bpf: improve verifier branch analysis
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
14#include <linux/kernel.h>
15#include <linux/types.h>
16#include <linux/slab.h>
17#include <linux/bpf.h>
58e2af8b 18#include <linux/bpf_verifier.h>
51580e79
AS
19#include <linux/filter.h>
20#include <net/netlink.h>
21#include <linux/file.h>
22#include <linux/vmalloc.h>
ebb676da 23#include <linux/stringify.h>
cc8b0b92
AS
24#include <linux/bsearch.h>
25#include <linux/sort.h>
c195651e 26#include <linux/perf_event.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34
JK
30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31#define BPF_PROG_TYPE(_id, _name) \
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
34#include <linux/bpf_types.h>
35#undef BPF_PROG_TYPE
36#undef BPF_MAP_TYPE
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
cbd35700
AS
174};
175
8e17c1b1 176#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
177#define BPF_COMPLEXITY_LIMIT_STACK 1024
178
c93552c4
DB
179#define BPF_MAP_PTR_UNPRIV 1UL
180#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
181 POISON_POINTER_DELTA))
182#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183
184static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185{
186 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
187}
188
189static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190{
191 return aux->map_state & BPF_MAP_PTR_UNPRIV;
192}
193
194static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 const struct bpf_map *map, bool unpriv)
196{
197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 unpriv |= bpf_map_ptr_unpriv(aux);
199 aux->map_state = (unsigned long)map |
200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201}
fad73a1a 202
33ff9823
DB
203struct bpf_call_arg_meta {
204 struct bpf_map *map_ptr;
435faee1 205 bool raw_mode;
36bbef52 206 bool pkt_access;
435faee1
DB
207 int regno;
208 int access_size;
849fa506
YS
209 s64 msize_smax_value;
210 u64 msize_umax_value;
fd978bf7 211 int ptr_id;
33ff9823
DB
212};
213
cbd35700
AS
214static DEFINE_MUTEX(bpf_verifier_lock);
215
77d2e05a
MKL
216void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
217 va_list args)
cbd35700 218{
a2a7d570 219 unsigned int n;
cbd35700 220
a2a7d570 221 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
222
223 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
224 "verifier log line truncated - local buffer too short\n");
225
226 n = min(log->len_total - log->len_used - 1, n);
227 log->kbuf[n] = '\0';
228
229 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
230 log->len_used += n;
231 else
232 log->ubuf = NULL;
cbd35700 233}
abe08840
JO
234
235/* log_level controls verbosity level of eBPF verifier.
236 * bpf_verifier_log_write() is used to dump the verification trace to the log,
237 * so the user can figure out what's wrong with the program
430e68d1 238 */
abe08840
JO
239__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
240 const char *fmt, ...)
241{
242 va_list args;
243
77d2e05a
MKL
244 if (!bpf_verifier_log_needed(&env->log))
245 return;
246
abe08840 247 va_start(args, fmt);
77d2e05a 248 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
249 va_end(args);
250}
251EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
252
253__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
254{
77d2e05a 255 struct bpf_verifier_env *env = private_data;
abe08840
JO
256 va_list args;
257
77d2e05a
MKL
258 if (!bpf_verifier_log_needed(&env->log))
259 return;
260
abe08840 261 va_start(args, fmt);
77d2e05a 262 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
263 va_end(args);
264}
cbd35700 265
de8f3a83
DB
266static bool type_is_pkt_pointer(enum bpf_reg_type type)
267{
268 return type == PTR_TO_PACKET ||
269 type == PTR_TO_PACKET_META;
270}
271
840b9615
JS
272static bool reg_type_may_be_null(enum bpf_reg_type type)
273{
fd978bf7
JS
274 return type == PTR_TO_MAP_VALUE_OR_NULL ||
275 type == PTR_TO_SOCKET_OR_NULL;
276}
277
278static bool type_is_refcounted(enum bpf_reg_type type)
279{
280 return type == PTR_TO_SOCKET;
281}
282
283static bool type_is_refcounted_or_null(enum bpf_reg_type type)
284{
285 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
286}
287
288static bool reg_is_refcounted(const struct bpf_reg_state *reg)
289{
290 return type_is_refcounted(reg->type);
291}
292
293static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
294{
295 return type_is_refcounted_or_null(reg->type);
296}
297
298static bool arg_type_is_refcounted(enum bpf_arg_type type)
299{
300 return type == ARG_PTR_TO_SOCKET;
301}
302
303/* Determine whether the function releases some resources allocated by another
304 * function call. The first reference type argument will be assumed to be
305 * released by release_reference().
306 */
307static bool is_release_function(enum bpf_func_id func_id)
308{
6acc9b43 309 return func_id == BPF_FUNC_sk_release;
840b9615
JS
310}
311
17a52670
AS
312/* string representation of 'enum bpf_reg_type' */
313static const char * const reg_type_str[] = {
314 [NOT_INIT] = "?",
f1174f77 315 [SCALAR_VALUE] = "inv",
17a52670
AS
316 [PTR_TO_CTX] = "ctx",
317 [CONST_PTR_TO_MAP] = "map_ptr",
318 [PTR_TO_MAP_VALUE] = "map_value",
319 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 320 [PTR_TO_STACK] = "fp",
969bf05e 321 [PTR_TO_PACKET] = "pkt",
de8f3a83 322 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 323 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 324 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
325 [PTR_TO_SOCKET] = "sock",
326 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
327};
328
8efea21d
EC
329static char slot_type_char[] = {
330 [STACK_INVALID] = '?',
331 [STACK_SPILL] = 'r',
332 [STACK_MISC] = 'm',
333 [STACK_ZERO] = '0',
334};
335
4e92024a
AS
336static void print_liveness(struct bpf_verifier_env *env,
337 enum bpf_reg_liveness live)
338{
339 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
340 verbose(env, "_");
341 if (live & REG_LIVE_READ)
342 verbose(env, "r");
343 if (live & REG_LIVE_WRITTEN)
344 verbose(env, "w");
345}
346
f4d7e40a
AS
347static struct bpf_func_state *func(struct bpf_verifier_env *env,
348 const struct bpf_reg_state *reg)
349{
350 struct bpf_verifier_state *cur = env->cur_state;
351
352 return cur->frame[reg->frameno];
353}
354
61bd5218 355static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 356 const struct bpf_func_state *state)
17a52670 357{
f4d7e40a 358 const struct bpf_reg_state *reg;
17a52670
AS
359 enum bpf_reg_type t;
360 int i;
361
f4d7e40a
AS
362 if (state->frameno)
363 verbose(env, " frame%d:", state->frameno);
17a52670 364 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
365 reg = &state->regs[i];
366 t = reg->type;
17a52670
AS
367 if (t == NOT_INIT)
368 continue;
4e92024a
AS
369 verbose(env, " R%d", i);
370 print_liveness(env, reg->live);
371 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
372 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
373 tnum_is_const(reg->var_off)) {
374 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 375 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
376 if (t == PTR_TO_STACK)
377 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 378 } else {
61bd5218 379 verbose(env, "(id=%d", reg->id);
f1174f77 380 if (t != SCALAR_VALUE)
61bd5218 381 verbose(env, ",off=%d", reg->off);
de8f3a83 382 if (type_is_pkt_pointer(t))
61bd5218 383 verbose(env, ",r=%d", reg->range);
f1174f77
EC
384 else if (t == CONST_PTR_TO_MAP ||
385 t == PTR_TO_MAP_VALUE ||
386 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 387 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
388 reg->map_ptr->key_size,
389 reg->map_ptr->value_size);
7d1238f2
EC
390 if (tnum_is_const(reg->var_off)) {
391 /* Typically an immediate SCALAR_VALUE, but
392 * could be a pointer whose offset is too big
393 * for reg->off
394 */
61bd5218 395 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
396 } else {
397 if (reg->smin_value != reg->umin_value &&
398 reg->smin_value != S64_MIN)
61bd5218 399 verbose(env, ",smin_value=%lld",
7d1238f2
EC
400 (long long)reg->smin_value);
401 if (reg->smax_value != reg->umax_value &&
402 reg->smax_value != S64_MAX)
61bd5218 403 verbose(env, ",smax_value=%lld",
7d1238f2
EC
404 (long long)reg->smax_value);
405 if (reg->umin_value != 0)
61bd5218 406 verbose(env, ",umin_value=%llu",
7d1238f2
EC
407 (unsigned long long)reg->umin_value);
408 if (reg->umax_value != U64_MAX)
61bd5218 409 verbose(env, ",umax_value=%llu",
7d1238f2
EC
410 (unsigned long long)reg->umax_value);
411 if (!tnum_is_unknown(reg->var_off)) {
412 char tn_buf[48];
f1174f77 413
7d1238f2 414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 415 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 416 }
f1174f77 417 }
61bd5218 418 verbose(env, ")");
f1174f77 419 }
17a52670 420 }
638f5b90 421 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
422 char types_buf[BPF_REG_SIZE + 1];
423 bool valid = false;
424 int j;
425
426 for (j = 0; j < BPF_REG_SIZE; j++) {
427 if (state->stack[i].slot_type[j] != STACK_INVALID)
428 valid = true;
429 types_buf[j] = slot_type_char[
430 state->stack[i].slot_type[j]];
431 }
432 types_buf[BPF_REG_SIZE] = 0;
433 if (!valid)
434 continue;
435 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
436 print_liveness(env, state->stack[i].spilled_ptr.live);
437 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 438 verbose(env, "=%s",
638f5b90 439 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
440 else
441 verbose(env, "=%s", types_buf);
17a52670 442 }
fd978bf7
JS
443 if (state->acquired_refs && state->refs[0].id) {
444 verbose(env, " refs=%d", state->refs[0].id);
445 for (i = 1; i < state->acquired_refs; i++)
446 if (state->refs[i].id)
447 verbose(env, ",%d", state->refs[i].id);
448 }
61bd5218 449 verbose(env, "\n");
17a52670
AS
450}
451
84dbf350
JS
452#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
453static int copy_##NAME##_state(struct bpf_func_state *dst, \
454 const struct bpf_func_state *src) \
455{ \
456 if (!src->FIELD) \
457 return 0; \
458 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
459 /* internal bug, make state invalid to reject the program */ \
460 memset(dst, 0, sizeof(*dst)); \
461 return -EFAULT; \
462 } \
463 memcpy(dst->FIELD, src->FIELD, \
464 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
465 return 0; \
638f5b90 466}
fd978bf7
JS
467/* copy_reference_state() */
468COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
469/* copy_stack_state() */
470COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
471#undef COPY_STATE_FN
472
473#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
474static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
475 bool copy_old) \
476{ \
477 u32 old_size = state->COUNT; \
478 struct bpf_##NAME##_state *new_##FIELD; \
479 int slot = size / SIZE; \
480 \
481 if (size <= old_size || !size) { \
482 if (copy_old) \
483 return 0; \
484 state->COUNT = slot * SIZE; \
485 if (!size && old_size) { \
486 kfree(state->FIELD); \
487 state->FIELD = NULL; \
488 } \
489 return 0; \
490 } \
491 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
492 GFP_KERNEL); \
493 if (!new_##FIELD) \
494 return -ENOMEM; \
495 if (copy_old) { \
496 if (state->FIELD) \
497 memcpy(new_##FIELD, state->FIELD, \
498 sizeof(*new_##FIELD) * (old_size / SIZE)); \
499 memset(new_##FIELD + old_size / SIZE, 0, \
500 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
501 } \
502 state->COUNT = slot * SIZE; \
503 kfree(state->FIELD); \
504 state->FIELD = new_##FIELD; \
505 return 0; \
506}
fd978bf7
JS
507/* realloc_reference_state() */
508REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
509/* realloc_stack_state() */
510REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
511#undef REALLOC_STATE_FN
638f5b90
AS
512
513/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
514 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 515 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
516 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
517 * which realloc_stack_state() copies over. It points to previous
518 * bpf_verifier_state which is never reallocated.
638f5b90 519 */
fd978bf7
JS
520static int realloc_func_state(struct bpf_func_state *state, int stack_size,
521 int refs_size, bool copy_old)
638f5b90 522{
fd978bf7
JS
523 int err = realloc_reference_state(state, refs_size, copy_old);
524 if (err)
525 return err;
526 return realloc_stack_state(state, stack_size, copy_old);
527}
528
529/* Acquire a pointer id from the env and update the state->refs to include
530 * this new pointer reference.
531 * On success, returns a valid pointer id to associate with the register
532 * On failure, returns a negative errno.
