bpf: Allow bpf_spin_{lock,unlock} in sleepable progs
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
bd5314f8 27#include <linux/module.h>
f42bcd16 28#include <linux/cpumask.h>
680ee045 29#include <net/xdp.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34 33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 34#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 37#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
38#include <linux/bpf_types.h>
39#undef BPF_PROG_TYPE
40#undef BPF_MAP_TYPE
f2e10bff 41#undef BPF_LINK_TYPE
00176a34
JK
42};
43
51580e79
AS
44/* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47 *
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
8fb33b60 55 * Since it's analyzing all paths through the program, the length of the
eba38a96 56 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
59 *
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63 * copied to R1.
64 *
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
70 *
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
73 *
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
83 *
f1174f77 84 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 85 * means the register has some value, but it's not a valid pointer.
f1174f77 86 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
87 *
88 * When verifier sees load or store instructions the type of base register
c64b7983
JS
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
51580e79
AS
91 *
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
94 *
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
97 *
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
102 *
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
107 *
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
112 *
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115 * {
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
118 * void *value;
119 *
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
123 * }
124 *
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133 *
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 140 * returns either pointer to map value or NULL.
51580e79
AS
141 *
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
146 *
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
149 *
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
152 * the BPF program:
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154 *
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
161 *
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
167 */
168
17a52670 169/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 170struct bpf_verifier_stack_elem {
17a52670
AS
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
174 */
58e2af8b 175 struct bpf_verifier_state st;
17a52670
AS
176 int insn_idx;
177 int prev_insn_idx;
58e2af8b 178 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
179 /* length of verifier log at the time this state was pushed on stack */
180 u32 log_pos;
cbd35700
AS
181};
182
b285fcb7 183#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 184#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 185
d2e4c1e6
DB
186#define BPF_MAP_KEY_POISON (1ULL << 63)
187#define BPF_MAP_KEY_SEEN (1ULL << 62)
188
c93552c4
DB
189#define BPF_MAP_PTR_UNPRIV 1UL
190#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193
bc34dee6
JK
194static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
6a3cd331 196static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
5d92ddc3 197static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
6a3cd331
DM
198static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
1cf3bfc6
IL
200static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
51302c95 202static bool is_trusted_reg(const struct bpf_reg_state *reg);
bc34dee6 203
c93552c4
DB
204static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205{
d2e4c1e6 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
207}
208
209static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210{
d2e4c1e6 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
212}
213
214static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
216{
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221}
222
223static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224{
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
226}
227
228static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229{
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231}
232
233static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234{
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236}
237
238static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239{
240 bool poisoned = bpf_map_key_poisoned(aux);
241
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 244}
fad73a1a 245
fde2a388
AN
246static bool bpf_helper_call(const struct bpf_insn *insn)
247{
248 return insn->code == (BPF_JMP | BPF_CALL) &&
249 insn->src_reg == 0;
250}
251
23a2d70c
YS
252static bool bpf_pseudo_call(const struct bpf_insn *insn)
253{
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
256}
257
e6ac2450
MKL
258static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259{
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262}
263
33ff9823
DB
264struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
435faee1 266 bool raw_mode;
36bbef52 267 bool pkt_access;
8f14852e 268 u8 release_regno;
435faee1
DB
269 int regno;
270 int access_size;
457f4436 271 int mem_size;
10060503 272 u64 msize_max_value;
1b986589 273 int ref_obj_id;
f8064ab9 274 int dynptr_id;
3e8ce298 275 int map_uid;
d83525ca 276 int func_id;
22dc4a0f 277 struct btf *btf;
eaa6bcb7 278 u32 btf_id;
22dc4a0f 279 struct btf *ret_btf;
eaa6bcb7 280 u32 ret_btf_id;
69c087ba 281 u32 subprogno;
aa3496ac 282 struct btf_field *kptr_field;
33ff9823
DB
283};
284
d0e1ac22
AN
285struct bpf_kfunc_call_arg_meta {
286 /* In parameters */
287 struct btf *btf;
288 u32 func_id;
289 u32 kfunc_flags;
290 const struct btf_type *func_proto;
291 const char *func_name;
292 /* Out parameters */
293 u32 ref_obj_id;
294 u8 release_regno;
295 bool r0_rdonly;
296 u32 ret_btf_id;
297 u64 r0_size;
298 u32 subprogno;
299 struct {
300 u64 value;
301 bool found;
302 } arg_constant;
4d585f48 303
7793fc3b 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
4d585f48
DM
305 * generally to pass info about user-defined local kptr types to later
306 * verification logic
307 * bpf_obj_drop
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
7793fc3b
DM
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
312 * fallible
4d585f48
DM
313 */
314 struct btf *arg_btf;
315 u32 arg_btf_id;
7793fc3b 316 bool arg_owning_ref;
4d585f48 317
d0e1ac22
AN
318 struct {
319 struct btf_field *field;
320 } arg_list_head;
321 struct {
322 struct btf_field *field;
323 } arg_rbtree_root;
324 struct {
325 enum bpf_dynptr_type type;
326 u32 id;
361f129f 327 u32 ref_obj_id;
d0e1ac22 328 } initialized_dynptr;
06accc87
AN
329 struct {
330 u8 spi;
331 u8 frameno;
332 } iter;
d0e1ac22
AN
333 u64 mem_size;
334};
335
8580ac94
AS
336struct btf *btf_vmlinux;
337
cbd35700
AS
338static DEFINE_MUTEX(bpf_verifier_lock);
339
d9762e84
MKL
340static const struct bpf_line_info *
341find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342{
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
345 u32 i, nr_linfo;
346
347 prog = env->prog;
348 nr_linfo = prog->aux->nr_linfo;
349
350 if (!nr_linfo || insn_off >= prog->len)
351 return NULL;
352
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
356 break;
357
358 return &linfo[i - 1];
359}
360
abe08840
JO
361__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362{
77d2e05a 363 struct bpf_verifier_env *env = private_data;
abe08840
JO
364 va_list args;
365
77d2e05a
MKL
366 if (!bpf_verifier_log_needed(&env->log))
367 return;
368
abe08840 369 va_start(args, fmt);
77d2e05a 370 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
371 va_end(args);
372}
cbd35700 373
d9762e84
MKL
374static const char *ltrim(const char *s)
375{
376 while (isspace(*s))
377 s++;
378
379 return s;
380}
381
382__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 u32 insn_off,
384 const char *prefix_fmt, ...)
385{
386 const struct bpf_line_info *linfo;
387
388 if (!bpf_verifier_log_needed(&env->log))
389 return;
390
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
393 return;
394
395 if (prefix_fmt) {
396 va_list args;
397
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 va_end(args);
401 }
402
403 verbose(env, "%s\n",
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
405 linfo->line_off)));
406
407 env->prev_linfo = linfo;
408}
409
bc2591d6
YS
410static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
414{
415 char tn_buf[48];
416
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
421 } else {
422 verbose(env, "has unknown scalar value");
423 }
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
426}
427
de8f3a83
DB
428static bool type_is_pkt_pointer(enum bpf_reg_type type)
429{
0c9a7a7e 430 type = base_type(type);
de8f3a83
DB
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
433}
434
46f8bc92
MKL
435static bool type_is_sk_pointer(enum bpf_reg_type type)
436{
437 return type == PTR_TO_SOCKET ||
655a51e5 438 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
441}
442
1057d299
AS
443static bool type_may_be_null(u32 type)
444{
445 return type & PTR_MAYBE_NULL;
446}
447
51302c95 448static bool reg_not_null(const struct bpf_reg_state *reg)
cac616db 449{
51302c95
DV
450 enum bpf_reg_type type;
451
452 type = reg->type;
1057d299
AS
453 if (type_may_be_null(type))
454 return false;
455
456 type = base_type(type);
cac616db
JF
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
69c087ba 460 type == PTR_TO_MAP_KEY ||
d5271c5b 461 type == PTR_TO_SOCK_COMMON ||
51302c95 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
d5271c5b 463 type == PTR_TO_MEM;
cac616db
JF
464}
465
d8939cb0
DM
466static bool type_is_ptr_alloc_obj(u32 type)
467{
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469}
470
6a3cd331
DM
471static bool type_is_non_owning_ref(u32 type)
472{
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474}
475
4e814da0
KKD
476static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477{
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
480
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
d8939cb0 483 } else if (type_is_ptr_alloc_obj(reg->type)) {
4e814da0
KKD
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 if (meta)
486 rec = meta->record;
487 }
488 return rec;
489}
490
fde2a388
AN
491static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492{
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496}
497
d83525ca
AS
498static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499{
4e814da0 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
501}
502
20b2aff4
HL
503static bool type_is_rdonly_mem(u32 type)
504{
505 return type & MEM_RDONLY;
cba368c1
MKL
506}
507
64d85290
JS
508static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
510{
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 515 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
518 return true;
519
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
523 return true;
524
525 return false;
46f8bc92
MKL
526}
527
1b986589
MKL
528static bool is_ptr_cast_function(enum bpf_func_id func_id)
529{
530 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
538}
539
88374342 540static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
541{
542 return func_id == BPF_FUNC_dynptr_data;
543}
544
fde2a388
AN
545static bool is_callback_calling_kfunc(u32 btf_id);
546
be2ef816
AN
547static bool is_callback_calling_function(enum bpf_func_id func_id)
548{
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_timer_set_callback ||
551 func_id == BPF_FUNC_find_vma ||
552 func_id == BPF_FUNC_loop ||
553 func_id == BPF_FUNC_user_ringbuf_drain;
554}
555
fde2a388
AN
556static bool is_async_callback_calling_function(enum bpf_func_id func_id)
557{
558 return func_id == BPF_FUNC_timer_set_callback;
559}
560
9bb00b28
YS
561static bool is_storage_get_function(enum bpf_func_id func_id)
562{
563 return func_id == BPF_FUNC_sk_storage_get ||
564 func_id == BPF_FUNC_inode_storage_get ||
565 func_id == BPF_FUNC_task_storage_get ||
566 func_id == BPF_FUNC_cgrp_storage_get;
567}
568
b2d8ef19
DM
569static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 const struct bpf_map *map)
571{
572 int ref_obj_uses = 0;
573
574 if (is_ptr_cast_function(func_id))
575 ref_obj_uses++;
576 if (is_acquire_function(func_id, map))
577 ref_obj_uses++;
88374342 578 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
579 ref_obj_uses++;
580
581 return ref_obj_uses > 1;
582}
583
39491867
BJ
584static bool is_cmpxchg_insn(const struct bpf_insn *insn)
585{
586 return BPF_CLASS(insn->code) == BPF_STX &&
587 BPF_MODE(insn->code) == BPF_ATOMIC &&
588 insn->imm == BPF_CMPXCHG;
589}
590
c25b2ae1
HL
591/* string representation of 'enum bpf_reg_type'
592 *
593 * Note that reg_type_str() can not appear more than once in a single verbose()
594 * statement.
595 */
596static const char *reg_type_str(struct bpf_verifier_env *env,
597 enum bpf_reg_type type)
598{
ef66c547 599 char postfix[16] = {0}, prefix[64] = {0};
c25b2ae1
HL
600 static const char * const str[] = {
601 [NOT_INIT] = "?",
7df5072c 602 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
603 [PTR_TO_CTX] = "ctx",
604 [CONST_PTR_TO_MAP] = "map_ptr",
605 [PTR_TO_MAP_VALUE] = "map_value",
606 [PTR_TO_STACK] = "fp",
607 [PTR_TO_PACKET] = "pkt",
608 [PTR_TO_PACKET_META] = "pkt_meta",
609 [PTR_TO_PACKET_END] = "pkt_end",
610 [PTR_TO_FLOW_KEYS] = "flow_keys",
611 [PTR_TO_SOCKET] = "sock",
612 [PTR_TO_SOCK_COMMON] = "sock_common",
613 [PTR_TO_TCP_SOCK] = "tcp_sock",
614 [PTR_TO_TP_BUFFER] = "tp_buffer",
615 [PTR_TO_XDP_SOCK] = "xdp_sock",
616 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 617 [PTR_TO_MEM] = "mem",
20b2aff4 618 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
619 [PTR_TO_FUNC] = "func",
620 [PTR_TO_MAP_KEY] = "map_key",
27060531 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
622 };
623
624 if (type & PTR_MAYBE_NULL) {
5844101a 625 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
626 strncpy(postfix, "or_null_", 16);
627 else
628 strncpy(postfix, "_or_null", 16);
629 }
630
9bb00b28 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
ef66c547
DV
632 type & MEM_RDONLY ? "rdonly_" : "",
633 type & MEM_RINGBUF ? "ringbuf_" : "",
634 type & MEM_USER ? "user_" : "",
635 type & MEM_PERCPU ? "percpu_" : "",
9bb00b28 636 type & MEM_RCU ? "rcu_" : "",
3f00c523
DV
637 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 type & PTR_TRUSTED ? "trusted_" : ""
ef66c547 639 );
20b2aff4 640
d9439c21 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
20b2aff4 642 prefix, str[base_type(type)], postfix);
d9439c21 643 return env->tmp_str_buf;
c25b2ae1 644}
17a52670 645
8efea21d
EC
646static char slot_type_char[] = {
647 [STACK_INVALID] = '?',
648 [STACK_SPILL] = 'r',
649 [STACK_MISC] = 'm',
650 [STACK_ZERO] = '0',
97e03f52 651 [STACK_DYNPTR] = 'd',
06accc87 652 [STACK_ITER] = 'i',
8efea21d
EC
653};
654
4e92024a
AS
655static void print_liveness(struct bpf_verifier_env *env,
656 enum bpf_reg_liveness live)
657{
9242b5f5 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
659 verbose(env, "_");
660 if (live & REG_LIVE_READ)
661 verbose(env, "r");
662 if (live & REG_LIVE_WRITTEN)
663 verbose(env, "w");
9242b5f5
AS
664 if (live & REG_LIVE_DONE)
665 verbose(env, "D");
4e92024a
AS
666}
667
79168a66 668static int __get_spi(s32 off)
97e03f52
JK
669{
670 return (-off - 1) / BPF_REG_SIZE;
671}
672
f5b625e5
KKD
673static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 const struct bpf_reg_state *reg)
675{
676 struct bpf_verifier_state *cur = env->cur_state;
677
678 return cur->frame[reg->frameno];
679}
680
97e03f52
JK
681static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
682{
f5b625e5 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
97e03f52 684
f5b625e5
KKD
685 /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 * within [0, allocated_stack).
687 *
688 * Please note that the spi grows downwards. For example, a dynptr
689 * takes the size of two stack slots; the first slot will be at
690 * spi and the second slot will be at spi - 1.
691 */
692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
97e03f52
JK
693}
694
a461f5ad
AN
695static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 const char *obj_kind, int nr_slots)
f4d7e40a 697{
79168a66 698 int off, spi;
f4d7e40a 699
79168a66 700 if (!tnum_is_const(reg->var_off)) {
a461f5ad 701 verbose(env, "%s has to be at a constant offset\n", obj_kind);
79168a66
KKD
702 return -EINVAL;
703 }
704
705 off = reg->off + reg->var_off.value;
706 if (off % BPF_REG_SIZE) {
a461f5ad 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
708 return -EINVAL;
709 }
710
711 spi = __get_spi(off);
a461f5ad
AN
712 if (spi + 1 < nr_slots) {
713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
79168a66
KKD
714 return -EINVAL;
715 }
97e03f52 716
a461f5ad 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
f5b625e5
KKD
718 return -ERANGE;
719 return spi;
f4d7e40a
AS
720}
721
a461f5ad
AN
722static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
723{
724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
725}
726
06accc87
AN
727static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
728{
729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
730}
731
b32a5dae 732static const char *btf_type_name(const struct btf *btf, u32 id)
9e15db66 733{
22dc4a0f 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
735}
736
d54e0f6c
AN
737static const char *dynptr_type_str(enum bpf_dynptr_type type)
738{
739 switch (type) {
740 case BPF_DYNPTR_TYPE_LOCAL:
741 return "local";
742 case BPF_DYNPTR_TYPE_RINGBUF:
743 return "ringbuf";
744 case BPF_DYNPTR_TYPE_SKB:
745 return "skb";
746 case BPF_DYNPTR_TYPE_XDP:
747 return "xdp";
748 case BPF_DYNPTR_TYPE_INVALID:
749 return "<invalid>";
750 default:
751 WARN_ONCE(1, "unknown dynptr type %d\n", type);
752 return "<unknown>";
753 }
754}
755
06accc87
AN
756static const char *iter_type_str(const struct btf *btf, u32 btf_id)
757{
758 if (!btf || btf_id == 0)
759 return "<invalid>";
760
761 /* we already validated that type is valid and has conforming name */
b32a5dae 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
06accc87
AN
763}
764
765static const char *iter_state_str(enum bpf_iter_state state)
766{
767 switch (state) {
768 case BPF_ITER_STATE_ACTIVE:
769 return "active";
770 case BPF_ITER_STATE_DRAINED:
771 return "drained";
772 case BPF_ITER_STATE_INVALID:
773 return "<invalid>";
774 default:
775 WARN_ONCE(1, "unknown iter state %d\n", state);
776 return "<unknown>";
777 }
778}
779
0f55f9ed
CL
780static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
781{
782 env->scratched_regs |= 1U << regno;
783}
784
785static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
786{
343e5375 787 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
788}
789
790static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
791{
792 return (env->scratched_regs >> regno) & 1;
793}
794
795static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
796{
797 return (env->scratched_stack_slots >> regno) & 1;
798}
799
800static bool verifier_state_scratched(const struct bpf_verifier_env *env)
801{
802 return env->scratched_regs || env->scratched_stack_slots;
803}
804
805static void mark_verifier_state_clean(struct bpf_verifier_env *env)
806{
807 env->scratched_regs = 0U;
343e5375 808 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
809}
810
811/* Used for printing the entire verifier state. */
812static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
813{
814 env->scratched_regs = ~0U;
343e5375 815 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
816}
817
97e03f52
JK
818static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
819{
820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 case DYNPTR_TYPE_LOCAL:
822 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
823 case DYNPTR_TYPE_RINGBUF:
824 return BPF_DYNPTR_TYPE_RINGBUF;
b5964b96
JK
825 case DYNPTR_TYPE_SKB:
826 return BPF_DYNPTR_TYPE_SKB;
05421aec
JK
827 case DYNPTR_TYPE_XDP:
828 return BPF_DYNPTR_TYPE_XDP;
97e03f52
JK
829 default:
830 return BPF_DYNPTR_TYPE_INVALID;
831 }
832}
833
66e3a13e
JK
834static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
835{
836 switch (type) {
837 case BPF_DYNPTR_TYPE_LOCAL:
838 return DYNPTR_TYPE_LOCAL;
839 case BPF_DYNPTR_TYPE_RINGBUF:
840 return DYNPTR_TYPE_RINGBUF;
841 case BPF_DYNPTR_TYPE_SKB:
842 return DYNPTR_TYPE_SKB;
843 case BPF_DYNPTR_TYPE_XDP:
844 return DYNPTR_TYPE_XDP;
845 default:
846 return 0;
847 }
848}
849
bc34dee6
JK
850static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
851{
852 return type == BPF_DYNPTR_TYPE_RINGBUF;
853}
854
27060531
KKD
855static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 enum bpf_dynptr_type type,
f8064ab9 857 bool first_slot, int dynptr_id);
27060531
KKD
858
859static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 struct bpf_reg_state *reg);
861
f8064ab9
KKD
862static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 struct bpf_reg_state *sreg1,
27060531
KKD
864 struct bpf_reg_state *sreg2,
865 enum bpf_dynptr_type type)
866{
f8064ab9
KKD
867 int id = ++env->id_gen;
868
869 __mark_dynptr_reg(sreg1, type, true, id);
870 __mark_dynptr_reg(sreg2, type, false, id);
27060531
KKD
871}
872
f8064ab9
KKD
873static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 struct bpf_reg_state *reg,
27060531
KKD
875 enum bpf_dynptr_type type)
876{
f8064ab9 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
27060531
KKD
878}
879
ef8fc7a0
KKD
880static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 struct bpf_func_state *state, int spi);
27060531 882
97e03f52 883static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
361f129f 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
97e03f52
JK
885{
886 struct bpf_func_state *state = func(env, reg);
887 enum bpf_dynptr_type type;
361f129f 888 int spi, i, err;
97e03f52 889
79168a66
KKD
890 spi = dynptr_get_spi(env, reg);
891 if (spi < 0)
892 return spi;
97e03f52 893
379d4ba8
KKD
894 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 * to ensure that for the following example:
897 * [d1][d1][d2][d2]
898 * spi 3 2 1 0
899 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 * case they do belong to same dynptr, second call won't see slot_type
901 * as STACK_DYNPTR and will simply skip destruction.
902 */
903 err = destroy_if_dynptr_stack_slot(env, state, spi);
904 if (err)
905 return err;
906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
907 if (err)
908 return err;
97e03f52
JK
909
910 for (i = 0; i < BPF_REG_SIZE; i++) {
911 state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
913 }
914
915 type = arg_to_dynptr_type(arg_type);
916 if (type == BPF_DYNPTR_TYPE_INVALID)
917 return -EINVAL;
918
f8064ab9 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
27060531 920 &state->stack[spi - 1].spilled_ptr, type);
97e03f52 921
bc34dee6
JK
922 if (dynptr_type_refcounted(type)) {
923 /* The id is used to track proper releasing */
361f129f
JK
924 int id;
925
926 if (clone_ref_obj_id)
927 id = clone_ref_obj_id;
928 else
929 id = acquire_reference_state(env, insn_idx);
930
bc34dee6
JK
931 if (id < 0)
932 return id;
933
27060531
KKD
934 state->stack[spi].spilled_ptr.ref_obj_id = id;
935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
bc34dee6
JK
936 }
937
d6fefa11
KKD
938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
940
97e03f52
JK
941 return 0;
942}
943
361f129f 944static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
97e03f52 945{
361f129f 946 int i;
97e03f52
JK
947
948 for (i = 0; i < BPF_REG_SIZE; i++) {
949 state->stack[spi].slot_type[i] = STACK_INVALID;
950 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
951 }
952
27060531
KKD
953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
d6fefa11
KKD
955
956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
957 *
958 * While we don't allow reading STACK_INVALID, it is still possible to
959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 * helpers or insns can do partial read of that part without failing,
961 * but check_stack_range_initialized, check_stack_read_var_off, and
962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 * the slot conservatively. Hence we need to prevent those liveness
964 * marking walks.
965 *
966 * This was not a problem before because STACK_INVALID is only set by
967 * default (where the default reg state has its reg->parent as NULL), or
968 * in clean_live_states after REG_LIVE_DONE (at which point
969 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 * verifier state exploration (like we did above). Hence, for our case
971 * parentage chain will still be live (i.e. reg->parent may be
972 * non-NULL), while earlier reg->parent was NULL, so we need
973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 * done later on reads or by mark_dynptr_read as well to unnecessary
975 * mark registers in verifier state.
976 */
977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
361f129f
JK
979}
980
981static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
982{
983 struct bpf_func_state *state = func(env, reg);
984 int spi, ref_obj_id, i;
985
986 spi = dynptr_get_spi(env, reg);
987 if (spi < 0)
988 return spi;
989
990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 invalidate_dynptr(env, state, spi);
992 return 0;
993 }
994
995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
996
997 /* If the dynptr has a ref_obj_id, then we need to invalidate
998 * two things:
999 *
1000 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 * 2) Any slices derived from this dynptr.
1002 */
1003
1004 /* Invalidate any slices associated with this dynptr */
1005 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1006
1007 /* Invalidate any dynptr clones */
1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1010 continue;
1011
1012 /* it should always be the case that if the ref obj id
1013 * matches then the stack slot also belongs to a
1014 * dynptr
1015 */
1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1018 return -EFAULT;
1019 }
1020 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 invalidate_dynptr(env, state, i);
1022 }
d6fefa11 1023
97e03f52
JK
1024 return 0;
1025}
1026
ef8fc7a0
KKD
1027static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 struct bpf_reg_state *reg);
1029
dbd8d228
KKD
1030static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1031{
1032 if (!env->allow_ptr_leaks)
1033 __mark_reg_not_init(env, reg);
1034 else
1035 __mark_reg_unknown(env, reg);
1036}
1037
ef8fc7a0
KKD
1038static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 struct bpf_func_state *state, int spi)
97e03f52 1040{
f8064ab9
KKD
1041 struct bpf_func_state *fstate;
1042 struct bpf_reg_state *dreg;
1043 int i, dynptr_id;
27060531 1044
ef8fc7a0
KKD
1045 /* We always ensure that STACK_DYNPTR is never set partially,
1046 * hence just checking for slot_type[0] is enough. This is
1047 * different for STACK_SPILL, where it may be only set for
1048 * 1 byte, so code has to use is_spilled_reg.
1049 */
1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1051 return 0;
97e03f52 1052
ef8fc7a0
KKD
1053 /* Reposition spi to first slot */
1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1055 spi = spi + 1;
1056
1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 verbose(env, "cannot overwrite referenced dynptr\n");
1059 return -EINVAL;
1060 }
1061
1062 mark_stack_slot_scratched(env, spi);
1063 mark_stack_slot_scratched(env, spi - 1);
97e03f52 1064
ef8fc7a0 1065 /* Writing partially to one dynptr stack slot destroys both. */
97e03f52 1066 for (i = 0; i < BPF_REG_SIZE; i++) {
ef8fc7a0
KKD
1067 state->stack[spi].slot_type[i] = STACK_INVALID;
1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
97e03f52
JK
1069 }
1070
f8064ab9
KKD
1071 dynptr_id = state->stack[spi].spilled_ptr.id;
1072 /* Invalidate any slices associated with this dynptr */
1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1076 continue;
dbd8d228
KKD
1077 if (dreg->dynptr_id == dynptr_id)
1078 mark_reg_invalid(env, dreg);
f8064ab9 1079 }));
ef8fc7a0
KKD
1080
1081 /* Do not release reference state, we are destroying dynptr on stack,
1082 * not using some helper to release it. Just reset register.
1083 */
1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1086
1087 /* Same reason as unmark_stack_slots_dynptr above */
1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090
1091 return 0;
1092}
1093
7e0dac28 1094static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52 1095{
7e0dac28
JK
1096 int spi;
1097
27060531
KKD
1098 if (reg->type == CONST_PTR_TO_DYNPTR)
1099 return false;
97e03f52 1100
7e0dac28
JK
1101 spi = dynptr_get_spi(env, reg);
1102
1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 * error because this just means the stack state hasn't been updated yet.
1105 * We will do check_mem_access to check and update stack bounds later.
f5b625e5 1106 */
7e0dac28
JK
1107 if (spi < 0 && spi != -ERANGE)
1108 return false;
1109
1110 /* We don't need to check if the stack slots are marked by previous
1111 * dynptr initializations because we allow overwriting existing unreferenced
1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 * touching are completely destructed before we reinitialize them for a new
1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 * instead of delaying it until the end where the user will get "Unreleased
379d4ba8
KKD
1117 * reference" error.
1118 */
97e03f52
JK
1119 return true;
1120}
1121
7e0dac28 1122static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
97e03f52
JK
1123{
1124 struct bpf_func_state *state = func(env, reg);
7e0dac28 1125 int i, spi;
97e03f52 1126
7e0dac28
JK
1127 /* This already represents first slot of initialized bpf_dynptr.
1128 *
1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 * check_func_arg_reg_off's logic, so we don't need to check its
1131 * offset and alignment.
1132 */
27060531
KKD
1133 if (reg->type == CONST_PTR_TO_DYNPTR)
1134 return true;
1135
7e0dac28 1136 spi = dynptr_get_spi(env, reg);
79168a66
KKD
1137 if (spi < 0)
1138 return false;
f5b625e5 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
97e03f52
JK
1140 return false;
1141
1142 for (i = 0; i < BPF_REG_SIZE; i++) {
1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1145 return false;
1146 }
1147
e9e315b4
RS
1148 return true;
1149}
1150
6b75bd3d
KKD
1151static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 enum bpf_arg_type arg_type)
e9e315b4
RS
1153{
1154 struct bpf_func_state *state = func(env, reg);
1155 enum bpf_dynptr_type dynptr_type;
27060531 1156 int spi;
e9e315b4 1157
97e03f52
JK
1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 if (arg_type == ARG_PTR_TO_DYNPTR)
1160 return true;
1161
e9e315b4 1162 dynptr_type = arg_to_dynptr_type(arg_type);
27060531
KKD
1163 if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 return reg->dynptr.type == dynptr_type;
1165 } else {
79168a66
KKD
1166 spi = dynptr_get_spi(env, reg);
1167 if (spi < 0)
1168 return false;
27060531
KKD
1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1170 }
97e03f52
JK
1171}
1172
06accc87
AN
1173static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1174
1175static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 struct bpf_reg_state *reg, int insn_idx,
1177 struct btf *btf, u32 btf_id, int nr_slots)
1178{
1179 struct bpf_func_state *state = func(env, reg);
1180 int spi, i, j, id;
1181
1182 spi = iter_get_spi(env, reg, nr_slots);
1183 if (spi < 0)
1184 return spi;
1185
1186 id = acquire_reference_state(env, insn_idx);
1187 if (id < 0)
1188 return id;
1189
1190 for (i = 0; i < nr_slots; i++) {
1191 struct bpf_stack_state *slot = &state->stack[spi - i];
1192 struct bpf_reg_state *st = &slot->spilled_ptr;
1193
1194 __mark_reg_known_zero(st);
1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 st->live |= REG_LIVE_WRITTEN;
1197 st->ref_obj_id = i == 0 ? id : 0;
1198 st->iter.btf = btf;
1199 st->iter.btf_id = btf_id;
1200 st->iter.state = BPF_ITER_STATE_ACTIVE;
1201 st->iter.depth = 0;
1202
1203 for (j = 0; j < BPF_REG_SIZE; j++)
1204 slot->slot_type[j] = STACK_ITER;
1205
1206 mark_stack_slot_scratched(env, spi - i);
1207 }
1208
1209 return 0;
1210}
1211
1212static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 struct bpf_reg_state *reg, int nr_slots)
1214{
1215 struct bpf_func_state *state = func(env, reg);
1216 int spi, i, j;
1217
1218 spi = iter_get_spi(env, reg, nr_slots);
1219 if (spi < 0)
1220 return spi;
1221
1222 for (i = 0; i < nr_slots; i++) {
1223 struct bpf_stack_state *slot = &state->stack[spi - i];
1224 struct bpf_reg_state *st = &slot->spilled_ptr;
1225
1226 if (i == 0)
1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1228
1229 __mark_reg_not_init(env, st);
1230
1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 st->live |= REG_LIVE_WRITTEN;
1233
1234 for (j = 0; j < BPF_REG_SIZE; j++)
1235 slot->slot_type[j] = STACK_INVALID;
1236
1237 mark_stack_slot_scratched(env, spi - i);
1238 }
1239
1240 return 0;
1241}
1242
1243static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 struct bpf_reg_state *reg, int nr_slots)
1245{
1246 struct bpf_func_state *state = func(env, reg);
1247 int spi, i, j;
1248
1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 * will do check_mem_access to check and update stack bounds later, so
1251 * return true for that case.
1252 */
1253 spi = iter_get_spi(env, reg, nr_slots);
1254 if (spi == -ERANGE)
1255 return true;
1256 if (spi < 0)
1257 return false;
1258
1259 for (i = 0; i < nr_slots; i++) {
1260 struct bpf_stack_state *slot = &state->stack[spi - i];
1261
1262 for (j = 0; j < BPF_REG_SIZE; j++)
1263 if (slot->slot_type[j] == STACK_ITER)
1264 return false;
1265 }
1266
1267 return true;
1268}
1269
1270static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 struct btf *btf, u32 btf_id, int nr_slots)
1272{
1273 struct bpf_func_state *state = func(env, reg);
1274 int spi, i, j;
1275
1276 spi = iter_get_spi(env, reg, nr_slots);
1277 if (spi < 0)
1278 return false;
1279
1280 for (i = 0; i < nr_slots; i++) {
1281 struct bpf_stack_state *slot = &state->stack[spi - i];
1282 struct bpf_reg_state *st = &slot->spilled_ptr;
1283
1284 /* only main (first) slot has ref_obj_id set */
1285 if (i == 0 && !st->ref_obj_id)
1286 return false;
1287 if (i != 0 && st->ref_obj_id)
1288 return false;
1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1290 return false;
1291
1292 for (j = 0; j < BPF_REG_SIZE; j++)
1293 if (slot->slot_type[j] != STACK_ITER)
1294 return false;
1295 }
1296
1297 return true;
1298}
1299
1300/* Check if given stack slot is "special":
1301 * - spilled register state (STACK_SPILL);
1302 * - dynptr state (STACK_DYNPTR);
1303 * - iter state (STACK_ITER).
1304 */
1305static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1306{
1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1308
1309 switch (type) {
1310 case STACK_SPILL:
1311 case STACK_DYNPTR:
1312 case STACK_ITER:
1313 return true;
1314 case STACK_INVALID:
1315 case STACK_MISC:
1316 case STACK_ZERO:
1317 return false;
1318 default:
1319 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1320 return true;
1321 }
1322}
1323
27113c59
MKL
1324/* The reg state of a pointer or a bounded scalar was saved when
1325 * it was spilled to the stack.
1326 */
1327static bool is_spilled_reg(const struct bpf_stack_state *stack)
1328{
1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1330}
1331
407958a0
AN
1332static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1333{
1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 stack->spilled_ptr.type == SCALAR_VALUE;
1336}
1337
354e8f19
MKL
1338static void scrub_spilled_slot(u8 *stype)
1339{
1340 if (*stype != STACK_INVALID)
1341 *stype = STACK_MISC;
1342}
1343
61bd5218 1344static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
1345 const struct bpf_func_state *state,
1346 bool print_all)
17a52670 1347{
f4d7e40a 1348 const struct bpf_reg_state *reg;
17a52670
AS
1349 enum bpf_reg_type t;
1350 int i;
1351
f4d7e40a
AS
1352 if (state->frameno)
1353 verbose(env, " frame%d:", state->frameno);
17a52670 1354 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
1355 reg = &state->regs[i];
1356 t = reg->type;
17a52670
AS
1357 if (t == NOT_INIT)
1358 continue;
0f55f9ed
CL
1359 if (!print_all && !reg_scratched(env, i))
1360 continue;
4e92024a
AS
1361 verbose(env, " R%d", i);
1362 print_liveness(env, reg->live);
7df5072c 1363 verbose(env, "=");
b5dc0163
AS
1364 if (t == SCALAR_VALUE && reg->precise)
1365 verbose(env, "P");
f1174f77
EC
1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 tnum_is_const(reg->var_off)) {
1368 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 1370 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 1371 } else {
7df5072c
ML
1372 const char *sep = "";
1373
1374 verbose(env, "%s", reg_type_str(env, t));
5844101a 1375 if (base_type(t) == PTR_TO_BTF_ID)
b32a5dae 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
7df5072c
ML
1377 verbose(env, "(");
1378/*
1379 * _a stands for append, was shortened to avoid multiline statements below.
1380 * This macro is used to output a comma separated list of attributes.
1381 */
1382#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1383
1384 if (reg->id)
1385 verbose_a("id=%d", reg->id);
a28ace78 1386 if (reg->ref_obj_id)
7df5072c 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
6a3cd331
DM
1388 if (type_is_non_owning_ref(reg->type))
1389 verbose_a("%s", "non_own_ref");
f1174f77 1390 if (t != SCALAR_VALUE)
7df5072c 1391 verbose_a("off=%d", reg->off);
de8f3a83 1392 if (type_is_pkt_pointer(t))
7df5072c 1393 verbose_a("r=%d", reg->range);
c25b2ae1
HL
1394 else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 base_type(t) == PTR_TO_MAP_KEY ||
1396 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
1397 verbose_a("ks=%d,vs=%d",
1398 reg->map_ptr->key_size,
1399 reg->map_ptr->value_size);
7d1238f2
EC
1400 if (tnum_is_const(reg->var_off)) {
1401 /* Typically an immediate SCALAR_VALUE, but
1402 * could be a pointer whose offset is too big
1403 * for reg->off
1404 */
7df5072c 1405 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
1406 } else {
1407 if (reg->smin_value != reg->umin_value &&
1408 reg->smin_value != S64_MIN)
7df5072c 1409 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
1410 if (reg->smax_value != reg->umax_value &&
1411 reg->smax_value != S64_MAX)
7df5072c 1412 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 1413 if (reg->umin_value != 0)
7df5072c 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 1415 if (reg->umax_value != U64_MAX)
7df5072c 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
1417 if (!tnum_is_unknown(reg->var_off)) {
1418 char tn_buf[48];
f1174f77 1419
7d1238f2 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 1421 verbose_a("var_off=%s", tn_buf);
7d1238f2 1422 }
3f50f132
JF
1423 if (reg->s32_min_value != reg->smin_value &&
1424 reg->s32_min_value != S32_MIN)
7df5072c 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
1426 if (reg->s32_max_value != reg->smax_value &&
1427 reg->s32_max_value != S32_MAX)
7df5072c 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
1429 if (reg->u32_min_value != reg->umin_value &&
1430 reg->u32_min_value != U32_MIN)
7df5072c 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
1432 if (reg->u32_max_value != reg->umax_value &&
1433 reg->u32_max_value != U32_MAX)
7df5072c 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 1435 }
7df5072c
ML
1436#undef verbose_a
1437
61bd5218 1438 verbose(env, ")");
f1174f77 1439 }
17a52670 1440 }
638f5b90 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
1442 char types_buf[BPF_REG_SIZE + 1];
1443 bool valid = false;
1444 int j;
1445
1446 for (j = 0; j < BPF_REG_SIZE; j++) {
1447 if (state->stack[i].slot_type[j] != STACK_INVALID)
1448 valid = true;
d54e0f6c 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
8efea21d
EC
1450 }
1451 types_buf[BPF_REG_SIZE] = 0;
1452 if (!valid)
1453 continue;
0f55f9ed
CL
1454 if (!print_all && !stack_slot_scratched(env, i))
1455 continue;
d54e0f6c
AN
1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1457 case STACK_SPILL:
b5dc0163
AS
1458 reg = &state->stack[i].spilled_ptr;
1459 t = reg->type;
d54e0f6c
AN
1460
1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 print_liveness(env, reg->live);
7df5072c 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
1464 if (t == SCALAR_VALUE && reg->precise)
1465 verbose(env, "P");
1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 verbose(env, "%lld", reg->var_off.value + reg->off);
d54e0f6c
AN
1468 break;
1469 case STACK_DYNPTR:
1470 i += BPF_DYNPTR_NR_SLOTS - 1;
1471 reg = &state->stack[i].spilled_ptr;
1472
1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 print_liveness(env, reg->live);
1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 if (reg->ref_obj_id)
1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1478 break;
06accc87
AN
1479 case STACK_ITER:
1480 /* only main slot has ref_obj_id set; skip others */
1481 reg = &state->stack[i].spilled_ptr;
1482 if (!reg->ref_obj_id)
1483 continue;
1484
1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 print_liveness(env, reg->live);
1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 reg->ref_obj_id, iter_state_str(reg->iter.state),
1490 reg->iter.depth);
1491 break;
d54e0f6c
AN
1492 case STACK_MISC:
1493 case STACK_ZERO:
1494 default:
1495 reg = &state->stack[i].spilled_ptr;
1496
1497 for (j = 0; j < BPF_REG_SIZE; j++)
1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 types_buf[BPF_REG_SIZE] = 0;
1500
1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 print_liveness(env, reg->live);
8efea21d 1503 verbose(env, "=%s", types_buf);
d54e0f6c 1504 break;
b5dc0163 1505 }
17a52670 1506 }
fd978bf7
JS
1507 if (state->acquired_refs && state->refs[0].id) {
1508 verbose(env, " refs=%d", state->refs[0].id);
1509 for (i = 1; i < state->acquired_refs; i++)
1510 if (state->refs[i].id)
1511 verbose(env, ",%d", state->refs[i].id);
1512 }
bfc6bb74
AS
1513 if (state->in_callback_fn)
1514 verbose(env, " cb");
1515 if (state->in_async_callback_fn)
1516 verbose(env, " async_cb");
61bd5218 1517 verbose(env, "\n");
0f55f9ed 1518 mark_verifier_state_clean(env);
17a52670
AS
1519}
1520
2e576648
CL
1521static inline u32 vlog_alignment(u32 pos)
1522{
1523 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1524 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1525}
1526
1527static void print_insn_state(struct bpf_verifier_env *env,
1528 const struct bpf_func_state *state)
1529{
12166409 1530 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
2e576648 1531 /* remove new line character */
12166409
AN
1532 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1533 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
2e576648
CL
1534 } else {
1535 verbose(env, "%d:", env->insn_idx);
1536 }
1537 print_verifier_state(env, state, false);
17a52670
AS
1538}
1539
c69431aa
LB
1540/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1541 * small to hold src. This is different from krealloc since we don't want to preserve
1542 * the contents of dst.
1543 *
1544 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1545 * not be allocated.
638f5b90 1546 */
c69431aa 1547static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1548{
45435d8d
KC
1549 size_t alloc_bytes;
1550 void *orig = dst;
c69431aa
LB
1551 size_t bytes;
1552
1553 if (ZERO_OR_NULL_PTR(src))
1554 goto out;
1555
1556 if (unlikely(check_mul_overflow(n, size, &bytes)))
1557 return NULL;
1558
45435d8d
KC
1559 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1560 dst = krealloc(orig, alloc_bytes, flags);
1561 if (!dst) {
1562 kfree(orig);
1563 return NULL;
c69431aa
LB
1564 }
1565
1566 memcpy(dst, src, bytes);
1567out:
1568 return dst ? dst : ZERO_SIZE_PTR;
1569}
1570
1571/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1572 * small to hold new_n items. new items are zeroed out if the array grows.
1573 *
1574 * Contrary to krealloc_array, does not free arr if new_n is zero.
1575 */
1576static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1577{
ceb35b66 1578 size_t alloc_size;
42378a9c
KC
1579 void *new_arr;
1580
c69431aa
LB
1581 if (!new_n || old_n == new_n)
1582 goto out;
1583
ceb35b66
KC
1584 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1585 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
42378a9c
KC
1586 if (!new_arr) {
1587 kfree(arr);
c69431aa 1588 return NULL;
42378a9c
KC
1589 }
1590 arr = new_arr;
c69431aa
LB
1591
1592 if (new_n > old_n)
1593 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1594
1595out:
1596 return arr ? arr : ZERO_SIZE_PTR;
1597}
1598
1599static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1600{
1601 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1602 sizeof(struct bpf_reference_state), GFP_KERNEL);
1603 if (!dst->refs)
1604 return -ENOMEM;
1605
1606 dst->acquired_refs = src->acquired_refs;
1607 return 0;
1608}
1609
1610static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1611{
1612 size_t n = src->allocated_stack / BPF_REG_SIZE;
1613
1614 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1615 GFP_KERNEL);
1616 if (!dst->stack)
1617 return -ENOMEM;
1618
1619 dst->allocated_stack = src->allocated_stack;
1620 return 0;
1621}
1622
1623static int resize_reference_state(struct bpf_func_state *state, size_t n)
1624{
1625 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1626 sizeof(struct bpf_reference_state));
1627 if (!state->refs)
1628 return -ENOMEM;
1629
1630 state->acquired_refs = n;
1631 return 0;
1632}
1633
1634static int grow_stack_state(struct bpf_func_state *state, int size)
1635{
1636 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1637
1638 if (old_n >= n)
1639 return 0;
1640
1641 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1642 if (!state->stack)
1643 return -ENOMEM;
1644
1645 state->allocated_stack = size;
1646 return 0;
fd978bf7
JS
1647}
1648
1649/* Acquire a pointer id from the env and update the state->refs to include
1650 * this new pointer reference.
1651 * On success, returns a valid pointer id to associate with the register
1652 * On failure, returns a negative errno.
638f5b90 1653 */
fd978bf7 1654static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1655{
fd978bf7
JS
1656 struct bpf_func_state *state = cur_func(env);
1657 int new_ofs = state->acquired_refs;
1658 int id, err;
1659
c69431aa 1660 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1661 if (err)
1662 return err;
1663 id = ++env->id_gen;
1664 state->refs[new_ofs].id = id;
1665 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1666 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1667
fd978bf7
JS
1668 return id;
1669}
1670
1671/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1672static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1673{
1674 int i, last_idx;
1675
fd978bf7
JS
1676 last_idx = state->acquired_refs - 1;
1677 for (i = 0; i < state->acquired_refs; i++) {
1678 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1679 /* Cannot release caller references in callbacks */
1680 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1681 return -EINVAL;
fd978bf7
JS
1682 if (last_idx && i != last_idx)
1683 memcpy(&state->refs[i], &state->refs[last_idx],
1684 sizeof(*state->refs));
1685 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1686 state->acquired_refs--;
638f5b90 1687 return 0;
638f5b90 1688 }
638f5b90 1689 }
46f8bc92 1690 return -EINVAL;
fd978bf7
JS
1691}
1692
f4d7e40a
AS
1693static void free_func_state(struct bpf_func_state *state)
1694{
5896351e
AS
1695 if (!state)
1696 return;
fd978bf7 1697 kfree(state->refs);
f4d7e40a
AS
1698 kfree(state->stack);
1699 kfree(state);
1700}
1701
b5dc0163
AS
1702static void clear_jmp_history(struct bpf_verifier_state *state)
1703{
1704 kfree(state->jmp_history);
1705 state->jmp_history = NULL;
1706 state->jmp_history_cnt = 0;
1707}
1708
1969db47
AS
1709static void free_verifier_state(struct bpf_verifier_state *state,
1710 bool free_self)
638f5b90 1711{
f4d7e40a
AS
1712 int i;
1713
1714 for (i = 0; i <= state->curframe; i++) {
1715 free_func_state(state->frame[i]);
1716 state->frame[i] = NULL;
1717 }
b5dc0163 1718 clear_jmp_history(state);
1969db47
AS
1719 if (free_self)
1720 kfree(state);
638f5b90
AS
1721}
1722
1723/* copy verifier state from src to dst growing dst stack space
1724 * when necessary to accommodate larger src stack
1725 */
f4d7e40a
AS
1726static int copy_func_state(struct bpf_func_state *dst,
1727 const struct bpf_func_state *src)
638f5b90
AS
1728{
1729 int err;
1730
fd978bf7
JS
1731 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1732 err = copy_reference_state(dst, src);
638f5b90
AS
1733 if (err)
1734 return err;
638f5b90
AS
1735 return copy_stack_state(dst, src);
1736}
1737
f4d7e40a
AS
1738static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1739 const struct bpf_verifier_state *src)
1740{
1741 struct bpf_func_state *dst;
1742 int i, err;
1743
06ab6a50
LB
1744 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1745 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1746 GFP_USER);
1747 if (!dst_state->jmp_history)
1748 return -ENOMEM;
b5dc0163
AS
1749 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1750
f4d7e40a
AS
1751 /* if dst has more stack frames then src frame, free them */
1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1753 free_func_state(dst_state->frame[i]);
1754 dst_state->frame[i] = NULL;
1755 }
979d63d5 1756 dst_state->speculative = src->speculative;
9bb00b28 1757 dst_state->active_rcu_lock = src->active_rcu_lock;
f4d7e40a 1758 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1759 dst_state->active_lock.ptr = src->active_lock.ptr;
1760 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1761 dst_state->branches = src->branches;
1762 dst_state->parent = src->parent;
b5dc0163
AS
1763 dst_state->first_insn_idx = src->first_insn_idx;
1764 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1765 for (i = 0; i <= src->curframe; i++) {
1766 dst = dst_state->frame[i];
1767 if (!dst) {
1768 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1769 if (!dst)
1770 return -ENOMEM;
1771 dst_state->frame[i] = dst;
1772 }
1773 err = copy_func_state(dst, src->frame[i]);
1774 if (err)
1775 return err;
1776 }
1777 return 0;
1778}
1779
2589726d
AS
1780static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1781{
1782 while (st) {
1783 u32 br = --st->branches;
1784
1785 /* WARN_ON(br > 1) technically makes sense here,
1786 * but see comment in push_stack(), hence:
1787 */
1788 WARN_ONCE((int)br < 0,
1789 "BUG update_branch_counts:branches_to_explore=%d\n",
1790 br);
1791 if (br)
1792 break;
1793 st = st->parent;
1794 }
1795}
1796
638f5b90 1797static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1798 int *insn_idx, bool pop_log)
638f5b90
AS
1799{
1800 struct bpf_verifier_state *cur = env->cur_state;
1801 struct bpf_verifier_stack_elem *elem, *head = env->head;
1802 int err;
17a52670
AS
1803
1804 if (env->head == NULL)
638f5b90 1805 return -ENOENT;
17a52670 1806
638f5b90
AS
1807 if (cur) {
1808 err = copy_verifier_state(cur, &head->st);
1809 if (err)
1810 return err;
1811 }
6f8a57cc
AN
1812 if (pop_log)
1813 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1814 if (insn_idx)
1815 *insn_idx = head->insn_idx;
17a52670 1816 if (prev_insn_idx)
638f5b90
AS
1817 *prev_insn_idx = head->prev_insn_idx;
1818 elem = head->next;
1969db47 1819 free_verifier_state(&head->st, false);
638f5b90 1820 kfree(head);
17a52670
AS
1821 env->head = elem;
1822 env->stack_size--;
638f5b90 1823 return 0;
17a52670
AS
1824}
1825
58e2af8b 1826static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1827 int insn_idx, int prev_insn_idx,
1828 bool speculative)
17a52670 1829{
638f5b90 1830 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1831 struct bpf_verifier_stack_elem *elem;
638f5b90 1832 int err;
17a52670 1833
638f5b90 1834 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1835 if (!elem)
1836 goto err;
1837
17a52670
AS
1838 elem->insn_idx = insn_idx;
1839 elem->prev_insn_idx = prev_insn_idx;
1840 elem->next = env->head;
12166409 1841 elem->log_pos = env->log.end_pos;
17a52670
AS
1842 env->head = elem;
1843 env->stack_size++;
1969db47
AS
1844 err = copy_verifier_state(&elem->st, cur);
1845 if (err)
1846 goto err;
979d63d5 1847 elem->st.speculative |= speculative;
b285fcb7
AS
1848 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1849 verbose(env, "The sequence of %d jumps is too complex.\n",
1850 env->stack_size);
17a52670
AS
1851 goto err;
1852 }
2589726d
AS
1853 if (elem->st.parent) {
1854 ++elem->st.parent->branches;
1855 /* WARN_ON(branches > 2) technically makes sense here,
1856 * but
1857 * 1. speculative states will bump 'branches' for non-branch
1858 * instructions
1859 * 2. is_state_visited() heuristics may decide not to create
1860 * a new state for a sequence of branches and all such current
1861 * and cloned states will be pointing to a single parent state
1862 * which might have large 'branches' count.
1863 */
1864 }
17a52670
AS
1865 return &elem->st;
1866err:
5896351e
AS
1867 free_verifier_state(env->cur_state, true);
1868 env->cur_state = NULL;
17a52670 1869 /* pop all elements and return */
6f8a57cc 1870 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1871 return NULL;
1872}
1873
1874#define CALLER_SAVED_REGS 6
1875static const int caller_saved[CALLER_SAVED_REGS] = {
1876 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1877};
1878
e688c3db
AS
1879/* This helper doesn't clear reg->id */
1880static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1881{
b03c9f9f
EC
1882 reg->var_off = tnum_const(imm);
1883 reg->smin_value = (s64)imm;
1884 reg->smax_value = (s64)imm;
1885 reg->umin_value = imm;
1886 reg->umax_value = imm;
3f50f132
JF
1887
1888 reg->s32_min_value = (s32)imm;
1889 reg->s32_max_value = (s32)imm;
1890 reg->u32_min_value = (u32)imm;
1891 reg->u32_max_value = (u32)imm;
1892}
1893
e688c3db
AS
1894/* Mark the unknown part of a register (variable offset or scalar value) as
1895 * known to have the value @imm.
1896 */
1897static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1898{
a73bf9f2 1899 /* Clear off and union(map_ptr, range) */
e688c3db
AS
1900 memset(((u8 *)reg) + sizeof(reg->type), 0,
1901 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
a73bf9f2
AN
1902 reg->id = 0;
1903 reg->ref_obj_id = 0;
e688c3db
AS
1904 ___mark_reg_known(reg, imm);
1905}
1906
3f50f132
JF
1907static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1908{
1909 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1910 reg->s32_min_value = (s32)imm;
1911 reg->s32_max_value = (s32)imm;
1912 reg->u32_min_value = (u32)imm;
1913 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1914}
1915
f1174f77
EC
1916/* Mark the 'variable offset' part of a register as zero. This should be
1917 * used only on registers holding a pointer type.
1918 */
1919static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1920{
b03c9f9f 1921 __mark_reg_known(reg, 0);
f1174f77 1922}
a9789ef9 1923
cc2b14d5
AS
1924static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1925{
1926 __mark_reg_known(reg, 0);
cc2b14d5
AS
1927 reg->type = SCALAR_VALUE;
1928}
1929
61bd5218
JK
1930static void mark_reg_known_zero(struct bpf_verifier_env *env,
1931 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1932{
1933 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1934 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1935 /* Something bad happened, let's kill all regs */
1936 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1937 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1938 return;
1939 }
1940 __mark_reg_known_zero(regs + regno);
1941}
1942
27060531 1943static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
f8064ab9 1944 bool first_slot, int dynptr_id)
27060531
KKD
1945{
1946 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1947 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1948 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1949 */
1950 __mark_reg_known_zero(reg);
1951 reg->type = CONST_PTR_TO_DYNPTR;
f8064ab9
KKD
1952 /* Give each dynptr a unique id to uniquely associate slices to it. */
1953 reg->id = dynptr_id;
27060531
KKD
1954 reg->dynptr.type = type;
1955 reg->dynptr.first_slot = first_slot;
1956}
1957
4ddb7416
DB
1958static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1959{
c25b2ae1 1960 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1961 const struct bpf_map *map = reg->map_ptr;
1962
1963 if (map->inner_map_meta) {
1964 reg->type = CONST_PTR_TO_MAP;
1965 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1966 /* transfer reg's id which is unique for every map_lookup_elem
1967 * as UID of the inner map.
1968 */
db559117 1969 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1970 reg->map_uid = reg->id;
4ddb7416
DB
1971 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1972 reg->type = PTR_TO_XDP_SOCK;
1973 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1974 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1975 reg->type = PTR_TO_SOCKET;
1976 } else {
1977 reg->type = PTR_TO_MAP_VALUE;
1978 }
c25b2ae1 1979 return;
4ddb7416 1980 }
c25b2ae1
HL
1981
1982 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1983}
1984
5d92ddc3
DM
1985static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1986 struct btf_field_graph_root *ds_head)
1987{
1988 __mark_reg_known_zero(&regs[regno]);
1989 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1990 regs[regno].btf = ds_head->btf;
1991 regs[regno].btf_id = ds_head->value_btf_id;
1992 regs[regno].off = ds_head->node_offset;
1993}
1994
de8f3a83
DB
1995static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1996{
1997 return type_is_pkt_pointer(reg->type);
1998}
1999
2000static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2001{
2002 return reg_is_pkt_pointer(reg) ||
2003 reg->type == PTR_TO_PACKET_END;
2004}
2005
66e3a13e
JK
2006static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2007{
2008 return base_type(reg->type) == PTR_TO_MEM &&
2009 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2010}
2011
de8f3a83
DB
2012/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2013static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2014 enum bpf_reg_type which)
2015{
2016 /* The register can already have a range from prior markings.
2017 * This is fine as long as it hasn't been advanced from its
2018 * origin.
2019 */
2020 return reg->type == which &&
2021 reg->id == 0 &&
2022 reg->off == 0 &&
2023 tnum_equals_const(reg->var_off, 0);
2024}
2025
3f50f132
JF
2026/* Reset the min/max bounds of a register */
2027static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2028{
2029 reg->smin_value = S64_MIN;
2030 reg->smax_value = S64_MAX;
2031 reg->umin_value = 0;
2032 reg->umax_value = U64_MAX;
2033
2034 reg->s32_min_value = S32_MIN;
2035 reg->s32_max_value = S32_MAX;
2036 reg->u32_min_value = 0;
2037 reg->u32_max_value = U32_MAX;
2038}
2039
2040static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2041{
2042 reg->smin_value = S64_MIN;
2043 reg->smax_value = S64_MAX;
2044 reg->umin_value = 0;
2045 reg->umax_value = U64_MAX;
2046}
2047
2048static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2049{
2050 reg->s32_min_value = S32_MIN;
2051 reg->s32_max_value = S32_MAX;
2052 reg->u32_min_value = 0;
2053 reg->u32_max_value = U32_MAX;
2054}
2055
2056static void __update_reg32_bounds(struct bpf_reg_state *reg)
2057{
2058 struct tnum var32_off = tnum_subreg(reg->var_off);
2059
2060 /* min signed is max(sign bit) | min(other bits) */
2061 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2062 var32_off.value | (var32_off.mask & S32_MIN));
2063 /* max signed is min(sign bit) | max(other bits) */
2064 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2065 var32_off.value | (var32_off.mask & S32_MAX));
2066 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2067 reg->u32_max_value = min(reg->u32_max_value,
2068 (u32)(var32_off.value | var32_off.mask));
2069}
2070
2071static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2072{
2073 /* min signed is max(sign bit) | min(other bits) */
2074 reg->smin_value = max_t(s64, reg->smin_value,
2075 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2076 /* max signed is min(sign bit) | max(other bits) */
2077 reg->smax_value = min_t(s64, reg->smax_value,
2078 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2079 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2080 reg->umax_value = min(reg->umax_value,
2081 reg->var_off.value | reg->var_off.mask);
2082}
2083
3f50f132
JF
2084static void __update_reg_bounds(struct bpf_reg_state *reg)
2085{
2086 __update_reg32_bounds(reg);
2087 __update_reg64_bounds(reg);
2088}
2089
b03c9f9f 2090/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
2091static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2092{
2093 /* Learn sign from signed bounds.
2094 * If we cannot cross the sign boundary, then signed and unsigned bounds
2095 * are the same, so combine. This works even in the negative case, e.g.
2096 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2097 */
2098 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2099 reg->s32_min_value = reg->u32_min_value =
2100 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2101 reg->s32_max_value = reg->u32_max_value =
2102 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2103 return;
2104 }
2105 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2106 * boundary, so we must be careful.
2107 */
2108 if ((s32)reg->u32_max_value >= 0) {
2109 /* Positive. We can't learn anything from the smin, but smax
2110 * is positive, hence safe.
2111 */
2112 reg->s32_min_value = reg->u32_min_value;
2113 reg->s32_max_value = reg->u32_max_value =
2114 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2115 } else if ((s32)reg->u32_min_value < 0) {
2116 /* Negative. We can't learn anything from the smax, but smin
2117 * is negative, hence safe.
2118 */
2119 reg->s32_min_value = reg->u32_min_value =
2120 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2121 reg->s32_max_value = reg->u32_max_value;
2122 }
2123}
2124
2125static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
2126{
2127 /* Learn sign from signed bounds.
2128 * If we cannot cross the sign boundary, then signed and unsigned bounds
2129 * are the same, so combine. This works even in the negative case, e.g.
2130 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2131 */
2132 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2133 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2134 reg->umin_value);
2135 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2136 reg->umax_value);
2137 return;
2138 }
2139 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2140 * boundary, so we must be careful.
2141 */
2142 if ((s64)reg->umax_value >= 0) {
2143 /* Positive. We can't learn anything from the smin, but smax
2144 * is positive, hence safe.
2145 */
2146 reg->smin_value = reg->umin_value;
2147 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2148 reg->umax_value);
2149 } else if ((s64)reg->umin_value < 0) {
2150 /* Negative. We can't learn anything from the smax, but smin
2151 * is negative, hence safe.
2152 */
2153 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2154 reg->umin_value);
2155 reg->smax_value = reg->umax_value;
2156 }
2157}
2158
3f50f132
JF
2159static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2160{
2161 __reg32_deduce_bounds(reg);
2162 __reg64_deduce_bounds(reg);
2163}
2164
b03c9f9f
EC
2165/* Attempts to improve var_off based on unsigned min/max information */
2166static void __reg_bound_offset(struct bpf_reg_state *reg)
2167{
3f50f132
JF
2168 struct tnum var64_off = tnum_intersect(reg->var_off,
2169 tnum_range(reg->umin_value,
2170 reg->umax_value));
7be14c1c
DB
2171 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2172 tnum_range(reg->u32_min_value,
2173 reg->u32_max_value));
3f50f132
JF
2174
2175 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
2176}
2177
3844d153
DB
2178static void reg_bounds_sync(struct bpf_reg_state *reg)
2179{
2180 /* We might have learned new bounds from the var_off. */
2181 __update_reg_bounds(reg);
2182 /* We might have learned something about the sign bit. */
2183 __reg_deduce_bounds(reg);
2184 /* We might have learned some bits from the bounds. */
2185 __reg_bound_offset(reg);
2186 /* Intersecting with the old var_off might have improved our bounds
2187 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2188 * then new var_off is (0; 0x7f...fc) which improves our umax.
2189 */
2190 __update_reg_bounds(reg);
2191}
2192
e572ff80
DB
2193static bool __reg32_bound_s64(s32 a)
2194{
2195 return a >= 0 && a <= S32_MAX;
2196}
2197
3f50f132 2198static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 2199{
3f50f132
JF
2200 reg->umin_value = reg->u32_min_value;
2201 reg->umax_value = reg->u32_max_value;
e572ff80
DB
2202
2203 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2204 * be positive otherwise set to worse case bounds and refine later
2205 * from tnum.
3f50f132 2206 */
e572ff80
DB
2207 if (__reg32_bound_s64(reg->s32_min_value) &&
2208 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 2209 reg->smin_value = reg->s32_min_value;
e572ff80
DB
2210 reg->smax_value = reg->s32_max_value;
2211 } else {
3a71dc36 2212 reg->smin_value = 0;
e572ff80
DB
2213 reg->smax_value = U32_MAX;
2214 }
3f50f132
JF
2215}
2216
2217static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2218{
2219 /* special case when 64-bit register has upper 32-bit register
2220 * zeroed. Typically happens after zext or <<32, >>32 sequence
2221 * allowing us to use 32-bit bounds directly,
2222 */
2223 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2224 __reg_assign_32_into_64(reg);
2225 } else {
2226 /* Otherwise the best we can do is push lower 32bit known and
2227 * unknown bits into register (var_off set from jmp logic)
2228 * then learn as much as possible from the 64-bit tnum
2229 * known and unknown bits. The previous smin/smax bounds are
2230 * invalid here because of jmp32 compare so mark them unknown
2231 * so they do not impact tnum bounds calculation.
2232 */
2233 __mark_reg64_unbounded(reg);
3f50f132 2234 }
3844d153 2235 reg_bounds_sync(reg);
3f50f132
JF
2236}
2237
2238static bool __reg64_bound_s32(s64 a)
2239{
388e2c0b 2240 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
2241}
2242
2243static bool __reg64_bound_u32(u64 a)
2244{
b9979db8 2245 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
2246}
2247
2248static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2249{
2250 __mark_reg32_unbounded(reg);
b0270958 2251 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 2252 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 2253 reg->s32_max_value = (s32)reg->smax_value;
b0270958 2254 }
10bf4e83 2255 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 2256 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 2257 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 2258 }
3844d153 2259 reg_bounds_sync(reg);
b03c9f9f
EC
2260}
2261
f1174f77 2262/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
2263static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2264 struct bpf_reg_state *reg)
f1174f77 2265{
a9c676bc 2266 /*
a73bf9f2 2267 * Clear type, off, and union(map_ptr, range) and
a9c676bc
AS
2268 * padding between 'type' and union
2269 */
2270 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 2271 reg->type = SCALAR_VALUE;
a73bf9f2
AN
2272 reg->id = 0;
2273 reg->ref_obj_id = 0;
f1174f77 2274 reg->var_off = tnum_unknown;
f4d7e40a 2275 reg->frameno = 0;
be2ef816 2276 reg->precise = !env->bpf_capable;
b03c9f9f 2277 __mark_reg_unbounded(reg);
f1174f77
EC
2278}
2279
61bd5218
JK
2280static void mark_reg_unknown(struct bpf_verifier_env *env,
2281 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2282{
2283 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2284 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
2285 /* Something bad happened, let's kill all regs except FP */
2286 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2287 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2288 return;
2289 }
f54c7898 2290 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
2291}
2292
f54c7898
DB
2293static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2294 struct bpf_reg_state *reg)
f1174f77 2295{
f54c7898 2296 __mark_reg_unknown(env, reg);
f1174f77
EC
2297 reg->type = NOT_INIT;
2298}
2299
61bd5218
JK
2300static void mark_reg_not_init(struct bpf_verifier_env *env,
2301 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
2302{
2303 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 2304 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
2305 /* Something bad happened, let's kill all regs except FP */
2306 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 2307 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
2308 return;
2309 }
f54c7898 2310 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
2311}
2312
41c48f3a
AI
2313static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2314 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 2315 enum bpf_reg_type reg_type,
c6f1bfe8
YS
2316 struct btf *btf, u32 btf_id,
2317 enum bpf_type_flag flag)
41c48f3a
AI
2318{
2319 if (reg_type == SCALAR_VALUE) {
2320 mark_reg_unknown(env, regs, regno);
2321 return;
2322 }
2323 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 2324 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 2325 regs[regno].btf = btf;
41c48f3a
AI
2326 regs[regno].btf_id = btf_id;
2327}
2328
5327ed3d 2329#define DEF_NOT_SUBREG (0)
61bd5218 2330static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 2331 struct bpf_func_state *state)
17a52670 2332{
f4d7e40a 2333 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2334 int i;
2335
dc503a8a 2336 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 2337 mark_reg_not_init(env, regs, i);
dc503a8a 2338 regs[i].live = REG_LIVE_NONE;
679c782d 2339 regs[i].parent = NULL;
5327ed3d 2340 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 2341 }
17a52670
AS
2342
2343 /* frame pointer */
f1174f77 2344 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 2345 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 2346 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
2347}
2348
f4d7e40a
AS
2349#define BPF_MAIN_FUNC (-1)
2350static void init_func_state(struct bpf_verifier_env *env,
2351 struct bpf_func_state *state,
2352 int callsite, int frameno, int subprogno)
2353{
2354 state->callsite = callsite;
2355 state->frameno = frameno;
2356 state->subprogno = subprogno;
1bfe26fb 2357 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 2358 init_reg_state(env, state);
0f55f9ed 2359 mark_verifier_state_scratched(env);
f4d7e40a
AS
2360}
2361
bfc6bb74
AS
2362/* Similar to push_stack(), but for async callbacks */
2363static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2364 int insn_idx, int prev_insn_idx,
2365 int subprog)
2366{
2367 struct bpf_verifier_stack_elem *elem;
2368 struct bpf_func_state *frame;
2369
2370 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2371 if (!elem)
2372 goto err;
2373
2374 elem->insn_idx = insn_idx;
2375 elem->prev_insn_idx = prev_insn_idx;
2376 elem->next = env->head;
12166409 2377 elem->log_pos = env->log.end_pos;
bfc6bb74
AS
2378 env->head = elem;
2379 env->stack_size++;
2380 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2381 verbose(env,
2382 "The sequence of %d jumps is too complex for async cb.\n",
2383 env->stack_size);
2384 goto err;
2385 }
2386 /* Unlike push_stack() do not copy_verifier_state().
2387 * The caller state doesn't matter.
2388 * This is async callback. It starts in a fresh stack.
2389 * Initialize it similar to do_check_common().
2390 */
2391 elem->st.branches = 1;
2392 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2393 if (!frame)
2394 goto err;
2395 init_func_state(env, frame,
2396 BPF_MAIN_FUNC /* callsite */,
2397 0 /* frameno within this callchain */,
2398 subprog /* subprog number within this prog */);
2399 elem->st.frame[0] = frame;
2400 return &elem->st;
2401err:
2402 free_verifier_state(env->cur_state, true);
2403 env->cur_state = NULL;
2404 /* pop all elements and return */
2405 while (!pop_stack(env, NULL, NULL, false));
2406 return NULL;
2407}
2408
2409
17a52670
AS
2410enum reg_arg_type {
2411 SRC_OP, /* register is used as source operand */
2412 DST_OP, /* register is used as destination operand */
2413 DST_OP_NO_MARK /* same as above, check only, don't mark */
2414};
2415
cc8b0b92
AS
2416static int cmp_subprogs(const void *a, const void *b)
2417{
9c8105bd
JW
2418 return ((struct bpf_subprog_info *)a)->start -
2419 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
2420}
2421
2422static int find_subprog(struct bpf_verifier_env *env, int off)
2423{
9c8105bd 2424 struct bpf_subprog_info *p;
cc8b0b92 2425
9c8105bd
JW
2426 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2427 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
2428 if (!p)
2429 return -ENOENT;
9c8105bd 2430 return p - env->subprog_info;
cc8b0b92
AS
2431
2432}
2433
2434static int add_subprog(struct bpf_verifier_env *env, int off)
2435{
2436 int insn_cnt = env->prog->len;
2437 int ret;
2438
2439 if (off >= insn_cnt || off < 0) {
2440 verbose(env, "call to invalid destination\n");
2441 return -EINVAL;
2442 }
2443 ret = find_subprog(env, off);
2444 if (ret >= 0)
282a0f46 2445 return ret;
4cb3d99c 2446 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
2447 verbose(env, "too many subprograms\n");
2448 return -E2BIG;
2449 }
e6ac2450 2450 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
2451 env->subprog_info[env->subprog_cnt++].start = off;
2452 sort(env->subprog_info, env->subprog_cnt,
2453 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 2454 return env->subprog_cnt - 1;
cc8b0b92
AS
2455}
2456
2357672c
KKD
2457#define MAX_KFUNC_DESCS 256
2458#define MAX_KFUNC_BTFS 256
2459
e6ac2450
MKL
2460struct bpf_kfunc_desc {
2461 struct btf_func_model func_model;
2462 u32 func_id;
2463 s32 imm;
2357672c 2464 u16 offset;
1cf3bfc6 2465 unsigned long addr;
2357672c
KKD
2466};
2467
2468struct bpf_kfunc_btf {
2469 struct btf *btf;
2470 struct module *module;
2471 u16 offset;
e6ac2450
MKL
2472};
2473
e6ac2450 2474struct bpf_kfunc_desc_tab {
1cf3bfc6
IL
2475 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2476 * verification. JITs do lookups by bpf_insn, where func_id may not be
2477 * available, therefore at the end of verification do_misc_fixups()
2478 * sorts this by imm and offset.
2479 */
e6ac2450
MKL
2480 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2481 u32 nr_descs;
2482};
2483
2357672c
KKD
2484struct bpf_kfunc_btf_tab {
2485 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2486 u32 nr_descs;
2487};
2488
2489static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
2490{
2491 const struct bpf_kfunc_desc *d0 = a;
2492 const struct bpf_kfunc_desc *d1 = b;
2493
2494 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
2495 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2496}
2497
2498static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2499{
2500 const struct bpf_kfunc_btf *d0 = a;
2501 const struct bpf_kfunc_btf *d1 = b;
2502
2503 return d0->offset - d1->offset;
e6ac2450
MKL
2504}
2505
2506static const struct bpf_kfunc_desc *
2357672c 2507find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
2508{
2509 struct bpf_kfunc_desc desc = {
2510 .func_id = func_id,
2357672c 2511 .offset = offset,
e6ac2450
MKL
2512 };
2513 struct bpf_kfunc_desc_tab *tab;
2514
2515 tab = prog->aux->kfunc_tab;
2516 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
2517 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2518}
2519
1cf3bfc6
IL
2520int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2521 u16 btf_fd_idx, u8 **func_addr)
2522{
2523 const struct bpf_kfunc_desc *desc;
2524
2525 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2526 if (!desc)
2527 return -EFAULT;
2528
2529 *func_addr = (u8 *)desc->addr;
2530 return 0;
2531}
2532
2357672c 2533static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 2534 s16 offset)
2357672c
KKD
2535{
2536 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2537 struct bpf_kfunc_btf_tab *tab;
2538 struct bpf_kfunc_btf *b;
2539 struct module *mod;
2540 struct btf *btf;
2541 int btf_fd;
2542
2543 tab = env->prog->aux->kfunc_btf_tab;
2544 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2545 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2546 if (!b) {
2547 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2548 verbose(env, "too many different module BTFs\n");
2549 return ERR_PTR(-E2BIG);
2550 }
2551
2552 if (bpfptr_is_null(env->fd_array)) {
2553 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2554 return ERR_PTR(-EPROTO);
2555 }
2556
2557 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2558 offset * sizeof(btf_fd),
2559 sizeof(btf_fd)))
2560 return ERR_PTR(-EFAULT);
2561
2562 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
2563 if (IS_ERR(btf)) {
2564 verbose(env, "invalid module BTF fd specified\n");
2357672c 2565 return btf;
588cd7ef 2566 }
2357672c
KKD
2567
2568 if (!btf_is_module(btf)) {
2569 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2570 btf_put(btf);
2571 return ERR_PTR(-EINVAL);
2572 }
2573
2574 mod = btf_try_get_module(btf);
2575 if (!mod) {
2576 btf_put(btf);
2577 return ERR_PTR(-ENXIO);
2578 }
2579
2580 b = &tab->descs[tab->nr_descs++];
2581 b->btf = btf;
2582 b->module = mod;
2583 b->offset = offset;
2584
2585 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2586 kfunc_btf_cmp_by_off, NULL);
2587 }
2357672c 2588 return b->btf;
e6ac2450
MKL
2589}
2590
2357672c
KKD
2591void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2592{
2593 if (!tab)
2594 return;
2595
2596 while (tab->nr_descs--) {
2597 module_put(tab->descs[tab->nr_descs].module);
2598 btf_put(tab->descs[tab->nr_descs].btf);
2599 }
2600 kfree(tab);
2601}
2602
43bf0878 2603static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2604{
2357672c
KKD
2605 if (offset) {
2606 if (offset < 0) {
2607 /* In the future, this can be allowed to increase limit
2608 * of fd index into fd_array, interpreted as u16.
2609 */
2610 verbose(env, "negative offset disallowed for kernel module function call\n");
2611 return ERR_PTR(-EINVAL);
2612 }
2613
b202d844 2614 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2615 }
2616 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2617}
2618
2357672c 2619static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2620{
2621 const struct btf_type *func, *func_proto;
2357672c 2622 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2623 struct bpf_kfunc_desc_tab *tab;
2624 struct bpf_prog_aux *prog_aux;
2625 struct bpf_kfunc_desc *desc;
2626 const char *func_name;
2357672c 2627 struct btf *desc_btf;
8cbf062a 2628 unsigned long call_imm;
e6ac2450
MKL
2629 unsigned long addr;
2630 int err;
2631
2632 prog_aux = env->prog->aux;
2633 tab = prog_aux->kfunc_tab;
2357672c 2634 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2635 if (!tab) {
2636 if (!btf_vmlinux) {
2637 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2638 return -ENOTSUPP;
2639 }
2640
2641 if (!env->prog->jit_requested) {
2642 verbose(env, "JIT is required for calling kernel function\n");
2643 return -ENOTSUPP;
2644 }
2645
2646 if (!bpf_jit_supports_kfunc_call()) {
2647 verbose(env, "JIT does not support calling kernel function\n");
2648 return -ENOTSUPP;
2649 }
2650
2651 if (!env->prog->gpl_compatible) {
2652 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2653 return -EINVAL;
2654 }
2655
2656 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2657 if (!tab)
2658 return -ENOMEM;
2659 prog_aux->kfunc_tab = tab;
2660 }
2661
a5d82727
KKD
2662 /* func_id == 0 is always invalid, but instead of returning an error, be
2663 * conservative and wait until the code elimination pass before returning
2664 * error, so that invalid calls that get pruned out can be in BPF programs
2665 * loaded from userspace. It is also required that offset be untouched
2666 * for such calls.
2667 */
2668 if (!func_id && !offset)
2669 return 0;
2670
2357672c
KKD
2671 if (!btf_tab && offset) {
2672 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2673 if (!btf_tab)
2674 return -ENOMEM;
2675 prog_aux->kfunc_btf_tab = btf_tab;
2676 }
2677
43bf0878 2678 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2679 if (IS_ERR(desc_btf)) {
2680 verbose(env, "failed to find BTF for kernel function\n");
2681 return PTR_ERR(desc_btf);
2682 }
2683
2684 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2685 return 0;
2686
2687 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2688 verbose(env, "too many different kernel function calls\n");
2689 return -E2BIG;
2690 }
2691
2357672c 2692 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2693 if (!func || !btf_type_is_func(func)) {
2694 verbose(env, "kernel btf_id %u is not a function\n",
2695 func_id);
2696 return -EINVAL;
2697 }
2357672c 2698 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2699 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2700 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2701 func_id);
2702 return -EINVAL;
2703 }
2704
2357672c 2705 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2706 addr = kallsyms_lookup_name(func_name);
2707 if (!addr) {
2708 verbose(env, "cannot find address for kernel function %s\n",
2709 func_name);
2710 return -EINVAL;
2711 }
1cf3bfc6 2712 specialize_kfunc(env, func_id, offset, &addr);
e6ac2450 2713
1cf3bfc6
IL
2714 if (bpf_jit_supports_far_kfunc_call()) {
2715 call_imm = func_id;
2716 } else {
2717 call_imm = BPF_CALL_IMM(addr);
2718 /* Check whether the relative offset overflows desc->imm */
2719 if ((unsigned long)(s32)call_imm != call_imm) {
2720 verbose(env, "address of kernel function %s is out of range\n",
2721 func_name);
2722 return -EINVAL;
2723 }
8cbf062a
HT
2724 }
2725
3d76a4d3
SF
2726 if (bpf_dev_bound_kfunc_id(func_id)) {
2727 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2728 if (err)
2729 return err;
2730 }
2731
e6ac2450
MKL
2732 desc = &tab->descs[tab->nr_descs++];
2733 desc->func_id = func_id;
8cbf062a 2734 desc->imm = call_imm;
2357672c 2735 desc->offset = offset;
1cf3bfc6 2736 desc->addr = addr;
2357672c 2737 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2738 func_proto, func_name,
2739 &desc->func_model);
2740 if (!err)
2741 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2742 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2743 return err;
2744}
2745
1cf3bfc6 2746static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
e6ac2450
MKL
2747{
2748 const struct bpf_kfunc_desc *d0 = a;
2749 const struct bpf_kfunc_desc *d1 = b;
2750
1cf3bfc6
IL
2751 if (d0->imm != d1->imm)
2752 return d0->imm < d1->imm ? -1 : 1;
2753 if (d0->offset != d1->offset)
2754 return d0->offset < d1->offset ? -1 : 1;
e6ac2450
MKL
2755 return 0;
2756}
2757
1cf3bfc6 2758static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
e6ac2450
MKL
2759{
2760 struct bpf_kfunc_desc_tab *tab;
2761
2762 tab = prog->aux->kfunc_tab;
2763 if (!tab)
2764 return;
2765
2766 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1cf3bfc6 2767 kfunc_desc_cmp_by_imm_off, NULL);
e6ac2450
MKL
2768}
2769
2770bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2771{
2772 return !!prog->aux->kfunc_tab;
2773}
2774
2775const struct btf_func_model *
2776bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2777 const struct bpf_insn *insn)
2778{
2779 const struct bpf_kfunc_desc desc = {
2780 .imm = insn->imm,
1cf3bfc6 2781 .offset = insn->off,
e6ac2450
MKL
2782 };
2783 const struct bpf_kfunc_desc *res;
2784 struct bpf_kfunc_desc_tab *tab;
2785
2786 tab = prog->aux->kfunc_tab;
2787 res = bsearch(&desc, tab->descs, tab->nr_descs,
1cf3bfc6 2788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
e6ac2450
MKL
2789
2790 return res ? &res->func_model : NULL;
2791}
2792
2793static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2794{
9c8105bd 2795 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2796 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2797 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2798
f910cefa
JW
2799 /* Add entry function. */
2800 ret = add_subprog(env, 0);
e6ac2450 2801 if (ret)
f910cefa
JW
2802 return ret;
2803
e6ac2450
MKL
2804 for (i = 0; i < insn_cnt; i++, insn++) {
2805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2806 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2807 continue;
e6ac2450 2808
2c78ee89 2809 if (!env->bpf_capable) {
e6ac2450 2810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2811 return -EPERM;
2812 }
e6ac2450 2813
3990ed4c 2814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2815 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2816 else
2357672c 2817 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2818
cc8b0b92
AS
2819 if (ret < 0)
2820 return ret;
2821 }
2822
4cb3d99c
JW
2823 /* Add a fake 'exit' subprog which could simplify subprog iteration
2824 * logic. 'subprog_cnt' should not be increased.
