dc503a8a 3153 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3154 if (err)
3155 return err;
3156 } else {
3157 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3158 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3159 return -EINVAL;
3160 }
3161 }
3162
3163 /* check dest operand */
dc503a8a 3164 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3165 if (err)
3166 return err;
3167
3168 if (BPF_SRC(insn->code) == BPF_X) {
3169 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3170 /* case: R1 = R2
3171 * copy register state to dest reg
3172 */
3173 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3174 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3175 } else {
f1174f77 3176 /* R1 = (u32) R2 */
1be7f75d 3177 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3178 verbose(env,
3179 "R%d partial copy of pointer\n",
1be7f75d
AS
3180 insn->src_reg);
3181 return -EACCES;
3182 }
61bd5218 3183 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3184 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3185 }
3186 } else {
3187 /* case: R = imm
3188 * remember the value we stored into this reg
3189 */
f1174f77 3190 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3191 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3192 __mark_reg_known(regs + insn->dst_reg,
3193 insn->imm);
3194 } else {
3195 __mark_reg_known(regs + insn->dst_reg,
3196 (u32)insn->imm);
3197 }
17a52670
AS
3198 }
3199
3200 } else if (opcode > BPF_END) {
61bd5218 3201 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3202 return -EINVAL;
3203
3204 } else { /* all other ALU ops: and, sub, xor, add, ... */
3205
17a52670
AS
3206 if (BPF_SRC(insn->code) == BPF_X) {
3207 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3208 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3209 return -EINVAL;
3210 }
3211 /* check src1 operand */
dc503a8a 3212 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3213 if (err)
3214 return err;
3215 } else {
3216 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3217 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3218 return -EINVAL;
3219 }
3220 }
3221
3222 /* check src2 operand */
dc503a8a 3223 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3224 if (err)
3225 return err;
3226
3227 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3228 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3229 verbose(env, "div by zero\n");
17a52670
AS
3230 return -EINVAL;
3231 }
3232
7891a87e
DB
3233 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3234 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3235 return -EINVAL;
3236 }
3237
229394e8
RV
3238 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3239 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3240 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3241
3242 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3243 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3244 return -EINVAL;
3245 }
3246 }
3247
1a0dc1ac 3248 /* check dest operand */
dc503a8a 3249 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3250 if (err)
3251 return err;
3252
f1174f77 3253 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3254 }
3255
3256 return 0;
3257}
3258
f4d7e40a 3259static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3260 struct bpf_reg_state *dst_reg,
f8ddadc4 3261 enum bpf_reg_type type,
fb2a311a 3262 bool range_right_open)
969bf05e 3263{
f4d7e40a 3264 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3265 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3266 u16 new_range;
f4d7e40a 3267 int i, j;
2d2be8ca 3268
fb2a311a
DB
3269 if (dst_reg->off < 0 ||
3270 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3271 /* This doesn't give us any range */
3272 return;
3273
b03c9f9f
EC
3274 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3275 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3276 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3277 * than pkt_end, but that's because it's also less than pkt.
3278 */
3279 return;
3280
fb2a311a
DB
3281 new_range = dst_reg->off;
3282 if (range_right_open)
3283 new_range--;
3284
3285 /* Examples for register markings:
2d2be8ca 3286 *
fb2a311a 3287 * pkt_data in dst register:
2d2be8ca
DB
3288 *
3289 * r2 = r3;
3290 * r2 += 8;
3291 * if (r2 > pkt_end) goto <handle exception>
3292 * <access okay>
3293 *
b4e432f1
DB
3294 * r2 = r3;
3295 * r2 += 8;
3296 * if (r2 < pkt_end) goto <access okay>
3297 * <handle exception>
3298 *
2d2be8ca
DB
3299 * Where:
3300 * r2 == dst_reg, pkt_end == src_reg
3301 * r2=pkt(id=n,off=8,r=0)
3302 * r3=pkt(id=n,off=0,r=0)
3303 *
fb2a311a 3304 * pkt_data in src register:
2d2be8ca
DB
3305 *
3306 * r2 = r3;
3307 * r2 += 8;
3308 * if (pkt_end >= r2) goto <access okay>
3309 * <handle exception>
3310 *
b4e432f1
DB
3311 * r2 = r3;
3312 * r2 += 8;
3313 * if (pkt_end <= r2) goto <handle exception>
3314 * <access okay>
3315 *
2d2be8ca
DB
3316 * Where:
3317 * pkt_end == dst_reg, r2 == src_reg
3318 * r2=pkt(id=n,off=8,r=0)
3319 * r3=pkt(id=n,off=0,r=0)
3320 *
3321 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3322 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3323 * and [r3, r3 + 8-1) respectively is safe to access depending on
3324 * the check.
969bf05e 3325 */
2d2be8ca 3326
f1174f77
EC
3327 /* If our ids match, then we must have the same max_value. And we
3328 * don't care about the other reg's fixed offset, since if it's too big
3329 * the range won't allow anything.
3330 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3331 */
969bf05e 3332 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3333 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3334 /* keep the maximum range already checked */
fb2a311a 3335 regs[i].range = max(regs[i].range, new_range);
969bf05e 3336
f4d7e40a
AS
3337 for (j = 0; j <= vstate->curframe; j++) {
3338 state = vstate->frame[j];
3339 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3340 if (state->stack[i].slot_type[0] != STACK_SPILL)
3341 continue;
3342 reg = &state->stack[i].spilled_ptr;
3343 if (reg->type == type && reg->id == dst_reg->id)
3344 reg->range = max(reg->range, new_range);
3345 }
969bf05e
AS
3346 }
3347}
3348
48461135
JB
3349/* Adjusts the register min/max values in the case that the dst_reg is the
3350 * variable register that we are working on, and src_reg is a constant or we're
3351 * simply doing a BPF_K check.
f1174f77 3352 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3353 */
3354static void reg_set_min_max(struct bpf_reg_state *true_reg,
3355 struct bpf_reg_state *false_reg, u64 val,
3356 u8 opcode)
3357{
f1174f77
EC
3358 /* If the dst_reg is a pointer, we can't learn anything about its
3359 * variable offset from the compare (unless src_reg were a pointer into
3360 * the same object, but we don't bother with that.
3361 * Since false_reg and true_reg have the same type by construction, we
3362 * only need to check one of them for pointerness.
3363 */
3364 if (__is_pointer_value(false, false_reg))
3365 return;
4cabc5b1 3366
48461135
JB
3367 switch (opcode) {
3368 case BPF_JEQ:
3369 /* If this is false then we know nothing Jon Snow, but if it is
3370 * true then we know for sure.
3371 */
b03c9f9f 3372 __mark_reg_known(true_reg, val);
48461135
JB
3373 break;
3374 case BPF_JNE:
3375 /* If this is true we know nothing Jon Snow, but if it is false
3376 * we know the value for sure;
3377 */
b03c9f9f 3378 __mark_reg_known(false_reg, val);
48461135
JB
3379 break;
3380 case BPF_JGT:
b03c9f9f
EC
3381 false_reg->umax_value = min(false_reg->umax_value, val);
3382 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3383 break;
48461135 3384 case BPF_JSGT:
b03c9f9f
EC
3385 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3386 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3387 break;
b4e432f1
DB
3388 case BPF_JLT:
3389 false_reg->umin_value = max(false_reg->umin_value, val);
3390 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3391 break;
3392 case BPF_JSLT:
3393 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3394 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3395 break;
48461135 3396 case BPF_JGE:
b03c9f9f
EC
3397 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3398 true_reg->umin_value = max(true_reg->umin_value, val);
3399 break;
48461135 3400 case BPF_JSGE:
b03c9f9f
EC
3401 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3402 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3403 break;
b4e432f1
DB
3404 case BPF_JLE:
3405 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3406 true_reg->umax_value = min(true_reg->umax_value, val);
3407 break;
3408 case BPF_JSLE:
3409 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3410 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3411 break;
48461135
JB
3412 default:
3413 break;
3414 }
3415
b03c9f9f
EC
3416 __reg_deduce_bounds(false_reg);
3417 __reg_deduce_bounds(true_reg);
3418 /* We might have learned some bits from the bounds. */
3419 __reg_bound_offset(false_reg);
3420 __reg_bound_offset(true_reg);
3421 /* Intersecting with the old var_off might have improved our bounds
3422 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3423 * then new var_off is (0; 0x7f...fc) which improves our umax.
3424 */
3425 __update_reg_bounds(false_reg);
3426 __update_reg_bounds(true_reg);
48461135
JB
3427}
3428
f1174f77
EC
3429/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3430 * the variable reg.
48461135
JB
3431 */
3432static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3433 struct bpf_reg_state *false_reg, u64 val,
3434 u8 opcode)
3435{
f1174f77
EC
3436 if (__is_pointer_value(false, false_reg))
3437 return;
4cabc5b1 3438
48461135
JB
3439 switch (opcode) {
3440 case BPF_JEQ:
3441 /* If this is false then we know nothing Jon Snow, but if it is
3442 * true then we know for sure.
3443 */
b03c9f9f 3444 __mark_reg_known(true_reg, val);
48461135
JB
3445 break;
3446 case BPF_JNE:
3447 /* If this is true we know nothing Jon Snow, but if it is false
3448 * we know the value for sure;
3449 */
b03c9f9f 3450 __mark_reg_known(false_reg, val);
48461135
JB
3451 break;
3452 case BPF_JGT:
b03c9f9f
EC
3453 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3454 false_reg->umin_value = max(false_reg->umin_value, val);
3455 break;
48461135 3456 case BPF_JSGT:
b03c9f9f
EC
3457 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3458 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3459 break;
b4e432f1
DB
3460 case BPF_JLT:
3461 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3462 false_reg->umax_value = min(false_reg->umax_value, val);
3463 break;
3464 case BPF_JSLT:
3465 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3466 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3467 break;
48461135 3468 case BPF_JGE:
b03c9f9f
EC
3469 true_reg->umax_value = min(true_reg->umax_value, val);
3470 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3471 break;
48461135 3472 case BPF_JSGE:
b03c9f9f
EC
3473 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3474 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3475 break;
b4e432f1
DB
3476 case BPF_JLE:
3477 true_reg->umin_value = max(true_reg->umin_value, val);
3478 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3479 break;
3480 case BPF_JSLE:
3481 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3482 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3483 break;
48461135
JB
3484 default:
3485 break;
3486 }
3487
b03c9f9f
EC
3488 __reg_deduce_bounds(false_reg);
3489 __reg_deduce_bounds(true_reg);
3490 /* We might have learned some bits from the bounds. */
3491 __reg_bound_offset(false_reg);
3492 __reg_bound_offset(true_reg);
3493 /* Intersecting with the old var_off might have improved our bounds
3494 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3495 * then new var_off is (0; 0x7f...fc) which improves our umax.
