veristat: add -t flag for adding BPF_F_TEST_STATE_FREQ program flag
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
bd5314f8 27#include <linux/module.h>
51580e79 28
f4ac7e0b
JK
29#include "disasm.h"
30
00176a34 31static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 32#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
33 [_id] = & _name ## _verifier_ops,
34#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 35#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
36#include <linux/bpf_types.h>
37#undef BPF_PROG_TYPE
38#undef BPF_MAP_TYPE
f2e10bff 39#undef BPF_LINK_TYPE
00176a34
JK
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
8fb33b60 53 * Since it's analyzing all paths through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 138 * returns either pointer to map value or NULL.
51580e79
AS
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
177 /* length of verifier log at the time this state was pushed on stack */
178 u32 log_pos;
cbd35700
AS
179};
180
b285fcb7 181#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 182#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 183
d2e4c1e6
DB
184#define BPF_MAP_KEY_POISON (1ULL << 63)
185#define BPF_MAP_KEY_SEEN (1ULL << 62)
186
c93552c4
DB
187#define BPF_MAP_PTR_UNPRIV 1UL
188#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
189 POISON_POINTER_DELTA))
190#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
191
bc34dee6
JK
192static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
193static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
6a3cd331 194static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
5d92ddc3 195static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
6a3cd331
DM
196static int ref_set_non_owning(struct bpf_verifier_env *env,
197 struct bpf_reg_state *reg);
1cf3bfc6
IL
198static void specialize_kfunc(struct bpf_verifier_env *env,
199 u32 func_id, u16 offset, unsigned long *addr);
bc34dee6 200
c93552c4
DB
201static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
202{
d2e4c1e6 203 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
204}
205
206static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
207{
d2e4c1e6 208 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
209}
210
211static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
212 const struct bpf_map *map, bool unpriv)
213{
214 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
215 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
216 aux->map_ptr_state = (unsigned long)map |
217 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
218}
219
220static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
221{
222 return aux->map_key_state & BPF_MAP_KEY_POISON;
223}
224
225static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
226{
227 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
228}
229
230static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
231{
232 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
233}
234
235static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
236{
237 bool poisoned = bpf_map_key_poisoned(aux);
238
239 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
240 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 241}
fad73a1a 242
23a2d70c
YS
243static bool bpf_pseudo_call(const struct bpf_insn *insn)
244{
245 return insn->code == (BPF_JMP | BPF_CALL) &&
246 insn->src_reg == BPF_PSEUDO_CALL;
247}
248
e6ac2450
MKL
249static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
250{
251 return insn->code == (BPF_JMP | BPF_CALL) &&
252 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
253}
254
33ff9823
DB
255struct bpf_call_arg_meta {
256 struct bpf_map *map_ptr;
435faee1 257 bool raw_mode;
36bbef52 258 bool pkt_access;
8f14852e 259 u8 release_regno;
435faee1
DB
260 int regno;
261 int access_size;
457f4436 262 int mem_size;
10060503 263 u64 msize_max_value;
1b986589 264 int ref_obj_id;
f8064ab9 265 int dynptr_id;
3e8ce298 266 int map_uid;
d83525ca 267 int func_id;
22dc4a0f 268 struct btf *btf;
eaa6bcb7 269 u32 btf_id;
22dc4a0f 270 struct btf *ret_btf;
eaa6bcb7 271 u32 ret_btf_id;
69c087ba 272 u32 subprogno;
aa3496ac 273 struct btf_field *kptr_field;
33ff9823
DB
274};
275
7c50b1cb
DM
276struct btf_and_id {
277 struct btf *btf;
278 u32 btf_id;
279};
280
d0e1ac22
AN
281struct bpf_kfunc_call_arg_meta {
282 /* In parameters */
283 struct btf *btf;
284 u32 func_id;
285 u32 kfunc_flags;
286 const struct btf_type *func_proto;
287 const char *func_name;
288 /* Out parameters */
289 u32 ref_obj_id;
290 u8 release_regno;
291 bool r0_rdonly;
292 u32 ret_btf_id;
293 u64 r0_size;
294 u32 subprogno;
295 struct {
296 u64 value;
297 bool found;
298 } arg_constant;
7c50b1cb
DM
299 union {
300 struct btf_and_id arg_obj_drop;
301 struct btf_and_id arg_refcount_acquire;
302 };
d0e1ac22
AN
303 struct {
304 struct btf_field *field;
305 } arg_list_head;
306 struct {
307 struct btf_field *field;
308 } arg_rbtree_root;
309 struct {
310 enum bpf_dynptr_type type;
311 u32 id;
361f129f 312 u32 ref_obj_id;
d0e1ac22 313 } initialized_dynptr;
06accc87
AN
314 struct {
315 u8 spi;
316 u8 frameno;
317 } iter;
d0e1ac22
AN
318 u64 mem_size;
319};
320
8580ac94
AS
321struct btf *btf_vmlinux;
322
cbd35700
AS
323static DEFINE_MUTEX(bpf_verifier_lock);
324
d9762e84
MKL
325static const struct bpf_line_info *
326find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
327{
328 const struct bpf_line_info *linfo;
329 const struct bpf_prog *prog;
330 u32 i, nr_linfo;
331
332 prog = env->prog;
333 nr_linfo = prog->aux->nr_linfo;
334
335 if (!nr_linfo || insn_off >= prog->len)
336 return NULL;
337
338 linfo = prog->aux->linfo;
339 for (i = 1; i < nr_linfo; i++)
340 if (insn_off < linfo[i].insn_off)
341 break;
342
343 return &linfo[i - 1];
344}
345
abe08840
JO
346__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
347{
77d2e05a 348 struct bpf_verifier_env *env = private_data;
abe08840
JO
349 va_list args;
350
77d2e05a
MKL
351 if (!bpf_verifier_log_needed(&env->log))
352 return;
353
abe08840 354 va_start(args, fmt);
77d2e05a 355 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
356 va_end(args);
357}
cbd35700 358
d9762e84
MKL
359static const char *ltrim(const char *s)
360{
361 while (isspace(*s))
362 s++;
363
364 return s;
365}
366
367__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
368 u32 insn_off,
369 const char *prefix_fmt, ...)
370{
371 const struct bpf_line_info *linfo;
372
373 if (!bpf_verifier_log_needed(&env->log))
374 return;
375
376 linfo = find_linfo(env, insn_off);
377 if (!linfo || linfo == env->prev_linfo)
378 return;
379
380 if (prefix_fmt) {
381 va_list args;
382
383 va_start(args, prefix_fmt);
384 bpf_verifier_vlog(&env->log, prefix_fmt, args);
385 va_end(args);
386 }
387
388 verbose(env, "%s\n",
389 ltrim(btf_name_by_offset(env->prog->aux->btf,
390 linfo->line_off)));
391
392 env->prev_linfo = linfo;
393}
394
bc2591d6
YS
395static void verbose_invalid_scalar(struct bpf_verifier_env *env,
396 struct bpf_reg_state *reg,
397 struct tnum *range, const char *ctx,
398 const char *reg_name)
399{
400 char tn_buf[48];
401
402 verbose(env, "At %s the register %s ", ctx, reg_name);
403 if (!tnum_is_unknown(reg->var_off)) {
404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
405 verbose(env, "has value %s", tn_buf);
406 } else {
407 verbose(env, "has unknown scalar value");
408 }
409 tnum_strn(tn_buf, sizeof(tn_buf), *range);
410 verbose(env, " should have been in %s\n", tn_buf);
411}
412
de8f3a83
DB
413static bool type_is_pkt_pointer(enum bpf_reg_type type)
414{
0c9a7a7e 415 type = base_type(type);
de8f3a83
DB
416 return type == PTR_TO_PACKET ||
417 type == PTR_TO_PACKET_META;
418}
419
46f8bc92
MKL
420static bool type_is_sk_pointer(enum bpf_reg_type type)
421{
422 return type == PTR_TO_SOCKET ||
655a51e5 423 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
424 type == PTR_TO_TCP_SOCK ||
425 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
426}
427
1057d299
AS
428static bool type_may_be_null(u32 type)
429{
430 return type & PTR_MAYBE_NULL;
431}
432
cac616db
JF
433static bool reg_type_not_null(enum bpf_reg_type type)
434{
1057d299
AS
435 if (type_may_be_null(type))
436 return false;
437
438 type = base_type(type);
cac616db
JF
439 return type == PTR_TO_SOCKET ||
440 type == PTR_TO_TCP_SOCK ||
441 type == PTR_TO_MAP_VALUE ||
69c087ba 442 type == PTR_TO_MAP_KEY ||
d5271c5b
AN
443 type == PTR_TO_SOCK_COMMON ||
444 type == PTR_TO_MEM;
cac616db
JF
445}
446
d8939cb0
DM
447static bool type_is_ptr_alloc_obj(u32 type)
448{
449 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
450}
451
6a3cd331
DM
452static bool type_is_non_owning_ref(u32 type)
453{
454 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
455}
456
4e814da0
KKD
457static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
458{
459 struct btf_record *rec = NULL;
460 struct btf_struct_meta *meta;
461
462 if (reg->type == PTR_TO_MAP_VALUE) {
463 rec = reg->map_ptr->record;
d8939cb0 464 } else if (type_is_ptr_alloc_obj(reg->type)) {
4e814da0
KKD
465 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
466 if (meta)
467 rec = meta->record;
468 }
469 return rec;
470}
471
d83525ca
AS
472static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
473{
4e814da0 474 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
475}
476
20b2aff4
HL
477static bool type_is_rdonly_mem(u32 type)
478{
479 return type & MEM_RDONLY;
cba368c1
MKL
480}
481
64d85290
JS
482static bool is_acquire_function(enum bpf_func_id func_id,
483 const struct bpf_map *map)
484{
485 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
486
487 if (func_id == BPF_FUNC_sk_lookup_tcp ||
488 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 489 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
490 func_id == BPF_FUNC_ringbuf_reserve ||
491 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
492 return true;
493
494 if (func_id == BPF_FUNC_map_lookup_elem &&
495 (map_type == BPF_MAP_TYPE_SOCKMAP ||
496 map_type == BPF_MAP_TYPE_SOCKHASH))
497 return true;
498
499 return false;
46f8bc92
MKL
500}
501
1b986589
MKL
502static bool is_ptr_cast_function(enum bpf_func_id func_id)
503{
504 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
505 func_id == BPF_FUNC_sk_fullsock ||
506 func_id == BPF_FUNC_skc_to_tcp_sock ||
507 func_id == BPF_FUNC_skc_to_tcp6_sock ||
508 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 509 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
510 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
511 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
512}
513
88374342 514static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
515{
516 return func_id == BPF_FUNC_dynptr_data;
517}
518
be2ef816
AN
519static bool is_callback_calling_function(enum bpf_func_id func_id)
520{
521 return func_id == BPF_FUNC_for_each_map_elem ||
522 func_id == BPF_FUNC_timer_set_callback ||
523 func_id == BPF_FUNC_find_vma ||
524 func_id == BPF_FUNC_loop ||
525 func_id == BPF_FUNC_user_ringbuf_drain;
526}
527
9bb00b28
YS
528static bool is_storage_get_function(enum bpf_func_id func_id)
529{
530 return func_id == BPF_FUNC_sk_storage_get ||
531 func_id == BPF_FUNC_inode_storage_get ||
532 func_id == BPF_FUNC_task_storage_get ||
533 func_id == BPF_FUNC_cgrp_storage_get;
534}
535
b2d8ef19
DM
536static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
537 const struct bpf_map *map)
538{
539 int ref_obj_uses = 0;
540
541 if (is_ptr_cast_function(func_id))
542 ref_obj_uses++;
543 if (is_acquire_function(func_id, map))
544 ref_obj_uses++;
88374342 545 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
546 ref_obj_uses++;
547
548 return ref_obj_uses > 1;
549}
550
39491867
BJ
551static bool is_cmpxchg_insn(const struct bpf_insn *insn)
552{
553 return BPF_CLASS(insn->code) == BPF_STX &&
554 BPF_MODE(insn->code) == BPF_ATOMIC &&
555 insn->imm == BPF_CMPXCHG;
556}
557
c25b2ae1
HL
558/* string representation of 'enum bpf_reg_type'
559 *
560 * Note that reg_type_str() can not appear more than once in a single verbose()
561 * statement.
562 */
563static const char *reg_type_str(struct bpf_verifier_env *env,
564 enum bpf_reg_type type)
565{
ef66c547 566 char postfix[16] = {0}, prefix[64] = {0};
c25b2ae1
HL
567 static const char * const str[] = {
568 [NOT_INIT] = "?",
7df5072c 569 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
570 [PTR_TO_CTX] = "ctx",
571 [CONST_PTR_TO_MAP] = "map_ptr",
572 [PTR_TO_MAP_VALUE] = "map_value",
573 [PTR_TO_STACK] = "fp",
574 [PTR_TO_PACKET] = "pkt",
575 [PTR_TO_PACKET_META] = "pkt_meta",
576 [PTR_TO_PACKET_END] = "pkt_end",
577 [PTR_TO_FLOW_KEYS] = "flow_keys",
578 [PTR_TO_SOCKET] = "sock",
579 [PTR_TO_SOCK_COMMON] = "sock_common",
580 [PTR_TO_TCP_SOCK] = "tcp_sock",
581 [PTR_TO_TP_BUFFER] = "tp_buffer",
582 [PTR_TO_XDP_SOCK] = "xdp_sock",
583 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 584 [PTR_TO_MEM] = "mem",
20b2aff4 585 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
586 [PTR_TO_FUNC] = "func",
587 [PTR_TO_MAP_KEY] = "map_key",
27060531 588 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
589 };
590
591 if (type & PTR_MAYBE_NULL) {
5844101a 592 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
593 strncpy(postfix, "or_null_", 16);
594 else
595 strncpy(postfix, "_or_null", 16);
596 }
597
9bb00b28 598 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
ef66c547
DV
599 type & MEM_RDONLY ? "rdonly_" : "",
600 type & MEM_RINGBUF ? "ringbuf_" : "",
601 type & MEM_USER ? "user_" : "",
602 type & MEM_PERCPU ? "percpu_" : "",
9bb00b28 603 type & MEM_RCU ? "rcu_" : "",
3f00c523
DV
604 type & PTR_UNTRUSTED ? "untrusted_" : "",
605 type & PTR_TRUSTED ? "trusted_" : ""
ef66c547 606 );
20b2aff4
HL
607
608 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
609 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
610 return env->type_str_buf;
611}
17a52670 612
8efea21d
EC
613static char slot_type_char[] = {
614 [STACK_INVALID] = '?',
615 [STACK_SPILL] = 'r',
616 [STACK_MISC] = 'm',
617 [STACK_ZERO] = '0',
97e03f52 618 [STACK_DYNPTR] = 'd',
06accc87 619 [STACK_ITER] = 'i',
8efea21d
EC
620};
621
4e92024a
AS
622static void print_liveness(struct bpf_verifier_env *env,
623 enum bpf_reg_liveness live)
624{
9242b5f5 625 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
626 verbose(env, "_");
627 if (live & REG_LIVE_READ)
628 verbose(env, "r");
629 if (live & REG_LIVE_WRITTEN)
630 verbose(env, "w");
9242b5f5
AS
631 if (live & REG_LIVE_DONE)
632 verbose(env, "D");
4e92024a
AS
633}
634
79168a66 635static int __get_spi(s32 off)
97e03f52
JK
636{
637 return (-off - 1) / BPF_REG_SIZE;
638}
639
f5b625e5
KKD
640static struct bpf_func_state *func(struct bpf_verifier_env *env,
641 const struct bpf_reg_state *reg)
642{
643 struct bpf_verifier_state *cur = env->cur_state;
644
645 return cur->frame[reg->frameno];
646}
647
97e03f52
JK
648static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
649{
f5b625e5 650 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
97e03f52 651
f5b625e5
KKD
652 /* We need to check that slots between [spi - nr_slots + 1, spi] are
653 * within [0, allocated_stack).
654 *
655 * Please note that the spi grows downwards. For example, a dynptr
656 * takes the size of two stack slots; the first slot will be at
657 * spi and the second slot will be at spi - 1.
658 */
659 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
97e03f52
JK
660}
661
a461f5ad
AN
662static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
663 const char *obj_kind, int nr_slots)
f4d7e40a 664{
79168a66 665 int off, spi;
f4d7e40a 666
79168a66 667 if (!tnum_is_const(reg->var_off)) {
a461f5ad 668 verbose(env, "%s has to be at a constant offset\n", obj_kind);
79168a66
KKD
669 return -EINVAL;
670 }
671
672 off = reg->off + reg->var_off.value;
673 if (off % BPF_REG_SIZE) {
a461f5ad 674 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
675 return -EINVAL;
676 }
677
678 spi = __get_spi(off);
a461f5ad
AN
679 if (spi + 1 < nr_slots) {
680 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
681 return -EINVAL;
682 }
97e03f52 683
a461f5ad 684 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
f5b625e5
KKD
685 return -ERANGE;
686 return spi;
f4d7e40a
AS
687}
688
a461f5ad
AN
689static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
690{
691 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
692}
693
06accc87
AN
694static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
695{
696 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
697}
698
b32a5dae 699static const char *btf_type_name(const struct btf *btf, u32 id)
9e15db66 700{
22dc4a0f 701 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
702}
703
d54e0f6c
AN
704static const char *dynptr_type_str(enum bpf_dynptr_type type)
705{
706 switch (type) {
707 case BPF_DYNPTR_TYPE_LOCAL:
708 return "local";
709 case BPF_DYNPTR_TYPE_RINGBUF:
710 return "ringbuf";
711 case BPF_DYNPTR_TYPE_SKB:
712 return "skb";
713 case BPF_DYNPTR_TYPE_XDP:
714 return "xdp";
715 case BPF_DYNPTR_TYPE_INVALID:
716 return "<invalid>";
717 default:
718 WARN_ONCE(1, "unknown dynptr type %d\n", type);
719 return "<unknown>";
720 }
721}
722
06accc87
AN
723static const char *iter_type_str(const struct btf *btf, u32 btf_id)
724{
725 if (!btf || btf_id == 0)
726 return "<invalid>";
727
728 /* we already validated that type is valid and has conforming name */
b32a5dae 729 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
06accc87
AN
730}
731
732static const char *iter_state_str(enum bpf_iter_state state)
733{
734 switch (state) {
735 case BPF_ITER_STATE_ACTIVE:
736 return "active";
737 case BPF_ITER_STATE_DRAINED:
738 return "drained";
739 case BPF_ITER_STATE_INVALID:
740 return "<invalid>";
741 default:
742 WARN_ONCE(1, "unknown iter state %d\n", state);
743 return "<unknown>";
744 }
745}
746
0f55f9ed
CL
747static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
748{
749 env->scratched_regs |= 1U << regno;
750}
751
752static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
753{
343e5375 754 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
755}
756
757static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
758{
759 return (env->scratched_regs >> regno) & 1;
760}
761
762static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
763{
764 return (env->scratched_stack_slots >> regno) & 1;
765}
766
767static bool verifier_state_scratched(const struct bpf_verifier_env *env)
768{
769 return env->scratched_regs || env->scratched_stack_slots;
770}
771
772static void mark_verifier_state_clean(struct bpf_verifier_env *env)
773{
774 env->scratched_regs = 0U;
343e5375 775 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
776}
777
778/* Used for printing the entire verifier state. */
779static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
780{
781 env->scratched_regs = ~0U;
343e5375 782 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
783}
784
97e03f52
JK
785static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
786{
787 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
788 case DYNPTR_TYPE_LOCAL:
789 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
790 case DYNPTR_TYPE_RINGBUF:
791 return BPF_DYNPTR_TYPE_RINGBUF;
b5964b96
JK
792 case DYNPTR_TYPE_SKB:
793 return BPF_DYNPTR_TYPE_SKB;
05421aec
JK
794 case DYNPTR_TYPE_XDP:
795 return BPF_DYNPTR_TYPE_XDP;
97e03f52
JK
796 default:
797 return BPF_DYNPTR_TYPE_INVALID;
798 }
799}
800
66e3a13e
JK
801static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
802{
803 switch (type) {
804 case BPF_DYNPTR_TYPE_LOCAL:
805 return DYNPTR_TYPE_LOCAL;
806 case BPF_DYNPTR_TYPE_RINGBUF:
807 return DYNPTR_TYPE_RINGBUF;
808 case BPF_DYNPTR_TYPE_SKB:
809 return DYNPTR_TYPE_SKB;
810 case BPF_DYNPTR_TYPE_XDP:
811 return DYNPTR_TYPE_XDP;
812 default:
813 return 0;
814 }
815}
816
bc34dee6
JK
817static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
818{
819 return type == BPF_DYNPTR_TYPE_RINGBUF;
820}
821
27060531
KKD
822static void __mark_dynptr_reg(struct bpf_reg_state *reg,
823 enum bpf_dynptr_type type,
f8064ab9 824 bool first_slot, int dynptr_id);
27060531
KKD
825
826static void __mark_reg_not_init(const struct bpf_verifier_env *env,
827 struct bpf_reg_state *reg);
828
f8064ab9
KKD
829static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
830 struct bpf_reg_state *sreg1,
27060531
KKD
831 struct bpf_reg_state *sreg2,
832 enum bpf_dynptr_type type)
833{
f8064ab9
KKD
834 int id = ++env->id_gen;
835
836 __mark_dynptr_reg(sreg1, type, true, id);
837 __mark_dynptr_reg(sreg2, type, false, id);
27060531
KKD
838}
839
f8064ab9
KKD
840static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
841 struct bpf_reg_state *reg,
27060531
KKD
842 enum bpf_dynptr_type type)
843{
f8064ab9 844 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
27060531
KKD
845}
846
ef8fc7a0
KKD
847static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
848 struct bpf_func_state *state, int spi);
27060531 849
97e03f52 850static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
361f129f 851 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
97e03f52
JK
852{
853 struct bpf_func_state *state = func(env, reg);
854 enum bpf_dynptr_type type;
361f129f 855 int spi, i, err;
97e03f52 856
79168a66
KKD
857 spi = dynptr_get_spi(env, reg);
858 if (spi < 0)
859 return spi;
97e03f52 860
379d4ba8
KKD
861 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
862 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
863 * to ensure that for the following example:
864 * [d1][d1][d2][d2]
865 * spi 3 2 1 0
866 * So marking spi = 2 should lead to destruction of both d1 and d2. In
867 * case they do belong to same dynptr, second call won't see slot_type
868 * as STACK_DYNPTR and will simply skip destruction.
869 */
870 err = destroy_if_dynptr_stack_slot(env, state, spi);
871 if (err)
872 return err;
873 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
874 if (err)
875 return err;
97e03f52
JK
876
877 for (i = 0; i < BPF_REG_SIZE; i++) {
878 state->stack[spi].slot_type[i] = STACK_DYNPTR;
879 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
880 }
881
882 type = arg_to_dynptr_type(arg_type);
883 if (type == BPF_DYNPTR_TYPE_INVALID)
884 return -EINVAL;
885
f8064ab9 886 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
27060531 887 &state->stack[spi - 1].spilled_ptr, type);
97e03f52 888
bc34dee6
JK
889 if (dynptr_type_refcounted(type)) {
890 /* The id is used to track proper releasing */
361f129f
JK
891 int id;
892
893 if (clone_ref_obj_id)
894 id = clone_ref_obj_id;
895 else
896 id = acquire_reference_state(env, insn_idx);
897
bc34dee6
JK
898 if (id < 0)
899 return id;
900
27060531
KKD
901 state->stack[spi].spilled_ptr.ref_obj_id = id;
902 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
bc34dee6
JK
903 }
904
d6fefa11
KKD
905 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
906 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
907
97e03f52
JK
908 return 0;
909}
910
361f129f 911static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
97e03f52 912{
361f129f 913 int i;
97e03f52
JK
914
915 for (i = 0; i < BPF_REG_SIZE; i++) {
916 state->stack[spi].slot_type[i] = STACK_INVALID;
917 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
918 }
919
27060531
KKD
920 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
921 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
d6fefa11
KKD
922
923 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
924 *
925 * While we don't allow reading STACK_INVALID, it is still possible to
926 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
927 * helpers or insns can do partial read of that part without failing,
928 * but check_stack_range_initialized, check_stack_read_var_off, and
929 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
930 * the slot conservatively. Hence we need to prevent those liveness
931 * marking walks.
932 *
933 * This was not a problem before because STACK_INVALID is only set by
934 * default (where the default reg state has its reg->parent as NULL), or
935 * in clean_live_states after REG_LIVE_DONE (at which point
936 * mark_reg_read won't walk reg->parent chain), but not randomly during
937 * verifier state exploration (like we did above). Hence, for our case
938 * parentage chain will still be live (i.e. reg->parent may be
939 * non-NULL), while earlier reg->parent was NULL, so we need
940 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
941 * done later on reads or by mark_dynptr_read as well to unnecessary
942 * mark registers in verifier state.
943 */
944 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
945 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
361f129f
JK
946}
947
948static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
949{
950 struct bpf_func_state *state = func(env, reg);
951 int spi, ref_obj_id, i;
952
953 spi = dynptr_get_spi(env, reg);
954 if (spi < 0)
955 return spi;
956
957 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
958 invalidate_dynptr(env, state, spi);
959 return 0;
960 }
961
962 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
963
964 /* If the dynptr has a ref_obj_id, then we need to invalidate
965 * two things:
966 *
967 * 1) Any dynptrs with a matching ref_obj_id (clones)
968 * 2) Any slices derived from this dynptr.
969 */
970
971 /* Invalidate any slices associated with this dynptr */
972 WARN_ON_ONCE(release_reference(env, ref_obj_id));
973
974 /* Invalidate any dynptr clones */
975 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
976 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
977 continue;
978
979 /* it should always be the case that if the ref obj id
980 * matches then the stack slot also belongs to a
981 * dynptr
982 */
983 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
984 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
985 return -EFAULT;
986 }
987 if (state->stack[i].spilled_ptr.dynptr.first_slot)
988 invalidate_dynptr(env, state, i);
989 }
d6fefa11 990
97e03f52
JK
991 return 0;
992}
993
ef8fc7a0
KKD
994static void __mark_reg_unknown(const struct bpf_verifier_env *env,
995 struct bpf_reg_state *reg);
996
dbd8d228
KKD
997static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
998{
999 if (!env->allow_ptr_leaks)
1000 __mark_reg_not_init(env, reg);
1001 else
1002 __mark_reg_unknown(env, reg);
1003}
1004
ef8fc7a0
KKD
1005static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1006 struct bpf_func_state *state, int spi)
97e03f52 1007{
f8064ab9
KKD
1008 struct bpf_func_state *fstate;
1009 struct bpf_reg_state *dreg;
1010 int i, dynptr_id;
27060531 1011
ef8fc7a0
KKD
1012 /* We always ensure that STACK_DYNPTR is never set partially,
1013 * hence just checking for slot_type[0] is enough. This is
1014 * different for STACK_SPILL, where it may be only set for
1015 * 1 byte, so code has to use is_spilled_reg.
1016 */
1017 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1018 return 0;
97e03f52 1019
ef8fc7a0
KKD
1020 /* Reposition spi to first slot */
1021 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1022 spi = spi + 1;
1023
1024 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1025 verbose(env, "cannot overwrite referenced dynptr\n");
1026 return -EINVAL;
1027 }
1028
1029 mark_stack_slot_scratched(env, spi);
1030 mark_stack_slot_scratched(env, spi - 1);
97e03f52 1031
ef8fc7a0 1032 /* Writing partially to one dynptr stack slot destroys both. */
97e03f52 1033 for (i = 0; i < BPF_REG_SIZE; i++) {
ef8fc7a0
KKD
1034 state->stack[spi].slot_type[i] = STACK_INVALID;
1035 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
97e03f52
JK
1036 }
1037
f8064ab9
KKD
1038 dynptr_id = state->stack[spi].spilled_ptr.id;
1039 /* Invalidate any slices associated with this dynptr */
1040 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1041 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1042 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1043 continue;
dbd8d228
KKD
1044 if (dreg->dynptr_id == dynptr_id)
1045 mark_reg_invalid(env, dreg);
f8064ab9 1046 }));
ef8fc7a0
KKD
1047
1048 /* Do not release reference state, we are destroying dynptr on stack,
1049 * not using some helper to release it. Just reset register.
1050 */
1051 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1052 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1053
1054 /* Same reason as unmark_stack_slots_dynptr above */
1055 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1056 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1057
1058 return 0;
1059}
1060
7e0dac28 1061static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52 1062{
7e0dac28
JK
1063 int spi;
1064
27060531
KKD
1065 if (reg->type == CONST_PTR_TO_DYNPTR)
1066 return false;
97e03f52 1067
7e0dac28
JK
1068 spi = dynptr_get_spi(env, reg);
1069
1070 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1071 * error because this just means the stack state hasn't been updated yet.
1072 * We will do check_mem_access to check and update stack bounds later.
f5b625e5 1073 */
7e0dac28
JK
1074 if (spi < 0 && spi != -ERANGE)
1075 return false;
1076
1077 /* We don't need to check if the stack slots are marked by previous
1078 * dynptr initializations because we allow overwriting existing unreferenced
1079 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1080 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1081 * touching are completely destructed before we reinitialize them for a new
1082 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1083 * instead of delaying it until the end where the user will get "Unreleased
379d4ba8
KKD
1084 * reference" error.
1085 */
97e03f52
JK
1086 return true;
1087}
1088
7e0dac28 1089static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52
JK
1090{
1091 struct bpf_func_state *state = func(env, reg);
7e0dac28 1092 int i, spi;
97e03f52 1093
7e0dac28
JK
1094 /* This already represents first slot of initialized bpf_dynptr.
1095 *
1096 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1097 * check_func_arg_reg_off's logic, so we don't need to check its
1098 * offset and alignment.
1099 */
27060531
KKD
1100 if (reg->type == CONST_PTR_TO_DYNPTR)
1101 return true;
1102
7e0dac28 1103 spi = dynptr_get_spi(env, reg);
79168a66
KKD
1104 if (spi < 0)
1105 return false;
f5b625e5 1106 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
97e03f52
JK
1107 return false;
1108
1109 for (i = 0; i < BPF_REG_SIZE; i++) {
1110 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1111 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1112 return false;
1113 }
1114
e9e315b4
RS
1115 return true;
1116}
1117
6b75bd3d
KKD
1118static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1119 enum bpf_arg_type arg_type)
e9e315b4
RS
1120{
1121 struct bpf_func_state *state = func(env, reg);
1122 enum bpf_dynptr_type dynptr_type;
27060531 1123 int spi;
e9e315b4 1124
97e03f52
JK
1125 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1126 if (arg_type == ARG_PTR_TO_DYNPTR)
1127 return true;
1128
e9e315b4 1129 dynptr_type = arg_to_dynptr_type(arg_type);
27060531
KKD
1130 if (reg->type == CONST_PTR_TO_DYNPTR) {
1131 return reg->dynptr.type == dynptr_type;
1132 } else {
79168a66
KKD
1133 spi = dynptr_get_spi(env, reg);
1134 if (spi < 0)
1135 return false;
27060531
KKD
1136 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1137 }
97e03f52
JK
1138}
1139
06accc87
AN
1140static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1141
1142static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1143 struct bpf_reg_state *reg, int insn_idx,
1144 struct btf *btf, u32 btf_id, int nr_slots)
1145{
1146 struct bpf_func_state *state = func(env, reg);
1147 int spi, i, j, id;
1148
1149 spi = iter_get_spi(env, reg, nr_slots);
1150 if (spi < 0)
1151 return spi;
1152
1153 id = acquire_reference_state(env, insn_idx);
1154 if (id < 0)
1155 return id;
1156
1157 for (i = 0; i < nr_slots; i++) {
1158 struct bpf_stack_state *slot = &state->stack[spi - i];
1159 struct bpf_reg_state *st = &slot->spilled_ptr;
1160
1161 __mark_reg_known_zero(st);
1162 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1163 st->live |= REG_LIVE_WRITTEN;
1164 st->ref_obj_id = i == 0 ? id : 0;
1165 st->iter.btf = btf;
1166 st->iter.btf_id = btf_id;
1167 st->iter.state = BPF_ITER_STATE_ACTIVE;
1168 st->iter.depth = 0;
1169
1170 for (j = 0; j < BPF_REG_SIZE; j++)
1171 slot->slot_type[j] = STACK_ITER;
1172
1173 mark_stack_slot_scratched(env, spi - i);
1174 }
1175
1176 return 0;
1177}
1178
1179static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1180 struct bpf_reg_state *reg, int nr_slots)
1181{
1182 struct bpf_func_state *state = func(env, reg);
1183 int spi, i, j;
1184
1185 spi = iter_get_spi(env, reg, nr_slots);
1186 if (spi < 0)
1187 return spi;
1188
1189 for (i = 0; i < nr_slots; i++) {
1190 struct bpf_stack_state *slot = &state->stack[spi - i];
1191 struct bpf_reg_state *st = &slot->spilled_ptr;
1192
1193 if (i == 0)
1194 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1195
1196 __mark_reg_not_init(env, st);
1197
1198 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1199 st->live |= REG_LIVE_WRITTEN;
1200
1201 for (j = 0; j < BPF_REG_SIZE; j++)
1202 slot->slot_type[j] = STACK_INVALID;
1203
1204 mark_stack_slot_scratched(env, spi - i);
1205 }
1206
1207 return 0;
1208}
1209
1210static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1211 struct bpf_reg_state *reg, int nr_slots)
1212{
1213 struct bpf_func_state *state = func(env, reg);
1214 int spi, i, j;
1215
1216 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1217 * will do check_mem_access to check and update stack bounds later, so
1218 * return true for that case.
1219 */
1220 spi = iter_get_spi(env, reg, nr_slots);
1221 if (spi == -ERANGE)
1222 return true;
1223 if (spi < 0)
1224 return false;
1225
1226 for (i = 0; i < nr_slots; i++) {
1227 struct bpf_stack_state *slot = &state->stack[spi - i];
1228
1229 for (j = 0; j < BPF_REG_SIZE; j++)
1230 if (slot->slot_type[j] == STACK_ITER)
1231 return false;
1232 }
1233
1234 return true;
1235}
1236
1237static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1238 struct btf *btf, u32 btf_id, int nr_slots)
1239{
1240 struct bpf_func_state *state = func(env, reg);
1241 int spi, i, j;
1242
1243 spi = iter_get_spi(env, reg, nr_slots);
1244 if (spi < 0)
1245 return false;
1246
1247 for (i = 0; i < nr_slots; i++) {
1248 struct bpf_stack_state *slot = &state->stack[spi - i];
1249 struct bpf_reg_state *st = &slot->spilled_ptr;
1250
1251 /* only main (first) slot has ref_obj_id set */
1252 if (i == 0 && !st->ref_obj_id)
1253 return false;
1254 if (i != 0 && st->ref_obj_id)
1255 return false;
1256 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1257 return false;
1258
1259 for (j = 0; j < BPF_REG_SIZE; j++)
1260 if (slot->slot_type[j] != STACK_ITER)
1261 return false;
1262 }
1263
1264 return true;
1265}
1266
1267/* Check if given stack slot is "special":
1268 * - spilled register state (STACK_SPILL);
1269 * - dynptr state (STACK_DYNPTR);
1270 * - iter state (STACK_ITER).
1271 */
1272static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1273{
1274 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1275
1276 switch (type) {
1277 case STACK_SPILL:
1278 case STACK_DYNPTR:
1279 case STACK_ITER:
1280 return true;
1281 case STACK_INVALID:
1282 case STACK_MISC:
1283 case STACK_ZERO:
1284 return false;
1285 default:
1286 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1287 return true;
1288 }
1289}
1290
27113c59
MKL
1291/* The reg state of a pointer or a bounded scalar was saved when
1292 * it was spilled to the stack.
1293 */
1294static bool is_spilled_reg(const struct bpf_stack_state *stack)
1295{
1296 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1297}
1298
354e8f19
MKL
1299static void scrub_spilled_slot(u8 *stype)
1300{
1301 if (*stype != STACK_INVALID)
1302 *stype = STACK_MISC;
1303}
1304
61bd5218 1305static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
1306 const struct bpf_func_state *state,
1307 bool print_all)
17a52670 1308{
f4d7e40a 1309 const struct bpf_reg_state *reg;
17a52670
AS
1310 enum bpf_reg_type t;
1311 int i;
1312
f4d7e40a
AS
1313 if (state->frameno)
1314 verbose(env, " frame%d:", state->frameno);
17a52670 1315 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
1316 reg = &state->regs[i];
1317 t = reg->type;
17a52670
AS
1318 if (t == NOT_INIT)
1319 continue;
0f55f9ed
CL
1320 if (!print_all && !reg_scratched(env, i))
1321 continue;
4e92024a
AS
1322 verbose(env, " R%d", i);
1323 print_liveness(env, reg->live);
7df5072c 1324 verbose(env, "=");
b5dc0163
AS
1325 if (t == SCALAR_VALUE && reg->precise)
1326 verbose(env, "P");
f1174f77
EC
1327 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1328 tnum_is_const(reg->var_off)) {
1329 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 1330 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 1331 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 1332 } else {
7df5072c
ML
1333 const char *sep = "";
1334
1335 verbose(env, "%s", reg_type_str(env, t));
5844101a 1336 if (base_type(t) == PTR_TO_BTF_ID)
b32a5dae 1337 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
7df5072c
ML
1338 verbose(env, "(");
1339/*
1340 * _a stands for append, was shortened to avoid multiline statements below.
1341 * This macro is used to output a comma separated list of attributes.
1342 */
1343#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1344
1345 if (reg->id)
1346 verbose_a("id=%d", reg->id);
a28ace78 1347 if (reg->ref_obj_id)
7df5072c 1348 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
6a3cd331
DM
1349 if (type_is_non_owning_ref(reg->type))
1350 verbose_a("%s", "non_own_ref");
f1174f77 1351 if (t != SCALAR_VALUE)
7df5072c 1352 verbose_a("off=%d", reg->off);
de8f3a83 1353 if (type_is_pkt_pointer(t))
7df5072c 1354 verbose_a("r=%d", reg->range);
c25b2ae1
HL
1355 else if (base_type(t) == CONST_PTR_TO_MAP ||
1356 base_type(t) == PTR_TO_MAP_KEY ||
1357 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
1358 verbose_a("ks=%d,vs=%d",
1359 reg->map_ptr->key_size,
1360 reg->map_ptr->value_size);
7d1238f2
EC
1361 if (tnum_is_const(reg->var_off)) {
1362 /* Typically an immediate SCALAR_VALUE, but
1363 * could be a pointer whose offset is too big
1364 * for reg->off
1365 */
7df5072c 1366 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
1367 } else {
1368 if (reg->smin_value != reg->umin_value &&
1369 reg->smin_value != S64_MIN)
7df5072c 1370 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
1371 if (reg->smax_value != reg->umax_value &&
1372 reg->smax_value != S64_MAX)
7df5072c 1373 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 1374 if (reg->umin_value != 0)
7df5072c 1375 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 1376 if (reg->umax_value != U64_MAX)
7df5072c 1377 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
1378 if (!tnum_is_unknown(reg->var_off)) {
1379 char tn_buf[48];
f1174f77 1380
7d1238f2 1381 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 1382 verbose_a("var_off=%s", tn_buf);
7d1238f2 1383 }
3f50f132
JF
1384 if (reg->s32_min_value != reg->smin_value &&
1385 reg->s32_min_value != S32_MIN)
7df5072c 1386 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
1387 if (reg->s32_max_value != reg->smax_value &&
1388 reg->s32_max_value != S32_MAX)
7df5072c 1389 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
1390 if (reg->u32_min_value != reg->umin_value &&
1391 reg->u32_min_value != U32_MIN)
7df5072c 1392 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
1393 if (reg->u32_max_value != reg->umax_value &&
1394 reg->u32_max_value != U32_MAX)
7df5072c 1395 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 1396 }
7df5072c
ML
1397#undef verbose_a
1398
61bd5218 1399 verbose(env, ")");
f1174f77 1400 }
17a52670 1401 }
638f5b90 1402 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
1403 char types_buf[BPF_REG_SIZE + 1];
1404 bool valid = false;
1405 int j;
1406
1407 for (j = 0; j < BPF_REG_SIZE; j++) {
1408 if (state->stack[i].slot_type[j] != STACK_INVALID)
1409 valid = true;
d54e0f6c 1410 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
8efea21d
EC
1411 }
1412 types_buf[BPF_REG_SIZE] = 0;
1413 if (!valid)
1414 continue;
0f55f9ed
CL
1415 if (!print_all && !stack_slot_scratched(env, i))
1416 continue;
d54e0f6c
AN
1417 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1418 case STACK_SPILL:
b5dc0163
AS
1419 reg = &state->stack[i].spilled_ptr;
1420 t = reg->type;
d54e0f6c
AN
1421
1422 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1423 print_liveness(env, reg->live);
7df5072c 1424 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
1425 if (t == SCALAR_VALUE && reg->precise)
1426 verbose(env, "P");
1427 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1428 verbose(env, "%lld", reg->var_off.value + reg->off);
d54e0f6c
AN
1429 break;
1430 case STACK_DYNPTR:
1431 i += BPF_DYNPTR_NR_SLOTS - 1;
1432 reg = &state->stack[i].spilled_ptr;
1433
1434 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1435 print_liveness(env, reg->live);
1436 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1437 if (reg->ref_obj_id)
1438 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1439 break;
06accc87
AN
1440 case STACK_ITER:
1441 /* only main slot has ref_obj_id set; skip others */
1442 reg = &state->stack[i].spilled_ptr;
1443 if (!reg->ref_obj_id)
1444 continue;
1445
1446 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1447 print_liveness(env, reg->live);
1448 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1449 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1450 reg->ref_obj_id, iter_state_str(reg->iter.state),
1451 reg->iter.depth);
1452 break;
d54e0f6c
AN
1453 case STACK_MISC:
1454 case STACK_ZERO:
1455 default:
1456 reg = &state->stack[i].spilled_ptr;
1457
1458 for (j = 0; j < BPF_REG_SIZE; j++)
1459 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1460 types_buf[BPF_REG_SIZE] = 0;
1461
1462 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1463 print_liveness(env, reg->live);
8efea21d 1464 verbose(env, "=%s", types_buf);
d54e0f6c 1465 break;
b5dc0163 1466 }
17a52670 1467 }
fd978bf7
JS
1468 if (state->acquired_refs && state->refs[0].id) {
1469 verbose(env, " refs=%d", state->refs[0].id);
1470 for (i = 1; i < state->acquired_refs; i++)
1471 if (state->refs[i].id)
1472 verbose(env, ",%d", state->refs[i].id);
1473 }
bfc6bb74
AS
1474 if (state->in_callback_fn)
1475 verbose(env, " cb");
1476 if (state->in_async_callback_fn)
1477 verbose(env, " async_cb");
61bd5218 1478 verbose(env, "\n");
0f55f9ed 1479 mark_verifier_state_clean(env);
17a52670
AS
1480}
1481
2e576648
CL
1482static inline u32 vlog_alignment(u32 pos)
1483{
1484 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1485 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1486}
1487
1488static void print_insn_state(struct bpf_verifier_env *env,
1489 const struct bpf_func_state *state)
1490{
12166409 1491 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
2e576648 1492 /* remove new line character */
12166409
AN
1493 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1494 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
2e576648
CL
1495 } else {
1496 verbose(env, "%d:", env->insn_idx);
1497 }
1498 print_verifier_state(env, state, false);
17a52670
AS
1499}
1500
c69431aa
LB
1501/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1502 * small to hold src. This is different from krealloc since we don't want to preserve
1503 * the contents of dst.
1504 *
1505 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1506 * not be allocated.
638f5b90 1507 */
c69431aa 1508static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1509{
45435d8d
KC
1510 size_t alloc_bytes;
1511 void *orig = dst;
c69431aa
LB
1512 size_t bytes;
1513
1514 if (ZERO_OR_NULL_PTR(src))
1515 goto out;
1516
1517 if (unlikely(check_mul_overflow(n, size, &bytes)))
1518 return NULL;
1519
45435d8d
KC
1520 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1521 dst = krealloc(orig, alloc_bytes, flags);
1522 if (!dst) {
1523 kfree(orig);
1524 return NULL;
c69431aa
LB
1525 }
1526
1527 memcpy(dst, src, bytes);
1528out:
1529 return dst ? dst : ZERO_SIZE_PTR;
1530}
1531
1532/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1533 * small to hold new_n items. new items are zeroed out if the array grows.
1534 *
1535 * Contrary to krealloc_array, does not free arr if new_n is zero.
1536 */
1537static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1538{
ceb35b66 1539 size_t alloc_size;
42378a9c
KC
1540 void *new_arr;
1541
c69431aa
LB
1542 if (!new_n || old_n == new_n)
1543 goto out;
1544
ceb35b66
KC
1545 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1546 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
42378a9c
KC
1547 if (!new_arr) {
1548 kfree(arr);
c69431aa 1549 return NULL;
42378a9c
KC
1550 }
1551 arr = new_arr;
c69431aa
LB
1552
1553 if (new_n > old_n)
1554 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1555
1556out:
1557 return arr ? arr : ZERO_SIZE_PTR;
1558}
1559
1560static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1561{
1562 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1563 sizeof(struct bpf_reference_state), GFP_KERNEL);
1564 if (!dst->refs)
1565 return -ENOMEM;
1566
1567 dst->acquired_refs = src->acquired_refs;
1568 return 0;
1569}
1570
1571static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1572{
1573 size_t n = src->allocated_stack / BPF_REG_SIZE;
1574
1575 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1576 GFP_KERNEL);
1577 if (!dst->stack)
1578 return -ENOMEM;
1579
1580 dst->allocated_stack = src->allocated_stack;
1581 return 0;
1582}
1583
1584static int resize_reference_state(struct bpf_func_state *state, size_t n)
1585{
1586 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1587 sizeof(struct bpf_reference_state));
1588 if (!state->refs)
1589 return -ENOMEM;
1590
1591 state->acquired_refs = n;
1592 return 0;
1593}
1594
1595static int grow_stack_state(struct bpf_func_state *state, int size)
1596{
1597 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1598
1599 if (old_n >= n)
1600 return 0;
1601
1602 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1603 if (!state->stack)
1604 return -ENOMEM;
1605
1606 state->allocated_stack = size;
1607 return 0;
fd978bf7
JS
1608}
1609
1610/* Acquire a pointer id from the env and update the state->refs to include
1611 * this new pointer reference.
1612 * On success, returns a valid pointer id to associate with the register
1613 * On failure, returns a negative errno.
638f5b90 1614 */
fd978bf7 1615static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1616{
fd978bf7
JS
1617 struct bpf_func_state *state = cur_func(env);
1618 int new_ofs = state->acquired_refs;
1619 int id, err;
1620
c69431aa 1621 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1622 if (err)
1623 return err;
1624 id = ++env->id_gen;
1625 state->refs[new_ofs].id = id;
1626 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1627 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1628
fd978bf7
JS
1629 return id;
1630}
1631
1632/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1633static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1634{
1635 int i, last_idx;
1636
fd978bf7
JS
1637 last_idx = state->acquired_refs - 1;
1638 for (i = 0; i < state->acquired_refs; i++) {
1639 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1640 /* Cannot release caller references in callbacks */
1641 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1642 return -EINVAL;
fd978bf7
JS
1643 if (last_idx && i != last_idx)
1644 memcpy(&state->refs[i], &state->refs[last_idx],
1645 sizeof(*state->refs));
1646 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1647 state->acquired_refs--;
638f5b90 1648 return 0;
638f5b90 1649 }
638f5b90 1650 }
46f8bc92 1651 return -EINVAL;
fd978bf7
JS
1652}
1653
f4d7e40a
AS
1654static void free_func_state(struct bpf_func_state *state)
1655{
5896351e
AS
1656 if (!state)
1657 return;
fd978bf7 1658 kfree(state->refs);
f4d7e40a
AS
1659 kfree(state->stack);
1660 kfree(state);
1661}
1662
b5dc0163
AS
1663static void clear_jmp_history(struct bpf_verifier_state *state)
1664{
1665 kfree(state->jmp_history);
1666 state->jmp_history = NULL;
1667 state->jmp_history_cnt = 0;
1668}
1669
1969db47
AS
1670static void free_verifier_state(struct bpf_verifier_state *state,
1671 bool free_self)
638f5b90 1672{
f4d7e40a
AS
1673 int i;
1674
1675 for (i = 0; i <= state->curframe; i++) {
1676 free_func_state(state->frame[i]);
1677 state->frame[i] = NULL;
1678 }
b5dc0163 1679 clear_jmp_history(state);
1969db47
AS
1680 if (free_self)
1681 kfree(state);
638f5b90
AS
1682}
1683
1684/* copy verifier state from src to dst growing dst stack space
1685 * when necessary to accommodate larger src stack
1686 */
f4d7e40a
AS
1687static int copy_func_state(struct bpf_func_state *dst,
1688 const struct bpf_func_state *src)
638f5b90
AS
1689{
1690 int err;
1691
fd978bf7
JS
1692 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1693 err = copy_reference_state(dst, src);
638f5b90
AS
1694 if (err)
1695 return err;
638f5b90
AS
1696 return copy_stack_state(dst, src);
1697}
1698
f4d7e40a
AS
1699static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1700 const struct bpf_verifier_state *src)
1701{
1702 struct bpf_func_state *dst;
1703 int i, err;
1704
06ab6a50
LB
1705 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1706 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1707 GFP_USER);
1708 if (!dst_state->jmp_history)
1709 return -ENOMEM;
b5dc0163
AS
1710 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1711
f4d7e40a
AS
1712 /* if dst has more stack frames then src frame, free them */
1713 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1714 free_func_state(dst_state->frame[i]);
1715 dst_state->frame[i] = NULL;
1716 }
979d63d5 1717 dst_state->speculative = src->speculative;
9bb00b28 1718 dst_state->active_rcu_lock = src->active_rcu_lock;
f4d7e40a 1719 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1720 dst_state->active_lock.ptr = src->active_lock.ptr;
1721 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1722 dst_state->branches = src->branches;
1723 dst_state->parent = src->parent;
b5dc0163
AS
1724 dst_state->first_insn_idx = src->first_insn_idx;
1725 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1726 for (i = 0; i <= src->curframe; i++) {
1727 dst = dst_state->frame[i];
1728 if (!dst) {
1729 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1730 if (!dst)
1731 return -ENOMEM;
1732 dst_state->frame[i] = dst;
1733 }
1734 err = copy_func_state(dst, src->frame[i]);
1735 if (err)
1736 return err;
1737 }
1738 return 0;
1739}
1740
2589726d
AS
1741static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1742{
1743 while (st) {
1744 u32 br = --st->branches;
1745
1746 /* WARN_ON(br > 1) technically makes sense here,
1747 * but see comment in push_stack(), hence:
1748 */
1749 WARN_ONCE((int)br < 0,
1750 "BUG update_branch_counts:branches_to_explore=%d\n",
1751 br);
1752 if (br)
1753 break;
1754 st = st->parent;
1755 }
1756}
1757
638f5b90 1758static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1759 int *insn_idx, bool pop_log)
638f5b90
AS
1760{
1761 struct bpf_verifier_state *cur = env->cur_state;
1762 struct bpf_verifier_stack_elem *elem, *head = env->head;
1763 int err;
17a52670
AS
1764
1765 if (env->head == NULL)
638f5b90 1766 return -ENOENT;
17a52670 1767
638f5b90
AS
1768 if (cur) {
1769 err = copy_verifier_state(cur, &head->st);
1770 if (err)
1771 return err;
1772 }
6f8a57cc
AN
1773 if (pop_log)
1774 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1775 if (insn_idx)
1776 *insn_idx = head->insn_idx;
17a52670 1777 if (prev_insn_idx)
638f5b90
AS
1778 *prev_insn_idx = head->prev_insn_idx;
1779 elem = head->next;
1969db47 1780 free_verifier_state(&head->st, false);
638f5b90 1781 kfree(head);
17a52670
AS
1782 env->head = elem;
1783 env->stack_size--;
638f5b90 1784 return 0;
17a52670
AS
1785}
1786
58e2af8b 1787static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1788 int insn_idx, int prev_insn_idx,
1789 bool speculative)
17a52670 1790{
638f5b90 1791 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1792 struct bpf_verifier_stack_elem *elem;
638f5b90 1793 int err;
17a52670 1794
638f5b90 1795 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1796 if (!elem)
1797 goto err;
1798
17a52670
AS
1799 elem->insn_idx = insn_idx;
1800 elem->prev_insn_idx = prev_insn_idx;
1801 elem->next = env->head;
12166409 1802 elem->log_pos = env->log.end_pos;
17a52670
AS
1803 env->head = elem;
1804 env->stack_size++;
1969db47
AS
1805 err = copy_verifier_state(&elem->st, cur);
1806 if (err)
1807 goto err;
979d63d5 1808 elem->st.speculative |= speculative;
b285fcb7
AS
1809 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1810 verbose(env, "The sequence of %d jumps is too complex.\n",
1811 env->stack_size);
17a52670
AS
1812 goto err;
1813 }
2589726d
AS
1814 if (elem->st.parent) {
1815 ++elem->st.parent->branches;
1816 /* WARN_ON(branches > 2) technically makes sense here,
1817 * but
1818 * 1. speculative states will bump 'branches' for non-branch
1819 * instructions
1820 * 2. is_state_visited() heuristics may decide not to create
1821 * a new state for a sequence of branches and all such current
1822 * and cloned states will be pointing to a single parent state
1823 * which might have large 'branches' count.
1824 */
1825 }
17a52670
AS
1826 return &elem->st;
1827err:
5896351e
AS
1828 free_verifier_state(env->cur_state, true);
1829 env->cur_state = NULL;
17a52670 1830 /* pop all elements and return */
6f8a57cc 1831 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1832 return NULL;
1833}
1834
1835#define CALLER_SAVED_REGS 6
1836static const int caller_saved[CALLER_SAVED_REGS] = {
1837 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1838};
1839
e688c3db
AS
1840/* This helper doesn't clear reg->id */
1841static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1842{
b03c9f9f
EC
1843 reg->var_off = tnum_const(imm);
1844 reg->smin_value = (s64)imm;
1845 reg->smax_value = (s64)imm;
1846 reg->umin_value = imm;
1847 reg->umax_value = imm;
3f50f132
JF
1848
1849 reg->s32_min_value = (s32)imm;
1850 reg->s32_max_value = (s32)imm;
1851 reg->u32_min_value = (u32)imm;
1852 reg->u32_max_value = (u32)imm;
1853}
1854
e688c3db
AS
1855/* Mark the unknown part of a register (variable offset or scalar value) as
1856 * known to have the value @imm.
1857 */
1858static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1859{
a73bf9f2 1860 /* Clear off and union(map_ptr, range) */
e688c3db
AS
1861 memset(((u8 *)reg) + sizeof(reg->type), 0,
1862 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
a73bf9f2
AN
1863 reg->id = 0;
1864 reg->ref_obj_id = 0;
e688c3db
AS
1865 ___mark_reg_known(reg, imm);
1866}
1867
3f50f132
JF
1868static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1869{
1870 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1871 reg->s32_min_value = (s32)imm;
1872 reg->s32_max_value = (s32)imm;
1873 reg->u32_min_value = (u32)imm;
1874 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1875}
1876
f1174f77
EC
1877/* Mark the 'variable offset' part of a register as zero. This should be
1878 * used only on registers holding a pointer type.
1879 */
1880static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1881{
b03c9f9f 1882 __mark_reg_known(reg, 0);
f1174f77 1883}
a9789ef9 1884
cc2b14d5
AS
1885static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1886{
1887 __mark_reg_known(reg, 0);
cc2b14d5
AS
1888 reg->type = SCALAR_VALUE;
1889}
1890
61bd5218
JK
1891static void mark_reg_known_zero(struct bpf_verifier_env *env,
1892 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1893{
1894 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1895 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1896 /* Something bad happened, let's kill all regs */
1897 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1898 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1899 return;
1900 }
1901 __mark_reg_known_zero(regs + regno);
1902}
1903
27060531 1904static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
f8064ab9 1905 bool first_slot, int dynptr_id)
27060531
KKD
1906{
1907 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1908 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1909 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1910 */
1911 __mark_reg_known_zero(reg);
1912 reg->type = CONST_PTR_TO_DYNPTR;
f8064ab9
KKD
1913 /* Give each dynptr a unique id to uniquely associate slices to it. */
1914 reg->id = dynptr_id;
27060531
KKD
1915 reg->dynptr.type = type;
1916 reg->dynptr.first_slot = first_slot;
1917}
1918
4ddb7416
DB
1919static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1920{
c25b2ae1 1921 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1922 const struct bpf_map *map = reg->map_ptr;
1923
1924 if (map->inner_map_meta) {
1925 reg->type = CONST_PTR_TO_MAP;
1926 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1927 /* transfer reg's id which is unique for every map_lookup_elem
1928 * as UID of the inner map.
1929 */
db559117 1930 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1931 reg->map_uid = reg->id;
4ddb7416
DB
1932 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1933 reg->type = PTR_TO_XDP_SOCK;
1934 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1935 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1936 reg->type = PTR_TO_SOCKET;
1937 } else {
1938 reg->type = PTR_TO_MAP_VALUE;
1939 }
c25b2ae1 1940 return;
4ddb7416 1941 }
c25b2ae1
HL
1942
1943 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1944}
1945
5d92ddc3
DM
1946static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1947 struct btf_field_graph_root *ds_head)
1948{
1949 __mark_reg_known_zero(&regs[regno]);
1950 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1951 regs[regno].btf = ds_head->btf;
1952 regs[regno].btf_id = ds_head->value_btf_id;
1953 regs[regno].off = ds_head->node_offset;
1954}
1955
de8f3a83
DB
1956static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1957{
1958 return type_is_pkt_pointer(reg->type);
1959}
1960
1961static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1962{
1963 return reg_is_pkt_pointer(reg) ||
1964 reg->type == PTR_TO_PACKET_END;
1965}
1966
66e3a13e
JK
1967static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1968{
1969 return base_type(reg->type) == PTR_TO_MEM &&
1970 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1971}
1972
de8f3a83
DB
1973/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1974static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1975 enum bpf_reg_type which)
1976{
1977 /* The register can already have a range from prior markings.
1978 * This is fine as long as it hasn't been advanced from its
1979 * origin.
1980 */
1981 return reg->type == which &&
1982 reg->id == 0 &&
1983 reg->off == 0 &&
1984 tnum_equals_const(reg->var_off, 0);
1985}
1986
3f50f132
JF
1987/* Reset the min/max bounds of a register */
1988static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1989{
1990 reg->smin_value = S64_MIN;
1991 reg->smax_value = S64_MAX;
1992 reg->umin_value = 0;
1993 reg->umax_value = U64_MAX;
1994
1995 reg->s32_min_value = S32_MIN;
1996 reg->s32_max_value = S32_MAX;
1997 reg->u32_min_value = 0;
1998 reg->u32_max_value = U32_MAX;
1999}
2000
2001static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2002{
2003 reg->smin_value = S64_MIN;
2004 reg->smax_value = S64_MAX;
2005 reg->umin_value = 0;
2006 reg->umax_value = U64_MAX;
2007}
2008
2009static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2010{
2011 reg->s32_min_value = S32_MIN;
2012 reg->s32_max_value = S32_MAX;
2013 reg->u32_min_value = 0;
2014 reg->u32_max_value = U32_MAX;
2015}
2016
2017static void __update_reg32_bounds(struct bpf_reg_state *reg)
2018{
2019 struct tnum var32_off = tnum_subreg(reg->var_off);
2020
2021 /* min signed is max(sign bit) | min(other bits) */
2022 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2023 var32_off.value | (var32_off.mask & S32_MIN));
2024 /* max signed is min(sign bit) | max(other bits) */
2025 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2026 var32_off.value | (var32_off.mask & S32_MAX));
2027 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2028 reg->u32_max_value = min(reg->u32_max_value,
2029 (u32)(var32_off.value | var32_off.mask));
2030}
2031
2032static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2033{
2034 /* min signed is max(sign bit) | min(other bits) */
2035 reg->smin_value = max_t(s64, reg->smin_value,
2036 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2037 /* max signed is min(sign bit) | max(other bits) */
2038 reg->smax_value = min_t(s64, reg->smax_value,
2039 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2040 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2041 reg->umax_value = min(reg->umax_value,
2042 reg->var_off.value | reg->var_off.mask);
2043}
2044
3f50f132
JF
2045static void __update_reg_bounds(struct bpf_reg_state *reg)
2046{
2047 __update_reg32_bounds(reg);
2048 __update_reg64_bounds(reg);
2049}
2050
b03c9f9f 2051/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
2052static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2053{
2054 /* Learn sign from signed bounds.
2055 * If we cannot cross the sign boundary, then signed and unsigned bounds
2056 * are the same, so combine. This works even in the negative case, e.g.
2057 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2058 */
2059 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2060 reg->s32_min_value = reg->u32_min_value =
2061 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2062 reg->s32_max_value = reg->u32_max_value =
2063 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2064 return;
2065 }
2066 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2067 * boundary, so we must be careful.
2068 */
2069 if ((s32)reg->u32_max_value >= 0) {
2070 /* Positive. We can't learn anything from the smin, but smax
2071 * is positive, hence safe.
2072 */
2073 reg->s32_min_value = reg->u32_min_value;
2074 reg->s32_max_value = reg->u32_max_value =
2075 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2076 } else if ((s32)reg->u32_min_value < 0) {
2077 /* Negative. We can't learn anything from the smax, but smin
2078 * is negative, hence safe.
2079 */
2080 reg->s32_min_value = reg->u32_min_value =
2081 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2082 reg->s32_max_value = reg->u32_max_value;
2083 }
2084}
2085
2086static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2087{
2088 /* Learn sign from signed bounds.
2089 * If we cannot cross the sign boundary, then signed and unsigned bounds
2090 * are the same, so combine. This works even in the negative case, e.g.
2091 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2092 */
2093 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2094 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2095 reg->umin_value);
2096 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2097 reg->umax_value);
2098 return;
2099 }
2100 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2101 * boundary, so we must be careful.
2102 */
2103 if ((s64)reg->umax_value >= 0) {
2104 /* Positive. We can't learn anything from the smin, but smax
2105 * is positive, hence safe.
2106 */
2107 reg->smin_value = reg->umin_value;
2108 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2109 reg->umax_value);
2110 } else if ((s64)reg->umin_value < 0) {
2111 /* Negative. We can't learn anything from the smax, but smin
2112 * is negative, hence safe.
2113 */
2114 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2115 reg->umin_value);
2116 reg->smax_value = reg->umax_value;
2117 }
2118}
2119
3f50f132
JF
2120static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2121{
2122 __reg32_deduce_bounds(reg);
2123 __reg64_deduce_bounds(reg);
2124}
2125
b03c9f9f
EC
2126/* Attempts to improve var_off based on unsigned min/max information */
2127static void __reg_bound_offset(struct bpf_reg_state *reg)
2128{
3f50f132
JF
2129 struct tnum var64_off = tnum_intersect(reg->var_off,
2130 tnum_range(reg->umin_value,
2131 reg->umax_value));
7be14c1c
DB
2132 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2133 tnum_range(reg->u32_min_value,
2134 reg->u32_max_value));
3f50f132
JF
2135
2136 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
2137}
2138
3844d153
DB
2139static void reg_bounds_sync(struct bpf_reg_state *reg)
2140{
2141 /* We might have learned new bounds from the var_off. */
2142 __update_reg_bounds(reg);
2143 /* We might have learned something about the sign bit. */
2144 __reg_deduce_bounds(reg);
2145 /* We might have learned some bits from the bounds. */
2146 __reg_bound_offset(reg);
2147 /* Intersecting with the old var_off might have improved our bounds
2148 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2149 * then new var_off is (0; 0x7f...fc) which improves our umax.
2150 */
2151 __update_reg_bounds(reg);
2152}
2153
e572ff80
DB
2154static bool __reg32_bound_s64(s32 a)
2155{
2156 return a >= 0 && a <= S32_MAX;
2157}
2158
3f50f132 2159static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 2160{
3f50f132
JF
2161 reg->umin_value = reg->u32_min_value;
2162 reg->umax_value = reg->u32_max_value;
e572ff80
DB
2163
2164 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2165 * be positive otherwise set to worse case bounds and refine later
2166 * from tnum.
3f50f132 2167 */
e572ff80
DB
2168 if (__reg32_bound_s64(reg->s32_min_value) &&
2169 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 2170 reg->smin_value = reg->s32_min_value;
e572ff80
DB
2171 reg->smax_value = reg->s32_max_value;
2172 } else {
3a71dc36 2173 reg->smin_value = 0;
e572ff80
DB
2174 reg->smax_value = U32_MAX;
2175 }
3f50f132
JF
2176}
2177
2178static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2179{
2180 /* special case when 64-bit register has upper 32-bit register
2181 * zeroed. Typically happens after zext or <<32, >>32 sequence
2182 * allowing us to use 32-bit bounds directly,
2183 */
2184 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2185 __reg_assign_32_into_64(reg);
2186 } else {
2187 /* Otherwise the best we can do is push lower 32bit known and
2188 * unknown bits into register (var_off set from jmp logic)
2189 * then learn as much as possible from the 64-bit tnum
2190 * known and unknown bits. The previous smin/smax bounds are
2191 * invalid here because of jmp32 compare so mark them unknown
2192 * so they do not impact tnum bounds calculation.
2193 */
2194 __mark_reg64_unbounded(reg);
3f50f132 2195 }
3844d153 2196 reg_bounds_sync(reg);
3f50f132
JF
2197}
2198
2199static bool __reg64_bound_s32(s64 a)
2200{
388e2c0b 2201 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
2202}
2203
2204static bool __reg64_bound_u32(u64 a)
2205{
b9979db8 2206 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
2207}
2208
2209static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2210{
2211 __mark_reg32_unbounded(reg);
b0270958 2212 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 2213 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 2214 reg->s32_max_value = (s32)reg->smax_value;
b0270958 2215 }
10bf4e83 2216 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 2217 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 2218 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 2219 }
3844d153 2220 reg_bounds_sync(reg);
b03c9f9f
EC
2221}
2222
f1174f77 2223/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
2224static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2225 struct bpf_reg_state *reg)
f1174f77 2226{
a9c676bc 2227 /*
a73bf9f2 2228 * Clear type, off, and union(map_ptr, range) and
a9c676bc
AS
2229 * padding between 'type' and union
2230 */
2231 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 2232 reg->type = SCALAR_VALUE;
a73bf9f2
AN
2233 reg->id = 0;
2234 reg->ref_obj_id = 0;
f1174f77 2235 reg->var_off = tnum_unknown;
f4d7e40a 2236 reg->frameno = 0;
be2ef816 2237 reg->precise = !env->bpf_capable;
b03c9f9f 2238 __mark_reg_unbounded(reg);
f1174f77
EC
2239}
2240
61bd5218
JK
2241static void mark_reg_unknown(struct bpf_verifier_env *env,
2242 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2243{
2244 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2245 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
2246 /* Something bad happened, let's kill all regs except FP */
2247 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2248 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2249 return;
2250 }
f54c7898 2251 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
2252}
2253
f54c7898
DB
2254static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2255 struct bpf_reg_state *reg)
f1174f77 2256{
f54c7898 2257 __mark_reg_unknown(env, reg);
f1174f77
EC
2258 reg->type = NOT_INIT;
2259}
2260
61bd5218
JK
2261static void mark_reg_not_init(struct bpf_verifier_env *env,
2262 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2263{
2264 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2265 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
2266 /* Something bad happened, let's kill all regs except FP */
2267 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2268 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2269 return;
2270 }
f54c7898 2271 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
2272}
2273
41c48f3a
AI
2274static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2275 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 2276 enum bpf_reg_type reg_type,
c6f1bfe8
YS
2277 struct btf *btf, u32 btf_id,
2278 enum bpf_type_flag flag)
41c48f3a
AI
2279{
2280 if (reg_type == SCALAR_VALUE) {
2281 mark_reg_unknown(env, regs, regno);
2282 return;
2283 }
2284 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 2285 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 2286 regs[regno].btf = btf;
41c48f3a
AI
2287 regs[regno].btf_id = btf_id;
2288}
2289
5327ed3d 2290#define DEF_NOT_SUBREG (0)
61bd5218 2291static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 2292 struct bpf_func_state *state)
17a52670 2293{
f4d7e40a 2294 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2295 int i;
2296
dc503a8a 2297 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 2298 mark_reg_not_init(env, regs, i);
dc503a8a 2299 regs[i].live = REG_LIVE_NONE;
679c782d 2300 regs[i].parent = NULL;
5327ed3d 2301 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 2302 }
17a52670
AS
2303
2304 /* frame pointer */
f1174f77 2305 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 2306 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 2307 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
2308}
2309
f4d7e40a
AS
2310#define BPF_MAIN_FUNC (-1)
2311static void init_func_state(struct bpf_verifier_env *env,
2312 struct bpf_func_state *state,
2313 int callsite, int frameno, int subprogno)
2314{
2315 state->callsite = callsite;
2316 state->frameno = frameno;
2317 state->subprogno = subprogno;
1bfe26fb 2318 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 2319 init_reg_state(env, state);
0f55f9ed 2320 mark_verifier_state_scratched(env);
f4d7e40a
AS
2321}
2322
bfc6bb74
AS
2323/* Similar to push_stack(), but for async callbacks */
2324static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2325 int insn_idx, int prev_insn_idx,
2326 int subprog)
2327{
2328 struct bpf_verifier_stack_elem *elem;
2329 struct bpf_func_state *frame;
2330
2331 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2332 if (!elem)
2333 goto err;
2334
2335 elem->insn_idx = insn_idx;
2336 elem->prev_insn_idx = prev_insn_idx;
2337 elem->next = env->head;
12166409 2338 elem->log_pos = env->log.end_pos;
bfc6bb74
AS
2339 env->head = elem;
2340 env->stack_size++;
2341 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2342 verbose(env,
2343 "The sequence of %d jumps is too complex for async cb.\n",
2344 env->stack_size);
2345 goto err;
2346 }
2347 /* Unlike push_stack() do not copy_verifier_state().
2348 * The caller state doesn't matter.
2349 * This is async callback. It starts in a fresh stack.
2350 * Initialize it similar to do_check_common().
2351 */
2352 elem->st.branches = 1;
2353 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2354 if (!frame)
2355 goto err;
2356 init_func_state(env, frame,
2357 BPF_MAIN_FUNC /* callsite */,
2358 0 /* frameno within this callchain */,
2359 subprog /* subprog number within this prog */);
2360 elem->st.frame[0] = frame;
2361 return &elem->st;
2362err:
2363 free_verifier_state(env->cur_state, true);
2364 env->cur_state = NULL;
2365 /* pop all elements and return */
2366 while (!pop_stack(env, NULL, NULL, false));
2367 return NULL;
2368}
2369
2370
17a52670
AS
2371enum reg_arg_type {
2372 SRC_OP, /* register is used as source operand */
2373 DST_OP, /* register is used as destination operand */
2374 DST_OP_NO_MARK /* same as above, check only, don't mark */
2375};
2376
cc8b0b92
AS
2377static int cmp_subprogs(const void *a, const void *b)
2378{
9c8105bd
JW
2379 return ((struct bpf_subprog_info *)a)->start -
2380 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
2381}
2382
2383static int find_subprog(struct bpf_verifier_env *env, int off)
2384{
9c8105bd 2385 struct bpf_subprog_info *p;
cc8b0b92 2386
9c8105bd
JW
2387 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2388 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
2389 if (!p)
2390 return -ENOENT;
9c8105bd 2391 return p - env->subprog_info;
cc8b0b92
AS
2392
2393}
2394
2395static int add_subprog(struct bpf_verifier_env *env, int off)
2396{
2397 int insn_cnt = env->prog->len;
2398 int ret;
2399
2400 if (off >= insn_cnt || off < 0) {
2401 verbose(env, "call to invalid destination\n");
2402 return -EINVAL;
2403 }
2404 ret = find_subprog(env, off);
2405 if (ret >= 0)
282a0f46 2406 return ret;
4cb3d99c 2407 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
2408 verbose(env, "too many subprograms\n");
2409 return -E2BIG;
2410 }
e6ac2450 2411 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
2412 env->subprog_info[env->subprog_cnt++].start = off;
2413 sort(env->subprog_info, env->subprog_cnt,
2414 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 2415 return env->subprog_cnt - 1;
cc8b0b92
AS
2416}
2417
2357672c
KKD
2418#define MAX_KFUNC_DESCS 256
2419#define MAX_KFUNC_BTFS 256
2420
e6ac2450
MKL
2421struct bpf_kfunc_desc {
2422 struct btf_func_model func_model;
2423 u32 func_id;
2424 s32 imm;
2357672c 2425 u16 offset;
1cf3bfc6 2426 unsigned long addr;
2357672c
KKD
2427};
2428
2429struct bpf_kfunc_btf {
2430 struct btf *btf;
2431 struct module *module;
2432 u16 offset;
e6ac2450
MKL
2433};
2434
e6ac2450 2435struct bpf_kfunc_desc_tab {
1cf3bfc6
IL
2436 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2437 * verification. JITs do lookups by bpf_insn, where func_id may not be
2438 * available, therefore at the end of verification do_misc_fixups()
2439 * sorts this by imm and offset.
2440 */
e6ac2450
MKL
2441 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2442 u32 nr_descs;
2443};
2444
2357672c
KKD
2445struct bpf_kfunc_btf_tab {
2446 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2447 u32 nr_descs;
2448};
2449
2450static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
2451{
2452 const struct bpf_kfunc_desc *d0 = a;
2453 const struct bpf_kfunc_desc *d1 = b;
2454
2455 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
2456 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2457}
2458
2459static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2460{
2461 const struct bpf_kfunc_btf *d0 = a;
2462 const struct bpf_kfunc_btf *d1 = b;
2463
2464 return d0->offset - d1->offset;
e6ac2450
MKL
2465}
2466
2467static const struct bpf_kfunc_desc *
2357672c 2468find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
2469{
2470 struct bpf_kfunc_desc desc = {
2471 .func_id = func_id,
2357672c 2472 .offset = offset,
e6ac2450
MKL
2473 };
2474 struct bpf_kfunc_desc_tab *tab;
2475
2476 tab = prog->aux->kfunc_tab;
2477 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
2478 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2479}
2480
1cf3bfc6
IL
2481int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2482 u16 btf_fd_idx, u8 **func_addr)
2483{
2484 const struct bpf_kfunc_desc *desc;
2485
2486 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2487 if (!desc)
2488 return -EFAULT;
2489
2490 *func_addr = (u8 *)desc->addr;
2491 return 0;
2492}
2493
2357672c 2494static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 2495 s16 offset)
2357672c
KKD
2496{
2497 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2498 struct bpf_kfunc_btf_tab *tab;
2499 struct bpf_kfunc_btf *b;
2500 struct module *mod;
2501 struct btf *btf;
2502 int btf_fd;
2503
2504 tab = env->prog->aux->kfunc_btf_tab;
2505 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2506 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2507 if (!b) {
2508 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2509 verbose(env, "too many different module BTFs\n");
2510 return ERR_PTR(-E2BIG);
2511 }
2512
2513 if (bpfptr_is_null(env->fd_array)) {
2514 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2515 return ERR_PTR(-EPROTO);
2516 }
2517
2518 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2519 offset * sizeof(btf_fd),
2520 sizeof(btf_fd)))
2521 return ERR_PTR(-EFAULT);
2522
2523 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
2524 if (IS_ERR(btf)) {
2525 verbose(env, "invalid module BTF fd specified\n");
2357672c 2526 return btf;
588cd7ef 2527 }
2357672c
KKD
2528
2529 if (!btf_is_module(btf)) {
2530 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2531 btf_put(btf);
2532 return ERR_PTR(-EINVAL);
2533 }
2534
2535 mod = btf_try_get_module(btf);
2536 if (!mod) {
2537 btf_put(btf);
2538 return ERR_PTR(-ENXIO);
2539 }
2540
2541 b = &tab->descs[tab->nr_descs++];
2542 b->btf = btf;
2543 b->module = mod;
2544 b->offset = offset;
2545
2546 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2547 kfunc_btf_cmp_by_off, NULL);
2548 }
2357672c 2549 return b->btf;
e6ac2450
MKL
2550}
2551
2357672c
KKD
2552void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2553{
2554 if (!tab)
2555 return;
2556
2557 while (tab->nr_descs--) {
2558 module_put(tab->descs[tab->nr_descs].module);
2559 btf_put(tab->descs[tab->nr_descs].btf);
2560 }
2561 kfree(tab);
2562}
2563
43bf0878 2564static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2565{
2357672c
KKD
2566 if (offset) {
2567 if (offset < 0) {
2568 /* In the future, this can be allowed to increase limit
2569 * of fd index into fd_array, interpreted as u16.
2570 */
2571 verbose(env, "negative offset disallowed for kernel module function call\n");
2572 return ERR_PTR(-EINVAL);
2573 }
2574
b202d844 2575 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2576 }
2577 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2578}
2579
2357672c 2580static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2581{
2582 const struct btf_type *func, *func_proto;
2357672c 2583 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2584 struct bpf_kfunc_desc_tab *tab;
2585 struct bpf_prog_aux *prog_aux;
2586 struct bpf_kfunc_desc *desc;
2587 const char *func_name;
2357672c 2588 struct btf *desc_btf;
8cbf062a 2589 unsigned long call_imm;
e6ac2450
MKL
2590 unsigned long addr;
2591 int err;
2592
2593 prog_aux = env->prog->aux;
2594 tab = prog_aux->kfunc_tab;
2357672c 2595 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2596 if (!tab) {
2597 if (!btf_vmlinux) {
2598 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2599 return -ENOTSUPP;
2600 }
2601
2602 if (!env->prog->jit_requested) {
2603 verbose(env, "JIT is required for calling kernel function\n");
2604 return -ENOTSUPP;
2605 }
2606
2607 if (!bpf_jit_supports_kfunc_call()) {
2608 verbose(env, "JIT does not support calling kernel function\n");
2609 return -ENOTSUPP;
2610 }
2611
2612 if (!env->prog->gpl_compatible) {
2613 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2614 return -EINVAL;
2615 }
2616
2617 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2618 if (!tab)
2619 return -ENOMEM;
2620 prog_aux->kfunc_tab = tab;
2621 }
2622
a5d82727
KKD
2623 /* func_id == 0 is always invalid, but instead of returning an error, be
2624 * conservative and wait until the code elimination pass before returning
2625 * error, so that invalid calls that get pruned out can be in BPF programs
2626 * loaded from userspace. It is also required that offset be untouched
2627 * for such calls.