2825 */
2826 subprog[env->subprog_cnt].start = insn_cnt;
2827
06ee7115 2828 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2829 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2830 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2831
e6ac2450
MKL
2832 return 0;
2833}
2834
2835static int check_subprogs(struct bpf_verifier_env *env)
2836{
2837 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2838 struct bpf_subprog_info *subprog = env->subprog_info;
2839 struct bpf_insn *insn = env->prog->insnsi;
2840 int insn_cnt = env->prog->len;
2841
cc8b0b92 2842 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2843 subprog_start = subprog[cur_subprog].start;
2844 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2845 for (i = 0; i < insn_cnt; i++) {
2846 u8 code = insn[i].code;
2847
7f6e4312 2848 if (code == (BPF_JMP | BPF_CALL) &&
df2ccc18
IL
2849 insn[i].src_reg == 0 &&
2850 insn[i].imm == BPF_FUNC_tail_call)
7f6e4312 2851 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2852 if (BPF_CLASS(code) == BPF_LD &&
2853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2854 subprog[cur_subprog].has_ld_abs = true;
092ed096 2855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2856 goto next;
2857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2858 goto next;
4cd58e9a
YS
2859 if (code == (BPF_JMP32 | BPF_JA))
2860 off = i + insn[i].imm + 1;
2861 else
2862 off = i + insn[i].off + 1;
cc8b0b92
AS
2863 if (off < subprog_start || off >= subprog_end) {
2864 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2865 return -EINVAL;
2866 }
2867next:
2868 if (i == subprog_end - 1) {
2869 /* to avoid fall-through from one subprog into another
2870 * the last insn of the subprog should be either exit
2871 * or unconditional jump back
2872 */
2873 if (code != (BPF_JMP | BPF_EXIT) &&
4cd58e9a 2874 code != (BPF_JMP32 | BPF_JA) &&
cc8b0b92
AS
2875 code != (BPF_JMP | BPF_JA)) {
2876 verbose(env, "last insn is not an exit or jmp\n");
2877 return -EINVAL;
2878 }
2879 subprog_start = subprog_end;
4cb3d99c
JW
2880 cur_subprog++;
2881 if (cur_subprog < env->subprog_cnt)
9c8105bd 2882 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2883 }
2884 }
2885 return 0;
2886}
2887
679c782d
EC
2888/* Parentage chain of this register (or stack slot) should take care of all
2889 * issues like callee-saved registers, stack slot allocation time, etc.
2890 */
f4d7e40a 2891static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2892 const struct bpf_reg_state *state,
5327ed3d 2893 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2894{
2895 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2896 int cnt = 0;
dc503a8a
EC
2897
2898 while (parent) {
2899 /* if read wasn't screened by an earlier write ... */
679c782d 2900 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2901 break;
9242b5f5
AS
2902 if (parent->live & REG_LIVE_DONE) {
2903 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2904 reg_type_str(env, parent->type),
9242b5f5
AS
2905 parent->var_off.value, parent->off);
2906 return -EFAULT;
2907 }
5327ed3d
JW
2908 /* The first condition is more likely to be true than the
2909 * second, checked it first.
2910 */
2911 if ((parent->live & REG_LIVE_READ) == flag ||
2912 parent->live & REG_LIVE_READ64)
25af32da
AS
2913 /* The parentage chain never changes and
2914 * this parent was already marked as LIVE_READ.
2915 * There is no need to keep walking the chain again and
2916 * keep re-marking all parents as LIVE_READ.
2917 * This case happens when the same register is read
2918 * multiple times without writes into it in-between.
5327ed3d
JW
2919 * Also, if parent has the stronger REG_LIVE_READ64 set,
2920 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2921 */
2922 break;
dc503a8a 2923 /* ... then we depend on parent's value */
5327ed3d
JW
2924 parent->live |= flag;
2925 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2926 if (flag == REG_LIVE_READ64)
2927 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2928 state = parent;
2929 parent = state->parent;
f4d7e40a 2930 writes = true;
06ee7115 2931 cnt++;
dc503a8a 2932 }
06ee7115
AS
2933
2934 if (env->longest_mark_read_walk < cnt)
2935 env->longest_mark_read_walk = cnt;
f4d7e40a 2936 return 0;
dc503a8a
EC
2937}
2938
d6fefa11
KKD
2939static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2940{
2941 struct bpf_func_state *state = func(env, reg);
2942 int spi, ret;
2943
2944 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
2945 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2946 * check_kfunc_call.
2947 */
2948 if (reg->type == CONST_PTR_TO_DYNPTR)
2949 return 0;
79168a66
KKD
2950 spi = dynptr_get_spi(env, reg);
2951 if (spi < 0)
2952 return spi;
d6fefa11
KKD
2953 /* Caller ensures dynptr is valid and initialized, which means spi is in
2954 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2955 * read.
2956 */
2957 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2958 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2959 if (ret)
2960 return ret;
2961 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2962 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2963}
2964
06accc87
AN
2965static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2966 int spi, int nr_slots)
2967{
2968 struct bpf_func_state *state = func(env, reg);
2969 int err, i;
2970
2971 for (i = 0; i < nr_slots; i++) {
2972 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2973
2974 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2975 if (err)
2976 return err;
2977
2978 mark_stack_slot_scratched(env, spi - i);
2979 }
2980
2981 return 0;
2982}
2983
5327ed3d
JW
2984/* This function is supposed to be used by the following 32-bit optimization
2985 * code only. It returns TRUE if the source or destination register operates
2986 * on 64-bit, otherwise return FALSE.
2987 */
2988static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2989 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2990{
2991 u8 code, class, op;
2992
2993 code = insn->code;
2994 class = BPF_CLASS(code);
2995 op = BPF_OP(code);
2996 if (class == BPF_JMP) {
2997 /* BPF_EXIT for "main" will reach here. Return TRUE
2998 * conservatively.
2999 */
3000 if (op == BPF_EXIT)
3001 return true;
3002 if (op == BPF_CALL) {
3003 /* BPF to BPF call will reach here because of marking
3004 * caller saved clobber with DST_OP_NO_MARK for which we
3005 * don't care the register def because they are anyway
3006 * marked as NOT_INIT already.
3007 */
3008 if (insn->src_reg == BPF_PSEUDO_CALL)
3009 return false;
3010 /* Helper call will reach here because of arg type
3011 * check, conservatively return TRUE.
3012 */
3013 if (t == SRC_OP)
3014 return true;
3015
3016 return false;
3017 }
3018 }
3019
0845c3db
YS
3020 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3021 return false;
3022
5327ed3d 3023 if (class == BPF_ALU64 || class == BPF_JMP ||
5327ed3d
JW
3024 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3025 return true;
3026
3027 if (class == BPF_ALU || class == BPF_JMP32)
3028 return false;
3029
3030 if (class == BPF_LDX) {
3031 if (t != SRC_OP)
3032 return BPF_SIZE(code) == BPF_DW;
3033 /* LDX source must be ptr. */
3034 return true;
3035 }
3036
3037 if (class == BPF_STX) {
83a28819
IL
3038 /* BPF_STX (including atomic variants) has multiple source
3039 * operands, one of which is a ptr. Check whether the caller is
3040 * asking about it.
3041 */
3042 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
3043 return true;
3044 return BPF_SIZE(code) == BPF_DW;
3045 }
3046
3047 if (class == BPF_LD) {
3048 u8 mode = BPF_MODE(code);
3049
3050 /* LD_IMM64 */
3051 if (mode == BPF_IMM)
3052 return true;
3053
3054 /* Both LD_IND and LD_ABS return 32-bit data. */
3055 if (t != SRC_OP)
3056 return false;
3057
3058 /* Implicit ctx ptr. */
3059 if (regno == BPF_REG_6)
3060 return true;
3061
3062 /* Explicit source could be any width. */
3063 return true;
3064 }
3065
3066 if (class == BPF_ST)
3067 /* The only source register for BPF_ST is a ptr. */
3068 return true;
3069
3070 /* Conservatively return true at default. */
3071 return true;
3072}
3073
83a28819
IL
3074/* Return the regno defined by the insn, or -1. */
3075static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 3076{
83a28819
IL
3077 switch (BPF_CLASS(insn->code)) {
3078 case BPF_JMP:
3079 case BPF_JMP32:
3080 case BPF_ST:
3081 return -1;
3082 case BPF_STX:
3083 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3084 (insn->imm & BPF_FETCH)) {
3085 if (insn->imm == BPF_CMPXCHG)
3086 return BPF_REG_0;
3087 else
3088 return insn->src_reg;
3089 } else {
3090 return -1;
3091 }
3092 default:
3093 return insn->dst_reg;
3094 }
b325fbca
JW
3095}
3096
3097/* Return TRUE if INSN has defined any 32-bit value explicitly. */
3098static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3099{
83a28819
IL
3100 int dst_reg = insn_def_regno(insn);
3101
3102 if (dst_reg == -1)
b325fbca
JW
3103 return false;
3104
83a28819 3105 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
3106}
3107
5327ed3d
JW
3108static void mark_insn_zext(struct bpf_verifier_env *env,
3109 struct bpf_reg_state *reg)
3110{
3111 s32 def_idx = reg->subreg_def;
3112
3113 if (def_idx == DEF_NOT_SUBREG)
3114 return;
3115
3116 env->insn_aux_data[def_idx - 1].zext_dst = true;
3117 /* The dst will be zero extended, so won't be sub-register anymore. */
3118 reg->subreg_def = DEF_NOT_SUBREG;
3119}
3120
dc503a8a 3121static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
3122 enum reg_arg_type t)
3123{
f4d7e40a
AS
3124 struct bpf_verifier_state *vstate = env->cur_state;
3125 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 3126 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 3127 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 3128 bool rw64;
dc503a8a 3129
17a52670 3130 if (regno >= MAX_BPF_REG) {
61bd5218 3131 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
3132 return -EINVAL;
3133 }
3134
0f55f9ed
CL
3135 mark_reg_scratched(env, regno);
3136
c342dc10 3137 reg = &regs[regno];
5327ed3d 3138 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
3139 if (t == SRC_OP) {
3140 /* check whether register used as source operand can be read */
c342dc10 3141 if (reg->type == NOT_INIT) {
61bd5218 3142 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
3143 return -EACCES;
3144 }
679c782d 3145 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
3146 if (regno == BPF_REG_FP)
3147 return 0;
3148
5327ed3d
JW
3149 if (rw64)
3150 mark_insn_zext(env, reg);
3151
3152 return mark_reg_read(env, reg, reg->parent,
3153 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
3154 } else {
3155 /* check whether register used as dest operand can be written to */
3156 if (regno == BPF_REG_FP) {
61bd5218 3157 verbose(env, "frame pointer is read only\n");
17a52670
AS
3158 return -EACCES;
3159 }
c342dc10 3160 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 3161 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 3162 if (t == DST_OP)
61bd5218 3163 mark_reg_unknown(env, regs, regno);
17a52670
AS
3164 }
3165 return 0;
3166}
3167
bffdeaa8
AN
3168static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3169{
3170 env->insn_aux_data[idx].jmp_point = true;
3171}
3172
3173static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3174{
3175 return env->insn_aux_data[insn_idx].jmp_point;
3176}
3177
b5dc0163
AS
3178/* for any branch, call, exit record the history of jmps in the given state */
3179static int push_jmp_history(struct bpf_verifier_env *env,
3180 struct bpf_verifier_state *cur)
3181{
3182 u32 cnt = cur->jmp_history_cnt;
3183 struct bpf_idx_pair *p;
ceb35b66 3184 size_t alloc_size;
b5dc0163 3185
bffdeaa8
AN
3186 if (!is_jmp_point(env, env->insn_idx))
3187 return 0;
3188
b5dc0163 3189 cnt++;
ceb35b66
KC
3190 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3191 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
b5dc0163
AS
3192 if (!p)
3193 return -ENOMEM;
3194 p[cnt - 1].idx = env->insn_idx;
3195 p[cnt - 1].prev_idx = env->prev_insn_idx;
3196 cur->jmp_history = p;
3197 cur->jmp_history_cnt = cnt;
3198 return 0;
3199}
3200
3201/* Backtrack one insn at a time. If idx is not at the top of recorded
3202 * history then previous instruction came from straight line execution.
3203 */
3204static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3205 u32 *history)
3206{
3207 u32 cnt = *history;
3208
3209 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3210 i = st->jmp_history[cnt - 1].prev_idx;
3211 (*history)--;
3212 } else {
3213 i--;
3214 }
3215 return i;
3216}
3217
e6ac2450
MKL
3218static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3219{
3220 const struct btf_type *func;
2357672c 3221 struct btf *desc_btf;
e6ac2450
MKL
3222
3223 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3224 return NULL;
3225
43bf0878 3226 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
3227 if (IS_ERR(desc_btf))
3228 return "<error>";
3229
3230 func = btf_type_by_id(desc_btf, insn->imm);
3231 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
3232}
3233
407958a0
AN
3234static inline void bt_init(struct backtrack_state *bt, u32 frame)
3235{
3236 bt->frame = frame;
3237}
3238
3239static inline void bt_reset(struct backtrack_state *bt)
3240{
3241 struct bpf_verifier_env *env = bt->env;
3242
3243 memset(bt, 0, sizeof(*bt));
3244 bt->env = env;
3245}
3246
3247static inline u32 bt_empty(struct backtrack_state *bt)
3248{
3249 u64 mask = 0;
3250 int i;
3251
3252 for (i = 0; i <= bt->frame; i++)
3253 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3254
3255 return mask == 0;
3256}
3257
3258static inline int bt_subprog_enter(struct backtrack_state *bt)
3259{
3260 if (bt->frame == MAX_CALL_FRAMES - 1) {
3261 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3262 WARN_ONCE(1, "verifier backtracking bug");
3263 return -EFAULT;
3264 }
3265 bt->frame++;
3266 return 0;
3267}
3268
3269static inline int bt_subprog_exit(struct backtrack_state *bt)
3270{
3271 if (bt->frame == 0) {
3272 verbose(bt->env, "BUG subprog exit from frame 0\n");
3273 WARN_ONCE(1, "verifier backtracking bug");
3274 return -EFAULT;
3275 }
3276 bt->frame--;
3277 return 0;
3278}
3279
3280static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3281{
3282 bt->reg_masks[frame] |= 1 << reg;
3283}
3284
3285static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3286{
3287 bt->reg_masks[frame] &= ~(1 << reg);
3288}
3289
3290static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3291{
3292 bt_set_frame_reg(bt, bt->frame, reg);
3293}
3294
3295static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3296{
3297 bt_clear_frame_reg(bt, bt->frame, reg);
3298}
3299
3300static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3301{
3302 bt->stack_masks[frame] |= 1ull << slot;
3303}
3304
3305static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3306{
3307 bt->stack_masks[frame] &= ~(1ull << slot);
3308}
3309
3310static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3311{
3312 bt_set_frame_slot(bt, bt->frame, slot);
3313}
3314
3315static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3316{
3317 bt_clear_frame_slot(bt, bt->frame, slot);
3318}
3319
3320static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3321{
3322 return bt->reg_masks[frame];
3323}
3324
3325static inline u32 bt_reg_mask(struct backtrack_state *bt)
3326{
3327 return bt->reg_masks[bt->frame];
3328}
3329
3330static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3331{
3332 return bt->stack_masks[frame];
3333}
3334
3335static inline u64 bt_stack_mask(struct backtrack_state *bt)
3336{
3337 return bt->stack_masks[bt->frame];
3338}
3339
3340static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3341{
3342 return bt->reg_masks[bt->frame] & (1 << reg);
3343}
3344
3345static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3346{
3347 return bt->stack_masks[bt->frame] & (1ull << slot);
3348}
3349
d9439c21
AN
3350/* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3351static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3352{
3353 DECLARE_BITMAP(mask, 64);
3354 bool first = true;
3355 int i, n;
3356
3357 buf[0] = '\0';
3358
3359 bitmap_from_u64(mask, reg_mask);
3360 for_each_set_bit(i, mask, 32) {
3361 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3362 first = false;
3363 buf += n;
3364 buf_sz -= n;
3365 if (buf_sz < 0)
3366 break;
3367 }
3368}
3369/* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3370static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3371{
3372 DECLARE_BITMAP(mask, 64);
3373 bool first = true;
3374 int i, n;
3375
3376 buf[0] = '\0';
3377
3378 bitmap_from_u64(mask, stack_mask);
3379 for_each_set_bit(i, mask, 64) {
3380 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3381 first = false;
3382 buf += n;
3383 buf_sz -= n;
3384 if (buf_sz < 0)
3385 break;
3386 }
3387}
3388
b5dc0163
AS
3389/* For given verifier state backtrack_insn() is called from the last insn to
3390 * the first insn. Its purpose is to compute a bitmask of registers and
3391 * stack slots that needs precision in the parent verifier state.
fde2a388
AN
3392 *
3393 * @idx is an index of the instruction we are currently processing;
3394 * @subseq_idx is an index of the subsequent instruction that:
3395 * - *would be* executed next, if jump history is viewed in forward order;
3396 * - *was* processed previously during backtracking.
b5dc0163 3397 */
fde2a388 3398static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
407958a0 3399 struct backtrack_state *bt)
b5dc0163
AS
3400{
3401 const struct bpf_insn_cbs cbs = {
e6ac2450 3402 .cb_call = disasm_kfunc_name,
b5dc0163
AS
3403 .cb_print = verbose,
3404 .private_data = env,
3405 };
3406 struct bpf_insn *insn = env->prog->insnsi + idx;
3407 u8 class = BPF_CLASS(insn->code);
3408 u8 opcode = BPF_OP(insn->code);
3409 u8 mode = BPF_MODE(insn->code);
407958a0
AN
3410 u32 dreg = insn->dst_reg;
3411 u32 sreg = insn->src_reg;
fde2a388 3412 u32 spi, i;
b5dc0163
AS
3413
3414 if (insn->code == 0)
3415 return 0;
496f3324 3416 if (env->log.level & BPF_LOG_LEVEL2) {
d9439c21
AN
3417 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3418 verbose(env, "mark_precise: frame%d: regs=%s ",
3419 bt->frame, env->tmp_str_buf);
3420 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3421 verbose(env, "stack=%s before ", env->tmp_str_buf);
b5dc0163
AS
3422 verbose(env, "%d: ", idx);
3423 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3424 }
3425
3426 if (class == BPF_ALU || class == BPF_ALU64) {
407958a0 3427 if (!bt_is_reg_set(bt, dreg))
b5dc0163
AS
3428 return 0;
3429 if (opcode == BPF_MOV) {
3430 if (BPF_SRC(insn->code) == BPF_X) {
8100928c 3431 /* dreg = sreg or dreg = (s8, s16, s32)sreg
b5dc0163
AS
3432 * dreg needs precision after this insn
3433 * sreg needs precision before this insn
3434 */
407958a0
AN
3435 bt_clear_reg(bt, dreg);
3436 bt_set_reg(bt, sreg);
b5dc0163
AS
3437 } else {
3438 /* dreg = K
3439 * dreg needs precision after this insn.
3440 * Corresponding register is already marked
3441 * as precise=true in this verifier state.
3442 * No further markings in parent are necessary
3443 */
407958a0 3444 bt_clear_reg(bt, dreg);
b5dc0163
AS
3445 }
3446 } else {
3447 if (BPF_SRC(insn->code) == BPF_X) {
3448 /* dreg += sreg
3449 * both dreg and sreg need precision
3450 * before this insn
3451 */
407958a0 3452 bt_set_reg(bt, sreg);
b5dc0163
AS
3453 } /* else dreg += K
3454 * dreg still needs precision before this insn
3455 */
3456 }
3457 } else if (class == BPF_LDX) {
407958a0 3458 if (!bt_is_reg_set(bt, dreg))
b5dc0163 3459 return 0;
407958a0 3460 bt_clear_reg(bt, dreg);
b5dc0163
AS
3461
3462 /* scalars can only be spilled into stack w/o losing precision.
3463 * Load from any other memory can be zero extended.
3464 * The desire to keep that precision is already indicated
3465 * by 'precise' mark in corresponding register of this state.
3466 * No further tracking necessary.
3467 */
3468 if (insn->src_reg != BPF_REG_FP)
3469 return 0;
b5dc0163
AS
3470
3471 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3472 * that [fp - off] slot contains scalar that needs to be
3473 * tracked with precision
3474 */
3475 spi = (-insn->off - 1) / BPF_REG_SIZE;
3476 if (spi >= 64) {
3477 verbose(env, "BUG spi %d\n", spi);
3478 WARN_ONCE(1, "verifier backtracking bug");
3479 return -EFAULT;
3480 }
407958a0 3481 bt_set_slot(bt, spi);
b3b50f05 3482 } else if (class == BPF_STX || class == BPF_ST) {
407958a0 3483 if (bt_is_reg_set(bt, dreg))
b3b50f05 3484 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
3485 * to access memory. It means backtracking
3486 * encountered a case of pointer subtraction.
3487 */
3488 return -ENOTSUPP;
3489 /* scalars can only be spilled into stack */
3490 if (insn->dst_reg != BPF_REG_FP)
3491 return 0;
b5dc0163
AS
3492 spi = (-insn->off - 1) / BPF_REG_SIZE;
3493 if (spi >= 64) {
3494 verbose(env, "BUG spi %d\n", spi);
3495 WARN_ONCE(1, "verifier backtracking bug");
3496 return -EFAULT;
3497 }
407958a0 3498 if (!bt_is_slot_set(bt, spi))
b5dc0163 3499 return 0;
407958a0 3500 bt_clear_slot(bt, spi);
b3b50f05 3501 if (class == BPF_STX)
407958a0 3502 bt_set_reg(bt, sreg);
b5dc0163 3503 } else if (class == BPF_JMP || class == BPF_JMP32) {
fde2a388
AN
3504 if (bpf_pseudo_call(insn)) {
3505 int subprog_insn_idx, subprog;
3506
3507 subprog_insn_idx = idx + insn->imm + 1;
3508 subprog = find_subprog(env, subprog_insn_idx);
3509 if (subprog < 0)
3510 return -EFAULT;
3511
3512 if (subprog_is_global(env, subprog)) {
3513 /* check that jump history doesn't have any
3514 * extra instructions from subprog; the next
3515 * instruction after call to global subprog
3516 * should be literally next instruction in
3517 * caller program
3518 */
3519 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3520 /* r1-r5 are invalidated after subprog call,
3521 * so for global func call it shouldn't be set
3522 * anymore
3523 */
3524 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3525 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3526 WARN_ONCE(1, "verifier backtracking bug");
3527 return -EFAULT;
3528 }
3529 /* global subprog always sets R0 */
3530 bt_clear_reg(bt, BPF_REG_0);
3531 return 0;
3532 } else {
3533 /* static subprog call instruction, which
3534 * means that we are exiting current subprog,
3535 * so only r1-r5 could be still requested as
3536 * precise, r0 and r6-r10 or any stack slot in
3537 * the current frame should be zero by now
3538 */
3539 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3540 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3541 WARN_ONCE(1, "verifier backtracking bug");
3542 return -EFAULT;
3543 }
3544 /* we don't track register spills perfectly,
3545 * so fallback to force-precise instead of failing */
3546 if (bt_stack_mask(bt) != 0)
3547 return -ENOTSUPP;
3548 /* propagate r1-r5 to the caller */
3549 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3550 if (bt_is_reg_set(bt, i)) {
3551 bt_clear_reg(bt, i);
3552 bt_set_frame_reg(bt, bt->frame - 1, i);
3553 }
3554 }
3555 if (bt_subprog_exit(bt))
3556 return -EFAULT;
3557 return 0;
3558 }
3559 } else if ((bpf_helper_call(insn) &&
3560 is_callback_calling_function(insn->imm) &&
3561 !is_async_callback_calling_function(insn->imm)) ||
3562 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3563 /* callback-calling helper or kfunc call, which means
3564 * we are exiting from subprog, but unlike the subprog
3565 * call handling above, we shouldn't propagate
3566 * precision of r1-r5 (if any requested), as they are
3567 * not actually arguments passed directly to callback
3568 * subprogs
be2ef816 3569 */
fde2a388
AN
3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3572 WARN_ONCE(1, "verifier backtracking bug");
3573 return -EFAULT;
3574 }
3575 if (bt_stack_mask(bt) != 0)
be2ef816 3576 return -ENOTSUPP;
fde2a388
AN
3577 /* clear r1-r5 in callback subprog's mask */
3578 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3579 bt_clear_reg(bt, i);
3580 if (bt_subprog_exit(bt))
3581 return -EFAULT;
3582 return 0;
3583 } else if (opcode == BPF_CALL) {
d3178e8a
HS
3584 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3585 * catch this error later. Make backtracking conservative
3586 * with ENOTSUPP.
3587 */
3588 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3589 return -ENOTSUPP;
b5dc0163 3590 /* regular helper call sets R0 */
407958a0
AN
3591 bt_clear_reg(bt, BPF_REG_0);
3592 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
b5dc0163
AS
3593 /* if backtracing was looking for registers R1-R5
3594 * they should have been found already.
3595 */
407958a0 3596 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
b5dc0163
AS
3597 WARN_ONCE(1, "verifier backtracking bug");
3598 return -EFAULT;
3599 }
3600 } else if (opcode == BPF_EXIT) {
fde2a388
AN
3601 bool r0_precise;
3602
3603 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3604 /* if backtracing was looking for registers R1-R5
3605 * they should have been found already.
3606 */
3607 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3608 WARN_ONCE(1, "verifier backtracking bug");
3609 return -EFAULT;
3610 }
3611
3612 /* BPF_EXIT in subprog or callback always returns
3613 * right after the call instruction, so by checking
3614 * whether the instruction at subseq_idx-1 is subprog
3615 * call or not we can distinguish actual exit from
3616 * *subprog* from exit from *callback*. In the former
3617 * case, we need to propagate r0 precision, if
3618 * necessary. In the former we never do that.
3619 */
3620 r0_precise = subseq_idx - 1 >= 0 &&
3621 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3622 bt_is_reg_set(bt, BPF_REG_0);
3623
3624 bt_clear_reg(bt, BPF_REG_0);
3625 if (bt_subprog_enter(bt))
3626 return -EFAULT;
3627
3628 if (r0_precise)
3629 bt_set_reg(bt, BPF_REG_0);
3630 /* r6-r9 and stack slots will stay set in caller frame
3631 * bitmasks until we return back from callee(s)
3632 */
3633 return 0;
71b547f5 3634 } else if (BPF_SRC(insn->code) == BPF_X) {
407958a0 3635 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
71b547f5
DB
3636 return 0;
3637 /* dreg <cond> sreg
3638 * Both dreg and sreg need precision before
3639 * this insn. If only sreg was marked precise
3640 * before it would be equally necessary to
3641 * propagate it to dreg.
3642 */
407958a0
AN
3643 bt_set_reg(bt, dreg);
3644 bt_set_reg(bt, sreg);
71b547f5
DB
3645 /* else dreg <cond> K
3646 * Only dreg still needs precision before
3647 * this insn, so for the K-based conditional
3648 * there is nothing new to be marked.
3649 */
b5dc0163
AS
3650 }
3651 } else if (class == BPF_LD) {
407958a0 3652 if (!bt_is_reg_set(bt, dreg))
b5dc0163 3653 return 0;
407958a0 3654 bt_clear_reg(bt, dreg);
b5dc0163
AS
3655 /* It's ld_imm64 or ld_abs or ld_ind.
3656 * For ld_imm64 no further tracking of precision
3657 * into parent is necessary
3658 */
3659 if (mode == BPF_IND || mode == BPF_ABS)
3660 /* to be analyzed */
3661 return -ENOTSUPP;
b5dc0163
AS
3662 }
3663 return 0;
3664}
3665
3666/* the scalar precision tracking algorithm:
3667 * . at the start all registers have precise=false.
3668 * . scalar ranges are tracked as normal through alu and jmp insns.
3669 * . once precise value of the scalar register is used in:
3670 * . ptr + scalar alu
3671 * . if (scalar cond K|scalar)
3672 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3673 * backtrack through the verifier states and mark all registers and
3674 * stack slots with spilled constants that these scalar regisers
3675 * should be precise.
3676 * . during state pruning two registers (or spilled stack slots)
3677 * are equivalent if both are not precise.
3678 *
3679 * Note the verifier cannot simply walk register parentage chain,
3680 * since many different registers and stack slots could have been
3681 * used to compute single precise scalar.
3682 *
3683 * The approach of starting with precise=true for all registers and then
3684 * backtrack to mark a register as not precise when the verifier detects
3685 * that program doesn't care about specific value (e.g., when helper
3686 * takes register as ARG_ANYTHING parameter) is not safe.
3687 *
3688 * It's ok to walk single parentage chain of the verifier states.
3689 * It's possible that this backtracking will go all the way till 1st insn.
3690 * All other branches will be explored for needing precision later.
3691 *
3692 * The backtracking needs to deal with cases like:
3693 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3694 * r9 -= r8
3695 * r5 = r9
3696 * if r5 > 0x79f goto pc+7
3697 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3698 * r5 += 1
3699 * ...
3700 * call bpf_perf_event_output#25
3701 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3702 *
3703 * and this case:
3704 * r6 = 1
3705 * call foo // uses callee's r6 inside to compute r0
3706 * r0 += r6
3707 * if r0 == 0 goto
3708 *
3709 * to track above reg_mask/stack_mask needs to be independent for each frame.
3710 *
3711 * Also if parent's curframe > frame where backtracking started,
3712 * the verifier need to mark registers in both frames, otherwise callees
3713 * may incorrectly prune callers. This is similar to
3714 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3715 *
3716 * For now backtracking falls back into conservative marking.
3717 */
3718static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3719 struct bpf_verifier_state *st)
3720{
3721 struct bpf_func_state *func;
3722 struct bpf_reg_state *reg;
3723 int i, j;
3724
d9439c21
AN
3725 if (env->log.level & BPF_LOG_LEVEL2) {
3726 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3727 st->curframe);
3728 }
3729
b5dc0163
AS
3730 /* big hammer: mark all scalars precise in this path.
3731 * pop_stack may still get !precise scalars.
f63181b6
AN
3732 * We also skip current state and go straight to first parent state,
3733 * because precision markings in current non-checkpointed state are
3734 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 3735 */
f63181b6 3736 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
3737 for (i = 0; i <= st->curframe; i++) {
3738 func = st->frame[i];
3739 for (j = 0; j < BPF_REG_FP; j++) {
3740 reg = &func->regs[j];
d9439c21 3741 if (reg->type != SCALAR_VALUE || reg->precise)
b5dc0163
AS
3742 continue;
3743 reg->precise = true;
d9439c21
AN
3744 if (env->log.level & BPF_LOG_LEVEL2) {
3745 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3746 i, j);
3747 }
b5dc0163
AS
3748 }
3749 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 3750 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
3751 continue;
3752 reg = &func->stack[j].spilled_ptr;
d9439c21 3753 if (reg->type != SCALAR_VALUE || reg->precise)
b5dc0163
AS
3754 continue;
3755 reg->precise = true;
d9439c21
AN
3756 if (env->log.level & BPF_LOG_LEVEL2) {
3757 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3758 i, -(j + 1) * 8);
3759 }
b5dc0163
AS
3760 }
3761 }
f63181b6 3762 }
b5dc0163
AS
3763}
3764
7a830b53
AN
3765static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3766{
3767 struct bpf_func_state *func;
3768 struct bpf_reg_state *reg;
3769 int i, j;
3770
3771 for (i = 0; i <= st->curframe; i++) {
3772 func = st->frame[i];
3773 for (j = 0; j < BPF_REG_FP; j++) {
3774 reg = &func->regs[j];
3775 if (reg->type != SCALAR_VALUE)
3776 continue;
3777 reg->precise = false;
3778 }
3779 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3780 if (!is_spilled_reg(&func->stack[j]))
3781 continue;
3782 reg = &func->stack[j].spilled_ptr;
3783 if (reg->type != SCALAR_VALUE)
3784 continue;
3785 reg->precise = false;
3786 }
3787 }
3788}
3789
904e6ddf
EZ
3790static bool idset_contains(struct bpf_idset *s, u32 id)
3791{
3792 u32 i;
3793
3794 for (i = 0; i < s->count; ++i)
3795 if (s->ids[i] == id)
3796 return true;
3797
3798 return false;
3799}
3800
3801static int idset_push(struct bpf_idset *s, u32 id)
3802{
3803 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3804 return -EFAULT;
3805 s->ids[s->count++] = id;
3806 return 0;
3807}
3808
3809static void idset_reset(struct bpf_idset *s)
3810{
3811 s->count = 0;
3812}
3813
3814/* Collect a set of IDs for all registers currently marked as precise in env->bt.
3815 * Mark all registers with these IDs as precise.
3816 */
3817static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3818{
3819 struct bpf_idset *precise_ids = &env->idset_scratch;
3820 struct backtrack_state *bt = &env->bt;
3821 struct bpf_func_state *func;
3822 struct bpf_reg_state *reg;
3823 DECLARE_BITMAP(mask, 64);
3824 int i, fr;
3825
3826 idset_reset(precise_ids);
3827
3828 for (fr = bt->frame; fr >= 0; fr--) {
3829 func = st->frame[fr];
3830
3831 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3832 for_each_set_bit(i, mask, 32) {
3833 reg = &func->regs[i];
3834 if (!reg->id || reg->type != SCALAR_VALUE)
3835 continue;
3836 if (idset_push(precise_ids, reg->id))
3837 return -EFAULT;
3838 }
3839
3840 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3841 for_each_set_bit(i, mask, 64) {
3842 if (i >= func->allocated_stack / BPF_REG_SIZE)
3843 break;
3844 if (!is_spilled_scalar_reg(&func->stack[i]))
3845 continue;
3846 reg = &func->stack[i].spilled_ptr;
3847 if (!reg->id)
3848 continue;
3849 if (idset_push(precise_ids, reg->id))
3850 return -EFAULT;
3851 }
3852 }
3853
3854 for (fr = 0; fr <= st->curframe; ++fr) {
3855 func = st->frame[fr];
3856
3857 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3858 reg = &func->regs[i];
3859 if (!reg->id)
3860 continue;
3861 if (!idset_contains(precise_ids, reg->id))
3862 continue;
3863 bt_set_frame_reg(bt, fr, i);
3864 }
3865 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3866 if (!is_spilled_scalar_reg(&func->stack[i]))
3867 continue;
3868 reg = &func->stack[i].spilled_ptr;
3869 if (!reg->id)
3870 continue;
3871 if (!idset_contains(precise_ids, reg->id))
3872 continue;
3873 bt_set_frame_slot(bt, fr, i);
3874 }
3875 }
3876
3877 return 0;
3878}
3879
f63181b6
AN
3880/*
3881 * __mark_chain_precision() backtracks BPF program instruction sequence and
3882 * chain of verifier states making sure that register *regno* (if regno >= 0)
3883 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3884 * SCALARS, as well as any other registers and slots that contribute to
3885 * a tracked state of given registers/stack slots, depending on specific BPF
3886 * assembly instructions (see backtrack_insns() for exact instruction handling
3887 * logic). This backtracking relies on recorded jmp_history and is able to
3888 * traverse entire chain of parent states. This process ends only when all the
3889 * necessary registers/slots and their transitive dependencies are marked as
3890 * precise.
3891 *
3892 * One important and subtle aspect is that precise marks *do not matter* in
3893 * the currently verified state (current state). It is important to understand
3894 * why this is the case.
3895 *
3896 * First, note that current state is the state that is not yet "checkpointed",
3897 * i.e., it is not yet put into env->explored_states, and it has no children
3898 * states as well. It's ephemeral, and can end up either a) being discarded if
3899 * compatible explored state is found at some point or BPF_EXIT instruction is
3900 * reached or b) checkpointed and put into env->explored_states, branching out
3901 * into one or more children states.
3902 *
3903 * In the former case, precise markings in current state are completely
3904 * ignored by state comparison code (see regsafe() for details). Only
3905 * checkpointed ("old") state precise markings are important, and if old
3906 * state's register/slot is precise, regsafe() assumes current state's
3907 * register/slot as precise and checks value ranges exactly and precisely. If
3908 * states turn out to be compatible, current state's necessary precise
3909 * markings and any required parent states' precise markings are enforced
3910 * after the fact with propagate_precision() logic, after the fact. But it's
3911 * important to realize that in this case, even after marking current state
3912 * registers/slots as precise, we immediately discard current state. So what
3913 * actually matters is any of the precise markings propagated into current
3914 * state's parent states, which are always checkpointed (due to b) case above).
3915 * As such, for scenario a) it doesn't matter if current state has precise
3916 * markings set or not.
3917 *
3918 * Now, for the scenario b), checkpointing and forking into child(ren)
3919 * state(s). Note that before current state gets to checkpointing step, any
3920 * processed instruction always assumes precise SCALAR register/slot
3921 * knowledge: if precise value or range is useful to prune jump branch, BPF
3922 * verifier takes this opportunity enthusiastically. Similarly, when
3923 * register's value is used to calculate offset or memory address, exact
3924 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3925 * what we mentioned above about state comparison ignoring precise markings
3926 * during state comparison, BPF verifier ignores and also assumes precise
3927 * markings *at will* during instruction verification process. But as verifier
3928 * assumes precision, it also propagates any precision dependencies across
3929 * parent states, which are not yet finalized, so can be further restricted
3930 * based on new knowledge gained from restrictions enforced by their children
3931 * states. This is so that once those parent states are finalized, i.e., when
3932 * they have no more active children state, state comparison logic in
3933 * is_state_visited() would enforce strict and precise SCALAR ranges, if
3934 * required for correctness.
3935 *
3936 * To build a bit more intuition, note also that once a state is checkpointed,
3937 * the path we took to get to that state is not important. This is crucial
3938 * property for state pruning. When state is checkpointed and finalized at
3939 * some instruction index, it can be correctly and safely used to "short
3940 * circuit" any *compatible* state that reaches exactly the same instruction
3941 * index. I.e., if we jumped to that instruction from a completely different
3942 * code path than original finalized state was derived from, it doesn't
3943 * matter, current state can be discarded because from that instruction
3944 * forward having a compatible state will ensure we will safely reach the
3945 * exit. States describe preconditions for further exploration, but completely
3946 * forget the history of how we got here.
3947 *
3948 * This also means that even if we needed precise SCALAR range to get to
3949 * finalized state, but from that point forward *that same* SCALAR register is
3950 * never used in a precise context (i.e., it's precise value is not needed for
3951 * correctness), it's correct and safe to mark such register as "imprecise"
3952 * (i.e., precise marking set to false). This is what we rely on when we do
3953 * not set precise marking in current state. If no child state requires
3954 * precision for any given SCALAR register, it's safe to dictate that it can
3955 * be imprecise. If any child state does require this register to be precise,
3956 * we'll mark it precise later retroactively during precise markings
3957 * propagation from child state to parent states.
7a830b53
AN
3958 *
3959 * Skipping precise marking setting in current state is a mild version of
3960 * relying on the above observation. But we can utilize this property even
3961 * more aggressively by proactively forgetting any precise marking in the
3962 * current state (which we inherited from the parent state), right before we
3963 * checkpoint it and branch off into new child state. This is done by
3964 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3965 * finalized states which help in short circuiting more future states.
f63181b6 3966 */
f655badf 3967static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
b5dc0163 3968{
407958a0 3969 struct backtrack_state *bt = &env->bt;
b5dc0163
AS
3970 struct bpf_verifier_state *st = env->cur_state;
3971 int first_idx = st->first_insn_idx;
3972 int last_idx = env->insn_idx;
d84b1a67 3973 int subseq_idx = -1;
b5dc0163
AS
3974 struct bpf_func_state *func;
3975 struct bpf_reg_state *reg;
b5dc0163 3976 bool skip_first = true;
d84b1a67 3977 int i, fr, err;
b5dc0163 3978
2c78ee89 3979 if (!env->bpf_capable)
b5dc0163
AS
3980 return 0;
3981
407958a0 3982 /* set frame number from which we are starting to backtrack */
f655badf 3983 bt_init(bt, env->cur_state->curframe);
407958a0 3984
f63181b6
AN
3985 /* Do sanity checks against current state of register and/or stack
3986 * slot, but don't set precise flag in current state, as precision
3987 * tracking in the current state is unnecessary.
3988 */
f655badf 3989 func = st->frame[bt->frame];
a3ce685d
AS
3990 if (regno >= 0) {
3991 reg = &func->regs[regno];
3992 if (reg->type != SCALAR_VALUE) {
3993 WARN_ONCE(1, "backtracing misuse");
3994 return -EFAULT;
3995 }
407958a0 3996 bt_set_reg(bt, regno);
b5dc0163 3997 }
b5dc0163 3998
407958a0 3999 if (bt_empty(bt))
a3ce685d 4000 return 0;
be2ef816 4001
b5dc0163
AS
4002 for (;;) {
4003 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
4004 u32 history = st->jmp_history_cnt;
4005
d9439c21 4006 if (env->log.level & BPF_LOG_LEVEL2) {
d84b1a67
AN
4007 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4008 bt->frame, last_idx, first_idx, subseq_idx);
d9439c21 4009 }
be2ef816 4010
904e6ddf
EZ
4011 /* If some register with scalar ID is marked as precise,
4012 * make sure that all registers sharing this ID are also precise.
4013 * This is needed to estimate effect of find_equal_scalars().
4014 * Do this at the last instruction of each state,
4015 * bpf_reg_state::id fields are valid for these instructions.
4016 *
4017 * Allows to track precision in situation like below:
4018 *
4019 * r2 = unknown value
4020 * ...
4021 * --- state #0 ---
4022 * ...
4023 * r1 = r2 // r1 and r2 now share the same ID
4024 * ...
4025 * --- state #1 {r1.id = A, r2.id = A} ---
4026 * ...
4027 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4028 * ...
4029 * --- state #2 {r1.id = A, r2.id = A} ---
4030 * r3 = r10
4031 * r3 += r1 // need to mark both r1 and r2
4032 */
4033 if (mark_precise_scalar_ids(env, st))
4034 return -EFAULT;
4035
be2ef816
AN
4036 if (last_idx < 0) {
4037 /* we are at the entry into subprog, which
4038 * is expected for global funcs, but only if
4039 * requested precise registers are R1-R5
4040 * (which are global func's input arguments)
4041 */
4042 if (st->curframe == 0 &&
4043 st->frame[0]->subprogno > 0 &&
4044 st->frame[0]->callsite == BPF_MAIN_FUNC &&
407958a0
AN
4045 bt_stack_mask(bt) == 0 &&
4046 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4047 bitmap_from_u64(mask, bt_reg_mask(bt));
be2ef816
AN
4048 for_each_set_bit(i, mask, 32) {
4049 reg = &st->frame[0]->regs[i];
4050 if (reg->type != SCALAR_VALUE) {
407958a0 4051 bt_clear_reg(bt, i);
be2ef816
AN
4052 continue;
4053 }
4054 reg->precise = true;
4055 }
4056 return 0;
4057 }
4058
407958a0
AN
4059 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4060 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
be2ef816
AN
4061 WARN_ONCE(1, "verifier backtracking bug");
4062 return -EFAULT;
4063 }
4064
d84b1a67 4065 for (i = last_idx;;) {
b5dc0163
AS
4066 if (skip_first) {
4067 err = 0;
4068 skip_first = false;
4069 } else {
d84b1a67 4070 err = backtrack_insn(env, i, subseq_idx, bt);
b5dc0163
AS
4071 }
4072 if (err == -ENOTSUPP) {
c50c0b57 4073 mark_all_scalars_precise(env, env->cur_state);
407958a0 4074 bt_reset(bt);
b5dc0163
AS
4075 return 0;
4076 } else if (err) {
4077 return err;
4078 }
407958a0 4079 if (bt_empty(bt))
b5dc0163
AS
4080 /* Found assignment(s) into tracked register in this state.
4081 * Since this state is already marked, just return.
4082 * Nothing to be tracked further in the parent state.
4083 */
4084 return 0;
4085 if (i == first_idx)
4086 break;
d84b1a67 4087 subseq_idx = i;
b5dc0163
AS
4088 i = get_prev_insn_idx(st, i, &history);
4089 if (i >= env->prog->len) {
4090 /* This can happen if backtracking reached insn 0
4091 * and there are still reg_mask or stack_mask
4092 * to backtrack.
4093 * It means the backtracking missed the spot where
4094 * particular register was initialized with a constant.
4095 */
4096 verbose(env, "BUG backtracking idx %d\n", i);
4097 WARN_ONCE(1, "verifier backtracking bug");
4098 return -EFAULT;
4099 }
4100 }
4101 st = st->parent;
4102 if (!st)
4103 break;
4104
1ef22b68
AN
4105 for (fr = bt->frame; fr >= 0; fr--) {
4106 func = st->frame[fr];
4107 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4108 for_each_set_bit(i, mask, 32) {
4109 reg = &func->regs[i];
4110 if (reg->type != SCALAR_VALUE) {
4111 bt_clear_frame_reg(bt, fr, i);
4112 continue;
4113 }
4114 if (reg->precise)
4115 bt_clear_frame_reg(bt, fr, i);
4116 else
4117 reg->precise = true;
a3ce685d 4118 }
b5dc0163 4119
1ef22b68
AN
4120 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4121 for_each_set_bit(i, mask, 64) {
4122 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4123 /* the sequence of instructions:
4124 * 2: (bf) r3 = r10
4125 * 3: (7b) *(u64 *)(r3 -8) = r0
4126 * 4: (79) r4 = *(u64 *)(r10 -8)
4127 * doesn't contain jmps. It's backtracked
4128 * as a single block.
4129 * During backtracking insn 3 is not recognized as
4130 * stack access, so at the end of backtracking
4131 * stack slot fp-8 is still marked in stack_mask.
4132 * However the parent state may not have accessed
4133 * fp-8 and it's "unallocated" stack space.
4134 * In such case fallback to conservative.
4135 */
c50c0b57 4136 mark_all_scalars_precise(env, env->cur_state);
1ef22b68
AN
4137 bt_reset(bt);
4138 return 0;
4139 }
b5dc0163 4140
1ef22b68
AN
4141 if (!is_spilled_scalar_reg(&func->stack[i])) {
4142 bt_clear_frame_slot(bt, fr, i);
4143 continue;
4144 }
4145 reg = &func->stack[i].spilled_ptr;
4146 if (reg->precise)
4147 bt_clear_frame_slot(bt, fr, i);
4148 else
4149 reg->precise = true;
4150 }
4151 if (env->log.level & BPF_LOG_LEVEL2) {
4152 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4153 bt_frame_reg_mask(bt, fr));
4154 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4155 fr, env->tmp_str_buf);
4156 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4157 bt_frame_stack_mask(bt, fr));
4158 verbose(env, "stack=%s: ", env->tmp_str_buf);
4159 print_verifier_state(env, func, true);
a3ce685d 4160 }
b5dc0163
AS
4161 }
4162
407958a0 4163 if (bt_empty(bt))
c50c0b57 4164 return 0;
b5dc0163 4165
d84b1a67 4166 subseq_idx = first_idx;
b5dc0163
AS
4167 last_idx = st->last_insn_idx;
4168 first_idx = st->first_insn_idx;
4169 }
c50c0b57
AN
4170
4171 /* if we still have requested precise regs or slots, we missed
4172 * something (e.g., stack access through non-r10 register), so
4173 * fallback to marking all precise
4174 */
4175 if (!bt_empty(bt)) {
4176 mark_all_scalars_precise(env, env->cur_state);
4177 bt_reset(bt);
4178 }
4179
b5dc0163
AS
4180 return 0;
4181}
4182
eb1f7f71 4183int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 4184{
f655badf 4185 return __mark_chain_precision(env, regno);
a3ce685d
AS
4186}
4187
f655badf
AN
4188/* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4189 * desired reg and stack masks across all relevant frames
4190 */
4191static int mark_chain_precision_batch(struct bpf_verifier_env *env)
a3ce685d 4192{
f655badf 4193 return __mark_chain_precision(env, -1);
a3ce685d 4194}
b5dc0163 4195
1be7f75d
AS
4196static bool is_spillable_regtype(enum bpf_reg_type type)
4197{
c25b2ae1 4198 switch (base_type(type)) {
1be7f75d 4199 case PTR_TO_MAP_VALUE:
1be7f75d
AS
4200 case PTR_TO_STACK:
4201 case PTR_TO_CTX:
969bf05e 4202 case PTR_TO_PACKET:
de8f3a83 4203 case PTR_TO_PACKET_META:
969bf05e 4204 case PTR_TO_PACKET_END:
d58e468b 4205 case PTR_TO_FLOW_KEYS:
1be7f75d 4206 case CONST_PTR_TO_MAP:
c64b7983 4207 case PTR_TO_SOCKET:
46f8bc92 4208 case PTR_TO_SOCK_COMMON:
655a51e5 4209 case PTR_TO_TCP_SOCK:
fada7fdc 4210 case PTR_TO_XDP_SOCK:
65726b5b 4211 case PTR_TO_BTF_ID:
20b2aff4 4212 case PTR_TO_BUF:
744ea4e3 4213 case PTR_TO_MEM:
69c087ba
YS
4214 case PTR_TO_FUNC:
4215 case PTR_TO_MAP_KEY:
1be7f75d
AS
4216 return true;
4217 default:
4218 return false;
4219 }
4220}
4221
cc2b14d5
AS
4222/* Does this register contain a constant zero? */
4223static bool register_is_null(struct bpf_reg_state *reg)
4224{
4225 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4226}
4227
f7cf25b2
AS
4228static bool register_is_const(struct bpf_reg_state *reg)
4229{
4230 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4231}
4232
5689d49b
YS
4233static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4234{
4235 return tnum_is_unknown(reg->var_off) &&
4236 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4237 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4238 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4239 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4240}
4241
4242static bool register_is_bounded(struct bpf_reg_state *reg)
4243{
4244 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4245}
4246
6e7e63cb
JH
4247static bool __is_pointer_value(bool allow_ptr_leaks,
4248 const struct bpf_reg_state *reg)
4249{
4250 if (allow_ptr_leaks)
4251 return false;
4252
4253 return reg->type != SCALAR_VALUE;
4254}
4255
71f656a5
EZ
4256/* Copy src state preserving dst->parent and dst->live fields */
4257static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4258{
4259 struct bpf_reg_state *parent = dst->parent;
4260 enum bpf_reg_liveness live = dst->live;
4261
4262 *dst = *src;
4263 dst->parent = parent;
4264 dst->live = live;
4265}
4266
f7cf25b2 4267static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
4268 int spi, struct bpf_reg_state *reg,
4269 int size)
f7cf25b2
AS
4270{
4271 int i;
4272
71f656a5 4273 copy_register_state(&state->stack[spi].spilled_ptr, reg);
354e8f19
MKL
4274 if (size == BPF_REG_SIZE)
4275 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 4276
354e8f19
MKL
4277 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4278 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 4279
354e8f19
MKL
4280 /* size < 8 bytes spill */
4281 for (; i; i--)
4282 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
4283}
4284
ecdf985d
EZ
4285static bool is_bpf_st_mem(struct bpf_insn *insn)
4286{
4287 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4288}
4289
01f810ac 4290/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
4291 * stack boundary and alignment are checked in check_mem_access()
4292 */
01f810ac
AM
4293static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4294 /* stack frame we're writing to */
4295 struct bpf_func_state *state,
4296 int off, int size, int value_regno,
4297 int insn_idx)
17a52670 4298{
f4d7e40a 4299 struct bpf_func_state *cur; /* state of the current function */
638f5b90 4300 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
ecdf985d 4301 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
f7cf25b2 4302 struct bpf_reg_state *reg = NULL;
ecdf985d 4303 u32 dst_reg = insn->dst_reg;
638f5b90 4304
c69431aa 4305 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
4306 if (err)
4307 return err;
9c399760
AS
4308 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4309 * so it's aligned access and [off, off + size) are within stack limits
4310 */
638f5b90
AS
4311 if (!env->allow_ptr_leaks &&
4312 state->stack[spi].slot_type[0] == STACK_SPILL &&
4313 size != BPF_REG_SIZE) {
4314 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4315 return -EACCES;
4316 }
17a52670 4317
f4d7e40a 4318 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
4319 if (value_regno >= 0)
4320 reg = &cur->regs[value_regno];
2039f26f
DB
4321 if (!env->bypass_spec_v4) {
4322 bool sanitize = reg && is_spillable_regtype(reg->type);
4323
4324 for (i = 0; i < size; i++) {
e4f4db47
LG
4325 u8 type = state->stack[spi].slot_type[i];
4326
4327 if (type != STACK_MISC && type != STACK_ZERO) {
2039f26f
DB
4328 sanitize = true;
4329 break;
4330 }
4331 }
4332
4333 if (sanitize)
4334 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4335 }
17a52670 4336
ef8fc7a0
KKD
4337 err = destroy_if_dynptr_stack_slot(env, state, spi);
4338 if (err)
4339 return err;
4340
0f55f9ed 4341 mark_stack_slot_scratched(env, spi);
354e8f19 4342 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 4343 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
4344 if (dst_reg != BPF_REG_FP) {
4345 /* The backtracking logic can only recognize explicit
4346 * stack slot address like [fp - 8]. Other spill of
8fb33b60 4347 * scalar via different register has to be conservative.
b5dc0163
AS
4348 * Backtrack from here and mark all registers as precise
4349 * that contributed into 'reg' being a constant.
4350 */
4351 err = mark_chain_precision(env, value_regno);
4352 if (err)
4353 return err;
4354 }
354e8f19 4355 save_register_state(state, spi, reg, size);
713274f1
MM
4356 /* Break the relation on a narrowing spill. */
4357 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4358 state->stack[spi].spilled_ptr.id = 0;
ecdf985d
EZ
4359 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4360 insn->imm != 0 && env->bpf_capable) {
4361 struct bpf_reg_state fake_reg = {};
4362
4363 __mark_reg_known(&fake_reg, (u32)insn->imm);
4364 fake_reg.type = SCALAR_VALUE;
4365 save_register_state(state, spi, &fake_reg, size);
f7cf25b2 4366 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 4367 /* register containing pointer is being spilled into stack */
9c399760 4368 if (size != BPF_REG_SIZE) {
f7cf25b2 4369 verbose_linfo(env, insn_idx, "; ");
61bd5218 4370 verbose(env, "invalid size of register spill\n");
17a52670
AS
4371 return -EACCES;
4372 }
f7cf25b2 4373 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
4374 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4375 return -EINVAL;
4376 }
354e8f19 4377 save_register_state(state, spi, reg, size);
9c399760 4378 } else {
cc2b14d5
AS
4379 u8 type = STACK_MISC;
4380
679c782d
EC
4381 /* regular write of data into stack destroys any spilled ptr */
4382 state->stack[spi].spilled_ptr.type = NOT_INIT;
06accc87
AN
4383 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4384 if (is_stack_slot_special(&state->stack[spi]))
0bae2d4d 4385 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 4386 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 4387
cc2b14d5
AS
4388 /* only mark the slot as written if all 8 bytes were written
4389 * otherwise read propagation may incorrectly stop too soon
4390 * when stack slots are partially written.
4391 * This heuristic means that read propagation will be
4392 * conservative, since it will add reg_live_read marks
4393 * to stack slots all the way to first state when programs
4394 * writes+reads less than 8 bytes
4395 */
4396 if (size == BPF_REG_SIZE)
4397 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4398
4399 /* when we zero initialize stack slots mark them as such */
ecdf985d
EZ
4400 if ((reg && register_is_null(reg)) ||
4401 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
b5dc0163
AS
4402 /* backtracking doesn't work for STACK_ZERO yet. */
4403 err = mark_chain_precision(env, value_regno);
4404 if (err)
4405 return err;
cc2b14d5 4406 type = STACK_ZERO;
b5dc0163 4407 }
cc2b14d5 4408
0bae2d4d 4409 /* Mark slots affected by this stack write. */
9c399760 4410 for (i = 0; i < size; i++)
638f5b90 4411 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 4412 type;
17a52670
AS
4413 }
4414 return 0;
4415}
4416
01f810ac
AM
4417/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4418 * known to contain a variable offset.
4419 * This function checks whether the write is permitted and conservatively
4420 * tracks the effects of the write, considering that each stack slot in the
4421 * dynamic range is potentially written to.
4422 *
4423 * 'off' includes 'regno->off'.
4424 * 'value_regno' can be -1, meaning that an unknown value is being written to
4425 * the stack.
4426 *
4427 * Spilled pointers in range are not marked as written because we don't know
4428 * what's going to be actually written. This means that read propagation for
4429 * future reads cannot be terminated by this write.
4430 *
4431 * For privileged programs, uninitialized stack slots are considered
4432 * initialized by this write (even though we don't know exactly what offsets
4433 * are going to be written to). The idea is that we don't want the verifier to
4434 * reject future reads that access slots written to through variable offsets.
4435 */
4436static int check_stack_write_var_off(struct bpf_verifier_env *env,
4437 /* func where register points to */
4438 struct bpf_func_state *state,
4439 int ptr_regno, int off, int size,
4440 int value_regno, int insn_idx)
4441{
4442 struct bpf_func_state *cur; /* state of the current function */
4443 int min_off, max_off;
4444 int i, err;
4445 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
31ff2135 4446 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
01f810ac
AM
4447 bool writing_zero = false;
4448 /* set if the fact that we're writing a zero is used to let any
4449 * stack slots remain STACK_ZERO
4450 */
4451 bool zero_used = false;
4452
4453 cur = env->cur_state->frame[env->cur_state->curframe];
4454 ptr_reg = &cur->regs[ptr_regno];
4455 min_off = ptr_reg->smin_value + off;
4456 max_off = ptr_reg->smax_value + off + size;
4457 if (value_regno >= 0)
4458 value_reg = &cur->regs[value_regno];
31ff2135
EZ
4459 if ((value_reg && register_is_null(value_reg)) ||
4460 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
01f810ac
AM
4461 writing_zero = true;
4462
c69431aa 4463 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
4464 if (err)
4465 return err;
4466
ef8fc7a0
KKD
4467 for (i = min_off; i < max_off; i++) {
4468 int spi;
4469
4470 spi = __get_spi(i);
4471 err = destroy_if_dynptr_stack_slot(env, state, spi);
4472 if (err)
4473 return err;
4474 }
01f810ac
AM
4475
4476 /* Variable offset writes destroy any spilled pointers in range. */
4477 for (i = min_off; i < max_off; i++) {
4478 u8 new_type, *stype;
4479 int slot, spi;
4480
4481 slot = -i - 1;
4482 spi = slot / BPF_REG_SIZE;
4483 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 4484 mark_stack_slot_scratched(env, spi);
01f810ac 4485
f5e477a8
KKD
4486 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4487 /* Reject the write if range we may write to has not
4488 * been initialized beforehand. If we didn't reject
4489 * here, the ptr status would be erased below (even
4490 * though not all slots are actually overwritten),
4491 * possibly opening the door to leaks.
4492 *
4493 * We do however catch STACK_INVALID case below, and
4494 * only allow reading possibly uninitialized memory
4495 * later for CAP_PERFMON, as the write may not happen to
4496 * that slot.
01f810ac
AM
4497 */
4498 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4499 insn_idx, i);
4500 return -EINVAL;
4501 }
4502
4503 /* Erase all spilled pointers. */
4504 state->stack[spi].spilled_ptr.type = NOT_INIT;
4505
4506 /* Update the slot type. */
4507 new_type = STACK_MISC;
4508 if (writing_zero && *stype == STACK_ZERO) {
4509 new_type = STACK_ZERO;
4510 zero_used = true;
4511 }
4512 /* If the slot is STACK_INVALID, we check whether it's OK to
4513 * pretend that it will be initialized by this write. The slot
4514 * might not actually be written to, and so if we mark it as
4515 * initialized future reads might leak uninitialized memory.
4516 * For privileged programs, we will accept such reads to slots
4517 * that may or may not be written because, if we're reject
4518 * them, the error would be too confusing.
4519 */
4520 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4521 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4522 insn_idx, i);
4523 return -EINVAL;
4524 }
4525 *stype = new_type;
4526 }
4527 if (zero_used) {
4528 /* backtracking doesn't work for STACK_ZERO yet. */
4529 err = mark_chain_precision(env, value_regno);
4530 if (err)
4531 return err;
4532 }
4533 return 0;
4534}
4535
4536/* When register 'dst_regno' is assigned some values from stack[min_off,
4537 * max_off), we set the register's type according to the types of the
4538 * respective stack slots. If all the stack values are known to be zeros, then
4539 * so is the destination reg. Otherwise, the register is considered to be
4540 * SCALAR. This function does not deal with register filling; the caller must
4541 * ensure that all spilled registers in the stack range have been marked as
4542 * read.
4543 */
4544static void mark_reg_stack_read(struct bpf_verifier_env *env,
4545 /* func where src register points to */
4546 struct bpf_func_state *ptr_state,
4547 int min_off, int max_off, int dst_regno)
4548{
4549 struct bpf_verifier_state *vstate = env->cur_state;
4550 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4551 int i, slot, spi;
4552 u8 *stype;
4553 int zeros = 0;
4554
4555 for (i = min_off; i < max_off; i++) {
4556 slot = -i - 1;
4557 spi = slot / BPF_REG_SIZE;
e0bf4622 4558 mark_stack_slot_scratched(env, spi);
01f810ac
AM
4559 stype = ptr_state->stack[spi].slot_type;
4560 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4561 break;
4562 zeros++;
4563 }
4564 if (zeros == max_off - min_off) {
4565 /* any access_size read into register is zero extended,
4566 * so the whole register == const_zero
4567 */
4568 __mark_reg_const_zero(&state->regs[dst_regno]);
4569 /* backtracking doesn't support STACK_ZERO yet,
4570 * so mark it precise here, so that later
4571 * backtracking can stop here.
4572 * Backtracking may not need this if this register
4573 * doesn't participate in pointer adjustment.
4574 * Forward propagation of precise flag is not
4575 * necessary either. This mark is only to stop
4576 * backtracking. Any register that contributed
4577 * to const 0 was marked precise before spill.
4578 */
4579 state->regs[dst_regno].precise = true;
4580 } else {
4581 /* have read misc data from the stack */
4582 mark_reg_unknown(env, state->regs, dst_regno);
4583 }
4584 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4585}
4586
4587/* Read the stack at 'off' and put the results into the register indicated by
4588 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4589 * spilled reg.
4590 *
4591 * 'dst_regno' can be -1, meaning that the read value is not going to a
4592 * register.
4593 *
4594 * The access is assumed to be within the current stack bounds.
4595 */
4596static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4597 /* func where src register points to */
4598 struct bpf_func_state *reg_state,
4599 int off, int size, int dst_regno)
17a52670 4600{
f4d7e40a
AS
4601 struct bpf_verifier_state *vstate = env->cur_state;
4602 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 4603 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 4604 struct bpf_reg_state *reg;
354e8f19 4605 u8 *stype, type;
17a52670 4606
f4d7e40a 4607 stype = reg_state->stack[spi].slot_type;
f7cf25b2 4608 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 4609
e0bf4622
AN
4610 mark_stack_slot_scratched(env, spi);
4611
27113c59 4612 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
4613 u8 spill_size = 1;
4614
4615 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4616 spill_size++;
354e8f19 4617
f30d4968 4618 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
4619 if (reg->type != SCALAR_VALUE) {
4620 verbose_linfo(env, env->insn_idx, "; ");
4621 verbose(env, "invalid size of register fill\n");
4622 return -EACCES;
4623 }
354e8f19
MKL
4624
4625 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4626 if (dst_regno < 0)
4627 return 0;
4628
f30d4968 4629 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
4630 /* The earlier check_reg_arg() has decided the
4631 * subreg_def for this insn. Save it first.
4632 */
4633 s32 subreg_def = state->regs[dst_regno].subreg_def;
4634
71f656a5 4635 copy_register_state(&state->regs[dst_regno], reg);
354e8f19
MKL
4636 state->regs[dst_regno].subreg_def = subreg_def;
4637 } else {
4638 for (i = 0; i < size; i++) {
4639 type = stype[(slot - i) % BPF_REG_SIZE];
4640 if (type == STACK_SPILL)
4641 continue;
4642 if (type == STACK_MISC)
4643 continue;
6715df8d
EZ
4644 if (type == STACK_INVALID && env->allow_uninit_stack)
4645 continue;
354e8f19
MKL
4646 verbose(env, "invalid read from stack off %d+%d size %d\n",
4647 off, i, size);
4648 return -EACCES;
4649 }
01f810ac 4650 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 4651 }
354e8f19 4652 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 4653 return 0;
17a52670 4654 }
17a52670 4655
01f810ac 4656 if (dst_regno >= 0) {
17a52670 4657 /* restore register state from stack */
71f656a5 4658 copy_register_state(&state->regs[dst_regno], reg);
2f18f62e
AS
4659 /* mark reg as written since spilled pointer state likely
4660 * has its liveness marks cleared by is_state_visited()
4661 * which resets stack/reg liveness for state transitions
4662 */
01f810ac 4663 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 4664 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 4665 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
4666 * it is acceptable to use this value as a SCALAR_VALUE
4667 * (e.g. for XADD).
4668 * We must not allow unprivileged callers to do that
4669 * with spilled pointers.
4670 */
4671 verbose(env, "leaking pointer from stack off %d\n",
4672 off);
4673 return -EACCES;
dc503a8a 4674 }
f7cf25b2 4675 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
4676 } else {
4677 for (i = 0; i < size; i++) {
01f810ac
AM
4678 type = stype[(slot - i) % BPF_REG_SIZE];
4679 if (type == STACK_MISC)
cc2b14d5 4680 continue;
01f810ac 4681 if (type == STACK_ZERO)
cc2b14d5 4682 continue;
6715df8d
EZ
4683 if (type == STACK_INVALID && env->allow_uninit_stack)
4684 continue;
cc2b14d5
AS
4685 verbose(env, "invalid read from stack off %d+%d size %d\n",
4686 off, i, size);
4687 return -EACCES;
4688 }
f7cf25b2 4689 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
4690 if (dst_regno >= 0)
4691 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 4692 }
f7cf25b2 4693 return 0;
17a52670
AS
4694}
4695
61df10c7 4696enum bpf_access_src {
01f810ac
AM
4697 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4698 ACCESS_HELPER = 2, /* the access is performed by a helper */
4699};
4700
4701static int check_stack_range_initialized(struct bpf_verifier_env *env,
4702 int regno, int off, int access_size,
4703 bool zero_size_allowed,
61df10c7 4704 enum bpf_access_src type,
01f810ac
AM
4705 struct bpf_call_arg_meta *meta);
4706
4707static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4708{
4709 return cur_regs(env) + regno;
4710}
4711
4712/* Read the stack at 'ptr_regno + off' and put the result into the register
4713 * 'dst_regno'.
4714 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4715 * but not its variable offset.
4716 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4717 *
4718 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4719 * filling registers (i.e. reads of spilled register cannot be detected when
4720 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4721 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4722 * offset; for a fixed offset check_stack_read_fixed_off should be used
4723 * instead.
4724 */
4725static int check_stack_read_var_off(struct bpf_verifier_env *env,
4726 int ptr_regno, int off, int size, int dst_regno)
e4298d25 4727{
01f810ac
AM
4728 /* The state of the source register. */
4729 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4730 struct bpf_func_state *ptr_state = func(env, reg);
4731 int err;
4732 int min_off, max_off;
4733
4734 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 4735 */
01f810ac
AM
4736 err = check_stack_range_initialized(env, ptr_regno, off, size,
4737 false, ACCESS_DIRECT, NULL);
4738 if (err)
4739 return err;
4740
4741 min_off = reg->smin_value + off;
4742 max_off = reg->smax_value + off;
4743 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4744 return 0;
4745}
4746
4747/* check_stack_read dispatches to check_stack_read_fixed_off or
4748 * check_stack_read_var_off.
4749 *
4750 * The caller must ensure that the offset falls within the allocated stack
4751 * bounds.
4752 *
4753 * 'dst_regno' is a register which will receive the value from the stack. It
4754 * can be -1, meaning that the read value is not going to a register.
4755 */
4756static int check_stack_read(struct bpf_verifier_env *env,
4757 int ptr_regno, int off, int size,
4758 int dst_regno)
4759{
4760 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4761 struct bpf_func_state *state = func(env, reg);
4762 int err;
4763 /* Some accesses are only permitted with a static offset. */
4764 bool var_off = !tnum_is_const(reg->var_off);
4765
4766 /* The offset is required to be static when reads don't go to a
4767 * register, in order to not leak pointers (see
4768 * check_stack_read_fixed_off).
4769 */
4770 if (dst_regno < 0 && var_off) {
e4298d25
DB
4771 char tn_buf[48];
4772
4773 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 4774 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
4775 tn_buf, off, size);
4776 return -EACCES;
4777 }
01f810ac
AM
4778 /* Variable offset is prohibited for unprivileged mode for simplicity
4779 * since it requires corresponding support in Spectre masking for stack
082cdc69
LG
4780 * ALU. See also retrieve_ptr_limit(). The check in
4781 * check_stack_access_for_ptr_arithmetic() called by
4782 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4783 * with variable offsets, therefore no check is required here. Further,
4784 * just checking it here would be insufficient as speculative stack
4785 * writes could still lead to unsafe speculative behaviour.
01f810ac 4786 */
01f810ac
AM
4787 if (!var_off) {
4788 off += reg->var_off.value;
4789 err = check_stack_read_fixed_off(env, state, off, size,
4790 dst_regno);
4791 } else {
4792 /* Variable offset stack reads need more conservative handling
4793 * than fixed offset ones. Note that dst_regno >= 0 on this
4794 * branch.
4795 */
4796 err = check_stack_read_var_off(env, ptr_regno, off, size,
4797 dst_regno);
4798 }
4799 return err;
4800}
4801
4802
4803/* check_stack_write dispatches to check_stack_write_fixed_off or
4804 * check_stack_write_var_off.
4805 *
4806 * 'ptr_regno' is the register used as a pointer into the stack.
4807 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4808 * 'value_regno' is the register whose value we're writing to the stack. It can
4809 * be -1, meaning that we're not writing from a register.
4810 *
4811 * The caller must ensure that the offset falls within the maximum stack size.
4812 */
4813static int check_stack_write(struct bpf_verifier_env *env,
4814 int ptr_regno, int off, int size,
4815 int value_regno, int insn_idx)
4816{
4817 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4818 struct bpf_func_state *state = func(env, reg);
4819 int err;
4820
4821 if (tnum_is_const(reg->var_off)) {
4822 off += reg->var_off.value;
4823 err = check_stack_write_fixed_off(env, state, off, size,
4824 value_regno, insn_idx);
4825 } else {
4826 /* Variable offset stack reads need more conservative handling
4827 * than fixed offset ones.
4828 */
4829 err = check_stack_write_var_off(env, state,
4830 ptr_regno, off, size,
4831 value_regno, insn_idx);
4832 }
4833 return err;
e4298d25
DB
4834}
4835
591fe988
DB
4836static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4837 int off, int size, enum bpf_access_type type)
4838{
4839 struct bpf_reg_state *regs = cur_regs(env);
4840 struct bpf_map *map = regs[regno].map_ptr;
4841 u32 cap = bpf_map_flags_to_cap(map);
4842
4843 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4844 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4845 map->value_size, off, size);
4846 return -EACCES;
4847 }
4848
4849 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4850 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4851 map->value_size, off, size);
4852 return -EACCES;
4853 }
4854
4855 return 0;
4856}
4857
457f4436
AN
4858/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4859static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4860 int off, int size, u32 mem_size,
4861 bool zero_size_allowed)
17a52670 4862{
457f4436
AN
4863 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4864 struct bpf_reg_state *reg;
4865
4866 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4867 return 0;
17a52670 4868
457f4436
AN
4869 reg = &cur_regs(env)[regno];
4870 switch (reg->type) {
69c087ba
YS
4871 case PTR_TO_MAP_KEY:
4872 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4873 mem_size, off, size);
4874 break;
457f4436 4875 case PTR_TO_MAP_VALUE:
61bd5218 4876 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
4877 mem_size, off, size);
4878 break;
4879 case PTR_TO_PACKET:
4880 case PTR_TO_PACKET_META:
4881 case PTR_TO_PACKET_END:
4882 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4883 off, size, regno, reg->id, off, mem_size);
4884 break;
4885 case PTR_TO_MEM:
4886 default:
4887 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4888 mem_size, off, size);
17a52670 4889 }
457f4436
AN
4890
4891 return -EACCES;
17a52670
AS
4892}
4893
457f4436
AN
4894/* check read/write into a memory region with possible variable offset */
4895static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4896 int off, int size, u32 mem_size,
4897 bool zero_size_allowed)
dbcfe5f7 4898{
f4d7e40a
AS
4899 struct bpf_verifier_state *vstate = env->cur_state;
4900 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
4901 struct bpf_reg_state *reg = &state->regs[regno];
4902 int err;
4903
457f4436 4904 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
4905 * need to try adding each of min_value and max_value to off
4906 * to make sure our theoretical access will be safe.
2e576648
CL
4907 *
4908 * The minimum value is only important with signed
dbcfe5f7
GB
4909 * comparisons where we can't assume the floor of a
4910 * value is 0. If we are using signed variables for our
4911 * index'es we need to make sure that whatever we use
4912 * will have a set floor within our range.
4913 */
b7137c4e
DB
4914 if (reg->smin_value < 0 &&
4915 (reg->smin_value == S64_MIN ||
4916 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4917 reg->smin_value + off < 0)) {
61bd5218 4918 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
4919 regno);
4920 return -EACCES;
4921 }
457f4436
AN
4922 err = __check_mem_access(env, regno, reg->smin_value + off, size,
4923 mem_size, zero_size_allowed);
dbcfe5f7 4924 if (err) {
457f4436 4925 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 4926 regno);
dbcfe5f7
GB
4927 return err;
4928 }
4929
b03c9f9f
EC
4930 /* If we haven't set a max value then we need to bail since we can't be
4931 * sure we won't do bad things.
4932 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 4933 */
b03c9f9f 4934 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 4935 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
4936 regno);
4937 return -EACCES;
4938 }
457f4436
AN
4939 err = __check_mem_access(env, regno, reg->umax_value + off, size,
4940 mem_size, zero_size_allowed);
4941 if (err) {
4942 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 4943 regno);
457f4436
AN
4944 return err;
4945 }
4946
4947 return 0;
4948}
d83525ca 4949
e9147b44
KKD
4950static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4951 const struct bpf_reg_state *reg, int regno,
4952 bool fixed_off_ok)
4953{
4954 /* Access to this pointer-typed register or passing it to a helper
4955 * is only allowed in its original, unmodified form.
4956 */
4957
4958 if (reg->off < 0) {
4959 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4960 reg_type_str(env, reg->type), regno, reg->off);
4961 return -EACCES;
4962 }
4963
4964 if (!fixed_off_ok && reg->off) {
4965 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4966 reg_type_str(env, reg->type), regno, reg->off);
4967 return -EACCES;
4968 }
4969
4970 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4971 char tn_buf[48];
4972
4973 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4974 verbose(env, "variable %s access var_off=%s disallowed\n",
4975 reg_type_str(env, reg->type), tn_buf);
4976 return -EACCES;
4977 }
4978
4979 return 0;
4980}
4981
4982int check_ptr_off_reg(struct bpf_verifier_env *env,
4983 const struct bpf_reg_state *reg, int regno)
4984{
4985 return __check_ptr_off_reg(env, reg, regno, false);
4986}
4987
61df10c7 4988static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 4989 struct btf_field *kptr_field,
61df10c7
KKD
4990 struct bpf_reg_state *reg, u32 regno)
4991{
b32a5dae 4992 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
ab6c637a 4993 int perm_flags;
61df10c7
KKD
4994 const char *reg_name = "";
4995
ab6c637a
YS
4996 if (btf_is_kernel(reg->btf)) {
4997 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4998
4999 /* Only unreferenced case accepts untrusted pointers */
5000 if (kptr_field->type == BPF_KPTR_UNREF)
5001 perm_flags |= PTR_UNTRUSTED;
5002 } else {
5003 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5004 }
6efe152d
KKD
5005
5006 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
5007 goto bad_type;
5008
61df10c7 5009 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
b32a5dae 5010 reg_name = btf_type_name(reg->btf, reg->btf_id);
61df10c7 5011
c0a5a21c
KKD
5012 /* For ref_ptr case, release function check should ensure we get one
5013 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5014 * normal store of unreferenced kptr, we must ensure var_off is zero.
5015 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5016 * reg->off and reg->ref_obj_id are not needed here.
5017 */
61df10c7
KKD
5018 if (__check_ptr_off_reg(env, reg, regno, true))
5019 return -EACCES;
5020
ab6c637a 5021 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
61df10c7
KKD
5022 * we also need to take into account the reg->off.
5023 *
5024 * We want to support cases like:
5025 *
5026 * struct foo {
5027 * struct bar br;
5028 * struct baz bz;
5029 * };
5030 *
5031 * struct foo *v;
5032 * v = func(); // PTR_TO_BTF_ID
5033 * val->foo = v; // reg->off is zero, btf and btf_id match type
5034 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5035 * // first member type of struct after comparison fails
5036 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5037 * // to match type
5038 *
5039 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
5040 * is zero. We must also ensure that btf_struct_ids_match does not walk
5041 * the struct to match type against first member of struct, i.e. reject
5042 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5043 * strict mode to true for type match.
61df10c7
KKD
5044 */
5045 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
5046 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5047 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
5048 goto bad_type;
5049 return 0;
5050bad_type:
5051 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5052 reg_type_str(env, reg->type), reg_name);
6efe152d 5053 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 5054 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
5055 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5056 targ_name);
5057 else
5058 verbose(env, "\n");
61df10c7
KKD
5059 return -EINVAL;
5060}
5061
20c09d92
AS
5062/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5063 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5064 */
5065static bool in_rcu_cs(struct bpf_verifier_env *env)
5066{
5861d1e8
DM
5067 return env->cur_state->active_rcu_lock ||
5068 env->cur_state->active_lock.ptr ||
5069 !env->prog->aux->sleepable;
20c09d92
AS
5070}
5071
5072/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5073BTF_SET_START(rcu_protected_types)
5074BTF_ID(struct, prog_test_ref_kfunc)
5075BTF_ID(struct, cgroup)
63d2d83d 5076BTF_ID(struct, bpf_cpumask)
d02c48fa 5077BTF_ID(struct, task_struct)
20c09d92
AS
5078BTF_SET_END(rcu_protected_types)
5079
5080static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5081{
5082 if (!btf_is_kernel(btf))
5083 return false;
5084 return btf_id_set_contains(&rcu_protected_types, btf_id);
5085}
5086
5087static bool rcu_safe_kptr(const struct btf_field *field)
5088{
5089 const struct btf_field_kptr *kptr = &field->kptr;
5090
5091 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5092}
5093
61df10c7
KKD
5094static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5095 int value_regno, int insn_idx,
aa3496ac 5096 struct btf_field *kptr_field)
61df10c7
KKD
5097{
5098 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5099 int class = BPF_CLASS(insn->code);
5100 struct bpf_reg_state *val_reg;
5101
5102 /* Things we already checked for in check_map_access and caller:
5103 * - Reject cases where variable offset may touch kptr
5104 * - size of access (must be BPF_DW)
5105 * - tnum_is_const(reg->var_off)
aa3496ac 5106 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
5107 */
5108 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5109 if (BPF_MODE(insn->code) != BPF_MEM) {
5110 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5111 return -EACCES;
5112 }
5113
6efe152d
KKD
5114 /* We only allow loading referenced kptr, since it will be marked as
5115 * untrusted, similar to unreferenced kptr.
5116 */
aa3496ac 5117 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 5118 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
5119 return -EACCES;
5120 }
5121
61df10c7
KKD
5122 if (class == BPF_LDX) {
5123 val_reg = reg_state(env, value_regno);
5124 /* We can simply mark the value_regno receiving the pointer
5125 * value from map as PTR_TO_BTF_ID, with the correct type.
5126 */
aa3496ac 5127 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
20c09d92
AS
5128 kptr_field->kptr.btf_id,
5129 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5130 PTR_MAYBE_NULL | MEM_RCU :
5131 PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
5132 /* For mark_ptr_or_null_reg */
5133 val_reg->id = ++env->id_gen;
5134 } else if (class == BPF_STX) {
5135 val_reg = reg_state(env, value_regno);
5136 if (!register_is_null(val_reg) &&
aa3496ac 5137 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
5138 return -EACCES;
5139 } else if (class == BPF_ST) {
5140 if (insn->imm) {
5141 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 5142 kptr_field->offset);
61df10c7
KKD
5143 return -EACCES;
5144 }
5145 } else {
5146 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5147 return -EACCES;
5148 }
5149 return 0;
5150}
5151
457f4436
AN
5152/* check read/write into a map element with possible variable offset */
5153static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
5154 int off, int size, bool zero_size_allowed,
5155 enum bpf_access_src src)
457f4436
AN
5156{
5157 struct bpf_verifier_state *vstate = env->cur_state;
5158 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5159 struct bpf_reg_state *reg = &state->regs[regno];
5160 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
5161 struct btf_record *rec;
5162 int err, i;
457f4436
AN
5163
5164 err = check_mem_region_access(env, regno, off, size, map->value_size,
5165 zero_size_allowed);
5166 if (err)
5167 return err;
5168
aa3496ac
KKD
5169 if (IS_ERR_OR_NULL(map->record))
5170 return 0;
5171 rec = map->record;
5172 for (i = 0; i < rec->cnt; i++) {
5173 struct btf_field *field = &rec->fields[i];
5174 u32 p = field->offset;
d83525ca 5175
db559117
KKD
5176 /* If any part of a field can be touched by load/store, reject
5177 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
5178 * it is sufficient to check x1 < y2 && y1 < x2.