638f5b90 533 */
fd978bf7 534static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 535{
fd978bf7
JS
536 struct bpf_func_state *state = cur_func(env);
537 int new_ofs = state->acquired_refs;
538 int id, err;
539
540 err = realloc_reference_state(state, state->acquired_refs + 1, true);
541 if (err)
542 return err;
543 id = ++env->id_gen;
544 state->refs[new_ofs].id = id;
545 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 546
fd978bf7
JS
547 return id;
548}
549
550/* release function corresponding to acquire_reference_state(). Idempotent. */
551static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
552{
553 int i, last_idx;
554
555 if (!ptr_id)
556 return -EFAULT;
557
558 last_idx = state->acquired_refs - 1;
559 for (i = 0; i < state->acquired_refs; i++) {
560 if (state->refs[i].id == ptr_id) {
561 if (last_idx && i != last_idx)
562 memcpy(&state->refs[i], &state->refs[last_idx],
563 sizeof(*state->refs));
564 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
565 state->acquired_refs--;
638f5b90 566 return 0;
638f5b90 567 }
638f5b90 568 }
fd978bf7
JS
569 return -EFAULT;
570}
571
572/* variation on the above for cases where we expect that there must be an
573 * outstanding reference for the specified ptr_id.
574 */
575static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
576{
577 struct bpf_func_state *state = cur_func(env);
578 int err;
579
580 err = __release_reference_state(state, ptr_id);
581 if (WARN_ON_ONCE(err != 0))
582 verbose(env, "verifier internal error: can't release reference\n");
583 return err;
584}
585
586static int transfer_reference_state(struct bpf_func_state *dst,
587 struct bpf_func_state *src)
588{
589 int err = realloc_reference_state(dst, src->acquired_refs, false);
590 if (err)
591 return err;
592 err = copy_reference_state(dst, src);
593 if (err)
594 return err;
638f5b90
AS
595 return 0;
596}
597
f4d7e40a
AS
598static void free_func_state(struct bpf_func_state *state)
599{
5896351e
AS
600 if (!state)
601 return;
fd978bf7 602 kfree(state->refs);
f4d7e40a
AS
603 kfree(state->stack);
604 kfree(state);
605}
606
1969db47
AS
607static void free_verifier_state(struct bpf_verifier_state *state,
608 bool free_self)
638f5b90 609{
f4d7e40a
AS
610 int i;
611
612 for (i = 0; i <= state->curframe; i++) {
613 free_func_state(state->frame[i]);
614 state->frame[i] = NULL;
615 }
1969db47
AS
616 if (free_self)
617 kfree(state);
638f5b90
AS
618}
619
620/* copy verifier state from src to dst growing dst stack space
621 * when necessary to accommodate larger src stack
622 */
f4d7e40a
AS
623static int copy_func_state(struct bpf_func_state *dst,
624 const struct bpf_func_state *src)
638f5b90
AS
625{
626 int err;
627
fd978bf7
JS
628 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
629 false);
630 if (err)
631 return err;
632 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
633 err = copy_reference_state(dst, src);
638f5b90
AS
634 if (err)
635 return err;
638f5b90
AS
636 return copy_stack_state(dst, src);
637}
638
f4d7e40a
AS
639static int copy_verifier_state(struct bpf_verifier_state *dst_state,
640 const struct bpf_verifier_state *src)
641{
642 struct bpf_func_state *dst;
643 int i, err;
644
645 /* if dst has more stack frames then src frame, free them */
646 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
647 free_func_state(dst_state->frame[i]);
648 dst_state->frame[i] = NULL;
649 }
650 dst_state->curframe = src->curframe;
f4d7e40a
AS
651 for (i = 0; i <= src->curframe; i++) {
652 dst = dst_state->frame[i];
653 if (!dst) {
654 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
655 if (!dst)
656 return -ENOMEM;
657 dst_state->frame[i] = dst;
658 }
659 err = copy_func_state(dst, src->frame[i]);
660 if (err)
661 return err;
662 }
663 return 0;
664}
665
638f5b90
AS
666static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
667 int *insn_idx)
668{
669 struct bpf_verifier_state *cur = env->cur_state;
670 struct bpf_verifier_stack_elem *elem, *head = env->head;
671 int err;
17a52670
AS
672
673 if (env->head == NULL)
638f5b90 674 return -ENOENT;
17a52670 675
638f5b90
AS
676 if (cur) {
677 err = copy_verifier_state(cur, &head->st);
678 if (err)
679 return err;
680 }
681 if (insn_idx)
682 *insn_idx = head->insn_idx;
17a52670 683 if (prev_insn_idx)
638f5b90
AS
684 *prev_insn_idx = head->prev_insn_idx;
685 elem = head->next;
1969db47 686 free_verifier_state(&head->st, false);
638f5b90 687 kfree(head);
17a52670
AS
688 env->head = elem;
689 env->stack_size--;
638f5b90 690 return 0;
17a52670
AS
691}
692
58e2af8b
JK
693static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
694 int insn_idx, int prev_insn_idx)
17a52670 695{
638f5b90 696 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 697 struct bpf_verifier_stack_elem *elem;
638f5b90 698 int err;
17a52670 699
638f5b90 700 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
701 if (!elem)
702 goto err;
703
17a52670
AS
704 elem->insn_idx = insn_idx;
705 elem->prev_insn_idx = prev_insn_idx;
706 elem->next = env->head;
707 env->head = elem;
708 env->stack_size++;
1969db47
AS
709 err = copy_verifier_state(&elem->st, cur);
710 if (err)
711 goto err;
07016151 712 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 713 verbose(env, "BPF program is too complex\n");
17a52670
AS
714 goto err;
715 }
716 return &elem->st;
717err:
5896351e
AS
718 free_verifier_state(env->cur_state, true);
719 env->cur_state = NULL;
17a52670 720 /* pop all elements and return */
638f5b90 721 while (!pop_stack(env, NULL, NULL));
17a52670
AS
722 return NULL;
723}
724
725#define CALLER_SAVED_REGS 6
726static const int caller_saved[CALLER_SAVED_REGS] = {
727 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
728};
729
f1174f77
EC
730static void __mark_reg_not_init(struct bpf_reg_state *reg);
731
b03c9f9f
EC
732/* Mark the unknown part of a register (variable offset or scalar value) as
733 * known to have the value @imm.
734 */
735static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
736{
a9c676bc
AS
737 /* Clear id, off, and union(map_ptr, range) */
738 memset(((u8 *)reg) + sizeof(reg->type), 0,
739 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
740 reg->var_off = tnum_const(imm);
741 reg->smin_value = (s64)imm;
742 reg->smax_value = (s64)imm;
743 reg->umin_value = imm;
744 reg->umax_value = imm;
745}
746
f1174f77
EC
747/* Mark the 'variable offset' part of a register as zero. This should be
748 * used only on registers holding a pointer type.
749 */
750static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 751{
b03c9f9f 752 __mark_reg_known(reg, 0);
f1174f77 753}
a9789ef9 754
cc2b14d5
AS
755static void __mark_reg_const_zero(struct bpf_reg_state *reg)
756{
757 __mark_reg_known(reg, 0);
cc2b14d5
AS
758 reg->type = SCALAR_VALUE;
759}
760
61bd5218
JK
761static void mark_reg_known_zero(struct bpf_verifier_env *env,
762 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
763{
764 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 765 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
766 /* Something bad happened, let's kill all regs */
767 for (regno = 0; regno < MAX_BPF_REG; regno++)
768 __mark_reg_not_init(regs + regno);
769 return;
770 }
771 __mark_reg_known_zero(regs + regno);
772}
773
de8f3a83
DB
774static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
775{
776 return type_is_pkt_pointer(reg->type);
777}
778
779static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
780{
781 return reg_is_pkt_pointer(reg) ||
782 reg->type == PTR_TO_PACKET_END;
783}
784
785/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
786static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
787 enum bpf_reg_type which)
788{
789 /* The register can already have a range from prior markings.
790 * This is fine as long as it hasn't been advanced from its
791 * origin.
792 */
793 return reg->type == which &&
794 reg->id == 0 &&
795 reg->off == 0 &&
796 tnum_equals_const(reg->var_off, 0);
797}
798
b03c9f9f
EC
799/* Attempts to improve min/max values based on var_off information */
800static void __update_reg_bounds(struct bpf_reg_state *reg)
801{
802 /* min signed is max(sign bit) | min(other bits) */
803 reg->smin_value = max_t(s64, reg->smin_value,
804 reg->var_off.value | (reg->var_off.mask & S64_MIN));
805 /* max signed is min(sign bit) | max(other bits) */
806 reg->smax_value = min_t(s64, reg->smax_value,
807 reg->var_off.value | (reg->var_off.mask & S64_MAX));
808 reg->umin_value = max(reg->umin_value, reg->var_off.value);
809 reg->umax_value = min(reg->umax_value,
810 reg->var_off.value | reg->var_off.mask);
811}
812
813/* Uses signed min/max values to inform unsigned, and vice-versa */
814static void __reg_deduce_bounds(struct bpf_reg_state *reg)
815{
816 /* Learn sign from signed bounds.
817 * If we cannot cross the sign boundary, then signed and unsigned bounds
818 * are the same, so combine. This works even in the negative case, e.g.
819 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
820 */
821 if (reg->smin_value >= 0 || reg->smax_value < 0) {
822 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
823 reg->umin_value);
824 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
825 reg->umax_value);
826 return;
827 }
828 /* Learn sign from unsigned bounds. Signed bounds cross the sign
829 * boundary, so we must be careful.
830 */
831 if ((s64)reg->umax_value >= 0) {
832 /* Positive. We can't learn anything from the smin, but smax
833 * is positive, hence safe.
834 */
835 reg->smin_value = reg->umin_value;
836 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
837 reg->umax_value);
838 } else if ((s64)reg->umin_value < 0) {
839 /* Negative. We can't learn anything from the smax, but smin
840 * is negative, hence safe.
841 */
842 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
843 reg->umin_value);
844 reg->smax_value = reg->umax_value;
845 }
846}
847
848/* Attempts to improve var_off based on unsigned min/max information */
849static void __reg_bound_offset(struct bpf_reg_state *reg)
850{
851 reg->var_off = tnum_intersect(reg->var_off,
852 tnum_range(reg->umin_value,
853 reg->umax_value));
854}
855
856/* Reset the min/max bounds of a register */
857static void __mark_reg_unbounded(struct bpf_reg_state *reg)
858{
859 reg->smin_value = S64_MIN;
860 reg->smax_value = S64_MAX;
861 reg->umin_value = 0;
862 reg->umax_value = U64_MAX;
863}
864
f1174f77
EC
865/* Mark a register as having a completely unknown (scalar) value. */
866static void __mark_reg_unknown(struct bpf_reg_state *reg)
867{
a9c676bc
AS
868 /*
869 * Clear type, id, off, and union(map_ptr, range) and
870 * padding between 'type' and union
871 */
872 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 873 reg->type = SCALAR_VALUE;
f1174f77 874 reg->var_off = tnum_unknown;
f4d7e40a 875 reg->frameno = 0;
b03c9f9f 876 __mark_reg_unbounded(reg);
f1174f77
EC
877}
878
61bd5218
JK
879static void mark_reg_unknown(struct bpf_verifier_env *env,
880 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
881{
882 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 883 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
884 /* Something bad happened, let's kill all regs except FP */
885 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
886 __mark_reg_not_init(regs + regno);
887 return;
888 }
889 __mark_reg_unknown(regs + regno);
890}
891
892static void __mark_reg_not_init(struct bpf_reg_state *reg)
893{
894 __mark_reg_unknown(reg);
895 reg->type = NOT_INIT;
896}
897
61bd5218
JK
898static void mark_reg_not_init(struct bpf_verifier_env *env,
899 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
900{
901 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 902 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
903 /* Something bad happened, let's kill all regs except FP */
904 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
905 __mark_reg_not_init(regs + regno);
906 return;
907 }
908 __mark_reg_not_init(regs + regno);
a9789ef9
DB
909}
910
61bd5218 911static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 912 struct bpf_func_state *state)
17a52670 913{
f4d7e40a 914 struct bpf_reg_state *regs = state->regs;
17a52670
AS
915 int i;
916
dc503a8a 917 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 918 mark_reg_not_init(env, regs, i);
dc503a8a 919 regs[i].live = REG_LIVE_NONE;
679c782d 920 regs[i].parent = NULL;
dc503a8a 921 }
17a52670
AS
922
923 /* frame pointer */
f1174f77 924 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 925 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 926 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
927
928 /* 1st arg to a function */
929 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 930 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
931}
932
f4d7e40a
AS
933#define BPF_MAIN_FUNC (-1)
934static void init_func_state(struct bpf_verifier_env *env,
935 struct bpf_func_state *state,
936 int callsite, int frameno, int subprogno)
937{
938 state->callsite = callsite;
939 state->frameno = frameno;
940 state->subprogno = subprogno;
941 init_reg_state(env, state);
942}
943
17a52670
AS
944enum reg_arg_type {
945 SRC_OP, /* register is used as source operand */
946 DST_OP, /* register is used as destination operand */
947 DST_OP_NO_MARK /* same as above, check only, don't mark */
948};
949
cc8b0b92
AS
950static int cmp_subprogs(const void *a, const void *b)
951{
9c8105bd
JW
952 return ((struct bpf_subprog_info *)a)->start -
953 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
954}
955
956static int find_subprog(struct bpf_verifier_env *env, int off)
957{
9c8105bd 958 struct bpf_subprog_info *p;
cc8b0b92 959
9c8105bd
JW
960 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
961 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
962 if (!p)
963 return -ENOENT;
9c8105bd 964 return p - env->subprog_info;
cc8b0b92
AS
965
966}
967
968static int add_subprog(struct bpf_verifier_env *env, int off)
969{
970 int insn_cnt = env->prog->len;
971 int ret;
972
973 if (off >= insn_cnt || off < 0) {
974 verbose(env, "call to invalid destination\n");
975 return -EINVAL;
976 }
977 ret = find_subprog(env, off);
978 if (ret >= 0)
979 return 0;
4cb3d99c 980 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
981 verbose(env, "too many subprograms\n");
982 return -E2BIG;
983 }
9c8105bd
JW
984 env->subprog_info[env->subprog_cnt++].start = off;
985 sort(env->subprog_info, env->subprog_cnt,
986 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
987 return 0;
988}
989
990static int check_subprogs(struct bpf_verifier_env *env)
991{
992 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 993 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
994 struct bpf_insn *insn = env->prog->insnsi;
995 int insn_cnt = env->prog->len;
996
f910cefa
JW
997 /* Add entry function. */
998 ret = add_subprog(env, 0);
999 if (ret < 0)
1000 return ret;
1001
cc8b0b92
AS
1002 /* determine subprog starts. The end is one before the next starts */
1003 for (i = 0; i < insn_cnt; i++) {
1004 if (insn[i].code != (BPF_JMP | BPF_CALL))
1005 continue;
1006 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1007 continue;
1008 if (!env->allow_ptr_leaks) {
1009 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1010 return -EPERM;
1011 }
cc8b0b92
AS
1012 ret = add_subprog(env, i + insn[i].imm + 1);
1013 if (ret < 0)
1014 return ret;
1015 }
1016
4cb3d99c
JW
1017 /* Add a fake 'exit' subprog which could simplify subprog iteration
1018 * logic. 'subprog_cnt' should not be increased.