2628 */
2629 if (!func_id && !offset)
2630 return 0;
2631
2357672c
KKD
2632 if (!btf_tab && offset) {
2633 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2634 if (!btf_tab)
2635 return -ENOMEM;
2636 prog_aux->kfunc_btf_tab = btf_tab;
2637 }
2638
43bf0878 2639 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2640 if (IS_ERR(desc_btf)) {
2641 verbose(env, "failed to find BTF for kernel function\n");
2642 return PTR_ERR(desc_btf);
2643 }
2644
2645 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2646 return 0;
2647
2648 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2649 verbose(env, "too many different kernel function calls\n");
2650 return -E2BIG;
2651 }
2652
2357672c 2653 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2654 if (!func || !btf_type_is_func(func)) {
2655 verbose(env, "kernel btf_id %u is not a function\n",
2656 func_id);
2657 return -EINVAL;
2658 }
2357672c 2659 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2660 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2661 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2662 func_id);
2663 return -EINVAL;
2664 }
2665
2357672c 2666 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2667 addr = kallsyms_lookup_name(func_name);
2668 if (!addr) {
2669 verbose(env, "cannot find address for kernel function %s\n",
2670 func_name);
2671 return -EINVAL;
2672 }
1cf3bfc6 2673 specialize_kfunc(env, func_id, offset, &addr);
e6ac2450 2674
1cf3bfc6
IL
2675 if (bpf_jit_supports_far_kfunc_call()) {
2676 call_imm = func_id;
2677 } else {
2678 call_imm = BPF_CALL_IMM(addr);
2679 /* Check whether the relative offset overflows desc->imm */
2680 if ((unsigned long)(s32)call_imm != call_imm) {
2681 verbose(env, "address of kernel function %s is out of range\n",
2682 func_name);
2683 return -EINVAL;
2684 }
8cbf062a
HT
2685 }
2686
3d76a4d3
SF
2687 if (bpf_dev_bound_kfunc_id(func_id)) {
2688 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2689 if (err)
2690 return err;
2691 }
2692
e6ac2450
MKL
2693 desc = &tab->descs[tab->nr_descs++];
2694 desc->func_id = func_id;
8cbf062a 2695 desc->imm = call_imm;
2357672c 2696 desc->offset = offset;
1cf3bfc6 2697 desc->addr = addr;
2357672c 2698 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2699 func_proto, func_name,
2700 &desc->func_model);
2701 if (!err)
2702 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2703 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2704 return err;
2705}
2706
1cf3bfc6 2707static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
e6ac2450
MKL
2708{
2709 const struct bpf_kfunc_desc *d0 = a;
2710 const struct bpf_kfunc_desc *d1 = b;
2711
1cf3bfc6
IL
2712 if (d0->imm != d1->imm)
2713 return d0->imm < d1->imm ? -1 : 1;
2714 if (d0->offset != d1->offset)
2715 return d0->offset < d1->offset ? -1 : 1;
e6ac2450
MKL
2716 return 0;
2717}
2718
1cf3bfc6 2719static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
e6ac2450
MKL
2720{
2721 struct bpf_kfunc_desc_tab *tab;
2722
2723 tab = prog->aux->kfunc_tab;
2724 if (!tab)
2725 return;
2726
2727 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1cf3bfc6 2728 kfunc_desc_cmp_by_imm_off, NULL);
e6ac2450
MKL
2729}
2730
2731bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2732{
2733 return !!prog->aux->kfunc_tab;
2734}
2735
2736const struct btf_func_model *
2737bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2738 const struct bpf_insn *insn)
2739{
2740 const struct bpf_kfunc_desc desc = {
2741 .imm = insn->imm,
1cf3bfc6 2742 .offset = insn->off,
e6ac2450
MKL
2743 };
2744 const struct bpf_kfunc_desc *res;
2745 struct bpf_kfunc_desc_tab *tab;
2746
2747 tab = prog->aux->kfunc_tab;
2748 res = bsearch(&desc, tab->descs, tab->nr_descs,
1cf3bfc6 2749 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
e6ac2450
MKL
2750
2751 return res ? &res->func_model : NULL;
2752}
2753
2754static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2755{
9c8105bd 2756 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2757 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2758 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2759
f910cefa
JW
2760 /* Add entry function. */
2761 ret = add_subprog(env, 0);
e6ac2450 2762 if (ret)
f910cefa
JW
2763 return ret;
2764
e6ac2450
MKL
2765 for (i = 0; i < insn_cnt; i++, insn++) {
2766 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2767 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2768 continue;
e6ac2450 2769
2c78ee89 2770 if (!env->bpf_capable) {
e6ac2450 2771 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2772 return -EPERM;
2773 }
e6ac2450 2774
3990ed4c 2775 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2776 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2777 else
2357672c 2778 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2779
cc8b0b92
AS
2780 if (ret < 0)
2781 return ret;
2782 }
2783
4cb3d99c
JW
2784 /* Add a fake 'exit' subprog which could simplify subprog iteration
2785 * logic. 'subprog_cnt' should not be increased.
2786 */
2787 subprog[env->subprog_cnt].start = insn_cnt;
2788
06ee7115 2789 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2790 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2791 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2792
e6ac2450
MKL
2793 return 0;
2794}
2795
2796static int check_subprogs(struct bpf_verifier_env *env)
2797{
2798 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2799 struct bpf_subprog_info *subprog = env->subprog_info;
2800 struct bpf_insn *insn = env->prog->insnsi;
2801 int insn_cnt = env->prog->len;
2802
cc8b0b92 2803 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2804 subprog_start = subprog[cur_subprog].start;
2805 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2806 for (i = 0; i < insn_cnt; i++) {
2807 u8 code = insn[i].code;
2808
7f6e4312 2809 if (code == (BPF_JMP | BPF_CALL) &&
df2ccc18
IL
2810 insn[i].src_reg == 0 &&
2811 insn[i].imm == BPF_FUNC_tail_call)
7f6e4312 2812 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2813 if (BPF_CLASS(code) == BPF_LD &&
2814 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2815 subprog[cur_subprog].has_ld_abs = true;
092ed096 2816 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2817 goto next;
2818 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2819 goto next;
2820 off = i + insn[i].off + 1;
2821 if (off < subprog_start || off >= subprog_end) {
2822 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2823 return -EINVAL;
2824 }
2825next:
2826 if (i == subprog_end - 1) {
2827 /* to avoid fall-through from one subprog into another
2828 * the last insn of the subprog should be either exit
2829 * or unconditional jump back
2830 */
2831 if (code != (BPF_JMP | BPF_EXIT) &&
2832 code != (BPF_JMP | BPF_JA)) {
2833 verbose(env, "last insn is not an exit or jmp\n");
2834 return -EINVAL;
2835 }
2836 subprog_start = subprog_end;
4cb3d99c
JW
2837 cur_subprog++;
2838 if (cur_subprog < env->subprog_cnt)
9c8105bd 2839 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2840 }
2841 }
2842 return 0;
2843}
2844
679c782d
EC
2845/* Parentage chain of this register (or stack slot) should take care of all
2846 * issues like callee-saved registers, stack slot allocation time, etc.
2847 */
f4d7e40a 2848static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2849 const struct bpf_reg_state *state,
5327ed3d 2850 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2851{
2852 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2853 int cnt = 0;
dc503a8a
EC
2854
2855 while (parent) {
2856 /* if read wasn't screened by an earlier write ... */
679c782d 2857 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2858 break;
9242b5f5
AS
2859 if (parent->live & REG_LIVE_DONE) {
2860 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2861 reg_type_str(env, parent->type),
9242b5f5
AS
2862 parent->var_off.value, parent->off);
2863 return -EFAULT;
2864 }
5327ed3d
JW
2865 /* The first condition is more likely to be true than the
2866 * second, checked it first.
2867 */
2868 if ((parent->live & REG_LIVE_READ) == flag ||
2869 parent->live & REG_LIVE_READ64)
25af32da
AS
2870 /* The parentage chain never changes and
2871 * this parent was already marked as LIVE_READ.
2872 * There is no need to keep walking the chain again and
2873 * keep re-marking all parents as LIVE_READ.
2874 * This case happens when the same register is read
2875 * multiple times without writes into it in-between.
5327ed3d
JW
2876 * Also, if parent has the stronger REG_LIVE_READ64 set,
2877 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2878 */
2879 break;
dc503a8a 2880 /* ... then we depend on parent's value */
5327ed3d
JW
2881 parent->live |= flag;
2882 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2883 if (flag == REG_LIVE_READ64)
2884 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2885 state = parent;
2886 parent = state->parent;
f4d7e40a 2887 writes = true;
06ee7115 2888 cnt++;
dc503a8a 2889 }
06ee7115
AS
2890
2891 if (env->longest_mark_read_walk < cnt)
2892 env->longest_mark_read_walk = cnt;
f4d7e40a 2893 return 0;
dc503a8a
EC
2894}
2895
d6fefa11
KKD
2896static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2897{
2898 struct bpf_func_state *state = func(env, reg);
2899 int spi, ret;
2900
2901 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
2902 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2903 * check_kfunc_call.
2904 */
2905 if (reg->type == CONST_PTR_TO_DYNPTR)
2906 return 0;
79168a66
KKD
2907 spi = dynptr_get_spi(env, reg);
2908 if (spi < 0)
2909 return spi;
d6fefa11
KKD
2910 /* Caller ensures dynptr is valid and initialized, which means spi is in
2911 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2912 * read.
2913 */
2914 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2915 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2916 if (ret)
2917 return ret;
2918 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2919 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2920}
2921
06accc87
AN
2922static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2923 int spi, int nr_slots)
2924{
2925 struct bpf_func_state *state = func(env, reg);
2926 int err, i;
2927
2928 for (i = 0; i < nr_slots; i++) {
2929 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2930
2931 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2932 if (err)
2933 return err;
2934
2935 mark_stack_slot_scratched(env, spi - i);
2936 }
2937
2938 return 0;
2939}
2940
5327ed3d
JW
2941/* This function is supposed to be used by the following 32-bit optimization
2942 * code only. It returns TRUE if the source or destination register operates
2943 * on 64-bit, otherwise return FALSE.
2944 */
2945static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2946 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2947{
2948 u8 code, class, op;
2949
2950 code = insn->code;
2951 class = BPF_CLASS(code);
2952 op = BPF_OP(code);
2953 if (class == BPF_JMP) {
2954 /* BPF_EXIT for "main" will reach here. Return TRUE
2955 * conservatively.
2956 */
2957 if (op == BPF_EXIT)
2958 return true;
2959 if (op == BPF_CALL) {
2960 /* BPF to BPF call will reach here because of marking
2961 * caller saved clobber with DST_OP_NO_MARK for which we
2962 * don't care the register def because they are anyway
2963 * marked as NOT_INIT already.
2964 */
2965 if (insn->src_reg == BPF_PSEUDO_CALL)
2966 return false;
2967 /* Helper call will reach here because of arg type
2968 * check, conservatively return TRUE.
2969 */
2970 if (t == SRC_OP)
2971 return true;
2972
2973 return false;
2974 }
2975 }
2976
2977 if (class == BPF_ALU64 || class == BPF_JMP ||
2978 /* BPF_END always use BPF_ALU class. */
2979 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2980 return true;
2981
2982 if (class == BPF_ALU || class == BPF_JMP32)
2983 return false;
2984
2985 if (class == BPF_LDX) {
2986 if (t != SRC_OP)
2987 return BPF_SIZE(code) == BPF_DW;
2988 /* LDX source must be ptr. */
2989 return true;
2990 }
2991
2992 if (class == BPF_STX) {
83a28819
IL
2993 /* BPF_STX (including atomic variants) has multiple source
2994 * operands, one of which is a ptr. Check whether the caller is
2995 * asking about it.
2996 */
2997 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2998 return true;
2999 return BPF_SIZE(code) == BPF_DW;
3000 }
3001
3002 if (class == BPF_LD) {
3003 u8 mode = BPF_MODE(code);
3004
3005 /* LD_IMM64 */
3006 if (mode == BPF_IMM)
3007 return true;
3008
3009 /* Both LD_IND and LD_ABS return 32-bit data. */
3010 if (t != SRC_OP)
3011 return false;
3012
3013 /* Implicit ctx ptr. */
3014 if (regno == BPF_REG_6)
3015 return true;
3016
3017 /* Explicit source could be any width. */
3018 return true;
3019 }
3020
3021 if (class == BPF_ST)
3022 /* The only source register for BPF_ST is a ptr. */
3023 return true;
3024
3025 /* Conservatively return true at default. */
3026 return true;
3027}
3028
83a28819
IL
3029/* Return the regno defined by the insn, or -1. */
3030static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 3031{
83a28819
IL
3032 switch (BPF_CLASS(insn->code)) {
3033 case BPF_JMP:
3034 case BPF_JMP32:
3035 case BPF_ST:
3036 return -1;
3037 case BPF_STX:
3038 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3039 (insn->imm & BPF_FETCH)) {
3040 if (insn->imm == BPF_CMPXCHG)
3041 return BPF_REG_0;
3042 else
3043 return insn->src_reg;
3044 } else {
3045 return -1;
3046 }
3047 default:
3048 return insn->dst_reg;
3049 }
b325fbca
JW
3050}
3051
3052/* Return TRUE if INSN has defined any 32-bit value explicitly. */
3053static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3054{
83a28819
IL
3055 int dst_reg = insn_def_regno(insn);
3056
3057 if (dst_reg == -1)
b325fbca
JW
3058 return false;
3059
83a28819 3060 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
3061}
3062
5327ed3d
JW
3063static void mark_insn_zext(struct bpf_verifier_env *env,
3064 struct bpf_reg_state *reg)
3065{
3066 s32 def_idx = reg->subreg_def;
3067
3068 if (def_idx == DEF_NOT_SUBREG)
3069 return;
3070
3071 env->insn_aux_data[def_idx - 1].zext_dst = true;
3072 /* The dst will be zero extended, so won't be sub-register anymore. */
3073 reg->subreg_def = DEF_NOT_SUBREG;
3074}
3075
dc503a8a 3076static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
3077 enum reg_arg_type t)
3078{
f4d7e40a
AS
3079 struct bpf_verifier_state *vstate = env->cur_state;
3080 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 3081 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 3082 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 3083 bool rw64;
dc503a8a 3084
17a52670 3085 if (regno >= MAX_BPF_REG) {
61bd5218 3086 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
3087 return -EINVAL;
3088 }
3089
0f55f9ed
CL
3090 mark_reg_scratched(env, regno);
3091
c342dc10 3092 reg = &regs[regno];
5327ed3d 3093 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
3094 if (t == SRC_OP) {
3095 /* check whether register used as source operand can be read */
c342dc10 3096 if (reg->type == NOT_INIT) {
61bd5218 3097 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
3098 return -EACCES;
3099 }
679c782d 3100 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
3101 if (regno == BPF_REG_FP)
3102 return 0;
3103
5327ed3d
JW
3104 if (rw64)
3105 mark_insn_zext(env, reg);
3106
3107 return mark_reg_read(env, reg, reg->parent,
3108 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
3109 } else {
3110 /* check whether register used as dest operand can be written to */
3111 if (regno == BPF_REG_FP) {
61bd5218 3112 verbose(env, "frame pointer is read only\n");
17a52670
AS
3113 return -EACCES;
3114 }
c342dc10 3115 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 3116 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 3117 if (t == DST_OP)
61bd5218 3118 mark_reg_unknown(env, regs, regno);
17a52670
AS
3119 }
3120 return 0;
3121}
3122
bffdeaa8
AN
3123static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3124{
3125 env->insn_aux_data[idx].jmp_point = true;
3126}
3127
3128static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3129{
3130 return env->insn_aux_data[insn_idx].jmp_point;
3131}
3132
b5dc0163
AS
3133/* for any branch, call, exit record the history of jmps in the given state */
3134static int push_jmp_history(struct bpf_verifier_env *env,
3135 struct bpf_verifier_state *cur)
3136{
3137 u32 cnt = cur->jmp_history_cnt;
3138 struct bpf_idx_pair *p;
ceb35b66 3139 size_t alloc_size;
b5dc0163 3140
bffdeaa8
AN
3141 if (!is_jmp_point(env, env->insn_idx))
3142 return 0;
3143
b5dc0163 3144 cnt++;
ceb35b66
KC
3145 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3146 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
b5dc0163
AS
3147 if (!p)
3148 return -ENOMEM;
3149 p[cnt - 1].idx = env->insn_idx;
3150 p[cnt - 1].prev_idx = env->prev_insn_idx;
3151 cur->jmp_history = p;
3152 cur->jmp_history_cnt = cnt;
3153 return 0;
3154}
3155
3156/* Backtrack one insn at a time. If idx is not at the top of recorded
3157 * history then previous instruction came from straight line execution.
3158 */
3159static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3160 u32 *history)
3161{
3162 u32 cnt = *history;
3163
3164 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3165 i = st->jmp_history[cnt - 1].prev_idx;
3166 (*history)--;
3167 } else {
3168 i--;
3169 }
3170 return i;
3171}
3172
e6ac2450
MKL
3173static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3174{
3175 const struct btf_type *func;
2357672c 3176 struct btf *desc_btf;
e6ac2450
MKL
3177
3178 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3179 return NULL;
3180
43bf0878 3181 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
3182 if (IS_ERR(desc_btf))
3183 return "<error>";
3184
3185 func = btf_type_by_id(desc_btf, insn->imm);
3186 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
3187}
3188
b5dc0163
AS
3189/* For given verifier state backtrack_insn() is called from the last insn to
3190 * the first insn. Its purpose is to compute a bitmask of registers and
3191 * stack slots that needs precision in the parent verifier state.
3192 */
3193static int backtrack_insn(struct bpf_verifier_env *env, int idx,
3194 u32 *reg_mask, u64 *stack_mask)
3195{
3196 const struct bpf_insn_cbs cbs = {
e6ac2450 3197 .cb_call = disasm_kfunc_name,
b5dc0163
AS
3198 .cb_print = verbose,
3199 .private_data = env,
3200 };
3201 struct bpf_insn *insn = env->prog->insnsi + idx;
3202 u8 class = BPF_CLASS(insn->code);
3203 u8 opcode = BPF_OP(insn->code);
3204 u8 mode = BPF_MODE(insn->code);
3205 u32 dreg = 1u << insn->dst_reg;
3206 u32 sreg = 1u << insn->src_reg;
3207 u32 spi;
3208
3209 if (insn->code == 0)
3210 return 0;
496f3324 3211 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
3212 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
3213 verbose(env, "%d: ", idx);
3214 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3215 }
3216
3217 if (class == BPF_ALU || class == BPF_ALU64) {
3218 if (!(*reg_mask & dreg))
3219 return 0;
3220 if (opcode == BPF_MOV) {
3221 if (BPF_SRC(insn->code) == BPF_X) {
3222 /* dreg = sreg
3223 * dreg needs precision after this insn
3224 * sreg needs precision before this insn
3225 */
3226 *reg_mask &= ~dreg;
3227 *reg_mask |= sreg;
3228 } else {
3229 /* dreg = K
3230 * dreg needs precision after this insn.
3231 * Corresponding register is already marked
3232 * as precise=true in this verifier state.
3233 * No further markings in parent are necessary
3234 */
3235 *reg_mask &= ~dreg;
3236 }
3237 } else {
3238 if (BPF_SRC(insn->code) == BPF_X) {
3239 /* dreg += sreg
3240 * both dreg and sreg need precision
3241 * before this insn
3242 */
3243 *reg_mask |= sreg;
3244 } /* else dreg += K
3245 * dreg still needs precision before this insn
3246 */
3247 }
3248 } else if (class == BPF_LDX) {
3249 if (!(*reg_mask & dreg))
3250 return 0;
3251 *reg_mask &= ~dreg;
3252
3253 /* scalars can only be spilled into stack w/o losing precision.
3254 * Load from any other memory can be zero extended.
3255 * The desire to keep that precision is already indicated
3256 * by 'precise' mark in corresponding register of this state.
3257 * No further tracking necessary.
3258 */
3259 if (insn->src_reg != BPF_REG_FP)
3260 return 0;
b5dc0163
AS
3261
3262 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3263 * that [fp - off] slot contains scalar that needs to be
3264 * tracked with precision
3265 */
3266 spi = (-insn->off - 1) / BPF_REG_SIZE;
3267 if (spi >= 64) {
3268 verbose(env, "BUG spi %d\n", spi);
3269 WARN_ONCE(1, "verifier backtracking bug");
3270 return -EFAULT;
3271 }
3272 *stack_mask |= 1ull << spi;
b3b50f05 3273 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 3274 if (*reg_mask & dreg)
b3b50f05 3275 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
3276 * to access memory. It means backtracking
3277 * encountered a case of pointer subtraction.
3278 */
3279 return -ENOTSUPP;
3280 /* scalars can only be spilled into stack */
3281 if (insn->dst_reg != BPF_REG_FP)
3282 return 0;
b5dc0163
AS
3283 spi = (-insn->off - 1) / BPF_REG_SIZE;
3284 if (spi >= 64) {
3285 verbose(env, "BUG spi %d\n", spi);
3286 WARN_ONCE(1, "verifier backtracking bug");
3287 return -EFAULT;
3288 }
3289 if (!(*stack_mask & (1ull << spi)))
3290 return 0;
3291 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
3292 if (class == BPF_STX)
3293 *reg_mask |= sreg;
b5dc0163
AS
3294 } else if (class == BPF_JMP || class == BPF_JMP32) {
3295 if (opcode == BPF_CALL) {
3296 if (insn->src_reg == BPF_PSEUDO_CALL)
3297 return -ENOTSUPP;
be2ef816
AN
3298 /* BPF helpers that invoke callback subprogs are
3299 * equivalent to BPF_PSEUDO_CALL above
3300 */
3301 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
3302 return -ENOTSUPP;
d3178e8a
HS
3303 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3304 * catch this error later. Make backtracking conservative
3305 * with ENOTSUPP.
3306 */
3307 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3308 return -ENOTSUPP;
b5dc0163
AS
3309 /* regular helper call sets R0 */
3310 *reg_mask &= ~1;
3311 if (*reg_mask & 0x3f) {
3312 /* if backtracing was looking for registers R1-R5
3313 * they should have been found already.
3314 */
3315 verbose(env, "BUG regs %x\n", *reg_mask);
3316 WARN_ONCE(1, "verifier backtracking bug");
3317 return -EFAULT;
3318 }
3319 } else if (opcode == BPF_EXIT) {
3320 return -ENOTSUPP;
71b547f5
DB
3321 } else if (BPF_SRC(insn->code) == BPF_X) {
3322 if (!(*reg_mask & (dreg | sreg)))
3323 return 0;
3324 /* dreg <cond> sreg
3325 * Both dreg and sreg need precision before
3326 * this insn. If only sreg was marked precise
3327 * before it would be equally necessary to
3328 * propagate it to dreg.
3329 */
3330 *reg_mask |= (sreg | dreg);
3331 /* else dreg <cond> K
3332 * Only dreg still needs precision before
3333 * this insn, so for the K-based conditional
3334 * there is nothing new to be marked.
3335 */
b5dc0163
AS
3336 }
3337 } else if (class == BPF_LD) {
3338 if (!(*reg_mask & dreg))
3339 return 0;
3340 *reg_mask &= ~dreg;
3341 /* It's ld_imm64 or ld_abs or ld_ind.
3342 * For ld_imm64 no further tracking of precision
3343 * into parent is necessary
3344 */
3345 if (mode == BPF_IND || mode == BPF_ABS)
3346 /* to be analyzed */
3347 return -ENOTSUPP;
b5dc0163
AS
3348 }
3349 return 0;
3350}
3351
3352/* the scalar precision tracking algorithm:
3353 * . at the start all registers have precise=false.
3354 * . scalar ranges are tracked as normal through alu and jmp insns.
3355 * . once precise value of the scalar register is used in:
3356 * . ptr + scalar alu
3357 * . if (scalar cond K|scalar)
3358 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3359 * backtrack through the verifier states and mark all registers and
3360 * stack slots with spilled constants that these scalar regisers
3361 * should be precise.
3362 * . during state pruning two registers (or spilled stack slots)
3363 * are equivalent if both are not precise.
3364 *
3365 * Note the verifier cannot simply walk register parentage chain,
3366 * since many different registers and stack slots could have been
3367 * used to compute single precise scalar.
3368 *
3369 * The approach of starting with precise=true for all registers and then
3370 * backtrack to mark a register as not precise when the verifier detects
3371 * that program doesn't care about specific value (e.g., when helper
3372 * takes register as ARG_ANYTHING parameter) is not safe.
3373 *
3374 * It's ok to walk single parentage chain of the verifier states.
3375 * It's possible that this backtracking will go all the way till 1st insn.
3376 * All other branches will be explored for needing precision later.
3377 *
3378 * The backtracking needs to deal with cases like:
3379 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3380 * r9 -= r8
3381 * r5 = r9
3382 * if r5 > 0x79f goto pc+7
3383 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3384 * r5 += 1
3385 * ...
3386 * call bpf_perf_event_output#25
3387 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3388 *
3389 * and this case:
3390 * r6 = 1
3391 * call foo // uses callee's r6 inside to compute r0
3392 * r0 += r6
3393 * if r0 == 0 goto
3394 *
3395 * to track above reg_mask/stack_mask needs to be independent for each frame.
3396 *
3397 * Also if parent's curframe > frame where backtracking started,
3398 * the verifier need to mark registers in both frames, otherwise callees
3399 * may incorrectly prune callers. This is similar to
3400 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3401 *
3402 * For now backtracking falls back into conservative marking.
3403 */
3404static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3405 struct bpf_verifier_state *st)
3406{
3407 struct bpf_func_state *func;
3408 struct bpf_reg_state *reg;
3409 int i, j;
3410
3411 /* big hammer: mark all scalars precise in this path.
3412 * pop_stack may still get !precise scalars.
f63181b6
AN
3413 * We also skip current state and go straight to first parent state,
3414 * because precision markings in current non-checkpointed state are
3415 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 3416 */
f63181b6 3417 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
3418 for (i = 0; i <= st->curframe; i++) {
3419 func = st->frame[i];
3420 for (j = 0; j < BPF_REG_FP; j++) {
3421 reg = &func->regs[j];
3422 if (reg->type != SCALAR_VALUE)
3423 continue;
3424 reg->precise = true;
3425 }
3426 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 3427 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
3428 continue;
3429 reg = &func->stack[j].spilled_ptr;
3430 if (reg->type != SCALAR_VALUE)
3431 continue;
3432 reg->precise = true;
3433 }
3434 }
f63181b6 3435 }
b5dc0163
AS
3436}
3437
7a830b53
AN
3438static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3439{
3440 struct bpf_func_state *func;
3441 struct bpf_reg_state *reg;
3442 int i, j;
3443
3444 for (i = 0; i <= st->curframe; i++) {
3445 func = st->frame[i];
3446 for (j = 0; j < BPF_REG_FP; j++) {
3447 reg = &func->regs[j];
3448 if (reg->type != SCALAR_VALUE)
3449 continue;
3450 reg->precise = false;
3451 }
3452 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3453 if (!is_spilled_reg(&func->stack[j]))
3454 continue;
3455 reg = &func->stack[j].spilled_ptr;
3456 if (reg->type != SCALAR_VALUE)
3457 continue;
3458 reg->precise = false;
3459 }
3460 }
3461}
3462
f63181b6
AN
3463/*
3464 * __mark_chain_precision() backtracks BPF program instruction sequence and
3465 * chain of verifier states making sure that register *regno* (if regno >= 0)
3466 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3467 * SCALARS, as well as any other registers and slots that contribute to
3468 * a tracked state of given registers/stack slots, depending on specific BPF
3469 * assembly instructions (see backtrack_insns() for exact instruction handling
3470 * logic). This backtracking relies on recorded jmp_history and is able to
3471 * traverse entire chain of parent states. This process ends only when all the
3472 * necessary registers/slots and their transitive dependencies are marked as
3473 * precise.
3474 *
3475 * One important and subtle aspect is that precise marks *do not matter* in
3476 * the currently verified state (current state). It is important to understand
3477 * why this is the case.
3478 *
3479 * First, note that current state is the state that is not yet "checkpointed",
3480 * i.e., it is not yet put into env->explored_states, and it has no children
3481 * states as well. It's ephemeral, and can end up either a) being discarded if
3482 * compatible explored state is found at some point or BPF_EXIT instruction is
3483 * reached or b) checkpointed and put into env->explored_states, branching out
3484 * into one or more children states.
3485 *
3486 * In the former case, precise markings in current state are completely
3487 * ignored by state comparison code (see regsafe() for details). Only
3488 * checkpointed ("old") state precise markings are important, and if old
3489 * state's register/slot is precise, regsafe() assumes current state's
3490 * register/slot as precise and checks value ranges exactly and precisely. If
3491 * states turn out to be compatible, current state's necessary precise
3492 * markings and any required parent states' precise markings are enforced
3493 * after the fact with propagate_precision() logic, after the fact. But it's
3494 * important to realize that in this case, even after marking current state
3495 * registers/slots as precise, we immediately discard current state. So what
3496 * actually matters is any of the precise markings propagated into current
3497 * state's parent states, which are always checkpointed (due to b) case above).
3498 * As such, for scenario a) it doesn't matter if current state has precise
3499 * markings set or not.
3500 *
3501 * Now, for the scenario b), checkpointing and forking into child(ren)
3502 * state(s). Note that before current state gets to checkpointing step, any
3503 * processed instruction always assumes precise SCALAR register/slot
3504 * knowledge: if precise value or range is useful to prune jump branch, BPF
3505 * verifier takes this opportunity enthusiastically. Similarly, when
3506 * register's value is used to calculate offset or memory address, exact
3507 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3508 * what we mentioned above about state comparison ignoring precise markings
3509 * during state comparison, BPF verifier ignores and also assumes precise
3510 * markings *at will* during instruction verification process. But as verifier
3511 * assumes precision, it also propagates any precision dependencies across
3512 * parent states, which are not yet finalized, so can be further restricted
3513 * based on new knowledge gained from restrictions enforced by their children
3514 * states. This is so that once those parent states are finalized, i.e., when
3515 * they have no more active children state, state comparison logic in
3516 * is_state_visited() would enforce strict and precise SCALAR ranges, if
3517 * required for correctness.
3518 *
3519 * To build a bit more intuition, note also that once a state is checkpointed,
3520 * the path we took to get to that state is not important. This is crucial
3521 * property for state pruning. When state is checkpointed and finalized at
3522 * some instruction index, it can be correctly and safely used to "short
3523 * circuit" any *compatible* state that reaches exactly the same instruction
3524 * index. I.e., if we jumped to that instruction from a completely different
3525 * code path than original finalized state was derived from, it doesn't
3526 * matter, current state can be discarded because from that instruction
3527 * forward having a compatible state will ensure we will safely reach the
3528 * exit. States describe preconditions for further exploration, but completely
3529 * forget the history of how we got here.
3530 *
3531 * This also means that even if we needed precise SCALAR range to get to
3532 * finalized state, but from that point forward *that same* SCALAR register is
3533 * never used in a precise context (i.e., it's precise value is not needed for
3534 * correctness), it's correct and safe to mark such register as "imprecise"
3535 * (i.e., precise marking set to false). This is what we rely on when we do
3536 * not set precise marking in current state. If no child state requires
3537 * precision for any given SCALAR register, it's safe to dictate that it can
3538 * be imprecise. If any child state does require this register to be precise,
3539 * we'll mark it precise later retroactively during precise markings
3540 * propagation from child state to parent states.
7a830b53
AN
3541 *
3542 * Skipping precise marking setting in current state is a mild version of
3543 * relying on the above observation. But we can utilize this property even
3544 * more aggressively by proactively forgetting any precise marking in the
3545 * current state (which we inherited from the parent state), right before we
3546 * checkpoint it and branch off into new child state. This is done by
3547 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3548 * finalized states which help in short circuiting more future states.
f63181b6 3549 */
529409ea 3550static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
a3ce685d 3551 int spi)
b5dc0163
AS
3552{
3553 struct bpf_verifier_state *st = env->cur_state;
3554 int first_idx = st->first_insn_idx;
3555 int last_idx = env->insn_idx;
3556 struct bpf_func_state *func;
3557 struct bpf_reg_state *reg;
a3ce685d
AS
3558 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3559 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 3560 bool skip_first = true;
a3ce685d 3561 bool new_marks = false;
b5dc0163
AS
3562 int i, err;
3563
2c78ee89 3564 if (!env->bpf_capable)
b5dc0163
AS
3565 return 0;
3566
f63181b6
AN
3567 /* Do sanity checks against current state of register and/or stack
3568 * slot, but don't set precise flag in current state, as precision
3569 * tracking in the current state is unnecessary.
3570 */
529409ea 3571 func = st->frame[frame];
a3ce685d
AS
3572 if (regno >= 0) {
3573 reg = &func->regs[regno];
3574 if (reg->type != SCALAR_VALUE) {
3575 WARN_ONCE(1, "backtracing misuse");
3576 return -EFAULT;
3577 }
f63181b6 3578 new_marks = true;
b5dc0163 3579 }
b5dc0163 3580
a3ce685d 3581 while (spi >= 0) {
27113c59 3582 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
3583 stack_mask = 0;
3584 break;
3585 }
3586 reg = &func->stack[spi].spilled_ptr;
3587 if (reg->type != SCALAR_VALUE) {
3588 stack_mask = 0;
3589 break;
3590 }
f63181b6 3591 new_marks = true;
a3ce685d
AS
3592 break;
3593 }
3594
3595 if (!new_marks)
3596 return 0;
3597 if (!reg_mask && !stack_mask)
3598 return 0;
be2ef816 3599
b5dc0163
AS
3600 for (;;) {
3601 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
3602 u32 history = st->jmp_history_cnt;
3603
496f3324 3604 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163 3605 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
be2ef816
AN
3606
3607 if (last_idx < 0) {
3608 /* we are at the entry into subprog, which
3609 * is expected for global funcs, but only if
3610 * requested precise registers are R1-R5
3611 * (which are global func's input arguments)
3612 */
3613 if (st->curframe == 0 &&
3614 st->frame[0]->subprogno > 0 &&
3615 st->frame[0]->callsite == BPF_MAIN_FUNC &&
3616 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3617 bitmap_from_u64(mask, reg_mask);
3618 for_each_set_bit(i, mask, 32) {
3619 reg = &st->frame[0]->regs[i];
3620 if (reg->type != SCALAR_VALUE) {
3621 reg_mask &= ~(1u << i);
3622 continue;
3623 }
3624 reg->precise = true;
3625 }
3626 return 0;
3627 }
3628
3629 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3630 st->frame[0]->subprogno, reg_mask, stack_mask);
3631 WARN_ONCE(1, "verifier backtracking bug");
3632 return -EFAULT;
3633 }
3634
b5dc0163
AS
3635 for (i = last_idx;;) {
3636 if (skip_first) {
3637 err = 0;
3638 skip_first = false;
3639 } else {
3640 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3641 }
3642 if (err == -ENOTSUPP) {
3643 mark_all_scalars_precise(env, st);
3644 return 0;
3645 } else if (err) {
3646 return err;
3647 }
3648 if (!reg_mask && !stack_mask)
3649 /* Found assignment(s) into tracked register in this state.
3650 * Since this state is already marked, just return.
3651 * Nothing to be tracked further in the parent state.
3652 */
3653 return 0;
3654 if (i == first_idx)
3655 break;
3656 i = get_prev_insn_idx(st, i, &history);
3657 if (i >= env->prog->len) {
3658 /* This can happen if backtracking reached insn 0
3659 * and there are still reg_mask or stack_mask
3660 * to backtrack.
3661 * It means the backtracking missed the spot where
3662 * particular register was initialized with a constant.
3663 */
3664 verbose(env, "BUG backtracking idx %d\n", i);
3665 WARN_ONCE(1, "verifier backtracking bug");
3666 return -EFAULT;
3667 }
3668 }
3669 st = st->parent;
3670 if (!st)
3671 break;
3672
a3ce685d 3673 new_marks = false;
529409ea 3674 func = st->frame[frame];
b5dc0163
AS
3675 bitmap_from_u64(mask, reg_mask);
3676 for_each_set_bit(i, mask, 32) {
3677 reg = &func->regs[i];
a3ce685d
AS
3678 if (reg->type != SCALAR_VALUE) {
3679 reg_mask &= ~(1u << i);
b5dc0163 3680 continue;
a3ce685d 3681 }
b5dc0163
AS
3682 if (!reg->precise)
3683 new_marks = true;
3684 reg->precise = true;
3685 }
3686
3687 bitmap_from_u64(mask, stack_mask);
3688 for_each_set_bit(i, mask, 64) {
3689 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
3690 /* the sequence of instructions:
3691 * 2: (bf) r3 = r10
3692 * 3: (7b) *(u64 *)(r3 -8) = r0
3693 * 4: (79) r4 = *(u64 *)(r10 -8)
3694 * doesn't contain jmps. It's backtracked
3695 * as a single block.
3696 * During backtracking insn 3 is not recognized as
3697 * stack access, so at the end of backtracking
3698 * stack slot fp-8 is still marked in stack_mask.
3699 * However the parent state may not have accessed
3700 * fp-8 and it's "unallocated" stack space.
3701 * In such case fallback to conservative.
b5dc0163 3702 */
2339cd6c
AS
3703 mark_all_scalars_precise(env, st);
3704 return 0;
b5dc0163
AS
3705 }
3706
27113c59 3707 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 3708 stack_mask &= ~(1ull << i);
b5dc0163 3709 continue;
a3ce685d 3710 }
b5dc0163 3711 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
3712 if (reg->type != SCALAR_VALUE) {
3713 stack_mask &= ~(1ull << i);
b5dc0163 3714 continue;
a3ce685d 3715 }
b5dc0163
AS
3716 if (!reg->precise)
3717 new_marks = true;
3718 reg->precise = true;
3719 }
496f3324 3720 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 3721 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
3722 new_marks ? "didn't have" : "already had",
3723 reg_mask, stack_mask);
2e576648 3724 print_verifier_state(env, func, true);
b5dc0163
AS
3725 }
3726
a3ce685d
AS
3727 if (!reg_mask && !stack_mask)
3728 break;
b5dc0163
AS
3729 if (!new_marks)
3730 break;
3731
3732 last_idx = st->last_insn_idx;
3733 first_idx = st->first_insn_idx;
3734 }
3735 return 0;
3736}
3737
eb1f7f71 3738int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 3739{
529409ea 3740 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
a3ce685d
AS
3741}
3742
529409ea 3743static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
a3ce685d 3744{
529409ea 3745 return __mark_chain_precision(env, frame, regno, -1);
a3ce685d
AS
3746}
3747
529409ea 3748static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
a3ce685d 3749{
529409ea 3750 return __mark_chain_precision(env, frame, -1, spi);
a3ce685d 3751}
b5dc0163 3752
1be7f75d
AS
3753static bool is_spillable_regtype(enum bpf_reg_type type)
3754{
c25b2ae1 3755 switch (base_type(type)) {
1be7f75d 3756 case PTR_TO_MAP_VALUE:
1be7f75d
AS
3757 case PTR_TO_STACK:
3758 case PTR_TO_CTX:
969bf05e 3759 case PTR_TO_PACKET:
de8f3a83 3760 case PTR_TO_PACKET_META:
969bf05e 3761 case PTR_TO_PACKET_END:
d58e468b 3762 case PTR_TO_FLOW_KEYS:
1be7f75d 3763 case CONST_PTR_TO_MAP:
c64b7983 3764 case PTR_TO_SOCKET:
46f8bc92 3765 case PTR_TO_SOCK_COMMON:
655a51e5 3766 case PTR_TO_TCP_SOCK:
fada7fdc 3767 case PTR_TO_XDP_SOCK:
65726b5b 3768 case PTR_TO_BTF_ID:
20b2aff4 3769 case PTR_TO_BUF:
744ea4e3 3770 case PTR_TO_MEM:
69c087ba
YS
3771 case PTR_TO_FUNC:
3772 case PTR_TO_MAP_KEY:
1be7f75d
AS
3773 return true;
3774 default:
3775 return false;
3776 }
3777}
3778
cc2b14d5
AS
3779/* Does this register contain a constant zero? */
3780static bool register_is_null(struct bpf_reg_state *reg)
3781{
3782 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3783}
3784
f7cf25b2
AS
3785static bool register_is_const(struct bpf_reg_state *reg)
3786{
3787 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3788}
3789
5689d49b
YS
3790static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3791{
3792 return tnum_is_unknown(reg->var_off) &&
3793 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3794 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3795 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3796 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3797}
3798
3799static bool register_is_bounded(struct bpf_reg_state *reg)
3800{
3801 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3802}
3803
6e7e63cb
JH
3804static bool __is_pointer_value(bool allow_ptr_leaks,
3805 const struct bpf_reg_state *reg)
3806{
3807 if (allow_ptr_leaks)
3808 return false;
3809
3810 return reg->type != SCALAR_VALUE;
3811}
3812
71f656a5
EZ
3813/* Copy src state preserving dst->parent and dst->live fields */
3814static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
3815{
3816 struct bpf_reg_state *parent = dst->parent;
3817 enum bpf_reg_liveness live = dst->live;
3818
3819 *dst = *src;
3820 dst->parent = parent;
3821 dst->live = live;
3822}
3823
f7cf25b2 3824static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
3825 int spi, struct bpf_reg_state *reg,
3826 int size)
f7cf25b2
AS
3827{
3828 int i;
3829
71f656a5 3830 copy_register_state(&state->stack[spi].spilled_ptr, reg);
354e8f19
MKL
3831 if (size == BPF_REG_SIZE)
3832 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3833
354e8f19
MKL
3834 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3835 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3836
354e8f19
MKL
3837 /* size < 8 bytes spill */
3838 for (; i; i--)
3839 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3840}
3841
ecdf985d
EZ
3842static bool is_bpf_st_mem(struct bpf_insn *insn)
3843{
3844 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
3845}
3846
01f810ac 3847/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3848 * stack boundary and alignment are checked in check_mem_access()
3849 */
01f810ac
AM
3850static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3851 /* stack frame we're writing to */
3852 struct bpf_func_state *state,
3853 int off, int size, int value_regno,
3854 int insn_idx)
17a52670 3855{
f4d7e40a 3856 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3857 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
ecdf985d 3858 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
f7cf25b2 3859 struct bpf_reg_state *reg = NULL;
ecdf985d 3860 u32 dst_reg = insn->dst_reg;
638f5b90 3861
c69431aa 3862 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3863 if (err)
3864 return err;
9c399760
AS
3865 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3866 * so it's aligned access and [off, off + size) are within stack limits
3867 */
638f5b90
AS
3868 if (!env->allow_ptr_leaks &&
3869 state->stack[spi].slot_type[0] == STACK_SPILL &&
3870 size != BPF_REG_SIZE) {
3871 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3872 return -EACCES;
3873 }
17a52670 3874
f4d7e40a 3875 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3876 if (value_regno >= 0)
3877 reg = &cur->regs[value_regno];
2039f26f
DB
3878 if (!env->bypass_spec_v4) {
3879 bool sanitize = reg && is_spillable_regtype(reg->type);
3880
3881 for (i = 0; i < size; i++) {
e4f4db47
LG
3882 u8 type = state->stack[spi].slot_type[i];
3883
3884 if (type != STACK_MISC && type != STACK_ZERO) {
2039f26f
DB
3885 sanitize = true;
3886 break;
3887 }
3888 }
3889
3890 if (sanitize)
3891 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3892 }
17a52670 3893
ef8fc7a0
KKD
3894 err = destroy_if_dynptr_stack_slot(env, state, spi);
3895 if (err)
3896 return err;
3897
0f55f9ed 3898 mark_stack_slot_scratched(env, spi);
354e8f19 3899 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3900 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3901 if (dst_reg != BPF_REG_FP) {
3902 /* The backtracking logic can only recognize explicit
3903 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3904 * scalar via different register has to be conservative.
b5dc0163
AS
3905 * Backtrack from here and mark all registers as precise
3906 * that contributed into 'reg' being a constant.
3907 */
3908 err = mark_chain_precision(env, value_regno);
3909 if (err)
3910 return err;
3911 }
354e8f19 3912 save_register_state(state, spi, reg, size);
ecdf985d
EZ
3913 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
3914 insn->imm != 0 && env->bpf_capable) {
3915 struct bpf_reg_state fake_reg = {};
3916
3917 __mark_reg_known(&fake_reg, (u32)insn->imm);
3918 fake_reg.type = SCALAR_VALUE;
3919 save_register_state(state, spi, &fake_reg, size);
f7cf25b2 3920 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3921 /* register containing pointer is being spilled into stack */
9c399760 3922 if (size != BPF_REG_SIZE) {
f7cf25b2 3923 verbose_linfo(env, insn_idx, "; ");
61bd5218 3924 verbose(env, "invalid size of register spill\n");
17a52670
AS
3925 return -EACCES;
3926 }
f7cf25b2 3927 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3928 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3929 return -EINVAL;
3930 }
354e8f19 3931 save_register_state(state, spi, reg, size);
9c399760 3932 } else {
cc2b14d5
AS
3933 u8 type = STACK_MISC;
3934
679c782d
EC
3935 /* regular write of data into stack destroys any spilled ptr */
3936 state->stack[spi].spilled_ptr.type = NOT_INIT;
06accc87
AN
3937 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
3938 if (is_stack_slot_special(&state->stack[spi]))
0bae2d4d 3939 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3940 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3941
cc2b14d5
AS
3942 /* only mark the slot as written if all 8 bytes were written
3943 * otherwise read propagation may incorrectly stop too soon
3944 * when stack slots are partially written.
3945 * This heuristic means that read propagation will be
3946 * conservative, since it will add reg_live_read marks
3947 * to stack slots all the way to first state when programs
3948 * writes+reads less than 8 bytes
3949 */
3950 if (size == BPF_REG_SIZE)
3951 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3952
3953 /* when we zero initialize stack slots mark them as such */
ecdf985d
EZ
3954 if ((reg && register_is_null(reg)) ||
3955 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
b5dc0163
AS
3956 /* backtracking doesn't work for STACK_ZERO yet. */
3957 err = mark_chain_precision(env, value_regno);
3958 if (err)
3959 return err;
cc2b14d5 3960 type = STACK_ZERO;
b5dc0163 3961 }
cc2b14d5 3962
0bae2d4d 3963 /* Mark slots affected by this stack write. */
9c399760 3964 for (i = 0; i < size; i++)
638f5b90 3965 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3966 type;
17a52670
AS
3967 }
3968 return 0;
3969}
3970
01f810ac
AM
3971/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3972 * known to contain a variable offset.
3973 * This function checks whether the write is permitted and conservatively
3974 * tracks the effects of the write, considering that each stack slot in the
3975 * dynamic range is potentially written to.
3976 *
3977 * 'off' includes 'regno->off'.
3978 * 'value_regno' can be -1, meaning that an unknown value is being written to
3979 * the stack.
3980 *
3981 * Spilled pointers in range are not marked as written because we don't know
3982 * what's going to be actually written. This means that read propagation for
3983 * future reads cannot be terminated by this write.
3984 *
3985 * For privileged programs, uninitialized stack slots are considered
3986 * initialized by this write (even though we don't know exactly what offsets
3987 * are going to be written to). The idea is that we don't want the verifier to
3988 * reject future reads that access slots written to through variable offsets.
3989 */
3990static int check_stack_write_var_off(struct bpf_verifier_env *env,
3991 /* func where register points to */
3992 struct bpf_func_state *state,
3993 int ptr_regno, int off, int size,
3994 int value_regno, int insn_idx)
3995{
3996 struct bpf_func_state *cur; /* state of the current function */
3997 int min_off, max_off;
3998 int i, err;
3999 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
31ff2135 4000 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
01f810ac
AM
4001 bool writing_zero = false;
4002 /* set if the fact that we're writing a zero is used to let any
4003 * stack slots remain STACK_ZERO
4004 */
4005 bool zero_used = false;
4006
4007 cur = env->cur_state->frame[env->cur_state->curframe];
4008 ptr_reg = &cur->regs[ptr_regno];
4009 min_off = ptr_reg->smin_value + off;
4010 max_off = ptr_reg->smax_value + off + size;
4011 if (value_regno >= 0)
4012 value_reg = &cur->regs[value_regno];
31ff2135
EZ
4013 if ((value_reg && register_is_null(value_reg)) ||
4014 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
01f810ac
AM
4015 writing_zero = true;
4016
c69431aa 4017 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
4018 if (err)
4019 return err;
4020
ef8fc7a0
KKD
4021 for (i = min_off; i < max_off; i++) {
4022 int spi;
4023
4024 spi = __get_spi(i);
4025 err = destroy_if_dynptr_stack_slot(env, state, spi);
4026 if (err)
4027 return err;
4028 }
01f810ac
AM
4029
4030 /* Variable offset writes destroy any spilled pointers in range. */
4031 for (i = min_off; i < max_off; i++) {
4032 u8 new_type, *stype;
4033 int slot, spi;
4034
4035 slot = -i - 1;
4036 spi = slot / BPF_REG_SIZE;
4037 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 4038 mark_stack_slot_scratched(env, spi);
01f810ac 4039
f5e477a8
KKD
4040 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4041 /* Reject the write if range we may write to has not
4042 * been initialized beforehand. If we didn't reject
4043 * here, the ptr status would be erased below (even
4044 * though not all slots are actually overwritten),
4045 * possibly opening the door to leaks.
4046 *
4047 * We do however catch STACK_INVALID case below, and
4048 * only allow reading possibly uninitialized memory
4049 * later for CAP_PERFMON, as the write may not happen to
4050 * that slot.
01f810ac
AM
4051 */
4052 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4053 insn_idx, i);
4054 return -EINVAL;
4055 }
4056
4057 /* Erase all spilled pointers. */
4058 state->stack[spi].spilled_ptr.type = NOT_INIT;
4059
4060 /* Update the slot type. */
4061 new_type = STACK_MISC;
4062 if (writing_zero && *stype == STACK_ZERO) {
4063 new_type = STACK_ZERO;
4064 zero_used = true;
4065 }
4066 /* If the slot is STACK_INVALID, we check whether it's OK to
4067 * pretend that it will be initialized by this write. The slot
4068 * might not actually be written to, and so if we mark it as
4069 * initialized future reads might leak uninitialized memory.
4070 * For privileged programs, we will accept such reads to slots
4071 * that may or may not be written because, if we're reject
4072 * them, the error would be too confusing.
4073 */
4074 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4075 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4076 insn_idx, i);
4077 return -EINVAL;
4078 }
4079 *stype = new_type;
4080 }
4081 if (zero_used) {
4082 /* backtracking doesn't work for STACK_ZERO yet. */
4083 err = mark_chain_precision(env, value_regno);
4084 if (err)
4085 return err;
4086 }
4087 return 0;
4088}
4089
4090/* When register 'dst_regno' is assigned some values from stack[min_off,
4091 * max_off), we set the register's type according to the types of the
4092 * respective stack slots. If all the stack values are known to be zeros, then
4093 * so is the destination reg. Otherwise, the register is considered to be
4094 * SCALAR. This function does not deal with register filling; the caller must
4095 * ensure that all spilled registers in the stack range have been marked as
4096 * read.
4097 */
4098static void mark_reg_stack_read(struct bpf_verifier_env *env,
4099 /* func where src register points to */
4100 struct bpf_func_state *ptr_state,
4101 int min_off, int max_off, int dst_regno)
4102{
4103 struct bpf_verifier_state *vstate = env->cur_state;
4104 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4105 int i, slot, spi;
4106 u8 *stype;
4107 int zeros = 0;
4108
4109 for (i = min_off; i < max_off; i++) {
4110 slot = -i - 1;
4111 spi = slot / BPF_REG_SIZE;
4112 stype = ptr_state->stack[spi].slot_type;
4113 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4114 break;
4115 zeros++;
4116 }
4117 if (zeros == max_off - min_off) {
4118 /* any access_size read into register is zero extended,
4119 * so the whole register == const_zero
4120 */
4121 __mark_reg_const_zero(&state->regs[dst_regno]);
4122 /* backtracking doesn't support STACK_ZERO yet,
4123 * so mark it precise here, so that later
4124 * backtracking can stop here.
4125 * Backtracking may not need this if this register
4126 * doesn't participate in pointer adjustment.
4127 * Forward propagation of precise flag is not
4128 * necessary either. This mark is only to stop
4129 * backtracking. Any register that contributed
4130 * to const 0 was marked precise before spill.
4131 */
4132 state->regs[dst_regno].precise = true;
4133 } else {
4134 /* have read misc data from the stack */
4135 mark_reg_unknown(env, state->regs, dst_regno);
4136 }
4137 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4138}
4139
4140/* Read the stack at 'off' and put the results into the register indicated by
4141 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4142 * spilled reg.
4143 *
4144 * 'dst_regno' can be -1, meaning that the read value is not going to a
4145 * register.
4146 *
4147 * The access is assumed to be within the current stack bounds.
4148 */
4149static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4150 /* func where src register points to */
4151 struct bpf_func_state *reg_state,
4152 int off, int size, int dst_regno)
17a52670 4153{
f4d7e40a
AS
4154 struct bpf_verifier_state *vstate = env->cur_state;
4155 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 4156 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 4157 struct bpf_reg_state *reg;
354e8f19 4158 u8 *stype, type;
17a52670 4159
f4d7e40a 4160 stype = reg_state->stack[spi].slot_type;
f7cf25b2 4161 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 4162
27113c59 4163 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
4164 u8 spill_size = 1;
4165
4166 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4167 spill_size++;
354e8f19 4168
f30d4968 4169 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
4170 if (reg->type != SCALAR_VALUE) {
4171 verbose_linfo(env, env->insn_idx, "; ");
4172 verbose(env, "invalid size of register fill\n");
4173 return -EACCES;
4174 }
354e8f19
MKL
4175
4176 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4177 if (dst_regno < 0)
4178 return 0;
4179
f30d4968 4180 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
4181 /* The earlier check_reg_arg() has decided the
4182 * subreg_def for this insn. Save it first.
4183 */
4184 s32 subreg_def = state->regs[dst_regno].subreg_def;
4185
71f656a5 4186 copy_register_state(&state->regs[dst_regno], reg);
354e8f19
MKL
4187 state->regs[dst_regno].subreg_def = subreg_def;
4188 } else {
4189 for (i = 0; i < size; i++) {
4190 type = stype[(slot - i) % BPF_REG_SIZE];
4191 if (type == STACK_SPILL)
4192 continue;
4193 if (type == STACK_MISC)
4194 continue;
6715df8d
EZ
4195 if (type == STACK_INVALID && env->allow_uninit_stack)
4196 continue;
354e8f19
MKL
4197 verbose(env, "invalid read from stack off %d+%d size %d\n",
4198 off, i, size);
4199 return -EACCES;
4200 }
01f810ac 4201 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 4202 }
354e8f19 4203 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 4204 return 0;
17a52670 4205 }
17a52670 4206
01f810ac 4207 if (dst_regno >= 0) {
17a52670 4208 /* restore register state from stack */
71f656a5 4209 copy_register_state(&state->regs[dst_regno], reg);
2f18f62e
AS
4210 /* mark reg as written since spilled pointer state likely
4211 * has its liveness marks cleared by is_state_visited()
4212 * which resets stack/reg liveness for state transitions
4213 */
01f810ac 4214 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 4215 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 4216 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
4217 * it is acceptable to use this value as a SCALAR_VALUE
4218 * (e.g. for XADD).
4219 * We must not allow unprivileged callers to do that
4220 * with spilled pointers.
4221 */
4222 verbose(env, "leaking pointer from stack off %d\n",
4223 off);
4224 return -EACCES;
dc503a8a 4225 }
f7cf25b2 4226 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
4227 } else {
4228 for (i = 0; i < size; i++) {
01f810ac
AM
4229 type = stype[(slot - i) % BPF_REG_SIZE];
4230 if (type == STACK_MISC)
cc2b14d5 4231 continue;
01f810ac 4232 if (type == STACK_ZERO)
cc2b14d5 4233 continue;
6715df8d
EZ
4234 if (type == STACK_INVALID && env->allow_uninit_stack)
4235 continue;
cc2b14d5
AS
4236 verbose(env, "invalid read from stack off %d+%d size %d\n",
4237 off, i, size);
4238 return -EACCES;
4239 }
f7cf25b2 4240 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
4241 if (dst_regno >= 0)
4242 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 4243 }
f7cf25b2 4244 return 0;
17a52670
AS
4245}
4246
61df10c7 4247enum bpf_access_src {
01f810ac
AM
4248 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4249 ACCESS_HELPER = 2, /* the access is performed by a helper */
4250};
4251
4252static int check_stack_range_initialized(struct bpf_verifier_env *env,
4253 int regno, int off, int access_size,
4254 bool zero_size_allowed,
61df10c7 4255 enum bpf_access_src type,
01f810ac
AM
4256 struct bpf_call_arg_meta *meta);
4257
4258static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4259{
4260 return cur_regs(env) + regno;
4261}
4262
4263/* Read the stack at 'ptr_regno + off' and put the result into the register
4264 * 'dst_regno'.
4265 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4266 * but not its variable offset.
4267 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4268 *
4269 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4270 * filling registers (i.e. reads of spilled register cannot be detected when
4271 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4272 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4273 * offset; for a fixed offset check_stack_read_fixed_off should be used
4274 * instead.
4275 */
4276static int check_stack_read_var_off(struct bpf_verifier_env *env,
4277 int ptr_regno, int off, int size, int dst_regno)
e4298d25 4278{
01f810ac
AM
4279 /* The state of the source register. */
4280 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4281 struct bpf_func_state *ptr_state = func(env, reg);
4282 int err;
4283 int min_off, max_off;
4284
4285 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 4286 */
01f810ac
AM
4287 err = check_stack_range_initialized(env, ptr_regno, off, size,
4288 false, ACCESS_DIRECT, NULL);
4289 if (err)
4290 return err;
4291
4292 min_off = reg->smin_value + off;
4293 max_off = reg->smax_value + off;
4294 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4295 return 0;
4296}
4297
4298/* check_stack_read dispatches to check_stack_read_fixed_off or
4299 * check_stack_read_var_off.
4300 *
4301 * The caller must ensure that the offset falls within the allocated stack
4302 * bounds.
4303 *
4304 * 'dst_regno' is a register which will receive the value from the stack. It
4305 * can be -1, meaning that the read value is not going to a register.
4306 */
4307static int check_stack_read(struct bpf_verifier_env *env,
4308 int ptr_regno, int off, int size,
4309 int dst_regno)
4310{
4311 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4312 struct bpf_func_state *state = func(env, reg);
4313 int err;
4314 /* Some accesses are only permitted with a static offset. */
4315 bool var_off = !tnum_is_const(reg->var_off);
4316
4317 /* The offset is required to be static when reads don't go to a
4318 * register, in order to not leak pointers (see
4319 * check_stack_read_fixed_off).
4320 */
4321 if (dst_regno < 0 && var_off) {
e4298d25
DB
4322 char tn_buf[48];
4323
4324 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 4325 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
4326 tn_buf, off, size);
4327 return -EACCES;
4328 }
01f810ac
AM
4329 /* Variable offset is prohibited for unprivileged mode for simplicity
4330 * since it requires corresponding support in Spectre masking for stack
082cdc69
LG
4331 * ALU. See also retrieve_ptr_limit(). The check in
4332 * check_stack_access_for_ptr_arithmetic() called by
4333 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4334 * with variable offsets, therefore no check is required here. Further,
4335 * just checking it here would be insufficient as speculative stack
4336 * writes could still lead to unsafe speculative behaviour.
01f810ac 4337 */
01f810ac
AM
4338 if (!var_off) {
4339 off += reg->var_off.value;
4340 err = check_stack_read_fixed_off(env, state, off, size,
4341 dst_regno);
4342 } else {
4343 /* Variable offset stack reads need more conservative handling
4344 * than fixed offset ones. Note that dst_regno >= 0 on this
4345 * branch.
4346 */
4347 err = check_stack_read_var_off(env, ptr_regno, off, size,
4348 dst_regno);
4349 }
4350 return err;
4351}
4352
4353
4354/* check_stack_write dispatches to check_stack_write_fixed_off or
4355 * check_stack_write_var_off.
4356 *
4357 * 'ptr_regno' is the register used as a pointer into the stack.
4358 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4359 * 'value_regno' is the register whose value we're writing to the stack. It can
4360 * be -1, meaning that we're not writing from a register.
4361 *
4362 * The caller must ensure that the offset falls within the maximum stack size.
4363 */
4364static int check_stack_write(struct bpf_verifier_env *env,
4365 int ptr_regno, int off, int size,
4366 int value_regno, int insn_idx)
4367{
4368 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4369 struct bpf_func_state *state = func(env, reg);
4370 int err;
4371
4372 if (tnum_is_const(reg->var_off)) {
4373 off += reg->var_off.value;
4374 err = check_stack_write_fixed_off(env, state, off, size,
4375 value_regno, insn_idx);
4376 } else {
4377 /* Variable offset stack reads need more conservative handling
4378 * than fixed offset ones.
4379 */
4380 err = check_stack_write_var_off(env, state,
4381 ptr_regno, off, size,
4382 value_regno, insn_idx);
4383 }
4384 return err;
e4298d25
DB
4385}
4386
591fe988
DB
4387static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4388 int off, int size, enum bpf_access_type type)
4389{
4390 struct bpf_reg_state *regs = cur_regs(env);
4391 struct bpf_map *map = regs[regno].map_ptr;
4392 u32 cap = bpf_map_flags_to_cap(map);
4393
4394 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4395 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4396 map->value_size, off, size);
4397 return -EACCES;
4398 }
4399
4400 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4401 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4402 map->value_size, off, size);
4403 return -EACCES;
4404 }
4405
4406 return 0;
4407}
4408
457f4436
AN
4409/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4410static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4411 int off, int size, u32 mem_size,
4412 bool zero_size_allowed)
17a52670 4413{
457f4436
AN
4414 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4415 struct bpf_reg_state *reg;
4416
4417 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4418 return 0;
17a52670 4419
457f4436
AN
4420 reg = &cur_regs(env)[regno];
4421 switch (reg->type) {
69c087ba
YS
4422 case PTR_TO_MAP_KEY:
4423 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4424 mem_size, off, size);
4425 break;
457f4436 4426 case PTR_TO_MAP_VALUE:
61bd5218 4427 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
4428 mem_size, off, size);
4429 break;
4430 case PTR_TO_PACKET:
4431 case PTR_TO_PACKET_META:
4432 case PTR_TO_PACKET_END:
4433 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4434 off, size, regno, reg->id, off, mem_size);
4435 break;
4436 case PTR_TO_MEM:
4437 default:
4438 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4439 mem_size, off, size);
17a52670 4440 }
457f4436
AN
4441
4442 return -EACCES;
17a52670
AS
4443}
4444
457f4436
AN
4445/* check read/write into a memory region with possible variable offset */
4446static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4447 int off, int size, u32 mem_size,
4448 bool zero_size_allowed)
dbcfe5f7 4449{
f4d7e40a
AS
4450 struct bpf_verifier_state *vstate = env->cur_state;
4451 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
4452 struct bpf_reg_state *reg = &state->regs[regno];
4453 int err;
4454
457f4436 4455 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
4456 * need to try adding each of min_value and max_value to off
4457 * to make sure our theoretical access will be safe.
2e576648
CL
4458 *
4459 * The minimum value is only important with signed
dbcfe5f7
GB
4460 * comparisons where we can't assume the floor of a
4461 * value is 0. If we are using signed variables for our
4462 * index'es we need to make sure that whatever we use
4463 * will have a set floor within our range.
4464 */
b7137c4e
DB
4465 if (reg->smin_value < 0 &&
4466 (reg->smin_value == S64_MIN ||
4467 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4468 reg->smin_value + off < 0)) {
61bd5218 4469 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
4470 regno);
4471 return -EACCES;
4472 }
457f4436
AN
4473 err = __check_mem_access(env, regno, reg->smin_value + off, size,
4474 mem_size, zero_size_allowed);
dbcfe5f7 4475 if (err) {
457f4436 4476 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 4477 regno);
dbcfe5f7
GB
4478 return err;
4479 }
4480
b03c9f9f
EC
4481 /* If we haven't set a max value then we need to bail since we can't be
4482 * sure we won't do bad things.
4483 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 4484 */
b03c9f9f 4485 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 4486 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
4487 regno);
4488 return -EACCES;
4489 }
457f4436
AN
4490 err = __check_mem_access(env, regno, reg->umax_value + off, size,
4491 mem_size, zero_size_allowed);
4492 if (err) {
4493 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 4494 regno);
457f4436
AN
4495 return err;
4496 }
4497
4498 return 0;
4499}
d83525ca 4500
e9147b44
KKD
4501static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4502 const struct bpf_reg_state *reg, int regno,
4503 bool fixed_off_ok)
4504{
4505 /* Access to this pointer-typed register or passing it to a helper
4506 * is only allowed in its original, unmodified form.
4507 */
4508
4509 if (reg->off < 0) {
4510 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4511 reg_type_str(env, reg->type), regno, reg->off);
4512 return -EACCES;
4513 }
4514
4515 if (!fixed_off_ok && reg->off) {
4516 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4517 reg_type_str(env, reg->type), regno, reg->off);
4518 return -EACCES;
4519 }
4520
4521 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4522 char tn_buf[48];
4523
4524 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4525 verbose(env, "variable %s access var_off=%s disallowed\n",
4526 reg_type_str(env, reg->type), tn_buf);
4527 return -EACCES;
4528 }
4529
4530 return 0;
4531}
4532
4533int check_ptr_off_reg(struct bpf_verifier_env *env,
4534 const struct bpf_reg_state *reg, int regno)
4535{
4536 return __check_ptr_off_reg(env, reg, regno, false);
4537}
4538
61df10c7 4539static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 4540 struct btf_field *kptr_field,
61df10c7
KKD
4541 struct bpf_reg_state *reg, u32 regno)
4542{
b32a5dae 4543 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
20c09d92 4544 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
61df10c7
KKD
4545 const char *reg_name = "";
4546
6efe152d 4547 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 4548 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
4549 perm_flags |= PTR_UNTRUSTED;
4550
4551 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
4552 goto bad_type;
4553
4554 if (!btf_is_kernel(reg->btf)) {
4555 verbose(env, "R%d must point to kernel BTF\n", regno);
4556 return -EINVAL;
4557 }
4558 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
b32a5dae 4559 reg_name = btf_type_name(reg->btf, reg->btf_id);
61df10c7 4560
c0a5a21c
KKD
4561 /* For ref_ptr case, release function check should ensure we get one
4562 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4563 * normal store of unreferenced kptr, we must ensure var_off is zero.
4564 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4565 * reg->off and reg->ref_obj_id are not needed here.
4566 */
61df10c7
KKD
4567 if (__check_ptr_off_reg(env, reg, regno, true))
4568 return -EACCES;
4569
4570 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
4571 * we also need to take into account the reg->off.
4572 *
4573 * We want to support cases like:
4574 *
4575 * struct foo {
4576 * struct bar br;
4577 * struct baz bz;
4578 * };
4579 *
4580 * struct foo *v;
4581 * v = func(); // PTR_TO_BTF_ID
4582 * val->foo = v; // reg->off is zero, btf and btf_id match type
4583 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4584 * // first member type of struct after comparison fails
4585 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4586 * // to match type
4587 *
4588 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
4589 * is zero. We must also ensure that btf_struct_ids_match does not walk
4590 * the struct to match type against first member of struct, i.e. reject
4591 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4592 * strict mode to true for type match.
61df10c7
KKD
4593 */
4594 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
4595 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4596 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
4597 goto bad_type;
4598 return 0;
4599bad_type:
4600 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4601 reg_type_str(env, reg->type), reg_name);
6efe152d 4602 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 4603 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
4604 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4605 targ_name);
4606 else
4607 verbose(env, "\n");
61df10c7
KKD
4608 return -EINVAL;
4609}
4610
20c09d92
AS
4611/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
4612 * can dereference RCU protected pointers and result is PTR_TRUSTED.
4613 */
4614static bool in_rcu_cs(struct bpf_verifier_env *env)
4615{
4616 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
4617}
4618
4619/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
4620BTF_SET_START(rcu_protected_types)
4621BTF_ID(struct, prog_test_ref_kfunc)
4622BTF_ID(struct, cgroup)
63d2d83d 4623BTF_ID(struct, bpf_cpumask)
d02c48fa 4624BTF_ID(struct, task_struct)
20c09d92
AS
4625BTF_SET_END(rcu_protected_types)
4626
4627static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
4628{
4629 if (!btf_is_kernel(btf))
4630 return false;
4631 return btf_id_set_contains(&rcu_protected_types, btf_id);
4632}
4633
4634static bool rcu_safe_kptr(const struct btf_field *field)
4635{
4636 const struct btf_field_kptr *kptr = &field->kptr;
4637
4638 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
4639}
4640
61df10c7
KKD
4641static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4642 int value_regno, int insn_idx,
aa3496ac 4643 struct btf_field *kptr_field)
61df10c7
KKD
4644{
4645 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4646 int class = BPF_CLASS(insn->code);
4647 struct bpf_reg_state *val_reg;
4648
4649 /* Things we already checked for in check_map_access and caller:
4650 * - Reject cases where variable offset may touch kptr
4651 * - size of access (must be BPF_DW)
4652 * - tnum_is_const(reg->var_off)
aa3496ac 4653 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
4654 */
4655 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4656 if (BPF_MODE(insn->code) != BPF_MEM) {
4657 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4658 return -EACCES;
4659 }
4660
6efe152d
KKD
4661 /* We only allow loading referenced kptr, since it will be marked as
4662 * untrusted, similar to unreferenced kptr.
4663 */
aa3496ac 4664 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 4665 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
4666 return -EACCES;
4667 }
4668
61df10c7
KKD
4669 if (class == BPF_LDX) {
4670 val_reg = reg_state(env, value_regno);
4671 /* We can simply mark the value_regno receiving the pointer
4672 * value from map as PTR_TO_BTF_ID, with the correct type.
4673 */
aa3496ac 4674 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
20c09d92
AS
4675 kptr_field->kptr.btf_id,
4676 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
4677 PTR_MAYBE_NULL | MEM_RCU :
4678 PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
4679 /* For mark_ptr_or_null_reg */
4680 val_reg->id = ++env->id_gen;
4681 } else if (class == BPF_STX) {
4682 val_reg = reg_state(env, value_regno);
4683 if (!register_is_null(val_reg) &&
aa3496ac 4684 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
4685 return -EACCES;
4686 } else if (class == BPF_ST) {
4687 if (insn->imm) {
4688 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 4689 kptr_field->offset);
61df10c7
KKD
4690 return -EACCES;
4691 }
4692 } else {
4693 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4694 return -EACCES;
4695 }
4696 return 0;
4697}
4698
457f4436
AN
4699/* check read/write into a map element with possible variable offset */
4700static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
4701 int off, int size, bool zero_size_allowed,
4702 enum bpf_access_src src)
457f4436
AN
4703{
4704 struct bpf_verifier_state *vstate = env->cur_state;
4705 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4706 struct bpf_reg_state *reg = &state->regs[regno];
4707 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
4708 struct btf_record *rec;
4709 int err, i;
457f4436
AN
4710
4711 err = check_mem_region_access(env, regno, off, size, map->value_size,
4712 zero_size_allowed);
4713 if (err)
4714 return err;
4715
aa3496ac
KKD
4716 if (IS_ERR_OR_NULL(map->record))
4717 return 0;
4718 rec = map->record;
4719 for (i = 0; i < rec->cnt; i++) {
4720 struct btf_field *field = &rec->fields[i];
4721 u32 p = field->offset;
d83525ca 4722
db559117
KKD
4723 /* If any part of a field can be touched by load/store, reject
4724 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
4725 * it is sufficient to check x1 < y2 && y1 < x2.
4726 */
aa3496ac
KKD
4727 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4728 p < reg->umax_value + off + size) {
4729 switch (field->type) {
4730 case BPF_KPTR_UNREF:
4731 case BPF_KPTR_REF:
61df10c7
KKD
4732 if (src != ACCESS_DIRECT) {
4733 verbose(env, "kptr cannot be accessed indirectly by helper\n");
4734 return -EACCES;
4735 }
4736 if (!tnum_is_const(reg->var_off)) {
4737 verbose(env, "kptr access cannot have variable offset\n");
4738 return -EACCES;
4739 }
4740 if (p != off + reg->var_off.value) {
4741 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4742 p, off + reg->var_off.value);
4743 return -EACCES;
4744 }
4745 if (size != bpf_size_to_bytes(BPF_DW)) {
4746 verbose(env, "kptr access size must be BPF_DW\n");
4747 return -EACCES;
4748 }
4749 break;
aa3496ac 4750 default:
db559117
KKD
4751 verbose(env, "%s cannot be accessed directly by load/store\n",
4752 btf_field_type_name(field->type));
aa3496ac 4753 return -EACCES;
61df10c7
KKD
4754 }
4755 }
4756 }
aa3496ac 4757 return 0;
dbcfe5f7
GB
4758}
4759
969bf05e
AS
4760#define MAX_PACKET_OFF 0xffff
4761
58e2af8b 4762static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
4763 const struct bpf_call_arg_meta *meta,
4764 enum bpf_access_type t)
4acf6c0b 4765{
7e40781c
UP
4766 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4767
4768 switch (prog_type) {
5d66fa7d 4769 /* Program types only with direct read access go here! */
3a0af8fd
TG
4770 case BPF_PROG_TYPE_LWT_IN:
4771 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 4772 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 4773 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 4774 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 4775 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
4776 if (t == BPF_WRITE)
4777 return false;
8731745e 4778 fallthrough;
5d66fa7d
DB
4779
4780 /* Program types with direct read + write access go here! */
36bbef52
DB
4781 case BPF_PROG_TYPE_SCHED_CLS:
4782 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 4783 case BPF_PROG_TYPE_XDP:
3a0af8fd 4784 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 4785 case BPF_PROG_TYPE_SK_SKB:
4f738adb 4786 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
4787 if (meta)
4788 return meta->pkt_access;
4789
4790 env->seen_direct_write = true;
4acf6c0b 4791 return true;
0d01da6a
SF
4792
4793 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4794 if (t == BPF_WRITE)
4795 env->seen_direct_write = true;
4796
4797 return true;
4798
4acf6c0b
BB
4799 default:
4800 return false;
4801 }
4802}
4803
f1174f77 4804static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 4805 int size, bool zero_size_allowed)
f1174f77 4806{
638f5b90 4807 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
4808 struct bpf_reg_state *reg = &regs[regno];
4809 int err;
4810
4811 /* We may have added a variable offset to the packet pointer; but any
4812 * reg->range we have comes after that. We are only checking the fixed
4813 * offset.
4814 */
4815
4816 /* We don't allow negative numbers, because we aren't tracking enough
4817 * detail to prove they're safe.
4818 */
b03c9f9f 4819 if (reg->smin_value < 0) {
61bd5218 4820 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
4821 regno);
4822 return -EACCES;
4823 }
6d94e741
AS
4824
4825 err = reg->range < 0 ? -EINVAL :
4826 __check_mem_access(env, regno, off, size, reg->range,
457f4436 4827 zero_size_allowed);
f1174f77 4828 if (err) {
61bd5218 4829 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
4830 return err;
4831 }
e647815a 4832
457f4436 4833 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
4834 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4835 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 4836 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
4837 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4838 */
4839 env->prog->aux->max_pkt_offset =
4840 max_t(u32, env->prog->aux->max_pkt_offset,
4841 off + reg->umax_value + size - 1);
4842
f1174f77
EC
4843 return err;
4844}
4845
4846/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 4847static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 4848 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 4849 struct btf **btf, u32 *btf_id)
17a52670 4850{
f96da094
DB
4851 struct bpf_insn_access_aux info = {
4852 .reg_type = *reg_type,
9e15db66 4853 .log = &env->log,
f96da094 4854 };
31fd8581 4855
4f9218aa 4856 if (env->ops->is_valid_access &&
5e43f899 4857 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
4858 /* A non zero info.ctx_field_size indicates that this field is a
4859 * candidate for later verifier transformation to load the whole
4860 * field and then apply a mask when accessed with a narrower
4861 * access than actual ctx access size. A zero info.ctx_field_size
4862 * will only allow for whole field access and rejects any other
4863 * type of narrower access.
31fd8581 4864 */
23994631 4865 *reg_type = info.reg_type;
31fd8581 4866
c25b2ae1 4867 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4868 *btf = info.btf;
9e15db66 4869 *btf_id = info.btf_id;
22dc4a0f 4870 } else {
9e15db66 4871 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 4872 }
32bbe007
AS
4873 /* remember the offset of last byte accessed in ctx */
4874 if (env->prog->aux->max_ctx_offset < off + size)
4875 env->prog->aux->max_ctx_offset = off + size;
17a52670 4876 return 0;
32bbe007 4877 }
17a52670 4878
61bd5218 4879 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
4880 return -EACCES;
4881}
4882
d58e468b
PP
4883static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4884 int size)
4885{
4886 if (size < 0 || off < 0 ||
4887 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4888 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4889 off, size);
4890 return -EACCES;
4891 }
4892 return 0;
4893}
4894
5f456649
MKL
4895static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4896 u32 regno, int off, int size,
4897 enum bpf_access_type t)
c64b7983
JS
4898{
4899 struct bpf_reg_state *regs = cur_regs(env);
4900 struct bpf_reg_state *reg = &regs[regno];
5f456649 4901 struct bpf_insn_access_aux info = {};
46f8bc92 4902 bool valid;
c64b7983
JS
4903
4904 if (reg->smin_value < 0) {
4905 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4906 regno);
4907 return -EACCES;
4908 }
4909
46f8bc92
MKL
4910 switch (reg->type) {
4911 case PTR_TO_SOCK_COMMON:
4912 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4913 break;
4914 case PTR_TO_SOCKET:
4915 valid = bpf_sock_is_valid_access(off, size, t, &info);
4916 break;
655a51e5
MKL
4917 case PTR_TO_TCP_SOCK:
4918 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4919 break;
fada7fdc
JL
4920 case PTR_TO_XDP_SOCK:
4921 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4922 break;
46f8bc92
MKL
4923 default:
4924 valid = false;
c64b7983
JS
4925 }
4926
5f456649 4927
46f8bc92
MKL
4928 if (valid) {
4929 env->insn_aux_data[insn_idx].ctx_field_size =
4930 info.ctx_field_size;
4931 return 0;
4932 }
4933
4934 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4935 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4936
4937 return -EACCES;
c64b7983
JS
4938}
4939
4cabc5b1
DB
4940static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4941{
2a159c6f 4942 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4943}
4944
f37a8cb8
DB
4945static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4946{
2a159c6f 4947 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4948
46f8bc92
MKL
4949 return reg->type == PTR_TO_CTX;
4950}
4951
4952static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4953{
4954 const struct bpf_reg_state *reg = reg_state(env, regno);
4955
4956 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4957}
4958
ca369602
DB
4959static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4960{
2a159c6f 4961 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4962
4963 return type_is_pkt_pointer(reg->type);
4964}
4965
4b5defde
DB
4966static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4967{
4968 const struct bpf_reg_state *reg = reg_state(env, regno);
4969
4970 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4971 return reg->type == PTR_TO_FLOW_KEYS;
4972}
4973
9bb00b28
YS
4974static bool is_trusted_reg(const struct bpf_reg_state *reg)
4975{
4976 /* A referenced register is always trusted. */
4977 if (reg->ref_obj_id)
4978 return true;
4979
4980 /* If a register is not referenced, it is trusted if it has the
fca1aa75 4981 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
9bb00b28
YS
4982 * other type modifiers may be safe, but we elect to take an opt-in
4983 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4984 * not.