5179 */
aa3496ac
KKD
5180 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5181 p < reg->umax_value + off + size) {
5182 switch (field->type) {
5183 case BPF_KPTR_UNREF:
5184 case BPF_KPTR_REF:
61df10c7
KKD
5185 if (src != ACCESS_DIRECT) {
5186 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5187 return -EACCES;
5188 }
5189 if (!tnum_is_const(reg->var_off)) {
5190 verbose(env, "kptr access cannot have variable offset\n");
5191 return -EACCES;
5192 }
5193 if (p != off + reg->var_off.value) {
5194 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5195 p, off + reg->var_off.value);
5196 return -EACCES;
5197 }
5198 if (size != bpf_size_to_bytes(BPF_DW)) {
5199 verbose(env, "kptr access size must be BPF_DW\n");
5200 return -EACCES;
5201 }
5202 break;
aa3496ac 5203 default:
db559117
KKD
5204 verbose(env, "%s cannot be accessed directly by load/store\n",
5205 btf_field_type_name(field->type));
aa3496ac 5206 return -EACCES;
61df10c7
KKD
5207 }
5208 }
5209 }
aa3496ac 5210 return 0;
dbcfe5f7
GB
5211}
5212
969bf05e
AS
5213#define MAX_PACKET_OFF 0xffff
5214
58e2af8b 5215static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
5216 const struct bpf_call_arg_meta *meta,
5217 enum bpf_access_type t)
4acf6c0b 5218{
7e40781c
UP
5219 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5220
5221 switch (prog_type) {
5d66fa7d 5222 /* Program types only with direct read access go here! */
3a0af8fd
TG
5223 case BPF_PROG_TYPE_LWT_IN:
5224 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 5225 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 5226 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 5227 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 5228 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
5229 if (t == BPF_WRITE)
5230 return false;
8731745e 5231 fallthrough;
5d66fa7d
DB
5232
5233 /* Program types with direct read + write access go here! */
36bbef52
DB
5234 case BPF_PROG_TYPE_SCHED_CLS:
5235 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 5236 case BPF_PROG_TYPE_XDP:
3a0af8fd 5237 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 5238 case BPF_PROG_TYPE_SK_SKB:
4f738adb 5239 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
5240 if (meta)
5241 return meta->pkt_access;
5242
5243 env->seen_direct_write = true;
4acf6c0b 5244 return true;
0d01da6a
SF
5245
5246 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5247 if (t == BPF_WRITE)
5248 env->seen_direct_write = true;
5249
5250 return true;
5251
4acf6c0b
BB
5252 default:
5253 return false;
5254 }
5255}
5256
f1174f77 5257static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 5258 int size, bool zero_size_allowed)
f1174f77 5259{
638f5b90 5260 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
5261 struct bpf_reg_state *reg = &regs[regno];
5262 int err;
5263
5264 /* We may have added a variable offset to the packet pointer; but any
5265 * reg->range we have comes after that. We are only checking the fixed
5266 * offset.
5267 */
5268
5269 /* We don't allow negative numbers, because we aren't tracking enough
5270 * detail to prove they're safe.
5271 */
b03c9f9f 5272 if (reg->smin_value < 0) {
61bd5218 5273 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
5274 regno);
5275 return -EACCES;
5276 }
6d94e741
AS
5277
5278 err = reg->range < 0 ? -EINVAL :
5279 __check_mem_access(env, regno, off, size, reg->range,
457f4436 5280 zero_size_allowed);
f1174f77 5281 if (err) {
61bd5218 5282 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
5283 return err;
5284 }
e647815a 5285
457f4436 5286 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
5287 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5288 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 5289 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
5290 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5291 */
5292 env->prog->aux->max_pkt_offset =
5293 max_t(u32, env->prog->aux->max_pkt_offset,
5294 off + reg->umax_value + size - 1);
5295
f1174f77
EC
5296 return err;
5297}
5298
5299/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 5300static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 5301 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 5302 struct btf **btf, u32 *btf_id)
17a52670 5303{
f96da094
DB
5304 struct bpf_insn_access_aux info = {
5305 .reg_type = *reg_type,
9e15db66 5306 .log = &env->log,
f96da094 5307 };
31fd8581 5308
4f9218aa 5309 if (env->ops->is_valid_access &&
5e43f899 5310 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
5311 /* A non zero info.ctx_field_size indicates that this field is a
5312 * candidate for later verifier transformation to load the whole
5313 * field and then apply a mask when accessed with a narrower
5314 * access than actual ctx access size. A zero info.ctx_field_size
5315 * will only allow for whole field access and rejects any other
5316 * type of narrower access.
31fd8581 5317 */
23994631 5318 *reg_type = info.reg_type;
31fd8581 5319
c25b2ae1 5320 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5321 *btf = info.btf;
9e15db66 5322 *btf_id = info.btf_id;
22dc4a0f 5323 } else {
9e15db66 5324 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 5325 }
32bbe007
AS
5326 /* remember the offset of last byte accessed in ctx */
5327 if (env->prog->aux->max_ctx_offset < off + size)
5328 env->prog->aux->max_ctx_offset = off + size;
17a52670 5329 return 0;
32bbe007 5330 }
17a52670 5331
61bd5218 5332 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
5333 return -EACCES;
5334}
5335
d58e468b
PP
5336static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5337 int size)
5338{
5339 if (size < 0 || off < 0 ||
5340 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5341 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5342 off, size);
5343 return -EACCES;
5344 }
5345 return 0;
5346}
5347
5f456649
MKL
5348static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5349 u32 regno, int off, int size,
5350 enum bpf_access_type t)
c64b7983
JS
5351{
5352 struct bpf_reg_state *regs = cur_regs(env);
5353 struct bpf_reg_state *reg = &regs[regno];
5f456649 5354 struct bpf_insn_access_aux info = {};
46f8bc92 5355 bool valid;
c64b7983
JS
5356
5357 if (reg->smin_value < 0) {
5358 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5359 regno);
5360 return -EACCES;
5361 }
5362
46f8bc92
MKL
5363 switch (reg->type) {
5364 case PTR_TO_SOCK_COMMON:
5365 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5366 break;
5367 case PTR_TO_SOCKET:
5368 valid = bpf_sock_is_valid_access(off, size, t, &info);
5369 break;
655a51e5
MKL
5370 case PTR_TO_TCP_SOCK:
5371 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5372 break;
fada7fdc
JL
5373 case PTR_TO_XDP_SOCK:
5374 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5375 break;
46f8bc92
MKL
5376 default:
5377 valid = false;
c64b7983
JS
5378 }
5379
5f456649 5380
46f8bc92
MKL
5381 if (valid) {
5382 env->insn_aux_data[insn_idx].ctx_field_size =
5383 info.ctx_field_size;
5384 return 0;
5385 }
5386
5387 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 5388 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
5389
5390 return -EACCES;
c64b7983
JS
5391}
5392
4cabc5b1
DB
5393static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5394{
2a159c6f 5395 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
5396}
5397
f37a8cb8
DB
5398static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5399{
2a159c6f 5400 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 5401
46f8bc92
MKL
5402 return reg->type == PTR_TO_CTX;
5403}
5404
5405static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5406{
5407 const struct bpf_reg_state *reg = reg_state(env, regno);
5408
5409 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
5410}
5411
ca369602
DB
5412static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5413{
2a159c6f 5414 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
5415
5416 return type_is_pkt_pointer(reg->type);
5417}
5418
4b5defde
DB
5419static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5420{
5421 const struct bpf_reg_state *reg = reg_state(env, regno);
5422
5423 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5424 return reg->type == PTR_TO_FLOW_KEYS;
5425}
5426
831deb29
AP
5427static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5428#ifdef CONFIG_NET
5429 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5430 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5431 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5432#endif
5ba190c2 5433 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
831deb29
AP
5434};
5435
9bb00b28
YS
5436static bool is_trusted_reg(const struct bpf_reg_state *reg)
5437{
5438 /* A referenced register is always trusted. */
5439 if (reg->ref_obj_id)
5440 return true;
5441
831deb29
AP
5442 /* Types listed in the reg2btf_ids are always trusted */
5443 if (reg2btf_ids[base_type(reg->type)])
5444 return true;
5445
9bb00b28 5446 /* If a register is not referenced, it is trusted if it has the
fca1aa75 5447 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
9bb00b28
YS
5448 * other type modifiers may be safe, but we elect to take an opt-in
5449 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5450 * not.
5451 *
5452 * Eventually, we should make PTR_TRUSTED the single source of truth
5453 * for whether a register is trusted.
5454 */
5455 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5456 !bpf_type_has_unsafe_modifiers(reg->type);
5457}
5458
fca1aa75
YS
5459static bool is_rcu_reg(const struct bpf_reg_state *reg)
5460{
5461 return reg->type & MEM_RCU;
5462}
5463
afeebf9f
AS
5464static void clear_trusted_flags(enum bpf_type_flag *flag)
5465{
5466 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5467}
5468
61bd5218
JK
5469static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5470 const struct bpf_reg_state *reg,
d1174416 5471 int off, int size, bool strict)
969bf05e 5472{
f1174f77 5473 struct tnum reg_off;
e07b98d9 5474 int ip_align;
d1174416
DM
5475
5476 /* Byte size accesses are always allowed. */
5477 if (!strict || size == 1)
5478 return 0;
5479
e4eda884
DM
5480 /* For platforms that do not have a Kconfig enabling
5481 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5482 * NET_IP_ALIGN is universally set to '2'. And on platforms
5483 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5484 * to this code only in strict mode where we want to emulate
5485 * the NET_IP_ALIGN==2 checking. Therefore use an
5486 * unconditional IP align value of '2'.
e07b98d9 5487 */
e4eda884 5488 ip_align = 2;
f1174f77
EC
5489
5490 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5491 if (!tnum_is_aligned(reg_off, size)) {
5492 char tn_buf[48];
5493
5494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
5495 verbose(env,
5496 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 5497 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
5498 return -EACCES;
5499 }
79adffcd 5500
969bf05e
AS
5501 return 0;
5502}
5503
61bd5218
JK
5504static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5505 const struct bpf_reg_state *reg,
f1174f77
EC
5506 const char *pointer_desc,
5507 int off, int size, bool strict)
79adffcd 5508{
f1174f77
EC
5509 struct tnum reg_off;
5510
5511 /* Byte size accesses are always allowed. */
5512 if (!strict || size == 1)
5513 return 0;
5514
5515 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5516 if (!tnum_is_aligned(reg_off, size)) {
5517 char tn_buf[48];
5518
5519 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5520 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 5521 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
5522 return -EACCES;
5523 }
5524
969bf05e
AS
5525 return 0;
5526}
5527
e07b98d9 5528static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
5529 const struct bpf_reg_state *reg, int off,
5530 int size, bool strict_alignment_once)
79adffcd 5531{
ca369602 5532 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 5533 const char *pointer_desc = "";
d1174416 5534
79adffcd
DB
5535 switch (reg->type) {
5536 case PTR_TO_PACKET:
de8f3a83
DB
5537 case PTR_TO_PACKET_META:
5538 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5539 * right in front, treat it the very same way.
5540 */
61bd5218 5541 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
5542 case PTR_TO_FLOW_KEYS:
5543 pointer_desc = "flow keys ";
5544 break;
69c087ba
YS
5545 case PTR_TO_MAP_KEY:
5546 pointer_desc = "key ";
5547 break;
f1174f77
EC
5548 case PTR_TO_MAP_VALUE:
5549 pointer_desc = "value ";
5550 break;
5551 case PTR_TO_CTX:
5552 pointer_desc = "context ";
5553 break;
5554 case PTR_TO_STACK:
5555 pointer_desc = "stack ";
01f810ac
AM
5556 /* The stack spill tracking logic in check_stack_write_fixed_off()
5557 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
5558 * aligned.
5559 */
5560 strict = true;
f1174f77 5561 break;
c64b7983
JS
5562 case PTR_TO_SOCKET:
5563 pointer_desc = "sock ";
5564 break;
46f8bc92
MKL
5565 case PTR_TO_SOCK_COMMON:
5566 pointer_desc = "sock_common ";
5567 break;
655a51e5
MKL
5568 case PTR_TO_TCP_SOCK:
5569 pointer_desc = "tcp_sock ";
5570 break;
fada7fdc
JL
5571 case PTR_TO_XDP_SOCK:
5572 pointer_desc = "xdp_sock ";
5573 break;
79adffcd 5574 default:
f1174f77 5575 break;
79adffcd 5576 }
61bd5218
JK
5577 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5578 strict);
79adffcd
DB
5579}
5580
f4d7e40a
AS
5581static int update_stack_depth(struct bpf_verifier_env *env,
5582 const struct bpf_func_state *func,
5583 int off)
5584{
9c8105bd 5585 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
5586
5587 if (stack >= -off)
5588 return 0;
5589
5590 /* update known max for given subprogram */
9c8105bd 5591 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
5592 return 0;
5593}
f4d7e40a 5594
70a87ffe
AS
5595/* starting from main bpf function walk all instructions of the function
5596 * and recursively walk all callees that given function can call.
5597 * Ignore jump and exit insns.
5598 * Since recursion is prevented by check_cfg() this algorithm
5599 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5600 */
b5e9ad52 5601static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
70a87ffe 5602{
9c8105bd 5603 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 5604 struct bpf_insn *insn = env->prog->insnsi;
b5e9ad52 5605 int depth = 0, frame = 0, i, subprog_end;
ebf7d1f5 5606 bool tail_call_reachable = false;
70a87ffe
AS
5607 int ret_insn[MAX_CALL_FRAMES];
5608 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 5609 int j;
f4d7e40a 5610
b5e9ad52 5611 i = subprog[idx].start;
70a87ffe 5612process_func:
7f6e4312
MF
5613 /* protect against potential stack overflow that might happen when
5614 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5615 * depth for such case down to 256 so that the worst case scenario
5616 * would result in 8k stack size (32 which is tailcall limit * 256 =
5617 * 8k).
5618 *
5619 * To get the idea what might happen, see an example:
5620 * func1 -> sub rsp, 128
5621 * subfunc1 -> sub rsp, 256
5622 * tailcall1 -> add rsp, 256
5623 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5624 * subfunc2 -> sub rsp, 64
5625 * subfunc22 -> sub rsp, 128
5626 * tailcall2 -> add rsp, 128
5627 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5628 *
5629 * tailcall will unwind the current stack frame but it will not get rid
5630 * of caller's stack as shown on the example above.
5631 */
5632 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5633 verbose(env,
5634 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5635 depth);
5636 return -EACCES;
5637 }
70a87ffe
AS
5638 /* round up to 32-bytes, since this is granularity
5639 * of interpreter stack size
5640 */
9c8105bd 5641 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 5642 if (depth > MAX_BPF_STACK) {
f4d7e40a 5643 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 5644 frame + 1, depth);
f4d7e40a
AS
5645 return -EACCES;
5646 }
70a87ffe 5647continue_func:
4cb3d99c 5648 subprog_end = subprog[idx + 1].start;
70a87ffe 5649 for (; i < subprog_end; i++) {
ba7b3e7d 5650 int next_insn, sidx;
7ddc80a4 5651
69c087ba 5652 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
5653 continue;
5654 /* remember insn and function to return to */
5655 ret_insn[frame] = i + 1;
9c8105bd 5656 ret_prog[frame] = idx;
70a87ffe
AS
5657
5658 /* find the callee */
7ddc80a4 5659 next_insn = i + insn[i].imm + 1;
ba7b3e7d
KKD
5660 sidx = find_subprog(env, next_insn);
5661 if (sidx < 0) {
70a87ffe 5662 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 5663 next_insn);
70a87ffe
AS
5664 return -EFAULT;
5665 }
ba7b3e7d
KKD
5666 if (subprog[sidx].is_async_cb) {
5667 if (subprog[sidx].has_tail_call) {
7ddc80a4
AS
5668 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5669 return -EFAULT;
5670 }
5415ccd5
KKD
5671 /* async callbacks don't increase bpf prog stack size unless called directly */
5672 if (!bpf_pseudo_call(insn + i))
5673 continue;
7ddc80a4
AS
5674 }
5675 i = next_insn;
ba7b3e7d 5676 idx = sidx;
ebf7d1f5
MF
5677
5678 if (subprog[idx].has_tail_call)
5679 tail_call_reachable = true;
5680
70a87ffe
AS
5681 frame++;
5682 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
5683 verbose(env, "the call stack of %d frames is too deep !\n",
5684 frame);
5685 return -E2BIG;
70a87ffe
AS
5686 }
5687 goto process_func;
5688 }
ebf7d1f5
MF
5689 /* if tail call got detected across bpf2bpf calls then mark each of the
5690 * currently present subprog frames as tail call reachable subprogs;
5691 * this info will be utilized by JIT so that we will be preserving the
5692 * tail call counter throughout bpf2bpf calls combined with tailcalls
5693 */
5694 if (tail_call_reachable)
5695 for (j = 0; j < frame; j++)
5696 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
5697 if (subprog[0].tail_call_reachable)
5698 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 5699
70a87ffe
AS
5700 /* end of for() loop means the last insn of the 'subprog'
5701 * was reached. Doesn't matter whether it was JA or EXIT
5702 */
5703 if (frame == 0)
5704 return 0;
9c8105bd 5705 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
5706 frame--;
5707 i = ret_insn[frame];
9c8105bd 5708 idx = ret_prog[frame];
70a87ffe 5709 goto continue_func;
f4d7e40a
AS
5710}
5711
b5e9ad52
KKD
5712static int check_max_stack_depth(struct bpf_verifier_env *env)
5713{
5714 struct bpf_subprog_info *si = env->subprog_info;
5715 int ret;
5716
5717 for (int i = 0; i < env->subprog_cnt; i++) {
5718 if (!i || si[i].is_async_cb) {
5719 ret = check_max_stack_depth_subprog(env, i);
5720 if (ret < 0)
5721 return ret;
5722 }
5723 continue;
5724 }
5725 return 0;
5726}
5727
19d28fbd 5728#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5729static int get_callee_stack_depth(struct bpf_verifier_env *env,
5730 const struct bpf_insn *insn, int idx)
5731{
5732 int start = idx + insn->imm + 1, subprog;
5733
5734 subprog = find_subprog(env, start);
5735 if (subprog < 0) {
5736 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5737 start);
5738 return -EFAULT;
5739 }
9c8105bd 5740 return env->subprog_info[subprog].stack_depth;
1ea47e01 5741}
19d28fbd 5742#endif
1ea47e01 5743
afbf21dc
YS
5744static int __check_buffer_access(struct bpf_verifier_env *env,
5745 const char *buf_info,
5746 const struct bpf_reg_state *reg,
5747 int regno, int off, int size)
9df1c28b
MM
5748{
5749 if (off < 0) {
5750 verbose(env,
4fc00b79 5751 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 5752 regno, buf_info, off, size);
9df1c28b
MM
5753 return -EACCES;
5754 }
5755 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5756 char tn_buf[48];
5757
5758 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5759 verbose(env,
4fc00b79 5760 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
5761 regno, off, tn_buf);
5762 return -EACCES;
5763 }
afbf21dc
YS
5764
5765 return 0;
5766}
5767
5768static int check_tp_buffer_access(struct bpf_verifier_env *env,
5769 const struct bpf_reg_state *reg,
5770 int regno, int off, int size)
5771{
5772 int err;
5773
5774 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5775 if (err)
5776 return err;
5777
9df1c28b
MM
5778 if (off + size > env->prog->aux->max_tp_access)
5779 env->prog->aux->max_tp_access = off + size;
5780
5781 return 0;
5782}
5783
afbf21dc
YS
5784static int check_buffer_access(struct bpf_verifier_env *env,
5785 const struct bpf_reg_state *reg,
5786 int regno, int off, int size,
5787 bool zero_size_allowed,
afbf21dc
YS
5788 u32 *max_access)
5789{
44e9a741 5790 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
5791 int err;
5792
5793 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5794 if (err)
5795 return err;
5796
5797 if (off + size > *max_access)
5798 *max_access = off + size;
5799
5800 return 0;
5801}
5802
3f50f132
JF
5803/* BPF architecture zero extends alu32 ops into 64-bit registesr */
5804static void zext_32_to_64(struct bpf_reg_state *reg)
5805{
5806 reg->var_off = tnum_subreg(reg->var_off);
5807 __reg_assign_32_into_64(reg);
5808}
9df1c28b 5809
0c17d1d2
JH
5810/* truncate register to smaller size (in bytes)
5811 * must be called with size < BPF_REG_SIZE
5812 */
5813static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5814{
5815 u64 mask;
5816
5817 /* clear high bits in bit representation */
5818 reg->var_off = tnum_cast(reg->var_off, size);
5819
5820 /* fix arithmetic bounds */
5821 mask = ((u64)1 << (size * 8)) - 1;
5822 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5823 reg->umin_value &= mask;
5824 reg->umax_value &= mask;
5825 } else {
5826 reg->umin_value = 0;
5827 reg->umax_value = mask;
5828 }
5829 reg->smin_value = reg->umin_value;
5830 reg->smax_value = reg->umax_value;
3f50f132
JF
5831
5832 /* If size is smaller than 32bit register the 32bit register
5833 * values are also truncated so we push 64-bit bounds into
5834 * 32-bit bounds. Above were truncated < 32-bits already.
5835 */
5836 if (size >= 4)
5837 return;
5838 __reg_combine_64_into_32(reg);
0c17d1d2
JH
5839}
5840
1f9a1ea8
YS
5841static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5842{
5843 if (size == 1) {
5844 reg->smin_value = reg->s32_min_value = S8_MIN;
5845 reg->smax_value = reg->s32_max_value = S8_MAX;
5846 } else if (size == 2) {
5847 reg->smin_value = reg->s32_min_value = S16_MIN;
5848 reg->smax_value = reg->s32_max_value = S16_MAX;
5849 } else {
5850 /* size == 4 */
5851 reg->smin_value = reg->s32_min_value = S32_MIN;
5852 reg->smax_value = reg->s32_max_value = S32_MAX;
5853 }
5854 reg->umin_value = reg->u32_min_value = 0;
5855 reg->umax_value = U64_MAX;
5856 reg->u32_max_value = U32_MAX;
5857 reg->var_off = tnum_unknown;
5858}
5859
5860static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5861{
5862 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5863 u64 top_smax_value, top_smin_value;
5864 u64 num_bits = size * 8;
5865
5866 if (tnum_is_const(reg->var_off)) {
5867 u64_cval = reg->var_off.value;
5868 if (size == 1)
5869 reg->var_off = tnum_const((s8)u64_cval);
5870 else if (size == 2)
5871 reg->var_off = tnum_const((s16)u64_cval);
5872 else
5873 /* size == 4 */
5874 reg->var_off = tnum_const((s32)u64_cval);
5875
5876 u64_cval = reg->var_off.value;
5877 reg->smax_value = reg->smin_value = u64_cval;
5878 reg->umax_value = reg->umin_value = u64_cval;
5879 reg->s32_max_value = reg->s32_min_value = u64_cval;
5880 reg->u32_max_value = reg->u32_min_value = u64_cval;
5881 return;
5882 }
5883
5884 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5885 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5886
5887 if (top_smax_value != top_smin_value)
5888 goto out;
5889
5890 /* find the s64_min and s64_min after sign extension */
5891 if (size == 1) {
5892 init_s64_max = (s8)reg->smax_value;
5893 init_s64_min = (s8)reg->smin_value;
5894 } else if (size == 2) {
5895 init_s64_max = (s16)reg->smax_value;
5896 init_s64_min = (s16)reg->smin_value;
5897 } else {
5898 init_s64_max = (s32)reg->smax_value;
5899 init_s64_min = (s32)reg->smin_value;
5900 }
5901
5902 s64_max = max(init_s64_max, init_s64_min);
5903 s64_min = min(init_s64_max, init_s64_min);
5904
5905 /* both of s64_max/s64_min positive or negative */
09fedc73 5906 if ((s64_max >= 0) == (s64_min >= 0)) {
1f9a1ea8
YS
5907 reg->smin_value = reg->s32_min_value = s64_min;
5908 reg->smax_value = reg->s32_max_value = s64_max;
5909 reg->umin_value = reg->u32_min_value = s64_min;
5910 reg->umax_value = reg->u32_max_value = s64_max;
5911 reg->var_off = tnum_range(s64_min, s64_max);
5912 return;
5913 }
5914
5915out:
5916 set_sext64_default_val(reg, size);
5917}
5918
8100928c
YS
5919static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5920{
5921 if (size == 1) {
5922 reg->s32_min_value = S8_MIN;
5923 reg->s32_max_value = S8_MAX;
5924 } else {
5925 /* size == 2 */
5926 reg->s32_min_value = S16_MIN;
5927 reg->s32_max_value = S16_MAX;
5928 }
5929 reg->u32_min_value = 0;
5930 reg->u32_max_value = U32_MAX;
5931}
5932
5933static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5934{
5935 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5936 u32 top_smax_value, top_smin_value;
5937 u32 num_bits = size * 8;
5938
5939 if (tnum_is_const(reg->var_off)) {
5940 u32_val = reg->var_off.value;
5941 if (size == 1)
5942 reg->var_off = tnum_const((s8)u32_val);
5943 else
5944 reg->var_off = tnum_const((s16)u32_val);
5945
5946 u32_val = reg->var_off.value;
5947 reg->s32_min_value = reg->s32_max_value = u32_val;
5948 reg->u32_min_value = reg->u32_max_value = u32_val;
5949 return;
5950 }
5951
5952 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5953 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5954
5955 if (top_smax_value != top_smin_value)
5956 goto out;
5957
5958 /* find the s32_min and s32_min after sign extension */
5959 if (size == 1) {
5960 init_s32_max = (s8)reg->s32_max_value;
5961 init_s32_min = (s8)reg->s32_min_value;
5962 } else {
5963 /* size == 2 */
5964 init_s32_max = (s16)reg->s32_max_value;
5965 init_s32_min = (s16)reg->s32_min_value;
5966 }
5967 s32_max = max(init_s32_max, init_s32_min);
5968 s32_min = min(init_s32_max, init_s32_min);
5969
09fedc73 5970 if ((s32_min >= 0) == (s32_max >= 0)) {
8100928c
YS
5971 reg->s32_min_value = s32_min;
5972 reg->s32_max_value = s32_max;
5973 reg->u32_min_value = (u32)s32_min;
5974 reg->u32_max_value = (u32)s32_max;
5975 return;
5976 }
5977
5978out:
5979 set_sext32_default_val(reg, size);
5980}
5981
a23740ec
AN
5982static bool bpf_map_is_rdonly(const struct bpf_map *map)
5983{
353050be
DB
5984 /* A map is considered read-only if the following condition are true:
5985 *
5986 * 1) BPF program side cannot change any of the map content. The
5987 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5988 * and was set at map creation time.
5989 * 2) The map value(s) have been initialized from user space by a
5990 * loader and then "frozen", such that no new map update/delete
5991 * operations from syscall side are possible for the rest of
5992 * the map's lifetime from that point onwards.
5993 * 3) Any parallel/pending map update/delete operations from syscall
5994 * side have been completed. Only after that point, it's safe to
5995 * assume that map value(s) are immutable.
5996 */
5997 return (map->map_flags & BPF_F_RDONLY_PROG) &&
5998 READ_ONCE(map->frozen) &&
5999 !bpf_map_write_active(map);
a23740ec
AN
6000}
6001
1f9a1ea8
YS
6002static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6003 bool is_ldsx)
a23740ec
AN
6004{
6005 void *ptr;
6006 u64 addr;
6007 int err;
6008
6009 err = map->ops->map_direct_value_addr(map, &addr, off);
6010 if (err)
6011 return err;
2dedd7d2 6012 ptr = (void *)(long)addr + off;
a23740ec
AN
6013
6014 switch (size) {
6015 case sizeof(u8):
1f9a1ea8 6016 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
a23740ec
AN
6017 break;
6018 case sizeof(u16):
1f9a1ea8 6019 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
a23740ec
AN
6020 break;
6021 case sizeof(u32):
1f9a1ea8 6022 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
a23740ec
AN
6023 break;
6024 case sizeof(u64):
6025 *val = *(u64 *)ptr;
6026 break;
6027 default:
6028 return -EINVAL;
6029 }
6030 return 0;
6031}
6032
6fcd486b 6033#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
30ee9821 6034#define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6fcd486b 6035#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
57539b1c 6036
6fcd486b
AS
6037/*
6038 * Allow list few fields as RCU trusted or full trusted.
6039 * This logic doesn't allow mix tagging and will be removed once GCC supports
6040 * btf_type_tag.
6041 */
6042
6043/* RCU trusted: these fields are trusted in RCU CS and never NULL */
6044BTF_TYPE_SAFE_RCU(struct task_struct) {
57539b1c 6045 const cpumask_t *cpus_ptr;
8d093b4e 6046 struct css_set __rcu *cgroups;
6fcd486b
AS
6047 struct task_struct __rcu *real_parent;
6048 struct task_struct *group_leader;
8d093b4e
AS
6049};
6050
30ee9821
AS
6051BTF_TYPE_SAFE_RCU(struct cgroup) {
6052 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6053 struct kernfs_node *kn;
6054};
6055
6fcd486b 6056BTF_TYPE_SAFE_RCU(struct css_set) {
8d093b4e 6057 struct cgroup *dfl_cgrp;
57539b1c
DV
6058};
6059
30ee9821
AS
6060/* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6061BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6062 struct file __rcu *exe_file;
6063};
6064
6065/* skb->sk, req->sk are not RCU protected, but we mark them as such
6066 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6067 */
6068BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6069 struct sock *sk;
6070};
6071
6072BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6073 struct sock *sk;
6074};
6075
6fcd486b
AS
6076/* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6077BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
63260df1 6078 struct seq_file *seq;
6fcd486b
AS
6079};
6080
6081BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
63260df1
AS
6082 struct bpf_iter_meta *meta;
6083 struct task_struct *task;
6fcd486b
AS
6084};
6085
6086BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6087 struct file *file;
6088};
6089
6090BTF_TYPE_SAFE_TRUSTED(struct file) {
6091 struct inode *f_inode;
6092};
6093
6094BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6095 /* no negative dentry-s in places where bpf can see it */
6096 struct inode *d_inode;
6097};
6098
6099BTF_TYPE_SAFE_TRUSTED(struct socket) {
6100 struct sock *sk;
6101};
6102
6103static bool type_is_rcu(struct bpf_verifier_env *env,
6104 struct bpf_reg_state *reg,
63260df1 6105 const char *field_name, u32 btf_id)
57539b1c 6106{
6fcd486b 6107 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
30ee9821 6108 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6fcd486b 6109 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
57539b1c 6110
63260df1 6111 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6fcd486b 6112}
57539b1c 6113
30ee9821
AS
6114static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6115 struct bpf_reg_state *reg,
6116 const char *field_name, u32 btf_id)
6117{
6118 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6119 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6120 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6121
6122 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6123}
6124
6fcd486b
AS
6125static bool type_is_trusted(struct bpf_verifier_env *env,
6126 struct bpf_reg_state *reg,
63260df1 6127 const char *field_name, u32 btf_id)
6fcd486b
AS
6128{
6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6131 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6132 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6133 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6134 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6135
63260df1 6136 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
57539b1c
DV
6137}
6138
9e15db66
AS
6139static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6140 struct bpf_reg_state *regs,
6141 int regno, int off, int size,
6142 enum bpf_access_type atype,
6143 int value_regno)
6144{
6145 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
6146 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6147 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
63260df1 6148 const char *field_name = NULL;
c6f1bfe8 6149 enum bpf_type_flag flag = 0;
b7e852a9 6150 u32 btf_id = 0;
9e15db66
AS
6151 int ret;
6152
c67cae55
AS
6153 if (!env->allow_ptr_leaks) {
6154 verbose(env,
6155 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6156 tname);
6157 return -EPERM;
6158 }
6159 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6160 verbose(env,
6161 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6162 tname);
6163 return -EINVAL;
6164 }
9e15db66
AS
6165 if (off < 0) {
6166 verbose(env,
6167 "R%d is ptr_%s invalid negative access: off=%d\n",
6168 regno, tname, off);
6169 return -EACCES;
6170 }
6171 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6172 char tn_buf[48];
6173
6174 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6175 verbose(env,
6176 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6177 regno, tname, off, tn_buf);
6178 return -EACCES;
6179 }
6180
c6f1bfe8
YS
6181 if (reg->type & MEM_USER) {
6182 verbose(env,
6183 "R%d is ptr_%s access user memory: off=%d\n",
6184 regno, tname, off);
6185 return -EACCES;
6186 }
6187
5844101a
HL
6188 if (reg->type & MEM_PERCPU) {
6189 verbose(env,
6190 "R%d is ptr_%s access percpu memory: off=%d\n",
6191 regno, tname, off);
6192 return -EACCES;
6193 }
6194
7d64c513 6195 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
282de143
KKD
6196 if (!btf_is_kernel(reg->btf)) {
6197 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6198 return -EFAULT;
6199 }
b7e852a9 6200 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
27ae7997 6201 } else {
282de143
KKD
6202 /* Writes are permitted with default btf_struct_access for
6203 * program allocated objects (which always have ref_obj_id > 0),
6204 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6205 */
503e4def 6206 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
27ae7997
MKL
6207 verbose(env, "only read is supported\n");
6208 return -EACCES;
6209 }
6210
6a3cd331
DM
6211 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6212 !reg->ref_obj_id) {
282de143
KKD
6213 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6214 return -EFAULT;
6215 }
6216
63260df1 6217 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
27ae7997
MKL
6218 }
6219
9e15db66
AS
6220 if (ret < 0)
6221 return ret;
6222
6fcd486b
AS
6223 if (ret != PTR_TO_BTF_ID) {
6224 /* just mark; */
6efe152d 6225
6fcd486b
AS
6226 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6227 /* If this is an untrusted pointer, all pointers formed by walking it
6228 * also inherit the untrusted flag.
6229 */
6230 flag = PTR_UNTRUSTED;
6231
6232 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6233 /* By default any pointer obtained from walking a trusted pointer is no
6234 * longer trusted, unless the field being accessed has explicitly been
6235 * marked as inheriting its parent's state of trust (either full or RCU).
6236 * For example:
6237 * 'cgroups' pointer is untrusted if task->cgroups dereference
6238 * happened in a sleepable program outside of bpf_rcu_read_lock()
6239 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6240 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6241 *
6242 * A regular RCU-protected pointer with __rcu tag can also be deemed
6243 * trusted if we are in an RCU CS. Such pointer can be NULL.
20c09d92 6244 */
63260df1 6245 if (type_is_trusted(env, reg, field_name, btf_id)) {
6fcd486b
AS
6246 flag |= PTR_TRUSTED;
6247 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
63260df1 6248 if (type_is_rcu(env, reg, field_name, btf_id)) {
6fcd486b
AS
6249 /* ignore __rcu tag and mark it MEM_RCU */
6250 flag |= MEM_RCU;
30ee9821
AS
6251 } else if (flag & MEM_RCU ||
6252 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6fcd486b 6253 /* __rcu tagged pointers can be NULL */
30ee9821 6254 flag |= MEM_RCU | PTR_MAYBE_NULL;
7ce4dc3e
YS
6255
6256 /* We always trust them */
6257 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6258 flag & PTR_UNTRUSTED)
6259 flag &= ~PTR_UNTRUSTED;
6fcd486b
AS
6260 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6261 /* keep as-is */
6262 } else {
afeebf9f
AS
6263 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6264 clear_trusted_flags(&flag);
6fcd486b
AS
6265 }
6266 } else {
6267 /*
6268 * If not in RCU CS or MEM_RCU pointer can be NULL then
6269 * aggressively mark as untrusted otherwise such
6270 * pointers will be plain PTR_TO_BTF_ID without flags
6271 * and will be allowed to be passed into helpers for
6272 * compat reasons.
6273 */
6274 flag = PTR_UNTRUSTED;
6275 }
20c09d92 6276 } else {
6fcd486b 6277 /* Old compat. Deprecated */
afeebf9f 6278 clear_trusted_flags(&flag);
20c09d92 6279 }
3f00c523 6280
41c48f3a 6281 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 6282 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
6283
6284 return 0;
6285}
6286
6287static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6288 struct bpf_reg_state *regs,
6289 int regno, int off, int size,
6290 enum bpf_access_type atype,
6291 int value_regno)
6292{
6293 struct bpf_reg_state *reg = regs + regno;
6294 struct bpf_map *map = reg->map_ptr;
6728aea7 6295 struct bpf_reg_state map_reg;
c6f1bfe8 6296 enum bpf_type_flag flag = 0;
41c48f3a
AI
6297 const struct btf_type *t;
6298 const char *tname;
6299 u32 btf_id;
6300 int ret;
6301
6302 if (!btf_vmlinux) {
6303 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6304 return -ENOTSUPP;
6305 }
6306
6307 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6308 verbose(env, "map_ptr access not supported for map type %d\n",
6309 map->map_type);
6310 return -ENOTSUPP;
6311 }
6312
6313 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6314 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6315
c67cae55 6316 if (!env->allow_ptr_leaks) {
41c48f3a 6317 verbose(env,
c67cae55 6318 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
41c48f3a
AI
6319 tname);
6320 return -EPERM;
9e15db66 6321 }
27ae7997 6322
41c48f3a
AI
6323 if (off < 0) {
6324 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6325 regno, tname, off);
6326 return -EACCES;
6327 }
6328
6329 if (atype != BPF_READ) {
6330 verbose(env, "only read from %s is supported\n", tname);
6331 return -EACCES;
6332 }
6333
6728aea7
KKD
6334 /* Simulate access to a PTR_TO_BTF_ID */
6335 memset(&map_reg, 0, sizeof(map_reg));
6336 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
63260df1 6337 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
41c48f3a
AI
6338 if (ret < 0)
6339 return ret;
6340
6341 if (value_regno >= 0)
c6f1bfe8 6342 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 6343
9e15db66
AS
6344 return 0;
6345}
6346
01f810ac
AM
6347/* Check that the stack access at the given offset is within bounds. The
6348 * maximum valid offset is -1.
6349 *
6350 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6351 * -state->allocated_stack for reads.
6352 */
6353static int check_stack_slot_within_bounds(int off,
6354 struct bpf_func_state *state,
6355 enum bpf_access_type t)
6356{
6357 int min_valid_off;
6358
6359 if (t == BPF_WRITE)
6360 min_valid_off = -MAX_BPF_STACK;
6361 else
6362 min_valid_off = -state->allocated_stack;
6363
6364 if (off < min_valid_off || off > -1)
6365 return -EACCES;
6366 return 0;
6367}
6368
6369/* Check that the stack access at 'regno + off' falls within the maximum stack
6370 * bounds.
6371 *
6372 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6373 */
6374static int check_stack_access_within_bounds(
6375 struct bpf_verifier_env *env,
6376 int regno, int off, int access_size,
61df10c7 6377 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
6378{
6379 struct bpf_reg_state *regs = cur_regs(env);
6380 struct bpf_reg_state *reg = regs + regno;
6381 struct bpf_func_state *state = func(env, reg);
6382 int min_off, max_off;
6383 int err;
6384 char *err_extra;
6385
6386 if (src == ACCESS_HELPER)
6387 /* We don't know if helpers are reading or writing (or both). */
6388 err_extra = " indirect access to";
6389 else if (type == BPF_READ)
6390 err_extra = " read from";
6391 else
6392 err_extra = " write to";
6393
6394 if (tnum_is_const(reg->var_off)) {
6395 min_off = reg->var_off.value + off;
6396 if (access_size > 0)
6397 max_off = min_off + access_size - 1;
6398 else
6399 max_off = min_off;
6400 } else {
6401 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6402 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6403 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6404 err_extra, regno);
6405 return -EACCES;
6406 }
6407 min_off = reg->smin_value + off;
6408 if (access_size > 0)
6409 max_off = reg->smax_value + off + access_size - 1;
6410 else
6411 max_off = min_off;
6412 }
6413
6414 err = check_stack_slot_within_bounds(min_off, state, type);
6415 if (!err)
6416 err = check_stack_slot_within_bounds(max_off, state, type);
6417
6418 if (err) {
6419 if (tnum_is_const(reg->var_off)) {
6420 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6421 err_extra, regno, off, access_size);
6422 } else {
6423 char tn_buf[48];
6424
6425 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6426 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6427 err_extra, regno, tn_buf, access_size);
6428 }
6429 }
6430 return err;
6431}
41c48f3a 6432
17a52670
AS
6433/* check whether memory at (regno + off) is accessible for t = (read | write)
6434 * if t==write, value_regno is a register which value is stored into memory
6435 * if t==read, value_regno is a register which will receive the value from memory
6436 * if t==write && value_regno==-1, some unknown value is stored into memory
6437 * if t==read && value_regno==-1, don't care what we read from memory
6438 */
ca369602
DB
6439static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6440 int off, int bpf_size, enum bpf_access_type t,
1f9a1ea8 6441 int value_regno, bool strict_alignment_once, bool is_ldsx)
17a52670 6442{
638f5b90
AS
6443 struct bpf_reg_state *regs = cur_regs(env);
6444 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 6445 struct bpf_func_state *state;
17a52670
AS
6446 int size, err = 0;
6447
6448 size = bpf_size_to_bytes(bpf_size);
6449 if (size < 0)
6450 return size;
6451
f1174f77 6452 /* alignment checks will add in reg->off themselves */
ca369602 6453 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
6454 if (err)
6455 return err;
17a52670 6456
f1174f77
EC
6457 /* for access checks, reg->off is just part of off */
6458 off += reg->off;
6459
69c087ba
YS
6460 if (reg->type == PTR_TO_MAP_KEY) {
6461 if (t == BPF_WRITE) {
6462 verbose(env, "write to change key R%d not allowed\n", regno);
6463 return -EACCES;
6464 }
6465
6466 err = check_mem_region_access(env, regno, off, size,
6467 reg->map_ptr->key_size, false);
6468 if (err)
6469 return err;
6470 if (value_regno >= 0)
6471 mark_reg_unknown(env, regs, value_regno);
6472 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 6473 struct btf_field *kptr_field = NULL;
61df10c7 6474
1be7f75d
AS
6475 if (t == BPF_WRITE && value_regno >= 0 &&
6476 is_pointer_value(env, value_regno)) {
61bd5218 6477 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
6478 return -EACCES;
6479 }
591fe988
DB
6480 err = check_map_access_type(env, regno, off, size, t);
6481 if (err)
6482 return err;
61df10c7
KKD
6483 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6484 if (err)
6485 return err;
6486 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
6487 kptr_field = btf_record_find(reg->map_ptr->record,
6488 off + reg->var_off.value, BPF_KPTR);
6489 if (kptr_field) {
6490 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 6491 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
6492 struct bpf_map *map = reg->map_ptr;
6493
6494 /* if map is read-only, track its contents as scalars */
6495 if (tnum_is_const(reg->var_off) &&
6496 bpf_map_is_rdonly(map) &&
6497 map->ops->map_direct_value_addr) {
6498 int map_off = off + reg->var_off.value;
6499 u64 val = 0;
6500
6501 err = bpf_map_direct_read(map, map_off, size,
1f9a1ea8 6502 &val, is_ldsx);
a23740ec
AN
6503 if (err)
6504 return err;
6505
6506 regs[value_regno].type = SCALAR_VALUE;
6507 __mark_reg_known(&regs[value_regno], val);
6508 } else {
6509 mark_reg_unknown(env, regs, value_regno);
6510 }
6511 }
34d3a78c
HL
6512 } else if (base_type(reg->type) == PTR_TO_MEM) {
6513 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6514
6515 if (type_may_be_null(reg->type)) {
6516 verbose(env, "R%d invalid mem access '%s'\n", regno,
6517 reg_type_str(env, reg->type));
6518 return -EACCES;
6519 }
6520
6521 if (t == BPF_WRITE && rdonly_mem) {
6522 verbose(env, "R%d cannot write into %s\n",
6523 regno, reg_type_str(env, reg->type));
6524 return -EACCES;
6525 }
6526
457f4436
AN
6527 if (t == BPF_WRITE && value_regno >= 0 &&
6528 is_pointer_value(env, value_regno)) {
6529 verbose(env, "R%d leaks addr into mem\n", value_regno);
6530 return -EACCES;
6531 }
34d3a78c 6532
457f4436
AN
6533 err = check_mem_region_access(env, regno, off, size,
6534 reg->mem_size, false);
34d3a78c 6535 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 6536 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 6537 } else if (reg->type == PTR_TO_CTX) {
f1174f77 6538 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 6539 struct btf *btf = NULL;
9e15db66 6540 u32 btf_id = 0;
19de99f7 6541
1be7f75d
AS
6542 if (t == BPF_WRITE && value_regno >= 0 &&
6543 is_pointer_value(env, value_regno)) {
61bd5218 6544 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
6545 return -EACCES;
6546 }
f1174f77 6547
be80a1d3 6548 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
6549 if (err < 0)
6550 return err;
6551
c6f1bfe8
YS
6552 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6553 &btf_id);
9e15db66
AS
6554 if (err)
6555 verbose_linfo(env, insn_idx, "; ");
969bf05e 6556 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 6557 /* ctx access returns either a scalar, or a
de8f3a83
DB
6558 * PTR_TO_PACKET[_META,_END]. In the latter
6559 * case, we know the offset is zero.
f1174f77 6560 */
46f8bc92 6561 if (reg_type == SCALAR_VALUE) {
638f5b90 6562 mark_reg_unknown(env, regs, value_regno);
46f8bc92 6563 } else {
638f5b90 6564 mark_reg_known_zero(env, regs,
61bd5218 6565 value_regno);
c25b2ae1 6566 if (type_may_be_null(reg_type))
46f8bc92 6567 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
6568 /* A load of ctx field could have different
6569 * actual load size with the one encoded in the
6570 * insn. When the dst is PTR, it is for sure not
6571 * a sub-register.
6572 */
6573 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 6574 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 6575 regs[value_regno].btf = btf;
9e15db66 6576 regs[value_regno].btf_id = btf_id;
22dc4a0f 6577 }
46f8bc92 6578 }
638f5b90 6579 regs[value_regno].type = reg_type;
969bf05e 6580 }
17a52670 6581
f1174f77 6582 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
6583 /* Basic bounds checks. */
6584 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
6585 if (err)
6586 return err;
8726679a 6587
f4d7e40a
AS
6588 state = func(env, reg);
6589 err = update_stack_depth(env, state, off);
6590 if (err)
6591 return err;
8726679a 6592
01f810ac
AM
6593 if (t == BPF_READ)
6594 err = check_stack_read(env, regno, off, size,
61bd5218 6595 value_regno);
01f810ac
AM
6596 else
6597 err = check_stack_write(env, regno, off, size,
6598 value_regno, insn_idx);
de8f3a83 6599 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 6600 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 6601 verbose(env, "cannot write into packet\n");
969bf05e
AS
6602 return -EACCES;
6603 }
4acf6c0b
BB
6604 if (t == BPF_WRITE && value_regno >= 0 &&
6605 is_pointer_value(env, value_regno)) {
61bd5218
JK
6606 verbose(env, "R%d leaks addr into packet\n",
6607 value_regno);
4acf6c0b
BB
6608 return -EACCES;
6609 }
9fd29c08 6610 err = check_packet_access(env, regno, off, size, false);
969bf05e 6611 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 6612 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
6613 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6614 if (t == BPF_WRITE && value_regno >= 0 &&
6615 is_pointer_value(env, value_regno)) {
6616 verbose(env, "R%d leaks addr into flow keys\n",
6617 value_regno);
6618 return -EACCES;
6619 }
6620
6621 err = check_flow_keys_access(env, off, size);
6622 if (!err && t == BPF_READ && value_regno >= 0)
6623 mark_reg_unknown(env, regs, value_regno);
46f8bc92 6624 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 6625 if (t == BPF_WRITE) {
46f8bc92 6626 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 6627 regno, reg_type_str(env, reg->type));
c64b7983
JS
6628 return -EACCES;
6629 }
5f456649 6630 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
6631 if (!err && value_regno >= 0)
6632 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
6633 } else if (reg->type == PTR_TO_TP_BUFFER) {
6634 err = check_tp_buffer_access(env, reg, regno, off, size);
6635 if (!err && t == BPF_READ && value_regno >= 0)
6636 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
6637 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6638 !type_may_be_null(reg->type)) {
9e15db66
AS
6639 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6640 value_regno);
41c48f3a
AI
6641 } else if (reg->type == CONST_PTR_TO_MAP) {
6642 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6643 value_regno);
20b2aff4
HL
6644 } else if (base_type(reg->type) == PTR_TO_BUF) {
6645 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
6646 u32 *max_access;
6647
6648 if (rdonly_mem) {
6649 if (t == BPF_WRITE) {
6650 verbose(env, "R%d cannot write into %s\n",
6651 regno, reg_type_str(env, reg->type));
6652 return -EACCES;
6653 }
20b2aff4
HL
6654 max_access = &env->prog->aux->max_rdonly_access;
6655 } else {
20b2aff4 6656 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 6657 }
20b2aff4 6658
f6dfbe31 6659 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 6660 max_access);
20b2aff4
HL
6661
6662 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 6663 mark_reg_unknown(env, regs, value_regno);
17a52670 6664 } else {
61bd5218 6665 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 6666 reg_type_str(env, reg->type));
17a52670
AS
6667 return -EACCES;
6668 }
969bf05e 6669
f1174f77 6670 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 6671 regs[value_regno].type == SCALAR_VALUE) {
1f9a1ea8
YS
6672 if (!is_ldsx)
6673 /* b/h/w load zero-extends, mark upper bits as known 0 */
6674 coerce_reg_to_size(&regs[value_regno], size);
6675 else
6676 coerce_reg_to_size_sx(&regs[value_regno], size);
969bf05e 6677 }
17a52670
AS
6678 return err;
6679}
6680
91c960b0 6681static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 6682{
5ffa2550 6683 int load_reg;
17a52670
AS
6684 int err;
6685
5ca419f2
BJ
6686 switch (insn->imm) {
6687 case BPF_ADD:
6688 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
6689 case BPF_AND:
6690 case BPF_AND | BPF_FETCH:
6691 case BPF_OR:
6692 case BPF_OR | BPF_FETCH:
6693 case BPF_XOR:
6694 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
6695 case BPF_XCHG:
6696 case BPF_CMPXCHG:
5ca419f2
BJ
6697 break;
6698 default:
91c960b0
BJ
6699 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6700 return -EINVAL;
6701 }
6702
6703 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6704 verbose(env, "invalid atomic operand size\n");
17a52670
AS
6705 return -EINVAL;
6706 }
6707
6708 /* check src1 operand */
dc503a8a 6709 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6710 if (err)
6711 return err;
6712
6713 /* check src2 operand */
dc503a8a 6714 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6715 if (err)
6716 return err;
6717
5ffa2550
BJ
6718 if (insn->imm == BPF_CMPXCHG) {
6719 /* Check comparison of R0 with memory location */
a82fe085
DB
6720 const u32 aux_reg = BPF_REG_0;
6721
6722 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
6723 if (err)
6724 return err;
a82fe085
DB
6725
6726 if (is_pointer_value(env, aux_reg)) {
6727 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6728 return -EACCES;
6729 }
5ffa2550
BJ
6730 }
6731
6bdf6abc 6732 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6733 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
6734 return -EACCES;
6735 }
6736
ca369602 6737 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 6738 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
6739 is_flow_key_reg(env, insn->dst_reg) ||
6740 is_sk_reg(env, insn->dst_reg)) {
91c960b0 6741 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 6742 insn->dst_reg,
c25b2ae1 6743 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
6744 return -EACCES;
6745 }
6746
37086bfd
BJ
6747 if (insn->imm & BPF_FETCH) {
6748 if (insn->imm == BPF_CMPXCHG)
6749 load_reg = BPF_REG_0;
6750 else
6751 load_reg = insn->src_reg;
6752
6753 /* check and record load of old value */
6754 err = check_reg_arg(env, load_reg, DST_OP);
6755 if (err)
6756 return err;
6757 } else {
6758 /* This instruction accesses a memory location but doesn't
6759 * actually load it into a register.
6760 */
6761 load_reg = -1;
6762 }
6763
7d3baf0a
DB
6764 /* Check whether we can read the memory, with second call for fetch
6765 * case to simulate the register fill.
6766 */
31fd8581 6767 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1f9a1ea8 6768 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7d3baf0a
DB
6769 if (!err && load_reg >= 0)
6770 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6771 BPF_SIZE(insn->code), BPF_READ, load_reg,
1f9a1ea8 6772 true, false);
17a52670
AS
6773 if (err)
6774 return err;
6775
7d3baf0a 6776 /* Check whether we can write into the same memory. */
5ca419f2 6777 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1f9a1ea8 6778 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
5ca419f2
BJ
6779 if (err)
6780 return err;
6781
5ca419f2 6782 return 0;
17a52670
AS
6783}
6784
01f810ac
AM
6785/* When register 'regno' is used to read the stack (either directly or through
6786 * a helper function) make sure that it's within stack boundary and, depending
6787 * on the access type, that all elements of the stack are initialized.
6788 *
6789 * 'off' includes 'regno->off', but not its dynamic part (if any).
6790 *
6791 * All registers that have been spilled on the stack in the slots within the
6792 * read offsets are marked as read.
6793 */
6794static int check_stack_range_initialized(
6795 struct bpf_verifier_env *env, int regno, int off,
6796 int access_size, bool zero_size_allowed,
61df10c7 6797 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
6798{
6799 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
6800 struct bpf_func_state *state = func(env, reg);
6801 int err, min_off, max_off, i, j, slot, spi;
6802 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6803 enum bpf_access_type bounds_check_type;
6804 /* Some accesses can write anything into the stack, others are
6805 * read-only.
6806 */
6807 bool clobber = false;
2011fccf 6808
01f810ac
AM
6809 if (access_size == 0 && !zero_size_allowed) {
6810 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
6811 return -EACCES;
6812 }
2011fccf 6813
01f810ac
AM
6814 if (type == ACCESS_HELPER) {
6815 /* The bounds checks for writes are more permissive than for
6816 * reads. However, if raw_mode is not set, we'll do extra
6817 * checks below.
6818 */
6819 bounds_check_type = BPF_WRITE;
6820 clobber = true;
6821 } else {
6822 bounds_check_type = BPF_READ;
6823 }
6824 err = check_stack_access_within_bounds(env, regno, off, access_size,
6825 type, bounds_check_type);
6826 if (err)
6827 return err;
6828
17a52670 6829
2011fccf 6830 if (tnum_is_const(reg->var_off)) {
01f810ac 6831 min_off = max_off = reg->var_off.value + off;
2011fccf 6832 } else {
088ec26d
AI
6833 /* Variable offset is prohibited for unprivileged mode for
6834 * simplicity since it requires corresponding support in
6835 * Spectre masking for stack ALU.
6836 * See also retrieve_ptr_limit().
6837 */
2c78ee89 6838 if (!env->bypass_spec_v1) {
088ec26d 6839 char tn_buf[48];
f1174f77 6840
088ec26d 6841 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6842 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6843 regno, err_extra, tn_buf);
088ec26d
AI
6844 return -EACCES;
6845 }
f2bcd05e
AI
6846 /* Only initialized buffer on stack is allowed to be accessed
6847 * with variable offset. With uninitialized buffer it's hard to
6848 * guarantee that whole memory is marked as initialized on
6849 * helper return since specific bounds are unknown what may
6850 * cause uninitialized stack leaking.
6851 */
6852 if (meta && meta->raw_mode)
6853 meta = NULL;
6854
01f810ac
AM
6855 min_off = reg->smin_value + off;
6856 max_off = reg->smax_value + off;
17a52670
AS
6857 }
6858
435faee1 6859 if (meta && meta->raw_mode) {
ef8fc7a0
KKD
6860 /* Ensure we won't be overwriting dynptrs when simulating byte
6861 * by byte access in check_helper_call using meta.access_size.
6862 * This would be a problem if we have a helper in the future
6863 * which takes:
6864 *
6865 * helper(uninit_mem, len, dynptr)
6866 *
6867 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6868 * may end up writing to dynptr itself when touching memory from
6869 * arg 1. This can be relaxed on a case by case basis for known
6870 * safe cases, but reject due to the possibilitiy of aliasing by
6871 * default.
6872 */
6873 for (i = min_off; i < max_off + access_size; i++) {
6874 int stack_off = -i - 1;
6875
6876 spi = __get_spi(i);
6877 /* raw_mode may write past allocated_stack */
6878 if (state->allocated_stack <= stack_off)
6879 continue;
6880 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6881 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6882 return -EACCES;
6883 }
6884 }
435faee1
DB
6885 meta->access_size = access_size;
6886 meta->regno = regno;
6887 return 0;
6888 }
6889
2011fccf 6890 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
6891 u8 *stype;
6892
2011fccf 6893 slot = -i - 1;
638f5b90 6894 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
6895 if (state->allocated_stack <= slot)
6896 goto err;
6897 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6898 if (*stype == STACK_MISC)
6899 goto mark;
6715df8d
EZ
6900 if ((*stype == STACK_ZERO) ||
6901 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
01f810ac
AM
6902 if (clobber) {
6903 /* helper can write anything into the stack */
6904 *stype = STACK_MISC;
6905 }
cc2b14d5 6906 goto mark;
17a52670 6907 }
1d68f22b 6908
27113c59 6909 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
6910 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6911 env->allow_ptr_leaks)) {
01f810ac
AM
6912 if (clobber) {
6913 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6914 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 6915 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 6916 }
f7cf25b2
AS
6917 goto mark;
6918 }
6919
cc2b14d5 6920err:
2011fccf 6921 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
6922 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6923 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
6924 } else {
6925 char tn_buf[48];
6926
6927 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
6928 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6929 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 6930 }
cc2b14d5
AS
6931 return -EACCES;
6932mark:
6933 /* reading any byte out of 8-byte 'spill_slot' will cause
6934 * the whole slot to be marked as 'read'
6935 */
679c782d 6936 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
6937 state->stack[spi].spilled_ptr.parent,
6938 REG_LIVE_READ64);
261f4664
KKD
6939 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6940 * be sure that whether stack slot is written to or not. Hence,
6941 * we must still conservatively propagate reads upwards even if
6942 * helper may write to the entire memory range.
6943 */
17a52670 6944 }
2011fccf 6945 return update_stack_depth(env, state, min_off);
17a52670
AS
6946}
6947
06c1c049
GB
6948static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6949 int access_size, bool zero_size_allowed,
6950 struct bpf_call_arg_meta *meta)
6951{
638f5b90 6952 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 6953 u32 *max_access;
06c1c049 6954
20b2aff4 6955 switch (base_type(reg->type)) {
06c1c049 6956 case PTR_TO_PACKET:
de8f3a83 6957 case PTR_TO_PACKET_META:
9fd29c08
YS
6958 return check_packet_access(env, regno, reg->off, access_size,
6959 zero_size_allowed);
69c087ba 6960 case PTR_TO_MAP_KEY:
7b3552d3
KKD
6961 if (meta && meta->raw_mode) {
6962 verbose(env, "R%d cannot write into %s\n", regno,
6963 reg_type_str(env, reg->type));
6964 return -EACCES;
6965 }
69c087ba
YS
6966 return check_mem_region_access(env, regno, reg->off, access_size,
6967 reg->map_ptr->key_size, false);
06c1c049 6968 case PTR_TO_MAP_VALUE:
591fe988
DB
6969 if (check_map_access_type(env, regno, reg->off, access_size,
6970 meta && meta->raw_mode ? BPF_WRITE :
6971 BPF_READ))
6972 return -EACCES;
9fd29c08 6973 return check_map_access(env, regno, reg->off, access_size,
61df10c7 6974 zero_size_allowed, ACCESS_HELPER);
457f4436 6975 case PTR_TO_MEM:
97e6d7da
KKD
6976 if (type_is_rdonly_mem(reg->type)) {
6977 if (meta && meta->raw_mode) {
6978 verbose(env, "R%d cannot write into %s\n", regno,
6979 reg_type_str(env, reg->type));
6980 return -EACCES;
6981 }
6982 }
457f4436
AN
6983 return check_mem_region_access(env, regno, reg->off,
6984 access_size, reg->mem_size,
6985 zero_size_allowed);
20b2aff4
HL
6986 case PTR_TO_BUF:
6987 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
6988 if (meta && meta->raw_mode) {
6989 verbose(env, "R%d cannot write into %s\n", regno,
6990 reg_type_str(env, reg->type));
20b2aff4 6991 return -EACCES;
97e6d7da 6992 }
20b2aff4 6993
20b2aff4
HL
6994 max_access = &env->prog->aux->max_rdonly_access;
6995 } else {
20b2aff4
HL
6996 max_access = &env->prog->aux->max_rdwr_access;
6997 }
afbf21dc
YS
6998 return check_buffer_access(env, reg, regno, reg->off,
6999 access_size, zero_size_allowed,
44e9a741 7000 max_access);
0d004c02 7001 case PTR_TO_STACK:
01f810ac
AM
7002 return check_stack_range_initialized(
7003 env,
7004 regno, reg->off, access_size,
7005 zero_size_allowed, ACCESS_HELPER, meta);
3e30be42
AS
7006 case PTR_TO_BTF_ID:
7007 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7008 access_size, BPF_READ, -1);
15baa55f
BT
7009 case PTR_TO_CTX:
7010 /* in case the function doesn't know how to access the context,
7011 * (because we are in a program of type SYSCALL for example), we
7012 * can not statically check its size.
7013 * Dynamically check it now.
7014 */
7015 if (!env->ops->convert_ctx_access) {
7016 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7017 int offset = access_size - 1;
7018
7019 /* Allow zero-byte read from PTR_TO_CTX */
7020 if (access_size == 0)
7021 return zero_size_allowed ? 0 : -EACCES;
7022
7023 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
1f9a1ea8 7024 atype, -1, false, false);
15baa55f
BT
7025 }
7026
7027 fallthrough;
0d004c02
LB
7028 default: /* scalar_value or invalid ptr */
7029 /* Allow zero-byte read from NULL, regardless of pointer type */
7030 if (zero_size_allowed && access_size == 0 &&
7031 register_is_null(reg))
7032 return 0;
7033
c25b2ae1
HL
7034 verbose(env, "R%d type=%s ", regno,
7035 reg_type_str(env, reg->type));
7036 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 7037 return -EACCES;
06c1c049
GB
7038 }
7039}
7040
d583691c
KKD
7041static int check_mem_size_reg(struct bpf_verifier_env *env,
7042 struct bpf_reg_state *reg, u32 regno,
7043 bool zero_size_allowed,
7044 struct bpf_call_arg_meta *meta)
7045{
7046 int err;
7047
7048 /* This is used to refine r0 return value bounds for helpers
7049 * that enforce this value as an upper bound on return values.
7050 * See do_refine_retval_range() for helpers that can refine
7051 * the return value. C type of helper is u32 so we pull register
7052 * bound from umax_value however, if negative verifier errors
7053 * out. Only upper bounds can be learned because retval is an
7054 * int type and negative retvals are allowed.
7055 */
be77354a 7056 meta->msize_max_value = reg->umax_value;
d583691c
KKD
7057
7058 /* The register is SCALAR_VALUE; the access check
7059 * happens using its boundaries.
7060 */
7061 if (!tnum_is_const(reg->var_off))
7062 /* For unprivileged variable accesses, disable raw
7063 * mode so that the program is required to
7064 * initialize all the memory that the helper could
7065 * just partially fill up.
7066 */
7067 meta = NULL;
7068
7069 if (reg->smin_value < 0) {
7070 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7071 regno);
7072 return -EACCES;
7073 }
7074
7075 if (reg->umin_value == 0) {
7076 err = check_helper_mem_access(env, regno - 1, 0,
7077 zero_size_allowed,
7078 meta);
7079 if (err)
7080 return err;
7081 }
7082
7083 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7084 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7085 regno);
7086 return -EACCES;
7087 }
7088 err = check_helper_mem_access(env, regno - 1,
7089 reg->umax_value,
7090 zero_size_allowed, meta);
7091 if (!err)
7092 err = mark_chain_precision(env, regno);
7093 return err;
7094}
7095
e5069b9c
DB
7096int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7097 u32 regno, u32 mem_size)
7098{
be77354a
KKD
7099 bool may_be_null = type_may_be_null(reg->type);
7100 struct bpf_reg_state saved_reg;
7101 struct bpf_call_arg_meta meta;
7102 int err;
7103
e5069b9c
DB
7104 if (register_is_null(reg))
7105 return 0;
7106
be77354a
KKD
7107 memset(&meta, 0, sizeof(meta));
7108 /* Assuming that the register contains a value check if the memory
7109 * access is safe. Temporarily save and restore the register's state as
7110 * the conversion shouldn't be visible to a caller.
7111 */
7112 if (may_be_null) {
7113 saved_reg = *reg;
e5069b9c 7114 mark_ptr_not_null_reg(reg);
e5069b9c
DB
7115 }
7116
be77354a
KKD
7117 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7118 /* Check access for BPF_WRITE */
7119 meta.raw_mode = true;
7120 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7121
7122 if (may_be_null)
7123 *reg = saved_reg;
7124
7125 return err;
e5069b9c
DB
7126}
7127
00b85860
KKD
7128static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7129 u32 regno)
d583691c
KKD
7130{
7131 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7132 bool may_be_null = type_may_be_null(mem_reg->type);
7133 struct bpf_reg_state saved_reg;
be77354a 7134 struct bpf_call_arg_meta meta;
d583691c
KKD
7135 int err;
7136
7137 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7138
be77354a
KKD
7139 memset(&meta, 0, sizeof(meta));
7140
d583691c
KKD
7141 if (may_be_null) {
7142 saved_reg = *mem_reg;
7143 mark_ptr_not_null_reg(mem_reg);
7144 }
7145
be77354a
KKD
7146 err = check_mem_size_reg(env, reg, regno, true, &meta);
7147 /* Check access for BPF_WRITE */
7148 meta.raw_mode = true;
7149 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
7150
7151 if (may_be_null)
7152 *mem_reg = saved_reg;
7153 return err;
7154}
7155
d83525ca 7156/* Implementation details:
4e814da0
KKD
7157 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7158 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 7159 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
7160 * Two separate bpf_obj_new will also have different reg->id.
7161 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7162 * clears reg->id after value_or_null->value transition, since the verifier only
7163 * cares about the range of access to valid map value pointer and doesn't care
7164 * about actual address of the map element.
d83525ca
AS
7165 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7166 * reg->id > 0 after value_or_null->value transition. By doing so
7167 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
7168 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7169 * returned from bpf_obj_new.
d83525ca
AS
7170 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7171 * dead-locks.
7172 * Since only one bpf_spin_lock is allowed the checks are simpler than
7173 * reg_is_refcounted() logic. The verifier needs to remember only
7174 * one spin_lock instead of array of acquired_refs.
d0d78c1d 7175 * cur_state->active_lock remembers which map value element or allocated
4e814da0 7176 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
7177 */
7178static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7179 bool is_lock)
7180{
7181 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7182 struct bpf_verifier_state *cur = env->cur_state;
7183 bool is_const = tnum_is_const(reg->var_off);
d83525ca 7184 u64 val = reg->var_off.value;
4e814da0
KKD
7185 struct bpf_map *map = NULL;
7186 struct btf *btf = NULL;
7187 struct btf_record *rec;
d83525ca 7188
d83525ca
AS
7189 if (!is_const) {
7190 verbose(env,
7191 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7192 regno);
7193 return -EINVAL;
7194 }
4e814da0
KKD
7195 if (reg->type == PTR_TO_MAP_VALUE) {
7196 map = reg->map_ptr;
7197 if (!map->btf) {
7198 verbose(env,
7199 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7200 map->name);
7201 return -EINVAL;
7202 }
7203 } else {
7204 btf = reg->btf;
d83525ca 7205 }
4e814da0
KKD
7206
7207 rec = reg_btf_record(reg);
7208 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7209 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7210 map ? map->name : "kptr");
d83525ca
AS
7211 return -EINVAL;
7212 }
4e814da0 7213 if (rec->spin_lock_off != val + reg->off) {
db559117 7214 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 7215 val + reg->off, rec->spin_lock_off);
d83525ca
AS
7216 return -EINVAL;
7217 }
7218 if (is_lock) {
d0d78c1d 7219 if (cur->active_lock.ptr) {
d83525ca
AS
7220 verbose(env,
7221 "Locking two bpf_spin_locks are not allowed\n");
7222 return -EINVAL;
7223 }
d0d78c1d
KKD
7224 if (map)
7225 cur->active_lock.ptr = map;
7226 else
7227 cur->active_lock.ptr = btf;
7228 cur->active_lock.id = reg->id;
d83525ca 7229 } else {
d0d78c1d
KKD
7230 void *ptr;
7231
7232 if (map)
7233 ptr = map;
7234 else
7235 ptr = btf;
7236
7237 if (!cur->active_lock.ptr) {
d83525ca
AS
7238 verbose(env, "bpf_spin_unlock without taking a lock\n");
7239 return -EINVAL;
7240 }
d0d78c1d
KKD
7241 if (cur->active_lock.ptr != ptr ||
7242 cur->active_lock.id != reg->id) {
d83525ca
AS
7243 verbose(env, "bpf_spin_unlock of different lock\n");
7244 return -EINVAL;
7245 }
534e86bc 7246
6a3cd331 7247 invalidate_non_owning_refs(env);
534e86bc 7248
6a3cd331
DM
7249 cur->active_lock.ptr = NULL;
7250 cur->active_lock.id = 0;
d83525ca
AS
7251 }
7252 return 0;
7253}
7254
b00628b1
AS
7255static int process_timer_func(struct bpf_verifier_env *env, int regno,
7256 struct bpf_call_arg_meta *meta)
7257{
7258 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7259 bool is_const = tnum_is_const(reg->var_off);
7260 struct bpf_map *map = reg->map_ptr;
7261 u64 val = reg->var_off.value;
7262
7263 if (!is_const) {
7264 verbose(env,
7265 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7266 regno);
7267 return -EINVAL;
7268 }
7269 if (!map->btf) {
7270 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7271 map->name);
7272 return -EINVAL;
7273 }
db559117
KKD
7274 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7275 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
7276 return -EINVAL;
7277 }
db559117 7278 if (map->record->timer_off != val + reg->off) {
68134668 7279 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 7280 val + reg->off, map->record->timer_off);
b00628b1
AS
7281 return -EINVAL;
7282 }
7283 if (meta->map_ptr) {
7284 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7285 return -EFAULT;
7286 }
3e8ce298 7287 meta->map_uid = reg->map_uid;
b00628b1
AS
7288 meta->map_ptr = map;
7289 return 0;
7290}
7291
c0a5a21c
KKD
7292static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7293 struct bpf_call_arg_meta *meta)
7294{
7295 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 7296 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 7297 struct btf_field *kptr_field;
c0a5a21c 7298 u32 kptr_off;
c0a5a21c
KKD
7299
7300 if (!tnum_is_const(reg->var_off)) {
7301 verbose(env,
7302 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7303 regno);
7304 return -EINVAL;
7305 }
7306 if (!map_ptr->btf) {
7307 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7308 map_ptr->name);
7309 return -EINVAL;
7310 }
aa3496ac
KKD
7311 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7312 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
7313 return -EINVAL;
7314 }
7315
7316 meta->map_ptr = map_ptr;
7317 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
7318 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7319 if (!kptr_field) {
c0a5a21c
KKD
7320 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7321 return -EACCES;
7322 }
aa3496ac 7323 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
7324 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7325 return -EACCES;
7326 }
aa3496ac 7327 meta->kptr_field = kptr_field;
c0a5a21c
KKD
7328 return 0;
7329}
7330
27060531
KKD
7331/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7332 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7333 *
7334 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7335 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7336 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7337 *
7338 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7339 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7340 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7341 * mutate the view of the dynptr and also possibly destroy it. In the latter
7342 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7343 * memory that dynptr points to.
7344 *
7345 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7346 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7347 * readonly dynptr view yet, hence only the first case is tracked and checked.
7348 *
7349 * This is consistent with how C applies the const modifier to a struct object,
7350 * where the pointer itself inside bpf_dynptr becomes const but not what it
7351 * points to.
7352 *
7353 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7354 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7355 */
1d18feb2 7356static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
361f129f 7357 enum bpf_arg_type arg_type, int clone_ref_obj_id)
6b75bd3d
KKD
7358{
7359 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1d18feb2 7360 int err;
6b75bd3d 7361
27060531
KKD
7362 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7363 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7364 */
7365 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7366 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7367 return -EFAULT;
7368 }
79168a66 7369
27060531
KKD
7370 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7371 * constructing a mutable bpf_dynptr object.
7372 *
7373 * Currently, this is only possible with PTR_TO_STACK
7374 * pointing to a region of at least 16 bytes which doesn't
7375 * contain an existing bpf_dynptr.
7376 *
7377 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7378 * mutated or destroyed. However, the memory it points to
7379 * may be mutated.
7380 *
7381 * None - Points to a initialized dynptr that can be mutated and
7382 * destroyed, including mutation of the memory it points
7383 * to.
6b75bd3d 7384 */
6b75bd3d 7385 if (arg_type & MEM_UNINIT) {
1d18feb2
JK
7386 int i;
7387
7e0dac28 7388 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6b75bd3d
KKD
7389 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7390 return -EINVAL;
7391 }
7392
1d18feb2
JK
7393 /* we write BPF_DW bits (8 bytes) at a time */
7394 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7395 err = check_mem_access(env, insn_idx, regno,
1f9a1ea8 7396 i, BPF_DW, BPF_WRITE, -1, false, false);
1d18feb2
JK
7397 if (err)
7398 return err;
6b75bd3d
KKD
7399 }
7400
361f129f 7401 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
27060531
KKD
7402 } else /* MEM_RDONLY and None case from above */ {
7403 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7404 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7405 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7406 return -EINVAL;
7407 }
7408
7e0dac28 7409 if (!is_dynptr_reg_valid_init(env, reg)) {
6b75bd3d
KKD
7410 verbose(env,
7411 "Expected an initialized dynptr as arg #%d\n",
7412 regno);
7413 return -EINVAL;
7414 }
7415
27060531
KKD
7416 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7417 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6b75bd3d
KKD
7418 verbose(env,
7419 "Expected a dynptr of type %s as arg #%d\n",
d54e0f6c 7420 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
6b75bd3d
KKD
7421 return -EINVAL;
7422 }
d6fefa11
KKD
7423
7424 err = mark_dynptr_read(env, reg);
6b75bd3d 7425 }
1d18feb2 7426 return err;
6b75bd3d
KKD
7427}
7428
06accc87
AN
7429static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7430{
7431 struct bpf_func_state *state = func(env, reg);
7432
7433 return state->stack[spi].spilled_ptr.ref_obj_id;
7434}
7435
7436static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7437{
7438 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7439}
7440
7441static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7442{
7443 return meta->kfunc_flags & KF_ITER_NEW;
7444}
7445
7446static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7447{
7448 return meta->kfunc_flags & KF_ITER_NEXT;
7449}
7450
7451static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7452{
7453 return meta->kfunc_flags & KF_ITER_DESTROY;
7454}
7455
7456static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7457{
7458 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7459 * kfunc is iter state pointer
7460 */
7461 return arg == 0 && is_iter_kfunc(meta);
7462}
7463
7464static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7465 struct bpf_kfunc_call_arg_meta *meta)
7466{
7467 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7468 const struct btf_type *t;
7469 const struct btf_param *arg;
7470 int spi, err, i, nr_slots;
7471 u32 btf_id;
7472
7473 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7474 arg = &btf_params(meta->func_proto)[0];
7475 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7476 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7477 nr_slots = t->size / BPF_REG_SIZE;
7478
06accc87
AN
7479 if (is_iter_new_kfunc(meta)) {
7480 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7481 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7482 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7483 iter_type_str(meta->btf, btf_id), regno);
7484 return -EINVAL;
7485 }
7486
7487 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7488 err = check_mem_access(env, insn_idx, regno,
1f9a1ea8 7489 i, BPF_DW, BPF_WRITE, -1, false, false);
06accc87
AN
7490 if (err)
7491 return err;
7492 }
7493
7494 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7495 if (err)
7496 return err;
7497 } else {
7498 /* iter_next() or iter_destroy() expect initialized iter state*/
7499 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7500 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7501 iter_type_str(meta->btf, btf_id), regno);
7502 return -EINVAL;
7503 }
7504
b63cbc49
AN
7505 spi = iter_get_spi(env, reg, nr_slots);
7506 if (spi < 0)
7507 return spi;
7508
06accc87
AN
7509 err = mark_iter_read(env, reg, spi, nr_slots);
7510 if (err)
7511 return err;
7512
b63cbc49
AN
7513 /* remember meta->iter info for process_iter_next_call() */
7514 meta->iter.spi = spi;
7515 meta->iter.frameno = reg->frameno;
06accc87
AN
7516 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7517
7518 if (is_iter_destroy_kfunc(meta)) {
7519 err = unmark_stack_slots_iter(env, reg, nr_slots);
7520 if (err)
7521 return err;
7522 }
7523 }
7524
7525 return 0;
7526}
7527
7528/* process_iter_next_call() is called when verifier gets to iterator's next
7529 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7530 * to it as just "iter_next()" in comments below.
7531 *
7532 * BPF verifier relies on a crucial contract for any iter_next()
7533 * implementation: it should *eventually* return NULL, and once that happens
7534 * it should keep returning NULL. That is, once iterator exhausts elements to
7535 * iterate, it should never reset or spuriously return new elements.
7536 *
7537 * With the assumption of such contract, process_iter_next_call() simulates
7538 * a fork in the verifier state to validate loop logic correctness and safety
7539 * without having to simulate infinite amount of iterations.
7540 *
7541 * In current state, we first assume that iter_next() returned NULL and
7542 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7543 * conditions we should not form an infinite loop and should eventually reach
7544 * exit.
7545 *
7546 * Besides that, we also fork current state and enqueue it for later
7547 * verification. In a forked state we keep iterator state as ACTIVE
7548 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7549 * also bump iteration depth to prevent erroneous infinite loop detection
7550 * later on (see iter_active_depths_differ() comment for details). In this
7551 * state we assume that we'll eventually loop back to another iter_next()
7552 * calls (it could be in exactly same location or in some other instruction,
7553 * it doesn't matter, we don't make any unnecessary assumptions about this,
7554 * everything revolves around iterator state in a stack slot, not which
7555 * instruction is calling iter_next()). When that happens, we either will come
7556 * to iter_next() with equivalent state and can conclude that next iteration
7557 * will proceed in exactly the same way as we just verified, so it's safe to
7558 * assume that loop converges. If not, we'll go on another iteration
7559 * simulation with a different input state, until all possible starting states
7560 * are validated or we reach maximum number of instructions limit.
7561 *
7562 * This way, we will either exhaustively discover all possible input states
7563 * that iterator loop can start with and eventually will converge, or we'll
7564 * effectively regress into bounded loop simulation logic and either reach
7565 * maximum number of instructions if loop is not provably convergent, or there
7566 * is some statically known limit on number of iterations (e.g., if there is
7567 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7568 *
7569 * One very subtle but very important aspect is that we *always* simulate NULL
7570 * condition first (as the current state) before we simulate non-NULL case.
7571 * This has to do with intricacies of scalar precision tracking. By simulating
7572 * "exit condition" of iter_next() returning NULL first, we make sure all the
7573 * relevant precision marks *that will be set **after** we exit iterator loop*
7574 * are propagated backwards to common parent state of NULL and non-NULL
7575 * branches. Thanks to that, state equivalence checks done later in forked
7576 * state, when reaching iter_next() for ACTIVE iterator, can assume that
7577 * precision marks are finalized and won't change. Because simulating another
7578 * ACTIVE iterator iteration won't change them (because given same input
7579 * states we'll end up with exactly same output states which we are currently
7580 * comparing; and verification after the loop already propagated back what
7581 * needs to be **additionally** tracked as precise). It's subtle, grok
7582 * precision tracking for more intuitive understanding.