3496 */
3497 __update_reg_bounds(false_reg);
3498 __update_reg_bounds(true_reg);
f1174f77
EC
3499}
3500
3501/* Regs are known to be equal, so intersect their min/max/var_off */
3502static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3503 struct bpf_reg_state *dst_reg)
3504{
b03c9f9f
EC
3505 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3506 dst_reg->umin_value);
3507 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3508 dst_reg->umax_value);
3509 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3510 dst_reg->smin_value);
3511 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3512 dst_reg->smax_value);
f1174f77
EC
3513 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3514 dst_reg->var_off);
b03c9f9f
EC
3515 /* We might have learned new bounds from the var_off. */
3516 __update_reg_bounds(src_reg);
3517 __update_reg_bounds(dst_reg);
3518 /* We might have learned something about the sign bit. */
3519 __reg_deduce_bounds(src_reg);
3520 __reg_deduce_bounds(dst_reg);
3521 /* We might have learned some bits from the bounds. */
3522 __reg_bound_offset(src_reg);
3523 __reg_bound_offset(dst_reg);
3524 /* Intersecting with the old var_off might have improved our bounds
3525 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3526 * then new var_off is (0; 0x7f...fc) which improves our umax.
3527 */
3528 __update_reg_bounds(src_reg);
3529 __update_reg_bounds(dst_reg);
f1174f77
EC
3530}
3531
3532static void reg_combine_min_max(struct bpf_reg_state *true_src,
3533 struct bpf_reg_state *true_dst,
3534 struct bpf_reg_state *false_src,
3535 struct bpf_reg_state *false_dst,
3536 u8 opcode)
3537{
3538 switch (opcode) {
3539 case BPF_JEQ:
3540 __reg_combine_min_max(true_src, true_dst);
3541 break;
3542 case BPF_JNE:
3543 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3544 break;
4cabc5b1 3545 }
48461135
JB
3546}
3547
57a09bf0 3548static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 3549 bool is_null)
57a09bf0
TG
3550{
3551 struct bpf_reg_state *reg = &regs[regno];
3552
3553 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
3554 /* Old offset (both fixed and variable parts) should
3555 * have been known-zero, because we don't allow pointer
3556 * arithmetic on pointers that might be NULL.
3557 */
b03c9f9f
EC
3558 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3559 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3560 reg->off)) {
b03c9f9f
EC
3561 __mark_reg_known_zero(reg);
3562 reg->off = 0;
f1174f77
EC
3563 }
3564 if (is_null) {
3565 reg->type = SCALAR_VALUE;
56f668df
MKL
3566 } else if (reg->map_ptr->inner_map_meta) {
3567 reg->type = CONST_PTR_TO_MAP;
3568 reg->map_ptr = reg->map_ptr->inner_map_meta;
3569 } else {
f1174f77 3570 reg->type = PTR_TO_MAP_VALUE;
56f668df 3571 }
a08dd0da
DB
3572 /* We don't need id from this point onwards anymore, thus we
3573 * should better reset it, so that state pruning has chances
3574 * to take effect.
3575 */
3576 reg->id = 0;
57a09bf0
TG
3577 }
3578}
3579
3580/* The logic is similar to find_good_pkt_pointers(), both could eventually
3581 * be folded together at some point.
3582 */
f4d7e40a 3583static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
f1174f77 3584 bool is_null)
57a09bf0 3585{
f4d7e40a 3586 struct bpf_func_state *state = vstate->frame[vstate->curframe];
57a09bf0 3587 struct bpf_reg_state *regs = state->regs;
a08dd0da 3588 u32 id = regs[regno].id;
f4d7e40a 3589 int i, j;
57a09bf0
TG
3590
3591 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 3592 mark_map_reg(regs, i, id, is_null);
57a09bf0 3593
f4d7e40a
AS
3594 for (j = 0; j <= vstate->curframe; j++) {
3595 state = vstate->frame[j];
3596 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3597 if (state->stack[i].slot_type[0] != STACK_SPILL)
3598 continue;
3599 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3600 }
57a09bf0
TG
3601 }
3602}
3603
5beca081
DB
3604static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3605 struct bpf_reg_state *dst_reg,
3606 struct bpf_reg_state *src_reg,
3607 struct bpf_verifier_state *this_branch,
3608 struct bpf_verifier_state *other_branch)
3609{
3610 if (BPF_SRC(insn->code) != BPF_X)
3611 return false;
3612
3613 switch (BPF_OP(insn->code)) {
3614 case BPF_JGT:
3615 if ((dst_reg->type == PTR_TO_PACKET &&
3616 src_reg->type == PTR_TO_PACKET_END) ||
3617 (dst_reg->type == PTR_TO_PACKET_META &&
3618 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3619 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3620 find_good_pkt_pointers(this_branch, dst_reg,
3621 dst_reg->type, false);
3622 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3623 src_reg->type == PTR_TO_PACKET) ||
3624 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3625 src_reg->type == PTR_TO_PACKET_META)) {
3626 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3627 find_good_pkt_pointers(other_branch, src_reg,
3628 src_reg->type, true);
3629 } else {
3630 return false;
3631 }
3632 break;
3633 case BPF_JLT:
3634 if ((dst_reg->type == PTR_TO_PACKET &&
3635 src_reg->type == PTR_TO_PACKET_END) ||
3636 (dst_reg->type == PTR_TO_PACKET_META &&
3637 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3638 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3639 find_good_pkt_pointers(other_branch, dst_reg,
3640 dst_reg->type, true);
3641 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3642 src_reg->type == PTR_TO_PACKET) ||
3643 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3644 src_reg->type == PTR_TO_PACKET_META)) {
3645 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3646 find_good_pkt_pointers(this_branch, src_reg,
3647 src_reg->type, false);
3648 } else {
3649 return false;
3650 }
3651 break;
3652 case BPF_JGE:
3653 if ((dst_reg->type == PTR_TO_PACKET &&
3654 src_reg->type == PTR_TO_PACKET_END) ||
3655 (dst_reg->type == PTR_TO_PACKET_META &&
3656 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3657 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3658 find_good_pkt_pointers(this_branch, dst_reg,
3659 dst_reg->type, true);
3660 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3661 src_reg->type == PTR_TO_PACKET) ||
3662 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3663 src_reg->type == PTR_TO_PACKET_META)) {
3664 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3665 find_good_pkt_pointers(other_branch, src_reg,
3666 src_reg->type, false);
3667 } else {
3668 return false;
3669 }
3670 break;
3671 case BPF_JLE:
3672 if ((dst_reg->type == PTR_TO_PACKET &&
3673 src_reg->type == PTR_TO_PACKET_END) ||
3674 (dst_reg->type == PTR_TO_PACKET_META &&
3675 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3676 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3677 find_good_pkt_pointers(other_branch, dst_reg,
3678 dst_reg->type, false);
3679 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3680 src_reg->type == PTR_TO_PACKET) ||
3681 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3682 src_reg->type == PTR_TO_PACKET_META)) {
3683 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3684 find_good_pkt_pointers(this_branch, src_reg,
3685 src_reg->type, true);
3686 } else {
3687 return false;
3688 }
3689 break;
3690 default:
3691 return false;
3692 }
3693
3694 return true;
3695}
3696
58e2af8b 3697static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3698 struct bpf_insn *insn, int *insn_idx)
3699{
f4d7e40a
AS
3700 struct bpf_verifier_state *this_branch = env->cur_state;
3701 struct bpf_verifier_state *other_branch;
3702 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3703 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
3704 u8 opcode = BPF_OP(insn->code);
3705 int err;
3706
b4e432f1 3707 if (opcode > BPF_JSLE) {
61bd5218 3708 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3709 return -EINVAL;
3710 }
3711
3712 if (BPF_SRC(insn->code) == BPF_X) {
3713 if (insn->imm != 0) {
61bd5218 3714 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3715 return -EINVAL;
3716 }
3717
3718 /* check src1 operand */
dc503a8a 3719 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3720 if (err)
3721 return err;
1be7f75d
AS
3722
3723 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3724 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3725 insn->src_reg);
3726 return -EACCES;
3727 }
17a52670
AS
3728 } else {
3729 if (insn->src_reg != BPF_REG_0) {
61bd5218 3730 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3731 return -EINVAL;
3732 }
3733 }
3734
3735 /* check src2 operand */
dc503a8a 3736 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3737 if (err)
3738 return err;
3739
1a0dc1ac
AS
3740 dst_reg = &regs[insn->dst_reg];
3741
17a52670
AS
3742 /* detect if R == 0 where R was initialized to zero earlier */
3743 if (BPF_SRC(insn->code) == BPF_K &&
3744 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 3745 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
3746 tnum_is_const(dst_reg->var_off)) {
3747 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3748 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
3749 /* if (imm == imm) goto pc+off;
3750 * only follow the goto, ignore fall-through
3751 */
3752 *insn_idx += insn->off;
3753 return 0;
3754 } else {
3755 /* if (imm != imm) goto pc+off;
3756 * only follow fall-through branch, since
3757 * that's where the program will go
3758 */
3759 return 0;
3760 }
3761 }
3762
3763 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3764 if (!other_branch)
3765 return -EFAULT;
f4d7e40a 3766 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 3767
48461135
JB
3768 /* detect if we are comparing against a constant value so we can adjust
3769 * our min/max values for our dst register.
f1174f77
EC
3770 * this is only legit if both are scalars (or pointers to the same
3771 * object, I suppose, but we don't support that right now), because
3772 * otherwise the different base pointers mean the offsets aren't
3773 * comparable.
48461135
JB
3774 */
3775 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3776 if (dst_reg->type == SCALAR_VALUE &&
3777 regs[insn->src_reg].type == SCALAR_VALUE) {
3778 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 3779 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
3780 dst_reg, regs[insn->src_reg].var_off.value,
3781 opcode);
3782 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 3783 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
3784 &regs[insn->src_reg],
3785 dst_reg->var_off.value, opcode);
3786 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3787 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
3788 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3789 &other_branch_regs[insn->dst_reg],
f1174f77
EC
3790 &regs[insn->src_reg],
3791 &regs[insn->dst_reg], opcode);
3792 }
3793 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 3794 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
3795 dst_reg, insn->imm, opcode);
3796 }
3797
58e2af8b 3798 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3799 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3800 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3801 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3802 /* Mark all identical map registers in each branch as either
3803 * safe or unknown depending R == 0 or R != 0 conditional.
