bpf: Invoke btf_struct_access() callback only for writes.
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
bd5314f8 27#include <linux/module.h>
51580e79 28
f4ac7e0b
JK
29#include "disasm.h"
30
00176a34 31static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 32#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
33 [_id] = & _name ## _verifier_ops,
34#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 35#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
36#include <linux/bpf_types.h>
37#undef BPF_PROG_TYPE
38#undef BPF_MAP_TYPE
f2e10bff 39#undef BPF_LINK_TYPE
00176a34
JK
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
8fb33b60 53 * Since it's analyzing all paths through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 138 * returns either pointer to map value or NULL.
51580e79
AS
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
177 /* length of verifier log at the time this state was pushed on stack */
178 u32 log_pos;
cbd35700
AS
179};
180
b285fcb7 181#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 182#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 183
d2e4c1e6
DB
184#define BPF_MAP_KEY_POISON (1ULL << 63)
185#define BPF_MAP_KEY_SEEN (1ULL << 62)
186
c93552c4
DB
187#define BPF_MAP_PTR_UNPRIV 1UL
188#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
189 POISON_POINTER_DELTA))
190#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
191
bc34dee6
JK
192static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
193static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
6a3cd331 194static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
5d92ddc3 195static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
6a3cd331
DM
196static int ref_set_non_owning(struct bpf_verifier_env *env,
197 struct bpf_reg_state *reg);
bc34dee6 198
c93552c4
DB
199static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
200{
d2e4c1e6 201 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
202}
203
204static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
205{
d2e4c1e6 206 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
207}
208
209static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
210 const struct bpf_map *map, bool unpriv)
211{
212 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
213 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
214 aux->map_ptr_state = (unsigned long)map |
215 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
216}
217
218static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & BPF_MAP_KEY_POISON;
221}
222
223static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
224{
225 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
226}
227
228static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
229{
230 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
231}
232
233static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
234{
235 bool poisoned = bpf_map_key_poisoned(aux);
236
237 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
238 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 239}
fad73a1a 240
23a2d70c
YS
241static bool bpf_pseudo_call(const struct bpf_insn *insn)
242{
243 return insn->code == (BPF_JMP | BPF_CALL) &&
244 insn->src_reg == BPF_PSEUDO_CALL;
245}
246
e6ac2450
MKL
247static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
248{
249 return insn->code == (BPF_JMP | BPF_CALL) &&
250 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
251}
252
33ff9823
DB
253struct bpf_call_arg_meta {
254 struct bpf_map *map_ptr;
435faee1 255 bool raw_mode;
36bbef52 256 bool pkt_access;
8f14852e 257 u8 release_regno;
435faee1
DB
258 int regno;
259 int access_size;
457f4436 260 int mem_size;
10060503 261 u64 msize_max_value;
1b986589 262 int ref_obj_id;
f8064ab9 263 int dynptr_id;
3e8ce298 264 int map_uid;
d83525ca 265 int func_id;
22dc4a0f 266 struct btf *btf;
eaa6bcb7 267 u32 btf_id;
22dc4a0f 268 struct btf *ret_btf;
eaa6bcb7 269 u32 ret_btf_id;
69c087ba 270 u32 subprogno;
aa3496ac 271 struct btf_field *kptr_field;
33ff9823
DB
272};
273
d0e1ac22
AN
274struct bpf_kfunc_call_arg_meta {
275 /* In parameters */
276 struct btf *btf;
277 u32 func_id;
278 u32 kfunc_flags;
279 const struct btf_type *func_proto;
280 const char *func_name;
281 /* Out parameters */
282 u32 ref_obj_id;
283 u8 release_regno;
284 bool r0_rdonly;
285 u32 ret_btf_id;
286 u64 r0_size;
287 u32 subprogno;
288 struct {
289 u64 value;
290 bool found;
291 } arg_constant;
292 struct {
293 struct btf *btf;
294 u32 btf_id;
295 } arg_obj_drop;
296 struct {
297 struct btf_field *field;
298 } arg_list_head;
299 struct {
300 struct btf_field *field;
301 } arg_rbtree_root;
302 struct {
303 enum bpf_dynptr_type type;
304 u32 id;
305 } initialized_dynptr;
06accc87
AN
306 struct {
307 u8 spi;
308 u8 frameno;
309 } iter;
d0e1ac22
AN
310 u64 mem_size;
311};
312
8580ac94
AS
313struct btf *btf_vmlinux;
314
cbd35700
AS
315static DEFINE_MUTEX(bpf_verifier_lock);
316
d9762e84
MKL
317static const struct bpf_line_info *
318find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
319{
320 const struct bpf_line_info *linfo;
321 const struct bpf_prog *prog;
322 u32 i, nr_linfo;
323
324 prog = env->prog;
325 nr_linfo = prog->aux->nr_linfo;
326
327 if (!nr_linfo || insn_off >= prog->len)
328 return NULL;
329
330 linfo = prog->aux->linfo;
331 for (i = 1; i < nr_linfo; i++)
332 if (insn_off < linfo[i].insn_off)
333 break;
334
335 return &linfo[i - 1];
336}
337
77d2e05a
MKL
338void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
339 va_list args)
cbd35700 340{
a2a7d570 341 unsigned int n;
cbd35700 342
a2a7d570 343 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
344
345 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
346 "verifier log line truncated - local buffer too short\n");
347
8580ac94 348 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
349 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
350
351 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
352 return;
353 }
436d404c
HT
354
355 n = min(log->len_total - log->len_used - 1, n);
356 log->kbuf[n] = '\0';
a2a7d570
JK
357 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
358 log->len_used += n;
359 else
360 log->ubuf = NULL;
cbd35700 361}
abe08840 362
6f8a57cc
AN
363static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
364{
365 char zero = 0;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 log->len_used = new_pos;
371 if (put_user(zero, log->ubuf + new_pos))
372 log->ubuf = NULL;
373}
374
abe08840
JO
375/* log_level controls verbosity level of eBPF verifier.
376 * bpf_verifier_log_write() is used to dump the verification trace to the log,
377 * so the user can figure out what's wrong with the program
430e68d1 378 */
abe08840
JO
379__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
380 const char *fmt, ...)
381{
382 va_list args;
383
77d2e05a
MKL
384 if (!bpf_verifier_log_needed(&env->log))
385 return;
386
abe08840 387 va_start(args, fmt);
77d2e05a 388 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
389 va_end(args);
390}
391EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
392
393__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
394{
77d2e05a 395 struct bpf_verifier_env *env = private_data;
abe08840
JO
396 va_list args;
397
77d2e05a
MKL
398 if (!bpf_verifier_log_needed(&env->log))
399 return;
400
abe08840 401 va_start(args, fmt);
77d2e05a 402 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
403 va_end(args);
404}
cbd35700 405
9e15db66
AS
406__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
407 const char *fmt, ...)
408{
409 va_list args;
410
411 if (!bpf_verifier_log_needed(log))
412 return;
413
414 va_start(args, fmt);
415 bpf_verifier_vlog(log, fmt, args);
416 va_end(args);
417}
84c6ac41 418EXPORT_SYMBOL_GPL(bpf_log);
9e15db66 419
d9762e84
MKL
420static const char *ltrim(const char *s)
421{
422 while (isspace(*s))
423 s++;
424
425 return s;
426}
427
428__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
429 u32 insn_off,
430 const char *prefix_fmt, ...)
431{
432 const struct bpf_line_info *linfo;
433
434 if (!bpf_verifier_log_needed(&env->log))
435 return;
436
437 linfo = find_linfo(env, insn_off);
438 if (!linfo || linfo == env->prev_linfo)
439 return;
440
441 if (prefix_fmt) {
442 va_list args;
443
444 va_start(args, prefix_fmt);
445 bpf_verifier_vlog(&env->log, prefix_fmt, args);
446 va_end(args);
447 }
448
449 verbose(env, "%s\n",
450 ltrim(btf_name_by_offset(env->prog->aux->btf,
451 linfo->line_off)));
452
453 env->prev_linfo = linfo;
454}
455
bc2591d6
YS
456static void verbose_invalid_scalar(struct bpf_verifier_env *env,
457 struct bpf_reg_state *reg,
458 struct tnum *range, const char *ctx,
459 const char *reg_name)
460{
461 char tn_buf[48];
462
463 verbose(env, "At %s the register %s ", ctx, reg_name);
464 if (!tnum_is_unknown(reg->var_off)) {
465 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
466 verbose(env, "has value %s", tn_buf);
467 } else {
468 verbose(env, "has unknown scalar value");
469 }
470 tnum_strn(tn_buf, sizeof(tn_buf), *range);
471 verbose(env, " should have been in %s\n", tn_buf);
472}
473
de8f3a83
DB
474static bool type_is_pkt_pointer(enum bpf_reg_type type)
475{
0c9a7a7e 476 type = base_type(type);
de8f3a83
DB
477 return type == PTR_TO_PACKET ||
478 type == PTR_TO_PACKET_META;
479}
480
46f8bc92
MKL
481static bool type_is_sk_pointer(enum bpf_reg_type type)
482{
483 return type == PTR_TO_SOCKET ||
655a51e5 484 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
485 type == PTR_TO_TCP_SOCK ||
486 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
487}
488
1057d299
AS
489static bool type_may_be_null(u32 type)
490{
491 return type & PTR_MAYBE_NULL;
492}
493
cac616db
JF
494static bool reg_type_not_null(enum bpf_reg_type type)
495{
1057d299
AS
496 if (type_may_be_null(type))
497 return false;
498
499 type = base_type(type);
cac616db
JF
500 return type == PTR_TO_SOCKET ||
501 type == PTR_TO_TCP_SOCK ||
502 type == PTR_TO_MAP_VALUE ||
69c087ba 503 type == PTR_TO_MAP_KEY ||
d5271c5b
AN
504 type == PTR_TO_SOCK_COMMON ||
505 type == PTR_TO_MEM;
cac616db
JF
506}
507
d8939cb0
DM
508static bool type_is_ptr_alloc_obj(u32 type)
509{
510 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
511}
512
6a3cd331
DM
513static bool type_is_non_owning_ref(u32 type)
514{
515 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
516}
517
4e814da0
KKD
518static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
519{
520 struct btf_record *rec = NULL;
521 struct btf_struct_meta *meta;
522
523 if (reg->type == PTR_TO_MAP_VALUE) {
524 rec = reg->map_ptr->record;
d8939cb0 525 } else if (type_is_ptr_alloc_obj(reg->type)) {
4e814da0
KKD
526 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
527 if (meta)
528 rec = meta->record;
529 }
530 return rec;
531}
532
d83525ca
AS
533static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
534{
4e814da0 535 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
536}
537
20b2aff4
HL
538static bool type_is_rdonly_mem(u32 type)
539{
540 return type & MEM_RDONLY;
cba368c1
MKL
541}
542
64d85290
JS
543static bool is_acquire_function(enum bpf_func_id func_id,
544 const struct bpf_map *map)
545{
546 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
547
548 if (func_id == BPF_FUNC_sk_lookup_tcp ||
549 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 550 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
551 func_id == BPF_FUNC_ringbuf_reserve ||
552 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
553 return true;
554
555 if (func_id == BPF_FUNC_map_lookup_elem &&
556 (map_type == BPF_MAP_TYPE_SOCKMAP ||
557 map_type == BPF_MAP_TYPE_SOCKHASH))
558 return true;
559
560 return false;
46f8bc92
MKL
561}
562
1b986589
MKL
563static bool is_ptr_cast_function(enum bpf_func_id func_id)
564{
565 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
566 func_id == BPF_FUNC_sk_fullsock ||
567 func_id == BPF_FUNC_skc_to_tcp_sock ||
568 func_id == BPF_FUNC_skc_to_tcp6_sock ||
569 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 570 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
571 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
572 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
573}
574
88374342 575static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
576{
577 return func_id == BPF_FUNC_dynptr_data;
578}
579
be2ef816
AN
580static bool is_callback_calling_function(enum bpf_func_id func_id)
581{
582 return func_id == BPF_FUNC_for_each_map_elem ||
583 func_id == BPF_FUNC_timer_set_callback ||
584 func_id == BPF_FUNC_find_vma ||
585 func_id == BPF_FUNC_loop ||
586 func_id == BPF_FUNC_user_ringbuf_drain;
587}
588
9bb00b28
YS
589static bool is_storage_get_function(enum bpf_func_id func_id)
590{
591 return func_id == BPF_FUNC_sk_storage_get ||
592 func_id == BPF_FUNC_inode_storage_get ||
593 func_id == BPF_FUNC_task_storage_get ||
594 func_id == BPF_FUNC_cgrp_storage_get;
595}
596
b2d8ef19
DM
597static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
598 const struct bpf_map *map)
599{
600 int ref_obj_uses = 0;
601
602 if (is_ptr_cast_function(func_id))
603 ref_obj_uses++;
604 if (is_acquire_function(func_id, map))
605 ref_obj_uses++;
88374342 606 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
607 ref_obj_uses++;
608
609 return ref_obj_uses > 1;
610}
611
39491867
BJ
612static bool is_cmpxchg_insn(const struct bpf_insn *insn)
613{
614 return BPF_CLASS(insn->code) == BPF_STX &&
615 BPF_MODE(insn->code) == BPF_ATOMIC &&
616 insn->imm == BPF_CMPXCHG;
617}
618
c25b2ae1
HL
619/* string representation of 'enum bpf_reg_type'
620 *
621 * Note that reg_type_str() can not appear more than once in a single verbose()
622 * statement.
623 */
624static const char *reg_type_str(struct bpf_verifier_env *env,
625 enum bpf_reg_type type)
626{
ef66c547 627 char postfix[16] = {0}, prefix[64] = {0};
c25b2ae1
HL
628 static const char * const str[] = {
629 [NOT_INIT] = "?",
7df5072c 630 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
631 [PTR_TO_CTX] = "ctx",
632 [CONST_PTR_TO_MAP] = "map_ptr",
633 [PTR_TO_MAP_VALUE] = "map_value",
634 [PTR_TO_STACK] = "fp",
635 [PTR_TO_PACKET] = "pkt",
636 [PTR_TO_PACKET_META] = "pkt_meta",
637 [PTR_TO_PACKET_END] = "pkt_end",
638 [PTR_TO_FLOW_KEYS] = "flow_keys",
639 [PTR_TO_SOCKET] = "sock",
640 [PTR_TO_SOCK_COMMON] = "sock_common",
641 [PTR_TO_TCP_SOCK] = "tcp_sock",
642 [PTR_TO_TP_BUFFER] = "tp_buffer",
643 [PTR_TO_XDP_SOCK] = "xdp_sock",
644 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 645 [PTR_TO_MEM] = "mem",
20b2aff4 646 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
647 [PTR_TO_FUNC] = "func",
648 [PTR_TO_MAP_KEY] = "map_key",
27060531 649 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
650 };
651
652 if (type & PTR_MAYBE_NULL) {
5844101a 653 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
654 strncpy(postfix, "or_null_", 16);
655 else
656 strncpy(postfix, "_or_null", 16);
657 }
658
9bb00b28 659 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
ef66c547
DV
660 type & MEM_RDONLY ? "rdonly_" : "",
661 type & MEM_RINGBUF ? "ringbuf_" : "",
662 type & MEM_USER ? "user_" : "",
663 type & MEM_PERCPU ? "percpu_" : "",
9bb00b28 664 type & MEM_RCU ? "rcu_" : "",
3f00c523
DV
665 type & PTR_UNTRUSTED ? "untrusted_" : "",
666 type & PTR_TRUSTED ? "trusted_" : ""
ef66c547 667 );
20b2aff4
HL
668
669 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
670 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
671 return env->type_str_buf;
672}
17a52670 673
8efea21d
EC
674static char slot_type_char[] = {
675 [STACK_INVALID] = '?',
676 [STACK_SPILL] = 'r',
677 [STACK_MISC] = 'm',
678 [STACK_ZERO] = '0',
97e03f52 679 [STACK_DYNPTR] = 'd',
06accc87 680 [STACK_ITER] = 'i',
8efea21d
EC
681};
682
4e92024a
AS
683static void print_liveness(struct bpf_verifier_env *env,
684 enum bpf_reg_liveness live)
685{
9242b5f5 686 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
687 verbose(env, "_");
688 if (live & REG_LIVE_READ)
689 verbose(env, "r");
690 if (live & REG_LIVE_WRITTEN)
691 verbose(env, "w");
9242b5f5
AS
692 if (live & REG_LIVE_DONE)
693 verbose(env, "D");
4e92024a
AS
694}
695
79168a66 696static int __get_spi(s32 off)
97e03f52
JK
697{
698 return (-off - 1) / BPF_REG_SIZE;
699}
700
f5b625e5
KKD
701static struct bpf_func_state *func(struct bpf_verifier_env *env,
702 const struct bpf_reg_state *reg)
703{
704 struct bpf_verifier_state *cur = env->cur_state;
705
706 return cur->frame[reg->frameno];
707}
708
97e03f52
JK
709static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
710{
f5b625e5 711 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
97e03f52 712
f5b625e5
KKD
713 /* We need to check that slots between [spi - nr_slots + 1, spi] are
714 * within [0, allocated_stack).
715 *
716 * Please note that the spi grows downwards. For example, a dynptr
717 * takes the size of two stack slots; the first slot will be at
718 * spi and the second slot will be at spi - 1.
719 */
720 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
97e03f52
JK
721}
722
a461f5ad
AN
723static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
724 const char *obj_kind, int nr_slots)
f4d7e40a 725{
79168a66 726 int off, spi;
f4d7e40a 727
79168a66 728 if (!tnum_is_const(reg->var_off)) {
a461f5ad 729 verbose(env, "%s has to be at a constant offset\n", obj_kind);
79168a66
KKD
730 return -EINVAL;
731 }
732
733 off = reg->off + reg->var_off.value;
734 if (off % BPF_REG_SIZE) {
a461f5ad 735 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
736 return -EINVAL;
737 }
738
739 spi = __get_spi(off);
a461f5ad
AN
740 if (spi + 1 < nr_slots) {
741 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
742 return -EINVAL;
743 }
97e03f52 744
a461f5ad 745 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
f5b625e5
KKD
746 return -ERANGE;
747 return spi;
f4d7e40a
AS
748}
749
a461f5ad
AN
750static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
751{
752 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
753}
754
06accc87
AN
755static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
756{
757 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
758}
759
b32a5dae 760static const char *btf_type_name(const struct btf *btf, u32 id)
9e15db66 761{
22dc4a0f 762 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
763}
764
d54e0f6c
AN
765static const char *dynptr_type_str(enum bpf_dynptr_type type)
766{
767 switch (type) {
768 case BPF_DYNPTR_TYPE_LOCAL:
769 return "local";
770 case BPF_DYNPTR_TYPE_RINGBUF:
771 return "ringbuf";
772 case BPF_DYNPTR_TYPE_SKB:
773 return "skb";
774 case BPF_DYNPTR_TYPE_XDP:
775 return "xdp";
776 case BPF_DYNPTR_TYPE_INVALID:
777 return "<invalid>";
778 default:
779 WARN_ONCE(1, "unknown dynptr type %d\n", type);
780 return "<unknown>";
781 }
782}
783
06accc87
AN
784static const char *iter_type_str(const struct btf *btf, u32 btf_id)
785{
786 if (!btf || btf_id == 0)
787 return "<invalid>";
788
789 /* we already validated that type is valid and has conforming name */
b32a5dae 790 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
06accc87
AN
791}
792
793static const char *iter_state_str(enum bpf_iter_state state)
794{
795 switch (state) {
796 case BPF_ITER_STATE_ACTIVE:
797 return "active";
798 case BPF_ITER_STATE_DRAINED:
799 return "drained";
800 case BPF_ITER_STATE_INVALID:
801 return "<invalid>";
802 default:
803 WARN_ONCE(1, "unknown iter state %d\n", state);
804 return "<unknown>";
805 }
806}
807
0f55f9ed
CL
808static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
809{
810 env->scratched_regs |= 1U << regno;
811}
812
813static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
814{
343e5375 815 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
816}
817
818static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
819{
820 return (env->scratched_regs >> regno) & 1;
821}
822
823static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
824{
825 return (env->scratched_stack_slots >> regno) & 1;
826}
827
828static bool verifier_state_scratched(const struct bpf_verifier_env *env)
829{
830 return env->scratched_regs || env->scratched_stack_slots;
831}
832
833static void mark_verifier_state_clean(struct bpf_verifier_env *env)
834{
835 env->scratched_regs = 0U;
343e5375 836 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
837}
838
839/* Used for printing the entire verifier state. */
840static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
841{
842 env->scratched_regs = ~0U;
343e5375 843 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
844}
845
97e03f52
JK
846static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
847{
848 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
849 case DYNPTR_TYPE_LOCAL:
850 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
851 case DYNPTR_TYPE_RINGBUF:
852 return BPF_DYNPTR_TYPE_RINGBUF;
b5964b96
JK
853 case DYNPTR_TYPE_SKB:
854 return BPF_DYNPTR_TYPE_SKB;
05421aec
JK
855 case DYNPTR_TYPE_XDP:
856 return BPF_DYNPTR_TYPE_XDP;
97e03f52
JK
857 default:
858 return BPF_DYNPTR_TYPE_INVALID;
859 }
860}
861
66e3a13e
JK
862static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
863{
864 switch (type) {
865 case BPF_DYNPTR_TYPE_LOCAL:
866 return DYNPTR_TYPE_LOCAL;
867 case BPF_DYNPTR_TYPE_RINGBUF:
868 return DYNPTR_TYPE_RINGBUF;
869 case BPF_DYNPTR_TYPE_SKB:
870 return DYNPTR_TYPE_SKB;
871 case BPF_DYNPTR_TYPE_XDP:
872 return DYNPTR_TYPE_XDP;
873 default:
874 return 0;
875 }
876}
877
bc34dee6
JK
878static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
879{
880 return type == BPF_DYNPTR_TYPE_RINGBUF;
881}
882
27060531
KKD
883static void __mark_dynptr_reg(struct bpf_reg_state *reg,
884 enum bpf_dynptr_type type,
f8064ab9 885 bool first_slot, int dynptr_id);
27060531
KKD
886
887static void __mark_reg_not_init(const struct bpf_verifier_env *env,
888 struct bpf_reg_state *reg);
889
f8064ab9
KKD
890static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
891 struct bpf_reg_state *sreg1,
27060531
KKD
892 struct bpf_reg_state *sreg2,
893 enum bpf_dynptr_type type)
894{
f8064ab9
KKD
895 int id = ++env->id_gen;
896
897 __mark_dynptr_reg(sreg1, type, true, id);
898 __mark_dynptr_reg(sreg2, type, false, id);
27060531
KKD
899}
900
f8064ab9
KKD
901static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
902 struct bpf_reg_state *reg,
27060531
KKD
903 enum bpf_dynptr_type type)
904{
f8064ab9 905 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
27060531
KKD
906}
907
ef8fc7a0
KKD
908static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
909 struct bpf_func_state *state, int spi);
27060531 910
97e03f52
JK
911static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
912 enum bpf_arg_type arg_type, int insn_idx)
913{
914 struct bpf_func_state *state = func(env, reg);
915 enum bpf_dynptr_type type;
379d4ba8 916 int spi, i, id, err;
97e03f52 917
79168a66
KKD
918 spi = dynptr_get_spi(env, reg);
919 if (spi < 0)
920 return spi;
97e03f52 921
379d4ba8
KKD
922 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
923 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
924 * to ensure that for the following example:
925 * [d1][d1][d2][d2]
926 * spi 3 2 1 0
927 * So marking spi = 2 should lead to destruction of both d1 and d2. In
928 * case they do belong to same dynptr, second call won't see slot_type
929 * as STACK_DYNPTR and will simply skip destruction.
930 */
931 err = destroy_if_dynptr_stack_slot(env, state, spi);
932 if (err)
933 return err;
934 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
935 if (err)
936 return err;
97e03f52
JK
937
938 for (i = 0; i < BPF_REG_SIZE; i++) {
939 state->stack[spi].slot_type[i] = STACK_DYNPTR;
940 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
941 }
942
943 type = arg_to_dynptr_type(arg_type);
944 if (type == BPF_DYNPTR_TYPE_INVALID)
945 return -EINVAL;
946
f8064ab9 947 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
27060531 948 &state->stack[spi - 1].spilled_ptr, type);
97e03f52 949
bc34dee6
JK
950 if (dynptr_type_refcounted(type)) {
951 /* The id is used to track proper releasing */
952 id = acquire_reference_state(env, insn_idx);
953 if (id < 0)
954 return id;
955
27060531
KKD
956 state->stack[spi].spilled_ptr.ref_obj_id = id;
957 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
bc34dee6
JK
958 }
959
d6fefa11
KKD
960 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
961 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
962
97e03f52
JK
963 return 0;
964}
965
966static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
967{
968 struct bpf_func_state *state = func(env, reg);
969 int spi, i;
970
79168a66
KKD
971 spi = dynptr_get_spi(env, reg);
972 if (spi < 0)
973 return spi;
97e03f52
JK
974
975 for (i = 0; i < BPF_REG_SIZE; i++) {
976 state->stack[spi].slot_type[i] = STACK_INVALID;
977 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
978 }
979
bc34dee6 980 /* Invalidate any slices associated with this dynptr */
27060531
KKD
981 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
982 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
97e03f52 983
27060531
KKD
984 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
985 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
d6fefa11
KKD
986
987 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
988 *
989 * While we don't allow reading STACK_INVALID, it is still possible to
990 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
991 * helpers or insns can do partial read of that part without failing,
992 * but check_stack_range_initialized, check_stack_read_var_off, and
993 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
994 * the slot conservatively. Hence we need to prevent those liveness
995 * marking walks.
996 *
997 * This was not a problem before because STACK_INVALID is only set by
998 * default (where the default reg state has its reg->parent as NULL), or
999 * in clean_live_states after REG_LIVE_DONE (at which point
1000 * mark_reg_read won't walk reg->parent chain), but not randomly during
1001 * verifier state exploration (like we did above). Hence, for our case
1002 * parentage chain will still be live (i.e. reg->parent may be
1003 * non-NULL), while earlier reg->parent was NULL, so we need
1004 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
1005 * done later on reads or by mark_dynptr_read as well to unnecessary
1006 * mark registers in verifier state.
1007 */
1008 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1009 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1010
97e03f52
JK
1011 return 0;
1012}
1013
ef8fc7a0
KKD
1014static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1015 struct bpf_reg_state *reg);
1016
dbd8d228
KKD
1017static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1018{
1019 if (!env->allow_ptr_leaks)
1020 __mark_reg_not_init(env, reg);
1021 else
1022 __mark_reg_unknown(env, reg);
1023}
1024
ef8fc7a0
KKD
1025static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1026 struct bpf_func_state *state, int spi)
97e03f52 1027{
f8064ab9
KKD
1028 struct bpf_func_state *fstate;
1029 struct bpf_reg_state *dreg;
1030 int i, dynptr_id;
27060531 1031
ef8fc7a0
KKD
1032 /* We always ensure that STACK_DYNPTR is never set partially,
1033 * hence just checking for slot_type[0] is enough. This is
1034 * different for STACK_SPILL, where it may be only set for
1035 * 1 byte, so code has to use is_spilled_reg.
1036 */
1037 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1038 return 0;
97e03f52 1039
ef8fc7a0
KKD
1040 /* Reposition spi to first slot */
1041 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1042 spi = spi + 1;
1043
1044 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1045 verbose(env, "cannot overwrite referenced dynptr\n");
1046 return -EINVAL;
1047 }
1048
1049 mark_stack_slot_scratched(env, spi);
1050 mark_stack_slot_scratched(env, spi - 1);
97e03f52 1051
ef8fc7a0 1052 /* Writing partially to one dynptr stack slot destroys both. */
97e03f52 1053 for (i = 0; i < BPF_REG_SIZE; i++) {
ef8fc7a0
KKD
1054 state->stack[spi].slot_type[i] = STACK_INVALID;
1055 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
97e03f52
JK
1056 }
1057
f8064ab9
KKD
1058 dynptr_id = state->stack[spi].spilled_ptr.id;
1059 /* Invalidate any slices associated with this dynptr */
1060 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1061 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1062 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1063 continue;
dbd8d228
KKD
1064 if (dreg->dynptr_id == dynptr_id)
1065 mark_reg_invalid(env, dreg);
f8064ab9 1066 }));
ef8fc7a0
KKD
1067
1068 /* Do not release reference state, we are destroying dynptr on stack,
1069 * not using some helper to release it. Just reset register.
1070 */
1071 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1072 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1073
1074 /* Same reason as unmark_stack_slots_dynptr above */
1075 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1076 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1077
1078 return 0;
1079}
1080
7e0dac28 1081static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52 1082{
7e0dac28
JK
1083 int spi;
1084
27060531
KKD
1085 if (reg->type == CONST_PTR_TO_DYNPTR)
1086 return false;
97e03f52 1087
7e0dac28
JK
1088 spi = dynptr_get_spi(env, reg);
1089
1090 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1091 * error because this just means the stack state hasn't been updated yet.
1092 * We will do check_mem_access to check and update stack bounds later.
f5b625e5 1093 */
7e0dac28
JK
1094 if (spi < 0 && spi != -ERANGE)
1095 return false;
1096
1097 /* We don't need to check if the stack slots are marked by previous
1098 * dynptr initializations because we allow overwriting existing unreferenced
1099 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1100 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1101 * touching are completely destructed before we reinitialize them for a new
1102 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1103 * instead of delaying it until the end where the user will get "Unreleased
379d4ba8
KKD
1104 * reference" error.
1105 */
97e03f52
JK
1106 return true;
1107}
1108
7e0dac28 1109static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52
JK
1110{
1111 struct bpf_func_state *state = func(env, reg);
7e0dac28 1112 int i, spi;
97e03f52 1113
7e0dac28
JK
1114 /* This already represents first slot of initialized bpf_dynptr.
1115 *
1116 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1117 * check_func_arg_reg_off's logic, so we don't need to check its
1118 * offset and alignment.
1119 */
27060531
KKD
1120 if (reg->type == CONST_PTR_TO_DYNPTR)
1121 return true;
1122
7e0dac28 1123 spi = dynptr_get_spi(env, reg);
79168a66
KKD
1124 if (spi < 0)
1125 return false;
f5b625e5 1126 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
97e03f52
JK
1127 return false;
1128
1129 for (i = 0; i < BPF_REG_SIZE; i++) {
1130 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1131 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1132 return false;
1133 }
1134
e9e315b4
RS
1135 return true;
1136}
1137
6b75bd3d
KKD
1138static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1139 enum bpf_arg_type arg_type)
e9e315b4
RS
1140{
1141 struct bpf_func_state *state = func(env, reg);
1142 enum bpf_dynptr_type dynptr_type;
27060531 1143 int spi;
e9e315b4 1144
97e03f52
JK
1145 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1146 if (arg_type == ARG_PTR_TO_DYNPTR)
1147 return true;
1148
e9e315b4 1149 dynptr_type = arg_to_dynptr_type(arg_type);
27060531
KKD
1150 if (reg->type == CONST_PTR_TO_DYNPTR) {
1151 return reg->dynptr.type == dynptr_type;
1152 } else {
79168a66
KKD
1153 spi = dynptr_get_spi(env, reg);
1154 if (spi < 0)
1155 return false;
27060531
KKD
1156 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1157 }
97e03f52
JK
1158}
1159
06accc87
AN
1160static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1161
1162static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1163 struct bpf_reg_state *reg, int insn_idx,
1164 struct btf *btf, u32 btf_id, int nr_slots)
1165{
1166 struct bpf_func_state *state = func(env, reg);
1167 int spi, i, j, id;
1168
1169 spi = iter_get_spi(env, reg, nr_slots);
1170 if (spi < 0)
1171 return spi;
1172
1173 id = acquire_reference_state(env, insn_idx);
1174 if (id < 0)
1175 return id;
1176
1177 for (i = 0; i < nr_slots; i++) {
1178 struct bpf_stack_state *slot = &state->stack[spi - i];
1179 struct bpf_reg_state *st = &slot->spilled_ptr;
1180
1181 __mark_reg_known_zero(st);
1182 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1183 st->live |= REG_LIVE_WRITTEN;
1184 st->ref_obj_id = i == 0 ? id : 0;
1185 st->iter.btf = btf;
1186 st->iter.btf_id = btf_id;
1187 st->iter.state = BPF_ITER_STATE_ACTIVE;
1188 st->iter.depth = 0;
1189
1190 for (j = 0; j < BPF_REG_SIZE; j++)
1191 slot->slot_type[j] = STACK_ITER;
1192
1193 mark_stack_slot_scratched(env, spi - i);
1194 }
1195
1196 return 0;
1197}
1198
1199static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1200 struct bpf_reg_state *reg, int nr_slots)
1201{
1202 struct bpf_func_state *state = func(env, reg);
1203 int spi, i, j;
1204
1205 spi = iter_get_spi(env, reg, nr_slots);
1206 if (spi < 0)
1207 return spi;
1208
1209 for (i = 0; i < nr_slots; i++) {
1210 struct bpf_stack_state *slot = &state->stack[spi - i];
1211 struct bpf_reg_state *st = &slot->spilled_ptr;
1212
1213 if (i == 0)
1214 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1215
1216 __mark_reg_not_init(env, st);
1217
1218 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1219 st->live |= REG_LIVE_WRITTEN;
1220
1221 for (j = 0; j < BPF_REG_SIZE; j++)
1222 slot->slot_type[j] = STACK_INVALID;
1223
1224 mark_stack_slot_scratched(env, spi - i);
1225 }
1226
1227 return 0;
1228}
1229
1230static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1231 struct bpf_reg_state *reg, int nr_slots)
1232{
1233 struct bpf_func_state *state = func(env, reg);
1234 int spi, i, j;
1235
1236 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1237 * will do check_mem_access to check and update stack bounds later, so
1238 * return true for that case.
1239 */
1240 spi = iter_get_spi(env, reg, nr_slots);
1241 if (spi == -ERANGE)
1242 return true;
1243 if (spi < 0)
1244 return false;
1245
1246 for (i = 0; i < nr_slots; i++) {
1247 struct bpf_stack_state *slot = &state->stack[spi - i];
1248
1249 for (j = 0; j < BPF_REG_SIZE; j++)
1250 if (slot->slot_type[j] == STACK_ITER)
1251 return false;
1252 }
1253
1254 return true;
1255}
1256
1257static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1258 struct btf *btf, u32 btf_id, int nr_slots)
1259{
1260 struct bpf_func_state *state = func(env, reg);
1261 int spi, i, j;
1262
1263 spi = iter_get_spi(env, reg, nr_slots);
1264 if (spi < 0)
1265 return false;
1266
1267 for (i = 0; i < nr_slots; i++) {
1268 struct bpf_stack_state *slot = &state->stack[spi - i];
1269 struct bpf_reg_state *st = &slot->spilled_ptr;
1270
1271 /* only main (first) slot has ref_obj_id set */
1272 if (i == 0 && !st->ref_obj_id)
1273 return false;
1274 if (i != 0 && st->ref_obj_id)
1275 return false;
1276 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1277 return false;
1278
1279 for (j = 0; j < BPF_REG_SIZE; j++)
1280 if (slot->slot_type[j] != STACK_ITER)
1281 return false;
1282 }
1283
1284 return true;
1285}
1286
1287/* Check if given stack slot is "special":
1288 * - spilled register state (STACK_SPILL);
1289 * - dynptr state (STACK_DYNPTR);
1290 * - iter state (STACK_ITER).
1291 */
1292static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1293{
1294 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1295
1296 switch (type) {
1297 case STACK_SPILL:
1298 case STACK_DYNPTR:
1299 case STACK_ITER:
1300 return true;
1301 case STACK_INVALID:
1302 case STACK_MISC:
1303 case STACK_ZERO:
1304 return false;
1305 default:
1306 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1307 return true;
1308 }
1309}
1310
27113c59
MKL
1311/* The reg state of a pointer or a bounded scalar was saved when
1312 * it was spilled to the stack.
1313 */
1314static bool is_spilled_reg(const struct bpf_stack_state *stack)
1315{
1316 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1317}
1318
354e8f19
MKL
1319static void scrub_spilled_slot(u8 *stype)
1320{
1321 if (*stype != STACK_INVALID)
1322 *stype = STACK_MISC;
1323}
1324
61bd5218 1325static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
1326 const struct bpf_func_state *state,
1327 bool print_all)
17a52670 1328{
f4d7e40a 1329 const struct bpf_reg_state *reg;
17a52670
AS
1330 enum bpf_reg_type t;
1331 int i;
1332
f4d7e40a
AS
1333 if (state->frameno)
1334 verbose(env, " frame%d:", state->frameno);
17a52670 1335 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
1336 reg = &state->regs[i];
1337 t = reg->type;
17a52670
AS
1338 if (t == NOT_INIT)
1339 continue;
0f55f9ed
CL
1340 if (!print_all && !reg_scratched(env, i))
1341 continue;
4e92024a
AS
1342 verbose(env, " R%d", i);
1343 print_liveness(env, reg->live);
7df5072c 1344 verbose(env, "=");
b5dc0163
AS
1345 if (t == SCALAR_VALUE && reg->precise)
1346 verbose(env, "P");
f1174f77
EC
1347 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1348 tnum_is_const(reg->var_off)) {
1349 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 1350 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 1351 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 1352 } else {
7df5072c
ML
1353 const char *sep = "";
1354
1355 verbose(env, "%s", reg_type_str(env, t));
5844101a 1356 if (base_type(t) == PTR_TO_BTF_ID)
b32a5dae 1357 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
7df5072c
ML
1358 verbose(env, "(");
1359/*
1360 * _a stands for append, was shortened to avoid multiline statements below.
1361 * This macro is used to output a comma separated list of attributes.
1362 */
1363#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1364
1365 if (reg->id)
1366 verbose_a("id=%d", reg->id);
a28ace78 1367 if (reg->ref_obj_id)
7df5072c 1368 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
6a3cd331
DM
1369 if (type_is_non_owning_ref(reg->type))
1370 verbose_a("%s", "non_own_ref");
f1174f77 1371 if (t != SCALAR_VALUE)
7df5072c 1372 verbose_a("off=%d", reg->off);
de8f3a83 1373 if (type_is_pkt_pointer(t))
7df5072c 1374 verbose_a("r=%d", reg->range);
c25b2ae1
HL
1375 else if (base_type(t) == CONST_PTR_TO_MAP ||
1376 base_type(t) == PTR_TO_MAP_KEY ||
1377 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
1378 verbose_a("ks=%d,vs=%d",
1379 reg->map_ptr->key_size,
1380 reg->map_ptr->value_size);
7d1238f2
EC
1381 if (tnum_is_const(reg->var_off)) {
1382 /* Typically an immediate SCALAR_VALUE, but
1383 * could be a pointer whose offset is too big
1384 * for reg->off
1385 */
7df5072c 1386 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
1387 } else {
1388 if (reg->smin_value != reg->umin_value &&
1389 reg->smin_value != S64_MIN)
7df5072c 1390 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
1391 if (reg->smax_value != reg->umax_value &&
1392 reg->smax_value != S64_MAX)
7df5072c 1393 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 1394 if (reg->umin_value != 0)
7df5072c 1395 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 1396 if (reg->umax_value != U64_MAX)
7df5072c 1397 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
1398 if (!tnum_is_unknown(reg->var_off)) {
1399 char tn_buf[48];
f1174f77 1400
7d1238f2 1401 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 1402 verbose_a("var_off=%s", tn_buf);
7d1238f2 1403 }
3f50f132
JF
1404 if (reg->s32_min_value != reg->smin_value &&
1405 reg->s32_min_value != S32_MIN)
7df5072c 1406 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
1407 if (reg->s32_max_value != reg->smax_value &&
1408 reg->s32_max_value != S32_MAX)
7df5072c 1409 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
1410 if (reg->u32_min_value != reg->umin_value &&
1411 reg->u32_min_value != U32_MIN)
7df5072c 1412 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
1413 if (reg->u32_max_value != reg->umax_value &&
1414 reg->u32_max_value != U32_MAX)
7df5072c 1415 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 1416 }
7df5072c
ML
1417#undef verbose_a
1418
61bd5218 1419 verbose(env, ")");
f1174f77 1420 }
17a52670 1421 }
638f5b90 1422 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
1423 char types_buf[BPF_REG_SIZE + 1];
1424 bool valid = false;
1425 int j;
1426
1427 for (j = 0; j < BPF_REG_SIZE; j++) {
1428 if (state->stack[i].slot_type[j] != STACK_INVALID)
1429 valid = true;
d54e0f6c 1430 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
8efea21d
EC
1431 }
1432 types_buf[BPF_REG_SIZE] = 0;
1433 if (!valid)
1434 continue;
0f55f9ed
CL
1435 if (!print_all && !stack_slot_scratched(env, i))
1436 continue;
d54e0f6c
AN
1437 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1438 case STACK_SPILL:
b5dc0163
AS
1439 reg = &state->stack[i].spilled_ptr;
1440 t = reg->type;
d54e0f6c
AN
1441
1442 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1443 print_liveness(env, reg->live);
7df5072c 1444 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
1445 if (t == SCALAR_VALUE && reg->precise)
1446 verbose(env, "P");
1447 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1448 verbose(env, "%lld", reg->var_off.value + reg->off);
d54e0f6c
AN
1449 break;
1450 case STACK_DYNPTR:
1451 i += BPF_DYNPTR_NR_SLOTS - 1;
1452 reg = &state->stack[i].spilled_ptr;
1453
1454 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1455 print_liveness(env, reg->live);
1456 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1457 if (reg->ref_obj_id)
1458 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1459 break;
06accc87
AN
1460 case STACK_ITER:
1461 /* only main slot has ref_obj_id set; skip others */
1462 reg = &state->stack[i].spilled_ptr;
1463 if (!reg->ref_obj_id)
1464 continue;
1465
1466 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1467 print_liveness(env, reg->live);
1468 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1469 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1470 reg->ref_obj_id, iter_state_str(reg->iter.state),
1471 reg->iter.depth);
1472 break;
d54e0f6c
AN
1473 case STACK_MISC:
1474 case STACK_ZERO:
1475 default:
1476 reg = &state->stack[i].spilled_ptr;
1477
1478 for (j = 0; j < BPF_REG_SIZE; j++)
1479 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1480 types_buf[BPF_REG_SIZE] = 0;
1481
1482 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1483 print_liveness(env, reg->live);
8efea21d 1484 verbose(env, "=%s", types_buf);
d54e0f6c 1485 break;
b5dc0163 1486 }
17a52670 1487 }
fd978bf7
JS
1488 if (state->acquired_refs && state->refs[0].id) {
1489 verbose(env, " refs=%d", state->refs[0].id);
1490 for (i = 1; i < state->acquired_refs; i++)
1491 if (state->refs[i].id)
1492 verbose(env, ",%d", state->refs[i].id);
1493 }
bfc6bb74
AS
1494 if (state->in_callback_fn)
1495 verbose(env, " cb");
1496 if (state->in_async_callback_fn)
1497 verbose(env, " async_cb");
61bd5218 1498 verbose(env, "\n");
0f55f9ed 1499 mark_verifier_state_clean(env);
17a52670
AS
1500}
1501
2e576648
CL
1502static inline u32 vlog_alignment(u32 pos)
1503{
1504 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1505 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1506}
1507
1508static void print_insn_state(struct bpf_verifier_env *env,
1509 const struct bpf_func_state *state)
1510{
1511 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1512 /* remove new line character */
1513 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1514 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1515 } else {
1516 verbose(env, "%d:", env->insn_idx);
1517 }
1518 print_verifier_state(env, state, false);
17a52670
AS
1519}
1520
c69431aa
LB
1521/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1522 * small to hold src. This is different from krealloc since we don't want to preserve
1523 * the contents of dst.
1524 *
1525 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1526 * not be allocated.
638f5b90 1527 */
c69431aa 1528static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1529{
45435d8d
KC
1530 size_t alloc_bytes;
1531 void *orig = dst;
c69431aa
LB
1532 size_t bytes;
1533
1534 if (ZERO_OR_NULL_PTR(src))
1535 goto out;
1536
1537 if (unlikely(check_mul_overflow(n, size, &bytes)))
1538 return NULL;
1539
45435d8d
KC
1540 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1541 dst = krealloc(orig, alloc_bytes, flags);
1542 if (!dst) {
1543 kfree(orig);
1544 return NULL;
c69431aa
LB
1545 }
1546
1547 memcpy(dst, src, bytes);
1548out:
1549 return dst ? dst : ZERO_SIZE_PTR;
1550}
1551
1552/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1553 * small to hold new_n items. new items are zeroed out if the array grows.
1554 *
1555 * Contrary to krealloc_array, does not free arr if new_n is zero.
1556 */
1557static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1558{
ceb35b66 1559 size_t alloc_size;
42378a9c
KC
1560 void *new_arr;
1561
c69431aa
LB
1562 if (!new_n || old_n == new_n)
1563 goto out;
1564
ceb35b66
KC
1565 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1566 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
42378a9c
KC
1567 if (!new_arr) {
1568 kfree(arr);
c69431aa 1569 return NULL;
42378a9c
KC
1570 }
1571 arr = new_arr;
c69431aa
LB
1572
1573 if (new_n > old_n)
1574 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1575
1576out:
1577 return arr ? arr : ZERO_SIZE_PTR;
1578}
1579
1580static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1581{
1582 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1583 sizeof(struct bpf_reference_state), GFP_KERNEL);
1584 if (!dst->refs)
1585 return -ENOMEM;
1586
1587 dst->acquired_refs = src->acquired_refs;
1588 return 0;
1589}
1590
1591static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1592{
1593 size_t n = src->allocated_stack / BPF_REG_SIZE;
1594
1595 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1596 GFP_KERNEL);
1597 if (!dst->stack)
1598 return -ENOMEM;
1599
1600 dst->allocated_stack = src->allocated_stack;
1601 return 0;
1602}
1603
1604static int resize_reference_state(struct bpf_func_state *state, size_t n)
1605{
1606 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1607 sizeof(struct bpf_reference_state));
1608 if (!state->refs)
1609 return -ENOMEM;
1610
1611 state->acquired_refs = n;
1612 return 0;
1613}
1614
1615static int grow_stack_state(struct bpf_func_state *state, int size)
1616{
1617 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1618
1619 if (old_n >= n)
1620 return 0;
1621
1622 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1623 if (!state->stack)
1624 return -ENOMEM;
1625
1626 state->allocated_stack = size;
1627 return 0;
fd978bf7
JS
1628}
1629
1630/* Acquire a pointer id from the env and update the state->refs to include
1631 * this new pointer reference.
1632 * On success, returns a valid pointer id to associate with the register
1633 * On failure, returns a negative errno.
638f5b90 1634 */
fd978bf7 1635static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1636{
fd978bf7
JS
1637 struct bpf_func_state *state = cur_func(env);
1638 int new_ofs = state->acquired_refs;
1639 int id, err;
1640
c69431aa 1641 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1642 if (err)
1643 return err;
1644 id = ++env->id_gen;
1645 state->refs[new_ofs].id = id;
1646 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1647 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1648
fd978bf7
JS
1649 return id;
1650}
1651
1652/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1653static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1654{
1655 int i, last_idx;
1656
fd978bf7
JS
1657 last_idx = state->acquired_refs - 1;
1658 for (i = 0; i < state->acquired_refs; i++) {
1659 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1660 /* Cannot release caller references in callbacks */
1661 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1662 return -EINVAL;
fd978bf7
JS
1663 if (last_idx && i != last_idx)
1664 memcpy(&state->refs[i], &state->refs[last_idx],
1665 sizeof(*state->refs));
1666 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1667 state->acquired_refs--;
638f5b90 1668 return 0;
638f5b90 1669 }
638f5b90 1670 }
46f8bc92 1671 return -EINVAL;
fd978bf7
JS
1672}
1673
f4d7e40a
AS
1674static void free_func_state(struct bpf_func_state *state)
1675{
5896351e
AS
1676 if (!state)
1677 return;
fd978bf7 1678 kfree(state->refs);
f4d7e40a
AS
1679 kfree(state->stack);
1680 kfree(state);
1681}
1682
b5dc0163
AS
1683static void clear_jmp_history(struct bpf_verifier_state *state)
1684{
1685 kfree(state->jmp_history);
1686 state->jmp_history = NULL;
1687 state->jmp_history_cnt = 0;
1688}
1689
1969db47
AS
1690static void free_verifier_state(struct bpf_verifier_state *state,
1691 bool free_self)
638f5b90 1692{
f4d7e40a
AS
1693 int i;
1694
1695 for (i = 0; i <= state->curframe; i++) {
1696 free_func_state(state->frame[i]);
1697 state->frame[i] = NULL;
1698 }
b5dc0163 1699 clear_jmp_history(state);
1969db47
AS
1700 if (free_self)
1701 kfree(state);
638f5b90
AS
1702}
1703
1704/* copy verifier state from src to dst growing dst stack space
1705 * when necessary to accommodate larger src stack
1706 */
f4d7e40a
AS
1707static int copy_func_state(struct bpf_func_state *dst,
1708 const struct bpf_func_state *src)
638f5b90
AS
1709{
1710 int err;
1711
fd978bf7
JS
1712 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1713 err = copy_reference_state(dst, src);
638f5b90
AS
1714 if (err)
1715 return err;
638f5b90
AS
1716 return copy_stack_state(dst, src);
1717}
1718
f4d7e40a
AS
1719static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1720 const struct bpf_verifier_state *src)
1721{
1722 struct bpf_func_state *dst;
1723 int i, err;
1724
06ab6a50
LB
1725 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1726 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1727 GFP_USER);
1728 if (!dst_state->jmp_history)
1729 return -ENOMEM;
b5dc0163
AS
1730 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1731
f4d7e40a
AS
1732 /* if dst has more stack frames then src frame, free them */
1733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1734 free_func_state(dst_state->frame[i]);
1735 dst_state->frame[i] = NULL;
1736 }
979d63d5 1737 dst_state->speculative = src->speculative;
9bb00b28 1738 dst_state->active_rcu_lock = src->active_rcu_lock;
f4d7e40a 1739 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1740 dst_state->active_lock.ptr = src->active_lock.ptr;
1741 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1742 dst_state->branches = src->branches;
1743 dst_state->parent = src->parent;
b5dc0163
AS
1744 dst_state->first_insn_idx = src->first_insn_idx;
1745 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1746 for (i = 0; i <= src->curframe; i++) {
1747 dst = dst_state->frame[i];
1748 if (!dst) {
1749 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1750 if (!dst)
1751 return -ENOMEM;
1752 dst_state->frame[i] = dst;
1753 }
1754 err = copy_func_state(dst, src->frame[i]);
1755 if (err)
1756 return err;
1757 }
1758 return 0;
1759}
1760
2589726d
AS
1761static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1762{
1763 while (st) {
1764 u32 br = --st->branches;
1765
1766 /* WARN_ON(br > 1) technically makes sense here,
1767 * but see comment in push_stack(), hence:
1768 */
1769 WARN_ONCE((int)br < 0,
1770 "BUG update_branch_counts:branches_to_explore=%d\n",
1771 br);
1772 if (br)
1773 break;
1774 st = st->parent;
1775 }
1776}
1777
638f5b90 1778static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1779 int *insn_idx, bool pop_log)
638f5b90
AS
1780{
1781 struct bpf_verifier_state *cur = env->cur_state;
1782 struct bpf_verifier_stack_elem *elem, *head = env->head;
1783 int err;
17a52670
AS
1784
1785 if (env->head == NULL)
638f5b90 1786 return -ENOENT;
17a52670 1787
638f5b90
AS
1788 if (cur) {
1789 err = copy_verifier_state(cur, &head->st);
1790 if (err)
1791 return err;
1792 }
6f8a57cc
AN
1793 if (pop_log)
1794 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1795 if (insn_idx)
1796 *insn_idx = head->insn_idx;
17a52670 1797 if (prev_insn_idx)
638f5b90
AS
1798 *prev_insn_idx = head->prev_insn_idx;
1799 elem = head->next;
1969db47 1800 free_verifier_state(&head->st, false);
638f5b90 1801 kfree(head);
17a52670
AS
1802 env->head = elem;
1803 env->stack_size--;
638f5b90 1804 return 0;
17a52670
AS
1805}
1806
58e2af8b 1807static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1808 int insn_idx, int prev_insn_idx,
1809 bool speculative)
17a52670 1810{
638f5b90 1811 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1812 struct bpf_verifier_stack_elem *elem;
638f5b90 1813 int err;
17a52670 1814
638f5b90 1815 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1816 if (!elem)
1817 goto err;
1818
17a52670
AS
1819 elem->insn_idx = insn_idx;
1820 elem->prev_insn_idx = prev_insn_idx;
1821 elem->next = env->head;
6f8a57cc 1822 elem->log_pos = env->log.len_used;
17a52670
AS
1823 env->head = elem;
1824 env->stack_size++;
1969db47
AS
1825 err = copy_verifier_state(&elem->st, cur);
1826 if (err)
1827 goto err;
979d63d5 1828 elem->st.speculative |= speculative;
b285fcb7
AS
1829 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1830 verbose(env, "The sequence of %d jumps is too complex.\n",
1831 env->stack_size);
17a52670
AS
1832 goto err;
1833 }
2589726d
AS
1834 if (elem->st.parent) {
1835 ++elem->st.parent->branches;
1836 /* WARN_ON(branches > 2) technically makes sense here,
1837 * but
1838 * 1. speculative states will bump 'branches' for non-branch
1839 * instructions
1840 * 2. is_state_visited() heuristics may decide not to create
1841 * a new state for a sequence of branches and all such current
1842 * and cloned states will be pointing to a single parent state
1843 * which might have large 'branches' count.
1844 */
1845 }
17a52670
AS
1846 return &elem->st;
1847err:
5896351e
AS
1848 free_verifier_state(env->cur_state, true);
1849 env->cur_state = NULL;
17a52670 1850 /* pop all elements and return */
6f8a57cc 1851 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1852 return NULL;
1853}
1854
1855#define CALLER_SAVED_REGS 6
1856static const int caller_saved[CALLER_SAVED_REGS] = {
1857 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1858};
1859
e688c3db
AS
1860/* This helper doesn't clear reg->id */
1861static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1862{
b03c9f9f
EC
1863 reg->var_off = tnum_const(imm);
1864 reg->smin_value = (s64)imm;
1865 reg->smax_value = (s64)imm;
1866 reg->umin_value = imm;
1867 reg->umax_value = imm;
3f50f132
JF
1868
1869 reg->s32_min_value = (s32)imm;
1870 reg->s32_max_value = (s32)imm;
1871 reg->u32_min_value = (u32)imm;
1872 reg->u32_max_value = (u32)imm;
1873}
1874
e688c3db
AS
1875/* Mark the unknown part of a register (variable offset or scalar value) as
1876 * known to have the value @imm.
1877 */
1878static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1879{
a73bf9f2 1880 /* Clear off and union(map_ptr, range) */
e688c3db
AS
1881 memset(((u8 *)reg) + sizeof(reg->type), 0,
1882 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
a73bf9f2
AN
1883 reg->id = 0;
1884 reg->ref_obj_id = 0;
e688c3db
AS
1885 ___mark_reg_known(reg, imm);
1886}
1887
3f50f132
JF
1888static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1889{
1890 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1891 reg->s32_min_value = (s32)imm;
1892 reg->s32_max_value = (s32)imm;
1893 reg->u32_min_value = (u32)imm;
1894 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1895}
1896
f1174f77
EC
1897/* Mark the 'variable offset' part of a register as zero. This should be
1898 * used only on registers holding a pointer type.
1899 */
1900static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1901{
b03c9f9f 1902 __mark_reg_known(reg, 0);
f1174f77 1903}
a9789ef9 1904
cc2b14d5
AS
1905static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1906{
1907 __mark_reg_known(reg, 0);
cc2b14d5
AS
1908 reg->type = SCALAR_VALUE;
1909}
1910
61bd5218
JK
1911static void mark_reg_known_zero(struct bpf_verifier_env *env,
1912 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1913{
1914 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1915 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1916 /* Something bad happened, let's kill all regs */
1917 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1918 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1919 return;
1920 }
1921 __mark_reg_known_zero(regs + regno);
1922}
1923
27060531 1924static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
f8064ab9 1925 bool first_slot, int dynptr_id)
27060531
KKD
1926{
1927 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1928 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1929 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1930 */
1931 __mark_reg_known_zero(reg);
1932 reg->type = CONST_PTR_TO_DYNPTR;
f8064ab9
KKD
1933 /* Give each dynptr a unique id to uniquely associate slices to it. */
1934 reg->id = dynptr_id;
27060531
KKD
1935 reg->dynptr.type = type;
1936 reg->dynptr.first_slot = first_slot;
1937}
1938
4ddb7416
DB
1939static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1940{
c25b2ae1 1941 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1942 const struct bpf_map *map = reg->map_ptr;
1943
1944 if (map->inner_map_meta) {
1945 reg->type = CONST_PTR_TO_MAP;
1946 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1947 /* transfer reg's id which is unique for every map_lookup_elem
1948 * as UID of the inner map.
1949 */
db559117 1950 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1951 reg->map_uid = reg->id;
4ddb7416
DB
1952 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1953 reg->type = PTR_TO_XDP_SOCK;
1954 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1955 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1956 reg->type = PTR_TO_SOCKET;
1957 } else {
1958 reg->type = PTR_TO_MAP_VALUE;
1959 }
c25b2ae1 1960 return;
4ddb7416 1961 }
c25b2ae1
HL
1962
1963 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1964}
1965
5d92ddc3
DM
1966static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1967 struct btf_field_graph_root *ds_head)
1968{
1969 __mark_reg_known_zero(&regs[regno]);
1970 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1971 regs[regno].btf = ds_head->btf;
1972 regs[regno].btf_id = ds_head->value_btf_id;
1973 regs[regno].off = ds_head->node_offset;
1974}
1975
de8f3a83
DB
1976static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1977{
1978 return type_is_pkt_pointer(reg->type);
1979}
1980
1981static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1982{
1983 return reg_is_pkt_pointer(reg) ||
1984 reg->type == PTR_TO_PACKET_END;
1985}
1986
66e3a13e
JK
1987static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1988{
1989 return base_type(reg->type) == PTR_TO_MEM &&
1990 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1991}
1992
de8f3a83
DB
1993/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1994static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1995 enum bpf_reg_type which)
1996{
1997 /* The register can already have a range from prior markings.
1998 * This is fine as long as it hasn't been advanced from its
1999 * origin.
2000 */
2001 return reg->type == which &&
2002 reg->id == 0 &&
2003 reg->off == 0 &&
2004 tnum_equals_const(reg->var_off, 0);
2005}
2006
3f50f132
JF
2007/* Reset the min/max bounds of a register */
2008static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2009{
2010 reg->smin_value = S64_MIN;
2011 reg->smax_value = S64_MAX;
2012 reg->umin_value = 0;
2013 reg->umax_value = U64_MAX;
2014
2015 reg->s32_min_value = S32_MIN;
2016 reg->s32_max_value = S32_MAX;
2017 reg->u32_min_value = 0;
2018 reg->u32_max_value = U32_MAX;
2019}
2020
2021static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2022{
2023 reg->smin_value = S64_MIN;
2024 reg->smax_value = S64_MAX;
2025 reg->umin_value = 0;
2026 reg->umax_value = U64_MAX;
2027}
2028
2029static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2030{
2031 reg->s32_min_value = S32_MIN;
2032 reg->s32_max_value = S32_MAX;
2033 reg->u32_min_value = 0;
2034 reg->u32_max_value = U32_MAX;
2035}
2036
2037static void __update_reg32_bounds(struct bpf_reg_state *reg)
2038{
2039 struct tnum var32_off = tnum_subreg(reg->var_off);
2040
2041 /* min signed is max(sign bit) | min(other bits) */
2042 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2043 var32_off.value | (var32_off.mask & S32_MIN));
2044 /* max signed is min(sign bit) | max(other bits) */
2045 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2046 var32_off.value | (var32_off.mask & S32_MAX));
2047 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2048 reg->u32_max_value = min(reg->u32_max_value,
2049 (u32)(var32_off.value | var32_off.mask));
2050}
2051
2052static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2053{
2054 /* min signed is max(sign bit) | min(other bits) */
2055 reg->smin_value = max_t(s64, reg->smin_value,
2056 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2057 /* max signed is min(sign bit) | max(other bits) */
2058 reg->smax_value = min_t(s64, reg->smax_value,
2059 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2060 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2061 reg->umax_value = min(reg->umax_value,
2062 reg->var_off.value | reg->var_off.mask);
2063}
2064
3f50f132
JF
2065static void __update_reg_bounds(struct bpf_reg_state *reg)
2066{
2067 __update_reg32_bounds(reg);
2068 __update_reg64_bounds(reg);
2069}
2070
b03c9f9f 2071/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
2072static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2073{
2074 /* Learn sign from signed bounds.
2075 * If we cannot cross the sign boundary, then signed and unsigned bounds
2076 * are the same, so combine. This works even in the negative case, e.g.
2077 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2078 */
2079 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2080 reg->s32_min_value = reg->u32_min_value =
2081 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2082 reg->s32_max_value = reg->u32_max_value =
2083 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2084 return;
2085 }
2086 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2087 * boundary, so we must be careful.
2088 */
2089 if ((s32)reg->u32_max_value >= 0) {
2090 /* Positive. We can't learn anything from the smin, but smax
2091 * is positive, hence safe.
2092 */
2093 reg->s32_min_value = reg->u32_min_value;
2094 reg->s32_max_value = reg->u32_max_value =
2095 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2096 } else if ((s32)reg->u32_min_value < 0) {
2097 /* Negative. We can't learn anything from the smax, but smin
2098 * is negative, hence safe.
2099 */
2100 reg->s32_min_value = reg->u32_min_value =
2101 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2102 reg->s32_max_value = reg->u32_max_value;
2103 }
2104}
2105
2106static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2107{
2108 /* Learn sign from signed bounds.
2109 * If we cannot cross the sign boundary, then signed and unsigned bounds
2110 * are the same, so combine. This works even in the negative case, e.g.
2111 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2112 */
2113 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2114 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2115 reg->umin_value);
2116 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2117 reg->umax_value);
2118 return;
2119 }
2120 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2121 * boundary, so we must be careful.
2122 */
2123 if ((s64)reg->umax_value >= 0) {
2124 /* Positive. We can't learn anything from the smin, but smax
2125 * is positive, hence safe.
2126 */
2127 reg->smin_value = reg->umin_value;
2128 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2129 reg->umax_value);
2130 } else if ((s64)reg->umin_value < 0) {
2131 /* Negative. We can't learn anything from the smax, but smin
2132 * is negative, hence safe.
2133 */
2134 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2135 reg->umin_value);
2136 reg->smax_value = reg->umax_value;
2137 }
2138}
2139
3f50f132
JF
2140static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2141{
2142 __reg32_deduce_bounds(reg);
2143 __reg64_deduce_bounds(reg);
2144}
2145
b03c9f9f
EC
2146/* Attempts to improve var_off based on unsigned min/max information */
2147static void __reg_bound_offset(struct bpf_reg_state *reg)
2148{
3f50f132
JF
2149 struct tnum var64_off = tnum_intersect(reg->var_off,
2150 tnum_range(reg->umin_value,
2151 reg->umax_value));
7be14c1c
DB
2152 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2153 tnum_range(reg->u32_min_value,
2154 reg->u32_max_value));
3f50f132
JF
2155
2156 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
2157}
2158
3844d153
DB
2159static void reg_bounds_sync(struct bpf_reg_state *reg)
2160{
2161 /* We might have learned new bounds from the var_off. */
2162 __update_reg_bounds(reg);
2163 /* We might have learned something about the sign bit. */
2164 __reg_deduce_bounds(reg);
2165 /* We might have learned some bits from the bounds. */
2166 __reg_bound_offset(reg);
2167 /* Intersecting with the old var_off might have improved our bounds
2168 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2169 * then new var_off is (0; 0x7f...fc) which improves our umax.
2170 */
2171 __update_reg_bounds(reg);
2172}
2173
e572ff80
DB
2174static bool __reg32_bound_s64(s32 a)
2175{
2176 return a >= 0 && a <= S32_MAX;
2177}
2178
3f50f132 2179static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 2180{
3f50f132
JF
2181 reg->umin_value = reg->u32_min_value;
2182 reg->umax_value = reg->u32_max_value;
e572ff80
DB
2183
2184 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2185 * be positive otherwise set to worse case bounds and refine later
2186 * from tnum.
3f50f132 2187 */
e572ff80
DB
2188 if (__reg32_bound_s64(reg->s32_min_value) &&
2189 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 2190 reg->smin_value = reg->s32_min_value;
e572ff80
DB
2191 reg->smax_value = reg->s32_max_value;
2192 } else {
3a71dc36 2193 reg->smin_value = 0;
e572ff80
DB
2194 reg->smax_value = U32_MAX;
2195 }
3f50f132
JF
2196}
2197
2198static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2199{
2200 /* special case when 64-bit register has upper 32-bit register
2201 * zeroed. Typically happens after zext or <<32, >>32 sequence
2202 * allowing us to use 32-bit bounds directly,
2203 */
2204 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2205 __reg_assign_32_into_64(reg);
2206 } else {
2207 /* Otherwise the best we can do is push lower 32bit known and
2208 * unknown bits into register (var_off set from jmp logic)
2209 * then learn as much as possible from the 64-bit tnum
2210 * known and unknown bits. The previous smin/smax bounds are
2211 * invalid here because of jmp32 compare so mark them unknown
2212 * so they do not impact tnum bounds calculation.
2213 */
2214 __mark_reg64_unbounded(reg);
3f50f132 2215 }
3844d153 2216 reg_bounds_sync(reg);
3f50f132
JF
2217}
2218
2219static bool __reg64_bound_s32(s64 a)
2220{
388e2c0b 2221 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
2222}
2223
2224static bool __reg64_bound_u32(u64 a)
2225{
b9979db8 2226 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
2227}
2228
2229static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2230{
2231 __mark_reg32_unbounded(reg);
b0270958 2232 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 2233 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 2234 reg->s32_max_value = (s32)reg->smax_value;
b0270958 2235 }
10bf4e83 2236 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 2237 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 2238 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 2239 }
3844d153 2240 reg_bounds_sync(reg);
b03c9f9f
EC
2241}
2242
f1174f77 2243/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
2244static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2245 struct bpf_reg_state *reg)
f1174f77 2246{
a9c676bc 2247 /*
a73bf9f2 2248 * Clear type, off, and union(map_ptr, range) and
a9c676bc
AS
2249 * padding between 'type' and union
2250 */
2251 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 2252 reg->type = SCALAR_VALUE;
a73bf9f2
AN
2253 reg->id = 0;
2254 reg->ref_obj_id = 0;
f1174f77 2255 reg->var_off = tnum_unknown;
f4d7e40a 2256 reg->frameno = 0;
be2ef816 2257 reg->precise = !env->bpf_capable;
b03c9f9f 2258 __mark_reg_unbounded(reg);
f1174f77
EC
2259}
2260
61bd5218
JK
2261static void mark_reg_unknown(struct bpf_verifier_env *env,
2262 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2263{
2264 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2265 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
2266 /* Something bad happened, let's kill all regs except FP */
2267 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2268 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2269 return;
2270 }
f54c7898 2271 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
2272}
2273
f54c7898
DB
2274static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2275 struct bpf_reg_state *reg)
f1174f77 2276{
f54c7898 2277 __mark_reg_unknown(env, reg);
f1174f77
EC
2278 reg->type = NOT_INIT;
2279}
2280
61bd5218
JK
2281static void mark_reg_not_init(struct bpf_verifier_env *env,
2282 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2283{
2284 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2285 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
2286 /* Something bad happened, let's kill all regs except FP */
2287 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2288 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2289 return;
2290 }
f54c7898 2291 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
2292}
2293
41c48f3a
AI
2294static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2295 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 2296 enum bpf_reg_type reg_type,
c6f1bfe8
YS
2297 struct btf *btf, u32 btf_id,
2298 enum bpf_type_flag flag)
41c48f3a
AI
2299{
2300 if (reg_type == SCALAR_VALUE) {
2301 mark_reg_unknown(env, regs, regno);
2302 return;
2303 }
2304 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 2305 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 2306 regs[regno].btf = btf;
41c48f3a
AI
2307 regs[regno].btf_id = btf_id;
2308}
2309
5327ed3d 2310#define DEF_NOT_SUBREG (0)
61bd5218 2311static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 2312 struct bpf_func_state *state)
17a52670 2313{
f4d7e40a 2314 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2315 int i;
2316
dc503a8a 2317 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 2318 mark_reg_not_init(env, regs, i);
dc503a8a 2319 regs[i].live = REG_LIVE_NONE;
679c782d 2320 regs[i].parent = NULL;
5327ed3d 2321 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 2322 }
17a52670
AS
2323
2324 /* frame pointer */
f1174f77 2325 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 2326 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 2327 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
2328}
2329
f4d7e40a
AS
2330#define BPF_MAIN_FUNC (-1)
2331static void init_func_state(struct bpf_verifier_env *env,
2332 struct bpf_func_state *state,
2333 int callsite, int frameno, int subprogno)
2334{
2335 state->callsite = callsite;
2336 state->frameno = frameno;
2337 state->subprogno = subprogno;
1bfe26fb 2338 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 2339 init_reg_state(env, state);
0f55f9ed 2340 mark_verifier_state_scratched(env);
f4d7e40a
AS
2341}
2342
bfc6bb74
AS
2343/* Similar to push_stack(), but for async callbacks */
2344static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2345 int insn_idx, int prev_insn_idx,
2346 int subprog)
2347{
2348 struct bpf_verifier_stack_elem *elem;
2349 struct bpf_func_state *frame;
2350
2351 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2352 if (!elem)
2353 goto err;
2354
2355 elem->insn_idx = insn_idx;
2356 elem->prev_insn_idx = prev_insn_idx;
2357 elem->next = env->head;
2358 elem->log_pos = env->log.len_used;
2359 env->head = elem;
2360 env->stack_size++;
2361 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2362 verbose(env,
2363 "The sequence of %d jumps is too complex for async cb.\n",
2364 env->stack_size);
2365 goto err;
2366 }
2367 /* Unlike push_stack() do not copy_verifier_state().
2368 * The caller state doesn't matter.
2369 * This is async callback. It starts in a fresh stack.
2370 * Initialize it similar to do_check_common().
2371 */
2372 elem->st.branches = 1;
2373 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2374 if (!frame)
2375 goto err;
2376 init_func_state(env, frame,
2377 BPF_MAIN_FUNC /* callsite */,
2378 0 /* frameno within this callchain */,
2379 subprog /* subprog number within this prog */);
2380 elem->st.frame[0] = frame;
2381 return &elem->st;
2382err:
2383 free_verifier_state(env->cur_state, true);
2384 env->cur_state = NULL;
2385 /* pop all elements and return */
2386 while (!pop_stack(env, NULL, NULL, false));
2387 return NULL;
2388}
2389
2390
17a52670
AS
2391enum reg_arg_type {
2392 SRC_OP, /* register is used as source operand */
2393 DST_OP, /* register is used as destination operand */
2394 DST_OP_NO_MARK /* same as above, check only, don't mark */
2395};
2396
cc8b0b92
AS
2397static int cmp_subprogs(const void *a, const void *b)
2398{
9c8105bd
JW
2399 return ((struct bpf_subprog_info *)a)->start -
2400 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
2401}
2402
2403static int find_subprog(struct bpf_verifier_env *env, int off)
2404{
9c8105bd 2405 struct bpf_subprog_info *p;
cc8b0b92 2406
9c8105bd
JW
2407 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2408 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
2409 if (!p)
2410 return -ENOENT;
9c8105bd 2411 return p - env->subprog_info;
cc8b0b92
AS
2412
2413}
2414
2415static int add_subprog(struct bpf_verifier_env *env, int off)
2416{
2417 int insn_cnt = env->prog->len;
2418 int ret;
2419
2420 if (off >= insn_cnt || off < 0) {
2421 verbose(env, "call to invalid destination\n");
2422 return -EINVAL;
2423 }
2424 ret = find_subprog(env, off);
2425 if (ret >= 0)
282a0f46 2426 return ret;
4cb3d99c 2427 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
2428 verbose(env, "too many subprograms\n");
2429 return -E2BIG;
2430 }
e6ac2450 2431 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
2432 env->subprog_info[env->subprog_cnt++].start = off;
2433 sort(env->subprog_info, env->subprog_cnt,
2434 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 2435 return env->subprog_cnt - 1;
cc8b0b92
AS
2436}
2437
2357672c
KKD
2438#define MAX_KFUNC_DESCS 256
2439#define MAX_KFUNC_BTFS 256
2440
e6ac2450
MKL
2441struct bpf_kfunc_desc {
2442 struct btf_func_model func_model;
2443 u32 func_id;
2444 s32 imm;
2357672c
KKD
2445 u16 offset;
2446};
2447
2448struct bpf_kfunc_btf {
2449 struct btf *btf;
2450 struct module *module;
2451 u16 offset;
e6ac2450
MKL
2452};
2453
e6ac2450
MKL
2454struct bpf_kfunc_desc_tab {
2455 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2456 u32 nr_descs;
2457};
2458
2357672c
KKD
2459struct bpf_kfunc_btf_tab {
2460 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2461 u32 nr_descs;
2462};
2463
2464static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
2465{
2466 const struct bpf_kfunc_desc *d0 = a;
2467 const struct bpf_kfunc_desc *d1 = b;
2468
2469 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
2470 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2471}
2472
2473static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2474{
2475 const struct bpf_kfunc_btf *d0 = a;
2476 const struct bpf_kfunc_btf *d1 = b;
2477
2478 return d0->offset - d1->offset;
e6ac2450
MKL
2479}
2480
2481static const struct bpf_kfunc_desc *
2357672c 2482find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
2483{
2484 struct bpf_kfunc_desc desc = {
2485 .func_id = func_id,
2357672c 2486 .offset = offset,
e6ac2450
MKL
2487 };
2488 struct bpf_kfunc_desc_tab *tab;
2489
2490 tab = prog->aux->kfunc_tab;
2491 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
2492 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2493}
2494
2495static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 2496 s16 offset)
2357672c
KKD
2497{
2498 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2499 struct bpf_kfunc_btf_tab *tab;
2500 struct bpf_kfunc_btf *b;
2501 struct module *mod;
2502 struct btf *btf;
2503 int btf_fd;
2504
2505 tab = env->prog->aux->kfunc_btf_tab;
2506 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2507 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2508 if (!b) {
2509 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2510 verbose(env, "too many different module BTFs\n");
2511 return ERR_PTR(-E2BIG);
2512 }
2513
2514 if (bpfptr_is_null(env->fd_array)) {
2515 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2516 return ERR_PTR(-EPROTO);
2517 }
2518
2519 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2520 offset * sizeof(btf_fd),
2521 sizeof(btf_fd)))
2522 return ERR_PTR(-EFAULT);
2523
2524 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
2525 if (IS_ERR(btf)) {
2526 verbose(env, "invalid module BTF fd specified\n");
2357672c 2527 return btf;
588cd7ef 2528 }
2357672c
KKD
2529
2530 if (!btf_is_module(btf)) {
2531 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2532 btf_put(btf);
2533 return ERR_PTR(-EINVAL);
2534 }
2535
2536 mod = btf_try_get_module(btf);
2537 if (!mod) {
2538 btf_put(btf);
2539 return ERR_PTR(-ENXIO);
2540 }
2541
2542 b = &tab->descs[tab->nr_descs++];
2543 b->btf = btf;
2544 b->module = mod;
2545 b->offset = offset;
2546
2547 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2548 kfunc_btf_cmp_by_off, NULL);
2549 }
2357672c 2550 return b->btf;
e6ac2450
MKL
2551}
2552
2357672c
KKD
2553void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2554{
2555 if (!tab)
2556 return;
2557
2558 while (tab->nr_descs--) {
2559 module_put(tab->descs[tab->nr_descs].module);
2560 btf_put(tab->descs[tab->nr_descs].btf);
2561 }
2562 kfree(tab);
2563}
2564
43bf0878 2565static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2566{
2357672c
KKD
2567 if (offset) {
2568 if (offset < 0) {
2569 /* In the future, this can be allowed to increase limit
2570 * of fd index into fd_array, interpreted as u16.
2571 */
2572 verbose(env, "negative offset disallowed for kernel module function call\n");
2573 return ERR_PTR(-EINVAL);
2574 }
2575
b202d844 2576 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2577 }
2578 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2579}
2580
2357672c 2581static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2582{
2583 const struct btf_type *func, *func_proto;
2357672c 2584 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2585 struct bpf_kfunc_desc_tab *tab;
2586 struct bpf_prog_aux *prog_aux;
2587 struct bpf_kfunc_desc *desc;
2588 const char *func_name;
2357672c 2589 struct btf *desc_btf;
8cbf062a 2590 unsigned long call_imm;
e6ac2450
MKL
2591 unsigned long addr;
2592 int err;
2593
2594 prog_aux = env->prog->aux;
2595 tab = prog_aux->kfunc_tab;
2357672c 2596 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2597 if (!tab) {
2598 if (!btf_vmlinux) {
2599 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2600 return -ENOTSUPP;
2601 }
2602
2603 if (!env->prog->jit_requested) {
2604 verbose(env, "JIT is required for calling kernel function\n");
2605 return -ENOTSUPP;
2606 }
2607
2608 if (!bpf_jit_supports_kfunc_call()) {
2609 verbose(env, "JIT does not support calling kernel function\n");
2610 return -ENOTSUPP;
2611 }
2612
2613 if (!env->prog->gpl_compatible) {
2614 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2615 return -EINVAL;
2616 }
2617
2618 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2619 if (!tab)
2620 return -ENOMEM;
2621 prog_aux->kfunc_tab = tab;
2622 }
2623
a5d82727
KKD
2624 /* func_id == 0 is always invalid, but instead of returning an error, be
2625 * conservative and wait until the code elimination pass before returning
2626 * error, so that invalid calls that get pruned out can be in BPF programs
2627 * loaded from userspace. It is also required that offset be untouched
2628 * for such calls.