7583 */
7584static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7585 struct bpf_kfunc_call_arg_meta *meta)
7586{
7587 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7588 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7589 struct bpf_reg_state *cur_iter, *queued_iter;
7590 int iter_frameno = meta->iter.frameno;
7591 int iter_spi = meta->iter.spi;
7592
7593 BTF_TYPE_EMIT(struct bpf_iter);
7594
7595 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7596
7597 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7598 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7599 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7600 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7601 return -EFAULT;
7602 }
7603
7604 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7605 /* branch out active iter state */
7606 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7607 if (!queued_st)
7608 return -ENOMEM;
7609
7610 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7611 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7612 queued_iter->iter.depth++;
7613
7614 queued_fr = queued_st->frame[queued_st->curframe];
7615 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7616 }
7617
7618 /* switch to DRAINED state, but keep the depth unchanged */
7619 /* mark current iter state as drained and assume returned NULL */
7620 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7621 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7622
7623 return 0;
7624}
7625
90133415
DB
7626static bool arg_type_is_mem_size(enum bpf_arg_type type)
7627{
7628 return type == ARG_CONST_SIZE ||
7629 type == ARG_CONST_SIZE_OR_ZERO;
7630}
7631
8f14852e
KKD
7632static bool arg_type_is_release(enum bpf_arg_type type)
7633{
7634 return type & OBJ_RELEASE;
7635}
7636
97e03f52
JK
7637static bool arg_type_is_dynptr(enum bpf_arg_type type)
7638{
7639 return base_type(type) == ARG_PTR_TO_DYNPTR;
7640}
7641
57c3bb72
AI
7642static int int_ptr_type_to_size(enum bpf_arg_type type)
7643{
7644 if (type == ARG_PTR_TO_INT)
7645 return sizeof(u32);
7646 else if (type == ARG_PTR_TO_LONG)
7647 return sizeof(u64);
7648
7649 return -EINVAL;
7650}
7651
912f442c
LB
7652static int resolve_map_arg_type(struct bpf_verifier_env *env,
7653 const struct bpf_call_arg_meta *meta,
7654 enum bpf_arg_type *arg_type)
7655{
7656 if (!meta->map_ptr) {
7657 /* kernel subsystem misconfigured verifier */
7658 verbose(env, "invalid map_ptr to access map->type\n");
7659 return -EACCES;
7660 }
7661
7662 switch (meta->map_ptr->map_type) {
7663 case BPF_MAP_TYPE_SOCKMAP:
7664 case BPF_MAP_TYPE_SOCKHASH:
7665 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 7666 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
7667 } else {
7668 verbose(env, "invalid arg_type for sockmap/sockhash\n");
7669 return -EINVAL;
7670 }
7671 break;
9330986c
JK
7672 case BPF_MAP_TYPE_BLOOM_FILTER:
7673 if (meta->func_id == BPF_FUNC_map_peek_elem)
7674 *arg_type = ARG_PTR_TO_MAP_VALUE;
7675 break;
912f442c
LB
7676 default:
7677 break;
7678 }
7679 return 0;
7680}
7681
f79e7ea5
LB
7682struct bpf_reg_types {
7683 const enum bpf_reg_type types[10];
1df8f55a 7684 u32 *btf_id;
f79e7ea5
LB
7685};
7686
f79e7ea5
LB
7687static const struct bpf_reg_types sock_types = {
7688 .types = {
7689 PTR_TO_SOCK_COMMON,
7690 PTR_TO_SOCKET,
7691 PTR_TO_TCP_SOCK,
7692 PTR_TO_XDP_SOCK,
7693 },
7694};
7695
49a2a4d4 7696#ifdef CONFIG_NET
1df8f55a
MKL
7697static const struct bpf_reg_types btf_id_sock_common_types = {
7698 .types = {
7699 PTR_TO_SOCK_COMMON,
7700 PTR_TO_SOCKET,
7701 PTR_TO_TCP_SOCK,
7702 PTR_TO_XDP_SOCK,
7703 PTR_TO_BTF_ID,
3f00c523 7704 PTR_TO_BTF_ID | PTR_TRUSTED,
1df8f55a
MKL
7705 },
7706 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7707};
49a2a4d4 7708#endif
1df8f55a 7709
f79e7ea5
LB
7710static const struct bpf_reg_types mem_types = {
7711 .types = {
7712 PTR_TO_STACK,
7713 PTR_TO_PACKET,
7714 PTR_TO_PACKET_META,
69c087ba 7715 PTR_TO_MAP_KEY,
f79e7ea5
LB
7716 PTR_TO_MAP_VALUE,
7717 PTR_TO_MEM,
894f2a8b 7718 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 7719 PTR_TO_BUF,
3e30be42 7720 PTR_TO_BTF_ID | PTR_TRUSTED,
f79e7ea5
LB
7721 },
7722};
7723
7724static const struct bpf_reg_types int_ptr_types = {
7725 .types = {
7726 PTR_TO_STACK,
7727 PTR_TO_PACKET,
7728 PTR_TO_PACKET_META,
69c087ba 7729 PTR_TO_MAP_KEY,
f79e7ea5
LB
7730 PTR_TO_MAP_VALUE,
7731 },
7732};
7733
4e814da0
KKD
7734static const struct bpf_reg_types spin_lock_types = {
7735 .types = {
7736 PTR_TO_MAP_VALUE,
7737 PTR_TO_BTF_ID | MEM_ALLOC,
7738 }
7739};
7740
f79e7ea5
LB
7741static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7742static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7743static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 7744static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5 7745static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
3f00c523
DV
7746static const struct bpf_reg_types btf_ptr_types = {
7747 .types = {
7748 PTR_TO_BTF_ID,
7749 PTR_TO_BTF_ID | PTR_TRUSTED,
fca1aa75 7750 PTR_TO_BTF_ID | MEM_RCU,
3f00c523
DV
7751 },
7752};
7753static const struct bpf_reg_types percpu_btf_ptr_types = {
7754 .types = {
7755 PTR_TO_BTF_ID | MEM_PERCPU,
7756 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7757 }
7758};
69c087ba
YS
7759static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7760static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 7761static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 7762static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 7763static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
7764static const struct bpf_reg_types dynptr_types = {
7765 .types = {
7766 PTR_TO_STACK,
27060531 7767 CONST_PTR_TO_DYNPTR,
20571567
DV
7768 }
7769};
f79e7ea5 7770
0789e13b 7771static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
7772 [ARG_PTR_TO_MAP_KEY] = &mem_types,
7773 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
7774 [ARG_CONST_SIZE] = &scalar_types,
7775 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
7776 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
7777 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
7778 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 7779 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 7780#ifdef CONFIG_NET
1df8f55a 7781 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 7782#endif
f79e7ea5 7783 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
7784 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
7785 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
7786 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 7787 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
7788 [ARG_PTR_TO_INT] = &int_ptr_types,
7789 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 7790 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 7791 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 7792 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 7793 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 7794 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 7795 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 7796 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
7797};
7798
7799static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 7800 enum bpf_arg_type arg_type,
c0a5a21c
KKD
7801 const u32 *arg_btf_id,
7802 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
7803{
7804 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7805 enum bpf_reg_type expected, type = reg->type;
a968d5e2 7806 const struct bpf_reg_types *compatible;
f79e7ea5
LB
7807 int i, j;
7808
48946bd6 7809 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
7810 if (!compatible) {
7811 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7812 return -EFAULT;
7813 }
7814
216e3cd2
HL
7815 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7816 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7817 *
7818 * Same for MAYBE_NULL:
7819 *
7820 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7821 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7822 *
2012c867
DR
7823 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7824 *
216e3cd2
HL
7825 * Therefore we fold these flags depending on the arg_type before comparison.
7826 */
7827 if (arg_type & MEM_RDONLY)
7828 type &= ~MEM_RDONLY;
7829 if (arg_type & PTR_MAYBE_NULL)
7830 type &= ~PTR_MAYBE_NULL;
2012c867
DR
7831 if (base_type(arg_type) == ARG_PTR_TO_MEM)
7832 type &= ~DYNPTR_TYPE_FLAG_MASK;
216e3cd2 7833
503e4def 7834 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
738c96d5
DM
7835 type &= ~MEM_ALLOC;
7836
f79e7ea5
LB
7837 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7838 expected = compatible->types[i];
7839 if (expected == NOT_INIT)
7840 break;
7841
7842 if (type == expected)
a968d5e2 7843 goto found;
f79e7ea5
LB
7844 }
7845
216e3cd2 7846 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 7847 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
7848 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7849 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 7850 return -EACCES;
a968d5e2
MKL
7851
7852found:
da03e43a
KKD
7853 if (base_type(reg->type) != PTR_TO_BTF_ID)
7854 return 0;
7855
3e30be42
AS
7856 if (compatible == &mem_types) {
7857 if (!(arg_type & MEM_RDONLY)) {
7858 verbose(env,
7859 "%s() may write into memory pointed by R%d type=%s\n",
7860 func_id_name(meta->func_id),
7861 regno, reg_type_str(env, reg->type));
7862 return -EACCES;
7863 }
7864 return 0;
7865 }
7866
da03e43a
KKD
7867 switch ((int)reg->type) {
7868 case PTR_TO_BTF_ID:
7869 case PTR_TO_BTF_ID | PTR_TRUSTED:
7870 case PTR_TO_BTF_ID | MEM_RCU:
add68b84
AS
7871 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7872 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
da03e43a 7873 {
2ab3b380
KKD
7874 /* For bpf_sk_release, it needs to match against first member
7875 * 'struct sock_common', hence make an exception for it. This
7876 * allows bpf_sk_release to work for multiple socket types.
7877 */
7878 bool strict_type_match = arg_type_is_release(arg_type) &&
7879 meta->func_id != BPF_FUNC_sk_release;
7880
add68b84
AS
7881 if (type_may_be_null(reg->type) &&
7882 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7883 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7884 return -EACCES;
7885 }
7886
1df8f55a
MKL
7887 if (!arg_btf_id) {
7888 if (!compatible->btf_id) {
7889 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7890 return -EFAULT;
7891 }
7892 arg_btf_id = compatible->btf_id;
7893 }
7894
c0a5a21c 7895 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 7896 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 7897 return -EACCES;
47e34cb7
DM
7898 } else {
7899 if (arg_btf_id == BPF_PTR_POISON) {
7900 verbose(env, "verifier internal error:");
7901 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7902 regno);
7903 return -EACCES;
7904 }
7905
7906 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7907 btf_vmlinux, *arg_btf_id,
7908 strict_type_match)) {
7909 verbose(env, "R%d is of type %s but %s is expected\n",
b32a5dae
DM
7910 regno, btf_type_name(reg->btf, reg->btf_id),
7911 btf_type_name(btf_vmlinux, *arg_btf_id));
47e34cb7
DM
7912 return -EACCES;
7913 }
a968d5e2 7914 }
da03e43a
KKD
7915 break;
7916 }
7917 case PTR_TO_BTF_ID | MEM_ALLOC:
738c96d5
DM
7918 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7919 meta->func_id != BPF_FUNC_kptr_xchg) {
4e814da0
KKD
7920 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7921 return -EFAULT;
7922 }
ab6c637a
YS
7923 if (meta->func_id == BPF_FUNC_kptr_xchg) {
7924 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7925 return -EACCES;
7926 }
da03e43a
KKD
7927 break;
7928 case PTR_TO_BTF_ID | MEM_PERCPU:
7929 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7930 /* Handled by helper specific checks */
7931 break;
7932 default:
7933 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7934 return -EFAULT;
a968d5e2 7935 }
a968d5e2 7936 return 0;
f79e7ea5
LB
7937}
7938
6a3cd331
DM
7939static struct btf_field *
7940reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7941{
7942 struct btf_field *field;
7943 struct btf_record *rec;
7944
7945 rec = reg_btf_record(reg);
7946 if (!rec)
7947 return NULL;
7948
7949 field = btf_record_find(rec, off, fields);
7950 if (!field)
7951 return NULL;
7952
7953 return field;
7954}
7955
25b35dd2
KKD
7956int check_func_arg_reg_off(struct bpf_verifier_env *env,
7957 const struct bpf_reg_state *reg, int regno,
8f14852e 7958 enum bpf_arg_type arg_type)
25b35dd2 7959{
184c9bdb 7960 u32 type = reg->type;
25b35dd2 7961
184c9bdb
KKD
7962 /* When referenced register is passed to release function, its fixed
7963 * offset must be 0.
7964 *
7965 * We will check arg_type_is_release reg has ref_obj_id when storing
7966 * meta->release_regno.
7967 */
7968 if (arg_type_is_release(arg_type)) {
7969 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7970 * may not directly point to the object being released, but to
7971 * dynptr pointing to such object, which might be at some offset
7972 * on the stack. In that case, we simply to fallback to the
7973 * default handling.
7974 */
7975 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7976 return 0;
6a3cd331 7977
184c9bdb
KKD
7978 /* Doing check_ptr_off_reg check for the offset will catch this
7979 * because fixed_off_ok is false, but checking here allows us
7980 * to give the user a better error message.
7981 */
7982 if (reg->off) {
7983 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7984 regno);
7985 return -EINVAL;
7986 }
7987 return __check_ptr_off_reg(env, reg, regno, false);
7988 }
7989
7990 switch (type) {
7991 /* Pointer types where both fixed and variable offset is explicitly allowed: */
97e03f52 7992 case PTR_TO_STACK:
25b35dd2
KKD
7993 case PTR_TO_PACKET:
7994 case PTR_TO_PACKET_META:
7995 case PTR_TO_MAP_KEY:
7996 case PTR_TO_MAP_VALUE:
7997 case PTR_TO_MEM:
7998 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 7999 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
8000 case PTR_TO_BUF:
8001 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 8002 case SCALAR_VALUE:
184c9bdb 8003 return 0;
25b35dd2
KKD
8004 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8005 * fixed offset.
8006 */
8007 case PTR_TO_BTF_ID:
282de143 8008 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 8009 case PTR_TO_BTF_ID | PTR_TRUSTED:
fca1aa75 8010 case PTR_TO_BTF_ID | MEM_RCU:
6a3cd331 8011 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
0816b8c6 8012 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
24d5bb80 8013 /* When referenced PTR_TO_BTF_ID is passed to release function,
184c9bdb
KKD
8014 * its fixed offset must be 0. In the other cases, fixed offset
8015 * can be non-zero. This was already checked above. So pass
8016 * fixed_off_ok as true to allow fixed offset for all other
8017 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8018 * still need to do checks instead of returning.
24d5bb80 8019 */
184c9bdb 8020 return __check_ptr_off_reg(env, reg, regno, true);
25b35dd2 8021 default:
184c9bdb 8022 return __check_ptr_off_reg(env, reg, regno, false);
25b35dd2 8023 }
25b35dd2
KKD
8024}
8025
485ec51e
JK
8026static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8027 const struct bpf_func_proto *fn,
8028 struct bpf_reg_state *regs)
8029{
8030 struct bpf_reg_state *state = NULL;
8031 int i;
8032
8033 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8034 if (arg_type_is_dynptr(fn->arg_type[i])) {
8035 if (state) {
8036 verbose(env, "verifier internal error: multiple dynptr args\n");
8037 return NULL;
8038 }
8039 state = &regs[BPF_REG_1 + i];
8040 }
8041
8042 if (!state)
8043 verbose(env, "verifier internal error: no dynptr arg found\n");
8044
8045 return state;
8046}
8047
f8064ab9 8048static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
8049{
8050 struct bpf_func_state *state = func(env, reg);
27060531 8051 int spi;
34d4ef57 8052
27060531 8053 if (reg->type == CONST_PTR_TO_DYNPTR)
f8064ab9
KKD
8054 return reg->id;
8055 spi = dynptr_get_spi(env, reg);
8056 if (spi < 0)
8057 return spi;
8058 return state->stack[spi].spilled_ptr.id;
8059}
8060
79168a66 8061static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
34d4ef57
JK
8062{
8063 struct bpf_func_state *state = func(env, reg);
27060531 8064 int spi;
27060531 8065
27060531
KKD
8066 if (reg->type == CONST_PTR_TO_DYNPTR)
8067 return reg->ref_obj_id;
79168a66
KKD
8068 spi = dynptr_get_spi(env, reg);
8069 if (spi < 0)
8070 return spi;
27060531 8071 return state->stack[spi].spilled_ptr.ref_obj_id;
34d4ef57
JK
8072}
8073
b5964b96
JK
8074static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8075 struct bpf_reg_state *reg)
8076{
8077 struct bpf_func_state *state = func(env, reg);
8078 int spi;
8079
8080 if (reg->type == CONST_PTR_TO_DYNPTR)
8081 return reg->dynptr.type;
8082
8083 spi = __get_spi(reg->off);
8084 if (spi < 0) {
8085 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8086 return BPF_DYNPTR_TYPE_INVALID;
8087 }
8088
8089 return state->stack[spi].spilled_ptr.dynptr.type;
8090}
8091
af7ec138
YS
8092static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8093 struct bpf_call_arg_meta *meta,
1d18feb2
JK
8094 const struct bpf_func_proto *fn,
8095 int insn_idx)
17a52670 8096{
af7ec138 8097 u32 regno = BPF_REG_1 + arg;
638f5b90 8098 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 8099 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 8100 enum bpf_reg_type type = reg->type;
508362ac 8101 u32 *arg_btf_id = NULL;
17a52670
AS
8102 int err = 0;
8103
80f1d68c 8104 if (arg_type == ARG_DONTCARE)
17a52670
AS
8105 return 0;
8106
dc503a8a
EC
8107 err = check_reg_arg(env, regno, SRC_OP);
8108 if (err)
8109 return err;
17a52670 8110
1be7f75d
AS
8111 if (arg_type == ARG_ANYTHING) {
8112 if (is_pointer_value(env, regno)) {
61bd5218
JK
8113 verbose(env, "R%d leaks addr into helper function\n",
8114 regno);
1be7f75d
AS
8115 return -EACCES;
8116 }
80f1d68c 8117 return 0;
1be7f75d 8118 }
80f1d68c 8119
de8f3a83 8120 if (type_is_pkt_pointer(type) &&
3a0af8fd 8121 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 8122 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
8123 return -EACCES;
8124 }
8125
16d1e00c 8126 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
8127 err = resolve_map_arg_type(env, meta, &arg_type);
8128 if (err)
8129 return err;
8130 }
8131
48946bd6 8132 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
8133 /* A NULL register has a SCALAR_VALUE type, so skip
8134 * type checking.
8135 */
8136 goto skip_type_check;
8137
508362ac 8138 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
8139 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8140 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
8141 arg_btf_id = fn->arg_btf_id[arg];
8142
8143 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
8144 if (err)
8145 return err;
8146
8f14852e 8147 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
8148 if (err)
8149 return err;
d7b9454a 8150
fd1b0d60 8151skip_type_check:
8f14852e 8152 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
8153 if (arg_type_is_dynptr(arg_type)) {
8154 struct bpf_func_state *state = func(env, reg);
27060531 8155 int spi;
bc34dee6 8156
27060531
KKD
8157 /* Only dynptr created on stack can be released, thus
8158 * the get_spi and stack state checks for spilled_ptr
8159 * should only be done before process_dynptr_func for
8160 * PTR_TO_STACK.
8161 */
8162 if (reg->type == PTR_TO_STACK) {
79168a66 8163 spi = dynptr_get_spi(env, reg);
f5b625e5 8164 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
27060531
KKD
8165 verbose(env, "arg %d is an unacquired reference\n", regno);
8166 return -EINVAL;
8167 }
8168 } else {
8169 verbose(env, "cannot release unowned const bpf_dynptr\n");
bc34dee6
JK
8170 return -EINVAL;
8171 }
8172 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
8173 verbose(env, "R%d must be referenced when passed to release function\n",
8174 regno);
8175 return -EINVAL;
8176 }
8177 if (meta->release_regno) {
8178 verbose(env, "verifier internal error: more than one release argument\n");
8179 return -EFAULT;
8180 }
8181 meta->release_regno = regno;
8182 }
8183
02f7c958 8184 if (reg->ref_obj_id) {
457f4436
AN
8185 if (meta->ref_obj_id) {
8186 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8187 regno, reg->ref_obj_id,
8188 meta->ref_obj_id);
8189 return -EFAULT;
8190 }
8191 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
8192 }
8193
8ab4cdcf
JK
8194 switch (base_type(arg_type)) {
8195 case ARG_CONST_MAP_PTR:
17a52670 8196 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
8197 if (meta->map_ptr) {
8198 /* Use map_uid (which is unique id of inner map) to reject:
8199 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8200 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8201 * if (inner_map1 && inner_map2) {
8202 * timer = bpf_map_lookup_elem(inner_map1);
8203 * if (timer)
8204 * // mismatch would have been allowed
8205 * bpf_timer_init(timer, inner_map2);
8206 * }
8207 *
8208 * Comparing map_ptr is enough to distinguish normal and outer maps.
8209 */
8210 if (meta->map_ptr != reg->map_ptr ||
8211 meta->map_uid != reg->map_uid) {
8212 verbose(env,
8213 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8214 meta->map_uid, reg->map_uid);
8215 return -EINVAL;
8216 }
b00628b1 8217 }
33ff9823 8218 meta->map_ptr = reg->map_ptr;
3e8ce298 8219 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
8220 break;
8221 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
8222 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8223 * check that [key, key + map->key_size) are within
8224 * stack limits and initialized
8225 */
33ff9823 8226 if (!meta->map_ptr) {
17a52670
AS
8227 /* in function declaration map_ptr must come before
8228 * map_key, so that it's verified and known before
8229 * we have to check map_key here. Otherwise it means
8230 * that kernel subsystem misconfigured verifier
8231 */
61bd5218 8232 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
8233 return -EACCES;
8234 }
d71962f3
PC
8235 err = check_helper_mem_access(env, regno,
8236 meta->map_ptr->key_size, false,
8237 NULL);
8ab4cdcf
JK
8238 break;
8239 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
8240 if (type_may_be_null(arg_type) && register_is_null(reg))
8241 return 0;
8242
17a52670
AS
8243 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8244 * check [value, value + map->value_size) validity
8245 */
33ff9823 8246 if (!meta->map_ptr) {
17a52670 8247 /* kernel subsystem misconfigured verifier */
61bd5218 8248 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
8249 return -EACCES;
8250 }
16d1e00c 8251 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
8252 err = check_helper_mem_access(env, regno,
8253 meta->map_ptr->value_size, false,
2ea864c5 8254 meta);
8ab4cdcf
JK
8255 break;
8256 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
8257 if (!reg->btf_id) {
8258 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8259 return -EACCES;
8260 }
22dc4a0f 8261 meta->ret_btf = reg->btf;
eaa6bcb7 8262 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
8263 break;
8264 case ARG_PTR_TO_SPIN_LOCK:
5d92ddc3
DM
8265 if (in_rbtree_lock_required_cb(env)) {
8266 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8267 return -EACCES;
8268 }
c18f0b6a 8269 if (meta->func_id == BPF_FUNC_spin_lock) {
ac50fe51
KKD
8270 err = process_spin_lock(env, regno, true);
8271 if (err)
8272 return err;
c18f0b6a 8273 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
ac50fe51
KKD
8274 err = process_spin_lock(env, regno, false);
8275 if (err)
8276 return err;
c18f0b6a
LB
8277 } else {
8278 verbose(env, "verifier internal error\n");
8279 return -EFAULT;
8280 }
8ab4cdcf
JK
8281 break;
8282 case ARG_PTR_TO_TIMER:
ac50fe51
KKD
8283 err = process_timer_func(env, regno, meta);
8284 if (err)
8285 return err;
8ab4cdcf
JK
8286 break;
8287 case ARG_PTR_TO_FUNC:
69c087ba 8288 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
8289 break;
8290 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
8291 /* The access to this pointer is only checked when we hit the
8292 * next is_mem_size argument below.
8293 */
16d1e00c 8294 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
8295 if (arg_type & MEM_FIXED_SIZE) {
8296 err = check_helper_mem_access(env, regno,
8297 fn->arg_size[arg], false,
8298 meta);
8299 }
8ab4cdcf
JK
8300 break;
8301 case ARG_CONST_SIZE:
8302 err = check_mem_size_reg(env, reg, regno, false, meta);
8303 break;
8304 case ARG_CONST_SIZE_OR_ZERO:
8305 err = check_mem_size_reg(env, reg, regno, true, meta);
8306 break;
8307 case ARG_PTR_TO_DYNPTR:
361f129f 8308 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
ac50fe51
KKD
8309 if (err)
8310 return err;
8ab4cdcf
JK
8311 break;
8312 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 8313 if (!tnum_is_const(reg->var_off)) {
28a8add6 8314 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
8315 regno);
8316 return -EACCES;
8317 }
8318 meta->mem_size = reg->var_off.value;
2fc31465
KKD
8319 err = mark_chain_precision(env, regno);
8320 if (err)
8321 return err;
8ab4cdcf
JK
8322 break;
8323 case ARG_PTR_TO_INT:
8324 case ARG_PTR_TO_LONG:
8325 {
57c3bb72
AI
8326 int size = int_ptr_type_to_size(arg_type);
8327
8328 err = check_helper_mem_access(env, regno, size, false, meta);
8329 if (err)
8330 return err;
8331 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
8332 break;
8333 }
8334 case ARG_PTR_TO_CONST_STR:
8335 {
fff13c4b
FR
8336 struct bpf_map *map = reg->map_ptr;
8337 int map_off;
8338 u64 map_addr;
8339 char *str_ptr;
8340
a8fad73e 8341 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
8342 verbose(env, "R%d does not point to a readonly map'\n", regno);
8343 return -EACCES;
8344 }
8345
8346 if (!tnum_is_const(reg->var_off)) {
8347 verbose(env, "R%d is not a constant address'\n", regno);
8348 return -EACCES;
8349 }
8350
8351 if (!map->ops->map_direct_value_addr) {
8352 verbose(env, "no direct value access support for this map type\n");
8353 return -EACCES;
8354 }
8355
8356 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
8357 map->value_size - reg->off, false,
8358 ACCESS_HELPER);
fff13c4b
FR
8359 if (err)
8360 return err;
8361
8362 map_off = reg->off + reg->var_off.value;
8363 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8364 if (err) {
8365 verbose(env, "direct value access on string failed\n");
8366 return err;
8367 }
8368
8369 str_ptr = (char *)(long)(map_addr);
8370 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8371 verbose(env, "string is not zero-terminated\n");
8372 return -EINVAL;
8373 }
8ab4cdcf
JK
8374 break;
8375 }
8376 case ARG_PTR_TO_KPTR:
ac50fe51
KKD
8377 err = process_kptr_func(env, regno, meta);
8378 if (err)
8379 return err;
8ab4cdcf 8380 break;
17a52670
AS
8381 }
8382
8383 return err;
8384}
8385
0126240f
LB
8386static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8387{
8388 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 8389 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
8390
8391 if (func_id != BPF_FUNC_map_update_elem)
8392 return false;
8393
8394 /* It's not possible to get access to a locked struct sock in these
8395 * contexts, so updating is safe.
8396 */
8397 switch (type) {
8398 case BPF_PROG_TYPE_TRACING:
8399 if (eatype == BPF_TRACE_ITER)
8400 return true;
8401 break;
8402 case BPF_PROG_TYPE_SOCKET_FILTER:
8403 case BPF_PROG_TYPE_SCHED_CLS:
8404 case BPF_PROG_TYPE_SCHED_ACT:
8405 case BPF_PROG_TYPE_XDP:
8406 case BPF_PROG_TYPE_SK_REUSEPORT:
8407 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8408 case BPF_PROG_TYPE_SK_LOOKUP:
8409 return true;
8410 default:
8411 break;
8412 }
8413
8414 verbose(env, "cannot update sockmap in this context\n");
8415 return false;
8416}
8417
e411901c
MF
8418static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8419{
95acd881
TA
8420 return env->prog->jit_requested &&
8421 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
8422}
8423
61bd5218
JK
8424static int check_map_func_compatibility(struct bpf_verifier_env *env,
8425 struct bpf_map *map, int func_id)
35578d79 8426{
35578d79
KX
8427 if (!map)
8428 return 0;
8429
6aff67c8
AS
8430 /* We need a two way check, first is from map perspective ... */
8431 switch (map->map_type) {
8432 case BPF_MAP_TYPE_PROG_ARRAY:
8433 if (func_id != BPF_FUNC_tail_call)
8434 goto error;
8435 break;
8436 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8437 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 8438 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 8439 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
8440 func_id != BPF_FUNC_perf_event_read_value &&
8441 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
8442 goto error;
8443 break;
457f4436
AN
8444 case BPF_MAP_TYPE_RINGBUF:
8445 if (func_id != BPF_FUNC_ringbuf_output &&
8446 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
8447 func_id != BPF_FUNC_ringbuf_query &&
8448 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8449 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8450 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
8451 goto error;
8452 break;
583c1f42 8453 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
8454 if (func_id != BPF_FUNC_user_ringbuf_drain)
8455 goto error;
8456 break;
6aff67c8
AS
8457 case BPF_MAP_TYPE_STACK_TRACE:
8458 if (func_id != BPF_FUNC_get_stackid)
8459 goto error;
8460 break;
4ed8ec52 8461 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 8462 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 8463 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
8464 goto error;
8465 break;
cd339431 8466 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 8467 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
8468 if (func_id != BPF_FUNC_get_local_storage)
8469 goto error;
8470 break;
546ac1ff 8471 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 8472 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
8473 if (func_id != BPF_FUNC_redirect_map &&
8474 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
8475 goto error;
8476 break;
fbfc504a
BT
8477 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8478 * appear.
8479 */
6710e112
JDB
8480 case BPF_MAP_TYPE_CPUMAP:
8481 if (func_id != BPF_FUNC_redirect_map)
8482 goto error;
8483 break;
fada7fdc
JL
8484 case BPF_MAP_TYPE_XSKMAP:
8485 if (func_id != BPF_FUNC_redirect_map &&
8486 func_id != BPF_FUNC_map_lookup_elem)
8487 goto error;
8488 break;
56f668df 8489 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 8490 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
8491 if (func_id != BPF_FUNC_map_lookup_elem)
8492 goto error;
16a43625 8493 break;
174a79ff
JF
8494 case BPF_MAP_TYPE_SOCKMAP:
8495 if (func_id != BPF_FUNC_sk_redirect_map &&
8496 func_id != BPF_FUNC_sock_map_update &&
4f738adb 8497 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 8498 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 8499 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
8500 func_id != BPF_FUNC_map_lookup_elem &&
8501 !may_update_sockmap(env, func_id))
174a79ff
JF
8502 goto error;
8503 break;
81110384
JF
8504 case BPF_MAP_TYPE_SOCKHASH:
8505 if (func_id != BPF_FUNC_sk_redirect_hash &&
8506 func_id != BPF_FUNC_sock_hash_update &&
8507 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 8508 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 8509 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
8510 func_id != BPF_FUNC_map_lookup_elem &&
8511 !may_update_sockmap(env, func_id))
81110384
JF
8512 goto error;
8513 break;
2dbb9b9e
MKL
8514 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8515 if (func_id != BPF_FUNC_sk_select_reuseport)
8516 goto error;
8517 break;
f1a2e44a
MV
8518 case BPF_MAP_TYPE_QUEUE:
8519 case BPF_MAP_TYPE_STACK:
8520 if (func_id != BPF_FUNC_map_peek_elem &&
8521 func_id != BPF_FUNC_map_pop_elem &&
8522 func_id != BPF_FUNC_map_push_elem)
8523 goto error;
8524 break;
6ac99e8f
MKL
8525 case BPF_MAP_TYPE_SK_STORAGE:
8526 if (func_id != BPF_FUNC_sk_storage_get &&
9db44fdd
KKD
8527 func_id != BPF_FUNC_sk_storage_delete &&
8528 func_id != BPF_FUNC_kptr_xchg)
6ac99e8f
MKL
8529 goto error;
8530 break;
8ea63684
KS
8531 case BPF_MAP_TYPE_INODE_STORAGE:
8532 if (func_id != BPF_FUNC_inode_storage_get &&
9db44fdd
KKD
8533 func_id != BPF_FUNC_inode_storage_delete &&
8534 func_id != BPF_FUNC_kptr_xchg)
8ea63684
KS
8535 goto error;
8536 break;
4cf1bc1f
KS
8537 case BPF_MAP_TYPE_TASK_STORAGE:
8538 if (func_id != BPF_FUNC_task_storage_get &&
9db44fdd
KKD
8539 func_id != BPF_FUNC_task_storage_delete &&
8540 func_id != BPF_FUNC_kptr_xchg)
4cf1bc1f
KS
8541 goto error;
8542 break;
c4bcfb38
YS
8543 case BPF_MAP_TYPE_CGRP_STORAGE:
8544 if (func_id != BPF_FUNC_cgrp_storage_get &&
9db44fdd
KKD
8545 func_id != BPF_FUNC_cgrp_storage_delete &&
8546 func_id != BPF_FUNC_kptr_xchg)
c4bcfb38
YS
8547 goto error;
8548 break;
9330986c
JK
8549 case BPF_MAP_TYPE_BLOOM_FILTER:
8550 if (func_id != BPF_FUNC_map_peek_elem &&
8551 func_id != BPF_FUNC_map_push_elem)
8552 goto error;
8553 break;
6aff67c8
AS
8554 default:
8555 break;
8556 }
8557
8558 /* ... and second from the function itself. */
8559 switch (func_id) {
8560 case BPF_FUNC_tail_call:
8561 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8562 goto error;
e411901c
MF
8563 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8564 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
8565 return -EINVAL;
8566 }
6aff67c8
AS
8567 break;
8568 case BPF_FUNC_perf_event_read:
8569 case BPF_FUNC_perf_event_output:
908432ca 8570 case BPF_FUNC_perf_event_read_value:
a7658e1a 8571 case BPF_FUNC_skb_output:
d831ee84 8572 case BPF_FUNC_xdp_output:
6aff67c8
AS
8573 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8574 goto error;
8575 break;
5b029a32
DB
8576 case BPF_FUNC_ringbuf_output:
8577 case BPF_FUNC_ringbuf_reserve:
8578 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
8579 case BPF_FUNC_ringbuf_reserve_dynptr:
8580 case BPF_FUNC_ringbuf_submit_dynptr:
8581 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
8582 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8583 goto error;
8584 break;
20571567
DV
8585 case BPF_FUNC_user_ringbuf_drain:
8586 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8587 goto error;
8588 break;
6aff67c8
AS
8589 case BPF_FUNC_get_stackid:
8590 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8591 goto error;
8592 break;
60d20f91 8593 case BPF_FUNC_current_task_under_cgroup:
747ea55e 8594 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
8595 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8596 goto error;
8597 break;
97f91a7c 8598 case BPF_FUNC_redirect_map:
9c270af3 8599 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 8600 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
8601 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8602 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
8603 goto error;
8604 break;
174a79ff 8605 case BPF_FUNC_sk_redirect_map:
4f738adb 8606 case BPF_FUNC_msg_redirect_map:
81110384 8607 case BPF_FUNC_sock_map_update:
174a79ff
JF
8608 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8609 goto error;
8610 break;
81110384
JF
8611 case BPF_FUNC_sk_redirect_hash:
8612 case BPF_FUNC_msg_redirect_hash:
8613 case BPF_FUNC_sock_hash_update:
8614 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
8615 goto error;
8616 break;
cd339431 8617 case BPF_FUNC_get_local_storage:
b741f163
RG
8618 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8619 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
8620 goto error;
8621 break;
2dbb9b9e 8622 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
8623 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8624 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8625 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
8626 goto error;
8627 break;
f1a2e44a 8628 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
8629 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8630 map->map_type != BPF_MAP_TYPE_STACK)
8631 goto error;
8632 break;
9330986c
JK
8633 case BPF_FUNC_map_peek_elem:
8634 case BPF_FUNC_map_push_elem:
8635 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8636 map->map_type != BPF_MAP_TYPE_STACK &&
8637 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8638 goto error;
8639 break;
07343110
FZ
8640 case BPF_FUNC_map_lookup_percpu_elem:
8641 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8642 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8643 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8644 goto error;
8645 break;
6ac99e8f
MKL
8646 case BPF_FUNC_sk_storage_get:
8647 case BPF_FUNC_sk_storage_delete:
8648 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8649 goto error;
8650 break;
8ea63684
KS
8651 case BPF_FUNC_inode_storage_get:
8652 case BPF_FUNC_inode_storage_delete:
8653 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8654 goto error;
8655 break;
4cf1bc1f
KS
8656 case BPF_FUNC_task_storage_get:
8657 case BPF_FUNC_task_storage_delete:
8658 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8659 goto error;
8660 break;
c4bcfb38
YS
8661 case BPF_FUNC_cgrp_storage_get:
8662 case BPF_FUNC_cgrp_storage_delete:
8663 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8664 goto error;
8665 break;
6aff67c8
AS
8666 default:
8667 break;
35578d79
KX
8668 }
8669
8670 return 0;
6aff67c8 8671error:
61bd5218 8672 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 8673 map->map_type, func_id_name(func_id), func_id);
6aff67c8 8674 return -EINVAL;
35578d79
KX
8675}
8676
90133415 8677static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
8678{
8679 int count = 0;
8680
39f19ebb 8681 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8682 count++;
39f19ebb 8683 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8684 count++;
39f19ebb 8685 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8686 count++;
39f19ebb 8687 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 8688 count++;
39f19ebb 8689 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
8690 count++;
8691
90133415
DB
8692 /* We only support one arg being in raw mode at the moment,
8693 * which is sufficient for the helper functions we have
8694 * right now.
8695 */
8696 return count <= 1;
8697}
8698
508362ac 8699static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 8700{
508362ac
MM
8701 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8702 bool has_size = fn->arg_size[arg] != 0;
8703 bool is_next_size = false;
8704
8705 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8706 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8707
8708 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8709 return is_next_size;
8710
8711 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
8712}
8713
8714static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8715{
8716 /* bpf_xxx(..., buf, len) call will access 'len'
8717 * bytes from memory 'buf'. Both arg types need
8718 * to be paired, so make sure there's no buggy
8719 * helper function specification.
8720 */
8721 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
8722 check_args_pair_invalid(fn, 0) ||
8723 check_args_pair_invalid(fn, 1) ||
8724 check_args_pair_invalid(fn, 2) ||
8725 check_args_pair_invalid(fn, 3) ||
8726 check_args_pair_invalid(fn, 4))
90133415
DB
8727 return false;
8728
8729 return true;
8730}
8731
9436ef6e
LB
8732static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8733{
8734 int i;
8735
1df8f55a 8736 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
8737 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8738 return !!fn->arg_btf_id[i];
8739 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8740 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
8741 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8742 /* arg_btf_id and arg_size are in a union. */
8743 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8744 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
8745 return false;
8746 }
8747
9436ef6e
LB
8748 return true;
8749}
8750
0c9a7a7e 8751static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
8752{
8753 return check_raw_mode_ok(fn) &&
fd978bf7 8754 check_arg_pair_ok(fn) &&
b2d8ef19 8755 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
8756}
8757
de8f3a83
DB
8758/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8759 * are now invalid, so turn them into unknown SCALAR_VALUE.
66e3a13e
JK
8760 *
8761 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8762 * since these slices point to packet data.
f1174f77 8763 */
b239da34 8764static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 8765{
b239da34
KKD
8766 struct bpf_func_state *state;
8767 struct bpf_reg_state *reg;
969bf05e 8768
b239da34 8769 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
66e3a13e 8770 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
dbd8d228 8771 mark_reg_invalid(env, reg);
b239da34 8772 }));
f4d7e40a
AS
8773}
8774
6d94e741
AS
8775enum {
8776 AT_PKT_END = -1,
8777 BEYOND_PKT_END = -2,
8778};
8779
8780static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8781{
8782 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8783 struct bpf_reg_state *reg = &state->regs[regn];
8784
8785 if (reg->type != PTR_TO_PACKET)
8786 /* PTR_TO_PACKET_META is not supported yet */
8787 return;
8788
8789 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8790 * How far beyond pkt_end it goes is unknown.
8791 * if (!range_open) it's the case of pkt >= pkt_end
8792 * if (range_open) it's the case of pkt > pkt_end
8793 * hence this pointer is at least 1 byte bigger than pkt_end
8794 */
8795 if (range_open)
8796 reg->range = BEYOND_PKT_END;
8797 else
8798 reg->range = AT_PKT_END;
8799}
8800
fd978bf7
JS
8801/* The pointer with the specified id has released its reference to kernel
8802 * resources. Identify all copies of the same pointer and clear the reference.
8803 */
8804static int release_reference(struct bpf_verifier_env *env,
1b986589 8805 int ref_obj_id)
fd978bf7 8806{
b239da34
KKD
8807 struct bpf_func_state *state;
8808 struct bpf_reg_state *reg;
1b986589 8809 int err;
fd978bf7 8810
1b986589
MKL
8811 err = release_reference_state(cur_func(env), ref_obj_id);
8812 if (err)
8813 return err;
8814
b239da34 8815 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
dbd8d228
KKD
8816 if (reg->ref_obj_id == ref_obj_id)
8817 mark_reg_invalid(env, reg);
b239da34 8818 }));
fd978bf7 8819
1b986589 8820 return 0;
fd978bf7
JS
8821}
8822
6a3cd331
DM
8823static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8824{
8825 struct bpf_func_state *unused;
8826 struct bpf_reg_state *reg;
8827
8828 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8829 if (type_is_non_owning_ref(reg->type))
dbd8d228 8830 mark_reg_invalid(env, reg);
6a3cd331
DM
8831 }));
8832}
8833
51c39bb1
AS
8834static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8835 struct bpf_reg_state *regs)
8836{
8837 int i;
8838
8839 /* after the call registers r0 - r5 were scratched */
8840 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8841 mark_reg_not_init(env, regs, caller_saved[i]);
8842 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8843 }
8844}
8845
14351375
YS
8846typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8847 struct bpf_func_state *caller,
8848 struct bpf_func_state *callee,
8849 int insn_idx);
8850
be2ef816
AN
8851static int set_callee_state(struct bpf_verifier_env *env,
8852 struct bpf_func_state *caller,
8853 struct bpf_func_state *callee, int insn_idx);
8854
14351375
YS
8855static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8856 int *insn_idx, int subprog,
8857 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
8858{
8859 struct bpf_verifier_state *state = env->cur_state;
8860 struct bpf_func_state *caller, *callee;
14351375 8861 int err;
f4d7e40a 8862
aada9ce6 8863 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 8864 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 8865 state->curframe + 2);
f4d7e40a
AS
8866 return -E2BIG;
8867 }
8868
f4d7e40a
AS
8869 caller = state->frame[state->curframe];
8870 if (state->frame[state->curframe + 1]) {
8871 verbose(env, "verifier bug. Frame %d already allocated\n",
8872 state->curframe + 1);
8873 return -EFAULT;
8874 }
8875
95f2f26f 8876 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
8877 if (err == -EFAULT)
8878 return err;
fde2a388 8879 if (subprog_is_global(env, subprog)) {
51c39bb1
AS
8880 if (err) {
8881 verbose(env, "Caller passes invalid args into func#%d\n",
8882 subprog);
8883 return err;
8884 } else {
8885 if (env->log.level & BPF_LOG_LEVEL)
8886 verbose(env,
8887 "Func#%d is global and valid. Skipping.\n",
8888 subprog);
8889 clear_caller_saved_regs(env, caller->regs);
8890
45159b27 8891 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 8892 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 8893 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
8894
8895 /* continue with next insn after call */
8896 return 0;
8897 }
8898 }
8899
be2ef816
AN
8900 /* set_callee_state is used for direct subprog calls, but we are
8901 * interested in validating only BPF helpers that can call subprogs as
8902 * callbacks
8903 */
5d92ddc3
DM
8904 if (set_callee_state_cb != set_callee_state) {
8905 if (bpf_pseudo_kfunc_call(insn) &&
8906 !is_callback_calling_kfunc(insn->imm)) {
8907 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8908 func_id_name(insn->imm), insn->imm);
8909 return -EFAULT;
8910 } else if (!bpf_pseudo_kfunc_call(insn) &&
8911 !is_callback_calling_function(insn->imm)) { /* helper */
8912 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8913 func_id_name(insn->imm), insn->imm);
8914 return -EFAULT;
8915 }
be2ef816
AN
8916 }
8917
bfc6bb74 8918 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 8919 insn->src_reg == 0 &&
bfc6bb74
AS
8920 insn->imm == BPF_FUNC_timer_set_callback) {
8921 struct bpf_verifier_state *async_cb;
8922
8923 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 8924 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
8925 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8926 *insn_idx, subprog);
8927 if (!async_cb)
8928 return -EFAULT;
8929 callee = async_cb->frame[0];
8930 callee->async_entry_cnt = caller->async_entry_cnt + 1;
8931
8932 /* Convert bpf_timer_set_callback() args into timer callback args */
8933 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8934 if (err)
8935 return err;
8936
8937 clear_caller_saved_regs(env, caller->regs);
8938 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8939 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8940 /* continue with next insn after call */
8941 return 0;
8942 }
8943
f4d7e40a
AS
8944 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8945 if (!callee)
8946 return -ENOMEM;
8947 state->frame[state->curframe + 1] = callee;
8948
8949 /* callee cannot access r0, r6 - r9 for reading and has to write
8950 * into its own stack before reading from it.
8951 * callee can read/write into caller's stack
8952 */
8953 init_func_state(env, callee,
8954 /* remember the callsite, it will be used by bpf_exit */
8955 *insn_idx /* callsite */,
8956 state->curframe + 1 /* frameno within this callchain */,
f910cefa 8957 subprog /* subprog number within this prog */);
f4d7e40a 8958
fd978bf7 8959 /* Transfer references to the callee */
c69431aa 8960 err = copy_reference_state(callee, caller);
fd978bf7 8961 if (err)
eb86559a 8962 goto err_out;
fd978bf7 8963
14351375
YS
8964 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8965 if (err)
eb86559a 8966 goto err_out;
f4d7e40a 8967
51c39bb1 8968 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
8969
8970 /* only increment it after check_reg_arg() finished */
8971 state->curframe++;
8972
8973 /* and go analyze first insn of the callee */
14351375 8974 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 8975
06ee7115 8976 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 8977 verbose(env, "caller:\n");
0f55f9ed 8978 print_verifier_state(env, caller, true);
f4d7e40a 8979 verbose(env, "callee:\n");
0f55f9ed 8980 print_verifier_state(env, callee, true);
f4d7e40a
AS
8981 }
8982 return 0;
eb86559a
WY
8983
8984err_out:
8985 free_func_state(callee);
8986 state->frame[state->curframe + 1] = NULL;
8987 return err;
f4d7e40a
AS
8988}
8989
314ee05e
YS
8990int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8991 struct bpf_func_state *caller,
8992 struct bpf_func_state *callee)
8993{
8994 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8995 * void *callback_ctx, u64 flags);
8996 * callback_fn(struct bpf_map *map, void *key, void *value,
8997 * void *callback_ctx);
8998 */
8999 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9000
9001 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9002 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9003 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9004
9005 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9006 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9007 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9008
9009 /* pointer to stack or null */
9010 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9011
9012 /* unused */
9013 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9014 return 0;
9015}
9016
14351375
YS
9017static int set_callee_state(struct bpf_verifier_env *env,
9018 struct bpf_func_state *caller,
9019 struct bpf_func_state *callee, int insn_idx)
9020{
9021 int i;
9022
9023 /* copy r1 - r5 args that callee can access. The copy includes parent
9024 * pointers, which connects us up to the liveness chain
9025 */
9026 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9027 callee->regs[i] = caller->regs[i];
9028 return 0;
9029}
9030
9031static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9032 int *insn_idx)
9033{
9034 int subprog, target_insn;
9035
9036 target_insn = *insn_idx + insn->imm + 1;
9037 subprog = find_subprog(env, target_insn);
9038 if (subprog < 0) {
9039 verbose(env, "verifier bug. No program starts at insn %d\n",
9040 target_insn);
9041 return -EFAULT;
9042 }
9043
9044 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9045}
9046
69c087ba
YS
9047static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9048 struct bpf_func_state *caller,
9049 struct bpf_func_state *callee,
9050 int insn_idx)
9051{
9052 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9053 struct bpf_map *map;
9054 int err;
9055
9056 if (bpf_map_ptr_poisoned(insn_aux)) {
9057 verbose(env, "tail_call abusing map_ptr\n");
9058 return -EINVAL;
9059 }
9060
9061 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9062 if (!map->ops->map_set_for_each_callback_args ||
9063 !map->ops->map_for_each_callback) {
9064 verbose(env, "callback function not allowed for map\n");
9065 return -ENOTSUPP;
9066 }
9067
9068 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9069 if (err)
9070 return err;
9071
9072 callee->in_callback_fn = true;
1bfe26fb 9073 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
9074 return 0;
9075}
9076
e6f2dd0f
JK
9077static int set_loop_callback_state(struct bpf_verifier_env *env,
9078 struct bpf_func_state *caller,
9079 struct bpf_func_state *callee,
9080 int insn_idx)
9081{
9082 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9083 * u64 flags);
9084 * callback_fn(u32 index, void *callback_ctx);
9085 */
9086 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9087 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9088
9089 /* unused */
9090 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9091 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9092 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9093
9094 callee->in_callback_fn = true;
1bfe26fb 9095 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
9096 return 0;
9097}
9098
b00628b1
AS
9099static int set_timer_callback_state(struct bpf_verifier_env *env,
9100 struct bpf_func_state *caller,
9101 struct bpf_func_state *callee,
9102 int insn_idx)
9103{
9104 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9105
9106 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9107 * callback_fn(struct bpf_map *map, void *key, void *value);
9108 */
9109 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9110 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9111 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9112
9113 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9114 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9115 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9116
9117 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9118 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9119 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9120
9121 /* unused */
9122 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9123 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 9124 callee->in_async_callback_fn = true;
1bfe26fb 9125 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
9126 return 0;
9127}
9128
7c7e3d31
SL
9129static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9130 struct bpf_func_state *caller,
9131 struct bpf_func_state *callee,
9132 int insn_idx)
9133{
9134 /* bpf_find_vma(struct task_struct *task, u64 addr,
9135 * void *callback_fn, void *callback_ctx, u64 flags)
9136 * (callback_fn)(struct task_struct *task,
9137 * struct vm_area_struct *vma, void *callback_ctx);
9138 */
9139 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9140
9141 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9142 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9143 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 9144 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
9145
9146 /* pointer to stack or null */
9147 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9148
9149 /* unused */
9150 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9151 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9152 callee->in_callback_fn = true;
1bfe26fb 9153 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
9154 return 0;
9155}
9156
20571567
DV
9157static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9158 struct bpf_func_state *caller,
9159 struct bpf_func_state *callee,
9160 int insn_idx)
9161{
9162 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9163 * callback_ctx, u64 flags);
27060531 9164 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
20571567
DV
9165 */
9166 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
f8064ab9 9167 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
20571567
DV
9168 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9169
9170 /* unused */
9171 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9172 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9173 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9174
9175 callee->in_callback_fn = true;
c92a7a52 9176 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
9177 return 0;
9178}
9179
5d92ddc3
DM
9180static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9181 struct bpf_func_state *caller,
9182 struct bpf_func_state *callee,
9183 int insn_idx)
9184{
d2dcc67d 9185 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
5d92ddc3
DM
9186 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9187 *
d2dcc67d 9188 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
5d92ddc3
DM
9189 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9190 * by this point, so look at 'root'
9191 */
9192 struct btf_field *field;
9193
9194 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9195 BPF_RB_ROOT);
9196 if (!field || !field->graph_root.value_btf_id)
9197 return -EFAULT;
9198
9199 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9200 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9201 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9202 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9203
9204 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9205 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9206 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9207 callee->in_callback_fn = true;
9208 callee->callback_ret_range = tnum_range(0, 1);
9209 return 0;
9210}
9211
9212static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9213
9214/* Are we currently verifying the callback for a rbtree helper that must
9215 * be called with lock held? If so, no need to complain about unreleased
9216 * lock
9217 */
9218static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9219{
9220 struct bpf_verifier_state *state = env->cur_state;
9221 struct bpf_insn *insn = env->prog->insnsi;
9222 struct bpf_func_state *callee;
9223 int kfunc_btf_id;
9224
9225 if (!state->curframe)
9226 return false;
9227
9228 callee = state->frame[state->curframe];
9229
9230 if (!callee->in_callback_fn)
9231 return false;
9232
9233 kfunc_btf_id = insn[callee->callsite].imm;
9234 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9235}
9236
f4d7e40a
AS
9237static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9238{
9239 struct bpf_verifier_state *state = env->cur_state;
9240 struct bpf_func_state *caller, *callee;
9241 struct bpf_reg_state *r0;
fd978bf7 9242 int err;
f4d7e40a
AS
9243
9244 callee = state->frame[state->curframe];
9245 r0 = &callee->regs[BPF_REG_0];
9246 if (r0->type == PTR_TO_STACK) {
9247 /* technically it's ok to return caller's stack pointer
9248 * (or caller's caller's pointer) back to the caller,
9249 * since these pointers are valid. Only current stack
9250 * pointer will be invalid as soon as function exits,
9251 * but let's be conservative
9252 */
9253 verbose(env, "cannot return stack pointer to the caller\n");
9254 return -EINVAL;
9255 }
9256
eb86559a 9257 caller = state->frame[state->curframe - 1];
69c087ba
YS
9258 if (callee->in_callback_fn) {
9259 /* enforce R0 return value range [0, 1]. */
1bfe26fb 9260 struct tnum range = callee->callback_ret_range;
69c087ba
YS
9261
9262 if (r0->type != SCALAR_VALUE) {
9263 verbose(env, "R0 not a scalar value\n");
9264 return -EACCES;
9265 }
9266 if (!tnum_in(range, r0->var_off)) {
9267 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9268 return -EINVAL;
9269 }
9270 } else {
9271 /* return to the caller whatever r0 had in the callee */
9272 caller->regs[BPF_REG_0] = *r0;
9273 }
f4d7e40a 9274
9d9d00ac
KKD
9275 /* callback_fn frame should have released its own additions to parent's
9276 * reference state at this point, or check_reference_leak would
9277 * complain, hence it must be the same as the caller. There is no need
9278 * to copy it back.
9279 */
9280 if (!callee->in_callback_fn) {
9281 /* Transfer references to the caller */
9282 err = copy_reference_state(caller, callee);
9283 if (err)
9284 return err;
9285 }
fd978bf7 9286
f4d7e40a 9287 *insn_idx = callee->callsite + 1;
06ee7115 9288 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 9289 verbose(env, "returning from callee:\n");
0f55f9ed 9290 print_verifier_state(env, callee, true);
f4d7e40a 9291 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 9292 print_verifier_state(env, caller, true);
f4d7e40a
AS
9293 }
9294 /* clear everything in the callee */
9295 free_func_state(callee);
eb86559a 9296 state->frame[state->curframe--] = NULL;
f4d7e40a
AS
9297 return 0;
9298}
9299
849fa506
YS
9300static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9301 int func_id,
9302 struct bpf_call_arg_meta *meta)
9303{
9304 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9305
f42bcd16 9306 if (ret_type != RET_INTEGER)
849fa506
YS
9307 return;
9308
f42bcd16
AN
9309 switch (func_id) {
9310 case BPF_FUNC_get_stack:
9311 case BPF_FUNC_get_task_stack:
9312 case BPF_FUNC_probe_read_str:
9313 case BPF_FUNC_probe_read_kernel_str:
9314 case BPF_FUNC_probe_read_user_str:
9315 ret_reg->smax_value = meta->msize_max_value;
9316 ret_reg->s32_max_value = meta->msize_max_value;
9317 ret_reg->smin_value = -MAX_ERRNO;
9318 ret_reg->s32_min_value = -MAX_ERRNO;
9319 reg_bounds_sync(ret_reg);
9320 break;
9321 case BPF_FUNC_get_smp_processor_id:
9322 ret_reg->umax_value = nr_cpu_ids - 1;
9323 ret_reg->u32_max_value = nr_cpu_ids - 1;
9324 ret_reg->smax_value = nr_cpu_ids - 1;
9325 ret_reg->s32_max_value = nr_cpu_ids - 1;
9326 ret_reg->umin_value = 0;
9327 ret_reg->u32_min_value = 0;
9328 ret_reg->smin_value = 0;
9329 ret_reg->s32_min_value = 0;
9330 reg_bounds_sync(ret_reg);
9331 break;
9332 }
849fa506
YS
9333}
9334
c93552c4
DB
9335static int
9336record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9337 int func_id, int insn_idx)
9338{
9339 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 9340 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
9341
9342 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
9343 func_id != BPF_FUNC_map_lookup_elem &&
9344 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
9345 func_id != BPF_FUNC_map_delete_elem &&
9346 func_id != BPF_FUNC_map_push_elem &&
9347 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 9348 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 9349 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
9350 func_id != BPF_FUNC_redirect_map &&
9351 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 9352 return 0;
09772d92 9353
591fe988 9354 if (map == NULL) {
c93552c4
DB
9355 verbose(env, "kernel subsystem misconfigured verifier\n");
9356 return -EINVAL;
9357 }
9358
591fe988
DB
9359 /* In case of read-only, some additional restrictions
9360 * need to be applied in order to prevent altering the
9361 * state of the map from program side.
9362 */
9363 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9364 (func_id == BPF_FUNC_map_delete_elem ||
9365 func_id == BPF_FUNC_map_update_elem ||
9366 func_id == BPF_FUNC_map_push_elem ||
9367 func_id == BPF_FUNC_map_pop_elem)) {
9368 verbose(env, "write into map forbidden\n");
9369 return -EACCES;
9370 }
9371
d2e4c1e6 9372 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 9373 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 9374 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 9375 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 9376 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 9377 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
9378 return 0;
9379}
9380
d2e4c1e6
DB
9381static int
9382record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9383 int func_id, int insn_idx)
9384{
9385 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9386 struct bpf_reg_state *regs = cur_regs(env), *reg;
9387 struct bpf_map *map = meta->map_ptr;
a657182a 9388 u64 val, max;
cc52d914 9389 int err;
d2e4c1e6
DB
9390
9391 if (func_id != BPF_FUNC_tail_call)
9392 return 0;
9393 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9394 verbose(env, "kernel subsystem misconfigured verifier\n");
9395 return -EINVAL;
9396 }
9397
d2e4c1e6 9398 reg = &regs[BPF_REG_3];
a657182a
DB
9399 val = reg->var_off.value;
9400 max = map->max_entries;
d2e4c1e6 9401
a657182a 9402 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
9403 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9404 return 0;
9405 }
9406
cc52d914
DB
9407 err = mark_chain_precision(env, BPF_REG_3);
9408 if (err)
9409 return err;
d2e4c1e6
DB
9410 if (bpf_map_key_unseen(aux))
9411 bpf_map_key_store(aux, val);
9412 else if (!bpf_map_key_poisoned(aux) &&
9413 bpf_map_key_immediate(aux) != val)
9414 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9415 return 0;
9416}
9417
fd978bf7
JS
9418static int check_reference_leak(struct bpf_verifier_env *env)
9419{
9420 struct bpf_func_state *state = cur_func(env);
9d9d00ac 9421 bool refs_lingering = false;
fd978bf7
JS
9422 int i;
9423
9d9d00ac
KKD
9424 if (state->frameno && !state->in_callback_fn)
9425 return 0;
9426
fd978bf7 9427 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
9428 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9429 continue;
fd978bf7
JS
9430 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9431 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 9432 refs_lingering = true;
fd978bf7 9433 }
9d9d00ac 9434 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
9435}
9436
7b15523a
FR
9437static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9438 struct bpf_reg_state *regs)
9439{
9440 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9441 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9442 struct bpf_map *fmt_map = fmt_reg->map_ptr;
78aa1cc9 9443 struct bpf_bprintf_data data = {};
7b15523a
FR
9444 int err, fmt_map_off, num_args;
9445 u64 fmt_addr;
9446 char *fmt;
9447
9448 /* data must be an array of u64 */
9449 if (data_len_reg->var_off.value % 8)
9450 return -EINVAL;
9451 num_args = data_len_reg->var_off.value / 8;
9452
9453 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9454 * and map_direct_value_addr is set.
9455 */
9456 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9457 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9458 fmt_map_off);
8e8ee109
FR
9459 if (err) {
9460 verbose(env, "verifier bug\n");
9461 return -EFAULT;
9462 }
7b15523a
FR
9463 fmt = (char *)(long)fmt_addr + fmt_map_off;
9464
9465 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9466 * can focus on validating the format specifiers.
9467 */
78aa1cc9 9468 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7b15523a
FR
9469 if (err < 0)
9470 verbose(env, "Invalid format string\n");
9471
9472 return err;
9473}
9474
9b99edca
JO
9475static int check_get_func_ip(struct bpf_verifier_env *env)
9476{
9b99edca
JO
9477 enum bpf_prog_type type = resolve_prog_type(env->prog);
9478 int func_id = BPF_FUNC_get_func_ip;
9479
9480 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 9481 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
9482 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9483 func_id_name(func_id), func_id);
9484 return -ENOTSUPP;
9485 }
9486 return 0;
9ffd9f3f
JO
9487 } else if (type == BPF_PROG_TYPE_KPROBE) {
9488 return 0;
9b99edca
JO
9489 }
9490
9491 verbose(env, "func %s#%d not supported for program type %d\n",
9492 func_id_name(func_id), func_id, type);
9493 return -ENOTSUPP;
9494}
9495
1ade2371
EZ
9496static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9497{
9498 return &env->insn_aux_data[env->insn_idx];
9499}
9500
9501static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9502{
9503 struct bpf_reg_state *regs = cur_regs(env);
9504 struct bpf_reg_state *reg = &regs[BPF_REG_4];
9505 bool reg_is_null = register_is_null(reg);
9506
9507 if (reg_is_null)
9508 mark_chain_precision(env, BPF_REG_4);
9509
9510 return reg_is_null;
9511}
9512
9513static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9514{
9515 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9516
9517 if (!state->initialized) {
9518 state->initialized = 1;
9519 state->fit_for_inline = loop_flag_is_zero(env);
9520 state->callback_subprogno = subprogno;
9521 return;
9522 }
9523
9524 if (!state->fit_for_inline)
9525 return;
9526
9527 state->fit_for_inline = (loop_flag_is_zero(env) &&
9528 state->callback_subprogno == subprogno);
9529}
9530
69c087ba
YS
9531static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9532 int *insn_idx_p)
17a52670 9533{
aef9d4a3 9534 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 9535 const struct bpf_func_proto *fn = NULL;
3c480732 9536 enum bpf_return_type ret_type;
c25b2ae1 9537 enum bpf_type_flag ret_flag;
638f5b90 9538 struct bpf_reg_state *regs;
33ff9823 9539 struct bpf_call_arg_meta meta;
69c087ba 9540 int insn_idx = *insn_idx_p;
969bf05e 9541 bool changes_data;
69c087ba 9542 int i, err, func_id;
17a52670
AS
9543
9544 /* find function prototype */
69c087ba 9545 func_id = insn->imm;
17a52670 9546 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
9547 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9548 func_id);
17a52670
AS
9549 return -EINVAL;
9550 }
9551
00176a34 9552 if (env->ops->get_func_proto)
5e43f899 9553 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 9554 if (!fn) {
61bd5218
JK
9555 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9556 func_id);
17a52670
AS
9557 return -EINVAL;
9558 }
9559
9560 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 9561 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 9562 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
9563 return -EINVAL;
9564 }
9565
eae2e83e
JO
9566 if (fn->allowed && !fn->allowed(env->prog)) {
9567 verbose(env, "helper call is not allowed in probe\n");
9568 return -EINVAL;
9569 }
9570
01685c5b
YS
9571 if (!env->prog->aux->sleepable && fn->might_sleep) {
9572 verbose(env, "helper call might sleep in a non-sleepable prog\n");
9573 return -EINVAL;
9574 }
9575
04514d13 9576 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 9577 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
9578 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9579 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9580 func_id_name(func_id), func_id);
9581 return -EINVAL;
9582 }
969bf05e 9583
33ff9823 9584 memset(&meta, 0, sizeof(meta));
36bbef52 9585 meta.pkt_access = fn->pkt_access;
33ff9823 9586
0c9a7a7e 9587 err = check_func_proto(fn, func_id);
435faee1 9588 if (err) {
61bd5218 9589 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 9590 func_id_name(func_id), func_id);
435faee1
DB
9591 return err;
9592 }
9593
9bb00b28
YS
9594 if (env->cur_state->active_rcu_lock) {
9595 if (fn->might_sleep) {
9596 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9597 func_id_name(func_id), func_id);
9598 return -EINVAL;
9599 }
9600
9601 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9602 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9603 }
9604
d83525ca 9605 meta.func_id = func_id;
17a52670 9606 /* check args */
523a4cf4 9607 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
1d18feb2 9608 err = check_func_arg(env, i, &meta, fn, insn_idx);
a7658e1a
AS
9609 if (err)
9610 return err;
9611 }
17a52670 9612
c93552c4
DB
9613 err = record_func_map(env, &meta, func_id, insn_idx);
9614 if (err)
9615 return err;
9616
d2e4c1e6
DB
9617 err = record_func_key(env, &meta, func_id, insn_idx);
9618 if (err)
9619 return err;
9620
435faee1
DB
9621 /* Mark slots with STACK_MISC in case of raw mode, stack offset
9622 * is inferred from register state.
9623 */
9624 for (i = 0; i < meta.access_size; i++) {
ca369602 9625 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
1f9a1ea8 9626 BPF_WRITE, -1, false, false);
435faee1
DB
9627 if (err)
9628 return err;
9629 }
9630
8f14852e
KKD
9631 regs = cur_regs(env);
9632
9633 if (meta.release_regno) {
9634 err = -EINVAL;
27060531
KKD
9635 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9636 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9637 * is safe to do directly.
9638 */
9639 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9640 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9641 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9642 return -EFAULT;
9643 }
97e03f52 9644 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
27060531 9645 } else if (meta.ref_obj_id) {
8f14852e 9646 err = release_reference(env, meta.ref_obj_id);
27060531
KKD
9647 } else if (register_is_null(&regs[meta.release_regno])) {
9648 /* meta.ref_obj_id can only be 0 if register that is meant to be
9649 * released is NULL, which must be > R0.
9650 */
8f14852e 9651 err = 0;
27060531 9652 }
46f8bc92
MKL
9653 if (err) {
9654 verbose(env, "func %s#%d reference has not been acquired before\n",
9655 func_id_name(func_id), func_id);
fd978bf7 9656 return err;
46f8bc92 9657 }
fd978bf7
JS
9658 }
9659
e6f2dd0f
JK
9660 switch (func_id) {
9661 case BPF_FUNC_tail_call:
9662 err = check_reference_leak(env);
9663 if (err) {
9664 verbose(env, "tail_call would lead to reference leak\n");
9665 return err;
9666 }
9667 break;
9668 case BPF_FUNC_get_local_storage:
9669 /* check that flags argument in get_local_storage(map, flags) is 0,
9670 * this is required because get_local_storage() can't return an error.
9671 */
9672 if (!register_is_null(&regs[BPF_REG_2])) {
9673 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9674 return -EINVAL;
9675 }
9676 break;
9677 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
9678 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9679 set_map_elem_callback_state);
e6f2dd0f
JK
9680 break;
9681 case BPF_FUNC_timer_set_callback:
b00628b1
AS
9682 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9683 set_timer_callback_state);
e6f2dd0f
JK
9684 break;
9685 case BPF_FUNC_find_vma:
7c7e3d31
SL
9686 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9687 set_find_vma_callback_state);
e6f2dd0f
JK
9688 break;
9689 case BPF_FUNC_snprintf:
7b15523a 9690 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
9691 break;
9692 case BPF_FUNC_loop:
1ade2371 9693 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
9694 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9695 set_loop_callback_state);
9696 break;
263ae152
JK
9697 case BPF_FUNC_dynptr_from_mem:
9698 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9699 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9700 reg_type_str(env, regs[BPF_REG_1].type));
9701 return -EACCES;
9702 }
69fd337a
SF
9703 break;
9704 case BPF_FUNC_set_retval:
aef9d4a3
SF
9705 if (prog_type == BPF_PROG_TYPE_LSM &&
9706 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
9707 if (!env->prog->aux->attach_func_proto->type) {
9708 /* Make sure programs that attach to void
9709 * hooks don't try to modify return value.
9710 */
9711 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9712 return -EINVAL;
9713 }
9714 }
9715 break;
88374342 9716 case BPF_FUNC_dynptr_data:
485ec51e
JK
9717 {
9718 struct bpf_reg_state *reg;
9719 int id, ref_obj_id;
20571567 9720
485ec51e
JK
9721 reg = get_dynptr_arg_reg(env, fn, regs);
9722 if (!reg)
9723 return -EFAULT;
f8064ab9 9724
f8064ab9 9725
485ec51e
JK
9726 if (meta.dynptr_id) {
9727 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9728 return -EFAULT;
88374342 9729 }
485ec51e
JK
9730 if (meta.ref_obj_id) {
9731 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
88374342
JK
9732 return -EFAULT;
9733 }
485ec51e
JK
9734
9735 id = dynptr_id(env, reg);
9736 if (id < 0) {
9737 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9738 return id;
9739 }
9740
9741 ref_obj_id = dynptr_ref_obj_id(env, reg);
9742 if (ref_obj_id < 0) {
9743 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9744 return ref_obj_id;
9745 }
9746
9747 meta.dynptr_id = id;
9748 meta.ref_obj_id = ref_obj_id;
9749
88374342 9750 break;
485ec51e 9751 }
b5964b96
JK
9752 case BPF_FUNC_dynptr_write:
9753 {
9754 enum bpf_dynptr_type dynptr_type;
9755 struct bpf_reg_state *reg;
9756
9757 reg = get_dynptr_arg_reg(env, fn, regs);
9758 if (!reg)
9759 return -EFAULT;
9760
9761 dynptr_type = dynptr_get_type(env, reg);
9762 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9763 return -EFAULT;
9764
9765 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9766 /* this will trigger clear_all_pkt_pointers(), which will
9767 * invalidate all dynptr slices associated with the skb
9768 */
9769 changes_data = true;
9770
9771 break;
9772 }
20571567
DV
9773 case BPF_FUNC_user_ringbuf_drain:
9774 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9775 set_user_ringbuf_callback_state);
9776 break;
7b15523a
FR
9777 }
9778
e6f2dd0f
JK
9779 if (err)
9780 return err;
9781
17a52670 9782 /* reset caller saved regs */
dc503a8a 9783 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9784 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9785 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9786 }
17a52670 9787
5327ed3d
JW
9788 /* helper call returns 64-bit value. */
9789 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9790
dc503a8a 9791 /* update return register (already marked as written above) */
3c480732 9792 ret_type = fn->ret_type;
0c9a7a7e
JK
9793 ret_flag = type_flag(ret_type);
9794
9795 switch (base_type(ret_type)) {
9796 case RET_INTEGER:
f1174f77 9797 /* sets type to SCALAR_VALUE */
61bd5218 9798 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
9799 break;
9800 case RET_VOID:
17a52670 9801 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
9802 break;
9803 case RET_PTR_TO_MAP_VALUE:
f1174f77 9804 /* There is no offset yet applied, variable or fixed */
61bd5218 9805 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
9806 /* remember map_ptr, so that check_map_access()
9807 * can check 'value_size' boundary of memory access
9808 * to map element returned from bpf_map_lookup_elem()
9809 */
33ff9823 9810 if (meta.map_ptr == NULL) {
61bd5218
JK
9811 verbose(env,
9812 "kernel subsystem misconfigured verifier\n");
17a52670
AS
9813 return -EINVAL;
9814 }
33ff9823 9815 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 9816 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
9817 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9818 if (!type_may_be_null(ret_type) &&
db559117 9819 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 9820 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 9821 }
0c9a7a7e
JK
9822 break;
9823 case RET_PTR_TO_SOCKET:
c64b7983 9824 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9825 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
9826 break;
9827 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 9828 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9829 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
9830 break;
9831 case RET_PTR_TO_TCP_SOCK:
655a51e5 9832 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9833 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 9834 break;
2de2669b 9835 case RET_PTR_TO_MEM:
457f4436 9836 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9837 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 9838 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
9839 break;
9840 case RET_PTR_TO_MEM_OR_BTF_ID:
9841 {
eaa6bcb7
HL
9842 const struct btf_type *t;
9843
9844 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 9845 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
9846 if (!btf_type_is_struct(t)) {
9847 u32 tsize;
9848 const struct btf_type *ret;
9849 const char *tname;
9850
9851 /* resolve the type size of ksym. */
22dc4a0f 9852 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 9853 if (IS_ERR(ret)) {
22dc4a0f 9854 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
9855 verbose(env, "unable to resolve the size of type '%s': %ld\n",
9856 tname, PTR_ERR(ret));
9857 return -EINVAL;
9858 }
c25b2ae1 9859 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
9860 regs[BPF_REG_0].mem_size = tsize;
9861 } else {
34d3a78c
HL
9862 /* MEM_RDONLY may be carried from ret_flag, but it
9863 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9864 * it will confuse the check of PTR_TO_BTF_ID in
9865 * check_mem_access().
9866 */
9867 ret_flag &= ~MEM_RDONLY;
9868
c25b2ae1 9869 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 9870 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
9871 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9872 }
0c9a7a7e
JK
9873 break;
9874 }
9875 case RET_PTR_TO_BTF_ID:
9876 {
c0a5a21c 9877 struct btf *ret_btf;
af7ec138
YS
9878 int ret_btf_id;
9879
9880 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 9881 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 9882 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
9883 ret_btf = meta.kptr_field->kptr.btf;
9884 ret_btf_id = meta.kptr_field->kptr.btf_id;
738c96d5
DM
9885 if (!btf_is_kernel(ret_btf))
9886 regs[BPF_REG_0].type |= MEM_ALLOC;
c0a5a21c 9887 } else {
47e34cb7
DM
9888 if (fn->ret_btf_id == BPF_PTR_POISON) {
9889 verbose(env, "verifier internal error:");
9890 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9891 func_id_name(func_id));
9892 return -EINVAL;
9893 }
c0a5a21c
KKD
9894 ret_btf = btf_vmlinux;
9895 ret_btf_id = *fn->ret_btf_id;
9896 }
af7ec138 9897 if (ret_btf_id == 0) {
3c480732
HL
9898 verbose(env, "invalid return type %u of func %s#%d\n",
9899 base_type(ret_type), func_id_name(func_id),
9900 func_id);
af7ec138
YS
9901 return -EINVAL;
9902 }
c0a5a21c 9903 regs[BPF_REG_0].btf = ret_btf;
af7ec138 9904 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
9905 break;
9906 }
9907 default:
3c480732
HL
9908 verbose(env, "unknown return type %u of func %s#%d\n",
9909 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
9910 return -EINVAL;
9911 }
04fd61ab 9912
c25b2ae1 9913 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
9914 regs[BPF_REG_0].id = ++env->id_gen;
9915
b2d8ef19
DM
9916 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9917 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9918 func_id_name(func_id), func_id);
9919 return -EFAULT;
9920 }
9921
f8064ab9
KKD
9922 if (is_dynptr_ref_function(func_id))
9923 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9924
88374342 9925 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
9926 /* For release_reference() */
9927 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 9928 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
9929 int id = acquire_reference_state(env, insn_idx);
9930
9931 if (id < 0)
9932 return id;
9933 /* For mark_ptr_or_null_reg() */
9934 regs[BPF_REG_0].id = id;
9935 /* For release_reference() */
9936 regs[BPF_REG_0].ref_obj_id = id;
9937 }
1b986589 9938
849fa506
YS
9939 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9940
61bd5218 9941 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
9942 if (err)
9943 return err;
04fd61ab 9944
fa28dcb8
SL
9945 if ((func_id == BPF_FUNC_get_stack ||
9946 func_id == BPF_FUNC_get_task_stack) &&
9947 !env->prog->has_callchain_buf) {
c195651e
YS
9948 const char *err_str;
9949
9950#ifdef CONFIG_PERF_EVENTS
9951 err = get_callchain_buffers(sysctl_perf_event_max_stack);
9952 err_str = "cannot get callchain buffer for func %s#%d\n";
9953#else
9954 err = -ENOTSUPP;
9955 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9956#endif
9957 if (err) {
9958 verbose(env, err_str, func_id_name(func_id), func_id);
9959 return err;
9960 }
9961
9962 env->prog->has_callchain_buf = true;
9963 }
9964
5d99cb2c
SL
9965 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9966 env->prog->call_get_stack = true;
9967
9b99edca
JO
9968 if (func_id == BPF_FUNC_get_func_ip) {
9969 if (check_get_func_ip(env))
9970 return -ENOTSUPP;
9971 env->prog->call_get_func_ip = true;
9972 }
9973
969bf05e
AS
9974 if (changes_data)
9975 clear_all_pkt_pointers(env);
9976 return 0;
9977}
9978
e6ac2450
MKL
9979/* mark_btf_func_reg_size() is used when the reg size is determined by
9980 * the BTF func_proto's return value size and argument.
9981 */
9982static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9983 size_t reg_size)
9984{
9985 struct bpf_reg_state *reg = &cur_regs(env)[regno];
9986
9987 if (regno == BPF_REG_0) {
9988 /* Function return value */
9989 reg->live |= REG_LIVE_WRITTEN;
9990 reg->subreg_def = reg_size == sizeof(u64) ?
9991 DEF_NOT_SUBREG : env->insn_idx + 1;
9992 } else {
9993 /* Function argument */
9994 if (reg_size == sizeof(u64)) {
9995 mark_insn_zext(env, reg);
9996 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9997 } else {
9998 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9999 }
10000 }
10001}
10002
00b85860
KKD
10003static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10004{
10005 return meta->kfunc_flags & KF_ACQUIRE;
10006}
a5d82727 10007
00b85860
KKD
10008static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10009{
10010 return meta->kfunc_flags & KF_RELEASE;
10011}
e6ac2450 10012
00b85860
KKD
10013static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10014{
6c831c46 10015 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
00b85860 10016}
4dd48c6f 10017
00b85860
KKD
10018static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10019{
10020 return meta->kfunc_flags & KF_SLEEPABLE;
10021}
5c073f26 10022
00b85860
KKD
10023static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10024{
10025 return meta->kfunc_flags & KF_DESTRUCTIVE;
10026}
eb1f7f71 10027
fca1aa75
YS
10028static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10029{
10030 return meta->kfunc_flags & KF_RCU;
10031}
10032
a50388db
KKD
10033static bool __kfunc_param_match_suffix(const struct btf *btf,
10034 const struct btf_param *arg,
10035 const char *suffix)
00b85860 10036{
a50388db 10037 int suffix_len = strlen(suffix), len;
00b85860 10038 const char *param_name;
e6ac2450 10039
00b85860
KKD
10040 /* In the future, this can be ported to use BTF tagging */
10041 param_name = btf_name_by_offset(btf, arg->name_off);
10042 if (str_is_empty(param_name))
10043 return false;
10044 len = strlen(param_name);
a50388db 10045 if (len < suffix_len)
00b85860 10046 return false;
a50388db
KKD
10047 param_name += len - suffix_len;
10048 return !strncmp(param_name, suffix, suffix_len);
10049}
5c073f26 10050
a50388db
KKD
10051static bool is_kfunc_arg_mem_size(const struct btf *btf,
10052 const struct btf_param *arg,
10053 const struct bpf_reg_state *reg)
10054{
10055 const struct btf_type *t;
5c073f26 10056
a50388db
KKD
10057 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10058 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860 10059 return false;
eb1f7f71 10060
a50388db
KKD
10061 return __kfunc_param_match_suffix(btf, arg, "__sz");
10062}
eb1f7f71 10063
66e3a13e
JK
10064static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10065 const struct btf_param *arg,
10066 const struct bpf_reg_state *reg)
10067{
10068 const struct btf_type *t;
10069
10070 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10071 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10072 return false;
10073
10074 return __kfunc_param_match_suffix(btf, arg, "__szk");
10075}
10076
3bda08b6
DR
10077static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10078{
10079 return __kfunc_param_match_suffix(btf, arg, "__opt");
10080}
10081
a50388db
KKD
10082static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10083{
10084 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860 10085}
eb1f7f71 10086
958cf2e2
KKD
10087static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10088{
10089 return __kfunc_param_match_suffix(btf, arg, "__ign");
10090}
5c073f26 10091
ac9f0605
KKD
10092static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10093{
10094 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10095}
e6ac2450 10096
d96d937d
JK
10097static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10098{
10099 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10100}
10101
7c50b1cb
DM
10102static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10103{
10104 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10105}
10106
00b85860
KKD
10107static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10108 const struct btf_param *arg,
10109 const char *name)
10110{
10111 int len, target_len = strlen(name);
10112 const char *param_name;
e6ac2450 10113
00b85860
KKD
10114 param_name = btf_name_by_offset(btf, arg->name_off);
10115 if (str_is_empty(param_name))
10116 return false;
10117 len = strlen(param_name);
10118 if (len != target_len)
10119 return false;
10120 if (strcmp(param_name, name))
10121 return false;
e6ac2450 10122
00b85860 10123 return true;
e6ac2450
MKL
10124}
10125
00b85860
KKD
10126enum {
10127 KF_ARG_DYNPTR_ID,
8cab76ec
KKD
10128 KF_ARG_LIST_HEAD_ID,
10129 KF_ARG_LIST_NODE_ID,
cd6791b4
DM
10130 KF_ARG_RB_ROOT_ID,
10131 KF_ARG_RB_NODE_ID,
00b85860 10132};
b03c9f9f 10133
00b85860
KKD
10134BTF_ID_LIST(kf_arg_btf_ids)
10135BTF_ID(struct, bpf_dynptr_kern)
8cab76ec
KKD
10136BTF_ID(struct, bpf_list_head)
10137BTF_ID(struct, bpf_list_node)
bd1279ae
DM
10138BTF_ID(struct, bpf_rb_root)
10139BTF_ID(struct, bpf_rb_node)
b03c9f9f 10140
8cab76ec
KKD
10141static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10142 const struct btf_param *arg, int type)
3f50f132 10143{
00b85860
KKD
10144 const struct btf_type *t;
10145 u32 res_id;
3f50f132 10146
00b85860
KKD
10147 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10148 if (!t)
10149 return false;
10150 if (!btf_type_is_ptr(t))
10151 return false;
10152 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10153 if (!t)
10154 return false;
8cab76ec 10155 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
3f50f132
JF
10156}
10157
8cab76ec 10158static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
b03c9f9f 10159{
8cab76ec 10160 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
969bf05e
AS
10161}
10162
8cab76ec 10163static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
3f50f132 10164{
8cab76ec 10165 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
3f50f132
JF
10166}
10167
8cab76ec 10168static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
bb7f0f98 10169{
8cab76ec 10170 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
00b85860
KKD
10171}
10172
cd6791b4
DM
10173static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10174{
10175 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10176}
10177
10178static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10179{
10180 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10181}
10182
5d92ddc3
DM
10183static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10184 const struct btf_param *arg)
10185{
10186 const struct btf_type *t;
10187
10188 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10189 if (!t)
10190 return false;
10191
10192 return true;
10193}
10194
00b85860
KKD
10195/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10196static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10197 const struct btf *btf,
10198 const struct btf_type *t, int rec)
10199{
10200 const struct btf_type *member_type;
10201 const struct btf_member *member;
10202 u32 i;
10203
10204 if (!btf_type_is_struct(t))
10205 return false;
10206
10207 for_each_member(i, t, member) {
10208 const struct btf_array *array;
10209
10210 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10211 if (btf_type_is_struct(member_type)) {
10212 if (rec >= 3) {
10213 verbose(env, "max struct nesting depth exceeded\n");
10214 return false;
10215 }
10216 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10217 return false;
10218 continue;
10219 }
10220 if (btf_type_is_array(member_type)) {
10221 array = btf_array(member_type);
10222 if (!array->nelems)
10223 return false;
10224 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10225 if (!btf_type_is_scalar(member_type))
10226 return false;
10227 continue;
10228 }
10229 if (!btf_type_is_scalar(member_type))
10230 return false;
10231 }
10232 return true;
10233}
10234
00b85860
KKD
10235enum kfunc_ptr_arg_type {
10236 KF_ARG_PTR_TO_CTX,
7c50b1cb
DM
10237 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10238 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
00b85860 10239 KF_ARG_PTR_TO_DYNPTR,
06accc87 10240 KF_ARG_PTR_TO_ITER,
8cab76ec
KKD
10241 KF_ARG_PTR_TO_LIST_HEAD,
10242 KF_ARG_PTR_TO_LIST_NODE,
7c50b1cb 10243 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
00b85860 10244 KF_ARG_PTR_TO_MEM,
7c50b1cb 10245 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
5d92ddc3 10246 KF_ARG_PTR_TO_CALLBACK,
cd6791b4
DM
10247 KF_ARG_PTR_TO_RB_ROOT,
10248 KF_ARG_PTR_TO_RB_NODE,
00b85860
KKD
10249};
10250
ac9f0605
KKD
10251enum special_kfunc_type {
10252 KF_bpf_obj_new_impl,
10253 KF_bpf_obj_drop_impl,
7c50b1cb 10254 KF_bpf_refcount_acquire_impl,
d2dcc67d
DM
10255 KF_bpf_list_push_front_impl,
10256 KF_bpf_list_push_back_impl,
8cab76ec
KKD
10257 KF_bpf_list_pop_front,
10258 KF_bpf_list_pop_back,
fd264ca0 10259 KF_bpf_cast_to_kern_ctx,
a35b9af4 10260 KF_bpf_rdonly_cast,
9bb00b28
YS
10261 KF_bpf_rcu_read_lock,
10262 KF_bpf_rcu_read_unlock,
bd1279ae 10263 KF_bpf_rbtree_remove,
d2dcc67d 10264 KF_bpf_rbtree_add_impl,
bd1279ae 10265 KF_bpf_rbtree_first,
b5964b96 10266 KF_bpf_dynptr_from_skb,
05421aec 10267 KF_bpf_dynptr_from_xdp,
66e3a13e
JK
10268 KF_bpf_dynptr_slice,
10269 KF_bpf_dynptr_slice_rdwr,
361f129f 10270 KF_bpf_dynptr_clone,
ac9f0605
KKD
10271};
10272
10273BTF_SET_START(special_kfunc_set)
10274BTF_ID(func, bpf_obj_new_impl)
10275BTF_ID(func, bpf_obj_drop_impl)
7c50b1cb 10276BTF_ID(func, bpf_refcount_acquire_impl)
d2dcc67d
DM
10277BTF_ID(func, bpf_list_push_front_impl)
10278BTF_ID(func, bpf_list_push_back_impl)
8cab76ec
KKD
10279BTF_ID(func, bpf_list_pop_front)
10280BTF_ID(func, bpf_list_pop_back)
fd264ca0 10281BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 10282BTF_ID(func, bpf_rdonly_cast)
bd1279ae 10283BTF_ID(func, bpf_rbtree_remove)
d2dcc67d 10284BTF_ID(func, bpf_rbtree_add_impl)
bd1279ae 10285BTF_ID(func, bpf_rbtree_first)
b5964b96 10286BTF_ID(func, bpf_dynptr_from_skb)
05421aec 10287BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
10288BTF_ID(func, bpf_dynptr_slice)
10289BTF_ID(func, bpf_dynptr_slice_rdwr)
361f129f 10290BTF_ID(func, bpf_dynptr_clone)
ac9f0605
KKD
10291BTF_SET_END(special_kfunc_set)
10292
10293BTF_ID_LIST(special_kfunc_list)
10294BTF_ID(func, bpf_obj_new_impl)
10295BTF_ID(func, bpf_obj_drop_impl)
7c50b1cb 10296BTF_ID(func, bpf_refcount_acquire_impl)
d2dcc67d
DM
10297BTF_ID(func, bpf_list_push_front_impl)
10298BTF_ID(func, bpf_list_push_back_impl)
8cab76ec
KKD
10299BTF_ID(func, bpf_list_pop_front)
10300BTF_ID(func, bpf_list_pop_back)
fd264ca0 10301BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 10302BTF_ID(func, bpf_rdonly_cast)
9bb00b28
YS
10303BTF_ID(func, bpf_rcu_read_lock)
10304BTF_ID(func, bpf_rcu_read_unlock)
bd1279ae 10305BTF_ID(func, bpf_rbtree_remove)
d2dcc67d 10306BTF_ID(func, bpf_rbtree_add_impl)
bd1279ae 10307BTF_ID(func, bpf_rbtree_first)
b5964b96 10308BTF_ID(func, bpf_dynptr_from_skb)
05421aec 10309BTF_ID(func, bpf_dynptr_from_xdp)
66e3a13e
JK
10310BTF_ID(func, bpf_dynptr_slice)
10311BTF_ID(func, bpf_dynptr_slice_rdwr)
361f129f 10312BTF_ID(func, bpf_dynptr_clone)
9bb00b28 10313
7793fc3b
DM
10314static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10315{
10316 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10317 meta->arg_owning_ref) {
10318 return false;
10319 }
10320
10321 return meta->kfunc_flags & KF_RET_NULL;
10322}
10323
9bb00b28
YS
10324static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10325{
10326 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10327}
10328
10329static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10330{
10331 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10332}
ac9f0605 10333
00b85860
KKD
10334static enum kfunc_ptr_arg_type
10335get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10336 struct bpf_kfunc_call_arg_meta *meta,
10337 const struct btf_type *t, const struct btf_type *ref_t,
10338 const char *ref_tname, const struct btf_param *args,
10339 int argno, int nargs)
10340{
10341 u32 regno = argno + 1;
10342 struct bpf_reg_state *regs = cur_regs(env);
10343 struct bpf_reg_state *reg = &regs[regno];
10344 bool arg_mem_size = false;
10345
fd264ca0
YS
10346 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10347 return KF_ARG_PTR_TO_CTX;
10348
00b85860
KKD
10349 /* In this function, we verify the kfunc's BTF as per the argument type,
10350 * leaving the rest of the verification with respect to the register
10351 * type to our caller. When a set of conditions hold in the BTF type of
10352 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10353 */
10354 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10355 return KF_ARG_PTR_TO_CTX;
10356
ac9f0605
KKD
10357 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10358 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10359
7c50b1cb
DM
10360 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10361 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
00b85860
KKD
10362
10363 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10364 return KF_ARG_PTR_TO_DYNPTR;
10365
06accc87
AN
10366 if (is_kfunc_arg_iter(meta, argno))
10367 return KF_ARG_PTR_TO_ITER;
10368
8cab76ec
KKD
10369 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10370 return KF_ARG_PTR_TO_LIST_HEAD;
10371
10372 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10373 return KF_ARG_PTR_TO_LIST_NODE;
10374
cd6791b4
DM
10375 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10376 return KF_ARG_PTR_TO_RB_ROOT;
10377
10378 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10379 return KF_ARG_PTR_TO_RB_NODE;
10380
00b85860
KKD
10381 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10382 if (!btf_type_is_struct(ref_t)) {
10383 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10384 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10385 return -EINVAL;
10386 }
10387 return KF_ARG_PTR_TO_BTF_ID;
10388 }
10389
5d92ddc3
DM
10390 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10391 return KF_ARG_PTR_TO_CALLBACK;
10392
66e3a13e
JK
10393
10394 if (argno + 1 < nargs &&
10395 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10396 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
00b85860
KKD
10397 arg_mem_size = true;
10398
10399 /* This is the catch all argument type of register types supported by
10400 * check_helper_mem_access. However, we only allow when argument type is
10401 * pointer to scalar, or struct composed (recursively) of scalars. When
10402 * arg_mem_size is true, the pointer can be void *.