4985 *
4986 * Eventually, we should make PTR_TRUSTED the single source of truth
4987 * for whether a register is trusted.
4988 */
4989 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4990 !bpf_type_has_unsafe_modifiers(reg->type);
4991}
4992
fca1aa75
YS
4993static bool is_rcu_reg(const struct bpf_reg_state *reg)
4994{
4995 return reg->type & MEM_RCU;
4996}
4997
afeebf9f
AS
4998static void clear_trusted_flags(enum bpf_type_flag *flag)
4999{
5000 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5001}
5002
61bd5218
JK
5003static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5004 const struct bpf_reg_state *reg,
d1174416 5005 int off, int size, bool strict)
969bf05e 5006{
f1174f77 5007 struct tnum reg_off;
e07b98d9 5008 int ip_align;
d1174416
DM
5009
5010 /* Byte size accesses are always allowed. */
5011 if (!strict || size == 1)
5012 return 0;
5013
e4eda884
DM
5014 /* For platforms that do not have a Kconfig enabling
5015 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5016 * NET_IP_ALIGN is universally set to '2'. And on platforms
5017 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5018 * to this code only in strict mode where we want to emulate
5019 * the NET_IP_ALIGN==2 checking. Therefore use an
5020 * unconditional IP align value of '2'.
e07b98d9 5021 */
e4eda884 5022 ip_align = 2;
f1174f77
EC
5023
5024 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5025 if (!tnum_is_aligned(reg_off, size)) {
5026 char tn_buf[48];
5027
5028 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
5029 verbose(env,
5030 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 5031 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
5032 return -EACCES;
5033 }
79adffcd 5034
969bf05e
AS
5035 return 0;
5036}
5037
61bd5218
JK
5038static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5039 const struct bpf_reg_state *reg,
f1174f77
EC
5040 const char *pointer_desc,
5041 int off, int size, bool strict)
79adffcd 5042{
f1174f77
EC
5043 struct tnum reg_off;
5044
5045 /* Byte size accesses are always allowed. */
5046 if (!strict || size == 1)
5047 return 0;
5048
5049 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5050 if (!tnum_is_aligned(reg_off, size)) {
5051 char tn_buf[48];
5052
5053 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5054 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 5055 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
5056 return -EACCES;
5057 }
5058
969bf05e
AS
5059 return 0;
5060}
5061
e07b98d9 5062static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
5063 const struct bpf_reg_state *reg, int off,
5064 int size, bool strict_alignment_once)
79adffcd 5065{
ca369602 5066 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 5067 const char *pointer_desc = "";
d1174416 5068
79adffcd
DB
5069 switch (reg->type) {
5070 case PTR_TO_PACKET:
de8f3a83
DB
5071 case PTR_TO_PACKET_META:
5072 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5073 * right in front, treat it the very same way.
5074 */
61bd5218 5075 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
5076 case PTR_TO_FLOW_KEYS:
5077 pointer_desc = "flow keys ";
5078 break;
69c087ba
YS
5079 case PTR_TO_MAP_KEY:
5080 pointer_desc = "key ";
5081 break;
f1174f77
EC
5082 case PTR_TO_MAP_VALUE:
5083 pointer_desc = "value ";
5084 break;
5085 case PTR_TO_CTX:
5086 pointer_desc = "context ";
5087 break;
5088 case PTR_TO_STACK:
5089 pointer_desc = "stack ";
01f810ac
AM
5090 /* The stack spill tracking logic in check_stack_write_fixed_off()
5091 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
5092 * aligned.
5093 */
5094 strict = true;
f1174f77 5095 break;
c64b7983
JS
5096 case PTR_TO_SOCKET:
5097 pointer_desc = "sock ";
5098 break;
46f8bc92
MKL
5099 case PTR_TO_SOCK_COMMON:
5100 pointer_desc = "sock_common ";
5101 break;
655a51e5
MKL
5102 case PTR_TO_TCP_SOCK:
5103 pointer_desc = "tcp_sock ";
5104 break;
fada7fdc
JL
5105 case PTR_TO_XDP_SOCK:
5106 pointer_desc = "xdp_sock ";
5107 break;
79adffcd 5108 default:
f1174f77 5109 break;
79adffcd 5110 }
61bd5218
JK
5111 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5112 strict);
79adffcd
DB
5113}
5114
f4d7e40a
AS
5115static int update_stack_depth(struct bpf_verifier_env *env,
5116 const struct bpf_func_state *func,
5117 int off)
5118{
9c8105bd 5119 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
5120
5121 if (stack >= -off)
5122 return 0;
5123
5124 /* update known max for given subprogram */
9c8105bd 5125 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
5126 return 0;
5127}
f4d7e40a 5128
70a87ffe
AS
5129/* starting from main bpf function walk all instructions of the function
5130 * and recursively walk all callees that given function can call.
5131 * Ignore jump and exit insns.
5132 * Since recursion is prevented by check_cfg() this algorithm
5133 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5134 */
5135static int check_max_stack_depth(struct bpf_verifier_env *env)
5136{
9c8105bd
JW
5137 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
5138 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 5139 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 5140 bool tail_call_reachable = false;
70a87ffe
AS
5141 int ret_insn[MAX_CALL_FRAMES];
5142 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 5143 int j;
f4d7e40a 5144
70a87ffe 5145process_func:
7f6e4312
MF
5146 /* protect against potential stack overflow that might happen when
5147 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5148 * depth for such case down to 256 so that the worst case scenario
5149 * would result in 8k stack size (32 which is tailcall limit * 256 =
5150 * 8k).
5151 *
5152 * To get the idea what might happen, see an example:
5153 * func1 -> sub rsp, 128
5154 * subfunc1 -> sub rsp, 256
5155 * tailcall1 -> add rsp, 256
5156 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5157 * subfunc2 -> sub rsp, 64
5158 * subfunc22 -> sub rsp, 128
5159 * tailcall2 -> add rsp, 128
5160 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5161 *
5162 * tailcall will unwind the current stack frame but it will not get rid
5163 * of caller's stack as shown on the example above.
5164 */
5165 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5166 verbose(env,
5167 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5168 depth);
5169 return -EACCES;
5170 }
70a87ffe
AS
5171 /* round up to 32-bytes, since this is granularity
5172 * of interpreter stack size
5173 */
9c8105bd 5174 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 5175 if (depth > MAX_BPF_STACK) {
f4d7e40a 5176 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 5177 frame + 1, depth);
f4d7e40a
AS
5178 return -EACCES;
5179 }
70a87ffe 5180continue_func:
4cb3d99c 5181 subprog_end = subprog[idx + 1].start;
70a87ffe 5182 for (; i < subprog_end; i++) {
7ddc80a4
AS
5183 int next_insn;
5184
69c087ba 5185 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
5186 continue;
5187 /* remember insn and function to return to */
5188 ret_insn[frame] = i + 1;
9c8105bd 5189 ret_prog[frame] = idx;
70a87ffe
AS
5190
5191 /* find the callee */
7ddc80a4
AS
5192 next_insn = i + insn[i].imm + 1;
5193 idx = find_subprog(env, next_insn);
9c8105bd 5194 if (idx < 0) {
70a87ffe 5195 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 5196 next_insn);
70a87ffe
AS
5197 return -EFAULT;
5198 }
7ddc80a4
AS
5199 if (subprog[idx].is_async_cb) {
5200 if (subprog[idx].has_tail_call) {
5201 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5202 return -EFAULT;
5203 }
5204 /* async callbacks don't increase bpf prog stack size */
5205 continue;
5206 }
5207 i = next_insn;
ebf7d1f5
MF
5208
5209 if (subprog[idx].has_tail_call)
5210 tail_call_reachable = true;
5211
70a87ffe
AS
5212 frame++;
5213 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
5214 verbose(env, "the call stack of %d frames is too deep !\n",
5215 frame);
5216 return -E2BIG;
70a87ffe
AS
5217 }
5218 goto process_func;
5219 }
ebf7d1f5
MF
5220 /* if tail call got detected across bpf2bpf calls then mark each of the
5221 * currently present subprog frames as tail call reachable subprogs;
5222 * this info will be utilized by JIT so that we will be preserving the
5223 * tail call counter throughout bpf2bpf calls combined with tailcalls
5224 */
5225 if (tail_call_reachable)
5226 for (j = 0; j < frame; j++)
5227 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
5228 if (subprog[0].tail_call_reachable)
5229 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 5230
70a87ffe
AS
5231 /* end of for() loop means the last insn of the 'subprog'
5232 * was reached. Doesn't matter whether it was JA or EXIT
5233 */
5234 if (frame == 0)
5235 return 0;
9c8105bd 5236 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
5237 frame--;
5238 i = ret_insn[frame];
9c8105bd 5239 idx = ret_prog[frame];
70a87ffe 5240 goto continue_func;
f4d7e40a
AS
5241}
5242
19d28fbd 5243#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5244static int get_callee_stack_depth(struct bpf_verifier_env *env,
5245 const struct bpf_insn *insn, int idx)
5246{
5247 int start = idx + insn->imm + 1, subprog;
5248
5249 subprog = find_subprog(env, start);
5250 if (subprog < 0) {
5251 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5252 start);
5253 return -EFAULT;
5254 }
9c8105bd 5255 return env->subprog_info[subprog].stack_depth;
1ea47e01 5256}
19d28fbd 5257#endif
1ea47e01 5258
afbf21dc
YS
5259static int __check_buffer_access(struct bpf_verifier_env *env,
5260 const char *buf_info,
5261 const struct bpf_reg_state *reg,
5262 int regno, int off, int size)
9df1c28b
MM
5263{
5264 if (off < 0) {
5265 verbose(env,
4fc00b79 5266 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 5267 regno, buf_info, off, size);
9df1c28b
MM
5268 return -EACCES;
5269 }
5270 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5271 char tn_buf[48];
5272
5273 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5274 verbose(env,
4fc00b79 5275 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
5276 regno, off, tn_buf);
5277 return -EACCES;
5278 }
afbf21dc
YS
5279
5280 return 0;
5281}
5282
5283static int check_tp_buffer_access(struct bpf_verifier_env *env,
5284 const struct bpf_reg_state *reg,
5285 int regno, int off, int size)
5286{
5287 int err;
5288
5289 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5290 if (err)
5291 return err;
5292
9df1c28b
MM
5293 if (off + size > env->prog->aux->max_tp_access)
5294 env->prog->aux->max_tp_access = off + size;
5295
5296 return 0;
5297}
5298
afbf21dc
YS
5299static int check_buffer_access(struct bpf_verifier_env *env,
5300 const struct bpf_reg_state *reg,
5301 int regno, int off, int size,
5302 bool zero_size_allowed,
afbf21dc
YS
5303 u32 *max_access)
5304{
44e9a741 5305 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
5306 int err;
5307
5308 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5309 if (err)
5310 return err;
5311
5312 if (off + size > *max_access)
5313 *max_access = off + size;
5314
5315 return 0;
5316}
5317
3f50f132
JF
5318/* BPF architecture zero extends alu32 ops into 64-bit registesr */
5319static void zext_32_to_64(struct bpf_reg_state *reg)
5320{
5321 reg->var_off = tnum_subreg(reg->var_off);
5322 __reg_assign_32_into_64(reg);
5323}
9df1c28b 5324
0c17d1d2
JH
5325/* truncate register to smaller size (in bytes)
5326 * must be called with size < BPF_REG_SIZE
5327 */
5328static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5329{
5330 u64 mask;
5331
5332 /* clear high bits in bit representation */
5333 reg->var_off = tnum_cast(reg->var_off, size);
5334
5335 /* fix arithmetic bounds */
5336 mask = ((u64)1 << (size * 8)) - 1;
5337 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5338 reg->umin_value &= mask;
5339 reg->umax_value &= mask;
5340 } else {
5341 reg->umin_value = 0;
5342 reg->umax_value = mask;
5343 }
5344 reg->smin_value = reg->umin_value;
5345 reg->smax_value = reg->umax_value;
3f50f132
JF
5346
5347 /* If size is smaller than 32bit register the 32bit register
5348 * values are also truncated so we push 64-bit bounds into
5349 * 32-bit bounds. Above were truncated < 32-bits already.
5350 */
5351 if (size >= 4)
5352 return;
5353 __reg_combine_64_into_32(reg);
0c17d1d2
JH
5354}
5355
a23740ec
AN
5356static bool bpf_map_is_rdonly(const struct bpf_map *map)
5357{
353050be
DB
5358 /* A map is considered read-only if the following condition are true:
5359 *
5360 * 1) BPF program side cannot change any of the map content. The
5361 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5362 * and was set at map creation time.
5363 * 2) The map value(s) have been initialized from user space by a
5364 * loader and then "frozen", such that no new map update/delete
5365 * operations from syscall side are possible for the rest of
5366 * the map's lifetime from that point onwards.
5367 * 3) Any parallel/pending map update/delete operations from syscall
5368 * side have been completed. Only after that point, it's safe to
5369 * assume that map value(s) are immutable.
5370 */
5371 return (map->map_flags & BPF_F_RDONLY_PROG) &&
5372 READ_ONCE(map->frozen) &&
5373 !bpf_map_write_active(map);
a23740ec
AN
5374}
5375
5376static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5377{
5378 void *ptr;
5379 u64 addr;
5380 int err;
5381
5382 err = map->ops->map_direct_value_addr(map, &addr, off);
5383 if (err)
5384 return err;
2dedd7d2 5385 ptr = (void *)(long)addr + off;
a23740ec
AN
5386
5387 switch (size) {
5388 case sizeof(u8):
5389 *val = (u64)*(u8 *)ptr;
5390 break;
5391 case sizeof(u16):
5392 *val = (u64)*(u16 *)ptr;
5393 break;
5394 case sizeof(u32):
5395 *val = (u64)*(u32 *)ptr;
5396 break;
5397 case sizeof(u64):
5398 *val = *(u64 *)ptr;
5399 break;
5400 default:
5401 return -EINVAL;
5402 }
5403 return 0;
5404}
5405
6fcd486b 5406#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
30ee9821 5407#define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6fcd486b 5408#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
57539b1c 5409
6fcd486b
AS
5410/*
5411 * Allow list few fields as RCU trusted or full trusted.
5412 * This logic doesn't allow mix tagging and will be removed once GCC supports
5413 * btf_type_tag.
5414 */
5415
5416/* RCU trusted: these fields are trusted in RCU CS and never NULL */
5417BTF_TYPE_SAFE_RCU(struct task_struct) {
57539b1c 5418 const cpumask_t *cpus_ptr;
8d093b4e 5419 struct css_set __rcu *cgroups;
6fcd486b
AS
5420 struct task_struct __rcu *real_parent;
5421 struct task_struct *group_leader;
8d093b4e
AS
5422};
5423
30ee9821
AS
5424BTF_TYPE_SAFE_RCU(struct cgroup) {
5425 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
5426 struct kernfs_node *kn;
5427};
5428
6fcd486b 5429BTF_TYPE_SAFE_RCU(struct css_set) {
8d093b4e 5430 struct cgroup *dfl_cgrp;
57539b1c
DV
5431};
5432
30ee9821
AS
5433/* RCU trusted: these fields are trusted in RCU CS and can be NULL */
5434BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
5435 struct file __rcu *exe_file;
5436};
5437
5438/* skb->sk, req->sk are not RCU protected, but we mark them as such
5439 * because bpf prog accessible sockets are SOCK_RCU_FREE.
5440 */
5441BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
5442 struct sock *sk;
5443};
5444
5445BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
5446 struct sock *sk;
5447};
5448
6fcd486b
AS
5449/* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5450BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
63260df1 5451 struct seq_file *seq;
6fcd486b
AS
5452};
5453
5454BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
63260df1
AS
5455 struct bpf_iter_meta *meta;
5456 struct task_struct *task;
6fcd486b
AS
5457};
5458
5459BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5460 struct file *file;
5461};
5462
5463BTF_TYPE_SAFE_TRUSTED(struct file) {
5464 struct inode *f_inode;
5465};
5466
5467BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5468 /* no negative dentry-s in places where bpf can see it */
5469 struct inode *d_inode;
5470};
5471
5472BTF_TYPE_SAFE_TRUSTED(struct socket) {
5473 struct sock *sk;
5474};
5475
5476static bool type_is_rcu(struct bpf_verifier_env *env,
5477 struct bpf_reg_state *reg,
63260df1 5478 const char *field_name, u32 btf_id)
57539b1c 5479{
6fcd486b 5480 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
30ee9821 5481 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6fcd486b 5482 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
57539b1c 5483
63260df1 5484 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6fcd486b 5485}
57539b1c 5486
30ee9821
AS
5487static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
5488 struct bpf_reg_state *reg,
5489 const char *field_name, u32 btf_id)
5490{
5491 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
5492 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
5493 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
5494
5495 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
5496}
5497
6fcd486b
AS
5498static bool type_is_trusted(struct bpf_verifier_env *env,
5499 struct bpf_reg_state *reg,
63260df1 5500 const char *field_name, u32 btf_id)
6fcd486b
AS
5501{
5502 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5503 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5504 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5505 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5506 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5507 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5508
63260df1 5509 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
57539b1c
DV
5510}
5511
9e15db66
AS
5512static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5513 struct bpf_reg_state *regs,
5514 int regno, int off, int size,
5515 enum bpf_access_type atype,
5516 int value_regno)
5517{
5518 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
5519 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5520 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
63260df1 5521 const char *field_name = NULL;
c6f1bfe8 5522 enum bpf_type_flag flag = 0;
b7e852a9 5523 u32 btf_id = 0;
9e15db66
AS
5524 int ret;
5525
c67cae55
AS
5526 if (!env->allow_ptr_leaks) {
5527 verbose(env,
5528 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5529 tname);
5530 return -EPERM;
5531 }
5532 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5533 verbose(env,
5534 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5535 tname);
5536 return -EINVAL;
5537 }
9e15db66
AS
5538 if (off < 0) {
5539 verbose(env,
5540 "R%d is ptr_%s invalid negative access: off=%d\n",
5541 regno, tname, off);
5542 return -EACCES;
5543 }
5544 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5545 char tn_buf[48];
5546
5547 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5548 verbose(env,
5549 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5550 regno, tname, off, tn_buf);
5551 return -EACCES;
5552 }
5553
c6f1bfe8
YS
5554 if (reg->type & MEM_USER) {
5555 verbose(env,
5556 "R%d is ptr_%s access user memory: off=%d\n",
5557 regno, tname, off);
5558 return -EACCES;
5559 }
5560
5844101a
HL
5561 if (reg->type & MEM_PERCPU) {
5562 verbose(env,
5563 "R%d is ptr_%s access percpu memory: off=%d\n",
5564 regno, tname, off);
5565 return -EACCES;
5566 }
5567
7d64c513 5568 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
282de143
KKD
5569 if (!btf_is_kernel(reg->btf)) {
5570 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5571 return -EFAULT;
5572 }
b7e852a9 5573 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
27ae7997 5574 } else {
282de143
KKD
5575 /* Writes are permitted with default btf_struct_access for
5576 * program allocated objects (which always have ref_obj_id > 0),
5577 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5578 */
5579 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
27ae7997
MKL
5580 verbose(env, "only read is supported\n");
5581 return -EACCES;
5582 }
5583
6a3cd331
DM
5584 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
5585 !reg->ref_obj_id) {
282de143
KKD
5586 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5587 return -EFAULT;
5588 }
5589
63260df1 5590 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
27ae7997
MKL
5591 }
5592
9e15db66
AS
5593 if (ret < 0)
5594 return ret;
5595
6fcd486b
AS
5596 if (ret != PTR_TO_BTF_ID) {
5597 /* just mark; */
6efe152d 5598
6fcd486b
AS
5599 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
5600 /* If this is an untrusted pointer, all pointers formed by walking it
5601 * also inherit the untrusted flag.
5602 */
5603 flag = PTR_UNTRUSTED;
5604
5605 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
5606 /* By default any pointer obtained from walking a trusted pointer is no
5607 * longer trusted, unless the field being accessed has explicitly been
5608 * marked as inheriting its parent's state of trust (either full or RCU).
5609 * For example:
5610 * 'cgroups' pointer is untrusted if task->cgroups dereference
5611 * happened in a sleepable program outside of bpf_rcu_read_lock()
5612 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
5613 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
5614 *
5615 * A regular RCU-protected pointer with __rcu tag can also be deemed
5616 * trusted if we are in an RCU CS. Such pointer can be NULL.
20c09d92 5617 */
63260df1 5618 if (type_is_trusted(env, reg, field_name, btf_id)) {
6fcd486b
AS
5619 flag |= PTR_TRUSTED;
5620 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
63260df1 5621 if (type_is_rcu(env, reg, field_name, btf_id)) {
6fcd486b
AS
5622 /* ignore __rcu tag and mark it MEM_RCU */
5623 flag |= MEM_RCU;
30ee9821
AS
5624 } else if (flag & MEM_RCU ||
5625 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6fcd486b 5626 /* __rcu tagged pointers can be NULL */
30ee9821 5627 flag |= MEM_RCU | PTR_MAYBE_NULL;
6fcd486b
AS
5628 } else if (flag & (MEM_PERCPU | MEM_USER)) {
5629 /* keep as-is */
5630 } else {
afeebf9f
AS
5631 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
5632 clear_trusted_flags(&flag);
6fcd486b
AS
5633 }
5634 } else {
5635 /*
5636 * If not in RCU CS or MEM_RCU pointer can be NULL then
5637 * aggressively mark as untrusted otherwise such
5638 * pointers will be plain PTR_TO_BTF_ID without flags
5639 * and will be allowed to be passed into helpers for
5640 * compat reasons.
5641 */
5642 flag = PTR_UNTRUSTED;
5643 }
20c09d92 5644 } else {
6fcd486b 5645 /* Old compat. Deprecated */
afeebf9f 5646 clear_trusted_flags(&flag);
20c09d92 5647 }
3f00c523 5648
41c48f3a 5649 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 5650 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
5651
5652 return 0;
5653}
5654
5655static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5656 struct bpf_reg_state *regs,
5657 int regno, int off, int size,
5658 enum bpf_access_type atype,
5659 int value_regno)
5660{
5661 struct bpf_reg_state *reg = regs + regno;
5662 struct bpf_map *map = reg->map_ptr;
6728aea7 5663 struct bpf_reg_state map_reg;
c6f1bfe8 5664 enum bpf_type_flag flag = 0;
41c48f3a
AI
5665 const struct btf_type *t;
5666 const char *tname;
5667 u32 btf_id;
5668 int ret;
5669
5670 if (!btf_vmlinux) {
5671 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5672 return -ENOTSUPP;
5673 }
5674
5675 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5676 verbose(env, "map_ptr access not supported for map type %d\n",
5677 map->map_type);
5678 return -ENOTSUPP;
5679 }
5680
5681 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5682 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5683
c67cae55 5684 if (!env->allow_ptr_leaks) {
41c48f3a 5685 verbose(env,
c67cae55 5686 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
41c48f3a
AI
5687 tname);
5688 return -EPERM;
9e15db66 5689 }
27ae7997 5690
41c48f3a
AI
5691 if (off < 0) {
5692 verbose(env, "R%d is %s invalid negative access: off=%d\n",
5693 regno, tname, off);
5694 return -EACCES;
5695 }
5696
5697 if (atype != BPF_READ) {
5698 verbose(env, "only read from %s is supported\n", tname);
5699 return -EACCES;
5700 }
5701
6728aea7
KKD
5702 /* Simulate access to a PTR_TO_BTF_ID */
5703 memset(&map_reg, 0, sizeof(map_reg));
5704 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
63260df1 5705 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
41c48f3a
AI
5706 if (ret < 0)
5707 return ret;
5708
5709 if (value_regno >= 0)
c6f1bfe8 5710 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 5711
9e15db66
AS
5712 return 0;
5713}
5714
01f810ac
AM
5715/* Check that the stack access at the given offset is within bounds. The
5716 * maximum valid offset is -1.
5717 *
5718 * The minimum valid offset is -MAX_BPF_STACK for writes, and
5719 * -state->allocated_stack for reads.
5720 */
5721static int check_stack_slot_within_bounds(int off,
5722 struct bpf_func_state *state,
5723 enum bpf_access_type t)
5724{
5725 int min_valid_off;
5726
5727 if (t == BPF_WRITE)
5728 min_valid_off = -MAX_BPF_STACK;
5729 else
5730 min_valid_off = -state->allocated_stack;
5731
5732 if (off < min_valid_off || off > -1)
5733 return -EACCES;
5734 return 0;
5735}
5736
5737/* Check that the stack access at 'regno + off' falls within the maximum stack
5738 * bounds.
5739 *
5740 * 'off' includes `regno->offset`, but not its dynamic part (if any).
5741 */
5742static int check_stack_access_within_bounds(
5743 struct bpf_verifier_env *env,
5744 int regno, int off, int access_size,
61df10c7 5745 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
5746{
5747 struct bpf_reg_state *regs = cur_regs(env);
5748 struct bpf_reg_state *reg = regs + regno;
5749 struct bpf_func_state *state = func(env, reg);
5750 int min_off, max_off;
5751 int err;
5752 char *err_extra;
5753
5754 if (src == ACCESS_HELPER)
5755 /* We don't know if helpers are reading or writing (or both). */
5756 err_extra = " indirect access to";
5757 else if (type == BPF_READ)
5758 err_extra = " read from";
5759 else
5760 err_extra = " write to";
5761
5762 if (tnum_is_const(reg->var_off)) {
5763 min_off = reg->var_off.value + off;
5764 if (access_size > 0)
5765 max_off = min_off + access_size - 1;
5766 else
5767 max_off = min_off;
5768 } else {
5769 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5770 reg->smin_value <= -BPF_MAX_VAR_OFF) {
5771 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5772 err_extra, regno);
5773 return -EACCES;
5774 }
5775 min_off = reg->smin_value + off;
5776 if (access_size > 0)
5777 max_off = reg->smax_value + off + access_size - 1;
5778 else
5779 max_off = min_off;
5780 }
5781
5782 err = check_stack_slot_within_bounds(min_off, state, type);
5783 if (!err)
5784 err = check_stack_slot_within_bounds(max_off, state, type);
5785
5786 if (err) {
5787 if (tnum_is_const(reg->var_off)) {
5788 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5789 err_extra, regno, off, access_size);
5790 } else {
5791 char tn_buf[48];
5792
5793 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5794 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5795 err_extra, regno, tn_buf, access_size);
5796 }
5797 }
5798 return err;
5799}
41c48f3a 5800
17a52670
AS
5801/* check whether memory at (regno + off) is accessible for t = (read | write)
5802 * if t==write, value_regno is a register which value is stored into memory
5803 * if t==read, value_regno is a register which will receive the value from memory
5804 * if t==write && value_regno==-1, some unknown value is stored into memory
5805 * if t==read && value_regno==-1, don't care what we read from memory
5806 */
ca369602
DB
5807static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5808 int off, int bpf_size, enum bpf_access_type t,
5809 int value_regno, bool strict_alignment_once)
17a52670 5810{
638f5b90
AS
5811 struct bpf_reg_state *regs = cur_regs(env);
5812 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 5813 struct bpf_func_state *state;
17a52670
AS
5814 int size, err = 0;
5815
5816 size = bpf_size_to_bytes(bpf_size);
5817 if (size < 0)
5818 return size;
5819
f1174f77 5820 /* alignment checks will add in reg->off themselves */
ca369602 5821 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
5822 if (err)
5823 return err;
17a52670 5824
f1174f77
EC
5825 /* for access checks, reg->off is just part of off */
5826 off += reg->off;
5827
69c087ba
YS
5828 if (reg->type == PTR_TO_MAP_KEY) {
5829 if (t == BPF_WRITE) {
5830 verbose(env, "write to change key R%d not allowed\n", regno);
5831 return -EACCES;
5832 }
5833
5834 err = check_mem_region_access(env, regno, off, size,
5835 reg->map_ptr->key_size, false);
5836 if (err)
5837 return err;
5838 if (value_regno >= 0)
5839 mark_reg_unknown(env, regs, value_regno);
5840 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 5841 struct btf_field *kptr_field = NULL;
61df10c7 5842
1be7f75d
AS
5843 if (t == BPF_WRITE && value_regno >= 0 &&
5844 is_pointer_value(env, value_regno)) {
61bd5218 5845 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
5846 return -EACCES;
5847 }
591fe988
DB
5848 err = check_map_access_type(env, regno, off, size, t);
5849 if (err)
5850 return err;
61df10c7
KKD
5851 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5852 if (err)
5853 return err;
5854 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
5855 kptr_field = btf_record_find(reg->map_ptr->record,
5856 off + reg->var_off.value, BPF_KPTR);
5857 if (kptr_field) {
5858 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 5859 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
5860 struct bpf_map *map = reg->map_ptr;
5861
5862 /* if map is read-only, track its contents as scalars */
5863 if (tnum_is_const(reg->var_off) &&
5864 bpf_map_is_rdonly(map) &&
5865 map->ops->map_direct_value_addr) {
5866 int map_off = off + reg->var_off.value;
5867 u64 val = 0;
5868
5869 err = bpf_map_direct_read(map, map_off, size,
5870 &val);
5871 if (err)
5872 return err;
5873
5874 regs[value_regno].type = SCALAR_VALUE;
5875 __mark_reg_known(&regs[value_regno], val);
5876 } else {
5877 mark_reg_unknown(env, regs, value_regno);
5878 }
5879 }
34d3a78c
HL
5880 } else if (base_type(reg->type) == PTR_TO_MEM) {
5881 bool rdonly_mem = type_is_rdonly_mem(reg->type);
5882
5883 if (type_may_be_null(reg->type)) {
5884 verbose(env, "R%d invalid mem access '%s'\n", regno,
5885 reg_type_str(env, reg->type));
5886 return -EACCES;
5887 }
5888
5889 if (t == BPF_WRITE && rdonly_mem) {
5890 verbose(env, "R%d cannot write into %s\n",
5891 regno, reg_type_str(env, reg->type));
5892 return -EACCES;
5893 }
5894
457f4436
AN
5895 if (t == BPF_WRITE && value_regno >= 0 &&
5896 is_pointer_value(env, value_regno)) {
5897 verbose(env, "R%d leaks addr into mem\n", value_regno);
5898 return -EACCES;
5899 }
34d3a78c 5900
457f4436
AN
5901 err = check_mem_region_access(env, regno, off, size,
5902 reg->mem_size, false);
34d3a78c 5903 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 5904 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 5905 } else if (reg->type == PTR_TO_CTX) {
f1174f77 5906 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 5907 struct btf *btf = NULL;
9e15db66 5908 u32 btf_id = 0;
19de99f7 5909
1be7f75d
AS
5910 if (t == BPF_WRITE && value_regno >= 0 &&
5911 is_pointer_value(env, value_regno)) {
61bd5218 5912 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
5913 return -EACCES;
5914 }
f1174f77 5915
be80a1d3 5916 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
5917 if (err < 0)
5918 return err;
5919
c6f1bfe8
YS
5920 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5921 &btf_id);
9e15db66
AS
5922 if (err)
5923 verbose_linfo(env, insn_idx, "; ");
969bf05e 5924 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 5925 /* ctx access returns either a scalar, or a
de8f3a83
DB
5926 * PTR_TO_PACKET[_META,_END]. In the latter
5927 * case, we know the offset is zero.
f1174f77 5928 */
46f8bc92 5929 if (reg_type == SCALAR_VALUE) {
638f5b90 5930 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5931 } else {
638f5b90 5932 mark_reg_known_zero(env, regs,
61bd5218 5933 value_regno);
c25b2ae1 5934 if (type_may_be_null(reg_type))
46f8bc92 5935 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
5936 /* A load of ctx field could have different
5937 * actual load size with the one encoded in the
5938 * insn. When the dst is PTR, it is for sure not
5939 * a sub-register.
5940 */
5941 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 5942 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5943 regs[value_regno].btf = btf;
9e15db66 5944 regs[value_regno].btf_id = btf_id;
22dc4a0f 5945 }
46f8bc92 5946 }
638f5b90 5947 regs[value_regno].type = reg_type;
969bf05e 5948 }
17a52670 5949
f1174f77 5950 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
5951 /* Basic bounds checks. */
5952 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
5953 if (err)
5954 return err;
8726679a 5955
f4d7e40a
AS
5956 state = func(env, reg);
5957 err = update_stack_depth(env, state, off);
5958 if (err)
5959 return err;
8726679a 5960
01f810ac
AM
5961 if (t == BPF_READ)
5962 err = check_stack_read(env, regno, off, size,
61bd5218 5963 value_regno);
01f810ac
AM
5964 else
5965 err = check_stack_write(env, regno, off, size,
5966 value_regno, insn_idx);
de8f3a83 5967 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 5968 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 5969 verbose(env, "cannot write into packet\n");
969bf05e
AS
5970 return -EACCES;
5971 }
4acf6c0b
BB
5972 if (t == BPF_WRITE && value_regno >= 0 &&
5973 is_pointer_value(env, value_regno)) {
61bd5218
JK
5974 verbose(env, "R%d leaks addr into packet\n",
5975 value_regno);
4acf6c0b
BB
5976 return -EACCES;
5977 }
9fd29c08 5978 err = check_packet_access(env, regno, off, size, false);
969bf05e 5979 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 5980 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
5981 } else if (reg->type == PTR_TO_FLOW_KEYS) {
5982 if (t == BPF_WRITE && value_regno >= 0 &&
5983 is_pointer_value(env, value_regno)) {
5984 verbose(env, "R%d leaks addr into flow keys\n",
5985 value_regno);
5986 return -EACCES;
5987 }
5988
5989 err = check_flow_keys_access(env, off, size);
5990 if (!err && t == BPF_READ && value_regno >= 0)
5991 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5992 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 5993 if (t == BPF_WRITE) {
46f8bc92 5994 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 5995 regno, reg_type_str(env, reg->type));
c64b7983
JS
5996 return -EACCES;
5997 }
5f456649 5998 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
5999 if (!err && value_regno >= 0)
6000 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
6001 } else if (reg->type == PTR_TO_TP_BUFFER) {
6002 err = check_tp_buffer_access(env, reg, regno, off, size);
6003 if (!err && t == BPF_READ && value_regno >= 0)
6004 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
6005 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6006 !type_may_be_null(reg->type)) {
9e15db66
AS
6007 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6008 value_regno);
41c48f3a
AI
6009 } else if (reg->type == CONST_PTR_TO_MAP) {
6010 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6011 value_regno);
20b2aff4
HL
6012 } else if (base_type(reg->type) == PTR_TO_BUF) {
6013 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
6014 u32 *max_access;
6015
6016 if (rdonly_mem) {
6017 if (t == BPF_WRITE) {
6018 verbose(env, "R%d cannot write into %s\n",
6019 regno, reg_type_str(env, reg->type));
6020 return -EACCES;
6021 }
20b2aff4
HL
6022 max_access = &env->prog->aux->max_rdonly_access;
6023 } else {
20b2aff4 6024 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 6025 }
20b2aff4 6026
f6dfbe31 6027 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 6028 max_access);
20b2aff4
HL
6029
6030 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 6031 mark_reg_unknown(env, regs, value_regno);
17a52670 6032 } else {
61bd5218 6033 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 6034 reg_type_str(env, reg->type));
17a52670
AS
6035 return -EACCES;
6036 }
969bf05e 6037
f1174f77 6038 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 6039 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 6040 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 6041 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 6042 }
17a52670
AS
6043 return err;
6044}
6045
91c960b0 6046static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 6047{
5ffa2550 6048 int load_reg;
17a52670
AS
6049 int err;
6050
5ca419f2
BJ
6051 switch (insn->imm) {
6052 case BPF_ADD:
6053 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
6054 case BPF_AND:
6055 case BPF_AND | BPF_FETCH:
6056 case BPF_OR:
6057 case BPF_OR | BPF_FETCH:
6058 case BPF_XOR:
6059 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
6060 case BPF_XCHG:
6061 case BPF_CMPXCHG:
5ca419f2
BJ
6062 break;
6063 default:
91c960b0
BJ
6064 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6065 return -EINVAL;
6066 }
6067
6068 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6069 verbose(env, "invalid atomic operand size\n");
17a52670
AS
6070 return -EINVAL;
6071 }
6072
6073 /* check src1 operand */
dc503a8a 6074 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6075 if (err)
6076 return err;
6077
6078 /* check src2 operand */
dc503a8a 6079 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6080 if (err)
6081 return err;
6082
5ffa2550
BJ
6083 if (insn->imm == BPF_CMPXCHG) {
6084 /* Check comparison of R0 with memory location */
a82fe085
DB
6085 const u32 aux_reg = BPF_REG_0;
6086
6087 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
6088 if (err)
6089 return err;
a82fe085
DB
6090
6091 if (is_pointer_value(env, aux_reg)) {
6092 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6093 return -EACCES;
6094 }
5ffa2550
BJ
6095 }
6096
6bdf6abc 6097 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6098 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
6099 return -EACCES;
6100 }
6101
ca369602 6102 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 6103 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
6104 is_flow_key_reg(env, insn->dst_reg) ||
6105 is_sk_reg(env, insn->dst_reg)) {
91c960b0 6106 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 6107 insn->dst_reg,
c25b2ae1 6108 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
6109 return -EACCES;
6110 }
6111
37086bfd
BJ
6112 if (insn->imm & BPF_FETCH) {
6113 if (insn->imm == BPF_CMPXCHG)
6114 load_reg = BPF_REG_0;
6115 else
6116 load_reg = insn->src_reg;
6117
6118 /* check and record load of old value */
6119 err = check_reg_arg(env, load_reg, DST_OP);
6120 if (err)
6121 return err;
6122 } else {
6123 /* This instruction accesses a memory location but doesn't
6124 * actually load it into a register.
6125 */
6126 load_reg = -1;
6127 }
6128
7d3baf0a
DB
6129 /* Check whether we can read the memory, with second call for fetch
6130 * case to simulate the register fill.
6131 */
31fd8581 6132 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
6133 BPF_SIZE(insn->code), BPF_READ, -1, true);
6134 if (!err && load_reg >= 0)
6135 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6136 BPF_SIZE(insn->code), BPF_READ, load_reg,
6137 true);
17a52670
AS
6138 if (err)
6139 return err;
6140
7d3baf0a 6141 /* Check whether we can write into the same memory. */
5ca419f2
BJ
6142 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6143 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6144 if (err)
6145 return err;
6146
5ca419f2 6147 return 0;
17a52670
AS
6148}
6149
01f810ac
AM
6150/* When register 'regno' is used to read the stack (either directly or through
6151 * a helper function) make sure that it's within stack boundary and, depending
6152 * on the access type, that all elements of the stack are initialized.
6153 *
6154 * 'off' includes 'regno->off', but not its dynamic part (if any).
6155 *
6156 * All registers that have been spilled on the stack in the slots within the
6157 * read offsets are marked as read.
6158 */
6159static int check_stack_range_initialized(
6160 struct bpf_verifier_env *env, int regno, int off,
6161 int access_size, bool zero_size_allowed,
61df10c7 6162 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
6163{
6164 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
6165 struct bpf_func_state *state = func(env, reg);
6166 int err, min_off, max_off, i, j, slot, spi;
6167 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6168 enum bpf_access_type bounds_check_type;
6169 /* Some accesses can write anything into the stack, others are
6170 * read-only.
6171 */
6172 bool clobber = false;
2011fccf 6173
01f810ac
AM
6174 if (access_size == 0 && !zero_size_allowed) {
6175 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
6176 return -EACCES;
6177 }
2011fccf 6178
01f810ac
AM
6179 if (type == ACCESS_HELPER) {
6180 /* The bounds checks for writes are more permissive than for
6181 * reads. However, if raw_mode is not set, we'll do extra
6182 * checks below.
6183 */
6184 bounds_check_type = BPF_WRITE;
6185 clobber = true;
6186 } else {
6187 bounds_check_type = BPF_READ;
6188 }
6189 err = check_stack_access_within_bounds(env, regno, off, access_size,
6190 type, bounds_check_type);
6191 if (err)
6192 return err;
6193
17a52670 6194
2011fccf 6195 if (tnum_is_const(reg->var_off)) {
01f810ac 6196 min_off = max_off = reg->var_off.value + off;
2011fccf 6197 } else {
088ec26d
AI
6198 /* Variable offset is prohibited for unprivileged mode for
6199 * simplicity since it requires corresponding support in
6200 * Spectre masking for stack ALU.
6201 * See also retrieve_ptr_limit().
6202 */
2c78ee89 6203 if (!env->bypass_spec_v1) {
088ec26d 6204 char tn_buf[48];
f1174f77 6205
088ec26d 6206 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6207 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6208 regno, err_extra, tn_buf);
088ec26d
AI
6209 return -EACCES;
6210 }
f2bcd05e
AI
6211 /* Only initialized buffer on stack is allowed to be accessed
6212 * with variable offset. With uninitialized buffer it's hard to
6213 * guarantee that whole memory is marked as initialized on
6214 * helper return since specific bounds are unknown what may
6215 * cause uninitialized stack leaking.
6216 */
6217 if (meta && meta->raw_mode)
6218 meta = NULL;
6219
01f810ac
AM
6220 min_off = reg->smin_value + off;
6221 max_off = reg->smax_value + off;
17a52670
AS
6222 }
6223
435faee1 6224 if (meta && meta->raw_mode) {
ef8fc7a0
KKD
6225 /* Ensure we won't be overwriting dynptrs when simulating byte
6226 * by byte access in check_helper_call using meta.access_size.
6227 * This would be a problem if we have a helper in the future
6228 * which takes:
6229 *
6230 * helper(uninit_mem, len, dynptr)
6231 *
6232 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6233 * may end up writing to dynptr itself when touching memory from
6234 * arg 1. This can be relaxed on a case by case basis for known
6235 * safe cases, but reject due to the possibilitiy of aliasing by
6236 * default.
6237 */
6238 for (i = min_off; i < max_off + access_size; i++) {
6239 int stack_off = -i - 1;
6240
6241 spi = __get_spi(i);
6242 /* raw_mode may write past allocated_stack */
6243 if (state->allocated_stack <= stack_off)
6244 continue;
6245 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6246 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6247 return -EACCES;
6248 }
6249 }
435faee1
DB
6250 meta->access_size = access_size;
6251 meta->regno = regno;
6252 return 0;
6253 }
6254
2011fccf 6255 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
6256 u8 *stype;
6257
2011fccf 6258 slot = -i - 1;
638f5b90 6259 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
6260 if (state->allocated_stack <= slot)
6261 goto err;
6262 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6263 if (*stype == STACK_MISC)
6264 goto mark;
6715df8d
EZ
6265 if ((*stype == STACK_ZERO) ||
6266 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
01f810ac
AM
6267 if (clobber) {
6268 /* helper can write anything into the stack */
6269 *stype = STACK_MISC;
6270 }
cc2b14d5 6271 goto mark;
17a52670 6272 }
1d68f22b 6273
27113c59 6274 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
6275 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6276 env->allow_ptr_leaks)) {
01f810ac
AM
6277 if (clobber) {
6278 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6279 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 6280 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 6281 }
f7cf25b2
AS
6282 goto mark;
6283 }
6284
cc2b14d5 6285err:
2011fccf 6286 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
6287 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6288 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
6289 } else {
6290 char tn_buf[48];
6291
6292 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6293 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6294 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 6295 }
cc2b14d5
AS
6296 return -EACCES;
6297mark:
6298 /* reading any byte out of 8-byte 'spill_slot' will cause
6299 * the whole slot to be marked as 'read'
6300 */
679c782d 6301 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
6302 state->stack[spi].spilled_ptr.parent,
6303 REG_LIVE_READ64);
261f4664
KKD
6304 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6305 * be sure that whether stack slot is written to or not. Hence,
6306 * we must still conservatively propagate reads upwards even if
6307 * helper may write to the entire memory range.
6308 */
17a52670 6309 }
2011fccf 6310 return update_stack_depth(env, state, min_off);
17a52670
AS
6311}
6312
06c1c049
GB
6313static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6314 int access_size, bool zero_size_allowed,
6315 struct bpf_call_arg_meta *meta)
6316{
638f5b90 6317 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 6318 u32 *max_access;
06c1c049 6319
20b2aff4 6320 switch (base_type(reg->type)) {
06c1c049 6321 case PTR_TO_PACKET:
de8f3a83 6322 case PTR_TO_PACKET_META:
9fd29c08
YS
6323 return check_packet_access(env, regno, reg->off, access_size,
6324 zero_size_allowed);
69c087ba 6325 case PTR_TO_MAP_KEY:
7b3552d3
KKD
6326 if (meta && meta->raw_mode) {
6327 verbose(env, "R%d cannot write into %s\n", regno,
6328 reg_type_str(env, reg->type));
6329 return -EACCES;
6330 }
69c087ba
YS
6331 return check_mem_region_access(env, regno, reg->off, access_size,
6332 reg->map_ptr->key_size, false);
06c1c049 6333 case PTR_TO_MAP_VALUE:
591fe988
DB
6334 if (check_map_access_type(env, regno, reg->off, access_size,
6335 meta && meta->raw_mode ? BPF_WRITE :
6336 BPF_READ))
6337 return -EACCES;
9fd29c08 6338 return check_map_access(env, regno, reg->off, access_size,
61df10c7 6339 zero_size_allowed, ACCESS_HELPER);
457f4436 6340 case PTR_TO_MEM:
97e6d7da
KKD
6341 if (type_is_rdonly_mem(reg->type)) {
6342 if (meta && meta->raw_mode) {
6343 verbose(env, "R%d cannot write into %s\n", regno,
6344 reg_type_str(env, reg->type));
6345 return -EACCES;
6346 }
6347 }
457f4436
AN
6348 return check_mem_region_access(env, regno, reg->off,
6349 access_size, reg->mem_size,
6350 zero_size_allowed);
20b2aff4
HL
6351 case PTR_TO_BUF:
6352 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
6353 if (meta && meta->raw_mode) {
6354 verbose(env, "R%d cannot write into %s\n", regno,
6355 reg_type_str(env, reg->type));
20b2aff4 6356 return -EACCES;
97e6d7da 6357 }
20b2aff4 6358
20b2aff4
HL
6359 max_access = &env->prog->aux->max_rdonly_access;
6360 } else {
20b2aff4
HL
6361 max_access = &env->prog->aux->max_rdwr_access;
6362 }
afbf21dc
YS
6363 return check_buffer_access(env, reg, regno, reg->off,
6364 access_size, zero_size_allowed,
44e9a741 6365 max_access);
0d004c02 6366 case PTR_TO_STACK:
01f810ac
AM
6367 return check_stack_range_initialized(
6368 env,
6369 regno, reg->off, access_size,
6370 zero_size_allowed, ACCESS_HELPER, meta);
3e30be42
AS
6371 case PTR_TO_BTF_ID:
6372 return check_ptr_to_btf_access(env, regs, regno, reg->off,
6373 access_size, BPF_READ, -1);
15baa55f
BT
6374 case PTR_TO_CTX:
6375 /* in case the function doesn't know how to access the context,
6376 * (because we are in a program of type SYSCALL for example), we
6377 * can not statically check its size.
6378 * Dynamically check it now.
6379 */
6380 if (!env->ops->convert_ctx_access) {
6381 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6382 int offset = access_size - 1;
6383
6384 /* Allow zero-byte read from PTR_TO_CTX */
6385 if (access_size == 0)
6386 return zero_size_allowed ? 0 : -EACCES;
6387
6388 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6389 atype, -1, false);
6390 }
6391
6392 fallthrough;
0d004c02
LB
6393 default: /* scalar_value or invalid ptr */
6394 /* Allow zero-byte read from NULL, regardless of pointer type */
6395 if (zero_size_allowed && access_size == 0 &&
6396 register_is_null(reg))
6397 return 0;
6398
c25b2ae1
HL
6399 verbose(env, "R%d type=%s ", regno,
6400 reg_type_str(env, reg->type));
6401 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 6402 return -EACCES;
06c1c049
GB
6403 }
6404}
6405
d583691c
KKD
6406static int check_mem_size_reg(struct bpf_verifier_env *env,
6407 struct bpf_reg_state *reg, u32 regno,
6408 bool zero_size_allowed,
6409 struct bpf_call_arg_meta *meta)
6410{
6411 int err;
6412
6413 /* This is used to refine r0 return value bounds for helpers
6414 * that enforce this value as an upper bound on return values.
6415 * See do_refine_retval_range() for helpers that can refine
6416 * the return value. C type of helper is u32 so we pull register
6417 * bound from umax_value however, if negative verifier errors
6418 * out. Only upper bounds can be learned because retval is an
6419 * int type and negative retvals are allowed.
6420 */
be77354a 6421 meta->msize_max_value = reg->umax_value;
d583691c
KKD
6422
6423 /* The register is SCALAR_VALUE; the access check
6424 * happens using its boundaries.
6425 */
6426 if (!tnum_is_const(reg->var_off))
6427 /* For unprivileged variable accesses, disable raw
6428 * mode so that the program is required to
6429 * initialize all the memory that the helper could
6430 * just partially fill up.
6431 */
6432 meta = NULL;
6433
6434 if (reg->smin_value < 0) {
6435 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6436 regno);
6437 return -EACCES;
6438 }
6439
6440 if (reg->umin_value == 0) {
6441 err = check_helper_mem_access(env, regno - 1, 0,
6442 zero_size_allowed,
6443 meta);
6444 if (err)
6445 return err;
6446 }
6447
6448 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6449 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6450 regno);
6451 return -EACCES;
6452 }
6453 err = check_helper_mem_access(env, regno - 1,
6454 reg->umax_value,
6455 zero_size_allowed, meta);
6456 if (!err)
6457 err = mark_chain_precision(env, regno);
6458 return err;
6459}
6460
e5069b9c
DB
6461int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6462 u32 regno, u32 mem_size)
6463{
be77354a
KKD
6464 bool may_be_null = type_may_be_null(reg->type);
6465 struct bpf_reg_state saved_reg;
6466 struct bpf_call_arg_meta meta;
6467 int err;
6468
e5069b9c
DB
6469 if (register_is_null(reg))
6470 return 0;
6471
be77354a
KKD
6472 memset(&meta, 0, sizeof(meta));
6473 /* Assuming that the register contains a value check if the memory
6474 * access is safe. Temporarily save and restore the register's state as
6475 * the conversion shouldn't be visible to a caller.
6476 */
6477 if (may_be_null) {
6478 saved_reg = *reg;
e5069b9c 6479 mark_ptr_not_null_reg(reg);
e5069b9c
DB
6480 }
6481
be77354a
KKD
6482 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6483 /* Check access for BPF_WRITE */
6484 meta.raw_mode = true;
6485 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6486
6487 if (may_be_null)
6488 *reg = saved_reg;
6489
6490 return err;
e5069b9c
DB
6491}
6492
00b85860
KKD
6493static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6494 u32 regno)
d583691c
KKD
6495{
6496 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6497 bool may_be_null = type_may_be_null(mem_reg->type);
6498 struct bpf_reg_state saved_reg;
be77354a 6499 struct bpf_call_arg_meta meta;
d583691c
KKD
6500 int err;
6501
6502 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6503
be77354a
KKD
6504 memset(&meta, 0, sizeof(meta));
6505
d583691c
KKD
6506 if (may_be_null) {
6507 saved_reg = *mem_reg;
6508 mark_ptr_not_null_reg(mem_reg);
6509 }
6510
be77354a
KKD
6511 err = check_mem_size_reg(env, reg, regno, true, &meta);
6512 /* Check access for BPF_WRITE */
6513 meta.raw_mode = true;
6514 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
6515
6516 if (may_be_null)
6517 *mem_reg = saved_reg;
6518 return err;
6519}
6520
d83525ca 6521/* Implementation details:
4e814da0
KKD
6522 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6523 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 6524 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
6525 * Two separate bpf_obj_new will also have different reg->id.
6526 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6527 * clears reg->id after value_or_null->value transition, since the verifier only
6528 * cares about the range of access to valid map value pointer and doesn't care
6529 * about actual address of the map element.
d83525ca
AS
6530 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6531 * reg->id > 0 after value_or_null->value transition. By doing so
6532 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
6533 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6534 * returned from bpf_obj_new.
d83525ca
AS
6535 * The verifier allows taking only one bpf_spin_lock at a time to avoid
6536 * dead-locks.
6537 * Since only one bpf_spin_lock is allowed the checks are simpler than
6538 * reg_is_refcounted() logic. The verifier needs to remember only
6539 * one spin_lock instead of array of acquired_refs.
d0d78c1d 6540 * cur_state->active_lock remembers which map value element or allocated
4e814da0 6541 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
6542 */
6543static int process_spin_lock(struct bpf_verifier_env *env, int regno,
6544 bool is_lock)
6545{
6546 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6547 struct bpf_verifier_state *cur = env->cur_state;
6548 bool is_const = tnum_is_const(reg->var_off);
d83525ca 6549 u64 val = reg->var_off.value;
4e814da0
KKD
6550 struct bpf_map *map = NULL;
6551 struct btf *btf = NULL;
6552 struct btf_record *rec;
d83525ca 6553
d83525ca
AS
6554 if (!is_const) {
6555 verbose(env,
6556 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
6557 regno);
6558 return -EINVAL;
6559 }
4e814da0
KKD
6560 if (reg->type == PTR_TO_MAP_VALUE) {
6561 map = reg->map_ptr;
6562 if (!map->btf) {
6563 verbose(env,
6564 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
6565 map->name);
6566 return -EINVAL;
6567 }
6568 } else {
6569 btf = reg->btf;
d83525ca 6570 }
4e814da0
KKD
6571
6572 rec = reg_btf_record(reg);
6573 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6574 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6575 map ? map->name : "kptr");
d83525ca
AS
6576 return -EINVAL;
6577 }
4e814da0 6578 if (rec->spin_lock_off != val + reg->off) {
db559117 6579 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 6580 val + reg->off, rec->spin_lock_off);
d83525ca
AS
6581 return -EINVAL;
6582 }
6583 if (is_lock) {
d0d78c1d 6584 if (cur->active_lock.ptr) {
d83525ca
AS
6585 verbose(env,
6586 "Locking two bpf_spin_locks are not allowed\n");
6587 return -EINVAL;
6588 }
d0d78c1d
KKD
6589 if (map)
6590 cur->active_lock.ptr = map;
6591 else
6592 cur->active_lock.ptr = btf;
6593 cur->active_lock.id = reg->id;
d83525ca 6594 } else {
d0d78c1d
KKD
6595 void *ptr;
6596
6597 if (map)
6598 ptr = map;
6599 else
6600 ptr = btf;
6601
6602 if (!cur->active_lock.ptr) {
d83525ca
AS
6603 verbose(env, "bpf_spin_unlock without taking a lock\n");
6604 return -EINVAL;
6605 }
d0d78c1d
KKD
6606 if (cur->active_lock.ptr != ptr ||
6607 cur->active_lock.id != reg->id) {
d83525ca
AS
6608 verbose(env, "bpf_spin_unlock of different lock\n");
6609 return -EINVAL;
6610 }
534e86bc 6611
6a3cd331 6612 invalidate_non_owning_refs(env);
534e86bc 6613
6a3cd331
DM
6614 cur->active_lock.ptr = NULL;
6615 cur->active_lock.id = 0;
d83525ca
AS
6616 }
6617 return 0;
6618}
6619
b00628b1
AS
6620static int process_timer_func(struct bpf_verifier_env *env, int regno,
6621 struct bpf_call_arg_meta *meta)
6622{
6623 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6624 bool is_const = tnum_is_const(reg->var_off);
6625 struct bpf_map *map = reg->map_ptr;
6626 u64 val = reg->var_off.value;
6627
6628 if (!is_const) {
6629 verbose(env,
6630 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6631 regno);
6632 return -EINVAL;
6633 }
6634 if (!map->btf) {
6635 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6636 map->name);
6637 return -EINVAL;
6638 }
db559117
KKD
6639 if (!btf_record_has_field(map->record, BPF_TIMER)) {
6640 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
6641 return -EINVAL;
6642 }
db559117 6643 if (map->record->timer_off != val + reg->off) {
68134668 6644 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 6645 val + reg->off, map->record->timer_off);
b00628b1
AS
6646 return -EINVAL;
6647 }
6648 if (meta->map_ptr) {
6649 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6650 return -EFAULT;
6651 }
3e8ce298 6652 meta->map_uid = reg->map_uid;
b00628b1
AS
6653 meta->map_ptr = map;
6654 return 0;
6655}
6656
c0a5a21c
KKD
6657static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6658 struct bpf_call_arg_meta *meta)
6659{
6660 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 6661 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 6662 struct btf_field *kptr_field;
c0a5a21c 6663 u32 kptr_off;
c0a5a21c
KKD
6664
6665 if (!tnum_is_const(reg->var_off)) {
6666 verbose(env,
6667 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6668 regno);
6669 return -EINVAL;
6670 }
6671 if (!map_ptr->btf) {
6672 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6673 map_ptr->name);
6674 return -EINVAL;
6675 }
aa3496ac
KKD
6676 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6677 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
6678 return -EINVAL;
6679 }
6680
6681 meta->map_ptr = map_ptr;
6682 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
6683 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6684 if (!kptr_field) {
c0a5a21c
KKD
6685 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6686 return -EACCES;
6687 }
aa3496ac 6688 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
6689 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6690 return -EACCES;
6691 }
aa3496ac 6692 meta->kptr_field = kptr_field;
c0a5a21c
KKD
6693 return 0;
6694}
6695
27060531
KKD
6696/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6697 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6698 *
6699 * In both cases we deal with the first 8 bytes, but need to mark the next 8
6700 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6701 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6702 *
6703 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6704 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6705 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6706 * mutate the view of the dynptr and also possibly destroy it. In the latter
6707 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6708 * memory that dynptr points to.
6709 *
6710 * The verifier will keep track both levels of mutation (bpf_dynptr's in
6711 * reg->type and the memory's in reg->dynptr.type), but there is no support for
6712 * readonly dynptr view yet, hence only the first case is tracked and checked.
6713 *
6714 * This is consistent with how C applies the const modifier to a struct object,
6715 * where the pointer itself inside bpf_dynptr becomes const but not what it
6716 * points to.
6717 *
6718 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6719 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6720 */
1d18feb2 6721static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
361f129f 6722 enum bpf_arg_type arg_type, int clone_ref_obj_id)
6b75bd3d
KKD
6723{
6724 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1d18feb2 6725 int err;
6b75bd3d 6726
27060531
KKD
6727 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6728 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6729 */
6730 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6731 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6732 return -EFAULT;
6733 }
79168a66 6734
27060531
KKD
6735 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
6736 * constructing a mutable bpf_dynptr object.
6737 *
6738 * Currently, this is only possible with PTR_TO_STACK
6739 * pointing to a region of at least 16 bytes which doesn't
6740 * contain an existing bpf_dynptr.
6741 *
6742 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6743 * mutated or destroyed. However, the memory it points to
6744 * may be mutated.
6745 *
6746 * None - Points to a initialized dynptr that can be mutated and
6747 * destroyed, including mutation of the memory it points
6748 * to.
6b75bd3d 6749 */
6b75bd3d 6750 if (arg_type & MEM_UNINIT) {
1d18feb2
JK
6751 int i;
6752
7e0dac28 6753 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6b75bd3d
KKD
6754 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6755 return -EINVAL;
6756 }
6757
1d18feb2
JK
6758 /* we write BPF_DW bits (8 bytes) at a time */
6759 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
6760 err = check_mem_access(env, insn_idx, regno,
6761 i, BPF_DW, BPF_WRITE, -1, false);
6762 if (err)
6763 return err;
6b75bd3d
KKD
6764 }
6765
361f129f 6766 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
27060531
KKD
6767 } else /* MEM_RDONLY and None case from above */ {
6768 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6769 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6770 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6771 return -EINVAL;
6772 }
6773
7e0dac28 6774 if (!is_dynptr_reg_valid_init(env, reg)) {
6b75bd3d
KKD
6775 verbose(env,
6776 "Expected an initialized dynptr as arg #%d\n",
6777 regno);
6778 return -EINVAL;
6779 }
6780
27060531
KKD
6781 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6782 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6b75bd3d
KKD
6783 verbose(env,
6784 "Expected a dynptr of type %s as arg #%d\n",
d54e0f6c 6785 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
6b75bd3d
KKD
6786 return -EINVAL;
6787 }
d6fefa11
KKD
6788
6789 err = mark_dynptr_read(env, reg);
6b75bd3d 6790 }
1d18feb2 6791 return err;
6b75bd3d
KKD
6792}
6793
06accc87
AN
6794static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
6795{
6796 struct bpf_func_state *state = func(env, reg);
6797
6798 return state->stack[spi].spilled_ptr.ref_obj_id;
6799}
6800
6801static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6802{
6803 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
6804}
6805
6806static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6807{
6808 return meta->kfunc_flags & KF_ITER_NEW;
6809}
6810
6811static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6812{
6813 return meta->kfunc_flags & KF_ITER_NEXT;
6814}
6815
6816static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6817{
6818 return meta->kfunc_flags & KF_ITER_DESTROY;
6819}
6820
6821static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
6822{
6823 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
6824 * kfunc is iter state pointer
6825 */
6826 return arg == 0 && is_iter_kfunc(meta);
6827}
6828
6829static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
6830 struct bpf_kfunc_call_arg_meta *meta)
6831{
6832 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6833 const struct btf_type *t;
6834 const struct btf_param *arg;
6835 int spi, err, i, nr_slots;
6836 u32 btf_id;
6837
6838 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
6839 arg = &btf_params(meta->func_proto)[0];
6840 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
6841 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
6842 nr_slots = t->size / BPF_REG_SIZE;
6843
06accc87
AN
6844 if (is_iter_new_kfunc(meta)) {
6845 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
6846 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
6847 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
6848 iter_type_str(meta->btf, btf_id), regno);
6849 return -EINVAL;
6850 }
6851
6852 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
6853 err = check_mem_access(env, insn_idx, regno,
6854 i, BPF_DW, BPF_WRITE, -1, false);
6855 if (err)
6856 return err;
6857 }
6858
6859 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
6860 if (err)
6861 return err;
6862 } else {
6863 /* iter_next() or iter_destroy() expect initialized iter state*/
6864 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
6865 verbose(env, "expected an initialized iter_%s as arg #%d\n",
6866 iter_type_str(meta->btf, btf_id), regno);
6867 return -EINVAL;
6868 }
6869
b63cbc49
AN
6870 spi = iter_get_spi(env, reg, nr_slots);
6871 if (spi < 0)
6872 return spi;
6873
06accc87
AN
6874 err = mark_iter_read(env, reg, spi, nr_slots);
6875 if (err)
6876 return err;
6877
b63cbc49
AN
6878 /* remember meta->iter info for process_iter_next_call() */
6879 meta->iter.spi = spi;
6880 meta->iter.frameno = reg->frameno;
06accc87
AN
6881 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
6882
6883 if (is_iter_destroy_kfunc(meta)) {
6884 err = unmark_stack_slots_iter(env, reg, nr_slots);
6885 if (err)
6886 return err;
6887 }
6888 }
6889
6890 return 0;
6891}
6892
6893/* process_iter_next_call() is called when verifier gets to iterator's next
6894 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
6895 * to it as just "iter_next()" in comments below.
6896 *
6897 * BPF verifier relies on a crucial contract for any iter_next()
6898 * implementation: it should *eventually* return NULL, and once that happens
6899 * it should keep returning NULL. That is, once iterator exhausts elements to
6900 * iterate, it should never reset or spuriously return new elements.
6901 *
6902 * With the assumption of such contract, process_iter_next_call() simulates
6903 * a fork in the verifier state to validate loop logic correctness and safety
6904 * without having to simulate infinite amount of iterations.
6905 *
6906 * In current state, we first assume that iter_next() returned NULL and
6907 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
6908 * conditions we should not form an infinite loop and should eventually reach
6909 * exit.
6910 *
6911 * Besides that, we also fork current state and enqueue it for later
6912 * verification. In a forked state we keep iterator state as ACTIVE
6913 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
6914 * also bump iteration depth to prevent erroneous infinite loop detection
6915 * later on (see iter_active_depths_differ() comment for details). In this
6916 * state we assume that we'll eventually loop back to another iter_next()
6917 * calls (it could be in exactly same location or in some other instruction,
6918 * it doesn't matter, we don't make any unnecessary assumptions about this,
6919 * everything revolves around iterator state in a stack slot, not which
6920 * instruction is calling iter_next()). When that happens, we either will come
6921 * to iter_next() with equivalent state and can conclude that next iteration
6922 * will proceed in exactly the same way as we just verified, so it's safe to
6923 * assume that loop converges. If not, we'll go on another iteration
6924 * simulation with a different input state, until all possible starting states
6925 * are validated or we reach maximum number of instructions limit.
6926 *
6927 * This way, we will either exhaustively discover all possible input states
6928 * that iterator loop can start with and eventually will converge, or we'll
6929 * effectively regress into bounded loop simulation logic and either reach
6930 * maximum number of instructions if loop is not provably convergent, or there
6931 * is some statically known limit on number of iterations (e.g., if there is
6932 * an explicit `if n > 100 then break;` statement somewhere in the loop).
6933 *
6934 * One very subtle but very important aspect is that we *always* simulate NULL
6935 * condition first (as the current state) before we simulate non-NULL case.
6936 * This has to do with intricacies of scalar precision tracking. By simulating
6937 * "exit condition" of iter_next() returning NULL first, we make sure all the
6938 * relevant precision marks *that will be set **after** we exit iterator loop*
6939 * are propagated backwards to common parent state of NULL and non-NULL
6940 * branches. Thanks to that, state equivalence checks done later in forked
6941 * state, when reaching iter_next() for ACTIVE iterator, can assume that
6942 * precision marks are finalized and won't change. Because simulating another
6943 * ACTIVE iterator iteration won't change them (because given same input
6944 * states we'll end up with exactly same output states which we are currently
6945 * comparing; and verification after the loop already propagated back what
6946 * needs to be **additionally** tracked as precise). It's subtle, grok
6947 * precision tracking for more intuitive understanding.
6948 */
6949static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
6950 struct bpf_kfunc_call_arg_meta *meta)
6951{
6952 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
6953 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
6954 struct bpf_reg_state *cur_iter, *queued_iter;
6955 int iter_frameno = meta->iter.frameno;
6956 int iter_spi = meta->iter.spi;
6957
6958 BTF_TYPE_EMIT(struct bpf_iter);
6959
6960 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6961
6962 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
6963 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
6964 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
6965 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
6966 return -EFAULT;
6967 }
6968
6969 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
6970 /* branch out active iter state */
6971 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
6972 if (!queued_st)
6973 return -ENOMEM;
6974
6975 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6976 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
6977 queued_iter->iter.depth++;
6978
6979 queued_fr = queued_st->frame[queued_st->curframe];
6980 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
6981 }
6982
6983 /* switch to DRAINED state, but keep the depth unchanged */
6984 /* mark current iter state as drained and assume returned NULL */
6985 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
6986 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
6987
6988 return 0;
6989}
6990
90133415
DB
6991static bool arg_type_is_mem_size(enum bpf_arg_type type)
6992{
6993 return type == ARG_CONST_SIZE ||
6994 type == ARG_CONST_SIZE_OR_ZERO;
6995}
6996
8f14852e
KKD
6997static bool arg_type_is_release(enum bpf_arg_type type)
6998{
6999 return type & OBJ_RELEASE;
7000}
7001
97e03f52
JK
7002static bool arg_type_is_dynptr(enum bpf_arg_type type)
7003{
7004 return base_type(type) == ARG_PTR_TO_DYNPTR;
7005}
7006
57c3bb72
AI
7007static int int_ptr_type_to_size(enum bpf_arg_type type)
7008{
7009 if (type == ARG_PTR_TO_INT)
7010 return sizeof(u32);
7011 else if (type == ARG_PTR_TO_LONG)
7012 return sizeof(u64);
7013
7014 return -EINVAL;
7015}
7016
912f442c
LB
7017static int resolve_map_arg_type(struct bpf_verifier_env *env,
7018 const struct bpf_call_arg_meta *meta,
7019 enum bpf_arg_type *arg_type)
7020{
7021 if (!meta->map_ptr) {
7022 /* kernel subsystem misconfigured verifier */
7023 verbose(env, "invalid map_ptr to access map->type\n");
7024 return -EACCES;
7025 }
7026
7027 switch (meta->map_ptr->map_type) {
7028 case BPF_MAP_TYPE_SOCKMAP:
7029 case BPF_MAP_TYPE_SOCKHASH:
7030 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 7031 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
7032 } else {
7033 verbose(env, "invalid arg_type for sockmap/sockhash\n");
7034 return -EINVAL;
7035 }
7036 break;
9330986c
JK
7037 case BPF_MAP_TYPE_BLOOM_FILTER:
7038 if (meta->func_id == BPF_FUNC_map_peek_elem)
7039 *arg_type = ARG_PTR_TO_MAP_VALUE;
7040 break;
912f442c
LB
7041 default:
7042 break;
7043 }
7044 return 0;
7045}
7046
f79e7ea5
LB
7047struct bpf_reg_types {
7048 const enum bpf_reg_type types[10];
1df8f55a 7049 u32 *btf_id;
f79e7ea5
LB
7050};
7051
f79e7ea5
LB
7052static const struct bpf_reg_types sock_types = {
7053 .types = {
7054 PTR_TO_SOCK_COMMON,
7055 PTR_TO_SOCKET,
7056 PTR_TO_TCP_SOCK,
7057 PTR_TO_XDP_SOCK,
7058 },
7059};
7060
49a2a4d4 7061#ifdef CONFIG_NET
1df8f55a
MKL
7062static const struct bpf_reg_types btf_id_sock_common_types = {
7063 .types = {
7064 PTR_TO_SOCK_COMMON,
7065 PTR_TO_SOCKET,
7066 PTR_TO_TCP_SOCK,
7067 PTR_TO_XDP_SOCK,
7068 PTR_TO_BTF_ID,
3f00c523 7069 PTR_TO_BTF_ID | PTR_TRUSTED,
1df8f55a
MKL
7070 },
7071 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7072};
49a2a4d4 7073#endif
1df8f55a 7074
f79e7ea5
LB
7075static const struct bpf_reg_types mem_types = {
7076 .types = {
7077 PTR_TO_STACK,
7078 PTR_TO_PACKET,
7079 PTR_TO_PACKET_META,
69c087ba 7080 PTR_TO_MAP_KEY,
f79e7ea5
LB
7081 PTR_TO_MAP_VALUE,
7082 PTR_TO_MEM,
894f2a8b 7083 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 7084 PTR_TO_BUF,
3e30be42 7085 PTR_TO_BTF_ID | PTR_TRUSTED,
f79e7ea5
LB
7086 },
7087};
7088
7089static const struct bpf_reg_types int_ptr_types = {
7090 .types = {
7091 PTR_TO_STACK,
7092 PTR_TO_PACKET,
7093 PTR_TO_PACKET_META,
69c087ba 7094 PTR_TO_MAP_KEY,
f79e7ea5
LB
7095 PTR_TO_MAP_VALUE,
7096 },
7097};
7098
4e814da0
KKD
7099static const struct bpf_reg_types spin_lock_types = {
7100 .types = {
7101 PTR_TO_MAP_VALUE,
7102 PTR_TO_BTF_ID | MEM_ALLOC,
7103 }
7104};
7105
f79e7ea5
LB
7106static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7107static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7108static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 7109static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5 7110static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
3f00c523
DV
7111static const struct bpf_reg_types btf_ptr_types = {
7112 .types = {
7113 PTR_TO_BTF_ID,
7114 PTR_TO_BTF_ID | PTR_TRUSTED,
fca1aa75 7115 PTR_TO_BTF_ID | MEM_RCU,
3f00c523
DV
7116 },
7117};
7118static const struct bpf_reg_types percpu_btf_ptr_types = {
7119 .types = {
7120 PTR_TO_BTF_ID | MEM_PERCPU,
7121 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7122 }
7123};
69c087ba
YS
7124static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7125static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 7126static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 7127static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 7128static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
7129static const struct bpf_reg_types dynptr_types = {
7130 .types = {
7131 PTR_TO_STACK,
27060531 7132 CONST_PTR_TO_DYNPTR,
20571567
DV
7133 }
7134};
f79e7ea5 7135
0789e13b 7136static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
7137 [ARG_PTR_TO_MAP_KEY] = &mem_types,
7138 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
7139 [ARG_CONST_SIZE] = &scalar_types,
7140 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
7141 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
7142 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
7143 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 7144 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 7145#ifdef CONFIG_NET
1df8f55a 7146 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 7147#endif
f79e7ea5 7148 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
7149 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
7150 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
7151 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 7152 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
7153 [ARG_PTR_TO_INT] = &int_ptr_types,
7154 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 7155 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 7156 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 7157 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 7158 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 7159 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 7160 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 7161 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
7162};
7163
7164static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 7165 enum bpf_arg_type arg_type,
c0a5a21c
KKD
7166 const u32 *arg_btf_id,
7167 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
7168{
7169 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7170 enum bpf_reg_type expected, type = reg->type;
a968d5e2 7171 const struct bpf_reg_types *compatible;
f79e7ea5
LB
7172 int i, j;
7173
48946bd6 7174 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
7175 if (!compatible) {
7176 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7177 return -EFAULT;
7178 }
7179
216e3cd2
HL
7180 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7181 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7182 *
7183 * Same for MAYBE_NULL:
7184 *
7185 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7186 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7187 *
7188 * Therefore we fold these flags depending on the arg_type before comparison.
7189 */
7190 if (arg_type & MEM_RDONLY)
7191 type &= ~MEM_RDONLY;
7192 if (arg_type & PTR_MAYBE_NULL)
7193 type &= ~PTR_MAYBE_NULL;
7194
738c96d5
DM
7195 if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC)
7196 type &= ~MEM_ALLOC;
7197
f79e7ea5
LB
7198 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7199 expected = compatible->types[i];
7200 if (expected == NOT_INIT)
7201 break;
7202
7203 if (type == expected)
a968d5e2 7204 goto found;
f79e7ea5
LB
7205 }
7206
216e3cd2 7207 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 7208 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
7209 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7210 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 7211 return -EACCES;
a968d5e2
MKL
7212
7213found:
da03e43a
KKD
7214 if (base_type(reg->type) != PTR_TO_BTF_ID)
7215 return 0;
7216
3e30be42
AS
7217 if (compatible == &mem_types) {
7218 if (!(arg_type & MEM_RDONLY)) {
7219 verbose(env,
7220 "%s() may write into memory pointed by R%d type=%s\n",
7221 func_id_name(meta->func_id),
7222 regno, reg_type_str(env, reg->type));
7223 return -EACCES;
7224 }
7225 return 0;
7226 }
7227
da03e43a
KKD
7228 switch ((int)reg->type) {
7229 case PTR_TO_BTF_ID:
7230 case PTR_TO_BTF_ID | PTR_TRUSTED:
7231 case PTR_TO_BTF_ID | MEM_RCU:
add68b84
AS
7232 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7233 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
da03e43a 7234 {
2ab3b380
KKD
7235 /* For bpf_sk_release, it needs to match against first member
7236 * 'struct sock_common', hence make an exception for it. This
7237 * allows bpf_sk_release to work for multiple socket types.
7238 */
7239 bool strict_type_match = arg_type_is_release(arg_type) &&
7240 meta->func_id != BPF_FUNC_sk_release;
7241
add68b84
AS
7242 if (type_may_be_null(reg->type) &&
7243 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7244 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7245 return -EACCES;
7246 }
7247
1df8f55a
MKL
7248 if (!arg_btf_id) {
7249 if (!compatible->btf_id) {
7250 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7251 return -EFAULT;
7252 }
7253 arg_btf_id = compatible->btf_id;
7254 }
7255
c0a5a21c 7256 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 7257 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 7258 return -EACCES;
47e34cb7
DM
7259 } else {
7260 if (arg_btf_id == BPF_PTR_POISON) {
7261 verbose(env, "verifier internal error:");
7262 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7263 regno);
7264 return -EACCES;
7265 }
7266
7267 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7268 btf_vmlinux, *arg_btf_id,
7269 strict_type_match)) {
7270 verbose(env, "R%d is of type %s but %s is expected\n",
b32a5dae
DM
7271 regno, btf_type_name(reg->btf, reg->btf_id),
7272 btf_type_name(btf_vmlinux, *arg_btf_id));
47e34cb7
DM
7273 return -EACCES;
7274 }
a968d5e2 7275 }
da03e43a
KKD
7276 break;
7277 }
7278 case PTR_TO_BTF_ID | MEM_ALLOC:
738c96d5
DM
7279 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7280 meta->func_id != BPF_FUNC_kptr_xchg) {
4e814da0
KKD
7281 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7282 return -EFAULT;
7283 }
da03e43a
KKD
7284 /* Handled by helper specific checks */
7285 break;
7286 case PTR_TO_BTF_ID | MEM_PERCPU:
7287 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7288 /* Handled by helper specific checks */
7289 break;
7290 default:
7291 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7292 return -EFAULT;
a968d5e2 7293 }
a968d5e2 7294 return 0;
f79e7ea5
LB
7295}
7296
6a3cd331
DM
7297static struct btf_field *
7298reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7299{
7300 struct btf_field *field;
7301 struct btf_record *rec;
7302
7303 rec = reg_btf_record(reg);
7304 if (!rec)
7305 return NULL;
7306
7307 field = btf_record_find(rec, off, fields);
7308 if (!field)
7309 return NULL;
7310
7311 return field;
7312}
7313
25b35dd2
KKD
7314int check_func_arg_reg_off(struct bpf_verifier_env *env,
7315 const struct bpf_reg_state *reg, int regno,
8f14852e 7316 enum bpf_arg_type arg_type)
25b35dd2 7317{
184c9bdb 7318 u32 type = reg->type;
25b35dd2 7319
184c9bdb
KKD
7320 /* When referenced register is passed to release function, its fixed
7321 * offset must be 0.
7322 *
7323 * We will check arg_type_is_release reg has ref_obj_id when storing
7324 * meta->release_regno.
7325 */
7326 if (arg_type_is_release(arg_type)) {
7327 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7328 * may not directly point to the object being released, but to
7329 * dynptr pointing to such object, which might be at some offset
7330 * on the stack. In that case, we simply to fallback to the
7331 * default handling.
7332 */
7333 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7334 return 0;
6a3cd331
DM
7335
7336 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7337 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7338 return __check_ptr_off_reg(env, reg, regno, true);
7339
7340 verbose(env, "R%d must have zero offset when passed to release func\n",
7341 regno);
7342 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
b32a5dae 7343 btf_type_name(reg->btf, reg->btf_id), reg->off);
6a3cd331
DM
7344 return -EINVAL;
7345 }
7346
184c9bdb
KKD
7347 /* Doing check_ptr_off_reg check for the offset will catch this
7348 * because fixed_off_ok is false, but checking here allows us
7349 * to give the user a better error message.