1019 */
1020 subprog[env->subprog_cnt].start = insn_cnt;
1021
cc8b0b92
AS
1022 if (env->log.level > 1)
1023 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1024 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1025
1026 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1027 subprog_start = subprog[cur_subprog].start;
1028 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1029 for (i = 0; i < insn_cnt; i++) {
1030 u8 code = insn[i].code;
1031
1032 if (BPF_CLASS(code) != BPF_JMP)
1033 goto next;
1034 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1035 goto next;
1036 off = i + insn[i].off + 1;
1037 if (off < subprog_start || off >= subprog_end) {
1038 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1039 return -EINVAL;
1040 }
1041next:
1042 if (i == subprog_end - 1) {
1043 /* to avoid fall-through from one subprog into another
1044 * the last insn of the subprog should be either exit
1045 * or unconditional jump back
1046 */
1047 if (code != (BPF_JMP | BPF_EXIT) &&
1048 code != (BPF_JMP | BPF_JA)) {
1049 verbose(env, "last insn is not an exit or jmp\n");
1050 return -EINVAL;
1051 }
1052 subprog_start = subprog_end;
4cb3d99c
JW
1053 cur_subprog++;
1054 if (cur_subprog < env->subprog_cnt)
9c8105bd 1055 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1056 }
1057 }
1058 return 0;
1059}
1060
679c782d
EC
1061/* Parentage chain of this register (or stack slot) should take care of all
1062 * issues like callee-saved registers, stack slot allocation time, etc.
1063 */
f4d7e40a 1064static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1065 const struct bpf_reg_state *state,
1066 struct bpf_reg_state *parent)
f4d7e40a
AS
1067{
1068 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1069
1070 while (parent) {
1071 /* if read wasn't screened by an earlier write ... */
679c782d 1072 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a
EC
1073 break;
1074 /* ... then we depend on parent's value */
679c782d 1075 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1076 state = parent;
1077 parent = state->parent;
f4d7e40a 1078 writes = true;
dc503a8a 1079 }
f4d7e40a 1080 return 0;
dc503a8a
EC
1081}
1082
1083static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1084 enum reg_arg_type t)
1085{
f4d7e40a
AS
1086 struct bpf_verifier_state *vstate = env->cur_state;
1087 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1088 struct bpf_reg_state *regs = state->regs;
dc503a8a 1089
17a52670 1090 if (regno >= MAX_BPF_REG) {
61bd5218 1091 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1092 return -EINVAL;
1093 }
1094
1095 if (t == SRC_OP) {
1096 /* check whether register used as source operand can be read */
1097 if (regs[regno].type == NOT_INIT) {
61bd5218 1098 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1099 return -EACCES;
1100 }
679c782d
EC
1101 /* We don't need to worry about FP liveness because it's read-only */
1102 if (regno != BPF_REG_FP)
1103 return mark_reg_read(env, &regs[regno],
1104 regs[regno].parent);
17a52670
AS
1105 } else {
1106 /* check whether register used as dest operand can be written to */
1107 if (regno == BPF_REG_FP) {
61bd5218 1108 verbose(env, "frame pointer is read only\n");
17a52670
AS
1109 return -EACCES;
1110 }
dc503a8a 1111 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1112 if (t == DST_OP)
61bd5218 1113 mark_reg_unknown(env, regs, regno);
17a52670
AS
1114 }
1115 return 0;
1116}
1117
1be7f75d
AS
1118static bool is_spillable_regtype(enum bpf_reg_type type)
1119{
1120 switch (type) {
1121 case PTR_TO_MAP_VALUE:
1122 case PTR_TO_MAP_VALUE_OR_NULL:
1123 case PTR_TO_STACK:
1124 case PTR_TO_CTX:
969bf05e 1125 case PTR_TO_PACKET:
de8f3a83 1126 case PTR_TO_PACKET_META:
969bf05e 1127 case PTR_TO_PACKET_END:
d58e468b 1128 case PTR_TO_FLOW_KEYS:
1be7f75d 1129 case CONST_PTR_TO_MAP:
c64b7983
JS
1130 case PTR_TO_SOCKET:
1131 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1132 return true;
1133 default:
1134 return false;
1135 }
1136}
1137
cc2b14d5
AS
1138/* Does this register contain a constant zero? */
1139static bool register_is_null(struct bpf_reg_state *reg)
1140{
1141 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1142}
1143
17a52670
AS
1144/* check_stack_read/write functions track spill/fill of registers,
1145 * stack boundary and alignment are checked in check_mem_access()
1146 */
61bd5218 1147static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1148 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1149 int off, int size, int value_regno, int insn_idx)
17a52670 1150{
f4d7e40a 1151 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1152 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1153 enum bpf_reg_type type;
638f5b90 1154
f4d7e40a 1155 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1156 state->acquired_refs, true);
638f5b90
AS
1157 if (err)
1158 return err;
9c399760
AS
1159 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1160 * so it's aligned access and [off, off + size) are within stack limits
1161 */
638f5b90
AS
1162 if (!env->allow_ptr_leaks &&
1163 state->stack[spi].slot_type[0] == STACK_SPILL &&
1164 size != BPF_REG_SIZE) {
1165 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1166 return -EACCES;
1167 }
17a52670 1168
f4d7e40a 1169 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1170 if (value_regno >= 0 &&
f4d7e40a 1171 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1172
1173 /* register containing pointer is being spilled into stack */
9c399760 1174 if (size != BPF_REG_SIZE) {
61bd5218 1175 verbose(env, "invalid size of register spill\n");
17a52670
AS
1176 return -EACCES;
1177 }
1178
f4d7e40a
AS
1179 if (state != cur && type == PTR_TO_STACK) {
1180 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1181 return -EINVAL;
1182 }
1183
17a52670 1184 /* save register state */
f4d7e40a 1185 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1186 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1187
af86ca4e
AS
1188 for (i = 0; i < BPF_REG_SIZE; i++) {
1189 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1190 !env->allow_ptr_leaks) {
1191 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1192 int soff = (-spi - 1) * BPF_REG_SIZE;
1193
1194 /* detected reuse of integer stack slot with a pointer
1195 * which means either llvm is reusing stack slot or
1196 * an attacker is trying to exploit CVE-2018-3639
1197 * (speculative store bypass)
1198 * Have to sanitize that slot with preemptive
1199 * store of zero.
1200 */
1201 if (*poff && *poff != soff) {
1202 /* disallow programs where single insn stores
1203 * into two different stack slots, since verifier
1204 * cannot sanitize them
1205 */
1206 verbose(env,
1207 "insn %d cannot access two stack slots fp%d and fp%d",
1208 insn_idx, *poff, soff);
1209 return -EINVAL;
1210 }
1211 *poff = soff;
1212 }
638f5b90 1213 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1214 }
9c399760 1215 } else {
cc2b14d5
AS
1216 u8 type = STACK_MISC;
1217
679c782d
EC
1218 /* regular write of data into stack destroys any spilled ptr */
1219 state->stack[spi].spilled_ptr.type = NOT_INIT;
9c399760 1220
cc2b14d5
AS
1221 /* only mark the slot as written if all 8 bytes were written
1222 * otherwise read propagation may incorrectly stop too soon
1223 * when stack slots are partially written.
1224 * This heuristic means that read propagation will be
1225 * conservative, since it will add reg_live_read marks
1226 * to stack slots all the way to first state when programs
1227 * writes+reads less than 8 bytes
1228 */
1229 if (size == BPF_REG_SIZE)
1230 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1231
1232 /* when we zero initialize stack slots mark them as such */
1233 if (value_regno >= 0 &&
1234 register_is_null(&cur->regs[value_regno]))
1235 type = STACK_ZERO;
1236
9c399760 1237 for (i = 0; i < size; i++)
638f5b90 1238 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1239 type;
17a52670
AS
1240 }
1241 return 0;
1242}
1243
61bd5218 1244static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1245 struct bpf_func_state *reg_state /* func where register points to */,
1246 int off, int size, int value_regno)
17a52670 1247{
f4d7e40a
AS
1248 struct bpf_verifier_state *vstate = env->cur_state;
1249 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1250 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1251 u8 *stype;
17a52670 1252
f4d7e40a 1253 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1254 verbose(env, "invalid read from stack off %d+0 size %d\n",
1255 off, size);
1256 return -EACCES;
1257 }
f4d7e40a 1258 stype = reg_state->stack[spi].slot_type;
17a52670 1259
638f5b90 1260 if (stype[0] == STACK_SPILL) {
9c399760 1261 if (size != BPF_REG_SIZE) {
61bd5218 1262 verbose(env, "invalid size of register spill\n");
17a52670
AS
1263 return -EACCES;
1264 }
9c399760 1265 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1266 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1267 verbose(env, "corrupted spill memory\n");
17a52670
AS
1268 return -EACCES;
1269 }
1270 }
1271
dc503a8a 1272 if (value_regno >= 0) {
17a52670 1273 /* restore register state from stack */
f4d7e40a 1274 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1275 /* mark reg as written since spilled pointer state likely
1276 * has its liveness marks cleared by is_state_visited()
1277 * which resets stack/reg liveness for state transitions
1278 */
1279 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1280 }
679c782d
EC
1281 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1282 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1283 return 0;
1284 } else {
cc2b14d5
AS
1285 int zeros = 0;
1286
17a52670 1287 for (i = 0; i < size; i++) {
cc2b14d5
AS
1288 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1289 continue;
1290 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1291 zeros++;
1292 continue;
17a52670 1293 }
cc2b14d5
AS
1294 verbose(env, "invalid read from stack off %d+%d size %d\n",
1295 off, i, size);
1296 return -EACCES;
1297 }
679c782d
EC
1298 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1299 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1300 if (value_regno >= 0) {
1301 if (zeros == size) {
1302 /* any size read into register is zero extended,
1303 * so the whole register == const_zero
1304 */
1305 __mark_reg_const_zero(&state->regs[value_regno]);
1306 } else {
1307 /* have read misc data from the stack */
1308 mark_reg_unknown(env, state->regs, value_regno);
1309 }
1310 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1311 }
17a52670
AS
1312 return 0;
1313 }
1314}
1315
1316/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1317static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1318 int size, bool zero_size_allowed)
17a52670 1319{
638f5b90
AS
1320 struct bpf_reg_state *regs = cur_regs(env);
1321 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1322
9fd29c08
YS
1323 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1324 off + size > map->value_size) {
61bd5218 1325 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1326 map->value_size, off, size);
1327 return -EACCES;
1328 }
1329 return 0;
1330}
1331
f1174f77
EC
1332/* check read/write into a map element with possible variable offset */
1333static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1334 int off, int size, bool zero_size_allowed)
dbcfe5f7 1335{
f4d7e40a
AS
1336 struct bpf_verifier_state *vstate = env->cur_state;
1337 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1338 struct bpf_reg_state *reg = &state->regs[regno];
1339 int err;
1340
f1174f77
EC
1341 /* We may have adjusted the register to this map value, so we
1342 * need to try adding each of min_value and max_value to off
1343 * to make sure our theoretical access will be safe.
dbcfe5f7 1344 */
61bd5218
JK
1345 if (env->log.level)
1346 print_verifier_state(env, state);
dbcfe5f7
GB
1347 /* The minimum value is only important with signed
1348 * comparisons where we can't assume the floor of a
1349 * value is 0. If we are using signed variables for our
1350 * index'es we need to make sure that whatever we use
1351 * will have a set floor within our range.