2629 */
2630 if (!func_id && !offset)
2631 return 0;
2632
2357672c
KKD
2633 if (!btf_tab && offset) {
2634 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2635 if (!btf_tab)
2636 return -ENOMEM;
2637 prog_aux->kfunc_btf_tab = btf_tab;
2638 }
2639
43bf0878 2640 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2641 if (IS_ERR(desc_btf)) {
2642 verbose(env, "failed to find BTF for kernel function\n");
2643 return PTR_ERR(desc_btf);
2644 }
2645
2646 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2647 return 0;
2648
2649 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2650 verbose(env, "too many different kernel function calls\n");
2651 return -E2BIG;
2652 }
2653
2357672c 2654 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2655 if (!func || !btf_type_is_func(func)) {
2656 verbose(env, "kernel btf_id %u is not a function\n",
2657 func_id);
2658 return -EINVAL;
2659 }
2357672c 2660 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2661 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2662 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2663 func_id);
2664 return -EINVAL;
2665 }
2666
2357672c 2667 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2668 addr = kallsyms_lookup_name(func_name);
2669 if (!addr) {
2670 verbose(env, "cannot find address for kernel function %s\n",
2671 func_name);
2672 return -EINVAL;
2673 }
2674
8cbf062a
HT
2675 call_imm = BPF_CALL_IMM(addr);
2676 /* Check whether or not the relative offset overflows desc->imm */
2677 if ((unsigned long)(s32)call_imm != call_imm) {
2678 verbose(env, "address of kernel function %s is out of range\n",
2679 func_name);
2680 return -EINVAL;
2681 }
2682
3d76a4d3
SF
2683 if (bpf_dev_bound_kfunc_id(func_id)) {
2684 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2685 if (err)
2686 return err;
2687 }
2688
e6ac2450
MKL
2689 desc = &tab->descs[tab->nr_descs++];
2690 desc->func_id = func_id;
8cbf062a 2691 desc->imm = call_imm;
2357672c
KKD
2692 desc->offset = offset;
2693 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2694 func_proto, func_name,
2695 &desc->func_model);
2696 if (!err)
2697 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2698 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2699 return err;
2700}
2701
2702static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2703{
2704 const struct bpf_kfunc_desc *d0 = a;
2705 const struct bpf_kfunc_desc *d1 = b;
2706
2707 if (d0->imm > d1->imm)
2708 return 1;
2709 else if (d0->imm < d1->imm)
2710 return -1;
2711 return 0;
2712}
2713
2714static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2715{
2716 struct bpf_kfunc_desc_tab *tab;
2717
2718 tab = prog->aux->kfunc_tab;
2719 if (!tab)
2720 return;
2721
2722 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2723 kfunc_desc_cmp_by_imm, NULL);
2724}
2725
2726bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2727{
2728 return !!prog->aux->kfunc_tab;
2729}
2730
2731const struct btf_func_model *
2732bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2733 const struct bpf_insn *insn)
2734{
2735 const struct bpf_kfunc_desc desc = {
2736 .imm = insn->imm,
2737 };
2738 const struct bpf_kfunc_desc *res;
2739 struct bpf_kfunc_desc_tab *tab;
2740
2741 tab = prog->aux->kfunc_tab;
2742 res = bsearch(&desc, tab->descs, tab->nr_descs,
2743 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2744
2745 return res ? &res->func_model : NULL;
2746}
2747
2748static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2749{
9c8105bd 2750 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2751 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2752 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2753
f910cefa
JW
2754 /* Add entry function. */
2755 ret = add_subprog(env, 0);
e6ac2450 2756 if (ret)
f910cefa
JW
2757 return ret;
2758
e6ac2450
MKL
2759 for (i = 0; i < insn_cnt; i++, insn++) {
2760 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2761 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2762 continue;
e6ac2450 2763
2c78ee89 2764 if (!env->bpf_capable) {
e6ac2450 2765 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2766 return -EPERM;
2767 }
e6ac2450 2768
3990ed4c 2769 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2770 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2771 else
2357672c 2772 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2773
cc8b0b92
AS
2774 if (ret < 0)
2775 return ret;
2776 }
2777
4cb3d99c
JW
2778 /* Add a fake 'exit' subprog which could simplify subprog iteration
2779 * logic. 'subprog_cnt' should not be increased.
2780 */
2781 subprog[env->subprog_cnt].start = insn_cnt;
2782
06ee7115 2783 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2784 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2785 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2786
e6ac2450
MKL
2787 return 0;
2788}
2789
2790static int check_subprogs(struct bpf_verifier_env *env)
2791{
2792 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2793 struct bpf_subprog_info *subprog = env->subprog_info;
2794 struct bpf_insn *insn = env->prog->insnsi;
2795 int insn_cnt = env->prog->len;
2796
cc8b0b92 2797 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2798 subprog_start = subprog[cur_subprog].start;
2799 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2800 for (i = 0; i < insn_cnt; i++) {
2801 u8 code = insn[i].code;
2802
7f6e4312 2803 if (code == (BPF_JMP | BPF_CALL) &&
df2ccc18
IL
2804 insn[i].src_reg == 0 &&
2805 insn[i].imm == BPF_FUNC_tail_call)
7f6e4312 2806 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2807 if (BPF_CLASS(code) == BPF_LD &&
2808 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2809 subprog[cur_subprog].has_ld_abs = true;
092ed096 2810 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2811 goto next;
2812 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2813 goto next;
2814 off = i + insn[i].off + 1;
2815 if (off < subprog_start || off >= subprog_end) {
2816 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2817 return -EINVAL;
2818 }
2819next:
2820 if (i == subprog_end - 1) {
2821 /* to avoid fall-through from one subprog into another
2822 * the last insn of the subprog should be either exit
2823 * or unconditional jump back
2824 */
2825 if (code != (BPF_JMP | BPF_EXIT) &&
2826 code != (BPF_JMP | BPF_JA)) {
2827 verbose(env, "last insn is not an exit or jmp\n");
2828 return -EINVAL;
2829 }
2830 subprog_start = subprog_end;
4cb3d99c
JW
2831 cur_subprog++;
2832 if (cur_subprog < env->subprog_cnt)
9c8105bd 2833 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2834 }
2835 }
2836 return 0;
2837}
2838
679c782d
EC
2839/* Parentage chain of this register (or stack slot) should take care of all
2840 * issues like callee-saved registers, stack slot allocation time, etc.
2841 */
f4d7e40a 2842static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2843 const struct bpf_reg_state *state,
5327ed3d 2844 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2845{
2846 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2847 int cnt = 0;
dc503a8a
EC
2848
2849 while (parent) {
2850 /* if read wasn't screened by an earlier write ... */
679c782d 2851 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2852 break;
9242b5f5
AS
2853 if (parent->live & REG_LIVE_DONE) {
2854 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2855 reg_type_str(env, parent->type),
9242b5f5
AS
2856 parent->var_off.value, parent->off);
2857 return -EFAULT;
2858 }
5327ed3d
JW
2859 /* The first condition is more likely to be true than the
2860 * second, checked it first.
2861 */
2862 if ((parent->live & REG_LIVE_READ) == flag ||
2863 parent->live & REG_LIVE_READ64)
25af32da
AS
2864 /* The parentage chain never changes and
2865 * this parent was already marked as LIVE_READ.
2866 * There is no need to keep walking the chain again and
2867 * keep re-marking all parents as LIVE_READ.
2868 * This case happens when the same register is read
2869 * multiple times without writes into it in-between.
5327ed3d
JW
2870 * Also, if parent has the stronger REG_LIVE_READ64 set,
2871 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2872 */
2873 break;
dc503a8a 2874 /* ... then we depend on parent's value */
5327ed3d
JW
2875 parent->live |= flag;
2876 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2877 if (flag == REG_LIVE_READ64)
2878 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2879 state = parent;
2880 parent = state->parent;
f4d7e40a 2881 writes = true;
06ee7115 2882 cnt++;
dc503a8a 2883 }
06ee7115
AS
2884
2885 if (env->longest_mark_read_walk < cnt)
2886 env->longest_mark_read_walk = cnt;
f4d7e40a 2887 return 0;
dc503a8a
EC
2888}
2889
d6fefa11
KKD
2890static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2891{
2892 struct bpf_func_state *state = func(env, reg);
2893 int spi, ret;
2894
2895 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
2896 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2897 * check_kfunc_call.
2898 */
2899 if (reg->type == CONST_PTR_TO_DYNPTR)
2900 return 0;
79168a66
KKD
2901 spi = dynptr_get_spi(env, reg);
2902 if (spi < 0)
2903 return spi;
d6fefa11
KKD
2904 /* Caller ensures dynptr is valid and initialized, which means spi is in
2905 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2906 * read.
2907 */
2908 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2909 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2910 if (ret)
2911 return ret;
2912 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2913 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2914}
2915
06accc87
AN
2916static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2917 int spi, int nr_slots)
2918{
2919 struct bpf_func_state *state = func(env, reg);
2920 int err, i;
2921
2922 for (i = 0; i < nr_slots; i++) {
2923 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2924
2925 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2926 if (err)
2927 return err;
2928
2929 mark_stack_slot_scratched(env, spi - i);
2930 }
2931
2932 return 0;
2933}
2934
5327ed3d
JW
2935/* This function is supposed to be used by the following 32-bit optimization
2936 * code only. It returns TRUE if the source or destination register operates
2937 * on 64-bit, otherwise return FALSE.
2938 */
2939static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2940 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2941{
2942 u8 code, class, op;
2943
2944 code = insn->code;
2945 class = BPF_CLASS(code);
2946 op = BPF_OP(code);
2947 if (class == BPF_JMP) {
2948 /* BPF_EXIT for "main" will reach here. Return TRUE
2949 * conservatively.
2950 */
2951 if (op == BPF_EXIT)
2952 return true;
2953 if (op == BPF_CALL) {
2954 /* BPF to BPF call will reach here because of marking
2955 * caller saved clobber with DST_OP_NO_MARK for which we
2956 * don't care the register def because they are anyway
2957 * marked as NOT_INIT already.
2958 */
2959 if (insn->src_reg == BPF_PSEUDO_CALL)
2960 return false;
2961 /* Helper call will reach here because of arg type
2962 * check, conservatively return TRUE.
2963 */
2964 if (t == SRC_OP)
2965 return true;
2966
2967 return false;
2968 }
2969 }
2970
2971 if (class == BPF_ALU64 || class == BPF_JMP ||
2972 /* BPF_END always use BPF_ALU class. */
2973 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2974 return true;
2975
2976 if (class == BPF_ALU || class == BPF_JMP32)
2977 return false;
2978
2979 if (class == BPF_LDX) {
2980 if (t != SRC_OP)
2981 return BPF_SIZE(code) == BPF_DW;
2982 /* LDX source must be ptr. */
2983 return true;
2984 }
2985
2986 if (class == BPF_STX) {
83a28819
IL
2987 /* BPF_STX (including atomic variants) has multiple source
2988 * operands, one of which is a ptr. Check whether the caller is
2989 * asking about it.
2990 */
2991 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2992 return true;
2993 return BPF_SIZE(code) == BPF_DW;
2994 }
2995
2996 if (class == BPF_LD) {
2997 u8 mode = BPF_MODE(code);
2998
2999 /* LD_IMM64 */
3000 if (mode == BPF_IMM)
3001 return true;
3002
3003 /* Both LD_IND and LD_ABS return 32-bit data. */
3004 if (t != SRC_OP)
3005 return false;
3006
3007 /* Implicit ctx ptr. */
3008 if (regno == BPF_REG_6)
3009 return true;
3010
3011 /* Explicit source could be any width. */
3012 return true;
3013 }
3014
3015 if (class == BPF_ST)
3016 /* The only source register for BPF_ST is a ptr. */
3017 return true;
3018
3019 /* Conservatively return true at default. */
3020 return true;
3021}
3022
83a28819
IL
3023/* Return the regno defined by the insn, or -1. */
3024static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 3025{
83a28819
IL
3026 switch (BPF_CLASS(insn->code)) {
3027 case BPF_JMP:
3028 case BPF_JMP32:
3029 case BPF_ST:
3030 return -1;
3031 case BPF_STX:
3032 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3033 (insn->imm & BPF_FETCH)) {
3034 if (insn->imm == BPF_CMPXCHG)
3035 return BPF_REG_0;
3036 else
3037 return insn->src_reg;
3038 } else {
3039 return -1;
3040 }
3041 default:
3042 return insn->dst_reg;
3043 }
b325fbca
JW
3044}
3045
3046/* Return TRUE if INSN has defined any 32-bit value explicitly. */
3047static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3048{
83a28819
IL
3049 int dst_reg = insn_def_regno(insn);
3050
3051 if (dst_reg == -1)
b325fbca
JW
3052 return false;
3053
83a28819 3054 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
3055}
3056
5327ed3d
JW
3057static void mark_insn_zext(struct bpf_verifier_env *env,
3058 struct bpf_reg_state *reg)
3059{
3060 s32 def_idx = reg->subreg_def;
3061
3062 if (def_idx == DEF_NOT_SUBREG)
3063 return;
3064
3065 env->insn_aux_data[def_idx - 1].zext_dst = true;
3066 /* The dst will be zero extended, so won't be sub-register anymore. */
3067 reg->subreg_def = DEF_NOT_SUBREG;
3068}
3069
dc503a8a 3070static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
3071 enum reg_arg_type t)
3072{
f4d7e40a
AS
3073 struct bpf_verifier_state *vstate = env->cur_state;
3074 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 3075 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 3076 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 3077 bool rw64;
dc503a8a 3078
17a52670 3079 if (regno >= MAX_BPF_REG) {
61bd5218 3080 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
3081 return -EINVAL;
3082 }
3083
0f55f9ed
CL
3084 mark_reg_scratched(env, regno);
3085
c342dc10 3086 reg = &regs[regno];
5327ed3d 3087 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
3088 if (t == SRC_OP) {
3089 /* check whether register used as source operand can be read */
c342dc10 3090 if (reg->type == NOT_INIT) {
61bd5218 3091 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
3092 return -EACCES;
3093 }
679c782d 3094 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
3095 if (regno == BPF_REG_FP)
3096 return 0;
3097
5327ed3d
JW
3098 if (rw64)
3099 mark_insn_zext(env, reg);
3100
3101 return mark_reg_read(env, reg, reg->parent,
3102 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
3103 } else {
3104 /* check whether register used as dest operand can be written to */
3105 if (regno == BPF_REG_FP) {
61bd5218 3106 verbose(env, "frame pointer is read only\n");
17a52670
AS
3107 return -EACCES;
3108 }
c342dc10 3109 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 3110 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 3111 if (t == DST_OP)
61bd5218 3112 mark_reg_unknown(env, regs, regno);
17a52670
AS
3113 }
3114 return 0;
3115}
3116
bffdeaa8
AN
3117static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3118{
3119 env->insn_aux_data[idx].jmp_point = true;
3120}
3121
3122static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3123{
3124 return env->insn_aux_data[insn_idx].jmp_point;
3125}
3126
b5dc0163
AS
3127/* for any branch, call, exit record the history of jmps in the given state */
3128static int push_jmp_history(struct bpf_verifier_env *env,
3129 struct bpf_verifier_state *cur)
3130{
3131 u32 cnt = cur->jmp_history_cnt;
3132 struct bpf_idx_pair *p;
ceb35b66 3133 size_t alloc_size;
b5dc0163 3134
bffdeaa8
AN
3135 if (!is_jmp_point(env, env->insn_idx))
3136 return 0;
3137
b5dc0163 3138 cnt++;
ceb35b66
KC
3139 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3140 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
b5dc0163
AS
3141 if (!p)
3142 return -ENOMEM;
3143 p[cnt - 1].idx = env->insn_idx;
3144 p[cnt - 1].prev_idx = env->prev_insn_idx;
3145 cur->jmp_history = p;
3146 cur->jmp_history_cnt = cnt;
3147 return 0;
3148}
3149
3150/* Backtrack one insn at a time. If idx is not at the top of recorded
3151 * history then previous instruction came from straight line execution.
3152 */
3153static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3154 u32 *history)
3155{
3156 u32 cnt = *history;
3157
3158 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3159 i = st->jmp_history[cnt - 1].prev_idx;
3160 (*history)--;
3161 } else {
3162 i--;
3163 }
3164 return i;
3165}
3166
e6ac2450
MKL
3167static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3168{
3169 const struct btf_type *func;
2357672c 3170 struct btf *desc_btf;
e6ac2450
MKL
3171
3172 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3173 return NULL;
3174
43bf0878 3175 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
3176 if (IS_ERR(desc_btf))
3177 return "<error>";
3178
3179 func = btf_type_by_id(desc_btf, insn->imm);
3180 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
3181}
3182
b5dc0163
AS
3183/* For given verifier state backtrack_insn() is called from the last insn to
3184 * the first insn. Its purpose is to compute a bitmask of registers and
3185 * stack slots that needs precision in the parent verifier state.
3186 */
3187static int backtrack_insn(struct bpf_verifier_env *env, int idx,
3188 u32 *reg_mask, u64 *stack_mask)
3189{
3190 const struct bpf_insn_cbs cbs = {
e6ac2450 3191 .cb_call = disasm_kfunc_name,
b5dc0163
AS
3192 .cb_print = verbose,
3193 .private_data = env,
3194 };
3195 struct bpf_insn *insn = env->prog->insnsi + idx;
3196 u8 class = BPF_CLASS(insn->code);
3197 u8 opcode = BPF_OP(insn->code);
3198 u8 mode = BPF_MODE(insn->code);
3199 u32 dreg = 1u << insn->dst_reg;
3200 u32 sreg = 1u << insn->src_reg;
3201 u32 spi;
3202
3203 if (insn->code == 0)
3204 return 0;
496f3324 3205 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
3206 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
3207 verbose(env, "%d: ", idx);
3208 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3209 }
3210
3211 if (class == BPF_ALU || class == BPF_ALU64) {
3212 if (!(*reg_mask & dreg))
3213 return 0;
3214 if (opcode == BPF_MOV) {
3215 if (BPF_SRC(insn->code) == BPF_X) {
3216 /* dreg = sreg
3217 * dreg needs precision after this insn
3218 * sreg needs precision before this insn
3219 */
3220 *reg_mask &= ~dreg;
3221 *reg_mask |= sreg;
3222 } else {
3223 /* dreg = K
3224 * dreg needs precision after this insn.
3225 * Corresponding register is already marked
3226 * as precise=true in this verifier state.
3227 * No further markings in parent are necessary
3228 */
3229 *reg_mask &= ~dreg;
3230 }
3231 } else {
3232 if (BPF_SRC(insn->code) == BPF_X) {
3233 /* dreg += sreg
3234 * both dreg and sreg need precision
3235 * before this insn
3236 */
3237 *reg_mask |= sreg;
3238 } /* else dreg += K
3239 * dreg still needs precision before this insn
3240 */
3241 }
3242 } else if (class == BPF_LDX) {
3243 if (!(*reg_mask & dreg))
3244 return 0;
3245 *reg_mask &= ~dreg;
3246
3247 /* scalars can only be spilled into stack w/o losing precision.
3248 * Load from any other memory can be zero extended.
3249 * The desire to keep that precision is already indicated
3250 * by 'precise' mark in corresponding register of this state.
3251 * No further tracking necessary.
3252 */
3253 if (insn->src_reg != BPF_REG_FP)
3254 return 0;
b5dc0163
AS
3255
3256 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3257 * that [fp - off] slot contains scalar that needs to be
3258 * tracked with precision
3259 */
3260 spi = (-insn->off - 1) / BPF_REG_SIZE;
3261 if (spi >= 64) {
3262 verbose(env, "BUG spi %d\n", spi);
3263 WARN_ONCE(1, "verifier backtracking bug");
3264 return -EFAULT;
3265 }
3266 *stack_mask |= 1ull << spi;
b3b50f05 3267 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 3268 if (*reg_mask & dreg)
b3b50f05 3269 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
3270 * to access memory. It means backtracking
3271 * encountered a case of pointer subtraction.
3272 */
3273 return -ENOTSUPP;
3274 /* scalars can only be spilled into stack */
3275 if (insn->dst_reg != BPF_REG_FP)
3276 return 0;
b5dc0163
AS
3277 spi = (-insn->off - 1) / BPF_REG_SIZE;
3278 if (spi >= 64) {
3279 verbose(env, "BUG spi %d\n", spi);
3280 WARN_ONCE(1, "verifier backtracking bug");
3281 return -EFAULT;
3282 }
3283 if (!(*stack_mask & (1ull << spi)))
3284 return 0;
3285 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
3286 if (class == BPF_STX)
3287 *reg_mask |= sreg;
b5dc0163
AS
3288 } else if (class == BPF_JMP || class == BPF_JMP32) {
3289 if (opcode == BPF_CALL) {
3290 if (insn->src_reg == BPF_PSEUDO_CALL)
3291 return -ENOTSUPP;
be2ef816
AN
3292 /* BPF helpers that invoke callback subprogs are
3293 * equivalent to BPF_PSEUDO_CALL above
3294 */
3295 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
3296 return -ENOTSUPP;
d3178e8a
HS
3297 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3298 * catch this error later. Make backtracking conservative
3299 * with ENOTSUPP.
3300 */
3301 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3302 return -ENOTSUPP;
b5dc0163
AS
3303 /* regular helper call sets R0 */
3304 *reg_mask &= ~1;
3305 if (*reg_mask & 0x3f) {
3306 /* if backtracing was looking for registers R1-R5
3307 * they should have been found already.
3308 */
3309 verbose(env, "BUG regs %x\n", *reg_mask);
3310 WARN_ONCE(1, "verifier backtracking bug");
3311 return -EFAULT;
3312 }
3313 } else if (opcode == BPF_EXIT) {
3314 return -ENOTSUPP;
3315 }
3316 } else if (class == BPF_LD) {
3317 if (!(*reg_mask & dreg))
3318 return 0;
3319 *reg_mask &= ~dreg;
3320 /* It's ld_imm64 or ld_abs or ld_ind.
3321 * For ld_imm64 no further tracking of precision
3322 * into parent is necessary
3323 */
3324 if (mode == BPF_IND || mode == BPF_ABS)
3325 /* to be analyzed */
3326 return -ENOTSUPP;
b5dc0163
AS
3327 }
3328 return 0;
3329}
3330
3331/* the scalar precision tracking algorithm:
3332 * . at the start all registers have precise=false.
3333 * . scalar ranges are tracked as normal through alu and jmp insns.
3334 * . once precise value of the scalar register is used in:
3335 * . ptr + scalar alu
3336 * . if (scalar cond K|scalar)
3337 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3338 * backtrack through the verifier states and mark all registers and
3339 * stack slots with spilled constants that these scalar regisers
3340 * should be precise.
3341 * . during state pruning two registers (or spilled stack slots)
3342 * are equivalent if both are not precise.
3343 *
3344 * Note the verifier cannot simply walk register parentage chain,
3345 * since many different registers and stack slots could have been
3346 * used to compute single precise scalar.
3347 *
3348 * The approach of starting with precise=true for all registers and then
3349 * backtrack to mark a register as not precise when the verifier detects
3350 * that program doesn't care about specific value (e.g., when helper
3351 * takes register as ARG_ANYTHING parameter) is not safe.
3352 *
3353 * It's ok to walk single parentage chain of the verifier states.
3354 * It's possible that this backtracking will go all the way till 1st insn.
3355 * All other branches will be explored for needing precision later.
3356 *
3357 * The backtracking needs to deal with cases like:
3358 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3359 * r9 -= r8
3360 * r5 = r9
3361 * if r5 > 0x79f goto pc+7
3362 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3363 * r5 += 1
3364 * ...
3365 * call bpf_perf_event_output#25
3366 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3367 *
3368 * and this case:
3369 * r6 = 1
3370 * call foo // uses callee's r6 inside to compute r0
3371 * r0 += r6
3372 * if r0 == 0 goto
3373 *
3374 * to track above reg_mask/stack_mask needs to be independent for each frame.
3375 *
3376 * Also if parent's curframe > frame where backtracking started,
3377 * the verifier need to mark registers in both frames, otherwise callees
3378 * may incorrectly prune callers. This is similar to
3379 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3380 *
3381 * For now backtracking falls back into conservative marking.
3382 */
3383static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3384 struct bpf_verifier_state *st)
3385{
3386 struct bpf_func_state *func;
3387 struct bpf_reg_state *reg;
3388 int i, j;
3389
3390 /* big hammer: mark all scalars precise in this path.
3391 * pop_stack may still get !precise scalars.
f63181b6
AN
3392 * We also skip current state and go straight to first parent state,
3393 * because precision markings in current non-checkpointed state are
3394 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 3395 */
f63181b6 3396 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
3397 for (i = 0; i <= st->curframe; i++) {
3398 func = st->frame[i];
3399 for (j = 0; j < BPF_REG_FP; j++) {
3400 reg = &func->regs[j];
3401 if (reg->type != SCALAR_VALUE)
3402 continue;
3403 reg->precise = true;
3404 }
3405 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 3406 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
3407 continue;
3408 reg = &func->stack[j].spilled_ptr;
3409 if (reg->type != SCALAR_VALUE)
3410 continue;
3411 reg->precise = true;
3412 }
3413 }
f63181b6 3414 }
b5dc0163
AS
3415}
3416
7a830b53
AN
3417static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3418{
3419 struct bpf_func_state *func;
3420 struct bpf_reg_state *reg;
3421 int i, j;
3422
3423 for (i = 0; i <= st->curframe; i++) {
3424 func = st->frame[i];
3425 for (j = 0; j < BPF_REG_FP; j++) {
3426 reg = &func->regs[j];
3427 if (reg->type != SCALAR_VALUE)
3428 continue;
3429 reg->precise = false;
3430 }
3431 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3432 if (!is_spilled_reg(&func->stack[j]))
3433 continue;
3434 reg = &func->stack[j].spilled_ptr;
3435 if (reg->type != SCALAR_VALUE)
3436 continue;
3437 reg->precise = false;
3438 }
3439 }
3440}
3441
f63181b6
AN
3442/*
3443 * __mark_chain_precision() backtracks BPF program instruction sequence and
3444 * chain of verifier states making sure that register *regno* (if regno >= 0)
3445 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3446 * SCALARS, as well as any other registers and slots that contribute to
3447 * a tracked state of given registers/stack slots, depending on specific BPF
3448 * assembly instructions (see backtrack_insns() for exact instruction handling
3449 * logic). This backtracking relies on recorded jmp_history and is able to
3450 * traverse entire chain of parent states. This process ends only when all the
3451 * necessary registers/slots and their transitive dependencies are marked as
3452 * precise.
3453 *
3454 * One important and subtle aspect is that precise marks *do not matter* in
3455 * the currently verified state (current state). It is important to understand
3456 * why this is the case.
3457 *
3458 * First, note that current state is the state that is not yet "checkpointed",
3459 * i.e., it is not yet put into env->explored_states, and it has no children
3460 * states as well. It's ephemeral, and can end up either a) being discarded if
3461 * compatible explored state is found at some point or BPF_EXIT instruction is
3462 * reached or b) checkpointed and put into env->explored_states, branching out
3463 * into one or more children states.
3464 *
3465 * In the former case, precise markings in current state are completely
3466 * ignored by state comparison code (see regsafe() for details). Only
3467 * checkpointed ("old") state precise markings are important, and if old
3468 * state's register/slot is precise, regsafe() assumes current state's
3469 * register/slot as precise and checks value ranges exactly and precisely. If
3470 * states turn out to be compatible, current state's necessary precise
3471 * markings and any required parent states' precise markings are enforced
3472 * after the fact with propagate_precision() logic, after the fact. But it's
3473 * important to realize that in this case, even after marking current state
3474 * registers/slots as precise, we immediately discard current state. So what
3475 * actually matters is any of the precise markings propagated into current
3476 * state's parent states, which are always checkpointed (due to b) case above).
3477 * As such, for scenario a) it doesn't matter if current state has precise
3478 * markings set or not.
3479 *
3480 * Now, for the scenario b), checkpointing and forking into child(ren)
3481 * state(s). Note that before current state gets to checkpointing step, any
3482 * processed instruction always assumes precise SCALAR register/slot
3483 * knowledge: if precise value or range is useful to prune jump branch, BPF
3484 * verifier takes this opportunity enthusiastically. Similarly, when
3485 * register's value is used to calculate offset or memory address, exact
3486 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3487 * what we mentioned above about state comparison ignoring precise markings
3488 * during state comparison, BPF verifier ignores and also assumes precise
3489 * markings *at will* during instruction verification process. But as verifier
3490 * assumes precision, it also propagates any precision dependencies across
3491 * parent states, which are not yet finalized, so can be further restricted
3492 * based on new knowledge gained from restrictions enforced by their children
3493 * states. This is so that once those parent states are finalized, i.e., when
3494 * they have no more active children state, state comparison logic in
3495 * is_state_visited() would enforce strict and precise SCALAR ranges, if
3496 * required for correctness.
3497 *
3498 * To build a bit more intuition, note also that once a state is checkpointed,
3499 * the path we took to get to that state is not important. This is crucial
3500 * property for state pruning. When state is checkpointed and finalized at
3501 * some instruction index, it can be correctly and safely used to "short
3502 * circuit" any *compatible* state that reaches exactly the same instruction
3503 * index. I.e., if we jumped to that instruction from a completely different
3504 * code path than original finalized state was derived from, it doesn't
3505 * matter, current state can be discarded because from that instruction
3506 * forward having a compatible state will ensure we will safely reach the
3507 * exit. States describe preconditions for further exploration, but completely
3508 * forget the history of how we got here.
3509 *
3510 * This also means that even if we needed precise SCALAR range to get to
3511 * finalized state, but from that point forward *that same* SCALAR register is
3512 * never used in a precise context (i.e., it's precise value is not needed for
3513 * correctness), it's correct and safe to mark such register as "imprecise"
3514 * (i.e., precise marking set to false). This is what we rely on when we do
3515 * not set precise marking in current state. If no child state requires
3516 * precision for any given SCALAR register, it's safe to dictate that it can
3517 * be imprecise. If any child state does require this register to be precise,
3518 * we'll mark it precise later retroactively during precise markings
3519 * propagation from child state to parent states.
7a830b53
AN
3520 *
3521 * Skipping precise marking setting in current state is a mild version of
3522 * relying on the above observation. But we can utilize this property even
3523 * more aggressively by proactively forgetting any precise marking in the
3524 * current state (which we inherited from the parent state), right before we
3525 * checkpoint it and branch off into new child state. This is done by
3526 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3527 * finalized states which help in short circuiting more future states.
f63181b6 3528 */
529409ea 3529static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
a3ce685d 3530 int spi)
b5dc0163
AS
3531{
3532 struct bpf_verifier_state *st = env->cur_state;
3533 int first_idx = st->first_insn_idx;
3534 int last_idx = env->insn_idx;
3535 struct bpf_func_state *func;
3536 struct bpf_reg_state *reg;
a3ce685d
AS
3537 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3538 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 3539 bool skip_first = true;
a3ce685d 3540 bool new_marks = false;
b5dc0163
AS
3541 int i, err;
3542
2c78ee89 3543 if (!env->bpf_capable)
b5dc0163
AS
3544 return 0;
3545
f63181b6
AN
3546 /* Do sanity checks against current state of register and/or stack
3547 * slot, but don't set precise flag in current state, as precision
3548 * tracking in the current state is unnecessary.
3549 */
529409ea 3550 func = st->frame[frame];
a3ce685d
AS
3551 if (regno >= 0) {
3552 reg = &func->regs[regno];
3553 if (reg->type != SCALAR_VALUE) {
3554 WARN_ONCE(1, "backtracing misuse");
3555 return -EFAULT;
3556 }
f63181b6 3557 new_marks = true;
b5dc0163 3558 }
b5dc0163 3559
a3ce685d 3560 while (spi >= 0) {
27113c59 3561 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
3562 stack_mask = 0;
3563 break;
3564 }
3565 reg = &func->stack[spi].spilled_ptr;
3566 if (reg->type != SCALAR_VALUE) {
3567 stack_mask = 0;
3568 break;
3569 }
f63181b6 3570 new_marks = true;
a3ce685d
AS
3571 break;
3572 }
3573
3574 if (!new_marks)
3575 return 0;
3576 if (!reg_mask && !stack_mask)
3577 return 0;
be2ef816 3578
b5dc0163
AS
3579 for (;;) {
3580 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
3581 u32 history = st->jmp_history_cnt;
3582
496f3324 3583 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163 3584 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
be2ef816
AN
3585
3586 if (last_idx < 0) {
3587 /* we are at the entry into subprog, which
3588 * is expected for global funcs, but only if
3589 * requested precise registers are R1-R5
3590 * (which are global func's input arguments)
3591 */
3592 if (st->curframe == 0 &&
3593 st->frame[0]->subprogno > 0 &&
3594 st->frame[0]->callsite == BPF_MAIN_FUNC &&
3595 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3596 bitmap_from_u64(mask, reg_mask);
3597 for_each_set_bit(i, mask, 32) {
3598 reg = &st->frame[0]->regs[i];
3599 if (reg->type != SCALAR_VALUE) {
3600 reg_mask &= ~(1u << i);
3601 continue;
3602 }
3603 reg->precise = true;
3604 }
3605 return 0;
3606 }
3607
3608 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3609 st->frame[0]->subprogno, reg_mask, stack_mask);
3610 WARN_ONCE(1, "verifier backtracking bug");
3611 return -EFAULT;
3612 }
3613
b5dc0163
AS
3614 for (i = last_idx;;) {
3615 if (skip_first) {
3616 err = 0;
3617 skip_first = false;
3618 } else {
3619 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3620 }
3621 if (err == -ENOTSUPP) {
3622 mark_all_scalars_precise(env, st);
3623 return 0;
3624 } else if (err) {
3625 return err;
3626 }
3627 if (!reg_mask && !stack_mask)
3628 /* Found assignment(s) into tracked register in this state.
3629 * Since this state is already marked, just return.
3630 * Nothing to be tracked further in the parent state.
3631 */
3632 return 0;
3633 if (i == first_idx)
3634 break;
3635 i = get_prev_insn_idx(st, i, &history);
3636 if (i >= env->prog->len) {
3637 /* This can happen if backtracking reached insn 0
3638 * and there are still reg_mask or stack_mask
3639 * to backtrack.
3640 * It means the backtracking missed the spot where
3641 * particular register was initialized with a constant.
3642 */
3643 verbose(env, "BUG backtracking idx %d\n", i);
3644 WARN_ONCE(1, "verifier backtracking bug");
3645 return -EFAULT;
3646 }
3647 }
3648 st = st->parent;
3649 if (!st)
3650 break;
3651
a3ce685d 3652 new_marks = false;
529409ea 3653 func = st->frame[frame];
b5dc0163
AS
3654 bitmap_from_u64(mask, reg_mask);
3655 for_each_set_bit(i, mask, 32) {
3656 reg = &func->regs[i];
a3ce685d
AS
3657 if (reg->type != SCALAR_VALUE) {
3658 reg_mask &= ~(1u << i);
b5dc0163 3659 continue;
a3ce685d 3660 }
b5dc0163
AS
3661 if (!reg->precise)
3662 new_marks = true;
3663 reg->precise = true;
3664 }
3665
3666 bitmap_from_u64(mask, stack_mask);
3667 for_each_set_bit(i, mask, 64) {
3668 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
3669 /* the sequence of instructions:
3670 * 2: (bf) r3 = r10
3671 * 3: (7b) *(u64 *)(r3 -8) = r0
3672 * 4: (79) r4 = *(u64 *)(r10 -8)
3673 * doesn't contain jmps. It's backtracked
3674 * as a single block.
3675 * During backtracking insn 3 is not recognized as
3676 * stack access, so at the end of backtracking
3677 * stack slot fp-8 is still marked in stack_mask.
3678 * However the parent state may not have accessed
3679 * fp-8 and it's "unallocated" stack space.
3680 * In such case fallback to conservative.
b5dc0163 3681 */
2339cd6c
AS
3682 mark_all_scalars_precise(env, st);
3683 return 0;
b5dc0163
AS
3684 }
3685
27113c59 3686 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 3687 stack_mask &= ~(1ull << i);
b5dc0163 3688 continue;
a3ce685d 3689 }
b5dc0163 3690 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
3691 if (reg->type != SCALAR_VALUE) {
3692 stack_mask &= ~(1ull << i);
b5dc0163 3693 continue;
a3ce685d 3694 }
b5dc0163
AS
3695 if (!reg->precise)
3696 new_marks = true;
3697 reg->precise = true;
3698 }
496f3324 3699 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 3700 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
3701 new_marks ? "didn't have" : "already had",
3702 reg_mask, stack_mask);
2e576648 3703 print_verifier_state(env, func, true);
b5dc0163
AS
3704 }
3705
a3ce685d
AS
3706 if (!reg_mask && !stack_mask)
3707 break;
b5dc0163
AS
3708 if (!new_marks)
3709 break;
3710
3711 last_idx = st->last_insn_idx;
3712 first_idx = st->first_insn_idx;
3713 }
3714 return 0;
3715}
3716
eb1f7f71 3717int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 3718{
529409ea 3719 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
a3ce685d
AS
3720}
3721
529409ea 3722static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
a3ce685d 3723{
529409ea 3724 return __mark_chain_precision(env, frame, regno, -1);
a3ce685d
AS
3725}
3726
529409ea 3727static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
a3ce685d 3728{
529409ea 3729 return __mark_chain_precision(env, frame, -1, spi);
a3ce685d 3730}
b5dc0163 3731
1be7f75d
AS
3732static bool is_spillable_regtype(enum bpf_reg_type type)
3733{
c25b2ae1 3734 switch (base_type(type)) {
1be7f75d 3735 case PTR_TO_MAP_VALUE:
1be7f75d
AS
3736 case PTR_TO_STACK:
3737 case PTR_TO_CTX:
969bf05e 3738 case PTR_TO_PACKET:
de8f3a83 3739 case PTR_TO_PACKET_META:
969bf05e 3740 case PTR_TO_PACKET_END:
d58e468b 3741 case PTR_TO_FLOW_KEYS:
1be7f75d 3742 case CONST_PTR_TO_MAP:
c64b7983 3743 case PTR_TO_SOCKET:
46f8bc92 3744 case PTR_TO_SOCK_COMMON:
655a51e5 3745 case PTR_TO_TCP_SOCK:
fada7fdc 3746 case PTR_TO_XDP_SOCK:
65726b5b 3747 case PTR_TO_BTF_ID:
20b2aff4 3748 case PTR_TO_BUF:
744ea4e3 3749 case PTR_TO_MEM:
69c087ba
YS
3750 case PTR_TO_FUNC:
3751 case PTR_TO_MAP_KEY:
1be7f75d
AS
3752 return true;
3753 default:
3754 return false;
3755 }
3756}
3757
cc2b14d5
AS
3758/* Does this register contain a constant zero? */
3759static bool register_is_null(struct bpf_reg_state *reg)
3760{
3761 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3762}
3763
f7cf25b2
AS
3764static bool register_is_const(struct bpf_reg_state *reg)
3765{
3766 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3767}
3768
5689d49b
YS
3769static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3770{
3771 return tnum_is_unknown(reg->var_off) &&
3772 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3773 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3774 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3775 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3776}
3777
3778static bool register_is_bounded(struct bpf_reg_state *reg)
3779{
3780 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3781}
3782
6e7e63cb
JH
3783static bool __is_pointer_value(bool allow_ptr_leaks,
3784 const struct bpf_reg_state *reg)
3785{
3786 if (allow_ptr_leaks)
3787 return false;
3788
3789 return reg->type != SCALAR_VALUE;
3790}
3791
71f656a5
EZ
3792/* Copy src state preserving dst->parent and dst->live fields */
3793static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
3794{
3795 struct bpf_reg_state *parent = dst->parent;
3796 enum bpf_reg_liveness live = dst->live;
3797
3798 *dst = *src;
3799 dst->parent = parent;
3800 dst->live = live;
3801}
3802
f7cf25b2 3803static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
3804 int spi, struct bpf_reg_state *reg,
3805 int size)
f7cf25b2
AS
3806{
3807 int i;
3808
71f656a5 3809 copy_register_state(&state->stack[spi].spilled_ptr, reg);
354e8f19
MKL
3810 if (size == BPF_REG_SIZE)
3811 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3812
354e8f19
MKL
3813 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3814 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3815
354e8f19
MKL
3816 /* size < 8 bytes spill */
3817 for (; i; i--)
3818 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3819}
3820
ecdf985d
EZ
3821static bool is_bpf_st_mem(struct bpf_insn *insn)
3822{
3823 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
3824}
3825
01f810ac 3826/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3827 * stack boundary and alignment are checked in check_mem_access()
3828 */
01f810ac
AM
3829static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3830 /* stack frame we're writing to */
3831 struct bpf_func_state *state,
3832 int off, int size, int value_regno,
3833 int insn_idx)
17a52670 3834{
f4d7e40a 3835 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3836 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
ecdf985d 3837 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
f7cf25b2 3838 struct bpf_reg_state *reg = NULL;
ecdf985d 3839 u32 dst_reg = insn->dst_reg;
638f5b90 3840
c69431aa 3841 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3842 if (err)
3843 return err;
9c399760
AS
3844 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3845 * so it's aligned access and [off, off + size) are within stack limits
3846 */
638f5b90
AS
3847 if (!env->allow_ptr_leaks &&
3848 state->stack[spi].slot_type[0] == STACK_SPILL &&
3849 size != BPF_REG_SIZE) {
3850 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3851 return -EACCES;
3852 }
17a52670 3853
f4d7e40a 3854 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3855 if (value_regno >= 0)
3856 reg = &cur->regs[value_regno];
2039f26f
DB
3857 if (!env->bypass_spec_v4) {
3858 bool sanitize = reg && is_spillable_regtype(reg->type);
3859
3860 for (i = 0; i < size; i++) {
e4f4db47
LG
3861 u8 type = state->stack[spi].slot_type[i];
3862
3863 if (type != STACK_MISC && type != STACK_ZERO) {
2039f26f
DB
3864 sanitize = true;
3865 break;
3866 }
3867 }
3868
3869 if (sanitize)
3870 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3871 }
17a52670 3872
ef8fc7a0
KKD
3873 err = destroy_if_dynptr_stack_slot(env, state, spi);
3874 if (err)
3875 return err;
3876
0f55f9ed 3877 mark_stack_slot_scratched(env, spi);
354e8f19 3878 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3879 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3880 if (dst_reg != BPF_REG_FP) {
3881 /* The backtracking logic can only recognize explicit
3882 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3883 * scalar via different register has to be conservative.
b5dc0163
AS
3884 * Backtrack from here and mark all registers as precise
3885 * that contributed into 'reg' being a constant.
3886 */
3887 err = mark_chain_precision(env, value_regno);
3888 if (err)
3889 return err;
3890 }
354e8f19 3891 save_register_state(state, spi, reg, size);
ecdf985d
EZ
3892 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
3893 insn->imm != 0 && env->bpf_capable) {
3894 struct bpf_reg_state fake_reg = {};
3895
3896 __mark_reg_known(&fake_reg, (u32)insn->imm);
3897 fake_reg.type = SCALAR_VALUE;
3898 save_register_state(state, spi, &fake_reg, size);
f7cf25b2 3899 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3900 /* register containing pointer is being spilled into stack */
9c399760 3901 if (size != BPF_REG_SIZE) {
f7cf25b2 3902 verbose_linfo(env, insn_idx, "; ");
61bd5218 3903 verbose(env, "invalid size of register spill\n");
17a52670
AS
3904 return -EACCES;
3905 }
f7cf25b2 3906 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3907 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3908 return -EINVAL;
3909 }
354e8f19 3910 save_register_state(state, spi, reg, size);
9c399760 3911 } else {
cc2b14d5
AS
3912 u8 type = STACK_MISC;
3913
679c782d
EC
3914 /* regular write of data into stack destroys any spilled ptr */
3915 state->stack[spi].spilled_ptr.type = NOT_INIT;
06accc87
AN
3916 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
3917 if (is_stack_slot_special(&state->stack[spi]))
0bae2d4d 3918 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3919 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3920
cc2b14d5
AS
3921 /* only mark the slot as written if all 8 bytes were written
3922 * otherwise read propagation may incorrectly stop too soon
3923 * when stack slots are partially written.
3924 * This heuristic means that read propagation will be
3925 * conservative, since it will add reg_live_read marks
3926 * to stack slots all the way to first state when programs
3927 * writes+reads less than 8 bytes
3928 */
3929 if (size == BPF_REG_SIZE)
3930 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3931
3932 /* when we zero initialize stack slots mark them as such */
ecdf985d
EZ
3933 if ((reg && register_is_null(reg)) ||
3934 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
b5dc0163
AS
3935 /* backtracking doesn't work for STACK_ZERO yet. */
3936 err = mark_chain_precision(env, value_regno);
3937 if (err)
3938 return err;
cc2b14d5 3939 type = STACK_ZERO;
b5dc0163 3940 }
cc2b14d5 3941
0bae2d4d 3942 /* Mark slots affected by this stack write. */
9c399760 3943 for (i = 0; i < size; i++)
638f5b90 3944 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3945 type;
17a52670
AS
3946 }
3947 return 0;
3948}
3949
01f810ac
AM
3950/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3951 * known to contain a variable offset.
3952 * This function checks whether the write is permitted and conservatively
3953 * tracks the effects of the write, considering that each stack slot in the
3954 * dynamic range is potentially written to.
3955 *
3956 * 'off' includes 'regno->off'.
3957 * 'value_regno' can be -1, meaning that an unknown value is being written to
3958 * the stack.
3959 *
3960 * Spilled pointers in range are not marked as written because we don't know
3961 * what's going to be actually written. This means that read propagation for
3962 * future reads cannot be terminated by this write.
3963 *
3964 * For privileged programs, uninitialized stack slots are considered
3965 * initialized by this write (even though we don't know exactly what offsets
3966 * are going to be written to). The idea is that we don't want the verifier to
3967 * reject future reads that access slots written to through variable offsets.
3968 */
3969static int check_stack_write_var_off(struct bpf_verifier_env *env,
3970 /* func where register points to */
3971 struct bpf_func_state *state,
3972 int ptr_regno, int off, int size,
3973 int value_regno, int insn_idx)
3974{
3975 struct bpf_func_state *cur; /* state of the current function */
3976 int min_off, max_off;
3977 int i, err;
3978 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
31ff2135 3979 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
01f810ac
AM
3980 bool writing_zero = false;
3981 /* set if the fact that we're writing a zero is used to let any
3982 * stack slots remain STACK_ZERO
3983 */
3984 bool zero_used = false;
3985
3986 cur = env->cur_state->frame[env->cur_state->curframe];
3987 ptr_reg = &cur->regs[ptr_regno];
3988 min_off = ptr_reg->smin_value + off;
3989 max_off = ptr_reg->smax_value + off + size;
3990 if (value_regno >= 0)
3991 value_reg = &cur->regs[value_regno];
31ff2135
EZ
3992 if ((value_reg && register_is_null(value_reg)) ||
3993 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
01f810ac
AM
3994 writing_zero = true;
3995
c69431aa 3996 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3997 if (err)
3998 return err;
3999
ef8fc7a0
KKD
4000 for (i = min_off; i < max_off; i++) {
4001 int spi;
4002
4003 spi = __get_spi(i);
4004 err = destroy_if_dynptr_stack_slot(env, state, spi);
4005 if (err)
4006 return err;
4007 }
01f810ac
AM
4008
4009 /* Variable offset writes destroy any spilled pointers in range. */
4010 for (i = min_off; i < max_off; i++) {
4011 u8 new_type, *stype;
4012 int slot, spi;
4013
4014 slot = -i - 1;
4015 spi = slot / BPF_REG_SIZE;
4016 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 4017 mark_stack_slot_scratched(env, spi);
01f810ac 4018
f5e477a8
KKD
4019 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4020 /* Reject the write if range we may write to has not
4021 * been initialized beforehand. If we didn't reject
4022 * here, the ptr status would be erased below (even
4023 * though not all slots are actually overwritten),
4024 * possibly opening the door to leaks.
4025 *
4026 * We do however catch STACK_INVALID case below, and
4027 * only allow reading possibly uninitialized memory
4028 * later for CAP_PERFMON, as the write may not happen to
4029 * that slot.
01f810ac
AM
4030 */
4031 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4032 insn_idx, i);
4033 return -EINVAL;
4034 }
4035
4036 /* Erase all spilled pointers. */
4037 state->stack[spi].spilled_ptr.type = NOT_INIT;
4038
4039 /* Update the slot type. */
4040 new_type = STACK_MISC;
4041 if (writing_zero && *stype == STACK_ZERO) {
4042 new_type = STACK_ZERO;
4043 zero_used = true;
4044 }
4045 /* If the slot is STACK_INVALID, we check whether it's OK to
4046 * pretend that it will be initialized by this write. The slot
4047 * might not actually be written to, and so if we mark it as
4048 * initialized future reads might leak uninitialized memory.
4049 * For privileged programs, we will accept such reads to slots
4050 * that may or may not be written because, if we're reject
4051 * them, the error would be too confusing.
4052 */
4053 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4054 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4055 insn_idx, i);
4056 return -EINVAL;
4057 }
4058 *stype = new_type;
4059 }
4060 if (zero_used) {
4061 /* backtracking doesn't work for STACK_ZERO yet. */
4062 err = mark_chain_precision(env, value_regno);
4063 if (err)
4064 return err;
4065 }
4066 return 0;
4067}
4068
4069/* When register 'dst_regno' is assigned some values from stack[min_off,
4070 * max_off), we set the register's type according to the types of the
4071 * respective stack slots. If all the stack values are known to be zeros, then
4072 * so is the destination reg. Otherwise, the register is considered to be
4073 * SCALAR. This function does not deal with register filling; the caller must
4074 * ensure that all spilled registers in the stack range have been marked as
4075 * read.
4076 */
4077static void mark_reg_stack_read(struct bpf_verifier_env *env,
4078 /* func where src register points to */
4079 struct bpf_func_state *ptr_state,
4080 int min_off, int max_off, int dst_regno)
4081{
4082 struct bpf_verifier_state *vstate = env->cur_state;
4083 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4084 int i, slot, spi;
4085 u8 *stype;
4086 int zeros = 0;
4087
4088 for (i = min_off; i < max_off; i++) {
4089 slot = -i - 1;
4090 spi = slot / BPF_REG_SIZE;
4091 stype = ptr_state->stack[spi].slot_type;
4092 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4093 break;
4094 zeros++;
4095 }
4096 if (zeros == max_off - min_off) {
4097 /* any access_size read into register is zero extended,
4098 * so the whole register == const_zero
4099 */
4100 __mark_reg_const_zero(&state->regs[dst_regno]);
4101 /* backtracking doesn't support STACK_ZERO yet,
4102 * so mark it precise here, so that later
4103 * backtracking can stop here.
4104 * Backtracking may not need this if this register
4105 * doesn't participate in pointer adjustment.
4106 * Forward propagation of precise flag is not
4107 * necessary either. This mark is only to stop
4108 * backtracking. Any register that contributed
4109 * to const 0 was marked precise before spill.
4110 */
4111 state->regs[dst_regno].precise = true;
4112 } else {
4113 /* have read misc data from the stack */
4114 mark_reg_unknown(env, state->regs, dst_regno);
4115 }
4116 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4117}
4118
4119/* Read the stack at 'off' and put the results into the register indicated by
4120 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4121 * spilled reg.
4122 *
4123 * 'dst_regno' can be -1, meaning that the read value is not going to a
4124 * register.
4125 *
4126 * The access is assumed to be within the current stack bounds.
4127 */
4128static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4129 /* func where src register points to */
4130 struct bpf_func_state *reg_state,
4131 int off, int size, int dst_regno)
17a52670 4132{
f4d7e40a
AS
4133 struct bpf_verifier_state *vstate = env->cur_state;
4134 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 4135 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 4136 struct bpf_reg_state *reg;
354e8f19 4137 u8 *stype, type;
17a52670 4138
f4d7e40a 4139 stype = reg_state->stack[spi].slot_type;
f7cf25b2 4140 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 4141
27113c59 4142 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
4143 u8 spill_size = 1;
4144
4145 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4146 spill_size++;
354e8f19 4147
f30d4968 4148 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
4149 if (reg->type != SCALAR_VALUE) {
4150 verbose_linfo(env, env->insn_idx, "; ");
4151 verbose(env, "invalid size of register fill\n");
4152 return -EACCES;
4153 }
354e8f19
MKL
4154
4155 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4156 if (dst_regno < 0)
4157 return 0;
4158
f30d4968 4159 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
4160 /* The earlier check_reg_arg() has decided the
4161 * subreg_def for this insn. Save it first.
4162 */
4163 s32 subreg_def = state->regs[dst_regno].subreg_def;
4164
71f656a5 4165 copy_register_state(&state->regs[dst_regno], reg);
354e8f19
MKL
4166 state->regs[dst_regno].subreg_def = subreg_def;
4167 } else {
4168 for (i = 0; i < size; i++) {
4169 type = stype[(slot - i) % BPF_REG_SIZE];
4170 if (type == STACK_SPILL)
4171 continue;
4172 if (type == STACK_MISC)
4173 continue;
6715df8d
EZ
4174 if (type == STACK_INVALID && env->allow_uninit_stack)
4175 continue;
354e8f19
MKL
4176 verbose(env, "invalid read from stack off %d+%d size %d\n",
4177 off, i, size);
4178 return -EACCES;
4179 }
01f810ac 4180 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 4181 }
354e8f19 4182 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 4183 return 0;
17a52670 4184 }
17a52670 4185
01f810ac 4186 if (dst_regno >= 0) {
17a52670 4187 /* restore register state from stack */
71f656a5 4188 copy_register_state(&state->regs[dst_regno], reg);
2f18f62e
AS
4189 /* mark reg as written since spilled pointer state likely
4190 * has its liveness marks cleared by is_state_visited()
4191 * which resets stack/reg liveness for state transitions
4192 */
01f810ac 4193 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 4194 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 4195 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
4196 * it is acceptable to use this value as a SCALAR_VALUE
4197 * (e.g. for XADD).
4198 * We must not allow unprivileged callers to do that
4199 * with spilled pointers.
4200 */
4201 verbose(env, "leaking pointer from stack off %d\n",
4202 off);
4203 return -EACCES;
dc503a8a 4204 }
f7cf25b2 4205 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
4206 } else {
4207 for (i = 0; i < size; i++) {
01f810ac
AM
4208 type = stype[(slot - i) % BPF_REG_SIZE];
4209 if (type == STACK_MISC)
cc2b14d5 4210 continue;
01f810ac 4211 if (type == STACK_ZERO)
cc2b14d5 4212 continue;
6715df8d
EZ
4213 if (type == STACK_INVALID && env->allow_uninit_stack)
4214 continue;
cc2b14d5
AS
4215 verbose(env, "invalid read from stack off %d+%d size %d\n",
4216 off, i, size);
4217 return -EACCES;
4218 }
f7cf25b2 4219 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
4220 if (dst_regno >= 0)
4221 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 4222 }
f7cf25b2 4223 return 0;
17a52670
AS
4224}
4225
61df10c7 4226enum bpf_access_src {
01f810ac
AM
4227 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4228 ACCESS_HELPER = 2, /* the access is performed by a helper */
4229};
4230
4231static int check_stack_range_initialized(struct bpf_verifier_env *env,
4232 int regno, int off, int access_size,
4233 bool zero_size_allowed,
61df10c7 4234 enum bpf_access_src type,
01f810ac
AM
4235 struct bpf_call_arg_meta *meta);
4236
4237static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4238{
4239 return cur_regs(env) + regno;
4240}
4241
4242/* Read the stack at 'ptr_regno + off' and put the result into the register
4243 * 'dst_regno'.
4244 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4245 * but not its variable offset.
4246 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4247 *
4248 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4249 * filling registers (i.e. reads of spilled register cannot be detected when
4250 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4251 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4252 * offset; for a fixed offset check_stack_read_fixed_off should be used
4253 * instead.
4254 */
4255static int check_stack_read_var_off(struct bpf_verifier_env *env,
4256 int ptr_regno, int off, int size, int dst_regno)
e4298d25 4257{
01f810ac
AM
4258 /* The state of the source register. */
4259 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4260 struct bpf_func_state *ptr_state = func(env, reg);
4261 int err;
4262 int min_off, max_off;
4263
4264 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 4265 */
01f810ac
AM
4266 err = check_stack_range_initialized(env, ptr_regno, off, size,
4267 false, ACCESS_DIRECT, NULL);
4268 if (err)
4269 return err;
4270
4271 min_off = reg->smin_value + off;
4272 max_off = reg->smax_value + off;
4273 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4274 return 0;
4275}
4276
4277/* check_stack_read dispatches to check_stack_read_fixed_off or
4278 * check_stack_read_var_off.
4279 *
4280 * The caller must ensure that the offset falls within the allocated stack
4281 * bounds.
4282 *
4283 * 'dst_regno' is a register which will receive the value from the stack. It
4284 * can be -1, meaning that the read value is not going to a register.
4285 */
4286static int check_stack_read(struct bpf_verifier_env *env,
4287 int ptr_regno, int off, int size,
4288 int dst_regno)
4289{
4290 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4291 struct bpf_func_state *state = func(env, reg);
4292 int err;
4293 /* Some accesses are only permitted with a static offset. */
4294 bool var_off = !tnum_is_const(reg->var_off);
4295
4296 /* The offset is required to be static when reads don't go to a
4297 * register, in order to not leak pointers (see
4298 * check_stack_read_fixed_off).
4299 */
4300 if (dst_regno < 0 && var_off) {
e4298d25
DB
4301 char tn_buf[48];
4302
4303 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 4304 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
4305 tn_buf, off, size);
4306 return -EACCES;
4307 }
01f810ac
AM
4308 /* Variable offset is prohibited for unprivileged mode for simplicity
4309 * since it requires corresponding support in Spectre masking for stack
082cdc69
LG
4310 * ALU. See also retrieve_ptr_limit(). The check in
4311 * check_stack_access_for_ptr_arithmetic() called by
4312 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4313 * with variable offsets, therefore no check is required here. Further,
4314 * just checking it here would be insufficient as speculative stack
4315 * writes could still lead to unsafe speculative behaviour.
01f810ac 4316 */
01f810ac
AM
4317 if (!var_off) {
4318 off += reg->var_off.value;
4319 err = check_stack_read_fixed_off(env, state, off, size,
4320 dst_regno);
4321 } else {
4322 /* Variable offset stack reads need more conservative handling
4323 * than fixed offset ones. Note that dst_regno >= 0 on this
4324 * branch.
4325 */
4326 err = check_stack_read_var_off(env, ptr_regno, off, size,
4327 dst_regno);
4328 }
4329 return err;
4330}
4331
4332
4333/* check_stack_write dispatches to check_stack_write_fixed_off or
4334 * check_stack_write_var_off.
4335 *
4336 * 'ptr_regno' is the register used as a pointer into the stack.
4337 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4338 * 'value_regno' is the register whose value we're writing to the stack. It can
4339 * be -1, meaning that we're not writing from a register.
4340 *
4341 * The caller must ensure that the offset falls within the maximum stack size.
4342 */
4343static int check_stack_write(struct bpf_verifier_env *env,
4344 int ptr_regno, int off, int size,
4345 int value_regno, int insn_idx)
4346{
4347 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4348 struct bpf_func_state *state = func(env, reg);
4349 int err;
4350
4351 if (tnum_is_const(reg->var_off)) {
4352 off += reg->var_off.value;
4353 err = check_stack_write_fixed_off(env, state, off, size,
4354 value_regno, insn_idx);
4355 } else {
4356 /* Variable offset stack reads need more conservative handling
4357 * than fixed offset ones.
4358 */
4359 err = check_stack_write_var_off(env, state,
4360 ptr_regno, off, size,
4361 value_regno, insn_idx);
4362 }
4363 return err;
e4298d25
DB
4364}
4365
591fe988
DB
4366static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4367 int off, int size, enum bpf_access_type type)
4368{
4369 struct bpf_reg_state *regs = cur_regs(env);
4370 struct bpf_map *map = regs[regno].map_ptr;
4371 u32 cap = bpf_map_flags_to_cap(map);
4372
4373 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4374 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4375 map->value_size, off, size);
4376 return -EACCES;
4377 }
4378
4379 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4380 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4381 map->value_size, off, size);
4382 return -EACCES;
4383 }
4384
4385 return 0;
4386}
4387
457f4436
AN
4388/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4389static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4390 int off, int size, u32 mem_size,
4391 bool zero_size_allowed)
17a52670 4392{
457f4436
AN
4393 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4394 struct bpf_reg_state *reg;
4395
4396 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4397 return 0;
17a52670 4398
457f4436
AN
4399 reg = &cur_regs(env)[regno];
4400 switch (reg->type) {
69c087ba
YS
4401 case PTR_TO_MAP_KEY:
4402 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4403 mem_size, off, size);
4404 break;
457f4436 4405 case PTR_TO_MAP_VALUE:
61bd5218 4406 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
4407 mem_size, off, size);
4408 break;
4409 case PTR_TO_PACKET:
4410 case PTR_TO_PACKET_META:
4411 case PTR_TO_PACKET_END:
4412 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4413 off, size, regno, reg->id, off, mem_size);
4414 break;
4415 case PTR_TO_MEM:
4416 default:
4417 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4418 mem_size, off, size);
17a52670 4419 }
457f4436
AN
4420
4421 return -EACCES;
17a52670
AS
4422}
4423
457f4436
AN
4424/* check read/write into a memory region with possible variable offset */
4425static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4426 int off, int size, u32 mem_size,
4427 bool zero_size_allowed)
dbcfe5f7 4428{
f4d7e40a
AS
4429 struct bpf_verifier_state *vstate = env->cur_state;
4430 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
4431 struct bpf_reg_state *reg = &state->regs[regno];
4432 int err;
4433
457f4436 4434 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
4435 * need to try adding each of min_value and max_value to off
4436 * to make sure our theoretical access will be safe.
2e576648
CL
4437 *
4438 * The minimum value is only important with signed
dbcfe5f7
GB
4439 * comparisons where we can't assume the floor of a
4440 * value is 0. If we are using signed variables for our
4441 * index'es we need to make sure that whatever we use
4442 * will have a set floor within our range.
4443 */
b7137c4e
DB
4444 if (reg->smin_value < 0 &&
4445 (reg->smin_value == S64_MIN ||
4446 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4447 reg->smin_value + off < 0)) {
61bd5218 4448 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
4449 regno);
4450 return -EACCES;
4451 }
457f4436
AN
4452 err = __check_mem_access(env, regno, reg->smin_value + off, size,
4453 mem_size, zero_size_allowed);
dbcfe5f7 4454 if (err) {
457f4436 4455 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 4456 regno);
dbcfe5f7
GB
4457 return err;
4458 }
4459
b03c9f9f
EC
4460 /* If we haven't set a max value then we need to bail since we can't be
4461 * sure we won't do bad things.
4462 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 4463 */
b03c9f9f 4464 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 4465 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
4466 regno);
4467 return -EACCES;
4468 }
457f4436
AN
4469 err = __check_mem_access(env, regno, reg->umax_value + off, size,
4470 mem_size, zero_size_allowed);
4471 if (err) {
4472 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 4473 regno);
457f4436
AN
4474 return err;
4475 }
4476
4477 return 0;
4478}
d83525ca 4479
e9147b44
KKD
4480static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4481 const struct bpf_reg_state *reg, int regno,
4482 bool fixed_off_ok)
4483{
4484 /* Access to this pointer-typed register or passing it to a helper
4485 * is only allowed in its original, unmodified form.
4486 */
4487
4488 if (reg->off < 0) {
4489 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4490 reg_type_str(env, reg->type), regno, reg->off);
4491 return -EACCES;
4492 }
4493
4494 if (!fixed_off_ok && reg->off) {
4495 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4496 reg_type_str(env, reg->type), regno, reg->off);
4497 return -EACCES;
4498 }
4499
4500 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4501 char tn_buf[48];
4502
4503 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4504 verbose(env, "variable %s access var_off=%s disallowed\n",
4505 reg_type_str(env, reg->type), tn_buf);
4506 return -EACCES;
4507 }
4508
4509 return 0;
4510}
4511
4512int check_ptr_off_reg(struct bpf_verifier_env *env,
4513 const struct bpf_reg_state *reg, int regno)
4514{
4515 return __check_ptr_off_reg(env, reg, regno, false);
4516}
4517
61df10c7 4518static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 4519 struct btf_field *kptr_field,
61df10c7
KKD
4520 struct bpf_reg_state *reg, u32 regno)
4521{
b32a5dae 4522 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
20c09d92 4523 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
61df10c7
KKD
4524 const char *reg_name = "";
4525
6efe152d 4526 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 4527 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
4528 perm_flags |= PTR_UNTRUSTED;
4529
4530 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
4531 goto bad_type;
4532
4533 if (!btf_is_kernel(reg->btf)) {
4534 verbose(env, "R%d must point to kernel BTF\n", regno);
4535 return -EINVAL;
4536 }
4537 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
b32a5dae 4538 reg_name = btf_type_name(reg->btf, reg->btf_id);
61df10c7 4539
c0a5a21c
KKD
4540 /* For ref_ptr case, release function check should ensure we get one
4541 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4542 * normal store of unreferenced kptr, we must ensure var_off is zero.
4543 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4544 * reg->off and reg->ref_obj_id are not needed here.
4545 */
61df10c7
KKD
4546 if (__check_ptr_off_reg(env, reg, regno, true))
4547 return -EACCES;
4548
4549 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
4550 * we also need to take into account the reg->off.
4551 *
4552 * We want to support cases like:
4553 *
4554 * struct foo {
4555 * struct bar br;
4556 * struct baz bz;
4557 * };
4558 *
4559 * struct foo *v;
4560 * v = func(); // PTR_TO_BTF_ID
4561 * val->foo = v; // reg->off is zero, btf and btf_id match type
4562 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4563 * // first member type of struct after comparison fails
4564 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4565 * // to match type
4566 *
4567 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
4568 * is zero. We must also ensure that btf_struct_ids_match does not walk
4569 * the struct to match type against first member of struct, i.e. reject
4570 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4571 * strict mode to true for type match.
61df10c7
KKD
4572 */
4573 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
4574 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4575 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
4576 goto bad_type;
4577 return 0;
4578bad_type:
4579 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4580 reg_type_str(env, reg->type), reg_name);
6efe152d 4581 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 4582 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
4583 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4584 targ_name);
4585 else
4586 verbose(env, "\n");
61df10c7
KKD
4587 return -EINVAL;
4588}
4589
20c09d92
AS
4590/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
4591 * can dereference RCU protected pointers and result is PTR_TRUSTED.
4592 */
4593static bool in_rcu_cs(struct bpf_verifier_env *env)
4594{
4595 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
4596}
4597
4598/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
4599BTF_SET_START(rcu_protected_types)
4600BTF_ID(struct, prog_test_ref_kfunc)
4601BTF_ID(struct, cgroup)
63d2d83d 4602BTF_ID(struct, bpf_cpumask)
d02c48fa 4603BTF_ID(struct, task_struct)
20c09d92
AS
4604BTF_SET_END(rcu_protected_types)
4605
4606static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
4607{
4608 if (!btf_is_kernel(btf))
4609 return false;
4610 return btf_id_set_contains(&rcu_protected_types, btf_id);
4611}
4612
4613static bool rcu_safe_kptr(const struct btf_field *field)
4614{
4615 const struct btf_field_kptr *kptr = &field->kptr;
4616
4617 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
4618}
4619
61df10c7
KKD
4620static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4621 int value_regno, int insn_idx,
aa3496ac 4622 struct btf_field *kptr_field)
61df10c7
KKD
4623{
4624 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4625 int class = BPF_CLASS(insn->code);
4626 struct bpf_reg_state *val_reg;
4627
4628 /* Things we already checked for in check_map_access and caller:
4629 * - Reject cases where variable offset may touch kptr
4630 * - size of access (must be BPF_DW)
4631 * - tnum_is_const(reg->var_off)
aa3496ac 4632 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
4633 */
4634 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4635 if (BPF_MODE(insn->code) != BPF_MEM) {
4636 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4637 return -EACCES;
4638 }
4639
6efe152d
KKD
4640 /* We only allow loading referenced kptr, since it will be marked as
4641 * untrusted, similar to unreferenced kptr.
4642 */
aa3496ac 4643 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 4644 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
4645 return -EACCES;
4646 }
4647
61df10c7
KKD
4648 if (class == BPF_LDX) {
4649 val_reg = reg_state(env, value_regno);
4650 /* We can simply mark the value_regno receiving the pointer
4651 * value from map as PTR_TO_BTF_ID, with the correct type.
4652 */
aa3496ac 4653 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
20c09d92
AS
4654 kptr_field->kptr.btf_id,
4655 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
4656 PTR_MAYBE_NULL | MEM_RCU :
4657 PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
4658 /* For mark_ptr_or_null_reg */
4659 val_reg->id = ++env->id_gen;
4660 } else if (class == BPF_STX) {
4661 val_reg = reg_state(env, value_regno);
4662 if (!register_is_null(val_reg) &&
aa3496ac 4663 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
4664 return -EACCES;
4665 } else if (class == BPF_ST) {
4666 if (insn->imm) {
4667 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 4668 kptr_field->offset);
61df10c7
KKD
4669 return -EACCES;
4670 }
4671 } else {
4672 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4673 return -EACCES;
4674 }
4675 return 0;
4676}
4677
457f4436
AN
4678/* check read/write into a map element with possible variable offset */
4679static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
4680 int off, int size, bool zero_size_allowed,
4681 enum bpf_access_src src)
457f4436
AN
4682{
4683 struct bpf_verifier_state *vstate = env->cur_state;
4684 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4685 struct bpf_reg_state *reg = &state->regs[regno];
4686 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
4687 struct btf_record *rec;
4688 int err, i;
457f4436
AN
4689
4690 err = check_mem_region_access(env, regno, off, size, map->value_size,
4691 zero_size_allowed);
4692 if (err)
4693 return err;
4694
aa3496ac
KKD
4695 if (IS_ERR_OR_NULL(map->record))
4696 return 0;
4697 rec = map->record;
4698 for (i = 0; i < rec->cnt; i++) {
4699 struct btf_field *field = &rec->fields[i];
4700 u32 p = field->offset;
d83525ca 4701
db559117
KKD
4702 /* If any part of a field can be touched by load/store, reject
4703 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
4704 * it is sufficient to check x1 < y2 && y1 < x2.
4705 */
aa3496ac
KKD
4706 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4707 p < reg->umax_value + off + size) {
4708 switch (field->type) {
4709 case BPF_KPTR_UNREF:
4710 case BPF_KPTR_REF:
61df10c7
KKD
4711 if (src != ACCESS_DIRECT) {
4712 verbose(env, "kptr cannot be accessed indirectly by helper\n");
4713 return -EACCES;
4714 }
4715 if (!tnum_is_const(reg->var_off)) {
4716 verbose(env, "kptr access cannot have variable offset\n");
4717 return -EACCES;
4718 }
4719 if (p != off + reg->var_off.value) {
4720 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4721 p, off + reg->var_off.value);
4722 return -EACCES;
4723 }
4724 if (size != bpf_size_to_bytes(BPF_DW)) {
4725 verbose(env, "kptr access size must be BPF_DW\n");
4726 return -EACCES;
4727 }
4728 break;
aa3496ac 4729 default:
db559117
KKD
4730 verbose(env, "%s cannot be accessed directly by load/store\n",
4731 btf_field_type_name(field->type));
aa3496ac 4732 return -EACCES;
61df10c7
KKD
4733 }
4734 }
4735 }
aa3496ac 4736 return 0;
dbcfe5f7
GB
4737}
4738
969bf05e
AS
4739#define MAX_PACKET_OFF 0xffff
4740
58e2af8b 4741static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
4742 const struct bpf_call_arg_meta *meta,
4743 enum bpf_access_type t)
4acf6c0b 4744{
7e40781c
UP
4745 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4746
4747 switch (prog_type) {
5d66fa7d 4748 /* Program types only with direct read access go here! */
3a0af8fd
TG
4749 case BPF_PROG_TYPE_LWT_IN:
4750 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 4751 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 4752 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 4753 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 4754 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
4755 if (t == BPF_WRITE)
4756 return false;
8731745e 4757 fallthrough;
5d66fa7d
DB
4758
4759 /* Program types with direct read + write access go here! */
36bbef52
DB
4760 case BPF_PROG_TYPE_SCHED_CLS:
4761 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 4762 case BPF_PROG_TYPE_XDP:
3a0af8fd 4763 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 4764 case BPF_PROG_TYPE_SK_SKB:
4f738adb 4765 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
4766 if (meta)
4767 return meta->pkt_access;
4768
4769 env->seen_direct_write = true;
4acf6c0b 4770 return true;
0d01da6a
SF
4771
4772 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4773 if (t == BPF_WRITE)
4774 env->seen_direct_write = true;
4775
4776 return true;
4777
4acf6c0b
BB
4778 default:
4779 return false;
4780 }
4781}
4782
f1174f77 4783static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 4784 int size, bool zero_size_allowed)
f1174f77 4785{
638f5b90 4786 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
4787 struct bpf_reg_state *reg = &regs[regno];
4788 int err;
4789
4790 /* We may have added a variable offset to the packet pointer; but any
4791 * reg->range we have comes after that. We are only checking the fixed
4792 * offset.
4793 */
4794
4795 /* We don't allow negative numbers, because we aren't tracking enough
4796 * detail to prove they're safe.
4797 */
b03c9f9f 4798 if (reg->smin_value < 0) {
61bd5218 4799 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
4800 regno);
4801 return -EACCES;
4802 }
6d94e741
AS
4803
4804 err = reg->range < 0 ? -EINVAL :
4805 __check_mem_access(env, regno, off, size, reg->range,
457f4436 4806 zero_size_allowed);
f1174f77 4807 if (err) {
61bd5218 4808 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
4809 return err;
4810 }
e647815a 4811
457f4436 4812 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
4813 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4814 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 4815 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
4816 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4817 */
4818 env->prog->aux->max_pkt_offset =
4819 max_t(u32, env->prog->aux->max_pkt_offset,
4820 off + reg->umax_value + size - 1);
4821
f1174f77
EC
4822 return err;
4823}
4824
4825/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 4826static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 4827 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 4828 struct btf **btf, u32 *btf_id)
17a52670 4829{
f96da094
DB
4830 struct bpf_insn_access_aux info = {
4831 .reg_type = *reg_type,
9e15db66 4832 .log = &env->log,
f96da094 4833 };
31fd8581 4834
4f9218aa 4835 if (env->ops->is_valid_access &&
5e43f899 4836 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
4837 /* A non zero info.ctx_field_size indicates that this field is a
4838 * candidate for later verifier transformation to load the whole
4839 * field and then apply a mask when accessed with a narrower
4840 * access than actual ctx access size. A zero info.ctx_field_size
4841 * will only allow for whole field access and rejects any other
4842 * type of narrower access.
31fd8581 4843 */
23994631 4844 *reg_type = info.reg_type;
31fd8581 4845
c25b2ae1 4846 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4847 *btf = info.btf;
9e15db66 4848 *btf_id = info.btf_id;
22dc4a0f 4849 } else {
9e15db66 4850 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 4851 }
32bbe007
AS
4852 /* remember the offset of last byte accessed in ctx */
4853 if (env->prog->aux->max_ctx_offset < off + size)
4854 env->prog->aux->max_ctx_offset = off + size;
17a52670 4855 return 0;
32bbe007 4856 }
17a52670 4857
61bd5218 4858 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
4859 return -EACCES;
4860}
4861
d58e468b
PP
4862static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4863 int size)
4864{
4865 if (size < 0 || off < 0 ||
4866 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4867 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4868 off, size);
4869 return -EACCES;
4870 }
4871 return 0;
4872}
4873
5f456649
MKL
4874static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4875 u32 regno, int off, int size,
4876 enum bpf_access_type t)
c64b7983
JS
4877{
4878 struct bpf_reg_state *regs = cur_regs(env);
4879 struct bpf_reg_state *reg = &regs[regno];
5f456649 4880 struct bpf_insn_access_aux info = {};
46f8bc92 4881 bool valid;
c64b7983
JS
4882
4883 if (reg->smin_value < 0) {
4884 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4885 regno);
4886 return -EACCES;
4887 }
4888
46f8bc92
MKL
4889 switch (reg->type) {
4890 case PTR_TO_SOCK_COMMON:
4891 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4892 break;
4893 case PTR_TO_SOCKET:
4894 valid = bpf_sock_is_valid_access(off, size, t, &info);
4895 break;
655a51e5
MKL
4896 case PTR_TO_TCP_SOCK:
4897 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4898 break;
fada7fdc
JL
4899 case PTR_TO_XDP_SOCK:
4900 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4901 break;
46f8bc92
MKL
4902 default:
4903 valid = false;
c64b7983
JS
4904 }
4905
5f456649 4906
46f8bc92
MKL
4907 if (valid) {
4908 env->insn_aux_data[insn_idx].ctx_field_size =
4909 info.ctx_field_size;
4910 return 0;
4911 }
4912
4913 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4914 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4915
4916 return -EACCES;
c64b7983
JS
4917}
4918
4cabc5b1
DB
4919static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4920{
2a159c6f 4921 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4922}
4923
f37a8cb8
DB
4924static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4925{
2a159c6f 4926 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4927
46f8bc92
MKL
4928 return reg->type == PTR_TO_CTX;
4929}
4930
4931static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4932{
4933 const struct bpf_reg_state *reg = reg_state(env, regno);
4934
4935 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4936}
4937
ca369602
DB
4938static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4939{
2a159c6f 4940 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4941
4942 return type_is_pkt_pointer(reg->type);
4943}
4944
4b5defde
DB
4945static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4946{
4947 const struct bpf_reg_state *reg = reg_state(env, regno);
4948
4949 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4950 return reg->type == PTR_TO_FLOW_KEYS;
4951}
4952
9bb00b28
YS
4953static bool is_trusted_reg(const struct bpf_reg_state *reg)
4954{
4955 /* A referenced register is always trusted. */
4956 if (reg->ref_obj_id)
4957 return true;
4958
4959 /* If a register is not referenced, it is trusted if it has the
fca1aa75 4960 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
9bb00b28
YS
4961 * other type modifiers may be safe, but we elect to take an opt-in
4962 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4963 * not.
4964 *
4965 * Eventually, we should make PTR_TRUSTED the single source of truth
4966 * for whether a register is trusted.