7350 */
7351 if (reg->off) {
7352 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7353 regno);
7354 return -EINVAL;
7355 }
7356 return __check_ptr_off_reg(env, reg, regno, false);
7357 }
7358
7359 switch (type) {
7360 /* Pointer types where both fixed and variable offset is explicitly allowed: */
97e03f52 7361 case PTR_TO_STACK:
25b35dd2
KKD
7362 case PTR_TO_PACKET:
7363 case PTR_TO_PACKET_META:
7364 case PTR_TO_MAP_KEY:
7365 case PTR_TO_MAP_VALUE:
7366 case PTR_TO_MEM:
7367 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 7368 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
7369 case PTR_TO_BUF:
7370 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 7371 case SCALAR_VALUE:
184c9bdb 7372 return 0;
25b35dd2
KKD
7373 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7374 * fixed offset.
7375 */
7376 case PTR_TO_BTF_ID:
282de143 7377 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 7378 case PTR_TO_BTF_ID | PTR_TRUSTED:
fca1aa75 7379 case PTR_TO_BTF_ID | MEM_RCU:
6a3cd331 7380 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
24d5bb80 7381 /* When referenced PTR_TO_BTF_ID is passed to release function,
184c9bdb
KKD
7382 * its fixed offset must be 0. In the other cases, fixed offset
7383 * can be non-zero. This was already checked above. So pass
7384 * fixed_off_ok as true to allow fixed offset for all other
7385 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7386 * still need to do checks instead of returning.
24d5bb80 7387 */
184c9bdb 7388 return __check_ptr_off_reg(env, reg, regno, true);
25b35dd2 7389 default:
184c9bdb 7390 return __check_ptr_off_reg(env, reg, regno, false);
25b35dd2 7391 }
25b35dd2
KKD
7392}
7393
485ec51e
JK
7394static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7395 const struct bpf_func_proto *fn,
7396 struct bpf_reg_state *regs)
7397{
7398 struct bpf_reg_state *state = NULL;
7399 int i;
7400
7401 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7402 if (arg_type_is_dynptr(fn->arg_type[i])) {
7403 if (state) {
7404 verbose(env, "verifier internal error: multiple dynptr args\n");
7405 return NULL;
7406 }
7407 state = &regs[BPF_REG_1 + i];
7408 }
7409
7410 if (!state)
7411 verbose(env, "verifier internal error: no dynptr arg found\n");
7412
7413 return state;
7414}
7415
f8064ab9 7416static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
7417{
7418 struct bpf_func_state *state = func(env, reg);
27060531 7419 int spi;
34d4ef57 7420
27060531 7421 if (reg->type == CONST_PTR_TO_DYNPTR)
f8064ab9
KKD
7422 return reg->id;
7423 spi = dynptr_get_spi(env, reg);
7424 if (spi < 0)
7425 return spi;
7426 return state->stack[spi].spilled_ptr.id;
7427}
7428
79168a66 7429static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
7430{
7431 struct bpf_func_state *state = func(env, reg);
27060531 7432 int spi;
27060531 7433
27060531
KKD
7434 if (reg->type == CONST_PTR_TO_DYNPTR)
7435 return reg->ref_obj_id;
79168a66
KKD
7436 spi = dynptr_get_spi(env, reg);
7437 if (spi < 0)
7438 return spi;
27060531 7439 return state->stack[spi].spilled_ptr.ref_obj_id;
34d4ef57
JK
7440}
7441
b5964b96
JK
7442static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7443 struct bpf_reg_state *reg)
7444{
7445 struct bpf_func_state *state = func(env, reg);
7446 int spi;
7447
7448 if (reg->type == CONST_PTR_TO_DYNPTR)
7449 return reg->dynptr.type;
7450
7451 spi = __get_spi(reg->off);
7452 if (spi < 0) {
7453 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7454 return BPF_DYNPTR_TYPE_INVALID;
7455 }
7456
7457 return state->stack[spi].spilled_ptr.dynptr.type;
7458}
7459
af7ec138
YS
7460static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7461 struct bpf_call_arg_meta *meta,
1d18feb2
JK
7462 const struct bpf_func_proto *fn,
7463 int insn_idx)
17a52670 7464{
af7ec138 7465 u32 regno = BPF_REG_1 + arg;
638f5b90 7466 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 7467 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 7468 enum bpf_reg_type type = reg->type;
508362ac 7469 u32 *arg_btf_id = NULL;
17a52670
AS
7470 int err = 0;
7471
80f1d68c 7472 if (arg_type == ARG_DONTCARE)
17a52670
AS
7473 return 0;
7474
dc503a8a
EC
7475 err = check_reg_arg(env, regno, SRC_OP);
7476 if (err)
7477 return err;
17a52670 7478
1be7f75d
AS
7479 if (arg_type == ARG_ANYTHING) {
7480 if (is_pointer_value(env, regno)) {
61bd5218
JK
7481 verbose(env, "R%d leaks addr into helper function\n",
7482 regno);
1be7f75d
AS
7483 return -EACCES;
7484 }
80f1d68c 7485 return 0;
1be7f75d 7486 }
80f1d68c 7487
de8f3a83 7488 if (type_is_pkt_pointer(type) &&
3a0af8fd 7489 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 7490 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
7491 return -EACCES;
7492 }
7493
16d1e00c 7494 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
7495 err = resolve_map_arg_type(env, meta, &arg_type);
7496 if (err)
7497 return err;
7498 }
7499
48946bd6 7500 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
7501 /* A NULL register has a SCALAR_VALUE type, so skip
7502 * type checking.
7503 */
7504 goto skip_type_check;
7505
508362ac 7506 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
7507 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7508 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
7509 arg_btf_id = fn->arg_btf_id[arg];
7510
7511 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
7512 if (err)
7513 return err;
7514
8f14852e 7515 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
7516 if (err)
7517 return err;
d7b9454a 7518
fd1b0d60 7519skip_type_check:
8f14852e 7520 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
7521 if (arg_type_is_dynptr(arg_type)) {
7522 struct bpf_func_state *state = func(env, reg);
27060531 7523 int spi;
bc34dee6 7524
27060531
KKD
7525 /* Only dynptr created on stack can be released, thus
7526 * the get_spi and stack state checks for spilled_ptr
7527 * should only be done before process_dynptr_func for
7528 * PTR_TO_STACK.
7529 */
7530 if (reg->type == PTR_TO_STACK) {
79168a66 7531 spi = dynptr_get_spi(env, reg);
f5b625e5 7532 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
27060531
KKD
7533 verbose(env, "arg %d is an unacquired reference\n", regno);
7534 return -EINVAL;
7535 }
7536 } else {
7537 verbose(env, "cannot release unowned const bpf_dynptr\n");
bc34dee6
JK
7538 return -EINVAL;
7539 }
7540 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
7541 verbose(env, "R%d must be referenced when passed to release function\n",
7542 regno);
7543 return -EINVAL;
7544 }
7545 if (meta->release_regno) {
7546 verbose(env, "verifier internal error: more than one release argument\n");
7547 return -EFAULT;
7548 }
7549 meta->release_regno = regno;
7550 }
7551
02f7c958 7552 if (reg->ref_obj_id) {
457f4436
AN
7553 if (meta->ref_obj_id) {
7554 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
7555 regno, reg->ref_obj_id,
7556 meta->ref_obj_id);
7557 return -EFAULT;
7558 }
7559 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
7560 }
7561
8ab4cdcf
JK
7562 switch (base_type(arg_type)) {
7563 case ARG_CONST_MAP_PTR:
17a52670 7564 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
7565 if (meta->map_ptr) {
7566 /* Use map_uid (which is unique id of inner map) to reject:
7567 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
7568 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
7569 * if (inner_map1 && inner_map2) {
7570 * timer = bpf_map_lookup_elem(inner_map1);
7571 * if (timer)
7572 * // mismatch would have been allowed
7573 * bpf_timer_init(timer, inner_map2);
7574 * }
7575 *
7576 * Comparing map_ptr is enough to distinguish normal and outer maps.
7577 */
7578 if (meta->map_ptr != reg->map_ptr ||
7579 meta->map_uid != reg->map_uid) {
7580 verbose(env,
7581 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
7582 meta->map_uid, reg->map_uid);
7583 return -EINVAL;
7584 }
b00628b1 7585 }
33ff9823 7586 meta->map_ptr = reg->map_ptr;
3e8ce298 7587 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
7588 break;
7589 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
7590 /* bpf_map_xxx(..., map_ptr, ..., key) call:
7591 * check that [key, key + map->key_size) are within
7592 * stack limits and initialized
7593 */
33ff9823 7594 if (!meta->map_ptr) {
17a52670
AS
7595 /* in function declaration map_ptr must come before
7596 * map_key, so that it's verified and known before
7597 * we have to check map_key here. Otherwise it means
7598 * that kernel subsystem misconfigured verifier
7599 */
61bd5218 7600 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
7601 return -EACCES;
7602 }
d71962f3
PC
7603 err = check_helper_mem_access(env, regno,
7604 meta->map_ptr->key_size, false,
7605 NULL);
8ab4cdcf
JK
7606 break;
7607 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
7608 if (type_may_be_null(arg_type) && register_is_null(reg))
7609 return 0;
7610
17a52670
AS
7611 /* bpf_map_xxx(..., map_ptr, ..., value) call:
7612 * check [value, value + map->value_size) validity
7613 */
33ff9823 7614 if (!meta->map_ptr) {
17a52670 7615 /* kernel subsystem misconfigured verifier */
61bd5218 7616 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
7617 return -EACCES;
7618 }
16d1e00c 7619 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
7620 err = check_helper_mem_access(env, regno,
7621 meta->map_ptr->value_size, false,
2ea864c5 7622 meta);
8ab4cdcf
JK
7623 break;
7624 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
7625 if (!reg->btf_id) {
7626 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
7627 return -EACCES;
7628 }
22dc4a0f 7629 meta->ret_btf = reg->btf;
eaa6bcb7 7630 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
7631 break;
7632 case ARG_PTR_TO_SPIN_LOCK:
5d92ddc3
DM
7633 if (in_rbtree_lock_required_cb(env)) {
7634 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
7635 return -EACCES;
7636 }
c18f0b6a 7637 if (meta->func_id == BPF_FUNC_spin_lock) {
ac50fe51
KKD
7638 err = process_spin_lock(env, regno, true);
7639 if (err)
7640 return err;
c18f0b6a 7641 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
ac50fe51
KKD
7642 err = process_spin_lock(env, regno, false);
7643 if (err)
7644 return err;
c18f0b6a
LB
7645 } else {
7646 verbose(env, "verifier internal error\n");
7647 return -EFAULT;
7648 }
8ab4cdcf
JK
7649 break;
7650 case ARG_PTR_TO_TIMER:
ac50fe51
KKD
7651 err = process_timer_func(env, regno, meta);
7652 if (err)
7653 return err;
8ab4cdcf
JK
7654 break;
7655 case ARG_PTR_TO_FUNC:
69c087ba 7656 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
7657 break;
7658 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
7659 /* The access to this pointer is only checked when we hit the
7660 * next is_mem_size argument below.
7661 */
16d1e00c 7662 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
7663 if (arg_type & MEM_FIXED_SIZE) {
7664 err = check_helper_mem_access(env, regno,
7665 fn->arg_size[arg], false,
7666 meta);
7667 }
8ab4cdcf
JK
7668 break;
7669 case ARG_CONST_SIZE:
7670 err = check_mem_size_reg(env, reg, regno, false, meta);
7671 break;
7672 case ARG_CONST_SIZE_OR_ZERO:
7673 err = check_mem_size_reg(env, reg, regno, true, meta);
7674 break;
7675 case ARG_PTR_TO_DYNPTR:
361f129f 7676 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
ac50fe51
KKD
7677 if (err)
7678 return err;
8ab4cdcf
JK
7679 break;
7680 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 7681 if (!tnum_is_const(reg->var_off)) {
28a8add6 7682 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
7683 regno);
7684 return -EACCES;
7685 }
7686 meta->mem_size = reg->var_off.value;
2fc31465
KKD
7687 err = mark_chain_precision(env, regno);
7688 if (err)
7689 return err;
8ab4cdcf
JK
7690 break;
7691 case ARG_PTR_TO_INT:
7692 case ARG_PTR_TO_LONG:
7693 {
57c3bb72
AI
7694 int size = int_ptr_type_to_size(arg_type);
7695
7696 err = check_helper_mem_access(env, regno, size, false, meta);
7697 if (err)
7698 return err;
7699 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
7700 break;
7701 }
7702 case ARG_PTR_TO_CONST_STR:
7703 {
fff13c4b
FR
7704 struct bpf_map *map = reg->map_ptr;
7705 int map_off;
7706 u64 map_addr;
7707 char *str_ptr;
7708
a8fad73e 7709 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
7710 verbose(env, "R%d does not point to a readonly map'\n", regno);
7711 return -EACCES;
7712 }
7713
7714 if (!tnum_is_const(reg->var_off)) {
7715 verbose(env, "R%d is not a constant address'\n", regno);
7716 return -EACCES;
7717 }
7718
7719 if (!map->ops->map_direct_value_addr) {
7720 verbose(env, "no direct value access support for this map type\n");
7721 return -EACCES;
7722 }
7723
7724 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
7725 map->value_size - reg->off, false,
7726 ACCESS_HELPER);
fff13c4b
FR
7727 if (err)
7728 return err;
7729
7730 map_off = reg->off + reg->var_off.value;
7731 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
7732 if (err) {
7733 verbose(env, "direct value access on string failed\n");
7734 return err;
7735 }
7736
7737 str_ptr = (char *)(long)(map_addr);
7738 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
7739 verbose(env, "string is not zero-terminated\n");
7740 return -EINVAL;
7741 }
8ab4cdcf
JK
7742 break;
7743 }
7744 case ARG_PTR_TO_KPTR:
ac50fe51
KKD
7745 err = process_kptr_func(env, regno, meta);
7746 if (err)
7747 return err;
8ab4cdcf 7748 break;
17a52670
AS
7749 }
7750
7751 return err;
7752}
7753
0126240f
LB
7754static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
7755{
7756 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 7757 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
7758
7759 if (func_id != BPF_FUNC_map_update_elem)
7760 return false;
7761
7762 /* It's not possible to get access to a locked struct sock in these
7763 * contexts, so updating is safe.
7764 */
7765 switch (type) {
7766 case BPF_PROG_TYPE_TRACING:
7767 if (eatype == BPF_TRACE_ITER)
7768 return true;
7769 break;
7770 case BPF_PROG_TYPE_SOCKET_FILTER:
7771 case BPF_PROG_TYPE_SCHED_CLS:
7772 case BPF_PROG_TYPE_SCHED_ACT:
7773 case BPF_PROG_TYPE_XDP:
7774 case BPF_PROG_TYPE_SK_REUSEPORT:
7775 case BPF_PROG_TYPE_FLOW_DISSECTOR:
7776 case BPF_PROG_TYPE_SK_LOOKUP:
7777 return true;
7778 default:
7779 break;
7780 }
7781
7782 verbose(env, "cannot update sockmap in this context\n");
7783 return false;
7784}
7785
e411901c
MF
7786static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
7787{
95acd881
TA
7788 return env->prog->jit_requested &&
7789 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
7790}
7791
61bd5218
JK
7792static int check_map_func_compatibility(struct bpf_verifier_env *env,
7793 struct bpf_map *map, int func_id)
35578d79 7794{
35578d79
KX
7795 if (!map)
7796 return 0;
7797
6aff67c8
AS
7798 /* We need a two way check, first is from map perspective ... */
7799 switch (map->map_type) {
7800 case BPF_MAP_TYPE_PROG_ARRAY:
7801 if (func_id != BPF_FUNC_tail_call)
7802 goto error;
7803 break;
7804 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
7805 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 7806 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 7807 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
7808 func_id != BPF_FUNC_perf_event_read_value &&
7809 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
7810 goto error;
7811 break;
457f4436
AN
7812 case BPF_MAP_TYPE_RINGBUF:
7813 if (func_id != BPF_FUNC_ringbuf_output &&
7814 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
7815 func_id != BPF_FUNC_ringbuf_query &&
7816 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
7817 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
7818 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
7819 goto error;
7820 break;
583c1f42 7821 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
7822 if (func_id != BPF_FUNC_user_ringbuf_drain)
7823 goto error;
7824 break;
6aff67c8
AS
7825 case BPF_MAP_TYPE_STACK_TRACE:
7826 if (func_id != BPF_FUNC_get_stackid)
7827 goto error;
7828 break;
4ed8ec52 7829 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 7830 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 7831 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
7832 goto error;
7833 break;
cd339431 7834 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 7835 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
7836 if (func_id != BPF_FUNC_get_local_storage)
7837 goto error;
7838 break;
546ac1ff 7839 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 7840 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
7841 if (func_id != BPF_FUNC_redirect_map &&
7842 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
7843 goto error;
7844 break;
fbfc504a
BT
7845 /* Restrict bpf side of cpumap and xskmap, open when use-cases
7846 * appear.
7847 */
6710e112
JDB
7848 case BPF_MAP_TYPE_CPUMAP:
7849 if (func_id != BPF_FUNC_redirect_map)
7850 goto error;
7851 break;
fada7fdc
JL
7852 case BPF_MAP_TYPE_XSKMAP:
7853 if (func_id != BPF_FUNC_redirect_map &&
7854 func_id != BPF_FUNC_map_lookup_elem)
7855 goto error;
7856 break;
56f668df 7857 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 7858 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
7859 if (func_id != BPF_FUNC_map_lookup_elem)
7860 goto error;
16a43625 7861 break;
174a79ff
JF
7862 case BPF_MAP_TYPE_SOCKMAP:
7863 if (func_id != BPF_FUNC_sk_redirect_map &&
7864 func_id != BPF_FUNC_sock_map_update &&
4f738adb 7865 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 7866 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 7867 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
7868 func_id != BPF_FUNC_map_lookup_elem &&
7869 !may_update_sockmap(env, func_id))
174a79ff
JF
7870 goto error;
7871 break;
81110384
JF
7872 case BPF_MAP_TYPE_SOCKHASH:
7873 if (func_id != BPF_FUNC_sk_redirect_hash &&
7874 func_id != BPF_FUNC_sock_hash_update &&
7875 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 7876 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 7877 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
7878 func_id != BPF_FUNC_map_lookup_elem &&
7879 !may_update_sockmap(env, func_id))
81110384
JF
7880 goto error;
7881 break;
2dbb9b9e
MKL
7882 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7883 if (func_id != BPF_FUNC_sk_select_reuseport)
7884 goto error;
7885 break;
f1a2e44a
MV
7886 case BPF_MAP_TYPE_QUEUE:
7887 case BPF_MAP_TYPE_STACK:
7888 if (func_id != BPF_FUNC_map_peek_elem &&
7889 func_id != BPF_FUNC_map_pop_elem &&
7890 func_id != BPF_FUNC_map_push_elem)
7891 goto error;
7892 break;
6ac99e8f
MKL
7893 case BPF_MAP_TYPE_SK_STORAGE:
7894 if (func_id != BPF_FUNC_sk_storage_get &&
9db44fdd
KKD
7895 func_id != BPF_FUNC_sk_storage_delete &&
7896 func_id != BPF_FUNC_kptr_xchg)
6ac99e8f
MKL
7897 goto error;
7898 break;
8ea63684
KS
7899 case BPF_MAP_TYPE_INODE_STORAGE:
7900 if (func_id != BPF_FUNC_inode_storage_get &&
9db44fdd
KKD
7901 func_id != BPF_FUNC_inode_storage_delete &&
7902 func_id != BPF_FUNC_kptr_xchg)
8ea63684
KS
7903 goto error;
7904 break;
4cf1bc1f
KS
7905 case BPF_MAP_TYPE_TASK_STORAGE:
7906 if (func_id != BPF_FUNC_task_storage_get &&
9db44fdd
KKD
7907 func_id != BPF_FUNC_task_storage_delete &&
7908 func_id != BPF_FUNC_kptr_xchg)
4cf1bc1f
KS
7909 goto error;
7910 break;
c4bcfb38
YS
7911 case BPF_MAP_TYPE_CGRP_STORAGE:
7912 if (func_id != BPF_FUNC_cgrp_storage_get &&
9db44fdd
KKD
7913 func_id != BPF_FUNC_cgrp_storage_delete &&
7914 func_id != BPF_FUNC_kptr_xchg)
c4bcfb38
YS
7915 goto error;
7916 break;
9330986c
JK
7917 case BPF_MAP_TYPE_BLOOM_FILTER:
7918 if (func_id != BPF_FUNC_map_peek_elem &&
7919 func_id != BPF_FUNC_map_push_elem)
7920 goto error;
7921 break;
6aff67c8
AS
7922 default:
7923 break;
7924 }
7925
7926 /* ... and second from the function itself. */
7927 switch (func_id) {
7928 case BPF_FUNC_tail_call:
7929 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7930 goto error;
e411901c
MF
7931 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7932 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
7933 return -EINVAL;
7934 }
6aff67c8
AS
7935 break;
7936 case BPF_FUNC_perf_event_read:
7937 case BPF_FUNC_perf_event_output:
908432ca 7938 case BPF_FUNC_perf_event_read_value:
a7658e1a 7939 case BPF_FUNC_skb_output:
d831ee84 7940 case BPF_FUNC_xdp_output:
6aff67c8
AS
7941 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7942 goto error;
7943 break;
5b029a32
DB
7944 case BPF_FUNC_ringbuf_output:
7945 case BPF_FUNC_ringbuf_reserve:
7946 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
7947 case BPF_FUNC_ringbuf_reserve_dynptr:
7948 case BPF_FUNC_ringbuf_submit_dynptr:
7949 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
7950 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7951 goto error;
7952 break;
20571567
DV
7953 case BPF_FUNC_user_ringbuf_drain:
7954 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7955 goto error;
7956 break;
6aff67c8
AS
7957 case BPF_FUNC_get_stackid:
7958 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7959 goto error;
7960 break;
60d20f91 7961 case BPF_FUNC_current_task_under_cgroup:
747ea55e 7962 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
7963 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7964 goto error;
7965 break;
97f91a7c 7966 case BPF_FUNC_redirect_map:
9c270af3 7967 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 7968 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
7969 map->map_type != BPF_MAP_TYPE_CPUMAP &&
7970 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
7971 goto error;
7972 break;
174a79ff 7973 case BPF_FUNC_sk_redirect_map:
4f738adb 7974 case BPF_FUNC_msg_redirect_map:
81110384 7975 case BPF_FUNC_sock_map_update:
174a79ff
JF
7976 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7977 goto error;
7978 break;
81110384
JF
7979 case BPF_FUNC_sk_redirect_hash:
7980 case BPF_FUNC_msg_redirect_hash:
7981 case BPF_FUNC_sock_hash_update:
7982 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
7983 goto error;
7984 break;
cd339431 7985 case BPF_FUNC_get_local_storage:
b741f163
RG
7986 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7987 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
7988 goto error;
7989 break;
2dbb9b9e 7990 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
7991 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7992 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7993 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
7994 goto error;
7995 break;
f1a2e44a 7996 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
7997 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7998 map->map_type != BPF_MAP_TYPE_STACK)
7999 goto error;
8000 break;
9330986c
JK
8001 case BPF_FUNC_map_peek_elem:
8002 case BPF_FUNC_map_push_elem:
8003 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8004 map->map_type != BPF_MAP_TYPE_STACK &&
8005 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8006 goto error;
8007 break;
07343110
FZ
8008 case BPF_FUNC_map_lookup_percpu_elem:
8009 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8010 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8011 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8012 goto error;
8013 break;
6ac99e8f
MKL
8014 case BPF_FUNC_sk_storage_get:
8015 case BPF_FUNC_sk_storage_delete:
8016 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8017 goto error;
8018 break;
8ea63684
KS
8019 case BPF_FUNC_inode_storage_get:
8020 case BPF_FUNC_inode_storage_delete:
8021 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8022 goto error;
8023 break;
4cf1bc1f
KS
8024 case BPF_FUNC_task_storage_get:
8025 case BPF_FUNC_task_storage_delete:
8026 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8027 goto error;
8028 break;
c4bcfb38
YS
8029 case BPF_FUNC_cgrp_storage_get:
8030 case BPF_FUNC_cgrp_storage_delete:
8031 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8032 goto error;
8033 break;
6aff67c8
AS
8034 default:
8035 break;
35578d79
KX
8036 }
8037
8038 return 0;
6aff67c8 8039error:
61bd5218 8040 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 8041 map->map_type, func_id_name(func_id), func_id);
6aff67c8 8042 return -EINVAL;
35578d79
KX
8043}
8044
90133415 8045static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
8046{
8047 int count = 0;
8048
39f19ebb 8049 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8050 count++;
39f19ebb 8051 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8052 count++;
39f19ebb 8053 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8054 count++;
39f19ebb 8055 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8056 count++;
39f19ebb 8057 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
8058 count++;
8059
90133415
DB
8060 /* We only support one arg being in raw mode at the moment,
8061 * which is sufficient for the helper functions we have
8062 * right now.
8063 */
8064 return count <= 1;
8065}
8066
508362ac 8067static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 8068{
508362ac
MM
8069 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8070 bool has_size = fn->arg_size[arg] != 0;
8071 bool is_next_size = false;
8072
8073 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8074 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8075
8076 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8077 return is_next_size;
8078
8079 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
8080}
8081
8082static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8083{
8084 /* bpf_xxx(..., buf, len) call will access 'len'
8085 * bytes from memory 'buf'. Both arg types need
8086 * to be paired, so make sure there's no buggy
8087 * helper function specification.
8088 */
8089 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
8090 check_args_pair_invalid(fn, 0) ||
8091 check_args_pair_invalid(fn, 1) ||
8092 check_args_pair_invalid(fn, 2) ||
8093 check_args_pair_invalid(fn, 3) ||
8094 check_args_pair_invalid(fn, 4))
90133415
DB
8095 return false;
8096
8097 return true;
8098}
8099
9436ef6e
LB
8100static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8101{
8102 int i;
8103
1df8f55a 8104 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
8105 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8106 return !!fn->arg_btf_id[i];
8107 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8108 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
8109 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8110 /* arg_btf_id and arg_size are in a union. */
8111 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8112 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
8113 return false;
8114 }
8115
9436ef6e
LB
8116 return true;
8117}
8118
0c9a7a7e 8119static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
8120{
8121 return check_raw_mode_ok(fn) &&
fd978bf7 8122 check_arg_pair_ok(fn) &&
b2d8ef19 8123 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
8124}
8125
de8f3a83
DB
8126/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8127 * are now invalid, so turn them into unknown SCALAR_VALUE.
66e3a13e
JK
8128 *
8129 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8130 * since these slices point to packet data.
f1174f77 8131 */
b239da34 8132static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 8133{
b239da34
KKD
8134 struct bpf_func_state *state;
8135 struct bpf_reg_state *reg;
969bf05e 8136
b239da34 8137 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
66e3a13e 8138 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
dbd8d228 8139 mark_reg_invalid(env, reg);
b239da34 8140 }));
f4d7e40a
AS
8141}
8142
6d94e741
AS
8143enum {
8144 AT_PKT_END = -1,
8145 BEYOND_PKT_END = -2,
8146};
8147
8148static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8149{
8150 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8151 struct bpf_reg_state *reg = &state->regs[regn];
8152
8153 if (reg->type != PTR_TO_PACKET)
8154 /* PTR_TO_PACKET_META is not supported yet */
8155 return;
8156
8157 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8158 * How far beyond pkt_end it goes is unknown.
8159 * if (!range_open) it's the case of pkt >= pkt_end
8160 * if (range_open) it's the case of pkt > pkt_end
8161 * hence this pointer is at least 1 byte bigger than pkt_end
8162 */
8163 if (range_open)
8164 reg->range = BEYOND_PKT_END;
8165 else
8166 reg->range = AT_PKT_END;
8167}
8168
fd978bf7
JS
8169/* The pointer with the specified id has released its reference to kernel
8170 * resources. Identify all copies of the same pointer and clear the reference.
8171 */
8172static int release_reference(struct bpf_verifier_env *env,
1b986589 8173 int ref_obj_id)
fd978bf7 8174{
b239da34
KKD
8175 struct bpf_func_state *state;
8176 struct bpf_reg_state *reg;
1b986589 8177 int err;
fd978bf7 8178
1b986589
MKL
8179 err = release_reference_state(cur_func(env), ref_obj_id);
8180 if (err)
8181 return err;
8182
b239da34 8183 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
dbd8d228
KKD
8184 if (reg->ref_obj_id == ref_obj_id)
8185 mark_reg_invalid(env, reg);
b239da34 8186 }));
fd978bf7 8187
1b986589 8188 return 0;
fd978bf7
JS
8189}
8190
6a3cd331
DM
8191static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8192{
8193 struct bpf_func_state *unused;
8194 struct bpf_reg_state *reg;
8195
8196 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8197 if (type_is_non_owning_ref(reg->type))
dbd8d228 8198 mark_reg_invalid(env, reg);
6a3cd331
DM
8199 }));
8200}
8201
51c39bb1
AS
8202static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8203 struct bpf_reg_state *regs)
8204{
8205 int i;
8206
8207 /* after the call registers r0 - r5 were scratched */
8208 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8209 mark_reg_not_init(env, regs, caller_saved[i]);
8210 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8211 }
8212}
8213
14351375
YS
8214typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8215 struct bpf_func_state *caller,
8216 struct bpf_func_state *callee,
8217 int insn_idx);
8218
be2ef816
AN
8219static int set_callee_state(struct bpf_verifier_env *env,
8220 struct bpf_func_state *caller,
8221 struct bpf_func_state *callee, int insn_idx);
8222
5d92ddc3
DM
8223static bool is_callback_calling_kfunc(u32 btf_id);
8224
14351375
YS
8225static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8226 int *insn_idx, int subprog,
8227 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
8228{
8229 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 8230 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 8231 struct bpf_func_state *caller, *callee;
14351375 8232 int err;
51c39bb1 8233 bool is_global = false;
f4d7e40a 8234
aada9ce6 8235 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 8236 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 8237 state->curframe + 2);
f4d7e40a
AS
8238 return -E2BIG;
8239 }
8240
f4d7e40a
AS
8241 caller = state->frame[state->curframe];
8242 if (state->frame[state->curframe + 1]) {
8243 verbose(env, "verifier bug. Frame %d already allocated\n",
8244 state->curframe + 1);
8245 return -EFAULT;
8246 }
8247
51c39bb1
AS
8248 func_info_aux = env->prog->aux->func_info_aux;
8249 if (func_info_aux)
8250 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 8251 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
8252 if (err == -EFAULT)
8253 return err;
8254 if (is_global) {
8255 if (err) {
8256 verbose(env, "Caller passes invalid args into func#%d\n",
8257 subprog);
8258 return err;
8259 } else {
8260 if (env->log.level & BPF_LOG_LEVEL)
8261 verbose(env,
8262 "Func#%d is global and valid. Skipping.\n",
8263 subprog);
8264 clear_caller_saved_regs(env, caller->regs);
8265
45159b27 8266 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 8267 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 8268 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
8269
8270 /* continue with next insn after call */
8271 return 0;
8272 }
8273 }
8274
be2ef816
AN
8275 /* set_callee_state is used for direct subprog calls, but we are
8276 * interested in validating only BPF helpers that can call subprogs as
8277 * callbacks
8278 */
5d92ddc3
DM
8279 if (set_callee_state_cb != set_callee_state) {
8280 if (bpf_pseudo_kfunc_call(insn) &&
8281 !is_callback_calling_kfunc(insn->imm)) {
8282 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8283 func_id_name(insn->imm), insn->imm);
8284 return -EFAULT;
8285 } else if (!bpf_pseudo_kfunc_call(insn) &&
8286 !is_callback_calling_function(insn->imm)) { /* helper */
8287 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8288 func_id_name(insn->imm), insn->imm);
8289 return -EFAULT;
8290 }
be2ef816
AN
8291 }
8292
bfc6bb74 8293 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 8294 insn->src_reg == 0 &&
bfc6bb74
AS
8295 insn->imm == BPF_FUNC_timer_set_callback) {
8296 struct bpf_verifier_state *async_cb;
8297
8298 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 8299 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
8300 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8301 *insn_idx, subprog);
8302 if (!async_cb)
8303 return -EFAULT;
8304 callee = async_cb->frame[0];
8305 callee->async_entry_cnt = caller->async_entry_cnt + 1;
8306
8307 /* Convert bpf_timer_set_callback() args into timer callback args */
8308 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8309 if (err)
8310 return err;
8311
8312 clear_caller_saved_regs(env, caller->regs);
8313 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8314 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8315 /* continue with next insn after call */
8316 return 0;
8317 }
8318
f4d7e40a
AS
8319 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8320 if (!callee)
8321 return -ENOMEM;
8322 state->frame[state->curframe + 1] = callee;
8323
8324 /* callee cannot access r0, r6 - r9 for reading and has to write
8325 * into its own stack before reading from it.
8326 * callee can read/write into caller's stack
8327 */
8328 init_func_state(env, callee,
8329 /* remember the callsite, it will be used by bpf_exit */
8330 *insn_idx /* callsite */,
8331 state->curframe + 1 /* frameno within this callchain */,
f910cefa 8332 subprog /* subprog number within this prog */);
f4d7e40a 8333
fd978bf7 8334 /* Transfer references to the callee */
c69431aa 8335 err = copy_reference_state(callee, caller);
fd978bf7 8336 if (err)
eb86559a 8337 goto err_out;
fd978bf7 8338
14351375
YS
8339 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8340 if (err)
eb86559a 8341 goto err_out;
f4d7e40a 8342
51c39bb1 8343 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
8344
8345 /* only increment it after check_reg_arg() finished */
8346 state->curframe++;
8347
8348 /* and go analyze first insn of the callee */
14351375 8349 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 8350
06ee7115 8351 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8352 verbose(env, "caller:\n");
0f55f9ed 8353 print_verifier_state(env, caller, true);
f4d7e40a 8354 verbose(env, "callee:\n");
0f55f9ed 8355 print_verifier_state(env, callee, true);
f4d7e40a
AS
8356 }
8357 return 0;
eb86559a
WY
8358
8359err_out:
8360 free_func_state(callee);
8361 state->frame[state->curframe + 1] = NULL;
8362 return err;
f4d7e40a
AS
8363}
8364
314ee05e
YS
8365int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8366 struct bpf_func_state *caller,
8367 struct bpf_func_state *callee)
8368{
8369 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8370 * void *callback_ctx, u64 flags);
8371 * callback_fn(struct bpf_map *map, void *key, void *value,
8372 * void *callback_ctx);
8373 */
8374 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8375
8376 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8377 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8378 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8379
8380 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8381 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8382 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8383
8384 /* pointer to stack or null */
8385 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8386
8387 /* unused */
8388 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8389 return 0;
8390}
8391
14351375
YS
8392static int set_callee_state(struct bpf_verifier_env *env,
8393 struct bpf_func_state *caller,
8394 struct bpf_func_state *callee, int insn_idx)
8395{
8396 int i;
8397
8398 /* copy r1 - r5 args that callee can access. The copy includes parent
8399 * pointers, which connects us up to the liveness chain
8400 */
8401 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8402 callee->regs[i] = caller->regs[i];
8403 return 0;
8404}
8405
8406static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8407 int *insn_idx)
8408{
8409 int subprog, target_insn;
8410
8411 target_insn = *insn_idx + insn->imm + 1;
8412 subprog = find_subprog(env, target_insn);
8413 if (subprog < 0) {
8414 verbose(env, "verifier bug. No program starts at insn %d\n",
8415 target_insn);
8416 return -EFAULT;
8417 }
8418
8419 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8420}
8421
69c087ba
YS
8422static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8423 struct bpf_func_state *caller,
8424 struct bpf_func_state *callee,
8425 int insn_idx)
8426{
8427 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8428 struct bpf_map *map;
8429 int err;
8430
8431 if (bpf_map_ptr_poisoned(insn_aux)) {
8432 verbose(env, "tail_call abusing map_ptr\n");
8433 return -EINVAL;
8434 }
8435
8436 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8437 if (!map->ops->map_set_for_each_callback_args ||
8438 !map->ops->map_for_each_callback) {
8439 verbose(env, "callback function not allowed for map\n");
8440 return -ENOTSUPP;
8441 }
8442
8443 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8444 if (err)
8445 return err;
8446
8447 callee->in_callback_fn = true;
1bfe26fb 8448 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
8449 return 0;
8450}
8451
e6f2dd0f
JK
8452static int set_loop_callback_state(struct bpf_verifier_env *env,
8453 struct bpf_func_state *caller,
8454 struct bpf_func_state *callee,
8455 int insn_idx)
8456{
8457 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8458 * u64 flags);
8459 * callback_fn(u32 index, void *callback_ctx);
8460 */
8461 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8462 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8463
8464 /* unused */
8465 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8466 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8467 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8468
8469 callee->in_callback_fn = true;
1bfe26fb 8470 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
8471 return 0;
8472}
8473
b00628b1
AS
8474static int set_timer_callback_state(struct bpf_verifier_env *env,
8475 struct bpf_func_state *caller,
8476 struct bpf_func_state *callee,
8477 int insn_idx)
8478{
8479 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8480
8481 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8482 * callback_fn(struct bpf_map *map, void *key, void *value);
8483 */
8484 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8485 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8486 callee->regs[BPF_REG_1].map_ptr = map_ptr;
8487
8488 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8489 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8490 callee->regs[BPF_REG_2].map_ptr = map_ptr;
8491
8492 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8493 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8494 callee->regs[BPF_REG_3].map_ptr = map_ptr;
8495
8496 /* unused */
8497 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8498 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 8499 callee->in_async_callback_fn = true;
1bfe26fb 8500 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
8501 return 0;
8502}
8503
7c7e3d31
SL
8504static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8505 struct bpf_func_state *caller,
8506 struct bpf_func_state *callee,
8507 int insn_idx)
8508{
8509 /* bpf_find_vma(struct task_struct *task, u64 addr,
8510 * void *callback_fn, void *callback_ctx, u64 flags)
8511 * (callback_fn)(struct task_struct *task,
8512 * struct vm_area_struct *vma, void *callback_ctx);
8513 */
8514 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8515
8516 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8517 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8518 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 8519 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
8520
8521 /* pointer to stack or null */
8522 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8523
8524 /* unused */
8525 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8526 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8527 callee->in_callback_fn = true;
1bfe26fb 8528 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
8529 return 0;
8530}
8531
20571567
DV
8532static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8533 struct bpf_func_state *caller,
8534 struct bpf_func_state *callee,
8535 int insn_idx)
8536{
8537 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8538 * callback_ctx, u64 flags);
27060531 8539 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
20571567
DV
8540 */
8541 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
f8064ab9 8542 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
20571567
DV
8543 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8544
8545 /* unused */
8546 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8547 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8548 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8549
8550 callee->in_callback_fn = true;
c92a7a52 8551 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
8552 return 0;
8553}
8554
5d92ddc3
DM
8555static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
8556 struct bpf_func_state *caller,
8557 struct bpf_func_state *callee,
8558 int insn_idx)
8559{
d2dcc67d 8560 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
5d92ddc3
DM
8561 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
8562 *
d2dcc67d 8563 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
5d92ddc3
DM
8564 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
8565 * by this point, so look at 'root'
8566 */
8567 struct btf_field *field;
8568
8569 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
8570 BPF_RB_ROOT);
8571 if (!field || !field->graph_root.value_btf_id)
8572 return -EFAULT;
8573
8574 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
8575 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
8576 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
8577 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
8578
8579 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8580 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8581 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8582 callee->in_callback_fn = true;
8583 callee->callback_ret_range = tnum_range(0, 1);
8584 return 0;
8585}
8586
8587static bool is_rbtree_lock_required_kfunc(u32 btf_id);
8588
8589/* Are we currently verifying the callback for a rbtree helper that must
8590 * be called with lock held? If so, no need to complain about unreleased
8591 * lock
8592 */
8593static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
8594{
8595 struct bpf_verifier_state *state = env->cur_state;
8596 struct bpf_insn *insn = env->prog->insnsi;
8597 struct bpf_func_state *callee;
8598 int kfunc_btf_id;
8599
8600 if (!state->curframe)
8601 return false;
8602
8603 callee = state->frame[state->curframe];
8604
8605 if (!callee->in_callback_fn)
8606 return false;
8607
8608 kfunc_btf_id = insn[callee->callsite].imm;
8609 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
8610}
8611
f4d7e40a
AS
8612static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
8613{
8614 struct bpf_verifier_state *state = env->cur_state;
8615 struct bpf_func_state *caller, *callee;
8616 struct bpf_reg_state *r0;
fd978bf7 8617 int err;
f4d7e40a
AS
8618
8619 callee = state->frame[state->curframe];
8620 r0 = &callee->regs[BPF_REG_0];
8621 if (r0->type == PTR_TO_STACK) {
8622 /* technically it's ok to return caller's stack pointer
8623 * (or caller's caller's pointer) back to the caller,
8624 * since these pointers are valid. Only current stack
8625 * pointer will be invalid as soon as function exits,
8626 * but let's be conservative
8627 */
8628 verbose(env, "cannot return stack pointer to the caller\n");
8629 return -EINVAL;
8630 }
8631
eb86559a 8632 caller = state->frame[state->curframe - 1];
69c087ba
YS
8633 if (callee->in_callback_fn) {
8634 /* enforce R0 return value range [0, 1]. */
1bfe26fb 8635 struct tnum range = callee->callback_ret_range;
69c087ba
YS
8636
8637 if (r0->type != SCALAR_VALUE) {
8638 verbose(env, "R0 not a scalar value\n");
8639 return -EACCES;
8640 }
8641 if (!tnum_in(range, r0->var_off)) {
8642 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
8643 return -EINVAL;
8644 }
8645 } else {
8646 /* return to the caller whatever r0 had in the callee */
8647 caller->regs[BPF_REG_0] = *r0;
8648 }
f4d7e40a 8649
9d9d00ac
KKD
8650 /* callback_fn frame should have released its own additions to parent's
8651 * reference state at this point, or check_reference_leak would
8652 * complain, hence it must be the same as the caller. There is no need
8653 * to copy it back.
8654 */
8655 if (!callee->in_callback_fn) {
8656 /* Transfer references to the caller */
8657 err = copy_reference_state(caller, callee);
8658 if (err)
8659 return err;
8660 }
fd978bf7 8661
f4d7e40a 8662 *insn_idx = callee->callsite + 1;
06ee7115 8663 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8664 verbose(env, "returning from callee:\n");
0f55f9ed 8665 print_verifier_state(env, callee, true);
f4d7e40a 8666 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 8667 print_verifier_state(env, caller, true);
f4d7e40a
AS
8668 }
8669 /* clear everything in the callee */
8670 free_func_state(callee);
eb86559a 8671 state->frame[state->curframe--] = NULL;
f4d7e40a
AS
8672 return 0;
8673}
8674
849fa506
YS
8675static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
8676 int func_id,
8677 struct bpf_call_arg_meta *meta)
8678{
8679 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
8680
8681 if (ret_type != RET_INTEGER ||
8682 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 8683 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
8684 func_id != BPF_FUNC_probe_read_str &&
8685 func_id != BPF_FUNC_probe_read_kernel_str &&
8686 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
8687 return;
8688
10060503 8689 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 8690 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
8691 ret_reg->smin_value = -MAX_ERRNO;
8692 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 8693 reg_bounds_sync(ret_reg);
849fa506
YS
8694}
8695
c93552c4
DB
8696static int
8697record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8698 int func_id, int insn_idx)
8699{
8700 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 8701 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
8702
8703 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
8704 func_id != BPF_FUNC_map_lookup_elem &&
8705 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
8706 func_id != BPF_FUNC_map_delete_elem &&
8707 func_id != BPF_FUNC_map_push_elem &&
8708 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 8709 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 8710 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
8711 func_id != BPF_FUNC_redirect_map &&
8712 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 8713 return 0;
09772d92 8714
591fe988 8715 if (map == NULL) {
c93552c4
DB
8716 verbose(env, "kernel subsystem misconfigured verifier\n");
8717 return -EINVAL;
8718 }
8719
591fe988
DB
8720 /* In case of read-only, some additional restrictions
8721 * need to be applied in order to prevent altering the
8722 * state of the map from program side.
8723 */
8724 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
8725 (func_id == BPF_FUNC_map_delete_elem ||
8726 func_id == BPF_FUNC_map_update_elem ||
8727 func_id == BPF_FUNC_map_push_elem ||
8728 func_id == BPF_FUNC_map_pop_elem)) {
8729 verbose(env, "write into map forbidden\n");
8730 return -EACCES;
8731 }
8732
d2e4c1e6 8733 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 8734 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 8735 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 8736 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 8737 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 8738 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
8739 return 0;
8740}
8741
d2e4c1e6
DB
8742static int
8743record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8744 int func_id, int insn_idx)
8745{
8746 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8747 struct bpf_reg_state *regs = cur_regs(env), *reg;
8748 struct bpf_map *map = meta->map_ptr;
a657182a 8749 u64 val, max;
cc52d914 8750 int err;
d2e4c1e6
DB
8751
8752 if (func_id != BPF_FUNC_tail_call)
8753 return 0;
8754 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
8755 verbose(env, "kernel subsystem misconfigured verifier\n");
8756 return -EINVAL;
8757 }
8758
d2e4c1e6 8759 reg = &regs[BPF_REG_3];
a657182a
DB
8760 val = reg->var_off.value;
8761 max = map->max_entries;
d2e4c1e6 8762
a657182a 8763 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
8764 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8765 return 0;
8766 }
8767
cc52d914
DB
8768 err = mark_chain_precision(env, BPF_REG_3);
8769 if (err)
8770 return err;
d2e4c1e6
DB
8771 if (bpf_map_key_unseen(aux))
8772 bpf_map_key_store(aux, val);
8773 else if (!bpf_map_key_poisoned(aux) &&
8774 bpf_map_key_immediate(aux) != val)
8775 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8776 return 0;
8777}
8778
fd978bf7
JS
8779static int check_reference_leak(struct bpf_verifier_env *env)
8780{
8781 struct bpf_func_state *state = cur_func(env);
9d9d00ac 8782 bool refs_lingering = false;
fd978bf7
JS
8783 int i;
8784
9d9d00ac
KKD
8785 if (state->frameno && !state->in_callback_fn)
8786 return 0;
8787
fd978bf7 8788 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
8789 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
8790 continue;
fd978bf7
JS
8791 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
8792 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 8793 refs_lingering = true;
fd978bf7 8794 }
9d9d00ac 8795 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
8796}
8797
7b15523a
FR
8798static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
8799 struct bpf_reg_state *regs)
8800{
8801 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
8802 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
8803 struct bpf_map *fmt_map = fmt_reg->map_ptr;
78aa1cc9 8804 struct bpf_bprintf_data data = {};
7b15523a
FR
8805 int err, fmt_map_off, num_args;
8806 u64 fmt_addr;
8807 char *fmt;
8808
8809 /* data must be an array of u64 */
8810 if (data_len_reg->var_off.value % 8)
8811 return -EINVAL;
8812 num_args = data_len_reg->var_off.value / 8;
8813
8814 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
8815 * and map_direct_value_addr is set.
8816 */
8817 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
8818 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
8819 fmt_map_off);
8e8ee109
FR
8820 if (err) {
8821 verbose(env, "verifier bug\n");
8822 return -EFAULT;
8823 }
7b15523a
FR
8824 fmt = (char *)(long)fmt_addr + fmt_map_off;
8825
8826 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
8827 * can focus on validating the format specifiers.
8828 */
78aa1cc9 8829 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7b15523a
FR
8830 if (err < 0)
8831 verbose(env, "Invalid format string\n");
8832
8833 return err;
8834}
8835
9b99edca
JO
8836static int check_get_func_ip(struct bpf_verifier_env *env)
8837{
9b99edca
JO
8838 enum bpf_prog_type type = resolve_prog_type(env->prog);
8839 int func_id = BPF_FUNC_get_func_ip;
8840
8841 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 8842 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
8843 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
8844 func_id_name(func_id), func_id);
8845 return -ENOTSUPP;
8846 }
8847 return 0;
9ffd9f3f
JO
8848 } else if (type == BPF_PROG_TYPE_KPROBE) {
8849 return 0;
9b99edca
JO
8850 }
8851
8852 verbose(env, "func %s#%d not supported for program type %d\n",
8853 func_id_name(func_id), func_id, type);
8854 return -ENOTSUPP;
8855}
8856
1ade2371
EZ
8857static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
8858{
8859 return &env->insn_aux_data[env->insn_idx];
8860}
8861
8862static bool loop_flag_is_zero(struct bpf_verifier_env *env)
8863{
8864 struct bpf_reg_state *regs = cur_regs(env);
8865 struct bpf_reg_state *reg = &regs[BPF_REG_4];
8866 bool reg_is_null = register_is_null(reg);
8867
8868 if (reg_is_null)
8869 mark_chain_precision(env, BPF_REG_4);
8870
8871 return reg_is_null;
8872}
8873
8874static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
8875{
8876 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
8877
8878 if (!state->initialized) {
8879 state->initialized = 1;
8880 state->fit_for_inline = loop_flag_is_zero(env);
8881 state->callback_subprogno = subprogno;
8882 return;
8883 }
8884
8885 if (!state->fit_for_inline)
8886 return;
8887
8888 state->fit_for_inline = (loop_flag_is_zero(env) &&
8889 state->callback_subprogno == subprogno);
8890}
8891
69c087ba
YS
8892static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8893 int *insn_idx_p)
17a52670 8894{
aef9d4a3 8895 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 8896 const struct bpf_func_proto *fn = NULL;
3c480732 8897 enum bpf_return_type ret_type;
c25b2ae1 8898 enum bpf_type_flag ret_flag;
638f5b90 8899 struct bpf_reg_state *regs;
33ff9823 8900 struct bpf_call_arg_meta meta;
69c087ba 8901 int insn_idx = *insn_idx_p;
969bf05e 8902 bool changes_data;
69c087ba 8903 int i, err, func_id;
17a52670
AS
8904
8905 /* find function prototype */
69c087ba 8906 func_id = insn->imm;
17a52670 8907 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
8908 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
8909 func_id);
17a52670
AS
8910 return -EINVAL;
8911 }
8912
00176a34 8913 if (env->ops->get_func_proto)
5e43f899 8914 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 8915 if (!fn) {
61bd5218
JK
8916 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
8917 func_id);
17a52670
AS
8918 return -EINVAL;
8919 }
8920
8921 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 8922 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 8923 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
8924 return -EINVAL;
8925 }
8926
eae2e83e
JO
8927 if (fn->allowed && !fn->allowed(env->prog)) {
8928 verbose(env, "helper call is not allowed in probe\n");
8929 return -EINVAL;
8930 }
8931
01685c5b
YS
8932 if (!env->prog->aux->sleepable && fn->might_sleep) {
8933 verbose(env, "helper call might sleep in a non-sleepable prog\n");
8934 return -EINVAL;
8935 }
8936
04514d13 8937 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 8938 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
8939 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
8940 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
8941 func_id_name(func_id), func_id);
8942 return -EINVAL;
8943 }
969bf05e 8944
33ff9823 8945 memset(&meta, 0, sizeof(meta));
36bbef52 8946 meta.pkt_access = fn->pkt_access;
33ff9823 8947
0c9a7a7e 8948 err = check_func_proto(fn, func_id);
435faee1 8949 if (err) {
61bd5218 8950 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 8951 func_id_name(func_id), func_id);
435faee1
DB
8952 return err;
8953 }
8954
9bb00b28
YS
8955 if (env->cur_state->active_rcu_lock) {
8956 if (fn->might_sleep) {
8957 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8958 func_id_name(func_id), func_id);
8959 return -EINVAL;
8960 }
8961
8962 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8963 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8964 }
8965
d83525ca 8966 meta.func_id = func_id;
17a52670 8967 /* check args */
523a4cf4 8968 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
1d18feb2 8969 err = check_func_arg(env, i, &meta, fn, insn_idx);
a7658e1a
AS
8970 if (err)
8971 return err;
8972 }
17a52670 8973
c93552c4
DB
8974 err = record_func_map(env, &meta, func_id, insn_idx);
8975 if (err)
8976 return err;
8977
d2e4c1e6
DB
8978 err = record_func_key(env, &meta, func_id, insn_idx);
8979 if (err)
8980 return err;
8981
435faee1
DB
8982 /* Mark slots with STACK_MISC in case of raw mode, stack offset
8983 * is inferred from register state.
8984 */
8985 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
8986 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8987 BPF_WRITE, -1, false);
435faee1
DB
8988 if (err)
8989 return err;
8990 }
8991
8f14852e
KKD
8992 regs = cur_regs(env);
8993
8994 if (meta.release_regno) {
8995 err = -EINVAL;
27060531
KKD
8996 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8997 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8998 * is safe to do directly.
8999 */
9000 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9001 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9002 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9003 return -EFAULT;
9004 }
97e03f52 9005 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
27060531 9006 } else if (meta.ref_obj_id) {
8f14852e 9007 err = release_reference(env, meta.ref_obj_id);
27060531
KKD
9008 } else if (register_is_null(&regs[meta.release_regno])) {
9009 /* meta.ref_obj_id can only be 0 if register that is meant to be
9010 * released is NULL, which must be > R0.
9011 */
8f14852e 9012 err = 0;
27060531 9013 }
46f8bc92
MKL
9014 if (err) {
9015 verbose(env, "func %s#%d reference has not been acquired before\n",
9016 func_id_name(func_id), func_id);
fd978bf7 9017 return err;
46f8bc92 9018 }
fd978bf7
JS
9019 }
9020
e6f2dd0f
JK
9021 switch (func_id) {
9022 case BPF_FUNC_tail_call:
9023 err = check_reference_leak(env);
9024 if (err) {
9025 verbose(env, "tail_call would lead to reference leak\n");
9026 return err;
9027 }
9028 break;
9029 case BPF_FUNC_get_local_storage:
9030 /* check that flags argument in get_local_storage(map, flags) is 0,
9031 * this is required because get_local_storage() can't return an error.
9032 */
9033 if (!register_is_null(&regs[BPF_REG_2])) {
9034 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9035 return -EINVAL;
9036 }
9037 break;
9038 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
9039 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9040 set_map_elem_callback_state);
e6f2dd0f
JK
9041 break;
9042 case BPF_FUNC_timer_set_callback:
b00628b1
AS
9043 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9044 set_timer_callback_state);
e6f2dd0f
JK
9045 break;
9046 case BPF_FUNC_find_vma:
7c7e3d31
SL
9047 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9048 set_find_vma_callback_state);
e6f2dd0f
JK
9049 break;
9050 case BPF_FUNC_snprintf:
7b15523a 9051 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
9052 break;
9053 case BPF_FUNC_loop:
1ade2371 9054 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
9055 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9056 set_loop_callback_state);
9057 break;
263ae152
JK
9058 case BPF_FUNC_dynptr_from_mem:
9059 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9060 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9061 reg_type_str(env, regs[BPF_REG_1].type));
9062 return -EACCES;
9063 }
69fd337a
SF
9064 break;
9065 case BPF_FUNC_set_retval:
aef9d4a3
SF
9066 if (prog_type == BPF_PROG_TYPE_LSM &&
9067 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
9068 if (!env->prog->aux->attach_func_proto->type) {
9069 /* Make sure programs that attach to void
9070 * hooks don't try to modify return value.
9071 */
9072 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9073 return -EINVAL;
9074 }
9075 }
9076 break;
88374342 9077 case BPF_FUNC_dynptr_data:
485ec51e
JK
9078 {
9079 struct bpf_reg_state *reg;
9080 int id, ref_obj_id;
20571567 9081
485ec51e
JK
9082 reg = get_dynptr_arg_reg(env, fn, regs);
9083 if (!reg)
9084 return -EFAULT;
f8064ab9 9085
f8064ab9 9086
485ec51e
JK
9087 if (meta.dynptr_id) {
9088 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9089 return -EFAULT;
88374342 9090 }
485ec51e
JK
9091 if (meta.ref_obj_id) {
9092 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
88374342
JK
9093 return -EFAULT;
9094 }
485ec51e
JK
9095
9096 id = dynptr_id(env, reg);
9097 if (id < 0) {
9098 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9099 return id;
9100 }
9101
9102 ref_obj_id = dynptr_ref_obj_id(env, reg);
9103 if (ref_obj_id < 0) {
9104 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9105 return ref_obj_id;
9106 }
9107
9108 meta.dynptr_id = id;
9109 meta.ref_obj_id = ref_obj_id;
9110
88374342 9111 break;
485ec51e 9112 }
b5964b96
JK
9113 case BPF_FUNC_dynptr_write:
9114 {
9115 enum bpf_dynptr_type dynptr_type;
9116 struct bpf_reg_state *reg;
9117
9118 reg = get_dynptr_arg_reg(env, fn, regs);
9119 if (!reg)
9120 return -EFAULT;
9121
9122 dynptr_type = dynptr_get_type(env, reg);
9123 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9124 return -EFAULT;
9125
9126 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9127 /* this will trigger clear_all_pkt_pointers(), which will
9128 * invalidate all dynptr slices associated with the skb
9129 */
9130 changes_data = true;
9131
9132 break;
9133 }
20571567
DV
9134 case BPF_FUNC_user_ringbuf_drain:
9135 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9136 set_user_ringbuf_callback_state);
9137 break;
7b15523a
FR
9138 }
9139
e6f2dd0f
JK
9140 if (err)
9141 return err;
9142
17a52670 9143 /* reset caller saved regs */
dc503a8a 9144 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9145 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9146 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9147 }
17a52670 9148
5327ed3d
JW
9149 /* helper call returns 64-bit value. */
9150 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9151
dc503a8a 9152 /* update return register (already marked as written above) */
3c480732 9153 ret_type = fn->ret_type;
0c9a7a7e
JK
9154 ret_flag = type_flag(ret_type);
9155
9156 switch (base_type(ret_type)) {
9157 case RET_INTEGER:
f1174f77 9158 /* sets type to SCALAR_VALUE */
61bd5218 9159 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
9160 break;
9161 case RET_VOID:
17a52670 9162 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
9163 break;
9164 case RET_PTR_TO_MAP_VALUE:
f1174f77 9165 /* There is no offset yet applied, variable or fixed */
61bd5218 9166 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
9167 /* remember map_ptr, so that check_map_access()
9168 * can check 'value_size' boundary of memory access
9169 * to map element returned from bpf_map_lookup_elem()
9170 */
33ff9823 9171 if (meta.map_ptr == NULL) {
61bd5218
JK
9172 verbose(env,
9173 "kernel subsystem misconfigured verifier\n");
17a52670
AS
9174 return -EINVAL;
9175 }
33ff9823 9176 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 9177 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
9178 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9179 if (!type_may_be_null(ret_type) &&
db559117 9180 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 9181 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 9182 }
0c9a7a7e
JK
9183 break;
9184 case RET_PTR_TO_SOCKET:
c64b7983 9185 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9186 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
9187 break;
9188 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 9189 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9190 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
9191 break;
9192 case RET_PTR_TO_TCP_SOCK:
655a51e5 9193 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9194 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 9195 break;
2de2669b 9196 case RET_PTR_TO_MEM:
457f4436 9197 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9198 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 9199 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
9200 break;
9201 case RET_PTR_TO_MEM_OR_BTF_ID:
9202 {
eaa6bcb7
HL
9203 const struct btf_type *t;
9204
9205 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 9206 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
9207 if (!btf_type_is_struct(t)) {
9208 u32 tsize;
9209 const struct btf_type *ret;
9210 const char *tname;
9211
9212 /* resolve the type size of ksym. */
22dc4a0f 9213 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 9214 if (IS_ERR(ret)) {
22dc4a0f 9215 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
9216 verbose(env, "unable to resolve the size of type '%s': %ld\n",
9217 tname, PTR_ERR(ret));
9218 return -EINVAL;
9219 }
c25b2ae1 9220 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
9221 regs[BPF_REG_0].mem_size = tsize;
9222 } else {
34d3a78c
HL
9223 /* MEM_RDONLY may be carried from ret_flag, but it
9224 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9225 * it will confuse the check of PTR_TO_BTF_ID in
9226 * check_mem_access().
9227 */
9228 ret_flag &= ~MEM_RDONLY;
9229
c25b2ae1 9230 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 9231 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
9232 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9233 }
0c9a7a7e
JK
9234 break;
9235 }
9236 case RET_PTR_TO_BTF_ID:
9237 {
c0a5a21c 9238 struct btf *ret_btf;
af7ec138
YS
9239 int ret_btf_id;
9240
9241 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9242 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 9243 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
9244 ret_btf = meta.kptr_field->kptr.btf;
9245 ret_btf_id = meta.kptr_field->kptr.btf_id;
738c96d5
DM
9246 if (!btf_is_kernel(ret_btf))
9247 regs[BPF_REG_0].type |= MEM_ALLOC;
c0a5a21c 9248 } else {
47e34cb7
DM
9249 if (fn->ret_btf_id == BPF_PTR_POISON) {
9250 verbose(env, "verifier internal error:");
9251 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9252 func_id_name(func_id));
9253 return -EINVAL;
9254 }
c0a5a21c
KKD
9255 ret_btf = btf_vmlinux;
9256 ret_btf_id = *fn->ret_btf_id;
9257 }
af7ec138 9258 if (ret_btf_id == 0) {
3c480732
HL
9259 verbose(env, "invalid return type %u of func %s#%d\n",
9260 base_type(ret_type), func_id_name(func_id),
9261 func_id);
af7ec138
YS
9262 return -EINVAL;
9263 }
c0a5a21c 9264 regs[BPF_REG_0].btf = ret_btf;
af7ec138 9265 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
9266 break;
9267 }
9268 default:
3c480732
HL
9269 verbose(env, "unknown return type %u of func %s#%d\n",
9270 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
9271 return -EINVAL;
9272 }
04fd61ab 9273
c25b2ae1 9274 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
9275 regs[BPF_REG_0].id = ++env->id_gen;
9276
b2d8ef19
DM
9277 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9278 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9279 func_id_name(func_id), func_id);
9280 return -EFAULT;
9281 }
9282
f8064ab9
KKD
9283 if (is_dynptr_ref_function(func_id))
9284 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9285
88374342 9286 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
9287 /* For release_reference() */
9288 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 9289 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
9290 int id = acquire_reference_state(env, insn_idx);
9291
9292 if (id < 0)
9293 return id;
9294 /* For mark_ptr_or_null_reg() */
9295 regs[BPF_REG_0].id = id;
9296 /* For release_reference() */
9297 regs[BPF_REG_0].ref_obj_id = id;
9298 }
1b986589 9299
849fa506
YS
9300 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9301
61bd5218 9302 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
9303 if (err)
9304 return err;
04fd61ab 9305
fa28dcb8
SL
9306 if ((func_id == BPF_FUNC_get_stack ||
9307 func_id == BPF_FUNC_get_task_stack) &&
9308 !env->prog->has_callchain_buf) {
c195651e
YS
9309 const char *err_str;
9310
9311#ifdef CONFIG_PERF_EVENTS
9312 err = get_callchain_buffers(sysctl_perf_event_max_stack);
9313 err_str = "cannot get callchain buffer for func %s#%d\n";
9314#else
9315 err = -ENOTSUPP;
9316 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9317#endif
9318 if (err) {
9319 verbose(env, err_str, func_id_name(func_id), func_id);
9320 return err;
9321 }
9322
9323 env->prog->has_callchain_buf = true;
9324 }
9325
5d99cb2c
SL
9326 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9327 env->prog->call_get_stack = true;
9328
9b99edca
JO
9329 if (func_id == BPF_FUNC_get_func_ip) {
9330 if (check_get_func_ip(env))
9331 return -ENOTSUPP;
9332 env->prog->call_get_func_ip = true;
9333 }
9334
969bf05e
AS
9335 if (changes_data)
9336 clear_all_pkt_pointers(env);
9337 return 0;
9338}
9339
e6ac2450
MKL
9340/* mark_btf_func_reg_size() is used when the reg size is determined by
9341 * the BTF func_proto's return value size and argument.
9342 */
9343static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9344 size_t reg_size)
9345{
9346 struct bpf_reg_state *reg = &cur_regs(env)[regno];
9347
9348 if (regno == BPF_REG_0) {
9349 /* Function return value */
9350 reg->live |= REG_LIVE_WRITTEN;
9351 reg->subreg_def = reg_size == sizeof(u64) ?
9352 DEF_NOT_SUBREG : env->insn_idx + 1;
9353 } else {
9354 /* Function argument */
9355 if (reg_size == sizeof(u64)) {
9356 mark_insn_zext(env, reg);
9357 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9358 } else {
9359 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9360 }
9361 }
9362}
9363
00b85860
KKD
9364static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9365{
9366 return meta->kfunc_flags & KF_ACQUIRE;
9367}
a5d82727 9368
00b85860
KKD
9369static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
9370{
9371 return meta->kfunc_flags & KF_RET_NULL;
9372}
2357672c 9373
00b85860
KKD
9374static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9375{
9376 return meta->kfunc_flags & KF_RELEASE;
9377}
e6ac2450 9378
00b85860
KKD
9379static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9380{
6c831c46 9381 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
00b85860 9382}
4dd48c6f 9383
00b85860
KKD
9384static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9385{
9386 return meta->kfunc_flags & KF_SLEEPABLE;
9387}
5c073f26 9388
00b85860
KKD
9389static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9390{
9391 return meta->kfunc_flags & KF_DESTRUCTIVE;
9392}
eb1f7f71 9393
fca1aa75
YS
9394static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9395{
9396 return meta->kfunc_flags & KF_RCU;
9397}
9398
a50388db
KKD
9399static bool __kfunc_param_match_suffix(const struct btf *btf,
9400 const struct btf_param *arg,
9401 const char *suffix)
00b85860 9402{
a50388db 9403 int suffix_len = strlen(suffix), len;
00b85860 9404 const char *param_name;
e6ac2450 9405
00b85860
KKD
9406 /* In the future, this can be ported to use BTF tagging */
9407 param_name = btf_name_by_offset(btf, arg->name_off);
9408 if (str_is_empty(param_name))
9409 return false;
9410 len = strlen(param_name);
a50388db 9411 if (len < suffix_len)
00b85860 9412 return false;
a50388db
KKD
9413 param_name += len - suffix_len;
9414 return !strncmp(param_name, suffix, suffix_len);
9415}
5c073f26 9416
a50388db
KKD
9417static bool is_kfunc_arg_mem_size(const struct btf *btf,
9418 const struct btf_param *arg,
9419 const struct bpf_reg_state *reg)
9420{
9421 const struct btf_type *t;
5c073f26 9422
a50388db
KKD
9423 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9424 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860 9425 return false;
eb1f7f71 9426
a50388db
KKD
9427 return __kfunc_param_match_suffix(btf, arg, "__sz");
9428}
eb1f7f71 9429
66e3a13e
JK
9430static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9431 const struct btf_param *arg,
9432 const struct bpf_reg_state *reg)
9433{
9434 const struct btf_type *t;
9435
9436 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9437 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9438 return false;
9439
9440 return __kfunc_param_match_suffix(btf, arg, "__szk");
9441}
9442
a50388db
KKD
9443static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9444{
9445 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860 9446}
eb1f7f71 9447
958cf2e2
KKD
9448static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9449{
9450 return __kfunc_param_match_suffix(btf, arg, "__ign");
9451}
5c073f26 9452
ac9f0605
KKD
9453static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9454{
9455 return __kfunc_param_match_suffix(btf, arg, "__alloc");
9456}
e6ac2450 9457
d96d937d
JK
9458static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9459{
9460 return __kfunc_param_match_suffix(btf, arg, "__uninit");
9461}
9462
7c50b1cb
DM
9463static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
9464{
9465 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
9466}
9467
00b85860
KKD
9468static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9469 const struct btf_param *arg,
9470 const char *name)
9471{
9472 int len, target_len = strlen(name);
9473 const char *param_name;
e6ac2450 9474
00b85860
KKD
9475 param_name = btf_name_by_offset(btf, arg->name_off);
9476 if (str_is_empty(param_name))
9477 return false;
9478 len = strlen(param_name);
9479 if (len != target_len)
9480 return false;
9481 if (strcmp(param_name, name))
9482 return false;
e6ac2450 9483
00b85860 9484 return true;
e6ac2450
MKL
9485}
9486
00b85860
KKD
9487enum {
9488 KF_ARG_DYNPTR_ID,
8cab76ec
KKD
9489 KF_ARG_LIST_HEAD_ID,
9490 KF_ARG_LIST_NODE_ID,
cd6791b4
DM
9491 KF_ARG_RB_ROOT_ID,
9492 KF_ARG_RB_NODE_ID,
00b85860 9493};
b03c9f9f 9494
00b85860
KKD
9495BTF_ID_LIST(kf_arg_btf_ids)
9496BTF_ID(struct, bpf_dynptr_kern)
8cab76ec
KKD
9497BTF_ID(struct, bpf_list_head)
9498BTF_ID(struct, bpf_list_node)
bd1279ae
DM
9499BTF_ID(struct, bpf_rb_root)
9500BTF_ID(struct, bpf_rb_node)
b03c9f9f 9501
8cab76ec
KKD
9502static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9503 const struct btf_param *arg, int type)
3f50f132 9504{
00b85860
KKD
9505 const struct btf_type *t;
9506 u32 res_id;
3f50f132 9507
00b85860
KKD
9508 t = btf_type_skip_modifiers(btf, arg->type, NULL);
9509 if (!t)
9510 return false;
9511 if (!btf_type_is_ptr(t))
9512 return false;
9513 t = btf_type_skip_modifiers(btf, t->type, &res_id);
9514 if (!t)
9515 return false;
8cab76ec 9516 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
3f50f132
JF
9517}
9518
8cab76ec 9519static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
b03c9f9f 9520{
8cab76ec 9521 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
969bf05e
AS
9522}
9523
8cab76ec 9524static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
3f50f132 9525{
8cab76ec 9526 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
3f50f132
JF
9527}
9528
8cab76ec 9529static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
bb7f0f98 9530{
8cab76ec 9531 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
00b85860
KKD
9532}
9533
cd6791b4
DM
9534static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9535{
9536 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9537}
9538
9539static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9540{
9541 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9542}
9543
5d92ddc3
DM
9544static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
9545 const struct btf_param *arg)
9546{
9547 const struct btf_type *t;
9548
9549 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
9550 if (!t)
9551 return false;
9552
9553 return true;
9554}
9555
00b85860
KKD
9556/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
9557static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
9558 const struct btf *btf,
9559 const struct btf_type *t, int rec)
9560{
9561 const struct btf_type *member_type;
9562 const struct btf_member *member;
9563 u32 i;
9564
9565 if (!btf_type_is_struct(t))
9566 return false;
9567
9568 for_each_member(i, t, member) {
9569 const struct btf_array *array;
9570
9571 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
9572 if (btf_type_is_struct(member_type)) {
9573 if (rec >= 3) {
9574 verbose(env, "max struct nesting depth exceeded\n");
9575 return false;
9576 }
9577 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
9578 return false;
9579 continue;
9580 }
9581 if (btf_type_is_array(member_type)) {
9582 array = btf_array(member_type);
9583 if (!array->nelems)
9584 return false;
9585 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
9586 if (!btf_type_is_scalar(member_type))
9587 return false;
9588 continue;
9589 }
9590 if (!btf_type_is_scalar(member_type))
9591 return false;
9592 }
9593 return true;
9594}
9595
9596
9597static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
9598#ifdef CONFIG_NET
9599 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
9600 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9601 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9602#endif
9603};
9604
9605enum kfunc_ptr_arg_type {
9606 KF_ARG_PTR_TO_CTX,
7c50b1cb
DM
9607 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
9608 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
00b85860 9609 KF_ARG_PTR_TO_DYNPTR,
06accc87 9610 KF_ARG_PTR_TO_ITER,
8cab76ec
KKD
9611 KF_ARG_PTR_TO_LIST_HEAD,
9612 KF_ARG_PTR_TO_LIST_NODE,
7c50b1cb 9613 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
00b85860 9614 KF_ARG_PTR_TO_MEM,
7c50b1cb 9615 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
5d92ddc3 9616 KF_ARG_PTR_TO_CALLBACK,
cd6791b4
DM
9617 KF_ARG_PTR_TO_RB_ROOT,
9618 KF_ARG_PTR_TO_RB_NODE,
00b85860
KKD
9619};
9620
ac9f0605
KKD
9621enum special_kfunc_type {
9622 KF_bpf_obj_new_impl,
9623 KF_bpf_obj_drop_impl,
7c50b1cb 9624 KF_bpf_refcount_acquire_impl,
d2dcc67d
DM
9625 KF_bpf_list_push_front_impl,
9626 KF_bpf_list_push_back_impl,
8cab76ec
KKD
9627 KF_bpf_list_pop_front,
9628 KF_bpf_list_pop_back,
fd264ca0 9629 KF_bpf_cast_to_kern_ctx,
a35b9af4 9630 KF_bpf_rdonly_cast,
9bb00b28
YS
9631 KF_bpf_rcu_read_lock,
9632 KF_bpf_rcu_read_unlock,
bd1279ae 9633 KF_bpf_rbtree_remove,
d2dcc67d 9634 KF_bpf_rbtree_add_impl,
bd1279ae 9635 KF_bpf_rbtree_first,
b5964b96 9636 KF_bpf_dynptr_from_skb,
05421aec 9637 KF_bpf_dynptr_from_xdp,
66e3a13e
JK
9638 KF_bpf_dynptr_slice,
9639 KF_bpf_dynptr_slice_rdwr,
361f129f 9640 KF_bpf_dynptr_clone,
ac9f0605
KKD
9641};
9642
9643BTF_SET_START(special_kfunc_set)
9644BTF_ID(func, bpf_obj_new_impl)
9645BTF_ID(func, bpf_obj_drop_impl)
7c50b1cb 9646BTF_ID(func, bpf_refcount_acquire_impl)
d2dcc67d
DM
9647BTF_ID(func, bpf_list_push_front_impl)
9648BTF_ID(func, bpf_list_push_back_impl)
8cab76ec
KKD
9649BTF_ID(func, bpf_list_pop_front)
9650BTF_ID(func, bpf_list_pop_back)
fd264ca0 9651BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 9652BTF_ID(func, bpf_rdonly_cast)
bd1279ae 9653BTF_ID(func, bpf_rbtree_remove)
d2dcc67d 9654BTF_ID(func, bpf_rbtree_add_impl)
bd1279ae 9655BTF_ID(func, bpf_rbtree_first)
b5964b96 9656BTF_ID(func, bpf_dynptr_from_skb)
05421aec 9657BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
9658BTF_ID(func, bpf_dynptr_slice)
9659BTF_ID(func, bpf_dynptr_slice_rdwr)
361f129f 9660BTF_ID(func, bpf_dynptr_clone)
ac9f0605
KKD
9661BTF_SET_END(special_kfunc_set)
9662
9663BTF_ID_LIST(special_kfunc_list)
9664BTF_ID(func, bpf_obj_new_impl)
9665BTF_ID(func, bpf_obj_drop_impl)
7c50b1cb 9666BTF_ID(func, bpf_refcount_acquire_impl)
d2dcc67d
DM
9667BTF_ID(func, bpf_list_push_front_impl)
9668BTF_ID(func, bpf_list_push_back_impl)
8cab76ec
KKD
9669BTF_ID(func, bpf_list_pop_front)
9670BTF_ID(func, bpf_list_pop_back)
fd264ca0 9671BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 9672BTF_ID(func, bpf_rdonly_cast)
9bb00b28
YS
9673BTF_ID(func, bpf_rcu_read_lock)
9674BTF_ID(func, bpf_rcu_read_unlock)
bd1279ae 9675BTF_ID(func, bpf_rbtree_remove)
d2dcc67d 9676BTF_ID(func, bpf_rbtree_add_impl)
bd1279ae 9677BTF_ID(func, bpf_rbtree_first)
b5964b96 9678BTF_ID(func, bpf_dynptr_from_skb)
05421aec 9679BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
9680BTF_ID(func, bpf_dynptr_slice)
9681BTF_ID(func, bpf_dynptr_slice_rdwr)
361f129f 9682BTF_ID(func, bpf_dynptr_clone)
9bb00b28
YS
9683
9684static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
9685{
9686 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
9687}
9688
9689static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
9690{
9691 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
9692}
ac9f0605 9693
00b85860
KKD
9694static enum kfunc_ptr_arg_type
9695get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
9696 struct bpf_kfunc_call_arg_meta *meta,
9697 const struct btf_type *t, const struct btf_type *ref_t,
9698 const char *ref_tname, const struct btf_param *args,
9699 int argno, int nargs)
9700{
9701 u32 regno = argno + 1;
9702 struct bpf_reg_state *regs = cur_regs(env);
9703 struct bpf_reg_state *reg = &regs[regno];
9704 bool arg_mem_size = false;
9705
fd264ca0
YS
9706 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
9707 return KF_ARG_PTR_TO_CTX;
9708
00b85860
KKD
9709 /* In this function, we verify the kfunc's BTF as per the argument type,
9710 * leaving the rest of the verification with respect to the register
9711 * type to our caller. When a set of conditions hold in the BTF type of
9712 * arguments, we resolve it to a known kfunc_ptr_arg_type.
9713 */
9714 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
9715 return KF_ARG_PTR_TO_CTX;
9716
ac9f0605
KKD
9717 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
9718 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
9719
7c50b1cb
DM
9720 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
9721 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
00b85860
KKD
9722
9723 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
9724 return KF_ARG_PTR_TO_DYNPTR;
9725
06accc87
AN
9726 if (is_kfunc_arg_iter(meta, argno))
9727 return KF_ARG_PTR_TO_ITER;
9728
8cab76ec
KKD
9729 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
9730 return KF_ARG_PTR_TO_LIST_HEAD;
9731
9732 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
9733 return KF_ARG_PTR_TO_LIST_NODE;
9734
cd6791b4
DM
9735 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
9736 return KF_ARG_PTR_TO_RB_ROOT;
9737
9738 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
9739 return KF_ARG_PTR_TO_RB_NODE;
9740
00b85860
KKD
9741 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
9742 if (!btf_type_is_struct(ref_t)) {
9743 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
9744 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9745 return -EINVAL;
9746 }
9747 return KF_ARG_PTR_TO_BTF_ID;
9748 }
9749
5d92ddc3
DM
9750 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
9751 return KF_ARG_PTR_TO_CALLBACK;
9752
66e3a13e
JK
9753
9754 if (argno + 1 < nargs &&
9755 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
9756 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
00b85860
KKD
9757 arg_mem_size = true;
9758
9759 /* This is the catch all argument type of register types supported by
9760 * check_helper_mem_access. However, we only allow when argument type is
9761 * pointer to scalar, or struct composed (recursively) of scalars. When
9762 * arg_mem_size is true, the pointer can be void *.
9763 */
9764 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
9765 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
9766 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
9767 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
9768 return -EINVAL;
9769 }
9770 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
9771}
9772
9773static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
9774 struct bpf_reg_state *reg,
9775 const struct btf_type *ref_t,
9776 const char *ref_tname, u32 ref_id,
9777 struct bpf_kfunc_call_arg_meta *meta,
9778 int argno)
9779{
9780 const struct btf_type *reg_ref_t;
9781 bool strict_type_match = false;
9782 const struct btf *reg_btf;
9783 const char *reg_ref_tname;
9784 u32 reg_ref_id;
9785
3f00c523 9786 if (base_type(reg->type) == PTR_TO_BTF_ID) {
00b85860
KKD
9787 reg_btf = reg->btf;
9788 reg_ref_id = reg->btf_id;
9789 } else {
9790 reg_btf = btf_vmlinux;
9791 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
9792 }
9793
b613d335
DV
9794 /* Enforce strict type matching for calls to kfuncs that are acquiring
9795 * or releasing a reference, or are no-cast aliases. We do _not_
9796 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
9797 * as we want to enable BPF programs to pass types that are bitwise
9798 * equivalent without forcing them to explicitly cast with something
9799 * like bpf_cast_to_kern_ctx().