10403 */
10404 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10405 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10406 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10407 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10408 return -EINVAL;
10409 }
10410 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10411}
10412
10413static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10414 struct bpf_reg_state *reg,
10415 const struct btf_type *ref_t,
10416 const char *ref_tname, u32 ref_id,
10417 struct bpf_kfunc_call_arg_meta *meta,
10418 int argno)
10419{
10420 const struct btf_type *reg_ref_t;
10421 bool strict_type_match = false;
10422 const struct btf *reg_btf;
10423 const char *reg_ref_tname;
10424 u32 reg_ref_id;
10425
3f00c523 10426 if (base_type(reg->type) == PTR_TO_BTF_ID) {
00b85860
KKD
10427 reg_btf = reg->btf;
10428 reg_ref_id = reg->btf_id;
10429 } else {
10430 reg_btf = btf_vmlinux;
10431 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10432 }
10433
b613d335
DV
10434 /* Enforce strict type matching for calls to kfuncs that are acquiring
10435 * or releasing a reference, or are no-cast aliases. We do _not_
10436 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10437 * as we want to enable BPF programs to pass types that are bitwise
10438 * equivalent without forcing them to explicitly cast with something
10439 * like bpf_cast_to_kern_ctx().
10440 *
10441 * For example, say we had a type like the following:
10442 *
10443 * struct bpf_cpumask {
10444 * cpumask_t cpumask;
10445 * refcount_t usage;
10446 * };
10447 *
10448 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10449 * to a struct cpumask, so it would be safe to pass a struct
10450 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10451 *
10452 * The philosophy here is similar to how we allow scalars of different
10453 * types to be passed to kfuncs as long as the size is the same. The
10454 * only difference here is that we're simply allowing
10455 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10456 * resolve types.
10457 */
10458 if (is_kfunc_acquire(meta) ||
10459 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10460 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
00b85860
KKD
10461 strict_type_match = true;
10462
b613d335
DV
10463 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10464
00b85860
KKD
10465 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10466 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10467 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10468 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10469 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10470 btf_type_str(reg_ref_t), reg_ref_tname);
10471 return -EINVAL;
10472 }
10473 return 0;
10474}
10475
6a3cd331 10476static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
534e86bc 10477{
6a3cd331 10478 struct bpf_verifier_state *state = env->cur_state;
0816b8c6 10479 struct btf_record *rec = reg_btf_record(reg);
6a3cd331
DM
10480
10481 if (!state->active_lock.ptr) {
10482 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10483 return -EFAULT;
10484 }
10485
10486 if (type_flag(reg->type) & NON_OWN_REF) {
10487 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10488 return -EFAULT;
10489 }
10490
10491 reg->type |= NON_OWN_REF;
0816b8c6
DM
10492 if (rec->refcount_off >= 0)
10493 reg->type |= MEM_RCU;
10494
6a3cd331
DM
10495 return 0;
10496}
10497
10498static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10499{
10500 struct bpf_func_state *state, *unused;
534e86bc
KKD
10501 struct bpf_reg_state *reg;
10502 int i;
10503
6a3cd331
DM
10504 state = cur_func(env);
10505
534e86bc 10506 if (!ref_obj_id) {
6a3cd331
DM
10507 verbose(env, "verifier internal error: ref_obj_id is zero for "
10508 "owning -> non-owning conversion\n");
534e86bc
KKD
10509 return -EFAULT;
10510 }
6a3cd331 10511
534e86bc 10512 for (i = 0; i < state->acquired_refs; i++) {
6a3cd331
DM
10513 if (state->refs[i].id != ref_obj_id)
10514 continue;
10515
10516 /* Clear ref_obj_id here so release_reference doesn't clobber
10517 * the whole reg
10518 */
10519 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10520 if (reg->ref_obj_id == ref_obj_id) {
10521 reg->ref_obj_id = 0;
10522 ref_set_non_owning(env, reg);
534e86bc 10523 }
6a3cd331
DM
10524 }));
10525 return 0;
534e86bc 10526 }
6a3cd331 10527
534e86bc
KKD
10528 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10529 return -EFAULT;
10530}
10531
8cab76ec
KKD
10532/* Implementation details:
10533 *
10534 * Each register points to some region of memory, which we define as an
10535 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10536 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10537 * allocation. The lock and the data it protects are colocated in the same
10538 * memory region.
10539 *
10540 * Hence, everytime a register holds a pointer value pointing to such
10541 * allocation, the verifier preserves a unique reg->id for it.
10542 *
10543 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10544 * bpf_spin_lock is called.
10545 *
10546 * To enable this, lock state in the verifier captures two values:
10547 * active_lock.ptr = Register's type specific pointer
10548 * active_lock.id = A unique ID for each register pointer value
10549 *
10550 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10551 * supported register types.
10552 *
10553 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10554 * allocated objects is the reg->btf pointer.
10555 *
10556 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10557 * can establish the provenance of the map value statically for each distinct
10558 * lookup into such maps. They always contain a single map value hence unique
10559 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10560 *
10561 * So, in case of global variables, they use array maps with max_entries = 1,
10562 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10563 * into the same map value as max_entries is 1, as described above).
10564 *
10565 * In case of inner map lookups, the inner map pointer has same map_ptr as the
10566 * outer map pointer (in verifier context), but each lookup into an inner map
10567 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10568 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10569 * will get different reg->id assigned to each lookup, hence different
10570 * active_lock.id.
10571 *
10572 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10573 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10574 * returned from bpf_obj_new. Each allocation receives a new reg->id.
10575 */
10576static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10577{
10578 void *ptr;
10579 u32 id;
10580
10581 switch ((int)reg->type) {
10582 case PTR_TO_MAP_VALUE:
10583 ptr = reg->map_ptr;
10584 break;
10585 case PTR_TO_BTF_ID | MEM_ALLOC:
10586 ptr = reg->btf;
10587 break;
10588 default:
10589 verbose(env, "verifier internal error: unknown reg type for lock check\n");
10590 return -EFAULT;
10591 }
10592 id = reg->id;
10593
10594 if (!env->cur_state->active_lock.ptr)
10595 return -EINVAL;
10596 if (env->cur_state->active_lock.ptr != ptr ||
10597 env->cur_state->active_lock.id != id) {
10598 verbose(env, "held lock and object are not in the same allocation\n");
10599 return -EINVAL;
10600 }
10601 return 0;
10602}
10603
10604static bool is_bpf_list_api_kfunc(u32 btf_id)
10605{
d2dcc67d
DM
10606 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10607 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
8cab76ec
KKD
10608 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10609 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10610}
10611
cd6791b4
DM
10612static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10613{
d2dcc67d 10614 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
cd6791b4
DM
10615 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10616 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10617}
10618
10619static bool is_bpf_graph_api_kfunc(u32 btf_id)
10620{
7c50b1cb
DM
10621 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10622 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
cd6791b4
DM
10623}
10624
5d92ddc3
DM
10625static bool is_callback_calling_kfunc(u32 btf_id)
10626{
d2dcc67d 10627 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
5d92ddc3
DM
10628}
10629
10630static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10631{
10632 return is_bpf_rbtree_api_kfunc(btf_id);
10633}
10634
cd6791b4
DM
10635static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10636 enum btf_field_type head_field_type,
10637 u32 kfunc_btf_id)
10638{
10639 bool ret;
10640
10641 switch (head_field_type) {
10642 case BPF_LIST_HEAD:
10643 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10644 break;
10645 case BPF_RB_ROOT:
10646 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10647 break;
10648 default:
10649 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10650 btf_field_type_name(head_field_type));
10651 return false;
10652 }
10653
10654 if (!ret)
10655 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10656 btf_field_type_name(head_field_type));
10657 return ret;
10658}
10659
10660static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10661 enum btf_field_type node_field_type,
10662 u32 kfunc_btf_id)
8cab76ec 10663{
cd6791b4
DM
10664 bool ret;
10665
10666 switch (node_field_type) {
10667 case BPF_LIST_NODE:
d2dcc67d
DM
10668 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10669 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
cd6791b4
DM
10670 break;
10671 case BPF_RB_NODE:
10672 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
d2dcc67d 10673 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
cd6791b4
DM
10674 break;
10675 default:
10676 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10677 btf_field_type_name(node_field_type));
10678 return false;
10679 }
10680
10681 if (!ret)
10682 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10683 btf_field_type_name(node_field_type));
10684 return ret;
10685}
10686
10687static int
10688__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10689 struct bpf_reg_state *reg, u32 regno,
10690 struct bpf_kfunc_call_arg_meta *meta,
10691 enum btf_field_type head_field_type,
10692 struct btf_field **head_field)
10693{
10694 const char *head_type_name;
8cab76ec
KKD
10695 struct btf_field *field;
10696 struct btf_record *rec;
cd6791b4 10697 u32 head_off;
8cab76ec 10698
cd6791b4
DM
10699 if (meta->btf != btf_vmlinux) {
10700 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10701 return -EFAULT;
10702 }
10703
cd6791b4
DM
10704 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10705 return -EFAULT;
10706
10707 head_type_name = btf_field_type_name(head_field_type);
8cab76ec
KKD
10708 if (!tnum_is_const(reg->var_off)) {
10709 verbose(env,
cd6791b4
DM
10710 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10711 regno, head_type_name);
8cab76ec
KKD
10712 return -EINVAL;
10713 }
10714
10715 rec = reg_btf_record(reg);
cd6791b4
DM
10716 head_off = reg->off + reg->var_off.value;
10717 field = btf_record_find(rec, head_off, head_field_type);
8cab76ec 10718 if (!field) {
cd6791b4 10719 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
8cab76ec
KKD
10720 return -EINVAL;
10721 }
10722
10723 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10724 if (check_reg_allocation_locked(env, reg)) {
cd6791b4
DM
10725 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10726 rec->spin_lock_off, head_type_name);
8cab76ec
KKD
10727 return -EINVAL;
10728 }
10729
cd6791b4
DM
10730 if (*head_field) {
10731 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
8cab76ec
KKD
10732 return -EFAULT;
10733 }
cd6791b4 10734 *head_field = field;
8cab76ec
KKD
10735 return 0;
10736}
10737
cd6791b4 10738static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8cab76ec
KKD
10739 struct bpf_reg_state *reg, u32 regno,
10740 struct bpf_kfunc_call_arg_meta *meta)
10741{
cd6791b4
DM
10742 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10743 &meta->arg_list_head.field);
10744}
10745
10746static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10747 struct bpf_reg_state *reg, u32 regno,
10748 struct bpf_kfunc_call_arg_meta *meta)
10749{
10750 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10751 &meta->arg_rbtree_root.field);
10752}
10753
10754static int
10755__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10756 struct bpf_reg_state *reg, u32 regno,
10757 struct bpf_kfunc_call_arg_meta *meta,
10758 enum btf_field_type head_field_type,
10759 enum btf_field_type node_field_type,
10760 struct btf_field **node_field)
10761{
10762 const char *node_type_name;
8cab76ec
KKD
10763 const struct btf_type *et, *t;
10764 struct btf_field *field;
cd6791b4 10765 u32 node_off;
8cab76ec 10766
cd6791b4
DM
10767 if (meta->btf != btf_vmlinux) {
10768 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
8cab76ec
KKD
10769 return -EFAULT;
10770 }
10771
cd6791b4
DM
10772 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10773 return -EFAULT;
10774
10775 node_type_name = btf_field_type_name(node_field_type);
8cab76ec
KKD
10776 if (!tnum_is_const(reg->var_off)) {
10777 verbose(env,
cd6791b4
DM
10778 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10779 regno, node_type_name);
8cab76ec
KKD
10780 return -EINVAL;
10781 }
10782
cd6791b4
DM
10783 node_off = reg->off + reg->var_off.value;
10784 field = reg_find_field_offset(reg, node_off, node_field_type);
10785 if (!field || field->offset != node_off) {
10786 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
8cab76ec
KKD
10787 return -EINVAL;
10788 }
10789
cd6791b4 10790 field = *node_field;
8cab76ec 10791
30465003 10792 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
8cab76ec 10793 t = btf_type_by_id(reg->btf, reg->btf_id);
30465003
DM
10794 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10795 field->graph_root.value_btf_id, true)) {
cd6791b4 10796 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
8cab76ec 10797 "in struct %s, but arg is at offset=%d in struct %s\n",
cd6791b4
DM
10798 btf_field_type_name(head_field_type),
10799 btf_field_type_name(node_field_type),
30465003
DM
10800 field->graph_root.node_offset,
10801 btf_name_by_offset(field->graph_root.btf, et->name_off),
cd6791b4 10802 node_off, btf_name_by_offset(reg->btf, t->name_off));
8cab76ec
KKD
10803 return -EINVAL;
10804 }
2140a6e3
DM
10805 meta->arg_btf = reg->btf;
10806 meta->arg_btf_id = reg->btf_id;
8cab76ec 10807
cd6791b4
DM
10808 if (node_off != field->graph_root.node_offset) {
10809 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10810 node_off, btf_field_type_name(node_field_type),
10811 field->graph_root.node_offset,
30465003 10812 btf_name_by_offset(field->graph_root.btf, et->name_off));
8cab76ec
KKD
10813 return -EINVAL;
10814 }
6a3cd331
DM
10815
10816 return 0;
8cab76ec
KKD
10817}
10818
cd6791b4
DM
10819static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10820 struct bpf_reg_state *reg, u32 regno,
10821 struct bpf_kfunc_call_arg_meta *meta)
10822{
10823 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10824 BPF_LIST_HEAD, BPF_LIST_NODE,
10825 &meta->arg_list_head.field);
10826}
10827
10828static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10829 struct bpf_reg_state *reg, u32 regno,
10830 struct bpf_kfunc_call_arg_meta *meta)
10831{
10832 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10833 BPF_RB_ROOT, BPF_RB_NODE,
10834 &meta->arg_rbtree_root.field);
10835}
10836
1d18feb2
JK
10837static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10838 int insn_idx)
00b85860
KKD
10839{
10840 const char *func_name = meta->func_name, *ref_tname;
10841 const struct btf *btf = meta->btf;
10842 const struct btf_param *args;
7c50b1cb 10843 struct btf_record *rec;
00b85860
KKD
10844 u32 i, nargs;
10845 int ret;
10846
10847 args = (const struct btf_param *)(meta->func_proto + 1);
10848 nargs = btf_type_vlen(meta->func_proto);
10849 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10850 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10851 MAX_BPF_FUNC_REG_ARGS);
10852 return -EINVAL;
10853 }
10854
10855 /* Check that BTF function arguments match actual types that the
10856 * verifier sees.
10857 */
10858 for (i = 0; i < nargs; i++) {
10859 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10860 const struct btf_type *t, *ref_t, *resolve_ret;
10861 enum bpf_arg_type arg_type = ARG_DONTCARE;
10862 u32 regno = i + 1, ref_id, type_size;
10863 bool is_ret_buf_sz = false;
10864 int kf_arg_type;
10865
10866 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
10867
10868 if (is_kfunc_arg_ignore(btf, &args[i]))
10869 continue;
10870
00b85860
KKD
10871 if (btf_type_is_scalar(t)) {
10872 if (reg->type != SCALAR_VALUE) {
10873 verbose(env, "R%d is not a scalar\n", regno);
10874 return -EINVAL;
10875 }
a50388db
KKD
10876
10877 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10878 if (meta->arg_constant.found) {
10879 verbose(env, "verifier internal error: only one constant argument permitted\n");
10880 return -EFAULT;
10881 }
10882 if (!tnum_is_const(reg->var_off)) {
10883 verbose(env, "R%d must be a known constant\n", regno);
10884 return -EINVAL;
10885 }
10886 ret = mark_chain_precision(env, regno);
10887 if (ret < 0)
10888 return ret;
10889 meta->arg_constant.found = true;
10890 meta->arg_constant.value = reg->var_off.value;
10891 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
10892 meta->r0_rdonly = true;
10893 is_ret_buf_sz = true;
10894 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10895 is_ret_buf_sz = true;
10896 }
10897
10898 if (is_ret_buf_sz) {
10899 if (meta->r0_size) {
10900 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10901 return -EINVAL;
10902 }
10903
10904 if (!tnum_is_const(reg->var_off)) {
10905 verbose(env, "R%d is not a const\n", regno);
10906 return -EINVAL;
10907 }
10908
10909 meta->r0_size = reg->var_off.value;
10910 ret = mark_chain_precision(env, regno);
10911 if (ret)
10912 return ret;
10913 }
10914 continue;
10915 }
10916
10917 if (!btf_type_is_ptr(t)) {
10918 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10919 return -EINVAL;
10920 }
10921
20c09d92 10922 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
caf713c3
DV
10923 (register_is_null(reg) || type_may_be_null(reg->type))) {
10924 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10925 return -EACCES;
10926 }
10927
00b85860
KKD
10928 if (reg->ref_obj_id) {
10929 if (is_kfunc_release(meta) && meta->ref_obj_id) {
10930 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10931 regno, reg->ref_obj_id,
10932 meta->ref_obj_id);
10933 return -EFAULT;
10934 }
10935 meta->ref_obj_id = reg->ref_obj_id;
10936 if (is_kfunc_release(meta))
10937 meta->release_regno = regno;
10938 }
10939
10940 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10941 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10942
10943 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10944 if (kf_arg_type < 0)
10945 return kf_arg_type;
10946
10947 switch (kf_arg_type) {
ac9f0605 10948 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860 10949 case KF_ARG_PTR_TO_BTF_ID:
fca1aa75 10950 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
00b85860 10951 break;
3f00c523
DV
10952
10953 if (!is_trusted_reg(reg)) {
fca1aa75
YS
10954 if (!is_kfunc_rcu(meta)) {
10955 verbose(env, "R%d must be referenced or trusted\n", regno);
10956 return -EINVAL;
10957 }
10958 if (!is_rcu_reg(reg)) {
10959 verbose(env, "R%d must be a rcu pointer\n", regno);
10960 return -EINVAL;
10961 }
00b85860 10962 }
fca1aa75 10963
00b85860
KKD
10964 fallthrough;
10965 case KF_ARG_PTR_TO_CTX:
10966 /* Trusted arguments have the same offset checks as release arguments */
10967 arg_type |= OBJ_RELEASE;
10968 break;
00b85860 10969 case KF_ARG_PTR_TO_DYNPTR:
06accc87 10970 case KF_ARG_PTR_TO_ITER:
8cab76ec
KKD
10971 case KF_ARG_PTR_TO_LIST_HEAD:
10972 case KF_ARG_PTR_TO_LIST_NODE:
cd6791b4
DM
10973 case KF_ARG_PTR_TO_RB_ROOT:
10974 case KF_ARG_PTR_TO_RB_NODE:
00b85860
KKD
10975 case KF_ARG_PTR_TO_MEM:
10976 case KF_ARG_PTR_TO_MEM_SIZE:
5d92ddc3 10977 case KF_ARG_PTR_TO_CALLBACK:
7c50b1cb 10978 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
00b85860
KKD
10979 /* Trusted by default */
10980 break;
10981 default:
10982 WARN_ON_ONCE(1);
10983 return -EFAULT;
10984 }
10985
10986 if (is_kfunc_release(meta) && reg->ref_obj_id)
10987 arg_type |= OBJ_RELEASE;
10988 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10989 if (ret < 0)
10990 return ret;
10991
10992 switch (kf_arg_type) {
10993 case KF_ARG_PTR_TO_CTX:
10994 if (reg->type != PTR_TO_CTX) {
10995 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10996 return -EINVAL;
10997 }
fd264ca0
YS
10998
10999 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11000 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11001 if (ret < 0)
11002 return -EINVAL;
11003 meta->ret_btf_id = ret;
11004 }
00b85860 11005 break;
ac9f0605
KKD
11006 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11007 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11008 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11009 return -EINVAL;
11010 }
11011 if (!reg->ref_obj_id) {
11012 verbose(env, "allocated object must be referenced\n");
11013 return -EINVAL;
11014 }
11015 if (meta->btf == btf_vmlinux &&
11016 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
4d585f48
DM
11017 meta->arg_btf = reg->btf;
11018 meta->arg_btf_id = reg->btf_id;
ac9f0605
KKD
11019 }
11020 break;
00b85860 11021 case KF_ARG_PTR_TO_DYNPTR:
d96d937d
JK
11022 {
11023 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
361f129f 11024 int clone_ref_obj_id = 0;
d96d937d 11025
6b75bd3d 11026 if (reg->type != PTR_TO_STACK &&
27060531 11027 reg->type != CONST_PTR_TO_DYNPTR) {
6b75bd3d 11028 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
00b85860
KKD
11029 return -EINVAL;
11030 }
11031
d96d937d
JK
11032 if (reg->type == CONST_PTR_TO_DYNPTR)
11033 dynptr_arg_type |= MEM_RDONLY;
11034
11035 if (is_kfunc_arg_uninit(btf, &args[i]))
11036 dynptr_arg_type |= MEM_UNINIT;
11037
361f129f 11038 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
b5964b96 11039 dynptr_arg_type |= DYNPTR_TYPE_SKB;
361f129f 11040 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
05421aec 11041 dynptr_arg_type |= DYNPTR_TYPE_XDP;
361f129f
JK
11042 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11043 (dynptr_arg_type & MEM_UNINIT)) {
11044 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11045
11046 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11047 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11048 return -EFAULT;
11049 }
11050
11051 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11052 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11053 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11054 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11055 return -EFAULT;
11056 }
11057 }
b5964b96 11058
361f129f 11059 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
6b75bd3d
KKD
11060 if (ret < 0)
11061 return ret;
66e3a13e
JK
11062
11063 if (!(dynptr_arg_type & MEM_UNINIT)) {
11064 int id = dynptr_id(env, reg);
11065
11066 if (id < 0) {
11067 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11068 return id;
11069 }
11070 meta->initialized_dynptr.id = id;
11071 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
361f129f 11072 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
66e3a13e
JK
11073 }
11074
00b85860 11075 break;
d96d937d 11076 }
06accc87
AN
11077 case KF_ARG_PTR_TO_ITER:
11078 ret = process_iter_arg(env, regno, insn_idx, meta);
11079 if (ret < 0)
11080 return ret;
11081 break;
8cab76ec
KKD
11082 case KF_ARG_PTR_TO_LIST_HEAD:
11083 if (reg->type != PTR_TO_MAP_VALUE &&
11084 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11085 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11086 return -EINVAL;
11087 }
11088 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11089 verbose(env, "allocated object must be referenced\n");
11090 return -EINVAL;
11091 }
11092 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11093 if (ret < 0)
11094 return ret;
11095 break;
cd6791b4
DM
11096 case KF_ARG_PTR_TO_RB_ROOT:
11097 if (reg->type != PTR_TO_MAP_VALUE &&
11098 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11099 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11100 return -EINVAL;
11101 }
11102 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11103 verbose(env, "allocated object must be referenced\n");
11104 return -EINVAL;
11105 }
11106 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11107 if (ret < 0)
11108 return ret;
11109 break;
8cab76ec
KKD
11110 case KF_ARG_PTR_TO_LIST_NODE:
11111 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11112 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11113 return -EINVAL;
11114 }
11115 if (!reg->ref_obj_id) {
11116 verbose(env, "allocated object must be referenced\n");
11117 return -EINVAL;
11118 }
11119 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11120 if (ret < 0)
11121 return ret;
11122 break;
cd6791b4 11123 case KF_ARG_PTR_TO_RB_NODE:
a40d3632
DM
11124 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11125 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11126 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11127 return -EINVAL;
11128 }
11129 if (in_rbtree_lock_required_cb(env)) {
11130 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11131 return -EINVAL;
11132 }
11133 } else {
11134 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11135 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11136 return -EINVAL;
11137 }
11138 if (!reg->ref_obj_id) {
11139 verbose(env, "allocated object must be referenced\n");
11140 return -EINVAL;
11141 }
cd6791b4 11142 }
a40d3632 11143
cd6791b4
DM
11144 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11145 if (ret < 0)
11146 return ret;
11147 break;
00b85860
KKD
11148 case KF_ARG_PTR_TO_BTF_ID:
11149 /* Only base_type is checked, further checks are done here */
3f00c523 11150 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
fca1aa75 11151 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
3f00c523
DV
11152 !reg2btf_ids[base_type(reg->type)]) {
11153 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11154 verbose(env, "expected %s or socket\n",
11155 reg_type_str(env, base_type(reg->type) |
11156 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
00b85860
KKD
11157 return -EINVAL;
11158 }
11159 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11160 if (ret < 0)
11161 return ret;
11162 break;
11163 case KF_ARG_PTR_TO_MEM:
11164 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11165 if (IS_ERR(resolve_ret)) {
11166 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11167 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11168 return -EINVAL;
11169 }
11170 ret = check_mem_reg(env, reg, regno, type_size);
11171 if (ret < 0)
11172 return ret;
11173 break;
11174 case KF_ARG_PTR_TO_MEM_SIZE:
66e3a13e 11175 {
3bda08b6
DR
11176 struct bpf_reg_state *buff_reg = &regs[regno];
11177 const struct btf_param *buff_arg = &args[i];
66e3a13e
JK
11178 struct bpf_reg_state *size_reg = &regs[regno + 1];
11179 const struct btf_param *size_arg = &args[i + 1];
11180
3bda08b6
DR
11181 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11182 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11183 if (ret < 0) {
11184 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11185 return ret;
11186 }
00b85860 11187 }
66e3a13e
JK
11188
11189 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11190 if (meta->arg_constant.found) {
11191 verbose(env, "verifier internal error: only one constant argument permitted\n");
11192 return -EFAULT;
11193 }
11194 if (!tnum_is_const(size_reg->var_off)) {
11195 verbose(env, "R%d must be a known constant\n", regno + 1);
11196 return -EINVAL;
11197 }
11198 meta->arg_constant.found = true;
11199 meta->arg_constant.value = size_reg->var_off.value;
11200 }
11201
11202 /* Skip next '__sz' or '__szk' argument */
00b85860
KKD
11203 i++;
11204 break;
66e3a13e 11205 }
5d92ddc3
DM
11206 case KF_ARG_PTR_TO_CALLBACK:
11207 meta->subprogno = reg->subprogno;
11208 break;
7c50b1cb 11209 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
7793fc3b 11210 if (!type_is_ptr_alloc_obj(reg->type)) {
7c50b1cb
DM
11211 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11212 return -EINVAL;
11213 }
7793fc3b
DM
11214 if (!type_is_non_owning_ref(reg->type))
11215 meta->arg_owning_ref = true;
7c50b1cb
DM
11216
11217 rec = reg_btf_record(reg);
11218 if (!rec) {
11219 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11220 return -EFAULT;
11221 }
11222
11223 if (rec->refcount_off < 0) {
11224 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11225 return -EINVAL;
11226 }
ba2464c8 11227
4d585f48
DM
11228 meta->arg_btf = reg->btf;
11229 meta->arg_btf_id = reg->btf_id;
7c50b1cb 11230 break;
00b85860
KKD
11231 }
11232 }
11233
11234 if (is_kfunc_release(meta) && !meta->release_regno) {
11235 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11236 func_name);
11237 return -EINVAL;
11238 }
11239
11240 return 0;
11241}
11242
07236eab
AN
11243static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11244 struct bpf_insn *insn,
11245 struct bpf_kfunc_call_arg_meta *meta,
11246 const char **kfunc_name)
e6ac2450 11247{
07236eab
AN
11248 const struct btf_type *func, *func_proto;
11249 u32 func_id, *kfunc_flags;
11250 const char *func_name;
2357672c 11251 struct btf *desc_btf;
e6ac2450 11252
07236eab
AN
11253 if (kfunc_name)
11254 *kfunc_name = NULL;
11255
a5d82727 11256 if (!insn->imm)
07236eab 11257 return -EINVAL;
a5d82727 11258
43bf0878 11259 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
11260 if (IS_ERR(desc_btf))
11261 return PTR_ERR(desc_btf);
11262
e6ac2450 11263 func_id = insn->imm;
2357672c
KKD
11264 func = btf_type_by_id(desc_btf, func_id);
11265 func_name = btf_name_by_offset(desc_btf, func->name_off);
07236eab
AN
11266 if (kfunc_name)
11267 *kfunc_name = func_name;
2357672c 11268 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 11269
e924e80e 11270 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
a4703e31 11271 if (!kfunc_flags) {
e6ac2450
MKL
11272 return -EACCES;
11273 }
00b85860 11274
07236eab
AN
11275 memset(meta, 0, sizeof(*meta));
11276 meta->btf = desc_btf;
11277 meta->func_id = func_id;
11278 meta->kfunc_flags = *kfunc_flags;
11279 meta->func_proto = func_proto;
11280 meta->func_name = func_name;
11281
11282 return 0;
11283}
11284
11285static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11286 int *insn_idx_p)
11287{
11288 const struct btf_type *t, *ptr_type;
11289 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11290 struct bpf_reg_state *regs = cur_regs(env);
11291 const char *func_name, *ptr_type_name;
11292 bool sleepable, rcu_lock, rcu_unlock;
11293 struct bpf_kfunc_call_arg_meta meta;
11294 struct bpf_insn_aux_data *insn_aux;
11295 int err, insn_idx = *insn_idx_p;
11296 const struct btf_param *args;
11297 const struct btf_type *ret_t;
11298 struct btf *desc_btf;
11299
11300 /* skip for now, but return error when we find this in fixup_kfunc_call */
11301 if (!insn->imm)
11302 return 0;
11303
11304 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11305 if (err == -EACCES && func_name)
11306 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11307 if (err)
11308 return err;
11309 desc_btf = meta.btf;
11310 insn_aux = &env->insn_aux_data[insn_idx];
00b85860 11311
06accc87
AN
11312 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11313
00b85860
KKD
11314 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11315 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
11316 return -EACCES;
11317 }
11318
9bb00b28
YS
11319 sleepable = is_kfunc_sleepable(&meta);
11320 if (sleepable && !env->prog->aux->sleepable) {
00b85860
KKD
11321 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11322 return -EACCES;
11323 }
eb1f7f71 11324
9bb00b28
YS
11325 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11326 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9bb00b28
YS
11327
11328 if (env->cur_state->active_rcu_lock) {
11329 struct bpf_func_state *state;
11330 struct bpf_reg_state *reg;
11331
0816b8c6
DM
11332 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11333 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11334 return -EACCES;
11335 }
11336
9bb00b28
YS
11337 if (rcu_lock) {
11338 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11339 return -EINVAL;
11340 } else if (rcu_unlock) {
11341 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11342 if (reg->type & MEM_RCU) {
fca1aa75 11343 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9bb00b28
YS
11344 reg->type |= PTR_UNTRUSTED;
11345 }
11346 }));
11347 env->cur_state->active_rcu_lock = false;
11348 } else if (sleepable) {
11349 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11350 return -EACCES;
11351 }
11352 } else if (rcu_lock) {
11353 env->cur_state->active_rcu_lock = true;
11354 } else if (rcu_unlock) {
11355 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11356 return -EINVAL;
11357 }
11358
e6ac2450 11359 /* Check the arguments */
1d18feb2 11360 err = check_kfunc_args(env, &meta, insn_idx);
5c073f26 11361 if (err < 0)
e6ac2450 11362 return err;
5c073f26 11363 /* In case of release function, we get register number of refcounted
00b85860 11364 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 11365 */
00b85860
KKD
11366 if (meta.release_regno) {
11367 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
11368 if (err) {
11369 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 11370 func_name, meta.func_id);
5c073f26
KKD
11371 return err;
11372 }
11373 }
e6ac2450 11374
d2dcc67d
DM
11375 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11376 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11377 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
6a3cd331 11378 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
d2dcc67d 11379 insn_aux->insert_off = regs[BPF_REG_2].off;
2140a6e3 11380 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
6a3cd331
DM
11381 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11382 if (err) {
11383 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
07236eab 11384 func_name, meta.func_id);
6a3cd331
DM
11385 return err;
11386 }
11387
11388 err = release_reference(env, release_ref_obj_id);
11389 if (err) {
11390 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
07236eab 11391 func_name, meta.func_id);
6a3cd331
DM
11392 return err;
11393 }
11394 }
11395
d2dcc67d 11396 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
5d92ddc3
DM
11397 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11398 set_rbtree_add_callback_state);
11399 if (err) {
11400 verbose(env, "kfunc %s#%d failed callback verification\n",
07236eab 11401 func_name, meta.func_id);
5d92ddc3
DM
11402 return err;
11403 }
11404 }
11405
e6ac2450
MKL
11406 for (i = 0; i < CALLER_SAVED_REGS; i++)
11407 mark_reg_not_init(env, regs, caller_saved[i]);
11408
11409 /* Check return type */
07236eab 11410 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
5c073f26 11411
00b85860 11412 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2 11413 /* Only exception is bpf_obj_new_impl */
7c50b1cb
DM
11414 if (meta.btf != btf_vmlinux ||
11415 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11416 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
958cf2e2
KKD
11417 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11418 return -EINVAL;
11419 }
5c073f26
KKD
11420 }
11421
e6ac2450
MKL
11422 if (btf_type_is_scalar(t)) {
11423 mark_reg_unknown(env, regs, BPF_REG_0);
11424 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11425 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
11426 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11427
11428 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11429 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
958cf2e2
KKD
11430 struct btf *ret_btf;
11431 u32 ret_btf_id;
11432
e181d3f1
KKD
11433 if (unlikely(!bpf_global_ma_set))
11434 return -ENOMEM;
11435
958cf2e2
KKD
11436 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11437 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11438 return -EINVAL;
11439 }
11440
11441 ret_btf = env->prog->aux->btf;
11442 ret_btf_id = meta.arg_constant.value;
11443
11444 /* This may be NULL due to user not supplying a BTF */
11445 if (!ret_btf) {
11446 verbose(env, "bpf_obj_new requires prog BTF\n");
11447 return -EINVAL;
11448 }
11449
11450 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11451 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11452 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11453 return -EINVAL;
11454 }
11455
11456 mark_reg_known_zero(env, regs, BPF_REG_0);
11457 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11458 regs[BPF_REG_0].btf = ret_btf;
11459 regs[BPF_REG_0].btf_id = ret_btf_id;
11460
07236eab
AN
11461 insn_aux->obj_new_size = ret_t->size;
11462 insn_aux->kptr_struct_meta =
958cf2e2 11463 btf_find_struct_meta(ret_btf, ret_btf_id);
7c50b1cb
DM
11464 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11465 mark_reg_known_zero(env, regs, BPF_REG_0);
11466 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
4d585f48
DM
11467 regs[BPF_REG_0].btf = meta.arg_btf;
11468 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
7c50b1cb
DM
11469
11470 insn_aux->kptr_struct_meta =
4d585f48
DM
11471 btf_find_struct_meta(meta.arg_btf,
11472 meta.arg_btf_id);
8cab76ec
KKD
11473 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11474 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11475 struct btf_field *field = meta.arg_list_head.field;
11476
a40d3632
DM
11477 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11478 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11479 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11480 struct btf_field *field = meta.arg_rbtree_root.field;
11481
11482 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
fd264ca0
YS
11483 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11484 mark_reg_known_zero(env, regs, BPF_REG_0);
11485 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11486 regs[BPF_REG_0].btf = desc_btf;
11487 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
a35b9af4
YS
11488 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11489 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11490 if (!ret_t || !btf_type_is_struct(ret_t)) {
11491 verbose(env,
11492 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11493 return -EINVAL;
11494 }
11495
11496 mark_reg_known_zero(env, regs, BPF_REG_0);
11497 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11498 regs[BPF_REG_0].btf = desc_btf;
11499 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
66e3a13e
JK
11500 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11501 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11502 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11503
11504 mark_reg_known_zero(env, regs, BPF_REG_0);
11505
11506 if (!meta.arg_constant.found) {
11507 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11508 return -EFAULT;
11509 }
11510
11511 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11512
11513 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11514 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11515
11516 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11517 regs[BPF_REG_0].type |= MEM_RDONLY;
11518 } else {
11519 /* this will set env->seen_direct_write to true */
11520 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11521 verbose(env, "the prog does not allow writes to packet data\n");
11522 return -EINVAL;
11523 }
11524 }
11525
11526 if (!meta.initialized_dynptr.id) {
11527 verbose(env, "verifier internal error: no dynptr id\n");
11528 return -EFAULT;
11529 }
11530 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11531
11532 /* we don't need to set BPF_REG_0's ref obj id
11533 * because packet slices are not refcounted (see
11534 * dynptr_type_refcounted)
11535 */
958cf2e2
KKD
11536 } else {
11537 verbose(env, "kernel function %s unhandled dynamic return type\n",
11538 meta.func_name);
11539 return -EFAULT;
11540 }
11541 } else if (!__btf_type_is_struct(ptr_type)) {
f4b4eee6
AN
11542 if (!meta.r0_size) {
11543 __u32 sz;
11544
11545 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11546 meta.r0_size = sz;
11547 meta.r0_rdonly = true;
11548 }
11549 }
eb1f7f71
BT
11550 if (!meta.r0_size) {
11551 ptr_type_name = btf_name_by_offset(desc_btf,
11552 ptr_type->name_off);
11553 verbose(env,
11554 "kernel function %s returns pointer type %s %s is not supported\n",
11555 func_name,
11556 btf_type_str(ptr_type),
11557 ptr_type_name);
11558 return -EINVAL;
11559 }
11560
11561 mark_reg_known_zero(env, regs, BPF_REG_0);
11562 regs[BPF_REG_0].type = PTR_TO_MEM;
11563 regs[BPF_REG_0].mem_size = meta.r0_size;
11564
11565 if (meta.r0_rdonly)
11566 regs[BPF_REG_0].type |= MEM_RDONLY;
11567
11568 /* Ensures we don't access the memory after a release_reference() */
11569 if (meta.ref_obj_id)
11570 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11571 } else {
11572 mark_reg_known_zero(env, regs, BPF_REG_0);
11573 regs[BPF_REG_0].btf = desc_btf;
11574 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11575 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 11576 }
958cf2e2 11577
00b85860 11578 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
11579 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11580 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11581 regs[BPF_REG_0].id = ++env->id_gen;
11582 }
e6ac2450 11583 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 11584 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
11585 int id = acquire_reference_state(env, insn_idx);
11586
11587 if (id < 0)
11588 return id;
00b85860
KKD
11589 if (is_kfunc_ret_null(&meta))
11590 regs[BPF_REG_0].id = id;
5c073f26 11591 regs[BPF_REG_0].ref_obj_id = id;
a40d3632
DM
11592 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11593 ref_set_non_owning(env, &regs[BPF_REG_0]);
5c073f26 11594 }
a40d3632 11595
00b85860
KKD
11596 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11597 regs[BPF_REG_0].id = ++env->id_gen;
f6a6a5a9
DM
11598 } else if (btf_type_is_void(t)) {
11599 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11600 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11601 insn_aux->kptr_struct_meta =
4d585f48
DM
11602 btf_find_struct_meta(meta.arg_btf,
11603 meta.arg_btf_id);
f6a6a5a9
DM
11604 }
11605 }
11606 }
e6ac2450 11607
07236eab
AN
11608 nargs = btf_type_vlen(meta.func_proto);
11609 args = (const struct btf_param *)(meta.func_proto + 1);
e6ac2450
MKL
11610 for (i = 0; i < nargs; i++) {
11611 u32 regno = i + 1;
11612
2357672c 11613 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
11614 if (btf_type_is_ptr(t))
11615 mark_btf_func_reg_size(env, regno, sizeof(void *));
11616 else
11617 /* scalar. ensured by btf_check_kfunc_arg_match() */
11618 mark_btf_func_reg_size(env, regno, t->size);
11619 }
11620
06accc87
AN
11621 if (is_iter_next_kfunc(&meta)) {
11622 err = process_iter_next_call(env, insn_idx, &meta);
11623 if (err)
11624 return err;
11625 }
11626
e6ac2450
MKL
11627 return 0;
11628}
11629
b03c9f9f
EC
11630static bool signed_add_overflows(s64 a, s64 b)
11631{
11632 /* Do the add in u64, where overflow is well-defined */
11633 s64 res = (s64)((u64)a + (u64)b);
11634
11635 if (b < 0)
11636 return res > a;
11637 return res < a;
11638}
11639
bc895e8b 11640static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
11641{
11642 /* Do the add in u32, where overflow is well-defined */
11643 s32 res = (s32)((u32)a + (u32)b);
11644
11645 if (b < 0)
11646 return res > a;
11647 return res < a;
11648}
11649
bc895e8b 11650static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
11651{
11652 /* Do the sub in u64, where overflow is well-defined */
11653 s64 res = (s64)((u64)a - (u64)b);
11654
11655 if (b < 0)
11656 return res < a;
11657 return res > a;
969bf05e
AS
11658}
11659
3f50f132
JF
11660static bool signed_sub32_overflows(s32 a, s32 b)
11661{
bc895e8b 11662 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
11663 s32 res = (s32)((u32)a - (u32)b);
11664
11665 if (b < 0)
11666 return res < a;
11667 return res > a;
11668}
11669
bb7f0f98
AS
11670static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11671 const struct bpf_reg_state *reg,
11672 enum bpf_reg_type type)
11673{
11674 bool known = tnum_is_const(reg->var_off);
11675 s64 val = reg->var_off.value;
11676 s64 smin = reg->smin_value;
11677
11678 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11679 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 11680 reg_type_str(env, type), val);
bb7f0f98
AS
11681 return false;
11682 }
11683
11684 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11685 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 11686 reg_type_str(env, type), reg->off);
bb7f0f98
AS
11687 return false;
11688 }
11689
11690 if (smin == S64_MIN) {
11691 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 11692 reg_type_str(env, type));
bb7f0f98
AS
11693 return false;
11694 }
11695
11696 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11697 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 11698 smin, reg_type_str(env, type));
bb7f0f98
AS
11699 return false;
11700 }
11701
11702 return true;
11703}
11704
a6aaece0
DB
11705enum {
11706 REASON_BOUNDS = -1,
11707 REASON_TYPE = -2,
11708 REASON_PATHS = -3,
11709 REASON_LIMIT = -4,
11710 REASON_STACK = -5,
11711};
11712
979d63d5 11713static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 11714 u32 *alu_limit, bool mask_to_left)
979d63d5 11715{
7fedb63a 11716 u32 max = 0, ptr_limit = 0;
979d63d5
DB
11717
11718 switch (ptr_reg->type) {
11719 case PTR_TO_STACK:
1b1597e6 11720 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
11721 * left direction, see BPF_REG_FP. Also, unknown scalar
11722 * offset where we would need to deal with min/max bounds is
11723 * currently prohibited for unprivileged.
1b1597e6
PK
11724 */
11725 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 11726 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 11727 break;
979d63d5 11728 case PTR_TO_MAP_VALUE:
1b1597e6 11729 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
11730 ptr_limit = (mask_to_left ?
11731 ptr_reg->smin_value :
11732 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 11733 break;
979d63d5 11734 default:
a6aaece0 11735 return REASON_TYPE;
979d63d5 11736 }
b658bbb8
DB
11737
11738 if (ptr_limit >= max)
a6aaece0 11739 return REASON_LIMIT;
b658bbb8
DB
11740 *alu_limit = ptr_limit;
11741 return 0;
979d63d5
DB
11742}
11743
d3bd7413
DB
11744static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11745 const struct bpf_insn *insn)
11746{
2c78ee89 11747 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
11748}
11749
11750static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11751 u32 alu_state, u32 alu_limit)
11752{
11753 /* If we arrived here from different branches with different
11754 * state or limits to sanitize, then this won't work.
11755 */
11756 if (aux->alu_state &&
11757 (aux->alu_state != alu_state ||
11758 aux->alu_limit != alu_limit))
a6aaece0 11759 return REASON_PATHS;
d3bd7413 11760
e6ac5933 11761 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
11762 aux->alu_state = alu_state;
11763 aux->alu_limit = alu_limit;
11764 return 0;
11765}
11766
11767static int sanitize_val_alu(struct bpf_verifier_env *env,
11768 struct bpf_insn *insn)
11769{
11770 struct bpf_insn_aux_data *aux = cur_aux(env);
11771
11772 if (can_skip_alu_sanitation(env, insn))
11773 return 0;
11774
11775 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11776}
11777
f5288193
DB
11778static bool sanitize_needed(u8 opcode)
11779{
11780 return opcode == BPF_ADD || opcode == BPF_SUB;
11781}
11782
3d0220f6
DB
11783struct bpf_sanitize_info {
11784 struct bpf_insn_aux_data aux;
bb01a1bb 11785 bool mask_to_left;
3d0220f6
DB
11786};
11787
9183671a
DB
11788static struct bpf_verifier_state *
11789sanitize_speculative_path(struct bpf_verifier_env *env,
11790 const struct bpf_insn *insn,
11791 u32 next_idx, u32 curr_idx)
11792{
11793 struct bpf_verifier_state *branch;
11794 struct bpf_reg_state *regs;
11795
11796 branch = push_stack(env, next_idx, curr_idx, true);
11797 if (branch && insn) {
11798 regs = branch->frame[branch->curframe]->regs;
11799 if (BPF_SRC(insn->code) == BPF_K) {
11800 mark_reg_unknown(env, regs, insn->dst_reg);
11801 } else if (BPF_SRC(insn->code) == BPF_X) {
11802 mark_reg_unknown(env, regs, insn->dst_reg);
11803 mark_reg_unknown(env, regs, insn->src_reg);
11804 }
11805 }
11806 return branch;
11807}
11808
979d63d5
DB
11809static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11810 struct bpf_insn *insn,
11811 const struct bpf_reg_state *ptr_reg,
6f55b2f2 11812 const struct bpf_reg_state *off_reg,
979d63d5 11813 struct bpf_reg_state *dst_reg,
3d0220f6 11814 struct bpf_sanitize_info *info,
7fedb63a 11815 const bool commit_window)
979d63d5 11816{
3d0220f6 11817 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 11818 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 11819 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 11820 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
11821 bool ptr_is_dst_reg = ptr_reg == dst_reg;
11822 u8 opcode = BPF_OP(insn->code);
11823 u32 alu_state, alu_limit;
11824 struct bpf_reg_state tmp;
11825 bool ret;
f232326f 11826 int err;
979d63d5 11827
d3bd7413 11828 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
11829 return 0;
11830
11831 /* We already marked aux for masking from non-speculative
11832 * paths, thus we got here in the first place. We only care
11833 * to explore bad access from here.
11834 */
11835 if (vstate->speculative)
11836 goto do_sim;
11837
bb01a1bb
DB
11838 if (!commit_window) {
11839 if (!tnum_is_const(off_reg->var_off) &&
11840 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11841 return REASON_BOUNDS;
11842
11843 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
11844 (opcode == BPF_SUB && !off_is_neg);
11845 }
11846
11847 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
11848 if (err < 0)
11849 return err;
11850
7fedb63a
DB
11851 if (commit_window) {
11852 /* In commit phase we narrow the masking window based on
11853 * the observed pointer move after the simulated operation.
11854 */
3d0220f6
DB
11855 alu_state = info->aux.alu_state;
11856 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
11857 } else {
11858 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 11859 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
11860 alu_state |= ptr_is_dst_reg ?
11861 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
11862
11863 /* Limit pruning on unknown scalars to enable deep search for
11864 * potential masking differences from other program paths.
11865 */
11866 if (!off_is_imm)
11867 env->explore_alu_limits = true;
7fedb63a
DB
11868 }
11869
f232326f
PK
11870 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11871 if (err < 0)
11872 return err;
979d63d5 11873do_sim:
7fedb63a
DB
11874 /* If we're in commit phase, we're done here given we already
11875 * pushed the truncated dst_reg into the speculative verification
11876 * stack.
a7036191
DB
11877 *
11878 * Also, when register is a known constant, we rewrite register-based
11879 * operation to immediate-based, and thus do not need masking (and as
11880 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 11881 */
a7036191 11882 if (commit_window || off_is_imm)
7fedb63a
DB
11883 return 0;
11884
979d63d5
DB
11885 /* Simulate and find potential out-of-bounds access under
11886 * speculative execution from truncation as a result of
11887 * masking when off was not within expected range. If off
11888 * sits in dst, then we temporarily need to move ptr there
11889 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11890 * for cases where we use K-based arithmetic in one direction
11891 * and truncated reg-based in the other in order to explore
11892 * bad access.
11893 */
11894 if (!ptr_is_dst_reg) {
11895 tmp = *dst_reg;
71f656a5 11896 copy_register_state(dst_reg, ptr_reg);
979d63d5 11897 }
9183671a
DB
11898 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11899 env->insn_idx);
0803278b 11900 if (!ptr_is_dst_reg && ret)
979d63d5 11901 *dst_reg = tmp;
a6aaece0
DB
11902 return !ret ? REASON_STACK : 0;
11903}
11904
fe9a5ca7
DB
11905static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11906{
11907 struct bpf_verifier_state *vstate = env->cur_state;
11908
11909 /* If we simulate paths under speculation, we don't update the
11910 * insn as 'seen' such that when we verify unreachable paths in
11911 * the non-speculative domain, sanitize_dead_code() can still
11912 * rewrite/sanitize them.
11913 */
11914 if (!vstate->speculative)
11915 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11916}
11917
a6aaece0
DB
11918static int sanitize_err(struct bpf_verifier_env *env,
11919 const struct bpf_insn *insn, int reason,
11920 const struct bpf_reg_state *off_reg,
11921 const struct bpf_reg_state *dst_reg)
11922{
11923 static const char *err = "pointer arithmetic with it prohibited for !root";
11924 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11925 u32 dst = insn->dst_reg, src = insn->src_reg;
11926
11927 switch (reason) {
11928 case REASON_BOUNDS:
11929 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11930 off_reg == dst_reg ? dst : src, err);
11931 break;
11932 case REASON_TYPE:
11933 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11934 off_reg == dst_reg ? src : dst, err);
11935 break;
11936 case REASON_PATHS:
11937 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11938 dst, op, err);
11939 break;
11940 case REASON_LIMIT:
11941 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11942 dst, op, err);
11943 break;
11944 case REASON_STACK:
11945 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11946 dst, err);
11947 break;
11948 default:
11949 verbose(env, "verifier internal error: unknown reason (%d)\n",
11950 reason);
11951 break;
11952 }
11953
11954 return -EACCES;
979d63d5
DB
11955}
11956
01f810ac
AM
11957/* check that stack access falls within stack limits and that 'reg' doesn't
11958 * have a variable offset.
11959 *
11960 * Variable offset is prohibited for unprivileged mode for simplicity since it
11961 * requires corresponding support in Spectre masking for stack ALU. See also
11962 * retrieve_ptr_limit().
11963 *
11964 *
11965 * 'off' includes 'reg->off'.
11966 */
11967static int check_stack_access_for_ptr_arithmetic(
11968 struct bpf_verifier_env *env,
11969 int regno,
11970 const struct bpf_reg_state *reg,
11971 int off)
11972{
11973 if (!tnum_is_const(reg->var_off)) {
11974 char tn_buf[48];
11975
11976 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11977 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11978 regno, tn_buf, off);
11979 return -EACCES;
11980 }
11981
11982 if (off >= 0 || off < -MAX_BPF_STACK) {
11983 verbose(env, "R%d stack pointer arithmetic goes out of range, "
11984 "prohibited for !root; off=%d\n", regno, off);
11985 return -EACCES;
11986 }
11987
11988 return 0;
11989}
11990
073815b7
DB
11991static int sanitize_check_bounds(struct bpf_verifier_env *env,
11992 const struct bpf_insn *insn,
11993 const struct bpf_reg_state *dst_reg)
11994{
11995 u32 dst = insn->dst_reg;
11996
11997 /* For unprivileged we require that resulting offset must be in bounds
11998 * in order to be able to sanitize access later on.
11999 */
12000 if (env->bypass_spec_v1)
12001 return 0;
12002
12003 switch (dst_reg->type) {
12004 case PTR_TO_STACK:
12005 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12006 dst_reg->off + dst_reg->var_off.value))
12007 return -EACCES;
12008 break;
12009 case PTR_TO_MAP_VALUE:
61df10c7 12010 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
12011 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12012 "prohibited for !root\n", dst);
12013 return -EACCES;
12014 }
12015 break;
12016 default:
12017 break;
12018 }
12019
12020 return 0;
12021}
01f810ac 12022
f1174f77 12023/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
12024 * Caller should also handle BPF_MOV case separately.
12025 * If we return -EACCES, caller may want to try again treating pointer as a
12026 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12027 */
12028static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12029 struct bpf_insn *insn,
12030 const struct bpf_reg_state *ptr_reg,
12031 const struct bpf_reg_state *off_reg)
969bf05e 12032{
f4d7e40a
AS
12033 struct bpf_verifier_state *vstate = env->cur_state;
12034 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12035 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 12036 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
12037 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12038 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12039 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12040 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 12041 struct bpf_sanitize_info info = {};
969bf05e 12042 u8 opcode = BPF_OP(insn->code);
24c109bb 12043 u32 dst = insn->dst_reg;
979d63d5 12044 int ret;
969bf05e 12045
f1174f77 12046 dst_reg = &regs[dst];
969bf05e 12047
6f16101e
DB
12048 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12049 smin_val > smax_val || umin_val > umax_val) {
12050 /* Taint dst register if offset had invalid bounds derived from
12051 * e.g. dead branches.
12052 */
f54c7898 12053 __mark_reg_unknown(env, dst_reg);
6f16101e 12054 return 0;
f1174f77
EC
12055 }
12056
12057 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12058 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
12059 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12060 __mark_reg_unknown(env, dst_reg);
12061 return 0;
12062 }
12063
82abbf8d
AS
12064 verbose(env,
12065 "R%d 32-bit pointer arithmetic prohibited\n",
12066 dst);
f1174f77 12067 return -EACCES;
969bf05e
AS
12068 }
12069
c25b2ae1 12070 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 12071 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 12072 dst, reg_type_str(env, ptr_reg->type));
f1174f77 12073 return -EACCES;
c25b2ae1
HL
12074 }
12075
12076 switch (base_type(ptr_reg->type)) {
aad2eeaf 12077 case CONST_PTR_TO_MAP:
7c696732
YS
12078 /* smin_val represents the known value */
12079 if (known && smin_val == 0 && opcode == BPF_ADD)
12080 break;
8731745e 12081 fallthrough;
aad2eeaf 12082 case PTR_TO_PACKET_END:
c64b7983 12083 case PTR_TO_SOCKET:
46f8bc92 12084 case PTR_TO_SOCK_COMMON:
655a51e5 12085 case PTR_TO_TCP_SOCK:
fada7fdc 12086 case PTR_TO_XDP_SOCK:
aad2eeaf 12087 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 12088 dst, reg_type_str(env, ptr_reg->type));
f1174f77 12089 return -EACCES;
aad2eeaf
JS
12090 default:
12091 break;
f1174f77
EC
12092 }
12093
12094 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12095 * The id may be overwritten later if we create a new variable offset.
969bf05e 12096 */
f1174f77
EC
12097 dst_reg->type = ptr_reg->type;
12098 dst_reg->id = ptr_reg->id;
969bf05e 12099
bb7f0f98
AS
12100 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12101 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12102 return -EINVAL;
12103
3f50f132
JF
12104 /* pointer types do not carry 32-bit bounds at the moment. */
12105 __mark_reg32_unbounded(dst_reg);
12106
7fedb63a
DB
12107 if (sanitize_needed(opcode)) {
12108 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 12109 &info, false);
a6aaece0
DB
12110 if (ret < 0)
12111 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 12112 }
a6aaece0 12113
f1174f77
EC
12114 switch (opcode) {
12115 case BPF_ADD:
12116 /* We can take a fixed offset as long as it doesn't overflow
12117 * the s32 'off' field
969bf05e 12118 */
b03c9f9f
EC
12119 if (known && (ptr_reg->off + smin_val ==
12120 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 12121 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
12122 dst_reg->smin_value = smin_ptr;
12123 dst_reg->smax_value = smax_ptr;
12124 dst_reg->umin_value = umin_ptr;
12125 dst_reg->umax_value = umax_ptr;
f1174f77 12126 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 12127 dst_reg->off = ptr_reg->off + smin_val;
0962590e 12128 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
12129 break;
12130 }
f1174f77
EC
12131 /* A new variable offset is created. Note that off_reg->off
12132 * == 0, since it's a scalar.
12133 * dst_reg gets the pointer type and since some positive
12134 * integer value was added to the pointer, give it a new 'id'
12135 * if it's a PTR_TO_PACKET.
12136 * this creates a new 'base' pointer, off_reg (variable) gets
12137 * added into the variable offset, and we copy the fixed offset
12138 * from ptr_reg.
969bf05e 12139 */
b03c9f9f
EC
12140 if (signed_add_overflows(smin_ptr, smin_val) ||
12141 signed_add_overflows(smax_ptr, smax_val)) {
12142 dst_reg->smin_value = S64_MIN;
12143 dst_reg->smax_value = S64_MAX;
12144 } else {
12145 dst_reg->smin_value = smin_ptr + smin_val;
12146 dst_reg->smax_value = smax_ptr + smax_val;
12147 }
12148 if (umin_ptr + umin_val < umin_ptr ||
12149 umax_ptr + umax_val < umax_ptr) {
12150 dst_reg->umin_value = 0;
12151 dst_reg->umax_value = U64_MAX;
12152 } else {
12153 dst_reg->umin_value = umin_ptr + umin_val;
12154 dst_reg->umax_value = umax_ptr + umax_val;
12155 }
f1174f77
EC
12156 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12157 dst_reg->off = ptr_reg->off;
0962590e 12158 dst_reg->raw = ptr_reg->raw;
de8f3a83 12159 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
12160 dst_reg->id = ++env->id_gen;
12161 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 12162 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
12163 }
12164 break;
12165 case BPF_SUB:
12166 if (dst_reg == off_reg) {
12167 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
12168 verbose(env, "R%d tried to subtract pointer from scalar\n",
12169 dst);
f1174f77
EC
12170 return -EACCES;
12171 }
12172 /* We don't allow subtraction from FP, because (according to
12173 * test_verifier.c test "invalid fp arithmetic", JITs might not
12174 * be able to deal with it.
969bf05e 12175 */
f1174f77 12176 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
12177 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12178 dst);
f1174f77
EC
12179 return -EACCES;
12180 }
b03c9f9f
EC
12181 if (known && (ptr_reg->off - smin_val ==
12182 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 12183 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
12184 dst_reg->smin_value = smin_ptr;
12185 dst_reg->smax_value = smax_ptr;
12186 dst_reg->umin_value = umin_ptr;
12187 dst_reg->umax_value = umax_ptr;
f1174f77
EC
12188 dst_reg->var_off = ptr_reg->var_off;
12189 dst_reg->id = ptr_reg->id;
b03c9f9f 12190 dst_reg->off = ptr_reg->off - smin_val;
0962590e 12191 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
12192 break;
12193 }
f1174f77
EC
12194 /* A new variable offset is created. If the subtrahend is known
12195 * nonnegative, then any reg->range we had before is still good.
969bf05e 12196 */
b03c9f9f
EC
12197 if (signed_sub_overflows(smin_ptr, smax_val) ||
12198 signed_sub_overflows(smax_ptr, smin_val)) {
12199 /* Overflow possible, we know nothing */
12200 dst_reg->smin_value = S64_MIN;
12201 dst_reg->smax_value = S64_MAX;
12202 } else {
12203 dst_reg->smin_value = smin_ptr - smax_val;
12204 dst_reg->smax_value = smax_ptr - smin_val;
12205 }
12206 if (umin_ptr < umax_val) {
12207 /* Overflow possible, we know nothing */
12208 dst_reg->umin_value = 0;
12209 dst_reg->umax_value = U64_MAX;
12210 } else {
12211 /* Cannot overflow (as long as bounds are consistent) */
12212 dst_reg->umin_value = umin_ptr - umax_val;
12213 dst_reg->umax_value = umax_ptr - umin_val;
12214 }
f1174f77
EC
12215 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12216 dst_reg->off = ptr_reg->off;
0962590e 12217 dst_reg->raw = ptr_reg->raw;
de8f3a83 12218 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
12219 dst_reg->id = ++env->id_gen;
12220 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 12221 if (smin_val < 0)
22dc4a0f 12222 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 12223 }
f1174f77
EC
12224 break;
12225 case BPF_AND:
12226 case BPF_OR:
12227 case BPF_XOR:
82abbf8d
AS
12228 /* bitwise ops on pointers are troublesome, prohibit. */
12229 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12230 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
12231 return -EACCES;
12232 default:
12233 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
12234 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12235 dst, bpf_alu_string[opcode >> 4]);
f1174f77 12236 return -EACCES;
43188702
JF
12237 }
12238
bb7f0f98
AS
12239 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12240 return -EINVAL;
3844d153 12241 reg_bounds_sync(dst_reg);
073815b7
DB
12242 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12243 return -EACCES;
7fedb63a
DB
12244 if (sanitize_needed(opcode)) {
12245 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 12246 &info, true);
7fedb63a
DB
12247 if (ret < 0)
12248 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
12249 }
12250
43188702
JF
12251 return 0;
12252}
12253
3f50f132
JF
12254static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12255 struct bpf_reg_state *src_reg)
12256{
12257 s32 smin_val = src_reg->s32_min_value;
12258 s32 smax_val = src_reg->s32_max_value;
12259 u32 umin_val = src_reg->u32_min_value;
12260 u32 umax_val = src_reg->u32_max_value;
12261
12262 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12263 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12264 dst_reg->s32_min_value = S32_MIN;
12265 dst_reg->s32_max_value = S32_MAX;
12266 } else {
12267 dst_reg->s32_min_value += smin_val;
12268 dst_reg->s32_max_value += smax_val;
12269 }
12270 if (dst_reg->u32_min_value + umin_val < umin_val ||
12271 dst_reg->u32_max_value + umax_val < umax_val) {
12272 dst_reg->u32_min_value = 0;
12273 dst_reg->u32_max_value = U32_MAX;
12274 } else {
12275 dst_reg->u32_min_value += umin_val;
12276 dst_reg->u32_max_value += umax_val;
12277 }
12278}
12279
07cd2631
JF
12280static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12281 struct bpf_reg_state *src_reg)
12282{
12283 s64 smin_val = src_reg->smin_value;
12284 s64 smax_val = src_reg->smax_value;
12285 u64 umin_val = src_reg->umin_value;
12286 u64 umax_val = src_reg->umax_value;
12287
12288 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12289 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12290 dst_reg->smin_value = S64_MIN;
12291 dst_reg->smax_value = S64_MAX;
12292 } else {
12293 dst_reg->smin_value += smin_val;
12294 dst_reg->smax_value += smax_val;
12295 }
12296 if (dst_reg->umin_value + umin_val < umin_val ||
12297 dst_reg->umax_value + umax_val < umax_val) {
12298 dst_reg->umin_value = 0;
12299 dst_reg->umax_value = U64_MAX;
12300 } else {
12301 dst_reg->umin_value += umin_val;
12302 dst_reg->umax_value += umax_val;
12303 }
3f50f132
JF
12304}
12305
12306static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12307 struct bpf_reg_state *src_reg)
12308{
12309 s32 smin_val = src_reg->s32_min_value;
12310 s32 smax_val = src_reg->s32_max_value;
12311 u32 umin_val = src_reg->u32_min_value;
12312 u32 umax_val = src_reg->u32_max_value;
12313
12314 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12315 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12316 /* Overflow possible, we know nothing */
12317 dst_reg->s32_min_value = S32_MIN;
12318 dst_reg->s32_max_value = S32_MAX;
12319 } else {
12320 dst_reg->s32_min_value -= smax_val;
12321 dst_reg->s32_max_value -= smin_val;
12322 }
12323 if (dst_reg->u32_min_value < umax_val) {
12324 /* Overflow possible, we know nothing */
12325 dst_reg->u32_min_value = 0;
12326 dst_reg->u32_max_value = U32_MAX;
12327 } else {
12328 /* Cannot overflow (as long as bounds are consistent) */
12329 dst_reg->u32_min_value -= umax_val;
12330 dst_reg->u32_max_value -= umin_val;
12331 }
07cd2631
JF
12332}
12333
12334static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12335 struct bpf_reg_state *src_reg)
12336{
12337 s64 smin_val = src_reg->smin_value;
12338 s64 smax_val = src_reg->smax_value;
12339 u64 umin_val = src_reg->umin_value;
12340 u64 umax_val = src_reg->umax_value;
12341
12342 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12343 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12344 /* Overflow possible, we know nothing */
12345 dst_reg->smin_value = S64_MIN;
12346 dst_reg->smax_value = S64_MAX;
12347 } else {
12348 dst_reg->smin_value -= smax_val;
12349 dst_reg->smax_value -= smin_val;
12350 }
12351 if (dst_reg->umin_value < umax_val) {
12352 /* Overflow possible, we know nothing */
12353 dst_reg->umin_value = 0;
12354 dst_reg->umax_value = U64_MAX;
12355 } else {
12356 /* Cannot overflow (as long as bounds are consistent) */
12357 dst_reg->umin_value -= umax_val;
12358 dst_reg->umax_value -= umin_val;
12359 }
3f50f132
JF
12360}
12361
12362static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12363 struct bpf_reg_state *src_reg)
12364{
12365 s32 smin_val = src_reg->s32_min_value;
12366 u32 umin_val = src_reg->u32_min_value;
12367 u32 umax_val = src_reg->u32_max_value;
12368
12369 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12370 /* Ain't nobody got time to multiply that sign */
12371 __mark_reg32_unbounded(dst_reg);
12372 return;
12373 }
12374 /* Both values are positive, so we can work with unsigned and
12375 * copy the result to signed (unless it exceeds S32_MAX).
12376 */
12377 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12378 /* Potential overflow, we know nothing */
12379 __mark_reg32_unbounded(dst_reg);
12380 return;
12381 }
12382 dst_reg->u32_min_value *= umin_val;
12383 dst_reg->u32_max_value *= umax_val;
12384 if (dst_reg->u32_max_value > S32_MAX) {
12385 /* Overflow possible, we know nothing */
12386 dst_reg->s32_min_value = S32_MIN;
12387 dst_reg->s32_max_value = S32_MAX;
12388 } else {
12389 dst_reg->s32_min_value = dst_reg->u32_min_value;
12390 dst_reg->s32_max_value = dst_reg->u32_max_value;
12391 }
07cd2631
JF
12392}
12393
12394static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12395 struct bpf_reg_state *src_reg)
12396{
12397 s64 smin_val = src_reg->smin_value;
12398 u64 umin_val = src_reg->umin_value;
12399 u64 umax_val = src_reg->umax_value;
12400
07cd2631
JF
12401 if (smin_val < 0 || dst_reg->smin_value < 0) {
12402 /* Ain't nobody got time to multiply that sign */
3f50f132 12403 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
12404 return;
12405 }
12406 /* Both values are positive, so we can work with unsigned and
12407 * copy the result to signed (unless it exceeds S64_MAX).
12408 */
12409 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12410 /* Potential overflow, we know nothing */
3f50f132 12411 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
12412 return;
12413 }
12414 dst_reg->umin_value *= umin_val;
12415 dst_reg->umax_value *= umax_val;
12416 if (dst_reg->umax_value > S64_MAX) {
12417 /* Overflow possible, we know nothing */
12418 dst_reg->smin_value = S64_MIN;
12419 dst_reg->smax_value = S64_MAX;
12420 } else {
12421 dst_reg->smin_value = dst_reg->umin_value;
12422 dst_reg->smax_value = dst_reg->umax_value;
12423 }
12424}
12425
3f50f132
JF
12426static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12427 struct bpf_reg_state *src_reg)
12428{
12429 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12430 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12431 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12432 s32 smin_val = src_reg->s32_min_value;
12433 u32 umax_val = src_reg->u32_max_value;
12434
049c4e13
DB
12435 if (src_known && dst_known) {
12436 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 12437 return;
049c4e13 12438 }
3f50f132
JF
12439
12440 /* We get our minimum from the var_off, since that's inherently
12441 * bitwise. Our maximum is the minimum of the operands' maxima.
12442 */
12443 dst_reg->u32_min_value = var32_off.value;
12444 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12445 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12446 /* Lose signed bounds when ANDing negative numbers,
12447 * ain't nobody got time for that.
12448 */
12449 dst_reg->s32_min_value = S32_MIN;
12450 dst_reg->s32_max_value = S32_MAX;
12451 } else {
12452 /* ANDing two positives gives a positive, so safe to
12453 * cast result into s64.
12454 */
12455 dst_reg->s32_min_value = dst_reg->u32_min_value;
12456 dst_reg->s32_max_value = dst_reg->u32_max_value;
12457 }
3f50f132
JF
12458}
12459
07cd2631
JF
12460static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12461 struct bpf_reg_state *src_reg)
12462{
3f50f132
JF
12463 bool src_known = tnum_is_const(src_reg->var_off);
12464 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
12465 s64 smin_val = src_reg->smin_value;
12466 u64 umax_val = src_reg->umax_value;
12467
3f50f132 12468 if (src_known && dst_known) {
4fbb38a3 12469 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
12470 return;
12471 }
12472
07cd2631
JF
12473 /* We get our minimum from the var_off, since that's inherently
12474 * bitwise. Our maximum is the minimum of the operands' maxima.
12475 */
07cd2631
JF
12476 dst_reg->umin_value = dst_reg->var_off.value;
12477 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12478 if (dst_reg->smin_value < 0 || smin_val < 0) {
12479 /* Lose signed bounds when ANDing negative numbers,
12480 * ain't nobody got time for that.
12481 */
12482 dst_reg->smin_value = S64_MIN;
12483 dst_reg->smax_value = S64_MAX;
12484 } else {
12485 /* ANDing two positives gives a positive, so safe to
12486 * cast result into s64.
12487 */
12488 dst_reg->smin_value = dst_reg->umin_value;
12489 dst_reg->smax_value = dst_reg->umax_value;
12490 }
12491 /* We may learn something more from the var_off */
12492 __update_reg_bounds(dst_reg);
12493}
12494
3f50f132
JF
12495static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12496 struct bpf_reg_state *src_reg)
12497{
12498 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12499 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12500 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
12501 s32 smin_val = src_reg->s32_min_value;
12502 u32 umin_val = src_reg->u32_min_value;
3f50f132 12503
049c4e13
DB
12504 if (src_known && dst_known) {
12505 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 12506 return;
049c4e13 12507 }
3f50f132
JF
12508
12509 /* We get our maximum from the var_off, and our minimum is the
12510 * maximum of the operands' minima
12511 */
12512 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12513 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12514 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12515 /* Lose signed bounds when ORing negative numbers,
12516 * ain't nobody got time for that.
12517 */
12518 dst_reg->s32_min_value = S32_MIN;
12519 dst_reg->s32_max_value = S32_MAX;
12520 } else {
12521 /* ORing two positives gives a positive, so safe to
12522 * cast result into s64.
12523 */
5b9fbeb7
DB
12524 dst_reg->s32_min_value = dst_reg->u32_min_value;
12525 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
12526 }
12527}
12528
07cd2631
JF
12529static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12530 struct bpf_reg_state *src_reg)
12531{
3f50f132
JF
12532 bool src_known = tnum_is_const(src_reg->var_off);
12533 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
12534 s64 smin_val = src_reg->smin_value;
12535 u64 umin_val = src_reg->umin_value;
12536
3f50f132 12537 if (src_known && dst_known) {
4fbb38a3 12538 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
12539 return;
12540 }
12541
07cd2631
JF
12542 /* We get our maximum from the var_off, and our minimum is the
12543 * maximum of the operands' minima
12544 */
07cd2631
JF
12545 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12546 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12547 if (dst_reg->smin_value < 0 || smin_val < 0) {
12548 /* Lose signed bounds when ORing negative numbers,
12549 * ain't nobody got time for that.
12550 */
12551 dst_reg->smin_value = S64_MIN;
12552 dst_reg->smax_value = S64_MAX;
12553 } else {
12554 /* ORing two positives gives a positive, so safe to
12555 * cast result into s64.
12556 */
12557 dst_reg->smin_value = dst_reg->umin_value;
12558 dst_reg->smax_value = dst_reg->umax_value;
12559 }
12560 /* We may learn something more from the var_off */
12561 __update_reg_bounds(dst_reg);
12562}
12563
2921c90d
YS
12564static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12565 struct bpf_reg_state *src_reg)
12566{
12567 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12568 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12569 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12570 s32 smin_val = src_reg->s32_min_value;
12571
049c4e13
DB
12572 if (src_known && dst_known) {
12573 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 12574 return;
049c4e13 12575 }
2921c90d
YS
12576
12577 /* We get both minimum and maximum from the var32_off. */
12578 dst_reg->u32_min_value = var32_off.value;
12579 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12580
12581 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12582 /* XORing two positive sign numbers gives a positive,
12583 * so safe to cast u32 result into s32.
12584 */
12585 dst_reg->s32_min_value = dst_reg->u32_min_value;
12586 dst_reg->s32_max_value = dst_reg->u32_max_value;
12587 } else {
12588 dst_reg->s32_min_value = S32_MIN;
12589 dst_reg->s32_max_value = S32_MAX;
12590 }
12591}
12592
12593static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12594 struct bpf_reg_state *src_reg)
12595{
12596 bool src_known = tnum_is_const(src_reg->var_off);
12597 bool dst_known = tnum_is_const(dst_reg->var_off);
12598 s64 smin_val = src_reg->smin_value;
12599
12600 if (src_known && dst_known) {
12601 /* dst_reg->var_off.value has been updated earlier */
12602 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12603 return;
12604 }
12605
12606 /* We get both minimum and maximum from the var_off. */
12607 dst_reg->umin_value = dst_reg->var_off.value;
12608 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12609
12610 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12611 /* XORing two positive sign numbers gives a positive,
12612 * so safe to cast u64 result into s64.
12613 */
12614 dst_reg->smin_value = dst_reg->umin_value;
12615 dst_reg->smax_value = dst_reg->umax_value;
12616 } else {
12617 dst_reg->smin_value = S64_MIN;
12618 dst_reg->smax_value = S64_MAX;
12619 }
12620
12621 __update_reg_bounds(dst_reg);
12622}
12623
3f50f132
JF
12624static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12625 u64 umin_val, u64 umax_val)
07cd2631 12626{
07cd2631
JF
12627 /* We lose all sign bit information (except what we can pick
12628 * up from var_off)
12629 */
3f50f132
JF
12630 dst_reg->s32_min_value = S32_MIN;
12631 dst_reg->s32_max_value = S32_MAX;
12632 /* If we might shift our top bit out, then we know nothing */
12633 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12634 dst_reg->u32_min_value = 0;
12635 dst_reg->u32_max_value = U32_MAX;
12636 } else {
12637 dst_reg->u32_min_value <<= umin_val;
12638 dst_reg->u32_max_value <<= umax_val;
12639 }
12640}
12641
12642static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12643 struct bpf_reg_state *src_reg)
12644{
12645 u32 umax_val = src_reg->u32_max_value;
12646 u32 umin_val = src_reg->u32_min_value;
12647 /* u32 alu operation will zext upper bits */
12648 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12649
12650 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12651 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12652 /* Not required but being careful mark reg64 bounds as unknown so
12653 * that we are forced to pick them up from tnum and zext later and
12654 * if some path skips this step we are still safe.
12655 */
12656 __mark_reg64_unbounded(dst_reg);
12657 __update_reg32_bounds(dst_reg);
12658}
12659
12660static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12661 u64 umin_val, u64 umax_val)
12662{
12663 /* Special case <<32 because it is a common compiler pattern to sign
12664 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12665 * positive we know this shift will also be positive so we can track
12666 * bounds correctly. Otherwise we lose all sign bit information except
12667 * what we can pick up from var_off. Perhaps we can generalize this
12668 * later to shifts of any length.