1352 */
b03c9f9f 1353 if (reg->smin_value < 0) {
61bd5218 1354 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1355 regno);
1356 return -EACCES;
1357 }
9fd29c08
YS
1358 err = __check_map_access(env, regno, reg->smin_value + off, size,
1359 zero_size_allowed);
dbcfe5f7 1360 if (err) {
61bd5218
JK
1361 verbose(env, "R%d min value is outside of the array range\n",
1362 regno);
dbcfe5f7
GB
1363 return err;
1364 }
1365
b03c9f9f
EC
1366 /* If we haven't set a max value then we need to bail since we can't be
1367 * sure we won't do bad things.
1368 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1369 */
b03c9f9f 1370 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1371 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1372 regno);
1373 return -EACCES;
1374 }
9fd29c08
YS
1375 err = __check_map_access(env, regno, reg->umax_value + off, size,
1376 zero_size_allowed);
f1174f77 1377 if (err)
61bd5218
JK
1378 verbose(env, "R%d max value is outside of the array range\n",
1379 regno);
f1174f77 1380 return err;
dbcfe5f7
GB
1381}
1382
969bf05e
AS
1383#define MAX_PACKET_OFF 0xffff
1384
58e2af8b 1385static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1386 const struct bpf_call_arg_meta *meta,
1387 enum bpf_access_type t)
4acf6c0b 1388{
36bbef52 1389 switch (env->prog->type) {
5d66fa7d 1390 /* Program types only with direct read access go here! */
3a0af8fd
TG
1391 case BPF_PROG_TYPE_LWT_IN:
1392 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1393 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1394 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1395 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1396 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1397 if (t == BPF_WRITE)
1398 return false;
7e57fbb2 1399 /* fallthrough */
5d66fa7d
DB
1400
1401 /* Program types with direct read + write access go here! */
36bbef52
DB
1402 case BPF_PROG_TYPE_SCHED_CLS:
1403 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1404 case BPF_PROG_TYPE_XDP:
3a0af8fd 1405 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1406 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1407 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1408 if (meta)
1409 return meta->pkt_access;
1410
1411 env->seen_direct_write = true;
4acf6c0b
BB
1412 return true;
1413 default:
1414 return false;
1415 }
1416}
1417
f1174f77 1418static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1419 int off, int size, bool zero_size_allowed)
969bf05e 1420{
638f5b90 1421 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1422 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1423
9fd29c08
YS
1424 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1425 (u64)off + size > reg->range) {
61bd5218 1426 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1427 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1428 return -EACCES;
1429 }
1430 return 0;
1431}
1432
f1174f77 1433static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1434 int size, bool zero_size_allowed)
f1174f77 1435{
638f5b90 1436 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1437 struct bpf_reg_state *reg = &regs[regno];
1438 int err;
1439
1440 /* We may have added a variable offset to the packet pointer; but any
1441 * reg->range we have comes after that. We are only checking the fixed
1442 * offset.
1443 */
1444
1445 /* We don't allow negative numbers, because we aren't tracking enough
1446 * detail to prove they're safe.
1447 */
b03c9f9f 1448 if (reg->smin_value < 0) {
61bd5218 1449 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1450 regno);
1451 return -EACCES;
1452 }
9fd29c08 1453 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1454 if (err) {
61bd5218 1455 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1456 return err;
1457 }
1458 return err;
1459}
1460
1461/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1462static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1463 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1464{
f96da094
DB
1465 struct bpf_insn_access_aux info = {
1466 .reg_type = *reg_type,
1467 };
31fd8581 1468
4f9218aa 1469 if (env->ops->is_valid_access &&
5e43f899 1470 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1471 /* A non zero info.ctx_field_size indicates that this field is a
1472 * candidate for later verifier transformation to load the whole
1473 * field and then apply a mask when accessed with a narrower
1474 * access than actual ctx access size. A zero info.ctx_field_size
1475 * will only allow for whole field access and rejects any other
1476 * type of narrower access.
31fd8581 1477 */
23994631 1478 *reg_type = info.reg_type;
31fd8581 1479
4f9218aa 1480 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1481 /* remember the offset of last byte accessed in ctx */
1482 if (env->prog->aux->max_ctx_offset < off + size)
1483 env->prog->aux->max_ctx_offset = off + size;
17a52670 1484 return 0;
32bbe007 1485 }
17a52670 1486
61bd5218 1487 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1488 return -EACCES;
1489}
1490
d58e468b
PP
1491static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1492 int size)
1493{
1494 if (size < 0 || off < 0 ||
1495 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1496 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1497 off, size);
1498 return -EACCES;
1499 }
1500 return 0;
1501}
1502
c64b7983
JS
1503static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1504 int size, enum bpf_access_type t)
1505{
1506 struct bpf_reg_state *regs = cur_regs(env);
1507 struct bpf_reg_state *reg = &regs[regno];
1508 struct bpf_insn_access_aux info;
1509
1510 if (reg->smin_value < 0) {
1511 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1512 regno);
1513 return -EACCES;
1514 }
1515
1516 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1517 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1518 off, size);
1519 return -EACCES;
1520 }
1521
1522 return 0;
1523}
1524
4cabc5b1
DB
1525static bool __is_pointer_value(bool allow_ptr_leaks,
1526 const struct bpf_reg_state *reg)
1be7f75d 1527{
4cabc5b1 1528 if (allow_ptr_leaks)
1be7f75d
AS
1529 return false;
1530
f1174f77 1531 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1532}
1533
2a159c6f
DB
1534static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1535{
1536 return cur_regs(env) + regno;
1537}
1538
4cabc5b1
DB
1539static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1540{
2a159c6f 1541 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1542}
1543
f37a8cb8
DB
1544static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1545{
2a159c6f 1546 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1547
fd978bf7
JS
1548 return reg->type == PTR_TO_CTX ||
1549 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1550}
1551
ca369602
DB
1552static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1553{
2a159c6f 1554 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1555
1556 return type_is_pkt_pointer(reg->type);
1557}
1558
4b5defde
DB
1559static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1560{
1561 const struct bpf_reg_state *reg = reg_state(env, regno);
1562
1563 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1564 return reg->type == PTR_TO_FLOW_KEYS;
1565}
1566
61bd5218
JK
1567static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1568 const struct bpf_reg_state *reg,
d1174416 1569 int off, int size, bool strict)
969bf05e 1570{
f1174f77 1571 struct tnum reg_off;
e07b98d9 1572 int ip_align;
d1174416
DM
1573
1574 /* Byte size accesses are always allowed. */
1575 if (!strict || size == 1)
1576 return 0;
1577
e4eda884
DM
1578 /* For platforms that do not have a Kconfig enabling
1579 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1580 * NET_IP_ALIGN is universally set to '2'. And on platforms
1581 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1582 * to this code only in strict mode where we want to emulate
1583 * the NET_IP_ALIGN==2 checking. Therefore use an
1584 * unconditional IP align value of '2'.
e07b98d9 1585 */
e4eda884 1586 ip_align = 2;
f1174f77
EC
1587
1588 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1589 if (!tnum_is_aligned(reg_off, size)) {
1590 char tn_buf[48];
1591
1592 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1593 verbose(env,
1594 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1595 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1596 return -EACCES;
1597 }
79adffcd 1598
969bf05e
AS
1599 return 0;
1600}
1601
61bd5218
JK
1602static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1603 const struct bpf_reg_state *reg,
f1174f77
EC
1604 const char *pointer_desc,
1605 int off, int size, bool strict)
79adffcd 1606{
f1174f77
EC
1607 struct tnum reg_off;
1608
1609 /* Byte size accesses are always allowed. */
1610 if (!strict || size == 1)
1611 return 0;
1612
1613 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1614 if (!tnum_is_aligned(reg_off, size)) {
1615 char tn_buf[48];
1616
1617 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1618 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1619 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1620 return -EACCES;
1621 }
1622
969bf05e
AS
1623 return 0;
1624}
1625
e07b98d9 1626static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1627 const struct bpf_reg_state *reg, int off,
1628 int size, bool strict_alignment_once)
79adffcd 1629{
ca369602 1630 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1631 const char *pointer_desc = "";
d1174416 1632
79adffcd
DB
1633 switch (reg->type) {
1634 case PTR_TO_PACKET:
de8f3a83
DB
1635 case PTR_TO_PACKET_META:
1636 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1637 * right in front, treat it the very same way.
1638 */
61bd5218 1639 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1640 case PTR_TO_FLOW_KEYS:
1641 pointer_desc = "flow keys ";
1642 break;
f1174f77
EC
1643 case PTR_TO_MAP_VALUE:
1644 pointer_desc = "value ";
1645 break;
1646 case PTR_TO_CTX:
1647 pointer_desc = "context ";
1648 break;
1649 case PTR_TO_STACK:
1650 pointer_desc = "stack ";
a5ec6ae1
JH
1651 /* The stack spill tracking logic in check_stack_write()
1652 * and check_stack_read() relies on stack accesses being
1653 * aligned.
1654 */
1655 strict = true;
f1174f77 1656 break;
c64b7983
JS
1657 case PTR_TO_SOCKET:
1658 pointer_desc = "sock ";
1659 break;
79adffcd 1660 default:
f1174f77 1661 break;
79adffcd 1662 }
61bd5218
JK
1663 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1664 strict);
79adffcd
DB
1665}
1666
f4d7e40a
AS
1667static int update_stack_depth(struct bpf_verifier_env *env,
1668 const struct bpf_func_state *func,
1669 int off)
1670{
9c8105bd 1671 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1672
1673 if (stack >= -off)
1674 return 0;
1675
1676 /* update known max for given subprogram */
9c8105bd 1677 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1678 return 0;
1679}
f4d7e40a 1680
70a87ffe
AS
1681/* starting from main bpf function walk all instructions of the function
1682 * and recursively walk all callees that given function can call.
1683 * Ignore jump and exit insns.