9800 *
9801 * For example, say we had a type like the following:
9802 *
9803 * struct bpf_cpumask {
9804 * cpumask_t cpumask;
9805 * refcount_t usage;
9806 * };
9807 *
9808 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
9809 * to a struct cpumask, so it would be safe to pass a struct
9810 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
9811 *
9812 * The philosophy here is similar to how we allow scalars of different
9813 * types to be passed to kfuncs as long as the size is the same. The
9814 * only difference here is that we're simply allowing
9815 * btf_struct_ids_match() to walk the struct at the 0th offset, and
9816 * resolve types.
9817 */
9818 if (is_kfunc_acquire(meta) ||
9819 (is_kfunc_release(meta) && reg->ref_obj_id) ||
9820 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
00b85860
KKD
9821 strict_type_match = true;
9822
b613d335
DV
9823 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
9824
00b85860
KKD
9825 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
9826 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
9827 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
9828 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
9829 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
9830 btf_type_str(reg_ref_t), reg_ref_tname);
9831 return -EINVAL;
9832 }
9833 return 0;
9834}
9835
6a3cd331 9836static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
534e86bc 9837{
6a3cd331
DM
9838 struct bpf_verifier_state *state = env->cur_state;
9839
9840 if (!state->active_lock.ptr) {
9841 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
9842 return -EFAULT;
9843 }
9844
9845 if (type_flag(reg->type) & NON_OWN_REF) {
9846 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
9847 return -EFAULT;
9848 }
9849
9850 reg->type |= NON_OWN_REF;
9851 return 0;
9852}
9853
9854static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
9855{
9856 struct bpf_func_state *state, *unused;
534e86bc
KKD
9857 struct bpf_reg_state *reg;
9858 int i;
9859
6a3cd331
DM
9860 state = cur_func(env);
9861
534e86bc 9862 if (!ref_obj_id) {
6a3cd331
DM
9863 verbose(env, "verifier internal error: ref_obj_id is zero for "
9864 "owning -> non-owning conversion\n");
534e86bc
KKD
9865 return -EFAULT;
9866 }
6a3cd331 9867
534e86bc 9868 for (i = 0; i < state->acquired_refs; i++) {
6a3cd331
DM
9869 if (state->refs[i].id != ref_obj_id)
9870 continue;
9871
9872 /* Clear ref_obj_id here so release_reference doesn't clobber
9873 * the whole reg
9874 */
9875 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9876 if (reg->ref_obj_id == ref_obj_id) {
9877 reg->ref_obj_id = 0;
9878 ref_set_non_owning(env, reg);
534e86bc 9879 }
6a3cd331
DM
9880 }));
9881 return 0;
534e86bc 9882 }
6a3cd331 9883
534e86bc
KKD
9884 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
9885 return -EFAULT;
9886}
9887
8cab76ec
KKD
9888/* Implementation details:
9889 *
9890 * Each register points to some region of memory, which we define as an
9891 * allocation. Each allocation may embed a bpf_spin_lock which protects any
9892 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
9893 * allocation. The lock and the data it protects are colocated in the same
9894 * memory region.
9895 *
9896 * Hence, everytime a register holds a pointer value pointing to such
9897 * allocation, the verifier preserves a unique reg->id for it.
9898 *
9899 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
9900 * bpf_spin_lock is called.
9901 *
9902 * To enable this, lock state in the verifier captures two values:
9903 * active_lock.ptr = Register's type specific pointer
9904 * active_lock.id = A unique ID for each register pointer value
9905 *
9906 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
9907 * supported register types.
9908 *
9909 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
9910 * allocated objects is the reg->btf pointer.
9911 *
9912 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
9913 * can establish the provenance of the map value statically for each distinct
9914 * lookup into such maps. They always contain a single map value hence unique
9915 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
9916 *
9917 * So, in case of global variables, they use array maps with max_entries = 1,
9918 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
9919 * into the same map value as max_entries is 1, as described above).
9920 *
9921 * In case of inner map lookups, the inner map pointer has same map_ptr as the
9922 * outer map pointer (in verifier context), but each lookup into an inner map
9923 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
9924 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
9925 * will get different reg->id assigned to each lookup, hence different
9926 * active_lock.id.
9927 *
9928 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
9929 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
9930 * returned from bpf_obj_new. Each allocation receives a new reg->id.
9931 */
9932static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9933{
9934 void *ptr;
9935 u32 id;
9936
9937 switch ((int)reg->type) {
9938 case PTR_TO_MAP_VALUE:
9939 ptr = reg->map_ptr;
9940 break;
9941 case PTR_TO_BTF_ID | MEM_ALLOC:
9942 ptr = reg->btf;
9943 break;
9944 default:
9945 verbose(env, "verifier internal error: unknown reg type for lock check\n");
9946 return -EFAULT;
9947 }
9948 id = reg->id;
9949
9950 if (!env->cur_state->active_lock.ptr)
9951 return -EINVAL;
9952 if (env->cur_state->active_lock.ptr != ptr ||
9953 env->cur_state->active_lock.id != id) {
9954 verbose(env, "held lock and object are not in the same allocation\n");
9955 return -EINVAL;
9956 }
9957 return 0;
9958}
9959
9960static bool is_bpf_list_api_kfunc(u32 btf_id)
9961{
d2dcc67d
DM
9962 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
9963 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
8cab76ec
KKD
9964 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9965 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
9966}
9967
cd6791b4
DM
9968static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
9969{
d2dcc67d 9970 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
cd6791b4
DM
9971 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9972 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
9973}
9974
9975static bool is_bpf_graph_api_kfunc(u32 btf_id)
9976{
7c50b1cb
DM
9977 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
9978 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
cd6791b4
DM
9979}
9980
5d92ddc3
DM
9981static bool is_callback_calling_kfunc(u32 btf_id)
9982{
d2dcc67d 9983 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
5d92ddc3
DM
9984}
9985
9986static bool is_rbtree_lock_required_kfunc(u32 btf_id)
9987{
9988 return is_bpf_rbtree_api_kfunc(btf_id);
9989}
9990
cd6791b4
DM
9991static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
9992 enum btf_field_type head_field_type,
9993 u32 kfunc_btf_id)
9994{
9995 bool ret;
9996
9997 switch (head_field_type) {
9998 case BPF_LIST_HEAD:
9999 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10000 break;
10001 case BPF_RB_ROOT:
10002 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10003 break;
10004 default:
10005 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10006 btf_field_type_name(head_field_type));
10007 return false;
10008 }
10009
10010 if (!ret)
10011 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10012 btf_field_type_name(head_field_type));
10013 return ret;
10014}
10015
10016static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10017 enum btf_field_type node_field_type,
10018 u32 kfunc_btf_id)
8cab76ec 10019{
cd6791b4
DM
10020 bool ret;
10021
10022 switch (node_field_type) {
10023 case BPF_LIST_NODE:
d2dcc67d
DM
10024 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10025 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
cd6791b4
DM
10026 break;
10027 case BPF_RB_NODE:
10028 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
d2dcc67d 10029 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
cd6791b4
DM
10030 break;
10031 default:
10032 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10033 btf_field_type_name(node_field_type));
10034 return false;
10035 }
10036
10037 if (!ret)
10038 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10039 btf_field_type_name(node_field_type));
10040 return ret;
10041}
10042
10043static int
10044__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10045 struct bpf_reg_state *reg, u32 regno,
10046 struct bpf_kfunc_call_arg_meta *meta,
10047 enum btf_field_type head_field_type,
10048 struct btf_field **head_field)
10049{
10050 const char *head_type_name;
8cab76ec
KKD
10051 struct btf_field *field;
10052 struct btf_record *rec;
cd6791b4 10053 u32 head_off;
8cab76ec 10054
cd6791b4
DM
10055 if (meta->btf != btf_vmlinux) {
10056 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10057 return -EFAULT;
10058 }
10059
cd6791b4
DM
10060 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10061 return -EFAULT;
10062
10063 head_type_name = btf_field_type_name(head_field_type);
8cab76ec
KKD
10064 if (!tnum_is_const(reg->var_off)) {
10065 verbose(env,
cd6791b4
DM
10066 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10067 regno, head_type_name);
8cab76ec
KKD
10068 return -EINVAL;
10069 }
10070
10071 rec = reg_btf_record(reg);
cd6791b4
DM
10072 head_off = reg->off + reg->var_off.value;
10073 field = btf_record_find(rec, head_off, head_field_type);
8cab76ec 10074 if (!field) {
cd6791b4 10075 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
8cab76ec
KKD
10076 return -EINVAL;
10077 }
10078
10079 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10080 if (check_reg_allocation_locked(env, reg)) {
cd6791b4
DM
10081 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10082 rec->spin_lock_off, head_type_name);
8cab76ec
KKD
10083 return -EINVAL;
10084 }
10085
cd6791b4
DM
10086 if (*head_field) {
10087 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
8cab76ec
KKD
10088 return -EFAULT;
10089 }
cd6791b4 10090 *head_field = field;
8cab76ec
KKD
10091 return 0;
10092}
10093
cd6791b4 10094static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8cab76ec
KKD
10095 struct bpf_reg_state *reg, u32 regno,
10096 struct bpf_kfunc_call_arg_meta *meta)
10097{
cd6791b4
DM
10098 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10099 &meta->arg_list_head.field);
10100}
10101
10102static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10103 struct bpf_reg_state *reg, u32 regno,
10104 struct bpf_kfunc_call_arg_meta *meta)
10105{
10106 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10107 &meta->arg_rbtree_root.field);
10108}
10109
10110static int
10111__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10112 struct bpf_reg_state *reg, u32 regno,
10113 struct bpf_kfunc_call_arg_meta *meta,
10114 enum btf_field_type head_field_type,
10115 enum btf_field_type node_field_type,
10116 struct btf_field **node_field)
10117{
10118 const char *node_type_name;
8cab76ec
KKD
10119 const struct btf_type *et, *t;
10120 struct btf_field *field;
cd6791b4 10121 u32 node_off;
8cab76ec 10122
cd6791b4
DM
10123 if (meta->btf != btf_vmlinux) {
10124 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10125 return -EFAULT;
10126 }
10127
cd6791b4
DM
10128 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10129 return -EFAULT;
10130
10131 node_type_name = btf_field_type_name(node_field_type);
8cab76ec
KKD
10132 if (!tnum_is_const(reg->var_off)) {
10133 verbose(env,
cd6791b4
DM
10134 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10135 regno, node_type_name);
8cab76ec
KKD
10136 return -EINVAL;
10137 }
10138
cd6791b4
DM
10139 node_off = reg->off + reg->var_off.value;
10140 field = reg_find_field_offset(reg, node_off, node_field_type);
10141 if (!field || field->offset != node_off) {
10142 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
8cab76ec
KKD
10143 return -EINVAL;
10144 }
10145
cd6791b4 10146 field = *node_field;
8cab76ec 10147
30465003 10148 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
8cab76ec 10149 t = btf_type_by_id(reg->btf, reg->btf_id);
30465003
DM
10150 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10151 field->graph_root.value_btf_id, true)) {
cd6791b4 10152 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
8cab76ec 10153 "in struct %s, but arg is at offset=%d in struct %s\n",
cd6791b4
DM
10154 btf_field_type_name(head_field_type),
10155 btf_field_type_name(node_field_type),
30465003
DM
10156 field->graph_root.node_offset,
10157 btf_name_by_offset(field->graph_root.btf, et->name_off),
cd6791b4 10158 node_off, btf_name_by_offset(reg->btf, t->name_off));
8cab76ec
KKD
10159 return -EINVAL;
10160 }
10161
cd6791b4
DM
10162 if (node_off != field->graph_root.node_offset) {
10163 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10164 node_off, btf_field_type_name(node_field_type),
10165 field->graph_root.node_offset,
30465003 10166 btf_name_by_offset(field->graph_root.btf, et->name_off));
8cab76ec
KKD
10167 return -EINVAL;
10168 }
6a3cd331
DM
10169
10170 return 0;
8cab76ec
KKD
10171}
10172
cd6791b4
DM
10173static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10174 struct bpf_reg_state *reg, u32 regno,
10175 struct bpf_kfunc_call_arg_meta *meta)
10176{
10177 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10178 BPF_LIST_HEAD, BPF_LIST_NODE,
10179 &meta->arg_list_head.field);
10180}
10181
10182static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10183 struct bpf_reg_state *reg, u32 regno,
10184 struct bpf_kfunc_call_arg_meta *meta)
10185{
10186 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10187 BPF_RB_ROOT, BPF_RB_NODE,
10188 &meta->arg_rbtree_root.field);
10189}
10190
1d18feb2
JK
10191static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10192 int insn_idx)
00b85860
KKD
10193{
10194 const char *func_name = meta->func_name, *ref_tname;
10195 const struct btf *btf = meta->btf;
10196 const struct btf_param *args;
7c50b1cb 10197 struct btf_record *rec;
00b85860
KKD
10198 u32 i, nargs;
10199 int ret;
10200
10201 args = (const struct btf_param *)(meta->func_proto + 1);
10202 nargs = btf_type_vlen(meta->func_proto);
10203 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10204 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10205 MAX_BPF_FUNC_REG_ARGS);
10206 return -EINVAL;
10207 }
10208
10209 /* Check that BTF function arguments match actual types that the
10210 * verifier sees.
10211 */
10212 for (i = 0; i < nargs; i++) {
10213 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10214 const struct btf_type *t, *ref_t, *resolve_ret;
10215 enum bpf_arg_type arg_type = ARG_DONTCARE;
10216 u32 regno = i + 1, ref_id, type_size;
10217 bool is_ret_buf_sz = false;
10218 int kf_arg_type;
10219
10220 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
10221
10222 if (is_kfunc_arg_ignore(btf, &args[i]))
10223 continue;
10224
00b85860
KKD
10225 if (btf_type_is_scalar(t)) {
10226 if (reg->type != SCALAR_VALUE) {
10227 verbose(env, "R%d is not a scalar\n", regno);
10228 return -EINVAL;
10229 }
a50388db
KKD
10230
10231 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10232 if (meta->arg_constant.found) {
10233 verbose(env, "verifier internal error: only one constant argument permitted\n");
10234 return -EFAULT;
10235 }
10236 if (!tnum_is_const(reg->var_off)) {
10237 verbose(env, "R%d must be a known constant\n", regno);
10238 return -EINVAL;
10239 }
10240 ret = mark_chain_precision(env, regno);
10241 if (ret < 0)
10242 return ret;
10243 meta->arg_constant.found = true;
10244 meta->arg_constant.value = reg->var_off.value;
10245 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
10246 meta->r0_rdonly = true;
10247 is_ret_buf_sz = true;
10248 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10249 is_ret_buf_sz = true;
10250 }
10251
10252 if (is_ret_buf_sz) {
10253 if (meta->r0_size) {
10254 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10255 return -EINVAL;
10256 }
10257
10258 if (!tnum_is_const(reg->var_off)) {
10259 verbose(env, "R%d is not a const\n", regno);
10260 return -EINVAL;
10261 }
10262
10263 meta->r0_size = reg->var_off.value;
10264 ret = mark_chain_precision(env, regno);
10265 if (ret)
10266 return ret;
10267 }
10268 continue;
10269 }
10270
10271 if (!btf_type_is_ptr(t)) {
10272 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10273 return -EINVAL;
10274 }
10275
20c09d92 10276 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
caf713c3
DV
10277 (register_is_null(reg) || type_may_be_null(reg->type))) {
10278 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10279 return -EACCES;
10280 }
10281
00b85860
KKD
10282 if (reg->ref_obj_id) {
10283 if (is_kfunc_release(meta) && meta->ref_obj_id) {
10284 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10285 regno, reg->ref_obj_id,
10286 meta->ref_obj_id);
10287 return -EFAULT;
10288 }
10289 meta->ref_obj_id = reg->ref_obj_id;
10290 if (is_kfunc_release(meta))
10291 meta->release_regno = regno;
10292 }
10293
10294 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10295 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10296
10297 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10298 if (kf_arg_type < 0)
10299 return kf_arg_type;
10300
10301 switch (kf_arg_type) {
ac9f0605 10302 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860 10303 case KF_ARG_PTR_TO_BTF_ID:
fca1aa75 10304 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
00b85860 10305 break;
3f00c523
DV
10306
10307 if (!is_trusted_reg(reg)) {
fca1aa75
YS
10308 if (!is_kfunc_rcu(meta)) {
10309 verbose(env, "R%d must be referenced or trusted\n", regno);
10310 return -EINVAL;
10311 }
10312 if (!is_rcu_reg(reg)) {
10313 verbose(env, "R%d must be a rcu pointer\n", regno);
10314 return -EINVAL;
10315 }
00b85860 10316 }
fca1aa75 10317
00b85860
KKD
10318 fallthrough;
10319 case KF_ARG_PTR_TO_CTX:
10320 /* Trusted arguments have the same offset checks as release arguments */
10321 arg_type |= OBJ_RELEASE;
10322 break;
00b85860 10323 case KF_ARG_PTR_TO_DYNPTR:
06accc87 10324 case KF_ARG_PTR_TO_ITER:
8cab76ec
KKD
10325 case KF_ARG_PTR_TO_LIST_HEAD:
10326 case KF_ARG_PTR_TO_LIST_NODE:
cd6791b4
DM
10327 case KF_ARG_PTR_TO_RB_ROOT:
10328 case KF_ARG_PTR_TO_RB_NODE:
00b85860
KKD
10329 case KF_ARG_PTR_TO_MEM:
10330 case KF_ARG_PTR_TO_MEM_SIZE:
5d92ddc3 10331 case KF_ARG_PTR_TO_CALLBACK:
7c50b1cb 10332 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
00b85860
KKD
10333 /* Trusted by default */
10334 break;
10335 default:
10336 WARN_ON_ONCE(1);
10337 return -EFAULT;
10338 }
10339
10340 if (is_kfunc_release(meta) && reg->ref_obj_id)
10341 arg_type |= OBJ_RELEASE;
10342 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10343 if (ret < 0)
10344 return ret;
10345
10346 switch (kf_arg_type) {
10347 case KF_ARG_PTR_TO_CTX:
10348 if (reg->type != PTR_TO_CTX) {
10349 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10350 return -EINVAL;
10351 }
fd264ca0
YS
10352
10353 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10354 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10355 if (ret < 0)
10356 return -EINVAL;
10357 meta->ret_btf_id = ret;
10358 }
00b85860 10359 break;
ac9f0605
KKD
10360 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10361 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10362 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10363 return -EINVAL;
10364 }
10365 if (!reg->ref_obj_id) {
10366 verbose(env, "allocated object must be referenced\n");
10367 return -EINVAL;
10368 }
10369 if (meta->btf == btf_vmlinux &&
10370 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10371 meta->arg_obj_drop.btf = reg->btf;
10372 meta->arg_obj_drop.btf_id = reg->btf_id;
10373 }
10374 break;
00b85860 10375 case KF_ARG_PTR_TO_DYNPTR:
d96d937d
JK
10376 {
10377 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
361f129f 10378 int clone_ref_obj_id = 0;
d96d937d 10379
6b75bd3d 10380 if (reg->type != PTR_TO_STACK &&
27060531 10381 reg->type != CONST_PTR_TO_DYNPTR) {
6b75bd3d 10382 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
00b85860
KKD
10383 return -EINVAL;
10384 }
10385
d96d937d
JK
10386 if (reg->type == CONST_PTR_TO_DYNPTR)
10387 dynptr_arg_type |= MEM_RDONLY;
10388
10389 if (is_kfunc_arg_uninit(btf, &args[i]))
10390 dynptr_arg_type |= MEM_UNINIT;
10391
361f129f 10392 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
b5964b96 10393 dynptr_arg_type |= DYNPTR_TYPE_SKB;
361f129f 10394 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
05421aec 10395 dynptr_arg_type |= DYNPTR_TYPE_XDP;
361f129f
JK
10396 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
10397 (dynptr_arg_type & MEM_UNINIT)) {
10398 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
10399
10400 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
10401 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
10402 return -EFAULT;
10403 }
10404
10405 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
10406 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
10407 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
10408 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
10409 return -EFAULT;
10410 }
10411 }
b5964b96 10412
361f129f 10413 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
6b75bd3d
KKD
10414 if (ret < 0)
10415 return ret;
66e3a13e
JK
10416
10417 if (!(dynptr_arg_type & MEM_UNINIT)) {
10418 int id = dynptr_id(env, reg);
10419
10420 if (id < 0) {
10421 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10422 return id;
10423 }
10424 meta->initialized_dynptr.id = id;
10425 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
361f129f 10426 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
66e3a13e
JK
10427 }
10428
00b85860 10429 break;
d96d937d 10430 }
06accc87
AN
10431 case KF_ARG_PTR_TO_ITER:
10432 ret = process_iter_arg(env, regno, insn_idx, meta);
10433 if (ret < 0)
10434 return ret;
10435 break;
8cab76ec
KKD
10436 case KF_ARG_PTR_TO_LIST_HEAD:
10437 if (reg->type != PTR_TO_MAP_VALUE &&
10438 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10439 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10440 return -EINVAL;
10441 }
10442 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10443 verbose(env, "allocated object must be referenced\n");
10444 return -EINVAL;
10445 }
10446 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10447 if (ret < 0)
10448 return ret;
10449 break;
cd6791b4
DM
10450 case KF_ARG_PTR_TO_RB_ROOT:
10451 if (reg->type != PTR_TO_MAP_VALUE &&
10452 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10453 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10454 return -EINVAL;
10455 }
10456 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10457 verbose(env, "allocated object must be referenced\n");
10458 return -EINVAL;
10459 }
10460 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10461 if (ret < 0)
10462 return ret;
10463 break;
8cab76ec
KKD
10464 case KF_ARG_PTR_TO_LIST_NODE:
10465 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10466 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10467 return -EINVAL;
10468 }
10469 if (!reg->ref_obj_id) {
10470 verbose(env, "allocated object must be referenced\n");
10471 return -EINVAL;
10472 }
10473 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10474 if (ret < 0)
10475 return ret;
10476 break;
cd6791b4 10477 case KF_ARG_PTR_TO_RB_NODE:
a40d3632
DM
10478 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10479 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10480 verbose(env, "rbtree_remove node input must be non-owning ref\n");
10481 return -EINVAL;
10482 }
10483 if (in_rbtree_lock_required_cb(env)) {
10484 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10485 return -EINVAL;
10486 }
10487 } else {
10488 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10489 verbose(env, "arg#%d expected pointer to allocated object\n", i);
10490 return -EINVAL;
10491 }
10492 if (!reg->ref_obj_id) {
10493 verbose(env, "allocated object must be referenced\n");
10494 return -EINVAL;
10495 }
cd6791b4 10496 }
a40d3632 10497
cd6791b4
DM
10498 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10499 if (ret < 0)
10500 return ret;
10501 break;
00b85860
KKD
10502 case KF_ARG_PTR_TO_BTF_ID:
10503 /* Only base_type is checked, further checks are done here */
3f00c523 10504 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
fca1aa75 10505 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
3f00c523
DV
10506 !reg2btf_ids[base_type(reg->type)]) {
10507 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10508 verbose(env, "expected %s or socket\n",
10509 reg_type_str(env, base_type(reg->type) |
10510 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
00b85860
KKD
10511 return -EINVAL;
10512 }
10513 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10514 if (ret < 0)
10515 return ret;
10516 break;
10517 case KF_ARG_PTR_TO_MEM:
10518 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10519 if (IS_ERR(resolve_ret)) {
10520 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10521 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10522 return -EINVAL;
10523 }
10524 ret = check_mem_reg(env, reg, regno, type_size);
10525 if (ret < 0)
10526 return ret;
10527 break;
10528 case KF_ARG_PTR_TO_MEM_SIZE:
66e3a13e
JK
10529 {
10530 struct bpf_reg_state *size_reg = &regs[regno + 1];
10531 const struct btf_param *size_arg = &args[i + 1];
10532
10533 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
00b85860
KKD
10534 if (ret < 0) {
10535 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
10536 return ret;
10537 }
66e3a13e
JK
10538
10539 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
10540 if (meta->arg_constant.found) {
10541 verbose(env, "verifier internal error: only one constant argument permitted\n");
10542 return -EFAULT;
10543 }
10544 if (!tnum_is_const(size_reg->var_off)) {
10545 verbose(env, "R%d must be a known constant\n", regno + 1);
10546 return -EINVAL;
10547 }
10548 meta->arg_constant.found = true;
10549 meta->arg_constant.value = size_reg->var_off.value;
10550 }
10551
10552 /* Skip next '__sz' or '__szk' argument */
00b85860
KKD
10553 i++;
10554 break;
66e3a13e 10555 }
5d92ddc3
DM
10556 case KF_ARG_PTR_TO_CALLBACK:
10557 meta->subprogno = reg->subprogno;
10558 break;
7c50b1cb
DM
10559 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10560 if (!type_is_ptr_alloc_obj(reg->type) && !type_is_non_owning_ref(reg->type)) {
10561 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
10562 return -EINVAL;
10563 }
10564
10565 rec = reg_btf_record(reg);
10566 if (!rec) {
10567 verbose(env, "verifier internal error: Couldn't find btf_record\n");
10568 return -EFAULT;
10569 }
10570
10571 if (rec->refcount_off < 0) {
10572 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
10573 return -EINVAL;
10574 }
7deca5ea
DM
10575 if (rec->refcount_off >= 0) {
10576 verbose(env, "bpf_refcount_acquire calls are disabled for now\n");
10577 return -EINVAL;
10578 }
7c50b1cb
DM
10579 meta->arg_refcount_acquire.btf = reg->btf;
10580 meta->arg_refcount_acquire.btf_id = reg->btf_id;
10581 break;
00b85860
KKD
10582 }
10583 }
10584
10585 if (is_kfunc_release(meta) && !meta->release_regno) {
10586 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
10587 func_name);
10588 return -EINVAL;
10589 }
10590
10591 return 0;
10592}
10593
07236eab
AN
10594static int fetch_kfunc_meta(struct bpf_verifier_env *env,
10595 struct bpf_insn *insn,
10596 struct bpf_kfunc_call_arg_meta *meta,
10597 const char **kfunc_name)
e6ac2450 10598{
07236eab
AN
10599 const struct btf_type *func, *func_proto;
10600 u32 func_id, *kfunc_flags;
10601 const char *func_name;
2357672c 10602 struct btf *desc_btf;
e6ac2450 10603
07236eab
AN
10604 if (kfunc_name)
10605 *kfunc_name = NULL;
10606
a5d82727 10607 if (!insn->imm)
07236eab 10608 return -EINVAL;
a5d82727 10609
43bf0878 10610 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
10611 if (IS_ERR(desc_btf))
10612 return PTR_ERR(desc_btf);
10613
e6ac2450 10614 func_id = insn->imm;
2357672c
KKD
10615 func = btf_type_by_id(desc_btf, func_id);
10616 func_name = btf_name_by_offset(desc_btf, func->name_off);
07236eab
AN
10617 if (kfunc_name)
10618 *kfunc_name = func_name;
2357672c 10619 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 10620
a4703e31
KKD
10621 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
10622 if (!kfunc_flags) {
e6ac2450
MKL
10623 return -EACCES;
10624 }
00b85860 10625
07236eab
AN
10626 memset(meta, 0, sizeof(*meta));
10627 meta->btf = desc_btf;
10628 meta->func_id = func_id;
10629 meta->kfunc_flags = *kfunc_flags;
10630 meta->func_proto = func_proto;
10631 meta->func_name = func_name;
10632
10633 return 0;
10634}
10635
10636static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10637 int *insn_idx_p)
10638{
10639 const struct btf_type *t, *ptr_type;
10640 u32 i, nargs, ptr_type_id, release_ref_obj_id;
10641 struct bpf_reg_state *regs = cur_regs(env);
10642 const char *func_name, *ptr_type_name;
10643 bool sleepable, rcu_lock, rcu_unlock;
10644 struct bpf_kfunc_call_arg_meta meta;
10645 struct bpf_insn_aux_data *insn_aux;
10646 int err, insn_idx = *insn_idx_p;
10647 const struct btf_param *args;
10648 const struct btf_type *ret_t;
10649 struct btf *desc_btf;
10650
10651 /* skip for now, but return error when we find this in fixup_kfunc_call */
10652 if (!insn->imm)
10653 return 0;
10654
10655 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
10656 if (err == -EACCES && func_name)
10657 verbose(env, "calling kernel function %s is not allowed\n", func_name);
10658 if (err)
10659 return err;
10660 desc_btf = meta.btf;
10661 insn_aux = &env->insn_aux_data[insn_idx];
00b85860 10662
06accc87
AN
10663 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
10664
00b85860
KKD
10665 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
10666 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
10667 return -EACCES;
10668 }
10669
9bb00b28
YS
10670 sleepable = is_kfunc_sleepable(&meta);
10671 if (sleepable && !env->prog->aux->sleepable) {
00b85860
KKD
10672 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
10673 return -EACCES;
10674 }
eb1f7f71 10675
9bb00b28
YS
10676 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
10677 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9bb00b28
YS
10678
10679 if (env->cur_state->active_rcu_lock) {
10680 struct bpf_func_state *state;
10681 struct bpf_reg_state *reg;
10682
10683 if (rcu_lock) {
10684 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
10685 return -EINVAL;
10686 } else if (rcu_unlock) {
10687 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10688 if (reg->type & MEM_RCU) {
fca1aa75 10689 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9bb00b28
YS
10690 reg->type |= PTR_UNTRUSTED;
10691 }
10692 }));
10693 env->cur_state->active_rcu_lock = false;
10694 } else if (sleepable) {
10695 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
10696 return -EACCES;
10697 }
10698 } else if (rcu_lock) {
10699 env->cur_state->active_rcu_lock = true;
10700 } else if (rcu_unlock) {
10701 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
10702 return -EINVAL;
10703 }
10704
e6ac2450 10705 /* Check the arguments */
1d18feb2 10706 err = check_kfunc_args(env, &meta, insn_idx);
5c073f26 10707 if (err < 0)
e6ac2450 10708 return err;
5c073f26 10709 /* In case of release function, we get register number of refcounted
00b85860 10710 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 10711 */
00b85860
KKD
10712 if (meta.release_regno) {
10713 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
10714 if (err) {
10715 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 10716 func_name, meta.func_id);
5c073f26
KKD
10717 return err;
10718 }
10719 }
e6ac2450 10720
d2dcc67d
DM
10721 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10722 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10723 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
6a3cd331 10724 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
d2dcc67d 10725 insn_aux->insert_off = regs[BPF_REG_2].off;
6a3cd331
DM
10726 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
10727 if (err) {
10728 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
07236eab 10729 func_name, meta.func_id);
6a3cd331
DM
10730 return err;
10731 }
10732
10733 err = release_reference(env, release_ref_obj_id);
10734 if (err) {
10735 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 10736 func_name, meta.func_id);
6a3cd331
DM
10737 return err;
10738 }
10739 }
10740
d2dcc67d 10741 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
5d92ddc3
DM
10742 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10743 set_rbtree_add_callback_state);
10744 if (err) {
10745 verbose(env, "kfunc %s#%d failed callback verification\n",
07236eab 10746 func_name, meta.func_id);
5d92ddc3
DM
10747 return err;
10748 }
10749 }
10750
e6ac2450
MKL
10751 for (i = 0; i < CALLER_SAVED_REGS; i++)
10752 mark_reg_not_init(env, regs, caller_saved[i]);
10753
10754 /* Check return type */
07236eab 10755 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
5c073f26 10756
00b85860 10757 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2 10758 /* Only exception is bpf_obj_new_impl */
7c50b1cb
DM
10759 if (meta.btf != btf_vmlinux ||
10760 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
10761 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
958cf2e2
KKD
10762 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
10763 return -EINVAL;
10764 }
5c073f26
KKD
10765 }
10766
e6ac2450
MKL
10767 if (btf_type_is_scalar(t)) {
10768 mark_reg_unknown(env, regs, BPF_REG_0);
10769 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
10770 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
10771 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
10772
10773 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10774 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
958cf2e2
KKD
10775 struct btf *ret_btf;
10776 u32 ret_btf_id;
10777
e181d3f1
KKD
10778 if (unlikely(!bpf_global_ma_set))
10779 return -ENOMEM;
10780
958cf2e2
KKD
10781 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
10782 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
10783 return -EINVAL;
10784 }
10785
10786 ret_btf = env->prog->aux->btf;
10787 ret_btf_id = meta.arg_constant.value;
10788
10789 /* This may be NULL due to user not supplying a BTF */
10790 if (!ret_btf) {
10791 verbose(env, "bpf_obj_new requires prog BTF\n");
10792 return -EINVAL;
10793 }
10794
10795 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
10796 if (!ret_t || !__btf_type_is_struct(ret_t)) {
10797 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
10798 return -EINVAL;
10799 }
10800
10801 mark_reg_known_zero(env, regs, BPF_REG_0);
10802 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
10803 regs[BPF_REG_0].btf = ret_btf;
10804 regs[BPF_REG_0].btf_id = ret_btf_id;
10805
07236eab
AN
10806 insn_aux->obj_new_size = ret_t->size;
10807 insn_aux->kptr_struct_meta =
958cf2e2 10808 btf_find_struct_meta(ret_btf, ret_btf_id);
7c50b1cb
DM
10809 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
10810 mark_reg_known_zero(env, regs, BPF_REG_0);
10811 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
10812 regs[BPF_REG_0].btf = meta.arg_refcount_acquire.btf;
10813 regs[BPF_REG_0].btf_id = meta.arg_refcount_acquire.btf_id;
10814
10815 insn_aux->kptr_struct_meta =
10816 btf_find_struct_meta(meta.arg_refcount_acquire.btf,
10817 meta.arg_refcount_acquire.btf_id);
8cab76ec
KKD
10818 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10819 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
10820 struct btf_field *field = meta.arg_list_head.field;
10821
a40d3632
DM
10822 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10823 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10824 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10825 struct btf_field *field = meta.arg_rbtree_root.field;
10826
10827 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
fd264ca0
YS
10828 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10829 mark_reg_known_zero(env, regs, BPF_REG_0);
10830 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
10831 regs[BPF_REG_0].btf = desc_btf;
10832 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
a35b9af4
YS
10833 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
10834 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
10835 if (!ret_t || !btf_type_is_struct(ret_t)) {
10836 verbose(env,
10837 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
10838 return -EINVAL;
10839 }
10840
10841 mark_reg_known_zero(env, regs, BPF_REG_0);
10842 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
10843 regs[BPF_REG_0].btf = desc_btf;
10844 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
66e3a13e
JK
10845 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
10846 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
10847 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
10848
10849 mark_reg_known_zero(env, regs, BPF_REG_0);
10850
10851 if (!meta.arg_constant.found) {
10852 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
10853 return -EFAULT;
10854 }
10855
10856 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
10857
10858 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
10859 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
10860
10861 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
10862 regs[BPF_REG_0].type |= MEM_RDONLY;
10863 } else {
10864 /* this will set env->seen_direct_write to true */
10865 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
10866 verbose(env, "the prog does not allow writes to packet data\n");
10867 return -EINVAL;
10868 }
10869 }
10870
10871 if (!meta.initialized_dynptr.id) {
10872 verbose(env, "verifier internal error: no dynptr id\n");
10873 return -EFAULT;
10874 }
10875 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
10876
10877 /* we don't need to set BPF_REG_0's ref obj id
10878 * because packet slices are not refcounted (see
10879 * dynptr_type_refcounted)
10880 */
958cf2e2
KKD
10881 } else {
10882 verbose(env, "kernel function %s unhandled dynamic return type\n",
10883 meta.func_name);
10884 return -EFAULT;
10885 }
10886 } else if (!__btf_type_is_struct(ptr_type)) {
f4b4eee6
AN
10887 if (!meta.r0_size) {
10888 __u32 sz;
10889
10890 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
10891 meta.r0_size = sz;
10892 meta.r0_rdonly = true;
10893 }
10894 }
eb1f7f71
BT
10895 if (!meta.r0_size) {
10896 ptr_type_name = btf_name_by_offset(desc_btf,
10897 ptr_type->name_off);
10898 verbose(env,
10899 "kernel function %s returns pointer type %s %s is not supported\n",
10900 func_name,
10901 btf_type_str(ptr_type),
10902 ptr_type_name);
10903 return -EINVAL;
10904 }
10905
10906 mark_reg_known_zero(env, regs, BPF_REG_0);
10907 regs[BPF_REG_0].type = PTR_TO_MEM;
10908 regs[BPF_REG_0].mem_size = meta.r0_size;
10909
10910 if (meta.r0_rdonly)
10911 regs[BPF_REG_0].type |= MEM_RDONLY;
10912
10913 /* Ensures we don't access the memory after a release_reference() */
10914 if (meta.ref_obj_id)
10915 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10916 } else {
10917 mark_reg_known_zero(env, regs, BPF_REG_0);
10918 regs[BPF_REG_0].btf = desc_btf;
10919 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
10920 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 10921 }
958cf2e2 10922
00b85860 10923 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
10924 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
10925 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
10926 regs[BPF_REG_0].id = ++env->id_gen;
10927 }
e6ac2450 10928 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 10929 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
10930 int id = acquire_reference_state(env, insn_idx);
10931
10932 if (id < 0)
10933 return id;
00b85860
KKD
10934 if (is_kfunc_ret_null(&meta))
10935 regs[BPF_REG_0].id = id;
5c073f26 10936 regs[BPF_REG_0].ref_obj_id = id;
a40d3632
DM
10937 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10938 ref_set_non_owning(env, &regs[BPF_REG_0]);
5c073f26 10939 }
a40d3632 10940
00b85860
KKD
10941 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
10942 regs[BPF_REG_0].id = ++env->id_gen;
f6a6a5a9
DM
10943 } else if (btf_type_is_void(t)) {
10944 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10945 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10946 insn_aux->kptr_struct_meta =
10947 btf_find_struct_meta(meta.arg_obj_drop.btf,
10948 meta.arg_obj_drop.btf_id);
10949 }
10950 }
10951 }
e6ac2450 10952
07236eab
AN
10953 nargs = btf_type_vlen(meta.func_proto);
10954 args = (const struct btf_param *)(meta.func_proto + 1);
e6ac2450
MKL
10955 for (i = 0; i < nargs; i++) {
10956 u32 regno = i + 1;
10957
2357672c 10958 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
10959 if (btf_type_is_ptr(t))
10960 mark_btf_func_reg_size(env, regno, sizeof(void *));
10961 else
10962 /* scalar. ensured by btf_check_kfunc_arg_match() */
10963 mark_btf_func_reg_size(env, regno, t->size);
10964 }
10965
06accc87
AN
10966 if (is_iter_next_kfunc(&meta)) {
10967 err = process_iter_next_call(env, insn_idx, &meta);
10968 if (err)
10969 return err;
10970 }
10971
e6ac2450
MKL
10972 return 0;
10973}
10974
b03c9f9f
EC
10975static bool signed_add_overflows(s64 a, s64 b)
10976{
10977 /* Do the add in u64, where overflow is well-defined */
10978 s64 res = (s64)((u64)a + (u64)b);
10979
10980 if (b < 0)
10981 return res > a;
10982 return res < a;
10983}
10984
bc895e8b 10985static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
10986{
10987 /* Do the add in u32, where overflow is well-defined */
10988 s32 res = (s32)((u32)a + (u32)b);
10989
10990 if (b < 0)
10991 return res > a;
10992 return res < a;
10993}
10994
bc895e8b 10995static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
10996{
10997 /* Do the sub in u64, where overflow is well-defined */
10998 s64 res = (s64)((u64)a - (u64)b);
10999
11000 if (b < 0)
11001 return res < a;
11002 return res > a;
969bf05e
AS
11003}
11004
3f50f132
JF
11005static bool signed_sub32_overflows(s32 a, s32 b)
11006{
bc895e8b 11007 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
11008 s32 res = (s32)((u32)a - (u32)b);
11009
11010 if (b < 0)
11011 return res < a;
11012 return res > a;
11013}
11014
bb7f0f98
AS
11015static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11016 const struct bpf_reg_state *reg,
11017 enum bpf_reg_type type)
11018{
11019 bool known = tnum_is_const(reg->var_off);
11020 s64 val = reg->var_off.value;
11021 s64 smin = reg->smin_value;
11022
11023 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11024 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 11025 reg_type_str(env, type), val);
bb7f0f98
AS
11026 return false;
11027 }
11028
11029 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11030 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 11031 reg_type_str(env, type), reg->off);
bb7f0f98
AS
11032 return false;
11033 }
11034
11035 if (smin == S64_MIN) {
11036 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 11037 reg_type_str(env, type));
bb7f0f98
AS
11038 return false;
11039 }
11040
11041 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11042 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 11043 smin, reg_type_str(env, type));
bb7f0f98
AS
11044 return false;
11045 }
11046
11047 return true;
11048}
11049
a6aaece0
DB
11050enum {
11051 REASON_BOUNDS = -1,
11052 REASON_TYPE = -2,
11053 REASON_PATHS = -3,
11054 REASON_LIMIT = -4,
11055 REASON_STACK = -5,
11056};
11057
979d63d5 11058static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 11059 u32 *alu_limit, bool mask_to_left)
979d63d5 11060{
7fedb63a 11061 u32 max = 0, ptr_limit = 0;
979d63d5
DB
11062
11063 switch (ptr_reg->type) {
11064 case PTR_TO_STACK:
1b1597e6 11065 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
11066 * left direction, see BPF_REG_FP. Also, unknown scalar
11067 * offset where we would need to deal with min/max bounds is
11068 * currently prohibited for unprivileged.
1b1597e6
PK
11069 */
11070 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 11071 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 11072 break;
979d63d5 11073 case PTR_TO_MAP_VALUE:
1b1597e6 11074 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
11075 ptr_limit = (mask_to_left ?
11076 ptr_reg->smin_value :
11077 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 11078 break;
979d63d5 11079 default:
a6aaece0 11080 return REASON_TYPE;
979d63d5 11081 }
b658bbb8
DB
11082
11083 if (ptr_limit >= max)
a6aaece0 11084 return REASON_LIMIT;
b658bbb8
DB
11085 *alu_limit = ptr_limit;
11086 return 0;
979d63d5
DB
11087}
11088
d3bd7413
DB
11089static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11090 const struct bpf_insn *insn)
11091{
2c78ee89 11092 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
11093}
11094
11095static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11096 u32 alu_state, u32 alu_limit)
11097{
11098 /* If we arrived here from different branches with different
11099 * state or limits to sanitize, then this won't work.
11100 */
11101 if (aux->alu_state &&
11102 (aux->alu_state != alu_state ||
11103 aux->alu_limit != alu_limit))
a6aaece0 11104 return REASON_PATHS;
d3bd7413 11105
e6ac5933 11106 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
11107 aux->alu_state = alu_state;
11108 aux->alu_limit = alu_limit;
11109 return 0;
11110}
11111
11112static int sanitize_val_alu(struct bpf_verifier_env *env,
11113 struct bpf_insn *insn)
11114{
11115 struct bpf_insn_aux_data *aux = cur_aux(env);
11116
11117 if (can_skip_alu_sanitation(env, insn))
11118 return 0;
11119
11120 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11121}
11122
f5288193
DB
11123static bool sanitize_needed(u8 opcode)
11124{
11125 return opcode == BPF_ADD || opcode == BPF_SUB;
11126}
11127
3d0220f6
DB
11128struct bpf_sanitize_info {
11129 struct bpf_insn_aux_data aux;
bb01a1bb 11130 bool mask_to_left;
3d0220f6
DB
11131};
11132
9183671a
DB
11133static struct bpf_verifier_state *
11134sanitize_speculative_path(struct bpf_verifier_env *env,
11135 const struct bpf_insn *insn,
11136 u32 next_idx, u32 curr_idx)
11137{
11138 struct bpf_verifier_state *branch;
11139 struct bpf_reg_state *regs;
11140
11141 branch = push_stack(env, next_idx, curr_idx, true);
11142 if (branch && insn) {
11143 regs = branch->frame[branch->curframe]->regs;
11144 if (BPF_SRC(insn->code) == BPF_K) {
11145 mark_reg_unknown(env, regs, insn->dst_reg);
11146 } else if (BPF_SRC(insn->code) == BPF_X) {
11147 mark_reg_unknown(env, regs, insn->dst_reg);
11148 mark_reg_unknown(env, regs, insn->src_reg);
11149 }
11150 }
11151 return branch;
11152}
11153
979d63d5
DB
11154static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11155 struct bpf_insn *insn,
11156 const struct bpf_reg_state *ptr_reg,
6f55b2f2 11157 const struct bpf_reg_state *off_reg,
979d63d5 11158 struct bpf_reg_state *dst_reg,
3d0220f6 11159 struct bpf_sanitize_info *info,
7fedb63a 11160 const bool commit_window)
979d63d5 11161{
3d0220f6 11162 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 11163 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 11164 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 11165 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
11166 bool ptr_is_dst_reg = ptr_reg == dst_reg;
11167 u8 opcode = BPF_OP(insn->code);
11168 u32 alu_state, alu_limit;
11169 struct bpf_reg_state tmp;
11170 bool ret;
f232326f 11171 int err;
979d63d5 11172
d3bd7413 11173 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
11174 return 0;
11175
11176 /* We already marked aux for masking from non-speculative
11177 * paths, thus we got here in the first place. We only care
11178 * to explore bad access from here.
11179 */
11180 if (vstate->speculative)
11181 goto do_sim;
11182
bb01a1bb
DB
11183 if (!commit_window) {
11184 if (!tnum_is_const(off_reg->var_off) &&
11185 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11186 return REASON_BOUNDS;
11187
11188 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
11189 (opcode == BPF_SUB && !off_is_neg);
11190 }
11191
11192 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
11193 if (err < 0)
11194 return err;
11195
7fedb63a
DB
11196 if (commit_window) {
11197 /* In commit phase we narrow the masking window based on
11198 * the observed pointer move after the simulated operation.
11199 */
3d0220f6
DB
11200 alu_state = info->aux.alu_state;
11201 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
11202 } else {
11203 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 11204 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
11205 alu_state |= ptr_is_dst_reg ?
11206 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
11207
11208 /* Limit pruning on unknown scalars to enable deep search for
11209 * potential masking differences from other program paths.
11210 */
11211 if (!off_is_imm)
11212 env->explore_alu_limits = true;
7fedb63a
DB
11213 }
11214
f232326f
PK
11215 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11216 if (err < 0)
11217 return err;
979d63d5 11218do_sim:
7fedb63a
DB
11219 /* If we're in commit phase, we're done here given we already
11220 * pushed the truncated dst_reg into the speculative verification
11221 * stack.
a7036191
DB
11222 *
11223 * Also, when register is a known constant, we rewrite register-based
11224 * operation to immediate-based, and thus do not need masking (and as
11225 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 11226 */
a7036191 11227 if (commit_window || off_is_imm)
7fedb63a
DB
11228 return 0;
11229
979d63d5
DB
11230 /* Simulate and find potential out-of-bounds access under
11231 * speculative execution from truncation as a result of
11232 * masking when off was not within expected range. If off
11233 * sits in dst, then we temporarily need to move ptr there
11234 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11235 * for cases where we use K-based arithmetic in one direction
11236 * and truncated reg-based in the other in order to explore
11237 * bad access.
11238 */
11239 if (!ptr_is_dst_reg) {
11240 tmp = *dst_reg;
71f656a5 11241 copy_register_state(dst_reg, ptr_reg);
979d63d5 11242 }
9183671a
DB
11243 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11244 env->insn_idx);
0803278b 11245 if (!ptr_is_dst_reg && ret)
979d63d5 11246 *dst_reg = tmp;
a6aaece0
DB
11247 return !ret ? REASON_STACK : 0;
11248}
11249
fe9a5ca7
DB
11250static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11251{
11252 struct bpf_verifier_state *vstate = env->cur_state;
11253
11254 /* If we simulate paths under speculation, we don't update the
11255 * insn as 'seen' such that when we verify unreachable paths in
11256 * the non-speculative domain, sanitize_dead_code() can still
11257 * rewrite/sanitize them.
11258 */
11259 if (!vstate->speculative)
11260 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11261}
11262
a6aaece0
DB
11263static int sanitize_err(struct bpf_verifier_env *env,
11264 const struct bpf_insn *insn, int reason,
11265 const struct bpf_reg_state *off_reg,
11266 const struct bpf_reg_state *dst_reg)
11267{
11268 static const char *err = "pointer arithmetic with it prohibited for !root";
11269 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11270 u32 dst = insn->dst_reg, src = insn->src_reg;
11271
11272 switch (reason) {
11273 case REASON_BOUNDS:
11274 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11275 off_reg == dst_reg ? dst : src, err);
11276 break;
11277 case REASON_TYPE:
11278 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11279 off_reg == dst_reg ? src : dst, err);
11280 break;
11281 case REASON_PATHS:
11282 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11283 dst, op, err);
11284 break;
11285 case REASON_LIMIT:
11286 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11287 dst, op, err);
11288 break;
11289 case REASON_STACK:
11290 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11291 dst, err);
11292 break;
11293 default:
11294 verbose(env, "verifier internal error: unknown reason (%d)\n",
11295 reason);
11296 break;
11297 }
11298
11299 return -EACCES;
979d63d5
DB
11300}
11301
01f810ac
AM
11302/* check that stack access falls within stack limits and that 'reg' doesn't
11303 * have a variable offset.
11304 *
11305 * Variable offset is prohibited for unprivileged mode for simplicity since it
11306 * requires corresponding support in Spectre masking for stack ALU. See also
11307 * retrieve_ptr_limit().
11308 *
11309 *
11310 * 'off' includes 'reg->off'.
11311 */
11312static int check_stack_access_for_ptr_arithmetic(
11313 struct bpf_verifier_env *env,
11314 int regno,
11315 const struct bpf_reg_state *reg,
11316 int off)
11317{
11318 if (!tnum_is_const(reg->var_off)) {
11319 char tn_buf[48];
11320
11321 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11322 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11323 regno, tn_buf, off);
11324 return -EACCES;
11325 }
11326
11327 if (off >= 0 || off < -MAX_BPF_STACK) {
11328 verbose(env, "R%d stack pointer arithmetic goes out of range, "
11329 "prohibited for !root; off=%d\n", regno, off);
11330 return -EACCES;
11331 }
11332
11333 return 0;
11334}
11335
073815b7
DB
11336static int sanitize_check_bounds(struct bpf_verifier_env *env,
11337 const struct bpf_insn *insn,
11338 const struct bpf_reg_state *dst_reg)
11339{
11340 u32 dst = insn->dst_reg;
11341
11342 /* For unprivileged we require that resulting offset must be in bounds
11343 * in order to be able to sanitize access later on.
11344 */
11345 if (env->bypass_spec_v1)
11346 return 0;
11347
11348 switch (dst_reg->type) {
11349 case PTR_TO_STACK:
11350 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11351 dst_reg->off + dst_reg->var_off.value))
11352 return -EACCES;
11353 break;
11354 case PTR_TO_MAP_VALUE:
61df10c7 11355 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
11356 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11357 "prohibited for !root\n", dst);
11358 return -EACCES;
11359 }
11360 break;
11361 default:
11362 break;
11363 }
11364
11365 return 0;
11366}
01f810ac 11367
f1174f77 11368/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
11369 * Caller should also handle BPF_MOV case separately.
11370 * If we return -EACCES, caller may want to try again treating pointer as a
11371 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
11372 */
11373static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11374 struct bpf_insn *insn,
11375 const struct bpf_reg_state *ptr_reg,
11376 const struct bpf_reg_state *off_reg)
969bf05e 11377{
f4d7e40a
AS
11378 struct bpf_verifier_state *vstate = env->cur_state;
11379 struct bpf_func_state *state = vstate->frame[vstate->curframe];
11380 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 11381 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
11382 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11383 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11384 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11385 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 11386 struct bpf_sanitize_info info = {};
969bf05e 11387 u8 opcode = BPF_OP(insn->code);
24c109bb 11388 u32 dst = insn->dst_reg;
979d63d5 11389 int ret;
969bf05e 11390
f1174f77 11391 dst_reg = &regs[dst];
969bf05e 11392
6f16101e
DB
11393 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11394 smin_val > smax_val || umin_val > umax_val) {
11395 /* Taint dst register if offset had invalid bounds derived from
11396 * e.g. dead branches.
11397 */
f54c7898 11398 __mark_reg_unknown(env, dst_reg);
6f16101e 11399 return 0;
f1174f77
EC
11400 }
11401
11402 if (BPF_CLASS(insn->code) != BPF_ALU64) {
11403 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
11404 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11405 __mark_reg_unknown(env, dst_reg);
11406 return 0;
11407 }
11408
82abbf8d
AS
11409 verbose(env,
11410 "R%d 32-bit pointer arithmetic prohibited\n",
11411 dst);
f1174f77 11412 return -EACCES;
969bf05e
AS
11413 }
11414
c25b2ae1 11415 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 11416 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 11417 dst, reg_type_str(env, ptr_reg->type));
f1174f77 11418 return -EACCES;
c25b2ae1
HL
11419 }
11420
11421 switch (base_type(ptr_reg->type)) {
aad2eeaf 11422 case CONST_PTR_TO_MAP:
7c696732
YS
11423 /* smin_val represents the known value */
11424 if (known && smin_val == 0 && opcode == BPF_ADD)
11425 break;
8731745e 11426 fallthrough;
aad2eeaf 11427 case PTR_TO_PACKET_END:
c64b7983 11428 case PTR_TO_SOCKET:
46f8bc92 11429 case PTR_TO_SOCK_COMMON:
655a51e5 11430 case PTR_TO_TCP_SOCK:
fada7fdc 11431 case PTR_TO_XDP_SOCK:
aad2eeaf 11432 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 11433 dst, reg_type_str(env, ptr_reg->type));
f1174f77 11434 return -EACCES;
aad2eeaf
JS
11435 default:
11436 break;
f1174f77
EC
11437 }
11438
11439 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11440 * The id may be overwritten later if we create a new variable offset.
969bf05e 11441 */
f1174f77
EC
11442 dst_reg->type = ptr_reg->type;
11443 dst_reg->id = ptr_reg->id;
969bf05e 11444
bb7f0f98
AS
11445 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11446 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11447 return -EINVAL;
11448
3f50f132
JF
11449 /* pointer types do not carry 32-bit bounds at the moment. */
11450 __mark_reg32_unbounded(dst_reg);
11451
7fedb63a
DB
11452 if (sanitize_needed(opcode)) {
11453 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 11454 &info, false);
a6aaece0
DB
11455 if (ret < 0)
11456 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 11457 }
a6aaece0 11458
f1174f77
EC
11459 switch (opcode) {
11460 case BPF_ADD:
11461 /* We can take a fixed offset as long as it doesn't overflow
11462 * the s32 'off' field
969bf05e 11463 */
b03c9f9f
EC
11464 if (known && (ptr_reg->off + smin_val ==
11465 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 11466 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
11467 dst_reg->smin_value = smin_ptr;
11468 dst_reg->smax_value = smax_ptr;
11469 dst_reg->umin_value = umin_ptr;
11470 dst_reg->umax_value = umax_ptr;
f1174f77 11471 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 11472 dst_reg->off = ptr_reg->off + smin_val;
0962590e 11473 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
11474 break;
11475 }
f1174f77
EC
11476 /* A new variable offset is created. Note that off_reg->off
11477 * == 0, since it's a scalar.
11478 * dst_reg gets the pointer type and since some positive
11479 * integer value was added to the pointer, give it a new 'id'
11480 * if it's a PTR_TO_PACKET.
11481 * this creates a new 'base' pointer, off_reg (variable) gets
11482 * added into the variable offset, and we copy the fixed offset
11483 * from ptr_reg.
969bf05e 11484 */
b03c9f9f
EC
11485 if (signed_add_overflows(smin_ptr, smin_val) ||
11486 signed_add_overflows(smax_ptr, smax_val)) {
11487 dst_reg->smin_value = S64_MIN;
11488 dst_reg->smax_value = S64_MAX;
11489 } else {
11490 dst_reg->smin_value = smin_ptr + smin_val;
11491 dst_reg->smax_value = smax_ptr + smax_val;
11492 }
11493 if (umin_ptr + umin_val < umin_ptr ||
11494 umax_ptr + umax_val < umax_ptr) {
11495 dst_reg->umin_value = 0;
11496 dst_reg->umax_value = U64_MAX;
11497 } else {
11498 dst_reg->umin_value = umin_ptr + umin_val;
11499 dst_reg->umax_value = umax_ptr + umax_val;
11500 }
f1174f77
EC
11501 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11502 dst_reg->off = ptr_reg->off;
0962590e 11503 dst_reg->raw = ptr_reg->raw;
de8f3a83 11504 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
11505 dst_reg->id = ++env->id_gen;
11506 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 11507 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
11508 }
11509 break;
11510 case BPF_SUB:
11511 if (dst_reg == off_reg) {
11512 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
11513 verbose(env, "R%d tried to subtract pointer from scalar\n",
11514 dst);
f1174f77
EC
11515 return -EACCES;
11516 }
11517 /* We don't allow subtraction from FP, because (according to
11518 * test_verifier.c test "invalid fp arithmetic", JITs might not
11519 * be able to deal with it.
969bf05e 11520 */
f1174f77 11521 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
11522 verbose(env, "R%d subtraction from stack pointer prohibited\n",
11523 dst);
f1174f77
EC
11524 return -EACCES;
11525 }
b03c9f9f
EC
11526 if (known && (ptr_reg->off - smin_val ==
11527 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 11528 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
11529 dst_reg->smin_value = smin_ptr;
11530 dst_reg->smax_value = smax_ptr;
11531 dst_reg->umin_value = umin_ptr;
11532 dst_reg->umax_value = umax_ptr;
f1174f77
EC
11533 dst_reg->var_off = ptr_reg->var_off;
11534 dst_reg->id = ptr_reg->id;
b03c9f9f 11535 dst_reg->off = ptr_reg->off - smin_val;
0962590e 11536 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
11537 break;
11538 }
f1174f77
EC
11539 /* A new variable offset is created. If the subtrahend is known
11540 * nonnegative, then any reg->range we had before is still good.
969bf05e 11541 */
b03c9f9f
EC
11542 if (signed_sub_overflows(smin_ptr, smax_val) ||
11543 signed_sub_overflows(smax_ptr, smin_val)) {
11544 /* Overflow possible, we know nothing */
11545 dst_reg->smin_value = S64_MIN;
11546 dst_reg->smax_value = S64_MAX;
11547 } else {
11548 dst_reg->smin_value = smin_ptr - smax_val;
11549 dst_reg->smax_value = smax_ptr - smin_val;
11550 }
11551 if (umin_ptr < umax_val) {
11552 /* Overflow possible, we know nothing */
11553 dst_reg->umin_value = 0;
11554 dst_reg->umax_value = U64_MAX;
11555 } else {
11556 /* Cannot overflow (as long as bounds are consistent) */
11557 dst_reg->umin_value = umin_ptr - umax_val;
11558 dst_reg->umax_value = umax_ptr - umin_val;
11559 }
f1174f77
EC
11560 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
11561 dst_reg->off = ptr_reg->off;
0962590e 11562 dst_reg->raw = ptr_reg->raw;
de8f3a83 11563 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
11564 dst_reg->id = ++env->id_gen;
11565 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 11566 if (smin_val < 0)
22dc4a0f 11567 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 11568 }
f1174f77
EC
11569 break;
11570 case BPF_AND:
11571 case BPF_OR:
11572 case BPF_XOR:
82abbf8d
AS
11573 /* bitwise ops on pointers are troublesome, prohibit. */
11574 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
11575 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
11576 return -EACCES;
11577 default:
11578 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
11579 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
11580 dst, bpf_alu_string[opcode >> 4]);
f1174f77 11581 return -EACCES;
43188702
JF
11582 }
11583
bb7f0f98
AS
11584 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
11585 return -EINVAL;
3844d153 11586 reg_bounds_sync(dst_reg);
073815b7
DB
11587 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
11588 return -EACCES;
7fedb63a
DB
11589 if (sanitize_needed(opcode)) {
11590 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 11591 &info, true);
7fedb63a
DB
11592 if (ret < 0)
11593 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
11594 }
11595
43188702
JF
11596 return 0;
11597}
11598
3f50f132
JF
11599static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
11600 struct bpf_reg_state *src_reg)
11601{
11602 s32 smin_val = src_reg->s32_min_value;
11603 s32 smax_val = src_reg->s32_max_value;
11604 u32 umin_val = src_reg->u32_min_value;
11605 u32 umax_val = src_reg->u32_max_value;
11606
11607 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
11608 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
11609 dst_reg->s32_min_value = S32_MIN;
11610 dst_reg->s32_max_value = S32_MAX;
11611 } else {
11612 dst_reg->s32_min_value += smin_val;
11613 dst_reg->s32_max_value += smax_val;
11614 }
11615 if (dst_reg->u32_min_value + umin_val < umin_val ||
11616 dst_reg->u32_max_value + umax_val < umax_val) {
11617 dst_reg->u32_min_value = 0;
11618 dst_reg->u32_max_value = U32_MAX;
11619 } else {
11620 dst_reg->u32_min_value += umin_val;
11621 dst_reg->u32_max_value += umax_val;
11622 }
11623}
11624
07cd2631
JF
11625static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
11626 struct bpf_reg_state *src_reg)
11627{
11628 s64 smin_val = src_reg->smin_value;
11629 s64 smax_val = src_reg->smax_value;
11630 u64 umin_val = src_reg->umin_value;
11631 u64 umax_val = src_reg->umax_value;
11632
11633 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
11634 signed_add_overflows(dst_reg->smax_value, smax_val)) {
11635 dst_reg->smin_value = S64_MIN;
11636 dst_reg->smax_value = S64_MAX;
11637 } else {
11638 dst_reg->smin_value += smin_val;
11639 dst_reg->smax_value += smax_val;
11640 }
11641 if (dst_reg->umin_value + umin_val < umin_val ||
11642 dst_reg->umax_value + umax_val < umax_val) {
11643 dst_reg->umin_value = 0;
11644 dst_reg->umax_value = U64_MAX;
11645 } else {
11646 dst_reg->umin_value += umin_val;
11647 dst_reg->umax_value += umax_val;
11648 }
3f50f132
JF
11649}
11650
11651static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
11652 struct bpf_reg_state *src_reg)
11653{
11654 s32 smin_val = src_reg->s32_min_value;
11655 s32 smax_val = src_reg->s32_max_value;
11656 u32 umin_val = src_reg->u32_min_value;
11657 u32 umax_val = src_reg->u32_max_value;
11658
11659 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
11660 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
11661 /* Overflow possible, we know nothing */
11662 dst_reg->s32_min_value = S32_MIN;
11663 dst_reg->s32_max_value = S32_MAX;
11664 } else {
11665 dst_reg->s32_min_value -= smax_val;
11666 dst_reg->s32_max_value -= smin_val;
11667 }
11668 if (dst_reg->u32_min_value < umax_val) {
11669 /* Overflow possible, we know nothing */
11670 dst_reg->u32_min_value = 0;
11671 dst_reg->u32_max_value = U32_MAX;
11672 } else {
11673 /* Cannot overflow (as long as bounds are consistent) */
11674 dst_reg->u32_min_value -= umax_val;
11675 dst_reg->u32_max_value -= umin_val;
11676 }
07cd2631
JF
11677}
11678
11679static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
11680 struct bpf_reg_state *src_reg)
11681{
11682 s64 smin_val = src_reg->smin_value;
11683 s64 smax_val = src_reg->smax_value;
11684 u64 umin_val = src_reg->umin_value;
11685 u64 umax_val = src_reg->umax_value;
11686
11687 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
11688 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
11689 /* Overflow possible, we know nothing */
11690 dst_reg->smin_value = S64_MIN;
11691 dst_reg->smax_value = S64_MAX;
11692 } else {
11693 dst_reg->smin_value -= smax_val;
11694 dst_reg->smax_value -= smin_val;
11695 }
11696 if (dst_reg->umin_value < umax_val) {
11697 /* Overflow possible, we know nothing */
11698 dst_reg->umin_value = 0;
11699 dst_reg->umax_value = U64_MAX;
11700 } else {
11701 /* Cannot overflow (as long as bounds are consistent) */
11702 dst_reg->umin_value -= umax_val;
11703 dst_reg->umax_value -= umin_val;
11704 }
3f50f132
JF
11705}
11706
11707static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
11708 struct bpf_reg_state *src_reg)
11709{
11710 s32 smin_val = src_reg->s32_min_value;
11711 u32 umin_val = src_reg->u32_min_value;
11712 u32 umax_val = src_reg->u32_max_value;
11713
11714 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
11715 /* Ain't nobody got time to multiply that sign */
11716 __mark_reg32_unbounded(dst_reg);
11717 return;
11718 }
11719 /* Both values are positive, so we can work with unsigned and
11720 * copy the result to signed (unless it exceeds S32_MAX).
11721 */
11722 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
11723 /* Potential overflow, we know nothing */
11724 __mark_reg32_unbounded(dst_reg);
11725 return;
11726 }
11727 dst_reg->u32_min_value *= umin_val;
11728 dst_reg->u32_max_value *= umax_val;
11729 if (dst_reg->u32_max_value > S32_MAX) {
11730 /* Overflow possible, we know nothing */
11731 dst_reg->s32_min_value = S32_MIN;
11732 dst_reg->s32_max_value = S32_MAX;
11733 } else {
11734 dst_reg->s32_min_value = dst_reg->u32_min_value;
11735 dst_reg->s32_max_value = dst_reg->u32_max_value;
11736 }
07cd2631
JF
11737}
11738
11739static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
11740 struct bpf_reg_state *src_reg)
11741{
11742 s64 smin_val = src_reg->smin_value;
11743 u64 umin_val = src_reg->umin_value;
11744 u64 umax_val = src_reg->umax_value;
11745
07cd2631
JF
11746 if (smin_val < 0 || dst_reg->smin_value < 0) {
11747 /* Ain't nobody got time to multiply that sign */
3f50f132 11748 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
11749 return;
11750 }
11751 /* Both values are positive, so we can work with unsigned and
11752 * copy the result to signed (unless it exceeds S64_MAX).
11753 */
11754 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
11755 /* Potential overflow, we know nothing */
3f50f132 11756 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
11757 return;
11758 }
11759 dst_reg->umin_value *= umin_val;
11760 dst_reg->umax_value *= umax_val;
11761 if (dst_reg->umax_value > S64_MAX) {
11762 /* Overflow possible, we know nothing */
11763 dst_reg->smin_value = S64_MIN;
11764 dst_reg->smax_value = S64_MAX;
11765 } else {
11766 dst_reg->smin_value = dst_reg->umin_value;
11767 dst_reg->smax_value = dst_reg->umax_value;
11768 }
11769}
11770
3f50f132
JF
11771static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
11772 struct bpf_reg_state *src_reg)
11773{
11774 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11775 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11776 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11777 s32 smin_val = src_reg->s32_min_value;
11778 u32 umax_val = src_reg->u32_max_value;
11779
049c4e13
DB
11780 if (src_known && dst_known) {
11781 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 11782 return;
049c4e13 11783 }
3f50f132
JF
11784
11785 /* We get our minimum from the var_off, since that's inherently
11786 * bitwise. Our maximum is the minimum of the operands' maxima.
11787 */
11788 dst_reg->u32_min_value = var32_off.value;
11789 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
11790 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11791 /* Lose signed bounds when ANDing negative numbers,
11792 * ain't nobody got time for that.
11793 */
11794 dst_reg->s32_min_value = S32_MIN;
11795 dst_reg->s32_max_value = S32_MAX;
11796 } else {
11797 /* ANDing two positives gives a positive, so safe to
11798 * cast result into s64.
11799 */
11800 dst_reg->s32_min_value = dst_reg->u32_min_value;
11801 dst_reg->s32_max_value = dst_reg->u32_max_value;
11802 }
3f50f132
JF
11803}
11804
07cd2631
JF
11805static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
11806 struct bpf_reg_state *src_reg)
11807{
3f50f132
JF
11808 bool src_known = tnum_is_const(src_reg->var_off);
11809 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
11810 s64 smin_val = src_reg->smin_value;
11811 u64 umax_val = src_reg->umax_value;
11812
3f50f132 11813 if (src_known && dst_known) {
4fbb38a3 11814 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
11815 return;
11816 }
11817
07cd2631
JF
11818 /* We get our minimum from the var_off, since that's inherently
11819 * bitwise. Our maximum is the minimum of the operands' maxima.
11820 */
07cd2631
JF
11821 dst_reg->umin_value = dst_reg->var_off.value;
11822 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
11823 if (dst_reg->smin_value < 0 || smin_val < 0) {
11824 /* Lose signed bounds when ANDing negative numbers,
11825 * ain't nobody got time for that.
11826 */
11827 dst_reg->smin_value = S64_MIN;
11828 dst_reg->smax_value = S64_MAX;
11829 } else {
11830 /* ANDing two positives gives a positive, so safe to
11831 * cast result into s64.
11832 */
11833 dst_reg->smin_value = dst_reg->umin_value;
11834 dst_reg->smax_value = dst_reg->umax_value;
11835 }
11836 /* We may learn something more from the var_off */
11837 __update_reg_bounds(dst_reg);
11838}
11839
3f50f132
JF
11840static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
11841 struct bpf_reg_state *src_reg)
11842{
11843 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11844 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11845 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
11846 s32 smin_val = src_reg->s32_min_value;
11847 u32 umin_val = src_reg->u32_min_value;
3f50f132 11848
049c4e13
DB
11849 if (src_known && dst_known) {
11850 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 11851 return;
049c4e13 11852 }
3f50f132
JF
11853
11854 /* We get our maximum from the var_off, and our minimum is the
11855 * maximum of the operands' minima
11856 */
11857 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
11858 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11859 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11860 /* Lose signed bounds when ORing negative numbers,
11861 * ain't nobody got time for that.
11862 */
11863 dst_reg->s32_min_value = S32_MIN;
11864 dst_reg->s32_max_value = S32_MAX;
11865 } else {
11866 /* ORing two positives gives a positive, so safe to
11867 * cast result into s64.
11868 */
5b9fbeb7
DB
11869 dst_reg->s32_min_value = dst_reg->u32_min_value;
11870 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
11871 }
11872}
11873
07cd2631
JF
11874static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
11875 struct bpf_reg_state *src_reg)
11876{
3f50f132
JF
11877 bool src_known = tnum_is_const(src_reg->var_off);
11878 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
11879 s64 smin_val = src_reg->smin_value;
11880 u64 umin_val = src_reg->umin_value;
11881
3f50f132 11882 if (src_known && dst_known) {
4fbb38a3 11883 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
11884 return;
11885 }
11886
07cd2631
JF
11887 /* We get our maximum from the var_off, and our minimum is the
11888 * maximum of the operands' minima
11889 */
07cd2631
JF
11890 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
11891 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11892 if (dst_reg->smin_value < 0 || smin_val < 0) {
11893 /* Lose signed bounds when ORing negative numbers,
11894 * ain't nobody got time for that.
11895 */
11896 dst_reg->smin_value = S64_MIN;
11897 dst_reg->smax_value = S64_MAX;
11898 } else {
11899 /* ORing two positives gives a positive, so safe to
11900 * cast result into s64.
11901 */
11902 dst_reg->smin_value = dst_reg->umin_value;
11903 dst_reg->smax_value = dst_reg->umax_value;
11904 }
11905 /* We may learn something more from the var_off */
11906 __update_reg_bounds(dst_reg);
11907}
11908
2921c90d
YS
11909static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
11910 struct bpf_reg_state *src_reg)
11911{
11912 bool src_known = tnum_subreg_is_const(src_reg->var_off);
11913 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11914 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11915 s32 smin_val = src_reg->s32_min_value;
11916
049c4e13
DB
11917 if (src_known && dst_known) {
11918 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 11919 return;
049c4e13 11920 }
2921c90d
YS
11921
11922 /* We get both minimum and maximum from the var32_off. */
11923 dst_reg->u32_min_value = var32_off.value;
11924 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11925
11926 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
11927 /* XORing two positive sign numbers gives a positive,
11928 * so safe to cast u32 result into s32.
11929 */
11930 dst_reg->s32_min_value = dst_reg->u32_min_value;
11931 dst_reg->s32_max_value = dst_reg->u32_max_value;
11932 } else {
11933 dst_reg->s32_min_value = S32_MIN;
11934 dst_reg->s32_max_value = S32_MAX;
11935 }
11936}
11937
11938static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
11939 struct bpf_reg_state *src_reg)
11940{
11941 bool src_known = tnum_is_const(src_reg->var_off);
11942 bool dst_known = tnum_is_const(dst_reg->var_off);
11943 s64 smin_val = src_reg->smin_value;
11944
11945 if (src_known && dst_known) {
11946 /* dst_reg->var_off.value has been updated earlier */
11947 __mark_reg_known(dst_reg, dst_reg->var_off.value);
11948 return;
11949 }
11950
11951 /* We get both minimum and maximum from the var_off. */
11952 dst_reg->umin_value = dst_reg->var_off.value;
11953 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11954
11955 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
11956 /* XORing two positive sign numbers gives a positive,
11957 * so safe to cast u64 result into s64.
11958 */
11959 dst_reg->smin_value = dst_reg->umin_value;
11960 dst_reg->smax_value = dst_reg->umax_value;
11961 } else {
11962 dst_reg->smin_value = S64_MIN;
11963 dst_reg->smax_value = S64_MAX;
11964 }
11965
11966 __update_reg_bounds(dst_reg);
11967}
11968
3f50f132
JF
11969static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11970 u64 umin_val, u64 umax_val)
07cd2631 11971{
07cd2631
JF
11972 /* We lose all sign bit information (except what we can pick
11973 * up from var_off)
11974 */
3f50f132
JF
11975 dst_reg->s32_min_value = S32_MIN;
11976 dst_reg->s32_max_value = S32_MAX;
11977 /* If we might shift our top bit out, then we know nothing */
11978 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
11979 dst_reg->u32_min_value = 0;
11980 dst_reg->u32_max_value = U32_MAX;
11981 } else {
11982 dst_reg->u32_min_value <<= umin_val;
11983 dst_reg->u32_max_value <<= umax_val;
11984 }
11985}
11986
11987static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11988 struct bpf_reg_state *src_reg)
11989{
11990 u32 umax_val = src_reg->u32_max_value;
11991 u32 umin_val = src_reg->u32_min_value;
11992 /* u32 alu operation will zext upper bits */
11993 struct tnum subreg = tnum_subreg(dst_reg->var_off);
11994
11995 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11996 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
11997 /* Not required but being careful mark reg64 bounds as unknown so
11998 * that we are forced to pick them up from tnum and zext later and
11999 * if some path skips this step we are still safe.
12000 */
12001 __mark_reg64_unbounded(dst_reg);
12002 __update_reg32_bounds(dst_reg);
12003}
12004
12005static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12006 u64 umin_val, u64 umax_val)
12007{
12008 /* Special case <<32 because it is a common compiler pattern to sign
12009 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12010 * positive we know this shift will also be positive so we can track
12011 * bounds correctly. Otherwise we lose all sign bit information except
12012 * what we can pick up from var_off. Perhaps we can generalize this
12013 * later to shifts of any length.
12014 */
12015 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12016 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12017 else
12018 dst_reg->smax_value = S64_MAX;
12019
12020 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12021 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12022 else
12023 dst_reg->smin_value = S64_MIN;
12024
07cd2631
JF
12025 /* If we might shift our top bit out, then we know nothing */
12026 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12027 dst_reg->umin_value = 0;
12028 dst_reg->umax_value = U64_MAX;
12029 } else {
12030 dst_reg->umin_value <<= umin_val;
12031 dst_reg->umax_value <<= umax_val;
12032 }
3f50f132
JF
12033}
12034
12035static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12036 struct bpf_reg_state *src_reg)
12037{
12038 u64 umax_val = src_reg->umax_value;
12039 u64 umin_val = src_reg->umin_value;
12040
12041 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
12042 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12043 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12044
07cd2631
JF
12045 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12046 /* We may learn something more from the var_off */
12047 __update_reg_bounds(dst_reg);
12048}
12049
3f50f132
JF
12050static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12051 struct bpf_reg_state *src_reg)
12052{
12053 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12054 u32 umax_val = src_reg->u32_max_value;
12055 u32 umin_val = src_reg->u32_min_value;
12056
12057 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12058 * be negative, then either:
12059 * 1) src_reg might be zero, so the sign bit of the result is
12060 * unknown, so we lose our signed bounds
12061 * 2) it's known negative, thus the unsigned bounds capture the
12062 * signed bounds
12063 * 3) the signed bounds cross zero, so they tell us nothing
12064 * about the result
12065 * If the value in dst_reg is known nonnegative, then again the
18b24d78 12066 * unsigned bounds capture the signed bounds.
3f50f132
JF
12067 * Thus, in all cases it suffices to blow away our signed bounds
12068 * and rely on inferring new ones from the unsigned bounds and
12069 * var_off of the result.
12070 */
12071 dst_reg->s32_min_value = S32_MIN;
12072 dst_reg->s32_max_value = S32_MAX;
12073
12074 dst_reg->var_off = tnum_rshift(subreg, umin_val);
12075 dst_reg->u32_min_value >>= umax_val;
12076 dst_reg->u32_max_value >>= umin_val;
12077
12078 __mark_reg64_unbounded(dst_reg);
12079 __update_reg32_bounds(dst_reg);
12080}
12081
07cd2631
JF
12082static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12083 struct bpf_reg_state *src_reg)
12084{
12085 u64 umax_val = src_reg->umax_value;
12086 u64 umin_val = src_reg->umin_value;
12087
12088 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12089 * be negative, then either:
12090 * 1) src_reg might be zero, so the sign bit of the result is
12091 * unknown, so we lose our signed bounds
12092 * 2) it's known negative, thus the unsigned bounds capture the
12093 * signed bounds
12094 * 3) the signed bounds cross zero, so they tell us nothing
12095 * about the result
12096 * If the value in dst_reg is known nonnegative, then again the
18b24d78 12097 * unsigned bounds capture the signed bounds.
07cd2631
JF
12098 * Thus, in all cases it suffices to blow away our signed bounds
12099 * and rely on inferring new ones from the unsigned bounds and
12100 * var_off of the result.
12101 */
12102 dst_reg->smin_value = S64_MIN;
12103 dst_reg->smax_value = S64_MAX;
12104 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12105 dst_reg->umin_value >>= umax_val;
12106 dst_reg->umax_value >>= umin_val;
3f50f132
JF
12107
12108 /* Its not easy to operate on alu32 bounds here because it depends
12109 * on bits being shifted in. Take easy way out and mark unbounded
12110 * so we can recalculate later from tnum.