4967 */
4968 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4969 !bpf_type_has_unsafe_modifiers(reg->type);
4970}
4971
fca1aa75
YS
4972static bool is_rcu_reg(const struct bpf_reg_state *reg)
4973{
4974 return reg->type & MEM_RCU;
4975}
4976
61bd5218
JK
4977static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4978 const struct bpf_reg_state *reg,
d1174416 4979 int off, int size, bool strict)
969bf05e 4980{
f1174f77 4981 struct tnum reg_off;
e07b98d9 4982 int ip_align;
d1174416
DM
4983
4984 /* Byte size accesses are always allowed. */
4985 if (!strict || size == 1)
4986 return 0;
4987
e4eda884
DM
4988 /* For platforms that do not have a Kconfig enabling
4989 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4990 * NET_IP_ALIGN is universally set to '2'. And on platforms
4991 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4992 * to this code only in strict mode where we want to emulate
4993 * the NET_IP_ALIGN==2 checking. Therefore use an
4994 * unconditional IP align value of '2'.
e07b98d9 4995 */
e4eda884 4996 ip_align = 2;
f1174f77
EC
4997
4998 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4999 if (!tnum_is_aligned(reg_off, size)) {
5000 char tn_buf[48];
5001
5002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
5003 verbose(env,
5004 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 5005 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
5006 return -EACCES;
5007 }
79adffcd 5008
969bf05e
AS
5009 return 0;
5010}
5011
61bd5218
JK
5012static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5013 const struct bpf_reg_state *reg,
f1174f77
EC
5014 const char *pointer_desc,
5015 int off, int size, bool strict)
79adffcd 5016{
f1174f77
EC
5017 struct tnum reg_off;
5018
5019 /* Byte size accesses are always allowed. */
5020 if (!strict || size == 1)
5021 return 0;
5022
5023 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5024 if (!tnum_is_aligned(reg_off, size)) {
5025 char tn_buf[48];
5026
5027 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5028 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 5029 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
5030 return -EACCES;
5031 }
5032
969bf05e
AS
5033 return 0;
5034}
5035
e07b98d9 5036static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
5037 const struct bpf_reg_state *reg, int off,
5038 int size, bool strict_alignment_once)
79adffcd 5039{
ca369602 5040 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 5041 const char *pointer_desc = "";
d1174416 5042
79adffcd
DB
5043 switch (reg->type) {
5044 case PTR_TO_PACKET:
de8f3a83
DB
5045 case PTR_TO_PACKET_META:
5046 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5047 * right in front, treat it the very same way.
5048 */
61bd5218 5049 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
5050 case PTR_TO_FLOW_KEYS:
5051 pointer_desc = "flow keys ";
5052 break;
69c087ba
YS
5053 case PTR_TO_MAP_KEY:
5054 pointer_desc = "key ";
5055 break;
f1174f77
EC
5056 case PTR_TO_MAP_VALUE:
5057 pointer_desc = "value ";
5058 break;
5059 case PTR_TO_CTX:
5060 pointer_desc = "context ";
5061 break;
5062 case PTR_TO_STACK:
5063 pointer_desc = "stack ";
01f810ac
AM
5064 /* The stack spill tracking logic in check_stack_write_fixed_off()
5065 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
5066 * aligned.
5067 */
5068 strict = true;
f1174f77 5069 break;
c64b7983
JS
5070 case PTR_TO_SOCKET:
5071 pointer_desc = "sock ";
5072 break;
46f8bc92
MKL
5073 case PTR_TO_SOCK_COMMON:
5074 pointer_desc = "sock_common ";
5075 break;
655a51e5
MKL
5076 case PTR_TO_TCP_SOCK:
5077 pointer_desc = "tcp_sock ";
5078 break;
fada7fdc
JL
5079 case PTR_TO_XDP_SOCK:
5080 pointer_desc = "xdp_sock ";
5081 break;
79adffcd 5082 default:
f1174f77 5083 break;
79adffcd 5084 }
61bd5218
JK
5085 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5086 strict);
79adffcd
DB
5087}
5088
f4d7e40a
AS
5089static int update_stack_depth(struct bpf_verifier_env *env,
5090 const struct bpf_func_state *func,
5091 int off)
5092{
9c8105bd 5093 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
5094
5095 if (stack >= -off)
5096 return 0;
5097
5098 /* update known max for given subprogram */
9c8105bd 5099 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
5100 return 0;
5101}
f4d7e40a 5102
70a87ffe
AS
5103/* starting from main bpf function walk all instructions of the function
5104 * and recursively walk all callees that given function can call.
5105 * Ignore jump and exit insns.
5106 * Since recursion is prevented by check_cfg() this algorithm
5107 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5108 */
5109static int check_max_stack_depth(struct bpf_verifier_env *env)
5110{
9c8105bd
JW
5111 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
5112 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 5113 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 5114 bool tail_call_reachable = false;
70a87ffe
AS
5115 int ret_insn[MAX_CALL_FRAMES];
5116 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 5117 int j;
f4d7e40a 5118
70a87ffe 5119process_func:
7f6e4312
MF
5120 /* protect against potential stack overflow that might happen when
5121 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5122 * depth for such case down to 256 so that the worst case scenario
5123 * would result in 8k stack size (32 which is tailcall limit * 256 =
5124 * 8k).
5125 *
5126 * To get the idea what might happen, see an example:
5127 * func1 -> sub rsp, 128
5128 * subfunc1 -> sub rsp, 256
5129 * tailcall1 -> add rsp, 256
5130 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5131 * subfunc2 -> sub rsp, 64
5132 * subfunc22 -> sub rsp, 128
5133 * tailcall2 -> add rsp, 128
5134 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5135 *
5136 * tailcall will unwind the current stack frame but it will not get rid
5137 * of caller's stack as shown on the example above.
5138 */
5139 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5140 verbose(env,
5141 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5142 depth);
5143 return -EACCES;
5144 }
70a87ffe
AS
5145 /* round up to 32-bytes, since this is granularity
5146 * of interpreter stack size
5147 */
9c8105bd 5148 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 5149 if (depth > MAX_BPF_STACK) {
f4d7e40a 5150 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 5151 frame + 1, depth);
f4d7e40a
AS
5152 return -EACCES;
5153 }
70a87ffe 5154continue_func:
4cb3d99c 5155 subprog_end = subprog[idx + 1].start;
70a87ffe 5156 for (; i < subprog_end; i++) {
7ddc80a4
AS
5157 int next_insn;
5158
69c087ba 5159 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
5160 continue;
5161 /* remember insn and function to return to */
5162 ret_insn[frame] = i + 1;
9c8105bd 5163 ret_prog[frame] = idx;
70a87ffe
AS
5164
5165 /* find the callee */
7ddc80a4
AS
5166 next_insn = i + insn[i].imm + 1;
5167 idx = find_subprog(env, next_insn);
9c8105bd 5168 if (idx < 0) {
70a87ffe 5169 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 5170 next_insn);
70a87ffe
AS
5171 return -EFAULT;
5172 }
7ddc80a4
AS
5173 if (subprog[idx].is_async_cb) {
5174 if (subprog[idx].has_tail_call) {
5175 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5176 return -EFAULT;
5177 }
5178 /* async callbacks don't increase bpf prog stack size */
5179 continue;
5180 }
5181 i = next_insn;
ebf7d1f5
MF
5182
5183 if (subprog[idx].has_tail_call)
5184 tail_call_reachable = true;
5185
70a87ffe
AS
5186 frame++;
5187 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
5188 verbose(env, "the call stack of %d frames is too deep !\n",
5189 frame);
5190 return -E2BIG;
70a87ffe
AS
5191 }
5192 goto process_func;
5193 }
ebf7d1f5
MF
5194 /* if tail call got detected across bpf2bpf calls then mark each of the
5195 * currently present subprog frames as tail call reachable subprogs;
5196 * this info will be utilized by JIT so that we will be preserving the
5197 * tail call counter throughout bpf2bpf calls combined with tailcalls
5198 */
5199 if (tail_call_reachable)
5200 for (j = 0; j < frame; j++)
5201 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
5202 if (subprog[0].tail_call_reachable)
5203 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 5204
70a87ffe
AS
5205 /* end of for() loop means the last insn of the 'subprog'
5206 * was reached. Doesn't matter whether it was JA or EXIT
5207 */
5208 if (frame == 0)
5209 return 0;
9c8105bd 5210 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
5211 frame--;
5212 i = ret_insn[frame];
9c8105bd 5213 idx = ret_prog[frame];
70a87ffe 5214 goto continue_func;
f4d7e40a
AS
5215}
5216
19d28fbd 5217#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5218static int get_callee_stack_depth(struct bpf_verifier_env *env,
5219 const struct bpf_insn *insn, int idx)
5220{
5221 int start = idx + insn->imm + 1, subprog;
5222
5223 subprog = find_subprog(env, start);
5224 if (subprog < 0) {
5225 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5226 start);
5227 return -EFAULT;
5228 }
9c8105bd 5229 return env->subprog_info[subprog].stack_depth;
1ea47e01 5230}
19d28fbd 5231#endif
1ea47e01 5232
afbf21dc
YS
5233static int __check_buffer_access(struct bpf_verifier_env *env,
5234 const char *buf_info,
5235 const struct bpf_reg_state *reg,
5236 int regno, int off, int size)
9df1c28b
MM
5237{
5238 if (off < 0) {
5239 verbose(env,
4fc00b79 5240 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 5241 regno, buf_info, off, size);
9df1c28b
MM
5242 return -EACCES;
5243 }
5244 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5245 char tn_buf[48];
5246
5247 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5248 verbose(env,
4fc00b79 5249 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
5250 regno, off, tn_buf);
5251 return -EACCES;
5252 }
afbf21dc
YS
5253
5254 return 0;
5255}
5256
5257static int check_tp_buffer_access(struct bpf_verifier_env *env,
5258 const struct bpf_reg_state *reg,
5259 int regno, int off, int size)
5260{
5261 int err;
5262
5263 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5264 if (err)
5265 return err;
5266
9df1c28b
MM
5267 if (off + size > env->prog->aux->max_tp_access)
5268 env->prog->aux->max_tp_access = off + size;
5269
5270 return 0;
5271}
5272
afbf21dc
YS
5273static int check_buffer_access(struct bpf_verifier_env *env,
5274 const struct bpf_reg_state *reg,
5275 int regno, int off, int size,
5276 bool zero_size_allowed,
afbf21dc
YS
5277 u32 *max_access)
5278{
44e9a741 5279 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
5280 int err;
5281
5282 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5283 if (err)
5284 return err;
5285
5286 if (off + size > *max_access)
5287 *max_access = off + size;
5288
5289 return 0;
5290}
5291
3f50f132
JF
5292/* BPF architecture zero extends alu32 ops into 64-bit registesr */
5293static void zext_32_to_64(struct bpf_reg_state *reg)
5294{
5295 reg->var_off = tnum_subreg(reg->var_off);
5296 __reg_assign_32_into_64(reg);
5297}
9df1c28b 5298
0c17d1d2
JH
5299/* truncate register to smaller size (in bytes)
5300 * must be called with size < BPF_REG_SIZE
5301 */
5302static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5303{
5304 u64 mask;
5305
5306 /* clear high bits in bit representation */
5307 reg->var_off = tnum_cast(reg->var_off, size);
5308
5309 /* fix arithmetic bounds */
5310 mask = ((u64)1 << (size * 8)) - 1;
5311 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5312 reg->umin_value &= mask;
5313 reg->umax_value &= mask;
5314 } else {
5315 reg->umin_value = 0;
5316 reg->umax_value = mask;
5317 }
5318 reg->smin_value = reg->umin_value;
5319 reg->smax_value = reg->umax_value;
3f50f132
JF
5320
5321 /* If size is smaller than 32bit register the 32bit register
5322 * values are also truncated so we push 64-bit bounds into
5323 * 32-bit bounds. Above were truncated < 32-bits already.
5324 */
5325 if (size >= 4)
5326 return;
5327 __reg_combine_64_into_32(reg);
0c17d1d2
JH
5328}
5329
a23740ec
AN
5330static bool bpf_map_is_rdonly(const struct bpf_map *map)
5331{
353050be
DB
5332 /* A map is considered read-only if the following condition are true:
5333 *
5334 * 1) BPF program side cannot change any of the map content. The
5335 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5336 * and was set at map creation time.
5337 * 2) The map value(s) have been initialized from user space by a
5338 * loader and then "frozen", such that no new map update/delete
5339 * operations from syscall side are possible for the rest of
5340 * the map's lifetime from that point onwards.
5341 * 3) Any parallel/pending map update/delete operations from syscall
5342 * side have been completed. Only after that point, it's safe to
5343 * assume that map value(s) are immutable.
5344 */
5345 return (map->map_flags & BPF_F_RDONLY_PROG) &&
5346 READ_ONCE(map->frozen) &&
5347 !bpf_map_write_active(map);
a23740ec
AN
5348}
5349
5350static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5351{
5352 void *ptr;
5353 u64 addr;
5354 int err;
5355
5356 err = map->ops->map_direct_value_addr(map, &addr, off);
5357 if (err)
5358 return err;
2dedd7d2 5359 ptr = (void *)(long)addr + off;
a23740ec
AN
5360
5361 switch (size) {
5362 case sizeof(u8):
5363 *val = (u64)*(u8 *)ptr;
5364 break;
5365 case sizeof(u16):
5366 *val = (u64)*(u16 *)ptr;
5367 break;
5368 case sizeof(u32):
5369 *val = (u64)*(u32 *)ptr;
5370 break;
5371 case sizeof(u64):
5372 *val = *(u64 *)ptr;
5373 break;
5374 default:
5375 return -EINVAL;
5376 }
5377 return 0;
5378}
5379
6fcd486b
AS
5380#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
5381#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
57539b1c 5382
6fcd486b
AS
5383/*
5384 * Allow list few fields as RCU trusted or full trusted.
5385 * This logic doesn't allow mix tagging and will be removed once GCC supports
5386 * btf_type_tag.
5387 */
5388
5389/* RCU trusted: these fields are trusted in RCU CS and never NULL */
5390BTF_TYPE_SAFE_RCU(struct task_struct) {
57539b1c 5391 const cpumask_t *cpus_ptr;
8d093b4e 5392 struct css_set __rcu *cgroups;
6fcd486b
AS
5393 struct task_struct __rcu *real_parent;
5394 struct task_struct *group_leader;
8d093b4e
AS
5395};
5396
6fcd486b 5397BTF_TYPE_SAFE_RCU(struct css_set) {
8d093b4e 5398 struct cgroup *dfl_cgrp;
57539b1c
DV
5399};
5400
6fcd486b
AS
5401/* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5402BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
5403 __bpf_md_ptr(struct seq_file *, seq);
5404};
5405
5406BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
5407 __bpf_md_ptr(struct bpf_iter_meta *, meta);
5408 __bpf_md_ptr(struct task_struct *, task);
5409};
5410
5411BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5412 struct file *file;
5413};
5414
5415BTF_TYPE_SAFE_TRUSTED(struct file) {
5416 struct inode *f_inode;
5417};
5418
5419BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5420 /* no negative dentry-s in places where bpf can see it */
5421 struct inode *d_inode;
5422};
5423
5424BTF_TYPE_SAFE_TRUSTED(struct socket) {
5425 struct sock *sk;
5426};
5427
5428static bool type_is_rcu(struct bpf_verifier_env *env,
5429 struct bpf_reg_state *reg,
5430 int off)
57539b1c 5431{
6fcd486b
AS
5432 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
5433 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
57539b1c 5434
6fcd486b
AS
5435 return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_rcu");
5436}
57539b1c 5437
6fcd486b
AS
5438static bool type_is_trusted(struct bpf_verifier_env *env,
5439 struct bpf_reg_state *reg,
5440 int off)
5441{
5442 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5443 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5444 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5445 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5446 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5447 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5448
5449 return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_trusted");
57539b1c
DV
5450}
5451
9e15db66
AS
5452static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5453 struct bpf_reg_state *regs,
5454 int regno, int off, int size,
5455 enum bpf_access_type atype,
5456 int value_regno)
5457{
5458 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
5459 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5460 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 5461 enum bpf_type_flag flag = 0;
9e15db66
AS
5462 u32 btf_id;
5463 int ret;
5464
c67cae55
AS
5465 if (!env->allow_ptr_leaks) {
5466 verbose(env,
5467 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5468 tname);
5469 return -EPERM;
5470 }
5471 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5472 verbose(env,
5473 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5474 tname);
5475 return -EINVAL;
5476 }
9e15db66
AS
5477 if (off < 0) {
5478 verbose(env,
5479 "R%d is ptr_%s invalid negative access: off=%d\n",
5480 regno, tname, off);
5481 return -EACCES;
5482 }
5483 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5484 char tn_buf[48];
5485
5486 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5487 verbose(env,
5488 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5489 regno, tname, off, tn_buf);
5490 return -EACCES;
5491 }
5492
c6f1bfe8
YS
5493 if (reg->type & MEM_USER) {
5494 verbose(env,
5495 "R%d is ptr_%s access user memory: off=%d\n",
5496 regno, tname, off);
5497 return -EACCES;
5498 }
5499
5844101a
HL
5500 if (reg->type & MEM_PERCPU) {
5501 verbose(env,
5502 "R%d is ptr_%s access percpu memory: off=%d\n",
5503 regno, tname, off);
5504 return -EACCES;
5505 }
5506
7d64c513 5507 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
282de143
KKD
5508 if (!btf_is_kernel(reg->btf)) {
5509 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5510 return -EFAULT;
5511 }
6728aea7 5512 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997 5513 } else {
282de143
KKD
5514 /* Writes are permitted with default btf_struct_access for
5515 * program allocated objects (which always have ref_obj_id > 0),
5516 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5517 */
5518 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
27ae7997
MKL
5519 verbose(env, "only read is supported\n");
5520 return -EACCES;
5521 }
5522
6a3cd331
DM
5523 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
5524 !reg->ref_obj_id) {
282de143
KKD
5525 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5526 return -EFAULT;
5527 }
5528
6728aea7 5529 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997
MKL
5530 }
5531
9e15db66
AS
5532 if (ret < 0)
5533 return ret;
5534
6fcd486b
AS
5535 if (ret != PTR_TO_BTF_ID) {
5536 /* just mark; */
6efe152d 5537
6fcd486b
AS
5538 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
5539 /* If this is an untrusted pointer, all pointers formed by walking it
5540 * also inherit the untrusted flag.
5541 */
5542 flag = PTR_UNTRUSTED;
5543
5544 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
5545 /* By default any pointer obtained from walking a trusted pointer is no
5546 * longer trusted, unless the field being accessed has explicitly been
5547 * marked as inheriting its parent's state of trust (either full or RCU).
5548 * For example:
5549 * 'cgroups' pointer is untrusted if task->cgroups dereference
5550 * happened in a sleepable program outside of bpf_rcu_read_lock()
5551 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
5552 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
5553 *
5554 * A regular RCU-protected pointer with __rcu tag can also be deemed
5555 * trusted if we are in an RCU CS. Such pointer can be NULL.
20c09d92 5556 */
6fcd486b
AS
5557 if (type_is_trusted(env, reg, off)) {
5558 flag |= PTR_TRUSTED;
5559 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
5560 if (type_is_rcu(env, reg, off)) {
5561 /* ignore __rcu tag and mark it MEM_RCU */
5562 flag |= MEM_RCU;
5563 } else if (flag & MEM_RCU) {
5564 /* __rcu tagged pointers can be NULL */
5565 flag |= PTR_MAYBE_NULL;
5566 } else if (flag & (MEM_PERCPU | MEM_USER)) {
5567 /* keep as-is */
5568 } else {
5569 /* walking unknown pointers yields untrusted pointer */
5570 flag = PTR_UNTRUSTED;
5571 }
5572 } else {
5573 /*
5574 * If not in RCU CS or MEM_RCU pointer can be NULL then
5575 * aggressively mark as untrusted otherwise such
5576 * pointers will be plain PTR_TO_BTF_ID without flags
5577 * and will be allowed to be passed into helpers for
5578 * compat reasons.
5579 */
5580 flag = PTR_UNTRUSTED;
5581 }
20c09d92 5582 } else {
6fcd486b 5583 /* Old compat. Deprecated */
57539b1c 5584 flag &= ~PTR_TRUSTED;
20c09d92 5585 }
3f00c523 5586
41c48f3a 5587 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 5588 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
5589
5590 return 0;
5591}
5592
5593static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5594 struct bpf_reg_state *regs,
5595 int regno, int off, int size,
5596 enum bpf_access_type atype,
5597 int value_regno)
5598{
5599 struct bpf_reg_state *reg = regs + regno;
5600 struct bpf_map *map = reg->map_ptr;
6728aea7 5601 struct bpf_reg_state map_reg;
c6f1bfe8 5602 enum bpf_type_flag flag = 0;
41c48f3a
AI
5603 const struct btf_type *t;
5604 const char *tname;
5605 u32 btf_id;
5606 int ret;
5607
5608 if (!btf_vmlinux) {
5609 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5610 return -ENOTSUPP;
5611 }
5612
5613 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5614 verbose(env, "map_ptr access not supported for map type %d\n",
5615 map->map_type);
5616 return -ENOTSUPP;
5617 }
5618
5619 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5620 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5621
c67cae55 5622 if (!env->allow_ptr_leaks) {
41c48f3a 5623 verbose(env,
c67cae55 5624 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
41c48f3a
AI
5625 tname);
5626 return -EPERM;
9e15db66 5627 }
27ae7997 5628
41c48f3a
AI
5629 if (off < 0) {
5630 verbose(env, "R%d is %s invalid negative access: off=%d\n",
5631 regno, tname, off);
5632 return -EACCES;
5633 }
5634
5635 if (atype != BPF_READ) {
5636 verbose(env, "only read from %s is supported\n", tname);
5637 return -EACCES;
5638 }
5639
6728aea7
KKD
5640 /* Simulate access to a PTR_TO_BTF_ID */
5641 memset(&map_reg, 0, sizeof(map_reg));
5642 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
5643 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
41c48f3a
AI
5644 if (ret < 0)
5645 return ret;
5646
5647 if (value_regno >= 0)
c6f1bfe8 5648 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 5649
9e15db66
AS
5650 return 0;
5651}
5652
01f810ac
AM
5653/* Check that the stack access at the given offset is within bounds. The
5654 * maximum valid offset is -1.
5655 *
5656 * The minimum valid offset is -MAX_BPF_STACK for writes, and
5657 * -state->allocated_stack for reads.
5658 */
5659static int check_stack_slot_within_bounds(int off,
5660 struct bpf_func_state *state,
5661 enum bpf_access_type t)
5662{
5663 int min_valid_off;
5664
5665 if (t == BPF_WRITE)
5666 min_valid_off = -MAX_BPF_STACK;
5667 else
5668 min_valid_off = -state->allocated_stack;
5669
5670 if (off < min_valid_off || off > -1)
5671 return -EACCES;
5672 return 0;
5673}
5674
5675/* Check that the stack access at 'regno + off' falls within the maximum stack
5676 * bounds.
5677 *
5678 * 'off' includes `regno->offset`, but not its dynamic part (if any).
5679 */
5680static int check_stack_access_within_bounds(
5681 struct bpf_verifier_env *env,
5682 int regno, int off, int access_size,
61df10c7 5683 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
5684{
5685 struct bpf_reg_state *regs = cur_regs(env);
5686 struct bpf_reg_state *reg = regs + regno;
5687 struct bpf_func_state *state = func(env, reg);
5688 int min_off, max_off;
5689 int err;
5690 char *err_extra;
5691
5692 if (src == ACCESS_HELPER)
5693 /* We don't know if helpers are reading or writing (or both). */
5694 err_extra = " indirect access to";
5695 else if (type == BPF_READ)
5696 err_extra = " read from";
5697 else
5698 err_extra = " write to";
5699
5700 if (tnum_is_const(reg->var_off)) {
5701 min_off = reg->var_off.value + off;
5702 if (access_size > 0)
5703 max_off = min_off + access_size - 1;
5704 else
5705 max_off = min_off;
5706 } else {
5707 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5708 reg->smin_value <= -BPF_MAX_VAR_OFF) {
5709 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5710 err_extra, regno);
5711 return -EACCES;
5712 }
5713 min_off = reg->smin_value + off;
5714 if (access_size > 0)
5715 max_off = reg->smax_value + off + access_size - 1;
5716 else
5717 max_off = min_off;
5718 }
5719
5720 err = check_stack_slot_within_bounds(min_off, state, type);
5721 if (!err)
5722 err = check_stack_slot_within_bounds(max_off, state, type);
5723
5724 if (err) {
5725 if (tnum_is_const(reg->var_off)) {
5726 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5727 err_extra, regno, off, access_size);
5728 } else {
5729 char tn_buf[48];
5730
5731 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5732 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5733 err_extra, regno, tn_buf, access_size);
5734 }
5735 }
5736 return err;
5737}
41c48f3a 5738
17a52670
AS
5739/* check whether memory at (regno + off) is accessible for t = (read | write)
5740 * if t==write, value_regno is a register which value is stored into memory
5741 * if t==read, value_regno is a register which will receive the value from memory
5742 * if t==write && value_regno==-1, some unknown value is stored into memory
5743 * if t==read && value_regno==-1, don't care what we read from memory
5744 */
ca369602
DB
5745static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5746 int off, int bpf_size, enum bpf_access_type t,
5747 int value_regno, bool strict_alignment_once)
17a52670 5748{
638f5b90
AS
5749 struct bpf_reg_state *regs = cur_regs(env);
5750 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 5751 struct bpf_func_state *state;
17a52670
AS
5752 int size, err = 0;
5753
5754 size = bpf_size_to_bytes(bpf_size);
5755 if (size < 0)
5756 return size;
5757
f1174f77 5758 /* alignment checks will add in reg->off themselves */
ca369602 5759 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
5760 if (err)
5761 return err;
17a52670 5762
f1174f77
EC
5763 /* for access checks, reg->off is just part of off */
5764 off += reg->off;
5765
69c087ba
YS
5766 if (reg->type == PTR_TO_MAP_KEY) {
5767 if (t == BPF_WRITE) {
5768 verbose(env, "write to change key R%d not allowed\n", regno);
5769 return -EACCES;
5770 }
5771
5772 err = check_mem_region_access(env, regno, off, size,
5773 reg->map_ptr->key_size, false);
5774 if (err)
5775 return err;
5776 if (value_regno >= 0)
5777 mark_reg_unknown(env, regs, value_regno);
5778 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 5779 struct btf_field *kptr_field = NULL;
61df10c7 5780
1be7f75d
AS
5781 if (t == BPF_WRITE && value_regno >= 0 &&
5782 is_pointer_value(env, value_regno)) {
61bd5218 5783 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
5784 return -EACCES;
5785 }
591fe988
DB
5786 err = check_map_access_type(env, regno, off, size, t);
5787 if (err)
5788 return err;
61df10c7
KKD
5789 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5790 if (err)
5791 return err;
5792 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
5793 kptr_field = btf_record_find(reg->map_ptr->record,
5794 off + reg->var_off.value, BPF_KPTR);
5795 if (kptr_field) {
5796 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 5797 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
5798 struct bpf_map *map = reg->map_ptr;
5799
5800 /* if map is read-only, track its contents as scalars */
5801 if (tnum_is_const(reg->var_off) &&
5802 bpf_map_is_rdonly(map) &&
5803 map->ops->map_direct_value_addr) {
5804 int map_off = off + reg->var_off.value;
5805 u64 val = 0;
5806
5807 err = bpf_map_direct_read(map, map_off, size,
5808 &val);
5809 if (err)
5810 return err;
5811
5812 regs[value_regno].type = SCALAR_VALUE;
5813 __mark_reg_known(&regs[value_regno], val);
5814 } else {
5815 mark_reg_unknown(env, regs, value_regno);
5816 }
5817 }
34d3a78c
HL
5818 } else if (base_type(reg->type) == PTR_TO_MEM) {
5819 bool rdonly_mem = type_is_rdonly_mem(reg->type);
5820
5821 if (type_may_be_null(reg->type)) {
5822 verbose(env, "R%d invalid mem access '%s'\n", regno,
5823 reg_type_str(env, reg->type));
5824 return -EACCES;
5825 }
5826
5827 if (t == BPF_WRITE && rdonly_mem) {
5828 verbose(env, "R%d cannot write into %s\n",
5829 regno, reg_type_str(env, reg->type));
5830 return -EACCES;
5831 }
5832
457f4436
AN
5833 if (t == BPF_WRITE && value_regno >= 0 &&
5834 is_pointer_value(env, value_regno)) {
5835 verbose(env, "R%d leaks addr into mem\n", value_regno);
5836 return -EACCES;
5837 }
34d3a78c 5838
457f4436
AN
5839 err = check_mem_region_access(env, regno, off, size,
5840 reg->mem_size, false);
34d3a78c 5841 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 5842 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 5843 } else if (reg->type == PTR_TO_CTX) {
f1174f77 5844 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 5845 struct btf *btf = NULL;
9e15db66 5846 u32 btf_id = 0;
19de99f7 5847
1be7f75d
AS
5848 if (t == BPF_WRITE && value_regno >= 0 &&
5849 is_pointer_value(env, value_regno)) {
61bd5218 5850 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
5851 return -EACCES;
5852 }
f1174f77 5853
be80a1d3 5854 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
5855 if (err < 0)
5856 return err;
5857
c6f1bfe8
YS
5858 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5859 &btf_id);
9e15db66
AS
5860 if (err)
5861 verbose_linfo(env, insn_idx, "; ");
969bf05e 5862 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 5863 /* ctx access returns either a scalar, or a
de8f3a83
DB
5864 * PTR_TO_PACKET[_META,_END]. In the latter
5865 * case, we know the offset is zero.
f1174f77 5866 */
46f8bc92 5867 if (reg_type == SCALAR_VALUE) {
638f5b90 5868 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5869 } else {
638f5b90 5870 mark_reg_known_zero(env, regs,
61bd5218 5871 value_regno);
c25b2ae1 5872 if (type_may_be_null(reg_type))
46f8bc92 5873 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
5874 /* A load of ctx field could have different
5875 * actual load size with the one encoded in the
5876 * insn. When the dst is PTR, it is for sure not
5877 * a sub-register.
5878 */
5879 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 5880 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5881 regs[value_regno].btf = btf;
9e15db66 5882 regs[value_regno].btf_id = btf_id;
22dc4a0f 5883 }
46f8bc92 5884 }
638f5b90 5885 regs[value_regno].type = reg_type;
969bf05e 5886 }
17a52670 5887
f1174f77 5888 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
5889 /* Basic bounds checks. */
5890 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
5891 if (err)
5892 return err;
8726679a 5893
f4d7e40a
AS
5894 state = func(env, reg);
5895 err = update_stack_depth(env, state, off);
5896 if (err)
5897 return err;
8726679a 5898
01f810ac
AM
5899 if (t == BPF_READ)
5900 err = check_stack_read(env, regno, off, size,
61bd5218 5901 value_regno);
01f810ac
AM
5902 else
5903 err = check_stack_write(env, regno, off, size,
5904 value_regno, insn_idx);
de8f3a83 5905 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 5906 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 5907 verbose(env, "cannot write into packet\n");
969bf05e
AS
5908 return -EACCES;
5909 }
4acf6c0b
BB
5910 if (t == BPF_WRITE && value_regno >= 0 &&
5911 is_pointer_value(env, value_regno)) {
61bd5218
JK
5912 verbose(env, "R%d leaks addr into packet\n",
5913 value_regno);
4acf6c0b
BB
5914 return -EACCES;
5915 }
9fd29c08 5916 err = check_packet_access(env, regno, off, size, false);
969bf05e 5917 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 5918 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
5919 } else if (reg->type == PTR_TO_FLOW_KEYS) {
5920 if (t == BPF_WRITE && value_regno >= 0 &&
5921 is_pointer_value(env, value_regno)) {
5922 verbose(env, "R%d leaks addr into flow keys\n",
5923 value_regno);
5924 return -EACCES;
5925 }
5926
5927 err = check_flow_keys_access(env, off, size);
5928 if (!err && t == BPF_READ && value_regno >= 0)
5929 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5930 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 5931 if (t == BPF_WRITE) {
46f8bc92 5932 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 5933 regno, reg_type_str(env, reg->type));
c64b7983
JS
5934 return -EACCES;
5935 }
5f456649 5936 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
5937 if (!err && value_regno >= 0)
5938 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
5939 } else if (reg->type == PTR_TO_TP_BUFFER) {
5940 err = check_tp_buffer_access(env, reg, regno, off, size);
5941 if (!err && t == BPF_READ && value_regno >= 0)
5942 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
5943 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5944 !type_may_be_null(reg->type)) {
9e15db66
AS
5945 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5946 value_regno);
41c48f3a
AI
5947 } else if (reg->type == CONST_PTR_TO_MAP) {
5948 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5949 value_regno);
20b2aff4
HL
5950 } else if (base_type(reg->type) == PTR_TO_BUF) {
5951 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
5952 u32 *max_access;
5953
5954 if (rdonly_mem) {
5955 if (t == BPF_WRITE) {
5956 verbose(env, "R%d cannot write into %s\n",
5957 regno, reg_type_str(env, reg->type));
5958 return -EACCES;
5959 }
20b2aff4
HL
5960 max_access = &env->prog->aux->max_rdonly_access;
5961 } else {
20b2aff4 5962 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 5963 }
20b2aff4 5964
f6dfbe31 5965 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 5966 max_access);
20b2aff4
HL
5967
5968 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 5969 mark_reg_unknown(env, regs, value_regno);
17a52670 5970 } else {
61bd5218 5971 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 5972 reg_type_str(env, reg->type));
17a52670
AS
5973 return -EACCES;
5974 }
969bf05e 5975
f1174f77 5976 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 5977 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 5978 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 5979 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 5980 }
17a52670
AS
5981 return err;
5982}
5983
91c960b0 5984static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 5985{
5ffa2550 5986 int load_reg;
17a52670
AS
5987 int err;
5988
5ca419f2
BJ
5989 switch (insn->imm) {
5990 case BPF_ADD:
5991 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
5992 case BPF_AND:
5993 case BPF_AND | BPF_FETCH:
5994 case BPF_OR:
5995 case BPF_OR | BPF_FETCH:
5996 case BPF_XOR:
5997 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
5998 case BPF_XCHG:
5999 case BPF_CMPXCHG:
5ca419f2
BJ
6000 break;
6001 default:
91c960b0
BJ
6002 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6003 return -EINVAL;
6004 }
6005
6006 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6007 verbose(env, "invalid atomic operand size\n");
17a52670
AS
6008 return -EINVAL;
6009 }
6010
6011 /* check src1 operand */
dc503a8a 6012 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6013 if (err)
6014 return err;
6015
6016 /* check src2 operand */
dc503a8a 6017 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6018 if (err)
6019 return err;
6020
5ffa2550
BJ
6021 if (insn->imm == BPF_CMPXCHG) {
6022 /* Check comparison of R0 with memory location */
a82fe085
DB
6023 const u32 aux_reg = BPF_REG_0;
6024
6025 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
6026 if (err)
6027 return err;
a82fe085
DB
6028
6029 if (is_pointer_value(env, aux_reg)) {
6030 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6031 return -EACCES;
6032 }
5ffa2550
BJ
6033 }
6034
6bdf6abc 6035 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6036 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
6037 return -EACCES;
6038 }
6039
ca369602 6040 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 6041 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
6042 is_flow_key_reg(env, insn->dst_reg) ||
6043 is_sk_reg(env, insn->dst_reg)) {
91c960b0 6044 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 6045 insn->dst_reg,
c25b2ae1 6046 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
6047 return -EACCES;
6048 }
6049
37086bfd
BJ
6050 if (insn->imm & BPF_FETCH) {
6051 if (insn->imm == BPF_CMPXCHG)
6052 load_reg = BPF_REG_0;
6053 else
6054 load_reg = insn->src_reg;
6055
6056 /* check and record load of old value */
6057 err = check_reg_arg(env, load_reg, DST_OP);
6058 if (err)
6059 return err;
6060 } else {
6061 /* This instruction accesses a memory location but doesn't
6062 * actually load it into a register.
6063 */
6064 load_reg = -1;
6065 }
6066
7d3baf0a
DB
6067 /* Check whether we can read the memory, with second call for fetch
6068 * case to simulate the register fill.
6069 */
31fd8581 6070 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
6071 BPF_SIZE(insn->code), BPF_READ, -1, true);
6072 if (!err && load_reg >= 0)
6073 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6074 BPF_SIZE(insn->code), BPF_READ, load_reg,
6075 true);
17a52670
AS
6076 if (err)
6077 return err;
6078
7d3baf0a 6079 /* Check whether we can write into the same memory. */
5ca419f2
BJ
6080 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6081 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6082 if (err)
6083 return err;
6084
5ca419f2 6085 return 0;
17a52670
AS
6086}
6087
01f810ac
AM
6088/* When register 'regno' is used to read the stack (either directly or through
6089 * a helper function) make sure that it's within stack boundary and, depending
6090 * on the access type, that all elements of the stack are initialized.
6091 *
6092 * 'off' includes 'regno->off', but not its dynamic part (if any).
6093 *
6094 * All registers that have been spilled on the stack in the slots within the
6095 * read offsets are marked as read.
6096 */
6097static int check_stack_range_initialized(
6098 struct bpf_verifier_env *env, int regno, int off,
6099 int access_size, bool zero_size_allowed,
61df10c7 6100 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
6101{
6102 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
6103 struct bpf_func_state *state = func(env, reg);
6104 int err, min_off, max_off, i, j, slot, spi;
6105 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6106 enum bpf_access_type bounds_check_type;
6107 /* Some accesses can write anything into the stack, others are
6108 * read-only.
6109 */
6110 bool clobber = false;
2011fccf 6111
01f810ac
AM
6112 if (access_size == 0 && !zero_size_allowed) {
6113 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
6114 return -EACCES;
6115 }
2011fccf 6116
01f810ac
AM
6117 if (type == ACCESS_HELPER) {
6118 /* The bounds checks for writes are more permissive than for
6119 * reads. However, if raw_mode is not set, we'll do extra
6120 * checks below.
6121 */
6122 bounds_check_type = BPF_WRITE;
6123 clobber = true;
6124 } else {
6125 bounds_check_type = BPF_READ;
6126 }
6127 err = check_stack_access_within_bounds(env, regno, off, access_size,
6128 type, bounds_check_type);
6129 if (err)
6130 return err;
6131
17a52670 6132
2011fccf 6133 if (tnum_is_const(reg->var_off)) {
01f810ac 6134 min_off = max_off = reg->var_off.value + off;
2011fccf 6135 } else {
088ec26d
AI
6136 /* Variable offset is prohibited for unprivileged mode for
6137 * simplicity since it requires corresponding support in
6138 * Spectre masking for stack ALU.
6139 * See also retrieve_ptr_limit().
6140 */
2c78ee89 6141 if (!env->bypass_spec_v1) {
088ec26d 6142 char tn_buf[48];
f1174f77 6143
088ec26d 6144 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6145 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6146 regno, err_extra, tn_buf);
088ec26d
AI
6147 return -EACCES;
6148 }
f2bcd05e
AI
6149 /* Only initialized buffer on stack is allowed to be accessed
6150 * with variable offset. With uninitialized buffer it's hard to
6151 * guarantee that whole memory is marked as initialized on
6152 * helper return since specific bounds are unknown what may
6153 * cause uninitialized stack leaking.
6154 */
6155 if (meta && meta->raw_mode)
6156 meta = NULL;
6157
01f810ac
AM
6158 min_off = reg->smin_value + off;
6159 max_off = reg->smax_value + off;
17a52670
AS
6160 }
6161
435faee1 6162 if (meta && meta->raw_mode) {
ef8fc7a0
KKD
6163 /* Ensure we won't be overwriting dynptrs when simulating byte
6164 * by byte access in check_helper_call using meta.access_size.
6165 * This would be a problem if we have a helper in the future
6166 * which takes:
6167 *
6168 * helper(uninit_mem, len, dynptr)
6169 *
6170 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6171 * may end up writing to dynptr itself when touching memory from
6172 * arg 1. This can be relaxed on a case by case basis for known
6173 * safe cases, but reject due to the possibilitiy of aliasing by
6174 * default.
6175 */
6176 for (i = min_off; i < max_off + access_size; i++) {
6177 int stack_off = -i - 1;
6178
6179 spi = __get_spi(i);
6180 /* raw_mode may write past allocated_stack */
6181 if (state->allocated_stack <= stack_off)
6182 continue;
6183 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6184 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6185 return -EACCES;
6186 }
6187 }
435faee1
DB
6188 meta->access_size = access_size;
6189 meta->regno = regno;
6190 return 0;
6191 }
6192
2011fccf 6193 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
6194 u8 *stype;
6195
2011fccf 6196 slot = -i - 1;
638f5b90 6197 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
6198 if (state->allocated_stack <= slot)
6199 goto err;
6200 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6201 if (*stype == STACK_MISC)
6202 goto mark;
6715df8d
EZ
6203 if ((*stype == STACK_ZERO) ||
6204 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
01f810ac
AM
6205 if (clobber) {
6206 /* helper can write anything into the stack */
6207 *stype = STACK_MISC;
6208 }
cc2b14d5 6209 goto mark;
17a52670 6210 }
1d68f22b 6211
27113c59 6212 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
6213 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6214 env->allow_ptr_leaks)) {
01f810ac
AM
6215 if (clobber) {
6216 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6217 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 6218 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 6219 }
f7cf25b2
AS
6220 goto mark;
6221 }
6222
cc2b14d5 6223err:
2011fccf 6224 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
6225 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6226 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
6227 } else {
6228 char tn_buf[48];
6229
6230 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6231 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6232 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 6233 }
cc2b14d5
AS
6234 return -EACCES;
6235mark:
6236 /* reading any byte out of 8-byte 'spill_slot' will cause
6237 * the whole slot to be marked as 'read'
6238 */
679c782d 6239 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
6240 state->stack[spi].spilled_ptr.parent,
6241 REG_LIVE_READ64);
261f4664
KKD
6242 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6243 * be sure that whether stack slot is written to or not. Hence,
6244 * we must still conservatively propagate reads upwards even if
6245 * helper may write to the entire memory range.
6246 */
17a52670 6247 }
2011fccf 6248 return update_stack_depth(env, state, min_off);
17a52670
AS
6249}
6250
06c1c049
GB
6251static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6252 int access_size, bool zero_size_allowed,
6253 struct bpf_call_arg_meta *meta)
6254{
638f5b90 6255 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 6256 u32 *max_access;
06c1c049 6257
20b2aff4 6258 switch (base_type(reg->type)) {
06c1c049 6259 case PTR_TO_PACKET:
de8f3a83 6260 case PTR_TO_PACKET_META:
9fd29c08
YS
6261 return check_packet_access(env, regno, reg->off, access_size,
6262 zero_size_allowed);
69c087ba 6263 case PTR_TO_MAP_KEY:
7b3552d3
KKD
6264 if (meta && meta->raw_mode) {
6265 verbose(env, "R%d cannot write into %s\n", regno,
6266 reg_type_str(env, reg->type));
6267 return -EACCES;
6268 }
69c087ba
YS
6269 return check_mem_region_access(env, regno, reg->off, access_size,
6270 reg->map_ptr->key_size, false);
06c1c049 6271 case PTR_TO_MAP_VALUE:
591fe988
DB
6272 if (check_map_access_type(env, regno, reg->off, access_size,
6273 meta && meta->raw_mode ? BPF_WRITE :
6274 BPF_READ))
6275 return -EACCES;
9fd29c08 6276 return check_map_access(env, regno, reg->off, access_size,
61df10c7 6277 zero_size_allowed, ACCESS_HELPER);
457f4436 6278 case PTR_TO_MEM:
97e6d7da
KKD
6279 if (type_is_rdonly_mem(reg->type)) {
6280 if (meta && meta->raw_mode) {
6281 verbose(env, "R%d cannot write into %s\n", regno,
6282 reg_type_str(env, reg->type));
6283 return -EACCES;
6284 }
6285 }
457f4436
AN
6286 return check_mem_region_access(env, regno, reg->off,
6287 access_size, reg->mem_size,
6288 zero_size_allowed);
20b2aff4
HL
6289 case PTR_TO_BUF:
6290 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
6291 if (meta && meta->raw_mode) {
6292 verbose(env, "R%d cannot write into %s\n", regno,
6293 reg_type_str(env, reg->type));
20b2aff4 6294 return -EACCES;
97e6d7da 6295 }
20b2aff4 6296
20b2aff4
HL
6297 max_access = &env->prog->aux->max_rdonly_access;
6298 } else {
20b2aff4
HL
6299 max_access = &env->prog->aux->max_rdwr_access;
6300 }
afbf21dc
YS
6301 return check_buffer_access(env, reg, regno, reg->off,
6302 access_size, zero_size_allowed,
44e9a741 6303 max_access);
0d004c02 6304 case PTR_TO_STACK:
01f810ac
AM
6305 return check_stack_range_initialized(
6306 env,
6307 regno, reg->off, access_size,
6308 zero_size_allowed, ACCESS_HELPER, meta);
3e30be42
AS
6309 case PTR_TO_BTF_ID:
6310 return check_ptr_to_btf_access(env, regs, regno, reg->off,
6311 access_size, BPF_READ, -1);
15baa55f
BT
6312 case PTR_TO_CTX:
6313 /* in case the function doesn't know how to access the context,
6314 * (because we are in a program of type SYSCALL for example), we
6315 * can not statically check its size.
6316 * Dynamically check it now.
6317 */
6318 if (!env->ops->convert_ctx_access) {
6319 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6320 int offset = access_size - 1;
6321
6322 /* Allow zero-byte read from PTR_TO_CTX */
6323 if (access_size == 0)
6324 return zero_size_allowed ? 0 : -EACCES;
6325
6326 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6327 atype, -1, false);
6328 }
6329
6330 fallthrough;
0d004c02
LB
6331 default: /* scalar_value or invalid ptr */
6332 /* Allow zero-byte read from NULL, regardless of pointer type */
6333 if (zero_size_allowed && access_size == 0 &&
6334 register_is_null(reg))
6335 return 0;
6336
c25b2ae1
HL
6337 verbose(env, "R%d type=%s ", regno,
6338 reg_type_str(env, reg->type));
6339 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 6340 return -EACCES;
06c1c049
GB
6341 }
6342}
6343
d583691c
KKD
6344static int check_mem_size_reg(struct bpf_verifier_env *env,
6345 struct bpf_reg_state *reg, u32 regno,
6346 bool zero_size_allowed,
6347 struct bpf_call_arg_meta *meta)
6348{
6349 int err;
6350
6351 /* This is used to refine r0 return value bounds for helpers
6352 * that enforce this value as an upper bound on return values.
6353 * See do_refine_retval_range() for helpers that can refine
6354 * the return value. C type of helper is u32 so we pull register
6355 * bound from umax_value however, if negative verifier errors
6356 * out. Only upper bounds can be learned because retval is an
6357 * int type and negative retvals are allowed.
6358 */
be77354a 6359 meta->msize_max_value = reg->umax_value;
d583691c
KKD
6360
6361 /* The register is SCALAR_VALUE; the access check
6362 * happens using its boundaries.
6363 */
6364 if (!tnum_is_const(reg->var_off))
6365 /* For unprivileged variable accesses, disable raw
6366 * mode so that the program is required to
6367 * initialize all the memory that the helper could
6368 * just partially fill up.
6369 */
6370 meta = NULL;
6371
6372 if (reg->smin_value < 0) {
6373 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6374 regno);
6375 return -EACCES;
6376 }
6377
6378 if (reg->umin_value == 0) {
6379 err = check_helper_mem_access(env, regno - 1, 0,
6380 zero_size_allowed,
6381 meta);
6382 if (err)
6383 return err;
6384 }
6385
6386 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6387 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6388 regno);
6389 return -EACCES;
6390 }
6391 err = check_helper_mem_access(env, regno - 1,
6392 reg->umax_value,
6393 zero_size_allowed, meta);
6394 if (!err)
6395 err = mark_chain_precision(env, regno);
6396 return err;
6397}
6398
e5069b9c
DB
6399int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6400 u32 regno, u32 mem_size)
6401{
be77354a
KKD
6402 bool may_be_null = type_may_be_null(reg->type);
6403 struct bpf_reg_state saved_reg;
6404 struct bpf_call_arg_meta meta;
6405 int err;
6406
e5069b9c
DB
6407 if (register_is_null(reg))
6408 return 0;
6409
be77354a
KKD
6410 memset(&meta, 0, sizeof(meta));
6411 /* Assuming that the register contains a value check if the memory
6412 * access is safe. Temporarily save and restore the register's state as
6413 * the conversion shouldn't be visible to a caller.
6414 */
6415 if (may_be_null) {
6416 saved_reg = *reg;
e5069b9c 6417 mark_ptr_not_null_reg(reg);
e5069b9c
DB
6418 }
6419
be77354a
KKD
6420 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6421 /* Check access for BPF_WRITE */
6422 meta.raw_mode = true;
6423 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6424
6425 if (may_be_null)
6426 *reg = saved_reg;
6427
6428 return err;
e5069b9c
DB
6429}
6430
00b85860
KKD
6431static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6432 u32 regno)
d583691c
KKD
6433{
6434 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6435 bool may_be_null = type_may_be_null(mem_reg->type);
6436 struct bpf_reg_state saved_reg;
be77354a 6437 struct bpf_call_arg_meta meta;
d583691c
KKD
6438 int err;
6439
6440 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6441
be77354a
KKD
6442 memset(&meta, 0, sizeof(meta));
6443
d583691c
KKD
6444 if (may_be_null) {
6445 saved_reg = *mem_reg;
6446 mark_ptr_not_null_reg(mem_reg);
6447 }
6448
be77354a
KKD
6449 err = check_mem_size_reg(env, reg, regno, true, &meta);
6450 /* Check access for BPF_WRITE */
6451 meta.raw_mode = true;
6452 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
6453
6454 if (may_be_null)
6455 *mem_reg = saved_reg;
6456 return err;
6457}
6458
d83525ca 6459/* Implementation details:
4e814da0
KKD
6460 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6461 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 6462 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
6463 * Two separate bpf_obj_new will also have different reg->id.
6464 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6465 * clears reg->id after value_or_null->value transition, since the verifier only
6466 * cares about the range of access to valid map value pointer and doesn't care
6467 * about actual address of the map element.
d83525ca
AS
6468 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6469 * reg->id > 0 after value_or_null->value transition. By doing so
6470 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
6471 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6472 * returned from bpf_obj_new.
d83525ca
AS
6473 * The verifier allows taking only one bpf_spin_lock at a time to avoid
6474 * dead-locks.
6475 * Since only one bpf_spin_lock is allowed the checks are simpler than
6476 * reg_is_refcounted() logic. The verifier needs to remember only
6477 * one spin_lock instead of array of acquired_refs.
d0d78c1d 6478 * cur_state->active_lock remembers which map value element or allocated
4e814da0 6479 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
6480 */
6481static int process_spin_lock(struct bpf_verifier_env *env, int regno,
6482 bool is_lock)
6483{
6484 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6485 struct bpf_verifier_state *cur = env->cur_state;
6486 bool is_const = tnum_is_const(reg->var_off);
d83525ca 6487 u64 val = reg->var_off.value;
4e814da0
KKD
6488 struct bpf_map *map = NULL;
6489 struct btf *btf = NULL;
6490 struct btf_record *rec;
d83525ca 6491
d83525ca
AS
6492 if (!is_const) {
6493 verbose(env,
6494 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
6495 regno);
6496 return -EINVAL;
6497 }
4e814da0
KKD
6498 if (reg->type == PTR_TO_MAP_VALUE) {
6499 map = reg->map_ptr;
6500 if (!map->btf) {
6501 verbose(env,
6502 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
6503 map->name);
6504 return -EINVAL;
6505 }
6506 } else {
6507 btf = reg->btf;
d83525ca 6508 }
4e814da0
KKD
6509
6510 rec = reg_btf_record(reg);
6511 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6512 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6513 map ? map->name : "kptr");
d83525ca
AS
6514 return -EINVAL;
6515 }
4e814da0 6516 if (rec->spin_lock_off != val + reg->off) {
db559117 6517 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 6518 val + reg->off, rec->spin_lock_off);
d83525ca
AS
6519 return -EINVAL;
6520 }
6521 if (is_lock) {
d0d78c1d 6522 if (cur->active_lock.ptr) {
d83525ca
AS
6523 verbose(env,
6524 "Locking two bpf_spin_locks are not allowed\n");
6525 return -EINVAL;
6526 }
d0d78c1d
KKD
6527 if (map)
6528 cur->active_lock.ptr = map;
6529 else
6530 cur->active_lock.ptr = btf;
6531 cur->active_lock.id = reg->id;
d83525ca 6532 } else {
d0d78c1d
KKD
6533 void *ptr;
6534
6535 if (map)
6536 ptr = map;
6537 else
6538 ptr = btf;
6539
6540 if (!cur->active_lock.ptr) {
d83525ca
AS
6541 verbose(env, "bpf_spin_unlock without taking a lock\n");
6542 return -EINVAL;
6543 }
d0d78c1d
KKD
6544 if (cur->active_lock.ptr != ptr ||
6545 cur->active_lock.id != reg->id) {
d83525ca
AS
6546 verbose(env, "bpf_spin_unlock of different lock\n");
6547 return -EINVAL;
6548 }
534e86bc 6549
6a3cd331 6550 invalidate_non_owning_refs(env);
534e86bc 6551
6a3cd331
DM
6552 cur->active_lock.ptr = NULL;
6553 cur->active_lock.id = 0;
d83525ca
AS
6554 }
6555 return 0;
6556}
6557
b00628b1
AS
6558static int process_timer_func(struct bpf_verifier_env *env, int regno,
6559 struct bpf_call_arg_meta *meta)
6560{
6561 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6562 bool is_const = tnum_is_const(reg->var_off);
6563 struct bpf_map *map = reg->map_ptr;
6564 u64 val = reg->var_off.value;
6565
6566 if (!is_const) {
6567 verbose(env,
6568 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6569 regno);
6570 return -EINVAL;
6571 }
6572 if (!map->btf) {
6573 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6574 map->name);
6575 return -EINVAL;
6576 }
db559117
KKD
6577 if (!btf_record_has_field(map->record, BPF_TIMER)) {
6578 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
6579 return -EINVAL;
6580 }
db559117 6581 if (map->record->timer_off != val + reg->off) {
68134668 6582 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 6583 val + reg->off, map->record->timer_off);
b00628b1
AS
6584 return -EINVAL;
6585 }
6586 if (meta->map_ptr) {
6587 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6588 return -EFAULT;
6589 }
3e8ce298 6590 meta->map_uid = reg->map_uid;
b00628b1
AS
6591 meta->map_ptr = map;
6592 return 0;
6593}
6594
c0a5a21c
KKD
6595static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6596 struct bpf_call_arg_meta *meta)
6597{
6598 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 6599 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 6600 struct btf_field *kptr_field;
c0a5a21c 6601 u32 kptr_off;
c0a5a21c
KKD
6602
6603 if (!tnum_is_const(reg->var_off)) {
6604 verbose(env,
6605 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6606 regno);
6607 return -EINVAL;
6608 }
6609 if (!map_ptr->btf) {
6610 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6611 map_ptr->name);
6612 return -EINVAL;
6613 }
aa3496ac
KKD
6614 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6615 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
6616 return -EINVAL;
6617 }
6618
6619 meta->map_ptr = map_ptr;
6620 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
6621 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6622 if (!kptr_field) {
c0a5a21c
KKD
6623 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6624 return -EACCES;
6625 }
aa3496ac 6626 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
6627 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6628 return -EACCES;
6629 }
aa3496ac 6630 meta->kptr_field = kptr_field;
c0a5a21c
KKD
6631 return 0;
6632}
6633
27060531
KKD
6634/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6635 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6636 *
6637 * In both cases we deal with the first 8 bytes, but need to mark the next 8
6638 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6639 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6640 *
6641 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6642 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6643 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6644 * mutate the view of the dynptr and also possibly destroy it. In the latter
6645 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6646 * memory that dynptr points to.
6647 *
6648 * The verifier will keep track both levels of mutation (bpf_dynptr's in
6649 * reg->type and the memory's in reg->dynptr.type), but there is no support for
6650 * readonly dynptr view yet, hence only the first case is tracked and checked.
6651 *
6652 * This is consistent with how C applies the const modifier to a struct object,
6653 * where the pointer itself inside bpf_dynptr becomes const but not what it
6654 * points to.
6655 *
6656 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6657 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6658 */
1d18feb2
JK
6659static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
6660 enum bpf_arg_type arg_type)
6b75bd3d
KKD
6661{
6662 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1d18feb2 6663 int err;
6b75bd3d 6664
27060531
KKD
6665 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6666 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6667 */
6668 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6669 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6670 return -EFAULT;
6671 }
79168a66 6672
27060531
KKD
6673 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
6674 * constructing a mutable bpf_dynptr object.
6675 *
6676 * Currently, this is only possible with PTR_TO_STACK
6677 * pointing to a region of at least 16 bytes which doesn't
6678 * contain an existing bpf_dynptr.
6679 *
6680 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6681 * mutated or destroyed. However, the memory it points to
6682 * may be mutated.
6683 *
6684 * None - Points to a initialized dynptr that can be mutated and
6685 * destroyed, including mutation of the memory it points
6686 * to.
6b75bd3d 6687 */
6b75bd3d 6688 if (arg_type & MEM_UNINIT) {
1d18feb2
JK
6689 int i;
6690
7e0dac28 6691 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6b75bd3d
KKD
6692 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6693 return -EINVAL;
6694 }
6695
1d18feb2
JK
6696 /* we write BPF_DW bits (8 bytes) at a time */
6697 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
6698 err = check_mem_access(env, insn_idx, regno,
6699 i, BPF_DW, BPF_WRITE, -1, false);
6700 if (err)
6701 return err;
6b75bd3d
KKD
6702 }
6703
1d18feb2 6704 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx);
27060531
KKD
6705 } else /* MEM_RDONLY and None case from above */ {
6706 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6707 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6708 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6709 return -EINVAL;
6710 }
6711
7e0dac28 6712 if (!is_dynptr_reg_valid_init(env, reg)) {
6b75bd3d
KKD
6713 verbose(env,
6714 "Expected an initialized dynptr as arg #%d\n",
6715 regno);
6716 return -EINVAL;
6717 }
6718
27060531
KKD
6719 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6720 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6b75bd3d
KKD
6721 verbose(env,
6722 "Expected a dynptr of type %s as arg #%d\n",
d54e0f6c 6723 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
6b75bd3d
KKD
6724 return -EINVAL;
6725 }
d6fefa11
KKD
6726
6727 err = mark_dynptr_read(env, reg);
6b75bd3d 6728 }
1d18feb2 6729 return err;
6b75bd3d
KKD
6730}
6731
06accc87
AN
6732static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
6733{
6734 struct bpf_func_state *state = func(env, reg);
6735
6736 return state->stack[spi].spilled_ptr.ref_obj_id;
6737}
6738
6739static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6740{
6741 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
6742}
6743
6744static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6745{
6746 return meta->kfunc_flags & KF_ITER_NEW;
6747}
6748
6749static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6750{
6751 return meta->kfunc_flags & KF_ITER_NEXT;
6752}
6753
6754static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6755{
6756 return meta->kfunc_flags & KF_ITER_DESTROY;
6757}
6758
6759static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
6760{
6761 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
6762 * kfunc is iter state pointer
6763 */
6764 return arg == 0 && is_iter_kfunc(meta);
6765}
6766
6767static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
6768 struct bpf_kfunc_call_arg_meta *meta)
6769{
6770 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6771 const struct btf_type *t;
6772 const struct btf_param *arg;
6773 int spi, err, i, nr_slots;
6774 u32 btf_id;
6775
6776 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
6777 arg = &btf_params(meta->func_proto)[0];
6778 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
6779 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
6780 nr_slots = t->size / BPF_REG_SIZE;
6781
06accc87
AN
6782 if (is_iter_new_kfunc(meta)) {
6783 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
6784 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
6785 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
6786 iter_type_str(meta->btf, btf_id), regno);
6787 return -EINVAL;
6788 }
6789
6790 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
6791 err = check_mem_access(env, insn_idx, regno,
6792 i, BPF_DW, BPF_WRITE, -1, false);
6793 if (err)
6794 return err;
6795 }
6796
6797 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
6798 if (err)
6799 return err;
6800 } else {
6801 /* iter_next() or iter_destroy() expect initialized iter state*/
6802 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
6803 verbose(env, "expected an initialized iter_%s as arg #%d\n",
6804 iter_type_str(meta->btf, btf_id), regno);
6805 return -EINVAL;
6806 }
6807
b63cbc49
AN
6808 spi = iter_get_spi(env, reg, nr_slots);
6809 if (spi < 0)
6810 return spi;
6811
06accc87
AN
6812 err = mark_iter_read(env, reg, spi, nr_slots);
6813 if (err)
6814 return err;
6815
b63cbc49
AN
6816 /* remember meta->iter info for process_iter_next_call() */
6817 meta->iter.spi = spi;
6818 meta->iter.frameno = reg->frameno;
06accc87
AN
6819 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
6820
6821 if (is_iter_destroy_kfunc(meta)) {
6822 err = unmark_stack_slots_iter(env, reg, nr_slots);
6823 if (err)
6824 return err;
6825 }
6826 }
6827
6828 return 0;
6829}
6830
6831/* process_iter_next_call() is called when verifier gets to iterator's next
6832 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
6833 * to it as just "iter_next()" in comments below.
6834 *
6835 * BPF verifier relies on a crucial contract for any iter_next()
6836 * implementation: it should *eventually* return NULL, and once that happens
6837 * it should keep returning NULL. That is, once iterator exhausts elements to
6838 * iterate, it should never reset or spuriously return new elements.
6839 *
6840 * With the assumption of such contract, process_iter_next_call() simulates
6841 * a fork in the verifier state to validate loop logic correctness and safety
6842 * without having to simulate infinite amount of iterations.
6843 *
6844 * In current state, we first assume that iter_next() returned NULL and
6845 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
6846 * conditions we should not form an infinite loop and should eventually reach
6847 * exit.
6848 *
6849 * Besides that, we also fork current state and enqueue it for later
6850 * verification. In a forked state we keep iterator state as ACTIVE
6851 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
6852 * also bump iteration depth to prevent erroneous infinite loop detection
6853 * later on (see iter_active_depths_differ() comment for details). In this
6854 * state we assume that we'll eventually loop back to another iter_next()
6855 * calls (it could be in exactly same location or in some other instruction,
6856 * it doesn't matter, we don't make any unnecessary assumptions about this,
6857 * everything revolves around iterator state in a stack slot, not which
6858 * instruction is calling iter_next()). When that happens, we either will come
6859 * to iter_next() with equivalent state and can conclude that next iteration
6860 * will proceed in exactly the same way as we just verified, so it's safe to
6861 * assume that loop converges. If not, we'll go on another iteration
6862 * simulation with a different input state, until all possible starting states
6863 * are validated or we reach maximum number of instructions limit.
6864 *
6865 * This way, we will either exhaustively discover all possible input states
6866 * that iterator loop can start with and eventually will converge, or we'll
6867 * effectively regress into bounded loop simulation logic and either reach
6868 * maximum number of instructions if loop is not provably convergent, or there
6869 * is some statically known limit on number of iterations (e.g., if there is
6870 * an explicit `if n > 100 then break;` statement somewhere in the loop).
6871 *
6872 * One very subtle but very important aspect is that we *always* simulate NULL
6873 * condition first (as the current state) before we simulate non-NULL case.
6874 * This has to do with intricacies of scalar precision tracking. By simulating
6875 * "exit condition" of iter_next() returning NULL first, we make sure all the
6876 * relevant precision marks *that will be set **after** we exit iterator loop*
6877 * are propagated backwards to common parent state of NULL and non-NULL
6878 * branches. Thanks to that, state equivalence checks done later in forked
6879 * state, when reaching iter_next() for ACTIVE iterator, can assume that
6880 * precision marks are finalized and won't change. Because simulating another
6881 * ACTIVE iterator iteration won't change them (because given same input
6882 * states we'll end up with exactly same output states which we are currently
6883 * comparing; and verification after the loop already propagated back what
6884 * needs to be **additionally** tracked as precise). It's subtle, grok
6885 * precision tracking for more intuitive understanding.
6886 */
6887static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
6888 struct bpf_kfunc_call_arg_meta *meta)
6889{
6890 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
6891 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
6892 struct bpf_reg_state *cur_iter, *queued_iter;
6893 int iter_frameno = meta->iter.frameno;
6894 int iter_spi = meta->iter.spi;
6895
6896 BTF_TYPE_EMIT(struct bpf_iter);
6897
6898 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6899
6900 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
6901 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
6902 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
6903 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
6904 return -EFAULT;
6905 }
6906
6907 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
6908 /* branch out active iter state */
6909 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
6910 if (!queued_st)
6911 return -ENOMEM;
6912
6913 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6914 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
6915 queued_iter->iter.depth++;
6916
6917 queued_fr = queued_st->frame[queued_st->curframe];
6918 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
6919 }
6920
6921 /* switch to DRAINED state, but keep the depth unchanged */
6922 /* mark current iter state as drained and assume returned NULL */
6923 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
6924 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
6925
6926 return 0;
6927}
6928
90133415
DB
6929static bool arg_type_is_mem_size(enum bpf_arg_type type)
6930{
6931 return type == ARG_CONST_SIZE ||
6932 type == ARG_CONST_SIZE_OR_ZERO;
6933}
6934
8f14852e
KKD
6935static bool arg_type_is_release(enum bpf_arg_type type)
6936{
6937 return type & OBJ_RELEASE;
6938}
6939
97e03f52
JK
6940static bool arg_type_is_dynptr(enum bpf_arg_type type)
6941{
6942 return base_type(type) == ARG_PTR_TO_DYNPTR;
6943}
6944
57c3bb72
AI
6945static int int_ptr_type_to_size(enum bpf_arg_type type)
6946{
6947 if (type == ARG_PTR_TO_INT)
6948 return sizeof(u32);
6949 else if (type == ARG_PTR_TO_LONG)
6950 return sizeof(u64);
6951
6952 return -EINVAL;
6953}
6954
912f442c
LB
6955static int resolve_map_arg_type(struct bpf_verifier_env *env,
6956 const struct bpf_call_arg_meta *meta,
6957 enum bpf_arg_type *arg_type)
6958{
6959 if (!meta->map_ptr) {
6960 /* kernel subsystem misconfigured verifier */
6961 verbose(env, "invalid map_ptr to access map->type\n");
6962 return -EACCES;
6963 }
6964
6965 switch (meta->map_ptr->map_type) {
6966 case BPF_MAP_TYPE_SOCKMAP:
6967 case BPF_MAP_TYPE_SOCKHASH:
6968 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 6969 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
6970 } else {
6971 verbose(env, "invalid arg_type for sockmap/sockhash\n");
6972 return -EINVAL;
6973 }
6974 break;
9330986c
JK
6975 case BPF_MAP_TYPE_BLOOM_FILTER:
6976 if (meta->func_id == BPF_FUNC_map_peek_elem)
6977 *arg_type = ARG_PTR_TO_MAP_VALUE;
6978 break;
912f442c
LB
6979 default:
6980 break;
6981 }
6982 return 0;
6983}
6984
f79e7ea5
LB
6985struct bpf_reg_types {
6986 const enum bpf_reg_type types[10];
1df8f55a 6987 u32 *btf_id;
f79e7ea5
LB
6988};
6989
f79e7ea5
LB
6990static const struct bpf_reg_types sock_types = {
6991 .types = {
6992 PTR_TO_SOCK_COMMON,
6993 PTR_TO_SOCKET,
6994 PTR_TO_TCP_SOCK,
6995 PTR_TO_XDP_SOCK,
6996 },
6997};
6998
49a2a4d4 6999#ifdef CONFIG_NET
1df8f55a
MKL
7000static const struct bpf_reg_types btf_id_sock_common_types = {
7001 .types = {
7002 PTR_TO_SOCK_COMMON,
7003 PTR_TO_SOCKET,
7004 PTR_TO_TCP_SOCK,
7005 PTR_TO_XDP_SOCK,
7006 PTR_TO_BTF_ID,
3f00c523 7007 PTR_TO_BTF_ID | PTR_TRUSTED,
1df8f55a
MKL
7008 },
7009 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7010};
49a2a4d4 7011#endif
1df8f55a 7012
f79e7ea5
LB
7013static const struct bpf_reg_types mem_types = {
7014 .types = {
7015 PTR_TO_STACK,
7016 PTR_TO_PACKET,
7017 PTR_TO_PACKET_META,
69c087ba 7018 PTR_TO_MAP_KEY,
f79e7ea5
LB
7019 PTR_TO_MAP_VALUE,
7020 PTR_TO_MEM,
894f2a8b 7021 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 7022 PTR_TO_BUF,
3e30be42 7023 PTR_TO_BTF_ID | PTR_TRUSTED,
f79e7ea5
LB
7024 },
7025};
7026
7027static const struct bpf_reg_types int_ptr_types = {
7028 .types = {
7029 PTR_TO_STACK,
7030 PTR_TO_PACKET,
7031 PTR_TO_PACKET_META,
69c087ba 7032 PTR_TO_MAP_KEY,
f79e7ea5
LB
7033 PTR_TO_MAP_VALUE,
7034 },
7035};
7036
4e814da0
KKD
7037static const struct bpf_reg_types spin_lock_types = {
7038 .types = {
7039 PTR_TO_MAP_VALUE,
7040 PTR_TO_BTF_ID | MEM_ALLOC,
7041 }
7042};
7043
f79e7ea5
LB
7044static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7045static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7046static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 7047static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5 7048static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
3f00c523
DV
7049static const struct bpf_reg_types btf_ptr_types = {
7050 .types = {
7051 PTR_TO_BTF_ID,
7052 PTR_TO_BTF_ID | PTR_TRUSTED,
fca1aa75 7053 PTR_TO_BTF_ID | MEM_RCU,
3f00c523
DV
7054 },
7055};
7056static const struct bpf_reg_types percpu_btf_ptr_types = {
7057 .types = {
7058 PTR_TO_BTF_ID | MEM_PERCPU,
7059 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7060 }
7061};
69c087ba
YS
7062static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7063static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 7064static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 7065static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 7066static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
7067static const struct bpf_reg_types dynptr_types = {
7068 .types = {
7069 PTR_TO_STACK,
27060531 7070 CONST_PTR_TO_DYNPTR,
20571567
DV
7071 }
7072};
f79e7ea5 7073
0789e13b 7074static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
7075 [ARG_PTR_TO_MAP_KEY] = &mem_types,
7076 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
7077 [ARG_CONST_SIZE] = &scalar_types,
7078 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
7079 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
7080 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
7081 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 7082 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 7083#ifdef CONFIG_NET
1df8f55a 7084 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 7085#endif
f79e7ea5 7086 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
7087 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
7088 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
7089 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 7090 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
7091 [ARG_PTR_TO_INT] = &int_ptr_types,
7092 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 7093 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 7094 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 7095 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 7096 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 7097 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 7098 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 7099 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
7100};
7101
7102static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 7103 enum bpf_arg_type arg_type,
c0a5a21c
KKD
7104 const u32 *arg_btf_id,
7105 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
7106{
7107 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7108 enum bpf_reg_type expected, type = reg->type;
a968d5e2 7109 const struct bpf_reg_types *compatible;
f79e7ea5
LB
7110 int i, j;
7111
48946bd6 7112 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
7113 if (!compatible) {
7114 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7115 return -EFAULT;
7116 }
7117
216e3cd2
HL
7118 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7119 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7120 *
7121 * Same for MAYBE_NULL:
7122 *
7123 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7124 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7125 *
7126 * Therefore we fold these flags depending on the arg_type before comparison.
7127 */
7128 if (arg_type & MEM_RDONLY)
7129 type &= ~MEM_RDONLY;
7130 if (arg_type & PTR_MAYBE_NULL)
7131 type &= ~PTR_MAYBE_NULL;
7132
738c96d5
DM
7133 if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC)
7134 type &= ~MEM_ALLOC;
7135
f79e7ea5
LB
7136 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7137 expected = compatible->types[i];
7138 if (expected == NOT_INIT)
7139 break;
7140
7141 if (type == expected)
a968d5e2 7142 goto found;
f79e7ea5
LB
7143 }
7144
216e3cd2 7145 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 7146 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
7147 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7148 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 7149 return -EACCES;
a968d5e2
MKL
7150
7151found:
da03e43a
KKD
7152 if (base_type(reg->type) != PTR_TO_BTF_ID)
7153 return 0;
7154
3e30be42
AS
7155 if (compatible == &mem_types) {
7156 if (!(arg_type & MEM_RDONLY)) {
7157 verbose(env,
7158 "%s() may write into memory pointed by R%d type=%s\n",
7159 func_id_name(meta->func_id),
7160 regno, reg_type_str(env, reg->type));
7161 return -EACCES;
7162 }
7163 return 0;
7164 }
7165
da03e43a
KKD
7166 switch ((int)reg->type) {
7167 case PTR_TO_BTF_ID:
7168 case PTR_TO_BTF_ID | PTR_TRUSTED:
7169 case PTR_TO_BTF_ID | MEM_RCU:
7170 {
2ab3b380
KKD
7171 /* For bpf_sk_release, it needs to match against first member
7172 * 'struct sock_common', hence make an exception for it. This
7173 * allows bpf_sk_release to work for multiple socket types.
7174 */
7175 bool strict_type_match = arg_type_is_release(arg_type) &&
7176 meta->func_id != BPF_FUNC_sk_release;
7177
1df8f55a
MKL
7178 if (!arg_btf_id) {
7179 if (!compatible->btf_id) {
7180 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7181 return -EFAULT;
7182 }
7183 arg_btf_id = compatible->btf_id;
7184 }
7185
c0a5a21c 7186 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 7187 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 7188 return -EACCES;
47e34cb7
DM
7189 } else {
7190 if (arg_btf_id == BPF_PTR_POISON) {
7191 verbose(env, "verifier internal error:");
7192 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7193 regno);
7194 return -EACCES;
7195 }
7196
7197 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7198 btf_vmlinux, *arg_btf_id,
7199 strict_type_match)) {
7200 verbose(env, "R%d is of type %s but %s is expected\n",
b32a5dae
DM
7201 regno, btf_type_name(reg->btf, reg->btf_id),
7202 btf_type_name(btf_vmlinux, *arg_btf_id));
47e34cb7
DM
7203 return -EACCES;
7204 }
a968d5e2 7205 }
da03e43a
KKD
7206 break;
7207 }
e4c2acab
DV
7208 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7209 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7210 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7211 return -EACCES;
da03e43a 7212 case PTR_TO_BTF_ID | MEM_ALLOC:
738c96d5
DM
7213 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7214 meta->func_id != BPF_FUNC_kptr_xchg) {
4e814da0
KKD
7215 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7216 return -EFAULT;
7217 }
da03e43a
KKD
7218 /* Handled by helper specific checks */
7219 break;
7220 case PTR_TO_BTF_ID | MEM_PERCPU:
7221 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7222 /* Handled by helper specific checks */
7223 break;
7224 default:
7225 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7226 return -EFAULT;
a968d5e2 7227 }
a968d5e2 7228 return 0;
f79e7ea5
LB
7229}
7230
6a3cd331
DM
7231static struct btf_field *
7232reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7233{
7234 struct btf_field *field;
7235 struct btf_record *rec;
7236
7237 rec = reg_btf_record(reg);
7238 if (!rec)
7239 return NULL;
7240
7241 field = btf_record_find(rec, off, fields);
7242 if (!field)
7243 return NULL;
7244
7245 return field;
7246}
7247
25b35dd2
KKD
7248int check_func_arg_reg_off(struct bpf_verifier_env *env,
7249 const struct bpf_reg_state *reg, int regno,
8f14852e 7250 enum bpf_arg_type arg_type)
25b35dd2 7251{
184c9bdb 7252 u32 type = reg->type;
25b35dd2 7253
184c9bdb
KKD
7254 /* When referenced register is passed to release function, its fixed
7255 * offset must be 0.
7256 *
7257 * We will check arg_type_is_release reg has ref_obj_id when storing
7258 * meta->release_regno.
7259 */
7260 if (arg_type_is_release(arg_type)) {
7261 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7262 * may not directly point to the object being released, but to
7263 * dynptr pointing to such object, which might be at some offset
7264 * on the stack. In that case, we simply to fallback to the
7265 * default handling.
7266 */
7267 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7268 return 0;
6a3cd331
DM
7269
7270 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7271 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7272 return __check_ptr_off_reg(env, reg, regno, true);
7273
7274 verbose(env, "R%d must have zero offset when passed to release func\n",
7275 regno);
7276 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
b32a5dae 7277 btf_type_name(reg->btf, reg->btf_id), reg->off);
6a3cd331
DM
7278 return -EINVAL;
7279 }
7280
184c9bdb
KKD
7281 /* Doing check_ptr_off_reg check for the offset will catch this
7282 * because fixed_off_ok is false, but checking here allows us
7283 * to give the user a better error message.
7284 */
7285 if (reg->off) {
7286 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7287 regno);
7288 return -EINVAL;
7289 }
7290 return __check_ptr_off_reg(env, reg, regno, false);
7291 }
7292
7293 switch (type) {
7294 /* Pointer types where both fixed and variable offset is explicitly allowed: */
97e03f52 7295 case PTR_TO_STACK:
25b35dd2
KKD
7296 case PTR_TO_PACKET:
7297 case PTR_TO_PACKET_META:
7298 case PTR_TO_MAP_KEY:
7299 case PTR_TO_MAP_VALUE:
7300 case PTR_TO_MEM:
7301 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 7302 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
7303 case PTR_TO_BUF:
7304 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 7305 case SCALAR_VALUE:
184c9bdb 7306 return 0;
25b35dd2
KKD
7307 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7308 * fixed offset.