1684 * Since recursion is prevented by check_cfg() this algorithm
1685 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1686 */
1687static int check_max_stack_depth(struct bpf_verifier_env *env)
1688{
9c8105bd
JW
1689 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1690 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1691 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1692 int ret_insn[MAX_CALL_FRAMES];
1693 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1694
70a87ffe
AS
1695process_func:
1696 /* round up to 32-bytes, since this is granularity
1697 * of interpreter stack size
1698 */
9c8105bd 1699 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1700 if (depth > MAX_BPF_STACK) {
f4d7e40a 1701 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1702 frame + 1, depth);
f4d7e40a
AS
1703 return -EACCES;
1704 }
70a87ffe 1705continue_func:
4cb3d99c 1706 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1707 for (; i < subprog_end; i++) {
1708 if (insn[i].code != (BPF_JMP | BPF_CALL))
1709 continue;
1710 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1711 continue;
1712 /* remember insn and function to return to */
1713 ret_insn[frame] = i + 1;
9c8105bd 1714 ret_prog[frame] = idx;
70a87ffe
AS
1715
1716 /* find the callee */
1717 i = i + insn[i].imm + 1;
9c8105bd
JW
1718 idx = find_subprog(env, i);
1719 if (idx < 0) {
70a87ffe
AS
1720 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1721 i);
1722 return -EFAULT;
1723 }
70a87ffe
AS
1724 frame++;
1725 if (frame >= MAX_CALL_FRAMES) {
1726 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1727 return -EFAULT;
1728 }
1729 goto process_func;
1730 }
1731 /* end of for() loop means the last insn of the 'subprog'
1732 * was reached. Doesn't matter whether it was JA or EXIT
1733 */
1734 if (frame == 0)
1735 return 0;
9c8105bd 1736 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1737 frame--;
1738 i = ret_insn[frame];
9c8105bd 1739 idx = ret_prog[frame];
70a87ffe 1740 goto continue_func;
f4d7e40a
AS
1741}
1742
19d28fbd 1743#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1744static int get_callee_stack_depth(struct bpf_verifier_env *env,
1745 const struct bpf_insn *insn, int idx)
1746{
1747 int start = idx + insn->imm + 1, subprog;
1748
1749 subprog = find_subprog(env, start);
1750 if (subprog < 0) {
1751 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1752 start);
1753 return -EFAULT;
1754 }
9c8105bd 1755 return env->subprog_info[subprog].stack_depth;
1ea47e01 1756}
19d28fbd 1757#endif
1ea47e01 1758
58990d1f
DB
1759static int check_ctx_reg(struct bpf_verifier_env *env,
1760 const struct bpf_reg_state *reg, int regno)
1761{
1762 /* Access to ctx or passing it to a helper is only allowed in
1763 * its original, unmodified form.
1764 */
1765
1766 if (reg->off) {
1767 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1768 regno, reg->off);
1769 return -EACCES;
1770 }
1771
1772 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1773 char tn_buf[48];
1774
1775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1776 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1777 return -EACCES;
1778 }
1779
1780 return 0;
1781}
1782
0c17d1d2
JH
1783/* truncate register to smaller size (in bytes)
1784 * must be called with size < BPF_REG_SIZE
1785 */
1786static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1787{
1788 u64 mask;
1789
1790 /* clear high bits in bit representation */
1791 reg->var_off = tnum_cast(reg->var_off, size);
1792
1793 /* fix arithmetic bounds */
1794 mask = ((u64)1 << (size * 8)) - 1;
1795 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1796 reg->umin_value &= mask;
1797 reg->umax_value &= mask;
1798 } else {
1799 reg->umin_value = 0;
1800 reg->umax_value = mask;
1801 }
1802 reg->smin_value = reg->umin_value;
1803 reg->smax_value = reg->umax_value;
1804}
1805
17a52670
AS
1806/* check whether memory at (regno + off) is accessible for t = (read | write)
1807 * if t==write, value_regno is a register which value is stored into memory
1808 * if t==read, value_regno is a register which will receive the value from memory
1809 * if t==write && value_regno==-1, some unknown value is stored into memory
1810 * if t==read && value_regno==-1, don't care what we read from memory
1811 */
ca369602
DB
1812static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1813 int off, int bpf_size, enum bpf_access_type t,
1814 int value_regno, bool strict_alignment_once)
17a52670 1815{
638f5b90
AS
1816 struct bpf_reg_state *regs = cur_regs(env);
1817 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1818 struct bpf_func_state *state;
17a52670
AS
1819 int size, err = 0;
1820
1821 size = bpf_size_to_bytes(bpf_size);
1822 if (size < 0)
1823 return size;
1824
f1174f77 1825 /* alignment checks will add in reg->off themselves */
ca369602 1826 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1827 if (err)
1828 return err;
17a52670 1829
f1174f77
EC
1830 /* for access checks, reg->off is just part of off */
1831 off += reg->off;
1832
1833 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1834 if (t == BPF_WRITE && value_regno >= 0 &&
1835 is_pointer_value(env, value_regno)) {
61bd5218 1836 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1837 return -EACCES;
1838 }
48461135 1839
9fd29c08 1840 err = check_map_access(env, regno, off, size, false);
17a52670 1841 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1842 mark_reg_unknown(env, regs, value_regno);
17a52670 1843
1a0dc1ac 1844 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1845 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1846
1be7f75d
AS
1847 if (t == BPF_WRITE && value_regno >= 0 &&
1848 is_pointer_value(env, value_regno)) {
61bd5218 1849 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1850 return -EACCES;
1851 }
f1174f77 1852
58990d1f
DB
1853 err = check_ctx_reg(env, reg, regno);
1854 if (err < 0)
1855 return err;
1856
31fd8581 1857 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1858 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1859 /* ctx access returns either a scalar, or a
de8f3a83
DB
1860 * PTR_TO_PACKET[_META,_END]. In the latter
1861 * case, we know the offset is zero.
f1174f77
EC
1862 */
1863 if (reg_type == SCALAR_VALUE)
638f5b90 1864 mark_reg_unknown(env, regs, value_regno);
f1174f77 1865 else
638f5b90 1866 mark_reg_known_zero(env, regs,
61bd5218 1867 value_regno);
638f5b90 1868 regs[value_regno].type = reg_type;
969bf05e 1869 }
17a52670 1870
f1174f77
EC
1871 } else if (reg->type == PTR_TO_STACK) {
1872 /* stack accesses must be at a fixed offset, so that we can
1873 * determine what type of data were returned.
1874 * See check_stack_read().
1875 */
1876 if (!tnum_is_const(reg->var_off)) {
1877 char tn_buf[48];
1878
1879 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1880 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1881 tn_buf, off, size);
1882 return -EACCES;
1883 }
1884 off += reg->var_off.value;
17a52670 1885 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1886 verbose(env, "invalid stack off=%d size=%d\n", off,
1887 size);
17a52670
AS
1888 return -EACCES;
1889 }
8726679a 1890
f4d7e40a
AS
1891 state = func(env, reg);
1892 err = update_stack_depth(env, state, off);
1893 if (err)
1894 return err;
8726679a 1895
638f5b90 1896 if (t == BPF_WRITE)
61bd5218 1897 err = check_stack_write(env, state, off, size,
af86ca4e 1898 value_regno, insn_idx);
638f5b90 1899 else
61bd5218
JK
1900 err = check_stack_read(env, state, off, size,
1901 value_regno);
de8f3a83 1902 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1903 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1904 verbose(env, "cannot write into packet\n");
969bf05e
AS
1905 return -EACCES;
1906 }
4acf6c0b
BB
1907 if (t == BPF_WRITE && value_regno >= 0 &&
1908 is_pointer_value(env, value_regno)) {
61bd5218
JK
1909 verbose(env, "R%d leaks addr into packet\n",
1910 value_regno);
4acf6c0b
BB
1911 return -EACCES;
1912 }
9fd29c08 1913 err = check_packet_access(env, regno, off, size, false);
969bf05e 1914 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1915 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
1916 } else if (reg->type == PTR_TO_FLOW_KEYS) {
1917 if (t == BPF_WRITE && value_regno >= 0 &&
1918 is_pointer_value(env, value_regno)) {
1919 verbose(env, "R%d leaks addr into flow keys\n",
1920 value_regno);
1921 return -EACCES;
1922 }
1923
1924 err = check_flow_keys_access(env, off, size);
1925 if (!err && t == BPF_READ && value_regno >= 0)
1926 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
1927 } else if (reg->type == PTR_TO_SOCKET) {
1928 if (t == BPF_WRITE) {
1929 verbose(env, "cannot write into socket\n");
1930 return -EACCES;
1931 }
1932 err = check_sock_access(env, regno, off, size, t);
1933 if (!err && value_regno >= 0)
1934 mark_reg_unknown(env, regs, value_regno);
17a52670 1935 } else {
61bd5218
JK
1936 verbose(env, "R%d invalid mem access '%s'\n", regno,
1937 reg_type_str[reg->type]);
17a52670
AS
1938 return -EACCES;
1939 }
969bf05e 1940
f1174f77 1941 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1942 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1943 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1944 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1945 }
17a52670
AS
1946 return err;
1947}
1948
31fd8581 1949static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1950{
17a52670
AS
1951 int err;
1952
1953 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1954 insn->imm != 0) {
61bd5218 1955 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1956 return -EINVAL;
1957 }
1958
1959 /* check src1 operand */
dc503a8a 1960 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1961 if (err)
1962 return err;
1963
1964 /* check src2 operand */
dc503a8a 1965 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1966 if (err)
1967 return err;
1968
6bdf6abc 1969 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1970 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1971 return -EACCES;
1972 }
1973
ca369602 1974 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde
DB
1975 is_pkt_reg(env, insn->dst_reg) ||
1976 is_flow_key_reg(env, insn->dst_reg)) {
ca369602 1977 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
1978 insn->dst_reg,
1979 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
1980 return -EACCES;
1981 }
1982
17a52670 1983 /* check whether atomic_add can read the memory */
31fd8581 1984 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1985 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1986 if (err)
1987 return err;
1988
1989 /* check whether atomic_add can write into the same memory */
31fd8581 1990 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1991 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1992}
1993
1994/* when register 'regno' is passed into function that will read 'access_size'
1995 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1996 * and all elements of stack are initialized.
1997 * Unlike most pointer bounds-checking functions, this one doesn't take an
1998 * 'off' argument, so it has to add in reg->off itself.
17a52670 1999 */
58e2af8b 2000static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2001 int access_size, bool zero_size_allowed,
2002 struct bpf_call_arg_meta *meta)
17a52670 2003{
2a159c6f 2004 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2005 struct bpf_func_state *state = func(env, reg);
638f5b90 2006 int off, i, slot, spi;
17a52670 2007
914cb781 2008 if (reg->type != PTR_TO_STACK) {
f1174f77 2009 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2010 if (zero_size_allowed && access_size == 0 &&
914cb781 2011 register_is_null(reg))
8e2fe1d9
DB
2012 return 0;
2013
61bd5218 2014 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2015 reg_type_str[reg->type],
8e2fe1d9 2016 reg_type_str[PTR_TO_STACK]);
17a52670 2017 return -EACCES;
8e2fe1d9 2018 }
17a52670 2019
f1174f77 2020 /* Only allow fixed-offset stack reads */
914cb781 2021 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2022 char tn_buf[48];
2023
914cb781 2024 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2025 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2026 regno, tn_buf);
ea25f914 2027 return -EACCES;
f1174f77 2028 }
914cb781 2029 off = reg->off + reg->var_off.value;
17a52670 2030 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2031 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2032 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2033 regno, off, access_size);
2034 return -EACCES;
2035 }
2036
435faee1
DB
2037 if (meta && meta->raw_mode) {
2038 meta->access_size = access_size;
2039 meta->regno = regno;
2040 return 0;
2041 }
2042
17a52670 2043 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2044 u8 *stype;
2045
638f5b90
AS
2046 slot = -(off + i) - 1;
2047 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2048 if (state->allocated_stack <= slot)
2049 goto err;
2050 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2051 if (*stype == STACK_MISC)
2052 goto mark;
2053 if (*stype == STACK_ZERO) {
2054 /* helper can write anything into the stack */
2055 *stype = STACK_MISC;
2056 goto mark;
17a52670 2057 }
cc2b14d5
AS
2058err:
2059 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2060 off, i, access_size);
2061 return -EACCES;
2062mark:
2063 /* reading any byte out of 8-byte 'spill_slot' will cause
2064 * the whole slot to be marked as 'read'
2065 */
679c782d
EC
2066 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2067 state->stack[spi].spilled_ptr.parent);
17a52670 2068 }
f4d7e40a 2069 return update_stack_depth(env, state, off);
17a52670
AS
2070}
2071
06c1c049
GB
2072static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2073 int access_size, bool zero_size_allowed,
2074 struct bpf_call_arg_meta *meta)
2075{
638f5b90 2076 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2077
f1174f77 2078 switch (reg->type) {
06c1c049 2079 case PTR_TO_PACKET:
de8f3a83 2080 case PTR_TO_PACKET_META:
9fd29c08
YS
2081 return check_packet_access(env, regno, reg->off, access_size,
2082 zero_size_allowed);
06c1c049 2083 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2084 return check_map_access(env, regno, reg->off, access_size,
2085 zero_size_allowed);
f1174f77 2086 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2087 return check_stack_boundary(env, regno, access_size,
2088 zero_size_allowed, meta);
2089 }
2090}
2091
90133415
DB
2092static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2093{
2094 return type == ARG_PTR_TO_MEM ||
2095 type == ARG_PTR_TO_MEM_OR_NULL ||
2096 type == ARG_PTR_TO_UNINIT_MEM;
2097}
2098
2099static bool arg_type_is_mem_size(enum bpf_arg_type type)
2100{
2101 return type == ARG_CONST_SIZE ||
2102 type == ARG_CONST_SIZE_OR_ZERO;
2103}
2104
58e2af8b 2105static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2106 enum bpf_arg_type arg_type,
2107 struct bpf_call_arg_meta *meta)
17a52670 2108{
638f5b90 2109 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2110 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2111 int err = 0;
2112
80f1d68c 2113 if (arg_type == ARG_DONTCARE)
17a52670
AS
2114 return 0;
2115
dc503a8a
EC
2116 err = check_reg_arg(env, regno, SRC_OP);
2117 if (err)
2118 return err;
17a52670 2119
1be7f75d
AS
2120 if (arg_type == ARG_ANYTHING) {
2121 if (is_pointer_value(env, regno)) {
61bd5218
JK
2122 verbose(env, "R%d leaks addr into helper function\n",
2123 regno);
1be7f75d
AS
2124 return -EACCES;
2125 }
80f1d68c 2126 return 0;
1be7f75d 2127 }
80f1d68c 2128
de8f3a83 2129 if (type_is_pkt_pointer(type) &&
3a0af8fd 2130 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2131 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2132 return -EACCES;
2133 }
2134
8e2fe1d9 2135 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2136 arg_type == ARG_PTR_TO_MAP_VALUE ||
2137 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2138 expected_type = PTR_TO_STACK;
d71962f3 2139 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2140 type != expected_type)
6841de8b 2141 goto err_type;
39f19ebb
AS
2142 } else if (arg_type == ARG_CONST_SIZE ||
2143 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2144 expected_type = SCALAR_VALUE;
2145 if (type != expected_type)
6841de8b 2146 goto err_type;
17a52670
AS
2147 } else if (arg_type == ARG_CONST_MAP_PTR) {
2148 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2149 if (type != expected_type)
2150 goto err_type;
608cd71a
AS
2151 } else if (arg_type == ARG_PTR_TO_CTX) {
2152 expected_type = PTR_TO_CTX;
6841de8b
AS
2153 if (type != expected_type)
2154 goto err_type;
58990d1f
DB
2155 err = check_ctx_reg(env, reg, regno);
2156 if (err < 0)
2157 return err;
c64b7983
JS
2158 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2159 expected_type = PTR_TO_SOCKET;
2160 if (type != expected_type)
2161 goto err_type;
fd978bf7
JS
2162 if (meta->ptr_id || !reg->id) {
2163 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2164 meta->ptr_id, reg->id);
2165 return -EFAULT;
2166 }
2167 meta->ptr_id = reg->id;
90133415 2168 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2169 expected_type = PTR_TO_STACK;
2170 /* One exception here. In case function allows for NULL to be
f1174f77 2171 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2172 * happens during stack boundary checking.