12669 */
12670 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12671 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12672 else
12673 dst_reg->smax_value = S64_MAX;
12674
12675 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12676 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12677 else
12678 dst_reg->smin_value = S64_MIN;
12679
07cd2631
JF
12680 /* If we might shift our top bit out, then we know nothing */
12681 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12682 dst_reg->umin_value = 0;
12683 dst_reg->umax_value = U64_MAX;
12684 } else {
12685 dst_reg->umin_value <<= umin_val;
12686 dst_reg->umax_value <<= umax_val;
12687 }
3f50f132
JF
12688}
12689
12690static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12691 struct bpf_reg_state *src_reg)
12692{
12693 u64 umax_val = src_reg->umax_value;
12694 u64 umin_val = src_reg->umin_value;
12695
12696 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
12697 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12698 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12699
07cd2631
JF
12700 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12701 /* We may learn something more from the var_off */
12702 __update_reg_bounds(dst_reg);
12703}
12704
3f50f132
JF
12705static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12706 struct bpf_reg_state *src_reg)
12707{
12708 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12709 u32 umax_val = src_reg->u32_max_value;
12710 u32 umin_val = src_reg->u32_min_value;
12711
12712 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12713 * be negative, then either:
12714 * 1) src_reg might be zero, so the sign bit of the result is
12715 * unknown, so we lose our signed bounds
12716 * 2) it's known negative, thus the unsigned bounds capture the
12717 * signed bounds
12718 * 3) the signed bounds cross zero, so they tell us nothing
12719 * about the result
12720 * If the value in dst_reg is known nonnegative, then again the
18b24d78 12721 * unsigned bounds capture the signed bounds.
3f50f132
JF
12722 * Thus, in all cases it suffices to blow away our signed bounds
12723 * and rely on inferring new ones from the unsigned bounds and
12724 * var_off of the result.
12725 */
12726 dst_reg->s32_min_value = S32_MIN;
12727 dst_reg->s32_max_value = S32_MAX;
12728
12729 dst_reg->var_off = tnum_rshift(subreg, umin_val);
12730 dst_reg->u32_min_value >>= umax_val;
12731 dst_reg->u32_max_value >>= umin_val;
12732
12733 __mark_reg64_unbounded(dst_reg);
12734 __update_reg32_bounds(dst_reg);
12735}
12736
07cd2631
JF
12737static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12738 struct bpf_reg_state *src_reg)
12739{
12740 u64 umax_val = src_reg->umax_value;
12741 u64 umin_val = src_reg->umin_value;
12742
12743 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12744 * be negative, then either:
12745 * 1) src_reg might be zero, so the sign bit of the result is
12746 * unknown, so we lose our signed bounds
12747 * 2) it's known negative, thus the unsigned bounds capture the
12748 * signed bounds
12749 * 3) the signed bounds cross zero, so they tell us nothing
12750 * about the result
12751 * If the value in dst_reg is known nonnegative, then again the
18b24d78 12752 * unsigned bounds capture the signed bounds.
07cd2631
JF
12753 * Thus, in all cases it suffices to blow away our signed bounds
12754 * and rely on inferring new ones from the unsigned bounds and
12755 * var_off of the result.
12756 */
12757 dst_reg->smin_value = S64_MIN;
12758 dst_reg->smax_value = S64_MAX;
12759 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12760 dst_reg->umin_value >>= umax_val;
12761 dst_reg->umax_value >>= umin_val;
3f50f132
JF
12762
12763 /* Its not easy to operate on alu32 bounds here because it depends
12764 * on bits being shifted in. Take easy way out and mark unbounded
12765 * so we can recalculate later from tnum.
12766 */
12767 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12768 __update_reg_bounds(dst_reg);
12769}
12770
3f50f132
JF
12771static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12772 struct bpf_reg_state *src_reg)
07cd2631 12773{
3f50f132 12774 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
12775
12776 /* Upon reaching here, src_known is true and
12777 * umax_val is equal to umin_val.
12778 */
3f50f132
JF
12779 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12780 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 12781
3f50f132
JF
12782 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12783
12784 /* blow away the dst_reg umin_value/umax_value and rely on
12785 * dst_reg var_off to refine the result.
12786 */
12787 dst_reg->u32_min_value = 0;
12788 dst_reg->u32_max_value = U32_MAX;
12789
12790 __mark_reg64_unbounded(dst_reg);
12791 __update_reg32_bounds(dst_reg);
12792}
12793
12794static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12795 struct bpf_reg_state *src_reg)
12796{
12797 u64 umin_val = src_reg->umin_value;
12798
12799 /* Upon reaching here, src_known is true and umax_val is equal
12800 * to umin_val.
12801 */
12802 dst_reg->smin_value >>= umin_val;
12803 dst_reg->smax_value >>= umin_val;
12804
12805 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
12806
12807 /* blow away the dst_reg umin_value/umax_value and rely on
12808 * dst_reg var_off to refine the result.
12809 */
12810 dst_reg->umin_value = 0;
12811 dst_reg->umax_value = U64_MAX;
3f50f132
JF
12812
12813 /* Its not easy to operate on alu32 bounds here because it depends
12814 * on bits being shifted in from upper 32-bits. Take easy way out
12815 * and mark unbounded so we can recalculate later from tnum.
12816 */
12817 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
12818 __update_reg_bounds(dst_reg);
12819}
12820
468f6eaf
JH
12821/* WARNING: This function does calculations on 64-bit values, but the actual
12822 * execution may occur on 32-bit values. Therefore, things like bitshifts
12823 * need extra checks in the 32-bit case.
12824 */
f1174f77
EC
12825static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12826 struct bpf_insn *insn,
12827 struct bpf_reg_state *dst_reg,
12828 struct bpf_reg_state src_reg)
969bf05e 12829{
638f5b90 12830 struct bpf_reg_state *regs = cur_regs(env);
48461135 12831 u8 opcode = BPF_OP(insn->code);
b0b3fb67 12832 bool src_known;
b03c9f9f
EC
12833 s64 smin_val, smax_val;
12834 u64 umin_val, umax_val;
3f50f132
JF
12835 s32 s32_min_val, s32_max_val;
12836 u32 u32_min_val, u32_max_val;
468f6eaf 12837 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 12838 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 12839 int ret;
b799207e 12840
b03c9f9f
EC
12841 smin_val = src_reg.smin_value;
12842 smax_val = src_reg.smax_value;
12843 umin_val = src_reg.umin_value;
12844 umax_val = src_reg.umax_value;
f23cc643 12845
3f50f132
JF
12846 s32_min_val = src_reg.s32_min_value;
12847 s32_max_val = src_reg.s32_max_value;
12848 u32_min_val = src_reg.u32_min_value;
12849 u32_max_val = src_reg.u32_max_value;
12850
12851 if (alu32) {
12852 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
12853 if ((src_known &&
12854 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12855 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12856 /* Taint dst register if offset had invalid bounds
12857 * derived from e.g. dead branches.
12858 */
12859 __mark_reg_unknown(env, dst_reg);
12860 return 0;
12861 }
12862 } else {
12863 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
12864 if ((src_known &&
12865 (smin_val != smax_val || umin_val != umax_val)) ||
12866 smin_val > smax_val || umin_val > umax_val) {
12867 /* Taint dst register if offset had invalid bounds
12868 * derived from e.g. dead branches.
12869 */
12870 __mark_reg_unknown(env, dst_reg);
12871 return 0;
12872 }
6f16101e
DB
12873 }
12874
bb7f0f98
AS
12875 if (!src_known &&
12876 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 12877 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
12878 return 0;
12879 }
12880
f5288193
DB
12881 if (sanitize_needed(opcode)) {
12882 ret = sanitize_val_alu(env, insn);
12883 if (ret < 0)
12884 return sanitize_err(env, insn, ret, NULL, NULL);
12885 }
12886
3f50f132
JF
12887 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12888 * There are two classes of instructions: The first class we track both
12889 * alu32 and alu64 sign/unsigned bounds independently this provides the
12890 * greatest amount of precision when alu operations are mixed with jmp32
12891 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12892 * and BPF_OR. This is possible because these ops have fairly easy to
12893 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12894 * See alu32 verifier tests for examples. The second class of
12895 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12896 * with regards to tracking sign/unsigned bounds because the bits may
12897 * cross subreg boundaries in the alu64 case. When this happens we mark
12898 * the reg unbounded in the subreg bound space and use the resulting
12899 * tnum to calculate an approximation of the sign/unsigned bounds.
12900 */
48461135
JB
12901 switch (opcode) {
12902 case BPF_ADD:
3f50f132 12903 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 12904 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 12905 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
12906 break;
12907 case BPF_SUB:
3f50f132 12908 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 12909 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 12910 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
12911 break;
12912 case BPF_MUL:
3f50f132
JF
12913 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12914 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 12915 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
12916 break;
12917 case BPF_AND:
3f50f132
JF
12918 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12919 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 12920 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
12921 break;
12922 case BPF_OR:
3f50f132
JF
12923 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12924 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 12925 scalar_min_max_or(dst_reg, &src_reg);
48461135 12926 break;
2921c90d
YS
12927 case BPF_XOR:
12928 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12929 scalar32_min_max_xor(dst_reg, &src_reg);
12930 scalar_min_max_xor(dst_reg, &src_reg);
12931 break;
48461135 12932 case BPF_LSH:
468f6eaf
JH
12933 if (umax_val >= insn_bitness) {
12934 /* Shifts greater than 31 or 63 are undefined.
12935 * This includes shifts by a negative number.
b03c9f9f 12936 */
61bd5218 12937 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12938 break;
12939 }
3f50f132
JF
12940 if (alu32)
12941 scalar32_min_max_lsh(dst_reg, &src_reg);
12942 else
12943 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
12944 break;
12945 case BPF_RSH:
468f6eaf
JH
12946 if (umax_val >= insn_bitness) {
12947 /* Shifts greater than 31 or 63 are undefined.
12948 * This includes shifts by a negative number.
b03c9f9f 12949 */
61bd5218 12950 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
12951 break;
12952 }
3f50f132
JF
12953 if (alu32)
12954 scalar32_min_max_rsh(dst_reg, &src_reg);
12955 else
12956 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 12957 break;
9cbe1f5a
YS
12958 case BPF_ARSH:
12959 if (umax_val >= insn_bitness) {
12960 /* Shifts greater than 31 or 63 are undefined.
12961 * This includes shifts by a negative number.
12962 */
12963 mark_reg_unknown(env, regs, insn->dst_reg);
12964 break;
12965 }
3f50f132
JF
12966 if (alu32)
12967 scalar32_min_max_arsh(dst_reg, &src_reg);
12968 else
12969 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 12970 break;
48461135 12971 default:
61bd5218 12972 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
12973 break;
12974 }
12975
3f50f132
JF
12976 /* ALU32 ops are zero extended into 64bit register */
12977 if (alu32)
12978 zext_32_to_64(dst_reg);
3844d153 12979 reg_bounds_sync(dst_reg);
f1174f77
EC
12980 return 0;
12981}
12982
12983/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12984 * and var_off.
12985 */
12986static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12987 struct bpf_insn *insn)
12988{
f4d7e40a
AS
12989 struct bpf_verifier_state *vstate = env->cur_state;
12990 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12991 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
12992 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12993 u8 opcode = BPF_OP(insn->code);
b5dc0163 12994 int err;
f1174f77
EC
12995
12996 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
12997 src_reg = NULL;
12998 if (dst_reg->type != SCALAR_VALUE)
12999 ptr_reg = dst_reg;
75748837
AS
13000 else
13001 /* Make sure ID is cleared otherwise dst_reg min/max could be
13002 * incorrectly propagated into other registers by find_equal_scalars()
13003 */
13004 dst_reg->id = 0;
f1174f77
EC
13005 if (BPF_SRC(insn->code) == BPF_X) {
13006 src_reg = &regs[insn->src_reg];
f1174f77
EC
13007 if (src_reg->type != SCALAR_VALUE) {
13008 if (dst_reg->type != SCALAR_VALUE) {
13009 /* Combining two pointers by any ALU op yields
82abbf8d
AS
13010 * an arbitrary scalar. Disallow all math except
13011 * pointer subtraction
f1174f77 13012 */
dd066823 13013 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
13014 mark_reg_unknown(env, regs, insn->dst_reg);
13015 return 0;
f1174f77 13016 }
82abbf8d
AS
13017 verbose(env, "R%d pointer %s pointer prohibited\n",
13018 insn->dst_reg,
13019 bpf_alu_string[opcode >> 4]);
13020 return -EACCES;
f1174f77
EC
13021 } else {
13022 /* scalar += pointer
13023 * This is legal, but we have to reverse our
13024 * src/dest handling in computing the range
13025 */
b5dc0163
AS
13026 err = mark_chain_precision(env, insn->dst_reg);
13027 if (err)
13028 return err;
82abbf8d
AS
13029 return adjust_ptr_min_max_vals(env, insn,
13030 src_reg, dst_reg);
f1174f77
EC
13031 }
13032 } else if (ptr_reg) {
13033 /* pointer += scalar */
b5dc0163
AS
13034 err = mark_chain_precision(env, insn->src_reg);
13035 if (err)
13036 return err;
82abbf8d
AS
13037 return adjust_ptr_min_max_vals(env, insn,
13038 dst_reg, src_reg);
a3b666bf
AN
13039 } else if (dst_reg->precise) {
13040 /* if dst_reg is precise, src_reg should be precise as well */
13041 err = mark_chain_precision(env, insn->src_reg);
13042 if (err)
13043 return err;
f1174f77
EC
13044 }
13045 } else {
13046 /* Pretend the src is a reg with a known value, since we only
13047 * need to be able to read from this state.
13048 */
13049 off_reg.type = SCALAR_VALUE;
b03c9f9f 13050 __mark_reg_known(&off_reg, insn->imm);
f1174f77 13051 src_reg = &off_reg;
82abbf8d
AS
13052 if (ptr_reg) /* pointer += K */
13053 return adjust_ptr_min_max_vals(env, insn,
13054 ptr_reg, src_reg);
f1174f77
EC
13055 }
13056
13057 /* Got here implies adding two SCALAR_VALUEs */
13058 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 13059 print_verifier_state(env, state, true);
61bd5218 13060 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
13061 return -EINVAL;
13062 }
13063 if (WARN_ON(!src_reg)) {
0f55f9ed 13064 print_verifier_state(env, state, true);
61bd5218 13065 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
13066 return -EINVAL;
13067 }
13068 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
13069}
13070
17a52670 13071/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 13072static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 13073{
638f5b90 13074 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
13075 u8 opcode = BPF_OP(insn->code);
13076 int err;
13077
13078 if (opcode == BPF_END || opcode == BPF_NEG) {
13079 if (opcode == BPF_NEG) {
395e942d 13080 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
13081 insn->src_reg != BPF_REG_0 ||
13082 insn->off != 0 || insn->imm != 0) {
61bd5218 13083 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
13084 return -EINVAL;
13085 }
13086 } else {
13087 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68 13088 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
0845c3db
YS
13089 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13090 BPF_SRC(insn->code) != BPF_TO_LE)) {
61bd5218 13091 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
13092 return -EINVAL;
13093 }
13094 }
13095
13096 /* check src operand */
dc503a8a 13097 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13098 if (err)
13099 return err;
13100
1be7f75d 13101 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 13102 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
13103 insn->dst_reg);
13104 return -EACCES;
13105 }
13106
17a52670 13107 /* check dest operand */
dc503a8a 13108 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
13109 if (err)
13110 return err;
13111
13112 } else if (opcode == BPF_MOV) {
13113
13114 if (BPF_SRC(insn->code) == BPF_X) {
8100928c 13115 if (insn->imm != 0) {
61bd5218 13116 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
13117 return -EINVAL;
13118 }
13119
8100928c
YS
13120 if (BPF_CLASS(insn->code) == BPF_ALU) {
13121 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13122 verbose(env, "BPF_MOV uses reserved fields\n");
13123 return -EINVAL;
13124 }
13125 } else {
13126 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13127 insn->off != 32) {
13128 verbose(env, "BPF_MOV uses reserved fields\n");
13129 return -EINVAL;
13130 }
13131 }
13132
17a52670 13133 /* check src operand */
dc503a8a 13134 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13135 if (err)
13136 return err;
13137 } else {
13138 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 13139 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
13140 return -EINVAL;
13141 }
13142 }
13143
fbeb1603
AF
13144 /* check dest operand, mark as required later */
13145 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
13146 if (err)
13147 return err;
13148
13149 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
13150 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13151 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
1ffc85d9
EZ
13152 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13153 !tnum_is_const(src_reg->var_off);
e434b8cd 13154
17a52670 13155 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8100928c
YS
13156 if (insn->off == 0) {
13157 /* case: R1 = R2
13158 * copy register state to dest reg
75748837 13159 */
8100928c
YS
13160 if (need_id)
13161 /* Assign src and dst registers the same ID
13162 * that will be used by find_equal_scalars()
13163 * to propagate min/max range.
13164 */
13165 src_reg->id = ++env->id_gen;
13166 copy_register_state(dst_reg, src_reg);
13167 dst_reg->live |= REG_LIVE_WRITTEN;
13168 dst_reg->subreg_def = DEF_NOT_SUBREG;
13169 } else {
13170 /* case: R1 = (s8, s16 s32)R2 */
db2baf82
YS
13171 if (is_pointer_value(env, insn->src_reg)) {
13172 verbose(env,
13173 "R%d sign-extension part of pointer\n",
13174 insn->src_reg);
13175 return -EACCES;
13176 } else if (src_reg->type == SCALAR_VALUE) {
13177 bool no_sext;
13178
13179 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13180 if (no_sext && need_id)
13181 src_reg->id = ++env->id_gen;
13182 copy_register_state(dst_reg, src_reg);
13183 if (!no_sext)
13184 dst_reg->id = 0;
13185 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13186 dst_reg->live |= REG_LIVE_WRITTEN;
13187 dst_reg->subreg_def = DEF_NOT_SUBREG;
13188 } else {
13189 mark_reg_unknown(env, regs, insn->dst_reg);
13190 }
8100928c 13191 }
17a52670 13192 } else {
f1174f77 13193 /* R1 = (u32) R2 */
1be7f75d 13194 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
13195 verbose(env,
13196 "R%d partial copy of pointer\n",
1be7f75d
AS
13197 insn->src_reg);
13198 return -EACCES;
e434b8cd 13199 } else if (src_reg->type == SCALAR_VALUE) {
8100928c
YS
13200 if (insn->off == 0) {
13201 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13202
13203 if (is_src_reg_u32 && need_id)
13204 src_reg->id = ++env->id_gen;
13205 copy_register_state(dst_reg, src_reg);
13206 /* Make sure ID is cleared if src_reg is not in u32
13207 * range otherwise dst_reg min/max could be incorrectly
13208 * propagated into src_reg by find_equal_scalars()
13209 */
13210 if (!is_src_reg_u32)
13211 dst_reg->id = 0;
13212 dst_reg->live |= REG_LIVE_WRITTEN;
13213 dst_reg->subreg_def = env->insn_idx + 1;
13214 } else {
13215 /* case: W1 = (s8, s16)W2 */
13216 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13217
13218 if (no_sext && need_id)
13219 src_reg->id = ++env->id_gen;
13220 copy_register_state(dst_reg, src_reg);
13221 if (!no_sext)
13222 dst_reg->id = 0;
13223 dst_reg->live |= REG_LIVE_WRITTEN;
13224 dst_reg->subreg_def = env->insn_idx + 1;
13225 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13226 }
e434b8cd
JW
13227 } else {
13228 mark_reg_unknown(env, regs,
13229 insn->dst_reg);
1be7f75d 13230 }
3f50f132 13231 zext_32_to_64(dst_reg);
3844d153 13232 reg_bounds_sync(dst_reg);
17a52670
AS
13233 }
13234 } else {
13235 /* case: R = imm
13236 * remember the value we stored into this reg
13237 */
fbeb1603
AF
13238 /* clear any state __mark_reg_known doesn't set */
13239 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 13240 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
13241 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13242 __mark_reg_known(regs + insn->dst_reg,
13243 insn->imm);
13244 } else {
13245 __mark_reg_known(regs + insn->dst_reg,
13246 (u32)insn->imm);
13247 }
17a52670
AS
13248 }
13249
13250 } else if (opcode > BPF_END) {
61bd5218 13251 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
13252 return -EINVAL;
13253
13254 } else { /* all other ALU ops: and, sub, xor, add, ... */
13255
17a52670 13256 if (BPF_SRC(insn->code) == BPF_X) {
ec0e2da9
YS
13257 if (insn->imm != 0 || insn->off > 1 ||
13258 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
61bd5218 13259 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
13260 return -EINVAL;
13261 }
13262 /* check src1 operand */
dc503a8a 13263 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13264 if (err)
13265 return err;
13266 } else {
ec0e2da9
YS
13267 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13268 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
61bd5218 13269 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
13270 return -EINVAL;
13271 }
13272 }
13273
13274 /* check src2 operand */
dc503a8a 13275 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13276 if (err)
13277 return err;
13278
13279 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13280 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 13281 verbose(env, "div by zero\n");
17a52670
AS
13282 return -EINVAL;
13283 }
13284
229394e8
RV
13285 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13286 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13287 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13288
13289 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 13290 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
13291 return -EINVAL;
13292 }
13293 }
13294
1a0dc1ac 13295 /* check dest operand */
dc503a8a 13296 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
13297 if (err)
13298 return err;
13299
f1174f77 13300 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
13301 }
13302
13303 return 0;
13304}
13305
f4d7e40a 13306static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 13307 struct bpf_reg_state *dst_reg,
f8ddadc4 13308 enum bpf_reg_type type,
fb2a311a 13309 bool range_right_open)
969bf05e 13310{
b239da34
KKD
13311 struct bpf_func_state *state;
13312 struct bpf_reg_state *reg;
13313 int new_range;
2d2be8ca 13314
fb2a311a
DB
13315 if (dst_reg->off < 0 ||
13316 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
13317 /* This doesn't give us any range */
13318 return;
13319
b03c9f9f
EC
13320 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13321 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
13322 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13323 * than pkt_end, but that's because it's also less than pkt.
13324 */
13325 return;
13326
fb2a311a
DB
13327 new_range = dst_reg->off;
13328 if (range_right_open)
2fa7d94a 13329 new_range++;
fb2a311a
DB
13330
13331 /* Examples for register markings:
2d2be8ca 13332 *
fb2a311a 13333 * pkt_data in dst register:
2d2be8ca
DB
13334 *
13335 * r2 = r3;
13336 * r2 += 8;
13337 * if (r2 > pkt_end) goto <handle exception>
13338 * <access okay>
13339 *
b4e432f1
DB
13340 * r2 = r3;
13341 * r2 += 8;
13342 * if (r2 < pkt_end) goto <access okay>
13343 * <handle exception>
13344 *
2d2be8ca
DB
13345 * Where:
13346 * r2 == dst_reg, pkt_end == src_reg
13347 * r2=pkt(id=n,off=8,r=0)
13348 * r3=pkt(id=n,off=0,r=0)
13349 *
fb2a311a 13350 * pkt_data in src register:
2d2be8ca
DB
13351 *
13352 * r2 = r3;
13353 * r2 += 8;
13354 * if (pkt_end >= r2) goto <access okay>
13355 * <handle exception>
13356 *
b4e432f1
DB
13357 * r2 = r3;
13358 * r2 += 8;
13359 * if (pkt_end <= r2) goto <handle exception>
13360 * <access okay>
13361 *
2d2be8ca
DB
13362 * Where:
13363 * pkt_end == dst_reg, r2 == src_reg
13364 * r2=pkt(id=n,off=8,r=0)
13365 * r3=pkt(id=n,off=0,r=0)
13366 *
13367 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
13368 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13369 * and [r3, r3 + 8-1) respectively is safe to access depending on
13370 * the check.
969bf05e 13371 */
2d2be8ca 13372
f1174f77
EC
13373 /* If our ids match, then we must have the same max_value. And we
13374 * don't care about the other reg's fixed offset, since if it's too big
13375 * the range won't allow anything.
13376 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13377 */
b239da34
KKD
13378 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13379 if (reg->type == type && reg->id == dst_reg->id)
13380 /* keep the maximum range already checked */
13381 reg->range = max(reg->range, new_range);
13382 }));
969bf05e
AS
13383}
13384
3f50f132 13385static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 13386{
3f50f132
JF
13387 struct tnum subreg = tnum_subreg(reg->var_off);
13388 s32 sval = (s32)val;
a72dafaf 13389
3f50f132
JF
13390 switch (opcode) {
13391 case BPF_JEQ:
13392 if (tnum_is_const(subreg))
13393 return !!tnum_equals_const(subreg, val);
13fbcee5
YS
13394 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13395 return 0;
3f50f132
JF
13396 break;
13397 case BPF_JNE:
13398 if (tnum_is_const(subreg))
13399 return !tnum_equals_const(subreg, val);
13fbcee5
YS
13400 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13401 return 1;
3f50f132
JF
13402 break;
13403 case BPF_JSET:
13404 if ((~subreg.mask & subreg.value) & val)
13405 return 1;
13406 if (!((subreg.mask | subreg.value) & val))
13407 return 0;
13408 break;
13409 case BPF_JGT:
13410 if (reg->u32_min_value > val)
13411 return 1;
13412 else if (reg->u32_max_value <= val)
13413 return 0;
13414 break;
13415 case BPF_JSGT:
13416 if (reg->s32_min_value > sval)
13417 return 1;
ee114dd6 13418 else if (reg->s32_max_value <= sval)
3f50f132
JF
13419 return 0;
13420 break;
13421 case BPF_JLT:
13422 if (reg->u32_max_value < val)
13423 return 1;
13424 else if (reg->u32_min_value >= val)
13425 return 0;
13426 break;
13427 case BPF_JSLT:
13428 if (reg->s32_max_value < sval)
13429 return 1;
13430 else if (reg->s32_min_value >= sval)
13431 return 0;
13432 break;
13433 case BPF_JGE:
13434 if (reg->u32_min_value >= val)
13435 return 1;
13436 else if (reg->u32_max_value < val)
13437 return 0;
13438 break;
13439 case BPF_JSGE:
13440 if (reg->s32_min_value >= sval)
13441 return 1;
13442 else if (reg->s32_max_value < sval)
13443 return 0;
13444 break;
13445 case BPF_JLE:
13446 if (reg->u32_max_value <= val)
13447 return 1;
13448 else if (reg->u32_min_value > val)
13449 return 0;
13450 break;
13451 case BPF_JSLE:
13452 if (reg->s32_max_value <= sval)
13453 return 1;
13454 else if (reg->s32_min_value > sval)
13455 return 0;
13456 break;
13457 }
4f7b3e82 13458
3f50f132
JF
13459 return -1;
13460}
092ed096 13461
3f50f132
JF
13462
13463static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13464{
13465 s64 sval = (s64)val;
a72dafaf 13466
4f7b3e82
AS
13467 switch (opcode) {
13468 case BPF_JEQ:
13469 if (tnum_is_const(reg->var_off))
13470 return !!tnum_equals_const(reg->var_off, val);
13fbcee5
YS
13471 else if (val < reg->umin_value || val > reg->umax_value)
13472 return 0;
4f7b3e82
AS
13473 break;
13474 case BPF_JNE:
13475 if (tnum_is_const(reg->var_off))
13476 return !tnum_equals_const(reg->var_off, val);
13fbcee5
YS
13477 else if (val < reg->umin_value || val > reg->umax_value)
13478 return 1;
4f7b3e82 13479 break;
960ea056
JK
13480 case BPF_JSET:
13481 if ((~reg->var_off.mask & reg->var_off.value) & val)
13482 return 1;
13483 if (!((reg->var_off.mask | reg->var_off.value) & val))
13484 return 0;
13485 break;
4f7b3e82
AS
13486 case BPF_JGT:
13487 if (reg->umin_value > val)
13488 return 1;
13489 else if (reg->umax_value <= val)
13490 return 0;
13491 break;
13492 case BPF_JSGT:
a72dafaf 13493 if (reg->smin_value > sval)
4f7b3e82 13494 return 1;
ee114dd6 13495 else if (reg->smax_value <= sval)
4f7b3e82
AS
13496 return 0;
13497 break;
13498 case BPF_JLT:
13499 if (reg->umax_value < val)
13500 return 1;
13501 else if (reg->umin_value >= val)
13502 return 0;
13503 break;
13504 case BPF_JSLT:
a72dafaf 13505 if (reg->smax_value < sval)
4f7b3e82 13506 return 1;
a72dafaf 13507 else if (reg->smin_value >= sval)
4f7b3e82
AS
13508 return 0;
13509 break;
13510 case BPF_JGE:
13511 if (reg->umin_value >= val)
13512 return 1;
13513 else if (reg->umax_value < val)
13514 return 0;
13515 break;
13516 case BPF_JSGE:
a72dafaf 13517 if (reg->smin_value >= sval)
4f7b3e82 13518 return 1;
a72dafaf 13519 else if (reg->smax_value < sval)
4f7b3e82
AS
13520 return 0;
13521 break;
13522 case BPF_JLE:
13523 if (reg->umax_value <= val)
13524 return 1;
13525 else if (reg->umin_value > val)
13526 return 0;
13527 break;
13528 case BPF_JSLE:
a72dafaf 13529 if (reg->smax_value <= sval)
4f7b3e82 13530 return 1;
a72dafaf 13531 else if (reg->smin_value > sval)
4f7b3e82
AS
13532 return 0;
13533 break;
13534 }
13535
13536 return -1;
13537}
13538
3f50f132
JF
13539/* compute branch direction of the expression "if (reg opcode val) goto target;"
13540 * and return:
13541 * 1 - branch will be taken and "goto target" will be executed
13542 * 0 - branch will not be taken and fall-through to next insn
13543 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13544 * range [0,10]
604dca5e 13545 */
3f50f132
JF
13546static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13547 bool is_jmp32)
604dca5e 13548{
cac616db 13549 if (__is_pointer_value(false, reg)) {
51302c95 13550 if (!reg_not_null(reg))
cac616db
JF
13551 return -1;
13552
13553 /* If pointer is valid tests against zero will fail so we can
13554 * use this to direct branch taken.
13555 */
13556 if (val != 0)
13557 return -1;
13558
13559 switch (opcode) {
13560 case BPF_JEQ:
13561 return 0;
13562 case BPF_JNE:
13563 return 1;
13564 default:
13565 return -1;
13566 }
13567 }
604dca5e 13568
3f50f132
JF
13569 if (is_jmp32)
13570 return is_branch32_taken(reg, val, opcode);
13571 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
13572}
13573
6d94e741
AS
13574static int flip_opcode(u32 opcode)
13575{
13576 /* How can we transform "a <op> b" into "b <op> a"? */
13577 static const u8 opcode_flip[16] = {
13578 /* these stay the same */
13579 [BPF_JEQ >> 4] = BPF_JEQ,
13580 [BPF_JNE >> 4] = BPF_JNE,
13581 [BPF_JSET >> 4] = BPF_JSET,
13582 /* these swap "lesser" and "greater" (L and G in the opcodes) */
13583 [BPF_JGE >> 4] = BPF_JLE,
13584 [BPF_JGT >> 4] = BPF_JLT,
13585 [BPF_JLE >> 4] = BPF_JGE,
13586 [BPF_JLT >> 4] = BPF_JGT,
13587 [BPF_JSGE >> 4] = BPF_JSLE,
13588 [BPF_JSGT >> 4] = BPF_JSLT,
13589 [BPF_JSLE >> 4] = BPF_JSGE,
13590 [BPF_JSLT >> 4] = BPF_JSGT
13591 };
13592 return opcode_flip[opcode >> 4];
13593}
13594
13595static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13596 struct bpf_reg_state *src_reg,
13597 u8 opcode)
13598{
13599 struct bpf_reg_state *pkt;
13600
13601 if (src_reg->type == PTR_TO_PACKET_END) {
13602 pkt = dst_reg;
13603 } else if (dst_reg->type == PTR_TO_PACKET_END) {
13604 pkt = src_reg;
13605 opcode = flip_opcode(opcode);
13606 } else {
13607 return -1;
13608 }
13609
13610 if (pkt->range >= 0)
13611 return -1;
13612
13613 switch (opcode) {
13614 case BPF_JLE:
13615 /* pkt <= pkt_end */
13616 fallthrough;
13617 case BPF_JGT:
13618 /* pkt > pkt_end */
13619 if (pkt->range == BEYOND_PKT_END)
13620 /* pkt has at last one extra byte beyond pkt_end */
13621 return opcode == BPF_JGT;
13622 break;
13623 case BPF_JLT:
13624 /* pkt < pkt_end */
13625 fallthrough;
13626 case BPF_JGE:
13627 /* pkt >= pkt_end */
13628 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13629 return opcode == BPF_JGE;
13630 break;
13631 }
13632 return -1;
13633}
13634
48461135
JB
13635/* Adjusts the register min/max values in the case that the dst_reg is the
13636 * variable register that we are working on, and src_reg is a constant or we're
13637 * simply doing a BPF_K check.
f1174f77 13638 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
13639 */
13640static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
13641 struct bpf_reg_state *false_reg,
13642 u64 val, u32 val32,
092ed096 13643 u8 opcode, bool is_jmp32)
48461135 13644{
3f50f132
JF
13645 struct tnum false_32off = tnum_subreg(false_reg->var_off);
13646 struct tnum false_64off = false_reg->var_off;
13647 struct tnum true_32off = tnum_subreg(true_reg->var_off);
13648 struct tnum true_64off = true_reg->var_off;
13649 s64 sval = (s64)val;
13650 s32 sval32 = (s32)val32;
a72dafaf 13651
f1174f77
EC
13652 /* If the dst_reg is a pointer, we can't learn anything about its
13653 * variable offset from the compare (unless src_reg were a pointer into
13654 * the same object, but we don't bother with that.
13655 * Since false_reg and true_reg have the same type by construction, we
13656 * only need to check one of them for pointerness.
13657 */
13658 if (__is_pointer_value(false, false_reg))
13659 return;
4cabc5b1 13660
48461135 13661 switch (opcode) {
a12ca627
DB
13662 /* JEQ/JNE comparison doesn't change the register equivalence.
13663 *
13664 * r1 = r2;
13665 * if (r1 == 42) goto label;
13666 * ...
13667 * label: // here both r1 and r2 are known to be 42.
13668 *
13669 * Hence when marking register as known preserve it's ID.
13670 */
48461135 13671 case BPF_JEQ:
a12ca627
DB
13672 if (is_jmp32) {
13673 __mark_reg32_known(true_reg, val32);
13674 true_32off = tnum_subreg(true_reg->var_off);
13675 } else {
13676 ___mark_reg_known(true_reg, val);
13677 true_64off = true_reg->var_off;
13678 }
13679 break;
48461135 13680 case BPF_JNE:
a12ca627
DB
13681 if (is_jmp32) {
13682 __mark_reg32_known(false_reg, val32);
13683 false_32off = tnum_subreg(false_reg->var_off);
13684 } else {
13685 ___mark_reg_known(false_reg, val);
13686 false_64off = false_reg->var_off;
13687 }
48461135 13688 break;
960ea056 13689 case BPF_JSET:
3f50f132
JF
13690 if (is_jmp32) {
13691 false_32off = tnum_and(false_32off, tnum_const(~val32));
13692 if (is_power_of_2(val32))
13693 true_32off = tnum_or(true_32off,
13694 tnum_const(val32));
13695 } else {
13696 false_64off = tnum_and(false_64off, tnum_const(~val));
13697 if (is_power_of_2(val))
13698 true_64off = tnum_or(true_64off,
13699 tnum_const(val));
13700 }
960ea056 13701 break;
48461135 13702 case BPF_JGE:
a72dafaf
JW
13703 case BPF_JGT:
13704 {
3f50f132
JF
13705 if (is_jmp32) {
13706 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
13707 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13708
13709 false_reg->u32_max_value = min(false_reg->u32_max_value,
13710 false_umax);
13711 true_reg->u32_min_value = max(true_reg->u32_min_value,
13712 true_umin);
13713 } else {
13714 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
13715 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13716
13717 false_reg->umax_value = min(false_reg->umax_value, false_umax);
13718 true_reg->umin_value = max(true_reg->umin_value, true_umin);
13719 }
b03c9f9f 13720 break;
a72dafaf 13721 }
48461135 13722 case BPF_JSGE:
a72dafaf
JW
13723 case BPF_JSGT:
13724 {
3f50f132
JF
13725 if (is_jmp32) {
13726 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
13727 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 13728
3f50f132
JF
13729 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13730 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13731 } else {
13732 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
13733 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13734
13735 false_reg->smax_value = min(false_reg->smax_value, false_smax);
13736 true_reg->smin_value = max(true_reg->smin_value, true_smin);
13737 }
48461135 13738 break;
a72dafaf 13739 }
b4e432f1 13740 case BPF_JLE:
a72dafaf
JW
13741 case BPF_JLT:
13742 {
3f50f132
JF
13743 if (is_jmp32) {
13744 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
13745 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13746
13747 false_reg->u32_min_value = max(false_reg->u32_min_value,
13748 false_umin);
13749 true_reg->u32_max_value = min(true_reg->u32_max_value,
13750 true_umax);
13751 } else {
13752 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
13753 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13754
13755 false_reg->umin_value = max(false_reg->umin_value, false_umin);
13756 true_reg->umax_value = min(true_reg->umax_value, true_umax);
13757 }
b4e432f1 13758 break;
a72dafaf 13759 }
b4e432f1 13760 case BPF_JSLE:
a72dafaf
JW
13761 case BPF_JSLT:
13762 {
3f50f132
JF
13763 if (is_jmp32) {
13764 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
13765 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 13766
3f50f132
JF
13767 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13768 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13769 } else {
13770 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
13771 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13772
13773 false_reg->smin_value = max(false_reg->smin_value, false_smin);
13774 true_reg->smax_value = min(true_reg->smax_value, true_smax);
13775 }
b4e432f1 13776 break;
a72dafaf 13777 }
48461135 13778 default:
0fc31b10 13779 return;
48461135
JB
13780 }
13781
3f50f132
JF
13782 if (is_jmp32) {
13783 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13784 tnum_subreg(false_32off));
13785 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13786 tnum_subreg(true_32off));
13787 __reg_combine_32_into_64(false_reg);
13788 __reg_combine_32_into_64(true_reg);
13789 } else {
13790 false_reg->var_off = false_64off;
13791 true_reg->var_off = true_64off;
13792 __reg_combine_64_into_32(false_reg);
13793 __reg_combine_64_into_32(true_reg);
13794 }
48461135
JB
13795}
13796
f1174f77
EC
13797/* Same as above, but for the case that dst_reg holds a constant and src_reg is
13798 * the variable reg.
48461135
JB
13799 */
13800static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
13801 struct bpf_reg_state *false_reg,
13802 u64 val, u32 val32,
092ed096 13803 u8 opcode, bool is_jmp32)
48461135 13804{
6d94e741 13805 opcode = flip_opcode(opcode);
0fc31b10
JH
13806 /* This uses zero as "not present in table"; luckily the zero opcode,
13807 * BPF_JA, can't get here.
b03c9f9f 13808 */
0fc31b10 13809 if (opcode)
3f50f132 13810 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
13811}
13812
13813/* Regs are known to be equal, so intersect their min/max/var_off */
13814static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13815 struct bpf_reg_state *dst_reg)
13816{
b03c9f9f
EC
13817 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13818 dst_reg->umin_value);
13819 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13820 dst_reg->umax_value);
13821 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13822 dst_reg->smin_value);
13823 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13824 dst_reg->smax_value);
f1174f77
EC
13825 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13826 dst_reg->var_off);
3844d153
DB
13827 reg_bounds_sync(src_reg);
13828 reg_bounds_sync(dst_reg);
f1174f77
EC
13829}
13830
13831static void reg_combine_min_max(struct bpf_reg_state *true_src,
13832 struct bpf_reg_state *true_dst,
13833 struct bpf_reg_state *false_src,
13834 struct bpf_reg_state *false_dst,
13835 u8 opcode)
13836{
13837 switch (opcode) {
13838 case BPF_JEQ:
13839 __reg_combine_min_max(true_src, true_dst);
13840 break;
13841 case BPF_JNE:
13842 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 13843 break;
4cabc5b1 13844 }
48461135
JB
13845}
13846
fd978bf7
JS
13847static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13848 struct bpf_reg_state *reg, u32 id,
840b9615 13849 bool is_null)
57a09bf0 13850{
c25b2ae1 13851 if (type_may_be_null(reg->type) && reg->id == id &&
fca1aa75 13852 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
df57f38a
KKD
13853 /* Old offset (both fixed and variable parts) should have been
13854 * known-zero, because we don't allow pointer arithmetic on
13855 * pointers that might be NULL. If we see this happening, don't
13856 * convert the register.
13857 *
13858 * But in some cases, some helpers that return local kptrs
13859 * advance offset for the returned pointer. In those cases, it
13860 * is fine to expect to see reg->off.
13861 */
13862 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13863 return;
6a3cd331
DM
13864 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13865 WARN_ON_ONCE(reg->off))
e60b0d12 13866 return;
6a3cd331 13867
f1174f77
EC
13868 if (is_null) {
13869 reg->type = SCALAR_VALUE;
1b986589
MKL
13870 /* We don't need id and ref_obj_id from this point
13871 * onwards anymore, thus we should better reset it,
13872 * so that state pruning has chances to take effect.
13873 */
13874 reg->id = 0;
13875 reg->ref_obj_id = 0;
4ddb7416
DB
13876
13877 return;
13878 }
13879
13880 mark_ptr_not_null_reg(reg);
13881
13882 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 13883 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 13884 * in release_reference().
1b986589
MKL
13885 *
13886 * reg->id is still used by spin_lock ptr. Other
13887 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
13888 */
13889 reg->id = 0;
56f668df 13890 }
57a09bf0
TG
13891 }
13892}
13893
13894/* The logic is similar to find_good_pkt_pointers(), both could eventually
13895 * be folded together at some point.
13896 */
840b9615
JS
13897static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13898 bool is_null)
57a09bf0 13899{
f4d7e40a 13900 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 13901 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 13902 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 13903 u32 id = regs[regno].id;
57a09bf0 13904
1b986589
MKL
13905 if (ref_obj_id && ref_obj_id == id && is_null)
13906 /* regs[regno] is in the " == NULL" branch.
13907 * No one could have freed the reference state before
13908 * doing the NULL check.
13909 */
13910 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 13911
b239da34
KKD
13912 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13913 mark_ptr_or_null_reg(state, reg, id, is_null);
13914 }));
57a09bf0
TG
13915}
13916
5beca081
DB
13917static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13918 struct bpf_reg_state *dst_reg,
13919 struct bpf_reg_state *src_reg,
13920 struct bpf_verifier_state *this_branch,
13921 struct bpf_verifier_state *other_branch)
13922{
13923 if (BPF_SRC(insn->code) != BPF_X)
13924 return false;
13925
092ed096
JW
13926 /* Pointers are always 64-bit. */
13927 if (BPF_CLASS(insn->code) == BPF_JMP32)
13928 return false;
13929
5beca081
DB
13930 switch (BPF_OP(insn->code)) {
13931 case BPF_JGT:
13932 if ((dst_reg->type == PTR_TO_PACKET &&
13933 src_reg->type == PTR_TO_PACKET_END) ||
13934 (dst_reg->type == PTR_TO_PACKET_META &&
13935 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13936 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13937 find_good_pkt_pointers(this_branch, dst_reg,
13938 dst_reg->type, false);
6d94e741 13939 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
13940 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13941 src_reg->type == PTR_TO_PACKET) ||
13942 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13943 src_reg->type == PTR_TO_PACKET_META)) {
13944 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
13945 find_good_pkt_pointers(other_branch, src_reg,
13946 src_reg->type, true);
6d94e741 13947 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
13948 } else {
13949 return false;
13950 }
13951 break;
13952 case BPF_JLT:
13953 if ((dst_reg->type == PTR_TO_PACKET &&
13954 src_reg->type == PTR_TO_PACKET_END) ||
13955 (dst_reg->type == PTR_TO_PACKET_META &&
13956 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13957 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13958 find_good_pkt_pointers(other_branch, dst_reg,
13959 dst_reg->type, true);
6d94e741 13960 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
13961 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13962 src_reg->type == PTR_TO_PACKET) ||
13963 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13964 src_reg->type == PTR_TO_PACKET_META)) {
13965 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
13966 find_good_pkt_pointers(this_branch, src_reg,
13967 src_reg->type, false);
6d94e741 13968 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
13969 } else {
13970 return false;
13971 }
13972 break;
13973 case BPF_JGE:
13974 if ((dst_reg->type == PTR_TO_PACKET &&
13975 src_reg->type == PTR_TO_PACKET_END) ||
13976 (dst_reg->type == PTR_TO_PACKET_META &&
13977 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13978 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13979 find_good_pkt_pointers(this_branch, dst_reg,
13980 dst_reg->type, true);
6d94e741 13981 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
13982 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13983 src_reg->type == PTR_TO_PACKET) ||
13984 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13985 src_reg->type == PTR_TO_PACKET_META)) {
13986 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13987 find_good_pkt_pointers(other_branch, src_reg,
13988 src_reg->type, false);
6d94e741 13989 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
13990 } else {
13991 return false;
13992 }
13993 break;
13994 case BPF_JLE:
13995 if ((dst_reg->type == PTR_TO_PACKET &&
13996 src_reg->type == PTR_TO_PACKET_END) ||
13997 (dst_reg->type == PTR_TO_PACKET_META &&
13998 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13999 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14000 find_good_pkt_pointers(other_branch, dst_reg,
14001 dst_reg->type, false);
6d94e741 14002 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
14003 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14004 src_reg->type == PTR_TO_PACKET) ||
14005 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14006 src_reg->type == PTR_TO_PACKET_META)) {
14007 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14008 find_good_pkt_pointers(this_branch, src_reg,
14009 src_reg->type, true);
6d94e741 14010 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
14011 } else {
14012 return false;
14013 }
14014 break;
14015 default:
14016 return false;
14017 }
14018
14019 return true;
14020}
14021
75748837
AS
14022static void find_equal_scalars(struct bpf_verifier_state *vstate,
14023 struct bpf_reg_state *known_reg)
14024{
14025 struct bpf_func_state *state;
14026 struct bpf_reg_state *reg;
75748837 14027
b239da34
KKD
14028 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14029 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
71f656a5 14030 copy_register_state(reg, known_reg);
b239da34 14031 }));
75748837
AS
14032}
14033
58e2af8b 14034static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
14035 struct bpf_insn *insn, int *insn_idx)
14036{
f4d7e40a
AS
14037 struct bpf_verifier_state *this_branch = env->cur_state;
14038 struct bpf_verifier_state *other_branch;
14039 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 14040 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 14041 struct bpf_reg_state *eq_branch_regs;
17a52670 14042 u8 opcode = BPF_OP(insn->code);
092ed096 14043 bool is_jmp32;
fb8d251e 14044 int pred = -1;
17a52670
AS
14045 int err;
14046
092ed096
JW
14047 /* Only conditional jumps are expected to reach here. */
14048 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14049 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
14050 return -EINVAL;
14051 }
14052
d75e30dd
YS
14053 /* check src2 operand */
14054 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14055 if (err)
14056 return err;
14057
14058 dst_reg = &regs[insn->dst_reg];
17a52670
AS
14059 if (BPF_SRC(insn->code) == BPF_X) {
14060 if (insn->imm != 0) {
092ed096 14061 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
14062 return -EINVAL;
14063 }
14064
14065 /* check src1 operand */
dc503a8a 14066 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
14067 if (err)
14068 return err;
1be7f75d 14069
d75e30dd
YS
14070 src_reg = &regs[insn->src_reg];
14071 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14072 is_pointer_value(env, insn->src_reg)) {
61bd5218 14073 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
14074 insn->src_reg);
14075 return -EACCES;
14076 }
17a52670
AS
14077 } else {
14078 if (insn->src_reg != BPF_REG_0) {
092ed096 14079 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
14080 return -EINVAL;
14081 }
14082 }
14083
092ed096 14084 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 14085
3f50f132
JF
14086 if (BPF_SRC(insn->code) == BPF_K) {
14087 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14088 } else if (src_reg->type == SCALAR_VALUE &&
14089 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14090 pred = is_branch_taken(dst_reg,
14091 tnum_subreg(src_reg->var_off).value,
14092 opcode,
14093 is_jmp32);
14094 } else if (src_reg->type == SCALAR_VALUE &&
14095 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14096 pred = is_branch_taken(dst_reg,
14097 src_reg->var_off.value,
14098 opcode,
14099 is_jmp32);
953d9f5b
YS
14100 } else if (dst_reg->type == SCALAR_VALUE &&
14101 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14102 pred = is_branch_taken(src_reg,
14103 tnum_subreg(dst_reg->var_off).value,
14104 flip_opcode(opcode),
14105 is_jmp32);
14106 } else if (dst_reg->type == SCALAR_VALUE &&
14107 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14108 pred = is_branch_taken(src_reg,
14109 dst_reg->var_off.value,
14110 flip_opcode(opcode),
14111 is_jmp32);
6d94e741
AS
14112 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14113 reg_is_pkt_pointer_any(src_reg) &&
14114 !is_jmp32) {
14115 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
14116 }
14117
b5dc0163 14118 if (pred >= 0) {
cac616db
JF
14119 /* If we get here with a dst_reg pointer type it is because
14120 * above is_branch_taken() special cased the 0 comparison.
14121 */
14122 if (!__is_pointer_value(false, dst_reg))
14123 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
14124 if (BPF_SRC(insn->code) == BPF_X && !err &&
14125 !__is_pointer_value(false, src_reg))
b5dc0163
AS
14126 err = mark_chain_precision(env, insn->src_reg);
14127 if (err)
14128 return err;
14129 }
9183671a 14130
fb8d251e 14131 if (pred == 1) {
9183671a
DB
14132 /* Only follow the goto, ignore fall-through. If needed, push
14133 * the fall-through branch for simulation under speculative
14134 * execution.
14135 */
14136 if (!env->bypass_spec_v1 &&
14137 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14138 *insn_idx))
14139 return -EFAULT;
fb8d251e
AS
14140 *insn_idx += insn->off;
14141 return 0;
14142 } else if (pred == 0) {
9183671a
DB
14143 /* Only follow the fall-through branch, since that's where the
14144 * program will go. If needed, push the goto branch for
14145 * simulation under speculative execution.
fb8d251e 14146 */
9183671a
DB
14147 if (!env->bypass_spec_v1 &&
14148 !sanitize_speculative_path(env, insn,
14149 *insn_idx + insn->off + 1,
14150 *insn_idx))
14151 return -EFAULT;
fb8d251e 14152 return 0;
17a52670
AS
14153 }
14154
979d63d5
DB
14155 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14156 false);
17a52670
AS
14157 if (!other_branch)
14158 return -EFAULT;
f4d7e40a 14159 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 14160
48461135
JB
14161 /* detect if we are comparing against a constant value so we can adjust
14162 * our min/max values for our dst register.
f1174f77 14163 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
14164 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14165 * because otherwise the different base pointers mean the offsets aren't
f1174f77 14166 * comparable.
48461135
JB
14167 */
14168 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 14169 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 14170
f1174f77 14171 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
14172 src_reg->type == SCALAR_VALUE) {
14173 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
14174 (is_jmp32 &&
14175 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 14176 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 14177 dst_reg,
3f50f132
JF
14178 src_reg->var_off.value,
14179 tnum_subreg(src_reg->var_off).value,
092ed096
JW
14180 opcode, is_jmp32);
14181 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
14182 (is_jmp32 &&
14183 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 14184 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 14185 src_reg,
3f50f132
JF
14186 dst_reg->var_off.value,
14187 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
14188 opcode, is_jmp32);
14189 else if (!is_jmp32 &&
14190 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 14191 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
14192 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14193 &other_branch_regs[insn->dst_reg],
092ed096 14194 src_reg, dst_reg, opcode);
e688c3db
AS
14195 if (src_reg->id &&
14196 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
14197 find_equal_scalars(this_branch, src_reg);
14198 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14199 }
14200
f1174f77
EC
14201 }
14202 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 14203 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
14204 dst_reg, insn->imm, (u32)insn->imm,
14205 opcode, is_jmp32);
48461135
JB
14206 }
14207
e688c3db
AS
14208 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14209 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
14210 find_equal_scalars(this_branch, dst_reg);
14211 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14212 }
14213
befae758
EZ
14214 /* if one pointer register is compared to another pointer
14215 * register check if PTR_MAYBE_NULL could be lifted.
14216 * E.g. register A - maybe null
14217 * register B - not null
14218 * for JNE A, B, ... - A is not null in the false branch;
14219 * for JEQ A, B, ... - A is not null in the true branch.
8374bfd5
HS
14220 *
14221 * Since PTR_TO_BTF_ID points to a kernel struct that does
14222 * not need to be null checked by the BPF program, i.e.,
14223 * could be null even without PTR_MAYBE_NULL marking, so
14224 * only propagate nullness when neither reg is that type.
befae758
EZ
14225 */
14226 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14227 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
8374bfd5
HS
14228 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14229 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14230 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
befae758
EZ
14231 eq_branch_regs = NULL;
14232 switch (opcode) {
14233 case BPF_JEQ:
14234 eq_branch_regs = other_branch_regs;
14235 break;
14236 case BPF_JNE:
14237 eq_branch_regs = regs;
14238 break;
14239 default:
14240 /* do nothing */
14241 break;
14242 }
14243 if (eq_branch_regs) {
14244 if (type_may_be_null(src_reg->type))
14245 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14246 else
14247 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14248 }
14249 }
14250
092ed096
JW
14251 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14252 * NOTE: these optimizations below are related with pointer comparison
14253 * which will never be JMP32.
14254 */
14255 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 14256 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 14257 type_may_be_null(dst_reg->type)) {
840b9615 14258 /* Mark all identical registers in each branch as either
57a09bf0
TG
14259 * safe or unknown depending R == 0 or R != 0 conditional.
14260 */
840b9615
JS
14261 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14262 opcode == BPF_JNE);
14263 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14264 opcode == BPF_JEQ);
5beca081
DB
14265 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14266 this_branch, other_branch) &&
14267 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
14268 verbose(env, "R%d pointer comparison prohibited\n",
14269 insn->dst_reg);
1be7f75d 14270 return -EACCES;
17a52670 14271 }
06ee7115 14272 if (env->log.level & BPF_LOG_LEVEL)
2e576648 14273 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
14274 return 0;
14275}
14276
17a52670 14277/* verify BPF_LD_IMM64 instruction */
58e2af8b 14278static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 14279{
d8eca5bb 14280 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 14281 struct bpf_reg_state *regs = cur_regs(env);
4976b718 14282 struct bpf_reg_state *dst_reg;
d8eca5bb 14283 struct bpf_map *map;
17a52670
AS
14284 int err;
14285
14286 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 14287 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
14288 return -EINVAL;
14289 }
14290 if (insn->off != 0) {
61bd5218 14291 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
14292 return -EINVAL;
14293 }
14294
dc503a8a 14295 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
14296 if (err)
14297 return err;
14298
4976b718 14299 dst_reg = &regs[insn->dst_reg];
6b173873 14300 if (insn->src_reg == 0) {
6b173873
JK
14301 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14302
4976b718 14303 dst_reg->type = SCALAR_VALUE;
b03c9f9f 14304 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 14305 return 0;
6b173873 14306 }
17a52670 14307
d400a6cf
DB
14308 /* All special src_reg cases are listed below. From this point onwards
14309 * we either succeed and assign a corresponding dst_reg->type after
14310 * zeroing the offset, or fail and reject the program.
14311 */
14312 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 14313
d400a6cf 14314 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 14315 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 14316 switch (base_type(dst_reg->type)) {
4976b718
HL
14317 case PTR_TO_MEM:
14318 dst_reg->mem_size = aux->btf_var.mem_size;
14319 break;
14320 case PTR_TO_BTF_ID:
22dc4a0f 14321 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
14322 dst_reg->btf_id = aux->btf_var.btf_id;
14323 break;
14324 default:
14325 verbose(env, "bpf verifier is misconfigured\n");
14326 return -EFAULT;
14327 }
14328 return 0;
14329 }
14330
69c087ba
YS
14331 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14332 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
14333 u32 subprogno = find_subprog(env,
14334 env->insn_idx + insn->imm + 1);
69c087ba
YS
14335
14336 if (!aux->func_info) {
14337 verbose(env, "missing btf func_info\n");
14338 return -EINVAL;
14339 }
14340 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14341 verbose(env, "callback function not static\n");
14342 return -EINVAL;
14343 }
14344
14345 dst_reg->type = PTR_TO_FUNC;
14346 dst_reg->subprogno = subprogno;
14347 return 0;
14348 }
14349
d8eca5bb 14350 map = env->used_maps[aux->map_index];
4976b718 14351 dst_reg->map_ptr = map;
d8eca5bb 14352
387544bf
AS
14353 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14354 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
14355 dst_reg->type = PTR_TO_MAP_VALUE;
14356 dst_reg->off = aux->map_off;
d0d78c1d
KKD
14357 WARN_ON_ONCE(map->max_entries != 1);
14358 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
14359 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14360 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 14361 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
14362 } else {
14363 verbose(env, "bpf verifier is misconfigured\n");
14364 return -EINVAL;
14365 }
17a52670 14366
17a52670
AS
14367 return 0;
14368}
14369
96be4325
DB
14370static bool may_access_skb(enum bpf_prog_type type)
14371{
14372 switch (type) {
14373 case BPF_PROG_TYPE_SOCKET_FILTER:
14374 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 14375 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
14376 return true;
14377 default:
14378 return false;
14379 }
14380}
14381
ddd872bc
AS
14382/* verify safety of LD_ABS|LD_IND instructions:
14383 * - they can only appear in the programs where ctx == skb
14384 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14385 * preserve R6-R9, and store return value into R0
14386 *
14387 * Implicit input:
14388 * ctx == skb == R6 == CTX
14389 *
14390 * Explicit input:
14391 * SRC == any register
14392 * IMM == 32-bit immediate
14393 *
14394 * Output:
14395 * R0 - 8/16/32-bit skb data converted to cpu endianness
14396 */
58e2af8b 14397static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 14398{
638f5b90 14399 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 14400 static const int ctx_reg = BPF_REG_6;
ddd872bc 14401 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
14402 int i, err;
14403
7e40781c 14404 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 14405 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
14406 return -EINVAL;
14407 }
14408
e0cea7ce
DB
14409 if (!env->ops->gen_ld_abs) {
14410 verbose(env, "bpf verifier is misconfigured\n");
14411 return -EINVAL;
14412 }
14413
ddd872bc 14414 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 14415 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 14416 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 14417 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
14418 return -EINVAL;
14419 }
14420
14421 /* check whether implicit source operand (register R6) is readable */
6d4f151a 14422 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
14423 if (err)
14424 return err;
14425
fd978bf7
JS
14426 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14427 * gen_ld_abs() may terminate the program at runtime, leading to
14428 * reference leak.
14429 */
14430 err = check_reference_leak(env);
14431 if (err) {
14432 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14433 return err;
14434 }
14435
d0d78c1d 14436 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
14437 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14438 return -EINVAL;
14439 }
14440
9bb00b28
YS
14441 if (env->cur_state->active_rcu_lock) {
14442 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14443 return -EINVAL;
14444 }
14445
6d4f151a 14446 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
14447 verbose(env,
14448 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
14449 return -EINVAL;
14450 }
14451
14452 if (mode == BPF_IND) {
14453 /* check explicit source operand */
dc503a8a 14454 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
14455 if (err)
14456 return err;
14457 }
14458
be80a1d3 14459 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
14460 if (err < 0)
14461 return err;
14462
ddd872bc 14463 /* reset caller saved regs to unreadable */
dc503a8a 14464 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 14465 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
14466 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14467 }
ddd872bc
AS
14468
14469 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
14470 * the value fetched from the packet.
14471 * Already marked as written above.
ddd872bc 14472 */
61bd5218 14473 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
14474 /* ld_abs load up to 32-bit skb data. */
14475 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
14476 return 0;
14477}
14478
390ee7e2
AS
14479static int check_return_code(struct bpf_verifier_env *env)
14480{
5cf1e914 14481 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 14482 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
14483 struct bpf_reg_state *reg;
14484 struct tnum range = tnum_range(0, 1);
7e40781c 14485 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 14486 int err;
bfc6bb74
AS
14487 struct bpf_func_state *frame = env->cur_state->frame[0];
14488 const bool is_subprog = frame->subprogno;
27ae7997 14489
9e4e01df 14490 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
14491 if (!is_subprog) {
14492 switch (prog_type) {
14493 case BPF_PROG_TYPE_LSM:
14494 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14495 /* See below, can be 0 or 0-1 depending on hook. */
14496 break;
14497 fallthrough;
14498 case BPF_PROG_TYPE_STRUCT_OPS:
14499 if (!prog->aux->attach_func_proto->type)
14500 return 0;
14501 break;
14502 default:
14503 break;
14504 }
14505 }
27ae7997 14506
8fb33b60 14507 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
14508 * to return the value from eBPF program.
14509 * Make sure that it's readable at this time
14510 * of bpf_exit, which means that program wrote
14511 * something into it earlier
14512 */
14513 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14514 if (err)
14515 return err;
14516
14517 if (is_pointer_value(env, BPF_REG_0)) {
14518 verbose(env, "R0 leaks addr as return value\n");
14519 return -EACCES;
14520 }
390ee7e2 14521
f782e2c3 14522 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
14523
14524 if (frame->in_async_callback_fn) {
14525 /* enforce return zero from async callbacks like timer */
14526 if (reg->type != SCALAR_VALUE) {
14527 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 14528 reg_type_str(env, reg->type));
bfc6bb74
AS
14529 return -EINVAL;
14530 }
14531
14532 if (!tnum_in(tnum_const(0), reg->var_off)) {
14533 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
14534 return -EINVAL;
14535 }
14536 return 0;
14537 }
14538
f782e2c3
DB
14539 if (is_subprog) {
14540 if (reg->type != SCALAR_VALUE) {
14541 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 14542 reg_type_str(env, reg->type));
f782e2c3
DB
14543 return -EINVAL;
14544 }
14545 return 0;
14546 }
14547
7e40781c 14548 switch (prog_type) {
983695fa
DB
14549 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14550 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
14551 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14552 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14553 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14554 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14555 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 14556 range = tnum_range(1, 1);
77241217
SF
14557 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14558 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14559 range = tnum_range(0, 3);
ed4ed404 14560 break;
390ee7e2 14561 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 14562 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14563 range = tnum_range(0, 3);
14564 enforce_attach_type_range = tnum_range(2, 3);
14565 }
ed4ed404 14566 break;
390ee7e2
AS
14567 case BPF_PROG_TYPE_CGROUP_SOCK:
14568 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 14569 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 14570 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 14571 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 14572 break;
15ab09bd
AS
14573 case BPF_PROG_TYPE_RAW_TRACEPOINT:
14574 if (!env->prog->aux->attach_btf_id)
14575 return 0;
14576 range = tnum_const(0);
14577 break;
15d83c4d 14578 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
14579 switch (env->prog->expected_attach_type) {
14580 case BPF_TRACE_FENTRY:
14581 case BPF_TRACE_FEXIT:
14582 range = tnum_const(0);
14583 break;
14584 case BPF_TRACE_RAW_TP:
14585 case BPF_MODIFY_RETURN:
15d83c4d 14586 return 0;
2ec0616e
DB
14587 case BPF_TRACE_ITER:
14588 break;
e92888c7
YS
14589 default:
14590 return -ENOTSUPP;
14591 }
15d83c4d 14592 break;
e9ddbb77
JS
14593 case BPF_PROG_TYPE_SK_LOOKUP:
14594 range = tnum_range(SK_DROP, SK_PASS);
14595 break;
69fd337a
SF
14596
14597 case BPF_PROG_TYPE_LSM:
14598 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14599 /* Regular BPF_PROG_TYPE_LSM programs can return
14600 * any value.
14601 */
14602 return 0;
14603 }
14604 if (!env->prog->aux->attach_func_proto->type) {
14605 /* Make sure programs that attach to void
14606 * hooks don't try to modify return value.
14607 */
14608 range = tnum_range(1, 1);
14609 }
14610 break;
14611
fd9c663b
FW
14612 case BPF_PROG_TYPE_NETFILTER:
14613 range = tnum_range(NF_DROP, NF_ACCEPT);
14614 break;
e92888c7
YS
14615 case BPF_PROG_TYPE_EXT:
14616 /* freplace program can return anything as its return value
14617 * depends on the to-be-replaced kernel func or bpf program.
14618 */
390ee7e2
AS
14619 default:
14620 return 0;
14621 }
14622
390ee7e2 14623 if (reg->type != SCALAR_VALUE) {
61bd5218 14624 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 14625 reg_type_str(env, reg->type));
390ee7e2
AS
14626 return -EINVAL;
14627 }
14628
14629 if (!tnum_in(range, reg->var_off)) {
bc2591d6 14630 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 14631 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 14632 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
14633 !prog->aux->attach_func_proto->type)
14634 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
14635 return -EINVAL;
14636 }
5cf1e914 14637
14638 if (!tnum_is_unknown(enforce_attach_type_range) &&
14639 tnum_in(enforce_attach_type_range, reg->var_off))
14640 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
14641 return 0;
14642}
14643
475fb78f
AS
14644/* non-recursive DFS pseudo code
14645 * 1 procedure DFS-iterative(G,v):
14646 * 2 label v as discovered
14647 * 3 let S be a stack
14648 * 4 S.push(v)
14649 * 5 while S is not empty
b6d20799 14650 * 6 t <- S.peek()
475fb78f
AS
14651 * 7 if t is what we're looking for:
14652 * 8 return t
14653 * 9 for all edges e in G.adjacentEdges(t) do
14654 * 10 if edge e is already labelled
14655 * 11 continue with the next edge
14656 * 12 w <- G.adjacentVertex(t,e)
14657 * 13 if vertex w is not discovered and not explored
14658 * 14 label e as tree-edge
14659 * 15 label w as discovered
14660 * 16 S.push(w)
14661 * 17 continue at 5
14662 * 18 else if vertex w is discovered
14663 * 19 label e as back-edge
14664 * 20 else
14665 * 21 // vertex w is explored
14666 * 22 label e as forward- or cross-edge
14667 * 23 label t as explored
14668 * 24 S.pop()
14669 *
14670 * convention:
14671 * 0x10 - discovered
14672 * 0x11 - discovered and fall-through edge labelled
14673 * 0x12 - discovered and fall-through and branch edges labelled
14674 * 0x20 - explored
14675 */
14676
14677enum {
14678 DISCOVERED = 0x10,
14679 EXPLORED = 0x20,
14680 FALLTHROUGH = 1,
14681 BRANCH = 2,
14682};
14683
dc2a4ebc
AS
14684static u32 state_htab_size(struct bpf_verifier_env *env)
14685{
14686 return env->prog->len;
14687}
14688
5d839021
AS
14689static struct bpf_verifier_state_list **explored_state(
14690 struct bpf_verifier_env *env,
14691 int idx)
14692{
dc2a4ebc
AS
14693 struct bpf_verifier_state *cur = env->cur_state;
14694 struct bpf_func_state *state = cur->frame[cur->curframe];
14695
14696 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
14697}
14698
bffdeaa8 14699static void mark_prune_point(struct bpf_verifier_env *env, int idx)
5d839021 14700{
a8f500af 14701 env->insn_aux_data[idx].prune_point = true;
5d839021 14702}
f1bca824 14703
bffdeaa8
AN
14704static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14705{
14706 return env->insn_aux_data[insn_idx].prune_point;
14707}
14708
4b5ce570
AN
14709static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14710{
14711 env->insn_aux_data[idx].force_checkpoint = true;
14712}
14713
14714static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14715{
14716 return env->insn_aux_data[insn_idx].force_checkpoint;
14717}
14718
14719
59e2e27d
WAF
14720enum {
14721 DONE_EXPLORING = 0,
14722 KEEP_EXPLORING = 1,
14723};
14724
475fb78f
AS
14725/* t, w, e - match pseudo-code above:
14726 * t - index of current instruction
14727 * w - next instruction
14728 * e - edge
14729 */
2589726d
AS
14730static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14731 bool loop_ok)
475fb78f 14732{
7df737e9
AS
14733 int *insn_stack = env->cfg.insn_stack;
14734 int *insn_state = env->cfg.insn_state;
14735
475fb78f 14736 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 14737 return DONE_EXPLORING;
475fb78f
AS
14738
14739 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 14740 return DONE_EXPLORING;
475fb78f
AS
14741
14742 if (w < 0 || w >= env->prog->len) {
d9762e84 14743 verbose_linfo(env, t, "%d: ", t);
61bd5218 14744 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
14745 return -EINVAL;
14746 }
14747
bffdeaa8 14748 if (e == BRANCH) {
f1bca824 14749 /* mark branch target for state pruning */
bffdeaa8
AN
14750 mark_prune_point(env, w);
14751 mark_jmp_point(env, w);
14752 }
f1bca824 14753
475fb78f
AS
14754 if (insn_state[w] == 0) {
14755 /* tree-edge */
14756 insn_state[t] = DISCOVERED | e;
14757 insn_state[w] = DISCOVERED;
7df737e9 14758 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 14759 return -E2BIG;
7df737e9 14760 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 14761 return KEEP_EXPLORING;
475fb78f 14762 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 14763 if (loop_ok && env->bpf_capable)
59e2e27d 14764 return DONE_EXPLORING;
d9762e84
MKL
14765 verbose_linfo(env, t, "%d: ", t);
14766 verbose_linfo(env, w, "%d: ", w);
61bd5218 14767 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
14768 return -EINVAL;
14769 } else if (insn_state[w] == EXPLORED) {
14770 /* forward- or cross-edge */
14771 insn_state[t] = DISCOVERED | e;
14772 } else {
61bd5218 14773 verbose(env, "insn state internal bug\n");
475fb78f
AS
14774 return -EFAULT;
14775 }
59e2e27d
WAF
14776 return DONE_EXPLORING;
14777}
14778
dcb2288b 14779static int visit_func_call_insn(int t, struct bpf_insn *insns,
efdb22de
YS
14780 struct bpf_verifier_env *env,
14781 bool visit_callee)
14782{
14783 int ret;
14784
14785 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14786 if (ret)
14787 return ret;
14788
618945fb
AN
14789 mark_prune_point(env, t + 1);
14790 /* when we exit from subprog, we need to record non-linear history */
14791 mark_jmp_point(env, t + 1);
14792
efdb22de 14793 if (visit_callee) {
bffdeaa8 14794 mark_prune_point(env, t);
86fc6ee6
AS
14795 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14796 /* It's ok to allow recursion from CFG point of
14797 * view. __check_func_call() will do the actual
14798 * check.
14799 */
14800 bpf_pseudo_func(insns + t));
efdb22de
YS
14801 }
14802 return ret;
14803}
14804
59e2e27d
WAF
14805/* Visits the instruction at index t and returns one of the following:
14806 * < 0 - an error occurred
14807 * DONE_EXPLORING - the instruction was fully explored
14808 * KEEP_EXPLORING - there is still work to be done before it is fully explored
14809 */
dcb2288b 14810static int visit_insn(int t, struct bpf_verifier_env *env)
59e2e27d 14811{
653ae3a8 14812 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
4cd58e9a 14813 int ret, off;
59e2e27d 14814
653ae3a8 14815 if (bpf_pseudo_func(insn))
dcb2288b 14816 return visit_func_call_insn(t, insns, env, true);
69c087ba 14817
59e2e27d 14818 /* All non-branch instructions have a single fall-through edge. */
653ae3a8
AN
14819 if (BPF_CLASS(insn->code) != BPF_JMP &&
14820 BPF_CLASS(insn->code) != BPF_JMP32)
59e2e27d
WAF
14821 return push_insn(t, t + 1, FALLTHROUGH, env, false);
14822
653ae3a8 14823 switch (BPF_OP(insn->code)) {
59e2e27d
WAF
14824 case BPF_EXIT:
14825 return DONE_EXPLORING;
14826
14827 case BPF_CALL:
c1ee85a9 14828 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
618945fb
AN
14829 /* Mark this call insn as a prune point to trigger
14830 * is_state_visited() check before call itself is
14831 * processed by __check_func_call(). Otherwise new
14832 * async state will be pushed for further exploration.
bfc6bb74 14833 */
bffdeaa8 14834 mark_prune_point(env, t);
06accc87
AN
14835 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14836 struct bpf_kfunc_call_arg_meta meta;
14837
14838 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
4b5ce570 14839 if (ret == 0 && is_iter_next_kfunc(&meta)) {
06accc87 14840 mark_prune_point(env, t);
4b5ce570
AN
14841 /* Checking and saving state checkpoints at iter_next() call
14842 * is crucial for fast convergence of open-coded iterator loop
14843 * logic, so we need to force it. If we don't do that,
14844 * is_state_visited() might skip saving a checkpoint, causing
14845 * unnecessarily long sequence of not checkpointed
14846 * instructions and jumps, leading to exhaustion of jump
14847 * history buffer, and potentially other undesired outcomes.
14848 * It is expected that with correct open-coded iterators
14849 * convergence will happen quickly, so we don't run a risk of
14850 * exhausting memory.
14851 */
14852 mark_force_checkpoint(env, t);
14853 }
06accc87 14854 }
653ae3a8 14855 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
14856
14857 case BPF_JA:
653ae3a8 14858 if (BPF_SRC(insn->code) != BPF_K)
59e2e27d
WAF
14859 return -EINVAL;
14860
4cd58e9a
YS
14861 if (BPF_CLASS(insn->code) == BPF_JMP)
14862 off = insn->off;
14863 else
14864 off = insn->imm;
14865
59e2e27d 14866 /* unconditional jump with single edge */
4cd58e9a 14867 ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
59e2e27d
WAF
14868 true);
14869 if (ret)
14870 return ret;
14871
4cd58e9a
YS
14872 mark_prune_point(env, t + off + 1);
14873 mark_jmp_point(env, t + off + 1);
59e2e27d
WAF
14874
14875 return ret;
14876
14877 default:
14878 /* conditional jump with two edges */
bffdeaa8 14879 mark_prune_point(env, t);
618945fb 14880
59e2e27d
WAF
14881 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14882 if (ret)
14883 return ret;
14884
653ae3a8 14885 return push_insn(t, t + insn->off + 1, BRANCH, env, true);
59e2e27d 14886 }
475fb78f
AS
14887}
14888
14889/* non-recursive depth-first-search to detect loops in BPF program
14890 * loop == back-edge in directed graph
14891 */
58e2af8b 14892static int check_cfg(struct bpf_verifier_env *env)
475fb78f 14893{
475fb78f 14894 int insn_cnt = env->prog->len;
7df737e9 14895 int *insn_stack, *insn_state;
475fb78f 14896 int ret = 0;
59e2e27d 14897 int i;
475fb78f 14898
7df737e9 14899 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
14900 if (!insn_state)
14901 return -ENOMEM;
14902
7df737e9 14903 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 14904 if (!insn_stack) {
71dde681 14905 kvfree(insn_state);
475fb78f
AS
14906 return -ENOMEM;
14907 }
14908
14909 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14910 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 14911 env->cfg.cur_stack = 1;
475fb78f 14912
59e2e27d
WAF
14913 while (env->cfg.cur_stack > 0) {
14914 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 14915
dcb2288b 14916 ret = visit_insn(t, env);
59e2e27d
WAF
14917 switch (ret) {
14918 case DONE_EXPLORING:
14919 insn_state[t] = EXPLORED;
14920 env->cfg.cur_stack--;
14921 break;
14922 case KEEP_EXPLORING:
14923 break;
14924 default:
14925 if (ret > 0) {
14926 verbose(env, "visit_insn internal bug\n");
14927 ret = -EFAULT;
475fb78f 14928 }
475fb78f 14929 goto err_free;
59e2e27d 14930 }
475fb78f
AS
14931 }
14932
59e2e27d 14933 if (env->cfg.cur_stack < 0) {
61bd5218 14934 verbose(env, "pop stack internal bug\n");
475fb78f
AS
14935 ret = -EFAULT;
14936 goto err_free;
14937 }
475fb78f 14938
475fb78f
AS
14939 for (i = 0; i < insn_cnt; i++) {
14940 if (insn_state[i] != EXPLORED) {
61bd5218 14941 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
14942 ret = -EINVAL;
14943 goto err_free;
14944 }
14945 }
14946 ret = 0; /* cfg looks good */
14947
14948err_free:
71dde681
AS
14949 kvfree(insn_state);
14950 kvfree(insn_stack);
7df737e9 14951 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
14952 return ret;
14953}
14954
09b28d76
AS
14955static int check_abnormal_return(struct bpf_verifier_env *env)
14956{
14957 int i;
14958
14959 for (i = 1; i < env->subprog_cnt; i++) {
14960 if (env->subprog_info[i].has_ld_abs) {
14961 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14962 return -EINVAL;
14963 }
14964 if (env->subprog_info[i].has_tail_call) {
14965 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14966 return -EINVAL;
14967 }
14968 }
14969 return 0;
14970}
14971
838e9690
YS
14972/* The minimum supported BTF func info size */
14973#define MIN_BPF_FUNCINFO_SIZE 8
14974#define MAX_FUNCINFO_REC_SIZE 252
14975
c454a46b
MKL
14976static int check_btf_func(struct bpf_verifier_env *env,
14977 const union bpf_attr *attr,
af2ac3e1 14978 bpfptr_t uattr)
838e9690 14979{
09b28d76 14980 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 14981 u32 i, nfuncs, urec_size, min_size;
838e9690 14982 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 14983 struct bpf_func_info *krecord;
8c1b6e69 14984 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
14985 struct bpf_prog *prog;
14986 const struct btf *btf;
af2ac3e1 14987 bpfptr_t urecord;
d0b2818e 14988 u32 prev_offset = 0;
09b28d76 14989 bool scalar_return;
e7ed83d6 14990 int ret = -ENOMEM;
838e9690
YS
14991
14992 nfuncs = attr->func_info_cnt;
09b28d76
AS
14993 if (!nfuncs) {
14994 if (check_abnormal_return(env))
14995 return -EINVAL;
838e9690 14996 return 0;
09b28d76 14997 }
838e9690
YS
14998
14999 if (nfuncs != env->subprog_cnt) {
15000 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15001 return -EINVAL;
15002 }
15003
15004 urec_size = attr->func_info_rec_size;
15005 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15006 urec_size > MAX_FUNCINFO_REC_SIZE ||
15007 urec_size % sizeof(u32)) {
15008 verbose(env, "invalid func info rec size %u\n", urec_size);
15009 return -EINVAL;
15010 }
15011
c454a46b
MKL
15012 prog = env->prog;
15013 btf = prog->aux->btf;
838e9690 15014
af2ac3e1 15015 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
15016 min_size = min_t(u32, krec_size, urec_size);
15017
ba64e7d8 15018 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
15019 if (!krecord)
15020 return -ENOMEM;
8c1b6e69
AS
15021 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15022 if (!info_aux)
15023 goto err_free;
ba64e7d8 15024
838e9690
YS
15025 for (i = 0; i < nfuncs; i++) {
15026 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15027 if (ret) {
15028 if (ret == -E2BIG) {
15029 verbose(env, "nonzero tailing record in func info");
15030 /* set the size kernel expects so loader can zero
15031 * out the rest of the record.
15032 */
af2ac3e1
AS
15033 if (copy_to_bpfptr_offset(uattr,
15034 offsetof(union bpf_attr, func_info_rec_size),
15035 &min_size, sizeof(min_size)))
838e9690
YS
15036 ret = -EFAULT;
15037 }
c454a46b 15038 goto err_free;
838e9690
YS
15039 }
15040
af2ac3e1 15041 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 15042 ret = -EFAULT;
c454a46b 15043 goto err_free;
838e9690
YS
15044 }
15045
d30d42e0 15046 /* check insn_off */
09b28d76 15047 ret = -EINVAL;
838e9690 15048 if (i == 0) {
d30d42e0 15049 if (krecord[i].insn_off) {
838e9690 15050 verbose(env,
d30d42e0
MKL
15051 "nonzero insn_off %u for the first func info record",
15052 krecord[i].insn_off);
c454a46b 15053 goto err_free;
838e9690 15054 }
d30d42e0 15055 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
15056 verbose(env,
15057 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 15058 krecord[i].insn_off, prev_offset);
c454a46b 15059 goto err_free;
838e9690
YS
15060 }
15061
d30d42e0 15062 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 15063 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 15064 goto err_free;
838e9690
YS
15065 }
15066
15067 /* check type_id */
ba64e7d8 15068 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 15069 if (!type || !btf_type_is_func(type)) {
838e9690 15070 verbose(env, "invalid type id %d in func info",
ba64e7d8 15071 krecord[i].type_id);
c454a46b 15072 goto err_free;
838e9690 15073 }
51c39bb1 15074 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
15075
15076 func_proto = btf_type_by_id(btf, type->type);
15077 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15078 /* btf_func_check() already verified it during BTF load */
15079 goto err_free;
15080 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15081 scalar_return =
6089fb32 15082 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
15083 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15084 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15085 goto err_free;
15086 }
15087 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15088 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15089 goto err_free;
15090 }
15091
d30d42e0 15092 prev_offset = krecord[i].insn_off;
af2ac3e1 15093 bpfptr_add(&urecord, urec_size);
838e9690
YS
15094 }
15095
ba64e7d8
YS
15096 prog->aux->func_info = krecord;
15097 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 15098 prog->aux->func_info_aux = info_aux;
838e9690
YS
15099 return 0;
15100
c454a46b 15101err_free:
ba64e7d8 15102 kvfree(krecord);
8c1b6e69 15103 kfree(info_aux);
838e9690
YS
15104 return ret;
15105}
15106
ba64e7d8
YS
15107static void adjust_btf_func(struct bpf_verifier_env *env)
15108{
8c1b6e69 15109 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
15110 int i;
15111
8c1b6e69 15112 if (!aux->func_info)
ba64e7d8
YS
15113 return;
15114
15115 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 15116 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
15117}
15118
1b773d00 15119#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
15120#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15121
15122static int check_btf_line(struct bpf_verifier_env *env,
15123 const union bpf_attr *attr,
af2ac3e1 15124 bpfptr_t uattr)
c454a46b
MKL
15125{
15126 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15127 struct bpf_subprog_info *sub;
15128 struct bpf_line_info *linfo;
15129 struct bpf_prog *prog;
15130 const struct btf *btf;
af2ac3e1 15131 bpfptr_t ulinfo;
c454a46b
MKL
15132 int err;
15133
15134 nr_linfo = attr->line_info_cnt;
15135 if (!nr_linfo)
15136 return 0;
0e6491b5
BC
15137 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15138 return -EINVAL;
c454a46b
MKL
15139
15140 rec_size = attr->line_info_rec_size;
15141 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15142 rec_size > MAX_LINEINFO_REC_SIZE ||
15143 rec_size & (sizeof(u32) - 1))
15144 return -EINVAL;
15145
15146 /* Need to zero it in case the userspace may
15147 * pass in a smaller bpf_line_info object.