12111 */
12112 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12113 __update_reg_bounds(dst_reg);
12114}
12115
3f50f132
JF
12116static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12117 struct bpf_reg_state *src_reg)
07cd2631 12118{
3f50f132 12119 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
12120
12121 /* Upon reaching here, src_known is true and
12122 * umax_val is equal to umin_val.
12123 */
3f50f132
JF
12124 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12125 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 12126
3f50f132
JF
12127 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12128
12129 /* blow away the dst_reg umin_value/umax_value and rely on
12130 * dst_reg var_off to refine the result.
12131 */
12132 dst_reg->u32_min_value = 0;
12133 dst_reg->u32_max_value = U32_MAX;
12134
12135 __mark_reg64_unbounded(dst_reg);
12136 __update_reg32_bounds(dst_reg);
12137}
12138
12139static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12140 struct bpf_reg_state *src_reg)
12141{
12142 u64 umin_val = src_reg->umin_value;
12143
12144 /* Upon reaching here, src_known is true and umax_val is equal
12145 * to umin_val.
12146 */
12147 dst_reg->smin_value >>= umin_val;
12148 dst_reg->smax_value >>= umin_val;
12149
12150 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
12151
12152 /* blow away the dst_reg umin_value/umax_value and rely on
12153 * dst_reg var_off to refine the result.
12154 */
12155 dst_reg->umin_value = 0;
12156 dst_reg->umax_value = U64_MAX;
3f50f132
JF
12157
12158 /* Its not easy to operate on alu32 bounds here because it depends
12159 * on bits being shifted in from upper 32-bits. Take easy way out
12160 * and mark unbounded so we can recalculate later from tnum.
12161 */
12162 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12163 __update_reg_bounds(dst_reg);
12164}
12165
468f6eaf
JH
12166/* WARNING: This function does calculations on 64-bit values, but the actual
12167 * execution may occur on 32-bit values. Therefore, things like bitshifts
12168 * need extra checks in the 32-bit case.
12169 */
f1174f77
EC
12170static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12171 struct bpf_insn *insn,
12172 struct bpf_reg_state *dst_reg,
12173 struct bpf_reg_state src_reg)
969bf05e 12174{
638f5b90 12175 struct bpf_reg_state *regs = cur_regs(env);
48461135 12176 u8 opcode = BPF_OP(insn->code);
b0b3fb67 12177 bool src_known;
b03c9f9f
EC
12178 s64 smin_val, smax_val;
12179 u64 umin_val, umax_val;
3f50f132
JF
12180 s32 s32_min_val, s32_max_val;
12181 u32 u32_min_val, u32_max_val;
468f6eaf 12182 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 12183 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 12184 int ret;
b799207e 12185
b03c9f9f
EC
12186 smin_val = src_reg.smin_value;
12187 smax_val = src_reg.smax_value;
12188 umin_val = src_reg.umin_value;
12189 umax_val = src_reg.umax_value;
f23cc643 12190
3f50f132
JF
12191 s32_min_val = src_reg.s32_min_value;
12192 s32_max_val = src_reg.s32_max_value;
12193 u32_min_val = src_reg.u32_min_value;
12194 u32_max_val = src_reg.u32_max_value;
12195
12196 if (alu32) {
12197 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
12198 if ((src_known &&
12199 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12200 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12201 /* Taint dst register if offset had invalid bounds
12202 * derived from e.g. dead branches.
12203 */
12204 __mark_reg_unknown(env, dst_reg);
12205 return 0;
12206 }
12207 } else {
12208 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
12209 if ((src_known &&
12210 (smin_val != smax_val || umin_val != umax_val)) ||
12211 smin_val > smax_val || umin_val > umax_val) {
12212 /* Taint dst register if offset had invalid bounds
12213 * derived from e.g. dead branches.
12214 */
12215 __mark_reg_unknown(env, dst_reg);
12216 return 0;
12217 }
6f16101e
DB
12218 }
12219
bb7f0f98
AS
12220 if (!src_known &&
12221 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 12222 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
12223 return 0;
12224 }
12225
f5288193
DB
12226 if (sanitize_needed(opcode)) {
12227 ret = sanitize_val_alu(env, insn);
12228 if (ret < 0)
12229 return sanitize_err(env, insn, ret, NULL, NULL);
12230 }
12231
3f50f132
JF
12232 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12233 * There are two classes of instructions: The first class we track both
12234 * alu32 and alu64 sign/unsigned bounds independently this provides the
12235 * greatest amount of precision when alu operations are mixed with jmp32
12236 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12237 * and BPF_OR. This is possible because these ops have fairly easy to
12238 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12239 * See alu32 verifier tests for examples. The second class of
12240 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12241 * with regards to tracking sign/unsigned bounds because the bits may
12242 * cross subreg boundaries in the alu64 case. When this happens we mark
12243 * the reg unbounded in the subreg bound space and use the resulting
12244 * tnum to calculate an approximation of the sign/unsigned bounds.
12245 */
48461135
JB
12246 switch (opcode) {
12247 case BPF_ADD:
3f50f132 12248 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 12249 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 12250 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
12251 break;
12252 case BPF_SUB:
3f50f132 12253 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 12254 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 12255 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
12256 break;
12257 case BPF_MUL:
3f50f132
JF
12258 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12259 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 12260 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
12261 break;
12262 case BPF_AND:
3f50f132
JF
12263 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12264 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 12265 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
12266 break;
12267 case BPF_OR:
3f50f132
JF
12268 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12269 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 12270 scalar_min_max_or(dst_reg, &src_reg);
48461135 12271 break;
2921c90d
YS
12272 case BPF_XOR:
12273 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12274 scalar32_min_max_xor(dst_reg, &src_reg);
12275 scalar_min_max_xor(dst_reg, &src_reg);
12276 break;
48461135 12277 case BPF_LSH:
468f6eaf
JH
12278 if (umax_val >= insn_bitness) {
12279 /* Shifts greater than 31 or 63 are undefined.
12280 * This includes shifts by a negative number.
b03c9f9f 12281 */
61bd5218 12282 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12283 break;
12284 }
3f50f132
JF
12285 if (alu32)
12286 scalar32_min_max_lsh(dst_reg, &src_reg);
12287 else
12288 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
12289 break;
12290 case BPF_RSH:
468f6eaf
JH
12291 if (umax_val >= insn_bitness) {
12292 /* Shifts greater than 31 or 63 are undefined.
12293 * This includes shifts by a negative number.
b03c9f9f 12294 */
61bd5218 12295 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12296 break;
12297 }
3f50f132
JF
12298 if (alu32)
12299 scalar32_min_max_rsh(dst_reg, &src_reg);
12300 else
12301 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 12302 break;
9cbe1f5a
YS
12303 case BPF_ARSH:
12304 if (umax_val >= insn_bitness) {
12305 /* Shifts greater than 31 or 63 are undefined.
12306 * This includes shifts by a negative number.
12307 */
12308 mark_reg_unknown(env, regs, insn->dst_reg);
12309 break;
12310 }
3f50f132
JF
12311 if (alu32)
12312 scalar32_min_max_arsh(dst_reg, &src_reg);
12313 else
12314 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 12315 break;
48461135 12316 default:
61bd5218 12317 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
12318 break;
12319 }
12320
3f50f132
JF
12321 /* ALU32 ops are zero extended into 64bit register */
12322 if (alu32)
12323 zext_32_to_64(dst_reg);
3844d153 12324 reg_bounds_sync(dst_reg);
f1174f77
EC
12325 return 0;
12326}
12327
12328/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12329 * and var_off.
12330 */
12331static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12332 struct bpf_insn *insn)
12333{
f4d7e40a
AS
12334 struct bpf_verifier_state *vstate = env->cur_state;
12335 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12336 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
12337 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12338 u8 opcode = BPF_OP(insn->code);
b5dc0163 12339 int err;
f1174f77
EC
12340
12341 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
12342 src_reg = NULL;
12343 if (dst_reg->type != SCALAR_VALUE)
12344 ptr_reg = dst_reg;
75748837
AS
12345 else
12346 /* Make sure ID is cleared otherwise dst_reg min/max could be
12347 * incorrectly propagated into other registers by find_equal_scalars()
12348 */
12349 dst_reg->id = 0;
f1174f77
EC
12350 if (BPF_SRC(insn->code) == BPF_X) {
12351 src_reg = &regs[insn->src_reg];
f1174f77
EC
12352 if (src_reg->type != SCALAR_VALUE) {
12353 if (dst_reg->type != SCALAR_VALUE) {
12354 /* Combining two pointers by any ALU op yields
82abbf8d
AS
12355 * an arbitrary scalar. Disallow all math except
12356 * pointer subtraction
f1174f77 12357 */
dd066823 12358 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
12359 mark_reg_unknown(env, regs, insn->dst_reg);
12360 return 0;
f1174f77 12361 }
82abbf8d
AS
12362 verbose(env, "R%d pointer %s pointer prohibited\n",
12363 insn->dst_reg,
12364 bpf_alu_string[opcode >> 4]);
12365 return -EACCES;
f1174f77
EC
12366 } else {
12367 /* scalar += pointer
12368 * This is legal, but we have to reverse our
12369 * src/dest handling in computing the range
12370 */
b5dc0163
AS
12371 err = mark_chain_precision(env, insn->dst_reg);
12372 if (err)
12373 return err;
82abbf8d
AS
12374 return adjust_ptr_min_max_vals(env, insn,
12375 src_reg, dst_reg);
f1174f77
EC
12376 }
12377 } else if (ptr_reg) {
12378 /* pointer += scalar */
b5dc0163
AS
12379 err = mark_chain_precision(env, insn->src_reg);
12380 if (err)
12381 return err;
82abbf8d
AS
12382 return adjust_ptr_min_max_vals(env, insn,
12383 dst_reg, src_reg);
a3b666bf
AN
12384 } else if (dst_reg->precise) {
12385 /* if dst_reg is precise, src_reg should be precise as well */
12386 err = mark_chain_precision(env, insn->src_reg);
12387 if (err)
12388 return err;
f1174f77
EC
12389 }
12390 } else {
12391 /* Pretend the src is a reg with a known value, since we only
12392 * need to be able to read from this state.
12393 */
12394 off_reg.type = SCALAR_VALUE;
b03c9f9f 12395 __mark_reg_known(&off_reg, insn->imm);
f1174f77 12396 src_reg = &off_reg;
82abbf8d
AS
12397 if (ptr_reg) /* pointer += K */
12398 return adjust_ptr_min_max_vals(env, insn,
12399 ptr_reg, src_reg);
f1174f77
EC
12400 }
12401
12402 /* Got here implies adding two SCALAR_VALUEs */
12403 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 12404 print_verifier_state(env, state, true);
61bd5218 12405 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
12406 return -EINVAL;
12407 }
12408 if (WARN_ON(!src_reg)) {
0f55f9ed 12409 print_verifier_state(env, state, true);
61bd5218 12410 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
12411 return -EINVAL;
12412 }
12413 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
12414}
12415
17a52670 12416/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 12417static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 12418{
638f5b90 12419 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
12420 u8 opcode = BPF_OP(insn->code);
12421 int err;
12422
12423 if (opcode == BPF_END || opcode == BPF_NEG) {
12424 if (opcode == BPF_NEG) {
395e942d 12425 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
12426 insn->src_reg != BPF_REG_0 ||
12427 insn->off != 0 || insn->imm != 0) {
61bd5218 12428 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
12429 return -EINVAL;
12430 }
12431 } else {
12432 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
12433 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12434 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 12435 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
12436 return -EINVAL;
12437 }
12438 }
12439
12440 /* check src operand */
dc503a8a 12441 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12442 if (err)
12443 return err;
12444
1be7f75d 12445 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 12446 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
12447 insn->dst_reg);
12448 return -EACCES;
12449 }
12450
17a52670 12451 /* check dest operand */
dc503a8a 12452 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
12453 if (err)
12454 return err;
12455
12456 } else if (opcode == BPF_MOV) {
12457
12458 if (BPF_SRC(insn->code) == BPF_X) {
12459 if (insn->imm != 0 || insn->off != 0) {
61bd5218 12460 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
12461 return -EINVAL;
12462 }
12463
12464 /* check src operand */
dc503a8a 12465 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12466 if (err)
12467 return err;
12468 } else {
12469 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 12470 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
12471 return -EINVAL;
12472 }
12473 }
12474
fbeb1603
AF
12475 /* check dest operand, mark as required later */
12476 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
12477 if (err)
12478 return err;
12479
12480 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
12481 struct bpf_reg_state *src_reg = regs + insn->src_reg;
12482 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12483
17a52670
AS
12484 if (BPF_CLASS(insn->code) == BPF_ALU64) {
12485 /* case: R1 = R2
12486 * copy register state to dest reg
12487 */
75748837
AS
12488 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
12489 /* Assign src and dst registers the same ID
12490 * that will be used by find_equal_scalars()
12491 * to propagate min/max range.
12492 */
12493 src_reg->id = ++env->id_gen;
71f656a5 12494 copy_register_state(dst_reg, src_reg);
e434b8cd 12495 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 12496 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 12497 } else {
f1174f77 12498 /* R1 = (u32) R2 */
1be7f75d 12499 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
12500 verbose(env,
12501 "R%d partial copy of pointer\n",
1be7f75d
AS
12502 insn->src_reg);
12503 return -EACCES;
e434b8cd 12504 } else if (src_reg->type == SCALAR_VALUE) {
3be49f79
YS
12505 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
12506
12507 if (is_src_reg_u32 && !src_reg->id)
12508 src_reg->id = ++env->id_gen;
71f656a5 12509 copy_register_state(dst_reg, src_reg);
3be49f79 12510 /* Make sure ID is cleared if src_reg is not in u32 range otherwise
75748837
AS
12511 * dst_reg min/max could be incorrectly
12512 * propagated into src_reg by find_equal_scalars()
12513 */
3be49f79
YS
12514 if (!is_src_reg_u32)
12515 dst_reg->id = 0;
e434b8cd 12516 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 12517 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
12518 } else {
12519 mark_reg_unknown(env, regs,
12520 insn->dst_reg);
1be7f75d 12521 }
3f50f132 12522 zext_32_to_64(dst_reg);
3844d153 12523 reg_bounds_sync(dst_reg);
17a52670
AS
12524 }
12525 } else {
12526 /* case: R = imm
12527 * remember the value we stored into this reg
12528 */
fbeb1603
AF
12529 /* clear any state __mark_reg_known doesn't set */
12530 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 12531 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
12532 if (BPF_CLASS(insn->code) == BPF_ALU64) {
12533 __mark_reg_known(regs + insn->dst_reg,
12534 insn->imm);
12535 } else {
12536 __mark_reg_known(regs + insn->dst_reg,
12537 (u32)insn->imm);
12538 }
17a52670
AS
12539 }
12540
12541 } else if (opcode > BPF_END) {
61bd5218 12542 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
12543 return -EINVAL;
12544
12545 } else { /* all other ALU ops: and, sub, xor, add, ... */
12546
17a52670
AS
12547 if (BPF_SRC(insn->code) == BPF_X) {
12548 if (insn->imm != 0 || insn->off != 0) {
61bd5218 12549 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
12550 return -EINVAL;
12551 }
12552 /* check src1 operand */
dc503a8a 12553 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
12554 if (err)
12555 return err;
12556 } else {
12557 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 12558 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
12559 return -EINVAL;
12560 }
12561 }
12562
12563 /* check src2 operand */
dc503a8a 12564 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
12565 if (err)
12566 return err;
12567
12568 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
12569 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 12570 verbose(env, "div by zero\n");
17a52670
AS
12571 return -EINVAL;
12572 }
12573
229394e8
RV
12574 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
12575 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
12576 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
12577
12578 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 12579 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
12580 return -EINVAL;
12581 }
12582 }
12583
1a0dc1ac 12584 /* check dest operand */
dc503a8a 12585 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
12586 if (err)
12587 return err;
12588
f1174f77 12589 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
12590 }
12591
12592 return 0;
12593}
12594
f4d7e40a 12595static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 12596 struct bpf_reg_state *dst_reg,
f8ddadc4 12597 enum bpf_reg_type type,
fb2a311a 12598 bool range_right_open)
969bf05e 12599{
b239da34
KKD
12600 struct bpf_func_state *state;
12601 struct bpf_reg_state *reg;
12602 int new_range;
2d2be8ca 12603
fb2a311a
DB
12604 if (dst_reg->off < 0 ||
12605 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
12606 /* This doesn't give us any range */
12607 return;
12608
b03c9f9f
EC
12609 if (dst_reg->umax_value > MAX_PACKET_OFF ||
12610 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
12611 /* Risk of overflow. For instance, ptr + (1<<63) may be less
12612 * than pkt_end, but that's because it's also less than pkt.
12613 */
12614 return;
12615
fb2a311a
DB
12616 new_range = dst_reg->off;
12617 if (range_right_open)
2fa7d94a 12618 new_range++;
fb2a311a
DB
12619
12620 /* Examples for register markings:
2d2be8ca 12621 *
fb2a311a 12622 * pkt_data in dst register:
2d2be8ca
DB
12623 *
12624 * r2 = r3;
12625 * r2 += 8;
12626 * if (r2 > pkt_end) goto <handle exception>
12627 * <access okay>
12628 *
b4e432f1
DB
12629 * r2 = r3;
12630 * r2 += 8;
12631 * if (r2 < pkt_end) goto <access okay>
12632 * <handle exception>
12633 *
2d2be8ca
DB
12634 * Where:
12635 * r2 == dst_reg, pkt_end == src_reg
12636 * r2=pkt(id=n,off=8,r=0)
12637 * r3=pkt(id=n,off=0,r=0)
12638 *
fb2a311a 12639 * pkt_data in src register:
2d2be8ca
DB
12640 *
12641 * r2 = r3;
12642 * r2 += 8;
12643 * if (pkt_end >= r2) goto <access okay>
12644 * <handle exception>
12645 *
b4e432f1
DB
12646 * r2 = r3;
12647 * r2 += 8;
12648 * if (pkt_end <= r2) goto <handle exception>
12649 * <access okay>
12650 *
2d2be8ca
DB
12651 * Where:
12652 * pkt_end == dst_reg, r2 == src_reg
12653 * r2=pkt(id=n,off=8,r=0)
12654 * r3=pkt(id=n,off=0,r=0)
12655 *
12656 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
12657 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
12658 * and [r3, r3 + 8-1) respectively is safe to access depending on
12659 * the check.
969bf05e 12660 */
2d2be8ca 12661
f1174f77
EC
12662 /* If our ids match, then we must have the same max_value. And we
12663 * don't care about the other reg's fixed offset, since if it's too big
12664 * the range won't allow anything.
12665 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
12666 */
b239da34
KKD
12667 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
12668 if (reg->type == type && reg->id == dst_reg->id)
12669 /* keep the maximum range already checked */
12670 reg->range = max(reg->range, new_range);
12671 }));
969bf05e
AS
12672}
12673
3f50f132 12674static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 12675{
3f50f132
JF
12676 struct tnum subreg = tnum_subreg(reg->var_off);
12677 s32 sval = (s32)val;
a72dafaf 12678
3f50f132
JF
12679 switch (opcode) {
12680 case BPF_JEQ:
12681 if (tnum_is_const(subreg))
12682 return !!tnum_equals_const(subreg, val);
13fbcee5
YS
12683 else if (val < reg->u32_min_value || val > reg->u32_max_value)
12684 return 0;
3f50f132
JF
12685 break;
12686 case BPF_JNE:
12687 if (tnum_is_const(subreg))
12688 return !tnum_equals_const(subreg, val);
13fbcee5
YS
12689 else if (val < reg->u32_min_value || val > reg->u32_max_value)
12690 return 1;
3f50f132
JF
12691 break;
12692 case BPF_JSET:
12693 if ((~subreg.mask & subreg.value) & val)
12694 return 1;
12695 if (!((subreg.mask | subreg.value) & val))
12696 return 0;
12697 break;
12698 case BPF_JGT:
12699 if (reg->u32_min_value > val)
12700 return 1;
12701 else if (reg->u32_max_value <= val)
12702 return 0;
12703 break;
12704 case BPF_JSGT:
12705 if (reg->s32_min_value > sval)
12706 return 1;
ee114dd6 12707 else if (reg->s32_max_value <= sval)
3f50f132
JF
12708 return 0;
12709 break;
12710 case BPF_JLT:
12711 if (reg->u32_max_value < val)
12712 return 1;
12713 else if (reg->u32_min_value >= val)
12714 return 0;
12715 break;
12716 case BPF_JSLT:
12717 if (reg->s32_max_value < sval)
12718 return 1;
12719 else if (reg->s32_min_value >= sval)
12720 return 0;
12721 break;
12722 case BPF_JGE:
12723 if (reg->u32_min_value >= val)
12724 return 1;
12725 else if (reg->u32_max_value < val)
12726 return 0;
12727 break;
12728 case BPF_JSGE:
12729 if (reg->s32_min_value >= sval)
12730 return 1;
12731 else if (reg->s32_max_value < sval)
12732 return 0;
12733 break;
12734 case BPF_JLE:
12735 if (reg->u32_max_value <= val)
12736 return 1;
12737 else if (reg->u32_min_value > val)
12738 return 0;
12739 break;
12740 case BPF_JSLE:
12741 if (reg->s32_max_value <= sval)
12742 return 1;
12743 else if (reg->s32_min_value > sval)
12744 return 0;
12745 break;
12746 }
4f7b3e82 12747
3f50f132
JF
12748 return -1;
12749}
092ed096 12750
3f50f132
JF
12751
12752static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
12753{
12754 s64 sval = (s64)val;
a72dafaf 12755
4f7b3e82
AS
12756 switch (opcode) {
12757 case BPF_JEQ:
12758 if (tnum_is_const(reg->var_off))
12759 return !!tnum_equals_const(reg->var_off, val);
13fbcee5
YS
12760 else if (val < reg->umin_value || val > reg->umax_value)
12761 return 0;
4f7b3e82
AS
12762 break;
12763 case BPF_JNE:
12764 if (tnum_is_const(reg->var_off))
12765 return !tnum_equals_const(reg->var_off, val);
13fbcee5
YS
12766 else if (val < reg->umin_value || val > reg->umax_value)
12767 return 1;
4f7b3e82 12768 break;
960ea056
JK
12769 case BPF_JSET:
12770 if ((~reg->var_off.mask & reg->var_off.value) & val)
12771 return 1;
12772 if (!((reg->var_off.mask | reg->var_off.value) & val))
12773 return 0;
12774 break;
4f7b3e82
AS
12775 case BPF_JGT:
12776 if (reg->umin_value > val)
12777 return 1;
12778 else if (reg->umax_value <= val)
12779 return 0;
12780 break;
12781 case BPF_JSGT:
a72dafaf 12782 if (reg->smin_value > sval)
4f7b3e82 12783 return 1;
ee114dd6 12784 else if (reg->smax_value <= sval)
4f7b3e82
AS
12785 return 0;
12786 break;
12787 case BPF_JLT:
12788 if (reg->umax_value < val)
12789 return 1;
12790 else if (reg->umin_value >= val)
12791 return 0;
12792 break;
12793 case BPF_JSLT:
a72dafaf 12794 if (reg->smax_value < sval)
4f7b3e82 12795 return 1;
a72dafaf 12796 else if (reg->smin_value >= sval)
4f7b3e82
AS
12797 return 0;
12798 break;
12799 case BPF_JGE:
12800 if (reg->umin_value >= val)
12801 return 1;
12802 else if (reg->umax_value < val)
12803 return 0;
12804 break;
12805 case BPF_JSGE:
a72dafaf 12806 if (reg->smin_value >= sval)
4f7b3e82 12807 return 1;
a72dafaf 12808 else if (reg->smax_value < sval)
4f7b3e82
AS
12809 return 0;
12810 break;
12811 case BPF_JLE:
12812 if (reg->umax_value <= val)
12813 return 1;
12814 else if (reg->umin_value > val)
12815 return 0;
12816 break;
12817 case BPF_JSLE:
a72dafaf 12818 if (reg->smax_value <= sval)
4f7b3e82 12819 return 1;
a72dafaf 12820 else if (reg->smin_value > sval)
4f7b3e82
AS
12821 return 0;
12822 break;
12823 }
12824
12825 return -1;
12826}
12827
3f50f132
JF
12828/* compute branch direction of the expression "if (reg opcode val) goto target;"
12829 * and return:
12830 * 1 - branch will be taken and "goto target" will be executed
12831 * 0 - branch will not be taken and fall-through to next insn
12832 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
12833 * range [0,10]
604dca5e 12834 */
3f50f132
JF
12835static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
12836 bool is_jmp32)
604dca5e 12837{
cac616db
JF
12838 if (__is_pointer_value(false, reg)) {
12839 if (!reg_type_not_null(reg->type))
12840 return -1;
12841
12842 /* If pointer is valid tests against zero will fail so we can
12843 * use this to direct branch taken.
12844 */
12845 if (val != 0)
12846 return -1;
12847
12848 switch (opcode) {
12849 case BPF_JEQ:
12850 return 0;
12851 case BPF_JNE:
12852 return 1;
12853 default:
12854 return -1;
12855 }
12856 }
604dca5e 12857
3f50f132
JF
12858 if (is_jmp32)
12859 return is_branch32_taken(reg, val, opcode);
12860 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
12861}
12862
6d94e741
AS
12863static int flip_opcode(u32 opcode)
12864{
12865 /* How can we transform "a <op> b" into "b <op> a"? */
12866 static const u8 opcode_flip[16] = {
12867 /* these stay the same */
12868 [BPF_JEQ >> 4] = BPF_JEQ,
12869 [BPF_JNE >> 4] = BPF_JNE,
12870 [BPF_JSET >> 4] = BPF_JSET,
12871 /* these swap "lesser" and "greater" (L and G in the opcodes) */
12872 [BPF_JGE >> 4] = BPF_JLE,
12873 [BPF_JGT >> 4] = BPF_JLT,
12874 [BPF_JLE >> 4] = BPF_JGE,
12875 [BPF_JLT >> 4] = BPF_JGT,
12876 [BPF_JSGE >> 4] = BPF_JSLE,
12877 [BPF_JSGT >> 4] = BPF_JSLT,
12878 [BPF_JSLE >> 4] = BPF_JSGE,
12879 [BPF_JSLT >> 4] = BPF_JSGT
12880 };
12881 return opcode_flip[opcode >> 4];
12882}
12883
12884static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
12885 struct bpf_reg_state *src_reg,
12886 u8 opcode)
12887{
12888 struct bpf_reg_state *pkt;
12889
12890 if (src_reg->type == PTR_TO_PACKET_END) {
12891 pkt = dst_reg;
12892 } else if (dst_reg->type == PTR_TO_PACKET_END) {
12893 pkt = src_reg;
12894 opcode = flip_opcode(opcode);
12895 } else {
12896 return -1;
12897 }
12898
12899 if (pkt->range >= 0)
12900 return -1;
12901
12902 switch (opcode) {
12903 case BPF_JLE:
12904 /* pkt <= pkt_end */
12905 fallthrough;
12906 case BPF_JGT:
12907 /* pkt > pkt_end */
12908 if (pkt->range == BEYOND_PKT_END)
12909 /* pkt has at last one extra byte beyond pkt_end */
12910 return opcode == BPF_JGT;
12911 break;
12912 case BPF_JLT:
12913 /* pkt < pkt_end */
12914 fallthrough;
12915 case BPF_JGE:
12916 /* pkt >= pkt_end */
12917 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
12918 return opcode == BPF_JGE;
12919 break;
12920 }
12921 return -1;
12922}
12923
48461135
JB
12924/* Adjusts the register min/max values in the case that the dst_reg is the
12925 * variable register that we are working on, and src_reg is a constant or we're
12926 * simply doing a BPF_K check.
f1174f77 12927 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
12928 */
12929static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
12930 struct bpf_reg_state *false_reg,
12931 u64 val, u32 val32,
092ed096 12932 u8 opcode, bool is_jmp32)
48461135 12933{
3f50f132
JF
12934 struct tnum false_32off = tnum_subreg(false_reg->var_off);
12935 struct tnum false_64off = false_reg->var_off;
12936 struct tnum true_32off = tnum_subreg(true_reg->var_off);
12937 struct tnum true_64off = true_reg->var_off;
12938 s64 sval = (s64)val;
12939 s32 sval32 = (s32)val32;
a72dafaf 12940
f1174f77
EC
12941 /* If the dst_reg is a pointer, we can't learn anything about its
12942 * variable offset from the compare (unless src_reg were a pointer into
12943 * the same object, but we don't bother with that.
12944 * Since false_reg and true_reg have the same type by construction, we
12945 * only need to check one of them for pointerness.
12946 */
12947 if (__is_pointer_value(false, false_reg))
12948 return;
4cabc5b1 12949
48461135 12950 switch (opcode) {
a12ca627
DB
12951 /* JEQ/JNE comparison doesn't change the register equivalence.
12952 *
12953 * r1 = r2;
12954 * if (r1 == 42) goto label;
12955 * ...
12956 * label: // here both r1 and r2 are known to be 42.
12957 *
12958 * Hence when marking register as known preserve it's ID.
12959 */
48461135 12960 case BPF_JEQ:
a12ca627
DB
12961 if (is_jmp32) {
12962 __mark_reg32_known(true_reg, val32);
12963 true_32off = tnum_subreg(true_reg->var_off);
12964 } else {
12965 ___mark_reg_known(true_reg, val);
12966 true_64off = true_reg->var_off;
12967 }
12968 break;
48461135 12969 case BPF_JNE:
a12ca627
DB
12970 if (is_jmp32) {
12971 __mark_reg32_known(false_reg, val32);
12972 false_32off = tnum_subreg(false_reg->var_off);
12973 } else {
12974 ___mark_reg_known(false_reg, val);
12975 false_64off = false_reg->var_off;
12976 }
48461135 12977 break;
960ea056 12978 case BPF_JSET:
3f50f132
JF
12979 if (is_jmp32) {
12980 false_32off = tnum_and(false_32off, tnum_const(~val32));
12981 if (is_power_of_2(val32))
12982 true_32off = tnum_or(true_32off,
12983 tnum_const(val32));
12984 } else {
12985 false_64off = tnum_and(false_64off, tnum_const(~val));
12986 if (is_power_of_2(val))
12987 true_64off = tnum_or(true_64off,
12988 tnum_const(val));
12989 }
960ea056 12990 break;
48461135 12991 case BPF_JGE:
a72dafaf
JW
12992 case BPF_JGT:
12993 {
3f50f132
JF
12994 if (is_jmp32) {
12995 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
12996 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
12997
12998 false_reg->u32_max_value = min(false_reg->u32_max_value,
12999 false_umax);
13000 true_reg->u32_min_value = max(true_reg->u32_min_value,
13001 true_umin);
13002 } else {
13003 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
13004 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13005
13006 false_reg->umax_value = min(false_reg->umax_value, false_umax);
13007 true_reg->umin_value = max(true_reg->umin_value, true_umin);
13008 }
b03c9f9f 13009 break;
a72dafaf 13010 }
48461135 13011 case BPF_JSGE:
a72dafaf
JW
13012 case BPF_JSGT:
13013 {
3f50f132
JF
13014 if (is_jmp32) {
13015 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
13016 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 13017
3f50f132
JF
13018 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13019 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13020 } else {
13021 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
13022 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13023
13024 false_reg->smax_value = min(false_reg->smax_value, false_smax);
13025 true_reg->smin_value = max(true_reg->smin_value, true_smin);
13026 }
48461135 13027 break;
a72dafaf 13028 }
b4e432f1 13029 case BPF_JLE:
a72dafaf
JW
13030 case BPF_JLT:
13031 {
3f50f132
JF
13032 if (is_jmp32) {
13033 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
13034 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13035
13036 false_reg->u32_min_value = max(false_reg->u32_min_value,
13037 false_umin);
13038 true_reg->u32_max_value = min(true_reg->u32_max_value,
13039 true_umax);
13040 } else {
13041 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
13042 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13043
13044 false_reg->umin_value = max(false_reg->umin_value, false_umin);
13045 true_reg->umax_value = min(true_reg->umax_value, true_umax);
13046 }
b4e432f1 13047 break;
a72dafaf 13048 }
b4e432f1 13049 case BPF_JSLE:
a72dafaf
JW
13050 case BPF_JSLT:
13051 {
3f50f132
JF
13052 if (is_jmp32) {
13053 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
13054 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 13055
3f50f132
JF
13056 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13057 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13058 } else {
13059 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
13060 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13061
13062 false_reg->smin_value = max(false_reg->smin_value, false_smin);
13063 true_reg->smax_value = min(true_reg->smax_value, true_smax);
13064 }
b4e432f1 13065 break;
a72dafaf 13066 }
48461135 13067 default:
0fc31b10 13068 return;
48461135
JB
13069 }
13070
3f50f132
JF
13071 if (is_jmp32) {
13072 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13073 tnum_subreg(false_32off));
13074 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13075 tnum_subreg(true_32off));
13076 __reg_combine_32_into_64(false_reg);
13077 __reg_combine_32_into_64(true_reg);
13078 } else {
13079 false_reg->var_off = false_64off;
13080 true_reg->var_off = true_64off;
13081 __reg_combine_64_into_32(false_reg);
13082 __reg_combine_64_into_32(true_reg);
13083 }
48461135
JB
13084}
13085
f1174f77
EC
13086/* Same as above, but for the case that dst_reg holds a constant and src_reg is
13087 * the variable reg.
48461135
JB
13088 */
13089static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
13090 struct bpf_reg_state *false_reg,
13091 u64 val, u32 val32,
092ed096 13092 u8 opcode, bool is_jmp32)
48461135 13093{
6d94e741 13094 opcode = flip_opcode(opcode);
0fc31b10
JH
13095 /* This uses zero as "not present in table"; luckily the zero opcode,
13096 * BPF_JA, can't get here.
b03c9f9f 13097 */
0fc31b10 13098 if (opcode)
3f50f132 13099 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
13100}
13101
13102/* Regs are known to be equal, so intersect their min/max/var_off */
13103static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13104 struct bpf_reg_state *dst_reg)
13105{
b03c9f9f
EC
13106 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13107 dst_reg->umin_value);
13108 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13109 dst_reg->umax_value);
13110 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13111 dst_reg->smin_value);
13112 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13113 dst_reg->smax_value);
f1174f77
EC
13114 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13115 dst_reg->var_off);
3844d153
DB
13116 reg_bounds_sync(src_reg);
13117 reg_bounds_sync(dst_reg);
f1174f77
EC
13118}
13119
13120static void reg_combine_min_max(struct bpf_reg_state *true_src,
13121 struct bpf_reg_state *true_dst,
13122 struct bpf_reg_state *false_src,
13123 struct bpf_reg_state *false_dst,
13124 u8 opcode)
13125{
13126 switch (opcode) {
13127 case BPF_JEQ:
13128 __reg_combine_min_max(true_src, true_dst);
13129 break;
13130 case BPF_JNE:
13131 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 13132 break;
4cabc5b1 13133 }
48461135
JB
13134}
13135
fd978bf7
JS
13136static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13137 struct bpf_reg_state *reg, u32 id,
840b9615 13138 bool is_null)
57a09bf0 13139{
c25b2ae1 13140 if (type_may_be_null(reg->type) && reg->id == id &&
fca1aa75 13141 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
df57f38a
KKD
13142 /* Old offset (both fixed and variable parts) should have been
13143 * known-zero, because we don't allow pointer arithmetic on
13144 * pointers that might be NULL. If we see this happening, don't
13145 * convert the register.
13146 *
13147 * But in some cases, some helpers that return local kptrs
13148 * advance offset for the returned pointer. In those cases, it
13149 * is fine to expect to see reg->off.
13150 */
13151 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13152 return;
6a3cd331
DM
13153 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13154 WARN_ON_ONCE(reg->off))
e60b0d12 13155 return;
6a3cd331 13156
f1174f77
EC
13157 if (is_null) {
13158 reg->type = SCALAR_VALUE;
1b986589
MKL
13159 /* We don't need id and ref_obj_id from this point
13160 * onwards anymore, thus we should better reset it,
13161 * so that state pruning has chances to take effect.
13162 */
13163 reg->id = 0;
13164 reg->ref_obj_id = 0;
4ddb7416
DB
13165
13166 return;
13167 }
13168
13169 mark_ptr_not_null_reg(reg);
13170
13171 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 13172 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 13173 * in release_reference().
1b986589
MKL
13174 *
13175 * reg->id is still used by spin_lock ptr. Other
13176 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
13177 */
13178 reg->id = 0;
56f668df 13179 }
57a09bf0
TG
13180 }
13181}
13182
13183/* The logic is similar to find_good_pkt_pointers(), both could eventually
13184 * be folded together at some point.
13185 */
840b9615
JS
13186static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13187 bool is_null)
57a09bf0 13188{
f4d7e40a 13189 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 13190 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 13191 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 13192 u32 id = regs[regno].id;
57a09bf0 13193
1b986589
MKL
13194 if (ref_obj_id && ref_obj_id == id && is_null)
13195 /* regs[regno] is in the " == NULL" branch.
13196 * No one could have freed the reference state before
13197 * doing the NULL check.
13198 */
13199 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 13200
b239da34
KKD
13201 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13202 mark_ptr_or_null_reg(state, reg, id, is_null);
13203 }));
57a09bf0
TG
13204}
13205
5beca081
DB
13206static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13207 struct bpf_reg_state *dst_reg,
13208 struct bpf_reg_state *src_reg,
13209 struct bpf_verifier_state *this_branch,
13210 struct bpf_verifier_state *other_branch)
13211{
13212 if (BPF_SRC(insn->code) != BPF_X)
13213 return false;
13214
092ed096
JW
13215 /* Pointers are always 64-bit. */
13216 if (BPF_CLASS(insn->code) == BPF_JMP32)
13217 return false;
13218
5beca081
DB
13219 switch (BPF_OP(insn->code)) {
13220 case BPF_JGT:
13221 if ((dst_reg->type == PTR_TO_PACKET &&
13222 src_reg->type == PTR_TO_PACKET_END) ||
13223 (dst_reg->type == PTR_TO_PACKET_META &&
13224 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13225 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13226 find_good_pkt_pointers(this_branch, dst_reg,
13227 dst_reg->type, false);
6d94e741 13228 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
13229 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13230 src_reg->type == PTR_TO_PACKET) ||
13231 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13232 src_reg->type == PTR_TO_PACKET_META)) {
13233 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
13234 find_good_pkt_pointers(other_branch, src_reg,
13235 src_reg->type, true);
6d94e741 13236 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
13237 } else {
13238 return false;
13239 }
13240 break;
13241 case BPF_JLT:
13242 if ((dst_reg->type == PTR_TO_PACKET &&
13243 src_reg->type == PTR_TO_PACKET_END) ||
13244 (dst_reg->type == PTR_TO_PACKET_META &&
13245 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13246 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13247 find_good_pkt_pointers(other_branch, dst_reg,
13248 dst_reg->type, true);
6d94e741 13249 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
13250 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13251 src_reg->type == PTR_TO_PACKET) ||
13252 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13253 src_reg->type == PTR_TO_PACKET_META)) {
13254 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
13255 find_good_pkt_pointers(this_branch, src_reg,
13256 src_reg->type, false);
6d94e741 13257 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
13258 } else {
13259 return false;
13260 }
13261 break;
13262 case BPF_JGE:
13263 if ((dst_reg->type == PTR_TO_PACKET &&
13264 src_reg->type == PTR_TO_PACKET_END) ||
13265 (dst_reg->type == PTR_TO_PACKET_META &&
13266 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13267 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13268 find_good_pkt_pointers(this_branch, dst_reg,
13269 dst_reg->type, true);
6d94e741 13270 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
13271 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13272 src_reg->type == PTR_TO_PACKET) ||
13273 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13274 src_reg->type == PTR_TO_PACKET_META)) {
13275 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13276 find_good_pkt_pointers(other_branch, src_reg,
13277 src_reg->type, false);
6d94e741 13278 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
13279 } else {
13280 return false;
13281 }
13282 break;
13283 case BPF_JLE:
13284 if ((dst_reg->type == PTR_TO_PACKET &&
13285 src_reg->type == PTR_TO_PACKET_END) ||
13286 (dst_reg->type == PTR_TO_PACKET_META &&
13287 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13288 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13289 find_good_pkt_pointers(other_branch, dst_reg,
13290 dst_reg->type, false);
6d94e741 13291 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
13292 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13293 src_reg->type == PTR_TO_PACKET) ||
13294 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13295 src_reg->type == PTR_TO_PACKET_META)) {
13296 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13297 find_good_pkt_pointers(this_branch, src_reg,
13298 src_reg->type, true);
6d94e741 13299 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
13300 } else {
13301 return false;
13302 }
13303 break;
13304 default:
13305 return false;
13306 }
13307
13308 return true;
13309}
13310
75748837
AS
13311static void find_equal_scalars(struct bpf_verifier_state *vstate,
13312 struct bpf_reg_state *known_reg)
13313{
13314 struct bpf_func_state *state;
13315 struct bpf_reg_state *reg;
75748837 13316
b239da34
KKD
13317 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13318 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
71f656a5 13319 copy_register_state(reg, known_reg);
b239da34 13320 }));
75748837
AS
13321}
13322
58e2af8b 13323static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
13324 struct bpf_insn *insn, int *insn_idx)
13325{
f4d7e40a
AS
13326 struct bpf_verifier_state *this_branch = env->cur_state;
13327 struct bpf_verifier_state *other_branch;
13328 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 13329 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 13330 struct bpf_reg_state *eq_branch_regs;
17a52670 13331 u8 opcode = BPF_OP(insn->code);
092ed096 13332 bool is_jmp32;
fb8d251e 13333 int pred = -1;
17a52670
AS
13334 int err;
13335
092ed096
JW
13336 /* Only conditional jumps are expected to reach here. */
13337 if (opcode == BPF_JA || opcode > BPF_JSLE) {
13338 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
13339 return -EINVAL;
13340 }
13341
13342 if (BPF_SRC(insn->code) == BPF_X) {
13343 if (insn->imm != 0) {
092ed096 13344 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
13345 return -EINVAL;
13346 }
13347
13348 /* check src1 operand */
dc503a8a 13349 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13350 if (err)
13351 return err;
1be7f75d
AS
13352
13353 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 13354 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
13355 insn->src_reg);
13356 return -EACCES;
13357 }
fb8d251e 13358 src_reg = &regs[insn->src_reg];
17a52670
AS
13359 } else {
13360 if (insn->src_reg != BPF_REG_0) {
092ed096 13361 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
13362 return -EINVAL;
13363 }
13364 }
13365
13366 /* check src2 operand */
dc503a8a 13367 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13368 if (err)
13369 return err;
13370
1a0dc1ac 13371 dst_reg = &regs[insn->dst_reg];
092ed096 13372 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 13373
3f50f132
JF
13374 if (BPF_SRC(insn->code) == BPF_K) {
13375 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13376 } else if (src_reg->type == SCALAR_VALUE &&
13377 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13378 pred = is_branch_taken(dst_reg,
13379 tnum_subreg(src_reg->var_off).value,
13380 opcode,
13381 is_jmp32);
13382 } else if (src_reg->type == SCALAR_VALUE &&
13383 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13384 pred = is_branch_taken(dst_reg,
13385 src_reg->var_off.value,
13386 opcode,
13387 is_jmp32);
953d9f5b
YS
13388 } else if (dst_reg->type == SCALAR_VALUE &&
13389 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
13390 pred = is_branch_taken(src_reg,
13391 tnum_subreg(dst_reg->var_off).value,
13392 flip_opcode(opcode),
13393 is_jmp32);
13394 } else if (dst_reg->type == SCALAR_VALUE &&
13395 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
13396 pred = is_branch_taken(src_reg,
13397 dst_reg->var_off.value,
13398 flip_opcode(opcode),
13399 is_jmp32);
6d94e741
AS
13400 } else if (reg_is_pkt_pointer_any(dst_reg) &&
13401 reg_is_pkt_pointer_any(src_reg) &&
13402 !is_jmp32) {
13403 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
13404 }
13405
b5dc0163 13406 if (pred >= 0) {
cac616db
JF
13407 /* If we get here with a dst_reg pointer type it is because
13408 * above is_branch_taken() special cased the 0 comparison.
13409 */
13410 if (!__is_pointer_value(false, dst_reg))
13411 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
13412 if (BPF_SRC(insn->code) == BPF_X && !err &&
13413 !__is_pointer_value(false, src_reg))
b5dc0163
AS
13414 err = mark_chain_precision(env, insn->src_reg);
13415 if (err)
13416 return err;
13417 }
9183671a 13418
fb8d251e 13419 if (pred == 1) {
9183671a
DB
13420 /* Only follow the goto, ignore fall-through. If needed, push
13421 * the fall-through branch for simulation under speculative
13422 * execution.
13423 */
13424 if (!env->bypass_spec_v1 &&
13425 !sanitize_speculative_path(env, insn, *insn_idx + 1,
13426 *insn_idx))
13427 return -EFAULT;
fb8d251e
AS
13428 *insn_idx += insn->off;
13429 return 0;
13430 } else if (pred == 0) {
9183671a
DB
13431 /* Only follow the fall-through branch, since that's where the
13432 * program will go. If needed, push the goto branch for
13433 * simulation under speculative execution.
fb8d251e 13434 */
9183671a
DB
13435 if (!env->bypass_spec_v1 &&
13436 !sanitize_speculative_path(env, insn,
13437 *insn_idx + insn->off + 1,
13438 *insn_idx))
13439 return -EFAULT;
fb8d251e 13440 return 0;
17a52670
AS
13441 }
13442
979d63d5
DB
13443 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13444 false);
17a52670
AS
13445 if (!other_branch)
13446 return -EFAULT;
f4d7e40a 13447 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 13448
48461135
JB
13449 /* detect if we are comparing against a constant value so we can adjust
13450 * our min/max values for our dst register.
f1174f77 13451 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
13452 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13453 * because otherwise the different base pointers mean the offsets aren't
f1174f77 13454 * comparable.
48461135
JB
13455 */
13456 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 13457 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 13458
f1174f77 13459 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
13460 src_reg->type == SCALAR_VALUE) {
13461 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
13462 (is_jmp32 &&
13463 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 13464 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 13465 dst_reg,
3f50f132
JF
13466 src_reg->var_off.value,
13467 tnum_subreg(src_reg->var_off).value,
092ed096
JW
13468 opcode, is_jmp32);
13469 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
13470 (is_jmp32 &&
13471 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 13472 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 13473 src_reg,
3f50f132
JF
13474 dst_reg->var_off.value,
13475 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
13476 opcode, is_jmp32);
13477 else if (!is_jmp32 &&
13478 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 13479 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
13480 reg_combine_min_max(&other_branch_regs[insn->src_reg],
13481 &other_branch_regs[insn->dst_reg],
092ed096 13482 src_reg, dst_reg, opcode);
e688c3db
AS
13483 if (src_reg->id &&
13484 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
13485 find_equal_scalars(this_branch, src_reg);
13486 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13487 }
13488
f1174f77
EC
13489 }
13490 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 13491 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
13492 dst_reg, insn->imm, (u32)insn->imm,
13493 opcode, is_jmp32);
48461135
JB
13494 }
13495
e688c3db
AS
13496 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13497 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
13498 find_equal_scalars(this_branch, dst_reg);
13499 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13500 }
13501
befae758
EZ
13502 /* if one pointer register is compared to another pointer
13503 * register check if PTR_MAYBE_NULL could be lifted.
13504 * E.g. register A - maybe null
13505 * register B - not null
13506 * for JNE A, B, ... - A is not null in the false branch;
13507 * for JEQ A, B, ... - A is not null in the true branch.
8374bfd5
HS
13508 *
13509 * Since PTR_TO_BTF_ID points to a kernel struct that does
13510 * not need to be null checked by the BPF program, i.e.,
13511 * could be null even without PTR_MAYBE_NULL marking, so
13512 * only propagate nullness when neither reg is that type.
befae758
EZ
13513 */
13514 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13515 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
8374bfd5
HS
13516 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13517 base_type(src_reg->type) != PTR_TO_BTF_ID &&
13518 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
befae758
EZ
13519 eq_branch_regs = NULL;
13520 switch (opcode) {
13521 case BPF_JEQ:
13522 eq_branch_regs = other_branch_regs;
13523 break;
13524 case BPF_JNE:
13525 eq_branch_regs = regs;
13526 break;
13527 default:
13528 /* do nothing */
13529 break;
13530 }
13531 if (eq_branch_regs) {
13532 if (type_may_be_null(src_reg->type))
13533 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
13534 else
13535 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
13536 }
13537 }
13538
092ed096
JW
13539 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
13540 * NOTE: these optimizations below are related with pointer comparison
13541 * which will never be JMP32.
13542 */
13543 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 13544 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 13545 type_may_be_null(dst_reg->type)) {
840b9615 13546 /* Mark all identical registers in each branch as either
57a09bf0
TG
13547 * safe or unknown depending R == 0 or R != 0 conditional.
13548 */
840b9615
JS
13549 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
13550 opcode == BPF_JNE);
13551 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
13552 opcode == BPF_JEQ);
5beca081
DB
13553 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
13554 this_branch, other_branch) &&
13555 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
13556 verbose(env, "R%d pointer comparison prohibited\n",
13557 insn->dst_reg);
1be7f75d 13558 return -EACCES;
17a52670 13559 }
06ee7115 13560 if (env->log.level & BPF_LOG_LEVEL)
2e576648 13561 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
13562 return 0;
13563}
13564
17a52670 13565/* verify BPF_LD_IMM64 instruction */
58e2af8b 13566static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 13567{
d8eca5bb 13568 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 13569 struct bpf_reg_state *regs = cur_regs(env);
4976b718 13570 struct bpf_reg_state *dst_reg;
d8eca5bb 13571 struct bpf_map *map;
17a52670
AS
13572 int err;
13573
13574 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 13575 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
13576 return -EINVAL;
13577 }
13578 if (insn->off != 0) {
61bd5218 13579 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
13580 return -EINVAL;
13581 }
13582
dc503a8a 13583 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
13584 if (err)
13585 return err;
13586
4976b718 13587 dst_reg = &regs[insn->dst_reg];
6b173873 13588 if (insn->src_reg == 0) {
6b173873
JK
13589 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
13590
4976b718 13591 dst_reg->type = SCALAR_VALUE;
b03c9f9f 13592 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 13593 return 0;
6b173873 13594 }
17a52670 13595
d400a6cf
DB
13596 /* All special src_reg cases are listed below. From this point onwards
13597 * we either succeed and assign a corresponding dst_reg->type after
13598 * zeroing the offset, or fail and reject the program.
13599 */
13600 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 13601
d400a6cf 13602 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 13603 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 13604 switch (base_type(dst_reg->type)) {
4976b718
HL
13605 case PTR_TO_MEM:
13606 dst_reg->mem_size = aux->btf_var.mem_size;
13607 break;
13608 case PTR_TO_BTF_ID:
22dc4a0f 13609 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
13610 dst_reg->btf_id = aux->btf_var.btf_id;
13611 break;
13612 default:
13613 verbose(env, "bpf verifier is misconfigured\n");
13614 return -EFAULT;
13615 }
13616 return 0;
13617 }
13618
69c087ba
YS
13619 if (insn->src_reg == BPF_PSEUDO_FUNC) {
13620 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
13621 u32 subprogno = find_subprog(env,
13622 env->insn_idx + insn->imm + 1);
69c087ba
YS
13623
13624 if (!aux->func_info) {
13625 verbose(env, "missing btf func_info\n");
13626 return -EINVAL;
13627 }
13628 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
13629 verbose(env, "callback function not static\n");
13630 return -EINVAL;
13631 }
13632
13633 dst_reg->type = PTR_TO_FUNC;
13634 dst_reg->subprogno = subprogno;
13635 return 0;
13636 }
13637
d8eca5bb 13638 map = env->used_maps[aux->map_index];
4976b718 13639 dst_reg->map_ptr = map;
d8eca5bb 13640
387544bf
AS
13641 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
13642 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
13643 dst_reg->type = PTR_TO_MAP_VALUE;
13644 dst_reg->off = aux->map_off;
d0d78c1d
KKD
13645 WARN_ON_ONCE(map->max_entries != 1);
13646 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
13647 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
13648 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 13649 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
13650 } else {
13651 verbose(env, "bpf verifier is misconfigured\n");
13652 return -EINVAL;
13653 }
17a52670 13654
17a52670
AS
13655 return 0;
13656}
13657
96be4325
DB
13658static bool may_access_skb(enum bpf_prog_type type)
13659{
13660 switch (type) {
13661 case BPF_PROG_TYPE_SOCKET_FILTER:
13662 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 13663 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
13664 return true;
13665 default:
13666 return false;
13667 }
13668}
13669
ddd872bc
AS
13670/* verify safety of LD_ABS|LD_IND instructions:
13671 * - they can only appear in the programs where ctx == skb
13672 * - since they are wrappers of function calls, they scratch R1-R5 registers,
13673 * preserve R6-R9, and store return value into R0
13674 *
13675 * Implicit input:
13676 * ctx == skb == R6 == CTX
13677 *
13678 * Explicit input:
13679 * SRC == any register
13680 * IMM == 32-bit immediate
13681 *
13682 * Output:
13683 * R0 - 8/16/32-bit skb data converted to cpu endianness
13684 */
58e2af8b 13685static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 13686{
638f5b90 13687 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 13688 static const int ctx_reg = BPF_REG_6;
ddd872bc 13689 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
13690 int i, err;
13691
7e40781c 13692 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 13693 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
13694 return -EINVAL;
13695 }
13696
e0cea7ce
DB
13697 if (!env->ops->gen_ld_abs) {
13698 verbose(env, "bpf verifier is misconfigured\n");
13699 return -EINVAL;
13700 }
13701
ddd872bc 13702 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 13703 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 13704 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 13705 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
13706 return -EINVAL;
13707 }
13708
13709 /* check whether implicit source operand (register R6) is readable */
6d4f151a 13710 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
13711 if (err)
13712 return err;
13713
fd978bf7
JS
13714 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
13715 * gen_ld_abs() may terminate the program at runtime, leading to
13716 * reference leak.
13717 */
13718 err = check_reference_leak(env);
13719 if (err) {
13720 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
13721 return err;
13722 }
13723
d0d78c1d 13724 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
13725 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
13726 return -EINVAL;
13727 }
13728
9bb00b28
YS
13729 if (env->cur_state->active_rcu_lock) {
13730 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
13731 return -EINVAL;
13732 }
13733
6d4f151a 13734 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
13735 verbose(env,
13736 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
13737 return -EINVAL;
13738 }
13739
13740 if (mode == BPF_IND) {
13741 /* check explicit source operand */
dc503a8a 13742 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
13743 if (err)
13744 return err;
13745 }
13746
be80a1d3 13747 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
13748 if (err < 0)
13749 return err;
13750
ddd872bc 13751 /* reset caller saved regs to unreadable */
dc503a8a 13752 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 13753 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
13754 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
13755 }
ddd872bc
AS
13756
13757 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
13758 * the value fetched from the packet.
13759 * Already marked as written above.
ddd872bc 13760 */
61bd5218 13761 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
13762 /* ld_abs load up to 32-bit skb data. */
13763 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
13764 return 0;
13765}
13766
390ee7e2
AS
13767static int check_return_code(struct bpf_verifier_env *env)
13768{
5cf1e914 13769 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 13770 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
13771 struct bpf_reg_state *reg;
13772 struct tnum range = tnum_range(0, 1);
7e40781c 13773 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 13774 int err;
bfc6bb74
AS
13775 struct bpf_func_state *frame = env->cur_state->frame[0];
13776 const bool is_subprog = frame->subprogno;
27ae7997 13777
9e4e01df 13778 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
13779 if (!is_subprog) {
13780 switch (prog_type) {
13781 case BPF_PROG_TYPE_LSM:
13782 if (prog->expected_attach_type == BPF_LSM_CGROUP)
13783 /* See below, can be 0 or 0-1 depending on hook. */
13784 break;
13785 fallthrough;
13786 case BPF_PROG_TYPE_STRUCT_OPS:
13787 if (!prog->aux->attach_func_proto->type)
13788 return 0;
13789 break;
13790 default:
13791 break;
13792 }
13793 }
27ae7997 13794
8fb33b60 13795 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
13796 * to return the value from eBPF program.
13797 * Make sure that it's readable at this time
13798 * of bpf_exit, which means that program wrote
13799 * something into it earlier
13800 */
13801 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
13802 if (err)
13803 return err;
13804
13805 if (is_pointer_value(env, BPF_REG_0)) {
13806 verbose(env, "R0 leaks addr as return value\n");
13807 return -EACCES;
13808 }
390ee7e2 13809
f782e2c3 13810 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
13811
13812 if (frame->in_async_callback_fn) {
13813 /* enforce return zero from async callbacks like timer */
13814 if (reg->type != SCALAR_VALUE) {
13815 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 13816 reg_type_str(env, reg->type));
bfc6bb74
AS
13817 return -EINVAL;
13818 }
13819
13820 if (!tnum_in(tnum_const(0), reg->var_off)) {
13821 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
13822 return -EINVAL;
13823 }
13824 return 0;
13825 }
13826
f782e2c3
DB
13827 if (is_subprog) {
13828 if (reg->type != SCALAR_VALUE) {
13829 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 13830 reg_type_str(env, reg->type));
f782e2c3
DB
13831 return -EINVAL;
13832 }
13833 return 0;
13834 }
13835
7e40781c 13836 switch (prog_type) {
983695fa
DB
13837 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
13838 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
13839 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
13840 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
13841 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
13842 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
13843 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 13844 range = tnum_range(1, 1);
77241217
SF
13845 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
13846 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
13847 range = tnum_range(0, 3);
ed4ed404 13848 break;
390ee7e2 13849 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 13850 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
13851 range = tnum_range(0, 3);
13852 enforce_attach_type_range = tnum_range(2, 3);
13853 }
ed4ed404 13854 break;
390ee7e2
AS
13855 case BPF_PROG_TYPE_CGROUP_SOCK:
13856 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 13857 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 13858 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 13859 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 13860 break;
15ab09bd
AS
13861 case BPF_PROG_TYPE_RAW_TRACEPOINT:
13862 if (!env->prog->aux->attach_btf_id)
13863 return 0;
13864 range = tnum_const(0);
13865 break;
15d83c4d 13866 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
13867 switch (env->prog->expected_attach_type) {
13868 case BPF_TRACE_FENTRY:
13869 case BPF_TRACE_FEXIT:
13870 range = tnum_const(0);
13871 break;
13872 case BPF_TRACE_RAW_TP:
13873 case BPF_MODIFY_RETURN:
15d83c4d 13874 return 0;
2ec0616e
DB
13875 case BPF_TRACE_ITER:
13876 break;
e92888c7
YS
13877 default:
13878 return -ENOTSUPP;
13879 }
15d83c4d 13880 break;
e9ddbb77
JS
13881 case BPF_PROG_TYPE_SK_LOOKUP:
13882 range = tnum_range(SK_DROP, SK_PASS);
13883 break;
69fd337a
SF
13884
13885 case BPF_PROG_TYPE_LSM:
13886 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
13887 /* Regular BPF_PROG_TYPE_LSM programs can return
13888 * any value.
13889 */
13890 return 0;
13891 }
13892 if (!env->prog->aux->attach_func_proto->type) {
13893 /* Make sure programs that attach to void
13894 * hooks don't try to modify return value.
13895 */
13896 range = tnum_range(1, 1);
13897 }
13898 break;
13899
fd9c663b
FW
13900 case BPF_PROG_TYPE_NETFILTER:
13901 range = tnum_range(NF_DROP, NF_ACCEPT);
13902 break;
e92888c7
YS
13903 case BPF_PROG_TYPE_EXT:
13904 /* freplace program can return anything as its return value
13905 * depends on the to-be-replaced kernel func or bpf program.
13906 */
390ee7e2
AS
13907 default:
13908 return 0;
13909 }
13910
390ee7e2 13911 if (reg->type != SCALAR_VALUE) {
61bd5218 13912 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 13913 reg_type_str(env, reg->type));
390ee7e2
AS
13914 return -EINVAL;
13915 }
13916
13917 if (!tnum_in(range, reg->var_off)) {
bc2591d6 13918 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 13919 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 13920 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
13921 !prog->aux->attach_func_proto->type)
13922 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
13923 return -EINVAL;
13924 }
5cf1e914 13925
13926 if (!tnum_is_unknown(enforce_attach_type_range) &&
13927 tnum_in(enforce_attach_type_range, reg->var_off))
13928 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
13929 return 0;
13930}
13931
475fb78f
AS
13932/* non-recursive DFS pseudo code
13933 * 1 procedure DFS-iterative(G,v):
13934 * 2 label v as discovered
13935 * 3 let S be a stack
13936 * 4 S.push(v)
13937 * 5 while S is not empty
b6d20799 13938 * 6 t <- S.peek()
475fb78f
AS
13939 * 7 if t is what we're looking for:
13940 * 8 return t
13941 * 9 for all edges e in G.adjacentEdges(t) do
13942 * 10 if edge e is already labelled
13943 * 11 continue with the next edge
13944 * 12 w <- G.adjacentVertex(t,e)
13945 * 13 if vertex w is not discovered and not explored
13946 * 14 label e as tree-edge
13947 * 15 label w as discovered
13948 * 16 S.push(w)
13949 * 17 continue at 5
13950 * 18 else if vertex w is discovered
13951 * 19 label e as back-edge
13952 * 20 else
13953 * 21 // vertex w is explored
13954 * 22 label e as forward- or cross-edge
13955 * 23 label t as explored
13956 * 24 S.pop()
13957 *
13958 * convention:
13959 * 0x10 - discovered
13960 * 0x11 - discovered and fall-through edge labelled
13961 * 0x12 - discovered and fall-through and branch edges labelled
13962 * 0x20 - explored
13963 */
13964
13965enum {
13966 DISCOVERED = 0x10,
13967 EXPLORED = 0x20,
13968 FALLTHROUGH = 1,
13969 BRANCH = 2,
13970};
13971
dc2a4ebc
AS
13972static u32 state_htab_size(struct bpf_verifier_env *env)
13973{
13974 return env->prog->len;
13975}
13976
5d839021
AS
13977static struct bpf_verifier_state_list **explored_state(
13978 struct bpf_verifier_env *env,
13979 int idx)
13980{
dc2a4ebc
AS
13981 struct bpf_verifier_state *cur = env->cur_state;
13982 struct bpf_func_state *state = cur->frame[cur->curframe];
13983
13984 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
13985}
13986
bffdeaa8 13987static void mark_prune_point(struct bpf_verifier_env *env, int idx)
5d839021 13988{
a8f500af 13989 env->insn_aux_data[idx].prune_point = true;
5d839021 13990}
f1bca824 13991
bffdeaa8
AN
13992static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
13993{
13994 return env->insn_aux_data[insn_idx].prune_point;
13995}
13996
4b5ce570
AN
13997static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
13998{
13999 env->insn_aux_data[idx].force_checkpoint = true;
14000}
14001
14002static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14003{
14004 return env->insn_aux_data[insn_idx].force_checkpoint;
14005}
14006
14007
59e2e27d
WAF
14008enum {
14009 DONE_EXPLORING = 0,
14010 KEEP_EXPLORING = 1,
14011};
14012
475fb78f
AS
14013/* t, w, e - match pseudo-code above:
14014 * t - index of current instruction
14015 * w - next instruction
14016 * e - edge
14017 */
2589726d
AS
14018static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14019 bool loop_ok)
475fb78f 14020{
7df737e9
AS
14021 int *insn_stack = env->cfg.insn_stack;
14022 int *insn_state = env->cfg.insn_state;
14023
475fb78f 14024 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 14025 return DONE_EXPLORING;
475fb78f
AS
14026
14027 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 14028 return DONE_EXPLORING;
475fb78f
AS
14029
14030 if (w < 0 || w >= env->prog->len) {
d9762e84 14031 verbose_linfo(env, t, "%d: ", t);
61bd5218 14032 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
14033 return -EINVAL;
14034 }
14035
bffdeaa8 14036 if (e == BRANCH) {
f1bca824 14037 /* mark branch target for state pruning */
bffdeaa8
AN
14038 mark_prune_point(env, w);
14039 mark_jmp_point(env, w);
14040 }
f1bca824 14041
475fb78f
AS
14042 if (insn_state[w] == 0) {
14043 /* tree-edge */
14044 insn_state[t] = DISCOVERED | e;
14045 insn_state[w] = DISCOVERED;
7df737e9 14046 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 14047 return -E2BIG;
7df737e9 14048 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 14049 return KEEP_EXPLORING;
475fb78f 14050 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 14051 if (loop_ok && env->bpf_capable)
59e2e27d 14052 return DONE_EXPLORING;
d9762e84
MKL
14053 verbose_linfo(env, t, "%d: ", t);
14054 verbose_linfo(env, w, "%d: ", w);
61bd5218 14055 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
14056 return -EINVAL;
14057 } else if (insn_state[w] == EXPLORED) {
14058 /* forward- or cross-edge */
14059 insn_state[t] = DISCOVERED | e;
14060 } else {
61bd5218 14061 verbose(env, "insn state internal bug\n");
475fb78f
AS
14062 return -EFAULT;
14063 }
59e2e27d
WAF
14064 return DONE_EXPLORING;
14065}
14066
dcb2288b 14067static int visit_func_call_insn(int t, struct bpf_insn *insns,
efdb22de
YS
14068 struct bpf_verifier_env *env,
14069 bool visit_callee)
14070{
14071 int ret;
14072
14073 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14074 if (ret)
14075 return ret;
14076
618945fb
AN
14077 mark_prune_point(env, t + 1);
14078 /* when we exit from subprog, we need to record non-linear history */
14079 mark_jmp_point(env, t + 1);
14080
efdb22de 14081 if (visit_callee) {
bffdeaa8 14082 mark_prune_point(env, t);
86fc6ee6
AS
14083 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14084 /* It's ok to allow recursion from CFG point of
14085 * view. __check_func_call() will do the actual
14086 * check.
14087 */
14088 bpf_pseudo_func(insns + t));
efdb22de
YS
14089 }
14090 return ret;
14091}
14092
59e2e27d
WAF
14093/* Visits the instruction at index t and returns one of the following:
14094 * < 0 - an error occurred
14095 * DONE_EXPLORING - the instruction was fully explored
14096 * KEEP_EXPLORING - there is still work to be done before it is fully explored
14097 */
dcb2288b 14098static int visit_insn(int t, struct bpf_verifier_env *env)
59e2e27d 14099{
653ae3a8 14100 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
59e2e27d
WAF
14101 int ret;
14102
653ae3a8 14103 if (bpf_pseudo_func(insn))
dcb2288b 14104 return visit_func_call_insn(t, insns, env, true);
69c087ba 14105
59e2e27d 14106 /* All non-branch instructions have a single fall-through edge. */
653ae3a8
AN
14107 if (BPF_CLASS(insn->code) != BPF_JMP &&
14108 BPF_CLASS(insn->code) != BPF_JMP32)
59e2e27d
WAF
14109 return push_insn(t, t + 1, FALLTHROUGH, env, false);
14110
653ae3a8 14111 switch (BPF_OP(insn->code)) {
59e2e27d
WAF
14112 case BPF_EXIT:
14113 return DONE_EXPLORING;
14114
14115 case BPF_CALL:
c1ee85a9 14116 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
618945fb
AN
14117 /* Mark this call insn as a prune point to trigger
14118 * is_state_visited() check before call itself is
14119 * processed by __check_func_call(). Otherwise new
14120 * async state will be pushed for further exploration.
bfc6bb74 14121 */
bffdeaa8 14122 mark_prune_point(env, t);
06accc87
AN
14123 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14124 struct bpf_kfunc_call_arg_meta meta;
14125
14126 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
4b5ce570 14127 if (ret == 0 && is_iter_next_kfunc(&meta)) {
06accc87 14128 mark_prune_point(env, t);
4b5ce570
AN
14129 /* Checking and saving state checkpoints at iter_next() call
14130 * is crucial for fast convergence of open-coded iterator loop
14131 * logic, so we need to force it. If we don't do that,
14132 * is_state_visited() might skip saving a checkpoint, causing
14133 * unnecessarily long sequence of not checkpointed
14134 * instructions and jumps, leading to exhaustion of jump
14135 * history buffer, and potentially other undesired outcomes.
14136 * It is expected that with correct open-coded iterators
14137 * convergence will happen quickly, so we don't run a risk of
14138 * exhausting memory.
14139 */
14140 mark_force_checkpoint(env, t);
14141 }
06accc87 14142 }
653ae3a8 14143 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
14144
14145 case BPF_JA:
653ae3a8 14146 if (BPF_SRC(insn->code) != BPF_K)
59e2e27d
WAF
14147 return -EINVAL;
14148
14149 /* unconditional jump with single edge */
653ae3a8 14150 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
59e2e27d
WAF
14151 true);
14152 if (ret)
14153 return ret;
14154
653ae3a8
AN
14155 mark_prune_point(env, t + insn->off + 1);
14156 mark_jmp_point(env, t + insn->off + 1);
59e2e27d
WAF
14157
14158 return ret;
14159
14160 default:
14161 /* conditional jump with two edges */
bffdeaa8 14162 mark_prune_point(env, t);
618945fb 14163
59e2e27d
WAF
14164 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14165 if (ret)
14166 return ret;
14167
653ae3a8 14168 return push_insn(t, t + insn->off + 1, BRANCH, env, true);
59e2e27d 14169 }
475fb78f
AS
14170}
14171
14172/* non-recursive depth-first-search to detect loops in BPF program
14173 * loop == back-edge in directed graph
14174 */
58e2af8b 14175static int check_cfg(struct bpf_verifier_env *env)
475fb78f 14176{
475fb78f 14177 int insn_cnt = env->prog->len;
7df737e9 14178 int *insn_stack, *insn_state;
475fb78f 14179 int ret = 0;
59e2e27d 14180 int i;
475fb78f 14181
7df737e9 14182 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
14183 if (!insn_state)
14184 return -ENOMEM;
14185
7df737e9 14186 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 14187 if (!insn_stack) {
71dde681 14188 kvfree(insn_state);
475fb78f
AS
14189 return -ENOMEM;
14190 }
14191
14192 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14193 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 14194 env->cfg.cur_stack = 1;
475fb78f 14195
59e2e27d
WAF
14196 while (env->cfg.cur_stack > 0) {
14197 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 14198
dcb2288b 14199 ret = visit_insn(t, env);
59e2e27d
WAF
14200 switch (ret) {
14201 case DONE_EXPLORING:
14202 insn_state[t] = EXPLORED;
14203 env->cfg.cur_stack--;
14204 break;
14205 case KEEP_EXPLORING:
14206 break;
14207 default:
14208 if (ret > 0) {
14209 verbose(env, "visit_insn internal bug\n");
14210 ret = -EFAULT;
475fb78f 14211 }
475fb78f 14212 goto err_free;
59e2e27d 14213 }
475fb78f
AS
14214 }
14215
59e2e27d 14216 if (env->cfg.cur_stack < 0) {
61bd5218 14217 verbose(env, "pop stack internal bug\n");
475fb78f
AS
14218 ret = -EFAULT;
14219 goto err_free;
14220 }
475fb78f 14221
475fb78f
AS
14222 for (i = 0; i < insn_cnt; i++) {
14223 if (insn_state[i] != EXPLORED) {
61bd5218 14224 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
14225 ret = -EINVAL;
14226 goto err_free;
14227 }
14228 }
14229 ret = 0; /* cfg looks good */
14230
14231err_free:
71dde681
AS
14232 kvfree(insn_state);
14233 kvfree(insn_stack);
7df737e9 14234 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
14235 return ret;
14236}
14237
09b28d76
AS
14238static int check_abnormal_return(struct bpf_verifier_env *env)
14239{
14240 int i;
14241
14242 for (i = 1; i < env->subprog_cnt; i++) {
14243 if (env->subprog_info[i].has_ld_abs) {
14244 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14245 return -EINVAL;
14246 }
14247 if (env->subprog_info[i].has_tail_call) {
14248 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14249 return -EINVAL;
14250 }
14251 }
14252 return 0;
14253}
14254
838e9690
YS
14255/* The minimum supported BTF func info size */
14256#define MIN_BPF_FUNCINFO_SIZE 8
14257#define MAX_FUNCINFO_REC_SIZE 252
14258
c454a46b
MKL
14259static int check_btf_func(struct bpf_verifier_env *env,
14260 const union bpf_attr *attr,
af2ac3e1 14261 bpfptr_t uattr)
838e9690 14262{
09b28d76 14263 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 14264 u32 i, nfuncs, urec_size, min_size;
838e9690 14265 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 14266 struct bpf_func_info *krecord;
8c1b6e69 14267 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
14268 struct bpf_prog *prog;
14269 const struct btf *btf;
af2ac3e1 14270 bpfptr_t urecord;
d0b2818e 14271 u32 prev_offset = 0;
09b28d76 14272 bool scalar_return;
e7ed83d6 14273 int ret = -ENOMEM;
838e9690
YS
14274
14275 nfuncs = attr->func_info_cnt;
09b28d76
AS
14276 if (!nfuncs) {
14277 if (check_abnormal_return(env))
14278 return -EINVAL;
838e9690 14279 return 0;
09b28d76 14280 }
838e9690
YS
14281
14282 if (nfuncs != env->subprog_cnt) {
14283 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14284 return -EINVAL;
14285 }
14286
14287 urec_size = attr->func_info_rec_size;
14288 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14289 urec_size > MAX_FUNCINFO_REC_SIZE ||
14290 urec_size % sizeof(u32)) {
14291 verbose(env, "invalid func info rec size %u\n", urec_size);
14292 return -EINVAL;
14293 }
14294
c454a46b
MKL
14295 prog = env->prog;
14296 btf = prog->aux->btf;
838e9690 14297
af2ac3e1 14298 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
14299 min_size = min_t(u32, krec_size, urec_size);
14300
ba64e7d8 14301 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
14302 if (!krecord)
14303 return -ENOMEM;
8c1b6e69
AS
14304 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14305 if (!info_aux)
14306 goto err_free;
ba64e7d8 14307
838e9690
YS
14308 for (i = 0; i < nfuncs; i++) {
14309 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14310 if (ret) {
14311 if (ret == -E2BIG) {
14312 verbose(env, "nonzero tailing record in func info");
14313 /* set the size kernel expects so loader can zero
14314 * out the rest of the record.
14315 */
af2ac3e1
AS
14316 if (copy_to_bpfptr_offset(uattr,
14317 offsetof(union bpf_attr, func_info_rec_size),
14318 &min_size, sizeof(min_size)))
838e9690
YS
14319 ret = -EFAULT;
14320 }
c454a46b 14321 goto err_free;
838e9690
YS
14322 }
14323
af2ac3e1 14324 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 14325 ret = -EFAULT;
c454a46b 14326 goto err_free;
838e9690
YS
14327 }
14328
d30d42e0 14329 /* check insn_off */
09b28d76 14330 ret = -EINVAL;
838e9690 14331 if (i == 0) {
d30d42e0 14332 if (krecord[i].insn_off) {
838e9690 14333 verbose(env,
d30d42e0
MKL
14334 "nonzero insn_off %u for the first func info record",
14335 krecord[i].insn_off);
c454a46b 14336 goto err_free;
838e9690 14337 }
d30d42e0 14338 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
14339 verbose(env,
14340 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 14341 krecord[i].insn_off, prev_offset);
c454a46b 14342 goto err_free;
838e9690
YS
14343 }
14344
d30d42e0 14345 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 14346 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 14347 goto err_free;
838e9690
YS
14348 }
14349
14350 /* check type_id */
ba64e7d8 14351 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 14352 if (!type || !btf_type_is_func(type)) {
838e9690 14353 verbose(env, "invalid type id %d in func info",
ba64e7d8 14354 krecord[i].type_id);
c454a46b 14355 goto err_free;
838e9690 14356 }
51c39bb1 14357 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
14358
14359 func_proto = btf_type_by_id(btf, type->type);
14360 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14361 /* btf_func_check() already verified it during BTF load */
14362 goto err_free;
14363 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14364 scalar_return =
6089fb32 14365 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
14366 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14367 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14368 goto err_free;
14369 }
14370 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14371 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14372 goto err_free;
14373 }
14374
d30d42e0 14375 prev_offset = krecord[i].insn_off;
af2ac3e1 14376 bpfptr_add(&urecord, urec_size);
838e9690
YS
14377 }
14378
ba64e7d8
YS
14379 prog->aux->func_info = krecord;
14380 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 14381 prog->aux->func_info_aux = info_aux;
838e9690
YS
14382 return 0;
14383
c454a46b 14384err_free:
ba64e7d8 14385 kvfree(krecord);
8c1b6e69 14386 kfree(info_aux);
838e9690
YS
14387 return ret;
14388}
14389
ba64e7d8
YS
14390static void adjust_btf_func(struct bpf_verifier_env *env)
14391{
8c1b6e69 14392 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
14393 int i;
14394
8c1b6e69 14395 if (!aux->func_info)
ba64e7d8
YS
14396 return;
14397
14398 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 14399 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
14400}
14401
1b773d00 14402#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
14403#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
14404
14405static int check_btf_line(struct bpf_verifier_env *env,
14406 const union bpf_attr *attr,
af2ac3e1 14407 bpfptr_t uattr)
c454a46b
MKL
14408{
14409 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14410 struct bpf_subprog_info *sub;
14411 struct bpf_line_info *linfo;
14412 struct bpf_prog *prog;
14413 const struct btf *btf;
af2ac3e1 14414 bpfptr_t ulinfo;
c454a46b
MKL
14415 int err;
14416
14417 nr_linfo = attr->line_info_cnt;
14418 if (!nr_linfo)
14419 return 0;
0e6491b5
BC
14420 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14421 return -EINVAL;
c454a46b
MKL
14422
14423 rec_size = attr->line_info_rec_size;
14424 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14425 rec_size > MAX_LINEINFO_REC_SIZE ||
14426 rec_size & (sizeof(u32) - 1))
14427 return -EINVAL;
14428
14429 /* Need to zero it in case the userspace may
14430 * pass in a smaller bpf_line_info object.
14431 */
14432 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14433 GFP_KERNEL | __GFP_NOWARN);
14434 if (!linfo)
14435 return -ENOMEM;
14436
14437 prog = env->prog;
14438 btf = prog->aux->btf;
14439
14440 s = 0;
14441 sub = env->subprog_info;
af2ac3e1 14442 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
14443 expected_size = sizeof(struct bpf_line_info);
14444 ncopy = min_t(u32, expected_size, rec_size);
14445 for (i = 0; i < nr_linfo; i++) {
14446 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14447 if (err) {
14448 if (err == -E2BIG) {
14449 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
14450 if (copy_to_bpfptr_offset(uattr,
14451 offsetof(union bpf_attr, line_info_rec_size),
14452 &expected_size, sizeof(expected_size)))
c454a46b
MKL
14453 err = -EFAULT;
14454 }
14455 goto err_free;
14456 }
14457
af2ac3e1 14458 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
14459 err = -EFAULT;
14460 goto err_free;
14461 }
14462
14463 /*
14464 * Check insn_off to ensure
14465 * 1) strictly increasing AND
14466 * 2) bounded by prog->len
14467 *
14468 * The linfo[0].insn_off == 0 check logically falls into
14469 * the later "missing bpf_line_info for func..." case
14470 * because the first linfo[0].insn_off must be the
14471 * first sub also and the first sub must have
14472 * subprog_info[0].start == 0.