2173 */
914cb781 2174 if (register_is_null(reg) &&
db1ac496 2175 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2176 /* final test in check_stack_boundary() */;
de8f3a83
DB
2177 else if (!type_is_pkt_pointer(type) &&
2178 type != PTR_TO_MAP_VALUE &&
f1174f77 2179 type != expected_type)
6841de8b 2180 goto err_type;
39f19ebb 2181 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2182 } else {
61bd5218 2183 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2184 return -EFAULT;
2185 }
2186
17a52670
AS
2187 if (arg_type == ARG_CONST_MAP_PTR) {
2188 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2189 meta->map_ptr = reg->map_ptr;
17a52670
AS
2190 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2191 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2192 * check that [key, key + map->key_size) are within
2193 * stack limits and initialized
2194 */
33ff9823 2195 if (!meta->map_ptr) {
17a52670
AS
2196 /* in function declaration map_ptr must come before
2197 * map_key, so that it's verified and known before
2198 * we have to check map_key here. Otherwise it means
2199 * that kernel subsystem misconfigured verifier
2200 */
61bd5218 2201 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2202 return -EACCES;
2203 }
d71962f3
PC
2204 err = check_helper_mem_access(env, regno,
2205 meta->map_ptr->key_size, false,
2206 NULL);
2ea864c5
MV
2207 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2208 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2209 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2210 * check [value, value + map->value_size) validity
2211 */
33ff9823 2212 if (!meta->map_ptr) {
17a52670 2213 /* kernel subsystem misconfigured verifier */
61bd5218 2214 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2215 return -EACCES;
2216 }
2ea864c5 2217 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2218 err = check_helper_mem_access(env, regno,
2219 meta->map_ptr->value_size, false,
2ea864c5 2220 meta);
90133415 2221 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2222 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2223
849fa506
YS
2224 /* remember the mem_size which may be used later
2225 * to refine return values.
2226 */
2227 meta->msize_smax_value = reg->smax_value;
2228 meta->msize_umax_value = reg->umax_value;
2229
f1174f77
EC
2230 /* The register is SCALAR_VALUE; the access check
2231 * happens using its boundaries.
06c1c049 2232 */
f1174f77 2233 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2234 /* For unprivileged variable accesses, disable raw
2235 * mode so that the program is required to
2236 * initialize all the memory that the helper could
2237 * just partially fill up.
2238 */
2239 meta = NULL;
2240
b03c9f9f 2241 if (reg->smin_value < 0) {
61bd5218 2242 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2243 regno);
2244 return -EACCES;
2245 }
06c1c049 2246
b03c9f9f 2247 if (reg->umin_value == 0) {
f1174f77
EC
2248 err = check_helper_mem_access(env, regno - 1, 0,
2249 zero_size_allowed,
2250 meta);
06c1c049
GB
2251 if (err)
2252 return err;
06c1c049 2253 }
f1174f77 2254
b03c9f9f 2255 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2256 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2257 regno);
2258 return -EACCES;
2259 }
2260 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2261 reg->umax_value,
f1174f77 2262 zero_size_allowed, meta);
17a52670
AS
2263 }
2264
2265 return err;
6841de8b 2266err_type:
61bd5218 2267 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2268 reg_type_str[type], reg_type_str[expected_type]);
2269 return -EACCES;
17a52670
AS
2270}
2271
61bd5218
JK
2272static int check_map_func_compatibility(struct bpf_verifier_env *env,
2273 struct bpf_map *map, int func_id)
35578d79 2274{
35578d79
KX
2275 if (!map)
2276 return 0;
2277
6aff67c8
AS
2278 /* We need a two way check, first is from map perspective ... */
2279 switch (map->map_type) {
2280 case BPF_MAP_TYPE_PROG_ARRAY:
2281 if (func_id != BPF_FUNC_tail_call)
2282 goto error;
2283 break;
2284 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2285 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2286 func_id != BPF_FUNC_perf_event_output &&
2287 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2288 goto error;
2289 break;
2290 case BPF_MAP_TYPE_STACK_TRACE:
2291 if (func_id != BPF_FUNC_get_stackid)
2292 goto error;
2293 break;
4ed8ec52 2294 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2295 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2296 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2297 goto error;
2298 break;
cd339431 2299 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2300 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2301 if (func_id != BPF_FUNC_get_local_storage)
2302 goto error;
2303 break;
546ac1ff
JF
2304 /* devmap returns a pointer to a live net_device ifindex that we cannot
2305 * allow to be modified from bpf side. So do not allow lookup elements
2306 * for now.
2307 */
2308 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2309 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2310 goto error;
2311 break;
fbfc504a
BT
2312 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2313 * appear.
2314 */
6710e112 2315 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2316 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2317 if (func_id != BPF_FUNC_redirect_map)
2318 goto error;
2319 break;
56f668df 2320 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2321 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2322 if (func_id != BPF_FUNC_map_lookup_elem)
2323 goto error;
16a43625 2324 break;
174a79ff
JF
2325 case BPF_MAP_TYPE_SOCKMAP:
2326 if (func_id != BPF_FUNC_sk_redirect_map &&
2327 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2328 func_id != BPF_FUNC_map_delete_elem &&
2329 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2330 goto error;
2331 break;
81110384
JF
2332 case BPF_MAP_TYPE_SOCKHASH:
2333 if (func_id != BPF_FUNC_sk_redirect_hash &&
2334 func_id != BPF_FUNC_sock_hash_update &&
2335 func_id != BPF_FUNC_map_delete_elem &&
2336 func_id != BPF_FUNC_msg_redirect_hash)
2337 goto error;
2338 break;
2dbb9b9e
MKL
2339 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2340 if (func_id != BPF_FUNC_sk_select_reuseport)
2341 goto error;
2342 break;
f1a2e44a
MV
2343 case BPF_MAP_TYPE_QUEUE:
2344 case BPF_MAP_TYPE_STACK:
2345 if (func_id != BPF_FUNC_map_peek_elem &&
2346 func_id != BPF_FUNC_map_pop_elem &&
2347 func_id != BPF_FUNC_map_push_elem)
2348 goto error;
2349 break;
6aff67c8
AS
2350 default:
2351 break;
2352 }
2353
2354 /* ... and second from the function itself. */
2355 switch (func_id) {
2356 case BPF_FUNC_tail_call:
2357 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2358 goto error;
f910cefa 2359 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2360 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2361 return -EINVAL;
2362 }
6aff67c8
AS
2363 break;
2364 case BPF_FUNC_perf_event_read:
2365 case BPF_FUNC_perf_event_output:
908432ca 2366 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2367 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2368 goto error;
2369 break;
2370 case BPF_FUNC_get_stackid:
2371 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2372 goto error;
2373 break;
60d20f91 2374 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2375 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2376 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2377 goto error;
2378 break;
97f91a7c 2379 case BPF_FUNC_redirect_map:
9c270af3 2380 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2381 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2382 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2383 goto error;
2384 break;
174a79ff 2385 case BPF_FUNC_sk_redirect_map:
4f738adb 2386 case BPF_FUNC_msg_redirect_map:
81110384 2387 case BPF_FUNC_sock_map_update:
174a79ff
JF
2388 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2389 goto error;
2390 break;
81110384
JF
2391 case BPF_FUNC_sk_redirect_hash:
2392 case BPF_FUNC_msg_redirect_hash:
2393 case BPF_FUNC_sock_hash_update:
2394 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2395 goto error;
2396 break;
cd339431 2397 case BPF_FUNC_get_local_storage:
b741f163
RG
2398 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2399 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2400 goto error;
2401 break;
2dbb9b9e
MKL
2402 case BPF_FUNC_sk_select_reuseport:
2403 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2404 goto error;
2405 break;
f1a2e44a
MV
2406 case BPF_FUNC_map_peek_elem:
2407 case BPF_FUNC_map_pop_elem:
2408 case BPF_FUNC_map_push_elem:
2409 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2410 map->map_type != BPF_MAP_TYPE_STACK)
2411 goto error;
2412 break;
6aff67c8
AS
2413 default:
2414 break;
35578d79
KX
2415 }
2416
2417 return 0;
6aff67c8 2418error:
61bd5218 2419 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2420 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2421 return -EINVAL;
35578d79
KX
2422}
2423
90133415 2424static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2425{
2426 int count = 0;
2427
39f19ebb 2428 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2429 count++;
39f19ebb 2430 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2431 count++;
39f19ebb 2432 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2433 count++;
39f19ebb 2434 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2435 count++;
39f19ebb 2436 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2437 count++;
2438
90133415
DB
2439 /* We only support one arg being in raw mode at the moment,
2440 * which is sufficient for the helper functions we have
2441 * right now.
2442 */
2443 return count <= 1;
2444}
2445
2446static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2447 enum bpf_arg_type arg_next)
2448{
2449 return (arg_type_is_mem_ptr(arg_curr) &&
2450 !arg_type_is_mem_size(arg_next)) ||
2451 (!arg_type_is_mem_ptr(arg_curr) &&
2452 arg_type_is_mem_size(arg_next));
2453}
2454
2455static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2456{
2457 /* bpf_xxx(..., buf, len) call will access 'len'
2458 * bytes from memory 'buf'. Both arg types need
2459 * to be paired, so make sure there's no buggy
2460 * helper function specification.
2461 */
2462 if (arg_type_is_mem_size(fn->arg1_type) ||
2463 arg_type_is_mem_ptr(fn->arg5_type) ||
2464 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2465 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2466 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2467 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2468 return false;
2469
2470 return true;
2471}
2472
fd978bf7
JS
2473static bool check_refcount_ok(const struct bpf_func_proto *fn)
2474{
2475 int count = 0;
2476
2477 if (arg_type_is_refcounted(fn->arg1_type))
2478 count++;
2479 if (arg_type_is_refcounted(fn->arg2_type))
2480 count++;
2481 if (arg_type_is_refcounted(fn->arg3_type))
2482 count++;
2483 if (arg_type_is_refcounted(fn->arg4_type))
2484 count++;
2485 if (arg_type_is_refcounted(fn->arg5_type))
2486 count++;
2487
2488 /* We only support one arg being unreferenced at the moment,
2489 * which is sufficient for the helper functions we have right now.