3804 */
f1174f77
EC
3805 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3806 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3807 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3808 this_branch, other_branch) &&
3809 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3810 verbose(env, "R%d pointer comparison prohibited\n",
3811 insn->dst_reg);
1be7f75d 3812 return -EACCES;
17a52670 3813 }
61bd5218 3814 if (env->log.level)
f4d7e40a 3815 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
3816 return 0;
3817}
3818
0246e64d
AS
3819/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3820static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3821{
3822 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3823
3824 return (struct bpf_map *) (unsigned long) imm64;
3825}
3826
17a52670 3827/* verify BPF_LD_IMM64 instruction */
58e2af8b 3828static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3829{
638f5b90 3830 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3831 int err;
3832
3833 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3834 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3835 return -EINVAL;
3836 }
3837 if (insn->off != 0) {
61bd5218 3838 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3839 return -EINVAL;
3840 }
3841
dc503a8a 3842 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3843 if (err)
3844 return err;
3845
6b173873 3846 if (insn->src_reg == 0) {
6b173873
JK
3847 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3848
f1174f77 3849 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3850 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3851 return 0;
6b173873 3852 }
17a52670
AS
3853
3854 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3855 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3856
3857 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3858 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3859 return 0;
3860}
3861
96be4325
DB
3862static bool may_access_skb(enum bpf_prog_type type)
3863{
3864 switch (type) {
3865 case BPF_PROG_TYPE_SOCKET_FILTER:
3866 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3867 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3868 return true;
3869 default:
3870 return false;
3871 }
3872}
3873
ddd872bc
AS
3874/* verify safety of LD_ABS|LD_IND instructions:
3875 * - they can only appear in the programs where ctx == skb
3876 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3877 * preserve R6-R9, and store return value into R0
3878 *
3879 * Implicit input:
3880 * ctx == skb == R6 == CTX
3881 *
3882 * Explicit input:
3883 * SRC == any register
3884 * IMM == 32-bit immediate
3885 *
3886 * Output:
3887 * R0 - 8/16/32-bit skb data converted to cpu endianness
3888 */
58e2af8b 3889static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3890{
638f5b90 3891 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3892 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3893 int i, err;
3894
24701ece 3895 if (!may_access_skb(env->prog->type)) {
61bd5218 3896 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3897 return -EINVAL;
3898 }
3899
e0cea7ce
DB
3900 if (!env->ops->gen_ld_abs) {
3901 verbose(env, "bpf verifier is misconfigured\n");
3902 return -EINVAL;
3903 }
3904
f910cefa 3905 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3906 /* when program has LD_ABS insn JITs and interpreter assume
3907 * that r1 == ctx == skb which is not the case for callees
3908 * that can have arbitrary arguments. It's problematic
3909 * for main prog as well since JITs would need to analyze
3910 * all functions in order to make proper register save/restore
3911 * decisions in the main prog. Hence disallow LD_ABS with calls
3912 */
3913 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3914 return -EINVAL;
3915 }
3916
ddd872bc 3917 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3918 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3919 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3920 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3921 return -EINVAL;
3922 }
3923
3924 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3925 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3926 if (err)
3927 return err;
3928
3929 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3930 verbose(env,
3931 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3932 return -EINVAL;
3933 }
3934
3935 if (mode == BPF_IND) {
3936 /* check explicit source operand */
dc503a8a 3937 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3938 if (err)
3939 return err;
3940 }
3941
3942 /* reset caller saved regs to unreadable */
dc503a8a 3943 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3944 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3945 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3946 }
ddd872bc
AS
3947
3948 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3949 * the value fetched from the packet.
3950 * Already marked as written above.
ddd872bc 3951 */
61bd5218 3952 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3953 return 0;
3954}
3955
390ee7e2
AS
3956static int check_return_code(struct bpf_verifier_env *env)
3957{
3958 struct bpf_reg_state *reg;
3959 struct tnum range = tnum_range(0, 1);
3960
3961 switch (env->prog->type) {
3962 case BPF_PROG_TYPE_CGROUP_SKB:
3963 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 3964 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 3965 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3966 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3967 break;
3968 default:
3969 return 0;
3970 }
3971
638f5b90 3972 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3973 if (reg->type != SCALAR_VALUE) {
61bd5218 3974 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3975 reg_type_str[reg->type]);
3976 return -EINVAL;
3977 }
3978
3979 if (!tnum_in(range, reg->var_off)) {
61bd5218 3980 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3981 if (!tnum_is_unknown(reg->var_off)) {
3982 char tn_buf[48];
3983
3984 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3985 verbose(env, "has value %s", tn_buf);
390ee7e2 3986 } else {
61bd5218 3987 verbose(env, "has unknown scalar value");
390ee7e2 3988 }
61bd5218 3989 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3990 return -EINVAL;
3991 }
3992 return 0;
3993}
3994
475fb78f
AS
3995/* non-recursive DFS pseudo code
3996 * 1 procedure DFS-iterative(G,v):
3997 * 2 label v as discovered
3998 * 3 let S be a stack
3999 * 4 S.push(v)
4000 * 5 while S is not empty
4001 * 6 t <- S.pop()
4002 * 7 if t is what we're looking for:
4003 * 8 return t
4004 * 9 for all edges e in G.adjacentEdges(t) do
4005 * 10 if edge e is already labelled
4006 * 11 continue with the next edge
4007 * 12 w <- G.adjacentVertex(t,e)
4008 * 13 if vertex w is not discovered and not explored
4009 * 14 label e as tree-edge
4010 * 15 label w as discovered
4011 * 16 S.push(w)
4012 * 17 continue at 5
4013 * 18 else if vertex w is discovered
4014 * 19 label e as back-edge
4015 * 20 else
4016 * 21 // vertex w is explored
4017 * 22 label e as forward- or cross-edge
4018 * 23 label t as explored
4019 * 24 S.pop()
4020 *
4021 * convention:
4022 * 0x10 - discovered
4023 * 0x11 - discovered and fall-through edge labelled
4024 * 0x12 - discovered and fall-through and branch edges labelled
4025 * 0x20 - explored
4026 */
4027
4028enum {
4029 DISCOVERED = 0x10,
4030 EXPLORED = 0x20,
4031 FALLTHROUGH = 1,
4032 BRANCH = 2,
4033};
4034
58e2af8b 4035#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4036
475fb78f
AS
4037static int *insn_stack; /* stack of insns to process */
4038static int cur_stack; /* current stack index */
4039static int *insn_state;
4040
4041/* t, w, e - match pseudo-code above:
4042 * t - index of current instruction
4043 * w - next instruction
4044 * e - edge
4045 */
58e2af8b 4046static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4047{
4048 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4049 return 0;
4050
4051 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4052 return 0;
4053
4054 if (w < 0 || w >= env->prog->len) {
61bd5218 4055 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4056 return -EINVAL;
4057 }
4058
f1bca824
AS
4059 if (e == BRANCH)
4060 /* mark branch target for state pruning */
4061 env->explored_states[w] = STATE_LIST_MARK;
4062
475fb78f
AS
4063 if (insn_state[w] == 0) {
4064 /* tree-edge */
4065 insn_state[t] = DISCOVERED | e;
4066 insn_state[w] = DISCOVERED;
4067 if (cur_stack >= env->prog->len)
4068 return -E2BIG;
4069 insn_stack[cur_stack++] = w;
4070 return 1;
4071 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4072 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4073 return -EINVAL;
4074 } else if (insn_state[w] == EXPLORED) {
4075 /* forward- or cross-edge */
4076 insn_state[t] = DISCOVERED | e;
4077 } else {
61bd5218 4078 verbose(env, "insn state internal bug\n");
475fb78f
AS
4079 return -EFAULT;
4080 }
4081 return 0;
4082}
4083
4084/* non-recursive depth-first-search to detect loops in BPF program
4085 * loop == back-edge in directed graph
4086 */
58e2af8b 4087static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4088{
4089 struct bpf_insn *insns = env->prog->insnsi;
4090 int insn_cnt = env->prog->len;
4091 int ret = 0;
4092 int i, t;
4093
cc8b0b92
AS
4094 ret = check_subprogs(env);
4095 if (ret < 0)
4096 return ret;
4097
475fb78f
AS
4098 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4099 if (!insn_state)
4100 return -ENOMEM;
4101
4102 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4103 if (!insn_stack) {
4104 kfree(insn_state);
4105 return -ENOMEM;
4106 }
4107
4108 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4109 insn_stack[0] = 0; /* 0 is the first instruction */
4110 cur_stack = 1;
4111
4112peek_stack:
4113 if (cur_stack == 0)
4114 goto check_state;
4115 t = insn_stack[cur_stack - 1];
4116
4117 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4118 u8 opcode = BPF_OP(insns[t].code);
4119
4120 if (opcode == BPF_EXIT) {
4121 goto mark_explored;
4122 } else if (opcode == BPF_CALL) {
4123 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4124 if (ret == 1)
4125 goto peek_stack;
4126 else if (ret < 0)
4127 goto err_free;
07016151
DB
4128 if (t + 1 < insn_cnt)
4129 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4130 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4131 env->explored_states[t] = STATE_LIST_MARK;
4132 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4133 if (ret == 1)
4134 goto peek_stack;
4135 else if (ret < 0)
4136 goto err_free;
4137 }
475fb78f
AS
4138 } else if (opcode == BPF_JA) {
4139 if (BPF_SRC(insns[t].code) != BPF_K) {
4140 ret = -EINVAL;
4141 goto err_free;
4142 }
4143 /* unconditional jump with single edge */
4144 ret = push_insn(t, t + insns[t].off + 1,
4145 FALLTHROUGH, env);
4146 if (ret == 1)
4147 goto peek_stack;
4148 else if (ret < 0)
4149 goto err_free;
f1bca824
AS
4150 /* tell verifier to check for equivalent states
4151 * after every call and jump
4152 */
c3de6317
AS
4153 if (t + 1 < insn_cnt)
4154 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4155 } else {
4156 /* conditional jump with two edges */
3c2ce60b 4157 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4158 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4159 if (ret == 1)
4160 goto peek_stack;
4161 else if (ret < 0)
4162 goto err_free;
4163
4164 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4165 if (ret == 1)
4166 goto peek_stack;
4167 else if (ret < 0)
4168 goto err_free;
4169 }
4170 } else {
4171 /* all other non-branch instructions with single
4172 * fall-through edge
4173 */
4174 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4175 if (ret == 1)
4176 goto peek_stack;
4177 else if (ret < 0)
4178 goto err_free;
4179 }
4180
4181mark_explored:
4182 insn_state[t] = EXPLORED;
4183 if (cur_stack-- <= 0) {
61bd5218 4184 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4185 ret = -EFAULT;
4186 goto err_free;
4187 }
4188 goto peek_stack;
4189
4190check_state:
4191 for (i = 0; i < insn_cnt; i++) {
4192 if (insn_state[i] != EXPLORED) {
61bd5218 4193 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4194 ret = -EINVAL;
4195 goto err_free;
4196 }
4197 }
4198 ret = 0; /* cfg looks good */
4199
4200err_free:
4201 kfree(insn_state);
4202 kfree(insn_stack);
4203 return ret;
4204}
4205
f1174f77
EC
4206/* check %cur's range satisfies %old's */
4207static bool range_within(struct bpf_reg_state *old,
4208 struct bpf_reg_state *cur)
4209{
b03c9f9f
EC
4210 return old->umin_value <= cur->umin_value &&
4211 old->umax_value >= cur->umax_value &&
4212 old->smin_value <= cur->smin_value &&
4213 old->smax_value >= cur->smax_value;
f1174f77
EC
4214}
4215
4216/* Maximum number of register states that can exist at once */
4217#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4218struct idpair {
4219 u32 old;
4220 u32 cur;
4221};
4222
4223/* If in the old state two registers had the same id, then they need to have
4224 * the same id in the new state as well. But that id could be different from
4225 * the old state, so we need to track the mapping from old to new ids.