7309 */
7310 case PTR_TO_BTF_ID:
282de143 7311 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 7312 case PTR_TO_BTF_ID | PTR_TRUSTED:
fca1aa75 7313 case PTR_TO_BTF_ID | MEM_RCU:
6a3cd331 7314 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
24d5bb80 7315 /* When referenced PTR_TO_BTF_ID is passed to release function,
184c9bdb
KKD
7316 * its fixed offset must be 0. In the other cases, fixed offset
7317 * can be non-zero. This was already checked above. So pass
7318 * fixed_off_ok as true to allow fixed offset for all other
7319 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7320 * still need to do checks instead of returning.
24d5bb80 7321 */
184c9bdb 7322 return __check_ptr_off_reg(env, reg, regno, true);
25b35dd2 7323 default:
184c9bdb 7324 return __check_ptr_off_reg(env, reg, regno, false);
25b35dd2 7325 }
25b35dd2
KKD
7326}
7327
485ec51e
JK
7328static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7329 const struct bpf_func_proto *fn,
7330 struct bpf_reg_state *regs)
7331{
7332 struct bpf_reg_state *state = NULL;
7333 int i;
7334
7335 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7336 if (arg_type_is_dynptr(fn->arg_type[i])) {
7337 if (state) {
7338 verbose(env, "verifier internal error: multiple dynptr args\n");
7339 return NULL;
7340 }
7341 state = &regs[BPF_REG_1 + i];
7342 }
7343
7344 if (!state)
7345 verbose(env, "verifier internal error: no dynptr arg found\n");
7346
7347 return state;
7348}
7349
f8064ab9 7350static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
7351{
7352 struct bpf_func_state *state = func(env, reg);
27060531 7353 int spi;
34d4ef57 7354
27060531 7355 if (reg->type == CONST_PTR_TO_DYNPTR)
f8064ab9
KKD
7356 return reg->id;
7357 spi = dynptr_get_spi(env, reg);
7358 if (spi < 0)
7359 return spi;
7360 return state->stack[spi].spilled_ptr.id;
7361}
7362
79168a66 7363static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
7364{
7365 struct bpf_func_state *state = func(env, reg);
27060531 7366 int spi;
27060531 7367
27060531
KKD
7368 if (reg->type == CONST_PTR_TO_DYNPTR)
7369 return reg->ref_obj_id;
79168a66
KKD
7370 spi = dynptr_get_spi(env, reg);
7371 if (spi < 0)
7372 return spi;
27060531 7373 return state->stack[spi].spilled_ptr.ref_obj_id;
34d4ef57
JK
7374}
7375
b5964b96
JK
7376static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7377 struct bpf_reg_state *reg)
7378{
7379 struct bpf_func_state *state = func(env, reg);
7380 int spi;
7381
7382 if (reg->type == CONST_PTR_TO_DYNPTR)
7383 return reg->dynptr.type;
7384
7385 spi = __get_spi(reg->off);
7386 if (spi < 0) {
7387 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7388 return BPF_DYNPTR_TYPE_INVALID;
7389 }
7390
7391 return state->stack[spi].spilled_ptr.dynptr.type;
7392}
7393
af7ec138
YS
7394static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7395 struct bpf_call_arg_meta *meta,
1d18feb2
JK
7396 const struct bpf_func_proto *fn,
7397 int insn_idx)
17a52670 7398{
af7ec138 7399 u32 regno = BPF_REG_1 + arg;
638f5b90 7400 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 7401 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 7402 enum bpf_reg_type type = reg->type;
508362ac 7403 u32 *arg_btf_id = NULL;
17a52670
AS
7404 int err = 0;
7405
80f1d68c 7406 if (arg_type == ARG_DONTCARE)
17a52670
AS
7407 return 0;
7408
dc503a8a
EC
7409 err = check_reg_arg(env, regno, SRC_OP);
7410 if (err)
7411 return err;
17a52670 7412
1be7f75d
AS
7413 if (arg_type == ARG_ANYTHING) {
7414 if (is_pointer_value(env, regno)) {
61bd5218
JK
7415 verbose(env, "R%d leaks addr into helper function\n",
7416 regno);
1be7f75d
AS
7417 return -EACCES;
7418 }
80f1d68c 7419 return 0;
1be7f75d 7420 }
80f1d68c 7421
de8f3a83 7422 if (type_is_pkt_pointer(type) &&
3a0af8fd 7423 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 7424 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
7425 return -EACCES;
7426 }
7427
16d1e00c 7428 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
7429 err = resolve_map_arg_type(env, meta, &arg_type);
7430 if (err)
7431 return err;
7432 }
7433
48946bd6 7434 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
7435 /* A NULL register has a SCALAR_VALUE type, so skip
7436 * type checking.
7437 */
7438 goto skip_type_check;
7439
508362ac 7440 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
7441 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7442 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
7443 arg_btf_id = fn->arg_btf_id[arg];
7444
7445 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
7446 if (err)
7447 return err;
7448
8f14852e 7449 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
7450 if (err)
7451 return err;
d7b9454a 7452
fd1b0d60 7453skip_type_check:
8f14852e 7454 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
7455 if (arg_type_is_dynptr(arg_type)) {
7456 struct bpf_func_state *state = func(env, reg);
27060531 7457 int spi;
bc34dee6 7458
27060531
KKD
7459 /* Only dynptr created on stack can be released, thus
7460 * the get_spi and stack state checks for spilled_ptr
7461 * should only be done before process_dynptr_func for
7462 * PTR_TO_STACK.
7463 */
7464 if (reg->type == PTR_TO_STACK) {
79168a66 7465 spi = dynptr_get_spi(env, reg);
f5b625e5 7466 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
27060531
KKD
7467 verbose(env, "arg %d is an unacquired reference\n", regno);
7468 return -EINVAL;
7469 }
7470 } else {
7471 verbose(env, "cannot release unowned const bpf_dynptr\n");
bc34dee6
JK
7472 return -EINVAL;
7473 }
7474 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
7475 verbose(env, "R%d must be referenced when passed to release function\n",
7476 regno);
7477 return -EINVAL;
7478 }
7479 if (meta->release_regno) {
7480 verbose(env, "verifier internal error: more than one release argument\n");
7481 return -EFAULT;
7482 }
7483 meta->release_regno = regno;
7484 }
7485
02f7c958 7486 if (reg->ref_obj_id) {
457f4436
AN
7487 if (meta->ref_obj_id) {
7488 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
7489 regno, reg->ref_obj_id,
7490 meta->ref_obj_id);
7491 return -EFAULT;
7492 }
7493 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
7494 }
7495
8ab4cdcf
JK
7496 switch (base_type(arg_type)) {
7497 case ARG_CONST_MAP_PTR:
17a52670 7498 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
7499 if (meta->map_ptr) {
7500 /* Use map_uid (which is unique id of inner map) to reject:
7501 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
7502 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
7503 * if (inner_map1 && inner_map2) {
7504 * timer = bpf_map_lookup_elem(inner_map1);
7505 * if (timer)
7506 * // mismatch would have been allowed
7507 * bpf_timer_init(timer, inner_map2);
7508 * }
7509 *
7510 * Comparing map_ptr is enough to distinguish normal and outer maps.
7511 */
7512 if (meta->map_ptr != reg->map_ptr ||
7513 meta->map_uid != reg->map_uid) {
7514 verbose(env,
7515 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
7516 meta->map_uid, reg->map_uid);
7517 return -EINVAL;
7518 }
b00628b1 7519 }
33ff9823 7520 meta->map_ptr = reg->map_ptr;
3e8ce298 7521 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
7522 break;
7523 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
7524 /* bpf_map_xxx(..., map_ptr, ..., key) call:
7525 * check that [key, key + map->key_size) are within
7526 * stack limits and initialized
7527 */
33ff9823 7528 if (!meta->map_ptr) {
17a52670
AS
7529 /* in function declaration map_ptr must come before
7530 * map_key, so that it's verified and known before
7531 * we have to check map_key here. Otherwise it means
7532 * that kernel subsystem misconfigured verifier
7533 */
61bd5218 7534 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
7535 return -EACCES;
7536 }
d71962f3
PC
7537 err = check_helper_mem_access(env, regno,
7538 meta->map_ptr->key_size, false,
7539 NULL);
8ab4cdcf
JK
7540 break;
7541 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
7542 if (type_may_be_null(arg_type) && register_is_null(reg))
7543 return 0;
7544
17a52670
AS
7545 /* bpf_map_xxx(..., map_ptr, ..., value) call:
7546 * check [value, value + map->value_size) validity
7547 */
33ff9823 7548 if (!meta->map_ptr) {
17a52670 7549 /* kernel subsystem misconfigured verifier */
61bd5218 7550 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
7551 return -EACCES;
7552 }
16d1e00c 7553 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
7554 err = check_helper_mem_access(env, regno,
7555 meta->map_ptr->value_size, false,
2ea864c5 7556 meta);
8ab4cdcf
JK
7557 break;
7558 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
7559 if (!reg->btf_id) {
7560 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
7561 return -EACCES;
7562 }
22dc4a0f 7563 meta->ret_btf = reg->btf;
eaa6bcb7 7564 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
7565 break;
7566 case ARG_PTR_TO_SPIN_LOCK:
5d92ddc3
DM
7567 if (in_rbtree_lock_required_cb(env)) {
7568 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
7569 return -EACCES;
7570 }
c18f0b6a 7571 if (meta->func_id == BPF_FUNC_spin_lock) {
ac50fe51
KKD
7572 err = process_spin_lock(env, regno, true);
7573 if (err)
7574 return err;
c18f0b6a 7575 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
ac50fe51
KKD
7576 err = process_spin_lock(env, regno, false);
7577 if (err)
7578 return err;
c18f0b6a
LB
7579 } else {
7580 verbose(env, "verifier internal error\n");
7581 return -EFAULT;
7582 }
8ab4cdcf
JK
7583 break;
7584 case ARG_PTR_TO_TIMER:
ac50fe51
KKD
7585 err = process_timer_func(env, regno, meta);
7586 if (err)
7587 return err;
8ab4cdcf
JK
7588 break;
7589 case ARG_PTR_TO_FUNC:
69c087ba 7590 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
7591 break;
7592 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
7593 /* The access to this pointer is only checked when we hit the
7594 * next is_mem_size argument below.
7595 */
16d1e00c 7596 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
7597 if (arg_type & MEM_FIXED_SIZE) {
7598 err = check_helper_mem_access(env, regno,
7599 fn->arg_size[arg], false,
7600 meta);
7601 }
8ab4cdcf
JK
7602 break;
7603 case ARG_CONST_SIZE:
7604 err = check_mem_size_reg(env, reg, regno, false, meta);
7605 break;
7606 case ARG_CONST_SIZE_OR_ZERO:
7607 err = check_mem_size_reg(env, reg, regno, true, meta);
7608 break;
7609 case ARG_PTR_TO_DYNPTR:
1d18feb2 7610 err = process_dynptr_func(env, regno, insn_idx, arg_type);
ac50fe51
KKD
7611 if (err)
7612 return err;
8ab4cdcf
JK
7613 break;
7614 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 7615 if (!tnum_is_const(reg->var_off)) {
28a8add6 7616 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
7617 regno);
7618 return -EACCES;
7619 }
7620 meta->mem_size = reg->var_off.value;
2fc31465
KKD
7621 err = mark_chain_precision(env, regno);
7622 if (err)
7623 return err;
8ab4cdcf
JK
7624 break;
7625 case ARG_PTR_TO_INT:
7626 case ARG_PTR_TO_LONG:
7627 {
57c3bb72
AI
7628 int size = int_ptr_type_to_size(arg_type);
7629
7630 err = check_helper_mem_access(env, regno, size, false, meta);
7631 if (err)
7632 return err;
7633 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
7634 break;
7635 }
7636 case ARG_PTR_TO_CONST_STR:
7637 {
fff13c4b
FR
7638 struct bpf_map *map = reg->map_ptr;
7639 int map_off;
7640 u64 map_addr;
7641 char *str_ptr;
7642
a8fad73e 7643 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
7644 verbose(env, "R%d does not point to a readonly map'\n", regno);
7645 return -EACCES;
7646 }
7647
7648 if (!tnum_is_const(reg->var_off)) {
7649 verbose(env, "R%d is not a constant address'\n", regno);
7650 return -EACCES;
7651 }
7652
7653 if (!map->ops->map_direct_value_addr) {
7654 verbose(env, "no direct value access support for this map type\n");
7655 return -EACCES;
7656 }
7657
7658 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
7659 map->value_size - reg->off, false,
7660 ACCESS_HELPER);
fff13c4b
FR
7661 if (err)
7662 return err;
7663
7664 map_off = reg->off + reg->var_off.value;
7665 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
7666 if (err) {
7667 verbose(env, "direct value access on string failed\n");
7668 return err;
7669 }
7670
7671 str_ptr = (char *)(long)(map_addr);
7672 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
7673 verbose(env, "string is not zero-terminated\n");
7674 return -EINVAL;
7675 }
8ab4cdcf
JK
7676 break;
7677 }
7678 case ARG_PTR_TO_KPTR:
ac50fe51
KKD
7679 err = process_kptr_func(env, regno, meta);
7680 if (err)
7681 return err;
8ab4cdcf 7682 break;
17a52670
AS
7683 }
7684
7685 return err;
7686}
7687
0126240f
LB
7688static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
7689{
7690 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 7691 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
7692
7693 if (func_id != BPF_FUNC_map_update_elem)
7694 return false;
7695
7696 /* It's not possible to get access to a locked struct sock in these
7697 * contexts, so updating is safe.
7698 */
7699 switch (type) {
7700 case BPF_PROG_TYPE_TRACING:
7701 if (eatype == BPF_TRACE_ITER)
7702 return true;
7703 break;
7704 case BPF_PROG_TYPE_SOCKET_FILTER:
7705 case BPF_PROG_TYPE_SCHED_CLS:
7706 case BPF_PROG_TYPE_SCHED_ACT:
7707 case BPF_PROG_TYPE_XDP:
7708 case BPF_PROG_TYPE_SK_REUSEPORT:
7709 case BPF_PROG_TYPE_FLOW_DISSECTOR:
7710 case BPF_PROG_TYPE_SK_LOOKUP:
7711 return true;
7712 default:
7713 break;
7714 }
7715
7716 verbose(env, "cannot update sockmap in this context\n");
7717 return false;
7718}
7719
e411901c
MF
7720static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
7721{
95acd881
TA
7722 return env->prog->jit_requested &&
7723 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
7724}
7725
61bd5218
JK
7726static int check_map_func_compatibility(struct bpf_verifier_env *env,
7727 struct bpf_map *map, int func_id)
35578d79 7728{
35578d79
KX
7729 if (!map)
7730 return 0;
7731
6aff67c8
AS
7732 /* We need a two way check, first is from map perspective ... */
7733 switch (map->map_type) {
7734 case BPF_MAP_TYPE_PROG_ARRAY:
7735 if (func_id != BPF_FUNC_tail_call)
7736 goto error;
7737 break;
7738 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
7739 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 7740 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 7741 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
7742 func_id != BPF_FUNC_perf_event_read_value &&
7743 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
7744 goto error;
7745 break;
457f4436
AN
7746 case BPF_MAP_TYPE_RINGBUF:
7747 if (func_id != BPF_FUNC_ringbuf_output &&
7748 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
7749 func_id != BPF_FUNC_ringbuf_query &&
7750 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
7751 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
7752 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
7753 goto error;
7754 break;
583c1f42 7755 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
7756 if (func_id != BPF_FUNC_user_ringbuf_drain)
7757 goto error;
7758 break;
6aff67c8
AS
7759 case BPF_MAP_TYPE_STACK_TRACE:
7760 if (func_id != BPF_FUNC_get_stackid)
7761 goto error;
7762 break;
4ed8ec52 7763 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 7764 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 7765 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
7766 goto error;
7767 break;
cd339431 7768 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 7769 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
7770 if (func_id != BPF_FUNC_get_local_storage)
7771 goto error;
7772 break;
546ac1ff 7773 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 7774 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
7775 if (func_id != BPF_FUNC_redirect_map &&
7776 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
7777 goto error;
7778 break;
fbfc504a
BT
7779 /* Restrict bpf side of cpumap and xskmap, open when use-cases
7780 * appear.
7781 */
6710e112
JDB
7782 case BPF_MAP_TYPE_CPUMAP:
7783 if (func_id != BPF_FUNC_redirect_map)
7784 goto error;
7785 break;
fada7fdc
JL
7786 case BPF_MAP_TYPE_XSKMAP:
7787 if (func_id != BPF_FUNC_redirect_map &&
7788 func_id != BPF_FUNC_map_lookup_elem)
7789 goto error;
7790 break;
56f668df 7791 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 7792 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
7793 if (func_id != BPF_FUNC_map_lookup_elem)
7794 goto error;
16a43625 7795 break;
174a79ff
JF
7796 case BPF_MAP_TYPE_SOCKMAP:
7797 if (func_id != BPF_FUNC_sk_redirect_map &&
7798 func_id != BPF_FUNC_sock_map_update &&
4f738adb 7799 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 7800 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 7801 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
7802 func_id != BPF_FUNC_map_lookup_elem &&
7803 !may_update_sockmap(env, func_id))
174a79ff
JF
7804 goto error;
7805 break;
81110384
JF
7806 case BPF_MAP_TYPE_SOCKHASH:
7807 if (func_id != BPF_FUNC_sk_redirect_hash &&
7808 func_id != BPF_FUNC_sock_hash_update &&
7809 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 7810 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 7811 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
7812 func_id != BPF_FUNC_map_lookup_elem &&
7813 !may_update_sockmap(env, func_id))
81110384
JF
7814 goto error;
7815 break;
2dbb9b9e
MKL
7816 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7817 if (func_id != BPF_FUNC_sk_select_reuseport)
7818 goto error;
7819 break;
f1a2e44a
MV
7820 case BPF_MAP_TYPE_QUEUE:
7821 case BPF_MAP_TYPE_STACK:
7822 if (func_id != BPF_FUNC_map_peek_elem &&
7823 func_id != BPF_FUNC_map_pop_elem &&
7824 func_id != BPF_FUNC_map_push_elem)
7825 goto error;
7826 break;
6ac99e8f
MKL
7827 case BPF_MAP_TYPE_SK_STORAGE:
7828 if (func_id != BPF_FUNC_sk_storage_get &&
9db44fdd
KKD
7829 func_id != BPF_FUNC_sk_storage_delete &&
7830 func_id != BPF_FUNC_kptr_xchg)
6ac99e8f
MKL
7831 goto error;
7832 break;
8ea63684
KS
7833 case BPF_MAP_TYPE_INODE_STORAGE:
7834 if (func_id != BPF_FUNC_inode_storage_get &&
9db44fdd
KKD
7835 func_id != BPF_FUNC_inode_storage_delete &&
7836 func_id != BPF_FUNC_kptr_xchg)
8ea63684
KS
7837 goto error;
7838 break;
4cf1bc1f
KS
7839 case BPF_MAP_TYPE_TASK_STORAGE:
7840 if (func_id != BPF_FUNC_task_storage_get &&
9db44fdd
KKD
7841 func_id != BPF_FUNC_task_storage_delete &&
7842 func_id != BPF_FUNC_kptr_xchg)
4cf1bc1f
KS
7843 goto error;
7844 break;
c4bcfb38
YS
7845 case BPF_MAP_TYPE_CGRP_STORAGE:
7846 if (func_id != BPF_FUNC_cgrp_storage_get &&
9db44fdd
KKD
7847 func_id != BPF_FUNC_cgrp_storage_delete &&
7848 func_id != BPF_FUNC_kptr_xchg)
c4bcfb38
YS
7849 goto error;
7850 break;
9330986c
JK
7851 case BPF_MAP_TYPE_BLOOM_FILTER:
7852 if (func_id != BPF_FUNC_map_peek_elem &&
7853 func_id != BPF_FUNC_map_push_elem)
7854 goto error;
7855 break;
6aff67c8
AS
7856 default:
7857 break;
7858 }
7859
7860 /* ... and second from the function itself. */
7861 switch (func_id) {
7862 case BPF_FUNC_tail_call:
7863 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7864 goto error;
e411901c
MF
7865 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7866 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
7867 return -EINVAL;
7868 }
6aff67c8
AS
7869 break;
7870 case BPF_FUNC_perf_event_read:
7871 case BPF_FUNC_perf_event_output:
908432ca 7872 case BPF_FUNC_perf_event_read_value:
a7658e1a 7873 case BPF_FUNC_skb_output:
d831ee84 7874 case BPF_FUNC_xdp_output:
6aff67c8
AS
7875 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7876 goto error;
7877 break;
5b029a32
DB
7878 case BPF_FUNC_ringbuf_output:
7879 case BPF_FUNC_ringbuf_reserve:
7880 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
7881 case BPF_FUNC_ringbuf_reserve_dynptr:
7882 case BPF_FUNC_ringbuf_submit_dynptr:
7883 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
7884 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7885 goto error;
7886 break;
20571567
DV
7887 case BPF_FUNC_user_ringbuf_drain:
7888 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7889 goto error;
7890 break;
6aff67c8
AS
7891 case BPF_FUNC_get_stackid:
7892 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7893 goto error;
7894 break;
60d20f91 7895 case BPF_FUNC_current_task_under_cgroup:
747ea55e 7896 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
7897 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7898 goto error;
7899 break;
97f91a7c 7900 case BPF_FUNC_redirect_map:
9c270af3 7901 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 7902 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
7903 map->map_type != BPF_MAP_TYPE_CPUMAP &&
7904 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
7905 goto error;
7906 break;
174a79ff 7907 case BPF_FUNC_sk_redirect_map:
4f738adb 7908 case BPF_FUNC_msg_redirect_map:
81110384 7909 case BPF_FUNC_sock_map_update:
174a79ff
JF
7910 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7911 goto error;
7912 break;
81110384
JF
7913 case BPF_FUNC_sk_redirect_hash:
7914 case BPF_FUNC_msg_redirect_hash:
7915 case BPF_FUNC_sock_hash_update:
7916 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
7917 goto error;
7918 break;
cd339431 7919 case BPF_FUNC_get_local_storage:
b741f163
RG
7920 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7921 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
7922 goto error;
7923 break;
2dbb9b9e 7924 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
7925 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7926 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7927 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
7928 goto error;
7929 break;
f1a2e44a 7930 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
7931 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7932 map->map_type != BPF_MAP_TYPE_STACK)
7933 goto error;
7934 break;
9330986c
JK
7935 case BPF_FUNC_map_peek_elem:
7936 case BPF_FUNC_map_push_elem:
7937 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7938 map->map_type != BPF_MAP_TYPE_STACK &&
7939 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
7940 goto error;
7941 break;
07343110
FZ
7942 case BPF_FUNC_map_lookup_percpu_elem:
7943 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
7944 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7945 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
7946 goto error;
7947 break;
6ac99e8f
MKL
7948 case BPF_FUNC_sk_storage_get:
7949 case BPF_FUNC_sk_storage_delete:
7950 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
7951 goto error;
7952 break;
8ea63684
KS
7953 case BPF_FUNC_inode_storage_get:
7954 case BPF_FUNC_inode_storage_delete:
7955 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
7956 goto error;
7957 break;
4cf1bc1f
KS
7958 case BPF_FUNC_task_storage_get:
7959 case BPF_FUNC_task_storage_delete:
7960 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
7961 goto error;
7962 break;
c4bcfb38
YS
7963 case BPF_FUNC_cgrp_storage_get:
7964 case BPF_FUNC_cgrp_storage_delete:
7965 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
7966 goto error;
7967 break;
6aff67c8
AS
7968 default:
7969 break;
35578d79
KX
7970 }
7971
7972 return 0;
6aff67c8 7973error:
61bd5218 7974 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 7975 map->map_type, func_id_name(func_id), func_id);
6aff67c8 7976 return -EINVAL;
35578d79
KX
7977}
7978
90133415 7979static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
7980{
7981 int count = 0;
7982
39f19ebb 7983 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7984 count++;
39f19ebb 7985 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7986 count++;
39f19ebb 7987 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7988 count++;
39f19ebb 7989 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 7990 count++;
39f19ebb 7991 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
7992 count++;
7993
90133415
DB
7994 /* We only support one arg being in raw mode at the moment,
7995 * which is sufficient for the helper functions we have
7996 * right now.
7997 */
7998 return count <= 1;
7999}
8000
508362ac 8001static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 8002{
508362ac
MM
8003 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8004 bool has_size = fn->arg_size[arg] != 0;
8005 bool is_next_size = false;
8006
8007 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8008 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8009
8010 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8011 return is_next_size;
8012
8013 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
8014}
8015
8016static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8017{
8018 /* bpf_xxx(..., buf, len) call will access 'len'
8019 * bytes from memory 'buf'. Both arg types need
8020 * to be paired, so make sure there's no buggy
8021 * helper function specification.
8022 */
8023 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
8024 check_args_pair_invalid(fn, 0) ||
8025 check_args_pair_invalid(fn, 1) ||
8026 check_args_pair_invalid(fn, 2) ||
8027 check_args_pair_invalid(fn, 3) ||
8028 check_args_pair_invalid(fn, 4))
90133415
DB
8029 return false;
8030
8031 return true;
8032}
8033
9436ef6e
LB
8034static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8035{
8036 int i;
8037
1df8f55a 8038 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
8039 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8040 return !!fn->arg_btf_id[i];
8041 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8042 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
8043 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8044 /* arg_btf_id and arg_size are in a union. */
8045 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8046 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
8047 return false;
8048 }
8049
9436ef6e
LB
8050 return true;
8051}
8052
0c9a7a7e 8053static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
8054{
8055 return check_raw_mode_ok(fn) &&
fd978bf7 8056 check_arg_pair_ok(fn) &&
b2d8ef19 8057 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
8058}
8059
de8f3a83
DB
8060/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8061 * are now invalid, so turn them into unknown SCALAR_VALUE.
66e3a13e
JK
8062 *
8063 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8064 * since these slices point to packet data.
f1174f77 8065 */
b239da34 8066static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 8067{
b239da34
KKD
8068 struct bpf_func_state *state;
8069 struct bpf_reg_state *reg;
969bf05e 8070
b239da34 8071 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
66e3a13e 8072 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
dbd8d228 8073 mark_reg_invalid(env, reg);
b239da34 8074 }));
f4d7e40a
AS
8075}
8076
6d94e741
AS
8077enum {
8078 AT_PKT_END = -1,
8079 BEYOND_PKT_END = -2,
8080};
8081
8082static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8083{
8084 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8085 struct bpf_reg_state *reg = &state->regs[regn];
8086
8087 if (reg->type != PTR_TO_PACKET)
8088 /* PTR_TO_PACKET_META is not supported yet */
8089 return;
8090
8091 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8092 * How far beyond pkt_end it goes is unknown.
8093 * if (!range_open) it's the case of pkt >= pkt_end
8094 * if (range_open) it's the case of pkt > pkt_end
8095 * hence this pointer is at least 1 byte bigger than pkt_end
8096 */
8097 if (range_open)
8098 reg->range = BEYOND_PKT_END;
8099 else
8100 reg->range = AT_PKT_END;
8101}
8102
fd978bf7
JS
8103/* The pointer with the specified id has released its reference to kernel
8104 * resources. Identify all copies of the same pointer and clear the reference.
8105 */
8106static int release_reference(struct bpf_verifier_env *env,
1b986589 8107 int ref_obj_id)
fd978bf7 8108{
b239da34
KKD
8109 struct bpf_func_state *state;
8110 struct bpf_reg_state *reg;
1b986589 8111 int err;
fd978bf7 8112
1b986589
MKL
8113 err = release_reference_state(cur_func(env), ref_obj_id);
8114 if (err)
8115 return err;
8116
b239da34 8117 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
dbd8d228
KKD
8118 if (reg->ref_obj_id == ref_obj_id)
8119 mark_reg_invalid(env, reg);
b239da34 8120 }));
fd978bf7 8121
1b986589 8122 return 0;
fd978bf7
JS
8123}
8124
6a3cd331
DM
8125static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8126{
8127 struct bpf_func_state *unused;
8128 struct bpf_reg_state *reg;
8129
8130 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8131 if (type_is_non_owning_ref(reg->type))
dbd8d228 8132 mark_reg_invalid(env, reg);
6a3cd331
DM
8133 }));
8134}
8135
51c39bb1
AS
8136static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8137 struct bpf_reg_state *regs)
8138{
8139 int i;
8140
8141 /* after the call registers r0 - r5 were scratched */
8142 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8143 mark_reg_not_init(env, regs, caller_saved[i]);
8144 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8145 }
8146}
8147
14351375
YS
8148typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8149 struct bpf_func_state *caller,
8150 struct bpf_func_state *callee,
8151 int insn_idx);
8152
be2ef816
AN
8153static int set_callee_state(struct bpf_verifier_env *env,
8154 struct bpf_func_state *caller,
8155 struct bpf_func_state *callee, int insn_idx);
8156
5d92ddc3
DM
8157static bool is_callback_calling_kfunc(u32 btf_id);
8158
14351375
YS
8159static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8160 int *insn_idx, int subprog,
8161 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
8162{
8163 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 8164 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 8165 struct bpf_func_state *caller, *callee;
14351375 8166 int err;
51c39bb1 8167 bool is_global = false;
f4d7e40a 8168
aada9ce6 8169 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 8170 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 8171 state->curframe + 2);
f4d7e40a
AS
8172 return -E2BIG;
8173 }
8174
f4d7e40a
AS
8175 caller = state->frame[state->curframe];
8176 if (state->frame[state->curframe + 1]) {
8177 verbose(env, "verifier bug. Frame %d already allocated\n",
8178 state->curframe + 1);
8179 return -EFAULT;
8180 }
8181
51c39bb1
AS
8182 func_info_aux = env->prog->aux->func_info_aux;
8183 if (func_info_aux)
8184 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 8185 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
8186 if (err == -EFAULT)
8187 return err;
8188 if (is_global) {
8189 if (err) {
8190 verbose(env, "Caller passes invalid args into func#%d\n",
8191 subprog);
8192 return err;
8193 } else {
8194 if (env->log.level & BPF_LOG_LEVEL)
8195 verbose(env,
8196 "Func#%d is global and valid. Skipping.\n",
8197 subprog);
8198 clear_caller_saved_regs(env, caller->regs);
8199
45159b27 8200 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 8201 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 8202 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
8203
8204 /* continue with next insn after call */
8205 return 0;
8206 }
8207 }
8208
be2ef816
AN
8209 /* set_callee_state is used for direct subprog calls, but we are
8210 * interested in validating only BPF helpers that can call subprogs as
8211 * callbacks
8212 */
5d92ddc3
DM
8213 if (set_callee_state_cb != set_callee_state) {
8214 if (bpf_pseudo_kfunc_call(insn) &&
8215 !is_callback_calling_kfunc(insn->imm)) {
8216 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8217 func_id_name(insn->imm), insn->imm);
8218 return -EFAULT;
8219 } else if (!bpf_pseudo_kfunc_call(insn) &&
8220 !is_callback_calling_function(insn->imm)) { /* helper */
8221 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8222 func_id_name(insn->imm), insn->imm);
8223 return -EFAULT;
8224 }
be2ef816
AN
8225 }
8226
bfc6bb74 8227 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 8228 insn->src_reg == 0 &&
bfc6bb74
AS
8229 insn->imm == BPF_FUNC_timer_set_callback) {
8230 struct bpf_verifier_state *async_cb;
8231
8232 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 8233 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
8234 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8235 *insn_idx, subprog);
8236 if (!async_cb)
8237 return -EFAULT;
8238 callee = async_cb->frame[0];
8239 callee->async_entry_cnt = caller->async_entry_cnt + 1;
8240
8241 /* Convert bpf_timer_set_callback() args into timer callback args */
8242 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8243 if (err)
8244 return err;
8245
8246 clear_caller_saved_regs(env, caller->regs);
8247 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8248 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8249 /* continue with next insn after call */
8250 return 0;
8251 }
8252
f4d7e40a
AS
8253 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8254 if (!callee)
8255 return -ENOMEM;
8256 state->frame[state->curframe + 1] = callee;
8257
8258 /* callee cannot access r0, r6 - r9 for reading and has to write
8259 * into its own stack before reading from it.
8260 * callee can read/write into caller's stack
8261 */
8262 init_func_state(env, callee,
8263 /* remember the callsite, it will be used by bpf_exit */
8264 *insn_idx /* callsite */,
8265 state->curframe + 1 /* frameno within this callchain */,
f910cefa 8266 subprog /* subprog number within this prog */);
f4d7e40a 8267
fd978bf7 8268 /* Transfer references to the callee */
c69431aa 8269 err = copy_reference_state(callee, caller);
fd978bf7 8270 if (err)
eb86559a 8271 goto err_out;
fd978bf7 8272
14351375
YS
8273 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8274 if (err)
eb86559a 8275 goto err_out;
f4d7e40a 8276
51c39bb1 8277 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
8278
8279 /* only increment it after check_reg_arg() finished */
8280 state->curframe++;
8281
8282 /* and go analyze first insn of the callee */
14351375 8283 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 8284
06ee7115 8285 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8286 verbose(env, "caller:\n");
0f55f9ed 8287 print_verifier_state(env, caller, true);
f4d7e40a 8288 verbose(env, "callee:\n");
0f55f9ed 8289 print_verifier_state(env, callee, true);
f4d7e40a
AS
8290 }
8291 return 0;
eb86559a
WY
8292
8293err_out:
8294 free_func_state(callee);
8295 state->frame[state->curframe + 1] = NULL;
8296 return err;
f4d7e40a
AS
8297}
8298
314ee05e
YS
8299int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8300 struct bpf_func_state *caller,
8301 struct bpf_func_state *callee)
8302{
8303 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8304 * void *callback_ctx, u64 flags);
8305 * callback_fn(struct bpf_map *map, void *key, void *value,
8306 * void *callback_ctx);
8307 */
8308 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8309
8310 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8311 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8312 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8313
8314 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8315 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8316 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8317
8318 /* pointer to stack or null */
8319 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8320
8321 /* unused */
8322 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8323 return 0;
8324}
8325
14351375
YS
8326static int set_callee_state(struct bpf_verifier_env *env,
8327 struct bpf_func_state *caller,
8328 struct bpf_func_state *callee, int insn_idx)
8329{
8330 int i;
8331
8332 /* copy r1 - r5 args that callee can access. The copy includes parent
8333 * pointers, which connects us up to the liveness chain
8334 */
8335 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8336 callee->regs[i] = caller->regs[i];
8337 return 0;
8338}
8339
8340static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8341 int *insn_idx)
8342{
8343 int subprog, target_insn;
8344
8345 target_insn = *insn_idx + insn->imm + 1;
8346 subprog = find_subprog(env, target_insn);
8347 if (subprog < 0) {
8348 verbose(env, "verifier bug. No program starts at insn %d\n",
8349 target_insn);
8350 return -EFAULT;
8351 }
8352
8353 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8354}
8355
69c087ba
YS
8356static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8357 struct bpf_func_state *caller,
8358 struct bpf_func_state *callee,
8359 int insn_idx)
8360{
8361 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8362 struct bpf_map *map;
8363 int err;
8364
8365 if (bpf_map_ptr_poisoned(insn_aux)) {
8366 verbose(env, "tail_call abusing map_ptr\n");
8367 return -EINVAL;
8368 }
8369
8370 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8371 if (!map->ops->map_set_for_each_callback_args ||
8372 !map->ops->map_for_each_callback) {
8373 verbose(env, "callback function not allowed for map\n");
8374 return -ENOTSUPP;
8375 }
8376
8377 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8378 if (err)
8379 return err;
8380
8381 callee->in_callback_fn = true;
1bfe26fb 8382 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
8383 return 0;
8384}
8385
e6f2dd0f
JK
8386static int set_loop_callback_state(struct bpf_verifier_env *env,
8387 struct bpf_func_state *caller,
8388 struct bpf_func_state *callee,
8389 int insn_idx)
8390{
8391 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8392 * u64 flags);
8393 * callback_fn(u32 index, void *callback_ctx);
8394 */
8395 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8396 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8397
8398 /* unused */
8399 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8400 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8401 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8402
8403 callee->in_callback_fn = true;
1bfe26fb 8404 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
8405 return 0;
8406}
8407
b00628b1
AS
8408static int set_timer_callback_state(struct bpf_verifier_env *env,
8409 struct bpf_func_state *caller,
8410 struct bpf_func_state *callee,
8411 int insn_idx)
8412{
8413 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8414
8415 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8416 * callback_fn(struct bpf_map *map, void *key, void *value);
8417 */
8418 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8419 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8420 callee->regs[BPF_REG_1].map_ptr = map_ptr;
8421
8422 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8423 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8424 callee->regs[BPF_REG_2].map_ptr = map_ptr;
8425
8426 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8427 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8428 callee->regs[BPF_REG_3].map_ptr = map_ptr;
8429
8430 /* unused */
8431 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8432 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 8433 callee->in_async_callback_fn = true;
1bfe26fb 8434 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
8435 return 0;
8436}
8437
7c7e3d31
SL
8438static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8439 struct bpf_func_state *caller,
8440 struct bpf_func_state *callee,
8441 int insn_idx)
8442{
8443 /* bpf_find_vma(struct task_struct *task, u64 addr,
8444 * void *callback_fn, void *callback_ctx, u64 flags)
8445 * (callback_fn)(struct task_struct *task,
8446 * struct vm_area_struct *vma, void *callback_ctx);
8447 */
8448 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8449
8450 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8451 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8452 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 8453 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
8454
8455 /* pointer to stack or null */
8456 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8457
8458 /* unused */
8459 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8460 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8461 callee->in_callback_fn = true;
1bfe26fb 8462 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
8463 return 0;
8464}
8465
20571567
DV
8466static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8467 struct bpf_func_state *caller,
8468 struct bpf_func_state *callee,
8469 int insn_idx)
8470{
8471 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8472 * callback_ctx, u64 flags);
27060531 8473 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
20571567
DV
8474 */
8475 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
f8064ab9 8476 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
20571567
DV
8477 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8478
8479 /* unused */
8480 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8481 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8482 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8483
8484 callee->in_callback_fn = true;
c92a7a52 8485 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
8486 return 0;
8487}
8488
5d92ddc3
DM
8489static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
8490 struct bpf_func_state *caller,
8491 struct bpf_func_state *callee,
8492 int insn_idx)
8493{
8494 /* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
8495 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
8496 *
8497 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset
8498 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
8499 * by this point, so look at 'root'
8500 */
8501 struct btf_field *field;
8502
8503 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
8504 BPF_RB_ROOT);
8505 if (!field || !field->graph_root.value_btf_id)
8506 return -EFAULT;
8507
8508 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
8509 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
8510 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
8511 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
8512
8513 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8514 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8515 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8516 callee->in_callback_fn = true;
8517 callee->callback_ret_range = tnum_range(0, 1);
8518 return 0;
8519}
8520
8521static bool is_rbtree_lock_required_kfunc(u32 btf_id);
8522
8523/* Are we currently verifying the callback for a rbtree helper that must
8524 * be called with lock held? If so, no need to complain about unreleased
8525 * lock
8526 */
8527static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
8528{
8529 struct bpf_verifier_state *state = env->cur_state;
8530 struct bpf_insn *insn = env->prog->insnsi;
8531 struct bpf_func_state *callee;
8532 int kfunc_btf_id;
8533
8534 if (!state->curframe)
8535 return false;
8536
8537 callee = state->frame[state->curframe];
8538
8539 if (!callee->in_callback_fn)
8540 return false;
8541
8542 kfunc_btf_id = insn[callee->callsite].imm;
8543 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
8544}
8545
f4d7e40a
AS
8546static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
8547{
8548 struct bpf_verifier_state *state = env->cur_state;
8549 struct bpf_func_state *caller, *callee;
8550 struct bpf_reg_state *r0;
fd978bf7 8551 int err;
f4d7e40a
AS
8552
8553 callee = state->frame[state->curframe];
8554 r0 = &callee->regs[BPF_REG_0];
8555 if (r0->type == PTR_TO_STACK) {
8556 /* technically it's ok to return caller's stack pointer
8557 * (or caller's caller's pointer) back to the caller,
8558 * since these pointers are valid. Only current stack
8559 * pointer will be invalid as soon as function exits,
8560 * but let's be conservative
8561 */
8562 verbose(env, "cannot return stack pointer to the caller\n");
8563 return -EINVAL;
8564 }
8565
eb86559a 8566 caller = state->frame[state->curframe - 1];
69c087ba
YS
8567 if (callee->in_callback_fn) {
8568 /* enforce R0 return value range [0, 1]. */
1bfe26fb 8569 struct tnum range = callee->callback_ret_range;
69c087ba
YS
8570
8571 if (r0->type != SCALAR_VALUE) {
8572 verbose(env, "R0 not a scalar value\n");
8573 return -EACCES;
8574 }
8575 if (!tnum_in(range, r0->var_off)) {
8576 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
8577 return -EINVAL;
8578 }
8579 } else {
8580 /* return to the caller whatever r0 had in the callee */
8581 caller->regs[BPF_REG_0] = *r0;
8582 }
f4d7e40a 8583
9d9d00ac
KKD
8584 /* callback_fn frame should have released its own additions to parent's
8585 * reference state at this point, or check_reference_leak would
8586 * complain, hence it must be the same as the caller. There is no need
8587 * to copy it back.
8588 */
8589 if (!callee->in_callback_fn) {
8590 /* Transfer references to the caller */
8591 err = copy_reference_state(caller, callee);
8592 if (err)
8593 return err;
8594 }
fd978bf7 8595
f4d7e40a 8596 *insn_idx = callee->callsite + 1;
06ee7115 8597 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8598 verbose(env, "returning from callee:\n");
0f55f9ed 8599 print_verifier_state(env, callee, true);
f4d7e40a 8600 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 8601 print_verifier_state(env, caller, true);
f4d7e40a
AS
8602 }
8603 /* clear everything in the callee */
8604 free_func_state(callee);
eb86559a 8605 state->frame[state->curframe--] = NULL;
f4d7e40a
AS
8606 return 0;
8607}
8608
849fa506
YS
8609static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
8610 int func_id,
8611 struct bpf_call_arg_meta *meta)
8612{
8613 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
8614
8615 if (ret_type != RET_INTEGER ||
8616 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 8617 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
8618 func_id != BPF_FUNC_probe_read_str &&
8619 func_id != BPF_FUNC_probe_read_kernel_str &&
8620 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
8621 return;
8622
10060503 8623 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 8624 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
8625 ret_reg->smin_value = -MAX_ERRNO;
8626 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 8627 reg_bounds_sync(ret_reg);
849fa506
YS
8628}
8629
c93552c4
DB
8630static int
8631record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8632 int func_id, int insn_idx)
8633{
8634 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 8635 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
8636
8637 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
8638 func_id != BPF_FUNC_map_lookup_elem &&
8639 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
8640 func_id != BPF_FUNC_map_delete_elem &&
8641 func_id != BPF_FUNC_map_push_elem &&
8642 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 8643 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 8644 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
8645 func_id != BPF_FUNC_redirect_map &&
8646 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 8647 return 0;
09772d92 8648
591fe988 8649 if (map == NULL) {
c93552c4
DB
8650 verbose(env, "kernel subsystem misconfigured verifier\n");
8651 return -EINVAL;
8652 }
8653
591fe988
DB
8654 /* In case of read-only, some additional restrictions
8655 * need to be applied in order to prevent altering the
8656 * state of the map from program side.
8657 */
8658 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
8659 (func_id == BPF_FUNC_map_delete_elem ||
8660 func_id == BPF_FUNC_map_update_elem ||
8661 func_id == BPF_FUNC_map_push_elem ||
8662 func_id == BPF_FUNC_map_pop_elem)) {
8663 verbose(env, "write into map forbidden\n");
8664 return -EACCES;
8665 }
8666
d2e4c1e6 8667 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 8668 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 8669 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 8670 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 8671 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 8672 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
8673 return 0;
8674}
8675
d2e4c1e6
DB
8676static int
8677record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8678 int func_id, int insn_idx)
8679{
8680 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8681 struct bpf_reg_state *regs = cur_regs(env), *reg;
8682 struct bpf_map *map = meta->map_ptr;
a657182a 8683 u64 val, max;
cc52d914 8684 int err;
d2e4c1e6
DB
8685
8686 if (func_id != BPF_FUNC_tail_call)
8687 return 0;
8688 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
8689 verbose(env, "kernel subsystem misconfigured verifier\n");
8690 return -EINVAL;
8691 }
8692
d2e4c1e6 8693 reg = &regs[BPF_REG_3];
a657182a
DB
8694 val = reg->var_off.value;
8695 max = map->max_entries;
d2e4c1e6 8696
a657182a 8697 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
8698 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8699 return 0;
8700 }
8701
cc52d914
DB
8702 err = mark_chain_precision(env, BPF_REG_3);
8703 if (err)
8704 return err;
d2e4c1e6
DB
8705 if (bpf_map_key_unseen(aux))
8706 bpf_map_key_store(aux, val);
8707 else if (!bpf_map_key_poisoned(aux) &&
8708 bpf_map_key_immediate(aux) != val)
8709 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8710 return 0;
8711}
8712
fd978bf7
JS
8713static int check_reference_leak(struct bpf_verifier_env *env)
8714{
8715 struct bpf_func_state *state = cur_func(env);
9d9d00ac 8716 bool refs_lingering = false;
fd978bf7
JS
8717 int i;
8718
9d9d00ac
KKD
8719 if (state->frameno && !state->in_callback_fn)
8720 return 0;
8721
fd978bf7 8722 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
8723 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
8724 continue;
fd978bf7
JS
8725 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
8726 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 8727 refs_lingering = true;
fd978bf7 8728 }
9d9d00ac 8729 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
8730}
8731
7b15523a
FR
8732static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
8733 struct bpf_reg_state *regs)
8734{
8735 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
8736 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
8737 struct bpf_map *fmt_map = fmt_reg->map_ptr;
78aa1cc9 8738 struct bpf_bprintf_data data = {};
7b15523a
FR
8739 int err, fmt_map_off, num_args;
8740 u64 fmt_addr;
8741 char *fmt;
8742
8743 /* data must be an array of u64 */
8744 if (data_len_reg->var_off.value % 8)
8745 return -EINVAL;
8746 num_args = data_len_reg->var_off.value / 8;
8747
8748 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
8749 * and map_direct_value_addr is set.
8750 */
8751 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
8752 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
8753 fmt_map_off);
8e8ee109
FR
8754 if (err) {
8755 verbose(env, "verifier bug\n");
8756 return -EFAULT;
8757 }
7b15523a
FR
8758 fmt = (char *)(long)fmt_addr + fmt_map_off;
8759
8760 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
8761 * can focus on validating the format specifiers.
8762 */
78aa1cc9 8763 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7b15523a
FR
8764 if (err < 0)
8765 verbose(env, "Invalid format string\n");
8766
8767 return err;
8768}
8769
9b99edca
JO
8770static int check_get_func_ip(struct bpf_verifier_env *env)
8771{
9b99edca
JO
8772 enum bpf_prog_type type = resolve_prog_type(env->prog);
8773 int func_id = BPF_FUNC_get_func_ip;
8774
8775 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 8776 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
8777 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
8778 func_id_name(func_id), func_id);
8779 return -ENOTSUPP;
8780 }
8781 return 0;
9ffd9f3f
JO
8782 } else if (type == BPF_PROG_TYPE_KPROBE) {
8783 return 0;
9b99edca
JO
8784 }
8785
8786 verbose(env, "func %s#%d not supported for program type %d\n",
8787 func_id_name(func_id), func_id, type);
8788 return -ENOTSUPP;
8789}
8790
1ade2371
EZ
8791static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
8792{
8793 return &env->insn_aux_data[env->insn_idx];
8794}
8795
8796static bool loop_flag_is_zero(struct bpf_verifier_env *env)
8797{
8798 struct bpf_reg_state *regs = cur_regs(env);
8799 struct bpf_reg_state *reg = &regs[BPF_REG_4];
8800 bool reg_is_null = register_is_null(reg);
8801
8802 if (reg_is_null)
8803 mark_chain_precision(env, BPF_REG_4);
8804
8805 return reg_is_null;
8806}
8807
8808static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
8809{
8810 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
8811
8812 if (!state->initialized) {
8813 state->initialized = 1;
8814 state->fit_for_inline = loop_flag_is_zero(env);
8815 state->callback_subprogno = subprogno;
8816 return;
8817 }
8818
8819 if (!state->fit_for_inline)
8820 return;
8821
8822 state->fit_for_inline = (loop_flag_is_zero(env) &&
8823 state->callback_subprogno == subprogno);
8824}
8825
69c087ba
YS
8826static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8827 int *insn_idx_p)
17a52670 8828{
aef9d4a3 8829 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 8830 const struct bpf_func_proto *fn = NULL;
3c480732 8831 enum bpf_return_type ret_type;
c25b2ae1 8832 enum bpf_type_flag ret_flag;
638f5b90 8833 struct bpf_reg_state *regs;
33ff9823 8834 struct bpf_call_arg_meta meta;
69c087ba 8835 int insn_idx = *insn_idx_p;
969bf05e 8836 bool changes_data;
69c087ba 8837 int i, err, func_id;
17a52670
AS
8838
8839 /* find function prototype */
69c087ba 8840 func_id = insn->imm;
17a52670 8841 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
8842 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
8843 func_id);
17a52670
AS
8844 return -EINVAL;
8845 }
8846
00176a34 8847 if (env->ops->get_func_proto)
5e43f899 8848 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 8849 if (!fn) {
61bd5218
JK
8850 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
8851 func_id);
17a52670
AS
8852 return -EINVAL;
8853 }
8854
8855 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 8856 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 8857 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
8858 return -EINVAL;
8859 }
8860
eae2e83e
JO
8861 if (fn->allowed && !fn->allowed(env->prog)) {
8862 verbose(env, "helper call is not allowed in probe\n");
8863 return -EINVAL;
8864 }
8865
01685c5b
YS
8866 if (!env->prog->aux->sleepable && fn->might_sleep) {
8867 verbose(env, "helper call might sleep in a non-sleepable prog\n");
8868 return -EINVAL;
8869 }
8870
04514d13 8871 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 8872 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
8873 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
8874 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
8875 func_id_name(func_id), func_id);
8876 return -EINVAL;
8877 }
969bf05e 8878
33ff9823 8879 memset(&meta, 0, sizeof(meta));
36bbef52 8880 meta.pkt_access = fn->pkt_access;
33ff9823 8881
0c9a7a7e 8882 err = check_func_proto(fn, func_id);
435faee1 8883 if (err) {
61bd5218 8884 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 8885 func_id_name(func_id), func_id);
435faee1
DB
8886 return err;
8887 }
8888
9bb00b28
YS
8889 if (env->cur_state->active_rcu_lock) {
8890 if (fn->might_sleep) {
8891 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8892 func_id_name(func_id), func_id);
8893 return -EINVAL;
8894 }
8895
8896 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8897 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8898 }
8899
d83525ca 8900 meta.func_id = func_id;
17a52670 8901 /* check args */
523a4cf4 8902 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
1d18feb2 8903 err = check_func_arg(env, i, &meta, fn, insn_idx);
a7658e1a
AS
8904 if (err)
8905 return err;
8906 }
17a52670 8907
c93552c4
DB
8908 err = record_func_map(env, &meta, func_id, insn_idx);
8909 if (err)
8910 return err;
8911
d2e4c1e6
DB
8912 err = record_func_key(env, &meta, func_id, insn_idx);
8913 if (err)
8914 return err;
8915
435faee1
DB
8916 /* Mark slots with STACK_MISC in case of raw mode, stack offset
8917 * is inferred from register state.
8918 */
8919 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
8920 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8921 BPF_WRITE, -1, false);
435faee1
DB
8922 if (err)
8923 return err;
8924 }
8925
8f14852e
KKD
8926 regs = cur_regs(env);
8927
8928 if (meta.release_regno) {
8929 err = -EINVAL;
27060531
KKD
8930 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8931 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8932 * is safe to do directly.
8933 */
8934 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
8935 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
8936 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
8937 return -EFAULT;
8938 }
97e03f52 8939 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
27060531 8940 } else if (meta.ref_obj_id) {
8f14852e 8941 err = release_reference(env, meta.ref_obj_id);
27060531
KKD
8942 } else if (register_is_null(&regs[meta.release_regno])) {
8943 /* meta.ref_obj_id can only be 0 if register that is meant to be
8944 * released is NULL, which must be > R0.
8945 */
8f14852e 8946 err = 0;
27060531 8947 }
46f8bc92
MKL
8948 if (err) {
8949 verbose(env, "func %s#%d reference has not been acquired before\n",
8950 func_id_name(func_id), func_id);
fd978bf7 8951 return err;
46f8bc92 8952 }
fd978bf7
JS
8953 }
8954
e6f2dd0f
JK
8955 switch (func_id) {
8956 case BPF_FUNC_tail_call:
8957 err = check_reference_leak(env);
8958 if (err) {
8959 verbose(env, "tail_call would lead to reference leak\n");
8960 return err;
8961 }
8962 break;
8963 case BPF_FUNC_get_local_storage:
8964 /* check that flags argument in get_local_storage(map, flags) is 0,
8965 * this is required because get_local_storage() can't return an error.
8966 */
8967 if (!register_is_null(&regs[BPF_REG_2])) {
8968 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
8969 return -EINVAL;
8970 }
8971 break;
8972 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
8973 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8974 set_map_elem_callback_state);
e6f2dd0f
JK
8975 break;
8976 case BPF_FUNC_timer_set_callback:
b00628b1
AS
8977 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8978 set_timer_callback_state);
e6f2dd0f
JK
8979 break;
8980 case BPF_FUNC_find_vma:
7c7e3d31
SL
8981 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8982 set_find_vma_callback_state);
e6f2dd0f
JK
8983 break;
8984 case BPF_FUNC_snprintf:
7b15523a 8985 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
8986 break;
8987 case BPF_FUNC_loop:
1ade2371 8988 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
8989 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8990 set_loop_callback_state);
8991 break;
263ae152
JK
8992 case BPF_FUNC_dynptr_from_mem:
8993 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
8994 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
8995 reg_type_str(env, regs[BPF_REG_1].type));
8996 return -EACCES;
8997 }
69fd337a
SF
8998 break;
8999 case BPF_FUNC_set_retval:
aef9d4a3
SF
9000 if (prog_type == BPF_PROG_TYPE_LSM &&
9001 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
9002 if (!env->prog->aux->attach_func_proto->type) {
9003 /* Make sure programs that attach to void
9004 * hooks don't try to modify return value.
9005 */
9006 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9007 return -EINVAL;
9008 }
9009 }
9010 break;
88374342 9011 case BPF_FUNC_dynptr_data:
485ec51e
JK
9012 {
9013 struct bpf_reg_state *reg;
9014 int id, ref_obj_id;
20571567 9015
485ec51e
JK
9016 reg = get_dynptr_arg_reg(env, fn, regs);
9017 if (!reg)
9018 return -EFAULT;
f8064ab9 9019
f8064ab9 9020
485ec51e
JK
9021 if (meta.dynptr_id) {
9022 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9023 return -EFAULT;
88374342 9024 }
485ec51e
JK
9025 if (meta.ref_obj_id) {
9026 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
88374342
JK
9027 return -EFAULT;
9028 }
485ec51e
JK
9029
9030 id = dynptr_id(env, reg);
9031 if (id < 0) {
9032 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9033 return id;
9034 }
9035
9036 ref_obj_id = dynptr_ref_obj_id(env, reg);
9037 if (ref_obj_id < 0) {
9038 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9039 return ref_obj_id;
9040 }
9041
9042 meta.dynptr_id = id;
9043 meta.ref_obj_id = ref_obj_id;
9044
88374342 9045 break;
485ec51e 9046 }
b5964b96
JK
9047 case BPF_FUNC_dynptr_write:
9048 {
9049 enum bpf_dynptr_type dynptr_type;
9050 struct bpf_reg_state *reg;
9051
9052 reg = get_dynptr_arg_reg(env, fn, regs);
9053 if (!reg)
9054 return -EFAULT;
9055
9056 dynptr_type = dynptr_get_type(env, reg);
9057 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9058 return -EFAULT;
9059
9060 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9061 /* this will trigger clear_all_pkt_pointers(), which will
9062 * invalidate all dynptr slices associated with the skb
9063 */
9064 changes_data = true;
9065
9066 break;
9067 }
20571567
DV
9068 case BPF_FUNC_user_ringbuf_drain:
9069 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9070 set_user_ringbuf_callback_state);
9071 break;
7b15523a
FR
9072 }
9073
e6f2dd0f
JK
9074 if (err)
9075 return err;
9076
17a52670 9077 /* reset caller saved regs */
dc503a8a 9078 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9079 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9080 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9081 }
17a52670 9082
5327ed3d
JW
9083 /* helper call returns 64-bit value. */
9084 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9085
dc503a8a 9086 /* update return register (already marked as written above) */
3c480732 9087 ret_type = fn->ret_type;
0c9a7a7e
JK
9088 ret_flag = type_flag(ret_type);
9089
9090 switch (base_type(ret_type)) {
9091 case RET_INTEGER:
f1174f77 9092 /* sets type to SCALAR_VALUE */
61bd5218 9093 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
9094 break;
9095 case RET_VOID:
17a52670 9096 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
9097 break;
9098 case RET_PTR_TO_MAP_VALUE:
f1174f77 9099 /* There is no offset yet applied, variable or fixed */
61bd5218 9100 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
9101 /* remember map_ptr, so that check_map_access()
9102 * can check 'value_size' boundary of memory access
9103 * to map element returned from bpf_map_lookup_elem()
9104 */
33ff9823 9105 if (meta.map_ptr == NULL) {
61bd5218
JK
9106 verbose(env,
9107 "kernel subsystem misconfigured verifier\n");
17a52670
AS
9108 return -EINVAL;
9109 }
33ff9823 9110 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 9111 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
9112 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9113 if (!type_may_be_null(ret_type) &&
db559117 9114 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 9115 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 9116 }
0c9a7a7e
JK
9117 break;
9118 case RET_PTR_TO_SOCKET:
c64b7983 9119 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9120 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
9121 break;
9122 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 9123 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9124 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
9125 break;
9126 case RET_PTR_TO_TCP_SOCK:
655a51e5 9127 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9128 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 9129 break;
2de2669b 9130 case RET_PTR_TO_MEM:
457f4436 9131 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9132 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 9133 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
9134 break;
9135 case RET_PTR_TO_MEM_OR_BTF_ID:
9136 {
eaa6bcb7
HL
9137 const struct btf_type *t;
9138
9139 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 9140 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
9141 if (!btf_type_is_struct(t)) {
9142 u32 tsize;
9143 const struct btf_type *ret;
9144 const char *tname;
9145
9146 /* resolve the type size of ksym. */
22dc4a0f 9147 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 9148 if (IS_ERR(ret)) {
22dc4a0f 9149 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
9150 verbose(env, "unable to resolve the size of type '%s': %ld\n",
9151 tname, PTR_ERR(ret));
9152 return -EINVAL;
9153 }
c25b2ae1 9154 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
9155 regs[BPF_REG_0].mem_size = tsize;
9156 } else {
34d3a78c
HL
9157 /* MEM_RDONLY may be carried from ret_flag, but it
9158 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9159 * it will confuse the check of PTR_TO_BTF_ID in
9160 * check_mem_access().
9161 */
9162 ret_flag &= ~MEM_RDONLY;
9163
c25b2ae1 9164 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 9165 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
9166 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9167 }
0c9a7a7e
JK
9168 break;
9169 }
9170 case RET_PTR_TO_BTF_ID:
9171 {
c0a5a21c 9172 struct btf *ret_btf;
af7ec138
YS
9173 int ret_btf_id;
9174
9175 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9176 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 9177 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
9178 ret_btf = meta.kptr_field->kptr.btf;
9179 ret_btf_id = meta.kptr_field->kptr.btf_id;
738c96d5
DM
9180 if (!btf_is_kernel(ret_btf))
9181 regs[BPF_REG_0].type |= MEM_ALLOC;
c0a5a21c 9182 } else {
47e34cb7
DM
9183 if (fn->ret_btf_id == BPF_PTR_POISON) {
9184 verbose(env, "verifier internal error:");
9185 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9186 func_id_name(func_id));
9187 return -EINVAL;
9188 }
c0a5a21c
KKD
9189 ret_btf = btf_vmlinux;
9190 ret_btf_id = *fn->ret_btf_id;
9191 }
af7ec138 9192 if (ret_btf_id == 0) {
3c480732
HL
9193 verbose(env, "invalid return type %u of func %s#%d\n",
9194 base_type(ret_type), func_id_name(func_id),
9195 func_id);
af7ec138
YS
9196 return -EINVAL;
9197 }
c0a5a21c 9198 regs[BPF_REG_0].btf = ret_btf;
af7ec138 9199 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
9200 break;
9201 }
9202 default:
3c480732
HL
9203 verbose(env, "unknown return type %u of func %s#%d\n",
9204 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
9205 return -EINVAL;
9206 }
04fd61ab 9207
c25b2ae1 9208 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
9209 regs[BPF_REG_0].id = ++env->id_gen;
9210
b2d8ef19
DM
9211 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9212 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9213 func_id_name(func_id), func_id);
9214 return -EFAULT;
9215 }
9216
f8064ab9
KKD
9217 if (is_dynptr_ref_function(func_id))
9218 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9219
88374342 9220 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
9221 /* For release_reference() */
9222 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 9223 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
9224 int id = acquire_reference_state(env, insn_idx);
9225
9226 if (id < 0)
9227 return id;
9228 /* For mark_ptr_or_null_reg() */
9229 regs[BPF_REG_0].id = id;
9230 /* For release_reference() */
9231 regs[BPF_REG_0].ref_obj_id = id;
9232 }
1b986589 9233
849fa506
YS
9234 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9235
61bd5218 9236 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
9237 if (err)
9238 return err;
04fd61ab 9239
fa28dcb8
SL
9240 if ((func_id == BPF_FUNC_get_stack ||
9241 func_id == BPF_FUNC_get_task_stack) &&
9242 !env->prog->has_callchain_buf) {
c195651e
YS
9243 const char *err_str;
9244
9245#ifdef CONFIG_PERF_EVENTS
9246 err = get_callchain_buffers(sysctl_perf_event_max_stack);
9247 err_str = "cannot get callchain buffer for func %s#%d\n";
9248#else
9249 err = -ENOTSUPP;
9250 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9251#endif
9252 if (err) {
9253 verbose(env, err_str, func_id_name(func_id), func_id);
9254 return err;
9255 }
9256
9257 env->prog->has_callchain_buf = true;
9258 }
9259
5d99cb2c
SL
9260 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9261 env->prog->call_get_stack = true;
9262
9b99edca
JO
9263 if (func_id == BPF_FUNC_get_func_ip) {
9264 if (check_get_func_ip(env))
9265 return -ENOTSUPP;
9266 env->prog->call_get_func_ip = true;
9267 }
9268
969bf05e
AS
9269 if (changes_data)
9270 clear_all_pkt_pointers(env);
9271 return 0;
9272}
9273
e6ac2450
MKL
9274/* mark_btf_func_reg_size() is used when the reg size is determined by
9275 * the BTF func_proto's return value size and argument.
9276 */
9277static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9278 size_t reg_size)
9279{
9280 struct bpf_reg_state *reg = &cur_regs(env)[regno];
9281
9282 if (regno == BPF_REG_0) {
9283 /* Function return value */
9284 reg->live |= REG_LIVE_WRITTEN;
9285 reg->subreg_def = reg_size == sizeof(u64) ?
9286 DEF_NOT_SUBREG : env->insn_idx + 1;
9287 } else {
9288 /* Function argument */
9289 if (reg_size == sizeof(u64)) {
9290 mark_insn_zext(env, reg);
9291 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9292 } else {
9293 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9294 }
9295 }
9296}
9297
00b85860
KKD
9298static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9299{
9300 return meta->kfunc_flags & KF_ACQUIRE;
9301}
a5d82727 9302
00b85860
KKD
9303static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
9304{
9305 return meta->kfunc_flags & KF_RET_NULL;
9306}
2357672c 9307
00b85860
KKD
9308static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9309{
9310 return meta->kfunc_flags & KF_RELEASE;
9311}
e6ac2450 9312
00b85860
KKD
9313static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9314{
6c831c46 9315 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
00b85860 9316}
4dd48c6f 9317
00b85860
KKD
9318static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9319{
9320 return meta->kfunc_flags & KF_SLEEPABLE;
9321}
5c073f26 9322
00b85860
KKD
9323static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9324{
9325 return meta->kfunc_flags & KF_DESTRUCTIVE;
9326}
eb1f7f71 9327
fca1aa75
YS
9328static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9329{
9330 return meta->kfunc_flags & KF_RCU;
9331}
9332
00b85860
KKD
9333static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
9334{
9335 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
9336}
e6ac2450 9337
a50388db
KKD
9338static bool __kfunc_param_match_suffix(const struct btf *btf,
9339 const struct btf_param *arg,
9340 const char *suffix)
00b85860 9341{
a50388db 9342 int suffix_len = strlen(suffix), len;
00b85860 9343 const char *param_name;
e6ac2450 9344
00b85860
KKD
9345 /* In the future, this can be ported to use BTF tagging */
9346 param_name = btf_name_by_offset(btf, arg->name_off);
9347 if (str_is_empty(param_name))
9348 return false;
9349 len = strlen(param_name);
a50388db 9350 if (len < suffix_len)
00b85860 9351 return false;
a50388db
KKD
9352 param_name += len - suffix_len;
9353 return !strncmp(param_name, suffix, suffix_len);
9354}
5c073f26 9355
a50388db
KKD
9356static bool is_kfunc_arg_mem_size(const struct btf *btf,
9357 const struct btf_param *arg,
9358 const struct bpf_reg_state *reg)
9359{
9360 const struct btf_type *t;
5c073f26 9361
a50388db
KKD
9362 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9363 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860 9364 return false;
eb1f7f71 9365
a50388db
KKD
9366 return __kfunc_param_match_suffix(btf, arg, "__sz");
9367}
eb1f7f71 9368
66e3a13e
JK
9369static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9370 const struct btf_param *arg,
9371 const struct bpf_reg_state *reg)
9372{
9373 const struct btf_type *t;
9374
9375 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9376 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9377 return false;
9378
9379 return __kfunc_param_match_suffix(btf, arg, "__szk");
9380}
9381
a50388db
KKD
9382static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9383{
9384 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860 9385}
eb1f7f71 9386
958cf2e2
KKD
9387static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9388{
9389 return __kfunc_param_match_suffix(btf, arg, "__ign");
9390}
5c073f26 9391
ac9f0605
KKD
9392static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9393{
9394 return __kfunc_param_match_suffix(btf, arg, "__alloc");
9395}
e6ac2450 9396
d96d937d
JK
9397static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9398{
9399 return __kfunc_param_match_suffix(btf, arg, "__uninit");
9400}
9401
00b85860
KKD
9402static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9403 const struct btf_param *arg,
9404 const char *name)
9405{
9406 int len, target_len = strlen(name);
9407 const char *param_name;
e6ac2450 9408
00b85860
KKD
9409 param_name = btf_name_by_offset(btf, arg->name_off);
9410 if (str_is_empty(param_name))
9411 return false;
9412 len = strlen(param_name);
9413 if (len != target_len)
9414 return false;
9415 if (strcmp(param_name, name))
9416 return false;
e6ac2450 9417
00b85860 9418 return true;
e6ac2450
MKL
9419}
9420
00b85860
KKD
9421enum {
9422 KF_ARG_DYNPTR_ID,
8cab76ec
KKD
9423 KF_ARG_LIST_HEAD_ID,
9424 KF_ARG_LIST_NODE_ID,
cd6791b4
DM
9425 KF_ARG_RB_ROOT_ID,
9426 KF_ARG_RB_NODE_ID,
00b85860 9427};
b03c9f9f 9428
00b85860
KKD
9429BTF_ID_LIST(kf_arg_btf_ids)
9430BTF_ID(struct, bpf_dynptr_kern)
8cab76ec
KKD
9431BTF_ID(struct, bpf_list_head)
9432BTF_ID(struct, bpf_list_node)
bd1279ae
DM
9433BTF_ID(struct, bpf_rb_root)
9434BTF_ID(struct, bpf_rb_node)
b03c9f9f 9435
8cab76ec
KKD
9436static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9437 const struct btf_param *arg, int type)
3f50f132 9438{
00b85860
KKD
9439 const struct btf_type *t;
9440 u32 res_id;
3f50f132 9441
00b85860
KKD
9442 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9443 if (!t)
9444 return false;
9445 if (!btf_type_is_ptr(t))
9446 return false;
9447 t = btf_type_skip_modifiers(btf, t->type, &res_id);
9448 if (!t)
9449 return false;
8cab76ec 9450 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
3f50f132
JF
9451}
9452
8cab76ec 9453static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
b03c9f9f 9454{
8cab76ec 9455 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
969bf05e
AS
9456}
9457
8cab76ec 9458static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
3f50f132 9459{
8cab76ec 9460 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
3f50f132
JF
9461}
9462
8cab76ec 9463static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
bb7f0f98 9464{
8cab76ec 9465 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
00b85860
KKD
9466}
9467
cd6791b4
DM
9468static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9469{
9470 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9471}
9472
9473static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9474{
9475 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9476}
9477
5d92ddc3
DM
9478static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
9479 const struct btf_param *arg)
9480{
9481 const struct btf_type *t;
9482
9483 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
9484 if (!t)
9485 return false;
9486
9487 return true;
9488}
9489
00b85860
KKD
9490/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
9491static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
9492 const struct btf *btf,
9493 const struct btf_type *t, int rec)
9494{
9495 const struct btf_type *member_type;
9496 const struct btf_member *member;
9497 u32 i;
9498
9499 if (!btf_type_is_struct(t))
9500 return false;
9501
9502 for_each_member(i, t, member) {
9503 const struct btf_array *array;
9504
9505 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
9506 if (btf_type_is_struct(member_type)) {
9507 if (rec >= 3) {
9508 verbose(env, "max struct nesting depth exceeded\n");
9509 return false;
9510 }
9511 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
9512 return false;
9513 continue;
9514 }
9515 if (btf_type_is_array(member_type)) {
9516 array = btf_array(member_type);
9517 if (!array->nelems)
9518 return false;
9519 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
9520 if (!btf_type_is_scalar(member_type))
9521 return false;
9522 continue;
9523 }
9524 if (!btf_type_is_scalar(member_type))
9525 return false;
9526 }
9527 return true;
9528}
9529
9530
9531static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
9532#ifdef CONFIG_NET
9533 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
9534 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9535 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9536#endif
9537};
9538
9539enum kfunc_ptr_arg_type {
9540 KF_ARG_PTR_TO_CTX,
ac9f0605 9541 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
00b85860
KKD
9542 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */
9543 KF_ARG_PTR_TO_DYNPTR,
06accc87 9544 KF_ARG_PTR_TO_ITER,
8cab76ec
KKD
9545 KF_ARG_PTR_TO_LIST_HEAD,
9546 KF_ARG_PTR_TO_LIST_NODE,
00b85860
KKD
9547 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
9548 KF_ARG_PTR_TO_MEM,
9549 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
5d92ddc3 9550 KF_ARG_PTR_TO_CALLBACK,
cd6791b4
DM
9551 KF_ARG_PTR_TO_RB_ROOT,
9552 KF_ARG_PTR_TO_RB_NODE,
00b85860
KKD
9553};
9554
ac9f0605
KKD
9555enum special_kfunc_type {
9556 KF_bpf_obj_new_impl,
9557 KF_bpf_obj_drop_impl,
8cab76ec
KKD
9558 KF_bpf_list_push_front,
9559 KF_bpf_list_push_back,
9560 KF_bpf_list_pop_front,
9561 KF_bpf_list_pop_back,
fd264ca0 9562 KF_bpf_cast_to_kern_ctx,
a35b9af4 9563 KF_bpf_rdonly_cast,
9bb00b28
YS
9564 KF_bpf_rcu_read_lock,
9565 KF_bpf_rcu_read_unlock,
bd1279ae
DM
9566 KF_bpf_rbtree_remove,
9567 KF_bpf_rbtree_add,
9568 KF_bpf_rbtree_first,
b5964b96 9569 KF_bpf_dynptr_from_skb,
05421aec 9570 KF_bpf_dynptr_from_xdp,
66e3a13e
JK
9571 KF_bpf_dynptr_slice,
9572 KF_bpf_dynptr_slice_rdwr,
ac9f0605
KKD
9573};
9574
9575BTF_SET_START(special_kfunc_set)
9576BTF_ID(func, bpf_obj_new_impl)
9577BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
9578BTF_ID(func, bpf_list_push_front)
9579BTF_ID(func, bpf_list_push_back)
9580BTF_ID(func, bpf_list_pop_front)
9581BTF_ID(func, bpf_list_pop_back)
fd264ca0 9582BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 9583BTF_ID(func, bpf_rdonly_cast)
bd1279ae
DM
9584BTF_ID(func, bpf_rbtree_remove)
9585BTF_ID(func, bpf_rbtree_add)
9586BTF_ID(func, bpf_rbtree_first)
b5964b96 9587BTF_ID(func, bpf_dynptr_from_skb)
05421aec 9588BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
9589BTF_ID(func, bpf_dynptr_slice)
9590BTF_ID(func, bpf_dynptr_slice_rdwr)
ac9f0605
KKD
9591BTF_SET_END(special_kfunc_set)
9592
9593BTF_ID_LIST(special_kfunc_list)
9594BTF_ID(func, bpf_obj_new_impl)
9595BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
9596BTF_ID(func, bpf_list_push_front)
9597BTF_ID(func, bpf_list_push_back)
9598BTF_ID(func, bpf_list_pop_front)
9599BTF_ID(func, bpf_list_pop_back)
fd264ca0 9600BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 9601BTF_ID(func, bpf_rdonly_cast)
9bb00b28
YS
9602BTF_ID(func, bpf_rcu_read_lock)
9603BTF_ID(func, bpf_rcu_read_unlock)
bd1279ae
DM
9604BTF_ID(func, bpf_rbtree_remove)
9605BTF_ID(func, bpf_rbtree_add)
9606BTF_ID(func, bpf_rbtree_first)
b5964b96 9607BTF_ID(func, bpf_dynptr_from_skb)
05421aec 9608BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
9609BTF_ID(func, bpf_dynptr_slice)
9610BTF_ID(func, bpf_dynptr_slice_rdwr)
9bb00b28
YS
9611
9612static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
9613{
9614 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
9615}
9616
9617static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
9618{
9619 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
9620}
ac9f0605 9621
00b85860
KKD
9622static enum kfunc_ptr_arg_type
9623get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
9624 struct bpf_kfunc_call_arg_meta *meta,
9625 const struct btf_type *t, const struct btf_type *ref_t,
9626 const char *ref_tname, const struct btf_param *args,
9627 int argno, int nargs)
9628{
9629 u32 regno = argno + 1;
9630 struct bpf_reg_state *regs = cur_regs(env);
9631 struct bpf_reg_state *reg = &regs[regno];
9632 bool arg_mem_size = false;
9633
fd264ca0
YS
9634 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
9635 return KF_ARG_PTR_TO_CTX;
9636
00b85860
KKD
9637 /* In this function, we verify the kfunc's BTF as per the argument type,
9638 * leaving the rest of the verification with respect to the register
9639 * type to our caller. When a set of conditions hold in the BTF type of
9640 * arguments, we resolve it to a known kfunc_ptr_arg_type.
9641 */
9642 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
9643 return KF_ARG_PTR_TO_CTX;
9644
ac9f0605
KKD
9645 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
9646 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
9647
00b85860
KKD
9648 if (is_kfunc_arg_kptr_get(meta, argno)) {
9649 if (!btf_type_is_ptr(ref_t)) {
9650 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
9651 return -EINVAL;
9652 }
9653 ref_t = btf_type_by_id(meta->btf, ref_t->type);
9654 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
9655 if (!btf_type_is_struct(ref_t)) {
9656 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
9657 meta->func_name, btf_type_str(ref_t), ref_tname);
9658 return -EINVAL;
9659 }
9660 return KF_ARG_PTR_TO_KPTR;
9661 }
9662
9663 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
9664 return KF_ARG_PTR_TO_DYNPTR;
9665
06accc87
AN
9666 if (is_kfunc_arg_iter(meta, argno))
9667 return KF_ARG_PTR_TO_ITER;
9668
8cab76ec
KKD
9669 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
9670 return KF_ARG_PTR_TO_LIST_HEAD;
9671
9672 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
9673 return KF_ARG_PTR_TO_LIST_NODE;
9674
cd6791b4
DM
9675 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
9676 return KF_ARG_PTR_TO_RB_ROOT;
9677
9678 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
9679 return KF_ARG_PTR_TO_RB_NODE;
9680
00b85860
KKD
9681 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
9682 if (!btf_type_is_struct(ref_t)) {
9683 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
9684 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9685 return -EINVAL;
9686 }
9687 return KF_ARG_PTR_TO_BTF_ID;
9688 }
9689
5d92ddc3
DM
9690 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
9691 return KF_ARG_PTR_TO_CALLBACK;
9692
66e3a13e
JK
9693
9694 if (argno + 1 < nargs &&
9695 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
9696 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
00b85860
KKD
9697 arg_mem_size = true;
9698
9699 /* This is the catch all argument type of register types supported by
9700 * check_helper_mem_access. However, we only allow when argument type is
9701 * pointer to scalar, or struct composed (recursively) of scalars. When
9702 * arg_mem_size is true, the pointer can be void *.
9703 */
9704 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
9705 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
9706 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
9707 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
9708 return -EINVAL;
9709 }
9710 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
9711}
9712
9713static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
9714 struct bpf_reg_state *reg,
9715 const struct btf_type *ref_t,
9716 const char *ref_tname, u32 ref_id,
9717 struct bpf_kfunc_call_arg_meta *meta,
9718 int argno)
9719{
9720 const struct btf_type *reg_ref_t;
9721 bool strict_type_match = false;
9722 const struct btf *reg_btf;
9723 const char *reg_ref_tname;
9724 u32 reg_ref_id;
9725
3f00c523 9726 if (base_type(reg->type) == PTR_TO_BTF_ID) {
00b85860
KKD
9727 reg_btf = reg->btf;
9728 reg_ref_id = reg->btf_id;
9729 } else {
9730 reg_btf = btf_vmlinux;
9731 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
9732 }
9733
b613d335
DV
9734 /* Enforce strict type matching for calls to kfuncs that are acquiring
9735 * or releasing a reference, or are no-cast aliases. We do _not_
9736 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
9737 * as we want to enable BPF programs to pass types that are bitwise
9738 * equivalent without forcing them to explicitly cast with something
9739 * like bpf_cast_to_kern_ctx().