14473 */
14474 if ((i && linfo[i].insn_off <= prev_offset) ||
14475 linfo[i].insn_off >= prog->len) {
14476 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14477 i, linfo[i].insn_off, prev_offset,
14478 prog->len);
14479 err = -EINVAL;
14480 goto err_free;
14481 }
14482
fdbaa0be
MKL
14483 if (!prog->insnsi[linfo[i].insn_off].code) {
14484 verbose(env,
14485 "Invalid insn code at line_info[%u].insn_off\n",
14486 i);
14487 err = -EINVAL;
14488 goto err_free;
14489 }
14490
23127b33
MKL
14491 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14492 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
14493 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14494 err = -EINVAL;
14495 goto err_free;
14496 }
14497
14498 if (s != env->subprog_cnt) {
14499 if (linfo[i].insn_off == sub[s].start) {
14500 sub[s].linfo_idx = i;
14501 s++;
14502 } else if (sub[s].start < linfo[i].insn_off) {
14503 verbose(env, "missing bpf_line_info for func#%u\n", s);
14504 err = -EINVAL;
14505 goto err_free;
14506 }
14507 }
14508
14509 prev_offset = linfo[i].insn_off;
af2ac3e1 14510 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
14511 }
14512
14513 if (s != env->subprog_cnt) {
14514 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14515 env->subprog_cnt - s, s);
14516 err = -EINVAL;
14517 goto err_free;
14518 }
14519
14520 prog->aux->linfo = linfo;
14521 prog->aux->nr_linfo = nr_linfo;
14522
14523 return 0;
14524
14525err_free:
14526 kvfree(linfo);
14527 return err;
14528}
14529
fbd94c7a
AS
14530#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
14531#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
14532
14533static int check_core_relo(struct bpf_verifier_env *env,
14534 const union bpf_attr *attr,
14535 bpfptr_t uattr)
14536{
14537 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
14538 struct bpf_core_relo core_relo = {};
14539 struct bpf_prog *prog = env->prog;
14540 const struct btf *btf = prog->aux->btf;
14541 struct bpf_core_ctx ctx = {
14542 .log = &env->log,
14543 .btf = btf,
14544 };
14545 bpfptr_t u_core_relo;
14546 int err;
14547
14548 nr_core_relo = attr->core_relo_cnt;
14549 if (!nr_core_relo)
14550 return 0;
14551 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
14552 return -EINVAL;
14553
14554 rec_size = attr->core_relo_rec_size;
14555 if (rec_size < MIN_CORE_RELO_SIZE ||
14556 rec_size > MAX_CORE_RELO_SIZE ||
14557 rec_size % sizeof(u32))
14558 return -EINVAL;
14559
14560 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
14561 expected_size = sizeof(struct bpf_core_relo);
14562 ncopy = min_t(u32, expected_size, rec_size);
14563
14564 /* Unlike func_info and line_info, copy and apply each CO-RE
14565 * relocation record one at a time.
14566 */
14567 for (i = 0; i < nr_core_relo; i++) {
14568 /* future proofing when sizeof(bpf_core_relo) changes */
14569 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
14570 if (err) {
14571 if (err == -E2BIG) {
14572 verbose(env, "nonzero tailing record in core_relo");
14573 if (copy_to_bpfptr_offset(uattr,
14574 offsetof(union bpf_attr, core_relo_rec_size),
14575 &expected_size, sizeof(expected_size)))
14576 err = -EFAULT;
14577 }
14578 break;
14579 }
14580
14581 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
14582 err = -EFAULT;
14583 break;
14584 }
14585
14586 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
14587 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
14588 i, core_relo.insn_off, prog->len);
14589 err = -EINVAL;
14590 break;
14591 }
14592
14593 err = bpf_core_apply(&ctx, &core_relo, i,
14594 &prog->insnsi[core_relo.insn_off / 8]);
14595 if (err)
14596 break;
14597 bpfptr_add(&u_core_relo, rec_size);
14598 }
14599 return err;
14600}
14601
c454a46b
MKL
14602static int check_btf_info(struct bpf_verifier_env *env,
14603 const union bpf_attr *attr,
af2ac3e1 14604 bpfptr_t uattr)
c454a46b
MKL
14605{
14606 struct btf *btf;
14607 int err;
14608
09b28d76
AS
14609 if (!attr->func_info_cnt && !attr->line_info_cnt) {
14610 if (check_abnormal_return(env))
14611 return -EINVAL;
c454a46b 14612 return 0;
09b28d76 14613 }
c454a46b
MKL
14614
14615 btf = btf_get_by_fd(attr->prog_btf_fd);
14616 if (IS_ERR(btf))
14617 return PTR_ERR(btf);
350a5c4d
AS
14618 if (btf_is_kernel(btf)) {
14619 btf_put(btf);
14620 return -EACCES;
14621 }
c454a46b
MKL
14622 env->prog->aux->btf = btf;
14623
14624 err = check_btf_func(env, attr, uattr);
14625 if (err)
14626 return err;
14627
14628 err = check_btf_line(env, attr, uattr);
14629 if (err)
14630 return err;
14631
fbd94c7a
AS
14632 err = check_core_relo(env, attr, uattr);
14633 if (err)
14634 return err;
14635
c454a46b 14636 return 0;
ba64e7d8
YS
14637}
14638
f1174f77
EC
14639/* check %cur's range satisfies %old's */
14640static bool range_within(struct bpf_reg_state *old,
14641 struct bpf_reg_state *cur)
14642{
b03c9f9f
EC
14643 return old->umin_value <= cur->umin_value &&
14644 old->umax_value >= cur->umax_value &&
14645 old->smin_value <= cur->smin_value &&
fd675184
DB
14646 old->smax_value >= cur->smax_value &&
14647 old->u32_min_value <= cur->u32_min_value &&
14648 old->u32_max_value >= cur->u32_max_value &&
14649 old->s32_min_value <= cur->s32_min_value &&
14650 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
14651}
14652
f1174f77
EC
14653/* If in the old state two registers had the same id, then they need to have
14654 * the same id in the new state as well. But that id could be different from
14655 * the old state, so we need to track the mapping from old to new ids.
14656 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
14657 * regs with old id 5 must also have new id 9 for the new state to be safe. But
14658 * regs with a different old id could still have new id 9, we don't care about
14659 * that.
14660 * So we look through our idmap to see if this old id has been seen before. If
14661 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 14662 */
c9e73e3d 14663static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 14664{
f1174f77 14665 unsigned int i;
969bf05e 14666
4633a006
AN
14667 /* either both IDs should be set or both should be zero */
14668 if (!!old_id != !!cur_id)
14669 return false;
14670
14671 if (old_id == 0) /* cur_id == 0 as well */
14672 return true;
14673
c9e73e3d 14674 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
14675 if (!idmap[i].old) {
14676 /* Reached an empty slot; haven't seen this id before */
14677 idmap[i].old = old_id;
14678 idmap[i].cur = cur_id;
14679 return true;
14680 }
14681 if (idmap[i].old == old_id)
14682 return idmap[i].cur == cur_id;
14683 }
14684 /* We ran out of idmap slots, which should be impossible */
14685 WARN_ON_ONCE(1);
14686 return false;
14687}
14688
9242b5f5
AS
14689static void clean_func_state(struct bpf_verifier_env *env,
14690 struct bpf_func_state *st)
14691{
14692 enum bpf_reg_liveness live;
14693 int i, j;
14694
14695 for (i = 0; i < BPF_REG_FP; i++) {
14696 live = st->regs[i].live;
14697 /* liveness must not touch this register anymore */
14698 st->regs[i].live |= REG_LIVE_DONE;
14699 if (!(live & REG_LIVE_READ))
14700 /* since the register is unused, clear its state
14701 * to make further comparison simpler
14702 */
f54c7898 14703 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
14704 }
14705
14706 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
14707 live = st->stack[i].spilled_ptr.live;
14708 /* liveness must not touch this stack slot anymore */
14709 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
14710 if (!(live & REG_LIVE_READ)) {
f54c7898 14711 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
14712 for (j = 0; j < BPF_REG_SIZE; j++)
14713 st->stack[i].slot_type[j] = STACK_INVALID;
14714 }
14715 }
14716}
14717
14718static void clean_verifier_state(struct bpf_verifier_env *env,
14719 struct bpf_verifier_state *st)
14720{
14721 int i;
14722
14723 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
14724 /* all regs in this state in all frames were already marked */
14725 return;
14726
14727 for (i = 0; i <= st->curframe; i++)
14728 clean_func_state(env, st->frame[i]);
14729}
14730
14731/* the parentage chains form a tree.
14732 * the verifier states are added to state lists at given insn and
14733 * pushed into state stack for future exploration.
14734 * when the verifier reaches bpf_exit insn some of the verifer states
14735 * stored in the state lists have their final liveness state already,
14736 * but a lot of states will get revised from liveness point of view when
14737 * the verifier explores other branches.
14738 * Example:
14739 * 1: r0 = 1
14740 * 2: if r1 == 100 goto pc+1
14741 * 3: r0 = 2
14742 * 4: exit
14743 * when the verifier reaches exit insn the register r0 in the state list of
14744 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
14745 * of insn 2 and goes exploring further. At the insn 4 it will walk the
14746 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
14747 *
14748 * Since the verifier pushes the branch states as it sees them while exploring
14749 * the program the condition of walking the branch instruction for the second
14750 * time means that all states below this branch were already explored and
8fb33b60 14751 * their final liveness marks are already propagated.
9242b5f5
AS
14752 * Hence when the verifier completes the search of state list in is_state_visited()
14753 * we can call this clean_live_states() function to mark all liveness states
14754 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
14755 * will not be used.
14756 * This function also clears the registers and stack for states that !READ
14757 * to simplify state merging.
14758 *
14759 * Important note here that walking the same branch instruction in the callee
14760 * doesn't meant that the states are DONE. The verifier has to compare
14761 * the callsites
14762 */
14763static void clean_live_states(struct bpf_verifier_env *env, int insn,
14764 struct bpf_verifier_state *cur)
14765{
14766 struct bpf_verifier_state_list *sl;
14767 int i;
14768
5d839021 14769 sl = *explored_state(env, insn);
a8f500af 14770 while (sl) {
2589726d
AS
14771 if (sl->state.branches)
14772 goto next;
dc2a4ebc
AS
14773 if (sl->state.insn_idx != insn ||
14774 sl->state.curframe != cur->curframe)
9242b5f5
AS
14775 goto next;
14776 for (i = 0; i <= cur->curframe; i++)
14777 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
14778 goto next;
14779 clean_verifier_state(env, &sl->state);
14780next:
14781 sl = sl->next;
14782 }
14783}
14784
4a95c85c 14785static bool regs_exact(const struct bpf_reg_state *rold,
4633a006
AN
14786 const struct bpf_reg_state *rcur,
14787 struct bpf_id_pair *idmap)
4a95c85c 14788{
d2dcc67d 14789 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4633a006
AN
14790 check_ids(rold->id, rcur->id, idmap) &&
14791 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
4a95c85c
AN
14792}
14793
f1174f77 14794/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
14795static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
14796 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 14797{
dc503a8a
EC
14798 if (!(rold->live & REG_LIVE_READ))
14799 /* explored state didn't use this */
14800 return true;
f1174f77
EC
14801 if (rold->type == NOT_INIT)
14802 /* explored state can't have used this */
969bf05e 14803 return true;
f1174f77
EC
14804 if (rcur->type == NOT_INIT)
14805 return false;
7f4ce97c 14806
910f6999
AN
14807 /* Enforce that register types have to match exactly, including their
14808 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
14809 * rule.
14810 *
14811 * One can make a point that using a pointer register as unbounded
14812 * SCALAR would be technically acceptable, but this could lead to
14813 * pointer leaks because scalars are allowed to leak while pointers
14814 * are not. We could make this safe in special cases if root is
14815 * calling us, but it's probably not worth the hassle.
14816 *
14817 * Also, register types that are *not* MAYBE_NULL could technically be
14818 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
14819 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
14820 * to the same map).
7f4ce97c
AN
14821 * However, if the old MAYBE_NULL register then got NULL checked,
14822 * doing so could have affected others with the same id, and we can't
14823 * check for that because we lost the id when we converted to
14824 * a non-MAYBE_NULL variant.
14825 * So, as a general rule we don't allow mixing MAYBE_NULL and
910f6999 14826 * non-MAYBE_NULL registers as well.
7f4ce97c 14827 */
910f6999 14828 if (rold->type != rcur->type)
7f4ce97c
AN
14829 return false;
14830
c25b2ae1 14831 switch (base_type(rold->type)) {
f1174f77 14832 case SCALAR_VALUE:
4633a006 14833 if (regs_exact(rold, rcur, idmap))
7c884339 14834 return true;
e042aa53
DB
14835 if (env->explore_alu_limits)
14836 return false;
910f6999
AN
14837 if (!rold->precise)
14838 return true;
14839 /* new val must satisfy old val knowledge */
14840 return range_within(rold, rcur) &&
14841 tnum_in(rold->var_off, rcur->var_off);
69c087ba 14842 case PTR_TO_MAP_KEY:
f1174f77 14843 case PTR_TO_MAP_VALUE:
567da5d2
AN
14844 case PTR_TO_MEM:
14845 case PTR_TO_BUF:
14846 case PTR_TO_TP_BUFFER:
1b688a19
EC
14847 /* If the new min/max/var_off satisfy the old ones and
14848 * everything else matches, we are OK.
1b688a19 14849 */
a73bf9f2 14850 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
1b688a19 14851 range_within(rold, rcur) &&
4ea2bb15 14852 tnum_in(rold->var_off, rcur->var_off) &&
567da5d2
AN
14853 check_ids(rold->id, rcur->id, idmap) &&
14854 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
de8f3a83 14855 case PTR_TO_PACKET_META:
f1174f77 14856 case PTR_TO_PACKET:
f1174f77
EC
14857 /* We must have at least as much range as the old ptr
14858 * did, so that any accesses which were safe before are
14859 * still safe. This is true even if old range < old off,
14860 * since someone could have accessed through (ptr - k), or
14861 * even done ptr -= k in a register, to get a safe access.
14862 */
14863 if (rold->range > rcur->range)
14864 return false;
14865 /* If the offsets don't match, we can't trust our alignment;
14866 * nor can we be sure that we won't fall out of range.
14867 */
14868 if (rold->off != rcur->off)
14869 return false;
14870 /* id relations must be preserved */
4633a006 14871 if (!check_ids(rold->id, rcur->id, idmap))
f1174f77
EC
14872 return false;
14873 /* new val must satisfy old val knowledge */
14874 return range_within(rold, rcur) &&
14875 tnum_in(rold->var_off, rcur->var_off);
7c884339
EZ
14876 case PTR_TO_STACK:
14877 /* two stack pointers are equal only if they're pointing to
14878 * the same stack frame, since fp-8 in foo != fp-8 in bar
f1174f77 14879 */
4633a006 14880 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
f1174f77 14881 default:
4633a006 14882 return regs_exact(rold, rcur, idmap);
f1174f77 14883 }
969bf05e
AS
14884}
14885
e042aa53
DB
14886static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
14887 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
14888{
14889 int i, spi;
14890
638f5b90
AS
14891 /* walk slots of the explored stack and ignore any additional
14892 * slots in the current stack, since explored(safe) state
14893 * didn't use them
14894 */
14895 for (i = 0; i < old->allocated_stack; i++) {
06accc87
AN
14896 struct bpf_reg_state *old_reg, *cur_reg;
14897
638f5b90
AS
14898 spi = i / BPF_REG_SIZE;
14899
b233920c
AS
14900 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
14901 i += BPF_REG_SIZE - 1;
cc2b14d5 14902 /* explored state didn't use this */
fd05e57b 14903 continue;
b233920c 14904 }
cc2b14d5 14905
638f5b90
AS
14906 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
14907 continue;
19e2dbb7 14908
6715df8d
EZ
14909 if (env->allow_uninit_stack &&
14910 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
14911 continue;
14912
19e2dbb7
AS
14913 /* explored stack has more populated slots than current stack
14914 * and these slots were used
14915 */
14916 if (i >= cur->allocated_stack)
14917 return false;
14918
cc2b14d5
AS
14919 /* if old state was safe with misc data in the stack
14920 * it will be safe with zero-initialized stack.
14921 * The opposite is not true
14922 */
14923 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
14924 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
14925 continue;
638f5b90
AS
14926 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
14927 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
14928 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 14929 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
14930 * this verifier states are not equivalent,
14931 * return false to continue verification of this path
14932 */
14933 return false;
27113c59 14934 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 14935 continue;
d6fefa11
KKD
14936 /* Both old and cur are having same slot_type */
14937 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
14938 case STACK_SPILL:
638f5b90
AS
14939 /* when explored and current stack slot are both storing
14940 * spilled registers, check that stored pointers types
14941 * are the same as well.
14942 * Ex: explored safe path could have stored
14943 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
14944 * but current path has stored:
14945 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
14946 * such verifier states are not equivalent.
14947 * return false to continue verification of this path
14948 */
d6fefa11
KKD
14949 if (!regsafe(env, &old->stack[spi].spilled_ptr,
14950 &cur->stack[spi].spilled_ptr, idmap))
14951 return false;
14952 break;
14953 case STACK_DYNPTR:
d6fefa11
KKD
14954 old_reg = &old->stack[spi].spilled_ptr;
14955 cur_reg = &cur->stack[spi].spilled_ptr;
14956 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
14957 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
14958 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14959 return false;
14960 break;
06accc87
AN
14961 case STACK_ITER:
14962 old_reg = &old->stack[spi].spilled_ptr;
14963 cur_reg = &cur->stack[spi].spilled_ptr;
14964 /* iter.depth is not compared between states as it
14965 * doesn't matter for correctness and would otherwise
14966 * prevent convergence; we maintain it only to prevent
14967 * infinite loop check triggering, see
14968 * iter_active_depths_differ()
14969 */
14970 if (old_reg->iter.btf != cur_reg->iter.btf ||
14971 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
14972 old_reg->iter.state != cur_reg->iter.state ||
14973 /* ignore {old_reg,cur_reg}->iter.depth, see above */
14974 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14975 return false;
14976 break;
d6fefa11
KKD
14977 case STACK_MISC:
14978 case STACK_ZERO:
14979 case STACK_INVALID:
14980 continue;
14981 /* Ensure that new unhandled slot types return false by default */
14982 default:
638f5b90 14983 return false;
d6fefa11 14984 }
638f5b90
AS
14985 }
14986 return true;
14987}
14988
e8f55fcf
AN
14989static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
14990 struct bpf_id_pair *idmap)
fd978bf7 14991{
e8f55fcf
AN
14992 int i;
14993
fd978bf7
JS
14994 if (old->acquired_refs != cur->acquired_refs)
14995 return false;
e8f55fcf
AN
14996
14997 for (i = 0; i < old->acquired_refs; i++) {
14998 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
14999 return false;
15000 }
15001
15002 return true;
fd978bf7
JS
15003}
15004
f1bca824
AS
15005/* compare two verifier states
15006 *
15007 * all states stored in state_list are known to be valid, since
15008 * verifier reached 'bpf_exit' instruction through them
15009 *
15010 * this function is called when verifier exploring different branches of
15011 * execution popped from the state stack. If it sees an old state that has
15012 * more strict register state and more strict stack state then this execution
15013 * branch doesn't need to be explored further, since verifier already
15014 * concluded that more strict state leads to valid finish.
15015 *
15016 * Therefore two states are equivalent if register state is more conservative
15017 * and explored stack state is more conservative than the current one.
15018 * Example:
15019 * explored current
15020 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15021 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15022 *
15023 * In other words if current stack state (one being explored) has more
15024 * valid slots than old one that already passed validation, it means
15025 * the verifier can stop exploring and conclude that current state is valid too
15026 *
15027 * Similarly with registers. If explored state has register type as invalid
15028 * whereas register type in current state is meaningful, it means that
15029 * the current state will reach 'bpf_exit' instruction safely
15030 */
c9e73e3d 15031static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 15032 struct bpf_func_state *cur)
f1bca824
AS
15033{
15034 int i;
15035
c9e73e3d 15036 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
15037 if (!regsafe(env, &old->regs[i], &cur->regs[i],
15038 env->idmap_scratch))
c9e73e3d 15039 return false;
f1bca824 15040
e042aa53 15041 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 15042 return false;
fd978bf7 15043
e8f55fcf 15044 if (!refsafe(old, cur, env->idmap_scratch))
c9e73e3d
LB
15045 return false;
15046
15047 return true;
f1bca824
AS
15048}
15049
f4d7e40a
AS
15050static bool states_equal(struct bpf_verifier_env *env,
15051 struct bpf_verifier_state *old,
15052 struct bpf_verifier_state *cur)
15053{
15054 int i;
15055
15056 if (old->curframe != cur->curframe)
15057 return false;
15058
5dd9cdbc
EZ
15059 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
15060
979d63d5
DB
15061 /* Verification state from speculative execution simulation
15062 * must never prune a non-speculative execution one.
15063 */
15064 if (old->speculative && !cur->speculative)
15065 return false;
15066
4ea2bb15
EZ
15067 if (old->active_lock.ptr != cur->active_lock.ptr)
15068 return false;
15069
15070 /* Old and cur active_lock's have to be either both present
15071 * or both absent.
15072 */
15073 if (!!old->active_lock.id != !!cur->active_lock.id)
15074 return false;
15075
15076 if (old->active_lock.id &&
15077 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
d83525ca
AS
15078 return false;
15079
9bb00b28 15080 if (old->active_rcu_lock != cur->active_rcu_lock)
d83525ca
AS
15081 return false;
15082
f4d7e40a
AS
15083 /* for states to be equal callsites have to be the same
15084 * and all frame states need to be equivalent
15085 */
15086 for (i = 0; i <= old->curframe; i++) {
15087 if (old->frame[i]->callsite != cur->frame[i]->callsite)
15088 return false;
c9e73e3d 15089 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
15090 return false;
15091 }
15092 return true;
15093}
15094
5327ed3d
JW
15095/* Return 0 if no propagation happened. Return negative error code if error
15096 * happened. Otherwise, return the propagated bit.
15097 */
55e7f3b5
JW
15098static int propagate_liveness_reg(struct bpf_verifier_env *env,
15099 struct bpf_reg_state *reg,
15100 struct bpf_reg_state *parent_reg)
15101{
5327ed3d
JW
15102 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15103 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
15104 int err;
15105
5327ed3d
JW
15106 /* When comes here, read flags of PARENT_REG or REG could be any of
15107 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15108 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15109 */
15110 if (parent_flag == REG_LIVE_READ64 ||
15111 /* Or if there is no read flag from REG. */
15112 !flag ||
15113 /* Or if the read flag from REG is the same as PARENT_REG. */
15114 parent_flag == flag)
55e7f3b5
JW
15115 return 0;
15116
5327ed3d 15117 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
15118 if (err)
15119 return err;
15120
5327ed3d 15121 return flag;
55e7f3b5
JW
15122}
15123
8e9cd9ce 15124/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
15125 * straight-line code between a state and its parent. When we arrive at an
15126 * equivalent state (jump target or such) we didn't arrive by the straight-line
15127 * code, so read marks in the state must propagate to the parent regardless
15128 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 15129 * in mark_reg_read() is for.
8e9cd9ce 15130 */
f4d7e40a
AS
15131static int propagate_liveness(struct bpf_verifier_env *env,
15132 const struct bpf_verifier_state *vstate,
15133 struct bpf_verifier_state *vparent)
dc503a8a 15134{
3f8cafa4 15135 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 15136 struct bpf_func_state *state, *parent;
3f8cafa4 15137 int i, frame, err = 0;
dc503a8a 15138
f4d7e40a
AS
15139 if (vparent->curframe != vstate->curframe) {
15140 WARN(1, "propagate_live: parent frame %d current frame %d\n",
15141 vparent->curframe, vstate->curframe);
15142 return -EFAULT;
15143 }
dc503a8a
EC
15144 /* Propagate read liveness of registers... */
15145 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 15146 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
15147 parent = vparent->frame[frame];
15148 state = vstate->frame[frame];
15149 parent_reg = parent->regs;
15150 state_reg = state->regs;
83d16312
JK
15151 /* We don't need to worry about FP liveness, it's read-only */
15152 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
15153 err = propagate_liveness_reg(env, &state_reg[i],
15154 &parent_reg[i]);
5327ed3d 15155 if (err < 0)
3f8cafa4 15156 return err;
5327ed3d
JW
15157 if (err == REG_LIVE_READ64)
15158 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 15159 }
f4d7e40a 15160
1b04aee7 15161 /* Propagate stack slots. */
f4d7e40a
AS
15162 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15163 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
15164 parent_reg = &parent->stack[i].spilled_ptr;
15165 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
15166 err = propagate_liveness_reg(env, state_reg,
15167 parent_reg);
5327ed3d 15168 if (err < 0)
3f8cafa4 15169 return err;
dc503a8a
EC
15170 }
15171 }
5327ed3d 15172 return 0;
dc503a8a
EC
15173}
15174
a3ce685d
AS
15175/* find precise scalars in the previous equivalent state and
15176 * propagate them into the current state
15177 */
15178static int propagate_precision(struct bpf_verifier_env *env,
15179 const struct bpf_verifier_state *old)
15180{
15181 struct bpf_reg_state *state_reg;
15182 struct bpf_func_state *state;
529409ea 15183 int i, err = 0, fr;
a3ce685d 15184
529409ea
AN
15185 for (fr = old->curframe; fr >= 0; fr--) {
15186 state = old->frame[fr];
15187 state_reg = state->regs;
15188 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15189 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15190 !state_reg->precise ||
15191 !(state_reg->live & REG_LIVE_READ))
529409ea
AN
15192 continue;
15193 if (env->log.level & BPF_LOG_LEVEL2)
34f0677e 15194 verbose(env, "frame %d: propagating r%d\n", fr, i);
529409ea
AN
15195 err = mark_chain_precision_frame(env, fr, i);
15196 if (err < 0)
15197 return err;
15198 }
a3ce685d 15199
529409ea
AN
15200 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15201 if (!is_spilled_reg(&state->stack[i]))
15202 continue;
15203 state_reg = &state->stack[i].spilled_ptr;
15204 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15205 !state_reg->precise ||
15206 !(state_reg->live & REG_LIVE_READ))
529409ea
AN
15207 continue;
15208 if (env->log.level & BPF_LOG_LEVEL2)
15209 verbose(env, "frame %d: propagating fp%d\n",
34f0677e 15210 fr, (-i - 1) * BPF_REG_SIZE);
529409ea
AN
15211 err = mark_chain_precision_stack_frame(env, fr, i);
15212 if (err < 0)
15213 return err;
15214 }
a3ce685d
AS
15215 }
15216 return 0;
15217}
15218
2589726d
AS
15219static bool states_maybe_looping(struct bpf_verifier_state *old,
15220 struct bpf_verifier_state *cur)
15221{
15222 struct bpf_func_state *fold, *fcur;
15223 int i, fr = cur->curframe;
15224
15225 if (old->curframe != fr)
15226 return false;
15227
15228 fold = old->frame[fr];
15229 fcur = cur->frame[fr];
15230 for (i = 0; i < MAX_BPF_REG; i++)
15231 if (memcmp(&fold->regs[i], &fcur->regs[i],
15232 offsetof(struct bpf_reg_state, parent)))
15233 return false;
15234 return true;
15235}
15236
06accc87
AN
15237static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15238{
15239 return env->insn_aux_data[insn_idx].is_iter_next;
15240}
15241
15242/* is_state_visited() handles iter_next() (see process_iter_next_call() for
15243 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15244 * states to match, which otherwise would look like an infinite loop. So while
15245 * iter_next() calls are taken care of, we still need to be careful and
15246 * prevent erroneous and too eager declaration of "ininite loop", when
15247 * iterators are involved.
15248 *
15249 * Here's a situation in pseudo-BPF assembly form:
15250 *
15251 * 0: again: ; set up iter_next() call args
15252 * 1: r1 = &it ; <CHECKPOINT HERE>
15253 * 2: call bpf_iter_num_next ; this is iter_next() call
15254 * 3: if r0 == 0 goto done
15255 * 4: ... something useful here ...
15256 * 5: goto again ; another iteration
15257 * 6: done:
15258 * 7: r1 = &it
15259 * 8: call bpf_iter_num_destroy ; clean up iter state
15260 * 9: exit
15261 *
15262 * This is a typical loop. Let's assume that we have a prune point at 1:,
15263 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15264 * again`, assuming other heuristics don't get in a way).
15265 *
15266 * When we first time come to 1:, let's say we have some state X. We proceed
15267 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15268 * Now we come back to validate that forked ACTIVE state. We proceed through
15269 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15270 * are converging. But the problem is that we don't know that yet, as this
15271 * convergence has to happen at iter_next() call site only. So if nothing is
15272 * done, at 1: verifier will use bounded loop logic and declare infinite
15273 * looping (and would be *technically* correct, if not for iterator's
15274 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15275 * don't want that. So what we do in process_iter_next_call() when we go on
15276 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15277 * a different iteration. So when we suspect an infinite loop, we additionally
15278 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15279 * pretend we are not looping and wait for next iter_next() call.
15280 *
15281 * This only applies to ACTIVE state. In DRAINED state we don't expect to
15282 * loop, because that would actually mean infinite loop, as DRAINED state is
15283 * "sticky", and so we'll keep returning into the same instruction with the
15284 * same state (at least in one of possible code paths).
15285 *
15286 * This approach allows to keep infinite loop heuristic even in the face of
15287 * active iterator. E.g., C snippet below is and will be detected as
15288 * inifintely looping:
15289 *
15290 * struct bpf_iter_num it;
15291 * int *p, x;
15292 *
15293 * bpf_iter_num_new(&it, 0, 10);
15294 * while ((p = bpf_iter_num_next(&t))) {
15295 * x = p;
15296 * while (x--) {} // <<-- infinite loop here
15297 * }
15298 *
15299 */
15300static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15301{
15302 struct bpf_reg_state *slot, *cur_slot;
15303 struct bpf_func_state *state;
15304 int i, fr;
15305
15306 for (fr = old->curframe; fr >= 0; fr--) {
15307 state = old->frame[fr];
15308 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15309 if (state->stack[i].slot_type[0] != STACK_ITER)
15310 continue;
15311
15312 slot = &state->stack[i].spilled_ptr;
15313 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15314 continue;
15315
15316 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15317 if (cur_slot->iter.depth != slot->iter.depth)
15318 return true;
15319 }
15320 }
15321 return false;
15322}
2589726d 15323
58e2af8b 15324static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 15325{
58e2af8b 15326 struct bpf_verifier_state_list *new_sl;
9f4686c4 15327 struct bpf_verifier_state_list *sl, **pprev;
679c782d 15328 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 15329 int i, j, err, states_cnt = 0;
4b5ce570
AN
15330 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15331 bool add_new_state = force_new_state;
f1bca824 15332
2589726d
AS
15333 /* bpf progs typically have pruning point every 4 instructions
15334 * http://vger.kernel.org/bpfconf2019.html#session-1
15335 * Do not add new state for future pruning if the verifier hasn't seen
15336 * at least 2 jumps and at least 8 instructions.
15337 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15338 * In tests that amounts to up to 50% reduction into total verifier
15339 * memory consumption and 20% verifier time speedup.
15340 */
15341 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15342 env->insn_processed - env->prev_insn_processed >= 8)
15343 add_new_state = true;
15344
a8f500af
AS
15345 pprev = explored_state(env, insn_idx);
15346 sl = *pprev;
15347
9242b5f5
AS
15348 clean_live_states(env, insn_idx, cur);
15349
a8f500af 15350 while (sl) {
dc2a4ebc
AS
15351 states_cnt++;
15352 if (sl->state.insn_idx != insn_idx)
15353 goto next;
bfc6bb74 15354
2589726d 15355 if (sl->state.branches) {
bfc6bb74
AS
15356 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15357
15358 if (frame->in_async_callback_fn &&
15359 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15360 /* Different async_entry_cnt means that the verifier is
15361 * processing another entry into async callback.
15362 * Seeing the same state is not an indication of infinite
15363 * loop or infinite recursion.
15364 * But finding the same state doesn't mean that it's safe
15365 * to stop processing the current state. The previous state
15366 * hasn't yet reached bpf_exit, since state.branches > 0.
15367 * Checking in_async_callback_fn alone is not enough either.
15368 * Since the verifier still needs to catch infinite loops
15369 * inside async callbacks.
15370 */
06accc87
AN
15371 goto skip_inf_loop_check;
15372 }
15373 /* BPF open-coded iterators loop detection is special.
15374 * states_maybe_looping() logic is too simplistic in detecting
15375 * states that *might* be equivalent, because it doesn't know
15376 * about ID remapping, so don't even perform it.
15377 * See process_iter_next_call() and iter_active_depths_differ()
15378 * for overview of the logic. When current and one of parent
15379 * states are detected as equivalent, it's a good thing: we prove
15380 * convergence and can stop simulating further iterations.
15381 * It's safe to assume that iterator loop will finish, taking into
15382 * account iter_next() contract of eventually returning
15383 * sticky NULL result.
15384 */
15385 if (is_iter_next_insn(env, insn_idx)) {
15386 if (states_equal(env, &sl->state, cur)) {
15387 struct bpf_func_state *cur_frame;
15388 struct bpf_reg_state *iter_state, *iter_reg;
15389 int spi;
15390
15391 cur_frame = cur->frame[cur->curframe];
15392 /* btf_check_iter_kfuncs() enforces that
15393 * iter state pointer is always the first arg
15394 */
15395 iter_reg = &cur_frame->regs[BPF_REG_1];
15396 /* current state is valid due to states_equal(),
15397 * so we can assume valid iter and reg state,
15398 * no need for extra (re-)validations
15399 */
15400 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15401 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15402 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15403 goto hit;
15404 }
15405 goto skip_inf_loop_check;
15406 }
15407 /* attempt to detect infinite loop to avoid unnecessary doomed work */
15408 if (states_maybe_looping(&sl->state, cur) &&
15409 states_equal(env, &sl->state, cur) &&
15410 !iter_active_depths_differ(&sl->state, cur)) {
2589726d
AS
15411 verbose_linfo(env, insn_idx, "; ");
15412 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15413 return -EINVAL;
15414 }
15415 /* if the verifier is processing a loop, avoid adding new state
15416 * too often, since different loop iterations have distinct
15417 * states and may not help future pruning.
15418 * This threshold shouldn't be too low to make sure that
15419 * a loop with large bound will be rejected quickly.
15420 * The most abusive loop will be:
15421 * r1 += 1
15422 * if r1 < 1000000 goto pc-2
15423 * 1M insn_procssed limit / 100 == 10k peak states.
15424 * This threshold shouldn't be too high either, since states
15425 * at the end of the loop are likely to be useful in pruning.
15426 */
06accc87 15427skip_inf_loop_check:
4b5ce570 15428 if (!force_new_state &&
98ddcf38 15429 env->jmps_processed - env->prev_jmps_processed < 20 &&
2589726d
AS
15430 env->insn_processed - env->prev_insn_processed < 100)
15431 add_new_state = false;
15432 goto miss;
15433 }
638f5b90 15434 if (states_equal(env, &sl->state, cur)) {
06accc87 15435hit:
9f4686c4 15436 sl->hit_cnt++;
f1bca824 15437 /* reached equivalent register/stack state,
dc503a8a
EC
15438 * prune the search.
15439 * Registers read by the continuation are read by us.
8e9cd9ce
EC
15440 * If we have any write marks in env->cur_state, they
15441 * will prevent corresponding reads in the continuation
15442 * from reaching our parent (an explored_state). Our
15443 * own state will get the read marks recorded, but
15444 * they'll be immediately forgotten as we're pruning
15445 * this state and will pop a new one.
f1bca824 15446 */
f4d7e40a 15447 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
15448
15449 /* if previous state reached the exit with precision and
15450 * current state is equivalent to it (except precsion marks)
15451 * the precision needs to be propagated back in
15452 * the current state.
15453 */
15454 err = err ? : push_jmp_history(env, cur);
15455 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
15456 if (err)
15457 return err;
f1bca824 15458 return 1;
dc503a8a 15459 }
2589726d
AS
15460miss:
15461 /* when new state is not going to be added do not increase miss count.
15462 * Otherwise several loop iterations will remove the state
15463 * recorded earlier. The goal of these heuristics is to have
15464 * states from some iterations of the loop (some in the beginning
15465 * and some at the end) to help pruning.
15466 */
15467 if (add_new_state)
15468 sl->miss_cnt++;
9f4686c4
AS
15469 /* heuristic to determine whether this state is beneficial
15470 * to keep checking from state equivalence point of view.
15471 * Higher numbers increase max_states_per_insn and verification time,
15472 * but do not meaningfully decrease insn_processed.
15473 */
15474 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
15475 /* the state is unlikely to be useful. Remove it to
15476 * speed up verification
15477 */
15478 *pprev = sl->next;
15479 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
15480 u32 br = sl->state.branches;
15481
15482 WARN_ONCE(br,
15483 "BUG live_done but branches_to_explore %d\n",
15484 br);
9f4686c4
AS
15485 free_verifier_state(&sl->state, false);
15486 kfree(sl);
15487 env->peak_states--;
15488 } else {
15489 /* cannot free this state, since parentage chain may
15490 * walk it later. Add it for free_list instead to
15491 * be freed at the end of verification
15492 */
15493 sl->next = env->free_list;
15494 env->free_list = sl;
15495 }
15496 sl = *pprev;
15497 continue;
15498 }
dc2a4ebc 15499next:
9f4686c4
AS
15500 pprev = &sl->next;
15501 sl = *pprev;
f1bca824
AS
15502 }
15503
06ee7115
AS
15504 if (env->max_states_per_insn < states_cnt)
15505 env->max_states_per_insn = states_cnt;
15506
2c78ee89 15507 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
a095f421 15508 return 0;
ceefbc96 15509
2589726d 15510 if (!add_new_state)
a095f421 15511 return 0;
ceefbc96 15512
2589726d
AS
15513 /* There were no equivalent states, remember the current one.
15514 * Technically the current state is not proven to be safe yet,
f4d7e40a 15515 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 15516 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 15517 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
15518 * again on the way to bpf_exit.
15519 * When looping the sl->state.branches will be > 0 and this state
15520 * will not be considered for equivalence until branches == 0.
f1bca824 15521 */
638f5b90 15522 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
15523 if (!new_sl)
15524 return -ENOMEM;
06ee7115
AS
15525 env->total_states++;
15526 env->peak_states++;
2589726d
AS
15527 env->prev_jmps_processed = env->jmps_processed;
15528 env->prev_insn_processed = env->insn_processed;
f1bca824 15529
7a830b53
AN
15530 /* forget precise markings we inherited, see __mark_chain_precision */
15531 if (env->bpf_capable)
15532 mark_all_scalars_imprecise(env, cur);
15533
f1bca824 15534 /* add new state to the head of linked list */
679c782d
EC
15535 new = &new_sl->state;
15536 err = copy_verifier_state(new, cur);
1969db47 15537 if (err) {
679c782d 15538 free_verifier_state(new, false);
1969db47
AS
15539 kfree(new_sl);
15540 return err;
15541 }
dc2a4ebc 15542 new->insn_idx = insn_idx;
2589726d
AS
15543 WARN_ONCE(new->branches != 1,
15544 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 15545
2589726d 15546 cur->parent = new;
b5dc0163
AS
15547 cur->first_insn_idx = insn_idx;
15548 clear_jmp_history(cur);
5d839021
AS
15549 new_sl->next = *explored_state(env, insn_idx);
15550 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
15551 /* connect new state to parentage chain. Current frame needs all
15552 * registers connected. Only r6 - r9 of the callers are alive (pushed
15553 * to the stack implicitly by JITs) so in callers' frames connect just
15554 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
15555 * the state of the call instruction (with WRITTEN set), and r0 comes
15556 * from callee with its full parentage chain, anyway.
15557 */
8e9cd9ce
EC
15558 /* clear write marks in current state: the writes we did are not writes
15559 * our child did, so they don't screen off its reads from us.
15560 * (There are no read marks in current state, because reads always mark
15561 * their parent and current state never has children yet. Only
15562 * explored_states can get read marks.)
15563 */
eea1c227
AS
15564 for (j = 0; j <= cur->curframe; j++) {
15565 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
15566 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
15567 for (i = 0; i < BPF_REG_FP; i++)
15568 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
15569 }
f4d7e40a
AS
15570
15571 /* all stack frames are accessible from callee, clear them all */
15572 for (j = 0; j <= cur->curframe; j++) {
15573 struct bpf_func_state *frame = cur->frame[j];
679c782d 15574 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 15575
679c782d 15576 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 15577 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
15578 frame->stack[i].spilled_ptr.parent =
15579 &newframe->stack[i].spilled_ptr;
15580 }
f4d7e40a 15581 }
f1bca824
AS
15582 return 0;
15583}
15584
c64b7983
JS
15585/* Return true if it's OK to have the same insn return a different type. */
15586static bool reg_type_mismatch_ok(enum bpf_reg_type type)
15587{
c25b2ae1 15588 switch (base_type(type)) {
c64b7983
JS
15589 case PTR_TO_CTX:
15590 case PTR_TO_SOCKET:
46f8bc92 15591 case PTR_TO_SOCK_COMMON:
655a51e5 15592 case PTR_TO_TCP_SOCK:
fada7fdc 15593 case PTR_TO_XDP_SOCK:
2a02759e 15594 case PTR_TO_BTF_ID:
c64b7983
JS
15595 return false;
15596 default:
15597 return true;
15598 }
15599}
15600
15601/* If an instruction was previously used with particular pointer types, then we
15602 * need to be careful to avoid cases such as the below, where it may be ok
15603 * for one branch accessing the pointer, but not ok for the other branch:
15604 *
15605 * R1 = sock_ptr
15606 * goto X;
15607 * ...
15608 * R1 = some_other_valid_ptr;
15609 * goto X;
15610 * ...
15611 * R2 = *(u32 *)(R1 + 0);
15612 */
15613static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
15614{
15615 return src != prev && (!reg_type_mismatch_ok(src) ||
15616 !reg_type_mismatch_ok(prev));
15617}
15618
0d80a619
EZ
15619static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
15620 bool allow_trust_missmatch)
15621{
15622 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
15623
15624 if (*prev_type == NOT_INIT) {
15625 /* Saw a valid insn
15626 * dst_reg = *(u32 *)(src_reg + off)
15627 * save type to validate intersecting paths
15628 */
15629 *prev_type = type;
15630 } else if (reg_type_mismatch(type, *prev_type)) {
15631 /* Abuser program is trying to use the same insn
15632 * dst_reg = *(u32*) (src_reg + off)
15633 * with different pointer types:
15634 * src_reg == ctx in one branch and
15635 * src_reg == stack|map in some other branch.
15636 * Reject it.
15637 */
15638 if (allow_trust_missmatch &&
15639 base_type(type) == PTR_TO_BTF_ID &&
15640 base_type(*prev_type) == PTR_TO_BTF_ID) {
15641 /*
15642 * Have to support a use case when one path through
15643 * the program yields TRUSTED pointer while another
15644 * is UNTRUSTED. Fallback to UNTRUSTED to generate
15645 * BPF_PROBE_MEM.
15646 */
15647 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
15648 } else {
15649 verbose(env, "same insn cannot be used with different pointers\n");
15650 return -EINVAL;
15651 }
15652 }
15653
15654 return 0;
15655}
15656
58e2af8b 15657static int do_check(struct bpf_verifier_env *env)
17a52670 15658{
6f8a57cc 15659 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 15660 struct bpf_verifier_state *state = env->cur_state;
17a52670 15661 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 15662 struct bpf_reg_state *regs;
06ee7115 15663 int insn_cnt = env->prog->len;
17a52670 15664 bool do_print_state = false;
b5dc0163 15665 int prev_insn_idx = -1;
17a52670 15666
17a52670
AS
15667 for (;;) {
15668 struct bpf_insn *insn;
15669 u8 class;
15670 int err;
15671
b5dc0163 15672 env->prev_insn_idx = prev_insn_idx;
c08435ec 15673 if (env->insn_idx >= insn_cnt) {
61bd5218 15674 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 15675 env->insn_idx, insn_cnt);
17a52670
AS
15676 return -EFAULT;
15677 }
15678
c08435ec 15679 insn = &insns[env->insn_idx];
17a52670
AS
15680 class = BPF_CLASS(insn->code);
15681
06ee7115 15682 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
15683 verbose(env,
15684 "BPF program is too large. Processed %d insn\n",
06ee7115 15685 env->insn_processed);
17a52670
AS
15686 return -E2BIG;
15687 }
15688
a095f421
AN
15689 state->last_insn_idx = env->prev_insn_idx;
15690
15691 if (is_prune_point(env, env->insn_idx)) {
15692 err = is_state_visited(env, env->insn_idx);
15693 if (err < 0)
15694 return err;
15695 if (err == 1) {
15696 /* found equivalent state, can prune the search */
15697 if (env->log.level & BPF_LOG_LEVEL) {
15698 if (do_print_state)
15699 verbose(env, "\nfrom %d to %d%s: safe\n",
15700 env->prev_insn_idx, env->insn_idx,
15701 env->cur_state->speculative ?
15702 " (speculative execution)" : "");
15703 else
15704 verbose(env, "%d: safe\n", env->insn_idx);
15705 }
15706 goto process_bpf_exit;
f1bca824 15707 }
a095f421
AN
15708 }
15709
15710 if (is_jmp_point(env, env->insn_idx)) {
15711 err = push_jmp_history(env, state);
15712 if (err)
15713 return err;
f1bca824
AS
15714 }
15715
c3494801
AS
15716 if (signal_pending(current))
15717 return -EAGAIN;
15718
3c2ce60b
DB
15719 if (need_resched())
15720 cond_resched();
15721
2e576648
CL
15722 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
15723 verbose(env, "\nfrom %d to %d%s:",
15724 env->prev_insn_idx, env->insn_idx,
15725 env->cur_state->speculative ?
15726 " (speculative execution)" : "");
15727 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
15728 do_print_state = false;
15729 }
15730
06ee7115 15731 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 15732 const struct bpf_insn_cbs cbs = {
e6ac2450 15733 .cb_call = disasm_kfunc_name,
7105e828 15734 .cb_print = verbose,
abe08840 15735 .private_data = env,
7105e828
DB
15736 };
15737
2e576648
CL
15738 if (verifier_state_scratched(env))
15739 print_insn_state(env, state->frame[state->curframe]);
15740
c08435ec 15741 verbose_linfo(env, env->insn_idx, "; ");
12166409 15742 env->prev_log_pos = env->log.end_pos;
c08435ec 15743 verbose(env, "%d: ", env->insn_idx);
abe08840 15744 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12166409
AN
15745 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
15746 env->prev_log_pos = env->log.end_pos;
17a52670
AS
15747 }
15748
9d03ebc7 15749 if (bpf_prog_is_offloaded(env->prog->aux)) {
c08435ec
DB
15750 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
15751 env->prev_insn_idx);
cae1927c
JK
15752 if (err)
15753 return err;
15754 }
13a27dfc 15755
638f5b90 15756 regs = cur_regs(env);
fe9a5ca7 15757 sanitize_mark_insn_seen(env);
b5dc0163 15758 prev_insn_idx = env->insn_idx;
fd978bf7 15759
17a52670 15760 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 15761 err = check_alu_op(env, insn);
17a52670
AS
15762 if (err)
15763 return err;
15764
15765 } else if (class == BPF_LDX) {
0d80a619 15766 enum bpf_reg_type src_reg_type;
9bac3d6d
AS
15767
15768 /* check for reserved fields is already done */
15769
17a52670 15770 /* check src operand */
dc503a8a 15771 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
15772 if (err)
15773 return err;
15774
dc503a8a 15775 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
15776 if (err)
15777 return err;
15778
725f9dcd
AS
15779 src_reg_type = regs[insn->src_reg].type;
15780
17a52670
AS
15781 /* check that memory (src_reg + off) is readable,
15782 * the state of dst_reg will be updated by this func
15783 */
c08435ec
DB
15784 err = check_mem_access(env, env->insn_idx, insn->src_reg,
15785 insn->off, BPF_SIZE(insn->code),
15786 BPF_READ, insn->dst_reg, false);
17a52670
AS
15787 if (err)
15788 return err;
15789
0d80a619
EZ
15790 err = save_aux_ptr_type(env, src_reg_type, true);
15791 if (err)
15792 return err;
17a52670 15793 } else if (class == BPF_STX) {
0d80a619 15794 enum bpf_reg_type dst_reg_type;
d691f9e8 15795
91c960b0
BJ
15796 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
15797 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
15798 if (err)
15799 return err;
c08435ec 15800 env->insn_idx++;
17a52670
AS
15801 continue;
15802 }
15803
5ca419f2
BJ
15804 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
15805 verbose(env, "BPF_STX uses reserved fields\n");
15806 return -EINVAL;
15807 }
15808
17a52670 15809 /* check src1 operand */
dc503a8a 15810 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
15811 if (err)
15812 return err;
15813 /* check src2 operand */
dc503a8a 15814 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
15815 if (err)
15816 return err;
15817
d691f9e8
AS
15818 dst_reg_type = regs[insn->dst_reg].type;
15819
17a52670 15820 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
15821 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15822 insn->off, BPF_SIZE(insn->code),
15823 BPF_WRITE, insn->src_reg, false);
17a52670
AS
15824 if (err)
15825 return err;
15826
0d80a619
EZ
15827 err = save_aux_ptr_type(env, dst_reg_type, false);
15828 if (err)
15829 return err;
17a52670 15830 } else if (class == BPF_ST) {
0d80a619
EZ
15831 enum bpf_reg_type dst_reg_type;
15832
17a52670
AS
15833 if (BPF_MODE(insn->code) != BPF_MEM ||
15834 insn->src_reg != BPF_REG_0) {
61bd5218 15835 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
15836 return -EINVAL;
15837 }
15838 /* check src operand */
dc503a8a 15839 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
15840 if (err)
15841 return err;
15842
0d80a619 15843 dst_reg_type = regs[insn->dst_reg].type;
f37a8cb8 15844
17a52670 15845 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
15846 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15847 insn->off, BPF_SIZE(insn->code),
15848 BPF_WRITE, -1, false);
17a52670
AS
15849 if (err)
15850 return err;
15851
0d80a619
EZ
15852 err = save_aux_ptr_type(env, dst_reg_type, false);
15853 if (err)
15854 return err;
092ed096 15855 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
15856 u8 opcode = BPF_OP(insn->code);
15857
2589726d 15858 env->jmps_processed++;
17a52670
AS
15859 if (opcode == BPF_CALL) {
15860 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
15861 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
15862 && insn->off != 0) ||
f4d7e40a 15863 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
15864 insn->src_reg != BPF_PSEUDO_CALL &&
15865 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
15866 insn->dst_reg != BPF_REG_0 ||
15867 class == BPF_JMP32) {
61bd5218 15868 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
15869 return -EINVAL;
15870 }
15871
8cab76ec
KKD
15872 if (env->cur_state->active_lock.ptr) {
15873 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
15874 (insn->src_reg == BPF_PSEUDO_CALL) ||
15875 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
cd6791b4 15876 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
8cab76ec
KKD
15877 verbose(env, "function calls are not allowed while holding a lock\n");
15878 return -EINVAL;
15879 }
d83525ca 15880 }
f4d7e40a 15881 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 15882 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 15883 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 15884 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 15885 else
69c087ba 15886 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
15887 if (err)
15888 return err;
553a64a8
AN
15889
15890 mark_reg_scratched(env, BPF_REG_0);
17a52670
AS
15891 } else if (opcode == BPF_JA) {
15892 if (BPF_SRC(insn->code) != BPF_K ||
15893 insn->imm != 0 ||
15894 insn->src_reg != BPF_REG_0 ||
092ed096
JW
15895 insn->dst_reg != BPF_REG_0 ||
15896 class == BPF_JMP32) {
61bd5218 15897 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
15898 return -EINVAL;
15899 }
15900
c08435ec 15901 env->insn_idx += insn->off + 1;
17a52670
AS
15902 continue;
15903
15904 } else if (opcode == BPF_EXIT) {
15905 if (BPF_SRC(insn->code) != BPF_K ||
15906 insn->imm != 0 ||
15907 insn->src_reg != BPF_REG_0 ||
092ed096
JW
15908 insn->dst_reg != BPF_REG_0 ||
15909 class == BPF_JMP32) {
61bd5218 15910 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
15911 return -EINVAL;
15912 }
15913
5d92ddc3
DM
15914 if (env->cur_state->active_lock.ptr &&
15915 !in_rbtree_lock_required_cb(env)) {
d83525ca
AS
15916 verbose(env, "bpf_spin_unlock is missing\n");
15917 return -EINVAL;
15918 }
15919
9bb00b28
YS
15920 if (env->cur_state->active_rcu_lock) {
15921 verbose(env, "bpf_rcu_read_unlock is missing\n");
15922 return -EINVAL;
15923 }
15924
9d9d00ac
KKD
15925 /* We must do check_reference_leak here before
15926 * prepare_func_exit to handle the case when
15927 * state->curframe > 0, it may be a callback
15928 * function, for which reference_state must
15929 * match caller reference state when it exits.
15930 */
15931 err = check_reference_leak(env);
15932 if (err)
15933 return err;
15934
f4d7e40a
AS
15935 if (state->curframe) {
15936 /* exit from nested function */
c08435ec 15937 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
15938 if (err)
15939 return err;
15940 do_print_state = true;
15941 continue;
15942 }
15943
390ee7e2
AS
15944 err = check_return_code(env);
15945 if (err)
15946 return err;
f1bca824 15947process_bpf_exit:
0f55f9ed 15948 mark_verifier_state_scratched(env);
2589726d 15949 update_branch_counts(env, env->cur_state);
b5dc0163 15950 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 15951 &env->insn_idx, pop_log);
638f5b90
AS
15952 if (err < 0) {
15953 if (err != -ENOENT)
15954 return err;
17a52670
AS
15955 break;
15956 } else {
15957 do_print_state = true;
15958 continue;
15959 }
15960 } else {
c08435ec 15961 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
15962 if (err)
15963 return err;
15964 }
15965 } else if (class == BPF_LD) {
15966 u8 mode = BPF_MODE(insn->code);
15967
15968 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
15969 err = check_ld_abs(env, insn);
15970 if (err)
15971 return err;
15972
17a52670
AS
15973 } else if (mode == BPF_IMM) {
15974 err = check_ld_imm(env, insn);
15975 if (err)
15976 return err;
15977
c08435ec 15978 env->insn_idx++;
fe9a5ca7 15979 sanitize_mark_insn_seen(env);
17a52670 15980 } else {
61bd5218 15981 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
15982 return -EINVAL;
15983 }
15984 } else {
61bd5218 15985 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
15986 return -EINVAL;
15987 }
15988
c08435ec 15989 env->insn_idx++;
17a52670
AS
15990 }
15991
15992 return 0;
15993}
15994
541c3bad
AN
15995static int find_btf_percpu_datasec(struct btf *btf)
15996{
15997 const struct btf_type *t;
15998 const char *tname;
15999 int i, n;
16000
16001 /*
16002 * Both vmlinux and module each have their own ".data..percpu"
16003 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16004 * types to look at only module's own BTF types.
16005 */
16006 n = btf_nr_types(btf);
16007 if (btf_is_module(btf))
16008 i = btf_nr_types(btf_vmlinux);
16009 else
16010 i = 1;
16011
16012 for(; i < n; i++) {
16013 t = btf_type_by_id(btf, i);
16014 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16015 continue;
16016
16017 tname = btf_name_by_offset(btf, t->name_off);
16018 if (!strcmp(tname, ".data..percpu"))
16019 return i;
16020 }
16021
16022 return -ENOENT;
16023}
16024
4976b718
HL
16025/* replace pseudo btf_id with kernel symbol address */
16026static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16027 struct bpf_insn *insn,
16028 struct bpf_insn_aux_data *aux)
16029{
eaa6bcb7
HL
16030 const struct btf_var_secinfo *vsi;
16031 const struct btf_type *datasec;
541c3bad 16032 struct btf_mod_pair *btf_mod;
4976b718
HL
16033 const struct btf_type *t;
16034 const char *sym_name;
eaa6bcb7 16035 bool percpu = false;
f16e6313 16036 u32 type, id = insn->imm;
541c3bad 16037 struct btf *btf;
f16e6313 16038 s32 datasec_id;
4976b718 16039 u64 addr;
541c3bad 16040 int i, btf_fd, err;
4976b718 16041
541c3bad
AN
16042 btf_fd = insn[1].imm;
16043 if (btf_fd) {
16044 btf = btf_get_by_fd(btf_fd);
16045 if (IS_ERR(btf)) {
16046 verbose(env, "invalid module BTF object FD specified.\n");
16047 return -EINVAL;
16048 }
16049 } else {
16050 if (!btf_vmlinux) {
16051 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16052 return -EINVAL;
16053 }
16054 btf = btf_vmlinux;
16055 btf_get(btf);
4976b718
HL
16056 }
16057
541c3bad 16058 t = btf_type_by_id(btf, id);
4976b718
HL
16059 if (!t) {
16060 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
16061 err = -ENOENT;
16062 goto err_put;
4976b718
HL
16063 }
16064
58aa2afb
AS
16065 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16066 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
541c3bad
AN
16067 err = -EINVAL;
16068 goto err_put;
4976b718
HL
16069 }
16070
541c3bad 16071 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
16072 addr = kallsyms_lookup_name(sym_name);
16073 if (!addr) {
16074 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16075 sym_name);
541c3bad
AN
16076 err = -ENOENT;
16077 goto err_put;
4976b718 16078 }
58aa2afb
AS
16079 insn[0].imm = (u32)addr;
16080 insn[1].imm = addr >> 32;
16081
16082 if (btf_type_is_func(t)) {
16083 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16084 aux->btf_var.mem_size = 0;
16085 goto check_btf;
16086 }
4976b718 16087
541c3bad 16088 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 16089 if (datasec_id > 0) {
541c3bad 16090 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
16091 for_each_vsi(i, datasec, vsi) {
16092 if (vsi->type == id) {
16093 percpu = true;
16094 break;
16095 }
16096 }
16097 }
16098
4976b718 16099 type = t->type;
541c3bad 16100 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 16101 if (percpu) {
5844101a 16102 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 16103 aux->btf_var.btf = btf;
eaa6bcb7
HL
16104 aux->btf_var.btf_id = type;
16105 } else if (!btf_type_is_struct(t)) {
4976b718
HL
16106 const struct btf_type *ret;
16107 const char *tname;
16108 u32 tsize;
16109
16110 /* resolve the type size of ksym. */
541c3bad 16111 ret = btf_resolve_size(btf, t, &tsize);
4976b718 16112 if (IS_ERR(ret)) {
541c3bad 16113 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
16114 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16115 tname, PTR_ERR(ret));
541c3bad
AN
16116 err = -EINVAL;
16117 goto err_put;
4976b718 16118 }
34d3a78c 16119 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
16120 aux->btf_var.mem_size = tsize;
16121 } else {
16122 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 16123 aux->btf_var.btf = btf;
4976b718
HL
16124 aux->btf_var.btf_id = type;
16125 }
58aa2afb 16126check_btf:
541c3bad
AN
16127 /* check whether we recorded this BTF (and maybe module) already */
16128 for (i = 0; i < env->used_btf_cnt; i++) {
16129 if (env->used_btfs[i].btf == btf) {
16130 btf_put(btf);
16131 return 0;
16132 }
16133 }
16134
16135 if (env->used_btf_cnt >= MAX_USED_BTFS) {
16136 err = -E2BIG;
16137 goto err_put;
16138 }
16139
16140 btf_mod = &env->used_btfs[env->used_btf_cnt];
16141 btf_mod->btf = btf;
16142 btf_mod->module = NULL;
16143
16144 /* if we reference variables from kernel module, bump its refcount */
16145 if (btf_is_module(btf)) {
16146 btf_mod->module = btf_try_get_module(btf);
16147 if (!btf_mod->module) {
16148 err = -ENXIO;
16149 goto err_put;
16150 }
16151 }
16152
16153 env->used_btf_cnt++;
16154
4976b718 16155 return 0;
541c3bad
AN
16156err_put:
16157 btf_put(btf);
16158 return err;
4976b718
HL
16159}
16160
d83525ca
AS
16161static bool is_tracing_prog_type(enum bpf_prog_type type)
16162{
16163 switch (type) {
16164 case BPF_PROG_TYPE_KPROBE:
16165 case BPF_PROG_TYPE_TRACEPOINT:
16166 case BPF_PROG_TYPE_PERF_EVENT:
16167 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 16168 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
16169 return true;
16170 default:
16171 return false;
16172 }
16173}
16174
61bd5218
JK
16175static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16176 struct bpf_map *map,
fdc15d38
AS
16177 struct bpf_prog *prog)
16178
16179{
7e40781c 16180 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 16181
9c395c1b
DM
16182 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16183 btf_record_has_field(map->record, BPF_RB_ROOT)) {
f0c5941f 16184 if (is_tracing_prog_type(prog_type)) {
9c395c1b 16185 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
f0c5941f
KKD
16186 return -EINVAL;
16187 }
16188 }
16189
db559117 16190 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
16191 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16192 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16193 return -EINVAL;
16194 }
16195
16196 if (is_tracing_prog_type(prog_type)) {
16197 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16198 return -EINVAL;
16199 }
16200
16201 if (prog->aux->sleepable) {
16202 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16203 return -EINVAL;
16204 }
d83525ca
AS
16205 }
16206
db559117 16207 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
16208 if (is_tracing_prog_type(prog_type)) {
16209 verbose(env, "tracing progs cannot use bpf_timer yet\n");
16210 return -EINVAL;
16211 }
16212 }
16213
9d03ebc7 16214 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
09728266 16215 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
16216 verbose(env, "offload device mismatch between prog and map\n");
16217 return -EINVAL;
16218 }
16219
85d33df3
MKL
16220 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16221 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16222 return -EINVAL;
16223 }
16224
1e6c62a8
AS
16225 if (prog->aux->sleepable)
16226 switch (map->map_type) {
16227 case BPF_MAP_TYPE_HASH:
16228 case BPF_MAP_TYPE_LRU_HASH:
16229 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
16230 case BPF_MAP_TYPE_PERCPU_HASH:
16231 case BPF_MAP_TYPE_PERCPU_ARRAY:
16232 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16233 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16234 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 16235 case BPF_MAP_TYPE_RINGBUF:
583c1f42 16236 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
16237 case BPF_MAP_TYPE_INODE_STORAGE:
16238 case BPF_MAP_TYPE_SK_STORAGE:
16239 case BPF_MAP_TYPE_TASK_STORAGE:
2c40d97d 16240 case BPF_MAP_TYPE_CGRP_STORAGE:
ba90c2cc 16241 break;
1e6c62a8
AS
16242 default:
16243 verbose(env,
2c40d97d 16244 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
1e6c62a8
AS
16245 return -EINVAL;
16246 }
16247
fdc15d38
AS
16248 return 0;
16249}
16250
b741f163
RG
16251static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16252{
16253 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16254 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16255}
16256
4976b718
HL
16257/* find and rewrite pseudo imm in ld_imm64 instructions:
16258 *
16259 * 1. if it accesses map FD, replace it with actual map pointer.
16260 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16261 *
16262 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 16263 */
4976b718 16264static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
16265{
16266 struct bpf_insn *insn = env->prog->insnsi;
16267 int insn_cnt = env->prog->len;
fdc15d38 16268 int i, j, err;
0246e64d 16269
f1f7714e 16270 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
16271 if (err)
16272 return err;
16273
0246e64d 16274 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 16275 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 16276 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 16277 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
16278 return -EINVAL;
16279 }
16280
0246e64d 16281 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 16282 struct bpf_insn_aux_data *aux;
0246e64d
AS
16283 struct bpf_map *map;
16284 struct fd f;
d8eca5bb 16285 u64 addr;
387544bf 16286 u32 fd;
0246e64d
AS
16287
16288 if (i == insn_cnt - 1 || insn[1].code != 0 ||
16289 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16290 insn[1].off != 0) {
61bd5218 16291 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
16292 return -EINVAL;
16293 }
16294
d8eca5bb 16295 if (insn[0].src_reg == 0)
0246e64d
AS
16296 /* valid generic load 64-bit imm */
16297 goto next_insn;
16298
4976b718
HL
16299 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16300 aux = &env->insn_aux_data[i];
16301 err = check_pseudo_btf_id(env, insn, aux);
16302 if (err)
16303 return err;
16304 goto next_insn;
16305 }
16306
69c087ba
YS
16307 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16308 aux = &env->insn_aux_data[i];
16309 aux->ptr_type = PTR_TO_FUNC;
16310 goto next_insn;
16311 }
16312
d8eca5bb
DB
16313 /* In final convert_pseudo_ld_imm64() step, this is
16314 * converted into regular 64-bit imm load insn.
16315 */
387544bf
AS
16316 switch (insn[0].src_reg) {
16317 case BPF_PSEUDO_MAP_VALUE:
16318 case BPF_PSEUDO_MAP_IDX_VALUE:
16319 break;
16320 case BPF_PSEUDO_MAP_FD:
16321 case BPF_PSEUDO_MAP_IDX:
16322 if (insn[1].imm == 0)
16323 break;
16324 fallthrough;
16325 default:
16326 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
16327 return -EINVAL;
16328 }
16329
387544bf
AS
16330 switch (insn[0].src_reg) {
16331 case BPF_PSEUDO_MAP_IDX_VALUE:
16332 case BPF_PSEUDO_MAP_IDX:
16333 if (bpfptr_is_null(env->fd_array)) {
16334 verbose(env, "fd_idx without fd_array is invalid\n");
16335 return -EPROTO;
16336 }
16337 if (copy_from_bpfptr_offset(&fd, env->fd_array,
16338 insn[0].imm * sizeof(fd),
16339 sizeof(fd)))
16340 return -EFAULT;
16341 break;
16342 default:
16343 fd = insn[0].imm;
16344 break;
16345 }
16346
16347 f = fdget(fd);
c2101297 16348 map = __bpf_map_get(f);
0246e64d 16349 if (IS_ERR(map)) {
61bd5218 16350 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 16351 insn[0].imm);
0246e64d
AS
16352 return PTR_ERR(map);
16353 }
16354
61bd5218 16355 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
16356 if (err) {
16357 fdput(f);
16358 return err;
16359 }
16360
d8eca5bb 16361 aux = &env->insn_aux_data[i];
387544bf
AS
16362 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16363 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
16364 addr = (unsigned long)map;
16365 } else {
16366 u32 off = insn[1].imm;
16367
16368 if (off >= BPF_MAX_VAR_OFF) {
16369 verbose(env, "direct value offset of %u is not allowed\n", off);
16370 fdput(f);
16371 return -EINVAL;
16372 }
16373
16374 if (!map->ops->map_direct_value_addr) {
16375 verbose(env, "no direct value access support for this map type\n");
16376 fdput(f);
16377 return -EINVAL;
16378 }
16379
16380 err = map->ops->map_direct_value_addr(map, &addr, off);
16381 if (err) {
16382 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16383 map->value_size, off);
16384 fdput(f);
16385 return err;
16386 }
16387
16388 aux->map_off = off;
16389 addr += off;
16390 }
16391
16392 insn[0].imm = (u32)addr;
16393 insn[1].imm = addr >> 32;
0246e64d
AS
16394
16395 /* check whether we recorded this map already */
d8eca5bb 16396 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 16397 if (env->used_maps[j] == map) {
d8eca5bb 16398 aux->map_index = j;
0246e64d
AS
16399 fdput(f);
16400 goto next_insn;
16401 }
d8eca5bb 16402 }
0246e64d
AS
16403
16404 if (env->used_map_cnt >= MAX_USED_MAPS) {
16405 fdput(f);
16406 return -E2BIG;
16407 }
16408
0246e64d
AS
16409 /* hold the map. If the program is rejected by verifier,
16410 * the map will be released by release_maps() or it
16411 * will be used by the valid program until it's unloaded
ab7f5bf0 16412 * and all maps are released in free_used_maps()
0246e64d 16413 */
1e0bd5a0 16414 bpf_map_inc(map);
d8eca5bb
DB
16415
16416 aux->map_index = env->used_map_cnt;
92117d84
AS
16417 env->used_maps[env->used_map_cnt++] = map;
16418
b741f163 16419 if (bpf_map_is_cgroup_storage(map) &&
e4730423 16420 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 16421 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
16422 fdput(f);
16423 return -EBUSY;
16424 }
16425
0246e64d
AS
16426 fdput(f);
16427next_insn:
16428 insn++;
16429 i++;
5e581dad
DB
16430 continue;
16431 }
16432
16433 /* Basic sanity check before we invest more work here. */
16434 if (!bpf_opcode_in_insntable(insn->code)) {
16435 verbose(env, "unknown opcode %02x\n", insn->code);
16436 return -EINVAL;
0246e64d
AS
16437 }
16438 }
16439
16440 /* now all pseudo BPF_LD_IMM64 instructions load valid
16441 * 'struct bpf_map *' into a register instead of user map_fd.
16442 * These pointers will be used later by verifier to validate map access.
16443 */
16444 return 0;
16445}
16446
16447/* drop refcnt of maps used by the rejected program */
58e2af8b 16448static void release_maps(struct bpf_verifier_env *env)
0246e64d 16449{
a2ea0746
DB
16450 __bpf_free_used_maps(env->prog->aux, env->used_maps,
16451 env->used_map_cnt);
0246e64d
AS
16452}
16453
541c3bad
AN
16454/* drop refcnt of maps used by the rejected program */
16455static void release_btfs(struct bpf_verifier_env *env)
16456{
16457 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16458 env->used_btf_cnt);
16459}
16460
0246e64d 16461/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 16462static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
16463{
16464 struct bpf_insn *insn = env->prog->insnsi;
16465 int insn_cnt = env->prog->len;
16466 int i;
16467
69c087ba
YS
16468 for (i = 0; i < insn_cnt; i++, insn++) {
16469 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
16470 continue;
16471 if (insn->src_reg == BPF_PSEUDO_FUNC)
16472 continue;
16473 insn->src_reg = 0;
16474 }
0246e64d
AS
16475}
16476
8041902d
AS
16477/* single env->prog->insni[off] instruction was replaced with the range
16478 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
16479 * [0, off) and [off, end) to new locations, so the patched range stays zero
16480 */
75f0fc7b
HF
16481static void adjust_insn_aux_data(struct bpf_verifier_env *env,
16482 struct bpf_insn_aux_data *new_data,
16483 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 16484{
75f0fc7b 16485 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 16486 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 16487 u32 old_seen = old_data[off].seen;
b325fbca 16488 u32 prog_len;
c131187d 16489 int i;
8041902d 16490
b325fbca
JW
16491 /* aux info at OFF always needs adjustment, no matter fast path
16492 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
16493 * original insn at old prog.
16494 */
16495 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
16496
8041902d 16497 if (cnt == 1)
75f0fc7b 16498 return;
b325fbca 16499 prog_len = new_prog->len;
75f0fc7b 16500
8041902d
AS
16501 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
16502 memcpy(new_data + off + cnt - 1, old_data + off,
16503 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 16504 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
16505 /* Expand insni[off]'s seen count to the patched range. */
16506 new_data[i].seen = old_seen;
b325fbca
JW
16507 new_data[i].zext_dst = insn_has_def32(env, insn + i);
16508 }
8041902d
AS
16509 env->insn_aux_data = new_data;
16510 vfree(old_data);
8041902d
AS
16511}
16512
cc8b0b92
AS
16513static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
16514{
16515 int i;
16516
16517 if (len == 1)
16518 return;
4cb3d99c
JW
16519 /* NOTE: fake 'exit' subprog should be updated as well. */
16520 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 16521 if (env->subprog_info[i].start <= off)
cc8b0b92 16522 continue;
9c8105bd 16523 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
16524 }
16525}
16526
7506d211 16527static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
16528{
16529 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
16530 int i, sz = prog->aux->size_poke_tab;
16531 struct bpf_jit_poke_descriptor *desc;
16532
16533 for (i = 0; i < sz; i++) {
16534 desc = &tab[i];
7506d211
JF
16535 if (desc->insn_idx <= off)
16536 continue;
a748c697
MF
16537 desc->insn_idx += len - 1;
16538 }
16539}
16540
8041902d
AS
16541static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
16542 const struct bpf_insn *patch, u32 len)
16543{
16544 struct bpf_prog *new_prog;
75f0fc7b
HF
16545 struct bpf_insn_aux_data *new_data = NULL;
16546
16547 if (len > 1) {
16548 new_data = vzalloc(array_size(env->prog->len + len - 1,
16549 sizeof(struct bpf_insn_aux_data)));
16550 if (!new_data)
16551 return NULL;
16552 }
8041902d
AS
16553
16554 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
16555 if (IS_ERR(new_prog)) {
16556 if (PTR_ERR(new_prog) == -ERANGE)
16557 verbose(env,
16558 "insn %d cannot be patched due to 16-bit range\n",
16559 env->insn_aux_data[off].orig_idx);
75f0fc7b 16560 vfree(new_data);
8041902d 16561 return NULL;
4f73379e 16562 }
75f0fc7b 16563 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 16564 adjust_subprog_starts(env, off, len);
7506d211 16565 adjust_poke_descs(new_prog, off, len);
8041902d
AS
16566 return new_prog;
16567}
16568
52875a04
JK
16569static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
16570 u32 off, u32 cnt)
16571{
16572 int i, j;
16573
16574 /* find first prog starting at or after off (first to remove) */
16575 for (i = 0; i < env->subprog_cnt; i++)
16576 if (env->subprog_info[i].start >= off)
16577 break;
16578 /* find first prog starting at or after off + cnt (first to stay) */
16579 for (j = i; j < env->subprog_cnt; j++)
16580 if (env->subprog_info[j].start >= off + cnt)
16581 break;
16582 /* if j doesn't start exactly at off + cnt, we are just removing
16583 * the front of previous prog
16584 */
16585 if (env->subprog_info[j].start != off + cnt)
16586 j--;
16587
16588 if (j > i) {
16589 struct bpf_prog_aux *aux = env->prog->aux;
16590 int move;
16591
16592 /* move fake 'exit' subprog as well */
16593 move = env->subprog_cnt + 1 - j;
16594
16595 memmove(env->subprog_info + i,
16596 env->subprog_info + j,
16597 sizeof(*env->subprog_info) * move);
16598 env->subprog_cnt -= j - i;
16599
16600 /* remove func_info */
16601 if (aux->func_info) {
16602 move = aux->func_info_cnt - j;
16603
16604 memmove(aux->func_info + i,
16605 aux->func_info + j,
16606 sizeof(*aux->func_info) * move);
16607 aux->func_info_cnt -= j - i;
16608 /* func_info->insn_off is set after all code rewrites,
16609 * in adjust_btf_func() - no need to adjust
16610 */
16611 }
16612 } else {
16613 /* convert i from "first prog to remove" to "first to adjust" */
16614 if (env->subprog_info[i].start == off)
16615 i++;
16616 }
16617
16618 /* update fake 'exit' subprog as well */
16619 for (; i <= env->subprog_cnt; i++)
16620 env->subprog_info[i].start -= cnt;
16621
16622 return 0;
16623}
16624
16625static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
16626 u32 cnt)
16627{
16628 struct bpf_prog *prog = env->prog;
16629 u32 i, l_off, l_cnt, nr_linfo;
16630 struct bpf_line_info *linfo;
16631
16632 nr_linfo = prog->aux->nr_linfo;
16633 if (!nr_linfo)
16634 return 0;
16635
16636 linfo = prog->aux->linfo;
16637
16638 /* find first line info to remove, count lines to be removed */
16639 for (i = 0; i < nr_linfo; i++)
16640 if (linfo[i].insn_off >= off)
16641 break;
16642
16643 l_off = i;
16644 l_cnt = 0;
16645 for (; i < nr_linfo; i++)
16646 if (linfo[i].insn_off < off + cnt)
16647 l_cnt++;
16648 else
16649 break;
16650
16651 /* First live insn doesn't match first live linfo, it needs to "inherit"
16652 * last removed linfo. prog is already modified, so prog->len == off
16653 * means no live instructions after (tail of the program was removed).
16654 */
16655 if (prog->len != off && l_cnt &&
16656 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
16657 l_cnt--;
16658 linfo[--i].insn_off = off + cnt;
16659 }
16660
16661 /* remove the line info which refer to the removed instructions */
16662 if (l_cnt) {
16663 memmove(linfo + l_off, linfo + i,
16664 sizeof(*linfo) * (nr_linfo - i));
16665
16666 prog->aux->nr_linfo -= l_cnt;
16667 nr_linfo = prog->aux->nr_linfo;
16668 }
16669
16670 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
16671 for (i = l_off; i < nr_linfo; i++)
16672 linfo[i].insn_off -= cnt;
16673
16674 /* fix up all subprogs (incl. 'exit') which start >= off */
16675 for (i = 0; i <= env->subprog_cnt; i++)
16676 if (env->subprog_info[i].linfo_idx > l_off) {
16677 /* program may have started in the removed region but
16678 * may not be fully removed
16679 */
16680 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
16681 env->subprog_info[i].linfo_idx -= l_cnt;
16682 else
16683 env->subprog_info[i].linfo_idx = l_off;
16684 }
16685
16686 return 0;
16687}
16688
16689static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
16690{
16691 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16692 unsigned int orig_prog_len = env->prog->len;
16693 int err;
16694
9d03ebc7 16695 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
16696 bpf_prog_offload_remove_insns(env, off, cnt);
16697
52875a04
JK
16698 err = bpf_remove_insns(env->prog, off, cnt);
16699 if (err)
16700 return err;
16701
16702 err = adjust_subprog_starts_after_remove(env, off, cnt);
16703 if (err)
16704 return err;
16705
16706 err = bpf_adj_linfo_after_remove(env, off, cnt);
16707 if (err)
16708 return err;
16709
16710 memmove(aux_data + off, aux_data + off + cnt,
16711 sizeof(*aux_data) * (orig_prog_len - off - cnt));
16712
16713 return 0;
16714}
16715
2a5418a1
DB
16716/* The verifier does more data flow analysis than llvm and will not
16717 * explore branches that are dead at run time. Malicious programs can
16718 * have dead code too. Therefore replace all dead at-run-time code
16719 * with 'ja -1'.