4226 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4227 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4228 * regs with a different old id could still have new id 9, we don't care about
4229 * that.
4230 * So we look through our idmap to see if this old id has been seen before. If
4231 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4232 */
f1174f77 4233static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4234{
f1174f77 4235 unsigned int i;
969bf05e 4236
f1174f77
EC
4237 for (i = 0; i < ID_MAP_SIZE; i++) {
4238 if (!idmap[i].old) {
4239 /* Reached an empty slot; haven't seen this id before */
4240 idmap[i].old = old_id;
4241 idmap[i].cur = cur_id;
4242 return true;
4243 }
4244 if (idmap[i].old == old_id)
4245 return idmap[i].cur == cur_id;
4246 }
4247 /* We ran out of idmap slots, which should be impossible */
4248 WARN_ON_ONCE(1);
4249 return false;
4250}
4251
4252/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4253static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4254 struct idpair *idmap)
f1174f77 4255{
f4d7e40a
AS
4256 bool equal;
4257
dc503a8a
EC
4258 if (!(rold->live & REG_LIVE_READ))
4259 /* explored state didn't use this */
4260 return true;
4261
f4d7e40a
AS
4262 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4263
4264 if (rold->type == PTR_TO_STACK)
4265 /* two stack pointers are equal only if they're pointing to
4266 * the same stack frame, since fp-8 in foo != fp-8 in bar
4267 */
4268 return equal && rold->frameno == rcur->frameno;
4269
4270 if (equal)
969bf05e
AS
4271 return true;
4272
f1174f77
EC
4273 if (rold->type == NOT_INIT)
4274 /* explored state can't have used this */
969bf05e 4275 return true;
f1174f77
EC
4276 if (rcur->type == NOT_INIT)
4277 return false;
4278 switch (rold->type) {
4279 case SCALAR_VALUE:
4280 if (rcur->type == SCALAR_VALUE) {
4281 /* new val must satisfy old val knowledge */
4282 return range_within(rold, rcur) &&
4283 tnum_in(rold->var_off, rcur->var_off);
4284 } else {
179d1c56
JH
4285 /* We're trying to use a pointer in place of a scalar.
4286 * Even if the scalar was unbounded, this could lead to
4287 * pointer leaks because scalars are allowed to leak
4288 * while pointers are not. We could make this safe in
4289 * special cases if root is calling us, but it's
4290 * probably not worth the hassle.
f1174f77 4291 */
179d1c56 4292 return false;
f1174f77
EC
4293 }
4294 case PTR_TO_MAP_VALUE:
1b688a19
EC
4295 /* If the new min/max/var_off satisfy the old ones and
4296 * everything else matches, we are OK.
4297 * We don't care about the 'id' value, because nothing
4298 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4299 */
4300 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4301 range_within(rold, rcur) &&
4302 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4303 case PTR_TO_MAP_VALUE_OR_NULL:
4304 /* a PTR_TO_MAP_VALUE could be safe to use as a
4305 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4306 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4307 * checked, doing so could have affected others with the same
4308 * id, and we can't check for that because we lost the id when
4309 * we converted to a PTR_TO_MAP_VALUE.
4310 */
4311 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4312 return false;
4313 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4314 return false;
4315 /* Check our ids match any regs they're supposed to */
4316 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4317 case PTR_TO_PACKET_META:
f1174f77 4318 case PTR_TO_PACKET:
de8f3a83 4319 if (rcur->type != rold->type)
f1174f77
EC
4320 return false;
4321 /* We must have at least as much range as the old ptr
4322 * did, so that any accesses which were safe before are
4323 * still safe. This is true even if old range < old off,
4324 * since someone could have accessed through (ptr - k), or
4325 * even done ptr -= k in a register, to get a safe access.
4326 */
4327 if (rold->range > rcur->range)
4328 return false;
4329 /* If the offsets don't match, we can't trust our alignment;
4330 * nor can we be sure that we won't fall out of range.
4331 */
4332 if (rold->off != rcur->off)
4333 return false;
4334 /* id relations must be preserved */
4335 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4336 return false;
4337 /* new val must satisfy old val knowledge */
4338 return range_within(rold, rcur) &&
4339 tnum_in(rold->var_off, rcur->var_off);
4340 case PTR_TO_CTX:
4341 case CONST_PTR_TO_MAP:
f1174f77
EC
4342 case PTR_TO_PACKET_END:
4343 /* Only valid matches are exact, which memcmp() above
4344 * would have accepted
4345 */
4346 default:
4347 /* Don't know what's going on, just say it's not safe */
4348 return false;
4349 }
969bf05e 4350
f1174f77
EC
4351 /* Shouldn't get here; if we do, say it's not safe */
4352 WARN_ON_ONCE(1);
969bf05e
AS
4353 return false;
4354}
4355
f4d7e40a
AS
4356static bool stacksafe(struct bpf_func_state *old,
4357 struct bpf_func_state *cur,
638f5b90
AS
4358 struct idpair *idmap)
4359{
4360 int i, spi;
4361
4362 /* if explored stack has more populated slots than current stack
4363 * such stacks are not equivalent
4364 */
4365 if (old->allocated_stack > cur->allocated_stack)
4366 return false;
4367
4368 /* walk slots of the explored stack and ignore any additional
4369 * slots in the current stack, since explored(safe) state
4370 * didn't use them
4371 */
4372 for (i = 0; i < old->allocated_stack; i++) {
4373 spi = i / BPF_REG_SIZE;
4374
cc2b14d5
AS
4375 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4376 /* explored state didn't use this */
fd05e57b 4377 continue;
cc2b14d5 4378
638f5b90
AS
4379 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4380 continue;
cc2b14d5
AS
4381 /* if old state was safe with misc data in the stack
4382 * it will be safe with zero-initialized stack.
4383 * The opposite is not true
4384 */
4385 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4386 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4387 continue;
638f5b90
AS
4388 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4389 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4390 /* Ex: old explored (safe) state has STACK_SPILL in
4391 * this stack slot, but current has has STACK_MISC ->
4392 * this verifier states are not equivalent,
4393 * return false to continue verification of this path
4394 */
4395 return false;
4396 if (i % BPF_REG_SIZE)
4397 continue;
4398 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4399 continue;
4400 if (!regsafe(&old->stack[spi].spilled_ptr,
4401 &cur->stack[spi].spilled_ptr,
4402 idmap))
4403 /* when explored and current stack slot are both storing
4404 * spilled registers, check that stored pointers types
4405 * are the same as well.
4406 * Ex: explored safe path could have stored
4407 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4408 * but current path has stored:
4409 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4410 * such verifier states are not equivalent.
4411 * return false to continue verification of this path
4412 */
4413 return false;
4414 }
4415 return true;
4416}
4417
f1bca824
AS
4418/* compare two verifier states
4419 *
4420 * all states stored in state_list are known to be valid, since
4421 * verifier reached 'bpf_exit' instruction through them
4422 *
4423 * this function is called when verifier exploring different branches of
4424 * execution popped from the state stack. If it sees an old state that has
4425 * more strict register state and more strict stack state then this execution
4426 * branch doesn't need to be explored further, since verifier already
4427 * concluded that more strict state leads to valid finish.
4428 *
4429 * Therefore two states are equivalent if register state is more conservative
4430 * and explored stack state is more conservative than the current one.
4431 * Example:
4432 * explored current
4433 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4434 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4435 *
4436 * In other words if current stack state (one being explored) has more
4437 * valid slots than old one that already passed validation, it means
4438 * the verifier can stop exploring and conclude that current state is valid too
4439 *
4440 * Similarly with registers. If explored state has register type as invalid
4441 * whereas register type in current state is meaningful, it means that
4442 * the current state will reach 'bpf_exit' instruction safely
4443 */
f4d7e40a
AS
4444static bool func_states_equal(struct bpf_func_state *old,
4445 struct bpf_func_state *cur)
f1bca824 4446{
f1174f77
EC
4447 struct idpair *idmap;
4448 bool ret = false;
f1bca824
AS
4449 int i;
4450
f1174f77
EC
4451 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4452 /* If we failed to allocate the idmap, just say it's not safe */
4453 if (!idmap)
1a0dc1ac 4454 return false;
f1174f77
EC
4455
4456 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4457 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4458 goto out_free;
f1bca824
AS
4459 }
4460
638f5b90
AS
4461 if (!stacksafe(old, cur, idmap))
4462 goto out_free;
f1174f77
EC
4463 ret = true;
4464out_free:
4465 kfree(idmap);
4466 return ret;
f1bca824
AS
4467}
4468
f4d7e40a
AS
4469static bool states_equal(struct bpf_verifier_env *env,
4470 struct bpf_verifier_state *old,
4471 struct bpf_verifier_state *cur)
4472{
4473 int i;
4474
4475 if (old->curframe != cur->curframe)
4476 return false;
4477
4478 /* for states to be equal callsites have to be the same
4479 * and all frame states need to be equivalent
4480 */
4481 for (i = 0; i <= old->curframe; i++) {
4482 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4483 return false;
4484 if (!func_states_equal(old->frame[i], cur->frame[i]))
4485 return false;
4486 }
4487 return true;
4488}
4489
8e9cd9ce 4490/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4491 * straight-line code between a state and its parent. When we arrive at an
4492 * equivalent state (jump target or such) we didn't arrive by the straight-line
4493 * code, so read marks in the state must propagate to the parent regardless
4494 * of the state's write marks. That's what 'parent == state->parent' comparison
4495 * in mark_reg_read() and mark_stack_slot_read() is for.