2490 */
2491 return count <= 1;
2492}
2493
90133415
DB
2494static int check_func_proto(const struct bpf_func_proto *fn)
2495{
2496 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2497 check_arg_pair_ok(fn) &&
2498 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2499}
2500
de8f3a83
DB
2501/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2502 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2503 */
f4d7e40a
AS
2504static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2505 struct bpf_func_state *state)
969bf05e 2506{
58e2af8b 2507 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2508 int i;
2509
2510 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2511 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2512 mark_reg_unknown(env, regs, i);
969bf05e 2513
f3709f69
JS
2514 bpf_for_each_spilled_reg(i, state, reg) {
2515 if (!reg)
969bf05e 2516 continue;
de8f3a83
DB
2517 if (reg_is_pkt_pointer_any(reg))
2518 __mark_reg_unknown(reg);
969bf05e
AS
2519 }
2520}
2521
f4d7e40a
AS
2522static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2523{
2524 struct bpf_verifier_state *vstate = env->cur_state;
2525 int i;
2526
2527 for (i = 0; i <= vstate->curframe; i++)
2528 __clear_all_pkt_pointers(env, vstate->frame[i]);
2529}
2530
fd978bf7
JS
2531static void release_reg_references(struct bpf_verifier_env *env,
2532 struct bpf_func_state *state, int id)
2533{
2534 struct bpf_reg_state *regs = state->regs, *reg;
2535 int i;
2536
2537 for (i = 0; i < MAX_BPF_REG; i++)
2538 if (regs[i].id == id)
2539 mark_reg_unknown(env, regs, i);
2540
2541 bpf_for_each_spilled_reg(i, state, reg) {
2542 if (!reg)
2543 continue;
2544 if (reg_is_refcounted(reg) && reg->id == id)
2545 __mark_reg_unknown(reg);
2546 }
2547}
2548
2549/* The pointer with the specified id has released its reference to kernel
2550 * resources. Identify all copies of the same pointer and clear the reference.
2551 */
2552static int release_reference(struct bpf_verifier_env *env,
2553 struct bpf_call_arg_meta *meta)
2554{
2555 struct bpf_verifier_state *vstate = env->cur_state;
2556 int i;
2557
2558 for (i = 0; i <= vstate->curframe; i++)
2559 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2560
2561 return release_reference_state(env, meta->ptr_id);
2562}
2563
f4d7e40a
AS
2564static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2565 int *insn_idx)
2566{
2567 struct bpf_verifier_state *state = env->cur_state;
2568 struct bpf_func_state *caller, *callee;
fd978bf7 2569 int i, err, subprog, target_insn;
f4d7e40a 2570
aada9ce6 2571 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2572 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2573 state->curframe + 2);
f4d7e40a
AS
2574 return -E2BIG;
2575 }
2576
2577 target_insn = *insn_idx + insn->imm;
2578 subprog = find_subprog(env, target_insn + 1);
2579 if (subprog < 0) {
2580 verbose(env, "verifier bug. No program starts at insn %d\n",
2581 target_insn + 1);
2582 return -EFAULT;
2583 }
2584
2585 caller = state->frame[state->curframe];
2586 if (state->frame[state->curframe + 1]) {
2587 verbose(env, "verifier bug. Frame %d already allocated\n",
2588 state->curframe + 1);
2589 return -EFAULT;
2590 }
2591
2592 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2593 if (!callee)
2594 return -ENOMEM;
2595 state->frame[state->curframe + 1] = callee;
2596
2597 /* callee cannot access r0, r6 - r9 for reading and has to write
2598 * into its own stack before reading from it.
2599 * callee can read/write into caller's stack
2600 */
2601 init_func_state(env, callee,
2602 /* remember the callsite, it will be used by bpf_exit */
2603 *insn_idx /* callsite */,
2604 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2605 subprog /* subprog number within this prog */);
f4d7e40a 2606
fd978bf7
JS
2607 /* Transfer references to the callee */
2608 err = transfer_reference_state(callee, caller);
2609 if (err)
2610 return err;
2611
679c782d
EC
2612 /* copy r1 - r5 args that callee can access. The copy includes parent
2613 * pointers, which connects us up to the liveness chain
2614 */
f4d7e40a
AS
2615 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2616 callee->regs[i] = caller->regs[i];
2617
679c782d 2618 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2619 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2620 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2621 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2622 }
2623
2624 /* only increment it after check_reg_arg() finished */
2625 state->curframe++;
2626
2627 /* and go analyze first insn of the callee */
2628 *insn_idx = target_insn;
2629
2630 if (env->log.level) {
2631 verbose(env, "caller:\n");
2632 print_verifier_state(env, caller);
2633 verbose(env, "callee:\n");
2634 print_verifier_state(env, callee);
2635 }
2636 return 0;
2637}
2638
2639static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2640{
2641 struct bpf_verifier_state *state = env->cur_state;
2642 struct bpf_func_state *caller, *callee;
2643 struct bpf_reg_state *r0;
fd978bf7 2644 int err;
f4d7e40a
AS
2645
2646 callee = state->frame[state->curframe];
2647 r0 = &callee->regs[BPF_REG_0];
2648 if (r0->type == PTR_TO_STACK) {
2649 /* technically it's ok to return caller's stack pointer
2650 * (or caller's caller's pointer) back to the caller,
2651 * since these pointers are valid. Only current stack
2652 * pointer will be invalid as soon as function exits,
2653 * but let's be conservative
2654 */
2655 verbose(env, "cannot return stack pointer to the caller\n");
2656 return -EINVAL;
2657 }
2658
2659 state->curframe--;
2660 caller = state->frame[state->curframe];
2661 /* return to the caller whatever r0 had in the callee */
2662 caller->regs[BPF_REG_0] = *r0;
2663
fd978bf7
JS
2664 /* Transfer references to the caller */
2665 err = transfer_reference_state(caller, callee);
2666 if (err)
2667 return err;
2668
f4d7e40a
AS
2669 *insn_idx = callee->callsite + 1;
2670 if (env->log.level) {
2671 verbose(env, "returning from callee:\n");
2672 print_verifier_state(env, callee);
2673 verbose(env, "to caller at %d:\n", *insn_idx);
2674 print_verifier_state(env, caller);
2675 }
2676 /* clear everything in the callee */
2677 free_func_state(callee);
2678 state->frame[state->curframe + 1] = NULL;
2679 return 0;
2680}
2681
849fa506
YS
2682static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2683 int func_id,
2684 struct bpf_call_arg_meta *meta)
2685{
2686 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2687
2688 if (ret_type != RET_INTEGER ||
2689 (func_id != BPF_FUNC_get_stack &&
2690 func_id != BPF_FUNC_probe_read_str))
2691 return;
2692
2693 ret_reg->smax_value = meta->msize_smax_value;
2694 ret_reg->umax_value = meta->msize_umax_value;
2695 __reg_deduce_bounds(ret_reg);
2696 __reg_bound_offset(ret_reg);
2697}
2698
c93552c4
DB
2699static int
2700record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2701 int func_id, int insn_idx)
2702{
2703 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2704
2705 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2706 func_id != BPF_FUNC_map_lookup_elem &&
2707 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2708 func_id != BPF_FUNC_map_delete_elem &&
2709 func_id != BPF_FUNC_map_push_elem &&
2710 func_id != BPF_FUNC_map_pop_elem &&
2711 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2712 return 0;
09772d92 2713
c93552c4
DB
2714 if (meta->map_ptr == NULL) {
2715 verbose(env, "kernel subsystem misconfigured verifier\n");
2716 return -EINVAL;
2717 }
2718
2719 if (!BPF_MAP_PTR(aux->map_state))
2720 bpf_map_ptr_store(aux, meta->map_ptr,
2721 meta->map_ptr->unpriv_array);
2722 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2723 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2724 meta->map_ptr->unpriv_array);
2725 return 0;
2726}
2727
fd978bf7
JS
2728static int check_reference_leak(struct bpf_verifier_env *env)
2729{
2730 struct bpf_func_state *state = cur_func(env);
2731 int i;
2732
2733 for (i = 0; i < state->acquired_refs; i++) {
2734 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2735 state->refs[i].id, state->refs[i].insn_idx);
2736 }
2737 return state->acquired_refs ? -EINVAL : 0;
2738}
2739
f4d7e40a 2740static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2741{
17a52670 2742 const struct bpf_func_proto *fn = NULL;
638f5b90 2743 struct bpf_reg_state *regs;
33ff9823 2744 struct bpf_call_arg_meta meta;
969bf05e 2745 bool changes_data;
17a52670
AS
2746 int i, err;
2747
2748 /* find function prototype */
2749 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2750 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2751 func_id);
17a52670
AS
2752 return -EINVAL;
2753 }
2754
00176a34 2755 if (env->ops->get_func_proto)
5e43f899 2756 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2757 if (!fn) {
61bd5218
JK
2758 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2759 func_id);
17a52670
AS
2760 return -EINVAL;
2761 }
2762
2763 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2764 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2765 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2766 return -EINVAL;
2767 }
2768
04514d13 2769 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2770 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2771 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2772 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2773 func_id_name(func_id), func_id);
2774 return -EINVAL;
2775 }
969bf05e 2776
33ff9823 2777 memset(&meta, 0, sizeof(meta));
36bbef52 2778 meta.pkt_access = fn->pkt_access;
33ff9823 2779
90133415 2780 err = check_func_proto(fn);
435faee1 2781 if (err) {
61bd5218 2782 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2783 func_id_name(func_id), func_id);
435faee1
DB
2784 return err;
2785 }
2786
17a52670 2787 /* check args */
33ff9823 2788 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2789 if (err)
2790 return err;
33ff9823 2791 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2792 if (err)
2793 return err;
33ff9823 2794 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2795 if (err)
2796 return err;
33ff9823 2797 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2798 if (err)
2799 return err;
33ff9823 2800 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2801 if (err)
2802 return err;
2803
c93552c4
DB
2804 err = record_func_map(env, &meta, func_id, insn_idx);
2805 if (err)
2806 return err;
2807
435faee1
DB
2808 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2809 * is inferred from register state.
2810 */
2811 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2812 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2813 BPF_WRITE, -1, false);
435faee1
DB
2814 if (err)
2815 return err;
2816 }
2817
fd978bf7
JS
2818 if (func_id == BPF_FUNC_tail_call) {
2819 err = check_reference_leak(env);
2820 if (err) {
2821 verbose(env, "tail_call would lead to reference leak\n");
2822 return err;
2823 }
2824 } else if (is_release_function(func_id)) {
2825 err = release_reference(env, &meta);
2826 if (err)
2827 return err;
2828 }
2829
638f5b90 2830 regs = cur_regs(env);
cd339431
RG
2831
2832 /* check that flags argument in get_local_storage(map, flags) is 0,
2833 * this is required because get_local_storage() can't return an error.