9740 *
9741 * For example, say we had a type like the following:
9742 *
9743 * struct bpf_cpumask {
9744 * cpumask_t cpumask;
9745 * refcount_t usage;
9746 * };
9747 *
9748 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
9749 * to a struct cpumask, so it would be safe to pass a struct
9750 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
9751 *
9752 * The philosophy here is similar to how we allow scalars of different
9753 * types to be passed to kfuncs as long as the size is the same. The
9754 * only difference here is that we're simply allowing
9755 * btf_struct_ids_match() to walk the struct at the 0th offset, and
9756 * resolve types.
9757 */
9758 if (is_kfunc_acquire(meta) ||
9759 (is_kfunc_release(meta) && reg->ref_obj_id) ||
9760 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
00b85860
KKD
9761 strict_type_match = true;
9762
b613d335
DV
9763 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
9764
00b85860
KKD
9765 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
9766 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
9767 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
9768 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
9769 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
9770 btf_type_str(reg_ref_t), reg_ref_tname);
9771 return -EINVAL;
9772 }
9773 return 0;
9774}
9775
9776static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
9777 struct bpf_reg_state *reg,
9778 const struct btf_type *ref_t,
9779 const char *ref_tname,
9780 struct bpf_kfunc_call_arg_meta *meta,
9781 int argno)
9782{
9783 struct btf_field *kptr_field;
9784
9785 /* check_func_arg_reg_off allows var_off for
9786 * PTR_TO_MAP_VALUE, but we need fixed offset to find
9787 * off_desc.
9788 */
9789 if (!tnum_is_const(reg->var_off)) {
9790 verbose(env, "arg#0 must have constant offset\n");
9791 return -EINVAL;
9792 }
9793
9794 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
9795 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
9796 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
9797 reg->off + reg->var_off.value);
9798 return -EINVAL;
9799 }
9800
9801 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
9802 kptr_field->kptr.btf_id, true)) {
9803 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
9804 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9805 return -EINVAL;
9806 }
9807 return 0;
9808}
9809
6a3cd331 9810static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
534e86bc 9811{
6a3cd331
DM
9812 struct bpf_verifier_state *state = env->cur_state;
9813
9814 if (!state->active_lock.ptr) {
9815 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
9816 return -EFAULT;
9817 }
9818
9819 if (type_flag(reg->type) & NON_OWN_REF) {
9820 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
9821 return -EFAULT;
9822 }
9823
9824 reg->type |= NON_OWN_REF;
9825 return 0;
9826}
9827
9828static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
9829{
9830 struct bpf_func_state *state, *unused;
534e86bc
KKD
9831 struct bpf_reg_state *reg;
9832 int i;
9833
6a3cd331
DM
9834 state = cur_func(env);
9835
534e86bc 9836 if (!ref_obj_id) {
6a3cd331
DM
9837 verbose(env, "verifier internal error: ref_obj_id is zero for "
9838 "owning -> non-owning conversion\n");
534e86bc
KKD
9839 return -EFAULT;
9840 }
6a3cd331 9841
534e86bc 9842 for (i = 0; i < state->acquired_refs; i++) {
6a3cd331
DM
9843 if (state->refs[i].id != ref_obj_id)
9844 continue;
9845
9846 /* Clear ref_obj_id here so release_reference doesn't clobber
9847 * the whole reg
9848 */
9849 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9850 if (reg->ref_obj_id == ref_obj_id) {
9851 reg->ref_obj_id = 0;
9852 ref_set_non_owning(env, reg);
534e86bc 9853 }
6a3cd331
DM
9854 }));
9855 return 0;
534e86bc 9856 }
6a3cd331 9857
534e86bc
KKD
9858 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
9859 return -EFAULT;
9860}
9861
8cab76ec
KKD
9862/* Implementation details:
9863 *
9864 * Each register points to some region of memory, which we define as an
9865 * allocation. Each allocation may embed a bpf_spin_lock which protects any
9866 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
9867 * allocation. The lock and the data it protects are colocated in the same
9868 * memory region.
9869 *
9870 * Hence, everytime a register holds a pointer value pointing to such
9871 * allocation, the verifier preserves a unique reg->id for it.
9872 *
9873 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
9874 * bpf_spin_lock is called.
9875 *
9876 * To enable this, lock state in the verifier captures two values:
9877 * active_lock.ptr = Register's type specific pointer
9878 * active_lock.id = A unique ID for each register pointer value
9879 *
9880 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
9881 * supported register types.
9882 *
9883 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
9884 * allocated objects is the reg->btf pointer.
9885 *
9886 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
9887 * can establish the provenance of the map value statically for each distinct
9888 * lookup into such maps. They always contain a single map value hence unique
9889 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
9890 *
9891 * So, in case of global variables, they use array maps with max_entries = 1,
9892 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
9893 * into the same map value as max_entries is 1, as described above).
9894 *
9895 * In case of inner map lookups, the inner map pointer has same map_ptr as the
9896 * outer map pointer (in verifier context), but each lookup into an inner map
9897 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
9898 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
9899 * will get different reg->id assigned to each lookup, hence different
9900 * active_lock.id.
9901 *
9902 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
9903 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
9904 * returned from bpf_obj_new. Each allocation receives a new reg->id.
9905 */
9906static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9907{
9908 void *ptr;
9909 u32 id;
9910
9911 switch ((int)reg->type) {
9912 case PTR_TO_MAP_VALUE:
9913 ptr = reg->map_ptr;
9914 break;
9915 case PTR_TO_BTF_ID | MEM_ALLOC:
9916 ptr = reg->btf;
9917 break;
9918 default:
9919 verbose(env, "verifier internal error: unknown reg type for lock check\n");
9920 return -EFAULT;
9921 }
9922 id = reg->id;
9923
9924 if (!env->cur_state->active_lock.ptr)
9925 return -EINVAL;
9926 if (env->cur_state->active_lock.ptr != ptr ||
9927 env->cur_state->active_lock.id != id) {
9928 verbose(env, "held lock and object are not in the same allocation\n");
9929 return -EINVAL;
9930 }
9931 return 0;
9932}
9933
9934static bool is_bpf_list_api_kfunc(u32 btf_id)
9935{
9936 return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9937 btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
9938 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9939 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
9940}
9941
cd6791b4
DM
9942static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
9943{
9944 return btf_id == special_kfunc_list[KF_bpf_rbtree_add] ||
9945 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9946 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
9947}
9948
9949static bool is_bpf_graph_api_kfunc(u32 btf_id)
9950{
9951 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id);
9952}
9953
5d92ddc3
DM
9954static bool is_callback_calling_kfunc(u32 btf_id)
9955{
9956 return btf_id == special_kfunc_list[KF_bpf_rbtree_add];
9957}
9958
9959static bool is_rbtree_lock_required_kfunc(u32 btf_id)
9960{
9961 return is_bpf_rbtree_api_kfunc(btf_id);
9962}
9963
cd6791b4
DM
9964static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
9965 enum btf_field_type head_field_type,
9966 u32 kfunc_btf_id)
9967{
9968 bool ret;
9969
9970 switch (head_field_type) {
9971 case BPF_LIST_HEAD:
9972 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
9973 break;
9974 case BPF_RB_ROOT:
9975 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
9976 break;
9977 default:
9978 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
9979 btf_field_type_name(head_field_type));
9980 return false;
9981 }
9982
9983 if (!ret)
9984 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
9985 btf_field_type_name(head_field_type));
9986 return ret;
9987}
9988
9989static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
9990 enum btf_field_type node_field_type,
9991 u32 kfunc_btf_id)
8cab76ec 9992{
cd6791b4
DM
9993 bool ret;
9994
9995 switch (node_field_type) {
9996 case BPF_LIST_NODE:
9997 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9998 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]);
9999 break;
10000 case BPF_RB_NODE:
10001 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10002 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]);
10003 break;
10004 default:
10005 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10006 btf_field_type_name(node_field_type));
10007 return false;
10008 }
10009
10010 if (!ret)
10011 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10012 btf_field_type_name(node_field_type));
10013 return ret;
10014}
10015
10016static int
10017__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10018 struct bpf_reg_state *reg, u32 regno,
10019 struct bpf_kfunc_call_arg_meta *meta,
10020 enum btf_field_type head_field_type,
10021 struct btf_field **head_field)
10022{
10023 const char *head_type_name;
8cab76ec
KKD
10024 struct btf_field *field;
10025 struct btf_record *rec;
cd6791b4 10026 u32 head_off;
8cab76ec 10027
cd6791b4
DM
10028 if (meta->btf != btf_vmlinux) {
10029 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10030 return -EFAULT;
10031 }
10032
cd6791b4
DM
10033 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10034 return -EFAULT;
10035
10036 head_type_name = btf_field_type_name(head_field_type);
8cab76ec
KKD
10037 if (!tnum_is_const(reg->var_off)) {
10038 verbose(env,
cd6791b4
DM
10039 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10040 regno, head_type_name);
8cab76ec
KKD
10041 return -EINVAL;
10042 }
10043
10044 rec = reg_btf_record(reg);
cd6791b4
DM
10045 head_off = reg->off + reg->var_off.value;
10046 field = btf_record_find(rec, head_off, head_field_type);
8cab76ec 10047 if (!field) {
cd6791b4 10048 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
8cab76ec
KKD
10049 return -EINVAL;
10050 }
10051
10052 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10053 if (check_reg_allocation_locked(env, reg)) {
cd6791b4
DM
10054 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10055 rec->spin_lock_off, head_type_name);
8cab76ec
KKD
10056 return -EINVAL;
10057 }
10058
cd6791b4
DM
10059 if (*head_field) {
10060 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
8cab76ec
KKD
10061 return -EFAULT;
10062 }
cd6791b4 10063 *head_field = field;
8cab76ec
KKD
10064 return 0;
10065}
10066
cd6791b4 10067static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8cab76ec
KKD
10068 struct bpf_reg_state *reg, u32 regno,
10069 struct bpf_kfunc_call_arg_meta *meta)
10070{
cd6791b4
DM
10071 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10072 &meta->arg_list_head.field);
10073}
10074
10075static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10076 struct bpf_reg_state *reg, u32 regno,
10077 struct bpf_kfunc_call_arg_meta *meta)
10078{
10079 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10080 &meta->arg_rbtree_root.field);
10081}
10082
10083static int
10084__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10085 struct bpf_reg_state *reg, u32 regno,
10086 struct bpf_kfunc_call_arg_meta *meta,
10087 enum btf_field_type head_field_type,
10088 enum btf_field_type node_field_type,
10089 struct btf_field **node_field)
10090{
10091 const char *node_type_name;
8cab76ec
KKD
10092 const struct btf_type *et, *t;
10093 struct btf_field *field;
cd6791b4 10094 u32 node_off;
8cab76ec 10095
cd6791b4
DM
10096 if (meta->btf != btf_vmlinux) {
10097 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10098 return -EFAULT;
10099 }
10100
cd6791b4
DM
10101 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10102 return -EFAULT;
10103
10104 node_type_name = btf_field_type_name(node_field_type);
8cab76ec
KKD
10105 if (!tnum_is_const(reg->var_off)) {
10106 verbose(env,
cd6791b4
DM
10107 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10108 regno, node_type_name);
8cab76ec
KKD
10109 return -EINVAL;
10110 }
10111
cd6791b4
DM
10112 node_off = reg->off + reg->var_off.value;
10113 field = reg_find_field_offset(reg, node_off, node_field_type);
10114 if (!field || field->offset != node_off) {
10115 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
8cab76ec
KKD
10116 return -EINVAL;
10117 }
10118
cd6791b4 10119 field = *node_field;
8cab76ec 10120
30465003 10121 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
8cab76ec 10122 t = btf_type_by_id(reg->btf, reg->btf_id);
30465003
DM
10123 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10124 field->graph_root.value_btf_id, true)) {
cd6791b4 10125 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
8cab76ec 10126 "in struct %s, but arg is at offset=%d in struct %s\n",
cd6791b4
DM
10127 btf_field_type_name(head_field_type),
10128 btf_field_type_name(node_field_type),
30465003
DM
10129 field->graph_root.node_offset,
10130 btf_name_by_offset(field->graph_root.btf, et->name_off),
cd6791b4 10131 node_off, btf_name_by_offset(reg->btf, t->name_off));
8cab76ec
KKD
10132 return -EINVAL;
10133 }
10134
cd6791b4
DM
10135 if (node_off != field->graph_root.node_offset) {
10136 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10137 node_off, btf_field_type_name(node_field_type),
10138 field->graph_root.node_offset,
30465003 10139 btf_name_by_offset(field->graph_root.btf, et->name_off));
8cab76ec
KKD
10140 return -EINVAL;
10141 }
6a3cd331
DM
10142
10143 return 0;
8cab76ec
KKD
10144}
10145
cd6791b4
DM
10146static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10147 struct bpf_reg_state *reg, u32 regno,
10148 struct bpf_kfunc_call_arg_meta *meta)
10149{
10150 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10151 BPF_LIST_HEAD, BPF_LIST_NODE,
10152 &meta->arg_list_head.field);
10153}
10154
10155static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10156 struct bpf_reg_state *reg, u32 regno,
10157 struct bpf_kfunc_call_arg_meta *meta)
10158{
10159 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10160 BPF_RB_ROOT, BPF_RB_NODE,
10161 &meta->arg_rbtree_root.field);
10162}
10163
1d18feb2
JK
10164static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10165 int insn_idx)
00b85860
KKD
10166{
10167 const char *func_name = meta->func_name, *ref_tname;
10168 const struct btf *btf = meta->btf;
10169 const struct btf_param *args;
10170 u32 i, nargs;
10171 int ret;
10172
10173 args = (const struct btf_param *)(meta->func_proto + 1);
10174 nargs = btf_type_vlen(meta->func_proto);
10175 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10176 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10177 MAX_BPF_FUNC_REG_ARGS);
10178 return -EINVAL;
10179 }
10180
10181 /* Check that BTF function arguments match actual types that the
10182 * verifier sees.
10183 */
10184 for (i = 0; i < nargs; i++) {
10185 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10186 const struct btf_type *t, *ref_t, *resolve_ret;
10187 enum bpf_arg_type arg_type = ARG_DONTCARE;
10188 u32 regno = i + 1, ref_id, type_size;
10189 bool is_ret_buf_sz = false;
10190 int kf_arg_type;
10191
10192 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
10193
10194 if (is_kfunc_arg_ignore(btf, &args[i]))
10195 continue;
10196
00b85860
KKD
10197 if (btf_type_is_scalar(t)) {
10198 if (reg->type != SCALAR_VALUE) {
10199 verbose(env, "R%d is not a scalar\n", regno);
10200 return -EINVAL;
10201 }
a50388db
KKD
10202
10203 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10204 if (meta->arg_constant.found) {
10205 verbose(env, "verifier internal error: only one constant argument permitted\n");
10206 return -EFAULT;
10207 }
10208 if (!tnum_is_const(reg->var_off)) {
10209 verbose(env, "R%d must be a known constant\n", regno);
10210 return -EINVAL;
10211 }
10212 ret = mark_chain_precision(env, regno);
10213 if (ret < 0)
10214 return ret;
10215 meta->arg_constant.found = true;
10216 meta->arg_constant.value = reg->var_off.value;
10217 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
10218 meta->r0_rdonly = true;
10219 is_ret_buf_sz = true;
10220 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10221 is_ret_buf_sz = true;
10222 }
10223
10224 if (is_ret_buf_sz) {
10225 if (meta->r0_size) {
10226 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10227 return -EINVAL;
10228 }
10229
10230 if (!tnum_is_const(reg->var_off)) {
10231 verbose(env, "R%d is not a const\n", regno);
10232 return -EINVAL;
10233 }
10234
10235 meta->r0_size = reg->var_off.value;
10236 ret = mark_chain_precision(env, regno);
10237 if (ret)
10238 return ret;
10239 }
10240 continue;
10241 }
10242
10243 if (!btf_type_is_ptr(t)) {
10244 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10245 return -EINVAL;
10246 }
10247
20c09d92 10248 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
caf713c3
DV
10249 (register_is_null(reg) || type_may_be_null(reg->type))) {
10250 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10251 return -EACCES;
10252 }
10253
00b85860
KKD
10254 if (reg->ref_obj_id) {
10255 if (is_kfunc_release(meta) && meta->ref_obj_id) {
10256 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10257 regno, reg->ref_obj_id,
10258 meta->ref_obj_id);
10259 return -EFAULT;
10260 }
10261 meta->ref_obj_id = reg->ref_obj_id;
10262 if (is_kfunc_release(meta))
10263 meta->release_regno = regno;
10264 }
10265
10266 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10267 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10268
10269 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10270 if (kf_arg_type < 0)
10271 return kf_arg_type;
10272
10273 switch (kf_arg_type) {
ac9f0605 10274 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860 10275 case KF_ARG_PTR_TO_BTF_ID:
fca1aa75 10276 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
00b85860 10277 break;
3f00c523
DV
10278
10279 if (!is_trusted_reg(reg)) {
fca1aa75
YS
10280 if (!is_kfunc_rcu(meta)) {
10281 verbose(env, "R%d must be referenced or trusted\n", regno);
10282 return -EINVAL;
10283 }
10284 if (!is_rcu_reg(reg)) {
10285 verbose(env, "R%d must be a rcu pointer\n", regno);
10286 return -EINVAL;
10287 }
00b85860 10288 }
fca1aa75 10289
00b85860
KKD
10290 fallthrough;
10291 case KF_ARG_PTR_TO_CTX:
10292 /* Trusted arguments have the same offset checks as release arguments */
10293 arg_type |= OBJ_RELEASE;
10294 break;
10295 case KF_ARG_PTR_TO_KPTR:
10296 case KF_ARG_PTR_TO_DYNPTR:
06accc87 10297 case KF_ARG_PTR_TO_ITER:
8cab76ec
KKD
10298 case KF_ARG_PTR_TO_LIST_HEAD:
10299 case KF_ARG_PTR_TO_LIST_NODE:
cd6791b4
DM
10300 case KF_ARG_PTR_TO_RB_ROOT:
10301 case KF_ARG_PTR_TO_RB_NODE:
00b85860
KKD
10302 case KF_ARG_PTR_TO_MEM:
10303 case KF_ARG_PTR_TO_MEM_SIZE:
5d92ddc3 10304 case KF_ARG_PTR_TO_CALLBACK:
00b85860
KKD
10305 /* Trusted by default */
10306 break;
10307 default:
10308 WARN_ON_ONCE(1);
10309 return -EFAULT;
10310 }
10311
10312 if (is_kfunc_release(meta) && reg->ref_obj_id)
10313 arg_type |= OBJ_RELEASE;
10314 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10315 if (ret < 0)
10316 return ret;
10317
10318 switch (kf_arg_type) {
10319 case KF_ARG_PTR_TO_CTX:
10320 if (reg->type != PTR_TO_CTX) {
10321 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10322 return -EINVAL;
10323 }
fd264ca0
YS
10324
10325 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10326 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10327 if (ret < 0)
10328 return -EINVAL;
10329 meta->ret_btf_id = ret;
10330 }
00b85860 10331 break;
ac9f0605
KKD
10332 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10333 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10334 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10335 return -EINVAL;
10336 }
10337 if (!reg->ref_obj_id) {
10338 verbose(env, "allocated object must be referenced\n");
10339 return -EINVAL;
10340 }
10341 if (meta->btf == btf_vmlinux &&
10342 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10343 meta->arg_obj_drop.btf = reg->btf;
10344 meta->arg_obj_drop.btf_id = reg->btf_id;
10345 }
10346 break;
00b85860
KKD
10347 case KF_ARG_PTR_TO_KPTR:
10348 if (reg->type != PTR_TO_MAP_VALUE) {
10349 verbose(env, "arg#0 expected pointer to map value\n");
10350 return -EINVAL;
10351 }
10352 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
10353 if (ret < 0)
10354 return ret;
10355 break;
10356 case KF_ARG_PTR_TO_DYNPTR:
d96d937d
JK
10357 {
10358 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
10359
6b75bd3d 10360 if (reg->type != PTR_TO_STACK &&
27060531 10361 reg->type != CONST_PTR_TO_DYNPTR) {
6b75bd3d 10362 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
00b85860
KKD
10363 return -EINVAL;
10364 }
10365
d96d937d
JK
10366 if (reg->type == CONST_PTR_TO_DYNPTR)
10367 dynptr_arg_type |= MEM_RDONLY;
10368
10369 if (is_kfunc_arg_uninit(btf, &args[i]))
10370 dynptr_arg_type |= MEM_UNINIT;
10371
b5964b96
JK
10372 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb])
10373 dynptr_arg_type |= DYNPTR_TYPE_SKB;
05421aec
JK
10374 else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp])
10375 dynptr_arg_type |= DYNPTR_TYPE_XDP;
b5964b96 10376
d96d937d 10377 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type);
6b75bd3d
KKD
10378 if (ret < 0)
10379 return ret;
66e3a13e
JK
10380
10381 if (!(dynptr_arg_type & MEM_UNINIT)) {
10382 int id = dynptr_id(env, reg);
10383
10384 if (id < 0) {
10385 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10386 return id;
10387 }
10388 meta->initialized_dynptr.id = id;
10389 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
10390 }
10391
00b85860 10392 break;
d96d937d 10393 }
06accc87
AN
10394 case KF_ARG_PTR_TO_ITER:
10395 ret = process_iter_arg(env, regno, insn_idx, meta);
10396 if (ret < 0)
10397 return ret;
10398 break;
8cab76ec
KKD
10399 case KF_ARG_PTR_TO_LIST_HEAD:
10400 if (reg->type != PTR_TO_MAP_VALUE &&
10401 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10402 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10403 return -EINVAL;
10404 }
10405 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10406 verbose(env, "allocated object must be referenced\n");
10407 return -EINVAL;
10408 }
10409 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10410 if (ret < 0)
10411 return ret;
10412 break;
cd6791b4
DM
10413 case KF_ARG_PTR_TO_RB_ROOT:
10414 if (reg->type != PTR_TO_MAP_VALUE &&
10415 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10416 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10417 return -EINVAL;
10418 }
10419 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10420 verbose(env, "allocated object must be referenced\n");
10421 return -EINVAL;
10422 }
10423 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10424 if (ret < 0)
10425 return ret;
10426 break;
8cab76ec
KKD
10427 case KF_ARG_PTR_TO_LIST_NODE:
10428 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10429 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10430 return -EINVAL;
10431 }
10432 if (!reg->ref_obj_id) {
10433 verbose(env, "allocated object must be referenced\n");
10434 return -EINVAL;
10435 }
10436 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10437 if (ret < 0)
10438 return ret;
10439 break;
cd6791b4 10440 case KF_ARG_PTR_TO_RB_NODE:
a40d3632
DM
10441 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10442 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10443 verbose(env, "rbtree_remove node input must be non-owning ref\n");
10444 return -EINVAL;
10445 }
10446 if (in_rbtree_lock_required_cb(env)) {
10447 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10448 return -EINVAL;
10449 }
10450 } else {
10451 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10452 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10453 return -EINVAL;
10454 }
10455 if (!reg->ref_obj_id) {
10456 verbose(env, "allocated object must be referenced\n");
10457 return -EINVAL;
10458 }
cd6791b4 10459 }
a40d3632 10460
cd6791b4
DM
10461 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10462 if (ret < 0)
10463 return ret;
10464 break;
00b85860
KKD
10465 case KF_ARG_PTR_TO_BTF_ID:
10466 /* Only base_type is checked, further checks are done here */
3f00c523 10467 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
fca1aa75 10468 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
3f00c523
DV
10469 !reg2btf_ids[base_type(reg->type)]) {
10470 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10471 verbose(env, "expected %s or socket\n",
10472 reg_type_str(env, base_type(reg->type) |
10473 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
00b85860
KKD
10474 return -EINVAL;
10475 }
10476 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10477 if (ret < 0)
10478 return ret;
10479 break;
10480 case KF_ARG_PTR_TO_MEM:
10481 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10482 if (IS_ERR(resolve_ret)) {
10483 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10484 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10485 return -EINVAL;
10486 }
10487 ret = check_mem_reg(env, reg, regno, type_size);
10488 if (ret < 0)
10489 return ret;
10490 break;
10491 case KF_ARG_PTR_TO_MEM_SIZE:
66e3a13e
JK
10492 {
10493 struct bpf_reg_state *size_reg = &regs[regno + 1];
10494 const struct btf_param *size_arg = &args[i + 1];
10495
10496 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
00b85860
KKD
10497 if (ret < 0) {
10498 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
10499 return ret;
10500 }
66e3a13e
JK
10501
10502 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
10503 if (meta->arg_constant.found) {
10504 verbose(env, "verifier internal error: only one constant argument permitted\n");
10505 return -EFAULT;
10506 }
10507 if (!tnum_is_const(size_reg->var_off)) {
10508 verbose(env, "R%d must be a known constant\n", regno + 1);
10509 return -EINVAL;
10510 }
10511 meta->arg_constant.found = true;
10512 meta->arg_constant.value = size_reg->var_off.value;
10513 }
10514
10515 /* Skip next '__sz' or '__szk' argument */
00b85860
KKD
10516 i++;
10517 break;
66e3a13e 10518 }
5d92ddc3
DM
10519 case KF_ARG_PTR_TO_CALLBACK:
10520 meta->subprogno = reg->subprogno;
10521 break;
00b85860
KKD
10522 }
10523 }
10524
10525 if (is_kfunc_release(meta) && !meta->release_regno) {
10526 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
10527 func_name);
10528 return -EINVAL;
10529 }
10530
10531 return 0;
10532}
10533
07236eab
AN
10534static int fetch_kfunc_meta(struct bpf_verifier_env *env,
10535 struct bpf_insn *insn,
10536 struct bpf_kfunc_call_arg_meta *meta,
10537 const char **kfunc_name)
e6ac2450 10538{
07236eab
AN
10539 const struct btf_type *func, *func_proto;
10540 u32 func_id, *kfunc_flags;
10541 const char *func_name;
2357672c 10542 struct btf *desc_btf;
e6ac2450 10543
07236eab
AN
10544 if (kfunc_name)
10545 *kfunc_name = NULL;
10546
a5d82727 10547 if (!insn->imm)
07236eab 10548 return -EINVAL;
a5d82727 10549
43bf0878 10550 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
10551 if (IS_ERR(desc_btf))
10552 return PTR_ERR(desc_btf);
10553
e6ac2450 10554 func_id = insn->imm;
2357672c
KKD
10555 func = btf_type_by_id(desc_btf, func_id);
10556 func_name = btf_name_by_offset(desc_btf, func->name_off);
07236eab
AN
10557 if (kfunc_name)
10558 *kfunc_name = func_name;
2357672c 10559 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 10560
a4703e31
KKD
10561 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
10562 if (!kfunc_flags) {
e6ac2450
MKL
10563 return -EACCES;
10564 }
00b85860 10565
07236eab
AN
10566 memset(meta, 0, sizeof(*meta));
10567 meta->btf = desc_btf;
10568 meta->func_id = func_id;
10569 meta->kfunc_flags = *kfunc_flags;
10570 meta->func_proto = func_proto;
10571 meta->func_name = func_name;
10572
10573 return 0;
10574}
10575
10576static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10577 int *insn_idx_p)
10578{
10579 const struct btf_type *t, *ptr_type;
10580 u32 i, nargs, ptr_type_id, release_ref_obj_id;
10581 struct bpf_reg_state *regs = cur_regs(env);
10582 const char *func_name, *ptr_type_name;
10583 bool sleepable, rcu_lock, rcu_unlock;
10584 struct bpf_kfunc_call_arg_meta meta;
10585 struct bpf_insn_aux_data *insn_aux;
10586 int err, insn_idx = *insn_idx_p;
10587 const struct btf_param *args;
10588 const struct btf_type *ret_t;
10589 struct btf *desc_btf;
10590
10591 /* skip for now, but return error when we find this in fixup_kfunc_call */
10592 if (!insn->imm)
10593 return 0;
10594
10595 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
10596 if (err == -EACCES && func_name)
10597 verbose(env, "calling kernel function %s is not allowed\n", func_name);
10598 if (err)
10599 return err;
10600 desc_btf = meta.btf;
10601 insn_aux = &env->insn_aux_data[insn_idx];
00b85860 10602
06accc87
AN
10603 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
10604
00b85860
KKD
10605 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
10606 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
10607 return -EACCES;
10608 }
10609
9bb00b28
YS
10610 sleepable = is_kfunc_sleepable(&meta);
10611 if (sleepable && !env->prog->aux->sleepable) {
00b85860
KKD
10612 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
10613 return -EACCES;
10614 }
eb1f7f71 10615
9bb00b28
YS
10616 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
10617 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9bb00b28
YS
10618
10619 if (env->cur_state->active_rcu_lock) {
10620 struct bpf_func_state *state;
10621 struct bpf_reg_state *reg;
10622
10623 if (rcu_lock) {
10624 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
10625 return -EINVAL;
10626 } else if (rcu_unlock) {
10627 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10628 if (reg->type & MEM_RCU) {
fca1aa75 10629 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9bb00b28
YS
10630 reg->type |= PTR_UNTRUSTED;
10631 }
10632 }));
10633 env->cur_state->active_rcu_lock = false;
10634 } else if (sleepable) {
10635 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
10636 return -EACCES;
10637 }
10638 } else if (rcu_lock) {
10639 env->cur_state->active_rcu_lock = true;
10640 } else if (rcu_unlock) {
10641 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
10642 return -EINVAL;
10643 }
10644
e6ac2450 10645 /* Check the arguments */
1d18feb2 10646 err = check_kfunc_args(env, &meta, insn_idx);
5c073f26 10647 if (err < 0)
e6ac2450 10648 return err;
5c073f26 10649 /* In case of release function, we get register number of refcounted
00b85860 10650 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 10651 */
00b85860
KKD
10652 if (meta.release_regno) {
10653 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
10654 if (err) {
10655 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 10656 func_name, meta.func_id);
5c073f26
KKD
10657 return err;
10658 }
10659 }
e6ac2450 10660
6a3cd331 10661 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] ||
bd1279ae
DM
10662 meta.func_id == special_kfunc_list[KF_bpf_list_push_back] ||
10663 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
6a3cd331
DM
10664 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
10665 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
10666 if (err) {
10667 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
07236eab 10668 func_name, meta.func_id);
6a3cd331
DM
10669 return err;
10670 }
10671
10672 err = release_reference(env, release_ref_obj_id);
10673 if (err) {
10674 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 10675 func_name, meta.func_id);
6a3cd331
DM
10676 return err;
10677 }
10678 }
10679
5d92ddc3
DM
10680 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
10681 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10682 set_rbtree_add_callback_state);
10683 if (err) {
10684 verbose(env, "kfunc %s#%d failed callback verification\n",
07236eab 10685 func_name, meta.func_id);
5d92ddc3
DM
10686 return err;
10687 }
10688 }
10689
e6ac2450
MKL
10690 for (i = 0; i < CALLER_SAVED_REGS; i++)
10691 mark_reg_not_init(env, regs, caller_saved[i]);
10692
10693 /* Check return type */
07236eab 10694 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
5c073f26 10695
00b85860 10696 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2
KKD
10697 /* Only exception is bpf_obj_new_impl */
10698 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
10699 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
10700 return -EINVAL;
10701 }
5c073f26
KKD
10702 }
10703
e6ac2450
MKL
10704 if (btf_type_is_scalar(t)) {
10705 mark_reg_unknown(env, regs, BPF_REG_0);
10706 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
10707 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
10708 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
10709
10710 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10711 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
958cf2e2
KKD
10712 struct btf *ret_btf;
10713 u32 ret_btf_id;
10714
e181d3f1
KKD
10715 if (unlikely(!bpf_global_ma_set))
10716 return -ENOMEM;
10717
958cf2e2
KKD
10718 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
10719 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
10720 return -EINVAL;
10721 }
10722
10723 ret_btf = env->prog->aux->btf;
10724 ret_btf_id = meta.arg_constant.value;
10725
10726 /* This may be NULL due to user not supplying a BTF */
10727 if (!ret_btf) {
10728 verbose(env, "bpf_obj_new requires prog BTF\n");
10729 return -EINVAL;
10730 }
10731
10732 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
10733 if (!ret_t || !__btf_type_is_struct(ret_t)) {
10734 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
10735 return -EINVAL;
10736 }
10737
10738 mark_reg_known_zero(env, regs, BPF_REG_0);
10739 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
10740 regs[BPF_REG_0].btf = ret_btf;
10741 regs[BPF_REG_0].btf_id = ret_btf_id;
10742
07236eab
AN
10743 insn_aux->obj_new_size = ret_t->size;
10744 insn_aux->kptr_struct_meta =
958cf2e2 10745 btf_find_struct_meta(ret_btf, ret_btf_id);
8cab76ec
KKD
10746 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10747 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
10748 struct btf_field *field = meta.arg_list_head.field;
10749
a40d3632
DM
10750 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10751 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10752 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10753 struct btf_field *field = meta.arg_rbtree_root.field;
10754
10755 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
fd264ca0
YS
10756 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10757 mark_reg_known_zero(env, regs, BPF_REG_0);
10758 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
10759 regs[BPF_REG_0].btf = desc_btf;
10760 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
a35b9af4
YS
10761 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
10762 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
10763 if (!ret_t || !btf_type_is_struct(ret_t)) {
10764 verbose(env,
10765 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
10766 return -EINVAL;
10767 }
10768
10769 mark_reg_known_zero(env, regs, BPF_REG_0);
10770 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
10771 regs[BPF_REG_0].btf = desc_btf;
10772 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
66e3a13e
JK
10773 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
10774 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
10775 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
10776
10777 mark_reg_known_zero(env, regs, BPF_REG_0);
10778
10779 if (!meta.arg_constant.found) {
10780 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
10781 return -EFAULT;
10782 }
10783
10784 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
10785
10786 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
10787 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
10788
10789 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
10790 regs[BPF_REG_0].type |= MEM_RDONLY;
10791 } else {
10792 /* this will set env->seen_direct_write to true */
10793 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
10794 verbose(env, "the prog does not allow writes to packet data\n");
10795 return -EINVAL;
10796 }
10797 }
10798
10799 if (!meta.initialized_dynptr.id) {
10800 verbose(env, "verifier internal error: no dynptr id\n");
10801 return -EFAULT;
10802 }
10803 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
10804
10805 /* we don't need to set BPF_REG_0's ref obj id
10806 * because packet slices are not refcounted (see
10807 * dynptr_type_refcounted)
10808 */
958cf2e2
KKD
10809 } else {
10810 verbose(env, "kernel function %s unhandled dynamic return type\n",
10811 meta.func_name);
10812 return -EFAULT;
10813 }
10814 } else if (!__btf_type_is_struct(ptr_type)) {
f4b4eee6
AN
10815 if (!meta.r0_size) {
10816 __u32 sz;
10817
10818 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
10819 meta.r0_size = sz;
10820 meta.r0_rdonly = true;
10821 }
10822 }
eb1f7f71
BT
10823 if (!meta.r0_size) {
10824 ptr_type_name = btf_name_by_offset(desc_btf,
10825 ptr_type->name_off);
10826 verbose(env,
10827 "kernel function %s returns pointer type %s %s is not supported\n",
10828 func_name,
10829 btf_type_str(ptr_type),
10830 ptr_type_name);
10831 return -EINVAL;
10832 }
10833
10834 mark_reg_known_zero(env, regs, BPF_REG_0);
10835 regs[BPF_REG_0].type = PTR_TO_MEM;
10836 regs[BPF_REG_0].mem_size = meta.r0_size;
10837
10838 if (meta.r0_rdonly)
10839 regs[BPF_REG_0].type |= MEM_RDONLY;
10840
10841 /* Ensures we don't access the memory after a release_reference() */
10842 if (meta.ref_obj_id)
10843 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10844 } else {
10845 mark_reg_known_zero(env, regs, BPF_REG_0);
10846 regs[BPF_REG_0].btf = desc_btf;
10847 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
10848 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 10849 }
958cf2e2 10850
00b85860 10851 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
10852 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
10853 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
10854 regs[BPF_REG_0].id = ++env->id_gen;
10855 }
e6ac2450 10856 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 10857 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
10858 int id = acquire_reference_state(env, insn_idx);
10859
10860 if (id < 0)
10861 return id;
00b85860
KKD
10862 if (is_kfunc_ret_null(&meta))
10863 regs[BPF_REG_0].id = id;
5c073f26 10864 regs[BPF_REG_0].ref_obj_id = id;
a40d3632
DM
10865 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10866 ref_set_non_owning(env, &regs[BPF_REG_0]);
5c073f26 10867 }
a40d3632
DM
10868
10869 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove])
10870 invalidate_non_owning_refs(env);
10871
00b85860
KKD
10872 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
10873 regs[BPF_REG_0].id = ++env->id_gen;
f6a6a5a9
DM
10874 } else if (btf_type_is_void(t)) {
10875 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10876 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10877 insn_aux->kptr_struct_meta =
10878 btf_find_struct_meta(meta.arg_obj_drop.btf,
10879 meta.arg_obj_drop.btf_id);
10880 }
10881 }
10882 }
e6ac2450 10883
07236eab
AN
10884 nargs = btf_type_vlen(meta.func_proto);
10885 args = (const struct btf_param *)(meta.func_proto + 1);
e6ac2450
MKL
10886 for (i = 0; i < nargs; i++) {
10887 u32 regno = i + 1;
10888
2357672c 10889 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
10890 if (btf_type_is_ptr(t))
10891 mark_btf_func_reg_size(env, regno, sizeof(void *));
10892 else
10893 /* scalar. ensured by btf_check_kfunc_arg_match() */
10894 mark_btf_func_reg_size(env, regno, t->size);
10895 }
10896
06accc87
AN
10897 if (is_iter_next_kfunc(&meta)) {
10898 err = process_iter_next_call(env, insn_idx, &meta);
10899 if (err)
10900 return err;
10901 }
10902
e6ac2450
MKL
10903 return 0;
10904}
10905
b03c9f9f
EC
10906static bool signed_add_overflows(s64 a, s64 b)
10907{
10908 /* Do the add in u64, where overflow is well-defined */
10909 s64 res = (s64)((u64)a + (u64)b);
10910
10911 if (b < 0)
10912 return res > a;
10913 return res < a;
10914}
10915
bc895e8b 10916static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
10917{
10918 /* Do the add in u32, where overflow is well-defined */
10919 s32 res = (s32)((u32)a + (u32)b);
10920
10921 if (b < 0)
10922 return res > a;
10923 return res < a;
10924}
10925
bc895e8b 10926static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
10927{
10928 /* Do the sub in u64, where overflow is well-defined */
10929 s64 res = (s64)((u64)a - (u64)b);
10930
10931 if (b < 0)
10932 return res < a;
10933 return res > a;
969bf05e
AS
10934}
10935
3f50f132
JF
10936static bool signed_sub32_overflows(s32 a, s32 b)
10937{
bc895e8b 10938 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
10939 s32 res = (s32)((u32)a - (u32)b);
10940
10941 if (b < 0)
10942 return res < a;
10943 return res > a;
10944}
10945
bb7f0f98
AS
10946static bool check_reg_sane_offset(struct bpf_verifier_env *env,
10947 const struct bpf_reg_state *reg,
10948 enum bpf_reg_type type)
10949{
10950 bool known = tnum_is_const(reg->var_off);
10951 s64 val = reg->var_off.value;
10952 s64 smin = reg->smin_value;
10953
10954 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
10955 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 10956 reg_type_str(env, type), val);
bb7f0f98
AS
10957 return false;
10958 }
10959
10960 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
10961 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 10962 reg_type_str(env, type), reg->off);
bb7f0f98
AS
10963 return false;
10964 }
10965
10966 if (smin == S64_MIN) {
10967 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 10968 reg_type_str(env, type));
bb7f0f98
AS
10969 return false;
10970 }
10971
10972 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
10973 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 10974 smin, reg_type_str(env, type));
bb7f0f98
AS
10975 return false;
10976 }
10977
10978 return true;
10979}
10980
a6aaece0
DB
10981enum {
10982 REASON_BOUNDS = -1,
10983 REASON_TYPE = -2,
10984 REASON_PATHS = -3,
10985 REASON_LIMIT = -4,
10986 REASON_STACK = -5,
10987};
10988
979d63d5 10989static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 10990 u32 *alu_limit, bool mask_to_left)
979d63d5 10991{
7fedb63a 10992 u32 max = 0, ptr_limit = 0;
979d63d5
DB
10993
10994 switch (ptr_reg->type) {
10995 case PTR_TO_STACK:
1b1597e6 10996 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
10997 * left direction, see BPF_REG_FP. Also, unknown scalar
10998 * offset where we would need to deal with min/max bounds is
10999 * currently prohibited for unprivileged.
1b1597e6
PK
11000 */
11001 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 11002 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 11003 break;
979d63d5 11004 case PTR_TO_MAP_VALUE:
1b1597e6 11005 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
11006 ptr_limit = (mask_to_left ?
11007 ptr_reg->smin_value :
11008 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 11009 break;
979d63d5 11010 default:
a6aaece0 11011 return REASON_TYPE;
979d63d5 11012 }
b658bbb8
DB
11013
11014 if (ptr_limit >= max)
a6aaece0 11015 return REASON_LIMIT;
b658bbb8
DB
11016 *alu_limit = ptr_limit;
11017 return 0;
979d63d5
DB
11018}
11019
d3bd7413
DB
11020static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11021 const struct bpf_insn *insn)
11022{
2c78ee89 11023 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
11024}
11025
11026static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11027 u32 alu_state, u32 alu_limit)
11028{
11029 /* If we arrived here from different branches with different
11030 * state or limits to sanitize, then this won't work.
11031 */
11032 if (aux->alu_state &&
11033 (aux->alu_state != alu_state ||
11034 aux->alu_limit != alu_limit))
a6aaece0 11035 return REASON_PATHS;
d3bd7413 11036
e6ac5933 11037 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
11038 aux->alu_state = alu_state;
11039 aux->alu_limit = alu_limit;
11040 return 0;
11041}
11042
11043static int sanitize_val_alu(struct bpf_verifier_env *env,
11044 struct bpf_insn *insn)
11045{
11046 struct bpf_insn_aux_data *aux = cur_aux(env);
11047
11048 if (can_skip_alu_sanitation(env, insn))
11049 return 0;
11050
11051 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11052}
11053
f5288193
DB
11054static bool sanitize_needed(u8 opcode)
11055{
11056 return opcode == BPF_ADD || opcode == BPF_SUB;
11057}
11058
3d0220f6
DB
11059struct bpf_sanitize_info {
11060 struct bpf_insn_aux_data aux;
bb01a1bb 11061 bool mask_to_left;
3d0220f6
DB
11062};
11063
9183671a
DB
11064static struct bpf_verifier_state *
11065sanitize_speculative_path(struct bpf_verifier_env *env,
11066 const struct bpf_insn *insn,
11067 u32 next_idx, u32 curr_idx)
11068{
11069 struct bpf_verifier_state *branch;
11070 struct bpf_reg_state *regs;
11071
11072 branch = push_stack(env, next_idx, curr_idx, true);
11073 if (branch && insn) {
11074 regs = branch->frame[branch->curframe]->regs;
11075 if (BPF_SRC(insn->code) == BPF_K) {
11076 mark_reg_unknown(env, regs, insn->dst_reg);
11077 } else if (BPF_SRC(insn->code) == BPF_X) {
11078 mark_reg_unknown(env, regs, insn->dst_reg);
11079 mark_reg_unknown(env, regs, insn->src_reg);
11080 }
11081 }
11082 return branch;
11083}
11084
979d63d5
DB
11085static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11086 struct bpf_insn *insn,
11087 const struct bpf_reg_state *ptr_reg,
6f55b2f2 11088 const struct bpf_reg_state *off_reg,
979d63d5 11089 struct bpf_reg_state *dst_reg,
3d0220f6 11090 struct bpf_sanitize_info *info,
7fedb63a 11091 const bool commit_window)
979d63d5 11092{
3d0220f6 11093 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 11094 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 11095 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 11096 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
11097 bool ptr_is_dst_reg = ptr_reg == dst_reg;
11098 u8 opcode = BPF_OP(insn->code);
11099 u32 alu_state, alu_limit;
11100 struct bpf_reg_state tmp;
11101 bool ret;
f232326f 11102 int err;
979d63d5 11103
d3bd7413 11104 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
11105 return 0;
11106
11107 /* We already marked aux for masking from non-speculative
11108 * paths, thus we got here in the first place. We only care
11109 * to explore bad access from here.
11110 */
11111 if (vstate->speculative)
11112 goto do_sim;
11113
bb01a1bb
DB
11114 if (!commit_window) {
11115 if (!tnum_is_const(off_reg->var_off) &&
11116 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11117 return REASON_BOUNDS;
11118
11119 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
11120 (opcode == BPF_SUB && !off_is_neg);
11121 }
11122
11123 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
11124 if (err < 0)
11125 return err;
11126
7fedb63a
DB
11127 if (commit_window) {
11128 /* In commit phase we narrow the masking window based on
11129 * the observed pointer move after the simulated operation.
11130 */
3d0220f6
DB
11131 alu_state = info->aux.alu_state;
11132 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
11133 } else {
11134 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 11135 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
11136 alu_state |= ptr_is_dst_reg ?
11137 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
11138
11139 /* Limit pruning on unknown scalars to enable deep search for
11140 * potential masking differences from other program paths.
11141 */
11142 if (!off_is_imm)
11143 env->explore_alu_limits = true;
7fedb63a
DB
11144 }
11145
f232326f
PK
11146 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11147 if (err < 0)
11148 return err;
979d63d5 11149do_sim:
7fedb63a
DB
11150 /* If we're in commit phase, we're done here given we already
11151 * pushed the truncated dst_reg into the speculative verification
11152 * stack.
a7036191
DB
11153 *
11154 * Also, when register is a known constant, we rewrite register-based
11155 * operation to immediate-based, and thus do not need masking (and as
11156 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 11157 */
a7036191 11158 if (commit_window || off_is_imm)
7fedb63a
DB
11159 return 0;
11160
979d63d5
DB
11161 /* Simulate and find potential out-of-bounds access under
11162 * speculative execution from truncation as a result of
11163 * masking when off was not within expected range. If off
11164 * sits in dst, then we temporarily need to move ptr there
11165 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11166 * for cases where we use K-based arithmetic in one direction
11167 * and truncated reg-based in the other in order to explore
11168 * bad access.
11169 */
11170 if (!ptr_is_dst_reg) {
11171 tmp = *dst_reg;
71f656a5 11172 copy_register_state(dst_reg, ptr_reg);
979d63d5 11173 }
9183671a
DB
11174 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11175 env->insn_idx);
0803278b 11176 if (!ptr_is_dst_reg && ret)
979d63d5 11177 *dst_reg = tmp;
a6aaece0
DB
11178 return !ret ? REASON_STACK : 0;
11179}
11180
fe9a5ca7
DB
11181static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11182{
11183 struct bpf_verifier_state *vstate = env->cur_state;
11184
11185 /* If we simulate paths under speculation, we don't update the
11186 * insn as 'seen' such that when we verify unreachable paths in
11187 * the non-speculative domain, sanitize_dead_code() can still
11188 * rewrite/sanitize them.
11189 */
11190 if (!vstate->speculative)
11191 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11192}
11193
a6aaece0
DB
11194static int sanitize_err(struct bpf_verifier_env *env,
11195 const struct bpf_insn *insn, int reason,
11196 const struct bpf_reg_state *off_reg,
11197 const struct bpf_reg_state *dst_reg)
11198{
11199 static const char *err = "pointer arithmetic with it prohibited for !root";
11200 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11201 u32 dst = insn->dst_reg, src = insn->src_reg;
11202
11203 switch (reason) {
11204 case REASON_BOUNDS:
11205 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11206 off_reg == dst_reg ? dst : src, err);
11207 break;
11208 case REASON_TYPE:
11209 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11210 off_reg == dst_reg ? src : dst, err);
11211 break;
11212 case REASON_PATHS:
11213 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11214 dst, op, err);
11215 break;
11216 case REASON_LIMIT:
11217 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11218 dst, op, err);
11219 break;
11220 case REASON_STACK:
11221 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11222 dst, err);
11223 break;
11224 default:
11225 verbose(env, "verifier internal error: unknown reason (%d)\n",
11226 reason);
11227 break;
11228 }
11229
11230 return -EACCES;
979d63d5
DB
11231}
11232
01f810ac
AM
11233/* check that stack access falls within stack limits and that 'reg' doesn't
11234 * have a variable offset.
11235 *
11236 * Variable offset is prohibited for unprivileged mode for simplicity since it
11237 * requires corresponding support in Spectre masking for stack ALU. See also
11238 * retrieve_ptr_limit().
11239 *
11240 *
11241 * 'off' includes 'reg->off'.
11242 */
11243static int check_stack_access_for_ptr_arithmetic(
11244 struct bpf_verifier_env *env,
11245 int regno,
11246 const struct bpf_reg_state *reg,
11247 int off)
11248{
11249 if (!tnum_is_const(reg->var_off)) {
11250 char tn_buf[48];
11251
11252 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11253 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11254 regno, tn_buf, off);
11255 return -EACCES;
11256 }
11257
11258 if (off >= 0 || off < -MAX_BPF_STACK) {
11259 verbose(env, "R%d stack pointer arithmetic goes out of range, "
11260 "prohibited for !root; off=%d\n", regno, off);
11261 return -EACCES;
11262 }
11263
11264 return 0;
11265}
11266
073815b7
DB
11267static int sanitize_check_bounds(struct bpf_verifier_env *env,
11268 const struct bpf_insn *insn,
11269 const struct bpf_reg_state *dst_reg)
11270{
11271 u32 dst = insn->dst_reg;
11272
11273 /* For unprivileged we require that resulting offset must be in bounds
11274 * in order to be able to sanitize access later on.
11275 */
11276 if (env->bypass_spec_v1)
11277 return 0;
11278
11279 switch (dst_reg->type) {
11280 case PTR_TO_STACK:
11281 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11282 dst_reg->off + dst_reg->var_off.value))
11283 return -EACCES;
11284 break;
11285 case PTR_TO_MAP_VALUE:
61df10c7 11286 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
11287 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11288 "prohibited for !root\n", dst);
11289 return -EACCES;
11290 }
11291 break;
11292 default:
11293 break;
11294 }
11295
11296 return 0;
11297}
01f810ac 11298
f1174f77 11299/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
11300 * Caller should also handle BPF_MOV case separately.
11301 * If we return -EACCES, caller may want to try again treating pointer as a
11302 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
11303 */
11304static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11305 struct bpf_insn *insn,
11306 const struct bpf_reg_state *ptr_reg,
11307 const struct bpf_reg_state *off_reg)
969bf05e 11308{
f4d7e40a
AS
11309 struct bpf_verifier_state *vstate = env->cur_state;
11310 struct bpf_func_state *state = vstate->frame[vstate->curframe];
11311 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 11312 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
11313 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11314 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11315 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11316 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 11317 struct bpf_sanitize_info info = {};
969bf05e 11318 u8 opcode = BPF_OP(insn->code);
24c109bb 11319 u32 dst = insn->dst_reg;
979d63d5 11320 int ret;
969bf05e 11321
f1174f77 11322 dst_reg = &regs[dst];
969bf05e 11323
6f16101e
DB
11324 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11325 smin_val > smax_val || umin_val > umax_val) {
11326 /* Taint dst register if offset had invalid bounds derived from
11327 * e.g. dead branches.
11328 */
f54c7898 11329 __mark_reg_unknown(env, dst_reg);
6f16101e 11330 return 0;
f1174f77
EC
11331 }
11332
11333 if (BPF_CLASS(insn->code) != BPF_ALU64) {
11334 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
11335 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11336 __mark_reg_unknown(env, dst_reg);
11337 return 0;
11338 }
11339
82abbf8d
AS
11340 verbose(env,
11341 "R%d 32-bit pointer arithmetic prohibited\n",
11342 dst);
f1174f77 11343 return -EACCES;
969bf05e
AS
11344 }
11345
c25b2ae1 11346 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 11347 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 11348 dst, reg_type_str(env, ptr_reg->type));
f1174f77 11349 return -EACCES;
c25b2ae1
HL
11350 }
11351
11352 switch (base_type(ptr_reg->type)) {
aad2eeaf 11353 case CONST_PTR_TO_MAP:
7c696732
YS
11354 /* smin_val represents the known value */
11355 if (known && smin_val == 0 && opcode == BPF_ADD)
11356 break;
8731745e 11357 fallthrough;
aad2eeaf 11358 case PTR_TO_PACKET_END:
c64b7983 11359 case PTR_TO_SOCKET:
46f8bc92 11360 case PTR_TO_SOCK_COMMON:
655a51e5 11361 case PTR_TO_TCP_SOCK:
fada7fdc 11362 case PTR_TO_XDP_SOCK:
aad2eeaf 11363 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 11364 dst, reg_type_str(env, ptr_reg->type));
f1174f77 11365 return -EACCES;
aad2eeaf
JS
11366 default:
11367 break;
f1174f77
EC
11368 }
11369
11370 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11371 * The id may be overwritten later if we create a new variable offset.
969bf05e 11372 */
f1174f77
EC
11373 dst_reg->type = ptr_reg->type;
11374 dst_reg->id = ptr_reg->id;
969bf05e 11375
bb7f0f98
AS
11376 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11377 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11378 return -EINVAL;
11379
3f50f132
JF
11380 /* pointer types do not carry 32-bit bounds at the moment. */
11381 __mark_reg32_unbounded(dst_reg);
11382
7fedb63a
DB
11383 if (sanitize_needed(opcode)) {
11384 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 11385 &info, false);
a6aaece0
DB
11386 if (ret < 0)
11387 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 11388 }
a6aaece0 11389
f1174f77
EC
11390 switch (opcode) {
11391 case BPF_ADD:
11392 /* We can take a fixed offset as long as it doesn't overflow
11393 * the s32 'off' field
969bf05e 11394 */
b03c9f9f
EC
11395 if (known && (ptr_reg->off + smin_val ==
11396 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 11397 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
11398 dst_reg->smin_value = smin_ptr;
11399 dst_reg->smax_value = smax_ptr;
11400 dst_reg->umin_value = umin_ptr;
11401 dst_reg->umax_value = umax_ptr;
f1174f77 11402 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 11403 dst_reg->off = ptr_reg->off + smin_val;
0962590e 11404 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
11405 break;
11406 }
f1174f77
EC
11407 /* A new variable offset is created. Note that off_reg->off
11408 * == 0, since it's a scalar.
11409 * dst_reg gets the pointer type and since some positive
11410 * integer value was added to the pointer, give it a new 'id'
11411 * if it's a PTR_TO_PACKET.
11412 * this creates a new 'base' pointer, off_reg (variable) gets
11413 * added into the variable offset, and we copy the fixed offset
11414 * from ptr_reg.
969bf05e 11415 */
b03c9f9f
EC
11416 if (signed_add_overflows(smin_ptr, smin_val) ||
11417 signed_add_overflows(smax_ptr, smax_val)) {
11418 dst_reg->smin_value = S64_MIN;
11419 dst_reg->smax_value = S64_MAX;
11420 } else {
11421 dst_reg->smin_value = smin_ptr + smin_val;
11422 dst_reg->smax_value = smax_ptr + smax_val;
11423 }
11424 if (umin_ptr + umin_val < umin_ptr ||
11425 umax_ptr + umax_val < umax_ptr) {
11426 dst_reg->umin_value = 0;
11427 dst_reg->umax_value = U64_MAX;
11428 } else {
11429 dst_reg->umin_value = umin_ptr + umin_val;
11430 dst_reg->umax_value = umax_ptr + umax_val;
11431 }
f1174f77
EC
11432 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11433 dst_reg->off = ptr_reg->off;
0962590e 11434 dst_reg->raw = ptr_reg->raw;
de8f3a83 11435 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
11436 dst_reg->id = ++env->id_gen;
11437 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 11438 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
11439 }
11440 break;
11441 case BPF_SUB:
11442 if (dst_reg == off_reg) {
11443 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
11444 verbose(env, "R%d tried to subtract pointer from scalar\n",
11445 dst);
f1174f77
EC
11446 return -EACCES;
11447 }
11448 /* We don't allow subtraction from FP, because (according to
11449 * test_verifier.c test "invalid fp arithmetic", JITs might not
11450 * be able to deal with it.
969bf05e 11451 */
f1174f77 11452 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
11453 verbose(env, "R%d subtraction from stack pointer prohibited\n",
11454 dst);
f1174f77
EC
11455 return -EACCES;
11456 }
b03c9f9f
EC
11457 if (known && (ptr_reg->off - smin_val ==
11458 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 11459 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
11460 dst_reg->smin_value = smin_ptr;
11461 dst_reg->smax_value = smax_ptr;
11462 dst_reg->umin_value = umin_ptr;
11463 dst_reg->umax_value = umax_ptr;
f1174f77
EC
11464 dst_reg->var_off = ptr_reg->var_off;
11465 dst_reg->id = ptr_reg->id;
b03c9f9f 11466 dst_reg->off = ptr_reg->off - smin_val;
0962590e 11467 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
11468 break;
11469 }
f1174f77
EC
11470 /* A new variable offset is created. If the subtrahend is known
11471 * nonnegative, then any reg->range we had before is still good.
969bf05e 11472 */
b03c9f9f
EC
11473 if (signed_sub_overflows(smin_ptr, smax_val) ||
11474 signed_sub_overflows(smax_ptr, smin_val)) {
11475 /* Overflow possible, we know nothing */
11476 dst_reg->smin_value = S64_MIN;
11477 dst_reg->smax_value = S64_MAX;
11478 } else {
11479 dst_reg->smin_value = smin_ptr - smax_val;
11480 dst_reg->smax_value = smax_ptr - smin_val;
11481 }
11482 if (umin_ptr < umax_val) {
11483 /* Overflow possible, we know nothing */
11484 dst_reg->umin_value = 0;
11485 dst_reg->umax_value = U64_MAX;
11486 } else {
11487 /* Cannot overflow (as long as bounds are consistent) */
11488 dst_reg->umin_value = umin_ptr - umax_val;
11489 dst_reg->umax_value = umax_ptr - umin_val;
11490 }
f1174f77
EC
11491 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
11492 dst_reg->off = ptr_reg->off;
0962590e 11493 dst_reg->raw = ptr_reg->raw;
de8f3a83 11494 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
11495 dst_reg->id = ++env->id_gen;
11496 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 11497 if (smin_val < 0)
22dc4a0f 11498 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 11499 }
f1174f77
EC
11500 break;
11501 case BPF_AND:
11502 case BPF_OR:
11503 case BPF_XOR:
82abbf8d
AS
11504 /* bitwise ops on pointers are troublesome, prohibit. */
11505 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
11506 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
11507 return -EACCES;
11508 default:
11509 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
11510 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
11511 dst, bpf_alu_string[opcode >> 4]);
f1174f77 11512 return -EACCES;
43188702
JF
11513 }
11514
bb7f0f98
AS
11515 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
11516 return -EINVAL;
3844d153 11517 reg_bounds_sync(dst_reg);
073815b7
DB
11518 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
11519 return -EACCES;
7fedb63a
DB
11520 if (sanitize_needed(opcode)) {
11521 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 11522 &info, true);
7fedb63a
DB
11523 if (ret < 0)
11524 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
11525 }
11526
43188702
JF
11527 return 0;
11528}
11529
3f50f132
JF
11530static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
11531 struct bpf_reg_state *src_reg)
11532{
11533 s32 smin_val = src_reg->s32_min_value;
11534 s32 smax_val = src_reg->s32_max_value;
11535 u32 umin_val = src_reg->u32_min_value;
11536 u32 umax_val = src_reg->u32_max_value;
11537
11538 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
11539 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
11540 dst_reg->s32_min_value = S32_MIN;
11541 dst_reg->s32_max_value = S32_MAX;
11542 } else {
11543 dst_reg->s32_min_value += smin_val;
11544 dst_reg->s32_max_value += smax_val;
11545 }
11546 if (dst_reg->u32_min_value + umin_val < umin_val ||
11547 dst_reg->u32_max_value + umax_val < umax_val) {
11548 dst_reg->u32_min_value = 0;
11549 dst_reg->u32_max_value = U32_MAX;
11550 } else {
11551 dst_reg->u32_min_value += umin_val;
11552 dst_reg->u32_max_value += umax_val;
11553 }
11554}
11555
07cd2631
JF
11556static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
11557 struct bpf_reg_state *src_reg)
11558{
11559 s64 smin_val = src_reg->smin_value;
11560 s64 smax_val = src_reg->smax_value;
11561 u64 umin_val = src_reg->umin_value;
11562 u64 umax_val = src_reg->umax_value;
11563
11564 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
11565 signed_add_overflows(dst_reg->smax_value, smax_val)) {
11566 dst_reg->smin_value = S64_MIN;
11567 dst_reg->smax_value = S64_MAX;
11568 } else {
11569 dst_reg->smin_value += smin_val;
11570 dst_reg->smax_value += smax_val;
11571 }
11572 if (dst_reg->umin_value + umin_val < umin_val ||
11573 dst_reg->umax_value + umax_val < umax_val) {
11574 dst_reg->umin_value = 0;
11575 dst_reg->umax_value = U64_MAX;
11576 } else {
11577 dst_reg->umin_value += umin_val;
11578 dst_reg->umax_value += umax_val;
11579 }
3f50f132
JF
11580}
11581
11582static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
11583 struct bpf_reg_state *src_reg)
11584{
11585 s32 smin_val = src_reg->s32_min_value;
11586 s32 smax_val = src_reg->s32_max_value;
11587 u32 umin_val = src_reg->u32_min_value;
11588 u32 umax_val = src_reg->u32_max_value;
11589
11590 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
11591 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
11592 /* Overflow possible, we know nothing */
11593 dst_reg->s32_min_value = S32_MIN;
11594 dst_reg->s32_max_value = S32_MAX;
11595 } else {
11596 dst_reg->s32_min_value -= smax_val;
11597 dst_reg->s32_max_value -= smin_val;
11598 }
11599 if (dst_reg->u32_min_value < umax_val) {
11600 /* Overflow possible, we know nothing */
11601 dst_reg->u32_min_value = 0;
11602 dst_reg->u32_max_value = U32_MAX;
11603 } else {
11604 /* Cannot overflow (as long as bounds are consistent) */
11605 dst_reg->u32_min_value -= umax_val;
11606 dst_reg->u32_max_value -= umin_val;
11607 }
07cd2631
JF
11608}
11609
11610static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
11611 struct bpf_reg_state *src_reg)
11612{
11613 s64 smin_val = src_reg->smin_value;
11614 s64 smax_val = src_reg->smax_value;
11615 u64 umin_val = src_reg->umin_value;
11616 u64 umax_val = src_reg->umax_value;
11617
11618 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
11619 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
11620 /* Overflow possible, we know nothing */
11621 dst_reg->smin_value = S64_MIN;
11622 dst_reg->smax_value = S64_MAX;
11623 } else {
11624 dst_reg->smin_value -= smax_val;
11625 dst_reg->smax_value -= smin_val;
11626 }
11627 if (dst_reg->umin_value < umax_val) {
11628 /* Overflow possible, we know nothing */
11629 dst_reg->umin_value = 0;
11630 dst_reg->umax_value = U64_MAX;
11631 } else {
11632 /* Cannot overflow (as long as bounds are consistent) */
11633 dst_reg->umin_value -= umax_val;
11634 dst_reg->umax_value -= umin_val;
11635 }
3f50f132
JF
11636}
11637
11638static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
11639 struct bpf_reg_state *src_reg)
11640{
11641 s32 smin_val = src_reg->s32_min_value;
11642 u32 umin_val = src_reg->u32_min_value;
11643 u32 umax_val = src_reg->u32_max_value;
11644
11645 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
11646 /* Ain't nobody got time to multiply that sign */
11647 __mark_reg32_unbounded(dst_reg);
11648 return;
11649 }
11650 /* Both values are positive, so we can work with unsigned and
11651 * copy the result to signed (unless it exceeds S32_MAX).
11652 */
11653 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
11654 /* Potential overflow, we know nothing */
11655 __mark_reg32_unbounded(dst_reg);
11656 return;
11657 }
11658 dst_reg->u32_min_value *= umin_val;
11659 dst_reg->u32_max_value *= umax_val;
11660 if (dst_reg->u32_max_value > S32_MAX) {
11661 /* Overflow possible, we know nothing */
11662 dst_reg->s32_min_value = S32_MIN;
11663 dst_reg->s32_max_value = S32_MAX;
11664 } else {
11665 dst_reg->s32_min_value = dst_reg->u32_min_value;
11666 dst_reg->s32_max_value = dst_reg->u32_max_value;
11667 }
07cd2631
JF
11668}
11669
11670static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
11671 struct bpf_reg_state *src_reg)
11672{
11673 s64 smin_val = src_reg->smin_value;
11674 u64 umin_val = src_reg->umin_value;
11675 u64 umax_val = src_reg->umax_value;
11676
07cd2631
JF
11677 if (smin_val < 0 || dst_reg->smin_value < 0) {
11678 /* Ain't nobody got time to multiply that sign */
3f50f132 11679 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
11680 return;
11681 }
11682 /* Both values are positive, so we can work with unsigned and
11683 * copy the result to signed (unless it exceeds S64_MAX).
11684 */
11685 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
11686 /* Potential overflow, we know nothing */
3f50f132 11687 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
11688 return;
11689 }
11690 dst_reg->umin_value *= umin_val;
11691 dst_reg->umax_value *= umax_val;
11692 if (dst_reg->umax_value > S64_MAX) {
11693 /* Overflow possible, we know nothing */
11694 dst_reg->smin_value = S64_MIN;
11695 dst_reg->smax_value = S64_MAX;
11696 } else {
11697 dst_reg->smin_value = dst_reg->umin_value;
11698 dst_reg->smax_value = dst_reg->umax_value;
11699 }
11700}
11701
3f50f132
JF
11702static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
11703 struct bpf_reg_state *src_reg)
11704{
11705 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11706 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11707 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11708 s32 smin_val = src_reg->s32_min_value;
11709 u32 umax_val = src_reg->u32_max_value;
11710
049c4e13
DB
11711 if (src_known && dst_known) {
11712 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 11713 return;
049c4e13 11714 }
3f50f132
JF
11715
11716 /* We get our minimum from the var_off, since that's inherently
11717 * bitwise. Our maximum is the minimum of the operands' maxima.
11718 */
11719 dst_reg->u32_min_value = var32_off.value;
11720 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
11721 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11722 /* Lose signed bounds when ANDing negative numbers,
11723 * ain't nobody got time for that.
11724 */
11725 dst_reg->s32_min_value = S32_MIN;
11726 dst_reg->s32_max_value = S32_MAX;
11727 } else {
11728 /* ANDing two positives gives a positive, so safe to
11729 * cast result into s64.
11730 */
11731 dst_reg->s32_min_value = dst_reg->u32_min_value;
11732 dst_reg->s32_max_value = dst_reg->u32_max_value;
11733 }
3f50f132
JF
11734}
11735
07cd2631
JF
11736static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
11737 struct bpf_reg_state *src_reg)
11738{
3f50f132
JF
11739 bool src_known = tnum_is_const(src_reg->var_off);
11740 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
11741 s64 smin_val = src_reg->smin_value;
11742 u64 umax_val = src_reg->umax_value;
11743
3f50f132 11744 if (src_known && dst_known) {
4fbb38a3 11745 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
11746 return;
11747 }
11748
07cd2631
JF
11749 /* We get our minimum from the var_off, since that's inherently
11750 * bitwise. Our maximum is the minimum of the operands' maxima.
11751 */
07cd2631
JF
11752 dst_reg->umin_value = dst_reg->var_off.value;
11753 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
11754 if (dst_reg->smin_value < 0 || smin_val < 0) {
11755 /* Lose signed bounds when ANDing negative numbers,
11756 * ain't nobody got time for that.
11757 */
11758 dst_reg->smin_value = S64_MIN;
11759 dst_reg->smax_value = S64_MAX;
11760 } else {
11761 /* ANDing two positives gives a positive, so safe to
11762 * cast result into s64.
11763 */
11764 dst_reg->smin_value = dst_reg->umin_value;
11765 dst_reg->smax_value = dst_reg->umax_value;
11766 }
11767 /* We may learn something more from the var_off */
11768 __update_reg_bounds(dst_reg);
11769}
11770
3f50f132
JF
11771static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
11772 struct bpf_reg_state *src_reg)
11773{
11774 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11775 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11776 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
11777 s32 smin_val = src_reg->s32_min_value;
11778 u32 umin_val = src_reg->u32_min_value;
3f50f132 11779
049c4e13
DB
11780 if (src_known && dst_known) {
11781 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 11782 return;
049c4e13 11783 }
3f50f132
JF
11784
11785 /* We get our maximum from the var_off, and our minimum is the
11786 * maximum of the operands' minima
11787 */
11788 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
11789 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11790 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11791 /* Lose signed bounds when ORing negative numbers,
11792 * ain't nobody got time for that.
11793 */
11794 dst_reg->s32_min_value = S32_MIN;
11795 dst_reg->s32_max_value = S32_MAX;
11796 } else {
11797 /* ORing two positives gives a positive, so safe to
11798 * cast result into s64.
11799 */
5b9fbeb7
DB
11800 dst_reg->s32_min_value = dst_reg->u32_min_value;
11801 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
11802 }
11803}
11804
07cd2631
JF
11805static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
11806 struct bpf_reg_state *src_reg)
11807{
3f50f132
JF
11808 bool src_known = tnum_is_const(src_reg->var_off);
11809 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
11810 s64 smin_val = src_reg->smin_value;
11811 u64 umin_val = src_reg->umin_value;
11812
3f50f132 11813 if (src_known && dst_known) {
4fbb38a3 11814 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
11815 return;
11816 }
11817
07cd2631
JF
11818 /* We get our maximum from the var_off, and our minimum is the
11819 * maximum of the operands' minima
11820 */
07cd2631
JF
11821 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
11822 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11823 if (dst_reg->smin_value < 0 || smin_val < 0) {
11824 /* Lose signed bounds when ORing negative numbers,
11825 * ain't nobody got time for that.
11826 */
11827 dst_reg->smin_value = S64_MIN;
11828 dst_reg->smax_value = S64_MAX;
11829 } else {
11830 /* ORing two positives gives a positive, so safe to
11831 * cast result into s64.
11832 */
11833 dst_reg->smin_value = dst_reg->umin_value;
11834 dst_reg->smax_value = dst_reg->umax_value;
11835 }
11836 /* We may learn something more from the var_off */
11837 __update_reg_bounds(dst_reg);
11838}
11839
2921c90d
YS
11840static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
11841 struct bpf_reg_state *src_reg)
11842{
11843 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11844 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11845 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11846 s32 smin_val = src_reg->s32_min_value;
11847
049c4e13
DB
11848 if (src_known && dst_known) {
11849 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 11850 return;
049c4e13 11851 }
2921c90d
YS
11852
11853 /* We get both minimum and maximum from the var32_off. */
11854 dst_reg->u32_min_value = var32_off.value;
11855 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11856
11857 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
11858 /* XORing two positive sign numbers gives a positive,
11859 * so safe to cast u32 result into s32.
11860 */
11861 dst_reg->s32_min_value = dst_reg->u32_min_value;
11862 dst_reg->s32_max_value = dst_reg->u32_max_value;
11863 } else {
11864 dst_reg->s32_min_value = S32_MIN;
11865 dst_reg->s32_max_value = S32_MAX;
11866 }
11867}
11868
11869static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
11870 struct bpf_reg_state *src_reg)
11871{
11872 bool src_known = tnum_is_const(src_reg->var_off);
11873 bool dst_known = tnum_is_const(dst_reg->var_off);
11874 s64 smin_val = src_reg->smin_value;
11875
11876 if (src_known && dst_known) {
11877 /* dst_reg->var_off.value has been updated earlier */
11878 __mark_reg_known(dst_reg, dst_reg->var_off.value);
11879 return;
11880 }
11881
11882 /* We get both minimum and maximum from the var_off. */
11883 dst_reg->umin_value = dst_reg->var_off.value;
11884 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11885
11886 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
11887 /* XORing two positive sign numbers gives a positive,
11888 * so safe to cast u64 result into s64.
11889 */
11890 dst_reg->smin_value = dst_reg->umin_value;
11891 dst_reg->smax_value = dst_reg->umax_value;
11892 } else {
11893 dst_reg->smin_value = S64_MIN;
11894 dst_reg->smax_value = S64_MAX;
11895 }
11896
11897 __update_reg_bounds(dst_reg);
11898}
11899
3f50f132
JF
11900static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11901 u64 umin_val, u64 umax_val)
07cd2631 11902{
07cd2631
JF
11903 /* We lose all sign bit information (except what we can pick
11904 * up from var_off)
11905 */
3f50f132
JF
11906 dst_reg->s32_min_value = S32_MIN;
11907 dst_reg->s32_max_value = S32_MAX;
11908 /* If we might shift our top bit out, then we know nothing */
11909 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
11910 dst_reg->u32_min_value = 0;
11911 dst_reg->u32_max_value = U32_MAX;
11912 } else {
11913 dst_reg->u32_min_value <<= umin_val;
11914 dst_reg->u32_max_value <<= umax_val;
11915 }
11916}
11917
11918static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11919 struct bpf_reg_state *src_reg)
11920{
11921 u32 umax_val = src_reg->u32_max_value;
11922 u32 umin_val = src_reg->u32_min_value;
11923 /* u32 alu operation will zext upper bits */
11924 struct tnum subreg = tnum_subreg(dst_reg->var_off);
11925
11926 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11927 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
11928 /* Not required but being careful mark reg64 bounds as unknown so
11929 * that we are forced to pick them up from tnum and zext later and
11930 * if some path skips this step we are still safe.
11931 */
11932 __mark_reg64_unbounded(dst_reg);
11933 __update_reg32_bounds(dst_reg);
11934}
11935
11936static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
11937 u64 umin_val, u64 umax_val)
11938{
11939 /* Special case <<32 because it is a common compiler pattern to sign
11940 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
11941 * positive we know this shift will also be positive so we can track
11942 * bounds correctly. Otherwise we lose all sign bit information except
11943 * what we can pick up from var_off. Perhaps we can generalize this
11944 * later to shifts of any length.
11945 */
11946 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
11947 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
11948 else
11949 dst_reg->smax_value = S64_MAX;
11950
11951 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
11952 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
11953 else
11954 dst_reg->smin_value = S64_MIN;
11955
07cd2631
JF
11956 /* If we might shift our top bit out, then we know nothing */
11957 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
11958 dst_reg->umin_value = 0;
11959 dst_reg->umax_value = U64_MAX;
11960 } else {
11961 dst_reg->umin_value <<= umin_val;
11962 dst_reg->umax_value <<= umax_val;
11963 }
3f50f132
JF
11964}
11965
11966static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
11967 struct bpf_reg_state *src_reg)
11968{
11969 u64 umax_val = src_reg->umax_value;
11970 u64 umin_val = src_reg->umin_value;
11971
11972 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
11973 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
11974 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11975
07cd2631
JF
11976 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
11977 /* We may learn something more from the var_off */
11978 __update_reg_bounds(dst_reg);
11979}
11980
3f50f132
JF
11981static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
11982 struct bpf_reg_state *src_reg)
11983{
11984 struct tnum subreg = tnum_subreg(dst_reg->var_off);
11985 u32 umax_val = src_reg->u32_max_value;
11986 u32 umin_val = src_reg->u32_min_value;
11987
11988 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
11989 * be negative, then either:
11990 * 1) src_reg might be zero, so the sign bit of the result is
11991 * unknown, so we lose our signed bounds
11992 * 2) it's known negative, thus the unsigned bounds capture the
11993 * signed bounds
11994 * 3) the signed bounds cross zero, so they tell us nothing
11995 * about the result
11996 * If the value in dst_reg is known nonnegative, then again the
18b24d78 11997 * unsigned bounds capture the signed bounds.
3f50f132
JF
11998 * Thus, in all cases it suffices to blow away our signed bounds
11999 * and rely on inferring new ones from the unsigned bounds and
12000 * var_off of the result.
12001 */
12002 dst_reg->s32_min_value = S32_MIN;
12003 dst_reg->s32_max_value = S32_MAX;
12004
12005 dst_reg->var_off = tnum_rshift(subreg, umin_val);
12006 dst_reg->u32_min_value >>= umax_val;
12007 dst_reg->u32_max_value >>= umin_val;
12008
12009 __mark_reg64_unbounded(dst_reg);
12010 __update_reg32_bounds(dst_reg);
12011}
12012
07cd2631
JF
12013static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12014 struct bpf_reg_state *src_reg)
12015{
12016 u64 umax_val = src_reg->umax_value;
12017 u64 umin_val = src_reg->umin_value;
12018
12019 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12020 * be negative, then either:
12021 * 1) src_reg might be zero, so the sign bit of the result is
12022 * unknown, so we lose our signed bounds
12023 * 2) it's known negative, thus the unsigned bounds capture the
12024 * signed bounds
12025 * 3) the signed bounds cross zero, so they tell us nothing
12026 * about the result
12027 * If the value in dst_reg is known nonnegative, then again the
18b24d78 12028 * unsigned bounds capture the signed bounds.
07cd2631
JF
12029 * Thus, in all cases it suffices to blow away our signed bounds
12030 * and rely on inferring new ones from the unsigned bounds and
12031 * var_off of the result.
12032 */
12033 dst_reg->smin_value = S64_MIN;
12034 dst_reg->smax_value = S64_MAX;
12035 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12036 dst_reg->umin_value >>= umax_val;
12037 dst_reg->umax_value >>= umin_val;
3f50f132
JF
12038
12039 /* Its not easy to operate on alu32 bounds here because it depends
12040 * on bits being shifted in. Take easy way out and mark unbounded
12041 * so we can recalculate later from tnum.
12042 */
12043 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12044 __update_reg_bounds(dst_reg);
12045}
12046
3f50f132
JF
12047static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12048 struct bpf_reg_state *src_reg)
07cd2631 12049{
3f50f132 12050 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
12051
12052 /* Upon reaching here, src_known is true and
12053 * umax_val is equal to umin_val.