8e9cd9ce 4496 */
f4d7e40a
AS
4497static int propagate_liveness(struct bpf_verifier_env *env,
4498 const struct bpf_verifier_state *vstate,
4499 struct bpf_verifier_state *vparent)
dc503a8a 4500{
f4d7e40a
AS
4501 int i, frame, err = 0;
4502 struct bpf_func_state *state, *parent;
dc503a8a 4503
f4d7e40a
AS
4504 if (vparent->curframe != vstate->curframe) {
4505 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4506 vparent->curframe, vstate->curframe);
4507 return -EFAULT;
4508 }
dc503a8a
EC
4509 /* Propagate read liveness of registers... */
4510 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4511 /* We don't need to worry about FP liveness because it's read-only */
4512 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4513 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4514 continue;
f4d7e40a
AS
4515 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4516 err = mark_reg_read(env, vstate, vparent, i);
4517 if (err)
4518 return err;
dc503a8a
EC
4519 }
4520 }
f4d7e40a 4521
dc503a8a 4522 /* ... and stack slots */
f4d7e40a
AS
4523 for (frame = 0; frame <= vstate->curframe; frame++) {
4524 state = vstate->frame[frame];
4525 parent = vparent->frame[frame];
4526 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4527 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4528 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4529 continue;
4530 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4531 mark_stack_slot_read(env, vstate, vparent, i, frame);
dc503a8a
EC
4532 }
4533 }
f4d7e40a 4534 return err;
dc503a8a
EC
4535}
4536
58e2af8b 4537static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4538{
58e2af8b
JK
4539 struct bpf_verifier_state_list *new_sl;
4540 struct bpf_verifier_state_list *sl;
638f5b90 4541 struct bpf_verifier_state *cur = env->cur_state;
f4d7e40a 4542 int i, j, err;
f1bca824
AS
4543
4544 sl = env->explored_states[insn_idx];
4545 if (!sl)
4546 /* this 'insn_idx' instruction wasn't marked, so we will not
4547 * be doing state search here
4548 */
4549 return 0;
4550
4551 while (sl != STATE_LIST_MARK) {
638f5b90 4552 if (states_equal(env, &sl->state, cur)) {
f1bca824 4553 /* reached equivalent register/stack state,
dc503a8a
EC
4554 * prune the search.
4555 * Registers read by the continuation are read by us.
8e9cd9ce
EC
4556 * If we have any write marks in env->cur_state, they
4557 * will prevent corresponding reads in the continuation
4558 * from reaching our parent (an explored_state). Our
4559 * own state will get the read marks recorded, but
4560 * they'll be immediately forgotten as we're pruning
4561 * this state and will pop a new one.
f1bca824 4562 */
f4d7e40a
AS
4563 err = propagate_liveness(env, &sl->state, cur);
4564 if (err)
4565 return err;
f1bca824 4566 return 1;
dc503a8a 4567 }
f1bca824
AS
4568 sl = sl->next;
4569 }
4570
4571 /* there were no equivalent states, remember current one.
4572 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
4573 * but it will either reach outer most bpf_exit (which means it's safe)
4574 * or it will be rejected. Since there are no loops, we won't be
4575 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4576 * again on the way to bpf_exit
f1bca824 4577 */
638f5b90 4578 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
4579 if (!new_sl)
4580 return -ENOMEM;
4581
4582 /* add new state to the head of linked list */
1969db47
AS
4583 err = copy_verifier_state(&new_sl->state, cur);
4584 if (err) {
4585 free_verifier_state(&new_sl->state, false);
4586 kfree(new_sl);
4587 return err;
4588 }
f1bca824
AS
4589 new_sl->next = env->explored_states[insn_idx];
4590 env->explored_states[insn_idx] = new_sl;
dc503a8a 4591 /* connect new state to parentage chain */
638f5b90 4592 cur->parent = &new_sl->state;
8e9cd9ce
EC
4593 /* clear write marks in current state: the writes we did are not writes
4594 * our child did, so they don't screen off its reads from us.
4595 * (There are no read marks in current state, because reads always mark
4596 * their parent and current state never has children yet. Only
4597 * explored_states can get read marks.)
4598 */
dc503a8a 4599 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
4600 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4601
4602 /* all stack frames are accessible from callee, clear them all */
4603 for (j = 0; j <= cur->curframe; j++) {
4604 struct bpf_func_state *frame = cur->frame[j];
4605
4606 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
cc2b14d5 4607 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f4d7e40a 4608 }
f1bca824
AS
4609 return 0;
4610}
4611
58e2af8b 4612static int do_check(struct bpf_verifier_env *env)
17a52670 4613{
638f5b90 4614 struct bpf_verifier_state *state;
17a52670 4615 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 4616 struct bpf_reg_state *regs;
f4d7e40a 4617 int insn_cnt = env->prog->len, i;
17a52670
AS
4618 int insn_idx, prev_insn_idx = 0;
4619 int insn_processed = 0;
4620 bool do_print_state = false;
4621
638f5b90
AS
4622 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4623 if (!state)
4624 return -ENOMEM;
f4d7e40a 4625 state->curframe = 0;
dc503a8a 4626 state->parent = NULL;
f4d7e40a
AS
4627 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4628 if (!state->frame[0]) {
4629 kfree(state);
4630 return -ENOMEM;
4631 }
4632 env->cur_state = state;
4633 init_func_state(env, state->frame[0],
4634 BPF_MAIN_FUNC /* callsite */,
4635 0 /* frameno */,
4636 0 /* subprogno, zero == main subprog */);
17a52670
AS
4637 insn_idx = 0;
4638 for (;;) {
4639 struct bpf_insn *insn;
4640 u8 class;
4641 int err;
4642
4643 if (insn_idx >= insn_cnt) {
61bd5218 4644 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
4645 insn_idx, insn_cnt);
4646 return -EFAULT;
4647 }
4648
4649 insn = &insns[insn_idx];
4650 class = BPF_CLASS(insn->code);
4651
07016151 4652 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
4653 verbose(env,
4654 "BPF program is too large. Processed %d insn\n",
17a52670
AS
4655 insn_processed);
4656 return -E2BIG;
4657 }
4658
f1bca824
AS
4659 err = is_state_visited(env, insn_idx);
4660 if (err < 0)
4661 return err;
4662 if (err == 1) {
4663 /* found equivalent state, can prune the search */
61bd5218 4664 if (env->log.level) {
f1bca824 4665 if (do_print_state)
61bd5218 4666 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
4667 prev_insn_idx, insn_idx);
4668 else
61bd5218 4669 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
4670 }
4671 goto process_bpf_exit;
4672 }
4673
3c2ce60b
DB
4674 if (need_resched())
4675 cond_resched();
4676
61bd5218
JK
4677 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4678 if (env->log.level > 1)
4679 verbose(env, "%d:", insn_idx);
c5fc9692 4680 else
61bd5218 4681 verbose(env, "\nfrom %d to %d:",
c5fc9692 4682 prev_insn_idx, insn_idx);
f4d7e40a 4683 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
4684 do_print_state = false;
4685 }
4686
61bd5218 4687 if (env->log.level) {
7105e828
DB
4688 const struct bpf_insn_cbs cbs = {
4689 .cb_print = verbose,
abe08840 4690 .private_data = env,
7105e828
DB
4691 };
4692
61bd5218 4693 verbose(env, "%d: ", insn_idx);
abe08840 4694 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
4695 }
4696
cae1927c
JK
4697 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4698 err = bpf_prog_offload_verify_insn(env, insn_idx,
4699 prev_insn_idx);
4700 if (err)
4701 return err;
4702 }
13a27dfc 4703
638f5b90 4704 regs = cur_regs(env);
c131187d 4705 env->insn_aux_data[insn_idx].seen = true;
17a52670 4706 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 4707 err = check_alu_op(env, insn);
17a52670
AS
4708 if (err)
4709 return err;
4710
4711 } else if (class == BPF_LDX) {
3df126f3 4712 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
4713
4714 /* check for reserved fields is already done */
4715
17a52670 4716 /* check src operand */
dc503a8a 4717 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4718 if (err)
4719 return err;
4720
dc503a8a 4721 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4722 if (err)
4723 return err;
4724
725f9dcd
AS
4725 src_reg_type = regs[insn->src_reg].type;
4726
17a52670
AS
4727 /* check that memory (src_reg + off) is readable,
4728 * the state of dst_reg will be updated by this func
4729 */
31fd8581 4730 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 4731 BPF_SIZE(insn->code), BPF_READ,
ca369602 4732 insn->dst_reg, false);
17a52670
AS
4733 if (err)
4734 return err;
4735
3df126f3
JK
4736 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4737
4738 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
4739 /* saw a valid insn
4740 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 4741 * save type to validate intersecting paths
9bac3d6d 4742 */
3df126f3 4743 *prev_src_type = src_reg_type;
9bac3d6d 4744
3df126f3 4745 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 4746 (src_reg_type == PTR_TO_CTX ||
3df126f3 4747 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
4748 /* ABuser program is trying to use the same insn
4749 * dst_reg = *(u32*) (src_reg + off)
4750 * with different pointer types:
4751 * src_reg == ctx in one branch and
4752 * src_reg == stack|map in some other branch.
4753 * Reject it.
4754 */
61bd5218 4755 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
4756 return -EINVAL;
4757 }
4758
17a52670 4759 } else if (class == BPF_STX) {
3df126f3 4760 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4761
17a52670 4762 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4763 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4764 if (err)
4765 return err;
4766 insn_idx++;
4767 continue;
4768 }
4769
17a52670 4770 /* check src1 operand */
dc503a8a 4771 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4772 if (err)
4773 return err;
4774 /* check src2 operand */
dc503a8a 4775 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4776 if (err)
4777 return err;
4778
d691f9e8
AS
4779 dst_reg_type = regs[insn->dst_reg].type;
4780
17a52670 4781 /* check that memory (dst_reg + off) is writeable */
31fd8581 4782 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4783 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4784 insn->src_reg, false);
17a52670
AS
4785 if (err)
4786 return err;
4787
3df126f3
JK
4788 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4789
4790 if (*prev_dst_type == NOT_INIT) {
4791 *prev_dst_type = dst_reg_type;
4792 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4793 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4794 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4795 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4796 return -EINVAL;
4797 }
4798
17a52670
AS
4799 } else if (class == BPF_ST) {
4800 if (BPF_MODE(insn->code) != BPF_MEM ||
4801 insn->src_reg != BPF_REG_0) {
61bd5218 4802 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4803 return -EINVAL;
4804 }
4805 /* check src operand */
dc503a8a 4806 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4807 if (err)
4808 return err;
4809
f37a8cb8
DB
4810 if (is_ctx_reg(env, insn->dst_reg)) {
4811 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4812 insn->dst_reg);
4813 return -EACCES;
4814 }
4815
17a52670 4816 /* check that memory (dst_reg + off) is writeable */
31fd8581 4817 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4818 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4819 -1, false);
17a52670
AS
4820 if (err)
4821 return err;
4822
4823 } else if (class == BPF_JMP) {
4824 u8 opcode = BPF_OP(insn->code);
4825
4826 if (opcode == BPF_CALL) {
4827 if (BPF_SRC(insn->code) != BPF_K ||
4828 insn->off != 0 ||
f4d7e40a
AS
4829 (insn->src_reg != BPF_REG_0 &&
4830 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 4831 insn->dst_reg != BPF_REG_0) {
61bd5218 4832 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4833 return -EINVAL;
4834 }
4835
f4d7e40a
AS
4836 if (insn->src_reg == BPF_PSEUDO_CALL)
4837 err = check_func_call(env, insn, &insn_idx);
4838 else
4839 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
4840 if (err)
4841 return err;
4842
4843 } else if (opcode == BPF_JA) {
4844 if (BPF_SRC(insn->code) != BPF_K ||
4845 insn->imm != 0 ||
4846 insn->src_reg != BPF_REG_0 ||
4847 insn->dst_reg != BPF_REG_0) {
61bd5218 4848 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4849 return -EINVAL;
4850 }
4851
4852 insn_idx += insn->off + 1;
4853 continue;
4854
4855 } else if (opcode == BPF_EXIT) {
4856 if (BPF_SRC(insn->code) != BPF_K ||
4857 insn->imm != 0 ||
4858 insn->src_reg != BPF_REG_0 ||
4859 insn->dst_reg != BPF_REG_0) {
61bd5218 4860 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4861 return -EINVAL;
4862 }
4863
f4d7e40a
AS
4864 if (state->curframe) {
4865 /* exit from nested function */
4866 prev_insn_idx = insn_idx;
4867 err = prepare_func_exit(env, &insn_idx);
4868 if (err)
4869 return err;
4870 do_print_state = true;
4871 continue;
4872 }
4873
17a52670
AS
4874 /* eBPF calling convetion is such that R0 is used
4875 * to return the value from eBPF program.