15148 */
15149 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15150 GFP_KERNEL | __GFP_NOWARN);
15151 if (!linfo)
15152 return -ENOMEM;
15153
15154 prog = env->prog;
15155 btf = prog->aux->btf;
15156
15157 s = 0;
15158 sub = env->subprog_info;
af2ac3e1 15159 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
15160 expected_size = sizeof(struct bpf_line_info);
15161 ncopy = min_t(u32, expected_size, rec_size);
15162 for (i = 0; i < nr_linfo; i++) {
15163 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15164 if (err) {
15165 if (err == -E2BIG) {
15166 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
15167 if (copy_to_bpfptr_offset(uattr,
15168 offsetof(union bpf_attr, line_info_rec_size),
15169 &expected_size, sizeof(expected_size)))
c454a46b
MKL
15170 err = -EFAULT;
15171 }
15172 goto err_free;
15173 }
15174
af2ac3e1 15175 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
15176 err = -EFAULT;
15177 goto err_free;
15178 }
15179
15180 /*
15181 * Check insn_off to ensure
15182 * 1) strictly increasing AND
15183 * 2) bounded by prog->len
15184 *
15185 * The linfo[0].insn_off == 0 check logically falls into
15186 * the later "missing bpf_line_info for func..." case
15187 * because the first linfo[0].insn_off must be the
15188 * first sub also and the first sub must have
15189 * subprog_info[0].start == 0.
15190 */
15191 if ((i && linfo[i].insn_off <= prev_offset) ||
15192 linfo[i].insn_off >= prog->len) {
15193 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15194 i, linfo[i].insn_off, prev_offset,
15195 prog->len);
15196 err = -EINVAL;
15197 goto err_free;
15198 }
15199
fdbaa0be
MKL
15200 if (!prog->insnsi[linfo[i].insn_off].code) {
15201 verbose(env,
15202 "Invalid insn code at line_info[%u].insn_off\n",
15203 i);
15204 err = -EINVAL;
15205 goto err_free;
15206 }
15207
23127b33
MKL
15208 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15209 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
15210 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15211 err = -EINVAL;
15212 goto err_free;
15213 }
15214
15215 if (s != env->subprog_cnt) {
15216 if (linfo[i].insn_off == sub[s].start) {
15217 sub[s].linfo_idx = i;
15218 s++;
15219 } else if (sub[s].start < linfo[i].insn_off) {
15220 verbose(env, "missing bpf_line_info for func#%u\n", s);
15221 err = -EINVAL;
15222 goto err_free;
15223 }
15224 }
15225
15226 prev_offset = linfo[i].insn_off;
af2ac3e1 15227 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
15228 }
15229
15230 if (s != env->subprog_cnt) {
15231 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15232 env->subprog_cnt - s, s);
15233 err = -EINVAL;
15234 goto err_free;
15235 }
15236
15237 prog->aux->linfo = linfo;
15238 prog->aux->nr_linfo = nr_linfo;
15239
15240 return 0;
15241
15242err_free:
15243 kvfree(linfo);
15244 return err;
15245}
15246
fbd94c7a
AS
15247#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15248#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15249
15250static int check_core_relo(struct bpf_verifier_env *env,
15251 const union bpf_attr *attr,
15252 bpfptr_t uattr)
15253{
15254 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15255 struct bpf_core_relo core_relo = {};
15256 struct bpf_prog *prog = env->prog;
15257 const struct btf *btf = prog->aux->btf;
15258 struct bpf_core_ctx ctx = {
15259 .log = &env->log,
15260 .btf = btf,
15261 };
15262 bpfptr_t u_core_relo;
15263 int err;
15264
15265 nr_core_relo = attr->core_relo_cnt;
15266 if (!nr_core_relo)
15267 return 0;
15268 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15269 return -EINVAL;
15270
15271 rec_size = attr->core_relo_rec_size;
15272 if (rec_size < MIN_CORE_RELO_SIZE ||
15273 rec_size > MAX_CORE_RELO_SIZE ||
15274 rec_size % sizeof(u32))
15275 return -EINVAL;
15276
15277 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15278 expected_size = sizeof(struct bpf_core_relo);
15279 ncopy = min_t(u32, expected_size, rec_size);
15280
15281 /* Unlike func_info and line_info, copy and apply each CO-RE
15282 * relocation record one at a time.
15283 */
15284 for (i = 0; i < nr_core_relo; i++) {
15285 /* future proofing when sizeof(bpf_core_relo) changes */
15286 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15287 if (err) {
15288 if (err == -E2BIG) {
15289 verbose(env, "nonzero tailing record in core_relo");
15290 if (copy_to_bpfptr_offset(uattr,
15291 offsetof(union bpf_attr, core_relo_rec_size),
15292 &expected_size, sizeof(expected_size)))
15293 err = -EFAULT;
15294 }
15295 break;
15296 }
15297
15298 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15299 err = -EFAULT;
15300 break;
15301 }
15302
15303 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15304 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15305 i, core_relo.insn_off, prog->len);
15306 err = -EINVAL;
15307 break;
15308 }
15309
15310 err = bpf_core_apply(&ctx, &core_relo, i,
15311 &prog->insnsi[core_relo.insn_off / 8]);
15312 if (err)
15313 break;
15314 bpfptr_add(&u_core_relo, rec_size);
15315 }
15316 return err;
15317}
15318
c454a46b
MKL
15319static int check_btf_info(struct bpf_verifier_env *env,
15320 const union bpf_attr *attr,
af2ac3e1 15321 bpfptr_t uattr)
c454a46b
MKL
15322{
15323 struct btf *btf;
15324 int err;
15325
09b28d76
AS
15326 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15327 if (check_abnormal_return(env))
15328 return -EINVAL;
c454a46b 15329 return 0;
09b28d76 15330 }
c454a46b
MKL
15331
15332 btf = btf_get_by_fd(attr->prog_btf_fd);
15333 if (IS_ERR(btf))
15334 return PTR_ERR(btf);
350a5c4d
AS
15335 if (btf_is_kernel(btf)) {
15336 btf_put(btf);
15337 return -EACCES;
15338 }
c454a46b
MKL
15339 env->prog->aux->btf = btf;
15340
15341 err = check_btf_func(env, attr, uattr);
15342 if (err)
15343 return err;
15344
15345 err = check_btf_line(env, attr, uattr);
15346 if (err)
15347 return err;
15348
fbd94c7a
AS
15349 err = check_core_relo(env, attr, uattr);
15350 if (err)
15351 return err;
15352
c454a46b 15353 return 0;
ba64e7d8
YS
15354}
15355
f1174f77
EC
15356/* check %cur's range satisfies %old's */
15357static bool range_within(struct bpf_reg_state *old,
15358 struct bpf_reg_state *cur)
15359{
b03c9f9f
EC
15360 return old->umin_value <= cur->umin_value &&
15361 old->umax_value >= cur->umax_value &&
15362 old->smin_value <= cur->smin_value &&
fd675184
DB
15363 old->smax_value >= cur->smax_value &&
15364 old->u32_min_value <= cur->u32_min_value &&
15365 old->u32_max_value >= cur->u32_max_value &&
15366 old->s32_min_value <= cur->s32_min_value &&
15367 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
15368}
15369
f1174f77
EC
15370/* If in the old state two registers had the same id, then they need to have
15371 * the same id in the new state as well. But that id could be different from
15372 * the old state, so we need to track the mapping from old to new ids.
15373 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15374 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15375 * regs with a different old id could still have new id 9, we don't care about
15376 * that.
15377 * So we look through our idmap to see if this old id has been seen before. If
15378 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 15379 */
1ffc85d9 15380static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
969bf05e 15381{
1ffc85d9 15382 struct bpf_id_pair *map = idmap->map;
f1174f77 15383 unsigned int i;
969bf05e 15384
4633a006
AN
15385 /* either both IDs should be set or both should be zero */
15386 if (!!old_id != !!cur_id)
15387 return false;
15388
15389 if (old_id == 0) /* cur_id == 0 as well */
15390 return true;
15391
c9e73e3d 15392 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
1ffc85d9 15393 if (!map[i].old) {
f1174f77 15394 /* Reached an empty slot; haven't seen this id before */
1ffc85d9
EZ
15395 map[i].old = old_id;
15396 map[i].cur = cur_id;
f1174f77
EC
15397 return true;
15398 }
1ffc85d9
EZ
15399 if (map[i].old == old_id)
15400 return map[i].cur == cur_id;
15401 if (map[i].cur == cur_id)
15402 return false;
f1174f77
EC
15403 }
15404 /* We ran out of idmap slots, which should be impossible */
15405 WARN_ON_ONCE(1);
15406 return false;
15407}
15408
1ffc85d9
EZ
15409/* Similar to check_ids(), but allocate a unique temporary ID
15410 * for 'old_id' or 'cur_id' of zero.
15411 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15412 */
15413static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15414{
15415 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15416 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15417
15418 return check_ids(old_id, cur_id, idmap);
15419}
15420
9242b5f5
AS
15421static void clean_func_state(struct bpf_verifier_env *env,
15422 struct bpf_func_state *st)
15423{
15424 enum bpf_reg_liveness live;
15425 int i, j;
15426
15427 for (i = 0; i < BPF_REG_FP; i++) {
15428 live = st->regs[i].live;
15429 /* liveness must not touch this register anymore */
15430 st->regs[i].live |= REG_LIVE_DONE;
15431 if (!(live & REG_LIVE_READ))
15432 /* since the register is unused, clear its state
15433 * to make further comparison simpler
15434 */
f54c7898 15435 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
15436 }
15437
15438 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15439 live = st->stack[i].spilled_ptr.live;
15440 /* liveness must not touch this stack slot anymore */
15441 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15442 if (!(live & REG_LIVE_READ)) {
f54c7898 15443 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
15444 for (j = 0; j < BPF_REG_SIZE; j++)
15445 st->stack[i].slot_type[j] = STACK_INVALID;
15446 }
15447 }
15448}
15449
15450static void clean_verifier_state(struct bpf_verifier_env *env,
15451 struct bpf_verifier_state *st)
15452{
15453 int i;
15454
15455 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15456 /* all regs in this state in all frames were already marked */
15457 return;
15458
15459 for (i = 0; i <= st->curframe; i++)
15460 clean_func_state(env, st->frame[i]);
15461}
15462
15463/* the parentage chains form a tree.
15464 * the verifier states are added to state lists at given insn and
15465 * pushed into state stack for future exploration.
15466 * when the verifier reaches bpf_exit insn some of the verifer states
15467 * stored in the state lists have their final liveness state already,
15468 * but a lot of states will get revised from liveness point of view when
15469 * the verifier explores other branches.
15470 * Example:
15471 * 1: r0 = 1
15472 * 2: if r1 == 100 goto pc+1
15473 * 3: r0 = 2
15474 * 4: exit
15475 * when the verifier reaches exit insn the register r0 in the state list of
15476 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15477 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15478 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15479 *
15480 * Since the verifier pushes the branch states as it sees them while exploring
15481 * the program the condition of walking the branch instruction for the second
15482 * time means that all states below this branch were already explored and
8fb33b60 15483 * their final liveness marks are already propagated.
9242b5f5
AS
15484 * Hence when the verifier completes the search of state list in is_state_visited()
15485 * we can call this clean_live_states() function to mark all liveness states
15486 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15487 * will not be used.
15488 * This function also clears the registers and stack for states that !READ
15489 * to simplify state merging.
15490 *
15491 * Important note here that walking the same branch instruction in the callee
15492 * doesn't meant that the states are DONE. The verifier has to compare
15493 * the callsites
15494 */
15495static void clean_live_states(struct bpf_verifier_env *env, int insn,
15496 struct bpf_verifier_state *cur)
15497{
15498 struct bpf_verifier_state_list *sl;
15499 int i;
15500
5d839021 15501 sl = *explored_state(env, insn);
a8f500af 15502 while (sl) {
2589726d
AS
15503 if (sl->state.branches)
15504 goto next;
dc2a4ebc
AS
15505 if (sl->state.insn_idx != insn ||
15506 sl->state.curframe != cur->curframe)
9242b5f5
AS
15507 goto next;
15508 for (i = 0; i <= cur->curframe; i++)
15509 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15510 goto next;
15511 clean_verifier_state(env, &sl->state);
15512next:
15513 sl = sl->next;
15514 }
15515}
15516
4a95c85c 15517static bool regs_exact(const struct bpf_reg_state *rold,
4633a006 15518 const struct bpf_reg_state *rcur,
1ffc85d9 15519 struct bpf_idmap *idmap)
4a95c85c 15520{
d2dcc67d 15521 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4633a006
AN
15522 check_ids(rold->id, rcur->id, idmap) &&
15523 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
4a95c85c
AN
15524}
15525
f1174f77 15526/* Returns true if (rold safe implies rcur safe) */
e042aa53 15527static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
1ffc85d9 15528 struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
f1174f77 15529{
dc503a8a
EC
15530 if (!(rold->live & REG_LIVE_READ))
15531 /* explored state didn't use this */
15532 return true;
f1174f77
EC
15533 if (rold->type == NOT_INIT)
15534 /* explored state can't have used this */
969bf05e 15535 return true;
f1174f77
EC
15536 if (rcur->type == NOT_INIT)
15537 return false;
7f4ce97c 15538
910f6999
AN
15539 /* Enforce that register types have to match exactly, including their
15540 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15541 * rule.
15542 *
15543 * One can make a point that using a pointer register as unbounded
15544 * SCALAR would be technically acceptable, but this could lead to
15545 * pointer leaks because scalars are allowed to leak while pointers
15546 * are not. We could make this safe in special cases if root is
15547 * calling us, but it's probably not worth the hassle.
15548 *
15549 * Also, register types that are *not* MAYBE_NULL could technically be
15550 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15551 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15552 * to the same map).
7f4ce97c
AN
15553 * However, if the old MAYBE_NULL register then got NULL checked,
15554 * doing so could have affected others with the same id, and we can't
15555 * check for that because we lost the id when we converted to
15556 * a non-MAYBE_NULL variant.
15557 * So, as a general rule we don't allow mixing MAYBE_NULL and
910f6999 15558 * non-MAYBE_NULL registers as well.
7f4ce97c 15559 */
910f6999 15560 if (rold->type != rcur->type)
7f4ce97c
AN
15561 return false;
15562
c25b2ae1 15563 switch (base_type(rold->type)) {
f1174f77 15564 case SCALAR_VALUE:
1ffc85d9
EZ
15565 if (env->explore_alu_limits) {
15566 /* explore_alu_limits disables tnum_in() and range_within()
15567 * logic and requires everything to be strict
15568 */
15569 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15570 check_scalar_ids(rold->id, rcur->id, idmap);
15571 }
910f6999
AN
15572 if (!rold->precise)
15573 return true;
1ffc85d9
EZ
15574 /* Why check_ids() for scalar registers?
15575 *
15576 * Consider the following BPF code:
15577 * 1: r6 = ... unbound scalar, ID=a ...
15578 * 2: r7 = ... unbound scalar, ID=b ...
15579 * 3: if (r6 > r7) goto +1
15580 * 4: r6 = r7
15581 * 5: if (r6 > X) goto ...
15582 * 6: ... memory operation using r7 ...
15583 *
15584 * First verification path is [1-6]:
15585 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15586 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15587 * r7 <= X, because r6 and r7 share same id.
15588 * Next verification path is [1-4, 6].
15589 *
15590 * Instruction (6) would be reached in two states:
15591 * I. r6{.id=b}, r7{.id=b} via path 1-6;
15592 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15593 *
15594 * Use check_ids() to distinguish these states.
15595 * ---
15596 * Also verify that new value satisfies old value range knowledge.
15597 */
910f6999 15598 return range_within(rold, rcur) &&
1ffc85d9
EZ
15599 tnum_in(rold->var_off, rcur->var_off) &&
15600 check_scalar_ids(rold->id, rcur->id, idmap);
69c087ba 15601 case PTR_TO_MAP_KEY:
f1174f77 15602 case PTR_TO_MAP_VALUE:
567da5d2
AN
15603 case PTR_TO_MEM:
15604 case PTR_TO_BUF:
15605 case PTR_TO_TP_BUFFER:
1b688a19
EC
15606 /* If the new min/max/var_off satisfy the old ones and
15607 * everything else matches, we are OK.
1b688a19 15608 */
a73bf9f2 15609 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
1b688a19 15610 range_within(rold, rcur) &&
4ea2bb15 15611 tnum_in(rold->var_off, rcur->var_off) &&
567da5d2
AN
15612 check_ids(rold->id, rcur->id, idmap) &&
15613 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
de8f3a83 15614 case PTR_TO_PACKET_META:
f1174f77 15615 case PTR_TO_PACKET:
f1174f77
EC
15616 /* We must have at least as much range as the old ptr
15617 * did, so that any accesses which were safe before are
15618 * still safe. This is true even if old range < old off,
15619 * since someone could have accessed through (ptr - k), or
15620 * even done ptr -= k in a register, to get a safe access.
15621 */
15622 if (rold->range > rcur->range)
15623 return false;
15624 /* If the offsets don't match, we can't trust our alignment;
15625 * nor can we be sure that we won't fall out of range.
15626 */
15627 if (rold->off != rcur->off)
15628 return false;
15629 /* id relations must be preserved */
4633a006 15630 if (!check_ids(rold->id, rcur->id, idmap))
f1174f77
EC
15631 return false;
15632 /* new val must satisfy old val knowledge */
15633 return range_within(rold, rcur) &&
15634 tnum_in(rold->var_off, rcur->var_off);
7c884339
EZ
15635 case PTR_TO_STACK:
15636 /* two stack pointers are equal only if they're pointing to
15637 * the same stack frame, since fp-8 in foo != fp-8 in bar
f1174f77 15638 */
4633a006 15639 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
f1174f77 15640 default:
4633a006 15641 return regs_exact(rold, rcur, idmap);
f1174f77 15642 }
969bf05e
AS
15643}
15644
e042aa53 15645static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
1ffc85d9 15646 struct bpf_func_state *cur, struct bpf_idmap *idmap)
638f5b90
AS
15647{
15648 int i, spi;
15649
638f5b90
AS
15650 /* walk slots of the explored stack and ignore any additional
15651 * slots in the current stack, since explored(safe) state
15652 * didn't use them
15653 */
15654 for (i = 0; i < old->allocated_stack; i++) {
06accc87
AN
15655 struct bpf_reg_state *old_reg, *cur_reg;
15656
638f5b90
AS
15657 spi = i / BPF_REG_SIZE;
15658
b233920c
AS
15659 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15660 i += BPF_REG_SIZE - 1;
cc2b14d5 15661 /* explored state didn't use this */
fd05e57b 15662 continue;
b233920c 15663 }
cc2b14d5 15664
638f5b90
AS
15665 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15666 continue;
19e2dbb7 15667
6715df8d
EZ
15668 if (env->allow_uninit_stack &&
15669 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15670 continue;
15671
19e2dbb7
AS
15672 /* explored stack has more populated slots than current stack
15673 * and these slots were used
15674 */
15675 if (i >= cur->allocated_stack)
15676 return false;
15677
cc2b14d5
AS
15678 /* if old state was safe with misc data in the stack
15679 * it will be safe with zero-initialized stack.
15680 * The opposite is not true
15681 */
15682 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15683 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15684 continue;
638f5b90
AS
15685 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15686 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15687 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 15688 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
15689 * this verifier states are not equivalent,
15690 * return false to continue verification of this path
15691 */
15692 return false;
27113c59 15693 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 15694 continue;
d6fefa11
KKD
15695 /* Both old and cur are having same slot_type */
15696 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15697 case STACK_SPILL:
638f5b90
AS
15698 /* when explored and current stack slot are both storing
15699 * spilled registers, check that stored pointers types
15700 * are the same as well.
15701 * Ex: explored safe path could have stored
15702 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15703 * but current path has stored:
15704 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15705 * such verifier states are not equivalent.
15706 * return false to continue verification of this path
15707 */
d6fefa11
KKD
15708 if (!regsafe(env, &old->stack[spi].spilled_ptr,
15709 &cur->stack[spi].spilled_ptr, idmap))
15710 return false;
15711 break;
15712 case STACK_DYNPTR:
d6fefa11
KKD
15713 old_reg = &old->stack[spi].spilled_ptr;
15714 cur_reg = &cur->stack[spi].spilled_ptr;
15715 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15716 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15717 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15718 return false;
15719 break;
06accc87
AN
15720 case STACK_ITER:
15721 old_reg = &old->stack[spi].spilled_ptr;
15722 cur_reg = &cur->stack[spi].spilled_ptr;
15723 /* iter.depth is not compared between states as it
15724 * doesn't matter for correctness and would otherwise
15725 * prevent convergence; we maintain it only to prevent
15726 * infinite loop check triggering, see
15727 * iter_active_depths_differ()
15728 */
15729 if (old_reg->iter.btf != cur_reg->iter.btf ||
15730 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15731 old_reg->iter.state != cur_reg->iter.state ||
15732 /* ignore {old_reg,cur_reg}->iter.depth, see above */
15733 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15734 return false;
15735 break;
d6fefa11
KKD
15736 case STACK_MISC:
15737 case STACK_ZERO:
15738 case STACK_INVALID:
15739 continue;
15740 /* Ensure that new unhandled slot types return false by default */
15741 default:
638f5b90 15742 return false;
d6fefa11 15743 }
638f5b90
AS
15744 }
15745 return true;
15746}
15747
e8f55fcf 15748static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
1ffc85d9 15749 struct bpf_idmap *idmap)
fd978bf7 15750{
e8f55fcf
AN
15751 int i;
15752
fd978bf7
JS
15753 if (old->acquired_refs != cur->acquired_refs)
15754 return false;
e8f55fcf
AN
15755
15756 for (i = 0; i < old->acquired_refs; i++) {
15757 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15758 return false;
15759 }
15760
15761 return true;
fd978bf7
JS
15762}
15763
f1bca824
AS
15764/* compare two verifier states
15765 *
15766 * all states stored in state_list are known to be valid, since
15767 * verifier reached 'bpf_exit' instruction through them
15768 *
15769 * this function is called when verifier exploring different branches of
15770 * execution popped from the state stack. If it sees an old state that has
15771 * more strict register state and more strict stack state then this execution
15772 * branch doesn't need to be explored further, since verifier already
15773 * concluded that more strict state leads to valid finish.
15774 *
15775 * Therefore two states are equivalent if register state is more conservative
15776 * and explored stack state is more conservative than the current one.
15777 * Example:
15778 * explored current
15779 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15780 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15781 *
15782 * In other words if current stack state (one being explored) has more
15783 * valid slots than old one that already passed validation, it means
15784 * the verifier can stop exploring and conclude that current state is valid too
15785 *
15786 * Similarly with registers. If explored state has register type as invalid
15787 * whereas register type in current state is meaningful, it means that
15788 * the current state will reach 'bpf_exit' instruction safely
15789 */
c9e73e3d 15790static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 15791 struct bpf_func_state *cur)
f1bca824
AS
15792{
15793 int i;
15794
c9e73e3d 15795 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53 15796 if (!regsafe(env, &old->regs[i], &cur->regs[i],
1ffc85d9 15797 &env->idmap_scratch))
c9e73e3d 15798 return false;
f1bca824 15799
1ffc85d9 15800 if (!stacksafe(env, old, cur, &env->idmap_scratch))
c9e73e3d 15801 return false;
fd978bf7 15802
1ffc85d9 15803 if (!refsafe(old, cur, &env->idmap_scratch))
c9e73e3d
LB
15804 return false;
15805
15806 return true;
f1bca824
AS
15807}
15808
f4d7e40a
AS
15809static bool states_equal(struct bpf_verifier_env *env,
15810 struct bpf_verifier_state *old,
15811 struct bpf_verifier_state *cur)
15812{
15813 int i;
15814
15815 if (old->curframe != cur->curframe)
15816 return false;
15817
1ffc85d9
EZ
15818 env->idmap_scratch.tmp_id_gen = env->id_gen;
15819 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
5dd9cdbc 15820
979d63d5
DB
15821 /* Verification state from speculative execution simulation
15822 * must never prune a non-speculative execution one.
15823 */
15824 if (old->speculative && !cur->speculative)
15825 return false;
15826
4ea2bb15
EZ
15827 if (old->active_lock.ptr != cur->active_lock.ptr)
15828 return false;
15829
15830 /* Old and cur active_lock's have to be either both present
15831 * or both absent.
15832 */
15833 if (!!old->active_lock.id != !!cur->active_lock.id)
15834 return false;
15835
15836 if (old->active_lock.id &&
1ffc85d9 15837 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
d83525ca
AS
15838 return false;
15839
9bb00b28 15840 if (old->active_rcu_lock != cur->active_rcu_lock)
d83525ca
AS
15841 return false;
15842
f4d7e40a
AS
15843 /* for states to be equal callsites have to be the same
15844 * and all frame states need to be equivalent
15845 */
15846 for (i = 0; i <= old->curframe; i++) {
15847 if (old->frame[i]->callsite != cur->frame[i]->callsite)
15848 return false;
c9e73e3d 15849 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
15850 return false;
15851 }
15852 return true;
15853}
15854
5327ed3d
JW
15855/* Return 0 if no propagation happened. Return negative error code if error
15856 * happened. Otherwise, return the propagated bit.
15857 */
55e7f3b5
JW
15858static int propagate_liveness_reg(struct bpf_verifier_env *env,
15859 struct bpf_reg_state *reg,
15860 struct bpf_reg_state *parent_reg)
15861{
5327ed3d
JW
15862 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15863 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
15864 int err;
15865
5327ed3d
JW
15866 /* When comes here, read flags of PARENT_REG or REG could be any of
15867 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15868 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15869 */
15870 if (parent_flag == REG_LIVE_READ64 ||
15871 /* Or if there is no read flag from REG. */
15872 !flag ||
15873 /* Or if the read flag from REG is the same as PARENT_REG. */
15874 parent_flag == flag)
55e7f3b5
JW
15875 return 0;
15876
5327ed3d 15877 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
15878 if (err)
15879 return err;
15880
5327ed3d 15881 return flag;
55e7f3b5
JW
15882}
15883
8e9cd9ce 15884/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
15885 * straight-line code between a state and its parent. When we arrive at an
15886 * equivalent state (jump target or such) we didn't arrive by the straight-line
15887 * code, so read marks in the state must propagate to the parent regardless
15888 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 15889 * in mark_reg_read() is for.
8e9cd9ce 15890 */
f4d7e40a
AS
15891static int propagate_liveness(struct bpf_verifier_env *env,
15892 const struct bpf_verifier_state *vstate,
15893 struct bpf_verifier_state *vparent)
dc503a8a 15894{
3f8cafa4 15895 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 15896 struct bpf_func_state *state, *parent;
3f8cafa4 15897 int i, frame, err = 0;
dc503a8a 15898
f4d7e40a
AS
15899 if (vparent->curframe != vstate->curframe) {
15900 WARN(1, "propagate_live: parent frame %d current frame %d\n",
15901 vparent->curframe, vstate->curframe);
15902 return -EFAULT;
15903 }
dc503a8a
EC
15904 /* Propagate read liveness of registers... */
15905 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 15906 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
15907 parent = vparent->frame[frame];
15908 state = vstate->frame[frame];
15909 parent_reg = parent->regs;
15910 state_reg = state->regs;
83d16312
JK
15911 /* We don't need to worry about FP liveness, it's read-only */
15912 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
15913 err = propagate_liveness_reg(env, &state_reg[i],
15914 &parent_reg[i]);
5327ed3d 15915 if (err < 0)
3f8cafa4 15916 return err;
5327ed3d
JW
15917 if (err == REG_LIVE_READ64)
15918 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 15919 }
f4d7e40a 15920
1b04aee7 15921 /* Propagate stack slots. */
f4d7e40a
AS
15922 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15923 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
15924 parent_reg = &parent->stack[i].spilled_ptr;
15925 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
15926 err = propagate_liveness_reg(env, state_reg,
15927 parent_reg);
5327ed3d 15928 if (err < 0)
3f8cafa4 15929 return err;
dc503a8a
EC
15930 }
15931 }
5327ed3d 15932 return 0;
dc503a8a
EC
15933}
15934
a3ce685d
AS
15935/* find precise scalars in the previous equivalent state and
15936 * propagate them into the current state
15937 */
15938static int propagate_precision(struct bpf_verifier_env *env,
15939 const struct bpf_verifier_state *old)
15940{
15941 struct bpf_reg_state *state_reg;
15942 struct bpf_func_state *state;
529409ea 15943 int i, err = 0, fr;
f655badf 15944 bool first;
a3ce685d 15945
529409ea
AN
15946 for (fr = old->curframe; fr >= 0; fr--) {
15947 state = old->frame[fr];
15948 state_reg = state->regs;
f655badf 15949 first = true;
529409ea
AN
15950 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15951 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15952 !state_reg->precise ||
15953 !(state_reg->live & REG_LIVE_READ))
529409ea 15954 continue;
f655badf
AN
15955 if (env->log.level & BPF_LOG_LEVEL2) {
15956 if (first)
15957 verbose(env, "frame %d: propagating r%d", fr, i);
15958 else
15959 verbose(env, ",r%d", i);
15960 }
15961 bt_set_frame_reg(&env->bt, fr, i);
15962 first = false;
529409ea 15963 }
a3ce685d 15964
529409ea
AN
15965 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15966 if (!is_spilled_reg(&state->stack[i]))
15967 continue;
15968 state_reg = &state->stack[i].spilled_ptr;
15969 if (state_reg->type != SCALAR_VALUE ||
52c2b005
AN
15970 !state_reg->precise ||
15971 !(state_reg->live & REG_LIVE_READ))
529409ea 15972 continue;
f655badf
AN
15973 if (env->log.level & BPF_LOG_LEVEL2) {
15974 if (first)
15975 verbose(env, "frame %d: propagating fp%d",
15976 fr, (-i - 1) * BPF_REG_SIZE);
15977 else
15978 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
15979 }
15980 bt_set_frame_slot(&env->bt, fr, i);
15981 first = false;
529409ea 15982 }
f655badf
AN
15983 if (!first)
15984 verbose(env, "\n");
a3ce685d 15985 }
f655badf
AN
15986
15987 err = mark_chain_precision_batch(env);
15988 if (err < 0)
15989 return err;
15990
a3ce685d
AS
15991 return 0;
15992}
15993
2589726d
AS
15994static bool states_maybe_looping(struct bpf_verifier_state *old,
15995 struct bpf_verifier_state *cur)
15996{
15997 struct bpf_func_state *fold, *fcur;
15998 int i, fr = cur->curframe;
15999
16000 if (old->curframe != fr)
16001 return false;
16002
16003 fold = old->frame[fr];
16004 fcur = cur->frame[fr];
16005 for (i = 0; i < MAX_BPF_REG; i++)
16006 if (memcmp(&fold->regs[i], &fcur->regs[i],
16007 offsetof(struct bpf_reg_state, parent)))
16008 return false;
16009 return true;
16010}
16011
06accc87
AN
16012static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16013{
16014 return env->insn_aux_data[insn_idx].is_iter_next;
16015}
16016
16017/* is_state_visited() handles iter_next() (see process_iter_next_call() for
16018 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16019 * states to match, which otherwise would look like an infinite loop. So while
16020 * iter_next() calls are taken care of, we still need to be careful and
16021 * prevent erroneous and too eager declaration of "ininite loop", when
16022 * iterators are involved.
16023 *
16024 * Here's a situation in pseudo-BPF assembly form:
16025 *
16026 * 0: again: ; set up iter_next() call args
16027 * 1: r1 = &it ; <CHECKPOINT HERE>
16028 * 2: call bpf_iter_num_next ; this is iter_next() call
16029 * 3: if r0 == 0 goto done
16030 * 4: ... something useful here ...
16031 * 5: goto again ; another iteration
16032 * 6: done:
16033 * 7: r1 = &it
16034 * 8: call bpf_iter_num_destroy ; clean up iter state
16035 * 9: exit
16036 *
16037 * This is a typical loop. Let's assume that we have a prune point at 1:,
16038 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16039 * again`, assuming other heuristics don't get in a way).
16040 *
16041 * When we first time come to 1:, let's say we have some state X. We proceed
16042 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16043 * Now we come back to validate that forked ACTIVE state. We proceed through
16044 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16045 * are converging. But the problem is that we don't know that yet, as this
16046 * convergence has to happen at iter_next() call site only. So if nothing is
16047 * done, at 1: verifier will use bounded loop logic and declare infinite
16048 * looping (and would be *technically* correct, if not for iterator's
16049 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16050 * don't want that. So what we do in process_iter_next_call() when we go on
16051 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16052 * a different iteration. So when we suspect an infinite loop, we additionally
16053 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16054 * pretend we are not looping and wait for next iter_next() call.
16055 *
16056 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16057 * loop, because that would actually mean infinite loop, as DRAINED state is
16058 * "sticky", and so we'll keep returning into the same instruction with the
16059 * same state (at least in one of possible code paths).
16060 *
16061 * This approach allows to keep infinite loop heuristic even in the face of
16062 * active iterator. E.g., C snippet below is and will be detected as
16063 * inifintely looping:
16064 *
16065 * struct bpf_iter_num it;
16066 * int *p, x;
16067 *
16068 * bpf_iter_num_new(&it, 0, 10);
16069 * while ((p = bpf_iter_num_next(&t))) {
16070 * x = p;
16071 * while (x--) {} // <<-- infinite loop here
16072 * }
16073 *
16074 */
16075static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16076{
16077 struct bpf_reg_state *slot, *cur_slot;
16078 struct bpf_func_state *state;
16079 int i, fr;
16080
16081 for (fr = old->curframe; fr >= 0; fr--) {
16082 state = old->frame[fr];
16083 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16084 if (state->stack[i].slot_type[0] != STACK_ITER)
16085 continue;
16086
16087 slot = &state->stack[i].spilled_ptr;
16088 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16089 continue;
16090
16091 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16092 if (cur_slot->iter.depth != slot->iter.depth)
16093 return true;
16094 }
16095 }
16096 return false;
16097}
2589726d 16098
58e2af8b 16099static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 16100{
58e2af8b 16101 struct bpf_verifier_state_list *new_sl;
9f4686c4 16102 struct bpf_verifier_state_list *sl, **pprev;
679c782d 16103 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 16104 int i, j, err, states_cnt = 0;
4b5ce570
AN
16105 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16106 bool add_new_state = force_new_state;
f1bca824 16107
2589726d
AS
16108 /* bpf progs typically have pruning point every 4 instructions
16109 * http://vger.kernel.org/bpfconf2019.html#session-1
16110 * Do not add new state for future pruning if the verifier hasn't seen
16111 * at least 2 jumps and at least 8 instructions.
16112 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16113 * In tests that amounts to up to 50% reduction into total verifier
16114 * memory consumption and 20% verifier time speedup.
16115 */
16116 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16117 env->insn_processed - env->prev_insn_processed >= 8)
16118 add_new_state = true;
16119
a8f500af
AS
16120 pprev = explored_state(env, insn_idx);
16121 sl = *pprev;
16122
9242b5f5
AS
16123 clean_live_states(env, insn_idx, cur);
16124
a8f500af 16125 while (sl) {
dc2a4ebc
AS
16126 states_cnt++;
16127 if (sl->state.insn_idx != insn_idx)
16128 goto next;
bfc6bb74 16129
2589726d 16130 if (sl->state.branches) {
bfc6bb74
AS
16131 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16132
16133 if (frame->in_async_callback_fn &&
16134 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16135 /* Different async_entry_cnt means that the verifier is
16136 * processing another entry into async callback.
16137 * Seeing the same state is not an indication of infinite
16138 * loop or infinite recursion.
16139 * But finding the same state doesn't mean that it's safe
16140 * to stop processing the current state. The previous state
16141 * hasn't yet reached bpf_exit, since state.branches > 0.
16142 * Checking in_async_callback_fn alone is not enough either.
16143 * Since the verifier still needs to catch infinite loops
16144 * inside async callbacks.
16145 */
06accc87
AN
16146 goto skip_inf_loop_check;
16147 }
16148 /* BPF open-coded iterators loop detection is special.
16149 * states_maybe_looping() logic is too simplistic in detecting
16150 * states that *might* be equivalent, because it doesn't know
16151 * about ID remapping, so don't even perform it.
16152 * See process_iter_next_call() and iter_active_depths_differ()
16153 * for overview of the logic. When current and one of parent
16154 * states are detected as equivalent, it's a good thing: we prove
16155 * convergence and can stop simulating further iterations.
16156 * It's safe to assume that iterator loop will finish, taking into
16157 * account iter_next() contract of eventually returning
16158 * sticky NULL result.
16159 */
16160 if (is_iter_next_insn(env, insn_idx)) {
16161 if (states_equal(env, &sl->state, cur)) {
16162 struct bpf_func_state *cur_frame;
16163 struct bpf_reg_state *iter_state, *iter_reg;
16164 int spi;
16165
16166 cur_frame = cur->frame[cur->curframe];
16167 /* btf_check_iter_kfuncs() enforces that
16168 * iter state pointer is always the first arg
16169 */
16170 iter_reg = &cur_frame->regs[BPF_REG_1];
16171 /* current state is valid due to states_equal(),
16172 * so we can assume valid iter and reg state,
16173 * no need for extra (re-)validations
16174 */
16175 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16176 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16177 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16178 goto hit;
16179 }
16180 goto skip_inf_loop_check;
16181 }
16182 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16183 if (states_maybe_looping(&sl->state, cur) &&
16184 states_equal(env, &sl->state, cur) &&
16185 !iter_active_depths_differ(&sl->state, cur)) {
2589726d
AS
16186 verbose_linfo(env, insn_idx, "; ");
16187 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16188 return -EINVAL;
16189 }
16190 /* if the verifier is processing a loop, avoid adding new state
16191 * too often, since different loop iterations have distinct
16192 * states and may not help future pruning.
16193 * This threshold shouldn't be too low to make sure that
16194 * a loop with large bound will be rejected quickly.
16195 * The most abusive loop will be:
16196 * r1 += 1
16197 * if r1 < 1000000 goto pc-2
16198 * 1M insn_procssed limit / 100 == 10k peak states.
16199 * This threshold shouldn't be too high either, since states
16200 * at the end of the loop are likely to be useful in pruning.
16201 */
06accc87 16202skip_inf_loop_check:
4b5ce570 16203 if (!force_new_state &&
98ddcf38 16204 env->jmps_processed - env->prev_jmps_processed < 20 &&
2589726d
AS
16205 env->insn_processed - env->prev_insn_processed < 100)
16206 add_new_state = false;
16207 goto miss;
16208 }
638f5b90 16209 if (states_equal(env, &sl->state, cur)) {
06accc87 16210hit:
9f4686c4 16211 sl->hit_cnt++;
f1bca824 16212 /* reached equivalent register/stack state,
dc503a8a
EC
16213 * prune the search.
16214 * Registers read by the continuation are read by us.
8e9cd9ce
EC
16215 * If we have any write marks in env->cur_state, they
16216 * will prevent corresponding reads in the continuation
16217 * from reaching our parent (an explored_state). Our
16218 * own state will get the read marks recorded, but
16219 * they'll be immediately forgotten as we're pruning
16220 * this state and will pop a new one.
f1bca824 16221 */
f4d7e40a 16222 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
16223
16224 /* if previous state reached the exit with precision and
16225 * current state is equivalent to it (except precsion marks)
16226 * the precision needs to be propagated back in
16227 * the current state.
16228 */
16229 err = err ? : push_jmp_history(env, cur);
16230 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
16231 if (err)
16232 return err;
f1bca824 16233 return 1;
dc503a8a 16234 }
2589726d
AS
16235miss:
16236 /* when new state is not going to be added do not increase miss count.
16237 * Otherwise several loop iterations will remove the state
16238 * recorded earlier. The goal of these heuristics is to have
16239 * states from some iterations of the loop (some in the beginning
16240 * and some at the end) to help pruning.
16241 */
16242 if (add_new_state)
16243 sl->miss_cnt++;
9f4686c4
AS
16244 /* heuristic to determine whether this state is beneficial
16245 * to keep checking from state equivalence point of view.
16246 * Higher numbers increase max_states_per_insn and verification time,
16247 * but do not meaningfully decrease insn_processed.
16248 */
16249 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16250 /* the state is unlikely to be useful. Remove it to
16251 * speed up verification
16252 */
16253 *pprev = sl->next;
16254 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
16255 u32 br = sl->state.branches;
16256
16257 WARN_ONCE(br,
16258 "BUG live_done but branches_to_explore %d\n",
16259 br);
9f4686c4
AS
16260 free_verifier_state(&sl->state, false);
16261 kfree(sl);
16262 env->peak_states--;
16263 } else {
16264 /* cannot free this state, since parentage chain may
16265 * walk it later. Add it for free_list instead to
16266 * be freed at the end of verification
16267 */
16268 sl->next = env->free_list;
16269 env->free_list = sl;
16270 }
16271 sl = *pprev;
16272 continue;
16273 }
dc2a4ebc 16274next:
9f4686c4
AS
16275 pprev = &sl->next;
16276 sl = *pprev;
f1bca824
AS
16277 }
16278
06ee7115
AS
16279 if (env->max_states_per_insn < states_cnt)
16280 env->max_states_per_insn = states_cnt;
16281
2c78ee89 16282 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
a095f421 16283 return 0;
ceefbc96 16284
2589726d 16285 if (!add_new_state)
a095f421 16286 return 0;
ceefbc96 16287
2589726d
AS
16288 /* There were no equivalent states, remember the current one.
16289 * Technically the current state is not proven to be safe yet,
f4d7e40a 16290 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 16291 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 16292 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
16293 * again on the way to bpf_exit.
16294 * When looping the sl->state.branches will be > 0 and this state
16295 * will not be considered for equivalence until branches == 0.
f1bca824 16296 */
638f5b90 16297 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
16298 if (!new_sl)
16299 return -ENOMEM;
06ee7115
AS
16300 env->total_states++;
16301 env->peak_states++;
2589726d
AS
16302 env->prev_jmps_processed = env->jmps_processed;
16303 env->prev_insn_processed = env->insn_processed;
f1bca824 16304
7a830b53
AN
16305 /* forget precise markings we inherited, see __mark_chain_precision */
16306 if (env->bpf_capable)
16307 mark_all_scalars_imprecise(env, cur);
16308
f1bca824 16309 /* add new state to the head of linked list */
679c782d
EC
16310 new = &new_sl->state;
16311 err = copy_verifier_state(new, cur);
1969db47 16312 if (err) {
679c782d 16313 free_verifier_state(new, false);
1969db47
AS
16314 kfree(new_sl);
16315 return err;
16316 }
dc2a4ebc 16317 new->insn_idx = insn_idx;
2589726d
AS
16318 WARN_ONCE(new->branches != 1,
16319 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 16320
2589726d 16321 cur->parent = new;
b5dc0163
AS
16322 cur->first_insn_idx = insn_idx;
16323 clear_jmp_history(cur);
5d839021
AS
16324 new_sl->next = *explored_state(env, insn_idx);
16325 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
16326 /* connect new state to parentage chain. Current frame needs all
16327 * registers connected. Only r6 - r9 of the callers are alive (pushed
16328 * to the stack implicitly by JITs) so in callers' frames connect just
16329 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16330 * the state of the call instruction (with WRITTEN set), and r0 comes
16331 * from callee with its full parentage chain, anyway.
16332 */
8e9cd9ce
EC
16333 /* clear write marks in current state: the writes we did are not writes
16334 * our child did, so they don't screen off its reads from us.
16335 * (There are no read marks in current state, because reads always mark
16336 * their parent and current state never has children yet. Only
16337 * explored_states can get read marks.)
16338 */
eea1c227
AS
16339 for (j = 0; j <= cur->curframe; j++) {
16340 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16341 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16342 for (i = 0; i < BPF_REG_FP; i++)
16343 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16344 }
f4d7e40a
AS
16345
16346 /* all stack frames are accessible from callee, clear them all */
16347 for (j = 0; j <= cur->curframe; j++) {
16348 struct bpf_func_state *frame = cur->frame[j];
679c782d 16349 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 16350
679c782d 16351 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 16352 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
16353 frame->stack[i].spilled_ptr.parent =
16354 &newframe->stack[i].spilled_ptr;
16355 }
f4d7e40a 16356 }
f1bca824
AS
16357 return 0;
16358}
16359
c64b7983
JS
16360/* Return true if it's OK to have the same insn return a different type. */
16361static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16362{
c25b2ae1 16363 switch (base_type(type)) {
c64b7983
JS
16364 case PTR_TO_CTX:
16365 case PTR_TO_SOCKET:
46f8bc92 16366 case PTR_TO_SOCK_COMMON:
655a51e5 16367 case PTR_TO_TCP_SOCK:
fada7fdc 16368 case PTR_TO_XDP_SOCK:
2a02759e 16369 case PTR_TO_BTF_ID:
c64b7983
JS
16370 return false;
16371 default:
16372 return true;
16373 }
16374}
16375
16376/* If an instruction was previously used with particular pointer types, then we
16377 * need to be careful to avoid cases such as the below, where it may be ok
16378 * for one branch accessing the pointer, but not ok for the other branch:
16379 *
16380 * R1 = sock_ptr
16381 * goto X;
16382 * ...
16383 * R1 = some_other_valid_ptr;
16384 * goto X;
16385 * ...
16386 * R2 = *(u32 *)(R1 + 0);
16387 */
16388static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16389{
16390 return src != prev && (!reg_type_mismatch_ok(src) ||
16391 !reg_type_mismatch_ok(prev));
16392}
16393
0d80a619
EZ
16394static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16395 bool allow_trust_missmatch)
16396{
16397 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16398
16399 if (*prev_type == NOT_INIT) {
16400 /* Saw a valid insn
16401 * dst_reg = *(u32 *)(src_reg + off)
16402 * save type to validate intersecting paths
16403 */
16404 *prev_type = type;
16405 } else if (reg_type_mismatch(type, *prev_type)) {
16406 /* Abuser program is trying to use the same insn
16407 * dst_reg = *(u32*) (src_reg + off)
16408 * with different pointer types:
16409 * src_reg == ctx in one branch and
16410 * src_reg == stack|map in some other branch.
16411 * Reject it.
16412 */
16413 if (allow_trust_missmatch &&
16414 base_type(type) == PTR_TO_BTF_ID &&
16415 base_type(*prev_type) == PTR_TO_BTF_ID) {
16416 /*
16417 * Have to support a use case when one path through
16418 * the program yields TRUSTED pointer while another
16419 * is UNTRUSTED. Fallback to UNTRUSTED to generate
1f9a1ea8 16420 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
0d80a619
EZ
16421 */
16422 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16423 } else {
16424 verbose(env, "same insn cannot be used with different pointers\n");
16425 return -EINVAL;
16426 }
16427 }
16428
16429 return 0;
16430}
16431
58e2af8b 16432static int do_check(struct bpf_verifier_env *env)
17a52670 16433{
6f8a57cc 16434 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 16435 struct bpf_verifier_state *state = env->cur_state;
17a52670 16436 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 16437 struct bpf_reg_state *regs;
06ee7115 16438 int insn_cnt = env->prog->len;
17a52670 16439 bool do_print_state = false;
b5dc0163 16440 int prev_insn_idx = -1;
17a52670 16441
17a52670
AS
16442 for (;;) {
16443 struct bpf_insn *insn;
16444 u8 class;
16445 int err;
16446
b5dc0163 16447 env->prev_insn_idx = prev_insn_idx;
c08435ec 16448 if (env->insn_idx >= insn_cnt) {
61bd5218 16449 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 16450 env->insn_idx, insn_cnt);
17a52670
AS
16451 return -EFAULT;
16452 }
16453
c08435ec 16454 insn = &insns[env->insn_idx];
17a52670
AS
16455 class = BPF_CLASS(insn->code);
16456
06ee7115 16457 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
16458 verbose(env,
16459 "BPF program is too large. Processed %d insn\n",
06ee7115 16460 env->insn_processed);
17a52670
AS
16461 return -E2BIG;
16462 }
16463
a095f421
AN
16464 state->last_insn_idx = env->prev_insn_idx;
16465
16466 if (is_prune_point(env, env->insn_idx)) {
16467 err = is_state_visited(env, env->insn_idx);
16468 if (err < 0)
16469 return err;
16470 if (err == 1) {
16471 /* found equivalent state, can prune the search */
16472 if (env->log.level & BPF_LOG_LEVEL) {
16473 if (do_print_state)
16474 verbose(env, "\nfrom %d to %d%s: safe\n",
16475 env->prev_insn_idx, env->insn_idx,
16476 env->cur_state->speculative ?
16477 " (speculative execution)" : "");
16478 else
16479 verbose(env, "%d: safe\n", env->insn_idx);
16480 }
16481 goto process_bpf_exit;
f1bca824 16482 }
a095f421
AN
16483 }
16484
16485 if (is_jmp_point(env, env->insn_idx)) {
16486 err = push_jmp_history(env, state);
16487 if (err)
16488 return err;
f1bca824
AS
16489 }
16490
c3494801
AS
16491 if (signal_pending(current))
16492 return -EAGAIN;
16493
3c2ce60b
DB
16494 if (need_resched())
16495 cond_resched();
16496
2e576648
CL
16497 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16498 verbose(env, "\nfrom %d to %d%s:",
16499 env->prev_insn_idx, env->insn_idx,
16500 env->cur_state->speculative ?
16501 " (speculative execution)" : "");
16502 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
16503 do_print_state = false;
16504 }
16505
06ee7115 16506 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 16507 const struct bpf_insn_cbs cbs = {
e6ac2450 16508 .cb_call = disasm_kfunc_name,
7105e828 16509 .cb_print = verbose,
abe08840 16510 .private_data = env,
7105e828
DB
16511 };
16512
2e576648
CL
16513 if (verifier_state_scratched(env))
16514 print_insn_state(env, state->frame[state->curframe]);
16515
c08435ec 16516 verbose_linfo(env, env->insn_idx, "; ");
12166409 16517 env->prev_log_pos = env->log.end_pos;
c08435ec 16518 verbose(env, "%d: ", env->insn_idx);
abe08840 16519 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12166409
AN
16520 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16521 env->prev_log_pos = env->log.end_pos;
17a52670
AS
16522 }
16523
9d03ebc7 16524 if (bpf_prog_is_offloaded(env->prog->aux)) {
c08435ec
DB
16525 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16526 env->prev_insn_idx);
cae1927c
JK
16527 if (err)
16528 return err;
16529 }
13a27dfc 16530
638f5b90 16531 regs = cur_regs(env);
fe9a5ca7 16532 sanitize_mark_insn_seen(env);
b5dc0163 16533 prev_insn_idx = env->insn_idx;
fd978bf7 16534
17a52670 16535 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 16536 err = check_alu_op(env, insn);
17a52670
AS
16537 if (err)
16538 return err;
16539
16540 } else if (class == BPF_LDX) {
0d80a619 16541 enum bpf_reg_type src_reg_type;
9bac3d6d
AS
16542
16543 /* check for reserved fields is already done */
16544
17a52670 16545 /* check src operand */
dc503a8a 16546 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
16547 if (err)
16548 return err;
16549
dc503a8a 16550 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
16551 if (err)
16552 return err;
16553
725f9dcd
AS
16554 src_reg_type = regs[insn->src_reg].type;
16555
17a52670
AS
16556 /* check that memory (src_reg + off) is readable,
16557 * the state of dst_reg will be updated by this func
16558 */
c08435ec
DB
16559 err = check_mem_access(env, env->insn_idx, insn->src_reg,
16560 insn->off, BPF_SIZE(insn->code),
1f9a1ea8
YS
16561 BPF_READ, insn->dst_reg, false,
16562 BPF_MODE(insn->code) == BPF_MEMSX);
17a52670
AS
16563 if (err)
16564 return err;
16565
0d80a619
EZ
16566 err = save_aux_ptr_type(env, src_reg_type, true);
16567 if (err)
16568 return err;
17a52670 16569 } else if (class == BPF_STX) {
0d80a619 16570 enum bpf_reg_type dst_reg_type;
d691f9e8 16571
91c960b0
BJ
16572 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16573 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
16574 if (err)
16575 return err;
c08435ec 16576 env->insn_idx++;
17a52670
AS
16577 continue;
16578 }
16579
5ca419f2
BJ
16580 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16581 verbose(env, "BPF_STX uses reserved fields\n");
16582 return -EINVAL;
16583 }
16584
17a52670 16585 /* check src1 operand */
dc503a8a 16586 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
16587 if (err)
16588 return err;
16589 /* check src2 operand */
dc503a8a 16590 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
16591 if (err)
16592 return err;
16593
d691f9e8
AS
16594 dst_reg_type = regs[insn->dst_reg].type;
16595
17a52670 16596 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
16597 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16598 insn->off, BPF_SIZE(insn->code),
1f9a1ea8 16599 BPF_WRITE, insn->src_reg, false, false);
17a52670
AS
16600 if (err)
16601 return err;
16602
0d80a619
EZ
16603 err = save_aux_ptr_type(env, dst_reg_type, false);
16604 if (err)
16605 return err;
17a52670 16606 } else if (class == BPF_ST) {
0d80a619
EZ
16607 enum bpf_reg_type dst_reg_type;
16608
17a52670
AS
16609 if (BPF_MODE(insn->code) != BPF_MEM ||
16610 insn->src_reg != BPF_REG_0) {
61bd5218 16611 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
16612 return -EINVAL;
16613 }
16614 /* check src operand */
dc503a8a 16615 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
16616 if (err)
16617 return err;
16618
0d80a619 16619 dst_reg_type = regs[insn->dst_reg].type;
f37a8cb8 16620
17a52670 16621 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
16622 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16623 insn->off, BPF_SIZE(insn->code),
1f9a1ea8 16624 BPF_WRITE, -1, false, false);
17a52670
AS
16625 if (err)
16626 return err;
16627
0d80a619
EZ
16628 err = save_aux_ptr_type(env, dst_reg_type, false);
16629 if (err)
16630 return err;
092ed096 16631 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
16632 u8 opcode = BPF_OP(insn->code);
16633
2589726d 16634 env->jmps_processed++;
17a52670
AS
16635 if (opcode == BPF_CALL) {
16636 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
16637 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16638 && insn->off != 0) ||
f4d7e40a 16639 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
16640 insn->src_reg != BPF_PSEUDO_CALL &&
16641 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
16642 insn->dst_reg != BPF_REG_0 ||
16643 class == BPF_JMP32) {
61bd5218 16644 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
16645 return -EINVAL;
16646 }
16647
8cab76ec
KKD
16648 if (env->cur_state->active_lock.ptr) {
16649 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16650 (insn->src_reg == BPF_PSEUDO_CALL) ||
16651 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
cd6791b4 16652 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
8cab76ec
KKD
16653 verbose(env, "function calls are not allowed while holding a lock\n");
16654 return -EINVAL;
16655 }
d83525ca 16656 }
f4d7e40a 16657 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 16658 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 16659 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 16660 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 16661 else
69c087ba 16662 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
16663 if (err)
16664 return err;
553a64a8
AN
16665
16666 mark_reg_scratched(env, BPF_REG_0);
17a52670
AS
16667 } else if (opcode == BPF_JA) {
16668 if (BPF_SRC(insn->code) != BPF_K ||
17a52670 16669 insn->src_reg != BPF_REG_0 ||
092ed096 16670 insn->dst_reg != BPF_REG_0 ||
4cd58e9a
YS
16671 (class == BPF_JMP && insn->imm != 0) ||
16672 (class == BPF_JMP32 && insn->off != 0)) {
61bd5218 16673 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
16674 return -EINVAL;
16675 }
16676
4cd58e9a
YS
16677 if (class == BPF_JMP)
16678 env->insn_idx += insn->off + 1;
16679 else
16680 env->insn_idx += insn->imm + 1;
17a52670
AS
16681 continue;
16682
16683 } else if (opcode == BPF_EXIT) {
16684 if (BPF_SRC(insn->code) != BPF_K ||
16685 insn->imm != 0 ||
16686 insn->src_reg != BPF_REG_0 ||
092ed096
JW
16687 insn->dst_reg != BPF_REG_0 ||
16688 class == BPF_JMP32) {
61bd5218 16689 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
16690 return -EINVAL;
16691 }
16692
5d92ddc3
DM
16693 if (env->cur_state->active_lock.ptr &&
16694 !in_rbtree_lock_required_cb(env)) {
d83525ca
AS
16695 verbose(env, "bpf_spin_unlock is missing\n");
16696 return -EINVAL;
16697 }
16698
0816b8c6
DM
16699 if (env->cur_state->active_rcu_lock &&
16700 !in_rbtree_lock_required_cb(env)) {
9bb00b28
YS
16701 verbose(env, "bpf_rcu_read_unlock is missing\n");
16702 return -EINVAL;
16703 }
16704
9d9d00ac
KKD
16705 /* We must do check_reference_leak here before
16706 * prepare_func_exit to handle the case when
16707 * state->curframe > 0, it may be a callback
16708 * function, for which reference_state must
16709 * match caller reference state when it exits.
16710 */
16711 err = check_reference_leak(env);
16712 if (err)
16713 return err;
16714
f4d7e40a
AS
16715 if (state->curframe) {
16716 /* exit from nested function */
c08435ec 16717 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
16718 if (err)
16719 return err;
16720 do_print_state = true;
16721 continue;
16722 }
16723
390ee7e2
AS
16724 err = check_return_code(env);
16725 if (err)
16726 return err;
f1bca824 16727process_bpf_exit:
0f55f9ed 16728 mark_verifier_state_scratched(env);
2589726d 16729 update_branch_counts(env, env->cur_state);
b5dc0163 16730 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 16731 &env->insn_idx, pop_log);
638f5b90
AS
16732 if (err < 0) {
16733 if (err != -ENOENT)
16734 return err;
17a52670
AS
16735 break;
16736 } else {
16737 do_print_state = true;
16738 continue;
16739 }
16740 } else {
c08435ec 16741 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
16742 if (err)
16743 return err;
16744 }
16745 } else if (class == BPF_LD) {
16746 u8 mode = BPF_MODE(insn->code);
16747
16748 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
16749 err = check_ld_abs(env, insn);
16750 if (err)
16751 return err;
16752
17a52670
AS
16753 } else if (mode == BPF_IMM) {
16754 err = check_ld_imm(env, insn);
16755 if (err)
16756 return err;
16757
c08435ec 16758 env->insn_idx++;
fe9a5ca7 16759 sanitize_mark_insn_seen(env);
17a52670 16760 } else {
61bd5218 16761 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
16762 return -EINVAL;
16763 }
16764 } else {
61bd5218 16765 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
16766 return -EINVAL;
16767 }
16768
c08435ec 16769 env->insn_idx++;
17a52670
AS
16770 }
16771
16772 return 0;
16773}
16774
541c3bad
AN
16775static int find_btf_percpu_datasec(struct btf *btf)
16776{
16777 const struct btf_type *t;
16778 const char *tname;
16779 int i, n;
16780
16781 /*
16782 * Both vmlinux and module each have their own ".data..percpu"
16783 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16784 * types to look at only module's own BTF types.
16785 */
16786 n = btf_nr_types(btf);
16787 if (btf_is_module(btf))
16788 i = btf_nr_types(btf_vmlinux);
16789 else
16790 i = 1;
16791
16792 for(; i < n; i++) {
16793 t = btf_type_by_id(btf, i);
16794 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16795 continue;
16796
16797 tname = btf_name_by_offset(btf, t->name_off);
16798 if (!strcmp(tname, ".data..percpu"))
16799 return i;
16800 }
16801
16802 return -ENOENT;
16803}
16804
4976b718
HL
16805/* replace pseudo btf_id with kernel symbol address */
16806static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16807 struct bpf_insn *insn,
16808 struct bpf_insn_aux_data *aux)
16809{
eaa6bcb7
HL
16810 const struct btf_var_secinfo *vsi;
16811 const struct btf_type *datasec;
541c3bad 16812 struct btf_mod_pair *btf_mod;
4976b718
HL
16813 const struct btf_type *t;
16814 const char *sym_name;
eaa6bcb7 16815 bool percpu = false;
f16e6313 16816 u32 type, id = insn->imm;
541c3bad 16817 struct btf *btf;
f16e6313 16818 s32 datasec_id;
4976b718 16819 u64 addr;
541c3bad 16820 int i, btf_fd, err;
4976b718 16821
541c3bad
AN
16822 btf_fd = insn[1].imm;
16823 if (btf_fd) {
16824 btf = btf_get_by_fd(btf_fd);
16825 if (IS_ERR(btf)) {
16826 verbose(env, "invalid module BTF object FD specified.\n");
16827 return -EINVAL;
16828 }
16829 } else {
16830 if (!btf_vmlinux) {
16831 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16832 return -EINVAL;
16833 }
16834 btf = btf_vmlinux;
16835 btf_get(btf);
4976b718
HL
16836 }
16837
541c3bad 16838 t = btf_type_by_id(btf, id);
4976b718
HL
16839 if (!t) {
16840 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
16841 err = -ENOENT;
16842 goto err_put;
4976b718
HL
16843 }
16844
58aa2afb
AS
16845 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16846 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
541c3bad
AN
16847 err = -EINVAL;
16848 goto err_put;
4976b718
HL
16849 }
16850
541c3bad 16851 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
16852 addr = kallsyms_lookup_name(sym_name);
16853 if (!addr) {
16854 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16855 sym_name);
541c3bad
AN
16856 err = -ENOENT;
16857 goto err_put;
4976b718 16858 }
58aa2afb
AS
16859 insn[0].imm = (u32)addr;
16860 insn[1].imm = addr >> 32;
16861
16862 if (btf_type_is_func(t)) {
16863 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16864 aux->btf_var.mem_size = 0;
16865 goto check_btf;
16866 }
4976b718 16867
541c3bad 16868 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 16869 if (datasec_id > 0) {
541c3bad 16870 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
16871 for_each_vsi(i, datasec, vsi) {
16872 if (vsi->type == id) {
16873 percpu = true;
16874 break;
16875 }
16876 }
16877 }
16878
4976b718 16879 type = t->type;
541c3bad 16880 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 16881 if (percpu) {
5844101a 16882 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 16883 aux->btf_var.btf = btf;
eaa6bcb7
HL
16884 aux->btf_var.btf_id = type;
16885 } else if (!btf_type_is_struct(t)) {
4976b718
HL
16886 const struct btf_type *ret;
16887 const char *tname;
16888 u32 tsize;
16889
16890 /* resolve the type size of ksym. */
541c3bad 16891 ret = btf_resolve_size(btf, t, &tsize);
4976b718 16892 if (IS_ERR(ret)) {
541c3bad 16893 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
16894 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16895 tname, PTR_ERR(ret));
541c3bad
AN
16896 err = -EINVAL;
16897 goto err_put;
4976b718 16898 }
34d3a78c 16899 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
16900 aux->btf_var.mem_size = tsize;
16901 } else {
16902 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 16903 aux->btf_var.btf = btf;
4976b718
HL
16904 aux->btf_var.btf_id = type;
16905 }
58aa2afb 16906check_btf:
541c3bad
AN
16907 /* check whether we recorded this BTF (and maybe module) already */
16908 for (i = 0; i < env->used_btf_cnt; i++) {
16909 if (env->used_btfs[i].btf == btf) {
16910 btf_put(btf);
16911 return 0;
16912 }
16913 }
16914
16915 if (env->used_btf_cnt >= MAX_USED_BTFS) {
16916 err = -E2BIG;
16917 goto err_put;
16918 }
16919
16920 btf_mod = &env->used_btfs[env->used_btf_cnt];
16921 btf_mod->btf = btf;
16922 btf_mod->module = NULL;
16923
16924 /* if we reference variables from kernel module, bump its refcount */
16925 if (btf_is_module(btf)) {
16926 btf_mod->module = btf_try_get_module(btf);
16927 if (!btf_mod->module) {
16928 err = -ENXIO;
16929 goto err_put;
16930 }
16931 }
16932
16933 env->used_btf_cnt++;
16934
4976b718 16935 return 0;
541c3bad
AN
16936err_put:
16937 btf_put(btf);
16938 return err;
4976b718
HL
16939}
16940
d83525ca
AS
16941static bool is_tracing_prog_type(enum bpf_prog_type type)
16942{
16943 switch (type) {
16944 case BPF_PROG_TYPE_KPROBE:
16945 case BPF_PROG_TYPE_TRACEPOINT:
16946 case BPF_PROG_TYPE_PERF_EVENT:
16947 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 16948 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
16949 return true;
16950 default:
16951 return false;
16952 }
16953}
16954
61bd5218
JK
16955static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16956 struct bpf_map *map,
fdc15d38
AS
16957 struct bpf_prog *prog)
16958
16959{
7e40781c 16960 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 16961
9c395c1b
DM
16962 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16963 btf_record_has_field(map->record, BPF_RB_ROOT)) {
f0c5941f 16964 if (is_tracing_prog_type(prog_type)) {
9c395c1b 16965 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
f0c5941f
KKD
16966 return -EINVAL;
16967 }
16968 }
16969
db559117 16970 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
16971 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16972 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16973 return -EINVAL;
16974 }
16975
16976 if (is_tracing_prog_type(prog_type)) {
16977 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16978 return -EINVAL;
16979 }
d83525ca
AS
16980 }
16981
db559117 16982 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
16983 if (is_tracing_prog_type(prog_type)) {
16984 verbose(env, "tracing progs cannot use bpf_timer yet\n");
16985 return -EINVAL;
16986 }
16987 }
16988
9d03ebc7 16989 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
09728266 16990 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
16991 verbose(env, "offload device mismatch between prog and map\n");
16992 return -EINVAL;
16993 }
16994
85d33df3
MKL
16995 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16996 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16997 return -EINVAL;
16998 }
16999
1e6c62a8
AS
17000 if (prog->aux->sleepable)
17001 switch (map->map_type) {
17002 case BPF_MAP_TYPE_HASH:
17003 case BPF_MAP_TYPE_LRU_HASH:
17004 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
17005 case BPF_MAP_TYPE_PERCPU_HASH:
17006 case BPF_MAP_TYPE_PERCPU_ARRAY:
17007 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17008 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17009 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 17010 case BPF_MAP_TYPE_RINGBUF:
583c1f42 17011 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
17012 case BPF_MAP_TYPE_INODE_STORAGE:
17013 case BPF_MAP_TYPE_SK_STORAGE:
17014 case BPF_MAP_TYPE_TASK_STORAGE:
2c40d97d 17015 case BPF_MAP_TYPE_CGRP_STORAGE:
ba90c2cc 17016 break;
1e6c62a8
AS
17017 default:
17018 verbose(env,
2c40d97d 17019 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
1e6c62a8
AS
17020 return -EINVAL;
17021 }
17022
fdc15d38
AS
17023 return 0;
17024}
17025
b741f163
RG
17026static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17027{
17028 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17029 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17030}
17031
4976b718
HL
17032/* find and rewrite pseudo imm in ld_imm64 instructions:
17033 *
17034 * 1. if it accesses map FD, replace it with actual map pointer.
17035 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17036 *
17037 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 17038 */
4976b718 17039static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
17040{
17041 struct bpf_insn *insn = env->prog->insnsi;
17042 int insn_cnt = env->prog->len;
fdc15d38 17043 int i, j, err;
0246e64d 17044
f1f7714e 17045 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
17046 if (err)
17047 return err;
17048
0246e64d 17049 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 17050 if (BPF_CLASS(insn->code) == BPF_LDX &&
1f9a1ea8
YS
17051 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17052 insn->imm != 0)) {
61bd5218 17053 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
17054 return -EINVAL;
17055 }
17056
0246e64d 17057 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 17058 struct bpf_insn_aux_data *aux;
0246e64d
AS
17059 struct bpf_map *map;
17060 struct fd f;
d8eca5bb 17061 u64 addr;
387544bf 17062 u32 fd;
0246e64d
AS
17063
17064 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17065 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17066 insn[1].off != 0) {
61bd5218 17067 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
17068 return -EINVAL;
17069 }
17070
d8eca5bb 17071 if (insn[0].src_reg == 0)
0246e64d
AS
17072 /* valid generic load 64-bit imm */
17073 goto next_insn;
17074
4976b718
HL
17075 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17076 aux = &env->insn_aux_data[i];
17077 err = check_pseudo_btf_id(env, insn, aux);
17078 if (err)
17079 return err;
17080 goto next_insn;
17081 }
17082
69c087ba
YS
17083 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17084 aux = &env->insn_aux_data[i];
17085 aux->ptr_type = PTR_TO_FUNC;
17086 goto next_insn;
17087 }
17088
d8eca5bb
DB
17089 /* In final convert_pseudo_ld_imm64() step, this is
17090 * converted into regular 64-bit imm load insn.
17091 */
387544bf
AS
17092 switch (insn[0].src_reg) {
17093 case BPF_PSEUDO_MAP_VALUE:
17094 case BPF_PSEUDO_MAP_IDX_VALUE:
17095 break;
17096 case BPF_PSEUDO_MAP_FD:
17097 case BPF_PSEUDO_MAP_IDX:
17098 if (insn[1].imm == 0)
17099 break;
17100 fallthrough;
17101 default:
17102 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
17103 return -EINVAL;
17104 }
17105
387544bf
AS
17106 switch (insn[0].src_reg) {
17107 case BPF_PSEUDO_MAP_IDX_VALUE:
17108 case BPF_PSEUDO_MAP_IDX:
17109 if (bpfptr_is_null(env->fd_array)) {
17110 verbose(env, "fd_idx without fd_array is invalid\n");
17111 return -EPROTO;
17112 }
17113 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17114 insn[0].imm * sizeof(fd),
17115 sizeof(fd)))
17116 return -EFAULT;
17117 break;
17118 default:
17119 fd = insn[0].imm;
17120 break;
17121 }
17122
17123 f = fdget(fd);
c2101297 17124 map = __bpf_map_get(f);
0246e64d 17125 if (IS_ERR(map)) {
61bd5218 17126 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 17127 insn[0].imm);
0246e64d
AS
17128 return PTR_ERR(map);
17129 }
17130
61bd5218 17131 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
17132 if (err) {
17133 fdput(f);
17134 return err;
17135 }
17136
d8eca5bb 17137 aux = &env->insn_aux_data[i];
387544bf
AS
17138 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17139 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
17140 addr = (unsigned long)map;
17141 } else {
17142 u32 off = insn[1].imm;
17143
17144 if (off >= BPF_MAX_VAR_OFF) {
17145 verbose(env, "direct value offset of %u is not allowed\n", off);
17146 fdput(f);
17147 return -EINVAL;
17148 }
17149
17150 if (!map->ops->map_direct_value_addr) {
17151 verbose(env, "no direct value access support for this map type\n");
17152 fdput(f);
17153 return -EINVAL;
17154 }
17155
17156 err = map->ops->map_direct_value_addr(map, &addr, off);
17157 if (err) {
17158 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17159 map->value_size, off);
17160 fdput(f);
17161 return err;
17162 }
17163
17164 aux->map_off = off;
17165 addr += off;
17166 }
17167
17168 insn[0].imm = (u32)addr;
17169 insn[1].imm = addr >> 32;
0246e64d
AS
17170
17171 /* check whether we recorded this map already */
d8eca5bb 17172 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 17173 if (env->used_maps[j] == map) {
d8eca5bb 17174 aux->map_index = j;
0246e64d
AS
17175 fdput(f);
17176 goto next_insn;
17177 }
d8eca5bb 17178 }
0246e64d
AS
17179
17180 if (env->used_map_cnt >= MAX_USED_MAPS) {
17181 fdput(f);
17182 return -E2BIG;
17183 }
17184
0246e64d
AS
17185 /* hold the map. If the program is rejected by verifier,
17186 * the map will be released by release_maps() or it
17187 * will be used by the valid program until it's unloaded
ab7f5bf0 17188 * and all maps are released in free_used_maps()
0246e64d 17189 */
1e0bd5a0 17190 bpf_map_inc(map);
d8eca5bb
DB
17191
17192 aux->map_index = env->used_map_cnt;
92117d84
AS
17193 env->used_maps[env->used_map_cnt++] = map;
17194
b741f163 17195 if (bpf_map_is_cgroup_storage(map) &&
e4730423 17196 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 17197 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
17198 fdput(f);
17199 return -EBUSY;
17200 }
17201
0246e64d
AS
17202 fdput(f);
17203next_insn:
17204 insn++;
17205 i++;
5e581dad
DB
17206 continue;
17207 }
17208
17209 /* Basic sanity check before we invest more work here. */
17210 if (!bpf_opcode_in_insntable(insn->code)) {
17211 verbose(env, "unknown opcode %02x\n", insn->code);
17212 return -EINVAL;
0246e64d
AS
17213 }
17214 }
17215
17216 /* now all pseudo BPF_LD_IMM64 instructions load valid
17217 * 'struct bpf_map *' into a register instead of user map_fd.
17218 * These pointers will be used later by verifier to validate map access.
17219 */
17220 return 0;
17221}
17222
17223/* drop refcnt of maps used by the rejected program */
58e2af8b 17224static void release_maps(struct bpf_verifier_env *env)
0246e64d 17225{
a2ea0746
DB
17226 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17227 env->used_map_cnt);
0246e64d
AS
17228}
17229
541c3bad
AN
17230/* drop refcnt of maps used by the rejected program */
17231static void release_btfs(struct bpf_verifier_env *env)
17232{
17233 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17234 env->used_btf_cnt);
17235}
17236
0246e64d 17237/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 17238static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
17239{
17240 struct bpf_insn *insn = env->prog->insnsi;
17241 int insn_cnt = env->prog->len;
17242 int i;
17243
69c087ba
YS
17244 for (i = 0; i < insn_cnt; i++, insn++) {
17245 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17246 continue;
17247 if (insn->src_reg == BPF_PSEUDO_FUNC)
17248 continue;
17249 insn->src_reg = 0;
17250 }
0246e64d
AS
17251}
17252
8041902d
AS
17253/* single env->prog->insni[off] instruction was replaced with the range
17254 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17255 * [0, off) and [off, end) to new locations, so the patched range stays zero
17256 */
75f0fc7b
HF
17257static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17258 struct bpf_insn_aux_data *new_data,
17259 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 17260{
75f0fc7b 17261 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 17262 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 17263 u32 old_seen = old_data[off].seen;
b325fbca 17264 u32 prog_len;
c131187d 17265 int i;
8041902d 17266
b325fbca
JW
17267 /* aux info at OFF always needs adjustment, no matter fast path
17268 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17269 * original insn at old prog.
17270 */
17271 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17272
8041902d 17273 if (cnt == 1)
75f0fc7b 17274 return;
b325fbca 17275 prog_len = new_prog->len;
75f0fc7b 17276
8041902d
AS
17277 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17278 memcpy(new_data + off + cnt - 1, old_data + off,
17279 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 17280 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
17281 /* Expand insni[off]'s seen count to the patched range. */
17282 new_data[i].seen = old_seen;
b325fbca
JW
17283 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17284 }
8041902d
AS
17285 env->insn_aux_data = new_data;
17286 vfree(old_data);
8041902d
AS
17287}
17288
cc8b0b92
AS
17289static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17290{
17291 int i;
17292
17293 if (len == 1)
17294 return;
4cb3d99c
JW
17295 /* NOTE: fake 'exit' subprog should be updated as well. */
17296 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 17297 if (env->subprog_info[i].start <= off)
cc8b0b92 17298 continue;
9c8105bd 17299 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
17300 }
17301}
17302
7506d211 17303static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
17304{
17305 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17306 int i, sz = prog->aux->size_poke_tab;
17307 struct bpf_jit_poke_descriptor *desc;
17308
17309 for (i = 0; i < sz; i++) {
17310 desc = &tab[i];
7506d211
JF
17311 if (desc->insn_idx <= off)
17312 continue;
a748c697
MF
17313 desc->insn_idx += len - 1;
17314 }
17315}
17316
8041902d
AS
17317static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17318 const struct bpf_insn *patch, u32 len)
17319{
17320 struct bpf_prog *new_prog;
75f0fc7b
HF
17321 struct bpf_insn_aux_data *new_data = NULL;
17322
17323 if (len > 1) {
17324 new_data = vzalloc(array_size(env->prog->len + len - 1,
17325 sizeof(struct bpf_insn_aux_data)));
17326 if (!new_data)
17327 return NULL;
17328 }
8041902d
AS
17329
17330 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
17331 if (IS_ERR(new_prog)) {
17332 if (PTR_ERR(new_prog) == -ERANGE)
17333 verbose(env,
17334 "insn %d cannot be patched due to 16-bit range\n",
17335 env->insn_aux_data[off].orig_idx);
75f0fc7b 17336 vfree(new_data);
8041902d 17337 return NULL;
4f73379e 17338 }
75f0fc7b 17339 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 17340 adjust_subprog_starts(env, off, len);
7506d211 17341 adjust_poke_descs(new_prog, off, len);
8041902d
AS
17342 return new_prog;
17343}
17344
52875a04
JK
17345static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17346 u32 off, u32 cnt)
17347{
17348 int i, j;
17349
17350 /* find first prog starting at or after off (first to remove) */
17351 for (i = 0; i < env->subprog_cnt; i++)
17352 if (env->subprog_info[i].start >= off)
17353 break;
17354 /* find first prog starting at or after off + cnt (first to stay) */
17355 for (j = i; j < env->subprog_cnt; j++)
17356 if (env->subprog_info[j].start >= off + cnt)
17357 break;
17358 /* if j doesn't start exactly at off + cnt, we are just removing
17359 * the front of previous prog
17360 */
17361 if (env->subprog_info[j].start != off + cnt)
17362 j--;
17363
17364 if (j > i) {
17365 struct bpf_prog_aux *aux = env->prog->aux;
17366 int move;
17367
17368 /* move fake 'exit' subprog as well */
17369 move = env->subprog_cnt + 1 - j;
17370
17371 memmove(env->subprog_info + i,
17372 env->subprog_info + j,
17373 sizeof(*env->subprog_info) * move);
17374 env->subprog_cnt -= j - i;
17375
17376 /* remove func_info */
17377 if (aux->func_info) {
17378 move = aux->func_info_cnt - j;
17379
17380 memmove(aux->func_info + i,
17381 aux->func_info + j,
17382 sizeof(*aux->func_info) * move);
17383 aux->func_info_cnt -= j - i;
17384 /* func_info->insn_off is set after all code rewrites,
17385 * in adjust_btf_func() - no need to adjust
17386 */
17387 }
17388 } else {
17389 /* convert i from "first prog to remove" to "first to adjust" */
17390 if (env->subprog_info[i].start == off)
17391 i++;
17392 }
17393
17394 /* update fake 'exit' subprog as well */
17395 for (; i <= env->subprog_cnt; i++)
17396 env->subprog_info[i].start -= cnt;
17397
17398 return 0;
17399}
17400
17401static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17402 u32 cnt)
17403{
17404 struct bpf_prog *prog = env->prog;
17405 u32 i, l_off, l_cnt, nr_linfo;
17406 struct bpf_line_info *linfo;
17407
17408 nr_linfo = prog->aux->nr_linfo;
17409 if (!nr_linfo)
17410 return 0;
17411
17412 linfo = prog->aux->linfo;
17413
17414 /* find first line info to remove, count lines to be removed */
17415 for (i = 0; i < nr_linfo; i++)
17416 if (linfo[i].insn_off >= off)
17417 break;
17418
17419 l_off = i;
17420 l_cnt = 0;
17421 for (; i < nr_linfo; i++)
17422 if (linfo[i].insn_off < off + cnt)
17423 l_cnt++;
17424 else
17425 break;
17426
17427 /* First live insn doesn't match first live linfo, it needs to "inherit"
17428 * last removed linfo. prog is already modified, so prog->len == off
17429 * means no live instructions after (tail of the program was removed).
17430 */
17431 if (prog->len != off && l_cnt &&
17432 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17433 l_cnt--;
17434 linfo[--i].insn_off = off + cnt;
17435 }
17436
17437 /* remove the line info which refer to the removed instructions */
17438 if (l_cnt) {
17439 memmove(linfo + l_off, linfo + i,
17440 sizeof(*linfo) * (nr_linfo - i));
17441
17442 prog->aux->nr_linfo -= l_cnt;
17443 nr_linfo = prog->aux->nr_linfo;
17444 }
17445
17446 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
17447 for (i = l_off; i < nr_linfo; i++)
17448 linfo[i].insn_off -= cnt;
17449
17450 /* fix up all subprogs (incl. 'exit') which start >= off */
17451 for (i = 0; i <= env->subprog_cnt; i++)
17452 if (env->subprog_info[i].linfo_idx > l_off) {
17453 /* program may have started in the removed region but
17454 * may not be fully removed
17455 */
17456 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17457 env->subprog_info[i].linfo_idx -= l_cnt;
17458 else
17459 env->subprog_info[i].linfo_idx = l_off;
17460 }
17461
17462 return 0;
17463}
17464
17465static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17466{
17467 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17468 unsigned int orig_prog_len = env->prog->len;
17469 int err;
17470
9d03ebc7 17471 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
17472 bpf_prog_offload_remove_insns(env, off, cnt);
17473
52875a04
JK
17474 err = bpf_remove_insns(env->prog, off, cnt);
17475 if (err)
17476 return err;
17477
17478 err = adjust_subprog_starts_after_remove(env, off, cnt);
17479 if (err)
17480 return err;
17481
17482 err = bpf_adj_linfo_after_remove(env, off, cnt);
17483 if (err)
17484 return err;
17485
17486 memmove(aux_data + off, aux_data + off + cnt,
17487 sizeof(*aux_data) * (orig_prog_len - off - cnt));
17488
17489 return 0;
17490}
17491
2a5418a1
DB
17492/* The verifier does more data flow analysis than llvm and will not
17493 * explore branches that are dead at run time. Malicious programs can
17494 * have dead code too. Therefore replace all dead at-run-time code
17495 * with 'ja -1'.