12054 */
3f50f132
JF
12055 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12056 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 12057
3f50f132
JF
12058 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12059
12060 /* blow away the dst_reg umin_value/umax_value and rely on
12061 * dst_reg var_off to refine the result.
12062 */
12063 dst_reg->u32_min_value = 0;
12064 dst_reg->u32_max_value = U32_MAX;
12065
12066 __mark_reg64_unbounded(dst_reg);
12067 __update_reg32_bounds(dst_reg);
12068}
12069
12070static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12071 struct bpf_reg_state *src_reg)
12072{
12073 u64 umin_val = src_reg->umin_value;
12074
12075 /* Upon reaching here, src_known is true and umax_val is equal
12076 * to umin_val.
12077 */
12078 dst_reg->smin_value >>= umin_val;
12079 dst_reg->smax_value >>= umin_val;
12080
12081 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
12082
12083 /* blow away the dst_reg umin_value/umax_value and rely on
12084 * dst_reg var_off to refine the result.
12085 */
12086 dst_reg->umin_value = 0;
12087 dst_reg->umax_value = U64_MAX;
3f50f132
JF
12088
12089 /* Its not easy to operate on alu32 bounds here because it depends
12090 * on bits being shifted in from upper 32-bits. Take easy way out
12091 * and mark unbounded so we can recalculate later from tnum.
12092 */
12093 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12094 __update_reg_bounds(dst_reg);
12095}
12096
468f6eaf
JH
12097/* WARNING: This function does calculations on 64-bit values, but the actual
12098 * execution may occur on 32-bit values. Therefore, things like bitshifts
12099 * need extra checks in the 32-bit case.
12100 */
f1174f77
EC
12101static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12102 struct bpf_insn *insn,
12103 struct bpf_reg_state *dst_reg,
12104 struct bpf_reg_state src_reg)
969bf05e 12105{
638f5b90 12106 struct bpf_reg_state *regs = cur_regs(env);
48461135 12107 u8 opcode = BPF_OP(insn->code);
b0b3fb67 12108 bool src_known;
b03c9f9f
EC
12109 s64 smin_val, smax_val;
12110 u64 umin_val, umax_val;
3f50f132
JF
12111 s32 s32_min_val, s32_max_val;
12112 u32 u32_min_val, u32_max_val;
468f6eaf 12113 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 12114 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 12115 int ret;
b799207e 12116
b03c9f9f
EC
12117 smin_val = src_reg.smin_value;
12118 smax_val = src_reg.smax_value;
12119 umin_val = src_reg.umin_value;
12120 umax_val = src_reg.umax_value;
f23cc643 12121
3f50f132
JF
12122 s32_min_val = src_reg.s32_min_value;
12123 s32_max_val = src_reg.s32_max_value;
12124 u32_min_val = src_reg.u32_min_value;
12125 u32_max_val = src_reg.u32_max_value;
12126
12127 if (alu32) {
12128 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
12129 if ((src_known &&
12130 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12131 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12132 /* Taint dst register if offset had invalid bounds
12133 * derived from e.g. dead branches.
12134 */
12135 __mark_reg_unknown(env, dst_reg);
12136 return 0;
12137 }
12138 } else {
12139 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
12140 if ((src_known &&
12141 (smin_val != smax_val || umin_val != umax_val)) ||
12142 smin_val > smax_val || umin_val > umax_val) {
12143 /* Taint dst register if offset had invalid bounds
12144 * derived from e.g. dead branches.
12145 */
12146 __mark_reg_unknown(env, dst_reg);
12147 return 0;
12148 }
6f16101e
DB
12149 }
12150
bb7f0f98
AS
12151 if (!src_known &&
12152 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 12153 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
12154 return 0;
12155 }
12156
f5288193
DB
12157 if (sanitize_needed(opcode)) {
12158 ret = sanitize_val_alu(env, insn);
12159 if (ret < 0)
12160 return sanitize_err(env, insn, ret, NULL, NULL);
12161 }
12162
3f50f132
JF
12163 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12164 * There are two classes of instructions: The first class we track both
12165 * alu32 and alu64 sign/unsigned bounds independently this provides the
12166 * greatest amount of precision when alu operations are mixed with jmp32
12167 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12168 * and BPF_OR. This is possible because these ops have fairly easy to
12169 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12170 * See alu32 verifier tests for examples. The second class of
12171 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12172 * with regards to tracking sign/unsigned bounds because the bits may
12173 * cross subreg boundaries in the alu64 case. When this happens we mark
12174 * the reg unbounded in the subreg bound space and use the resulting
12175 * tnum to calculate an approximation of the sign/unsigned bounds.
12176 */
48461135
JB
12177 switch (opcode) {
12178 case BPF_ADD:
3f50f132 12179 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 12180 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 12181 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
12182 break;
12183 case BPF_SUB:
3f50f132 12184 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 12185 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 12186 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
12187 break;
12188 case BPF_MUL:
3f50f132
JF
12189 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12190 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 12191 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
12192 break;
12193 case BPF_AND:
3f50f132
JF
12194 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12195 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 12196 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
12197 break;
12198 case BPF_OR:
3f50f132
JF
12199 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12200 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 12201 scalar_min_max_or(dst_reg, &src_reg);
48461135 12202 break;
2921c90d
YS
12203 case BPF_XOR:
12204 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12205 scalar32_min_max_xor(dst_reg, &src_reg);
12206 scalar_min_max_xor(dst_reg, &src_reg);
12207 break;
48461135 12208 case BPF_LSH:
468f6eaf
JH
12209 if (umax_val >= insn_bitness) {
12210 /* Shifts greater than 31 or 63 are undefined.
12211 * This includes shifts by a negative number.
b03c9f9f 12212 */
61bd5218 12213 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12214 break;
12215 }
3f50f132
JF
12216 if (alu32)
12217 scalar32_min_max_lsh(dst_reg, &src_reg);
12218 else
12219 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
12220 break;
12221 case BPF_RSH:
468f6eaf
JH
12222 if (umax_val >= insn_bitness) {
12223 /* Shifts greater than 31 or 63 are undefined.
12224 * This includes shifts by a negative number.
b03c9f9f 12225 */
61bd5218 12226 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12227 break;
12228 }
3f50f132
JF
12229 if (alu32)
12230 scalar32_min_max_rsh(dst_reg, &src_reg);
12231 else
12232 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 12233 break;
9cbe1f5a
YS
12234 case BPF_ARSH:
12235 if (umax_val >= insn_bitness) {
12236 /* Shifts greater than 31 or 63 are undefined.
12237 * This includes shifts by a negative number.
12238 */
12239 mark_reg_unknown(env, regs, insn->dst_reg);
12240 break;
12241 }
3f50f132
JF
12242 if (alu32)
12243 scalar32_min_max_arsh(dst_reg, &src_reg);
12244 else
12245 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 12246 break;
48461135 12247 default:
61bd5218 12248 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
12249 break;
12250 }
12251
3f50f132
JF
12252 /* ALU32 ops are zero extended into 64bit register */
12253 if (alu32)
12254 zext_32_to_64(dst_reg);
3844d153 12255 reg_bounds_sync(dst_reg);
f1174f77
EC
12256 return 0;
12257}
12258
12259/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12260 * and var_off.
12261 */
12262static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12263 struct bpf_insn *insn)
12264{
f4d7e40a
AS
12265 struct bpf_verifier_state *vstate = env->cur_state;
12266 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12267 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
12268 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12269 u8 opcode = BPF_OP(insn->code);
b5dc0163 12270 int err;
f1174f77
EC
12271
12272 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
12273 src_reg = NULL;
12274 if (dst_reg->type != SCALAR_VALUE)
12275 ptr_reg = dst_reg;
75748837
AS
12276 else
12277 /* Make sure ID is cleared otherwise dst_reg min/max could be
12278 * incorrectly propagated into other registers by find_equal_scalars()
12279 */
12280 dst_reg->id = 0;
f1174f77
EC
12281 if (BPF_SRC(insn->code) == BPF_X) {
12282 src_reg = &regs[insn->src_reg];
f1174f77
EC
12283 if (src_reg->type != SCALAR_VALUE) {
12284 if (dst_reg->type != SCALAR_VALUE) {
12285 /* Combining two pointers by any ALU op yields
82abbf8d
AS
12286 * an arbitrary scalar. Disallow all math except
12287 * pointer subtraction
f1174f77 12288 */
dd066823 12289 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
12290 mark_reg_unknown(env, regs, insn->dst_reg);
12291 return 0;
f1174f77 12292 }
82abbf8d
AS
12293 verbose(env, "R%d pointer %s pointer prohibited\n",
12294 insn->dst_reg,
12295 bpf_alu_string[opcode >> 4]);
12296 return -EACCES;
f1174f77
EC
12297 } else {
12298 /* scalar += pointer
12299 * This is legal, but we have to reverse our
12300 * src/dest handling in computing the range
12301 */
b5dc0163
AS
12302 err = mark_chain_precision(env, insn->dst_reg);
12303 if (err)
12304 return err;
82abbf8d
AS
12305 return adjust_ptr_min_max_vals(env, insn,
12306 src_reg, dst_reg);
f1174f77
EC
12307 }
12308 } else if (ptr_reg) {
12309 /* pointer += scalar */
b5dc0163
AS
12310 err = mark_chain_precision(env, insn->src_reg);
12311 if (err)
12312 return err;
82abbf8d
AS
12313 return adjust_ptr_min_max_vals(env, insn,
12314 dst_reg, src_reg);
a3b666bf
AN
12315 } else if (dst_reg->precise) {
12316 /* if dst_reg is precise, src_reg should be precise as well */
12317 err = mark_chain_precision(env, insn->src_reg);
12318 if (err)
12319 return err;
f1174f77
EC
12320 }
12321 } else {
12322 /* Pretend the src is a reg with a known value, since we only
12323 * need to be able to read from this state.
12324 */
12325 off_reg.type = SCALAR_VALUE;
b03c9f9f 12326 __mark_reg_known(&off_reg, insn->imm);
f1174f77 12327 src_reg = &off_reg;
82abbf8d
AS
12328 if (ptr_reg) /* pointer += K */
12329 return adjust_ptr_min_max_vals(env, insn,
12330 ptr_reg, src_reg);
f1174f77
EC
12331 }
12332
12333 /* Got here implies adding two SCALAR_VALUEs */
12334 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 12335 print_verifier_state(env, state, true);
61bd5218 12336 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
12337 return -EINVAL;
12338 }
12339 if (WARN_ON(!src_reg)) {
0f55f9ed 12340 print_verifier_state(env, state, true);
61bd5218 12341 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
12342 return -EINVAL;
12343 }
12344 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
12345}
12346
17a52670 12347/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 12348static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 12349{
638f5b90 12350 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
12351 u8 opcode = BPF_OP(insn->code);
12352 int err;
12353
12354 if (opcode == BPF_END || opcode == BPF_NEG) {
12355 if (opcode == BPF_NEG) {
395e942d 12356 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
12357 insn->src_reg != BPF_REG_0 ||
12358 insn->off != 0 || insn->imm != 0) {
61bd5218 12359 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
12360 return -EINVAL;
12361 }
12362 } else {
12363 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
12364 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12365 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 12366 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
12367 return -EINVAL;
12368 }
12369 }
12370
12371 /* check src operand */
dc503a8a 12372 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12373 if (err)
12374 return err;
12375
1be7f75d 12376 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 12377 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
12378 insn->dst_reg);
12379 return -EACCES;
12380 }
12381
17a52670 12382 /* check dest operand */
dc503a8a 12383 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
12384 if (err)
12385 return err;
12386
12387 } else if (opcode == BPF_MOV) {
12388
12389 if (BPF_SRC(insn->code) == BPF_X) {
12390 if (insn->imm != 0 || insn->off != 0) {
61bd5218 12391 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
12392 return -EINVAL;
12393 }
12394
12395 /* check src operand */
dc503a8a 12396 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12397 if (err)
12398 return err;
12399 } else {
12400 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 12401 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
12402 return -EINVAL;
12403 }
12404 }
12405
fbeb1603
AF
12406 /* check dest operand, mark as required later */
12407 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
12408 if (err)
12409 return err;
12410
12411 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
12412 struct bpf_reg_state *src_reg = regs + insn->src_reg;
12413 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12414
17a52670
AS
12415 if (BPF_CLASS(insn->code) == BPF_ALU64) {
12416 /* case: R1 = R2
12417 * copy register state to dest reg
12418 */
75748837
AS
12419 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
12420 /* Assign src and dst registers the same ID
12421 * that will be used by find_equal_scalars()
12422 * to propagate min/max range.
12423 */
12424 src_reg->id = ++env->id_gen;
71f656a5 12425 copy_register_state(dst_reg, src_reg);
e434b8cd 12426 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 12427 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 12428 } else {
f1174f77 12429 /* R1 = (u32) R2 */
1be7f75d 12430 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
12431 verbose(env,
12432 "R%d partial copy of pointer\n",
1be7f75d
AS
12433 insn->src_reg);
12434 return -EACCES;
e434b8cd 12435 } else if (src_reg->type == SCALAR_VALUE) {
71f656a5 12436 copy_register_state(dst_reg, src_reg);
75748837
AS
12437 /* Make sure ID is cleared otherwise
12438 * dst_reg min/max could be incorrectly
12439 * propagated into src_reg by find_equal_scalars()
12440 */
12441 dst_reg->id = 0;
e434b8cd 12442 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 12443 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
12444 } else {
12445 mark_reg_unknown(env, regs,
12446 insn->dst_reg);
1be7f75d 12447 }
3f50f132 12448 zext_32_to_64(dst_reg);
3844d153 12449 reg_bounds_sync(dst_reg);
17a52670
AS
12450 }
12451 } else {
12452 /* case: R = imm
12453 * remember the value we stored into this reg
12454 */
fbeb1603
AF
12455 /* clear any state __mark_reg_known doesn't set */
12456 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 12457 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
12458 if (BPF_CLASS(insn->code) == BPF_ALU64) {
12459 __mark_reg_known(regs + insn->dst_reg,
12460 insn->imm);
12461 } else {
12462 __mark_reg_known(regs + insn->dst_reg,
12463 (u32)insn->imm);
12464 }
17a52670
AS
12465 }
12466
12467 } else if (opcode > BPF_END) {
61bd5218 12468 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
12469 return -EINVAL;
12470
12471 } else { /* all other ALU ops: and, sub, xor, add, ... */
12472
17a52670
AS
12473 if (BPF_SRC(insn->code) == BPF_X) {
12474 if (insn->imm != 0 || insn->off != 0) {
61bd5218 12475 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
12476 return -EINVAL;
12477 }
12478 /* check src1 operand */
dc503a8a 12479 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12480 if (err)
12481 return err;
12482 } else {
12483 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 12484 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
12485 return -EINVAL;
12486 }
12487 }
12488
12489 /* check src2 operand */
dc503a8a 12490 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12491 if (err)
12492 return err;
12493
12494 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
12495 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 12496 verbose(env, "div by zero\n");
17a52670
AS
12497 return -EINVAL;
12498 }
12499
229394e8
RV
12500 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
12501 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
12502 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
12503
12504 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 12505 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
12506 return -EINVAL;
12507 }
12508 }
12509
1a0dc1ac 12510 /* check dest operand */
dc503a8a 12511 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
12512 if (err)
12513 return err;
12514
f1174f77 12515 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
12516 }
12517
12518 return 0;
12519}
12520
f4d7e40a 12521static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 12522 struct bpf_reg_state *dst_reg,
f8ddadc4 12523 enum bpf_reg_type type,
fb2a311a 12524 bool range_right_open)
969bf05e 12525{
b239da34
KKD
12526 struct bpf_func_state *state;
12527 struct bpf_reg_state *reg;
12528 int new_range;
2d2be8ca 12529
fb2a311a
DB
12530 if (dst_reg->off < 0 ||
12531 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
12532 /* This doesn't give us any range */
12533 return;
12534
b03c9f9f
EC
12535 if (dst_reg->umax_value > MAX_PACKET_OFF ||
12536 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
12537 /* Risk of overflow. For instance, ptr + (1<<63) may be less
12538 * than pkt_end, but that's because it's also less than pkt.
12539 */
12540 return;
12541
fb2a311a
DB
12542 new_range = dst_reg->off;
12543 if (range_right_open)
2fa7d94a 12544 new_range++;
fb2a311a
DB
12545
12546 /* Examples for register markings:
2d2be8ca 12547 *
fb2a311a 12548 * pkt_data in dst register:
2d2be8ca
DB
12549 *
12550 * r2 = r3;
12551 * r2 += 8;
12552 * if (r2 > pkt_end) goto <handle exception>
12553 * <access okay>
12554 *
b4e432f1
DB
12555 * r2 = r3;
12556 * r2 += 8;
12557 * if (r2 < pkt_end) goto <access okay>
12558 * <handle exception>
12559 *
2d2be8ca
DB
12560 * Where:
12561 * r2 == dst_reg, pkt_end == src_reg
12562 * r2=pkt(id=n,off=8,r=0)
12563 * r3=pkt(id=n,off=0,r=0)
12564 *
fb2a311a 12565 * pkt_data in src register:
2d2be8ca
DB
12566 *
12567 * r2 = r3;
12568 * r2 += 8;
12569 * if (pkt_end >= r2) goto <access okay>
12570 * <handle exception>
12571 *
b4e432f1
DB
12572 * r2 = r3;
12573 * r2 += 8;
12574 * if (pkt_end <= r2) goto <handle exception>
12575 * <access okay>
12576 *
2d2be8ca
DB
12577 * Where:
12578 * pkt_end == dst_reg, r2 == src_reg
12579 * r2=pkt(id=n,off=8,r=0)
12580 * r3=pkt(id=n,off=0,r=0)
12581 *
12582 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
12583 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
12584 * and [r3, r3 + 8-1) respectively is safe to access depending on
12585 * the check.
969bf05e 12586 */
2d2be8ca 12587
f1174f77
EC
12588 /* If our ids match, then we must have the same max_value. And we
12589 * don't care about the other reg's fixed offset, since if it's too big
12590 * the range won't allow anything.
12591 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
12592 */
b239da34
KKD
12593 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
12594 if (reg->type == type && reg->id == dst_reg->id)
12595 /* keep the maximum range already checked */
12596 reg->range = max(reg->range, new_range);
12597 }));
969bf05e
AS
12598}
12599
3f50f132 12600static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 12601{
3f50f132
JF
12602 struct tnum subreg = tnum_subreg(reg->var_off);
12603 s32 sval = (s32)val;
a72dafaf 12604
3f50f132
JF
12605 switch (opcode) {
12606 case BPF_JEQ:
12607 if (tnum_is_const(subreg))
12608 return !!tnum_equals_const(subreg, val);
12609 break;
12610 case BPF_JNE:
12611 if (tnum_is_const(subreg))
12612 return !tnum_equals_const(subreg, val);
12613 break;
12614 case BPF_JSET:
12615 if ((~subreg.mask & subreg.value) & val)
12616 return 1;
12617 if (!((subreg.mask | subreg.value) & val))
12618 return 0;
12619 break;
12620 case BPF_JGT:
12621 if (reg->u32_min_value > val)
12622 return 1;
12623 else if (reg->u32_max_value <= val)
12624 return 0;
12625 break;
12626 case BPF_JSGT:
12627 if (reg->s32_min_value > sval)
12628 return 1;
ee114dd6 12629 else if (reg->s32_max_value <= sval)
3f50f132
JF
12630 return 0;
12631 break;
12632 case BPF_JLT:
12633 if (reg->u32_max_value < val)
12634 return 1;
12635 else if (reg->u32_min_value >= val)
12636 return 0;
12637 break;
12638 case BPF_JSLT:
12639 if (reg->s32_max_value < sval)
12640 return 1;
12641 else if (reg->s32_min_value >= sval)
12642 return 0;
12643 break;
12644 case BPF_JGE:
12645 if (reg->u32_min_value >= val)
12646 return 1;
12647 else if (reg->u32_max_value < val)
12648 return 0;
12649 break;
12650 case BPF_JSGE:
12651 if (reg->s32_min_value >= sval)
12652 return 1;
12653 else if (reg->s32_max_value < sval)
12654 return 0;
12655 break;
12656 case BPF_JLE:
12657 if (reg->u32_max_value <= val)
12658 return 1;
12659 else if (reg->u32_min_value > val)
12660 return 0;
12661 break;
12662 case BPF_JSLE:
12663 if (reg->s32_max_value <= sval)
12664 return 1;
12665 else if (reg->s32_min_value > sval)
12666 return 0;
12667 break;
12668 }
4f7b3e82 12669
3f50f132
JF
12670 return -1;
12671}
092ed096 12672
3f50f132
JF
12673
12674static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
12675{
12676 s64 sval = (s64)val;
a72dafaf 12677
4f7b3e82
AS
12678 switch (opcode) {
12679 case BPF_JEQ:
12680 if (tnum_is_const(reg->var_off))
12681 return !!tnum_equals_const(reg->var_off, val);
12682 break;
12683 case BPF_JNE:
12684 if (tnum_is_const(reg->var_off))
12685 return !tnum_equals_const(reg->var_off, val);
12686 break;
960ea056
JK
12687 case BPF_JSET:
12688 if ((~reg->var_off.mask & reg->var_off.value) & val)
12689 return 1;
12690 if (!((reg->var_off.mask | reg->var_off.value) & val))
12691 return 0;
12692 break;
4f7b3e82
AS
12693 case BPF_JGT:
12694 if (reg->umin_value > val)
12695 return 1;
12696 else if (reg->umax_value <= val)
12697 return 0;
12698 break;
12699 case BPF_JSGT:
a72dafaf 12700 if (reg->smin_value > sval)
4f7b3e82 12701 return 1;
ee114dd6 12702 else if (reg->smax_value <= sval)
4f7b3e82
AS
12703 return 0;
12704 break;
12705 case BPF_JLT:
12706 if (reg->umax_value < val)
12707 return 1;
12708 else if (reg->umin_value >= val)
12709 return 0;
12710 break;
12711 case BPF_JSLT:
a72dafaf 12712 if (reg->smax_value < sval)
4f7b3e82 12713 return 1;
a72dafaf 12714 else if (reg->smin_value >= sval)
4f7b3e82
AS
12715 return 0;
12716 break;
12717 case BPF_JGE:
12718 if (reg->umin_value >= val)
12719 return 1;
12720 else if (reg->umax_value < val)
12721 return 0;
12722 break;
12723 case BPF_JSGE:
a72dafaf 12724 if (reg->smin_value >= sval)
4f7b3e82 12725 return 1;
a72dafaf 12726 else if (reg->smax_value < sval)
4f7b3e82
AS
12727 return 0;
12728 break;
12729 case BPF_JLE:
12730 if (reg->umax_value <= val)
12731 return 1;
12732 else if (reg->umin_value > val)
12733 return 0;
12734 break;
12735 case BPF_JSLE:
a72dafaf 12736 if (reg->smax_value <= sval)
4f7b3e82 12737 return 1;
a72dafaf 12738 else if (reg->smin_value > sval)
4f7b3e82
AS
12739 return 0;
12740 break;
12741 }
12742
12743 return -1;
12744}
12745
3f50f132
JF
12746/* compute branch direction of the expression "if (reg opcode val) goto target;"
12747 * and return:
12748 * 1 - branch will be taken and "goto target" will be executed
12749 * 0 - branch will not be taken and fall-through to next insn
12750 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
12751 * range [0,10]
604dca5e 12752 */
3f50f132
JF
12753static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
12754 bool is_jmp32)
604dca5e 12755{
cac616db
JF
12756 if (__is_pointer_value(false, reg)) {
12757 if (!reg_type_not_null(reg->type))
12758 return -1;
12759
12760 /* If pointer is valid tests against zero will fail so we can
12761 * use this to direct branch taken.
12762 */
12763 if (val != 0)
12764 return -1;
12765
12766 switch (opcode) {
12767 case BPF_JEQ:
12768 return 0;
12769 case BPF_JNE:
12770 return 1;
12771 default:
12772 return -1;
12773 }
12774 }
604dca5e 12775
3f50f132
JF
12776 if (is_jmp32)
12777 return is_branch32_taken(reg, val, opcode);
12778 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
12779}
12780
6d94e741
AS
12781static int flip_opcode(u32 opcode)
12782{
12783 /* How can we transform "a <op> b" into "b <op> a"? */
12784 static const u8 opcode_flip[16] = {
12785 /* these stay the same */
12786 [BPF_JEQ >> 4] = BPF_JEQ,
12787 [BPF_JNE >> 4] = BPF_JNE,
12788 [BPF_JSET >> 4] = BPF_JSET,
12789 /* these swap "lesser" and "greater" (L and G in the opcodes) */
12790 [BPF_JGE >> 4] = BPF_JLE,
12791 [BPF_JGT >> 4] = BPF_JLT,
12792 [BPF_JLE >> 4] = BPF_JGE,
12793 [BPF_JLT >> 4] = BPF_JGT,
12794 [BPF_JSGE >> 4] = BPF_JSLE,
12795 [BPF_JSGT >> 4] = BPF_JSLT,
12796 [BPF_JSLE >> 4] = BPF_JSGE,
12797 [BPF_JSLT >> 4] = BPF_JSGT
12798 };
12799 return opcode_flip[opcode >> 4];
12800}
12801
12802static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
12803 struct bpf_reg_state *src_reg,
12804 u8 opcode)
12805{
12806 struct bpf_reg_state *pkt;
12807
12808 if (src_reg->type == PTR_TO_PACKET_END) {
12809 pkt = dst_reg;
12810 } else if (dst_reg->type == PTR_TO_PACKET_END) {
12811 pkt = src_reg;
12812 opcode = flip_opcode(opcode);
12813 } else {
12814 return -1;
12815 }
12816
12817 if (pkt->range >= 0)
12818 return -1;
12819
12820 switch (opcode) {
12821 case BPF_JLE:
12822 /* pkt <= pkt_end */
12823 fallthrough;
12824 case BPF_JGT:
12825 /* pkt > pkt_end */
12826 if (pkt->range == BEYOND_PKT_END)
12827 /* pkt has at last one extra byte beyond pkt_end */
12828 return opcode == BPF_JGT;
12829 break;
12830 case BPF_JLT:
12831 /* pkt < pkt_end */
12832 fallthrough;
12833 case BPF_JGE:
12834 /* pkt >= pkt_end */
12835 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
12836 return opcode == BPF_JGE;
12837 break;
12838 }
12839 return -1;
12840}
12841
48461135
JB
12842/* Adjusts the register min/max values in the case that the dst_reg is the
12843 * variable register that we are working on, and src_reg is a constant or we're
12844 * simply doing a BPF_K check.
f1174f77 12845 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
12846 */
12847static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
12848 struct bpf_reg_state *false_reg,
12849 u64 val, u32 val32,
092ed096 12850 u8 opcode, bool is_jmp32)
48461135 12851{
3f50f132
JF
12852 struct tnum false_32off = tnum_subreg(false_reg->var_off);
12853 struct tnum false_64off = false_reg->var_off;
12854 struct tnum true_32off = tnum_subreg(true_reg->var_off);
12855 struct tnum true_64off = true_reg->var_off;
12856 s64 sval = (s64)val;
12857 s32 sval32 = (s32)val32;
a72dafaf 12858
f1174f77
EC
12859 /* If the dst_reg is a pointer, we can't learn anything about its
12860 * variable offset from the compare (unless src_reg were a pointer into
12861 * the same object, but we don't bother with that.
12862 * Since false_reg and true_reg have the same type by construction, we
12863 * only need to check one of them for pointerness.
12864 */
12865 if (__is_pointer_value(false, false_reg))
12866 return;
4cabc5b1 12867
48461135 12868 switch (opcode) {
a12ca627
DB
12869 /* JEQ/JNE comparison doesn't change the register equivalence.
12870 *
12871 * r1 = r2;
12872 * if (r1 == 42) goto label;
12873 * ...
12874 * label: // here both r1 and r2 are known to be 42.
12875 *
12876 * Hence when marking register as known preserve it's ID.
12877 */
48461135 12878 case BPF_JEQ:
a12ca627
DB
12879 if (is_jmp32) {
12880 __mark_reg32_known(true_reg, val32);
12881 true_32off = tnum_subreg(true_reg->var_off);
12882 } else {
12883 ___mark_reg_known(true_reg, val);
12884 true_64off = true_reg->var_off;
12885 }
12886 break;
48461135 12887 case BPF_JNE:
a12ca627
DB
12888 if (is_jmp32) {
12889 __mark_reg32_known(false_reg, val32);
12890 false_32off = tnum_subreg(false_reg->var_off);
12891 } else {
12892 ___mark_reg_known(false_reg, val);
12893 false_64off = false_reg->var_off;
12894 }
48461135 12895 break;
960ea056 12896 case BPF_JSET:
3f50f132
JF
12897 if (is_jmp32) {
12898 false_32off = tnum_and(false_32off, tnum_const(~val32));
12899 if (is_power_of_2(val32))
12900 true_32off = tnum_or(true_32off,
12901 tnum_const(val32));
12902 } else {
12903 false_64off = tnum_and(false_64off, tnum_const(~val));
12904 if (is_power_of_2(val))
12905 true_64off = tnum_or(true_64off,
12906 tnum_const(val));
12907 }
960ea056 12908 break;
48461135 12909 case BPF_JGE:
a72dafaf
JW
12910 case BPF_JGT:
12911 {
3f50f132
JF
12912 if (is_jmp32) {
12913 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
12914 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
12915
12916 false_reg->u32_max_value = min(false_reg->u32_max_value,
12917 false_umax);
12918 true_reg->u32_min_value = max(true_reg->u32_min_value,
12919 true_umin);
12920 } else {
12921 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
12922 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
12923
12924 false_reg->umax_value = min(false_reg->umax_value, false_umax);
12925 true_reg->umin_value = max(true_reg->umin_value, true_umin);
12926 }
b03c9f9f 12927 break;
a72dafaf 12928 }
48461135 12929 case BPF_JSGE:
a72dafaf
JW
12930 case BPF_JSGT:
12931 {
3f50f132
JF
12932 if (is_jmp32) {
12933 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
12934 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 12935
3f50f132
JF
12936 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
12937 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
12938 } else {
12939 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
12940 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
12941
12942 false_reg->smax_value = min(false_reg->smax_value, false_smax);
12943 true_reg->smin_value = max(true_reg->smin_value, true_smin);
12944 }
48461135 12945 break;
a72dafaf 12946 }
b4e432f1 12947 case BPF_JLE:
a72dafaf
JW
12948 case BPF_JLT:
12949 {
3f50f132
JF
12950 if (is_jmp32) {
12951 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
12952 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
12953
12954 false_reg->u32_min_value = max(false_reg->u32_min_value,
12955 false_umin);
12956 true_reg->u32_max_value = min(true_reg->u32_max_value,
12957 true_umax);
12958 } else {
12959 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
12960 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
12961
12962 false_reg->umin_value = max(false_reg->umin_value, false_umin);
12963 true_reg->umax_value = min(true_reg->umax_value, true_umax);
12964 }
b4e432f1 12965 break;
a72dafaf 12966 }
b4e432f1 12967 case BPF_JSLE:
a72dafaf
JW
12968 case BPF_JSLT:
12969 {
3f50f132
JF
12970 if (is_jmp32) {
12971 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
12972 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 12973
3f50f132
JF
12974 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
12975 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
12976 } else {
12977 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
12978 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
12979
12980 false_reg->smin_value = max(false_reg->smin_value, false_smin);
12981 true_reg->smax_value = min(true_reg->smax_value, true_smax);
12982 }
b4e432f1 12983 break;
a72dafaf 12984 }
48461135 12985 default:
0fc31b10 12986 return;
48461135
JB
12987 }
12988
3f50f132
JF
12989 if (is_jmp32) {
12990 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
12991 tnum_subreg(false_32off));
12992 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
12993 tnum_subreg(true_32off));
12994 __reg_combine_32_into_64(false_reg);
12995 __reg_combine_32_into_64(true_reg);
12996 } else {
12997 false_reg->var_off = false_64off;
12998 true_reg->var_off = true_64off;
12999 __reg_combine_64_into_32(false_reg);
13000 __reg_combine_64_into_32(true_reg);
13001 }
48461135
JB
13002}
13003
f1174f77
EC
13004/* Same as above, but for the case that dst_reg holds a constant and src_reg is
13005 * the variable reg.
48461135
JB
13006 */
13007static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
13008 struct bpf_reg_state *false_reg,
13009 u64 val, u32 val32,
092ed096 13010 u8 opcode, bool is_jmp32)
48461135 13011{
6d94e741 13012 opcode = flip_opcode(opcode);
0fc31b10
JH
13013 /* This uses zero as "not present in table"; luckily the zero opcode,
13014 * BPF_JA, can't get here.
b03c9f9f 13015 */
0fc31b10 13016 if (opcode)
3f50f132 13017 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
13018}
13019
13020/* Regs are known to be equal, so intersect their min/max/var_off */
13021static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13022 struct bpf_reg_state *dst_reg)
13023{
b03c9f9f
EC
13024 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13025 dst_reg->umin_value);
13026 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13027 dst_reg->umax_value);
13028 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13029 dst_reg->smin_value);
13030 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13031 dst_reg->smax_value);
f1174f77
EC
13032 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13033 dst_reg->var_off);
3844d153
DB
13034 reg_bounds_sync(src_reg);
13035 reg_bounds_sync(dst_reg);
f1174f77
EC
13036}
13037
13038static void reg_combine_min_max(struct bpf_reg_state *true_src,
13039 struct bpf_reg_state *true_dst,
13040 struct bpf_reg_state *false_src,
13041 struct bpf_reg_state *false_dst,
13042 u8 opcode)
13043{
13044 switch (opcode) {
13045 case BPF_JEQ:
13046 __reg_combine_min_max(true_src, true_dst);
13047 break;
13048 case BPF_JNE:
13049 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 13050 break;
4cabc5b1 13051 }
48461135
JB
13052}
13053
fd978bf7
JS
13054static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13055 struct bpf_reg_state *reg, u32 id,
840b9615 13056 bool is_null)
57a09bf0 13057{
c25b2ae1 13058 if (type_may_be_null(reg->type) && reg->id == id &&
fca1aa75 13059 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
df57f38a
KKD
13060 /* Old offset (both fixed and variable parts) should have been
13061 * known-zero, because we don't allow pointer arithmetic on
13062 * pointers that might be NULL. If we see this happening, don't
13063 * convert the register.
13064 *
13065 * But in some cases, some helpers that return local kptrs
13066 * advance offset for the returned pointer. In those cases, it
13067 * is fine to expect to see reg->off.
13068 */
13069 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13070 return;
6a3cd331
DM
13071 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13072 WARN_ON_ONCE(reg->off))
e60b0d12 13073 return;
6a3cd331 13074
f1174f77
EC
13075 if (is_null) {
13076 reg->type = SCALAR_VALUE;
1b986589
MKL
13077 /* We don't need id and ref_obj_id from this point
13078 * onwards anymore, thus we should better reset it,
13079 * so that state pruning has chances to take effect.
13080 */
13081 reg->id = 0;
13082 reg->ref_obj_id = 0;
4ddb7416
DB
13083
13084 return;
13085 }
13086
13087 mark_ptr_not_null_reg(reg);
13088
13089 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 13090 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 13091 * in release_reference().
1b986589
MKL
13092 *
13093 * reg->id is still used by spin_lock ptr. Other
13094 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
13095 */
13096 reg->id = 0;
56f668df 13097 }
57a09bf0
TG
13098 }
13099}
13100
13101/* The logic is similar to find_good_pkt_pointers(), both could eventually
13102 * be folded together at some point.
13103 */
840b9615
JS
13104static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13105 bool is_null)
57a09bf0 13106{
f4d7e40a 13107 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 13108 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 13109 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 13110 u32 id = regs[regno].id;
57a09bf0 13111
1b986589
MKL
13112 if (ref_obj_id && ref_obj_id == id && is_null)
13113 /* regs[regno] is in the " == NULL" branch.
13114 * No one could have freed the reference state before
13115 * doing the NULL check.
13116 */
13117 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 13118
b239da34
KKD
13119 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13120 mark_ptr_or_null_reg(state, reg, id, is_null);
13121 }));
57a09bf0
TG
13122}
13123
5beca081
DB
13124static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13125 struct bpf_reg_state *dst_reg,
13126 struct bpf_reg_state *src_reg,
13127 struct bpf_verifier_state *this_branch,
13128 struct bpf_verifier_state *other_branch)
13129{
13130 if (BPF_SRC(insn->code) != BPF_X)
13131 return false;
13132
092ed096
JW
13133 /* Pointers are always 64-bit. */
13134 if (BPF_CLASS(insn->code) == BPF_JMP32)
13135 return false;
13136
5beca081
DB
13137 switch (BPF_OP(insn->code)) {
13138 case BPF_JGT:
13139 if ((dst_reg->type == PTR_TO_PACKET &&
13140 src_reg->type == PTR_TO_PACKET_END) ||
13141 (dst_reg->type == PTR_TO_PACKET_META &&
13142 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13143 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13144 find_good_pkt_pointers(this_branch, dst_reg,
13145 dst_reg->type, false);
6d94e741 13146 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
13147 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13148 src_reg->type == PTR_TO_PACKET) ||
13149 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13150 src_reg->type == PTR_TO_PACKET_META)) {
13151 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
13152 find_good_pkt_pointers(other_branch, src_reg,
13153 src_reg->type, true);
6d94e741 13154 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
13155 } else {
13156 return false;
13157 }
13158 break;
13159 case BPF_JLT:
13160 if ((dst_reg->type == PTR_TO_PACKET &&
13161 src_reg->type == PTR_TO_PACKET_END) ||
13162 (dst_reg->type == PTR_TO_PACKET_META &&
13163 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13164 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13165 find_good_pkt_pointers(other_branch, dst_reg,
13166 dst_reg->type, true);
6d94e741 13167 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
13168 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13169 src_reg->type == PTR_TO_PACKET) ||
13170 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13171 src_reg->type == PTR_TO_PACKET_META)) {
13172 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
13173 find_good_pkt_pointers(this_branch, src_reg,
13174 src_reg->type, false);
6d94e741 13175 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
13176 } else {
13177 return false;
13178 }
13179 break;
13180 case BPF_JGE:
13181 if ((dst_reg->type == PTR_TO_PACKET &&
13182 src_reg->type == PTR_TO_PACKET_END) ||
13183 (dst_reg->type == PTR_TO_PACKET_META &&
13184 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13185 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13186 find_good_pkt_pointers(this_branch, dst_reg,
13187 dst_reg->type, true);
6d94e741 13188 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
13189 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13190 src_reg->type == PTR_TO_PACKET) ||
13191 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13192 src_reg->type == PTR_TO_PACKET_META)) {
13193 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13194 find_good_pkt_pointers(other_branch, src_reg,
13195 src_reg->type, false);
6d94e741 13196 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
13197 } else {
13198 return false;
13199 }
13200 break;
13201 case BPF_JLE:
13202 if ((dst_reg->type == PTR_TO_PACKET &&
13203 src_reg->type == PTR_TO_PACKET_END) ||
13204 (dst_reg->type == PTR_TO_PACKET_META &&
13205 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13206 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13207 find_good_pkt_pointers(other_branch, dst_reg,
13208 dst_reg->type, false);
6d94e741 13209 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
13210 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13211 src_reg->type == PTR_TO_PACKET) ||
13212 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13213 src_reg->type == PTR_TO_PACKET_META)) {
13214 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13215 find_good_pkt_pointers(this_branch, src_reg,
13216 src_reg->type, true);
6d94e741 13217 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
13218 } else {
13219 return false;
13220 }
13221 break;
13222 default:
13223 return false;
13224 }
13225
13226 return true;
13227}
13228
75748837
AS
13229static void find_equal_scalars(struct bpf_verifier_state *vstate,
13230 struct bpf_reg_state *known_reg)
13231{
13232 struct bpf_func_state *state;
13233 struct bpf_reg_state *reg;
75748837 13234
b239da34
KKD
13235 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13236 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
71f656a5 13237 copy_register_state(reg, known_reg);
b239da34 13238 }));
75748837
AS
13239}
13240
58e2af8b 13241static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
13242 struct bpf_insn *insn, int *insn_idx)
13243{
f4d7e40a
AS
13244 struct bpf_verifier_state *this_branch = env->cur_state;
13245 struct bpf_verifier_state *other_branch;
13246 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 13247 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 13248 struct bpf_reg_state *eq_branch_regs;
17a52670 13249 u8 opcode = BPF_OP(insn->code);
092ed096 13250 bool is_jmp32;
fb8d251e 13251 int pred = -1;
17a52670
AS
13252 int err;
13253
092ed096
JW
13254 /* Only conditional jumps are expected to reach here. */
13255 if (opcode == BPF_JA || opcode > BPF_JSLE) {
13256 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
13257 return -EINVAL;
13258 }
13259
13260 if (BPF_SRC(insn->code) == BPF_X) {
13261 if (insn->imm != 0) {
092ed096 13262 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
13263 return -EINVAL;
13264 }
13265
13266 /* check src1 operand */
dc503a8a 13267 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13268 if (err)
13269 return err;
1be7f75d
AS
13270
13271 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 13272 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
13273 insn->src_reg);
13274 return -EACCES;
13275 }
fb8d251e 13276 src_reg = &regs[insn->src_reg];
17a52670
AS
13277 } else {
13278 if (insn->src_reg != BPF_REG_0) {
092ed096 13279 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
13280 return -EINVAL;
13281 }
13282 }
13283
13284 /* check src2 operand */
dc503a8a 13285 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13286 if (err)
13287 return err;
13288
1a0dc1ac 13289 dst_reg = &regs[insn->dst_reg];
092ed096 13290 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 13291
3f50f132
JF
13292 if (BPF_SRC(insn->code) == BPF_K) {
13293 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13294 } else if (src_reg->type == SCALAR_VALUE &&
13295 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13296 pred = is_branch_taken(dst_reg,
13297 tnum_subreg(src_reg->var_off).value,
13298 opcode,
13299 is_jmp32);
13300 } else if (src_reg->type == SCALAR_VALUE &&
13301 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13302 pred = is_branch_taken(dst_reg,
13303 src_reg->var_off.value,
13304 opcode,
13305 is_jmp32);
6d94e741
AS
13306 } else if (reg_is_pkt_pointer_any(dst_reg) &&
13307 reg_is_pkt_pointer_any(src_reg) &&
13308 !is_jmp32) {
13309 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
13310 }
13311
b5dc0163 13312 if (pred >= 0) {
cac616db
JF
13313 /* If we get here with a dst_reg pointer type it is because
13314 * above is_branch_taken() special cased the 0 comparison.
13315 */
13316 if (!__is_pointer_value(false, dst_reg))
13317 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
13318 if (BPF_SRC(insn->code) == BPF_X && !err &&
13319 !__is_pointer_value(false, src_reg))
b5dc0163
AS
13320 err = mark_chain_precision(env, insn->src_reg);
13321 if (err)
13322 return err;
13323 }
9183671a 13324
fb8d251e 13325 if (pred == 1) {
9183671a
DB
13326 /* Only follow the goto, ignore fall-through. If needed, push
13327 * the fall-through branch for simulation under speculative
13328 * execution.
13329 */
13330 if (!env->bypass_spec_v1 &&
13331 !sanitize_speculative_path(env, insn, *insn_idx + 1,
13332 *insn_idx))
13333 return -EFAULT;
fb8d251e
AS
13334 *insn_idx += insn->off;
13335 return 0;
13336 } else if (pred == 0) {
9183671a
DB
13337 /* Only follow the fall-through branch, since that's where the
13338 * program will go. If needed, push the goto branch for
13339 * simulation under speculative execution.
fb8d251e 13340 */
9183671a
DB
13341 if (!env->bypass_spec_v1 &&
13342 !sanitize_speculative_path(env, insn,
13343 *insn_idx + insn->off + 1,
13344 *insn_idx))
13345 return -EFAULT;
fb8d251e 13346 return 0;
17a52670
AS
13347 }
13348
979d63d5
DB
13349 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13350 false);
17a52670
AS
13351 if (!other_branch)
13352 return -EFAULT;
f4d7e40a 13353 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 13354
48461135
JB
13355 /* detect if we are comparing against a constant value so we can adjust
13356 * our min/max values for our dst register.
f1174f77 13357 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
13358 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13359 * because otherwise the different base pointers mean the offsets aren't
f1174f77 13360 * comparable.
48461135
JB
13361 */
13362 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 13363 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 13364
f1174f77 13365 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
13366 src_reg->type == SCALAR_VALUE) {
13367 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
13368 (is_jmp32 &&
13369 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 13370 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 13371 dst_reg,
3f50f132
JF
13372 src_reg->var_off.value,
13373 tnum_subreg(src_reg->var_off).value,
092ed096
JW
13374 opcode, is_jmp32);
13375 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
13376 (is_jmp32 &&
13377 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 13378 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 13379 src_reg,
3f50f132
JF
13380 dst_reg->var_off.value,
13381 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
13382 opcode, is_jmp32);
13383 else if (!is_jmp32 &&
13384 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 13385 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
13386 reg_combine_min_max(&other_branch_regs[insn->src_reg],
13387 &other_branch_regs[insn->dst_reg],
092ed096 13388 src_reg, dst_reg, opcode);
e688c3db
AS
13389 if (src_reg->id &&
13390 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
13391 find_equal_scalars(this_branch, src_reg);
13392 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13393 }
13394
f1174f77
EC
13395 }
13396 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 13397 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
13398 dst_reg, insn->imm, (u32)insn->imm,
13399 opcode, is_jmp32);
48461135
JB
13400 }
13401
e688c3db
AS
13402 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13403 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
13404 find_equal_scalars(this_branch, dst_reg);
13405 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13406 }
13407
befae758
EZ
13408 /* if one pointer register is compared to another pointer
13409 * register check if PTR_MAYBE_NULL could be lifted.
13410 * E.g. register A - maybe null
13411 * register B - not null
13412 * for JNE A, B, ... - A is not null in the false branch;
13413 * for JEQ A, B, ... - A is not null in the true branch.
8374bfd5
HS
13414 *
13415 * Since PTR_TO_BTF_ID points to a kernel struct that does
13416 * not need to be null checked by the BPF program, i.e.,
13417 * could be null even without PTR_MAYBE_NULL marking, so
13418 * only propagate nullness when neither reg is that type.
befae758
EZ
13419 */
13420 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13421 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
8374bfd5
HS
13422 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13423 base_type(src_reg->type) != PTR_TO_BTF_ID &&
13424 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
befae758
EZ
13425 eq_branch_regs = NULL;
13426 switch (opcode) {
13427 case BPF_JEQ:
13428 eq_branch_regs = other_branch_regs;
13429 break;
13430 case BPF_JNE:
13431 eq_branch_regs = regs;
13432 break;
13433 default:
13434 /* do nothing */
13435 break;
13436 }
13437 if (eq_branch_regs) {
13438 if (type_may_be_null(src_reg->type))
13439 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
13440 else
13441 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
13442 }
13443 }
13444
092ed096
JW
13445 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
13446 * NOTE: these optimizations below are related with pointer comparison
13447 * which will never be JMP32.
13448 */
13449 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 13450 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 13451 type_may_be_null(dst_reg->type)) {
840b9615 13452 /* Mark all identical registers in each branch as either
57a09bf0
TG
13453 * safe or unknown depending R == 0 or R != 0 conditional.
13454 */
840b9615
JS
13455 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
13456 opcode == BPF_JNE);
13457 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
13458 opcode == BPF_JEQ);
5beca081
DB
13459 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
13460 this_branch, other_branch) &&
13461 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
13462 verbose(env, "R%d pointer comparison prohibited\n",
13463 insn->dst_reg);
1be7f75d 13464 return -EACCES;
17a52670 13465 }
06ee7115 13466 if (env->log.level & BPF_LOG_LEVEL)
2e576648 13467 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
13468 return 0;
13469}
13470
17a52670 13471/* verify BPF_LD_IMM64 instruction */
58e2af8b 13472static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 13473{
d8eca5bb 13474 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 13475 struct bpf_reg_state *regs = cur_regs(env);
4976b718 13476 struct bpf_reg_state *dst_reg;
d8eca5bb 13477 struct bpf_map *map;
17a52670
AS
13478 int err;
13479
13480 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 13481 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
13482 return -EINVAL;
13483 }
13484 if (insn->off != 0) {
61bd5218 13485 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
13486 return -EINVAL;
13487 }
13488
dc503a8a 13489 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
13490 if (err)
13491 return err;
13492
4976b718 13493 dst_reg = &regs[insn->dst_reg];
6b173873 13494 if (insn->src_reg == 0) {
6b173873
JK
13495 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
13496
4976b718 13497 dst_reg->type = SCALAR_VALUE;
b03c9f9f 13498 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 13499 return 0;
6b173873 13500 }
17a52670 13501
d400a6cf
DB
13502 /* All special src_reg cases are listed below. From this point onwards
13503 * we either succeed and assign a corresponding dst_reg->type after
13504 * zeroing the offset, or fail and reject the program.
13505 */
13506 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 13507
d400a6cf 13508 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 13509 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 13510 switch (base_type(dst_reg->type)) {
4976b718
HL
13511 case PTR_TO_MEM:
13512 dst_reg->mem_size = aux->btf_var.mem_size;
13513 break;
13514 case PTR_TO_BTF_ID:
22dc4a0f 13515 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
13516 dst_reg->btf_id = aux->btf_var.btf_id;
13517 break;
13518 default:
13519 verbose(env, "bpf verifier is misconfigured\n");
13520 return -EFAULT;
13521 }
13522 return 0;
13523 }
13524
69c087ba
YS
13525 if (insn->src_reg == BPF_PSEUDO_FUNC) {
13526 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
13527 u32 subprogno = find_subprog(env,
13528 env->insn_idx + insn->imm + 1);
69c087ba
YS
13529
13530 if (!aux->func_info) {
13531 verbose(env, "missing btf func_info\n");
13532 return -EINVAL;
13533 }
13534 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
13535 verbose(env, "callback function not static\n");
13536 return -EINVAL;
13537 }
13538
13539 dst_reg->type = PTR_TO_FUNC;
13540 dst_reg->subprogno = subprogno;
13541 return 0;
13542 }
13543
d8eca5bb 13544 map = env->used_maps[aux->map_index];
4976b718 13545 dst_reg->map_ptr = map;
d8eca5bb 13546
387544bf
AS
13547 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
13548 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
13549 dst_reg->type = PTR_TO_MAP_VALUE;
13550 dst_reg->off = aux->map_off;
d0d78c1d
KKD
13551 WARN_ON_ONCE(map->max_entries != 1);
13552 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
13553 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
13554 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 13555 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
13556 } else {
13557 verbose(env, "bpf verifier is misconfigured\n");
13558 return -EINVAL;
13559 }
17a52670 13560
17a52670
AS
13561 return 0;
13562}
13563
96be4325
DB
13564static bool may_access_skb(enum bpf_prog_type type)
13565{
13566 switch (type) {
13567 case BPF_PROG_TYPE_SOCKET_FILTER:
13568 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 13569 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
13570 return true;
13571 default:
13572 return false;
13573 }
13574}
13575
ddd872bc
AS
13576/* verify safety of LD_ABS|LD_IND instructions:
13577 * - they can only appear in the programs where ctx == skb
13578 * - since they are wrappers of function calls, they scratch R1-R5 registers,
13579 * preserve R6-R9, and store return value into R0
13580 *
13581 * Implicit input:
13582 * ctx == skb == R6 == CTX
13583 *
13584 * Explicit input:
13585 * SRC == any register
13586 * IMM == 32-bit immediate
13587 *
13588 * Output:
13589 * R0 - 8/16/32-bit skb data converted to cpu endianness
13590 */
58e2af8b 13591static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 13592{
638f5b90 13593 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 13594 static const int ctx_reg = BPF_REG_6;
ddd872bc 13595 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
13596 int i, err;
13597
7e40781c 13598 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 13599 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
13600 return -EINVAL;
13601 }
13602
e0cea7ce
DB
13603 if (!env->ops->gen_ld_abs) {
13604 verbose(env, "bpf verifier is misconfigured\n");
13605 return -EINVAL;
13606 }
13607
ddd872bc 13608 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 13609 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 13610 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 13611 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
13612 return -EINVAL;
13613 }
13614
13615 /* check whether implicit source operand (register R6) is readable */
6d4f151a 13616 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
13617 if (err)
13618 return err;
13619
fd978bf7
JS
13620 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
13621 * gen_ld_abs() may terminate the program at runtime, leading to
13622 * reference leak.
13623 */
13624 err = check_reference_leak(env);
13625 if (err) {
13626 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
13627 return err;
13628 }
13629
d0d78c1d 13630 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
13631 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
13632 return -EINVAL;
13633 }
13634
9bb00b28
YS
13635 if (env->cur_state->active_rcu_lock) {
13636 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
13637 return -EINVAL;
13638 }
13639
6d4f151a 13640 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
13641 verbose(env,
13642 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
13643 return -EINVAL;
13644 }
13645
13646 if (mode == BPF_IND) {
13647 /* check explicit source operand */
dc503a8a 13648 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
13649 if (err)
13650 return err;
13651 }
13652
be80a1d3 13653 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
13654 if (err < 0)
13655 return err;
13656
ddd872bc 13657 /* reset caller saved regs to unreadable */
dc503a8a 13658 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 13659 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
13660 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
13661 }
ddd872bc
AS
13662
13663 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
13664 * the value fetched from the packet.
13665 * Already marked as written above.
ddd872bc 13666 */
61bd5218 13667 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
13668 /* ld_abs load up to 32-bit skb data. */
13669 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
13670 return 0;
13671}
13672
390ee7e2
AS
13673static int check_return_code(struct bpf_verifier_env *env)
13674{
5cf1e914 13675 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 13676 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
13677 struct bpf_reg_state *reg;
13678 struct tnum range = tnum_range(0, 1);
7e40781c 13679 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 13680 int err;
bfc6bb74
AS
13681 struct bpf_func_state *frame = env->cur_state->frame[0];
13682 const bool is_subprog = frame->subprogno;
27ae7997 13683
9e4e01df 13684 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
13685 if (!is_subprog) {
13686 switch (prog_type) {
13687 case BPF_PROG_TYPE_LSM:
13688 if (prog->expected_attach_type == BPF_LSM_CGROUP)
13689 /* See below, can be 0 or 0-1 depending on hook. */
13690 break;
13691 fallthrough;
13692 case BPF_PROG_TYPE_STRUCT_OPS:
13693 if (!prog->aux->attach_func_proto->type)
13694 return 0;
13695 break;
13696 default:
13697 break;
13698 }
13699 }
27ae7997 13700
8fb33b60 13701 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
13702 * to return the value from eBPF program.
13703 * Make sure that it's readable at this time
13704 * of bpf_exit, which means that program wrote
13705 * something into it earlier
13706 */
13707 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
13708 if (err)
13709 return err;
13710
13711 if (is_pointer_value(env, BPF_REG_0)) {
13712 verbose(env, "R0 leaks addr as return value\n");
13713 return -EACCES;
13714 }
390ee7e2 13715
f782e2c3 13716 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
13717
13718 if (frame->in_async_callback_fn) {
13719 /* enforce return zero from async callbacks like timer */
13720 if (reg->type != SCALAR_VALUE) {
13721 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 13722 reg_type_str(env, reg->type));
bfc6bb74
AS
13723 return -EINVAL;
13724 }
13725
13726 if (!tnum_in(tnum_const(0), reg->var_off)) {
13727 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
13728 return -EINVAL;
13729 }
13730 return 0;
13731 }
13732
f782e2c3
DB
13733 if (is_subprog) {
13734 if (reg->type != SCALAR_VALUE) {
13735 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 13736 reg_type_str(env, reg->type));
f782e2c3
DB
13737 return -EINVAL;
13738 }
13739 return 0;
13740 }
13741
7e40781c 13742 switch (prog_type) {
983695fa
DB
13743 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
13744 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
13745 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
13746 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
13747 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
13748 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
13749 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 13750 range = tnum_range(1, 1);
77241217
SF
13751 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
13752 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
13753 range = tnum_range(0, 3);
ed4ed404 13754 break;
390ee7e2 13755 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 13756 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
13757 range = tnum_range(0, 3);
13758 enforce_attach_type_range = tnum_range(2, 3);
13759 }
ed4ed404 13760 break;
390ee7e2
AS
13761 case BPF_PROG_TYPE_CGROUP_SOCK:
13762 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 13763 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 13764 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 13765 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 13766 break;
15ab09bd
AS
13767 case BPF_PROG_TYPE_RAW_TRACEPOINT:
13768 if (!env->prog->aux->attach_btf_id)
13769 return 0;
13770 range = tnum_const(0);
13771 break;
15d83c4d 13772 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
13773 switch (env->prog->expected_attach_type) {
13774 case BPF_TRACE_FENTRY:
13775 case BPF_TRACE_FEXIT:
13776 range = tnum_const(0);
13777 break;
13778 case BPF_TRACE_RAW_TP:
13779 case BPF_MODIFY_RETURN:
15d83c4d 13780 return 0;
2ec0616e
DB
13781 case BPF_TRACE_ITER:
13782 break;
e92888c7
YS
13783 default:
13784 return -ENOTSUPP;
13785 }
15d83c4d 13786 break;
e9ddbb77
JS
13787 case BPF_PROG_TYPE_SK_LOOKUP:
13788 range = tnum_range(SK_DROP, SK_PASS);
13789 break;
69fd337a
SF
13790
13791 case BPF_PROG_TYPE_LSM:
13792 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
13793 /* Regular BPF_PROG_TYPE_LSM programs can return
13794 * any value.
13795 */
13796 return 0;
13797 }
13798 if (!env->prog->aux->attach_func_proto->type) {
13799 /* Make sure programs that attach to void
13800 * hooks don't try to modify return value.
13801 */
13802 range = tnum_range(1, 1);
13803 }
13804 break;
13805
e92888c7
YS
13806 case BPF_PROG_TYPE_EXT:
13807 /* freplace program can return anything as its return value
13808 * depends on the to-be-replaced kernel func or bpf program.
13809 */
390ee7e2
AS
13810 default:
13811 return 0;
13812 }
13813
390ee7e2 13814 if (reg->type != SCALAR_VALUE) {
61bd5218 13815 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 13816 reg_type_str(env, reg->type));
390ee7e2
AS
13817 return -EINVAL;
13818 }
13819
13820 if (!tnum_in(range, reg->var_off)) {
bc2591d6 13821 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 13822 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 13823 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
13824 !prog->aux->attach_func_proto->type)
13825 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
13826 return -EINVAL;
13827 }
5cf1e914 13828
13829 if (!tnum_is_unknown(enforce_attach_type_range) &&
13830 tnum_in(enforce_attach_type_range, reg->var_off))
13831 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
13832 return 0;
13833}
13834
475fb78f
AS
13835/* non-recursive DFS pseudo code
13836 * 1 procedure DFS-iterative(G,v):
13837 * 2 label v as discovered
13838 * 3 let S be a stack
13839 * 4 S.push(v)
13840 * 5 while S is not empty
b6d20799 13841 * 6 t <- S.peek()
475fb78f
AS
13842 * 7 if t is what we're looking for:
13843 * 8 return t
13844 * 9 for all edges e in G.adjacentEdges(t) do
13845 * 10 if edge e is already labelled
13846 * 11 continue with the next edge
13847 * 12 w <- G.adjacentVertex(t,e)
13848 * 13 if vertex w is not discovered and not explored
13849 * 14 label e as tree-edge
13850 * 15 label w as discovered
13851 * 16 S.push(w)
13852 * 17 continue at 5
13853 * 18 else if vertex w is discovered
13854 * 19 label e as back-edge
13855 * 20 else
13856 * 21 // vertex w is explored
13857 * 22 label e as forward- or cross-edge
13858 * 23 label t as explored
13859 * 24 S.pop()
13860 *
13861 * convention:
13862 * 0x10 - discovered
13863 * 0x11 - discovered and fall-through edge labelled
13864 * 0x12 - discovered and fall-through and branch edges labelled
13865 * 0x20 - explored
13866 */
13867
13868enum {
13869 DISCOVERED = 0x10,
13870 EXPLORED = 0x20,
13871 FALLTHROUGH = 1,
13872 BRANCH = 2,
13873};
13874
dc2a4ebc
AS
13875static u32 state_htab_size(struct bpf_verifier_env *env)
13876{
13877 return env->prog->len;
13878}
13879
5d839021
AS
13880static struct bpf_verifier_state_list **explored_state(
13881 struct bpf_verifier_env *env,
13882 int idx)
13883{
dc2a4ebc
AS
13884 struct bpf_verifier_state *cur = env->cur_state;
13885 struct bpf_func_state *state = cur->frame[cur->curframe];
13886
13887 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
13888}
13889
bffdeaa8 13890static void mark_prune_point(struct bpf_verifier_env *env, int idx)
5d839021 13891{
a8f500af 13892 env->insn_aux_data[idx].prune_point = true;
5d839021 13893}
f1bca824 13894
bffdeaa8
AN
13895static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
13896{
13897 return env->insn_aux_data[insn_idx].prune_point;
13898}
13899
4b5ce570
AN
13900static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
13901{
13902 env->insn_aux_data[idx].force_checkpoint = true;
13903}
13904
13905static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
13906{
13907 return env->insn_aux_data[insn_idx].force_checkpoint;
13908}
13909
13910
59e2e27d
WAF
13911enum {
13912 DONE_EXPLORING = 0,
13913 KEEP_EXPLORING = 1,
13914};
13915
475fb78f
AS
13916/* t, w, e - match pseudo-code above:
13917 * t - index of current instruction
13918 * w - next instruction
13919 * e - edge
13920 */
2589726d
AS
13921static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
13922 bool loop_ok)
475fb78f 13923{
7df737e9
AS
13924 int *insn_stack = env->cfg.insn_stack;
13925 int *insn_state = env->cfg.insn_state;
13926
475fb78f 13927 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 13928 return DONE_EXPLORING;
475fb78f
AS
13929
13930 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 13931 return DONE_EXPLORING;
475fb78f
AS
13932
13933 if (w < 0 || w >= env->prog->len) {
d9762e84 13934 verbose_linfo(env, t, "%d: ", t);
61bd5218 13935 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
13936 return -EINVAL;
13937 }
13938
bffdeaa8 13939 if (e == BRANCH) {
f1bca824 13940 /* mark branch target for state pruning */
bffdeaa8
AN
13941 mark_prune_point(env, w);
13942 mark_jmp_point(env, w);
13943 }
f1bca824 13944
475fb78f
AS
13945 if (insn_state[w] == 0) {
13946 /* tree-edge */
13947 insn_state[t] = DISCOVERED | e;
13948 insn_state[w] = DISCOVERED;
7df737e9 13949 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 13950 return -E2BIG;
7df737e9 13951 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 13952 return KEEP_EXPLORING;
475fb78f 13953 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 13954 if (loop_ok && env->bpf_capable)
59e2e27d 13955 return DONE_EXPLORING;
d9762e84
MKL
13956 verbose_linfo(env, t, "%d: ", t);
13957 verbose_linfo(env, w, "%d: ", w);
61bd5218 13958 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
13959 return -EINVAL;
13960 } else if (insn_state[w] == EXPLORED) {
13961 /* forward- or cross-edge */
13962 insn_state[t] = DISCOVERED | e;
13963 } else {
61bd5218 13964 verbose(env, "insn state internal bug\n");
475fb78f
AS
13965 return -EFAULT;
13966 }
59e2e27d
WAF
13967 return DONE_EXPLORING;
13968}
13969
dcb2288b 13970static int visit_func_call_insn(int t, struct bpf_insn *insns,
efdb22de
YS
13971 struct bpf_verifier_env *env,
13972 bool visit_callee)
13973{
13974 int ret;
13975
13976 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
13977 if (ret)
13978 return ret;
13979
618945fb
AN
13980 mark_prune_point(env, t + 1);
13981 /* when we exit from subprog, we need to record non-linear history */
13982 mark_jmp_point(env, t + 1);
13983
efdb22de 13984 if (visit_callee) {
bffdeaa8 13985 mark_prune_point(env, t);
86fc6ee6
AS
13986 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
13987 /* It's ok to allow recursion from CFG point of
13988 * view. __check_func_call() will do the actual
13989 * check.
13990 */
13991 bpf_pseudo_func(insns + t));
efdb22de
YS
13992 }
13993 return ret;
13994}
13995
59e2e27d
WAF
13996/* Visits the instruction at index t and returns one of the following:
13997 * < 0 - an error occurred
13998 * DONE_EXPLORING - the instruction was fully explored
13999 * KEEP_EXPLORING - there is still work to be done before it is fully explored
14000 */
dcb2288b 14001static int visit_insn(int t, struct bpf_verifier_env *env)
59e2e27d 14002{
653ae3a8 14003 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
59e2e27d
WAF
14004 int ret;
14005
653ae3a8 14006 if (bpf_pseudo_func(insn))
dcb2288b 14007 return visit_func_call_insn(t, insns, env, true);
69c087ba 14008
59e2e27d 14009 /* All non-branch instructions have a single fall-through edge. */
653ae3a8
AN
14010 if (BPF_CLASS(insn->code) != BPF_JMP &&
14011 BPF_CLASS(insn->code) != BPF_JMP32)
59e2e27d
WAF
14012 return push_insn(t, t + 1, FALLTHROUGH, env, false);
14013
653ae3a8 14014 switch (BPF_OP(insn->code)) {
59e2e27d
WAF
14015 case BPF_EXIT:
14016 return DONE_EXPLORING;
14017
14018 case BPF_CALL:
c1ee85a9 14019 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
618945fb
AN
14020 /* Mark this call insn as a prune point to trigger
14021 * is_state_visited() check before call itself is
14022 * processed by __check_func_call(). Otherwise new
14023 * async state will be pushed for further exploration.
bfc6bb74 14024 */
bffdeaa8 14025 mark_prune_point(env, t);
06accc87
AN
14026 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14027 struct bpf_kfunc_call_arg_meta meta;
14028
14029 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
4b5ce570 14030 if (ret == 0 && is_iter_next_kfunc(&meta)) {
06accc87 14031 mark_prune_point(env, t);
4b5ce570
AN
14032 /* Checking and saving state checkpoints at iter_next() call
14033 * is crucial for fast convergence of open-coded iterator loop
14034 * logic, so we need to force it. If we don't do that,
14035 * is_state_visited() might skip saving a checkpoint, causing
14036 * unnecessarily long sequence of not checkpointed
14037 * instructions and jumps, leading to exhaustion of jump
14038 * history buffer, and potentially other undesired outcomes.
14039 * It is expected that with correct open-coded iterators
14040 * convergence will happen quickly, so we don't run a risk of
14041 * exhausting memory.
14042 */
14043 mark_force_checkpoint(env, t);
14044 }
06accc87 14045 }
653ae3a8 14046 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
14047
14048 case BPF_JA:
653ae3a8 14049 if (BPF_SRC(insn->code) != BPF_K)
59e2e27d
WAF
14050 return -EINVAL;
14051
14052 /* unconditional jump with single edge */
653ae3a8 14053 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
59e2e27d
WAF
14054 true);
14055 if (ret)
14056 return ret;
14057
653ae3a8
AN
14058 mark_prune_point(env, t + insn->off + 1);
14059 mark_jmp_point(env, t + insn->off + 1);
59e2e27d
WAF
14060
14061 return ret;
14062
14063 default:
14064 /* conditional jump with two edges */
bffdeaa8 14065 mark_prune_point(env, t);
618945fb 14066
59e2e27d
WAF
14067 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14068 if (ret)
14069 return ret;
14070
653ae3a8 14071 return push_insn(t, t + insn->off + 1, BRANCH, env, true);
59e2e27d 14072 }
475fb78f
AS
14073}
14074
14075/* non-recursive depth-first-search to detect loops in BPF program
14076 * loop == back-edge in directed graph
14077 */
58e2af8b 14078static int check_cfg(struct bpf_verifier_env *env)
475fb78f 14079{
475fb78f 14080 int insn_cnt = env->prog->len;
7df737e9 14081 int *insn_stack, *insn_state;
475fb78f 14082 int ret = 0;
59e2e27d 14083 int i;
475fb78f 14084
7df737e9 14085 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
14086 if (!insn_state)
14087 return -ENOMEM;
14088
7df737e9 14089 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 14090 if (!insn_stack) {
71dde681 14091 kvfree(insn_state);
475fb78f
AS
14092 return -ENOMEM;
14093 }
14094
14095 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14096 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 14097 env->cfg.cur_stack = 1;
475fb78f 14098
59e2e27d
WAF
14099 while (env->cfg.cur_stack > 0) {
14100 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 14101
dcb2288b 14102 ret = visit_insn(t, env);
59e2e27d
WAF
14103 switch (ret) {
14104 case DONE_EXPLORING:
14105 insn_state[t] = EXPLORED;
14106 env->cfg.cur_stack--;
14107 break;
14108 case KEEP_EXPLORING:
14109 break;
14110 default:
14111 if (ret > 0) {
14112 verbose(env, "visit_insn internal bug\n");
14113 ret = -EFAULT;
475fb78f 14114 }
475fb78f 14115 goto err_free;
59e2e27d 14116 }
475fb78f
AS
14117 }
14118
59e2e27d 14119 if (env->cfg.cur_stack < 0) {
61bd5218 14120 verbose(env, "pop stack internal bug\n");
475fb78f
AS
14121 ret = -EFAULT;
14122 goto err_free;
14123 }
475fb78f 14124
475fb78f
AS
14125 for (i = 0; i < insn_cnt; i++) {
14126 if (insn_state[i] != EXPLORED) {
61bd5218 14127 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
14128 ret = -EINVAL;
14129 goto err_free;
14130 }
14131 }
14132 ret = 0; /* cfg looks good */
14133
14134err_free:
71dde681
AS
14135 kvfree(insn_state);
14136 kvfree(insn_stack);
7df737e9 14137 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
14138 return ret;
14139}
14140
09b28d76
AS
14141static int check_abnormal_return(struct bpf_verifier_env *env)
14142{
14143 int i;
14144
14145 for (i = 1; i < env->subprog_cnt; i++) {
14146 if (env->subprog_info[i].has_ld_abs) {
14147 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14148 return -EINVAL;
14149 }
14150 if (env->subprog_info[i].has_tail_call) {
14151 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14152 return -EINVAL;
14153 }
14154 }
14155 return 0;
14156}
14157
838e9690
YS
14158/* The minimum supported BTF func info size */
14159#define MIN_BPF_FUNCINFO_SIZE 8
14160#define MAX_FUNCINFO_REC_SIZE 252
14161
c454a46b
MKL
14162static int check_btf_func(struct bpf_verifier_env *env,
14163 const union bpf_attr *attr,
af2ac3e1 14164 bpfptr_t uattr)
838e9690 14165{
09b28d76 14166 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 14167 u32 i, nfuncs, urec_size, min_size;
838e9690 14168 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 14169 struct bpf_func_info *krecord;
8c1b6e69 14170 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
14171 struct bpf_prog *prog;
14172 const struct btf *btf;
af2ac3e1 14173 bpfptr_t urecord;
d0b2818e 14174 u32 prev_offset = 0;
09b28d76 14175 bool scalar_return;
e7ed83d6 14176 int ret = -ENOMEM;
838e9690
YS
14177
14178 nfuncs = attr->func_info_cnt;
09b28d76
AS
14179 if (!nfuncs) {
14180 if (check_abnormal_return(env))
14181 return -EINVAL;
838e9690 14182 return 0;
09b28d76 14183 }
838e9690
YS
14184
14185 if (nfuncs != env->subprog_cnt) {
14186 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14187 return -EINVAL;
14188 }
14189
14190 urec_size = attr->func_info_rec_size;
14191 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14192 urec_size > MAX_FUNCINFO_REC_SIZE ||
14193 urec_size % sizeof(u32)) {
14194 verbose(env, "invalid func info rec size %u\n", urec_size);
14195 return -EINVAL;
14196 }
14197
c454a46b
MKL
14198 prog = env->prog;
14199 btf = prog->aux->btf;
838e9690 14200
af2ac3e1 14201 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
14202 min_size = min_t(u32, krec_size, urec_size);
14203
ba64e7d8 14204 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
14205 if (!krecord)
14206 return -ENOMEM;
8c1b6e69
AS
14207 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14208 if (!info_aux)
14209 goto err_free;
ba64e7d8 14210
838e9690
YS
14211 for (i = 0; i < nfuncs; i++) {
14212 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14213 if (ret) {
14214 if (ret == -E2BIG) {
14215 verbose(env, "nonzero tailing record in func info");
14216 /* set the size kernel expects so loader can zero
14217 * out the rest of the record.
14218 */
af2ac3e1
AS
14219 if (copy_to_bpfptr_offset(uattr,
14220 offsetof(union bpf_attr, func_info_rec_size),
14221 &min_size, sizeof(min_size)))
838e9690
YS
14222 ret = -EFAULT;
14223 }
c454a46b 14224 goto err_free;
838e9690
YS
14225 }
14226
af2ac3e1 14227 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 14228 ret = -EFAULT;
c454a46b 14229 goto err_free;
838e9690
YS
14230 }
14231
d30d42e0 14232 /* check insn_off */
09b28d76 14233 ret = -EINVAL;
838e9690 14234 if (i == 0) {
d30d42e0 14235 if (krecord[i].insn_off) {
838e9690 14236 verbose(env,
d30d42e0
MKL
14237 "nonzero insn_off %u for the first func info record",
14238 krecord[i].insn_off);
c454a46b 14239 goto err_free;
838e9690 14240 }
d30d42e0 14241 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
14242 verbose(env,
14243 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 14244 krecord[i].insn_off, prev_offset);
c454a46b 14245 goto err_free;
838e9690
YS
14246 }
14247
d30d42e0 14248 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 14249 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 14250 goto err_free;
838e9690
YS
14251 }
14252
14253 /* check type_id */
ba64e7d8 14254 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 14255 if (!type || !btf_type_is_func(type)) {
838e9690 14256 verbose(env, "invalid type id %d in func info",
ba64e7d8 14257 krecord[i].type_id);
c454a46b 14258 goto err_free;
838e9690 14259 }
51c39bb1 14260 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
14261
14262 func_proto = btf_type_by_id(btf, type->type);
14263 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14264 /* btf_func_check() already verified it during BTF load */
14265 goto err_free;
14266 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14267 scalar_return =
6089fb32 14268 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
14269 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14270 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14271 goto err_free;
14272 }
14273 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14274 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14275 goto err_free;
14276 }
14277
d30d42e0 14278 prev_offset = krecord[i].insn_off;
af2ac3e1 14279 bpfptr_add(&urecord, urec_size);
838e9690
YS
14280 }
14281
ba64e7d8
YS
14282 prog->aux->func_info = krecord;
14283 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 14284 prog->aux->func_info_aux = info_aux;
838e9690
YS
14285 return 0;
14286
c454a46b 14287err_free:
ba64e7d8 14288 kvfree(krecord);
8c1b6e69 14289 kfree(info_aux);
838e9690
YS
14290 return ret;
14291}
14292
ba64e7d8
YS
14293static void adjust_btf_func(struct bpf_verifier_env *env)
14294{
8c1b6e69 14295 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
14296 int i;
14297
8c1b6e69 14298 if (!aux->func_info)
ba64e7d8
YS
14299 return;
14300
14301 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 14302 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
14303}
14304
1b773d00 14305#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
14306#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
14307
14308static int check_btf_line(struct bpf_verifier_env *env,
14309 const union bpf_attr *attr,
af2ac3e1 14310 bpfptr_t uattr)
c454a46b
MKL
14311{
14312 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14313 struct bpf_subprog_info *sub;
14314 struct bpf_line_info *linfo;
14315 struct bpf_prog *prog;
14316 const struct btf *btf;
af2ac3e1 14317 bpfptr_t ulinfo;
c454a46b
MKL
14318 int err;
14319
14320 nr_linfo = attr->line_info_cnt;
14321 if (!nr_linfo)
14322 return 0;
0e6491b5
BC
14323 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14324 return -EINVAL;
c454a46b
MKL
14325
14326 rec_size = attr->line_info_rec_size;
14327 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14328 rec_size > MAX_LINEINFO_REC_SIZE ||
14329 rec_size & (sizeof(u32) - 1))
14330 return -EINVAL;
14331
14332 /* Need to zero it in case the userspace may
14333 * pass in a smaller bpf_line_info object.
14334 */
14335 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14336 GFP_KERNEL | __GFP_NOWARN);
14337 if (!linfo)
14338 return -ENOMEM;
14339
14340 prog = env->prog;
14341 btf = prog->aux->btf;
14342
14343 s = 0;
14344 sub = env->subprog_info;
af2ac3e1 14345 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
14346 expected_size = sizeof(struct bpf_line_info);
14347 ncopy = min_t(u32, expected_size, rec_size);
14348 for (i = 0; i < nr_linfo; i++) {
14349 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14350 if (err) {
14351 if (err == -E2BIG) {
14352 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
14353 if (copy_to_bpfptr_offset(uattr,
14354 offsetof(union bpf_attr, line_info_rec_size),
14355 &expected_size, sizeof(expected_size)))
c454a46b
MKL
14356 err = -EFAULT;
14357 }
14358 goto err_free;
14359 }
14360
af2ac3e1 14361 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
14362 err = -EFAULT;
14363 goto err_free;
14364 }
14365
14366 /*
14367 * Check insn_off to ensure
14368 * 1) strictly increasing AND
14369 * 2) bounded by prog->len
14370 *
14371 * The linfo[0].insn_off == 0 check logically falls into
14372 * the later "missing bpf_line_info for func..." case
14373 * because the first linfo[0].insn_off must be the
14374 * first sub also and the first sub must have
14375 * subprog_info[0].start == 0.