4876 * Make sure that it's readable at this time
4877 * of bpf_exit, which means that program wrote
4878 * something into it earlier
4879 */
dc503a8a 4880 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4881 if (err)
4882 return err;
4883
1be7f75d 4884 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4885 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4886 return -EACCES;
4887 }
4888
390ee7e2
AS
4889 err = check_return_code(env);
4890 if (err)
4891 return err;
f1bca824 4892process_bpf_exit:
638f5b90
AS
4893 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4894 if (err < 0) {
4895 if (err != -ENOENT)
4896 return err;
17a52670
AS
4897 break;
4898 } else {
4899 do_print_state = true;
4900 continue;
4901 }
4902 } else {
4903 err = check_cond_jmp_op(env, insn, &insn_idx);
4904 if (err)
4905 return err;
4906 }
4907 } else if (class == BPF_LD) {
4908 u8 mode = BPF_MODE(insn->code);
4909
4910 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4911 err = check_ld_abs(env, insn);
4912 if (err)
4913 return err;
4914
17a52670
AS
4915 } else if (mode == BPF_IMM) {
4916 err = check_ld_imm(env, insn);
4917 if (err)
4918 return err;
4919
4920 insn_idx++;
c131187d 4921 env->insn_aux_data[insn_idx].seen = true;
17a52670 4922 } else {
61bd5218 4923 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4924 return -EINVAL;
4925 }
4926 } else {
61bd5218 4927 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4928 return -EINVAL;
4929 }
4930
4931 insn_idx++;
4932 }
4933
4bd95f4b
DB
4934 verbose(env, "processed %d insns (limit %d), stack depth ",
4935 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 4936 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 4937 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
4938
4939 verbose(env, "%d", depth);
f910cefa 4940 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
4941 verbose(env, "+");
4942 }
4943 verbose(env, "\n");
9c8105bd 4944 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
4945 return 0;
4946}
4947
56f668df
MKL
4948static int check_map_prealloc(struct bpf_map *map)
4949{
4950 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4951 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4952 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4953 !(map->map_flags & BPF_F_NO_PREALLOC);
4954}
4955
61bd5218
JK
4956static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4957 struct bpf_map *map,
fdc15d38
AS
4958 struct bpf_prog *prog)
4959
4960{
56f668df
MKL
4961 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4962 * preallocated hash maps, since doing memory allocation
4963 * in overflow_handler can crash depending on where nmi got
4964 * triggered.
4965 */
4966 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4967 if (!check_map_prealloc(map)) {
61bd5218 4968 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4969 return -EINVAL;
4970 }
4971 if (map->inner_map_meta &&
4972 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4973 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4974 return -EINVAL;
4975 }
fdc15d38 4976 }
a3884572
JK
4977
4978 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4979 !bpf_offload_dev_match(prog, map)) {
4980 verbose(env, "offload device mismatch between prog and map\n");
4981 return -EINVAL;
4982 }
4983
fdc15d38
AS
4984 return 0;
4985}
4986
0246e64d
AS
4987/* look for pseudo eBPF instructions that access map FDs and
4988 * replace them with actual map pointers
4989 */
58e2af8b 4990static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4991{
4992 struct bpf_insn *insn = env->prog->insnsi;
4993 int insn_cnt = env->prog->len;
fdc15d38 4994 int i, j, err;
0246e64d 4995
f1f7714e 4996 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4997 if (err)
4998 return err;
4999
0246e64d 5000 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5001 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5002 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5003 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5004 return -EINVAL;
5005 }
5006
d691f9e8
AS
5007 if (BPF_CLASS(insn->code) == BPF_STX &&
5008 ((BPF_MODE(insn->code) != BPF_MEM &&
5009 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5010 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5011 return -EINVAL;
5012 }
5013
0246e64d
AS
5014 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5015 struct bpf_map *map;
5016 struct fd f;
5017
5018 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5019 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5020 insn[1].off != 0) {
61bd5218 5021 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5022 return -EINVAL;
5023 }
5024
5025 if (insn->src_reg == 0)
5026 /* valid generic load 64-bit imm */
5027 goto next_insn;
5028
5029 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5030 verbose(env,
5031 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5032 return -EINVAL;
5033 }
5034
5035 f = fdget(insn->imm);
c2101297 5036 map = __bpf_map_get(f);
0246e64d 5037 if (IS_ERR(map)) {
61bd5218 5038 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5039 insn->imm);
0246e64d
AS
5040 return PTR_ERR(map);
5041 }
5042
61bd5218 5043 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5044 if (err) {
5045 fdput(f);
5046 return err;
5047 }
5048
0246e64d
AS
5049 /* store map pointer inside BPF_LD_IMM64 instruction */
5050 insn[0].imm = (u32) (unsigned long) map;
5051 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5052
5053 /* check whether we recorded this map already */
5054 for (j = 0; j < env->used_map_cnt; j++)
5055 if (env->used_maps[j] == map) {
5056 fdput(f);
5057 goto next_insn;
5058 }
5059
5060 if (env->used_map_cnt >= MAX_USED_MAPS) {
5061 fdput(f);
5062 return -E2BIG;
5063 }
5064
0246e64d
AS
5065 /* hold the map. If the program is rejected by verifier,
5066 * the map will be released by release_maps() or it
5067 * will be used by the valid program until it's unloaded
ab7f5bf0 5068 * and all maps are released in free_used_maps()
0246e64d 5069 */
92117d84
AS
5070 map = bpf_map_inc(map, false);
5071 if (IS_ERR(map)) {
5072 fdput(f);
5073 return PTR_ERR(map);
5074 }
5075 env->used_maps[env->used_map_cnt++] = map;
5076
0246e64d
AS
5077 fdput(f);
5078next_insn:
5079 insn++;
5080 i++;
5e581dad
DB
5081 continue;
5082 }
5083
5084 /* Basic sanity check before we invest more work here. */
5085 if (!bpf_opcode_in_insntable(insn->code)) {
5086 verbose(env, "unknown opcode %02x\n", insn->code);
5087 return -EINVAL;
0246e64d
AS
5088 }
5089 }
5090
5091 /* now all pseudo BPF_LD_IMM64 instructions load valid
5092 * 'struct bpf_map *' into a register instead of user map_fd.
5093 * These pointers will be used later by verifier to validate map access.
5094 */
5095 return 0;
5096}
5097
5098/* drop refcnt of maps used by the rejected program */
58e2af8b 5099static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
5100{
5101 int i;
5102
5103 for (i = 0; i < env->used_map_cnt; i++)
5104 bpf_map_put(env->used_maps[i]);
5105}
5106
5107/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5108static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5109{
5110 struct bpf_insn *insn = env->prog->insnsi;
5111 int insn_cnt = env->prog->len;
5112 int i;
5113
5114 for (i = 0; i < insn_cnt; i++, insn++)
5115 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5116 insn->src_reg = 0;
5117}
5118
8041902d
AS
5119/* single env->prog->insni[off] instruction was replaced with the range
5120 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5121 * [0, off) and [off, end) to new locations, so the patched range stays zero
5122 */
5123static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5124 u32 off, u32 cnt)
5125{
5126 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5127 int i;
8041902d
AS
5128
5129 if (cnt == 1)
5130 return 0;
5131 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5132 if (!new_data)
5133 return -ENOMEM;
5134 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5135 memcpy(new_data + off + cnt - 1, old_data + off,
5136 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5137 for (i = off; i < off + cnt - 1; i++)
5138 new_data[i].seen = true;
8041902d
AS
5139 env->insn_aux_data = new_data;
5140 vfree(old_data);
5141 return 0;
5142}
5143
cc8b0b92
AS
5144static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5145{
5146 int i;
5147
5148 if (len == 1)
5149 return;
4cb3d99c
JW
5150 /* NOTE: fake 'exit' subprog should be updated as well. */
5151 for (i = 0; i <= env->subprog_cnt; i++) {
9c8105bd 5152 if (env->subprog_info[i].start < off)
cc8b0b92 5153 continue;
9c8105bd 5154 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5155 }
5156}
5157
8041902d
AS
5158static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5159 const struct bpf_insn *patch, u32 len)
5160{
5161 struct bpf_prog *new_prog;
5162
5163 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5164 if (!new_prog)
5165 return NULL;
5166 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5167 return NULL;
cc8b0b92 5168 adjust_subprog_starts(env, off, len);
8041902d
AS
5169 return new_prog;
5170}
5171
2a5418a1
DB
5172/* The verifier does more data flow analysis than llvm and will not
5173 * explore branches that are dead at run time. Malicious programs can
5174 * have dead code too. Therefore replace all dead at-run-time code
5175 * with 'ja -1'.