16720 *
16721 * Just nops are not optimal, e.g. if they would sit at the end of the
16722 * program and through another bug we would manage to jump there, then
16723 * we'd execute beyond program memory otherwise. Returning exception
16724 * code also wouldn't work since we can have subprogs where the dead
16725 * code could be located.
c131187d
AS
16726 */
16727static void sanitize_dead_code(struct bpf_verifier_env *env)
16728{
16729 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 16730 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
16731 struct bpf_insn *insn = env->prog->insnsi;
16732 const int insn_cnt = env->prog->len;
16733 int i;
16734
16735 for (i = 0; i < insn_cnt; i++) {
16736 if (aux_data[i].seen)
16737 continue;
2a5418a1 16738 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 16739 aux_data[i].zext_dst = false;
c131187d
AS
16740 }
16741}
16742
e2ae4ca2
JK
16743static bool insn_is_cond_jump(u8 code)
16744{
16745 u8 op;
16746
092ed096
JW
16747 if (BPF_CLASS(code) == BPF_JMP32)
16748 return true;
16749
e2ae4ca2
JK
16750 if (BPF_CLASS(code) != BPF_JMP)
16751 return false;
16752
16753 op = BPF_OP(code);
16754 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
16755}
16756
16757static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
16758{
16759 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16760 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16761 struct bpf_insn *insn = env->prog->insnsi;
16762 const int insn_cnt = env->prog->len;
16763 int i;
16764
16765 for (i = 0; i < insn_cnt; i++, insn++) {
16766 if (!insn_is_cond_jump(insn->code))
16767 continue;
16768
16769 if (!aux_data[i + 1].seen)
16770 ja.off = insn->off;
16771 else if (!aux_data[i + 1 + insn->off].seen)
16772 ja.off = 0;
16773 else
16774 continue;
16775
9d03ebc7 16776 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
16777 bpf_prog_offload_replace_insn(env, i, &ja);
16778
e2ae4ca2
JK
16779 memcpy(insn, &ja, sizeof(ja));
16780 }
16781}
16782
52875a04
JK
16783static int opt_remove_dead_code(struct bpf_verifier_env *env)
16784{
16785 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16786 int insn_cnt = env->prog->len;
16787 int i, err;
16788
16789 for (i = 0; i < insn_cnt; i++) {
16790 int j;
16791
16792 j = 0;
16793 while (i + j < insn_cnt && !aux_data[i + j].seen)
16794 j++;
16795 if (!j)
16796 continue;
16797
16798 err = verifier_remove_insns(env, i, j);
16799 if (err)
16800 return err;
16801 insn_cnt = env->prog->len;
16802 }
16803
16804 return 0;
16805}
16806
a1b14abc
JK
16807static int opt_remove_nops(struct bpf_verifier_env *env)
16808{
16809 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16810 struct bpf_insn *insn = env->prog->insnsi;
16811 int insn_cnt = env->prog->len;
16812 int i, err;
16813
16814 for (i = 0; i < insn_cnt; i++) {
16815 if (memcmp(&insn[i], &ja, sizeof(ja)))
16816 continue;
16817
16818 err = verifier_remove_insns(env, i, 1);
16819 if (err)
16820 return err;
16821 insn_cnt--;
16822 i--;
16823 }
16824
16825 return 0;
16826}
16827
d6c2308c
JW
16828static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
16829 const union bpf_attr *attr)
a4b1d3c1 16830{
d6c2308c 16831 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 16832 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 16833 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 16834 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 16835 struct bpf_prog *new_prog;
d6c2308c 16836 bool rnd_hi32;
a4b1d3c1 16837
d6c2308c 16838 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 16839 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
16840 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
16841 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
16842 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
16843 for (i = 0; i < len; i++) {
16844 int adj_idx = i + delta;
16845 struct bpf_insn insn;
83a28819 16846 int load_reg;
a4b1d3c1 16847
d6c2308c 16848 insn = insns[adj_idx];
83a28819 16849 load_reg = insn_def_regno(&insn);
d6c2308c
JW
16850 if (!aux[adj_idx].zext_dst) {
16851 u8 code, class;
16852 u32 imm_rnd;
16853
16854 if (!rnd_hi32)
16855 continue;
16856
16857 code = insn.code;
16858 class = BPF_CLASS(code);
83a28819 16859 if (load_reg == -1)
d6c2308c
JW
16860 continue;
16861
16862 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
16863 * BPF_STX + SRC_OP, so it is safe to pass NULL
16864 * here.
d6c2308c 16865 */
83a28819 16866 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
16867 if (class == BPF_LD &&
16868 BPF_MODE(code) == BPF_IMM)
16869 i++;
16870 continue;
16871 }
16872
16873 /* ctx load could be transformed into wider load. */
16874 if (class == BPF_LDX &&
16875 aux[adj_idx].ptr_type == PTR_TO_CTX)
16876 continue;
16877
a251c17a 16878 imm_rnd = get_random_u32();
d6c2308c
JW
16879 rnd_hi32_patch[0] = insn;
16880 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 16881 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
16882 patch = rnd_hi32_patch;
16883 patch_len = 4;
16884 goto apply_patch_buffer;
16885 }
16886
39491867
BJ
16887 /* Add in an zero-extend instruction if a) the JIT has requested
16888 * it or b) it's a CMPXCHG.
16889 *
16890 * The latter is because: BPF_CMPXCHG always loads a value into
16891 * R0, therefore always zero-extends. However some archs'
16892 * equivalent instruction only does this load when the
16893 * comparison is successful. This detail of CMPXCHG is
16894 * orthogonal to the general zero-extension behaviour of the
16895 * CPU, so it's treated independently of bpf_jit_needs_zext.
16896 */
16897 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
16898 continue;
16899
d35af0a7
BT
16900 /* Zero-extension is done by the caller. */
16901 if (bpf_pseudo_kfunc_call(&insn))
16902 continue;
16903
83a28819
IL
16904 if (WARN_ON(load_reg == -1)) {
16905 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
16906 return -EFAULT;
b2e37a71
IL
16907 }
16908
a4b1d3c1 16909 zext_patch[0] = insn;
b2e37a71
IL
16910 zext_patch[1].dst_reg = load_reg;
16911 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
16912 patch = zext_patch;
16913 patch_len = 2;
16914apply_patch_buffer:
16915 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
16916 if (!new_prog)
16917 return -ENOMEM;
16918 env->prog = new_prog;
16919 insns = new_prog->insnsi;
16920 aux = env->insn_aux_data;
d6c2308c 16921 delta += patch_len - 1;
a4b1d3c1
JW
16922 }
16923
16924 return 0;
16925}
16926
c64b7983
JS
16927/* convert load instructions that access fields of a context type into a
16928 * sequence of instructions that access fields of the underlying structure:
16929 * struct __sk_buff -> struct sk_buff
16930 * struct bpf_sock_ops -> struct sock
9bac3d6d 16931 */
58e2af8b 16932static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 16933{
00176a34 16934 const struct bpf_verifier_ops *ops = env->ops;
f96da094 16935 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 16936 const int insn_cnt = env->prog->len;
36bbef52 16937 struct bpf_insn insn_buf[16], *insn;
46f53a65 16938 u32 target_size, size_default, off;
9bac3d6d 16939 struct bpf_prog *new_prog;
d691f9e8 16940 enum bpf_access_type type;
f96da094 16941 bool is_narrower_load;
9bac3d6d 16942
b09928b9
DB
16943 if (ops->gen_prologue || env->seen_direct_write) {
16944 if (!ops->gen_prologue) {
16945 verbose(env, "bpf verifier is misconfigured\n");
16946 return -EINVAL;
16947 }
36bbef52
DB
16948 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
16949 env->prog);
16950 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 16951 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
16952 return -EINVAL;
16953 } else if (cnt) {
8041902d 16954 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
16955 if (!new_prog)
16956 return -ENOMEM;
8041902d 16957
36bbef52 16958 env->prog = new_prog;
3df126f3 16959 delta += cnt - 1;
36bbef52
DB
16960 }
16961 }
16962
9d03ebc7 16963 if (bpf_prog_is_offloaded(env->prog->aux))
9bac3d6d
AS
16964 return 0;
16965
3df126f3 16966 insn = env->prog->insnsi + delta;
36bbef52 16967
9bac3d6d 16968 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
16969 bpf_convert_ctx_access_t convert_ctx_access;
16970
62c7989b
DB
16971 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
16972 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
16973 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 16974 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 16975 type = BPF_READ;
2039f26f
DB
16976 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
16977 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
16978 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
16979 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
16980 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
16981 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
16982 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
16983 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 16984 type = BPF_WRITE;
2039f26f 16985 } else {
9bac3d6d 16986 continue;
2039f26f 16987 }
9bac3d6d 16988
af86ca4e 16989 if (type == BPF_WRITE &&
2039f26f 16990 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 16991 struct bpf_insn patch[] = {
af86ca4e 16992 *insn,
2039f26f 16993 BPF_ST_NOSPEC(),
af86ca4e
AS
16994 };
16995
16996 cnt = ARRAY_SIZE(patch);
16997 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
16998 if (!new_prog)
16999 return -ENOMEM;
17000
17001 delta += cnt - 1;
17002 env->prog = new_prog;
17003 insn = new_prog->insnsi + i + delta;
17004 continue;
17005 }
17006
6efe152d 17007 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
17008 case PTR_TO_CTX:
17009 if (!ops->convert_ctx_access)
17010 continue;
17011 convert_ctx_access = ops->convert_ctx_access;
17012 break;
17013 case PTR_TO_SOCKET:
46f8bc92 17014 case PTR_TO_SOCK_COMMON:
c64b7983
JS
17015 convert_ctx_access = bpf_sock_convert_ctx_access;
17016 break;
655a51e5
MKL
17017 case PTR_TO_TCP_SOCK:
17018 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17019 break;
fada7fdc
JL
17020 case PTR_TO_XDP_SOCK:
17021 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17022 break;
2a02759e 17023 case PTR_TO_BTF_ID:
6efe152d 17024 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
282de143
KKD
17025 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17026 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17027 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17028 * any faults for loads into such types. BPF_WRITE is disallowed
17029 * for this case.
17030 */
17031 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
27ae7997
MKL
17032 if (type == BPF_READ) {
17033 insn->code = BPF_LDX | BPF_PROBE_MEM |
17034 BPF_SIZE((insn)->code);
17035 env->prog->aux->num_exentries++;
2a02759e 17036 }
2a02759e 17037 continue;
c64b7983 17038 default:
9bac3d6d 17039 continue;
c64b7983 17040 }
9bac3d6d 17041
31fd8581 17042 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 17043 size = BPF_LDST_BYTES(insn);
31fd8581
YS
17044
17045 /* If the read access is a narrower load of the field,
17046 * convert to a 4/8-byte load, to minimum program type specific
17047 * convert_ctx_access changes. If conversion is successful,
17048 * we will apply proper mask to the result.
17049 */
f96da094 17050 is_narrower_load = size < ctx_field_size;
46f53a65
AI
17051 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17052 off = insn->off;
31fd8581 17053 if (is_narrower_load) {
f96da094
DB
17054 u8 size_code;
17055
17056 if (type == BPF_WRITE) {
61bd5218 17057 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
17058 return -EINVAL;
17059 }
31fd8581 17060
f96da094 17061 size_code = BPF_H;
31fd8581
YS
17062 if (ctx_field_size == 4)
17063 size_code = BPF_W;
17064 else if (ctx_field_size == 8)
17065 size_code = BPF_DW;
f96da094 17066
bc23105c 17067 insn->off = off & ~(size_default - 1);
31fd8581
YS
17068 insn->code = BPF_LDX | BPF_MEM | size_code;
17069 }
f96da094
DB
17070
17071 target_size = 0;
c64b7983
JS
17072 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17073 &target_size);
f96da094
DB
17074 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17075 (ctx_field_size && !target_size)) {
61bd5218 17076 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
17077 return -EINVAL;
17078 }
f96da094
DB
17079
17080 if (is_narrower_load && size < target_size) {
d895a0f1
IL
17081 u8 shift = bpf_ctx_narrow_access_offset(
17082 off, size, size_default) * 8;
d7af7e49
AI
17083 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17084 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17085 return -EINVAL;
17086 }
46f53a65
AI
17087 if (ctx_field_size <= 4) {
17088 if (shift)
17089 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17090 insn->dst_reg,
17091 shift);
31fd8581 17092 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 17093 (1 << size * 8) - 1);
46f53a65
AI
17094 } else {
17095 if (shift)
17096 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17097 insn->dst_reg,
17098 shift);
31fd8581 17099 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 17100 (1ULL << size * 8) - 1);
46f53a65 17101 }
31fd8581 17102 }
9bac3d6d 17103
8041902d 17104 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
17105 if (!new_prog)
17106 return -ENOMEM;
17107
3df126f3 17108 delta += cnt - 1;
9bac3d6d
AS
17109
17110 /* keep walking new program and skip insns we just inserted */
17111 env->prog = new_prog;
3df126f3 17112 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
17113 }
17114
17115 return 0;
17116}
17117
1c2a088a
AS
17118static int jit_subprogs(struct bpf_verifier_env *env)
17119{
17120 struct bpf_prog *prog = env->prog, **func, *tmp;
17121 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 17122 struct bpf_map *map_ptr;
7105e828 17123 struct bpf_insn *insn;
1c2a088a 17124 void *old_bpf_func;
c4c0bdc0 17125 int err, num_exentries;
1c2a088a 17126
f910cefa 17127 if (env->subprog_cnt <= 1)
1c2a088a
AS
17128 return 0;
17129
7105e828 17130 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 17131 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 17132 continue;
69c087ba 17133
c7a89784
DB
17134 /* Upon error here we cannot fall back to interpreter but
17135 * need a hard reject of the program. Thus -EFAULT is
17136 * propagated in any case.
17137 */
1c2a088a
AS
17138 subprog = find_subprog(env, i + insn->imm + 1);
17139 if (subprog < 0) {
17140 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17141 i + insn->imm + 1);
17142 return -EFAULT;
17143 }
17144 /* temporarily remember subprog id inside insn instead of
17145 * aux_data, since next loop will split up all insns into funcs
17146 */
f910cefa 17147 insn->off = subprog;
1c2a088a
AS
17148 /* remember original imm in case JIT fails and fallback
17149 * to interpreter will be needed
17150 */
17151 env->insn_aux_data[i].call_imm = insn->imm;
17152 /* point imm to __bpf_call_base+1 from JITs point of view */
17153 insn->imm = 1;
3990ed4c
MKL
17154 if (bpf_pseudo_func(insn))
17155 /* jit (e.g. x86_64) may emit fewer instructions
17156 * if it learns a u32 imm is the same as a u64 imm.
17157 * Force a non zero here.
17158 */
17159 insn[1].imm = 1;
1c2a088a
AS
17160 }
17161
c454a46b
MKL
17162 err = bpf_prog_alloc_jited_linfo(prog);
17163 if (err)
17164 goto out_undo_insn;
17165
17166 err = -ENOMEM;
6396bb22 17167 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 17168 if (!func)
c7a89784 17169 goto out_undo_insn;
1c2a088a 17170
f910cefa 17171 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 17172 subprog_start = subprog_end;
4cb3d99c 17173 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
17174
17175 len = subprog_end - subprog_start;
fb7dd8bc 17176 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
17177 * hence main prog stats include the runtime of subprogs.
17178 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 17179 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
17180 */
17181 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
17182 if (!func[i])
17183 goto out_free;
17184 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17185 len * sizeof(struct bpf_insn));
4f74d809 17186 func[i]->type = prog->type;
1c2a088a 17187 func[i]->len = len;
4f74d809
DB
17188 if (bpf_prog_calc_tag(func[i]))
17189 goto out_free;
1c2a088a 17190 func[i]->is_func = 1;
ba64e7d8 17191 func[i]->aux->func_idx = i;
f263a814 17192 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
17193 func[i]->aux->btf = prog->aux->btf;
17194 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 17195 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
17196 func[i]->aux->poke_tab = prog->aux->poke_tab;
17197 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 17198
a748c697 17199 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 17200 struct bpf_jit_poke_descriptor *poke;
a748c697 17201
f263a814
JF
17202 poke = &prog->aux->poke_tab[j];
17203 if (poke->insn_idx < subprog_end &&
17204 poke->insn_idx >= subprog_start)
17205 poke->aux = func[i]->aux;
a748c697
MF
17206 }
17207
1c2a088a 17208 func[i]->aux->name[0] = 'F';
9c8105bd 17209 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 17210 func[i]->jit_requested = 1;
d2a3b7c5 17211 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 17212 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 17213 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
17214 func[i]->aux->linfo = prog->aux->linfo;
17215 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17216 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17217 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
17218 num_exentries = 0;
17219 insn = func[i]->insnsi;
17220 for (j = 0; j < func[i]->len; j++, insn++) {
17221 if (BPF_CLASS(insn->code) == BPF_LDX &&
17222 BPF_MODE(insn->code) == BPF_PROBE_MEM)
17223 num_exentries++;
17224 }
17225 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 17226 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
17227 func[i] = bpf_int_jit_compile(func[i]);
17228 if (!func[i]->jited) {
17229 err = -ENOTSUPP;
17230 goto out_free;
17231 }
17232 cond_resched();
17233 }
a748c697 17234
1c2a088a
AS
17235 /* at this point all bpf functions were successfully JITed
17236 * now populate all bpf_calls with correct addresses and
17237 * run last pass of JIT
17238 */
f910cefa 17239 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17240 insn = func[i]->insnsi;
17241 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 17242 if (bpf_pseudo_func(insn)) {
3990ed4c 17243 subprog = insn->off;
69c087ba
YS
17244 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17245 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17246 continue;
17247 }
23a2d70c 17248 if (!bpf_pseudo_call(insn))
1c2a088a
AS
17249 continue;
17250 subprog = insn->off;
3d717fad 17251 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 17252 }
2162fed4
SD
17253
17254 /* we use the aux data to keep a list of the start addresses
17255 * of the JITed images for each function in the program
17256 *
17257 * for some architectures, such as powerpc64, the imm field
17258 * might not be large enough to hold the offset of the start
17259 * address of the callee's JITed image from __bpf_call_base
17260 *
17261 * in such cases, we can lookup the start address of a callee
17262 * by using its subprog id, available from the off field of
17263 * the call instruction, as an index for this list
17264 */
17265 func[i]->aux->func = func;
17266 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 17267 }
f910cefa 17268 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17269 old_bpf_func = func[i]->bpf_func;
17270 tmp = bpf_int_jit_compile(func[i]);
17271 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17272 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 17273 err = -ENOTSUPP;
1c2a088a
AS
17274 goto out_free;
17275 }
17276 cond_resched();
17277 }
17278
17279 /* finally lock prog and jit images for all functions and
17280 * populate kallsysm
17281 */
f910cefa 17282 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
17283 bpf_prog_lock_ro(func[i]);
17284 bpf_prog_kallsyms_add(func[i]);
17285 }
7105e828
DB
17286
17287 /* Last step: make now unused interpreter insns from main
17288 * prog consistent for later dump requests, so they can
17289 * later look the same as if they were interpreted only.
17290 */
17291 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
17292 if (bpf_pseudo_func(insn)) {
17293 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
17294 insn[1].imm = insn->off;
17295 insn->off = 0;
69c087ba
YS
17296 continue;
17297 }
23a2d70c 17298 if (!bpf_pseudo_call(insn))
7105e828
DB
17299 continue;
17300 insn->off = env->insn_aux_data[i].call_imm;
17301 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 17302 insn->imm = subprog;
7105e828
DB
17303 }
17304
1c2a088a
AS
17305 prog->jited = 1;
17306 prog->bpf_func = func[0]->bpf_func;
d00c6473 17307 prog->jited_len = func[0]->jited_len;
1c2a088a 17308 prog->aux->func = func;
f910cefa 17309 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 17310 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
17311 return 0;
17312out_free:
f263a814
JF
17313 /* We failed JIT'ing, so at this point we need to unregister poke
17314 * descriptors from subprogs, so that kernel is not attempting to
17315 * patch it anymore as we're freeing the subprog JIT memory.
17316 */
17317 for (i = 0; i < prog->aux->size_poke_tab; i++) {
17318 map_ptr = prog->aux->poke_tab[i].tail_call.map;
17319 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17320 }
17321 /* At this point we're guaranteed that poke descriptors are not
17322 * live anymore. We can just unlink its descriptor table as it's
17323 * released with the main prog.
17324 */
a748c697
MF
17325 for (i = 0; i < env->subprog_cnt; i++) {
17326 if (!func[i])
17327 continue;
f263a814 17328 func[i]->aux->poke_tab = NULL;
a748c697
MF
17329 bpf_jit_free(func[i]);
17330 }
1c2a088a 17331 kfree(func);
c7a89784 17332out_undo_insn:
1c2a088a
AS
17333 /* cleanup main prog to be interpreted */
17334 prog->jit_requested = 0;
d2a3b7c5 17335 prog->blinding_requested = 0;
1c2a088a 17336 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 17337 if (!bpf_pseudo_call(insn))
1c2a088a
AS
17338 continue;
17339 insn->off = 0;
17340 insn->imm = env->insn_aux_data[i].call_imm;
17341 }
e16301fb 17342 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
17343 return err;
17344}
17345
1ea47e01
AS
17346static int fixup_call_args(struct bpf_verifier_env *env)
17347{
19d28fbd 17348#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
17349 struct bpf_prog *prog = env->prog;
17350 struct bpf_insn *insn = prog->insnsi;
e6ac2450 17351 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 17352 int i, depth;
19d28fbd 17353#endif
e4052d06 17354 int err = 0;
1ea47e01 17355
e4052d06 17356 if (env->prog->jit_requested &&
9d03ebc7 17357 !bpf_prog_is_offloaded(env->prog->aux)) {
19d28fbd
DM
17358 err = jit_subprogs(env);
17359 if (err == 0)
1c2a088a 17360 return 0;
c7a89784
DB
17361 if (err == -EFAULT)
17362 return err;
19d28fbd
DM
17363 }
17364#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
17365 if (has_kfunc_call) {
17366 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17367 return -EINVAL;
17368 }
e411901c
MF
17369 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17370 /* When JIT fails the progs with bpf2bpf calls and tail_calls
17371 * have to be rejected, since interpreter doesn't support them yet.
17372 */
17373 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17374 return -EINVAL;
17375 }
1ea47e01 17376 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
17377 if (bpf_pseudo_func(insn)) {
17378 /* When JIT fails the progs with callback calls
17379 * have to be rejected, since interpreter doesn't support them yet.
17380 */
17381 verbose(env, "callbacks are not allowed in non-JITed programs\n");
17382 return -EINVAL;
17383 }
17384
23a2d70c 17385 if (!bpf_pseudo_call(insn))
1ea47e01
AS
17386 continue;
17387 depth = get_callee_stack_depth(env, insn, i);
17388 if (depth < 0)
17389 return depth;
17390 bpf_patch_call_args(insn, depth);
17391 }
19d28fbd
DM
17392 err = 0;
17393#endif
17394 return err;
1ea47e01
AS
17395}
17396
1cf3bfc6
IL
17397/* replace a generic kfunc with a specialized version if necessary */
17398static void specialize_kfunc(struct bpf_verifier_env *env,
17399 u32 func_id, u16 offset, unsigned long *addr)
17400{
17401 struct bpf_prog *prog = env->prog;
17402 bool seen_direct_write;
17403 void *xdp_kfunc;
17404 bool is_rdonly;
17405
17406 if (bpf_dev_bound_kfunc_id(func_id)) {
17407 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
17408 if (xdp_kfunc) {
17409 *addr = (unsigned long)xdp_kfunc;
17410 return;
17411 }
17412 /* fallback to default kfunc when not supported by netdev */
17413 }
17414
17415 if (offset)
17416 return;
17417
17418 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17419 seen_direct_write = env->seen_direct_write;
17420 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17421
17422 if (is_rdonly)
17423 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
17424
17425 /* restore env->seen_direct_write to its original value, since
17426 * may_access_direct_pkt_data mutates it
17427 */
17428 env->seen_direct_write = seen_direct_write;
17429 }
17430}
17431
d2dcc67d
DM
17432static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
17433 u16 struct_meta_reg,
17434 u16 node_offset_reg,
17435 struct bpf_insn *insn,
17436 struct bpf_insn *insn_buf,
17437 int *cnt)
17438{
17439 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
17440 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
17441
17442 insn_buf[0] = addr[0];
17443 insn_buf[1] = addr[1];
17444 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
17445 insn_buf[3] = *insn;
17446 *cnt = 4;
17447}
17448
958cf2e2
KKD
17449static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17450 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
17451{
17452 const struct bpf_kfunc_desc *desc;
17453
a5d82727
KKD
17454 if (!insn->imm) {
17455 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17456 return -EINVAL;
17457 }
17458
3d76a4d3
SF
17459 *cnt = 0;
17460
1cf3bfc6
IL
17461 /* insn->imm has the btf func_id. Replace it with an offset relative to
17462 * __bpf_call_base, unless the JIT needs to call functions that are
17463 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
e6ac2450 17464 */
2357672c 17465 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
17466 if (!desc) {
17467 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
17468 insn->imm);
17469 return -EFAULT;
17470 }
17471
1cf3bfc6
IL
17472 if (!bpf_jit_supports_far_kfunc_call())
17473 insn->imm = BPF_CALL_IMM(desc->addr);
958cf2e2
KKD
17474 if (insn->off)
17475 return 0;
17476 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
17477 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17478 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17479 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 17480
958cf2e2
KKD
17481 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
17482 insn_buf[1] = addr[0];
17483 insn_buf[2] = addr[1];
17484 insn_buf[3] = *insn;
17485 *cnt = 4;
7c50b1cb
DM
17486 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
17487 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
ac9f0605
KKD
17488 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17489 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17490
17491 insn_buf[0] = addr[0];
17492 insn_buf[1] = addr[1];
17493 insn_buf[2] = *insn;
17494 *cnt = 3;
d2dcc67d
DM
17495 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
17496 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
17497 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
17498 int struct_meta_reg = BPF_REG_3;
17499 int node_offset_reg = BPF_REG_4;
17500
17501 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
17502 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
17503 struct_meta_reg = BPF_REG_4;
17504 node_offset_reg = BPF_REG_5;
17505 }
17506
17507 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
17508 node_offset_reg, insn, insn_buf, cnt);
a35b9af4
YS
17509 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
17510 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
fd264ca0
YS
17511 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
17512 *cnt = 1;
958cf2e2 17513 }
e6ac2450
MKL
17514 return 0;
17515}
17516
e6ac5933
BJ
17517/* Do various post-verification rewrites in a single program pass.
17518 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 17519 */
e6ac5933 17520static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 17521{
79741b3b 17522 struct bpf_prog *prog = env->prog;
f92c1e18 17523 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 17524 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 17525 struct bpf_insn *insn = prog->insnsi;
e245c5c6 17526 const struct bpf_func_proto *fn;
79741b3b 17527 const int insn_cnt = prog->len;
09772d92 17528 const struct bpf_map_ops *ops;
c93552c4 17529 struct bpf_insn_aux_data *aux;
81ed18ab
AS
17530 struct bpf_insn insn_buf[16];
17531 struct bpf_prog *new_prog;
17532 struct bpf_map *map_ptr;
d2e4c1e6 17533 int i, ret, cnt, delta = 0;
e245c5c6 17534
79741b3b 17535 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 17536 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
17537 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
17538 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
17539 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 17540 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 17541 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
17542 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
17543 struct bpf_insn *patchlet;
17544 struct bpf_insn chk_and_div[] = {
9b00f1b7 17545 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
17546 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17547 BPF_JNE | BPF_K, insn->src_reg,
17548 0, 2, 0),
f6b1b3bf
DB
17549 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
17550 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17551 *insn,
17552 };
e88b2c6e 17553 struct bpf_insn chk_and_mod[] = {
9b00f1b7 17554 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
17555 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17556 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 17557 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 17558 *insn,
9b00f1b7
DB
17559 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17560 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 17561 };
f6b1b3bf 17562
e88b2c6e
DB
17563 patchlet = isdiv ? chk_and_div : chk_and_mod;
17564 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 17565 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
17566
17567 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
17568 if (!new_prog)
17569 return -ENOMEM;
17570
17571 delta += cnt - 1;
17572 env->prog = prog = new_prog;
17573 insn = new_prog->insnsi + i + delta;
17574 continue;
17575 }
17576
e6ac5933 17577 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
17578 if (BPF_CLASS(insn->code) == BPF_LD &&
17579 (BPF_MODE(insn->code) == BPF_ABS ||
17580 BPF_MODE(insn->code) == BPF_IND)) {
17581 cnt = env->ops->gen_ld_abs(insn, insn_buf);
17582 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17583 verbose(env, "bpf verifier is misconfigured\n");
17584 return -EINVAL;
17585 }
17586
17587 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17588 if (!new_prog)
17589 return -ENOMEM;
17590
17591 delta += cnt - 1;
17592 env->prog = prog = new_prog;
17593 insn = new_prog->insnsi + i + delta;
17594 continue;
17595 }
17596
e6ac5933 17597 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
17598 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
17599 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
17600 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
17601 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 17602 struct bpf_insn *patch = &insn_buf[0];
801c6058 17603 bool issrc, isneg, isimm;
979d63d5
DB
17604 u32 off_reg;
17605
17606 aux = &env->insn_aux_data[i + delta];
3612af78
DB
17607 if (!aux->alu_state ||
17608 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
17609 continue;
17610
17611 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
17612 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
17613 BPF_ALU_SANITIZE_SRC;
801c6058 17614 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
17615
17616 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
17617 if (isimm) {
17618 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17619 } else {
17620 if (isneg)
17621 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17622 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17623 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
17624 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
17625 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
17626 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
17627 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
17628 }
b9b34ddb
DB
17629 if (!issrc)
17630 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
17631 insn->src_reg = BPF_REG_AX;
979d63d5
DB
17632 if (isneg)
17633 insn->code = insn->code == code_add ?
17634 code_sub : code_add;
17635 *patch++ = *insn;
801c6058 17636 if (issrc && isneg && !isimm)
979d63d5
DB
17637 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17638 cnt = patch - insn_buf;
17639
17640 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17641 if (!new_prog)
17642 return -ENOMEM;
17643
17644 delta += cnt - 1;
17645 env->prog = prog = new_prog;
17646 insn = new_prog->insnsi + i + delta;
17647 continue;
17648 }
17649
79741b3b
AS
17650 if (insn->code != (BPF_JMP | BPF_CALL))
17651 continue;
cc8b0b92
AS
17652 if (insn->src_reg == BPF_PSEUDO_CALL)
17653 continue;
e6ac2450 17654 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 17655 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
17656 if (ret)
17657 return ret;
958cf2e2
KKD
17658 if (cnt == 0)
17659 continue;
17660
17661 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17662 if (!new_prog)
17663 return -ENOMEM;
17664
17665 delta += cnt - 1;
17666 env->prog = prog = new_prog;
17667 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
17668 continue;
17669 }
e245c5c6 17670
79741b3b
AS
17671 if (insn->imm == BPF_FUNC_get_route_realm)
17672 prog->dst_needed = 1;
17673 if (insn->imm == BPF_FUNC_get_prandom_u32)
17674 bpf_user_rnd_init_once();
9802d865
JB
17675 if (insn->imm == BPF_FUNC_override_return)
17676 prog->kprobe_override = 1;
79741b3b 17677 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
17678 /* If we tail call into other programs, we
17679 * cannot make any assumptions since they can
17680 * be replaced dynamically during runtime in
17681 * the program array.
17682 */
17683 prog->cb_access = 1;
e411901c
MF
17684 if (!allow_tail_call_in_subprogs(env))
17685 prog->aux->stack_depth = MAX_BPF_STACK;
17686 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 17687
79741b3b 17688 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 17689 * conditional branch in the interpreter for every normal
79741b3b
AS
17690 * call and to prevent accidental JITing by JIT compiler
17691 * that doesn't support bpf_tail_call yet
e245c5c6 17692 */
79741b3b 17693 insn->imm = 0;
71189fa9 17694 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 17695
c93552c4 17696 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 17697 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 17698 prog->jit_requested &&
d2e4c1e6
DB
17699 !bpf_map_key_poisoned(aux) &&
17700 !bpf_map_ptr_poisoned(aux) &&
17701 !bpf_map_ptr_unpriv(aux)) {
17702 struct bpf_jit_poke_descriptor desc = {
17703 .reason = BPF_POKE_REASON_TAIL_CALL,
17704 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
17705 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 17706 .insn_idx = i + delta,
d2e4c1e6
DB
17707 };
17708
17709 ret = bpf_jit_add_poke_descriptor(prog, &desc);
17710 if (ret < 0) {
17711 verbose(env, "adding tail call poke descriptor failed\n");
17712 return ret;
17713 }
17714
17715 insn->imm = ret + 1;
17716 continue;
17717 }
17718
c93552c4
DB
17719 if (!bpf_map_ptr_unpriv(aux))
17720 continue;
17721
b2157399
AS
17722 /* instead of changing every JIT dealing with tail_call
17723 * emit two extra insns:
17724 * if (index >= max_entries) goto out;
17725 * index &= array->index_mask;
17726 * to avoid out-of-bounds cpu speculation
17727 */
c93552c4 17728 if (bpf_map_ptr_poisoned(aux)) {
40950343 17729 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
17730 return -EINVAL;
17731 }
c93552c4 17732
d2e4c1e6 17733 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
17734 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
17735 map_ptr->max_entries, 2);
17736 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
17737 container_of(map_ptr,
17738 struct bpf_array,
17739 map)->index_mask);
17740 insn_buf[2] = *insn;
17741 cnt = 3;
17742 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17743 if (!new_prog)
17744 return -ENOMEM;
17745
17746 delta += cnt - 1;
17747 env->prog = prog = new_prog;
17748 insn = new_prog->insnsi + i + delta;
79741b3b
AS
17749 continue;
17750 }
e245c5c6 17751
b00628b1
AS
17752 if (insn->imm == BPF_FUNC_timer_set_callback) {
17753 /* The verifier will process callback_fn as many times as necessary
17754 * with different maps and the register states prepared by
17755 * set_timer_callback_state will be accurate.
17756 *
17757 * The following use case is valid:
17758 * map1 is shared by prog1, prog2, prog3.
17759 * prog1 calls bpf_timer_init for some map1 elements
17760 * prog2 calls bpf_timer_set_callback for some map1 elements.
17761 * Those that were not bpf_timer_init-ed will return -EINVAL.
17762 * prog3 calls bpf_timer_start for some map1 elements.
17763 * Those that were not both bpf_timer_init-ed and
17764 * bpf_timer_set_callback-ed will return -EINVAL.
17765 */
17766 struct bpf_insn ld_addrs[2] = {
17767 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
17768 };
17769
17770 insn_buf[0] = ld_addrs[0];
17771 insn_buf[1] = ld_addrs[1];
17772 insn_buf[2] = *insn;
17773 cnt = 3;
17774
17775 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17776 if (!new_prog)
17777 return -ENOMEM;
17778
17779 delta += cnt - 1;
17780 env->prog = prog = new_prog;
17781 insn = new_prog->insnsi + i + delta;
17782 goto patch_call_imm;
17783 }
17784
9bb00b28
YS
17785 if (is_storage_get_function(insn->imm)) {
17786 if (!env->prog->aux->sleepable ||
17787 env->insn_aux_data[i + delta].storage_get_func_atomic)
d56c9fe6 17788 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
9bb00b28
YS
17789 else
17790 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a
JK
17791 insn_buf[1] = *insn;
17792 cnt = 2;
17793
17794 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17795 if (!new_prog)
17796 return -ENOMEM;
17797
17798 delta += cnt - 1;
17799 env->prog = prog = new_prog;
17800 insn = new_prog->insnsi + i + delta;
17801 goto patch_call_imm;
17802 }
17803
89c63074 17804 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
17805 * and other inlining handlers are currently limited to 64 bit
17806 * only.
89c63074 17807 */
60b58afc 17808 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
17809 (insn->imm == BPF_FUNC_map_lookup_elem ||
17810 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
17811 insn->imm == BPF_FUNC_map_delete_elem ||
17812 insn->imm == BPF_FUNC_map_push_elem ||
17813 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 17814 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 17815 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
17816 insn->imm == BPF_FUNC_for_each_map_elem ||
17817 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
17818 aux = &env->insn_aux_data[i + delta];
17819 if (bpf_map_ptr_poisoned(aux))
17820 goto patch_call_imm;
17821
d2e4c1e6 17822 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
17823 ops = map_ptr->ops;
17824 if (insn->imm == BPF_FUNC_map_lookup_elem &&
17825 ops->map_gen_lookup) {
17826 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
17827 if (cnt == -EOPNOTSUPP)
17828 goto patch_map_ops_generic;
17829 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
17830 verbose(env, "bpf verifier is misconfigured\n");
17831 return -EINVAL;
17832 }
81ed18ab 17833
09772d92
DB
17834 new_prog = bpf_patch_insn_data(env, i + delta,
17835 insn_buf, cnt);
17836 if (!new_prog)
17837 return -ENOMEM;
81ed18ab 17838
09772d92
DB
17839 delta += cnt - 1;
17840 env->prog = prog = new_prog;
17841 insn = new_prog->insnsi + i + delta;
17842 continue;
17843 }
81ed18ab 17844
09772d92
DB
17845 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
17846 (void *(*)(struct bpf_map *map, void *key))NULL));
17847 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
d7ba4cc9 17848 (long (*)(struct bpf_map *map, void *key))NULL));
09772d92 17849 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
d7ba4cc9 17850 (long (*)(struct bpf_map *map, void *key, void *value,
09772d92 17851 u64 flags))NULL));
84430d42 17852 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
d7ba4cc9 17853 (long (*)(struct bpf_map *map, void *value,
84430d42
DB
17854 u64 flags))NULL));
17855 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
d7ba4cc9 17856 (long (*)(struct bpf_map *map, void *value))NULL));
84430d42 17857 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
d7ba4cc9 17858 (long (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 17859 BUILD_BUG_ON(!__same_type(ops->map_redirect,
d7ba4cc9 17860 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c 17861 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
d7ba4cc9 17862 (long (*)(struct bpf_map *map,
0640c77c
AI
17863 bpf_callback_t callback_fn,
17864 void *callback_ctx,
17865 u64 flags))NULL));
07343110
FZ
17866 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
17867 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 17868
4a8f87e6 17869patch_map_ops_generic:
09772d92
DB
17870 switch (insn->imm) {
17871 case BPF_FUNC_map_lookup_elem:
3d717fad 17872 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
17873 continue;
17874 case BPF_FUNC_map_update_elem:
3d717fad 17875 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
17876 continue;
17877 case BPF_FUNC_map_delete_elem:
3d717fad 17878 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 17879 continue;
84430d42 17880 case BPF_FUNC_map_push_elem:
3d717fad 17881 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
17882 continue;
17883 case BPF_FUNC_map_pop_elem:
3d717fad 17884 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
17885 continue;
17886 case BPF_FUNC_map_peek_elem:
3d717fad 17887 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 17888 continue;
e6a4750f 17889 case BPF_FUNC_redirect_map:
3d717fad 17890 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 17891 continue;
0640c77c
AI
17892 case BPF_FUNC_for_each_map_elem:
17893 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 17894 continue;
07343110
FZ
17895 case BPF_FUNC_map_lookup_percpu_elem:
17896 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
17897 continue;
09772d92 17898 }
81ed18ab 17899
09772d92 17900 goto patch_call_imm;
81ed18ab
AS
17901 }
17902
e6ac5933 17903 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
17904 if (prog->jit_requested && BITS_PER_LONG == 64 &&
17905 insn->imm == BPF_FUNC_jiffies64) {
17906 struct bpf_insn ld_jiffies_addr[2] = {
17907 BPF_LD_IMM64(BPF_REG_0,
17908 (unsigned long)&jiffies),
17909 };
17910
17911 insn_buf[0] = ld_jiffies_addr[0];
17912 insn_buf[1] = ld_jiffies_addr[1];
17913 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
17914 BPF_REG_0, 0);
17915 cnt = 3;
17916
17917 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
17918 cnt);
17919 if (!new_prog)
17920 return -ENOMEM;
17921
17922 delta += cnt - 1;
17923 env->prog = prog = new_prog;
17924 insn = new_prog->insnsi + i + delta;
17925 continue;
17926 }
17927
f92c1e18
JO
17928 /* Implement bpf_get_func_arg inline. */
17929 if (prog_type == BPF_PROG_TYPE_TRACING &&
17930 insn->imm == BPF_FUNC_get_func_arg) {
17931 /* Load nr_args from ctx - 8 */
17932 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17933 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
17934 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
17935 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
17936 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
17937 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17938 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
17939 insn_buf[7] = BPF_JMP_A(1);
17940 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
17941 cnt = 9;
17942
17943 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17944 if (!new_prog)
17945 return -ENOMEM;
17946
17947 delta += cnt - 1;
17948 env->prog = prog = new_prog;
17949 insn = new_prog->insnsi + i + delta;
17950 continue;
17951 }
17952
17953 /* Implement bpf_get_func_ret inline. */
17954 if (prog_type == BPF_PROG_TYPE_TRACING &&
17955 insn->imm == BPF_FUNC_get_func_ret) {
17956 if (eatype == BPF_TRACE_FEXIT ||
17957 eatype == BPF_MODIFY_RETURN) {
17958 /* Load nr_args from ctx - 8 */
17959 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17960 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
17961 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
17962 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17963 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
17964 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
17965 cnt = 6;
17966 } else {
17967 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
17968 cnt = 1;
17969 }
17970
17971 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17972 if (!new_prog)
17973 return -ENOMEM;
17974
17975 delta += cnt - 1;
17976 env->prog = prog = new_prog;
17977 insn = new_prog->insnsi + i + delta;
17978 continue;
17979 }
17980
17981 /* Implement get_func_arg_cnt inline. */
17982 if (prog_type == BPF_PROG_TYPE_TRACING &&
17983 insn->imm == BPF_FUNC_get_func_arg_cnt) {
17984 /* Load nr_args from ctx - 8 */
17985 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17986
17987 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17988 if (!new_prog)
17989 return -ENOMEM;
17990
17991 env->prog = prog = new_prog;
17992 insn = new_prog->insnsi + i + delta;
17993 continue;
17994 }
17995
f705ec76 17996 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
17997 if (prog_type == BPF_PROG_TYPE_TRACING &&
17998 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
17999 /* Load IP address from ctx - 16 */
18000 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
18001
18002 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18003 if (!new_prog)
18004 return -ENOMEM;
18005
18006 env->prog = prog = new_prog;
18007 insn = new_prog->insnsi + i + delta;
18008 continue;
18009 }
18010
81ed18ab 18011patch_call_imm:
5e43f899 18012 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
18013 /* all functions that have prototype and verifier allowed
18014 * programs to call them, must be real in-kernel functions
18015 */
18016 if (!fn->func) {
61bd5218
JK
18017 verbose(env,
18018 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
18019 func_id_name(insn->imm), insn->imm);
18020 return -EFAULT;
e245c5c6 18021 }
79741b3b 18022 insn->imm = fn->func - __bpf_call_base;
e245c5c6 18023 }
e245c5c6 18024
d2e4c1e6
DB
18025 /* Since poke tab is now finalized, publish aux to tracker. */
18026 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18027 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18028 if (!map_ptr->ops->map_poke_track ||
18029 !map_ptr->ops->map_poke_untrack ||
18030 !map_ptr->ops->map_poke_run) {
18031 verbose(env, "bpf verifier is misconfigured\n");
18032 return -EINVAL;
18033 }
18034
18035 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18036 if (ret < 0) {
18037 verbose(env, "tracking tail call prog failed\n");
18038 return ret;
18039 }
18040 }
18041
1cf3bfc6 18042 sort_kfunc_descs_by_imm_off(env->prog);
e6ac2450 18043
79741b3b
AS
18044 return 0;
18045}
e245c5c6 18046
1ade2371
EZ
18047static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18048 int position,
18049 s32 stack_base,
18050 u32 callback_subprogno,
18051 u32 *cnt)
18052{
18053 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18054 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18055 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18056 int reg_loop_max = BPF_REG_6;
18057 int reg_loop_cnt = BPF_REG_7;
18058 int reg_loop_ctx = BPF_REG_8;
18059
18060 struct bpf_prog *new_prog;
18061 u32 callback_start;
18062 u32 call_insn_offset;
18063 s32 callback_offset;
18064
18065 /* This represents an inlined version of bpf_iter.c:bpf_loop,
18066 * be careful to modify this code in sync.
18067 */
18068 struct bpf_insn insn_buf[] = {
18069 /* Return error and jump to the end of the patch if
18070 * expected number of iterations is too big.
18071 */
18072 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18073 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18074 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18075 /* spill R6, R7, R8 to use these as loop vars */
18076 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18077 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18078 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18079 /* initialize loop vars */
18080 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18081 BPF_MOV32_IMM(reg_loop_cnt, 0),
18082 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18083 /* loop header,
18084 * if reg_loop_cnt >= reg_loop_max skip the loop body
18085 */
18086 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18087 /* callback call,
18088 * correct callback offset would be set after patching
18089 */
18090 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18091 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18092 BPF_CALL_REL(0),
18093 /* increment loop counter */
18094 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18095 /* jump to loop header if callback returned 0 */
18096 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18097 /* return value of bpf_loop,
18098 * set R0 to the number of iterations
18099 */
18100 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18101 /* restore original values of R6, R7, R8 */
18102 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18103 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18104 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18105 };
18106
18107 *cnt = ARRAY_SIZE(insn_buf);
18108 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18109 if (!new_prog)
18110 return new_prog;
18111
18112 /* callback start is known only after patching */
18113 callback_start = env->subprog_info[callback_subprogno].start;
18114 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18115 call_insn_offset = position + 12;
18116 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 18117 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
18118
18119 return new_prog;
18120}
18121
18122static bool is_bpf_loop_call(struct bpf_insn *insn)
18123{
18124 return insn->code == (BPF_JMP | BPF_CALL) &&
18125 insn->src_reg == 0 &&
18126 insn->imm == BPF_FUNC_loop;
18127}
18128
18129/* For all sub-programs in the program (including main) check
18130 * insn_aux_data to see if there are bpf_loop calls that require
18131 * inlining. If such calls are found the calls are replaced with a
18132 * sequence of instructions produced by `inline_bpf_loop` function and
18133 * subprog stack_depth is increased by the size of 3 registers.
18134 * This stack space is used to spill values of the R6, R7, R8. These
18135 * registers are used to store the loop bound, counter and context
18136 * variables.
18137 */
18138static int optimize_bpf_loop(struct bpf_verifier_env *env)
18139{
18140 struct bpf_subprog_info *subprogs = env->subprog_info;
18141 int i, cur_subprog = 0, cnt, delta = 0;
18142 struct bpf_insn *insn = env->prog->insnsi;
18143 int insn_cnt = env->prog->len;
18144 u16 stack_depth = subprogs[cur_subprog].stack_depth;
18145 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18146 u16 stack_depth_extra = 0;
18147
18148 for (i = 0; i < insn_cnt; i++, insn++) {
18149 struct bpf_loop_inline_state *inline_state =
18150 &env->insn_aux_data[i + delta].loop_inline_state;
18151
18152 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18153 struct bpf_prog *new_prog;
18154
18155 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18156 new_prog = inline_bpf_loop(env,
18157 i + delta,
18158 -(stack_depth + stack_depth_extra),
18159 inline_state->callback_subprogno,
18160 &cnt);
18161 if (!new_prog)
18162 return -ENOMEM;
18163
18164 delta += cnt - 1;
18165 env->prog = new_prog;
18166 insn = new_prog->insnsi + i + delta;
18167 }
18168
18169 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18170 subprogs[cur_subprog].stack_depth += stack_depth_extra;
18171 cur_subprog++;
18172 stack_depth = subprogs[cur_subprog].stack_depth;
18173 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18174 stack_depth_extra = 0;
18175 }
18176 }
18177
18178 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18179
18180 return 0;
18181}
18182
58e2af8b 18183static void free_states(struct bpf_verifier_env *env)
f1bca824 18184{
58e2af8b 18185 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
18186 int i;
18187
9f4686c4
AS
18188 sl = env->free_list;
18189 while (sl) {
18190 sln = sl->next;
18191 free_verifier_state(&sl->state, false);
18192 kfree(sl);
18193 sl = sln;
18194 }
51c39bb1 18195 env->free_list = NULL;
9f4686c4 18196
f1bca824
AS
18197 if (!env->explored_states)
18198 return;
18199
dc2a4ebc 18200 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
18201 sl = env->explored_states[i];
18202
a8f500af
AS
18203 while (sl) {
18204 sln = sl->next;
18205 free_verifier_state(&sl->state, false);
18206 kfree(sl);
18207 sl = sln;
18208 }
51c39bb1 18209 env->explored_states[i] = NULL;
f1bca824 18210 }
51c39bb1 18211}
f1bca824 18212
51c39bb1
AS
18213static int do_check_common(struct bpf_verifier_env *env, int subprog)
18214{
6f8a57cc 18215 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
18216 struct bpf_verifier_state *state;
18217 struct bpf_reg_state *regs;
18218 int ret, i;
18219
18220 env->prev_linfo = NULL;
18221 env->pass_cnt++;
18222
18223 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18224 if (!state)
18225 return -ENOMEM;
18226 state->curframe = 0;
18227 state->speculative = false;
18228 state->branches = 1;
18229 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18230 if (!state->frame[0]) {
18231 kfree(state);
18232 return -ENOMEM;
18233 }
18234 env->cur_state = state;
18235 init_func_state(env, state->frame[0],
18236 BPF_MAIN_FUNC /* callsite */,
18237 0 /* frameno */,
18238 subprog);
be2ef816
AN
18239 state->first_insn_idx = env->subprog_info[subprog].start;
18240 state->last_insn_idx = -1;
51c39bb1
AS
18241
18242 regs = state->frame[state->curframe]->regs;
be8704ff 18243 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
18244 ret = btf_prepare_func_args(env, subprog, regs);
18245 if (ret)
18246 goto out;
18247 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18248 if (regs[i].type == PTR_TO_CTX)
18249 mark_reg_known_zero(env, regs, i);
18250 else if (regs[i].type == SCALAR_VALUE)
18251 mark_reg_unknown(env, regs, i);
cf9f2f8d 18252 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
18253 const u32 mem_size = regs[i].mem_size;
18254
18255 mark_reg_known_zero(env, regs, i);
18256 regs[i].mem_size = mem_size;
18257 regs[i].id = ++env->id_gen;
18258 }
51c39bb1
AS
18259 }
18260 } else {
18261 /* 1st arg to a function */
18262 regs[BPF_REG_1].type = PTR_TO_CTX;
18263 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 18264 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
18265 if (ret == -EFAULT)
18266 /* unlikely verifier bug. abort.
18267 * ret == 0 and ret < 0 are sadly acceptable for
18268 * main() function due to backward compatibility.
18269 * Like socket filter program may be written as:
18270 * int bpf_prog(struct pt_regs *ctx)
18271 * and never dereference that ctx in the program.
18272 * 'struct pt_regs' is a type mismatch for socket
18273 * filter that should be using 'struct __sk_buff'.
18274 */
18275 goto out;
18276 }
18277
18278 ret = do_check(env);
18279out:
f59bbfc2
AS
18280 /* check for NULL is necessary, since cur_state can be freed inside
18281 * do_check() under memory pressure.
18282 */
18283 if (env->cur_state) {
18284 free_verifier_state(env->cur_state, true);
18285 env->cur_state = NULL;
18286 }
6f8a57cc
AN
18287 while (!pop_stack(env, NULL, NULL, false));
18288 if (!ret && pop_log)
18289 bpf_vlog_reset(&env->log, 0);
51c39bb1 18290 free_states(env);
51c39bb1
AS
18291 return ret;
18292}
18293
18294/* Verify all global functions in a BPF program one by one based on their BTF.
18295 * All global functions must pass verification. Otherwise the whole program is rejected.
18296 * Consider:
18297 * int bar(int);
18298 * int foo(int f)
18299 * {
18300 * return bar(f);
18301 * }
18302 * int bar(int b)
18303 * {
18304 * ...
18305 * }
18306 * foo() will be verified first for R1=any_scalar_value. During verification it
18307 * will be assumed that bar() already verified successfully and call to bar()
18308 * from foo() will be checked for type match only. Later bar() will be verified
18309 * independently to check that it's safe for R1=any_scalar_value.
18310 */
18311static int do_check_subprogs(struct bpf_verifier_env *env)
18312{
18313 struct bpf_prog_aux *aux = env->prog->aux;
18314 int i, ret;
18315
18316 if (!aux->func_info)
18317 return 0;
18318
18319 for (i = 1; i < env->subprog_cnt; i++) {
18320 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18321 continue;
18322 env->insn_idx = env->subprog_info[i].start;
18323 WARN_ON_ONCE(env->insn_idx == 0);
18324 ret = do_check_common(env, i);
18325 if (ret) {
18326 return ret;
18327 } else if (env->log.level & BPF_LOG_LEVEL) {
18328 verbose(env,
18329 "Func#%d is safe for any args that match its prototype\n",
18330 i);
18331 }
18332 }
18333 return 0;
18334}
18335
18336static int do_check_main(struct bpf_verifier_env *env)
18337{
18338 int ret;
18339
18340 env->insn_idx = 0;
18341 ret = do_check_common(env, 0);
18342 if (!ret)
18343 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18344 return ret;
18345}
18346
18347
06ee7115
AS
18348static void print_verification_stats(struct bpf_verifier_env *env)
18349{
18350 int i;
18351
18352 if (env->log.level & BPF_LOG_STATS) {
18353 verbose(env, "verification time %lld usec\n",
18354 div_u64(env->verification_time, 1000));
18355 verbose(env, "stack depth ");
18356 for (i = 0; i < env->subprog_cnt; i++) {
18357 u32 depth = env->subprog_info[i].stack_depth;
18358
18359 verbose(env, "%d", depth);
18360 if (i + 1 < env->subprog_cnt)
18361 verbose(env, "+");
18362 }
18363 verbose(env, "\n");
18364 }
18365 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18366 "total_states %d peak_states %d mark_read %d\n",
18367 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18368 env->max_states_per_insn, env->total_states,
18369 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
18370}
18371
27ae7997
MKL
18372static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18373{
18374 const struct btf_type *t, *func_proto;
18375 const struct bpf_struct_ops *st_ops;
18376 const struct btf_member *member;
18377 struct bpf_prog *prog = env->prog;
18378 u32 btf_id, member_idx;
18379 const char *mname;
18380
12aa8a94
THJ
18381 if (!prog->gpl_compatible) {
18382 verbose(env, "struct ops programs must have a GPL compatible license\n");
18383 return -EINVAL;
18384 }
18385
27ae7997
MKL
18386 btf_id = prog->aux->attach_btf_id;
18387 st_ops = bpf_struct_ops_find(btf_id);
18388 if (!st_ops) {
18389 verbose(env, "attach_btf_id %u is not a supported struct\n",
18390 btf_id);
18391 return -ENOTSUPP;
18392 }
18393
18394 t = st_ops->type;
18395 member_idx = prog->expected_attach_type;
18396 if (member_idx >= btf_type_vlen(t)) {
18397 verbose(env, "attach to invalid member idx %u of struct %s\n",
18398 member_idx, st_ops->name);
18399 return -EINVAL;
18400 }
18401
18402 member = &btf_type_member(t)[member_idx];
18403 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18404 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18405 NULL);
18406 if (!func_proto) {
18407 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18408 mname, member_idx, st_ops->name);
18409 return -EINVAL;
18410 }
18411
18412 if (st_ops->check_member) {
51a52a29 18413 int err = st_ops->check_member(t, member, prog);
27ae7997
MKL
18414
18415 if (err) {
18416 verbose(env, "attach to unsupported member %s of struct %s\n",
18417 mname, st_ops->name);
18418 return err;
18419 }
18420 }
18421
18422 prog->aux->attach_func_proto = func_proto;
18423 prog->aux->attach_func_name = mname;
18424 env->ops = st_ops->verifier_ops;
18425
18426 return 0;
18427}
6ba43b76
KS
18428#define SECURITY_PREFIX "security_"
18429
f7b12b6f 18430static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 18431{
69191754 18432 if (within_error_injection_list(addr) ||
f7b12b6f 18433 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 18434 return 0;
6ba43b76 18435
6ba43b76
KS
18436 return -EINVAL;
18437}
27ae7997 18438
1e6c62a8
AS
18439/* list of non-sleepable functions that are otherwise on
18440 * ALLOW_ERROR_INJECTION list
18441 */
18442BTF_SET_START(btf_non_sleepable_error_inject)
18443/* Three functions below can be called from sleepable and non-sleepable context.
18444 * Assume non-sleepable from bpf safety point of view.
18445 */
9dd3d069 18446BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
18447BTF_ID(func, should_fail_alloc_page)
18448BTF_ID(func, should_failslab)
18449BTF_SET_END(btf_non_sleepable_error_inject)
18450
18451static int check_non_sleepable_error_inject(u32 btf_id)
18452{
18453 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18454}
18455
f7b12b6f
THJ
18456int bpf_check_attach_target(struct bpf_verifier_log *log,
18457 const struct bpf_prog *prog,
18458 const struct bpf_prog *tgt_prog,
18459 u32 btf_id,
18460 struct bpf_attach_target_info *tgt_info)
38207291 18461{
be8704ff 18462 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 18463 const char prefix[] = "btf_trace_";
5b92a28a 18464 int ret = 0, subprog = -1, i;
38207291 18465 const struct btf_type *t;
5b92a28a 18466 bool conservative = true;
38207291 18467 const char *tname;
5b92a28a 18468 struct btf *btf;
f7b12b6f 18469 long addr = 0;
31bf1dbc 18470 struct module *mod = NULL;
38207291 18471
f1b9509c 18472 if (!btf_id) {
efc68158 18473 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
18474 return -EINVAL;
18475 }
22dc4a0f 18476 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 18477 if (!btf) {
efc68158 18478 bpf_log(log,
5b92a28a
AS
18479 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
18480 return -EINVAL;
18481 }
18482 t = btf_type_by_id(btf, btf_id);
f1b9509c 18483 if (!t) {
efc68158 18484 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
18485 return -EINVAL;
18486 }
5b92a28a 18487 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 18488 if (!tname) {
efc68158 18489 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
18490 return -EINVAL;
18491 }
5b92a28a
AS
18492 if (tgt_prog) {
18493 struct bpf_prog_aux *aux = tgt_prog->aux;
18494
fd7c211d
THJ
18495 if (bpf_prog_is_dev_bound(prog->aux) &&
18496 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
18497 bpf_log(log, "Target program bound device mismatch");
3d76a4d3
SF
18498 return -EINVAL;
18499 }
18500
5b92a28a
AS
18501 for (i = 0; i < aux->func_info_cnt; i++)
18502 if (aux->func_info[i].type_id == btf_id) {
18503 subprog = i;
18504 break;
18505 }
18506 if (subprog == -1) {
efc68158 18507 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
18508 return -EINVAL;
18509 }
18510 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
18511 if (prog_extension) {
18512 if (conservative) {
efc68158 18513 bpf_log(log,
be8704ff
AS
18514 "Cannot replace static functions\n");
18515 return -EINVAL;
18516 }
18517 if (!prog->jit_requested) {
efc68158 18518 bpf_log(log,
be8704ff
AS
18519 "Extension programs should be JITed\n");
18520 return -EINVAL;
18521 }
be8704ff
AS
18522 }
18523 if (!tgt_prog->jited) {
efc68158 18524 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
18525 return -EINVAL;
18526 }
18527 if (tgt_prog->type == prog->type) {
18528 /* Cannot fentry/fexit another fentry/fexit program.
18529 * Cannot attach program extension to another extension.
18530 * It's ok to attach fentry/fexit to extension program.
18531 */
efc68158 18532 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
18533 return -EINVAL;
18534 }
18535 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
18536 prog_extension &&
18537 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
18538 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
18539 /* Program extensions can extend all program types
18540 * except fentry/fexit. The reason is the following.
18541 * The fentry/fexit programs are used for performance
18542 * analysis, stats and can be attached to any program
18543 * type except themselves. When extension program is
18544 * replacing XDP function it is necessary to allow
18545 * performance analysis of all functions. Both original
18546 * XDP program and its program extension. Hence
18547 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
18548 * allowed. If extending of fentry/fexit was allowed it
18549 * would be possible to create long call chain
18550 * fentry->extension->fentry->extension beyond
18551 * reasonable stack size. Hence extending fentry is not
18552 * allowed.
18553 */
efc68158 18554 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
18555 return -EINVAL;
18556 }
5b92a28a 18557 } else {
be8704ff 18558 if (prog_extension) {
efc68158 18559 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
18560 return -EINVAL;
18561 }
5b92a28a 18562 }
f1b9509c
AS
18563
18564 switch (prog->expected_attach_type) {
18565 case BPF_TRACE_RAW_TP:
5b92a28a 18566 if (tgt_prog) {
efc68158 18567 bpf_log(log,
5b92a28a
AS
18568 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
18569 return -EINVAL;
18570 }
38207291 18571 if (!btf_type_is_typedef(t)) {
efc68158 18572 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
18573 btf_id);
18574 return -EINVAL;
18575 }
f1b9509c 18576 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 18577 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
18578 btf_id, tname);
18579 return -EINVAL;
18580 }
18581 tname += sizeof(prefix) - 1;
5b92a28a 18582 t = btf_type_by_id(btf, t->type);
38207291
MKL
18583 if (!btf_type_is_ptr(t))
18584 /* should never happen in valid vmlinux build */
18585 return -EINVAL;
5b92a28a 18586 t = btf_type_by_id(btf, t->type);
38207291
MKL
18587 if (!btf_type_is_func_proto(t))
18588 /* should never happen in valid vmlinux build */
18589 return -EINVAL;
18590
f7b12b6f 18591 break;
15d83c4d
YS
18592 case BPF_TRACE_ITER:
18593 if (!btf_type_is_func(t)) {
efc68158 18594 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
18595 btf_id);
18596 return -EINVAL;
18597 }
18598 t = btf_type_by_id(btf, t->type);
18599 if (!btf_type_is_func_proto(t))
18600 return -EINVAL;
f7b12b6f
THJ
18601 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18602 if (ret)
18603 return ret;
18604 break;
be8704ff
AS
18605 default:
18606 if (!prog_extension)
18607 return -EINVAL;
df561f66 18608 fallthrough;
ae240823 18609 case BPF_MODIFY_RETURN:
9e4e01df 18610 case BPF_LSM_MAC:
69fd337a 18611 case BPF_LSM_CGROUP:
fec56f58
AS
18612 case BPF_TRACE_FENTRY:
18613 case BPF_TRACE_FEXIT:
18614 if (!btf_type_is_func(t)) {
efc68158 18615 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
18616 btf_id);
18617 return -EINVAL;
18618 }
be8704ff 18619 if (prog_extension &&
efc68158 18620 btf_check_type_match(log, prog, btf, t))
be8704ff 18621 return -EINVAL;
5b92a28a 18622 t = btf_type_by_id(btf, t->type);
fec56f58
AS
18623 if (!btf_type_is_func_proto(t))
18624 return -EINVAL;
f7b12b6f 18625
4a1e7c0c
THJ
18626 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
18627 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
18628 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
18629 return -EINVAL;
18630
f7b12b6f 18631 if (tgt_prog && conservative)
5b92a28a 18632 t = NULL;
f7b12b6f
THJ
18633
18634 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 18635 if (ret < 0)
f7b12b6f
THJ
18636 return ret;
18637
5b92a28a 18638 if (tgt_prog) {
e9eeec58
YS
18639 if (subprog == 0)
18640 addr = (long) tgt_prog->bpf_func;
18641 else
18642 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a 18643 } else {
31bf1dbc
VM
18644 if (btf_is_module(btf)) {
18645 mod = btf_try_get_module(btf);
18646 if (mod)
18647 addr = find_kallsyms_symbol_value(mod, tname);
18648 else
18649 addr = 0;
18650 } else {
18651 addr = kallsyms_lookup_name(tname);
18652 }
5b92a28a 18653 if (!addr) {
31bf1dbc 18654 module_put(mod);
efc68158 18655 bpf_log(log,
5b92a28a
AS
18656 "The address of function %s cannot be found\n",
18657 tname);
f7b12b6f 18658 return -ENOENT;
5b92a28a 18659 }
fec56f58 18660 }
18644cec 18661
1e6c62a8
AS
18662 if (prog->aux->sleepable) {
18663 ret = -EINVAL;
18664 switch (prog->type) {
18665 case BPF_PROG_TYPE_TRACING:
5b481aca
BT
18666
18667 /* fentry/fexit/fmod_ret progs can be sleepable if they are
1e6c62a8
AS
18668 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
18669 */
18670 if (!check_non_sleepable_error_inject(btf_id) &&
18671 within_error_injection_list(addr))
18672 ret = 0;
5b481aca
BT
18673 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
18674 * in the fmodret id set with the KF_SLEEPABLE flag.
18675 */
18676 else {
18677 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
18678
18679 if (flags && (*flags & KF_SLEEPABLE))
18680 ret = 0;
18681 }
1e6c62a8
AS
18682 break;
18683 case BPF_PROG_TYPE_LSM:
18684 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
18685 * Only some of them are sleepable.
18686 */
423f1610 18687 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
18688 ret = 0;
18689 break;
18690 default:
18691 break;
18692 }
f7b12b6f 18693 if (ret) {
31bf1dbc 18694 module_put(mod);
f7b12b6f
THJ
18695 bpf_log(log, "%s is not sleepable\n", tname);
18696 return ret;
18697 }
1e6c62a8 18698 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 18699 if (tgt_prog) {
31bf1dbc 18700 module_put(mod);
efc68158 18701 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
18702 return -EINVAL;
18703 }
5b481aca
BT
18704 ret = -EINVAL;
18705 if (btf_kfunc_is_modify_return(btf, btf_id) ||
18706 !check_attach_modify_return(addr, tname))
18707 ret = 0;
f7b12b6f 18708 if (ret) {
31bf1dbc 18709 module_put(mod);
f7b12b6f
THJ
18710 bpf_log(log, "%s() is not modifiable\n", tname);
18711 return ret;
1af9270e 18712 }
18644cec 18713 }
f7b12b6f
THJ
18714
18715 break;
18716 }
18717 tgt_info->tgt_addr = addr;
18718 tgt_info->tgt_name = tname;
18719 tgt_info->tgt_type = t;
31bf1dbc 18720 tgt_info->tgt_mod = mod;
f7b12b6f
THJ
18721 return 0;
18722}
18723
35e3815f
JO
18724BTF_SET_START(btf_id_deny)
18725BTF_ID_UNUSED
18726#ifdef CONFIG_SMP
18727BTF_ID(func, migrate_disable)
18728BTF_ID(func, migrate_enable)
18729#endif
18730#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
18731BTF_ID(func, rcu_read_unlock_strict)
18732#endif
c11bd046
Y
18733#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
18734BTF_ID(func, preempt_count_add)
18735BTF_ID(func, preempt_count_sub)
18736#endif
a0c109dc
YS
18737#ifdef CONFIG_PREEMPT_RCU
18738BTF_ID(func, __rcu_read_lock)
18739BTF_ID(func, __rcu_read_unlock)
18740#endif
35e3815f
JO
18741BTF_SET_END(btf_id_deny)
18742
700e6f85
JO
18743static bool can_be_sleepable(struct bpf_prog *prog)
18744{
18745 if (prog->type == BPF_PROG_TYPE_TRACING) {
18746 switch (prog->expected_attach_type) {
18747 case BPF_TRACE_FENTRY:
18748 case BPF_TRACE_FEXIT:
18749 case BPF_MODIFY_RETURN:
18750 case BPF_TRACE_ITER:
18751 return true;
18752 default:
18753 return false;
18754 }
18755 }
18756 return prog->type == BPF_PROG_TYPE_LSM ||
1e12d3ef
DV
18757 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
18758 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
700e6f85
JO
18759}
18760
f7b12b6f
THJ
18761static int check_attach_btf_id(struct bpf_verifier_env *env)
18762{
18763 struct bpf_prog *prog = env->prog;
3aac1ead 18764 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
18765 struct bpf_attach_target_info tgt_info = {};
18766 u32 btf_id = prog->aux->attach_btf_id;
18767 struct bpf_trampoline *tr;
18768 int ret;
18769 u64 key;
18770
79a7f8bd
AS
18771 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
18772 if (prog->aux->sleepable)
18773 /* attach_btf_id checked to be zero already */
18774 return 0;
18775 verbose(env, "Syscall programs can only be sleepable\n");
18776 return -EINVAL;
18777 }
18778
700e6f85 18779 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
1e12d3ef 18780 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
f7b12b6f
THJ
18781 return -EINVAL;
18782 }
18783
18784 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
18785 return check_struct_ops_btf_id(env);
18786
18787 if (prog->type != BPF_PROG_TYPE_TRACING &&
18788 prog->type != BPF_PROG_TYPE_LSM &&
18789 prog->type != BPF_PROG_TYPE_EXT)
18790 return 0;
18791
18792 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
18793 if (ret)
fec56f58 18794 return ret;
f7b12b6f
THJ
18795
18796 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
18797 /* to make freplace equivalent to their targets, they need to
18798 * inherit env->ops and expected_attach_type for the rest of the
18799 * verification
18800 */
f7b12b6f
THJ
18801 env->ops = bpf_verifier_ops[tgt_prog->type];
18802 prog->expected_attach_type = tgt_prog->expected_attach_type;
18803 }
18804
18805 /* store info about the attachment target that will be used later */
18806 prog->aux->attach_func_proto = tgt_info.tgt_type;
18807 prog->aux->attach_func_name = tgt_info.tgt_name;
31bf1dbc 18808 prog->aux->mod = tgt_info.tgt_mod;
f7b12b6f 18809
4a1e7c0c
THJ
18810 if (tgt_prog) {
18811 prog->aux->saved_dst_prog_type = tgt_prog->type;
18812 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
18813 }
18814
f7b12b6f
THJ
18815 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
18816 prog->aux->attach_btf_trace = true;
18817 return 0;
18818 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
18819 if (!bpf_iter_prog_supported(prog))
18820 return -EINVAL;
18821 return 0;
18822 }
18823
18824 if (prog->type == BPF_PROG_TYPE_LSM) {
18825 ret = bpf_lsm_verify_prog(&env->log, prog);
18826 if (ret < 0)
18827 return ret;
35e3815f
JO
18828 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
18829 btf_id_set_contains(&btf_id_deny, btf_id)) {
18830 return -EINVAL;
38207291 18831 }
f7b12b6f 18832
22dc4a0f 18833 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
18834 tr = bpf_trampoline_get(key, &tgt_info);
18835 if (!tr)
18836 return -ENOMEM;
18837
3aac1ead 18838 prog->aux->dst_trampoline = tr;
f7b12b6f 18839 return 0;
38207291
MKL
18840}
18841
76654e67
AM
18842struct btf *bpf_get_btf_vmlinux(void)
18843{
18844 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
18845 mutex_lock(&bpf_verifier_lock);
18846 if (!btf_vmlinux)
18847 btf_vmlinux = btf_parse_vmlinux();
18848 mutex_unlock(&bpf_verifier_lock);
18849 }
18850 return btf_vmlinux;
18851}
18852
47a71c1f 18853int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
51580e79 18854{
06ee7115 18855 u64 start_time = ktime_get_ns();
58e2af8b 18856 struct bpf_verifier_env *env;
bdcab414
AN
18857 int i, len, ret = -EINVAL, err;
18858 u32 log_true_size;
e2ae4ca2 18859 bool is_priv;
51580e79 18860
eba0c929
AB
18861 /* no program is valid */
18862 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
18863 return -EINVAL;
18864
58e2af8b 18865 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
18866 * allocate/free it every time bpf_check() is called
18867 */
58e2af8b 18868 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
18869 if (!env)
18870 return -ENOMEM;
18871
9e4c24e7 18872 len = (*prog)->len;
fad953ce 18873 env->insn_aux_data =
9e4c24e7 18874 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
18875 ret = -ENOMEM;
18876 if (!env->insn_aux_data)
18877 goto err_free_env;
9e4c24e7
JK
18878 for (i = 0; i < len; i++)
18879 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 18880 env->prog = *prog;
00176a34 18881 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 18882 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 18883 is_priv = bpf_capable();
0246e64d 18884
76654e67 18885 bpf_get_btf_vmlinux();
8580ac94 18886
cbd35700 18887 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
18888 if (!is_priv)
18889 mutex_lock(&bpf_verifier_lock);
cbd35700 18890
bdcab414
AN
18891 /* user could have requested verbose verifier output
18892 * and supplied buffer to store the verification trace
18893 */
18894 ret = bpf_vlog_init(&env->log, attr->log_level,
18895 (char __user *) (unsigned long) attr->log_buf,
18896 attr->log_size);
18897 if (ret)
18898 goto err_unlock;
1ad2f583 18899
0f55f9ed
CL
18900 mark_verifier_state_clean(env);
18901
8580ac94
AS
18902 if (IS_ERR(btf_vmlinux)) {
18903 /* Either gcc or pahole or kernel are broken. */
18904 verbose(env, "in-kernel BTF is malformed\n");
18905 ret = PTR_ERR(btf_vmlinux);
38207291 18906 goto skip_full_check;
8580ac94
AS
18907 }
18908
1ad2f583
DB
18909 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
18910 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 18911 env->strict_alignment = true;
e9ee9efc
DM
18912 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
18913 env->strict_alignment = false;
cbd35700 18914
2c78ee89 18915 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 18916 env->allow_uninit_stack = bpf_allow_uninit_stack();
2c78ee89
AS
18917 env->bypass_spec_v1 = bpf_bypass_spec_v1();
18918 env->bypass_spec_v4 = bpf_bypass_spec_v4();
18919 env->bpf_capable = bpf_capable();
e2ae4ca2 18920
10d274e8
AS
18921 if (is_priv)
18922 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
18923
dc2a4ebc 18924 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 18925 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
18926 GFP_USER);
18927 ret = -ENOMEM;
18928 if (!env->explored_states)
18929 goto skip_full_check;
18930
e6ac2450
MKL
18931 ret = add_subprog_and_kfunc(env);
18932 if (ret < 0)
18933 goto skip_full_check;
18934
d9762e84 18935 ret = check_subprogs(env);
475fb78f
AS
18936 if (ret < 0)
18937 goto skip_full_check;
18938
c454a46b 18939 ret = check_btf_info(env, attr, uattr);
838e9690
YS
18940 if (ret < 0)
18941 goto skip_full_check;
18942
be8704ff
AS
18943 ret = check_attach_btf_id(env);
18944 if (ret)
18945 goto skip_full_check;
18946
4976b718
HL
18947 ret = resolve_pseudo_ldimm64(env);
18948 if (ret < 0)
18949 goto skip_full_check;
18950
9d03ebc7 18951 if (bpf_prog_is_offloaded(env->prog->aux)) {
ceb11679
YZ
18952 ret = bpf_prog_offload_verifier_prep(env->prog);
18953 if (ret)
18954 goto skip_full_check;
18955 }
18956
d9762e84
MKL
18957 ret = check_cfg(env);
18958 if (ret < 0)
18959 goto skip_full_check;
18960
51c39bb1
AS
18961 ret = do_check_subprogs(env);
18962 ret = ret ?: do_check_main(env);
cbd35700 18963
9d03ebc7 18964 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
c941ce9c
QM
18965 ret = bpf_prog_offload_finalize(env);
18966
0246e64d 18967skip_full_check:
51c39bb1 18968 kvfree(env->explored_states);
0246e64d 18969
c131187d 18970 if (ret == 0)
9b38c405 18971 ret = check_max_stack_depth(env);
c131187d 18972
9b38c405 18973 /* instruction rewrites happen after this point */
1ade2371
EZ
18974 if (ret == 0)
18975 ret = optimize_bpf_loop(env);
18976
e2ae4ca2
JK
18977 if (is_priv) {
18978 if (ret == 0)
18979 opt_hard_wire_dead_code_branches(env);
52875a04
JK
18980 if (ret == 0)
18981 ret = opt_remove_dead_code(env);
a1b14abc
JK
18982 if (ret == 0)
18983 ret = opt_remove_nops(env);
52875a04
JK
18984 } else {
18985 if (ret == 0)
18986 sanitize_dead_code(env);
e2ae4ca2
JK
18987 }
18988
9bac3d6d
AS
18989 if (ret == 0)
18990 /* program is valid, convert *(u32*)(ctx + off) accesses */
18991 ret = convert_ctx_accesses(env);
18992
e245c5c6 18993 if (ret == 0)
e6ac5933 18994 ret = do_misc_fixups(env);
e245c5c6 18995
a4b1d3c1
JW
18996 /* do 32-bit optimization after insn patching has done so those patched
18997 * insns could be handled correctly.
18998 */
9d03ebc7 18999 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
d6c2308c
JW
19000 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19001 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19002 : false;
a4b1d3c1
JW
19003 }
19004
1ea47e01
AS
19005 if (ret == 0)
19006 ret = fixup_call_args(env);
19007
06ee7115
AS
19008 env->verification_time = ktime_get_ns() - start_time;
19009 print_verification_stats(env);
aba64c7d 19010 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 19011
bdcab414
AN
19012 /* preserve original error even if log finalization is successful */
19013 err = bpf_vlog_finalize(&env->log, &log_true_size);
19014 if (err)
19015 ret = err;
19016
47a71c1f
AN
19017 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19018 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
bdcab414 19019 &log_true_size, sizeof(log_true_size))) {
47a71c1f
AN
19020 ret = -EFAULT;
19021 goto err_release_maps;
19022 }
cbd35700 19023
541c3bad
AN
19024 if (ret)
19025 goto err_release_maps;
19026
19027 if (env->used_map_cnt) {
0246e64d 19028 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
19029 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19030 sizeof(env->used_maps[0]),
19031 GFP_KERNEL);
0246e64d 19032
9bac3d6d 19033 if (!env->prog->aux->used_maps) {
0246e64d 19034 ret = -ENOMEM;
a2a7d570 19035 goto err_release_maps;
0246e64d
AS
19036 }
19037
9bac3d6d 19038 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 19039 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 19040 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
19041 }
19042 if (env->used_btf_cnt) {
19043 /* if program passed verifier, update used_btfs in bpf_prog_aux */
19044 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19045 sizeof(env->used_btfs[0]),
19046 GFP_KERNEL);
19047 if (!env->prog->aux->used_btfs) {
19048 ret = -ENOMEM;
19049 goto err_release_maps;
19050 }
0246e64d 19051
541c3bad
AN
19052 memcpy(env->prog->aux->used_btfs, env->used_btfs,
19053 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19054 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19055 }
19056 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
19057 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
19058 * bpf_ld_imm64 instructions
19059 */
19060 convert_pseudo_ld_imm64(env);
19061 }
cbd35700 19062
541c3bad 19063 adjust_btf_func(env);
ba64e7d8 19064
a2a7d570 19065err_release_maps:
9bac3d6d 19066 if (!env->prog->aux->used_maps)
0246e64d 19067 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 19068 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
19069 */
19070 release_maps(env);
541c3bad
AN
19071 if (!env->prog->aux->used_btfs)
19072 release_btfs(env);
03f87c0b
THJ
19073
19074 /* extension progs temporarily inherit the attach_type of their targets
19075 for verification purposes, so set it back to zero before returning
19076 */
19077 if (env->prog->type == BPF_PROG_TYPE_EXT)
19078 env->prog->expected_attach_type = 0;
19079
9bac3d6d 19080 *prog = env->prog;
3df126f3 19081err_unlock:
45a73c17
AS
19082 if (!is_priv)
19083 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
19084 vfree(env->insn_aux_data);
19085err_free_env:
19086 kfree(env);
51580e79
AS
19087 return ret;
19088}