14376 */
14377 if ((i && linfo[i].insn_off <= prev_offset) ||
14378 linfo[i].insn_off >= prog->len) {
14379 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14380 i, linfo[i].insn_off, prev_offset,
14381 prog->len);
14382 err = -EINVAL;
14383 goto err_free;
14384 }
14385
fdbaa0be
MKL
14386 if (!prog->insnsi[linfo[i].insn_off].code) {
14387 verbose(env,
14388 "Invalid insn code at line_info[%u].insn_off\n",
14389 i);
14390 err = -EINVAL;
14391 goto err_free;
14392 }
14393
23127b33
MKL
14394 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14395 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
14396 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14397 err = -EINVAL;
14398 goto err_free;
14399 }
14400
14401 if (s != env->subprog_cnt) {
14402 if (linfo[i].insn_off == sub[s].start) {
14403 sub[s].linfo_idx = i;
14404 s++;
14405 } else if (sub[s].start < linfo[i].insn_off) {
14406 verbose(env, "missing bpf_line_info for func#%u\n", s);
14407 err = -EINVAL;
14408 goto err_free;
14409 }
14410 }
14411
14412 prev_offset = linfo[i].insn_off;
af2ac3e1 14413 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
14414 }
14415
14416 if (s != env->subprog_cnt) {
14417 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14418 env->subprog_cnt - s, s);
14419 err = -EINVAL;
14420 goto err_free;
14421 }
14422
14423 prog->aux->linfo = linfo;
14424 prog->aux->nr_linfo = nr_linfo;
14425
14426 return 0;
14427
14428err_free:
14429 kvfree(linfo);
14430 return err;
14431}
14432
fbd94c7a
AS
14433#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
14434#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
14435
14436static int check_core_relo(struct bpf_verifier_env *env,
14437 const union bpf_attr *attr,
14438 bpfptr_t uattr)
14439{
14440 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
14441 struct bpf_core_relo core_relo = {};
14442 struct bpf_prog *prog = env->prog;
14443 const struct btf *btf = prog->aux->btf;
14444 struct bpf_core_ctx ctx = {
14445 .log = &env->log,
14446 .btf = btf,
14447 };
14448 bpfptr_t u_core_relo;
14449 int err;
14450
14451 nr_core_relo = attr->core_relo_cnt;
14452 if (!nr_core_relo)
14453 return 0;
14454 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
14455 return -EINVAL;
14456
14457 rec_size = attr->core_relo_rec_size;
14458 if (rec_size < MIN_CORE_RELO_SIZE ||
14459 rec_size > MAX_CORE_RELO_SIZE ||
14460 rec_size % sizeof(u32))
14461 return -EINVAL;
14462
14463 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
14464 expected_size = sizeof(struct bpf_core_relo);
14465 ncopy = min_t(u32, expected_size, rec_size);
14466
14467 /* Unlike func_info and line_info, copy and apply each CO-RE
14468 * relocation record one at a time.
14469 */
14470 for (i = 0; i < nr_core_relo; i++) {
14471 /* future proofing when sizeof(bpf_core_relo) changes */
14472 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
14473 if (err) {
14474 if (err == -E2BIG) {
14475 verbose(env, "nonzero tailing record in core_relo");
14476 if (copy_to_bpfptr_offset(uattr,
14477 offsetof(union bpf_attr, core_relo_rec_size),
14478 &expected_size, sizeof(expected_size)))
14479 err = -EFAULT;
14480 }
14481 break;
14482 }
14483
14484 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
14485 err = -EFAULT;
14486 break;
14487 }
14488
14489 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
14490 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
14491 i, core_relo.insn_off, prog->len);
14492 err = -EINVAL;
14493 break;
14494 }
14495
14496 err = bpf_core_apply(&ctx, &core_relo, i,
14497 &prog->insnsi[core_relo.insn_off / 8]);
14498 if (err)
14499 break;
14500 bpfptr_add(&u_core_relo, rec_size);
14501 }
14502 return err;
14503}
14504
c454a46b
MKL
14505static int check_btf_info(struct bpf_verifier_env *env,
14506 const union bpf_attr *attr,
af2ac3e1 14507 bpfptr_t uattr)
c454a46b
MKL
14508{
14509 struct btf *btf;
14510 int err;
14511
09b28d76
AS
14512 if (!attr->func_info_cnt && !attr->line_info_cnt) {
14513 if (check_abnormal_return(env))
14514 return -EINVAL;
c454a46b 14515 return 0;
09b28d76 14516 }
c454a46b
MKL
14517
14518 btf = btf_get_by_fd(attr->prog_btf_fd);
14519 if (IS_ERR(btf))
14520 return PTR_ERR(btf);
350a5c4d
AS
14521 if (btf_is_kernel(btf)) {
14522 btf_put(btf);
14523 return -EACCES;
14524 }
c454a46b
MKL
14525 env->prog->aux->btf = btf;
14526
14527 err = check_btf_func(env, attr, uattr);
14528 if (err)
14529 return err;
14530
14531 err = check_btf_line(env, attr, uattr);
14532 if (err)
14533 return err;
14534
fbd94c7a
AS
14535 err = check_core_relo(env, attr, uattr);
14536 if (err)
14537 return err;
14538
c454a46b 14539 return 0;
ba64e7d8
YS
14540}
14541
f1174f77
EC
14542/* check %cur's range satisfies %old's */
14543static bool range_within(struct bpf_reg_state *old,
14544 struct bpf_reg_state *cur)
14545{
b03c9f9f
EC
14546 return old->umin_value <= cur->umin_value &&
14547 old->umax_value >= cur->umax_value &&
14548 old->smin_value <= cur->smin_value &&
fd675184
DB
14549 old->smax_value >= cur->smax_value &&
14550 old->u32_min_value <= cur->u32_min_value &&
14551 old->u32_max_value >= cur->u32_max_value &&
14552 old->s32_min_value <= cur->s32_min_value &&
14553 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
14554}
14555
f1174f77
EC
14556/* If in the old state two registers had the same id, then they need to have
14557 * the same id in the new state as well. But that id could be different from
14558 * the old state, so we need to track the mapping from old to new ids.
14559 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
14560 * regs with old id 5 must also have new id 9 for the new state to be safe. But
14561 * regs with a different old id could still have new id 9, we don't care about
14562 * that.
14563 * So we look through our idmap to see if this old id has been seen before. If
14564 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 14565 */
c9e73e3d 14566static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 14567{
f1174f77 14568 unsigned int i;
969bf05e 14569
4633a006
AN
14570 /* either both IDs should be set or both should be zero */
14571 if (!!old_id != !!cur_id)
14572 return false;
14573
14574 if (old_id == 0) /* cur_id == 0 as well */
14575 return true;
14576
c9e73e3d 14577 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
14578 if (!idmap[i].old) {
14579 /* Reached an empty slot; haven't seen this id before */
14580 idmap[i].old = old_id;
14581 idmap[i].cur = cur_id;
14582 return true;
14583 }
14584 if (idmap[i].old == old_id)
14585 return idmap[i].cur == cur_id;
14586 }
14587 /* We ran out of idmap slots, which should be impossible */
14588 WARN_ON_ONCE(1);
14589 return false;
14590}
14591
9242b5f5
AS
14592static void clean_func_state(struct bpf_verifier_env *env,
14593 struct bpf_func_state *st)
14594{
14595 enum bpf_reg_liveness live;
14596 int i, j;
14597
14598 for (i = 0; i < BPF_REG_FP; i++) {
14599 live = st->regs[i].live;
14600 /* liveness must not touch this register anymore */
14601 st->regs[i].live |= REG_LIVE_DONE;
14602 if (!(live & REG_LIVE_READ))
14603 /* since the register is unused, clear its state
14604 * to make further comparison simpler
14605 */
f54c7898 14606 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
14607 }
14608
14609 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
14610 live = st->stack[i].spilled_ptr.live;
14611 /* liveness must not touch this stack slot anymore */
14612 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
14613 if (!(live & REG_LIVE_READ)) {
f54c7898 14614 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
14615 for (j = 0; j < BPF_REG_SIZE; j++)
14616 st->stack[i].slot_type[j] = STACK_INVALID;
14617 }
14618 }
14619}
14620
14621static void clean_verifier_state(struct bpf_verifier_env *env,
14622 struct bpf_verifier_state *st)
14623{
14624 int i;
14625
14626 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
14627 /* all regs in this state in all frames were already marked */
14628 return;
14629
14630 for (i = 0; i <= st->curframe; i++)
14631 clean_func_state(env, st->frame[i]);
14632}
14633
14634/* the parentage chains form a tree.
14635 * the verifier states are added to state lists at given insn and
14636 * pushed into state stack for future exploration.
14637 * when the verifier reaches bpf_exit insn some of the verifer states
14638 * stored in the state lists have their final liveness state already,
14639 * but a lot of states will get revised from liveness point of view when
14640 * the verifier explores other branches.
14641 * Example:
14642 * 1: r0 = 1
14643 * 2: if r1 == 100 goto pc+1
14644 * 3: r0 = 2
14645 * 4: exit
14646 * when the verifier reaches exit insn the register r0 in the state list of
14647 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
14648 * of insn 2 and goes exploring further. At the insn 4 it will walk the
14649 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
14650 *
14651 * Since the verifier pushes the branch states as it sees them while exploring
14652 * the program the condition of walking the branch instruction for the second
14653 * time means that all states below this branch were already explored and
8fb33b60 14654 * their final liveness marks are already propagated.
9242b5f5
AS
14655 * Hence when the verifier completes the search of state list in is_state_visited()
14656 * we can call this clean_live_states() function to mark all liveness states
14657 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
14658 * will not be used.
14659 * This function also clears the registers and stack for states that !READ
14660 * to simplify state merging.
14661 *
14662 * Important note here that walking the same branch instruction in the callee
14663 * doesn't meant that the states are DONE. The verifier has to compare
14664 * the callsites
14665 */
14666static void clean_live_states(struct bpf_verifier_env *env, int insn,
14667 struct bpf_verifier_state *cur)
14668{
14669 struct bpf_verifier_state_list *sl;
14670 int i;
14671
5d839021 14672 sl = *explored_state(env, insn);
a8f500af 14673 while (sl) {
2589726d
AS
14674 if (sl->state.branches)
14675 goto next;
dc2a4ebc
AS
14676 if (sl->state.insn_idx != insn ||
14677 sl->state.curframe != cur->curframe)
9242b5f5
AS
14678 goto next;
14679 for (i = 0; i <= cur->curframe; i++)
14680 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
14681 goto next;
14682 clean_verifier_state(env, &sl->state);
14683next:
14684 sl = sl->next;
14685 }
14686}
14687
4a95c85c 14688static bool regs_exact(const struct bpf_reg_state *rold,
4633a006
AN
14689 const struct bpf_reg_state *rcur,
14690 struct bpf_id_pair *idmap)
4a95c85c 14691{
4633a006
AN
14692 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
14693 check_ids(rold->id, rcur->id, idmap) &&
14694 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
4a95c85c
AN
14695}
14696
f1174f77 14697/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
14698static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
14699 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 14700{
dc503a8a
EC
14701 if (!(rold->live & REG_LIVE_READ))
14702 /* explored state didn't use this */
14703 return true;
f1174f77
EC
14704 if (rold->type == NOT_INIT)
14705 /* explored state can't have used this */
969bf05e 14706 return true;
f1174f77
EC
14707 if (rcur->type == NOT_INIT)
14708 return false;
7f4ce97c 14709
910f6999
AN
14710 /* Enforce that register types have to match exactly, including their
14711 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
14712 * rule.
14713 *
14714 * One can make a point that using a pointer register as unbounded
14715 * SCALAR would be technically acceptable, but this could lead to
14716 * pointer leaks because scalars are allowed to leak while pointers
14717 * are not. We could make this safe in special cases if root is
14718 * calling us, but it's probably not worth the hassle.
14719 *
14720 * Also, register types that are *not* MAYBE_NULL could technically be
14721 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
14722 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
14723 * to the same map).
7f4ce97c
AN
14724 * However, if the old MAYBE_NULL register then got NULL checked,
14725 * doing so could have affected others with the same id, and we can't
14726 * check for that because we lost the id when we converted to
14727 * a non-MAYBE_NULL variant.
14728 * So, as a general rule we don't allow mixing MAYBE_NULL and
910f6999 14729 * non-MAYBE_NULL registers as well.
7f4ce97c 14730 */
910f6999 14731 if (rold->type != rcur->type)
7f4ce97c
AN
14732 return false;
14733
c25b2ae1 14734 switch (base_type(rold->type)) {
f1174f77 14735 case SCALAR_VALUE:
4633a006 14736 if (regs_exact(rold, rcur, idmap))
7c884339 14737 return true;
e042aa53
DB
14738 if (env->explore_alu_limits)
14739 return false;
910f6999
AN
14740 if (!rold->precise)
14741 return true;
14742 /* new val must satisfy old val knowledge */
14743 return range_within(rold, rcur) &&
14744 tnum_in(rold->var_off, rcur->var_off);
69c087ba 14745 case PTR_TO_MAP_KEY:
f1174f77 14746 case PTR_TO_MAP_VALUE:
567da5d2
AN
14747 case PTR_TO_MEM:
14748 case PTR_TO_BUF:
14749 case PTR_TO_TP_BUFFER:
1b688a19
EC
14750 /* If the new min/max/var_off satisfy the old ones and
14751 * everything else matches, we are OK.
1b688a19 14752 */
a73bf9f2 14753 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
1b688a19 14754 range_within(rold, rcur) &&
4ea2bb15 14755 tnum_in(rold->var_off, rcur->var_off) &&
567da5d2
AN
14756 check_ids(rold->id, rcur->id, idmap) &&
14757 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
de8f3a83 14758 case PTR_TO_PACKET_META:
f1174f77 14759 case PTR_TO_PACKET:
f1174f77
EC
14760 /* We must have at least as much range as the old ptr
14761 * did, so that any accesses which were safe before are
14762 * still safe. This is true even if old range < old off,
14763 * since someone could have accessed through (ptr - k), or
14764 * even done ptr -= k in a register, to get a safe access.
14765 */
14766 if (rold->range > rcur->range)
14767 return false;
14768 /* If the offsets don't match, we can't trust our alignment;
14769 * nor can we be sure that we won't fall out of range.
14770 */
14771 if (rold->off != rcur->off)
14772 return false;
14773 /* id relations must be preserved */
4633a006 14774 if (!check_ids(rold->id, rcur->id, idmap))
f1174f77
EC
14775 return false;
14776 /* new val must satisfy old val knowledge */
14777 return range_within(rold, rcur) &&
14778 tnum_in(rold->var_off, rcur->var_off);
7c884339
EZ
14779 case PTR_TO_STACK:
14780 /* two stack pointers are equal only if they're pointing to
14781 * the same stack frame, since fp-8 in foo != fp-8 in bar
f1174f77 14782 */
4633a006 14783 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
f1174f77 14784 default:
4633a006 14785 return regs_exact(rold, rcur, idmap);
f1174f77 14786 }
969bf05e
AS
14787}
14788
e042aa53
DB
14789static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
14790 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
14791{
14792 int i, spi;
14793
638f5b90
AS
14794 /* walk slots of the explored stack and ignore any additional
14795 * slots in the current stack, since explored(safe) state
14796 * didn't use them
14797 */
14798 for (i = 0; i < old->allocated_stack; i++) {
06accc87
AN
14799 struct bpf_reg_state *old_reg, *cur_reg;
14800
638f5b90
AS
14801 spi = i / BPF_REG_SIZE;
14802
b233920c
AS
14803 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
14804 i += BPF_REG_SIZE - 1;
cc2b14d5 14805 /* explored state didn't use this */
fd05e57b 14806 continue;
b233920c 14807 }
cc2b14d5 14808
638f5b90
AS
14809 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
14810 continue;
19e2dbb7 14811
6715df8d
EZ
14812 if (env->allow_uninit_stack &&
14813 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
14814 continue;
14815
19e2dbb7
AS
14816 /* explored stack has more populated slots than current stack
14817 * and these slots were used
14818 */
14819 if (i >= cur->allocated_stack)
14820 return false;
14821
cc2b14d5
AS
14822 /* if old state was safe with misc data in the stack
14823 * it will be safe with zero-initialized stack.
14824 * The opposite is not true
14825 */
14826 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
14827 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
14828 continue;
638f5b90
AS
14829 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
14830 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
14831 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 14832 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
14833 * this verifier states are not equivalent,
14834 * return false to continue verification of this path
14835 */
14836 return false;
27113c59 14837 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 14838 continue;
d6fefa11
KKD
14839 /* Both old and cur are having same slot_type */
14840 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
14841 case STACK_SPILL:
638f5b90
AS
14842 /* when explored and current stack slot are both storing
14843 * spilled registers, check that stored pointers types
14844 * are the same as well.
14845 * Ex: explored safe path could have stored
14846 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
14847 * but current path has stored:
14848 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
14849 * such verifier states are not equivalent.
14850 * return false to continue verification of this path
14851 */
d6fefa11
KKD
14852 if (!regsafe(env, &old->stack[spi].spilled_ptr,
14853 &cur->stack[spi].spilled_ptr, idmap))
14854 return false;
14855 break;
14856 case STACK_DYNPTR:
d6fefa11
KKD
14857 old_reg = &old->stack[spi].spilled_ptr;
14858 cur_reg = &cur->stack[spi].spilled_ptr;
14859 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
14860 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
14861 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14862 return false;
14863 break;
06accc87
AN
14864 case STACK_ITER:
14865 old_reg = &old->stack[spi].spilled_ptr;
14866 cur_reg = &cur->stack[spi].spilled_ptr;
14867 /* iter.depth is not compared between states as it
14868 * doesn't matter for correctness and would otherwise
14869 * prevent convergence; we maintain it only to prevent
14870 * infinite loop check triggering, see
14871 * iter_active_depths_differ()
14872 */
14873 if (old_reg->iter.btf != cur_reg->iter.btf ||
14874 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
14875 old_reg->iter.state != cur_reg->iter.state ||
14876 /* ignore {old_reg,cur_reg}->iter.depth, see above */
14877 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14878 return false;
14879 break;
d6fefa11
KKD
14880 case STACK_MISC:
14881 case STACK_ZERO:
14882 case STACK_INVALID:
14883 continue;
14884 /* Ensure that new unhandled slot types return false by default */
14885 default:
638f5b90 14886 return false;
d6fefa11 14887 }
638f5b90
AS
14888 }
14889 return true;
14890}
14891
e8f55fcf
AN
14892static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
14893 struct bpf_id_pair *idmap)
fd978bf7 14894{
e8f55fcf
AN
14895 int i;
14896
fd978bf7
JS
14897 if (old->acquired_refs != cur->acquired_refs)
14898 return false;
e8f55fcf
AN
14899
14900 for (i = 0; i < old->acquired_refs; i++) {
14901 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
14902 return false;
14903 }
14904
14905 return true;
fd978bf7
JS
14906}
14907
f1bca824
AS
14908/* compare two verifier states
14909 *
14910 * all states stored in state_list are known to be valid, since
14911 * verifier reached 'bpf_exit' instruction through them
14912 *
14913 * this function is called when verifier exploring different branches of
14914 * execution popped from the state stack. If it sees an old state that has
14915 * more strict register state and more strict stack state then this execution
14916 * branch doesn't need to be explored further, since verifier already
14917 * concluded that more strict state leads to valid finish.
14918 *
14919 * Therefore two states are equivalent if register state is more conservative
14920 * and explored stack state is more conservative than the current one.
14921 * Example:
14922 * explored current
14923 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
14924 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
14925 *
14926 * In other words if current stack state (one being explored) has more
14927 * valid slots than old one that already passed validation, it means
14928 * the verifier can stop exploring and conclude that current state is valid too
14929 *
14930 * Similarly with registers. If explored state has register type as invalid
14931 * whereas register type in current state is meaningful, it means that
14932 * the current state will reach 'bpf_exit' instruction safely
14933 */
c9e73e3d 14934static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 14935 struct bpf_func_state *cur)
f1bca824
AS
14936{
14937 int i;
14938
c9e73e3d 14939 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
14940 if (!regsafe(env, &old->regs[i], &cur->regs[i],
14941 env->idmap_scratch))
c9e73e3d 14942 return false;
f1bca824 14943
e042aa53 14944 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 14945 return false;
fd978bf7 14946
e8f55fcf 14947 if (!refsafe(old, cur, env->idmap_scratch))
c9e73e3d
LB
14948 return false;
14949
14950 return true;
f1bca824
AS
14951}
14952
f4d7e40a
AS
14953static bool states_equal(struct bpf_verifier_env *env,
14954 struct bpf_verifier_state *old,
14955 struct bpf_verifier_state *cur)
14956{
14957 int i;
14958
14959 if (old->curframe != cur->curframe)
14960 return false;
14961
5dd9cdbc
EZ
14962 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
14963
979d63d5
DB
14964 /* Verification state from speculative execution simulation
14965 * must never prune a non-speculative execution one.
14966 */
14967 if (old->speculative && !cur->speculative)
14968 return false;
14969
4ea2bb15
EZ
14970 if (old->active_lock.ptr != cur->active_lock.ptr)
14971 return false;
14972
14973 /* Old and cur active_lock's have to be either both present
14974 * or both absent.
14975 */
14976 if (!!old->active_lock.id != !!cur->active_lock.id)
14977 return false;
14978
14979 if (old->active_lock.id &&
14980 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
d83525ca
AS
14981 return false;
14982
9bb00b28 14983 if (old->active_rcu_lock != cur->active_rcu_lock)
d83525ca
AS
14984 return false;
14985
f4d7e40a
AS
14986 /* for states to be equal callsites have to be the same
14987 * and all frame states need to be equivalent
14988 */
14989 for (i = 0; i <= old->curframe; i++) {
14990 if (old->frame[i]->callsite != cur->frame[i]->callsite)
14991 return false;
c9e73e3d 14992 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
14993 return false;
14994 }
14995 return true;
14996}
14997
5327ed3d
JW
14998/* Return 0 if no propagation happened. Return negative error code if error
14999 * happened. Otherwise, return the propagated bit.
15000 */
55e7f3b5
JW
15001static int propagate_liveness_reg(struct bpf_verifier_env *env,
15002 struct bpf_reg_state *reg,
15003 struct bpf_reg_state *parent_reg)
15004{
5327ed3d
JW
15005 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15006 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
15007 int err;
15008
5327ed3d
JW
15009 /* When comes here, read flags of PARENT_REG or REG could be any of
15010 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15011 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15012 */
15013 if (parent_flag == REG_LIVE_READ64 ||
15014 /* Or if there is no read flag from REG. */
15015 !flag ||
15016 /* Or if the read flag from REG is the same as PARENT_REG. */
15017 parent_flag == flag)
55e7f3b5
JW
15018 return 0;
15019
5327ed3d 15020 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
15021 if (err)
15022 return err;
15023
5327ed3d 15024 return flag;
55e7f3b5
JW
15025}
15026
8e9cd9ce 15027/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
15028 * straight-line code between a state and its parent. When we arrive at an
15029 * equivalent state (jump target or such) we didn't arrive by the straight-line
15030 * code, so read marks in the state must propagate to the parent regardless
15031 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 15032 * in mark_reg_read() is for.
8e9cd9ce 15033 */
f4d7e40a
AS
15034static int propagate_liveness(struct bpf_verifier_env *env,
15035 const struct bpf_verifier_state *vstate,
15036 struct bpf_verifier_state *vparent)
dc503a8a 15037{
3f8cafa4 15038 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 15039 struct bpf_func_state *state, *parent;
3f8cafa4 15040 int i, frame, err = 0;
dc503a8a 15041
f4d7e40a
AS
15042 if (vparent->curframe != vstate->curframe) {
15043 WARN(1, "propagate_live: parent frame %d current frame %d\n",
15044 vparent->curframe, vstate->curframe);
15045 return -EFAULT;
15046 }
dc503a8a
EC
15047 /* Propagate read liveness of registers... */
15048 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 15049 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
15050 parent = vparent->frame[frame];
15051 state = vstate->frame[frame];
15052 parent_reg = parent->regs;
15053 state_reg = state->regs;
83d16312
JK
15054 /* We don't need to worry about FP liveness, it's read-only */
15055 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
15056 err = propagate_liveness_reg(env, &state_reg[i],
15057 &parent_reg[i]);
5327ed3d 15058 if (err < 0)
3f8cafa4 15059 return err;
5327ed3d
JW
15060 if (err == REG_LIVE_READ64)
15061 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 15062 }
f4d7e40a 15063
1b04aee7 15064 /* Propagate stack slots. */
f4d7e40a
AS
15065 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15066 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
15067 parent_reg = &parent->stack[i].spilled_ptr;
15068 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
15069 err = propagate_liveness_reg(env, state_reg,
15070 parent_reg);
5327ed3d 15071 if (err < 0)
3f8cafa4 15072 return err;
dc503a8a
EC
15073 }
15074 }
5327ed3d 15075 return 0;
dc503a8a
EC
15076}
15077
a3ce685d
AS
15078/* find precise scalars in the previous equivalent state and
15079 * propagate them into the current state
15080 */
15081static int propagate_precision(struct bpf_verifier_env *env,
15082 const struct bpf_verifier_state *old)
15083{
15084 struct bpf_reg_state *state_reg;
15085 struct bpf_func_state *state;
529409ea 15086 int i, err = 0, fr;
a3ce685d 15087
529409ea
AN
15088 for (fr = old->curframe; fr >= 0; fr--) {
15089 state = old->frame[fr];
15090 state_reg = state->regs;
15091 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15092 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15093 !state_reg->precise ||
15094 !(state_reg->live & REG_LIVE_READ))
529409ea
AN
15095 continue;
15096 if (env->log.level & BPF_LOG_LEVEL2)
34f0677e 15097 verbose(env, "frame %d: propagating r%d\n", fr, i);
529409ea
AN
15098 err = mark_chain_precision_frame(env, fr, i);
15099 if (err < 0)
15100 return err;
15101 }
a3ce685d 15102
529409ea
AN
15103 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15104 if (!is_spilled_reg(&state->stack[i]))
15105 continue;
15106 state_reg = &state->stack[i].spilled_ptr;
15107 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15108 !state_reg->precise ||
15109 !(state_reg->live & REG_LIVE_READ))
529409ea
AN
15110 continue;
15111 if (env->log.level & BPF_LOG_LEVEL2)
15112 verbose(env, "frame %d: propagating fp%d\n",
34f0677e 15113 fr, (-i - 1) * BPF_REG_SIZE);
529409ea
AN
15114 err = mark_chain_precision_stack_frame(env, fr, i);
15115 if (err < 0)
15116 return err;
15117 }
a3ce685d
AS
15118 }
15119 return 0;
15120}
15121
2589726d
AS
15122static bool states_maybe_looping(struct bpf_verifier_state *old,
15123 struct bpf_verifier_state *cur)
15124{
15125 struct bpf_func_state *fold, *fcur;
15126 int i, fr = cur->curframe;
15127
15128 if (old->curframe != fr)
15129 return false;
15130
15131 fold = old->frame[fr];
15132 fcur = cur->frame[fr];
15133 for (i = 0; i < MAX_BPF_REG; i++)
15134 if (memcmp(&fold->regs[i], &fcur->regs[i],
15135 offsetof(struct bpf_reg_state, parent)))
15136 return false;
15137 return true;
15138}
15139
06accc87
AN
15140static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15141{
15142 return env->insn_aux_data[insn_idx].is_iter_next;
15143}
15144
15145/* is_state_visited() handles iter_next() (see process_iter_next_call() for
15146 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15147 * states to match, which otherwise would look like an infinite loop. So while
15148 * iter_next() calls are taken care of, we still need to be careful and
15149 * prevent erroneous and too eager declaration of "ininite loop", when
15150 * iterators are involved.
15151 *
15152 * Here's a situation in pseudo-BPF assembly form:
15153 *
15154 * 0: again: ; set up iter_next() call args
15155 * 1: r1 = &it ; <CHECKPOINT HERE>
15156 * 2: call bpf_iter_num_next ; this is iter_next() call
15157 * 3: if r0 == 0 goto done
15158 * 4: ... something useful here ...
15159 * 5: goto again ; another iteration
15160 * 6: done:
15161 * 7: r1 = &it
15162 * 8: call bpf_iter_num_destroy ; clean up iter state
15163 * 9: exit
15164 *
15165 * This is a typical loop. Let's assume that we have a prune point at 1:,
15166 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15167 * again`, assuming other heuristics don't get in a way).
15168 *
15169 * When we first time come to 1:, let's say we have some state X. We proceed
15170 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15171 * Now we come back to validate that forked ACTIVE state. We proceed through
15172 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15173 * are converging. But the problem is that we don't know that yet, as this
15174 * convergence has to happen at iter_next() call site only. So if nothing is
15175 * done, at 1: verifier will use bounded loop logic and declare infinite
15176 * looping (and would be *technically* correct, if not for iterator's
15177 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15178 * don't want that. So what we do in process_iter_next_call() when we go on
15179 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15180 * a different iteration. So when we suspect an infinite loop, we additionally
15181 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15182 * pretend we are not looping and wait for next iter_next() call.
15183 *
15184 * This only applies to ACTIVE state. In DRAINED state we don't expect to
15185 * loop, because that would actually mean infinite loop, as DRAINED state is
15186 * "sticky", and so we'll keep returning into the same instruction with the
15187 * same state (at least in one of possible code paths).
15188 *
15189 * This approach allows to keep infinite loop heuristic even in the face of
15190 * active iterator. E.g., C snippet below is and will be detected as
15191 * inifintely looping:
15192 *
15193 * struct bpf_iter_num it;
15194 * int *p, x;
15195 *
15196 * bpf_iter_num_new(&it, 0, 10);
15197 * while ((p = bpf_iter_num_next(&t))) {
15198 * x = p;
15199 * while (x--) {} // <<-- infinite loop here
15200 * }
15201 *
15202 */
15203static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15204{
15205 struct bpf_reg_state *slot, *cur_slot;
15206 struct bpf_func_state *state;
15207 int i, fr;
15208
15209 for (fr = old->curframe; fr >= 0; fr--) {
15210 state = old->frame[fr];
15211 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15212 if (state->stack[i].slot_type[0] != STACK_ITER)
15213 continue;
15214
15215 slot = &state->stack[i].spilled_ptr;
15216 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15217 continue;
15218
15219 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15220 if (cur_slot->iter.depth != slot->iter.depth)
15221 return true;
15222 }
15223 }
15224 return false;
15225}
2589726d 15226
58e2af8b 15227static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 15228{
58e2af8b 15229 struct bpf_verifier_state_list *new_sl;
9f4686c4 15230 struct bpf_verifier_state_list *sl, **pprev;
679c782d 15231 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 15232 int i, j, err, states_cnt = 0;
4b5ce570
AN
15233 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15234 bool add_new_state = force_new_state;
f1bca824 15235
2589726d
AS
15236 /* bpf progs typically have pruning point every 4 instructions
15237 * http://vger.kernel.org/bpfconf2019.html#session-1
15238 * Do not add new state for future pruning if the verifier hasn't seen
15239 * at least 2 jumps and at least 8 instructions.
15240 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15241 * In tests that amounts to up to 50% reduction into total verifier
15242 * memory consumption and 20% verifier time speedup.
15243 */
15244 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15245 env->insn_processed - env->prev_insn_processed >= 8)
15246 add_new_state = true;
15247
a8f500af
AS
15248 pprev = explored_state(env, insn_idx);
15249 sl = *pprev;
15250
9242b5f5
AS
15251 clean_live_states(env, insn_idx, cur);
15252
a8f500af 15253 while (sl) {
dc2a4ebc
AS
15254 states_cnt++;
15255 if (sl->state.insn_idx != insn_idx)
15256 goto next;
bfc6bb74 15257
2589726d 15258 if (sl->state.branches) {
bfc6bb74
AS
15259 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15260
15261 if (frame->in_async_callback_fn &&
15262 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15263 /* Different async_entry_cnt means that the verifier is
15264 * processing another entry into async callback.
15265 * Seeing the same state is not an indication of infinite
15266 * loop or infinite recursion.
15267 * But finding the same state doesn't mean that it's safe
15268 * to stop processing the current state. The previous state
15269 * hasn't yet reached bpf_exit, since state.branches > 0.
15270 * Checking in_async_callback_fn alone is not enough either.
15271 * Since the verifier still needs to catch infinite loops
15272 * inside async callbacks.
15273 */
06accc87
AN
15274 goto skip_inf_loop_check;
15275 }
15276 /* BPF open-coded iterators loop detection is special.
15277 * states_maybe_looping() logic is too simplistic in detecting
15278 * states that *might* be equivalent, because it doesn't know
15279 * about ID remapping, so don't even perform it.
15280 * See process_iter_next_call() and iter_active_depths_differ()
15281 * for overview of the logic. When current and one of parent
15282 * states are detected as equivalent, it's a good thing: we prove
15283 * convergence and can stop simulating further iterations.
15284 * It's safe to assume that iterator loop will finish, taking into
15285 * account iter_next() contract of eventually returning
15286 * sticky NULL result.
15287 */
15288 if (is_iter_next_insn(env, insn_idx)) {
15289 if (states_equal(env, &sl->state, cur)) {
15290 struct bpf_func_state *cur_frame;
15291 struct bpf_reg_state *iter_state, *iter_reg;
15292 int spi;
15293
15294 cur_frame = cur->frame[cur->curframe];
15295 /* btf_check_iter_kfuncs() enforces that
15296 * iter state pointer is always the first arg
15297 */
15298 iter_reg = &cur_frame->regs[BPF_REG_1];
15299 /* current state is valid due to states_equal(),
15300 * so we can assume valid iter and reg state,
15301 * no need for extra (re-)validations
15302 */
15303 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15304 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15305 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15306 goto hit;
15307 }
15308 goto skip_inf_loop_check;
15309 }
15310 /* attempt to detect infinite loop to avoid unnecessary doomed work */
15311 if (states_maybe_looping(&sl->state, cur) &&
15312 states_equal(env, &sl->state, cur) &&
15313 !iter_active_depths_differ(&sl->state, cur)) {
2589726d
AS
15314 verbose_linfo(env, insn_idx, "; ");
15315 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15316 return -EINVAL;
15317 }
15318 /* if the verifier is processing a loop, avoid adding new state
15319 * too often, since different loop iterations have distinct
15320 * states and may not help future pruning.
15321 * This threshold shouldn't be too low to make sure that
15322 * a loop with large bound will be rejected quickly.
15323 * The most abusive loop will be:
15324 * r1 += 1
15325 * if r1 < 1000000 goto pc-2
15326 * 1M insn_procssed limit / 100 == 10k peak states.
15327 * This threshold shouldn't be too high either, since states
15328 * at the end of the loop are likely to be useful in pruning.
15329 */
06accc87 15330skip_inf_loop_check:
4b5ce570 15331 if (!force_new_state &&
98ddcf38 15332 env->jmps_processed - env->prev_jmps_processed < 20 &&
2589726d
AS
15333 env->insn_processed - env->prev_insn_processed < 100)
15334 add_new_state = false;
15335 goto miss;
15336 }
638f5b90 15337 if (states_equal(env, &sl->state, cur)) {
06accc87 15338hit:
9f4686c4 15339 sl->hit_cnt++;
f1bca824 15340 /* reached equivalent register/stack state,
dc503a8a
EC
15341 * prune the search.
15342 * Registers read by the continuation are read by us.
8e9cd9ce
EC
15343 * If we have any write marks in env->cur_state, they
15344 * will prevent corresponding reads in the continuation
15345 * from reaching our parent (an explored_state). Our
15346 * own state will get the read marks recorded, but
15347 * they'll be immediately forgotten as we're pruning
15348 * this state and will pop a new one.
f1bca824 15349 */
f4d7e40a 15350 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
15351
15352 /* if previous state reached the exit with precision and
15353 * current state is equivalent to it (except precsion marks)
15354 * the precision needs to be propagated back in
15355 * the current state.
15356 */
15357 err = err ? : push_jmp_history(env, cur);
15358 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
15359 if (err)
15360 return err;
f1bca824 15361 return 1;
dc503a8a 15362 }
2589726d
AS
15363miss:
15364 /* when new state is not going to be added do not increase miss count.
15365 * Otherwise several loop iterations will remove the state
15366 * recorded earlier. The goal of these heuristics is to have
15367 * states from some iterations of the loop (some in the beginning
15368 * and some at the end) to help pruning.
15369 */
15370 if (add_new_state)
15371 sl->miss_cnt++;
9f4686c4
AS
15372 /* heuristic to determine whether this state is beneficial
15373 * to keep checking from state equivalence point of view.
15374 * Higher numbers increase max_states_per_insn and verification time,
15375 * but do not meaningfully decrease insn_processed.
15376 */
15377 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
15378 /* the state is unlikely to be useful. Remove it to
15379 * speed up verification
15380 */
15381 *pprev = sl->next;
15382 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
15383 u32 br = sl->state.branches;
15384
15385 WARN_ONCE(br,
15386 "BUG live_done but branches_to_explore %d\n",
15387 br);
9f4686c4
AS
15388 free_verifier_state(&sl->state, false);
15389 kfree(sl);
15390 env->peak_states--;
15391 } else {
15392 /* cannot free this state, since parentage chain may
15393 * walk it later. Add it for free_list instead to
15394 * be freed at the end of verification
15395 */
15396 sl->next = env->free_list;
15397 env->free_list = sl;
15398 }
15399 sl = *pprev;
15400 continue;
15401 }
dc2a4ebc 15402next:
9f4686c4
AS
15403 pprev = &sl->next;
15404 sl = *pprev;
f1bca824
AS
15405 }
15406
06ee7115
AS
15407 if (env->max_states_per_insn < states_cnt)
15408 env->max_states_per_insn = states_cnt;
15409
2c78ee89 15410 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
a095f421 15411 return 0;
ceefbc96 15412
2589726d 15413 if (!add_new_state)
a095f421 15414 return 0;
ceefbc96 15415
2589726d
AS
15416 /* There were no equivalent states, remember the current one.
15417 * Technically the current state is not proven to be safe yet,
f4d7e40a 15418 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 15419 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 15420 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
15421 * again on the way to bpf_exit.
15422 * When looping the sl->state.branches will be > 0 and this state
15423 * will not be considered for equivalence until branches == 0.
f1bca824 15424 */
638f5b90 15425 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
15426 if (!new_sl)
15427 return -ENOMEM;
06ee7115
AS
15428 env->total_states++;
15429 env->peak_states++;
2589726d
AS
15430 env->prev_jmps_processed = env->jmps_processed;
15431 env->prev_insn_processed = env->insn_processed;
f1bca824 15432
7a830b53
AN
15433 /* forget precise markings we inherited, see __mark_chain_precision */
15434 if (env->bpf_capable)
15435 mark_all_scalars_imprecise(env, cur);
15436
f1bca824 15437 /* add new state to the head of linked list */
679c782d
EC
15438 new = &new_sl->state;
15439 err = copy_verifier_state(new, cur);
1969db47 15440 if (err) {
679c782d 15441 free_verifier_state(new, false);
1969db47
AS
15442 kfree(new_sl);
15443 return err;
15444 }
dc2a4ebc 15445 new->insn_idx = insn_idx;
2589726d
AS
15446 WARN_ONCE(new->branches != 1,
15447 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 15448
2589726d 15449 cur->parent = new;
b5dc0163
AS
15450 cur->first_insn_idx = insn_idx;
15451 clear_jmp_history(cur);
5d839021
AS
15452 new_sl->next = *explored_state(env, insn_idx);
15453 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
15454 /* connect new state to parentage chain. Current frame needs all
15455 * registers connected. Only r6 - r9 of the callers are alive (pushed
15456 * to the stack implicitly by JITs) so in callers' frames connect just
15457 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
15458 * the state of the call instruction (with WRITTEN set), and r0 comes
15459 * from callee with its full parentage chain, anyway.
15460 */
8e9cd9ce
EC
15461 /* clear write marks in current state: the writes we did are not writes
15462 * our child did, so they don't screen off its reads from us.
15463 * (There are no read marks in current state, because reads always mark
15464 * their parent and current state never has children yet. Only
15465 * explored_states can get read marks.)
15466 */
eea1c227
AS
15467 for (j = 0; j <= cur->curframe; j++) {
15468 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
15469 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
15470 for (i = 0; i < BPF_REG_FP; i++)
15471 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
15472 }
f4d7e40a
AS
15473
15474 /* all stack frames are accessible from callee, clear them all */
15475 for (j = 0; j <= cur->curframe; j++) {
15476 struct bpf_func_state *frame = cur->frame[j];
679c782d 15477 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 15478
679c782d 15479 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 15480 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
15481 frame->stack[i].spilled_ptr.parent =
15482 &newframe->stack[i].spilled_ptr;
15483 }
f4d7e40a 15484 }
f1bca824
AS
15485 return 0;
15486}
15487
c64b7983
JS
15488/* Return true if it's OK to have the same insn return a different type. */
15489static bool reg_type_mismatch_ok(enum bpf_reg_type type)
15490{
c25b2ae1 15491 switch (base_type(type)) {
c64b7983
JS
15492 case PTR_TO_CTX:
15493 case PTR_TO_SOCKET:
46f8bc92 15494 case PTR_TO_SOCK_COMMON:
655a51e5 15495 case PTR_TO_TCP_SOCK:
fada7fdc 15496 case PTR_TO_XDP_SOCK:
2a02759e 15497 case PTR_TO_BTF_ID:
c64b7983
JS
15498 return false;
15499 default:
15500 return true;
15501 }
15502}
15503
15504/* If an instruction was previously used with particular pointer types, then we
15505 * need to be careful to avoid cases such as the below, where it may be ok
15506 * for one branch accessing the pointer, but not ok for the other branch:
15507 *
15508 * R1 = sock_ptr
15509 * goto X;
15510 * ...
15511 * R1 = some_other_valid_ptr;
15512 * goto X;
15513 * ...
15514 * R2 = *(u32 *)(R1 + 0);
15515 */
15516static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
15517{
15518 return src != prev && (!reg_type_mismatch_ok(src) ||
15519 !reg_type_mismatch_ok(prev));
15520}
15521
0d80a619
EZ
15522static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
15523 bool allow_trust_missmatch)
15524{
15525 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
15526
15527 if (*prev_type == NOT_INIT) {
15528 /* Saw a valid insn
15529 * dst_reg = *(u32 *)(src_reg + off)
15530 * save type to validate intersecting paths
15531 */
15532 *prev_type = type;
15533 } else if (reg_type_mismatch(type, *prev_type)) {
15534 /* Abuser program is trying to use the same insn
15535 * dst_reg = *(u32*) (src_reg + off)
15536 * with different pointer types:
15537 * src_reg == ctx in one branch and
15538 * src_reg == stack|map in some other branch.
15539 * Reject it.
15540 */
15541 if (allow_trust_missmatch &&
15542 base_type(type) == PTR_TO_BTF_ID &&
15543 base_type(*prev_type) == PTR_TO_BTF_ID) {
15544 /*
15545 * Have to support a use case when one path through
15546 * the program yields TRUSTED pointer while another
15547 * is UNTRUSTED. Fallback to UNTRUSTED to generate
15548 * BPF_PROBE_MEM.
15549 */
15550 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
15551 } else {
15552 verbose(env, "same insn cannot be used with different pointers\n");
15553 return -EINVAL;
15554 }
15555 }
15556
15557 return 0;
15558}
15559
58e2af8b 15560static int do_check(struct bpf_verifier_env *env)
17a52670 15561{
6f8a57cc 15562 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 15563 struct bpf_verifier_state *state = env->cur_state;
17a52670 15564 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 15565 struct bpf_reg_state *regs;
06ee7115 15566 int insn_cnt = env->prog->len;
17a52670 15567 bool do_print_state = false;
b5dc0163 15568 int prev_insn_idx = -1;
17a52670 15569
17a52670
AS
15570 for (;;) {
15571 struct bpf_insn *insn;
15572 u8 class;
15573 int err;
15574
b5dc0163 15575 env->prev_insn_idx = prev_insn_idx;
c08435ec 15576 if (env->insn_idx >= insn_cnt) {
61bd5218 15577 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 15578 env->insn_idx, insn_cnt);
17a52670
AS
15579 return -EFAULT;
15580 }
15581
c08435ec 15582 insn = &insns[env->insn_idx];
17a52670
AS
15583 class = BPF_CLASS(insn->code);
15584
06ee7115 15585 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
15586 verbose(env,
15587 "BPF program is too large. Processed %d insn\n",
06ee7115 15588 env->insn_processed);
17a52670
AS
15589 return -E2BIG;
15590 }
15591
a095f421
AN
15592 state->last_insn_idx = env->prev_insn_idx;
15593
15594 if (is_prune_point(env, env->insn_idx)) {
15595 err = is_state_visited(env, env->insn_idx);
15596 if (err < 0)
15597 return err;
15598 if (err == 1) {
15599 /* found equivalent state, can prune the search */
15600 if (env->log.level & BPF_LOG_LEVEL) {
15601 if (do_print_state)
15602 verbose(env, "\nfrom %d to %d%s: safe\n",
15603 env->prev_insn_idx, env->insn_idx,
15604 env->cur_state->speculative ?
15605 " (speculative execution)" : "");
15606 else
15607 verbose(env, "%d: safe\n", env->insn_idx);
15608 }
15609 goto process_bpf_exit;
f1bca824 15610 }
a095f421
AN
15611 }
15612
15613 if (is_jmp_point(env, env->insn_idx)) {
15614 err = push_jmp_history(env, state);
15615 if (err)
15616 return err;
f1bca824
AS
15617 }
15618
c3494801
AS
15619 if (signal_pending(current))
15620 return -EAGAIN;
15621
3c2ce60b
DB
15622 if (need_resched())
15623 cond_resched();
15624
2e576648
CL
15625 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
15626 verbose(env, "\nfrom %d to %d%s:",
15627 env->prev_insn_idx, env->insn_idx,
15628 env->cur_state->speculative ?
15629 " (speculative execution)" : "");
15630 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
15631 do_print_state = false;
15632 }
15633
06ee7115 15634 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 15635 const struct bpf_insn_cbs cbs = {
e6ac2450 15636 .cb_call = disasm_kfunc_name,
7105e828 15637 .cb_print = verbose,
abe08840 15638 .private_data = env,
7105e828
DB
15639 };
15640
2e576648
CL
15641 if (verifier_state_scratched(env))
15642 print_insn_state(env, state->frame[state->curframe]);
15643
c08435ec 15644 verbose_linfo(env, env->insn_idx, "; ");
2e576648 15645 env->prev_log_len = env->log.len_used;
c08435ec 15646 verbose(env, "%d: ", env->insn_idx);
abe08840 15647 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
15648 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
15649 env->prev_log_len = env->log.len_used;
17a52670
AS
15650 }
15651
9d03ebc7 15652 if (bpf_prog_is_offloaded(env->prog->aux)) {
c08435ec
DB
15653 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
15654 env->prev_insn_idx);
cae1927c
JK
15655 if (err)
15656 return err;
15657 }
13a27dfc 15658
638f5b90 15659 regs = cur_regs(env);
fe9a5ca7 15660 sanitize_mark_insn_seen(env);
b5dc0163 15661 prev_insn_idx = env->insn_idx;
fd978bf7 15662
17a52670 15663 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 15664 err = check_alu_op(env, insn);
17a52670
AS
15665 if (err)
15666 return err;
15667
15668 } else if (class == BPF_LDX) {
0d80a619 15669 enum bpf_reg_type src_reg_type;
9bac3d6d
AS
15670
15671 /* check for reserved fields is already done */
15672
17a52670 15673 /* check src operand */
dc503a8a 15674 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
15675 if (err)
15676 return err;
15677
dc503a8a 15678 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
15679 if (err)
15680 return err;
15681
725f9dcd
AS
15682 src_reg_type = regs[insn->src_reg].type;
15683
17a52670
AS
15684 /* check that memory (src_reg + off) is readable,
15685 * the state of dst_reg will be updated by this func
15686 */
c08435ec
DB
15687 err = check_mem_access(env, env->insn_idx, insn->src_reg,
15688 insn->off, BPF_SIZE(insn->code),
15689 BPF_READ, insn->dst_reg, false);
17a52670
AS
15690 if (err)
15691 return err;
15692
0d80a619
EZ
15693 err = save_aux_ptr_type(env, src_reg_type, true);
15694 if (err)
15695 return err;
17a52670 15696 } else if (class == BPF_STX) {
0d80a619 15697 enum bpf_reg_type dst_reg_type;
d691f9e8 15698
91c960b0
BJ
15699 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
15700 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
15701 if (err)
15702 return err;
c08435ec 15703 env->insn_idx++;
17a52670
AS
15704 continue;
15705 }
15706
5ca419f2
BJ
15707 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
15708 verbose(env, "BPF_STX uses reserved fields\n");
15709 return -EINVAL;
15710 }
15711
17a52670 15712 /* check src1 operand */
dc503a8a 15713 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
15714 if (err)
15715 return err;
15716 /* check src2 operand */
dc503a8a 15717 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
15718 if (err)
15719 return err;
15720
d691f9e8
AS
15721 dst_reg_type = regs[insn->dst_reg].type;
15722
17a52670 15723 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
15724 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15725 insn->off, BPF_SIZE(insn->code),
15726 BPF_WRITE, insn->src_reg, false);
17a52670
AS
15727 if (err)
15728 return err;
15729
0d80a619
EZ
15730 err = save_aux_ptr_type(env, dst_reg_type, false);
15731 if (err)
15732 return err;
17a52670 15733 } else if (class == BPF_ST) {
0d80a619
EZ
15734 enum bpf_reg_type dst_reg_type;
15735
17a52670
AS
15736 if (BPF_MODE(insn->code) != BPF_MEM ||
15737 insn->src_reg != BPF_REG_0) {
61bd5218 15738 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
15739 return -EINVAL;
15740 }
15741 /* check src operand */
dc503a8a 15742 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
15743 if (err)
15744 return err;
15745
0d80a619 15746 dst_reg_type = regs[insn->dst_reg].type;
f37a8cb8 15747
17a52670 15748 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
15749 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15750 insn->off, BPF_SIZE(insn->code),
15751 BPF_WRITE, -1, false);
17a52670
AS
15752 if (err)
15753 return err;
15754
0d80a619
EZ
15755 err = save_aux_ptr_type(env, dst_reg_type, false);
15756 if (err)
15757 return err;
092ed096 15758 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
15759 u8 opcode = BPF_OP(insn->code);
15760
2589726d 15761 env->jmps_processed++;
17a52670
AS
15762 if (opcode == BPF_CALL) {
15763 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
15764 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
15765 && insn->off != 0) ||
f4d7e40a 15766 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
15767 insn->src_reg != BPF_PSEUDO_CALL &&
15768 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
15769 insn->dst_reg != BPF_REG_0 ||
15770 class == BPF_JMP32) {
61bd5218 15771 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
15772 return -EINVAL;
15773 }
15774
8cab76ec
KKD
15775 if (env->cur_state->active_lock.ptr) {
15776 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
15777 (insn->src_reg == BPF_PSEUDO_CALL) ||
15778 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
cd6791b4 15779 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
8cab76ec
KKD
15780 verbose(env, "function calls are not allowed while holding a lock\n");
15781 return -EINVAL;
15782 }
d83525ca 15783 }
f4d7e40a 15784 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 15785 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 15786 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 15787 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 15788 else
69c087ba 15789 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
15790 if (err)
15791 return err;
553a64a8
AN
15792
15793 mark_reg_scratched(env, BPF_REG_0);
17a52670
AS
15794 } else if (opcode == BPF_JA) {
15795 if (BPF_SRC(insn->code) != BPF_K ||
15796 insn->imm != 0 ||
15797 insn->src_reg != BPF_REG_0 ||
092ed096
JW
15798 insn->dst_reg != BPF_REG_0 ||
15799 class == BPF_JMP32) {
61bd5218 15800 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
15801 return -EINVAL;
15802 }
15803
c08435ec 15804 env->insn_idx += insn->off + 1;
17a52670
AS
15805 continue;
15806
15807 } else if (opcode == BPF_EXIT) {
15808 if (BPF_SRC(insn->code) != BPF_K ||
15809 insn->imm != 0 ||
15810 insn->src_reg != BPF_REG_0 ||
092ed096
JW
15811 insn->dst_reg != BPF_REG_0 ||
15812 class == BPF_JMP32) {
61bd5218 15813 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
15814 return -EINVAL;
15815 }
15816
5d92ddc3
DM
15817 if (env->cur_state->active_lock.ptr &&
15818 !in_rbtree_lock_required_cb(env)) {
d83525ca
AS
15819 verbose(env, "bpf_spin_unlock is missing\n");
15820 return -EINVAL;
15821 }
15822
9bb00b28
YS
15823 if (env->cur_state->active_rcu_lock) {
15824 verbose(env, "bpf_rcu_read_unlock is missing\n");
15825 return -EINVAL;
15826 }
15827
9d9d00ac
KKD
15828 /* We must do check_reference_leak here before
15829 * prepare_func_exit to handle the case when
15830 * state->curframe > 0, it may be a callback
15831 * function, for which reference_state must
15832 * match caller reference state when it exits.
15833 */
15834 err = check_reference_leak(env);
15835 if (err)
15836 return err;
15837
f4d7e40a
AS
15838 if (state->curframe) {
15839 /* exit from nested function */
c08435ec 15840 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
15841 if (err)
15842 return err;
15843 do_print_state = true;
15844 continue;
15845 }
15846
390ee7e2
AS
15847 err = check_return_code(env);
15848 if (err)
15849 return err;
f1bca824 15850process_bpf_exit:
0f55f9ed 15851 mark_verifier_state_scratched(env);
2589726d 15852 update_branch_counts(env, env->cur_state);
b5dc0163 15853 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 15854 &env->insn_idx, pop_log);
638f5b90
AS
15855 if (err < 0) {
15856 if (err != -ENOENT)
15857 return err;
17a52670
AS
15858 break;
15859 } else {
15860 do_print_state = true;
15861 continue;
15862 }
15863 } else {
c08435ec 15864 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
15865 if (err)
15866 return err;
15867 }
15868 } else if (class == BPF_LD) {
15869 u8 mode = BPF_MODE(insn->code);
15870
15871 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
15872 err = check_ld_abs(env, insn);
15873 if (err)
15874 return err;
15875
17a52670
AS
15876 } else if (mode == BPF_IMM) {
15877 err = check_ld_imm(env, insn);
15878 if (err)
15879 return err;
15880
c08435ec 15881 env->insn_idx++;
fe9a5ca7 15882 sanitize_mark_insn_seen(env);
17a52670 15883 } else {
61bd5218 15884 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
15885 return -EINVAL;
15886 }
15887 } else {
61bd5218 15888 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
15889 return -EINVAL;
15890 }
15891
c08435ec 15892 env->insn_idx++;
17a52670
AS
15893 }
15894
15895 return 0;
15896}
15897
541c3bad
AN
15898static int find_btf_percpu_datasec(struct btf *btf)
15899{
15900 const struct btf_type *t;
15901 const char *tname;
15902 int i, n;
15903
15904 /*
15905 * Both vmlinux and module each have their own ".data..percpu"
15906 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
15907 * types to look at only module's own BTF types.
15908 */
15909 n = btf_nr_types(btf);
15910 if (btf_is_module(btf))
15911 i = btf_nr_types(btf_vmlinux);
15912 else
15913 i = 1;
15914
15915 for(; i < n; i++) {
15916 t = btf_type_by_id(btf, i);
15917 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
15918 continue;
15919
15920 tname = btf_name_by_offset(btf, t->name_off);
15921 if (!strcmp(tname, ".data..percpu"))
15922 return i;
15923 }
15924
15925 return -ENOENT;
15926}
15927
4976b718
HL
15928/* replace pseudo btf_id with kernel symbol address */
15929static int check_pseudo_btf_id(struct bpf_verifier_env *env,
15930 struct bpf_insn *insn,
15931 struct bpf_insn_aux_data *aux)
15932{
eaa6bcb7
HL
15933 const struct btf_var_secinfo *vsi;
15934 const struct btf_type *datasec;
541c3bad 15935 struct btf_mod_pair *btf_mod;
4976b718
HL
15936 const struct btf_type *t;
15937 const char *sym_name;
eaa6bcb7 15938 bool percpu = false;
f16e6313 15939 u32 type, id = insn->imm;
541c3bad 15940 struct btf *btf;
f16e6313 15941 s32 datasec_id;
4976b718 15942 u64 addr;
541c3bad 15943 int i, btf_fd, err;
4976b718 15944
541c3bad
AN
15945 btf_fd = insn[1].imm;
15946 if (btf_fd) {
15947 btf = btf_get_by_fd(btf_fd);
15948 if (IS_ERR(btf)) {
15949 verbose(env, "invalid module BTF object FD specified.\n");
15950 return -EINVAL;
15951 }
15952 } else {
15953 if (!btf_vmlinux) {
15954 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
15955 return -EINVAL;
15956 }
15957 btf = btf_vmlinux;
15958 btf_get(btf);
4976b718
HL
15959 }
15960
541c3bad 15961 t = btf_type_by_id(btf, id);
4976b718
HL
15962 if (!t) {
15963 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
15964 err = -ENOENT;
15965 goto err_put;
4976b718
HL
15966 }
15967
58aa2afb
AS
15968 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
15969 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
541c3bad
AN
15970 err = -EINVAL;
15971 goto err_put;
4976b718
HL
15972 }
15973
541c3bad 15974 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
15975 addr = kallsyms_lookup_name(sym_name);
15976 if (!addr) {
15977 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
15978 sym_name);
541c3bad
AN
15979 err = -ENOENT;
15980 goto err_put;
4976b718 15981 }
58aa2afb
AS
15982 insn[0].imm = (u32)addr;
15983 insn[1].imm = addr >> 32;
15984
15985 if (btf_type_is_func(t)) {
15986 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
15987 aux->btf_var.mem_size = 0;
15988 goto check_btf;
15989 }
4976b718 15990
541c3bad 15991 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 15992 if (datasec_id > 0) {
541c3bad 15993 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
15994 for_each_vsi(i, datasec, vsi) {
15995 if (vsi->type == id) {
15996 percpu = true;
15997 break;
15998 }
15999 }
16000 }
16001
4976b718 16002 type = t->type;
541c3bad 16003 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 16004 if (percpu) {
5844101a 16005 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 16006 aux->btf_var.btf = btf;
eaa6bcb7
HL
16007 aux->btf_var.btf_id = type;
16008 } else if (!btf_type_is_struct(t)) {
4976b718
HL
16009 const struct btf_type *ret;
16010 const char *tname;
16011 u32 tsize;
16012
16013 /* resolve the type size of ksym. */
541c3bad 16014 ret = btf_resolve_size(btf, t, &tsize);
4976b718 16015 if (IS_ERR(ret)) {
541c3bad 16016 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
16017 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16018 tname, PTR_ERR(ret));
541c3bad
AN
16019 err = -EINVAL;
16020 goto err_put;
4976b718 16021 }
34d3a78c 16022 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
16023 aux->btf_var.mem_size = tsize;
16024 } else {
16025 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 16026 aux->btf_var.btf = btf;
4976b718
HL
16027 aux->btf_var.btf_id = type;
16028 }
58aa2afb 16029check_btf:
541c3bad
AN
16030 /* check whether we recorded this BTF (and maybe module) already */
16031 for (i = 0; i < env->used_btf_cnt; i++) {
16032 if (env->used_btfs[i].btf == btf) {
16033 btf_put(btf);
16034 return 0;
16035 }
16036 }
16037
16038 if (env->used_btf_cnt >= MAX_USED_BTFS) {
16039 err = -E2BIG;
16040 goto err_put;
16041 }
16042
16043 btf_mod = &env->used_btfs[env->used_btf_cnt];
16044 btf_mod->btf = btf;
16045 btf_mod->module = NULL;
16046
16047 /* if we reference variables from kernel module, bump its refcount */
16048 if (btf_is_module(btf)) {
16049 btf_mod->module = btf_try_get_module(btf);
16050 if (!btf_mod->module) {
16051 err = -ENXIO;
16052 goto err_put;
16053 }
16054 }
16055
16056 env->used_btf_cnt++;
16057
4976b718 16058 return 0;
541c3bad
AN
16059err_put:
16060 btf_put(btf);
16061 return err;
4976b718
HL
16062}
16063
d83525ca
AS
16064static bool is_tracing_prog_type(enum bpf_prog_type type)
16065{
16066 switch (type) {
16067 case BPF_PROG_TYPE_KPROBE:
16068 case BPF_PROG_TYPE_TRACEPOINT:
16069 case BPF_PROG_TYPE_PERF_EVENT:
16070 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 16071 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
16072 return true;
16073 default:
16074 return false;
16075 }
16076}
16077
61bd5218
JK
16078static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16079 struct bpf_map *map,
fdc15d38
AS
16080 struct bpf_prog *prog)
16081
16082{
7e40781c 16083 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 16084
9c395c1b
DM
16085 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16086 btf_record_has_field(map->record, BPF_RB_ROOT)) {
f0c5941f 16087 if (is_tracing_prog_type(prog_type)) {
9c395c1b 16088 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
f0c5941f
KKD
16089 return -EINVAL;
16090 }
16091 }
16092
db559117 16093 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
16094 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16095 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16096 return -EINVAL;
16097 }
16098
16099 if (is_tracing_prog_type(prog_type)) {
16100 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16101 return -EINVAL;
16102 }
16103
16104 if (prog->aux->sleepable) {
16105 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16106 return -EINVAL;
16107 }
d83525ca
AS
16108 }
16109
db559117 16110 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
16111 if (is_tracing_prog_type(prog_type)) {
16112 verbose(env, "tracing progs cannot use bpf_timer yet\n");
16113 return -EINVAL;
16114 }
16115 }
16116
9d03ebc7 16117 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
09728266 16118 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
16119 verbose(env, "offload device mismatch between prog and map\n");
16120 return -EINVAL;
16121 }
16122
85d33df3
MKL
16123 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16124 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16125 return -EINVAL;
16126 }
16127
1e6c62a8
AS
16128 if (prog->aux->sleepable)
16129 switch (map->map_type) {
16130 case BPF_MAP_TYPE_HASH:
16131 case BPF_MAP_TYPE_LRU_HASH:
16132 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
16133 case BPF_MAP_TYPE_PERCPU_HASH:
16134 case BPF_MAP_TYPE_PERCPU_ARRAY:
16135 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16136 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16137 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 16138 case BPF_MAP_TYPE_RINGBUF:
583c1f42 16139 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
16140 case BPF_MAP_TYPE_INODE_STORAGE:
16141 case BPF_MAP_TYPE_SK_STORAGE:
16142 case BPF_MAP_TYPE_TASK_STORAGE:
2c40d97d 16143 case BPF_MAP_TYPE_CGRP_STORAGE:
ba90c2cc 16144 break;
1e6c62a8
AS
16145 default:
16146 verbose(env,
2c40d97d 16147 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
1e6c62a8
AS
16148 return -EINVAL;
16149 }
16150
fdc15d38
AS
16151 return 0;
16152}
16153
b741f163
RG
16154static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16155{
16156 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16157 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16158}
16159
4976b718
HL
16160/* find and rewrite pseudo imm in ld_imm64 instructions:
16161 *
16162 * 1. if it accesses map FD, replace it with actual map pointer.
16163 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16164 *
16165 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 16166 */
4976b718 16167static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
16168{
16169 struct bpf_insn *insn = env->prog->insnsi;
16170 int insn_cnt = env->prog->len;
fdc15d38 16171 int i, j, err;
0246e64d 16172
f1f7714e 16173 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
16174 if (err)
16175 return err;
16176
0246e64d 16177 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 16178 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 16179 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 16180 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
16181 return -EINVAL;
16182 }
16183
0246e64d 16184 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 16185 struct bpf_insn_aux_data *aux;
0246e64d
AS
16186 struct bpf_map *map;
16187 struct fd f;
d8eca5bb 16188 u64 addr;
387544bf 16189 u32 fd;
0246e64d
AS
16190
16191 if (i == insn_cnt - 1 || insn[1].code != 0 ||
16192 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16193 insn[1].off != 0) {
61bd5218 16194 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
16195 return -EINVAL;
16196 }
16197
d8eca5bb 16198 if (insn[0].src_reg == 0)
0246e64d
AS
16199 /* valid generic load 64-bit imm */
16200 goto next_insn;
16201
4976b718
HL
16202 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16203 aux = &env->insn_aux_data[i];
16204 err = check_pseudo_btf_id(env, insn, aux);
16205 if (err)
16206 return err;
16207 goto next_insn;
16208 }
16209
69c087ba
YS
16210 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16211 aux = &env->insn_aux_data[i];
16212 aux->ptr_type = PTR_TO_FUNC;
16213 goto next_insn;
16214 }
16215
d8eca5bb
DB
16216 /* In final convert_pseudo_ld_imm64() step, this is
16217 * converted into regular 64-bit imm load insn.
16218 */
387544bf
AS
16219 switch (insn[0].src_reg) {
16220 case BPF_PSEUDO_MAP_VALUE:
16221 case BPF_PSEUDO_MAP_IDX_VALUE:
16222 break;
16223 case BPF_PSEUDO_MAP_FD:
16224 case BPF_PSEUDO_MAP_IDX:
16225 if (insn[1].imm == 0)
16226 break;
16227 fallthrough;
16228 default:
16229 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
16230 return -EINVAL;
16231 }
16232
387544bf
AS
16233 switch (insn[0].src_reg) {
16234 case BPF_PSEUDO_MAP_IDX_VALUE:
16235 case BPF_PSEUDO_MAP_IDX:
16236 if (bpfptr_is_null(env->fd_array)) {
16237 verbose(env, "fd_idx without fd_array is invalid\n");
16238 return -EPROTO;
16239 }
16240 if (copy_from_bpfptr_offset(&fd, env->fd_array,
16241 insn[0].imm * sizeof(fd),
16242 sizeof(fd)))
16243 return -EFAULT;
16244 break;
16245 default:
16246 fd = insn[0].imm;
16247 break;
16248 }
16249
16250 f = fdget(fd);
c2101297 16251 map = __bpf_map_get(f);
0246e64d 16252 if (IS_ERR(map)) {
61bd5218 16253 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 16254 insn[0].imm);
0246e64d
AS
16255 return PTR_ERR(map);
16256 }
16257
61bd5218 16258 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
16259 if (err) {
16260 fdput(f);
16261 return err;
16262 }
16263
d8eca5bb 16264 aux = &env->insn_aux_data[i];
387544bf
AS
16265 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16266 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
16267 addr = (unsigned long)map;
16268 } else {
16269 u32 off = insn[1].imm;
16270
16271 if (off >= BPF_MAX_VAR_OFF) {
16272 verbose(env, "direct value offset of %u is not allowed\n", off);
16273 fdput(f);
16274 return -EINVAL;
16275 }
16276
16277 if (!map->ops->map_direct_value_addr) {
16278 verbose(env, "no direct value access support for this map type\n");
16279 fdput(f);
16280 return -EINVAL;
16281 }
16282
16283 err = map->ops->map_direct_value_addr(map, &addr, off);
16284 if (err) {
16285 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16286 map->value_size, off);
16287 fdput(f);
16288 return err;
16289 }
16290
16291 aux->map_off = off;
16292 addr += off;
16293 }
16294
16295 insn[0].imm = (u32)addr;
16296 insn[1].imm = addr >> 32;
0246e64d
AS
16297
16298 /* check whether we recorded this map already */
d8eca5bb 16299 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 16300 if (env->used_maps[j] == map) {
d8eca5bb 16301 aux->map_index = j;
0246e64d
AS
16302 fdput(f);
16303 goto next_insn;
16304 }
d8eca5bb 16305 }
0246e64d
AS
16306
16307 if (env->used_map_cnt >= MAX_USED_MAPS) {
16308 fdput(f);
16309 return -E2BIG;
16310 }
16311
0246e64d
AS
16312 /* hold the map. If the program is rejected by verifier,
16313 * the map will be released by release_maps() or it
16314 * will be used by the valid program until it's unloaded
ab7f5bf0 16315 * and all maps are released in free_used_maps()
0246e64d 16316 */
1e0bd5a0 16317 bpf_map_inc(map);
d8eca5bb
DB
16318
16319 aux->map_index = env->used_map_cnt;
92117d84
AS
16320 env->used_maps[env->used_map_cnt++] = map;
16321
b741f163 16322 if (bpf_map_is_cgroup_storage(map) &&
e4730423 16323 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 16324 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
16325 fdput(f);
16326 return -EBUSY;
16327 }
16328
0246e64d
AS
16329 fdput(f);
16330next_insn:
16331 insn++;
16332 i++;
5e581dad
DB
16333 continue;
16334 }
16335
16336 /* Basic sanity check before we invest more work here. */
16337 if (!bpf_opcode_in_insntable(insn->code)) {
16338 verbose(env, "unknown opcode %02x\n", insn->code);
16339 return -EINVAL;
0246e64d
AS
16340 }
16341 }
16342
16343 /* now all pseudo BPF_LD_IMM64 instructions load valid
16344 * 'struct bpf_map *' into a register instead of user map_fd.
16345 * These pointers will be used later by verifier to validate map access.
16346 */
16347 return 0;
16348}
16349
16350/* drop refcnt of maps used by the rejected program */
58e2af8b 16351static void release_maps(struct bpf_verifier_env *env)
0246e64d 16352{
a2ea0746
DB
16353 __bpf_free_used_maps(env->prog->aux, env->used_maps,
16354 env->used_map_cnt);
0246e64d
AS
16355}
16356
541c3bad
AN
16357/* drop refcnt of maps used by the rejected program */
16358static void release_btfs(struct bpf_verifier_env *env)
16359{
16360 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16361 env->used_btf_cnt);
16362}
16363
0246e64d 16364/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 16365static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
16366{
16367 struct bpf_insn *insn = env->prog->insnsi;
16368 int insn_cnt = env->prog->len;
16369 int i;
16370
69c087ba
YS
16371 for (i = 0; i < insn_cnt; i++, insn++) {
16372 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
16373 continue;
16374 if (insn->src_reg == BPF_PSEUDO_FUNC)
16375 continue;
16376 insn->src_reg = 0;
16377 }
0246e64d
AS
16378}
16379
8041902d
AS
16380/* single env->prog->insni[off] instruction was replaced with the range
16381 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
16382 * [0, off) and [off, end) to new locations, so the patched range stays zero
16383 */
75f0fc7b
HF
16384static void adjust_insn_aux_data(struct bpf_verifier_env *env,
16385 struct bpf_insn_aux_data *new_data,
16386 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 16387{
75f0fc7b 16388 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 16389 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 16390 u32 old_seen = old_data[off].seen;
b325fbca 16391 u32 prog_len;
c131187d 16392 int i;
8041902d 16393
b325fbca
JW
16394 /* aux info at OFF always needs adjustment, no matter fast path
16395 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
16396 * original insn at old prog.
16397 */
16398 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
16399
8041902d 16400 if (cnt == 1)
75f0fc7b 16401 return;
b325fbca 16402 prog_len = new_prog->len;
75f0fc7b 16403
8041902d
AS
16404 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
16405 memcpy(new_data + off + cnt - 1, old_data + off,
16406 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 16407 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
16408 /* Expand insni[off]'s seen count to the patched range. */
16409 new_data[i].seen = old_seen;
b325fbca
JW
16410 new_data[i].zext_dst = insn_has_def32(env, insn + i);
16411 }
8041902d
AS
16412 env->insn_aux_data = new_data;
16413 vfree(old_data);
8041902d
AS
16414}
16415
cc8b0b92
AS
16416static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
16417{
16418 int i;
16419
16420 if (len == 1)
16421 return;
4cb3d99c
JW
16422 /* NOTE: fake 'exit' subprog should be updated as well. */
16423 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 16424 if (env->subprog_info[i].start <= off)
cc8b0b92 16425 continue;
9c8105bd 16426 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
16427 }
16428}
16429
7506d211 16430static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
16431{
16432 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
16433 int i, sz = prog->aux->size_poke_tab;
16434 struct bpf_jit_poke_descriptor *desc;
16435
16436 for (i = 0; i < sz; i++) {
16437 desc = &tab[i];
7506d211
JF
16438 if (desc->insn_idx <= off)
16439 continue;
a748c697
MF
16440 desc->insn_idx += len - 1;
16441 }
16442}
16443
8041902d
AS
16444static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
16445 const struct bpf_insn *patch, u32 len)
16446{
16447 struct bpf_prog *new_prog;
75f0fc7b
HF
16448 struct bpf_insn_aux_data *new_data = NULL;
16449
16450 if (len > 1) {
16451 new_data = vzalloc(array_size(env->prog->len + len - 1,
16452 sizeof(struct bpf_insn_aux_data)));
16453 if (!new_data)
16454 return NULL;
16455 }
8041902d
AS
16456
16457 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
16458 if (IS_ERR(new_prog)) {
16459 if (PTR_ERR(new_prog) == -ERANGE)
16460 verbose(env,
16461 "insn %d cannot be patched due to 16-bit range\n",
16462 env->insn_aux_data[off].orig_idx);
75f0fc7b 16463 vfree(new_data);
8041902d 16464 return NULL;
4f73379e 16465 }
75f0fc7b 16466 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 16467 adjust_subprog_starts(env, off, len);
7506d211 16468 adjust_poke_descs(new_prog, off, len);
8041902d
AS
16469 return new_prog;
16470}
16471
52875a04
JK
16472static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
16473 u32 off, u32 cnt)
16474{
16475 int i, j;
16476
16477 /* find first prog starting at or after off (first to remove) */
16478 for (i = 0; i < env->subprog_cnt; i++)
16479 if (env->subprog_info[i].start >= off)
16480 break;
16481 /* find first prog starting at or after off + cnt (first to stay) */
16482 for (j = i; j < env->subprog_cnt; j++)
16483 if (env->subprog_info[j].start >= off + cnt)
16484 break;
16485 /* if j doesn't start exactly at off + cnt, we are just removing
16486 * the front of previous prog
16487 */
16488 if (env->subprog_info[j].start != off + cnt)
16489 j--;
16490
16491 if (j > i) {
16492 struct bpf_prog_aux *aux = env->prog->aux;
16493 int move;
16494
16495 /* move fake 'exit' subprog as well */
16496 move = env->subprog_cnt + 1 - j;
16497
16498 memmove(env->subprog_info + i,
16499 env->subprog_info + j,
16500 sizeof(*env->subprog_info) * move);
16501 env->subprog_cnt -= j - i;
16502
16503 /* remove func_info */
16504 if (aux->func_info) {
16505 move = aux->func_info_cnt - j;
16506
16507 memmove(aux->func_info + i,
16508 aux->func_info + j,
16509 sizeof(*aux->func_info) * move);
16510 aux->func_info_cnt -= j - i;
16511 /* func_info->insn_off is set after all code rewrites,
16512 * in adjust_btf_func() - no need to adjust
16513 */
16514 }
16515 } else {
16516 /* convert i from "first prog to remove" to "first to adjust" */
16517 if (env->subprog_info[i].start == off)
16518 i++;
16519 }
16520
16521 /* update fake 'exit' subprog as well */
16522 for (; i <= env->subprog_cnt; i++)
16523 env->subprog_info[i].start -= cnt;
16524
16525 return 0;
16526}
16527
16528static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
16529 u32 cnt)
16530{
16531 struct bpf_prog *prog = env->prog;
16532 u32 i, l_off, l_cnt, nr_linfo;
16533 struct bpf_line_info *linfo;
16534
16535 nr_linfo = prog->aux->nr_linfo;
16536 if (!nr_linfo)
16537 return 0;
16538
16539 linfo = prog->aux->linfo;
16540
16541 /* find first line info to remove, count lines to be removed */
16542 for (i = 0; i < nr_linfo; i++)
16543 if (linfo[i].insn_off >= off)
16544 break;
16545
16546 l_off = i;
16547 l_cnt = 0;
16548 for (; i < nr_linfo; i++)
16549 if (linfo[i].insn_off < off + cnt)
16550 l_cnt++;
16551 else
16552 break;
16553
16554 /* First live insn doesn't match first live linfo, it needs to "inherit"
16555 * last removed linfo. prog is already modified, so prog->len == off
16556 * means no live instructions after (tail of the program was removed).
16557 */
16558 if (prog->len != off && l_cnt &&
16559 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
16560 l_cnt--;
16561 linfo[--i].insn_off = off + cnt;
16562 }
16563
16564 /* remove the line info which refer to the removed instructions */
16565 if (l_cnt) {
16566 memmove(linfo + l_off, linfo + i,
16567 sizeof(*linfo) * (nr_linfo - i));
16568
16569 prog->aux->nr_linfo -= l_cnt;
16570 nr_linfo = prog->aux->nr_linfo;
16571 }
16572
16573 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
16574 for (i = l_off; i < nr_linfo; i++)
16575 linfo[i].insn_off -= cnt;
16576
16577 /* fix up all subprogs (incl. 'exit') which start >= off */
16578 for (i = 0; i <= env->subprog_cnt; i++)
16579 if (env->subprog_info[i].linfo_idx > l_off) {
16580 /* program may have started in the removed region but
16581 * may not be fully removed
16582 */
16583 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
16584 env->subprog_info[i].linfo_idx -= l_cnt;
16585 else
16586 env->subprog_info[i].linfo_idx = l_off;
16587 }
16588
16589 return 0;
16590}
16591
16592static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
16593{
16594 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16595 unsigned int orig_prog_len = env->prog->len;
16596 int err;
16597
9d03ebc7 16598 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
16599 bpf_prog_offload_remove_insns(env, off, cnt);
16600
52875a04
JK
16601 err = bpf_remove_insns(env->prog, off, cnt);
16602 if (err)
16603 return err;
16604
16605 err = adjust_subprog_starts_after_remove(env, off, cnt);
16606 if (err)
16607 return err;
16608
16609 err = bpf_adj_linfo_after_remove(env, off, cnt);
16610 if (err)
16611 return err;
16612
16613 memmove(aux_data + off, aux_data + off + cnt,
16614 sizeof(*aux_data) * (orig_prog_len - off - cnt));
16615
16616 return 0;
16617}
16618
2a5418a1
DB
16619/* The verifier does more data flow analysis than llvm and will not
16620 * explore branches that are dead at run time. Malicious programs can
16621 * have dead code too. Therefore replace all dead at-run-time code
16622 * with 'ja -1'.