5176 *
5177 * Just nops are not optimal, e.g. if they would sit at the end of the
5178 * program and through another bug we would manage to jump there, then
5179 * we'd execute beyond program memory otherwise. Returning exception
5180 * code also wouldn't work since we can have subprogs where the dead
5181 * code could be located.
c131187d
AS
5182 */
5183static void sanitize_dead_code(struct bpf_verifier_env *env)
5184{
5185 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5186 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5187 struct bpf_insn *insn = env->prog->insnsi;
5188 const int insn_cnt = env->prog->len;
5189 int i;
5190
5191 for (i = 0; i < insn_cnt; i++) {
5192 if (aux_data[i].seen)
5193 continue;
2a5418a1 5194 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5195 }
5196}
5197
9bac3d6d
AS
5198/* convert load instructions that access fields of 'struct __sk_buff'
5199 * into sequence of instructions that access fields of 'struct sk_buff'
5200 */
58e2af8b 5201static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5202{
00176a34 5203 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5204 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5205 const int insn_cnt = env->prog->len;
36bbef52 5206 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5207 struct bpf_prog *new_prog;
d691f9e8 5208 enum bpf_access_type type;
f96da094
DB
5209 bool is_narrower_load;
5210 u32 target_size;
9bac3d6d 5211
36bbef52
DB
5212 if (ops->gen_prologue) {
5213 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5214 env->prog);
5215 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5216 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5217 return -EINVAL;
5218 } else if (cnt) {
8041902d 5219 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5220 if (!new_prog)
5221 return -ENOMEM;
8041902d 5222
36bbef52 5223 env->prog = new_prog;
3df126f3 5224 delta += cnt - 1;
36bbef52
DB
5225 }
5226 }
5227
0d830032 5228 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5229 return 0;
5230
3df126f3 5231 insn = env->prog->insnsi + delta;
36bbef52 5232
9bac3d6d 5233 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
5234 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5235 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5236 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5237 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5238 type = BPF_READ;
62c7989b
DB
5239 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5240 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5241 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5242 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5243 type = BPF_WRITE;
5244 else
9bac3d6d
AS
5245 continue;
5246
8041902d 5247 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 5248 continue;
9bac3d6d 5249
31fd8581 5250 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5251 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5252
5253 /* If the read access is a narrower load of the field,
5254 * convert to a 4/8-byte load, to minimum program type specific
5255 * convert_ctx_access changes. If conversion is successful,
5256 * we will apply proper mask to the result.
5257 */
f96da094 5258 is_narrower_load = size < ctx_field_size;
31fd8581 5259 if (is_narrower_load) {
f96da094
DB
5260 u32 off = insn->off;
5261 u8 size_code;
5262
5263 if (type == BPF_WRITE) {
61bd5218 5264 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5265 return -EINVAL;
5266 }
31fd8581 5267
f96da094 5268 size_code = BPF_H;
31fd8581
YS
5269 if (ctx_field_size == 4)
5270 size_code = BPF_W;
5271 else if (ctx_field_size == 8)
5272 size_code = BPF_DW;
f96da094 5273
31fd8581
YS
5274 insn->off = off & ~(ctx_field_size - 1);
5275 insn->code = BPF_LDX | BPF_MEM | size_code;
5276 }
f96da094
DB
5277
5278 target_size = 0;
5279 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5280 &target_size);
5281 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5282 (ctx_field_size && !target_size)) {
61bd5218 5283 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5284 return -EINVAL;
5285 }
f96da094
DB
5286
5287 if (is_narrower_load && size < target_size) {
31fd8581
YS
5288 if (ctx_field_size <= 4)
5289 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5290 (1 << size * 8) - 1);
31fd8581
YS
5291 else
5292 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5293 (1 << size * 8) - 1);
31fd8581 5294 }
9bac3d6d 5295
8041902d 5296 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5297 if (!new_prog)
5298 return -ENOMEM;
5299
3df126f3 5300 delta += cnt - 1;
9bac3d6d
AS
5301
5302 /* keep walking new program and skip insns we just inserted */
5303 env->prog = new_prog;
3df126f3 5304 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5305 }
5306
5307 return 0;
5308}
5309
1c2a088a
AS
5310static int jit_subprogs(struct bpf_verifier_env *env)
5311{
5312 struct bpf_prog *prog = env->prog, **func, *tmp;
5313 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5314 struct bpf_insn *insn;
1c2a088a
AS
5315 void *old_bpf_func;
5316 int err = -ENOMEM;
5317
f910cefa 5318 if (env->subprog_cnt <= 1)
1c2a088a
AS
5319 return 0;
5320
7105e828 5321 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5322 if (insn->code != (BPF_JMP | BPF_CALL) ||
5323 insn->src_reg != BPF_PSEUDO_CALL)
5324 continue;
5325 subprog = find_subprog(env, i + insn->imm + 1);
5326 if (subprog < 0) {
5327 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5328 i + insn->imm + 1);
5329 return -EFAULT;
5330 }
5331 /* temporarily remember subprog id inside insn instead of
5332 * aux_data, since next loop will split up all insns into funcs
5333 */
f910cefa 5334 insn->off = subprog;
1c2a088a
AS
5335 /* remember original imm in case JIT fails and fallback
5336 * to interpreter will be needed
5337 */
5338 env->insn_aux_data[i].call_imm = insn->imm;
5339 /* point imm to __bpf_call_base+1 from JITs point of view */
5340 insn->imm = 1;
5341 }
5342
f910cefa 5343 func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
1c2a088a
AS
5344 if (!func)
5345 return -ENOMEM;
5346
f910cefa 5347 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5348 subprog_start = subprog_end;
4cb3d99c 5349 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5350
5351 len = subprog_end - subprog_start;
5352 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5353 if (!func[i])
5354 goto out_free;
5355 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5356 len * sizeof(struct bpf_insn));
4f74d809 5357 func[i]->type = prog->type;
1c2a088a 5358 func[i]->len = len;
4f74d809
DB
5359 if (bpf_prog_calc_tag(func[i]))
5360 goto out_free;
1c2a088a
AS
5361 func[i]->is_func = 1;
5362 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5363 * Long term would need debug info to populate names
5364 */
5365 func[i]->aux->name[0] = 'F';
9c8105bd 5366 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5367 func[i]->jit_requested = 1;
5368 func[i] = bpf_int_jit_compile(func[i]);
5369 if (!func[i]->jited) {
5370 err = -ENOTSUPP;
5371 goto out_free;
5372 }
5373 cond_resched();
5374 }
5375 /* at this point all bpf functions were successfully JITed
5376 * now populate all bpf_calls with correct addresses and
5377 * run last pass of JIT
5378 */
f910cefa 5379 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5380 insn = func[i]->insnsi;
5381 for (j = 0; j < func[i]->len; j++, insn++) {
5382 if (insn->code != (BPF_JMP | BPF_CALL) ||
5383 insn->src_reg != BPF_PSEUDO_CALL)
5384 continue;
5385 subprog = insn->off;
1c2a088a
AS
5386 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5387 func[subprog]->bpf_func -
5388 __bpf_call_base;
5389 }
2162fed4
SD
5390
5391 /* we use the aux data to keep a list of the start addresses
5392 * of the JITed images for each function in the program
5393 *
5394 * for some architectures, such as powerpc64, the imm field
5395 * might not be large enough to hold the offset of the start
5396 * address of the callee's JITed image from __bpf_call_base
5397 *
5398 * in such cases, we can lookup the start address of a callee
5399 * by using its subprog id, available from the off field of
5400 * the call instruction, as an index for this list
5401 */
5402 func[i]->aux->func = func;
5403 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 5404 }
f910cefa 5405 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5406 old_bpf_func = func[i]->bpf_func;
5407 tmp = bpf_int_jit_compile(func[i]);
5408 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5409 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5410 err = -EFAULT;
5411 goto out_free;
5412 }
5413 cond_resched();
5414 }
5415
5416 /* finally lock prog and jit images for all functions and
5417 * populate kallsysm
5418 */
f910cefa 5419 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5420 bpf_prog_lock_ro(func[i]);
5421 bpf_prog_kallsyms_add(func[i]);
5422 }
7105e828
DB
5423
5424 /* Last step: make now unused interpreter insns from main
5425 * prog consistent for later dump requests, so they can
5426 * later look the same as if they were interpreted only.
5427 */
5428 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5429 unsigned long addr;
5430
5431 if (insn->code != (BPF_JMP | BPF_CALL) ||
5432 insn->src_reg != BPF_PSEUDO_CALL)
5433 continue;
5434 insn->off = env->insn_aux_data[i].call_imm;
5435 subprog = find_subprog(env, i + insn->off + 1);
f910cefa 5436 addr = (unsigned long)func[subprog]->bpf_func;
7105e828
DB
5437 addr &= PAGE_MASK;
5438 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5439 addr - __bpf_call_base;
5440 }
5441
1c2a088a
AS
5442 prog->jited = 1;
5443 prog->bpf_func = func[0]->bpf_func;
5444 prog->aux->func = func;
f910cefa 5445 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
5446 return 0;
5447out_free:
f910cefa 5448 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
5449 if (func[i])
5450 bpf_jit_free(func[i]);
5451 kfree(func);
5452 /* cleanup main prog to be interpreted */
5453 prog->jit_requested = 0;
5454 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5455 if (insn->code != (BPF_JMP | BPF_CALL) ||
5456 insn->src_reg != BPF_PSEUDO_CALL)
5457 continue;
5458 insn->off = 0;
5459 insn->imm = env->insn_aux_data[i].call_imm;
5460 }
5461 return err;
5462}
5463
1ea47e01
AS
5464static int fixup_call_args(struct bpf_verifier_env *env)
5465{
19d28fbd 5466#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5467 struct bpf_prog *prog = env->prog;
5468 struct bpf_insn *insn = prog->insnsi;
5469 int i, depth;
19d28fbd
DM
5470#endif
5471 int err;
1ea47e01 5472
19d28fbd
DM
5473 err = 0;
5474 if (env->prog->jit_requested) {
5475 err = jit_subprogs(env);
5476 if (err == 0)
1c2a088a 5477 return 0;
19d28fbd
DM
5478 }
5479#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5480 for (i = 0; i < prog->len; i++, insn++) {
5481 if (insn->code != (BPF_JMP | BPF_CALL) ||
5482 insn->src_reg != BPF_PSEUDO_CALL)
5483 continue;
5484 depth = get_callee_stack_depth(env, insn, i);
5485 if (depth < 0)
5486 return depth;
5487 bpf_patch_call_args(insn, depth);
5488 }
19d28fbd
DM
5489 err = 0;
5490#endif
5491 return err;
1ea47e01
AS
5492}
5493
79741b3b 5494/* fixup insn->imm field of bpf_call instructions
81ed18ab 5495 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
5496 *
5497 * this function is called after eBPF program passed verification
5498 */
79741b3b 5499static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 5500{
79741b3b
AS
5501 struct bpf_prog *prog = env->prog;
5502 struct bpf_insn *insn = prog->insnsi;
e245c5c6 5503 const struct bpf_func_proto *fn;
79741b3b 5504 const int insn_cnt = prog->len;
81ed18ab
AS
5505 struct bpf_insn insn_buf[16];
5506 struct bpf_prog *new_prog;
5507 struct bpf_map *map_ptr;
5508 int i, cnt, delta = 0;
e245c5c6 5509
79741b3b 5510 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
5511 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5512 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5513 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 5514 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
5515 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5516 struct bpf_insn mask_and_div[] = {
5517 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5518 /* Rx div 0 -> 0 */
5519 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5520 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5521 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5522 *insn,
5523 };
5524 struct bpf_insn mask_and_mod[] = {
5525 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5526 /* Rx mod 0 -> Rx */
5527 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5528 *insn,
5529 };
5530 struct bpf_insn *patchlet;
5531
5532 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5533 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5534 patchlet = mask_and_div + (is64 ? 1 : 0);
5535 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5536 } else {
5537 patchlet = mask_and_mod + (is64 ? 1 : 0);
5538 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5539 }
5540
5541 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
5542 if (!new_prog)
5543 return -ENOMEM;
5544
5545 delta += cnt - 1;
5546 env->prog = prog = new_prog;
5547 insn = new_prog->insnsi + i + delta;
5548 continue;
5549 }
5550
e0cea7ce
DB
5551 if (BPF_CLASS(insn->code) == BPF_LD &&
5552 (BPF_MODE(insn->code) == BPF_ABS ||
5553 BPF_MODE(insn->code) == BPF_IND)) {
5554 cnt = env->ops->gen_ld_abs(insn, insn_buf);
5555 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5556 verbose(env, "bpf verifier is misconfigured\n");
5557 return -EINVAL;
5558 }
5559
5560 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5561 if (!new_prog)
5562 return -ENOMEM;
5563
5564 delta += cnt - 1;
5565 env->prog = prog = new_prog;
5566 insn = new_prog->insnsi + i + delta;
5567 continue;
5568 }
5569
79741b3b
AS
5570 if (insn->code != (BPF_JMP | BPF_CALL))
5571 continue;
cc8b0b92
AS
5572 if (insn->src_reg == BPF_PSEUDO_CALL)
5573 continue;
e245c5c6 5574
79741b3b
AS
5575 if (insn->imm == BPF_FUNC_get_route_realm)
5576 prog->dst_needed = 1;
5577 if (insn->imm == BPF_FUNC_get_prandom_u32)
5578 bpf_user_rnd_init_once();
9802d865
JB
5579 if (insn->imm == BPF_FUNC_override_return)
5580 prog->kprobe_override = 1;
79741b3b 5581 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
5582 /* If we tail call into other programs, we
5583 * cannot make any assumptions since they can
5584 * be replaced dynamically during runtime in
5585 * the program array.