17496 *
17497 * Just nops are not optimal, e.g. if they would sit at the end of the
17498 * program and through another bug we would manage to jump there, then
17499 * we'd execute beyond program memory otherwise. Returning exception
17500 * code also wouldn't work since we can have subprogs where the dead
17501 * code could be located.
c131187d
AS
17502 */
17503static void sanitize_dead_code(struct bpf_verifier_env *env)
17504{
17505 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 17506 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
17507 struct bpf_insn *insn = env->prog->insnsi;
17508 const int insn_cnt = env->prog->len;
17509 int i;
17510
17511 for (i = 0; i < insn_cnt; i++) {
17512 if (aux_data[i].seen)
17513 continue;
2a5418a1 17514 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 17515 aux_data[i].zext_dst = false;
c131187d
AS
17516 }
17517}
17518
e2ae4ca2
JK
17519static bool insn_is_cond_jump(u8 code)
17520{
17521 u8 op;
17522
4cd58e9a 17523 op = BPF_OP(code);
092ed096 17524 if (BPF_CLASS(code) == BPF_JMP32)
4cd58e9a 17525 return op != BPF_JA;
092ed096 17526
e2ae4ca2
JK
17527 if (BPF_CLASS(code) != BPF_JMP)
17528 return false;
17529
e2ae4ca2
JK
17530 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17531}
17532
17533static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17534{
17535 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17536 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17537 struct bpf_insn *insn = env->prog->insnsi;
17538 const int insn_cnt = env->prog->len;
17539 int i;
17540
17541 for (i = 0; i < insn_cnt; i++, insn++) {
17542 if (!insn_is_cond_jump(insn->code))
17543 continue;
17544
17545 if (!aux_data[i + 1].seen)
17546 ja.off = insn->off;
17547 else if (!aux_data[i + 1 + insn->off].seen)
17548 ja.off = 0;
17549 else
17550 continue;
17551
9d03ebc7 17552 if (bpf_prog_is_offloaded(env->prog->aux))
08ca90af
JK
17553 bpf_prog_offload_replace_insn(env, i, &ja);
17554
e2ae4ca2
JK
17555 memcpy(insn, &ja, sizeof(ja));
17556 }
17557}
17558
52875a04
JK
17559static int opt_remove_dead_code(struct bpf_verifier_env *env)
17560{
17561 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17562 int insn_cnt = env->prog->len;
17563 int i, err;
17564
17565 for (i = 0; i < insn_cnt; i++) {
17566 int j;
17567
17568 j = 0;
17569 while (i + j < insn_cnt && !aux_data[i + j].seen)
17570 j++;
17571 if (!j)
17572 continue;
17573
17574 err = verifier_remove_insns(env, i, j);
17575 if (err)
17576 return err;
17577 insn_cnt = env->prog->len;
17578 }
17579
17580 return 0;
17581}
17582
a1b14abc
JK
17583static int opt_remove_nops(struct bpf_verifier_env *env)
17584{
17585 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17586 struct bpf_insn *insn = env->prog->insnsi;
17587 int insn_cnt = env->prog->len;
17588 int i, err;
17589
17590 for (i = 0; i < insn_cnt; i++) {
17591 if (memcmp(&insn[i], &ja, sizeof(ja)))
17592 continue;
17593
17594 err = verifier_remove_insns(env, i, 1);
17595 if (err)
17596 return err;
17597 insn_cnt--;
17598 i--;
17599 }
17600
17601 return 0;
17602}
17603
d6c2308c
JW
17604static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17605 const union bpf_attr *attr)
a4b1d3c1 17606{
d6c2308c 17607 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 17608 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 17609 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 17610 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 17611 struct bpf_prog *new_prog;
d6c2308c 17612 bool rnd_hi32;
a4b1d3c1 17613
d6c2308c 17614 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 17615 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
17616 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17617 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17618 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
17619 for (i = 0; i < len; i++) {
17620 int adj_idx = i + delta;
17621 struct bpf_insn insn;
83a28819 17622 int load_reg;
a4b1d3c1 17623
d6c2308c 17624 insn = insns[adj_idx];
83a28819 17625 load_reg = insn_def_regno(&insn);
d6c2308c
JW
17626 if (!aux[adj_idx].zext_dst) {
17627 u8 code, class;
17628 u32 imm_rnd;
17629
17630 if (!rnd_hi32)
17631 continue;
17632
17633 code = insn.code;
17634 class = BPF_CLASS(code);
83a28819 17635 if (load_reg == -1)
d6c2308c
JW
17636 continue;
17637
17638 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
17639 * BPF_STX + SRC_OP, so it is safe to pass NULL
17640 * here.
d6c2308c 17641 */
83a28819 17642 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
17643 if (class == BPF_LD &&
17644 BPF_MODE(code) == BPF_IMM)
17645 i++;
17646 continue;
17647 }
17648
17649 /* ctx load could be transformed into wider load. */
17650 if (class == BPF_LDX &&
17651 aux[adj_idx].ptr_type == PTR_TO_CTX)
17652 continue;
17653
a251c17a 17654 imm_rnd = get_random_u32();
d6c2308c
JW
17655 rnd_hi32_patch[0] = insn;
17656 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 17657 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
17658 patch = rnd_hi32_patch;
17659 patch_len = 4;
17660 goto apply_patch_buffer;
17661 }
17662
39491867
BJ
17663 /* Add in an zero-extend instruction if a) the JIT has requested
17664 * it or b) it's a CMPXCHG.
17665 *
17666 * The latter is because: BPF_CMPXCHG always loads a value into
17667 * R0, therefore always zero-extends. However some archs'
17668 * equivalent instruction only does this load when the
17669 * comparison is successful. This detail of CMPXCHG is
17670 * orthogonal to the general zero-extension behaviour of the
17671 * CPU, so it's treated independently of bpf_jit_needs_zext.
17672 */
17673 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
17674 continue;
17675
d35af0a7
BT
17676 /* Zero-extension is done by the caller. */
17677 if (bpf_pseudo_kfunc_call(&insn))
17678 continue;
17679
83a28819
IL
17680 if (WARN_ON(load_reg == -1)) {
17681 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17682 return -EFAULT;
b2e37a71
IL
17683 }
17684
a4b1d3c1 17685 zext_patch[0] = insn;
b2e37a71
IL
17686 zext_patch[1].dst_reg = load_reg;
17687 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
17688 patch = zext_patch;
17689 patch_len = 2;
17690apply_patch_buffer:
17691 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
17692 if (!new_prog)
17693 return -ENOMEM;
17694 env->prog = new_prog;
17695 insns = new_prog->insnsi;
17696 aux = env->insn_aux_data;
d6c2308c 17697 delta += patch_len - 1;
a4b1d3c1
JW
17698 }
17699
17700 return 0;
17701}
17702
c64b7983
JS
17703/* convert load instructions that access fields of a context type into a
17704 * sequence of instructions that access fields of the underlying structure:
17705 * struct __sk_buff -> struct sk_buff
17706 * struct bpf_sock_ops -> struct sock
9bac3d6d 17707 */
58e2af8b 17708static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 17709{
00176a34 17710 const struct bpf_verifier_ops *ops = env->ops;
f96da094 17711 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 17712 const int insn_cnt = env->prog->len;
36bbef52 17713 struct bpf_insn insn_buf[16], *insn;
46f53a65 17714 u32 target_size, size_default, off;
9bac3d6d 17715 struct bpf_prog *new_prog;
d691f9e8 17716 enum bpf_access_type type;
f96da094 17717 bool is_narrower_load;
9bac3d6d 17718
b09928b9
DB
17719 if (ops->gen_prologue || env->seen_direct_write) {
17720 if (!ops->gen_prologue) {
17721 verbose(env, "bpf verifier is misconfigured\n");
17722 return -EINVAL;
17723 }
36bbef52
DB
17724 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17725 env->prog);
17726 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 17727 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
17728 return -EINVAL;
17729 } else if (cnt) {
8041902d 17730 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
17731 if (!new_prog)
17732 return -ENOMEM;
8041902d 17733
36bbef52 17734 env->prog = new_prog;
3df126f3 17735 delta += cnt - 1;
36bbef52
DB
17736 }
17737 }
17738
9d03ebc7 17739 if (bpf_prog_is_offloaded(env->prog->aux))
9bac3d6d
AS
17740 return 0;
17741
3df126f3 17742 insn = env->prog->insnsi + delta;
36bbef52 17743
9bac3d6d 17744 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 17745 bpf_convert_ctx_access_t convert_ctx_access;
1f1e864b 17746 u8 mode;
c64b7983 17747
62c7989b
DB
17748 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17749 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17750 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
1f9a1ea8
YS
17751 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17752 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17753 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17754 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
d691f9e8 17755 type = BPF_READ;
2039f26f
DB
17756 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17757 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17758 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17759 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17760 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17761 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17762 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17763 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 17764 type = BPF_WRITE;
2039f26f 17765 } else {
9bac3d6d 17766 continue;
2039f26f 17767 }
9bac3d6d 17768
af86ca4e 17769 if (type == BPF_WRITE &&
2039f26f 17770 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 17771 struct bpf_insn patch[] = {
af86ca4e 17772 *insn,
2039f26f 17773 BPF_ST_NOSPEC(),
af86ca4e
AS
17774 };
17775
17776 cnt = ARRAY_SIZE(patch);
17777 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17778 if (!new_prog)
17779 return -ENOMEM;
17780
17781 delta += cnt - 1;
17782 env->prog = new_prog;
17783 insn = new_prog->insnsi + i + delta;
17784 continue;
17785 }
17786
6efe152d 17787 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
17788 case PTR_TO_CTX:
17789 if (!ops->convert_ctx_access)
17790 continue;
17791 convert_ctx_access = ops->convert_ctx_access;
17792 break;
17793 case PTR_TO_SOCKET:
46f8bc92 17794 case PTR_TO_SOCK_COMMON:
c64b7983
JS
17795 convert_ctx_access = bpf_sock_convert_ctx_access;
17796 break;
655a51e5
MKL
17797 case PTR_TO_TCP_SOCK:
17798 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17799 break;
fada7fdc
JL
17800 case PTR_TO_XDP_SOCK:
17801 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17802 break;
2a02759e 17803 case PTR_TO_BTF_ID:
6efe152d 17804 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
282de143
KKD
17805 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17806 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17807 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17808 * any faults for loads into such types. BPF_WRITE is disallowed
17809 * for this case.
17810 */
17811 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
27ae7997 17812 if (type == BPF_READ) {
1f9a1ea8
YS
17813 if (BPF_MODE(insn->code) == BPF_MEM)
17814 insn->code = BPF_LDX | BPF_PROBE_MEM |
17815 BPF_SIZE((insn)->code);
17816 else
17817 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17818 BPF_SIZE((insn)->code);
27ae7997 17819 env->prog->aux->num_exentries++;
2a02759e 17820 }
2a02759e 17821 continue;
c64b7983 17822 default:
9bac3d6d 17823 continue;
c64b7983 17824 }
9bac3d6d 17825
31fd8581 17826 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 17827 size = BPF_LDST_BYTES(insn);
1f1e864b 17828 mode = BPF_MODE(insn->code);
31fd8581
YS
17829
17830 /* If the read access is a narrower load of the field,
17831 * convert to a 4/8-byte load, to minimum program type specific
17832 * convert_ctx_access changes. If conversion is successful,
17833 * we will apply proper mask to the result.
17834 */
f96da094 17835 is_narrower_load = size < ctx_field_size;
46f53a65
AI
17836 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17837 off = insn->off;
31fd8581 17838 if (is_narrower_load) {
f96da094
DB
17839 u8 size_code;
17840
17841 if (type == BPF_WRITE) {
61bd5218 17842 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
17843 return -EINVAL;
17844 }
31fd8581 17845
f96da094 17846 size_code = BPF_H;
31fd8581
YS
17847 if (ctx_field_size == 4)
17848 size_code = BPF_W;
17849 else if (ctx_field_size == 8)
17850 size_code = BPF_DW;
f96da094 17851
bc23105c 17852 insn->off = off & ~(size_default - 1);
31fd8581
YS
17853 insn->code = BPF_LDX | BPF_MEM | size_code;
17854 }
f96da094
DB
17855
17856 target_size = 0;
c64b7983
JS
17857 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17858 &target_size);
f96da094
DB
17859 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17860 (ctx_field_size && !target_size)) {
61bd5218 17861 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
17862 return -EINVAL;
17863 }
f96da094
DB
17864
17865 if (is_narrower_load && size < target_size) {
d895a0f1
IL
17866 u8 shift = bpf_ctx_narrow_access_offset(
17867 off, size, size_default) * 8;
d7af7e49
AI
17868 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17869 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17870 return -EINVAL;
17871 }
46f53a65
AI
17872 if (ctx_field_size <= 4) {
17873 if (shift)
17874 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17875 insn->dst_reg,
17876 shift);
31fd8581 17877 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 17878 (1 << size * 8) - 1);
46f53a65
AI
17879 } else {
17880 if (shift)
17881 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17882 insn->dst_reg,
17883 shift);
0613d8ca 17884 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 17885 (1ULL << size * 8) - 1);
46f53a65 17886 }
31fd8581 17887 }
1f1e864b
YS
17888 if (mode == BPF_MEMSX)
17889 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17890 insn->dst_reg, insn->dst_reg,
17891 size * 8, 0);
9bac3d6d 17892
8041902d 17893 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
17894 if (!new_prog)
17895 return -ENOMEM;
17896
3df126f3 17897 delta += cnt - 1;
9bac3d6d
AS
17898
17899 /* keep walking new program and skip insns we just inserted */
17900 env->prog = new_prog;
3df126f3 17901 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
17902 }
17903
17904 return 0;
17905}
17906
1c2a088a
AS
17907static int jit_subprogs(struct bpf_verifier_env *env)
17908{
17909 struct bpf_prog *prog = env->prog, **func, *tmp;
17910 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 17911 struct bpf_map *map_ptr;
7105e828 17912 struct bpf_insn *insn;
1c2a088a 17913 void *old_bpf_func;
c4c0bdc0 17914 int err, num_exentries;
1c2a088a 17915
f910cefa 17916 if (env->subprog_cnt <= 1)
1c2a088a
AS
17917 return 0;
17918
7105e828 17919 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 17920 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 17921 continue;
69c087ba 17922
c7a89784
DB
17923 /* Upon error here we cannot fall back to interpreter but
17924 * need a hard reject of the program. Thus -EFAULT is
17925 * propagated in any case.
17926 */
1c2a088a
AS
17927 subprog = find_subprog(env, i + insn->imm + 1);
17928 if (subprog < 0) {
17929 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17930 i + insn->imm + 1);
17931 return -EFAULT;
17932 }
17933 /* temporarily remember subprog id inside insn instead of
17934 * aux_data, since next loop will split up all insns into funcs
17935 */
f910cefa 17936 insn->off = subprog;
1c2a088a
AS
17937 /* remember original imm in case JIT fails and fallback
17938 * to interpreter will be needed
17939 */
17940 env->insn_aux_data[i].call_imm = insn->imm;
17941 /* point imm to __bpf_call_base+1 from JITs point of view */
17942 insn->imm = 1;
3990ed4c
MKL
17943 if (bpf_pseudo_func(insn))
17944 /* jit (e.g. x86_64) may emit fewer instructions
17945 * if it learns a u32 imm is the same as a u64 imm.
17946 * Force a non zero here.
17947 */
17948 insn[1].imm = 1;
1c2a088a
AS
17949 }
17950
c454a46b
MKL
17951 err = bpf_prog_alloc_jited_linfo(prog);
17952 if (err)
17953 goto out_undo_insn;
17954
17955 err = -ENOMEM;
6396bb22 17956 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 17957 if (!func)
c7a89784 17958 goto out_undo_insn;
1c2a088a 17959
f910cefa 17960 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 17961 subprog_start = subprog_end;
4cb3d99c 17962 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
17963
17964 len = subprog_end - subprog_start;
fb7dd8bc 17965 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
17966 * hence main prog stats include the runtime of subprogs.
17967 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 17968 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
17969 */
17970 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
17971 if (!func[i])
17972 goto out_free;
17973 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17974 len * sizeof(struct bpf_insn));
4f74d809 17975 func[i]->type = prog->type;
1c2a088a 17976 func[i]->len = len;
4f74d809
DB
17977 if (bpf_prog_calc_tag(func[i]))
17978 goto out_free;
1c2a088a 17979 func[i]->is_func = 1;
ba64e7d8 17980 func[i]->aux->func_idx = i;
f263a814 17981 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
17982 func[i]->aux->btf = prog->aux->btf;
17983 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 17984 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
17985 func[i]->aux->poke_tab = prog->aux->poke_tab;
17986 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 17987
a748c697 17988 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 17989 struct bpf_jit_poke_descriptor *poke;
a748c697 17990
f263a814
JF
17991 poke = &prog->aux->poke_tab[j];
17992 if (poke->insn_idx < subprog_end &&
17993 poke->insn_idx >= subprog_start)
17994 poke->aux = func[i]->aux;
a748c697
MF
17995 }
17996
1c2a088a 17997 func[i]->aux->name[0] = 'F';
9c8105bd 17998 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 17999 func[i]->jit_requested = 1;
d2a3b7c5 18000 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 18001 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 18002 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
18003 func[i]->aux->linfo = prog->aux->linfo;
18004 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18005 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18006 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
18007 num_exentries = 0;
18008 insn = func[i]->insnsi;
18009 for (j = 0; j < func[i]->len; j++, insn++) {
18010 if (BPF_CLASS(insn->code) == BPF_LDX &&
1f9a1ea8
YS
18011 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18012 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
c4c0bdc0
YS
18013 num_exentries++;
18014 }
18015 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 18016 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
18017 func[i] = bpf_int_jit_compile(func[i]);
18018 if (!func[i]->jited) {
18019 err = -ENOTSUPP;
18020 goto out_free;
18021 }
18022 cond_resched();
18023 }
a748c697 18024
1c2a088a
AS
18025 /* at this point all bpf functions were successfully JITed
18026 * now populate all bpf_calls with correct addresses and
18027 * run last pass of JIT
18028 */
f910cefa 18029 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
18030 insn = func[i]->insnsi;
18031 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 18032 if (bpf_pseudo_func(insn)) {
3990ed4c 18033 subprog = insn->off;
69c087ba
YS
18034 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18035 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18036 continue;
18037 }
23a2d70c 18038 if (!bpf_pseudo_call(insn))
1c2a088a
AS
18039 continue;
18040 subprog = insn->off;
3d717fad 18041 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 18042 }
2162fed4
SD
18043
18044 /* we use the aux data to keep a list of the start addresses
18045 * of the JITed images for each function in the program
18046 *
18047 * for some architectures, such as powerpc64, the imm field
18048 * might not be large enough to hold the offset of the start
18049 * address of the callee's JITed image from __bpf_call_base
18050 *
18051 * in such cases, we can lookup the start address of a callee
18052 * by using its subprog id, available from the off field of
18053 * the call instruction, as an index for this list
18054 */
18055 func[i]->aux->func = func;
18056 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 18057 }
f910cefa 18058 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
18059 old_bpf_func = func[i]->bpf_func;
18060 tmp = bpf_int_jit_compile(func[i]);
18061 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18062 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 18063 err = -ENOTSUPP;
1c2a088a
AS
18064 goto out_free;
18065 }
18066 cond_resched();
18067 }
18068
18069 /* finally lock prog and jit images for all functions and
0108a4e9
KJ
18070 * populate kallsysm. Begin at the first subprogram, since
18071 * bpf_prog_load will add the kallsyms for the main program.
1c2a088a 18072 */
0108a4e9 18073 for (i = 1; i < env->subprog_cnt; i++) {
1c2a088a
AS
18074 bpf_prog_lock_ro(func[i]);
18075 bpf_prog_kallsyms_add(func[i]);
18076 }
7105e828
DB
18077
18078 /* Last step: make now unused interpreter insns from main
18079 * prog consistent for later dump requests, so they can
18080 * later look the same as if they were interpreted only.
18081 */
18082 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
18083 if (bpf_pseudo_func(insn)) {
18084 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
18085 insn[1].imm = insn->off;
18086 insn->off = 0;
69c087ba
YS
18087 continue;
18088 }
23a2d70c 18089 if (!bpf_pseudo_call(insn))
7105e828
DB
18090 continue;
18091 insn->off = env->insn_aux_data[i].call_imm;
18092 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 18093 insn->imm = subprog;
7105e828
DB
18094 }
18095
1c2a088a
AS
18096 prog->jited = 1;
18097 prog->bpf_func = func[0]->bpf_func;
d00c6473 18098 prog->jited_len = func[0]->jited_len;
0108a4e9
KJ
18099 prog->aux->extable = func[0]->aux->extable;
18100 prog->aux->num_exentries = func[0]->aux->num_exentries;
1c2a088a 18101 prog->aux->func = func;
f910cefa 18102 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 18103 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
18104 return 0;
18105out_free:
f263a814
JF
18106 /* We failed JIT'ing, so at this point we need to unregister poke
18107 * descriptors from subprogs, so that kernel is not attempting to
18108 * patch it anymore as we're freeing the subprog JIT memory.
18109 */
18110 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18111 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18112 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18113 }
18114 /* At this point we're guaranteed that poke descriptors are not
18115 * live anymore. We can just unlink its descriptor table as it's
18116 * released with the main prog.
18117 */
a748c697
MF
18118 for (i = 0; i < env->subprog_cnt; i++) {
18119 if (!func[i])
18120 continue;
f263a814 18121 func[i]->aux->poke_tab = NULL;
a748c697
MF
18122 bpf_jit_free(func[i]);
18123 }
1c2a088a 18124 kfree(func);
c7a89784 18125out_undo_insn:
1c2a088a
AS
18126 /* cleanup main prog to be interpreted */
18127 prog->jit_requested = 0;
d2a3b7c5 18128 prog->blinding_requested = 0;
1c2a088a 18129 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 18130 if (!bpf_pseudo_call(insn))
1c2a088a
AS
18131 continue;
18132 insn->off = 0;
18133 insn->imm = env->insn_aux_data[i].call_imm;
18134 }
e16301fb 18135 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
18136 return err;
18137}
18138
1ea47e01
AS
18139static int fixup_call_args(struct bpf_verifier_env *env)
18140{
19d28fbd 18141#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
18142 struct bpf_prog *prog = env->prog;
18143 struct bpf_insn *insn = prog->insnsi;
e6ac2450 18144 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 18145 int i, depth;
19d28fbd 18146#endif
e4052d06 18147 int err = 0;
1ea47e01 18148
e4052d06 18149 if (env->prog->jit_requested &&
9d03ebc7 18150 !bpf_prog_is_offloaded(env->prog->aux)) {
19d28fbd
DM
18151 err = jit_subprogs(env);
18152 if (err == 0)
1c2a088a 18153 return 0;
c7a89784
DB
18154 if (err == -EFAULT)
18155 return err;
19d28fbd
DM
18156 }
18157#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
18158 if (has_kfunc_call) {
18159 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18160 return -EINVAL;
18161 }
e411901c
MF
18162 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18163 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18164 * have to be rejected, since interpreter doesn't support them yet.
18165 */
18166 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18167 return -EINVAL;
18168 }
1ea47e01 18169 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
18170 if (bpf_pseudo_func(insn)) {
18171 /* When JIT fails the progs with callback calls
18172 * have to be rejected, since interpreter doesn't support them yet.
18173 */
18174 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18175 return -EINVAL;
18176 }
18177
23a2d70c 18178 if (!bpf_pseudo_call(insn))
1ea47e01
AS
18179 continue;
18180 depth = get_callee_stack_depth(env, insn, i);
18181 if (depth < 0)
18182 return depth;
18183 bpf_patch_call_args(insn, depth);
18184 }
19d28fbd
DM
18185 err = 0;
18186#endif
18187 return err;
1ea47e01
AS
18188}
18189
1cf3bfc6
IL
18190/* replace a generic kfunc with a specialized version if necessary */
18191static void specialize_kfunc(struct bpf_verifier_env *env,
18192 u32 func_id, u16 offset, unsigned long *addr)
18193{
18194 struct bpf_prog *prog = env->prog;
18195 bool seen_direct_write;
18196 void *xdp_kfunc;
18197 bool is_rdonly;
18198
18199 if (bpf_dev_bound_kfunc_id(func_id)) {
18200 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18201 if (xdp_kfunc) {
18202 *addr = (unsigned long)xdp_kfunc;
18203 return;
18204 }
18205 /* fallback to default kfunc when not supported by netdev */
18206 }
18207
18208 if (offset)
18209 return;
18210
18211 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18212 seen_direct_write = env->seen_direct_write;
18213 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18214
18215 if (is_rdonly)
18216 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18217
18218 /* restore env->seen_direct_write to its original value, since
18219 * may_access_direct_pkt_data mutates it
18220 */
18221 env->seen_direct_write = seen_direct_write;
18222 }
18223}
18224
d2dcc67d
DM
18225static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18226 u16 struct_meta_reg,
18227 u16 node_offset_reg,
18228 struct bpf_insn *insn,
18229 struct bpf_insn *insn_buf,
18230 int *cnt)
18231{
18232 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18233 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18234
18235 insn_buf[0] = addr[0];
18236 insn_buf[1] = addr[1];
18237 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18238 insn_buf[3] = *insn;
18239 *cnt = 4;
18240}
18241
958cf2e2
KKD
18242static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18243 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
18244{
18245 const struct bpf_kfunc_desc *desc;
18246
a5d82727
KKD
18247 if (!insn->imm) {
18248 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18249 return -EINVAL;
18250 }
18251
3d76a4d3
SF
18252 *cnt = 0;
18253
1cf3bfc6
IL
18254 /* insn->imm has the btf func_id. Replace it with an offset relative to
18255 * __bpf_call_base, unless the JIT needs to call functions that are
18256 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
e6ac2450 18257 */
2357672c 18258 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
18259 if (!desc) {
18260 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18261 insn->imm);
18262 return -EFAULT;
18263 }
18264
1cf3bfc6
IL
18265 if (!bpf_jit_supports_far_kfunc_call())
18266 insn->imm = BPF_CALL_IMM(desc->addr);
958cf2e2
KKD
18267 if (insn->off)
18268 return 0;
18269 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18270 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18271 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18272 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 18273
958cf2e2
KKD
18274 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18275 insn_buf[1] = addr[0];
18276 insn_buf[2] = addr[1];
18277 insn_buf[3] = *insn;
18278 *cnt = 4;
7c50b1cb
DM
18279 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18280 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
ac9f0605
KKD
18281 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18282 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18283
f0d991a0
DM
18284 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18285 !kptr_struct_meta) {
18286 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18287 insn_idx);
18288 return -EFAULT;
18289 }
18290
ac9f0605
KKD
18291 insn_buf[0] = addr[0];
18292 insn_buf[1] = addr[1];
18293 insn_buf[2] = *insn;
18294 *cnt = 3;
d2dcc67d
DM
18295 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18296 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18297 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
f0d991a0 18298 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
d2dcc67d
DM
18299 int struct_meta_reg = BPF_REG_3;
18300 int node_offset_reg = BPF_REG_4;
18301
18302 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18303 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18304 struct_meta_reg = BPF_REG_4;
18305 node_offset_reg = BPF_REG_5;
18306 }
18307
f0d991a0
DM
18308 if (!kptr_struct_meta) {
18309 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18310 insn_idx);
18311 return -EFAULT;
18312 }
18313
d2dcc67d
DM
18314 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18315 node_offset_reg, insn, insn_buf, cnt);
a35b9af4
YS
18316 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18317 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
fd264ca0
YS
18318 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18319 *cnt = 1;
958cf2e2 18320 }
e6ac2450
MKL
18321 return 0;
18322}
18323
e6ac5933
BJ
18324/* Do various post-verification rewrites in a single program pass.
18325 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 18326 */
e6ac5933 18327static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 18328{
79741b3b 18329 struct bpf_prog *prog = env->prog;
f92c1e18 18330 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 18331 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 18332 struct bpf_insn *insn = prog->insnsi;
e245c5c6 18333 const struct bpf_func_proto *fn;
79741b3b 18334 const int insn_cnt = prog->len;
09772d92 18335 const struct bpf_map_ops *ops;
c93552c4 18336 struct bpf_insn_aux_data *aux;
81ed18ab
AS
18337 struct bpf_insn insn_buf[16];
18338 struct bpf_prog *new_prog;
18339 struct bpf_map *map_ptr;
d2e4c1e6 18340 int i, ret, cnt, delta = 0;
e245c5c6 18341
79741b3b 18342 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 18343 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
18344 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18345 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18346 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 18347 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 18348 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
18349 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18350 struct bpf_insn *patchlet;
18351 struct bpf_insn chk_and_div[] = {
9b00f1b7 18352 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
18353 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18354 BPF_JNE | BPF_K, insn->src_reg,
18355 0, 2, 0),
f6b1b3bf
DB
18356 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18357 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18358 *insn,
18359 };
e88b2c6e 18360 struct bpf_insn chk_and_mod[] = {
9b00f1b7 18361 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
18362 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18363 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 18364 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 18365 *insn,
9b00f1b7
DB
18366 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18367 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 18368 };
f6b1b3bf 18369
e88b2c6e
DB
18370 patchlet = isdiv ? chk_and_div : chk_and_mod;
18371 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 18372 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
18373
18374 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
18375 if (!new_prog)
18376 return -ENOMEM;
18377
18378 delta += cnt - 1;
18379 env->prog = prog = new_prog;
18380 insn = new_prog->insnsi + i + delta;
18381 continue;
18382 }
18383
e6ac5933 18384 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
18385 if (BPF_CLASS(insn->code) == BPF_LD &&
18386 (BPF_MODE(insn->code) == BPF_ABS ||
18387 BPF_MODE(insn->code) == BPF_IND)) {
18388 cnt = env->ops->gen_ld_abs(insn, insn_buf);
18389 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18390 verbose(env, "bpf verifier is misconfigured\n");
18391 return -EINVAL;
18392 }
18393
18394 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18395 if (!new_prog)
18396 return -ENOMEM;
18397
18398 delta += cnt - 1;
18399 env->prog = prog = new_prog;
18400 insn = new_prog->insnsi + i + delta;
18401 continue;
18402 }
18403
e6ac5933 18404 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
18405 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18406 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18407 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18408 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 18409 struct bpf_insn *patch = &insn_buf[0];
801c6058 18410 bool issrc, isneg, isimm;
979d63d5
DB
18411 u32 off_reg;
18412
18413 aux = &env->insn_aux_data[i + delta];
3612af78
DB
18414 if (!aux->alu_state ||
18415 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
18416 continue;
18417
18418 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18419 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18420 BPF_ALU_SANITIZE_SRC;
801c6058 18421 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
18422
18423 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
18424 if (isimm) {
18425 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18426 } else {
18427 if (isneg)
18428 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18429 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18430 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18431 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18432 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18433 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18434 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18435 }
b9b34ddb
DB
18436 if (!issrc)
18437 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18438 insn->src_reg = BPF_REG_AX;
979d63d5
DB
18439 if (isneg)
18440 insn->code = insn->code == code_add ?
18441 code_sub : code_add;
18442 *patch++ = *insn;
801c6058 18443 if (issrc && isneg && !isimm)
979d63d5
DB
18444 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18445 cnt = patch - insn_buf;
18446
18447 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18448 if (!new_prog)
18449 return -ENOMEM;
18450
18451 delta += cnt - 1;
18452 env->prog = prog = new_prog;
18453 insn = new_prog->insnsi + i + delta;
18454 continue;
18455 }
18456
79741b3b
AS
18457 if (insn->code != (BPF_JMP | BPF_CALL))
18458 continue;
cc8b0b92
AS
18459 if (insn->src_reg == BPF_PSEUDO_CALL)
18460 continue;
e6ac2450 18461 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 18462 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
18463 if (ret)
18464 return ret;
958cf2e2
KKD
18465 if (cnt == 0)
18466 continue;
18467
18468 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18469 if (!new_prog)
18470 return -ENOMEM;
18471
18472 delta += cnt - 1;
18473 env->prog = prog = new_prog;
18474 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
18475 continue;
18476 }
e245c5c6 18477
79741b3b
AS
18478 if (insn->imm == BPF_FUNC_get_route_realm)
18479 prog->dst_needed = 1;
18480 if (insn->imm == BPF_FUNC_get_prandom_u32)
18481 bpf_user_rnd_init_once();
9802d865
JB
18482 if (insn->imm == BPF_FUNC_override_return)
18483 prog->kprobe_override = 1;
79741b3b 18484 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
18485 /* If we tail call into other programs, we
18486 * cannot make any assumptions since they can
18487 * be replaced dynamically during runtime in
18488 * the program array.
18489 */
18490 prog->cb_access = 1;
e411901c
MF
18491 if (!allow_tail_call_in_subprogs(env))
18492 prog->aux->stack_depth = MAX_BPF_STACK;
18493 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 18494
79741b3b 18495 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 18496 * conditional branch in the interpreter for every normal
79741b3b
AS
18497 * call and to prevent accidental JITing by JIT compiler
18498 * that doesn't support bpf_tail_call yet
e245c5c6 18499 */
79741b3b 18500 insn->imm = 0;
71189fa9 18501 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 18502
c93552c4 18503 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 18504 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 18505 prog->jit_requested &&
d2e4c1e6
DB
18506 !bpf_map_key_poisoned(aux) &&
18507 !bpf_map_ptr_poisoned(aux) &&
18508 !bpf_map_ptr_unpriv(aux)) {
18509 struct bpf_jit_poke_descriptor desc = {
18510 .reason = BPF_POKE_REASON_TAIL_CALL,
18511 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18512 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 18513 .insn_idx = i + delta,
d2e4c1e6
DB
18514 };
18515
18516 ret = bpf_jit_add_poke_descriptor(prog, &desc);
18517 if (ret < 0) {
18518 verbose(env, "adding tail call poke descriptor failed\n");
18519 return ret;
18520 }
18521
18522 insn->imm = ret + 1;
18523 continue;
18524 }
18525
c93552c4
DB
18526 if (!bpf_map_ptr_unpriv(aux))
18527 continue;
18528
b2157399
AS
18529 /* instead of changing every JIT dealing with tail_call
18530 * emit two extra insns:
18531 * if (index >= max_entries) goto out;
18532 * index &= array->index_mask;
18533 * to avoid out-of-bounds cpu speculation
18534 */
c93552c4 18535 if (bpf_map_ptr_poisoned(aux)) {
40950343 18536 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
18537 return -EINVAL;
18538 }
c93552c4 18539
d2e4c1e6 18540 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
18541 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18542 map_ptr->max_entries, 2);
18543 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18544 container_of(map_ptr,
18545 struct bpf_array,
18546 map)->index_mask);
18547 insn_buf[2] = *insn;
18548 cnt = 3;
18549 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18550 if (!new_prog)
18551 return -ENOMEM;
18552
18553 delta += cnt - 1;
18554 env->prog = prog = new_prog;
18555 insn = new_prog->insnsi + i + delta;
79741b3b
AS
18556 continue;
18557 }
e245c5c6 18558
b00628b1
AS
18559 if (insn->imm == BPF_FUNC_timer_set_callback) {
18560 /* The verifier will process callback_fn as many times as necessary
18561 * with different maps and the register states prepared by
18562 * set_timer_callback_state will be accurate.
18563 *
18564 * The following use case is valid:
18565 * map1 is shared by prog1, prog2, prog3.
18566 * prog1 calls bpf_timer_init for some map1 elements
18567 * prog2 calls bpf_timer_set_callback for some map1 elements.
18568 * Those that were not bpf_timer_init-ed will return -EINVAL.
18569 * prog3 calls bpf_timer_start for some map1 elements.
18570 * Those that were not both bpf_timer_init-ed and
18571 * bpf_timer_set_callback-ed will return -EINVAL.
18572 */
18573 struct bpf_insn ld_addrs[2] = {
18574 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18575 };
18576
18577 insn_buf[0] = ld_addrs[0];
18578 insn_buf[1] = ld_addrs[1];
18579 insn_buf[2] = *insn;
18580 cnt = 3;
18581
18582 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18583 if (!new_prog)
18584 return -ENOMEM;
18585
18586 delta += cnt - 1;
18587 env->prog = prog = new_prog;
18588 insn = new_prog->insnsi + i + delta;
18589 goto patch_call_imm;
18590 }
18591
9bb00b28
YS
18592 if (is_storage_get_function(insn->imm)) {
18593 if (!env->prog->aux->sleepable ||
18594 env->insn_aux_data[i + delta].storage_get_func_atomic)
d56c9fe6 18595 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
9bb00b28
YS
18596 else
18597 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a
JK
18598 insn_buf[1] = *insn;
18599 cnt = 2;
18600
18601 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18602 if (!new_prog)
18603 return -ENOMEM;
18604
18605 delta += cnt - 1;
18606 env->prog = prog = new_prog;
18607 insn = new_prog->insnsi + i + delta;
18608 goto patch_call_imm;
18609 }
18610
89c63074 18611 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
18612 * and other inlining handlers are currently limited to 64 bit
18613 * only.
89c63074 18614 */
60b58afc 18615 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
18616 (insn->imm == BPF_FUNC_map_lookup_elem ||
18617 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
18618 insn->imm == BPF_FUNC_map_delete_elem ||
18619 insn->imm == BPF_FUNC_map_push_elem ||
18620 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 18621 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 18622 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
18623 insn->imm == BPF_FUNC_for_each_map_elem ||
18624 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
18625 aux = &env->insn_aux_data[i + delta];
18626 if (bpf_map_ptr_poisoned(aux))
18627 goto patch_call_imm;
18628
d2e4c1e6 18629 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
18630 ops = map_ptr->ops;
18631 if (insn->imm == BPF_FUNC_map_lookup_elem &&
18632 ops->map_gen_lookup) {
18633 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
18634 if (cnt == -EOPNOTSUPP)
18635 goto patch_map_ops_generic;
18636 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
18637 verbose(env, "bpf verifier is misconfigured\n");
18638 return -EINVAL;
18639 }
81ed18ab 18640
09772d92
DB
18641 new_prog = bpf_patch_insn_data(env, i + delta,
18642 insn_buf, cnt);
18643 if (!new_prog)
18644 return -ENOMEM;
81ed18ab 18645
09772d92
DB
18646 delta += cnt - 1;
18647 env->prog = prog = new_prog;
18648 insn = new_prog->insnsi + i + delta;
18649 continue;
18650 }
81ed18ab 18651
09772d92
DB
18652 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18653 (void *(*)(struct bpf_map *map, void *key))NULL));
18654 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
d7ba4cc9 18655 (long (*)(struct bpf_map *map, void *key))NULL));
09772d92 18656 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
d7ba4cc9 18657 (long (*)(struct bpf_map *map, void *key, void *value,
09772d92 18658 u64 flags))NULL));
84430d42 18659 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
d7ba4cc9 18660 (long (*)(struct bpf_map *map, void *value,
84430d42
DB
18661 u64 flags))NULL));
18662 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
d7ba4cc9 18663 (long (*)(struct bpf_map *map, void *value))NULL));
84430d42 18664 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
d7ba4cc9 18665 (long (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 18666 BUILD_BUG_ON(!__same_type(ops->map_redirect,
d7ba4cc9 18667 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c 18668 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
d7ba4cc9 18669 (long (*)(struct bpf_map *map,
0640c77c
AI
18670 bpf_callback_t callback_fn,
18671 void *callback_ctx,
18672 u64 flags))NULL));
07343110
FZ
18673 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18674 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 18675
4a8f87e6 18676patch_map_ops_generic:
09772d92
DB
18677 switch (insn->imm) {
18678 case BPF_FUNC_map_lookup_elem:
3d717fad 18679 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
18680 continue;
18681 case BPF_FUNC_map_update_elem:
3d717fad 18682 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
18683 continue;
18684 case BPF_FUNC_map_delete_elem:
3d717fad 18685 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 18686 continue;
84430d42 18687 case BPF_FUNC_map_push_elem:
3d717fad 18688 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
18689 continue;
18690 case BPF_FUNC_map_pop_elem:
3d717fad 18691 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
18692 continue;
18693 case BPF_FUNC_map_peek_elem:
3d717fad 18694 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 18695 continue;
e6a4750f 18696 case BPF_FUNC_redirect_map:
3d717fad 18697 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 18698 continue;
0640c77c
AI
18699 case BPF_FUNC_for_each_map_elem:
18700 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 18701 continue;
07343110
FZ
18702 case BPF_FUNC_map_lookup_percpu_elem:
18703 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18704 continue;
09772d92 18705 }
81ed18ab 18706
09772d92 18707 goto patch_call_imm;
81ed18ab
AS
18708 }
18709
e6ac5933 18710 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
18711 if (prog->jit_requested && BITS_PER_LONG == 64 &&
18712 insn->imm == BPF_FUNC_jiffies64) {
18713 struct bpf_insn ld_jiffies_addr[2] = {
18714 BPF_LD_IMM64(BPF_REG_0,
18715 (unsigned long)&jiffies),
18716 };
18717
18718 insn_buf[0] = ld_jiffies_addr[0];
18719 insn_buf[1] = ld_jiffies_addr[1];
18720 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18721 BPF_REG_0, 0);
18722 cnt = 3;
18723
18724 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18725 cnt);
18726 if (!new_prog)
18727 return -ENOMEM;
18728
18729 delta += cnt - 1;
18730 env->prog = prog = new_prog;
18731 insn = new_prog->insnsi + i + delta;
18732 continue;
18733 }
18734
f92c1e18
JO
18735 /* Implement bpf_get_func_arg inline. */
18736 if (prog_type == BPF_PROG_TYPE_TRACING &&
18737 insn->imm == BPF_FUNC_get_func_arg) {
18738 /* Load nr_args from ctx - 8 */
18739 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18740 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18741 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18742 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18743 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18744 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18745 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18746 insn_buf[7] = BPF_JMP_A(1);
18747 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18748 cnt = 9;
18749
18750 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18751 if (!new_prog)
18752 return -ENOMEM;
18753
18754 delta += cnt - 1;
18755 env->prog = prog = new_prog;
18756 insn = new_prog->insnsi + i + delta;
18757 continue;
18758 }
18759
18760 /* Implement bpf_get_func_ret inline. */
18761 if (prog_type == BPF_PROG_TYPE_TRACING &&
18762 insn->imm == BPF_FUNC_get_func_ret) {
18763 if (eatype == BPF_TRACE_FEXIT ||
18764 eatype == BPF_MODIFY_RETURN) {
18765 /* Load nr_args from ctx - 8 */
18766 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18767 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18768 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18769 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18770 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18771 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18772 cnt = 6;
18773 } else {
18774 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18775 cnt = 1;
18776 }
18777
18778 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18779 if (!new_prog)
18780 return -ENOMEM;
18781
18782 delta += cnt - 1;
18783 env->prog = prog = new_prog;
18784 insn = new_prog->insnsi + i + delta;
18785 continue;
18786 }
18787
18788 /* Implement get_func_arg_cnt inline. */
18789 if (prog_type == BPF_PROG_TYPE_TRACING &&
18790 insn->imm == BPF_FUNC_get_func_arg_cnt) {
18791 /* Load nr_args from ctx - 8 */
18792 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18793
18794 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18795 if (!new_prog)
18796 return -ENOMEM;
18797
18798 env->prog = prog = new_prog;
18799 insn = new_prog->insnsi + i + delta;
18800 continue;
18801 }
18802
f705ec76 18803 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
18804 if (prog_type == BPF_PROG_TYPE_TRACING &&
18805 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
18806 /* Load IP address from ctx - 16 */
18807 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
18808
18809 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18810 if (!new_prog)
18811 return -ENOMEM;
18812
18813 env->prog = prog = new_prog;
18814 insn = new_prog->insnsi + i + delta;
18815 continue;
18816 }
18817
81ed18ab 18818patch_call_imm:
5e43f899 18819 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
18820 /* all functions that have prototype and verifier allowed
18821 * programs to call them, must be real in-kernel functions
18822 */
18823 if (!fn->func) {
61bd5218
JK
18824 verbose(env,
18825 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
18826 func_id_name(insn->imm), insn->imm);
18827 return -EFAULT;
e245c5c6 18828 }
79741b3b 18829 insn->imm = fn->func - __bpf_call_base;
e245c5c6 18830 }
e245c5c6 18831
d2e4c1e6
DB
18832 /* Since poke tab is now finalized, publish aux to tracker. */
18833 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18834 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18835 if (!map_ptr->ops->map_poke_track ||
18836 !map_ptr->ops->map_poke_untrack ||
18837 !map_ptr->ops->map_poke_run) {
18838 verbose(env, "bpf verifier is misconfigured\n");
18839 return -EINVAL;
18840 }
18841
18842 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18843 if (ret < 0) {
18844 verbose(env, "tracking tail call prog failed\n");
18845 return ret;
18846 }
18847 }
18848
1cf3bfc6 18849 sort_kfunc_descs_by_imm_off(env->prog);
e6ac2450 18850
79741b3b
AS
18851 return 0;
18852}
e245c5c6 18853
1ade2371
EZ
18854static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18855 int position,
18856 s32 stack_base,
18857 u32 callback_subprogno,
18858 u32 *cnt)
18859{
18860 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18861 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18862 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18863 int reg_loop_max = BPF_REG_6;
18864 int reg_loop_cnt = BPF_REG_7;
18865 int reg_loop_ctx = BPF_REG_8;
18866
18867 struct bpf_prog *new_prog;
18868 u32 callback_start;
18869 u32 call_insn_offset;
18870 s32 callback_offset;
18871
18872 /* This represents an inlined version of bpf_iter.c:bpf_loop,
18873 * be careful to modify this code in sync.
18874 */
18875 struct bpf_insn insn_buf[] = {
18876 /* Return error and jump to the end of the patch if
18877 * expected number of iterations is too big.
18878 */
18879 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18880 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18881 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18882 /* spill R6, R7, R8 to use these as loop vars */
18883 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18884 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18885 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18886 /* initialize loop vars */
18887 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18888 BPF_MOV32_IMM(reg_loop_cnt, 0),
18889 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18890 /* loop header,
18891 * if reg_loop_cnt >= reg_loop_max skip the loop body
18892 */
18893 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18894 /* callback call,
18895 * correct callback offset would be set after patching
18896 */
18897 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18898 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18899 BPF_CALL_REL(0),
18900 /* increment loop counter */
18901 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18902 /* jump to loop header if callback returned 0 */
18903 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18904 /* return value of bpf_loop,
18905 * set R0 to the number of iterations
18906 */
18907 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18908 /* restore original values of R6, R7, R8 */
18909 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18910 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18911 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18912 };
18913
18914 *cnt = ARRAY_SIZE(insn_buf);
18915 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18916 if (!new_prog)
18917 return new_prog;
18918
18919 /* callback start is known only after patching */
18920 callback_start = env->subprog_info[callback_subprogno].start;
18921 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18922 call_insn_offset = position + 12;
18923 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 18924 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
18925
18926 return new_prog;
18927}
18928
18929static bool is_bpf_loop_call(struct bpf_insn *insn)
18930{
18931 return insn->code == (BPF_JMP | BPF_CALL) &&
18932 insn->src_reg == 0 &&
18933 insn->imm == BPF_FUNC_loop;
18934}
18935
18936/* For all sub-programs in the program (including main) check
18937 * insn_aux_data to see if there are bpf_loop calls that require
18938 * inlining. If such calls are found the calls are replaced with a
18939 * sequence of instructions produced by `inline_bpf_loop` function and
18940 * subprog stack_depth is increased by the size of 3 registers.
18941 * This stack space is used to spill values of the R6, R7, R8. These
18942 * registers are used to store the loop bound, counter and context
18943 * variables.
18944 */
18945static int optimize_bpf_loop(struct bpf_verifier_env *env)
18946{
18947 struct bpf_subprog_info *subprogs = env->subprog_info;
18948 int i, cur_subprog = 0, cnt, delta = 0;
18949 struct bpf_insn *insn = env->prog->insnsi;
18950 int insn_cnt = env->prog->len;
18951 u16 stack_depth = subprogs[cur_subprog].stack_depth;
18952 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18953 u16 stack_depth_extra = 0;
18954
18955 for (i = 0; i < insn_cnt; i++, insn++) {
18956 struct bpf_loop_inline_state *inline_state =
18957 &env->insn_aux_data[i + delta].loop_inline_state;
18958
18959 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18960 struct bpf_prog *new_prog;
18961
18962 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18963 new_prog = inline_bpf_loop(env,
18964 i + delta,
18965 -(stack_depth + stack_depth_extra),
18966 inline_state->callback_subprogno,
18967 &cnt);
18968 if (!new_prog)
18969 return -ENOMEM;
18970
18971 delta += cnt - 1;
18972 env->prog = new_prog;
18973 insn = new_prog->insnsi + i + delta;
18974 }
18975
18976 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18977 subprogs[cur_subprog].stack_depth += stack_depth_extra;
18978 cur_subprog++;
18979 stack_depth = subprogs[cur_subprog].stack_depth;
18980 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18981 stack_depth_extra = 0;
18982 }
18983 }
18984
18985 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18986
18987 return 0;
18988}
18989
58e2af8b 18990static void free_states(struct bpf_verifier_env *env)
f1bca824 18991{
58e2af8b 18992 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
18993 int i;
18994
9f4686c4
AS
18995 sl = env->free_list;
18996 while (sl) {
18997 sln = sl->next;
18998 free_verifier_state(&sl->state, false);
18999 kfree(sl);
19000 sl = sln;
19001 }
51c39bb1 19002 env->free_list = NULL;
9f4686c4 19003
f1bca824
AS
19004 if (!env->explored_states)
19005 return;
19006
dc2a4ebc 19007 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
19008 sl = env->explored_states[i];
19009
a8f500af
AS
19010 while (sl) {
19011 sln = sl->next;
19012 free_verifier_state(&sl->state, false);
19013 kfree(sl);
19014 sl = sln;
19015 }
51c39bb1 19016 env->explored_states[i] = NULL;
f1bca824 19017 }
51c39bb1 19018}
f1bca824 19019
51c39bb1
AS
19020static int do_check_common(struct bpf_verifier_env *env, int subprog)
19021{
6f8a57cc 19022 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
19023 struct bpf_verifier_state *state;
19024 struct bpf_reg_state *regs;
19025 int ret, i;
19026
19027 env->prev_linfo = NULL;
19028 env->pass_cnt++;
19029
19030 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19031 if (!state)
19032 return -ENOMEM;
19033 state->curframe = 0;
19034 state->speculative = false;
19035 state->branches = 1;
19036 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19037 if (!state->frame[0]) {
19038 kfree(state);
19039 return -ENOMEM;
19040 }
19041 env->cur_state = state;
19042 init_func_state(env, state->frame[0],
19043 BPF_MAIN_FUNC /* callsite */,
19044 0 /* frameno */,
19045 subprog);
be2ef816
AN
19046 state->first_insn_idx = env->subprog_info[subprog].start;
19047 state->last_insn_idx = -1;
51c39bb1
AS
19048
19049 regs = state->frame[state->curframe]->regs;
be8704ff 19050 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
19051 ret = btf_prepare_func_args(env, subprog, regs);
19052 if (ret)
19053 goto out;
19054 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19055 if (regs[i].type == PTR_TO_CTX)
19056 mark_reg_known_zero(env, regs, i);
19057 else if (regs[i].type == SCALAR_VALUE)
19058 mark_reg_unknown(env, regs, i);
cf9f2f8d 19059 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
19060 const u32 mem_size = regs[i].mem_size;
19061
19062 mark_reg_known_zero(env, regs, i);
19063 regs[i].mem_size = mem_size;
19064 regs[i].id = ++env->id_gen;
19065 }
51c39bb1
AS
19066 }
19067 } else {
19068 /* 1st arg to a function */
19069 regs[BPF_REG_1].type = PTR_TO_CTX;
19070 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 19071 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
19072 if (ret == -EFAULT)
19073 /* unlikely verifier bug. abort.
19074 * ret == 0 and ret < 0 are sadly acceptable for
19075 * main() function due to backward compatibility.
19076 * Like socket filter program may be written as:
19077 * int bpf_prog(struct pt_regs *ctx)
19078 * and never dereference that ctx in the program.
19079 * 'struct pt_regs' is a type mismatch for socket
19080 * filter that should be using 'struct __sk_buff'.
19081 */
19082 goto out;
19083 }
19084
19085 ret = do_check(env);
19086out:
f59bbfc2
AS
19087 /* check for NULL is necessary, since cur_state can be freed inside
19088 * do_check() under memory pressure.
19089 */
19090 if (env->cur_state) {
19091 free_verifier_state(env->cur_state, true);
19092 env->cur_state = NULL;
19093 }
6f8a57cc
AN
19094 while (!pop_stack(env, NULL, NULL, false));
19095 if (!ret && pop_log)
19096 bpf_vlog_reset(&env->log, 0);
51c39bb1 19097 free_states(env);
51c39bb1
AS
19098 return ret;
19099}
19100
19101/* Verify all global functions in a BPF program one by one based on their BTF.
19102 * All global functions must pass verification. Otherwise the whole program is rejected.
19103 * Consider:
19104 * int bar(int);
19105 * int foo(int f)
19106 * {
19107 * return bar(f);
19108 * }
19109 * int bar(int b)
19110 * {
19111 * ...
19112 * }
19113 * foo() will be verified first for R1=any_scalar_value. During verification it
19114 * will be assumed that bar() already verified successfully and call to bar()
19115 * from foo() will be checked for type match only. Later bar() will be verified
19116 * independently to check that it's safe for R1=any_scalar_value.
19117 */
19118static int do_check_subprogs(struct bpf_verifier_env *env)
19119{
19120 struct bpf_prog_aux *aux = env->prog->aux;
19121 int i, ret;
19122
19123 if (!aux->func_info)
19124 return 0;
19125
19126 for (i = 1; i < env->subprog_cnt; i++) {
19127 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19128 continue;
19129 env->insn_idx = env->subprog_info[i].start;
19130 WARN_ON_ONCE(env->insn_idx == 0);
19131 ret = do_check_common(env, i);
19132 if (ret) {
19133 return ret;
19134 } else if (env->log.level & BPF_LOG_LEVEL) {
19135 verbose(env,
19136 "Func#%d is safe for any args that match its prototype\n",
19137 i);
19138 }
19139 }
19140 return 0;
19141}
19142
19143static int do_check_main(struct bpf_verifier_env *env)
19144{
19145 int ret;
19146
19147 env->insn_idx = 0;
19148 ret = do_check_common(env, 0);
19149 if (!ret)
19150 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19151 return ret;
19152}
19153
19154
06ee7115
AS
19155static void print_verification_stats(struct bpf_verifier_env *env)
19156{
19157 int i;
19158
19159 if (env->log.level & BPF_LOG_STATS) {
19160 verbose(env, "verification time %lld usec\n",
19161 div_u64(env->verification_time, 1000));
19162 verbose(env, "stack depth ");
19163 for (i = 0; i < env->subprog_cnt; i++) {
19164 u32 depth = env->subprog_info[i].stack_depth;
19165
19166 verbose(env, "%d", depth);
19167 if (i + 1 < env->subprog_cnt)
19168 verbose(env, "+");
19169 }
19170 verbose(env, "\n");
19171 }
19172 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19173 "total_states %d peak_states %d mark_read %d\n",
19174 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19175 env->max_states_per_insn, env->total_states,
19176 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
19177}
19178
27ae7997
MKL
19179static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19180{
19181 const struct btf_type *t, *func_proto;
19182 const struct bpf_struct_ops *st_ops;
19183 const struct btf_member *member;
19184 struct bpf_prog *prog = env->prog;
19185 u32 btf_id, member_idx;
19186 const char *mname;
19187
12aa8a94
THJ
19188 if (!prog->gpl_compatible) {
19189 verbose(env, "struct ops programs must have a GPL compatible license\n");
19190 return -EINVAL;
19191 }
19192
27ae7997
MKL
19193 btf_id = prog->aux->attach_btf_id;
19194 st_ops = bpf_struct_ops_find(btf_id);
19195 if (!st_ops) {
19196 verbose(env, "attach_btf_id %u is not a supported struct\n",
19197 btf_id);
19198 return -ENOTSUPP;
19199 }
19200
19201 t = st_ops->type;
19202 member_idx = prog->expected_attach_type;
19203 if (member_idx >= btf_type_vlen(t)) {
19204 verbose(env, "attach to invalid member idx %u of struct %s\n",
19205 member_idx, st_ops->name);
19206 return -EINVAL;
19207 }
19208
19209 member = &btf_type_member(t)[member_idx];
19210 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19211 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19212 NULL);
19213 if (!func_proto) {
19214 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19215 mname, member_idx, st_ops->name);
19216 return -EINVAL;
19217 }
19218
19219 if (st_ops->check_member) {
51a52a29 19220 int err = st_ops->check_member(t, member, prog);
27ae7997
MKL
19221
19222 if (err) {
19223 verbose(env, "attach to unsupported member %s of struct %s\n",
19224 mname, st_ops->name);
19225 return err;
19226 }
19227 }
19228
19229 prog->aux->attach_func_proto = func_proto;
19230 prog->aux->attach_func_name = mname;
19231 env->ops = st_ops->verifier_ops;
19232
19233 return 0;
19234}
6ba43b76
KS
19235#define SECURITY_PREFIX "security_"
19236
f7b12b6f 19237static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 19238{
69191754 19239 if (within_error_injection_list(addr) ||
f7b12b6f 19240 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 19241 return 0;
6ba43b76 19242
6ba43b76
KS
19243 return -EINVAL;
19244}
27ae7997 19245
1e6c62a8
AS
19246/* list of non-sleepable functions that are otherwise on
19247 * ALLOW_ERROR_INJECTION list
19248 */
19249BTF_SET_START(btf_non_sleepable_error_inject)
19250/* Three functions below can be called from sleepable and non-sleepable context.
19251 * Assume non-sleepable from bpf safety point of view.
19252 */
9dd3d069 19253BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
19254BTF_ID(func, should_fail_alloc_page)
19255BTF_ID(func, should_failslab)
19256BTF_SET_END(btf_non_sleepable_error_inject)
19257
19258static int check_non_sleepable_error_inject(u32 btf_id)
19259{
19260 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19261}
19262
f7b12b6f
THJ
19263int bpf_check_attach_target(struct bpf_verifier_log *log,
19264 const struct bpf_prog *prog,
19265 const struct bpf_prog *tgt_prog,
19266 u32 btf_id,
19267 struct bpf_attach_target_info *tgt_info)
38207291 19268{
be8704ff 19269 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 19270 const char prefix[] = "btf_trace_";
5b92a28a 19271 int ret = 0, subprog = -1, i;
38207291 19272 const struct btf_type *t;
5b92a28a 19273 bool conservative = true;
38207291 19274 const char *tname;
5b92a28a 19275 struct btf *btf;
f7b12b6f 19276 long addr = 0;
31bf1dbc 19277 struct module *mod = NULL;
38207291 19278
f1b9509c 19279 if (!btf_id) {
efc68158 19280 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
19281 return -EINVAL;
19282 }
22dc4a0f 19283 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 19284 if (!btf) {
efc68158 19285 bpf_log(log,
5b92a28a
AS
19286 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19287 return -EINVAL;
19288 }
19289 t = btf_type_by_id(btf, btf_id);
f1b9509c 19290 if (!t) {
efc68158 19291 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
19292 return -EINVAL;
19293 }
5b92a28a 19294 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 19295 if (!tname) {
efc68158 19296 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
19297 return -EINVAL;
19298 }
5b92a28a
AS
19299 if (tgt_prog) {
19300 struct bpf_prog_aux *aux = tgt_prog->aux;
19301
fd7c211d
THJ
19302 if (bpf_prog_is_dev_bound(prog->aux) &&
19303 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19304 bpf_log(log, "Target program bound device mismatch");
3d76a4d3
SF
19305 return -EINVAL;
19306 }
19307
5b92a28a
AS
19308 for (i = 0; i < aux->func_info_cnt; i++)
19309 if (aux->func_info[i].type_id == btf_id) {
19310 subprog = i;
19311 break;
19312 }
19313 if (subprog == -1) {
efc68158 19314 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
19315 return -EINVAL;
19316 }
19317 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
19318 if (prog_extension) {
19319 if (conservative) {
efc68158 19320 bpf_log(log,
be8704ff
AS
19321 "Cannot replace static functions\n");
19322 return -EINVAL;
19323 }
19324 if (!prog->jit_requested) {
efc68158 19325 bpf_log(log,
be8704ff
AS
19326 "Extension programs should be JITed\n");
19327 return -EINVAL;
19328 }
be8704ff
AS
19329 }
19330 if (!tgt_prog->jited) {
efc68158 19331 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
19332 return -EINVAL;
19333 }
19334 if (tgt_prog->type == prog->type) {
19335 /* Cannot fentry/fexit another fentry/fexit program.
19336 * Cannot attach program extension to another extension.
19337 * It's ok to attach fentry/fexit to extension program.
19338 */
efc68158 19339 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
19340 return -EINVAL;
19341 }
19342 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19343 prog_extension &&
19344 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19345 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19346 /* Program extensions can extend all program types
19347 * except fentry/fexit. The reason is the following.
19348 * The fentry/fexit programs are used for performance
19349 * analysis, stats and can be attached to any program
19350 * type except themselves. When extension program is
19351 * replacing XDP function it is necessary to allow
19352 * performance analysis of all functions. Both original
19353 * XDP program and its program extension. Hence
19354 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19355 * allowed. If extending of fentry/fexit was allowed it
19356 * would be possible to create long call chain
19357 * fentry->extension->fentry->extension beyond
19358 * reasonable stack size. Hence extending fentry is not
19359 * allowed.
19360 */
efc68158 19361 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
19362 return -EINVAL;
19363 }
5b92a28a 19364 } else {
be8704ff 19365 if (prog_extension) {
efc68158 19366 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
19367 return -EINVAL;
19368 }
5b92a28a 19369 }
f1b9509c
AS
19370
19371 switch (prog->expected_attach_type) {
19372 case BPF_TRACE_RAW_TP:
5b92a28a 19373 if (tgt_prog) {
efc68158 19374 bpf_log(log,
5b92a28a
AS
19375 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19376 return -EINVAL;
19377 }
38207291 19378 if (!btf_type_is_typedef(t)) {
efc68158 19379 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
19380 btf_id);
19381 return -EINVAL;
19382 }
f1b9509c 19383 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 19384 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
19385 btf_id, tname);
19386 return -EINVAL;
19387 }
19388 tname += sizeof(prefix) - 1;
5b92a28a 19389 t = btf_type_by_id(btf, t->type);
38207291
MKL
19390 if (!btf_type_is_ptr(t))
19391 /* should never happen in valid vmlinux build */
19392 return -EINVAL;
5b92a28a 19393 t = btf_type_by_id(btf, t->type);
38207291
MKL
19394 if (!btf_type_is_func_proto(t))
19395 /* should never happen in valid vmlinux build */
19396 return -EINVAL;
19397
f7b12b6f 19398 break;
15d83c4d
YS
19399 case BPF_TRACE_ITER:
19400 if (!btf_type_is_func(t)) {
efc68158 19401 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
19402 btf_id);
19403 return -EINVAL;
19404 }
19405 t = btf_type_by_id(btf, t->type);
19406 if (!btf_type_is_func_proto(t))
19407 return -EINVAL;
f7b12b6f
THJ
19408 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19409 if (ret)
19410 return ret;
19411 break;
be8704ff
AS
19412 default:
19413 if (!prog_extension)
19414 return -EINVAL;
df561f66 19415 fallthrough;
ae240823 19416 case BPF_MODIFY_RETURN:
9e4e01df 19417 case BPF_LSM_MAC:
69fd337a 19418 case BPF_LSM_CGROUP:
fec56f58
AS
19419 case BPF_TRACE_FENTRY:
19420 case BPF_TRACE_FEXIT:
19421 if (!btf_type_is_func(t)) {
efc68158 19422 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
19423 btf_id);
19424 return -EINVAL;
19425 }
be8704ff 19426 if (prog_extension &&
efc68158 19427 btf_check_type_match(log, prog, btf, t))
be8704ff 19428 return -EINVAL;
5b92a28a 19429 t = btf_type_by_id(btf, t->type);
fec56f58
AS
19430 if (!btf_type_is_func_proto(t))
19431 return -EINVAL;
f7b12b6f 19432
4a1e7c0c
THJ
19433 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19434 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19435 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19436 return -EINVAL;
19437
f7b12b6f 19438 if (tgt_prog && conservative)
5b92a28a 19439 t = NULL;
f7b12b6f
THJ
19440
19441 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 19442 if (ret < 0)
f7b12b6f
THJ
19443 return ret;
19444
5b92a28a 19445 if (tgt_prog) {
e9eeec58
YS
19446 if (subprog == 0)
19447 addr = (long) tgt_prog->bpf_func;
19448 else
19449 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a 19450 } else {
31bf1dbc
VM
19451 if (btf_is_module(btf)) {
19452 mod = btf_try_get_module(btf);
19453 if (mod)
19454 addr = find_kallsyms_symbol_value(mod, tname);
19455 else
19456 addr = 0;
19457 } else {
19458 addr = kallsyms_lookup_name(tname);
19459 }
5b92a28a 19460 if (!addr) {
31bf1dbc 19461 module_put(mod);
efc68158 19462 bpf_log(log,
5b92a28a
AS
19463 "The address of function %s cannot be found\n",
19464 tname);
f7b12b6f 19465 return -ENOENT;
5b92a28a 19466 }
fec56f58 19467 }
18644cec 19468
1e6c62a8
AS
19469 if (prog->aux->sleepable) {
19470 ret = -EINVAL;
19471 switch (prog->type) {
19472 case BPF_PROG_TYPE_TRACING:
5b481aca
BT
19473
19474 /* fentry/fexit/fmod_ret progs can be sleepable if they are
1e6c62a8
AS
19475 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19476 */
19477 if (!check_non_sleepable_error_inject(btf_id) &&
19478 within_error_injection_list(addr))
19479 ret = 0;
5b481aca
BT
19480 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
19481 * in the fmodret id set with the KF_SLEEPABLE flag.
19482 */
19483 else {
e924e80e
AG
19484 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19485 prog);
5b481aca
BT
19486
19487 if (flags && (*flags & KF_SLEEPABLE))
19488 ret = 0;
19489 }
1e6c62a8
AS
19490 break;
19491 case BPF_PROG_TYPE_LSM:
19492 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
19493 * Only some of them are sleepable.
19494 */
423f1610 19495 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
19496 ret = 0;
19497 break;
19498 default:
19499 break;
19500 }
f7b12b6f 19501 if (ret) {
31bf1dbc 19502 module_put(mod);
f7b12b6f
THJ
19503 bpf_log(log, "%s is not sleepable\n", tname);
19504 return ret;
19505 }
1e6c62a8 19506 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 19507 if (tgt_prog) {
31bf1dbc 19508 module_put(mod);
efc68158 19509 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
19510 return -EINVAL;
19511 }
5b481aca 19512 ret = -EINVAL;
e924e80e 19513 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
5b481aca
BT
19514 !check_attach_modify_return(addr, tname))
19515 ret = 0;
f7b12b6f 19516 if (ret) {
31bf1dbc 19517 module_put(mod);
f7b12b6f
THJ
19518 bpf_log(log, "%s() is not modifiable\n", tname);
19519 return ret;
1af9270e 19520 }
18644cec 19521 }
f7b12b6f
THJ
19522
19523 break;
19524 }
19525 tgt_info->tgt_addr = addr;
19526 tgt_info->tgt_name = tname;
19527 tgt_info->tgt_type = t;
31bf1dbc 19528 tgt_info->tgt_mod = mod;
f7b12b6f
THJ
19529 return 0;
19530}
19531
35e3815f
JO
19532BTF_SET_START(btf_id_deny)
19533BTF_ID_UNUSED
19534#ifdef CONFIG_SMP
19535BTF_ID(func, migrate_disable)
19536BTF_ID(func, migrate_enable)
19537#endif
19538#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19539BTF_ID(func, rcu_read_unlock_strict)
19540#endif
c11bd046
Y
19541#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19542BTF_ID(func, preempt_count_add)
19543BTF_ID(func, preempt_count_sub)
19544#endif
a0c109dc
YS
19545#ifdef CONFIG_PREEMPT_RCU
19546BTF_ID(func, __rcu_read_lock)
19547BTF_ID(func, __rcu_read_unlock)
19548#endif
35e3815f
JO
19549BTF_SET_END(btf_id_deny)
19550
700e6f85
JO
19551static bool can_be_sleepable(struct bpf_prog *prog)
19552{
19553 if (prog->type == BPF_PROG_TYPE_TRACING) {
19554 switch (prog->expected_attach_type) {
19555 case BPF_TRACE_FENTRY:
19556 case BPF_TRACE_FEXIT:
19557 case BPF_MODIFY_RETURN:
19558 case BPF_TRACE_ITER:
19559 return true;
19560 default:
19561 return false;
19562 }
19563 }
19564 return prog->type == BPF_PROG_TYPE_LSM ||
1e12d3ef
DV
19565 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19566 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
700e6f85
JO
19567}
19568
f7b12b6f
THJ
19569static int check_attach_btf_id(struct bpf_verifier_env *env)
19570{
19571 struct bpf_prog *prog = env->prog;
3aac1ead 19572 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
19573 struct bpf_attach_target_info tgt_info = {};
19574 u32 btf_id = prog->aux->attach_btf_id;
19575 struct bpf_trampoline *tr;
19576 int ret;
19577 u64 key;
19578
79a7f8bd
AS
19579 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19580 if (prog->aux->sleepable)
19581 /* attach_btf_id checked to be zero already */
19582 return 0;
19583 verbose(env, "Syscall programs can only be sleepable\n");
19584 return -EINVAL;
19585 }
19586
700e6f85 19587 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
1e12d3ef 19588 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
f7b12b6f
THJ
19589 return -EINVAL;
19590 }
19591
19592 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19593 return check_struct_ops_btf_id(env);
19594
19595 if (prog->type != BPF_PROG_TYPE_TRACING &&
19596 prog->type != BPF_PROG_TYPE_LSM &&
19597 prog->type != BPF_PROG_TYPE_EXT)
19598 return 0;
19599
19600 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19601 if (ret)
fec56f58 19602 return ret;
f7b12b6f
THJ
19603
19604 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
19605 /* to make freplace equivalent to their targets, they need to
19606 * inherit env->ops and expected_attach_type for the rest of the
19607 * verification
19608 */
f7b12b6f
THJ
19609 env->ops = bpf_verifier_ops[tgt_prog->type];
19610 prog->expected_attach_type = tgt_prog->expected_attach_type;
19611 }
19612
19613 /* store info about the attachment target that will be used later */
19614 prog->aux->attach_func_proto = tgt_info.tgt_type;
19615 prog->aux->attach_func_name = tgt_info.tgt_name;
31bf1dbc 19616 prog->aux->mod = tgt_info.tgt_mod;
f7b12b6f 19617
4a1e7c0c
THJ
19618 if (tgt_prog) {
19619 prog->aux->saved_dst_prog_type = tgt_prog->type;
19620 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19621 }
19622
f7b12b6f
THJ
19623 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19624 prog->aux->attach_btf_trace = true;
19625 return 0;
19626 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19627 if (!bpf_iter_prog_supported(prog))
19628 return -EINVAL;
19629 return 0;
19630 }
19631
19632 if (prog->type == BPF_PROG_TYPE_LSM) {
19633 ret = bpf_lsm_verify_prog(&env->log, prog);
19634 if (ret < 0)
19635 return ret;
35e3815f
JO
19636 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
19637 btf_id_set_contains(&btf_id_deny, btf_id)) {
19638 return -EINVAL;
38207291 19639 }
f7b12b6f 19640
22dc4a0f 19641 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
19642 tr = bpf_trampoline_get(key, &tgt_info);
19643 if (!tr)
19644 return -ENOMEM;
19645
3aac1ead 19646 prog->aux->dst_trampoline = tr;
f7b12b6f 19647 return 0;
38207291
MKL
19648}
19649
76654e67
AM
19650struct btf *bpf_get_btf_vmlinux(void)
19651{
19652 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19653 mutex_lock(&bpf_verifier_lock);
19654 if (!btf_vmlinux)
19655 btf_vmlinux = btf_parse_vmlinux();
19656 mutex_unlock(&bpf_verifier_lock);
19657 }
19658 return btf_vmlinux;
19659}
19660
47a71c1f 19661int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
51580e79 19662{
06ee7115 19663 u64 start_time = ktime_get_ns();
58e2af8b 19664 struct bpf_verifier_env *env;
bdcab414
AN
19665 int i, len, ret = -EINVAL, err;
19666 u32 log_true_size;
e2ae4ca2 19667 bool is_priv;
51580e79 19668
eba0c929
AB
19669 /* no program is valid */
19670 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19671 return -EINVAL;
19672
58e2af8b 19673 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
19674 * allocate/free it every time bpf_check() is called
19675 */
58e2af8b 19676 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
19677 if (!env)
19678 return -ENOMEM;
19679
407958a0
AN
19680 env->bt.env = env;
19681
9e4c24e7 19682 len = (*prog)->len;
fad953ce 19683 env->insn_aux_data =
9e4c24e7 19684 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
19685 ret = -ENOMEM;
19686 if (!env->insn_aux_data)
19687 goto err_free_env;
9e4c24e7
JK
19688 for (i = 0; i < len; i++)
19689 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 19690 env->prog = *prog;
00176a34 19691 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 19692 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 19693 is_priv = bpf_capable();
0246e64d 19694
76654e67 19695 bpf_get_btf_vmlinux();
8580ac94 19696
cbd35700 19697 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
19698 if (!is_priv)
19699 mutex_lock(&bpf_verifier_lock);
cbd35700 19700
bdcab414
AN
19701 /* user could have requested verbose verifier output
19702 * and supplied buffer to store the verification trace
19703 */
19704 ret = bpf_vlog_init(&env->log, attr->log_level,
19705 (char __user *) (unsigned long) attr->log_buf,
19706 attr->log_size);
19707 if (ret)
19708 goto err_unlock;
1ad2f583 19709
0f55f9ed
CL
19710 mark_verifier_state_clean(env);
19711
8580ac94
AS
19712 if (IS_ERR(btf_vmlinux)) {
19713 /* Either gcc or pahole or kernel are broken. */
19714 verbose(env, "in-kernel BTF is malformed\n");
19715 ret = PTR_ERR(btf_vmlinux);
38207291 19716 goto skip_full_check;
8580ac94
AS
19717 }
19718
1ad2f583
DB
19719 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19720 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 19721 env->strict_alignment = true;
e9ee9efc
DM
19722 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19723 env->strict_alignment = false;
cbd35700 19724
2c78ee89 19725 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 19726 env->allow_uninit_stack = bpf_allow_uninit_stack();
2c78ee89
AS
19727 env->bypass_spec_v1 = bpf_bypass_spec_v1();
19728 env->bypass_spec_v4 = bpf_bypass_spec_v4();
19729 env->bpf_capable = bpf_capable();
e2ae4ca2 19730
10d274e8
AS
19731 if (is_priv)
19732 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19733
dc2a4ebc 19734 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 19735 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
19736 GFP_USER);
19737 ret = -ENOMEM;
19738 if (!env->explored_states)
19739 goto skip_full_check;
19740
e6ac2450
MKL
19741 ret = add_subprog_and_kfunc(env);
19742 if (ret < 0)
19743 goto skip_full_check;
19744
d9762e84 19745 ret = check_subprogs(env);
475fb78f
AS
19746 if (ret < 0)
19747 goto skip_full_check;
19748
c454a46b 19749 ret = check_btf_info(env, attr, uattr);
838e9690
YS
19750 if (ret < 0)
19751 goto skip_full_check;
19752
be8704ff
AS
19753 ret = check_attach_btf_id(env);
19754 if (ret)
19755 goto skip_full_check;
19756
4976b718
HL
19757 ret = resolve_pseudo_ldimm64(env);
19758 if (ret < 0)
19759 goto skip_full_check;
19760
9d03ebc7 19761 if (bpf_prog_is_offloaded(env->prog->aux)) {
ceb11679
YZ
19762 ret = bpf_prog_offload_verifier_prep(env->prog);
19763 if (ret)
19764 goto skip_full_check;
19765 }
19766
d9762e84
MKL
19767 ret = check_cfg(env);
19768 if (ret < 0)
19769 goto skip_full_check;
19770
51c39bb1
AS
19771 ret = do_check_subprogs(env);
19772 ret = ret ?: do_check_main(env);
cbd35700 19773
9d03ebc7 19774 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
c941ce9c
QM
19775 ret = bpf_prog_offload_finalize(env);
19776
0246e64d 19777skip_full_check:
51c39bb1 19778 kvfree(env->explored_states);
0246e64d 19779
c131187d 19780 if (ret == 0)
9b38c405 19781 ret = check_max_stack_depth(env);
c131187d 19782
9b38c405 19783 /* instruction rewrites happen after this point */
1ade2371
EZ
19784 if (ret == 0)
19785 ret = optimize_bpf_loop(env);
19786
e2ae4ca2
JK
19787 if (is_priv) {
19788 if (ret == 0)
19789 opt_hard_wire_dead_code_branches(env);
52875a04
JK
19790 if (ret == 0)
19791 ret = opt_remove_dead_code(env);
a1b14abc
JK
19792 if (ret == 0)
19793 ret = opt_remove_nops(env);
52875a04
JK
19794 } else {
19795 if (ret == 0)
19796 sanitize_dead_code(env);
e2ae4ca2
JK
19797 }
19798
9bac3d6d
AS
19799 if (ret == 0)
19800 /* program is valid, convert *(u32*)(ctx + off) accesses */
19801 ret = convert_ctx_accesses(env);
19802
e245c5c6 19803 if (ret == 0)
e6ac5933 19804 ret = do_misc_fixups(env);
e245c5c6 19805
a4b1d3c1
JW
19806 /* do 32-bit optimization after insn patching has done so those patched
19807 * insns could be handled correctly.
19808 */
9d03ebc7 19809 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
d6c2308c
JW
19810 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19811 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19812 : false;
a4b1d3c1
JW
19813 }
19814
1ea47e01
AS
19815 if (ret == 0)
19816 ret = fixup_call_args(env);
19817
06ee7115
AS
19818 env->verification_time = ktime_get_ns() - start_time;
19819 print_verification_stats(env);
aba64c7d 19820 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 19821
bdcab414
AN
19822 /* preserve original error even if log finalization is successful */
19823 err = bpf_vlog_finalize(&env->log, &log_true_size);
19824 if (err)
19825 ret = err;
19826
47a71c1f
AN
19827 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19828 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
bdcab414 19829 &log_true_size, sizeof(log_true_size))) {
47a71c1f
AN
19830 ret = -EFAULT;
19831 goto err_release_maps;
19832 }
cbd35700 19833
541c3bad
AN
19834 if (ret)
19835 goto err_release_maps;
19836
19837 if (env->used_map_cnt) {
0246e64d 19838 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
19839 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19840 sizeof(env->used_maps[0]),
19841 GFP_KERNEL);
0246e64d 19842
9bac3d6d 19843 if (!env->prog->aux->used_maps) {
0246e64d 19844 ret = -ENOMEM;
a2a7d570 19845 goto err_release_maps;
0246e64d
AS
19846 }
19847
9bac3d6d 19848 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 19849 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 19850 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
19851 }
19852 if (env->used_btf_cnt) {
19853 /* if program passed verifier, update used_btfs in bpf_prog_aux */
19854 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19855 sizeof(env->used_btfs[0]),
19856 GFP_KERNEL);
19857 if (!env->prog->aux->used_btfs) {
19858 ret = -ENOMEM;
19859 goto err_release_maps;
19860 }
0246e64d 19861
541c3bad
AN
19862 memcpy(env->prog->aux->used_btfs, env->used_btfs,
19863 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19864 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19865 }
19866 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
19867 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
19868 * bpf_ld_imm64 instructions
19869 */
19870 convert_pseudo_ld_imm64(env);
19871 }
cbd35700 19872
541c3bad 19873 adjust_btf_func(env);
ba64e7d8 19874
a2a7d570 19875err_release_maps:
9bac3d6d 19876 if (!env->prog->aux->used_maps)
0246e64d 19877 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 19878 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
19879 */
19880 release_maps(env);
541c3bad
AN
19881 if (!env->prog->aux->used_btfs)
19882 release_btfs(env);
03f87c0b
THJ
19883
19884 /* extension progs temporarily inherit the attach_type of their targets
19885 for verification purposes, so set it back to zero before returning
19886 */
19887 if (env->prog->type == BPF_PROG_TYPE_EXT)
19888 env->prog->expected_attach_type = 0;
19889
9bac3d6d 19890 *prog = env->prog;
3df126f3 19891err_unlock:
45a73c17
AS
19892 if (!is_priv)
19893 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
19894 vfree(env->insn_aux_data);
19895err_free_env:
19896 kfree(env);
51580e79
AS
19897 return ret;
19898}