16623 *
16624 * Just nops are not optimal, e.g. if they would sit at the end of the
16625 * program and through another bug we would manage to jump there, then
16626 * we'd execute beyond program memory otherwise. Returning exception
16627 * code also wouldn't work since we can have subprogs where the dead
16628 * code could be located.
c131187d
AS
16629 */
16630static void sanitize_dead_code(struct bpf_verifier_env *env)
16631{
16632 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 16633 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
16634 struct bpf_insn *insn = env->prog->insnsi;
16635 const int insn_cnt = env->prog->len;
16636 int i;
16637
16638 for (i = 0; i < insn_cnt; i++) {
16639 if (aux_data[i].seen)
16640 continue;
2a5418a1 16641 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 16642 aux_data[i].zext_dst = false;
c131187d
AS
16643 }
16644}
16645
e2ae4ca2
JK
16646static bool insn_is_cond_jump(u8 code)
16647{
16648 u8 op;
16649
092ed096
JW
16650 if (BPF_CLASS(code) == BPF_JMP32)
16651 return true;
16652
e2ae4ca2
JK
16653 if (BPF_CLASS(code) != BPF_JMP)
16654 return false;
16655
16656 op = BPF_OP(code);
16657 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
16658}
16659
16660static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
16661{
16662 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16663 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16664 struct bpf_insn *insn = env->prog->insnsi;
16665 const int insn_cnt = env->prog->len;
16666 int i;
16667
16668 for (i = 0; i < insn_cnt; i++, insn++) {
16669 if (!insn_is_cond_jump(insn->code))
16670 continue;
16671
16672 if (!aux_data[i + 1].seen)
16673 ja.off = insn->off;
16674 else if (!aux_data[i + 1 + insn->off].seen)
16675 ja.off = 0;
16676 else
16677 continue;
16678
9d03ebc7 16679 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
16680 bpf_prog_offload_replace_insn(env, i, &ja);
16681
e2ae4ca2
JK
16682 memcpy(insn, &ja, sizeof(ja));
16683 }
16684}
16685
52875a04
JK
16686static int opt_remove_dead_code(struct bpf_verifier_env *env)
16687{
16688 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16689 int insn_cnt = env->prog->len;
16690 int i, err;
16691
16692 for (i = 0; i < insn_cnt; i++) {
16693 int j;
16694
16695 j = 0;
16696 while (i + j < insn_cnt && !aux_data[i + j].seen)
16697 j++;
16698 if (!j)
16699 continue;
16700
16701 err = verifier_remove_insns(env, i, j);
16702 if (err)
16703 return err;
16704 insn_cnt = env->prog->len;
16705 }
16706
16707 return 0;
16708}
16709
a1b14abc
JK
16710static int opt_remove_nops(struct bpf_verifier_env *env)
16711{
16712 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16713 struct bpf_insn *insn = env->prog->insnsi;
16714 int insn_cnt = env->prog->len;
16715 int i, err;
16716
16717 for (i = 0; i < insn_cnt; i++) {
16718 if (memcmp(&insn[i], &ja, sizeof(ja)))
16719 continue;
16720
16721 err = verifier_remove_insns(env, i, 1);
16722 if (err)
16723 return err;
16724 insn_cnt--;
16725 i--;
16726 }
16727
16728 return 0;
16729}
16730
d6c2308c
JW
16731static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
16732 const union bpf_attr *attr)
a4b1d3c1 16733{
d6c2308c 16734 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 16735 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 16736 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 16737 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 16738 struct bpf_prog *new_prog;
d6c2308c 16739 bool rnd_hi32;
a4b1d3c1 16740
d6c2308c 16741 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 16742 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
16743 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
16744 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
16745 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
16746 for (i = 0; i < len; i++) {
16747 int adj_idx = i + delta;
16748 struct bpf_insn insn;
83a28819 16749 int load_reg;
a4b1d3c1 16750
d6c2308c 16751 insn = insns[adj_idx];
83a28819 16752 load_reg = insn_def_regno(&insn);
d6c2308c
JW
16753 if (!aux[adj_idx].zext_dst) {
16754 u8 code, class;
16755 u32 imm_rnd;
16756
16757 if (!rnd_hi32)
16758 continue;
16759
16760 code = insn.code;
16761 class = BPF_CLASS(code);
83a28819 16762 if (load_reg == -1)
d6c2308c
JW
16763 continue;
16764
16765 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
16766 * BPF_STX + SRC_OP, so it is safe to pass NULL
16767 * here.
d6c2308c 16768 */
83a28819 16769 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
16770 if (class == BPF_LD &&
16771 BPF_MODE(code) == BPF_IMM)
16772 i++;
16773 continue;
16774 }
16775
16776 /* ctx load could be transformed into wider load. */
16777 if (class == BPF_LDX &&
16778 aux[adj_idx].ptr_type == PTR_TO_CTX)
16779 continue;
16780
a251c17a 16781 imm_rnd = get_random_u32();
d6c2308c
JW
16782 rnd_hi32_patch[0] = insn;
16783 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 16784 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
16785 patch = rnd_hi32_patch;
16786 patch_len = 4;
16787 goto apply_patch_buffer;
16788 }
16789
39491867
BJ
16790 /* Add in an zero-extend instruction if a) the JIT has requested
16791 * it or b) it's a CMPXCHG.
16792 *
16793 * The latter is because: BPF_CMPXCHG always loads a value into
16794 * R0, therefore always zero-extends. However some archs'
16795 * equivalent instruction only does this load when the
16796 * comparison is successful. This detail of CMPXCHG is
16797 * orthogonal to the general zero-extension behaviour of the
16798 * CPU, so it's treated independently of bpf_jit_needs_zext.
16799 */
16800 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
16801 continue;
16802
d35af0a7
BT
16803 /* Zero-extension is done by the caller. */
16804 if (bpf_pseudo_kfunc_call(&insn))
16805 continue;
16806
83a28819
IL
16807 if (WARN_ON(load_reg == -1)) {
16808 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
16809 return -EFAULT;
b2e37a71
IL
16810 }
16811
a4b1d3c1 16812 zext_patch[0] = insn;
b2e37a71
IL
16813 zext_patch[1].dst_reg = load_reg;
16814 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
16815 patch = zext_patch;
16816 patch_len = 2;
16817apply_patch_buffer:
16818 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
16819 if (!new_prog)
16820 return -ENOMEM;
16821 env->prog = new_prog;
16822 insns = new_prog->insnsi;
16823 aux = env->insn_aux_data;
d6c2308c 16824 delta += patch_len - 1;
a4b1d3c1
JW
16825 }
16826
16827 return 0;
16828}
16829
c64b7983
JS
16830/* convert load instructions that access fields of a context type into a
16831 * sequence of instructions that access fields of the underlying structure:
16832 * struct __sk_buff -> struct sk_buff
16833 * struct bpf_sock_ops -> struct sock
9bac3d6d 16834 */
58e2af8b 16835static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 16836{
00176a34 16837 const struct bpf_verifier_ops *ops = env->ops;
f96da094 16838 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 16839 const int insn_cnt = env->prog->len;
36bbef52 16840 struct bpf_insn insn_buf[16], *insn;
46f53a65 16841 u32 target_size, size_default, off;
9bac3d6d 16842 struct bpf_prog *new_prog;
d691f9e8 16843 enum bpf_access_type type;
f96da094 16844 bool is_narrower_load;
9bac3d6d 16845
b09928b9
DB
16846 if (ops->gen_prologue || env->seen_direct_write) {
16847 if (!ops->gen_prologue) {
16848 verbose(env, "bpf verifier is misconfigured\n");
16849 return -EINVAL;
16850 }
36bbef52
DB
16851 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
16852 env->prog);
16853 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 16854 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
16855 return -EINVAL;
16856 } else if (cnt) {
8041902d 16857 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
16858 if (!new_prog)
16859 return -ENOMEM;
8041902d 16860
36bbef52 16861 env->prog = new_prog;
3df126f3 16862 delta += cnt - 1;
36bbef52
DB
16863 }
16864 }
16865
9d03ebc7 16866 if (bpf_prog_is_offloaded(env->prog->aux))
9bac3d6d
AS
16867 return 0;
16868
3df126f3 16869 insn = env->prog->insnsi + delta;
36bbef52 16870
9bac3d6d 16871 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
16872 bpf_convert_ctx_access_t convert_ctx_access;
16873
62c7989b
DB
16874 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
16875 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
16876 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 16877 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 16878 type = BPF_READ;
2039f26f
DB
16879 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
16880 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
16881 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
16882 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
16883 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
16884 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
16885 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
16886 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 16887 type = BPF_WRITE;
2039f26f 16888 } else {
9bac3d6d 16889 continue;
2039f26f 16890 }
9bac3d6d 16891
af86ca4e 16892 if (type == BPF_WRITE &&
2039f26f 16893 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 16894 struct bpf_insn patch[] = {
af86ca4e 16895 *insn,
2039f26f 16896 BPF_ST_NOSPEC(),
af86ca4e
AS
16897 };
16898
16899 cnt = ARRAY_SIZE(patch);
16900 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
16901 if (!new_prog)
16902 return -ENOMEM;
16903
16904 delta += cnt - 1;
16905 env->prog = new_prog;
16906 insn = new_prog->insnsi + i + delta;
16907 continue;
16908 }
16909
6efe152d 16910 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
16911 case PTR_TO_CTX:
16912 if (!ops->convert_ctx_access)
16913 continue;
16914 convert_ctx_access = ops->convert_ctx_access;
16915 break;
16916 case PTR_TO_SOCKET:
46f8bc92 16917 case PTR_TO_SOCK_COMMON:
c64b7983
JS
16918 convert_ctx_access = bpf_sock_convert_ctx_access;
16919 break;
655a51e5
MKL
16920 case PTR_TO_TCP_SOCK:
16921 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
16922 break;
fada7fdc
JL
16923 case PTR_TO_XDP_SOCK:
16924 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
16925 break;
2a02759e 16926 case PTR_TO_BTF_ID:
6efe152d 16927 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
282de143
KKD
16928 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
16929 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
16930 * be said once it is marked PTR_UNTRUSTED, hence we must handle
16931 * any faults for loads into such types. BPF_WRITE is disallowed
16932 * for this case.
16933 */
16934 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
27ae7997
MKL
16935 if (type == BPF_READ) {
16936 insn->code = BPF_LDX | BPF_PROBE_MEM |
16937 BPF_SIZE((insn)->code);
16938 env->prog->aux->num_exentries++;
2a02759e 16939 }
2a02759e 16940 continue;
c64b7983 16941 default:
9bac3d6d 16942 continue;
c64b7983 16943 }
9bac3d6d 16944
31fd8581 16945 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 16946 size = BPF_LDST_BYTES(insn);
31fd8581
YS
16947
16948 /* If the read access is a narrower load of the field,
16949 * convert to a 4/8-byte load, to minimum program type specific
16950 * convert_ctx_access changes. If conversion is successful,
16951 * we will apply proper mask to the result.
16952 */
f96da094 16953 is_narrower_load = size < ctx_field_size;
46f53a65
AI
16954 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
16955 off = insn->off;
31fd8581 16956 if (is_narrower_load) {
f96da094
DB
16957 u8 size_code;
16958
16959 if (type == BPF_WRITE) {
61bd5218 16960 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
16961 return -EINVAL;
16962 }
31fd8581 16963
f96da094 16964 size_code = BPF_H;
31fd8581
YS
16965 if (ctx_field_size == 4)
16966 size_code = BPF_W;
16967 else if (ctx_field_size == 8)
16968 size_code = BPF_DW;
f96da094 16969
bc23105c 16970 insn->off = off & ~(size_default - 1);
31fd8581
YS
16971 insn->code = BPF_LDX | BPF_MEM | size_code;
16972 }
f96da094
DB
16973
16974 target_size = 0;
c64b7983
JS
16975 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
16976 &target_size);
f96da094
DB
16977 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
16978 (ctx_field_size && !target_size)) {
61bd5218 16979 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
16980 return -EINVAL;
16981 }
f96da094
DB
16982
16983 if (is_narrower_load && size < target_size) {
d895a0f1
IL
16984 u8 shift = bpf_ctx_narrow_access_offset(
16985 off, size, size_default) * 8;
d7af7e49
AI
16986 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
16987 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
16988 return -EINVAL;
16989 }
46f53a65
AI
16990 if (ctx_field_size <= 4) {
16991 if (shift)
16992 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
16993 insn->dst_reg,
16994 shift);
31fd8581 16995 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 16996 (1 << size * 8) - 1);
46f53a65
AI
16997 } else {
16998 if (shift)
16999 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17000 insn->dst_reg,
17001 shift);
31fd8581 17002 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 17003 (1ULL << size * 8) - 1);
46f53a65 17004 }
31fd8581 17005 }
9bac3d6d 17006
8041902d 17007 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
17008 if (!new_prog)
17009 return -ENOMEM;
17010
3df126f3 17011 delta += cnt - 1;
9bac3d6d
AS
17012
17013 /* keep walking new program and skip insns we just inserted */
17014 env->prog = new_prog;
3df126f3 17015 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
17016 }
17017
17018 return 0;
17019}
17020
1c2a088a
AS
17021static int jit_subprogs(struct bpf_verifier_env *env)
17022{
17023 struct bpf_prog *prog = env->prog, **func, *tmp;
17024 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 17025 struct bpf_map *map_ptr;
7105e828 17026 struct bpf_insn *insn;
1c2a088a 17027 void *old_bpf_func;
c4c0bdc0 17028 int err, num_exentries;
1c2a088a 17029
f910cefa 17030 if (env->subprog_cnt <= 1)
1c2a088a
AS
17031 return 0;
17032
7105e828 17033 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 17034 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 17035 continue;
69c087ba 17036
c7a89784
DB
17037 /* Upon error here we cannot fall back to interpreter but
17038 * need a hard reject of the program. Thus -EFAULT is
17039 * propagated in any case.
17040 */
1c2a088a
AS
17041 subprog = find_subprog(env, i + insn->imm + 1);
17042 if (subprog < 0) {
17043 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17044 i + insn->imm + 1);
17045 return -EFAULT;
17046 }
17047 /* temporarily remember subprog id inside insn instead of
17048 * aux_data, since next loop will split up all insns into funcs
17049 */
f910cefa 17050 insn->off = subprog;
1c2a088a
AS
17051 /* remember original imm in case JIT fails and fallback
17052 * to interpreter will be needed
17053 */
17054 env->insn_aux_data[i].call_imm = insn->imm;
17055 /* point imm to __bpf_call_base+1 from JITs point of view */
17056 insn->imm = 1;
3990ed4c
MKL
17057 if (bpf_pseudo_func(insn))
17058 /* jit (e.g. x86_64) may emit fewer instructions
17059 * if it learns a u32 imm is the same as a u64 imm.
17060 * Force a non zero here.
17061 */
17062 insn[1].imm = 1;
1c2a088a
AS
17063 }
17064
c454a46b
MKL
17065 err = bpf_prog_alloc_jited_linfo(prog);
17066 if (err)
17067 goto out_undo_insn;
17068
17069 err = -ENOMEM;
6396bb22 17070 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 17071 if (!func)
c7a89784 17072 goto out_undo_insn;
1c2a088a 17073
f910cefa 17074 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 17075 subprog_start = subprog_end;
4cb3d99c 17076 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
17077
17078 len = subprog_end - subprog_start;
fb7dd8bc 17079 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
17080 * hence main prog stats include the runtime of subprogs.
17081 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 17082 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
17083 */
17084 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
17085 if (!func[i])
17086 goto out_free;
17087 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17088 len * sizeof(struct bpf_insn));
4f74d809 17089 func[i]->type = prog->type;
1c2a088a 17090 func[i]->len = len;
4f74d809
DB
17091 if (bpf_prog_calc_tag(func[i]))
17092 goto out_free;
1c2a088a 17093 func[i]->is_func = 1;
ba64e7d8 17094 func[i]->aux->func_idx = i;
f263a814 17095 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
17096 func[i]->aux->btf = prog->aux->btf;
17097 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 17098 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
17099 func[i]->aux->poke_tab = prog->aux->poke_tab;
17100 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 17101
a748c697 17102 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 17103 struct bpf_jit_poke_descriptor *poke;
a748c697 17104
f263a814
JF
17105 poke = &prog->aux->poke_tab[j];
17106 if (poke->insn_idx < subprog_end &&
17107 poke->insn_idx >= subprog_start)
17108 poke->aux = func[i]->aux;
a748c697
MF
17109 }
17110
1c2a088a 17111 func[i]->aux->name[0] = 'F';
9c8105bd 17112 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 17113 func[i]->jit_requested = 1;
d2a3b7c5 17114 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 17115 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 17116 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
17117 func[i]->aux->linfo = prog->aux->linfo;
17118 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17119 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17120 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
17121 num_exentries = 0;
17122 insn = func[i]->insnsi;
17123 for (j = 0; j < func[i]->len; j++, insn++) {
17124 if (BPF_CLASS(insn->code) == BPF_LDX &&
17125 BPF_MODE(insn->code) == BPF_PROBE_MEM)
17126 num_exentries++;
17127 }
17128 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 17129 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
17130 func[i] = bpf_int_jit_compile(func[i]);
17131 if (!func[i]->jited) {
17132 err = -ENOTSUPP;
17133 goto out_free;
17134 }
17135 cond_resched();
17136 }
a748c697 17137
1c2a088a
AS
17138 /* at this point all bpf functions were successfully JITed
17139 * now populate all bpf_calls with correct addresses and
17140 * run last pass of JIT
17141 */
f910cefa 17142 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17143 insn = func[i]->insnsi;
17144 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 17145 if (bpf_pseudo_func(insn)) {
3990ed4c 17146 subprog = insn->off;
69c087ba
YS
17147 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17148 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17149 continue;
17150 }
23a2d70c 17151 if (!bpf_pseudo_call(insn))
1c2a088a
AS
17152 continue;
17153 subprog = insn->off;
3d717fad 17154 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 17155 }
2162fed4
SD
17156
17157 /* we use the aux data to keep a list of the start addresses
17158 * of the JITed images for each function in the program
17159 *
17160 * for some architectures, such as powerpc64, the imm field
17161 * might not be large enough to hold the offset of the start
17162 * address of the callee's JITed image from __bpf_call_base
17163 *
17164 * in such cases, we can lookup the start address of a callee
17165 * by using its subprog id, available from the off field of
17166 * the call instruction, as an index for this list
17167 */
17168 func[i]->aux->func = func;
17169 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 17170 }
f910cefa 17171 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17172 old_bpf_func = func[i]->bpf_func;
17173 tmp = bpf_int_jit_compile(func[i]);
17174 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17175 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 17176 err = -ENOTSUPP;
1c2a088a
AS
17177 goto out_free;
17178 }
17179 cond_resched();
17180 }
17181
17182 /* finally lock prog and jit images for all functions and
17183 * populate kallsysm
17184 */
f910cefa 17185 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17186 bpf_prog_lock_ro(func[i]);
17187 bpf_prog_kallsyms_add(func[i]);
17188 }
7105e828
DB
17189
17190 /* Last step: make now unused interpreter insns from main
17191 * prog consistent for later dump requests, so they can
17192 * later look the same as if they were interpreted only.
17193 */
17194 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
17195 if (bpf_pseudo_func(insn)) {
17196 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
17197 insn[1].imm = insn->off;
17198 insn->off = 0;
69c087ba
YS
17199 continue;
17200 }
23a2d70c 17201 if (!bpf_pseudo_call(insn))
7105e828
DB
17202 continue;
17203 insn->off = env->insn_aux_data[i].call_imm;
17204 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 17205 insn->imm = subprog;
7105e828
DB
17206 }
17207
1c2a088a
AS
17208 prog->jited = 1;
17209 prog->bpf_func = func[0]->bpf_func;
d00c6473 17210 prog->jited_len = func[0]->jited_len;
1c2a088a 17211 prog->aux->func = func;
f910cefa 17212 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 17213 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
17214 return 0;
17215out_free:
f263a814
JF
17216 /* We failed JIT'ing, so at this point we need to unregister poke
17217 * descriptors from subprogs, so that kernel is not attempting to
17218 * patch it anymore as we're freeing the subprog JIT memory.
17219 */
17220 for (i = 0; i < prog->aux->size_poke_tab; i++) {
17221 map_ptr = prog->aux->poke_tab[i].tail_call.map;
17222 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17223 }
17224 /* At this point we're guaranteed that poke descriptors are not
17225 * live anymore. We can just unlink its descriptor table as it's
17226 * released with the main prog.
17227 */
a748c697
MF
17228 for (i = 0; i < env->subprog_cnt; i++) {
17229 if (!func[i])
17230 continue;
f263a814 17231 func[i]->aux->poke_tab = NULL;
a748c697
MF
17232 bpf_jit_free(func[i]);
17233 }
1c2a088a 17234 kfree(func);
c7a89784 17235out_undo_insn:
1c2a088a
AS
17236 /* cleanup main prog to be interpreted */
17237 prog->jit_requested = 0;
d2a3b7c5 17238 prog->blinding_requested = 0;
1c2a088a 17239 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 17240 if (!bpf_pseudo_call(insn))
1c2a088a
AS
17241 continue;
17242 insn->off = 0;
17243 insn->imm = env->insn_aux_data[i].call_imm;
17244 }
e16301fb 17245 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
17246 return err;
17247}
17248
1ea47e01
AS
17249static int fixup_call_args(struct bpf_verifier_env *env)
17250{
19d28fbd 17251#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
17252 struct bpf_prog *prog = env->prog;
17253 struct bpf_insn *insn = prog->insnsi;
e6ac2450 17254 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 17255 int i, depth;
19d28fbd 17256#endif
e4052d06 17257 int err = 0;
1ea47e01 17258
e4052d06 17259 if (env->prog->jit_requested &&
9d03ebc7 17260 !bpf_prog_is_offloaded(env->prog->aux)) {
19d28fbd
DM
17261 err = jit_subprogs(env);
17262 if (err == 0)
1c2a088a 17263 return 0;
c7a89784
DB
17264 if (err == -EFAULT)
17265 return err;
19d28fbd
DM
17266 }
17267#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
17268 if (has_kfunc_call) {
17269 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17270 return -EINVAL;
17271 }
e411901c
MF
17272 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17273 /* When JIT fails the progs with bpf2bpf calls and tail_calls
17274 * have to be rejected, since interpreter doesn't support them yet.
17275 */
17276 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17277 return -EINVAL;
17278 }
1ea47e01 17279 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
17280 if (bpf_pseudo_func(insn)) {
17281 /* When JIT fails the progs with callback calls
17282 * have to be rejected, since interpreter doesn't support them yet.
17283 */
17284 verbose(env, "callbacks are not allowed in non-JITed programs\n");
17285 return -EINVAL;
17286 }
17287
23a2d70c 17288 if (!bpf_pseudo_call(insn))
1ea47e01
AS
17289 continue;
17290 depth = get_callee_stack_depth(env, insn, i);
17291 if (depth < 0)
17292 return depth;
17293 bpf_patch_call_args(insn, depth);
17294 }
19d28fbd
DM
17295 err = 0;
17296#endif
17297 return err;
1ea47e01
AS
17298}
17299
958cf2e2
KKD
17300static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17301 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
17302{
17303 const struct bpf_kfunc_desc *desc;
3d76a4d3 17304 void *xdp_kfunc;
e6ac2450 17305
a5d82727
KKD
17306 if (!insn->imm) {
17307 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17308 return -EINVAL;
17309 }
17310
3d76a4d3
SF
17311 *cnt = 0;
17312
17313 if (bpf_dev_bound_kfunc_id(insn->imm)) {
17314 xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm);
17315 if (xdp_kfunc) {
17316 insn->imm = BPF_CALL_IMM(xdp_kfunc);
17317 return 0;
17318 }
17319
17320 /* fallback to default kfunc when not supported by netdev */
17321 }
17322
e6ac2450 17323 /* insn->imm has the btf func_id. Replace it with
c2cc0ce7 17324 * an address (relative to __bpf_call_base).
e6ac2450 17325 */
2357672c 17326 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
17327 if (!desc) {
17328 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
17329 insn->imm);
17330 return -EFAULT;
17331 }
17332
17333 insn->imm = desc->imm;
958cf2e2
KKD
17334 if (insn->off)
17335 return 0;
17336 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
17337 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17338 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17339 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 17340
958cf2e2
KKD
17341 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
17342 insn_buf[1] = addr[0];
17343 insn_buf[2] = addr[1];
17344 insn_buf[3] = *insn;
17345 *cnt = 4;
ac9f0605
KKD
17346 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
17347 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17348 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17349
17350 insn_buf[0] = addr[0];
17351 insn_buf[1] = addr[1];
17352 insn_buf[2] = *insn;
17353 *cnt = 3;
a35b9af4
YS
17354 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
17355 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
fd264ca0
YS
17356 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
17357 *cnt = 1;
b5964b96
JK
17358 } else if (desc->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17359 bool seen_direct_write = env->seen_direct_write;
17360 bool is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17361
17362 if (is_rdonly)
17363 insn->imm = BPF_CALL_IMM(bpf_dynptr_from_skb_rdonly);
17364
17365 /* restore env->seen_direct_write to its original value, since
17366 * may_access_direct_pkt_data mutates it
17367 */
17368 env->seen_direct_write = seen_direct_write;
958cf2e2 17369 }
e6ac2450
MKL
17370 return 0;
17371}
17372
e6ac5933
BJ
17373/* Do various post-verification rewrites in a single program pass.
17374 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 17375 */
e6ac5933 17376static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 17377{
79741b3b 17378 struct bpf_prog *prog = env->prog;
f92c1e18 17379 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 17380 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 17381 struct bpf_insn *insn = prog->insnsi;
e245c5c6 17382 const struct bpf_func_proto *fn;
79741b3b 17383 const int insn_cnt = prog->len;
09772d92 17384 const struct bpf_map_ops *ops;
c93552c4 17385 struct bpf_insn_aux_data *aux;
81ed18ab
AS
17386 struct bpf_insn insn_buf[16];
17387 struct bpf_prog *new_prog;
17388 struct bpf_map *map_ptr;
d2e4c1e6 17389 int i, ret, cnt, delta = 0;
e245c5c6 17390
79741b3b 17391 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 17392 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
17393 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
17394 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
17395 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 17396 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 17397 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
17398 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
17399 struct bpf_insn *patchlet;
17400 struct bpf_insn chk_and_div[] = {
9b00f1b7 17401 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
17402 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17403 BPF_JNE | BPF_K, insn->src_reg,
17404 0, 2, 0),
f6b1b3bf
DB
17405 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
17406 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17407 *insn,
17408 };
e88b2c6e 17409 struct bpf_insn chk_and_mod[] = {
9b00f1b7 17410 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
17411 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17412 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 17413 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 17414 *insn,
9b00f1b7
DB
17415 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17416 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 17417 };
f6b1b3bf 17418
e88b2c6e
DB
17419 patchlet = isdiv ? chk_and_div : chk_and_mod;
17420 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 17421 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
17422
17423 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
17424 if (!new_prog)
17425 return -ENOMEM;
17426
17427 delta += cnt - 1;
17428 env->prog = prog = new_prog;
17429 insn = new_prog->insnsi + i + delta;
17430 continue;
17431 }
17432
e6ac5933 17433 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
17434 if (BPF_CLASS(insn->code) == BPF_LD &&
17435 (BPF_MODE(insn->code) == BPF_ABS ||
17436 BPF_MODE(insn->code) == BPF_IND)) {
17437 cnt = env->ops->gen_ld_abs(insn, insn_buf);
17438 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17439 verbose(env, "bpf verifier is misconfigured\n");
17440 return -EINVAL;
17441 }
17442
17443 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17444 if (!new_prog)
17445 return -ENOMEM;
17446
17447 delta += cnt - 1;
17448 env->prog = prog = new_prog;
17449 insn = new_prog->insnsi + i + delta;
17450 continue;
17451 }
17452
e6ac5933 17453 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
17454 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
17455 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
17456 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
17457 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 17458 struct bpf_insn *patch = &insn_buf[0];
801c6058 17459 bool issrc, isneg, isimm;
979d63d5
DB
17460 u32 off_reg;
17461
17462 aux = &env->insn_aux_data[i + delta];
3612af78
DB
17463 if (!aux->alu_state ||
17464 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
17465 continue;
17466
17467 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
17468 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
17469 BPF_ALU_SANITIZE_SRC;
801c6058 17470 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
17471
17472 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
17473 if (isimm) {
17474 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17475 } else {
17476 if (isneg)
17477 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17478 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17479 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
17480 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
17481 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
17482 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
17483 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
17484 }
b9b34ddb
DB
17485 if (!issrc)
17486 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
17487 insn->src_reg = BPF_REG_AX;
979d63d5
DB
17488 if (isneg)
17489 insn->code = insn->code == code_add ?
17490 code_sub : code_add;
17491 *patch++ = *insn;
801c6058 17492 if (issrc && isneg && !isimm)
979d63d5
DB
17493 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17494 cnt = patch - insn_buf;
17495
17496 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17497 if (!new_prog)
17498 return -ENOMEM;
17499
17500 delta += cnt - 1;
17501 env->prog = prog = new_prog;
17502 insn = new_prog->insnsi + i + delta;
17503 continue;
17504 }
17505
79741b3b
AS
17506 if (insn->code != (BPF_JMP | BPF_CALL))
17507 continue;
cc8b0b92
AS
17508 if (insn->src_reg == BPF_PSEUDO_CALL)
17509 continue;
e6ac2450 17510 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 17511 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
17512 if (ret)
17513 return ret;
958cf2e2
KKD
17514 if (cnt == 0)
17515 continue;
17516
17517 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17518 if (!new_prog)
17519 return -ENOMEM;
17520
17521 delta += cnt - 1;
17522 env->prog = prog = new_prog;
17523 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
17524 continue;
17525 }
e245c5c6 17526
79741b3b
AS
17527 if (insn->imm == BPF_FUNC_get_route_realm)
17528 prog->dst_needed = 1;
17529 if (insn->imm == BPF_FUNC_get_prandom_u32)
17530 bpf_user_rnd_init_once();
9802d865
JB
17531 if (insn->imm == BPF_FUNC_override_return)
17532 prog->kprobe_override = 1;
79741b3b 17533 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
17534 /* If we tail call into other programs, we
17535 * cannot make any assumptions since they can
17536 * be replaced dynamically during runtime in
17537 * the program array.
17538 */
17539 prog->cb_access = 1;
e411901c
MF
17540 if (!allow_tail_call_in_subprogs(env))
17541 prog->aux->stack_depth = MAX_BPF_STACK;
17542 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 17543
79741b3b 17544 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 17545 * conditional branch in the interpreter for every normal
79741b3b
AS
17546 * call and to prevent accidental JITing by JIT compiler
17547 * that doesn't support bpf_tail_call yet
e245c5c6 17548 */
79741b3b 17549 insn->imm = 0;
71189fa9 17550 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 17551
c93552c4 17552 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 17553 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 17554 prog->jit_requested &&
d2e4c1e6
DB
17555 !bpf_map_key_poisoned(aux) &&
17556 !bpf_map_ptr_poisoned(aux) &&
17557 !bpf_map_ptr_unpriv(aux)) {
17558 struct bpf_jit_poke_descriptor desc = {
17559 .reason = BPF_POKE_REASON_TAIL_CALL,
17560 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
17561 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 17562 .insn_idx = i + delta,
d2e4c1e6
DB
17563 };
17564
17565 ret = bpf_jit_add_poke_descriptor(prog, &desc);
17566 if (ret < 0) {
17567 verbose(env, "adding tail call poke descriptor failed\n");
17568 return ret;
17569 }
17570
17571 insn->imm = ret + 1;
17572 continue;
17573 }
17574
c93552c4
DB
17575 if (!bpf_map_ptr_unpriv(aux))
17576 continue;
17577
b2157399
AS
17578 /* instead of changing every JIT dealing with tail_call
17579 * emit two extra insns:
17580 * if (index >= max_entries) goto out;
17581 * index &= array->index_mask;
17582 * to avoid out-of-bounds cpu speculation
17583 */
c93552c4 17584 if (bpf_map_ptr_poisoned(aux)) {
40950343 17585 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
17586 return -EINVAL;
17587 }
c93552c4 17588
d2e4c1e6 17589 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
17590 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
17591 map_ptr->max_entries, 2);
17592 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
17593 container_of(map_ptr,
17594 struct bpf_array,
17595 map)->index_mask);
17596 insn_buf[2] = *insn;
17597 cnt = 3;
17598 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17599 if (!new_prog)
17600 return -ENOMEM;
17601
17602 delta += cnt - 1;
17603 env->prog = prog = new_prog;
17604 insn = new_prog->insnsi + i + delta;
79741b3b
AS
17605 continue;
17606 }
e245c5c6 17607
b00628b1
AS
17608 if (insn->imm == BPF_FUNC_timer_set_callback) {
17609 /* The verifier will process callback_fn as many times as necessary
17610 * with different maps and the register states prepared by
17611 * set_timer_callback_state will be accurate.
17612 *
17613 * The following use case is valid:
17614 * map1 is shared by prog1, prog2, prog3.
17615 * prog1 calls bpf_timer_init for some map1 elements
17616 * prog2 calls bpf_timer_set_callback for some map1 elements.
17617 * Those that were not bpf_timer_init-ed will return -EINVAL.
17618 * prog3 calls bpf_timer_start for some map1 elements.
17619 * Those that were not both bpf_timer_init-ed and
17620 * bpf_timer_set_callback-ed will return -EINVAL.
17621 */
17622 struct bpf_insn ld_addrs[2] = {
17623 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
17624 };
17625
17626 insn_buf[0] = ld_addrs[0];
17627 insn_buf[1] = ld_addrs[1];
17628 insn_buf[2] = *insn;
17629 cnt = 3;
17630
17631 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17632 if (!new_prog)
17633 return -ENOMEM;
17634
17635 delta += cnt - 1;
17636 env->prog = prog = new_prog;
17637 insn = new_prog->insnsi + i + delta;
17638 goto patch_call_imm;
17639 }
17640
9bb00b28
YS
17641 if (is_storage_get_function(insn->imm)) {
17642 if (!env->prog->aux->sleepable ||
17643 env->insn_aux_data[i + delta].storage_get_func_atomic)
d56c9fe6 17644 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
9bb00b28
YS
17645 else
17646 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a
JK
17647 insn_buf[1] = *insn;
17648 cnt = 2;
17649
17650 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17651 if (!new_prog)
17652 return -ENOMEM;
17653
17654 delta += cnt - 1;
17655 env->prog = prog = new_prog;
17656 insn = new_prog->insnsi + i + delta;
17657 goto patch_call_imm;
17658 }
17659
89c63074 17660 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
17661 * and other inlining handlers are currently limited to 64 bit
17662 * only.
89c63074 17663 */
60b58afc 17664 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
17665 (insn->imm == BPF_FUNC_map_lookup_elem ||
17666 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
17667 insn->imm == BPF_FUNC_map_delete_elem ||
17668 insn->imm == BPF_FUNC_map_push_elem ||
17669 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 17670 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 17671 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
17672 insn->imm == BPF_FUNC_for_each_map_elem ||
17673 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
17674 aux = &env->insn_aux_data[i + delta];
17675 if (bpf_map_ptr_poisoned(aux))
17676 goto patch_call_imm;
17677
d2e4c1e6 17678 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
17679 ops = map_ptr->ops;
17680 if (insn->imm == BPF_FUNC_map_lookup_elem &&
17681 ops->map_gen_lookup) {
17682 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
17683 if (cnt == -EOPNOTSUPP)
17684 goto patch_map_ops_generic;
17685 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
17686 verbose(env, "bpf verifier is misconfigured\n");
17687 return -EINVAL;
17688 }
81ed18ab 17689
09772d92
DB
17690 new_prog = bpf_patch_insn_data(env, i + delta,
17691 insn_buf, cnt);
17692 if (!new_prog)
17693 return -ENOMEM;
81ed18ab 17694
09772d92
DB
17695 delta += cnt - 1;
17696 env->prog = prog = new_prog;
17697 insn = new_prog->insnsi + i + delta;
17698 continue;
17699 }
81ed18ab 17700
09772d92
DB
17701 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
17702 (void *(*)(struct bpf_map *map, void *key))NULL));
17703 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
d7ba4cc9 17704 (long (*)(struct bpf_map *map, void *key))NULL));
09772d92 17705 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
d7ba4cc9 17706 (long (*)(struct bpf_map *map, void *key, void *value,
09772d92 17707 u64 flags))NULL));
84430d42 17708 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
d7ba4cc9 17709 (long (*)(struct bpf_map *map, void *value,
84430d42
DB
17710 u64 flags))NULL));
17711 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
d7ba4cc9 17712 (long (*)(struct bpf_map *map, void *value))NULL));
84430d42 17713 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
d7ba4cc9 17714 (long (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 17715 BUILD_BUG_ON(!__same_type(ops->map_redirect,
d7ba4cc9 17716 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c 17717 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
d7ba4cc9 17718 (long (*)(struct bpf_map *map,
0640c77c
AI
17719 bpf_callback_t callback_fn,
17720 void *callback_ctx,
17721 u64 flags))NULL));
07343110
FZ
17722 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
17723 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 17724
4a8f87e6 17725patch_map_ops_generic:
09772d92
DB
17726 switch (insn->imm) {
17727 case BPF_FUNC_map_lookup_elem:
3d717fad 17728 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
17729 continue;
17730 case BPF_FUNC_map_update_elem:
3d717fad 17731 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
17732 continue;
17733 case BPF_FUNC_map_delete_elem:
3d717fad 17734 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 17735 continue;
84430d42 17736 case BPF_FUNC_map_push_elem:
3d717fad 17737 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
17738 continue;
17739 case BPF_FUNC_map_pop_elem:
3d717fad 17740 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
17741 continue;
17742 case BPF_FUNC_map_peek_elem:
3d717fad 17743 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 17744 continue;
e6a4750f 17745 case BPF_FUNC_redirect_map:
3d717fad 17746 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 17747 continue;
0640c77c
AI
17748 case BPF_FUNC_for_each_map_elem:
17749 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 17750 continue;
07343110
FZ
17751 case BPF_FUNC_map_lookup_percpu_elem:
17752 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
17753 continue;
09772d92 17754 }
81ed18ab 17755
09772d92 17756 goto patch_call_imm;
81ed18ab
AS
17757 }
17758
e6ac5933 17759 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
17760 if (prog->jit_requested && BITS_PER_LONG == 64 &&
17761 insn->imm == BPF_FUNC_jiffies64) {
17762 struct bpf_insn ld_jiffies_addr[2] = {
17763 BPF_LD_IMM64(BPF_REG_0,
17764 (unsigned long)&jiffies),
17765 };
17766
17767 insn_buf[0] = ld_jiffies_addr[0];
17768 insn_buf[1] = ld_jiffies_addr[1];
17769 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
17770 BPF_REG_0, 0);
17771 cnt = 3;
17772
17773 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
17774 cnt);
17775 if (!new_prog)
17776 return -ENOMEM;
17777
17778 delta += cnt - 1;
17779 env->prog = prog = new_prog;
17780 insn = new_prog->insnsi + i + delta;
17781 continue;
17782 }
17783
f92c1e18
JO
17784 /* Implement bpf_get_func_arg inline. */
17785 if (prog_type == BPF_PROG_TYPE_TRACING &&
17786 insn->imm == BPF_FUNC_get_func_arg) {
17787 /* Load nr_args from ctx - 8 */
17788 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17789 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
17790 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
17791 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
17792 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
17793 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17794 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
17795 insn_buf[7] = BPF_JMP_A(1);
17796 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
17797 cnt = 9;
17798
17799 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17800 if (!new_prog)
17801 return -ENOMEM;
17802
17803 delta += cnt - 1;
17804 env->prog = prog = new_prog;
17805 insn = new_prog->insnsi + i + delta;
17806 continue;
17807 }
17808
17809 /* Implement bpf_get_func_ret inline. */
17810 if (prog_type == BPF_PROG_TYPE_TRACING &&
17811 insn->imm == BPF_FUNC_get_func_ret) {
17812 if (eatype == BPF_TRACE_FEXIT ||
17813 eatype == BPF_MODIFY_RETURN) {
17814 /* Load nr_args from ctx - 8 */
17815 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17816 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
17817 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
17818 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17819 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
17820 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
17821 cnt = 6;
17822 } else {
17823 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
17824 cnt = 1;
17825 }
17826
17827 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17828 if (!new_prog)
17829 return -ENOMEM;
17830
17831 delta += cnt - 1;
17832 env->prog = prog = new_prog;
17833 insn = new_prog->insnsi + i + delta;
17834 continue;
17835 }
17836
17837 /* Implement get_func_arg_cnt inline. */
17838 if (prog_type == BPF_PROG_TYPE_TRACING &&
17839 insn->imm == BPF_FUNC_get_func_arg_cnt) {
17840 /* Load nr_args from ctx - 8 */
17841 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17842
17843 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17844 if (!new_prog)
17845 return -ENOMEM;
17846
17847 env->prog = prog = new_prog;
17848 insn = new_prog->insnsi + i + delta;
17849 continue;
17850 }
17851
f705ec76 17852 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
17853 if (prog_type == BPF_PROG_TYPE_TRACING &&
17854 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
17855 /* Load IP address from ctx - 16 */
17856 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
17857
17858 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17859 if (!new_prog)
17860 return -ENOMEM;
17861
17862 env->prog = prog = new_prog;
17863 insn = new_prog->insnsi + i + delta;
17864 continue;
17865 }
17866
81ed18ab 17867patch_call_imm:
5e43f899 17868 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
17869 /* all functions that have prototype and verifier allowed
17870 * programs to call them, must be real in-kernel functions
17871 */
17872 if (!fn->func) {
61bd5218
JK
17873 verbose(env,
17874 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
17875 func_id_name(insn->imm), insn->imm);
17876 return -EFAULT;
e245c5c6 17877 }
79741b3b 17878 insn->imm = fn->func - __bpf_call_base;
e245c5c6 17879 }
e245c5c6 17880
d2e4c1e6
DB
17881 /* Since poke tab is now finalized, publish aux to tracker. */
17882 for (i = 0; i < prog->aux->size_poke_tab; i++) {
17883 map_ptr = prog->aux->poke_tab[i].tail_call.map;
17884 if (!map_ptr->ops->map_poke_track ||
17885 !map_ptr->ops->map_poke_untrack ||
17886 !map_ptr->ops->map_poke_run) {
17887 verbose(env, "bpf verifier is misconfigured\n");
17888 return -EINVAL;
17889 }
17890
17891 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
17892 if (ret < 0) {
17893 verbose(env, "tracking tail call prog failed\n");
17894 return ret;
17895 }
17896 }
17897
e6ac2450
MKL
17898 sort_kfunc_descs_by_imm(env->prog);
17899
79741b3b
AS
17900 return 0;
17901}
e245c5c6 17902
1ade2371
EZ
17903static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
17904 int position,
17905 s32 stack_base,
17906 u32 callback_subprogno,
17907 u32 *cnt)
17908{
17909 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
17910 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
17911 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
17912 int reg_loop_max = BPF_REG_6;
17913 int reg_loop_cnt = BPF_REG_7;
17914 int reg_loop_ctx = BPF_REG_8;
17915
17916 struct bpf_prog *new_prog;
17917 u32 callback_start;
17918 u32 call_insn_offset;
17919 s32 callback_offset;
17920
17921 /* This represents an inlined version of bpf_iter.c:bpf_loop,
17922 * be careful to modify this code in sync.
17923 */
17924 struct bpf_insn insn_buf[] = {
17925 /* Return error and jump to the end of the patch if
17926 * expected number of iterations is too big.
17927 */
17928 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
17929 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
17930 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
17931 /* spill R6, R7, R8 to use these as loop vars */
17932 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
17933 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
17934 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
17935 /* initialize loop vars */
17936 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
17937 BPF_MOV32_IMM(reg_loop_cnt, 0),
17938 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
17939 /* loop header,
17940 * if reg_loop_cnt >= reg_loop_max skip the loop body
17941 */
17942 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
17943 /* callback call,
17944 * correct callback offset would be set after patching
17945 */
17946 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
17947 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
17948 BPF_CALL_REL(0),
17949 /* increment loop counter */
17950 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
17951 /* jump to loop header if callback returned 0 */
17952 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
17953 /* return value of bpf_loop,
17954 * set R0 to the number of iterations
17955 */
17956 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
17957 /* restore original values of R6, R7, R8 */
17958 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
17959 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
17960 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
17961 };
17962
17963 *cnt = ARRAY_SIZE(insn_buf);
17964 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
17965 if (!new_prog)
17966 return new_prog;
17967
17968 /* callback start is known only after patching */
17969 callback_start = env->subprog_info[callback_subprogno].start;
17970 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
17971 call_insn_offset = position + 12;
17972 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 17973 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
17974
17975 return new_prog;
17976}
17977
17978static bool is_bpf_loop_call(struct bpf_insn *insn)
17979{
17980 return insn->code == (BPF_JMP | BPF_CALL) &&
17981 insn->src_reg == 0 &&
17982 insn->imm == BPF_FUNC_loop;
17983}
17984
17985/* For all sub-programs in the program (including main) check
17986 * insn_aux_data to see if there are bpf_loop calls that require
17987 * inlining. If such calls are found the calls are replaced with a
17988 * sequence of instructions produced by `inline_bpf_loop` function and
17989 * subprog stack_depth is increased by the size of 3 registers.
17990 * This stack space is used to spill values of the R6, R7, R8. These
17991 * registers are used to store the loop bound, counter and context
17992 * variables.
17993 */
17994static int optimize_bpf_loop(struct bpf_verifier_env *env)
17995{
17996 struct bpf_subprog_info *subprogs = env->subprog_info;
17997 int i, cur_subprog = 0, cnt, delta = 0;
17998 struct bpf_insn *insn = env->prog->insnsi;
17999 int insn_cnt = env->prog->len;
18000 u16 stack_depth = subprogs[cur_subprog].stack_depth;
18001 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18002 u16 stack_depth_extra = 0;
18003
18004 for (i = 0; i < insn_cnt; i++, insn++) {
18005 struct bpf_loop_inline_state *inline_state =
18006 &env->insn_aux_data[i + delta].loop_inline_state;
18007
18008 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18009 struct bpf_prog *new_prog;
18010
18011 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18012 new_prog = inline_bpf_loop(env,
18013 i + delta,
18014 -(stack_depth + stack_depth_extra),
18015 inline_state->callback_subprogno,
18016 &cnt);
18017 if (!new_prog)
18018 return -ENOMEM;
18019
18020 delta += cnt - 1;
18021 env->prog = new_prog;
18022 insn = new_prog->insnsi + i + delta;
18023 }
18024
18025 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18026 subprogs[cur_subprog].stack_depth += stack_depth_extra;
18027 cur_subprog++;
18028 stack_depth = subprogs[cur_subprog].stack_depth;
18029 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18030 stack_depth_extra = 0;
18031 }
18032 }
18033
18034 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18035
18036 return 0;
18037}
18038
58e2af8b 18039static void free_states(struct bpf_verifier_env *env)
f1bca824 18040{
58e2af8b 18041 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
18042 int i;
18043
9f4686c4
AS
18044 sl = env->free_list;
18045 while (sl) {
18046 sln = sl->next;
18047 free_verifier_state(&sl->state, false);
18048 kfree(sl);
18049 sl = sln;
18050 }
51c39bb1 18051 env->free_list = NULL;
9f4686c4 18052
f1bca824
AS
18053 if (!env->explored_states)
18054 return;
18055
dc2a4ebc 18056 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
18057 sl = env->explored_states[i];
18058
a8f500af
AS
18059 while (sl) {
18060 sln = sl->next;
18061 free_verifier_state(&sl->state, false);
18062 kfree(sl);
18063 sl = sln;
18064 }
51c39bb1 18065 env->explored_states[i] = NULL;
f1bca824 18066 }
51c39bb1 18067}
f1bca824 18068
51c39bb1
AS
18069static int do_check_common(struct bpf_verifier_env *env, int subprog)
18070{
6f8a57cc 18071 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
18072 struct bpf_verifier_state *state;
18073 struct bpf_reg_state *regs;
18074 int ret, i;
18075
18076 env->prev_linfo = NULL;
18077 env->pass_cnt++;
18078
18079 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18080 if (!state)
18081 return -ENOMEM;
18082 state->curframe = 0;
18083 state->speculative = false;
18084 state->branches = 1;
18085 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18086 if (!state->frame[0]) {
18087 kfree(state);
18088 return -ENOMEM;
18089 }
18090 env->cur_state = state;
18091 init_func_state(env, state->frame[0],
18092 BPF_MAIN_FUNC /* callsite */,
18093 0 /* frameno */,
18094 subprog);
be2ef816
AN
18095 state->first_insn_idx = env->subprog_info[subprog].start;
18096 state->last_insn_idx = -1;
51c39bb1
AS
18097
18098 regs = state->frame[state->curframe]->regs;
be8704ff 18099 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
18100 ret = btf_prepare_func_args(env, subprog, regs);
18101 if (ret)
18102 goto out;
18103 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18104 if (regs[i].type == PTR_TO_CTX)
18105 mark_reg_known_zero(env, regs, i);
18106 else if (regs[i].type == SCALAR_VALUE)
18107 mark_reg_unknown(env, regs, i);
cf9f2f8d 18108 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
18109 const u32 mem_size = regs[i].mem_size;
18110
18111 mark_reg_known_zero(env, regs, i);
18112 regs[i].mem_size = mem_size;
18113 regs[i].id = ++env->id_gen;
18114 }
51c39bb1
AS
18115 }
18116 } else {
18117 /* 1st arg to a function */
18118 regs[BPF_REG_1].type = PTR_TO_CTX;
18119 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 18120 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
18121 if (ret == -EFAULT)
18122 /* unlikely verifier bug. abort.
18123 * ret == 0 and ret < 0 are sadly acceptable for
18124 * main() function due to backward compatibility.
18125 * Like socket filter program may be written as:
18126 * int bpf_prog(struct pt_regs *ctx)
18127 * and never dereference that ctx in the program.
18128 * 'struct pt_regs' is a type mismatch for socket
18129 * filter that should be using 'struct __sk_buff'.
18130 */
18131 goto out;
18132 }
18133
18134 ret = do_check(env);
18135out:
f59bbfc2
AS
18136 /* check for NULL is necessary, since cur_state can be freed inside
18137 * do_check() under memory pressure.
18138 */
18139 if (env->cur_state) {
18140 free_verifier_state(env->cur_state, true);
18141 env->cur_state = NULL;
18142 }
6f8a57cc
AN
18143 while (!pop_stack(env, NULL, NULL, false));
18144 if (!ret && pop_log)
18145 bpf_vlog_reset(&env->log, 0);
51c39bb1 18146 free_states(env);
51c39bb1
AS
18147 return ret;
18148}
18149
18150/* Verify all global functions in a BPF program one by one based on their BTF.
18151 * All global functions must pass verification. Otherwise the whole program is rejected.
18152 * Consider:
18153 * int bar(int);
18154 * int foo(int f)
18155 * {
18156 * return bar(f);
18157 * }
18158 * int bar(int b)
18159 * {
18160 * ...
18161 * }
18162 * foo() will be verified first for R1=any_scalar_value. During verification it
18163 * will be assumed that bar() already verified successfully and call to bar()
18164 * from foo() will be checked for type match only. Later bar() will be verified
18165 * independently to check that it's safe for R1=any_scalar_value.
18166 */
18167static int do_check_subprogs(struct bpf_verifier_env *env)
18168{
18169 struct bpf_prog_aux *aux = env->prog->aux;
18170 int i, ret;
18171
18172 if (!aux->func_info)
18173 return 0;
18174
18175 for (i = 1; i < env->subprog_cnt; i++) {
18176 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18177 continue;
18178 env->insn_idx = env->subprog_info[i].start;
18179 WARN_ON_ONCE(env->insn_idx == 0);
18180 ret = do_check_common(env, i);
18181 if (ret) {
18182 return ret;
18183 } else if (env->log.level & BPF_LOG_LEVEL) {
18184 verbose(env,
18185 "Func#%d is safe for any args that match its prototype\n",
18186 i);
18187 }
18188 }
18189 return 0;
18190}
18191
18192static int do_check_main(struct bpf_verifier_env *env)
18193{
18194 int ret;
18195
18196 env->insn_idx = 0;
18197 ret = do_check_common(env, 0);
18198 if (!ret)
18199 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18200 return ret;
18201}
18202
18203
06ee7115
AS
18204static void print_verification_stats(struct bpf_verifier_env *env)
18205{
18206 int i;
18207
18208 if (env->log.level & BPF_LOG_STATS) {
18209 verbose(env, "verification time %lld usec\n",
18210 div_u64(env->verification_time, 1000));
18211 verbose(env, "stack depth ");
18212 for (i = 0; i < env->subprog_cnt; i++) {
18213 u32 depth = env->subprog_info[i].stack_depth;
18214
18215 verbose(env, "%d", depth);
18216 if (i + 1 < env->subprog_cnt)
18217 verbose(env, "+");
18218 }
18219 verbose(env, "\n");
18220 }
18221 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18222 "total_states %d peak_states %d mark_read %d\n",
18223 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18224 env->max_states_per_insn, env->total_states,
18225 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
18226}
18227
27ae7997
MKL
18228static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18229{
18230 const struct btf_type *t, *func_proto;
18231 const struct bpf_struct_ops *st_ops;
18232 const struct btf_member *member;
18233 struct bpf_prog *prog = env->prog;
18234 u32 btf_id, member_idx;
18235 const char *mname;
18236
12aa8a94
THJ
18237 if (!prog->gpl_compatible) {
18238 verbose(env, "struct ops programs must have a GPL compatible license\n");
18239 return -EINVAL;
18240 }
18241
27ae7997
MKL
18242 btf_id = prog->aux->attach_btf_id;
18243 st_ops = bpf_struct_ops_find(btf_id);
18244 if (!st_ops) {
18245 verbose(env, "attach_btf_id %u is not a supported struct\n",
18246 btf_id);
18247 return -ENOTSUPP;
18248 }
18249
18250 t = st_ops->type;
18251 member_idx = prog->expected_attach_type;
18252 if (member_idx >= btf_type_vlen(t)) {
18253 verbose(env, "attach to invalid member idx %u of struct %s\n",
18254 member_idx, st_ops->name);
18255 return -EINVAL;
18256 }
18257
18258 member = &btf_type_member(t)[member_idx];
18259 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18260 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18261 NULL);
18262 if (!func_proto) {
18263 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18264 mname, member_idx, st_ops->name);
18265 return -EINVAL;
18266 }
18267
18268 if (st_ops->check_member) {
51a52a29 18269 int err = st_ops->check_member(t, member, prog);
27ae7997
MKL
18270
18271 if (err) {
18272 verbose(env, "attach to unsupported member %s of struct %s\n",
18273 mname, st_ops->name);
18274 return err;
18275 }
18276 }
18277
18278 prog->aux->attach_func_proto = func_proto;
18279 prog->aux->attach_func_name = mname;
18280 env->ops = st_ops->verifier_ops;
18281
18282 return 0;
18283}
6ba43b76
KS
18284#define SECURITY_PREFIX "security_"
18285
f7b12b6f 18286static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 18287{
69191754 18288 if (within_error_injection_list(addr) ||
f7b12b6f 18289 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 18290 return 0;
6ba43b76 18291
6ba43b76
KS
18292 return -EINVAL;
18293}
27ae7997 18294
1e6c62a8
AS
18295/* list of non-sleepable functions that are otherwise on
18296 * ALLOW_ERROR_INJECTION list
18297 */
18298BTF_SET_START(btf_non_sleepable_error_inject)
18299/* Three functions below can be called from sleepable and non-sleepable context.
18300 * Assume non-sleepable from bpf safety point of view.
18301 */
9dd3d069 18302BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
18303BTF_ID(func, should_fail_alloc_page)
18304BTF_ID(func, should_failslab)
18305BTF_SET_END(btf_non_sleepable_error_inject)
18306
18307static int check_non_sleepable_error_inject(u32 btf_id)
18308{
18309 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18310}
18311
f7b12b6f
THJ
18312int bpf_check_attach_target(struct bpf_verifier_log *log,
18313 const struct bpf_prog *prog,
18314 const struct bpf_prog *tgt_prog,
18315 u32 btf_id,
18316 struct bpf_attach_target_info *tgt_info)
38207291 18317{
be8704ff 18318 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 18319 const char prefix[] = "btf_trace_";
5b92a28a 18320 int ret = 0, subprog = -1, i;
38207291 18321 const struct btf_type *t;
5b92a28a 18322 bool conservative = true;
38207291 18323 const char *tname;
5b92a28a 18324 struct btf *btf;
f7b12b6f 18325 long addr = 0;
31bf1dbc 18326 struct module *mod = NULL;
38207291 18327
f1b9509c 18328 if (!btf_id) {
efc68158 18329 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
18330 return -EINVAL;
18331 }
22dc4a0f 18332 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 18333 if (!btf) {
efc68158 18334 bpf_log(log,
5b92a28a
AS
18335 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
18336 return -EINVAL;
18337 }
18338 t = btf_type_by_id(btf, btf_id);
f1b9509c 18339 if (!t) {
efc68158 18340 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
18341 return -EINVAL;
18342 }
5b92a28a 18343 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 18344 if (!tname) {
efc68158 18345 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
18346 return -EINVAL;
18347 }
5b92a28a
AS
18348 if (tgt_prog) {
18349 struct bpf_prog_aux *aux = tgt_prog->aux;
18350
fd7c211d
THJ
18351 if (bpf_prog_is_dev_bound(prog->aux) &&
18352 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
18353 bpf_log(log, "Target program bound device mismatch");
3d76a4d3
SF
18354 return -EINVAL;
18355 }
18356
5b92a28a
AS
18357 for (i = 0; i < aux->func_info_cnt; i++)
18358 if (aux->func_info[i].type_id == btf_id) {
18359 subprog = i;
18360 break;
18361 }
18362 if (subprog == -1) {
efc68158 18363 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
18364 return -EINVAL;
18365 }
18366 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
18367 if (prog_extension) {
18368 if (conservative) {
efc68158 18369 bpf_log(log,
be8704ff
AS
18370 "Cannot replace static functions\n");
18371 return -EINVAL;
18372 }
18373 if (!prog->jit_requested) {
efc68158 18374 bpf_log(log,
be8704ff
AS
18375 "Extension programs should be JITed\n");
18376 return -EINVAL;
18377 }
be8704ff
AS
18378 }
18379 if (!tgt_prog->jited) {
efc68158 18380 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
18381 return -EINVAL;
18382 }
18383 if (tgt_prog->type == prog->type) {
18384 /* Cannot fentry/fexit another fentry/fexit program.
18385 * Cannot attach program extension to another extension.
18386 * It's ok to attach fentry/fexit to extension program.
18387 */
efc68158 18388 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
18389 return -EINVAL;
18390 }
18391 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
18392 prog_extension &&
18393 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
18394 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
18395 /* Program extensions can extend all program types
18396 * except fentry/fexit. The reason is the following.
18397 * The fentry/fexit programs are used for performance
18398 * analysis, stats and can be attached to any program
18399 * type except themselves. When extension program is
18400 * replacing XDP function it is necessary to allow
18401 * performance analysis of all functions. Both original
18402 * XDP program and its program extension. Hence
18403 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
18404 * allowed. If extending of fentry/fexit was allowed it
18405 * would be possible to create long call chain
18406 * fentry->extension->fentry->extension beyond
18407 * reasonable stack size. Hence extending fentry is not
18408 * allowed.
18409 */
efc68158 18410 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
18411 return -EINVAL;
18412 }
5b92a28a 18413 } else {
be8704ff 18414 if (prog_extension) {
efc68158 18415 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
18416 return -EINVAL;
18417 }
5b92a28a 18418 }
f1b9509c
AS
18419
18420 switch (prog->expected_attach_type) {
18421 case BPF_TRACE_RAW_TP:
5b92a28a 18422 if (tgt_prog) {
efc68158 18423 bpf_log(log,
5b92a28a
AS
18424 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
18425 return -EINVAL;
18426 }
38207291 18427 if (!btf_type_is_typedef(t)) {
efc68158 18428 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
18429 btf_id);
18430 return -EINVAL;
18431 }
f1b9509c 18432 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 18433 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
18434 btf_id, tname);
18435 return -EINVAL;
18436 }
18437 tname += sizeof(prefix) - 1;
5b92a28a 18438 t = btf_type_by_id(btf, t->type);
38207291
MKL
18439 if (!btf_type_is_ptr(t))
18440 /* should never happen in valid vmlinux build */
18441 return -EINVAL;
5b92a28a 18442 t = btf_type_by_id(btf, t->type);
38207291
MKL
18443 if (!btf_type_is_func_proto(t))
18444 /* should never happen in valid vmlinux build */
18445 return -EINVAL;
18446
f7b12b6f 18447 break;
15d83c4d
YS
18448 case BPF_TRACE_ITER:
18449 if (!btf_type_is_func(t)) {
efc68158 18450 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
18451 btf_id);
18452 return -EINVAL;
18453 }
18454 t = btf_type_by_id(btf, t->type);
18455 if (!btf_type_is_func_proto(t))
18456 return -EINVAL;
f7b12b6f
THJ
18457 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18458 if (ret)
18459 return ret;
18460 break;
be8704ff
AS
18461 default:
18462 if (!prog_extension)
18463 return -EINVAL;
df561f66 18464 fallthrough;
ae240823 18465 case BPF_MODIFY_RETURN:
9e4e01df 18466 case BPF_LSM_MAC:
69fd337a 18467 case BPF_LSM_CGROUP:
fec56f58
AS
18468 case BPF_TRACE_FENTRY:
18469 case BPF_TRACE_FEXIT:
18470 if (!btf_type_is_func(t)) {
efc68158 18471 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
18472 btf_id);
18473 return -EINVAL;
18474 }
be8704ff 18475 if (prog_extension &&
efc68158 18476 btf_check_type_match(log, prog, btf, t))
be8704ff 18477 return -EINVAL;
5b92a28a 18478 t = btf_type_by_id(btf, t->type);
fec56f58
AS
18479 if (!btf_type_is_func_proto(t))
18480 return -EINVAL;
f7b12b6f 18481
4a1e7c0c
THJ
18482 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
18483 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
18484 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
18485 return -EINVAL;
18486
f7b12b6f 18487 if (tgt_prog && conservative)
5b92a28a 18488 t = NULL;
f7b12b6f
THJ
18489
18490 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 18491 if (ret < 0)
f7b12b6f
THJ
18492 return ret;
18493
5b92a28a 18494 if (tgt_prog) {
e9eeec58
YS
18495 if (subprog == 0)
18496 addr = (long) tgt_prog->bpf_func;
18497 else
18498 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a 18499 } else {
31bf1dbc
VM
18500 if (btf_is_module(btf)) {
18501 mod = btf_try_get_module(btf);
18502 if (mod)
18503 addr = find_kallsyms_symbol_value(mod, tname);
18504 else
18505 addr = 0;
18506 } else {
18507 addr = kallsyms_lookup_name(tname);
18508 }
5b92a28a 18509 if (!addr) {
31bf1dbc 18510 module_put(mod);
efc68158 18511 bpf_log(log,
5b92a28a
AS
18512 "The address of function %s cannot be found\n",
18513 tname);
f7b12b6f 18514 return -ENOENT;
5b92a28a 18515 }
fec56f58 18516 }
18644cec 18517
1e6c62a8
AS
18518 if (prog->aux->sleepable) {
18519 ret = -EINVAL;
18520 switch (prog->type) {
18521 case BPF_PROG_TYPE_TRACING:
5b481aca
BT
18522
18523 /* fentry/fexit/fmod_ret progs can be sleepable if they are
1e6c62a8
AS
18524 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
18525 */
18526 if (!check_non_sleepable_error_inject(btf_id) &&
18527 within_error_injection_list(addr))
18528 ret = 0;
5b481aca
BT
18529 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
18530 * in the fmodret id set with the KF_SLEEPABLE flag.
18531 */
18532 else {
18533 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
18534
18535 if (flags && (*flags & KF_SLEEPABLE))
18536 ret = 0;
18537 }
1e6c62a8
AS
18538 break;
18539 case BPF_PROG_TYPE_LSM:
18540 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
18541 * Only some of them are sleepable.
18542 */
423f1610 18543 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
18544 ret = 0;
18545 break;
18546 default:
18547 break;
18548 }
f7b12b6f 18549 if (ret) {
31bf1dbc 18550 module_put(mod);
f7b12b6f
THJ
18551 bpf_log(log, "%s is not sleepable\n", tname);
18552 return ret;
18553 }
1e6c62a8 18554 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 18555 if (tgt_prog) {
31bf1dbc 18556 module_put(mod);
efc68158 18557 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
18558 return -EINVAL;
18559 }
5b481aca
BT
18560 ret = -EINVAL;
18561 if (btf_kfunc_is_modify_return(btf, btf_id) ||
18562 !check_attach_modify_return(addr, tname))
18563 ret = 0;
f7b12b6f 18564 if (ret) {
31bf1dbc 18565 module_put(mod);
f7b12b6f
THJ
18566 bpf_log(log, "%s() is not modifiable\n", tname);
18567 return ret;
1af9270e 18568 }
18644cec 18569 }
f7b12b6f
THJ
18570
18571 break;
18572 }
18573 tgt_info->tgt_addr = addr;
18574 tgt_info->tgt_name = tname;
18575 tgt_info->tgt_type = t;
31bf1dbc 18576 tgt_info->tgt_mod = mod;
f7b12b6f
THJ
18577 return 0;
18578}
18579
35e3815f
JO
18580BTF_SET_START(btf_id_deny)
18581BTF_ID_UNUSED
18582#ifdef CONFIG_SMP
18583BTF_ID(func, migrate_disable)
18584BTF_ID(func, migrate_enable)
18585#endif
18586#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
18587BTF_ID(func, rcu_read_unlock_strict)
18588#endif
18589BTF_SET_END(btf_id_deny)
18590
700e6f85
JO
18591static bool can_be_sleepable(struct bpf_prog *prog)
18592{
18593 if (prog->type == BPF_PROG_TYPE_TRACING) {
18594 switch (prog->expected_attach_type) {
18595 case BPF_TRACE_FENTRY:
18596 case BPF_TRACE_FEXIT:
18597 case BPF_MODIFY_RETURN:
18598 case BPF_TRACE_ITER:
18599 return true;
18600 default:
18601 return false;
18602 }
18603 }
18604 return prog->type == BPF_PROG_TYPE_LSM ||
1e12d3ef
DV
18605 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
18606 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
700e6f85
JO
18607}
18608
f7b12b6f
THJ
18609static int check_attach_btf_id(struct bpf_verifier_env *env)
18610{
18611 struct bpf_prog *prog = env->prog;
3aac1ead 18612 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
18613 struct bpf_attach_target_info tgt_info = {};
18614 u32 btf_id = prog->aux->attach_btf_id;
18615 struct bpf_trampoline *tr;
18616 int ret;
18617 u64 key;
18618
79a7f8bd
AS
18619 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
18620 if (prog->aux->sleepable)
18621 /* attach_btf_id checked to be zero already */
18622 return 0;
18623 verbose(env, "Syscall programs can only be sleepable\n");
18624 return -EINVAL;
18625 }
18626
700e6f85 18627 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
1e12d3ef 18628 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
f7b12b6f
THJ
18629 return -EINVAL;
18630 }
18631
18632 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
18633 return check_struct_ops_btf_id(env);
18634
18635 if (prog->type != BPF_PROG_TYPE_TRACING &&
18636 prog->type != BPF_PROG_TYPE_LSM &&
18637 prog->type != BPF_PROG_TYPE_EXT)
18638 return 0;
18639
18640 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
18641 if (ret)
fec56f58 18642 return ret;
f7b12b6f
THJ
18643
18644 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
18645 /* to make freplace equivalent to their targets, they need to
18646 * inherit env->ops and expected_attach_type for the rest of the
18647 * verification
18648 */
f7b12b6f
THJ
18649 env->ops = bpf_verifier_ops[tgt_prog->type];
18650 prog->expected_attach_type = tgt_prog->expected_attach_type;
18651 }
18652
18653 /* store info about the attachment target that will be used later */
18654 prog->aux->attach_func_proto = tgt_info.tgt_type;
18655 prog->aux->attach_func_name = tgt_info.tgt_name;
31bf1dbc 18656 prog->aux->mod = tgt_info.tgt_mod;
f7b12b6f 18657
4a1e7c0c
THJ
18658 if (tgt_prog) {
18659 prog->aux->saved_dst_prog_type = tgt_prog->type;
18660 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
18661 }
18662
f7b12b6f
THJ
18663 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
18664 prog->aux->attach_btf_trace = true;
18665 return 0;
18666 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
18667 if (!bpf_iter_prog_supported(prog))
18668 return -EINVAL;
18669 return 0;
18670 }
18671
18672 if (prog->type == BPF_PROG_TYPE_LSM) {
18673 ret = bpf_lsm_verify_prog(&env->log, prog);
18674 if (ret < 0)
18675 return ret;
35e3815f
JO
18676 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
18677 btf_id_set_contains(&btf_id_deny, btf_id)) {
18678 return -EINVAL;
38207291 18679 }
f7b12b6f 18680
22dc4a0f 18681 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
18682 tr = bpf_trampoline_get(key, &tgt_info);
18683 if (!tr)
18684 return -ENOMEM;
18685
3aac1ead 18686 prog->aux->dst_trampoline = tr;
f7b12b6f 18687 return 0;
38207291
MKL
18688}
18689
76654e67
AM
18690struct btf *bpf_get_btf_vmlinux(void)
18691{
18692 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
18693 mutex_lock(&bpf_verifier_lock);
18694 if (!btf_vmlinux)
18695 btf_vmlinux = btf_parse_vmlinux();
18696 mutex_unlock(&bpf_verifier_lock);
18697 }
18698 return btf_vmlinux;
18699}
18700
af2ac3e1 18701int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 18702{
06ee7115 18703 u64 start_time = ktime_get_ns();
58e2af8b 18704 struct bpf_verifier_env *env;
b9193c1b 18705 struct bpf_verifier_log *log;
9e4c24e7 18706 int i, len, ret = -EINVAL;
e2ae4ca2 18707 bool is_priv;
51580e79 18708
eba0c929
AB
18709 /* no program is valid */
18710 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
18711 return -EINVAL;
18712
58e2af8b 18713 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
18714 * allocate/free it every time bpf_check() is called
18715 */
58e2af8b 18716 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
18717 if (!env)
18718 return -ENOMEM;
61bd5218 18719 log = &env->log;
cbd35700 18720
9e4c24e7 18721 len = (*prog)->len;
fad953ce 18722 env->insn_aux_data =
9e4c24e7 18723 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
18724 ret = -ENOMEM;
18725 if (!env->insn_aux_data)
18726 goto err_free_env;
9e4c24e7
JK
18727 for (i = 0; i < len; i++)
18728 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 18729 env->prog = *prog;
00176a34 18730 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 18731 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 18732 is_priv = bpf_capable();
0246e64d 18733
76654e67 18734 bpf_get_btf_vmlinux();
8580ac94 18735
cbd35700 18736 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
18737 if (!is_priv)
18738 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
18739
18740 if (attr->log_level || attr->log_buf || attr->log_size) {
18741 /* user requested verbose verifier output
18742 * and supplied buffer to store the verification trace
18743 */
e7bf8249
JK
18744 log->level = attr->log_level;
18745 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
18746 log->len_total = attr->log_size;
cbd35700 18747
e7bf8249 18748 /* log attributes have to be sane */
866de407
HT
18749 if (!bpf_verifier_log_attr_valid(log)) {
18750 ret = -EINVAL;
3df126f3 18751 goto err_unlock;
866de407 18752 }
cbd35700 18753 }
1ad2f583 18754
0f55f9ed
CL
18755 mark_verifier_state_clean(env);
18756
8580ac94
AS
18757 if (IS_ERR(btf_vmlinux)) {
18758 /* Either gcc or pahole or kernel are broken. */
18759 verbose(env, "in-kernel BTF is malformed\n");
18760 ret = PTR_ERR(btf_vmlinux);
38207291 18761 goto skip_full_check;
8580ac94
AS
18762 }
18763
1ad2f583
DB
18764 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
18765 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 18766 env->strict_alignment = true;
e9ee9efc
DM
18767 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
18768 env->strict_alignment = false;
cbd35700 18769
2c78ee89 18770 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 18771 env->allow_uninit_stack = bpf_allow_uninit_stack();
2c78ee89
AS
18772 env->bypass_spec_v1 = bpf_bypass_spec_v1();
18773 env->bypass_spec_v4 = bpf_bypass_spec_v4();
18774 env->bpf_capable = bpf_capable();
e2ae4ca2 18775
10d274e8
AS
18776 if (is_priv)
18777 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
18778
dc2a4ebc 18779 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 18780 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
18781 GFP_USER);
18782 ret = -ENOMEM;
18783 if (!env->explored_states)
18784 goto skip_full_check;
18785
e6ac2450
MKL
18786 ret = add_subprog_and_kfunc(env);
18787 if (ret < 0)
18788 goto skip_full_check;
18789
d9762e84 18790 ret = check_subprogs(env);
475fb78f
AS
18791 if (ret < 0)
18792 goto skip_full_check;
18793
c454a46b 18794 ret = check_btf_info(env, attr, uattr);
838e9690
YS
18795 if (ret < 0)
18796 goto skip_full_check;
18797
be8704ff
AS
18798 ret = check_attach_btf_id(env);
18799 if (ret)
18800 goto skip_full_check;
18801
4976b718
HL
18802 ret = resolve_pseudo_ldimm64(env);
18803 if (ret < 0)
18804 goto skip_full_check;
18805
9d03ebc7 18806 if (bpf_prog_is_offloaded(env->prog->aux)) {
ceb11679
YZ
18807 ret = bpf_prog_offload_verifier_prep(env->prog);
18808 if (ret)
18809 goto skip_full_check;
18810 }
18811
d9762e84
MKL
18812 ret = check_cfg(env);
18813 if (ret < 0)
18814 goto skip_full_check;
18815
51c39bb1
AS
18816 ret = do_check_subprogs(env);
18817 ret = ret ?: do_check_main(env);
cbd35700 18818
9d03ebc7 18819 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
c941ce9c
QM
18820 ret = bpf_prog_offload_finalize(env);
18821
0246e64d 18822skip_full_check:
51c39bb1 18823 kvfree(env->explored_states);
0246e64d 18824
c131187d 18825 if (ret == 0)
9b38c405 18826 ret = check_max_stack_depth(env);
c131187d 18827
9b38c405 18828 /* instruction rewrites happen after this point */
1ade2371
EZ
18829 if (ret == 0)
18830 ret = optimize_bpf_loop(env);
18831
e2ae4ca2
JK
18832 if (is_priv) {
18833 if (ret == 0)
18834 opt_hard_wire_dead_code_branches(env);
52875a04
JK
18835 if (ret == 0)
18836 ret = opt_remove_dead_code(env);
a1b14abc
JK
18837 if (ret == 0)
18838 ret = opt_remove_nops(env);
52875a04
JK
18839 } else {
18840 if (ret == 0)
18841 sanitize_dead_code(env);
e2ae4ca2
JK
18842 }
18843
9bac3d6d
AS
18844 if (ret == 0)
18845 /* program is valid, convert *(u32*)(ctx + off) accesses */
18846 ret = convert_ctx_accesses(env);
18847
e245c5c6 18848 if (ret == 0)
e6ac5933 18849 ret = do_misc_fixups(env);
e245c5c6 18850
a4b1d3c1
JW
18851 /* do 32-bit optimization after insn patching has done so those patched
18852 * insns could be handled correctly.
18853 */
9d03ebc7 18854 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
d6c2308c
JW
18855 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
18856 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
18857 : false;
a4b1d3c1
JW
18858 }
18859
1ea47e01
AS
18860 if (ret == 0)
18861 ret = fixup_call_args(env);
18862
06ee7115
AS
18863 env->verification_time = ktime_get_ns() - start_time;
18864 print_verification_stats(env);
aba64c7d 18865 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 18866
a2a7d570 18867 if (log->level && bpf_verifier_log_full(log))
cbd35700 18868 ret = -ENOSPC;
a2a7d570 18869 if (log->level && !log->ubuf) {
cbd35700 18870 ret = -EFAULT;
a2a7d570 18871 goto err_release_maps;
cbd35700
AS
18872 }
18873
541c3bad
AN
18874 if (ret)
18875 goto err_release_maps;
18876
18877 if (env->used_map_cnt) {
0246e64d 18878 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
18879 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
18880 sizeof(env->used_maps[0]),
18881 GFP_KERNEL);
0246e64d 18882
9bac3d6d 18883 if (!env->prog->aux->used_maps) {
0246e64d 18884 ret = -ENOMEM;
a2a7d570 18885 goto err_release_maps;
0246e64d
AS
18886 }
18887
9bac3d6d 18888 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 18889 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 18890 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
18891 }
18892 if (env->used_btf_cnt) {
18893 /* if program passed verifier, update used_btfs in bpf_prog_aux */
18894 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
18895 sizeof(env->used_btfs[0]),
18896 GFP_KERNEL);
18897 if (!env->prog->aux->used_btfs) {
18898 ret = -ENOMEM;
18899 goto err_release_maps;
18900 }
0246e64d 18901
541c3bad
AN
18902 memcpy(env->prog->aux->used_btfs, env->used_btfs,
18903 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
18904 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
18905 }
18906 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
18907 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
18908 * bpf_ld_imm64 instructions
18909 */
18910 convert_pseudo_ld_imm64(env);
18911 }
cbd35700 18912
541c3bad 18913 adjust_btf_func(env);
ba64e7d8 18914
a2a7d570 18915err_release_maps:
9bac3d6d 18916 if (!env->prog->aux->used_maps)
0246e64d 18917 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 18918 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
18919 */
18920 release_maps(env);
541c3bad
AN
18921 if (!env->prog->aux->used_btfs)
18922 release_btfs(env);
03f87c0b
THJ
18923
18924 /* extension progs temporarily inherit the attach_type of their targets
18925 for verification purposes, so set it back to zero before returning
18926 */
18927 if (env->prog->type == BPF_PROG_TYPE_EXT)
18928 env->prog->expected_attach_type = 0;
18929
9bac3d6d 18930 *prog = env->prog;
3df126f3 18931err_unlock:
45a73c17
AS
18932 if (!is_priv)
18933 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
18934 vfree(env->insn_aux_data);
18935err_free_env:
18936 kfree(env);
51580e79
AS
18937 return ret;
18938}