5586 */
5587 prog->cb_access = 1;
80a58d02 5588 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 5589
79741b3b
AS
5590 /* mark bpf_tail_call as different opcode to avoid
5591 * conditional branch in the interpeter for every normal
5592 * call and to prevent accidental JITing by JIT compiler
5593 * that doesn't support bpf_tail_call yet
e245c5c6 5594 */
79741b3b 5595 insn->imm = 0;
71189fa9 5596 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
5597
5598 /* instead of changing every JIT dealing with tail_call
5599 * emit two extra insns:
5600 * if (index >= max_entries) goto out;
5601 * index &= array->index_mask;
5602 * to avoid out-of-bounds cpu speculation
5603 */
5604 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5605 if (map_ptr == BPF_MAP_PTR_POISON) {
40950343 5606 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
5607 return -EINVAL;
5608 }
5609 if (!map_ptr->unpriv_array)
5610 continue;
5611 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5612 map_ptr->max_entries, 2);
5613 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5614 container_of(map_ptr,
5615 struct bpf_array,
5616 map)->index_mask);
5617 insn_buf[2] = *insn;
5618 cnt = 3;
5619 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5620 if (!new_prog)
5621 return -ENOMEM;
5622
5623 delta += cnt - 1;
5624 env->prog = prog = new_prog;
5625 insn = new_prog->insnsi + i + delta;
79741b3b
AS
5626 continue;
5627 }
e245c5c6 5628
89c63074
DB
5629 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5630 * handlers are currently limited to 64 bit only.
5631 */
60b58afc 5632 if (prog->jit_requested && BITS_PER_LONG == 64 &&
89c63074 5633 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 5634 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
5635 if (map_ptr == BPF_MAP_PTR_POISON ||
5636 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
5637 goto patch_call_imm;
5638
5639 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5640 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5641 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
5642 return -EINVAL;
5643 }
5644
5645 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5646 cnt);
5647 if (!new_prog)
5648 return -ENOMEM;
5649
5650 delta += cnt - 1;
5651
5652 /* keep walking new program and skip insns we just inserted */
5653 env->prog = prog = new_prog;
5654 insn = new_prog->insnsi + i + delta;
5655 continue;
5656 }
5657
109980b8 5658 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
5659 /* Note, we cannot use prog directly as imm as subsequent
5660 * rewrites would still change the prog pointer. The only
5661 * stable address we can use is aux, which also works with
5662 * prog clones during blinding.
5663 */
5664 u64 addr = (unsigned long)prog->aux;
109980b8
DB
5665 struct bpf_insn r4_ld[] = {
5666 BPF_LD_IMM64(BPF_REG_4, addr),
5667 *insn,
5668 };
5669 cnt = ARRAY_SIZE(r4_ld);
5670
5671 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5672 if (!new_prog)
5673 return -ENOMEM;
5674
5675 delta += cnt - 1;
5676 env->prog = prog = new_prog;
5677 insn = new_prog->insnsi + i + delta;
5678 }
81ed18ab 5679patch_call_imm:
5e43f899 5680 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
5681 /* all functions that have prototype and verifier allowed
5682 * programs to call them, must be real in-kernel functions
5683 */
5684 if (!fn->func) {
61bd5218
JK
5685 verbose(env,
5686 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
5687 func_id_name(insn->imm), insn->imm);
5688 return -EFAULT;
e245c5c6 5689 }
79741b3b 5690 insn->imm = fn->func - __bpf_call_base;
e245c5c6 5691 }
e245c5c6 5692
79741b3b
AS
5693 return 0;
5694}
e245c5c6 5695
58e2af8b 5696static void free_states(struct bpf_verifier_env *env)
f1bca824 5697{
58e2af8b 5698 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
5699 int i;
5700
5701 if (!env->explored_states)
5702 return;
5703
5704 for (i = 0; i < env->prog->len; i++) {
5705 sl = env->explored_states[i];
5706
5707 if (sl)
5708 while (sl != STATE_LIST_MARK) {
5709 sln = sl->next;
1969db47 5710 free_verifier_state(&sl->state, false);
f1bca824
AS
5711 kfree(sl);
5712 sl = sln;
5713 }
5714 }
5715
5716 kfree(env->explored_states);
5717}
5718
9bac3d6d 5719int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 5720{
58e2af8b 5721 struct bpf_verifier_env *env;
b9193c1b 5722 struct bpf_verifier_log *log;
51580e79
AS
5723 int ret = -EINVAL;
5724
eba0c929
AB
5725 /* no program is valid */
5726 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5727 return -EINVAL;
5728
58e2af8b 5729 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
5730 * allocate/free it every time bpf_check() is called
5731 */
58e2af8b 5732 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
5733 if (!env)
5734 return -ENOMEM;
61bd5218 5735 log = &env->log;
cbd35700 5736
3df126f3
JK
5737 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5738 (*prog)->len);
5739 ret = -ENOMEM;
5740 if (!env->insn_aux_data)
5741 goto err_free_env;
9bac3d6d 5742 env->prog = *prog;
00176a34 5743 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 5744
cbd35700
AS
5745 /* grab the mutex to protect few globals used by verifier */
5746 mutex_lock(&bpf_verifier_lock);
5747
5748 if (attr->log_level || attr->log_buf || attr->log_size) {
5749 /* user requested verbose verifier output
5750 * and supplied buffer to store the verification trace
5751 */
e7bf8249
JK
5752 log->level = attr->log_level;
5753 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5754 log->len_total = attr->log_size;
cbd35700
AS
5755
5756 ret = -EINVAL;
e7bf8249
JK
5757 /* log attributes have to be sane */
5758 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5759 !log->level || !log->ubuf)
3df126f3 5760 goto err_unlock;
cbd35700 5761 }
1ad2f583
DB
5762
5763 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5764 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 5765 env->strict_alignment = true;
cbd35700 5766
f4e3ec0d
JK
5767 ret = replace_map_fd_with_map_ptr(env);
5768 if (ret < 0)
5769 goto skip_full_check;
5770
cae1927c 5771 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
5772 ret = bpf_prog_offload_verifier_prep(env);
5773 if (ret)
f4e3ec0d 5774 goto skip_full_check;
ab3f0063
JK
5775 }
5776
9bac3d6d 5777 env->explored_states = kcalloc(env->prog->len,
58e2af8b 5778 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
5779 GFP_USER);
5780 ret = -ENOMEM;
5781 if (!env->explored_states)
5782 goto skip_full_check;
5783
cc8b0b92
AS
5784 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5785
475fb78f
AS
5786 ret = check_cfg(env);
5787 if (ret < 0)
5788 goto skip_full_check;
5789
17a52670 5790 ret = do_check(env);
8c01c4f8
CG
5791 if (env->cur_state) {
5792 free_verifier_state(env->cur_state, true);
5793 env->cur_state = NULL;
5794 }
cbd35700 5795
0246e64d 5796skip_full_check:
638f5b90 5797 while (!pop_stack(env, NULL, NULL));
f1bca824 5798 free_states(env);
0246e64d 5799
c131187d
AS
5800 if (ret == 0)
5801 sanitize_dead_code(env);
5802
70a87ffe
AS
5803 if (ret == 0)
5804 ret = check_max_stack_depth(env);
5805
9bac3d6d
AS
5806 if (ret == 0)
5807 /* program is valid, convert *(u32*)(ctx + off) accesses */
5808 ret = convert_ctx_accesses(env);
5809
e245c5c6 5810 if (ret == 0)
79741b3b 5811 ret = fixup_bpf_calls(env);
e245c5c6 5812
1ea47e01
AS
5813 if (ret == 0)
5814 ret = fixup_call_args(env);
5815
a2a7d570 5816 if (log->level && bpf_verifier_log_full(log))
cbd35700 5817 ret = -ENOSPC;
a2a7d570 5818 if (log->level && !log->ubuf) {
cbd35700 5819 ret = -EFAULT;
a2a7d570 5820 goto err_release_maps;
cbd35700
AS
5821 }
5822
0246e64d
AS
5823 if (ret == 0 && env->used_map_cnt) {
5824 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
5825 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5826 sizeof(env->used_maps[0]),
5827 GFP_KERNEL);
0246e64d 5828
9bac3d6d 5829 if (!env->prog->aux->used_maps) {
0246e64d 5830 ret = -ENOMEM;
a2a7d570 5831 goto err_release_maps;
0246e64d
AS
5832 }
5833
9bac3d6d 5834 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 5835 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 5836 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
5837
5838 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5839 * bpf_ld_imm64 instructions
5840 */
5841 convert_pseudo_ld_imm64(env);
5842 }
cbd35700 5843
a2a7d570 5844err_release_maps:
9bac3d6d 5845 if (!env->prog->aux->used_maps)
0246e64d 5846 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 5847 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
5848 */
5849 release_maps(env);
9bac3d6d 5850 *prog = env->prog;
3df126f3 5851err_unlock:
cbd35700 5852 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
5853 vfree(env->insn_aux_data);
5854err_free_env:
5855 kfree(env);
51580e79
AS
5856 return ret;
5857}