2834 */
2835 if (func_id == BPF_FUNC_get_local_storage &&
2836 !register_is_null(&regs[BPF_REG_2])) {
2837 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2838 return -EINVAL;
2839 }
2840
17a52670 2841 /* reset caller saved regs */
dc503a8a 2842 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2843 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2844 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2845 }
17a52670 2846
dc503a8a 2847 /* update return register (already marked as written above) */
17a52670 2848 if (fn->ret_type == RET_INTEGER) {
f1174f77 2849 /* sets type to SCALAR_VALUE */
61bd5218 2850 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2851 } else if (fn->ret_type == RET_VOID) {
2852 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2853 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2854 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 2855 /* There is no offset yet applied, variable or fixed */
61bd5218 2856 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2857 /* remember map_ptr, so that check_map_access()
2858 * can check 'value_size' boundary of memory access
2859 * to map element returned from bpf_map_lookup_elem()
2860 */
33ff9823 2861 if (meta.map_ptr == NULL) {
61bd5218
JK
2862 verbose(env,
2863 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2864 return -EINVAL;
2865 }
33ff9823 2866 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
2867 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2868 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2869 } else {
2870 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2871 regs[BPF_REG_0].id = ++env->id_gen;
2872 }
c64b7983 2873 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
2874 int id = acquire_reference_state(env, insn_idx);
2875 if (id < 0)
2876 return id;
c64b7983
JS
2877 mark_reg_known_zero(env, regs, BPF_REG_0);
2878 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 2879 regs[BPF_REG_0].id = id;
17a52670 2880 } else {
61bd5218 2881 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2882 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2883 return -EINVAL;
2884 }
04fd61ab 2885
849fa506
YS
2886 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2887
61bd5218 2888 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2889 if (err)
2890 return err;
04fd61ab 2891
c195651e
YS
2892 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2893 const char *err_str;
2894
2895#ifdef CONFIG_PERF_EVENTS
2896 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2897 err_str = "cannot get callchain buffer for func %s#%d\n";
2898#else
2899 err = -ENOTSUPP;
2900 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2901#endif
2902 if (err) {
2903 verbose(env, err_str, func_id_name(func_id), func_id);
2904 return err;
2905 }
2906
2907 env->prog->has_callchain_buf = true;
2908 }
2909
969bf05e
AS
2910 if (changes_data)
2911 clear_all_pkt_pointers(env);
2912 return 0;
2913}
2914
b03c9f9f
EC
2915static bool signed_add_overflows(s64 a, s64 b)
2916{
2917 /* Do the add in u64, where overflow is well-defined */
2918 s64 res = (s64)((u64)a + (u64)b);
2919
2920 if (b < 0)
2921 return res > a;
2922 return res < a;
2923}
2924
2925static bool signed_sub_overflows(s64 a, s64 b)
2926{
2927 /* Do the sub in u64, where overflow is well-defined */
2928 s64 res = (s64)((u64)a - (u64)b);
2929
2930 if (b < 0)
2931 return res < a;
2932 return res > a;
969bf05e
AS
2933}
2934
bb7f0f98
AS
2935static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2936 const struct bpf_reg_state *reg,
2937 enum bpf_reg_type type)
2938{
2939 bool known = tnum_is_const(reg->var_off);
2940 s64 val = reg->var_off.value;
2941 s64 smin = reg->smin_value;
2942
2943 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2944 verbose(env, "math between %s pointer and %lld is not allowed\n",
2945 reg_type_str[type], val);
2946 return false;
2947 }
2948
2949 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2950 verbose(env, "%s pointer offset %d is not allowed\n",
2951 reg_type_str[type], reg->off);
2952 return false;
2953 }
2954
2955 if (smin == S64_MIN) {
2956 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2957 reg_type_str[type]);
2958 return false;
2959 }
2960
2961 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2962 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2963 smin, reg_type_str[type]);
2964 return false;
2965 }
2966
2967 return true;
2968}
2969
f1174f77 2970/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2971 * Caller should also handle BPF_MOV case separately.
2972 * If we return -EACCES, caller may want to try again treating pointer as a
2973 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2974 */
2975static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2976 struct bpf_insn *insn,
2977 const struct bpf_reg_state *ptr_reg,
2978 const struct bpf_reg_state *off_reg)
969bf05e 2979{
f4d7e40a
AS
2980 struct bpf_verifier_state *vstate = env->cur_state;
2981 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2982 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2983 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2984 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2985 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2986 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2987 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2988 u8 opcode = BPF_OP(insn->code);
f1174f77 2989 u32 dst = insn->dst_reg;
969bf05e 2990
f1174f77 2991 dst_reg = &regs[dst];
969bf05e 2992
6f16101e
DB
2993 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2994 smin_val > smax_val || umin_val > umax_val) {
2995 /* Taint dst register if offset had invalid bounds derived from
2996 * e.g. dead branches.
2997 */
2998 __mark_reg_unknown(dst_reg);
2999 return 0;
f1174f77
EC
3000 }
3001
3002 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3003 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3004 verbose(env,
3005 "R%d 32-bit pointer arithmetic prohibited\n",
3006 dst);
f1174f77 3007 return -EACCES;
969bf05e
AS
3008 }
3009
aad2eeaf
JS
3010 switch (ptr_reg->type) {
3011 case PTR_TO_MAP_VALUE_OR_NULL:
3012 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3013 dst, reg_type_str[ptr_reg->type]);
f1174f77 3014 return -EACCES;
aad2eeaf
JS
3015 case CONST_PTR_TO_MAP:
3016 case PTR_TO_PACKET_END:
c64b7983
JS
3017 case PTR_TO_SOCKET:
3018 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
3019 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3020 dst, reg_type_str[ptr_reg->type]);
f1174f77 3021 return -EACCES;
aad2eeaf
JS
3022 default:
3023 break;
f1174f77
EC
3024 }
3025
3026 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3027 * The id may be overwritten later if we create a new variable offset.
969bf05e 3028 */
f1174f77
EC
3029 dst_reg->type = ptr_reg->type;
3030 dst_reg->id = ptr_reg->id;
969bf05e 3031
bb7f0f98
AS
3032 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3033 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3034 return -EINVAL;
3035
f1174f77
EC
3036 switch (opcode) {
3037 case BPF_ADD:
3038 /* We can take a fixed offset as long as it doesn't overflow
3039 * the s32 'off' field
969bf05e 3040 */
b03c9f9f
EC
3041 if (known && (ptr_reg->off + smin_val ==
3042 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3043 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3044 dst_reg->smin_value = smin_ptr;
3045 dst_reg->smax_value = smax_ptr;
3046 dst_reg->umin_value = umin_ptr;
3047 dst_reg->umax_value = umax_ptr;
f1174f77 3048 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3049 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3050 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3051 break;
3052 }
f1174f77
EC
3053 /* A new variable offset is created. Note that off_reg->off
3054 * == 0, since it's a scalar.
3055 * dst_reg gets the pointer type and since some positive
3056 * integer value was added to the pointer, give it a new 'id'
3057 * if it's a PTR_TO_PACKET.
3058 * this creates a new 'base' pointer, off_reg (variable) gets
3059 * added into the variable offset, and we copy the fixed offset
3060 * from ptr_reg.
969bf05e 3061 */
b03c9f9f
EC
3062 if (signed_add_overflows(smin_ptr, smin_val) ||
3063 signed_add_overflows(smax_ptr, smax_val)) {
3064 dst_reg->smin_value = S64_MIN;
3065 dst_reg->smax_value = S64_MAX;
3066 } else {
3067 dst_reg->smin_value = smin_ptr + smin_val;
3068 dst_reg->smax_value = smax_ptr + smax_val;
3069 }
3070 if (umin_ptr + umin_val < umin_ptr ||
3071 umax_ptr + umax_val < umax_ptr) {
3072 dst_reg->umin_value = 0;
3073 dst_reg->umax_value = U64_MAX;
3074 } else {
3075 dst_reg->umin_value = umin_ptr + umin_val;
3076 dst_reg->umax_value = umax_ptr + umax_val;
3077 }
f1174f77
EC
3078 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3079 dst_reg->off = ptr_reg->off;
0962590e 3080 dst_reg->raw = ptr_reg->raw;
de8f3a83 3081 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3082 dst_reg->id = ++env->id_gen;
3083 /* something was added to pkt_ptr, set range to zero */
0962590e 3084 dst_reg->raw = 0;
f1174f77
EC
3085 }
3086 break;
3087 case BPF_SUB:
3088 if (dst_reg == off_reg) {
3089 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3090 verbose(env, "R%d tried to subtract pointer from scalar\n",
3091 dst);
f1174f77
EC
3092 return -EACCES;
3093 }
3094 /* We don't allow subtraction from FP, because (according to
3095 * test_verifier.c test "invalid fp arithmetic", JITs might not
3096 * be able to deal with it.
969bf05e 3097 */
f1174f77 3098 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3099 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3100 dst);
f1174f77
EC
3101 return -EACCES;
3102 }
b03c9f9f
EC
3103 if (known && (ptr_reg->off - smin_val ==
3104 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3105 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3106 dst_reg->smin_value = smin_ptr;
3107 dst_reg->smax_value = smax_ptr;
3108 dst_reg->umin_value = umin_ptr;
3109 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3110 dst_reg->var_off = ptr_reg->var_off;
3111 dst_reg->id = ptr_reg->id;
b03c9f9f 3112 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3113 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3114 break;
3115 }
f1174f77
EC
3116 /* A new variable offset is created. If the subtrahend is known
3117 * nonnegative, then any reg->range we had before is still good.
969bf05e 3118 */
b03c9f9f
EC
3119 if (signed_sub_overflows(smin_ptr, smax_val) ||
3120 signed_sub_overflows(smax_ptr, smin_val)) {
3121 /* Overflow possible, we know nothing */
3122 dst_reg->smin_value = S64_MIN;
3123 dst_reg->smax_value = S64_MAX;
3124 } else {
3125 dst_reg->smin_value = smin_ptr - smax_val;
3126 dst_reg->smax_value = smax_ptr - smin_val;
3127 }
3128 if (umin_ptr < umax_val) {
3129 /* Overflow possible, we know nothing */
3130 dst_reg->umin_value = 0;
3131 dst_reg->umax_value = U64_MAX;
3132 } else {
3133 /* Cannot overflow (as long as bounds are consistent) */
3134 dst_reg->umin_value = umin_ptr - umax_val;
3135 dst_reg->umax_value = umax_ptr - umin_val;
3136 }
f1174f77
EC
3137 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3138 dst_reg->off = ptr_reg->off;
0962590e 3139 dst_reg->raw = ptr_reg->raw;
de8f3a83 3140 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3141 dst_reg->id = ++env->id_gen;
3142 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3143 if (smin_val < 0)
0962590e 3144 dst_reg->raw = 0;
43188702 3145 }
f1174f77
EC
3146 break;
3147 case BPF_AND:
3148 case BPF_OR:
3149 case BPF_XOR:
82abbf8d
AS
3150 /* bitwise ops on pointers are troublesome, prohibit. */
3151 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3152 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3153 return -EACCES;
3154 default:
3155 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3156 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3157 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3158 return -EACCES;
43188702
JF
3159 }
3160
bb7f0f98
AS
3161 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3162 return -EINVAL;
3163
b03c9f9f
EC
3164 __update_reg_bounds(dst_reg);
3165 __reg_deduce_bounds(dst_reg);
3166 __reg_bound_offset(dst_reg);
43188702
JF
3167 return 0;
3168}
3169
468f6eaf
JH
3170/* WARNING: This function does calculations on 64-bit values, but the actual
3171 * execution may occur on 32-bit values. Therefore, things like bitshifts
3172 * need extra checks in the 32-bit case.
3173 */
f1174f77
EC
3174static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3175 struct bpf_insn *insn,
3176 struct bpf_reg_state *dst_reg,
3177 struct bpf_reg_state src_reg)
969bf05e 3178{
638f5b90 3179 struct bpf_reg_state *regs = cur_regs(env);
48461135 3180 u8 opcode = BPF_OP(insn->code);
f1174f77 3181 bool src_known, dst_known;
b03c9f9f
EC
3182 s64 smin_val, smax_val;
3183 u64 umin_val, umax_val;
468f6eaf 3184 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 3185
b799207e
JH
3186 if (insn_bitness == 32) {
3187 /* Relevant for 32-bit RSH: Information can propagate towards
3188 * LSB, so it isn't sufficient to only truncate the output to
3189 * 32 bits.
3190 */
3191 coerce_reg_to_size(dst_reg, 4);
3192 coerce_reg_to_size(&src_reg, 4);
3193 }
3194
b03c9f9f
EC
3195 smin_val = src_reg.smin_value;
3196 smax_val = src_reg.smax_value;
3197 umin_val = src_reg.umin_value;
3198 umax_val = src_reg.umax_value;
f1174f77
EC
3199 src_known = tnum_is_const(src_reg.var_off);
3200 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3201
6f16101e
DB
3202 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3203 smin_val > smax_val || umin_val > umax_val) {
3204 /* Taint dst register if offset had invalid bounds derived from
3205 * e.g. dead branches.
3206 */
3207 __mark_reg_unknown(dst_reg);
3208 return 0;
3209 }
3210
bb7f0f98
AS
3211 if (!src_known &&
3212 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3213 __mark_reg_unknown(dst_reg);
3214 return 0;
3215 }
3216
48461135
JB
3217 switch (opcode) {
3218 case BPF_ADD:
b03c9f9f
EC
3219 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3220 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3221 dst_reg->smin_value = S64_MIN;
3222 dst_reg->smax_value = S64_MAX;
3223 } else {
3224 dst_reg->smin_value += smin_val;
3225 dst_reg->smax_value += smax_val;
3226 }
3227 if (dst_reg->umin_value + umin_val < umin_val ||
3228 dst_reg->umax_value + umax_val < umax_val) {
3229 dst_reg->umin_value = 0;
3230 dst_reg->umax_value = U64_MAX;
3231 } else {
3232 dst_reg->umin_value += umin_val;
3233 dst_reg->umax_value += umax_val;
3234 }
f1174f77 3235 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3236 break;
3237 case BPF_SUB:
b03c9f9f
EC
3238 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3239 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3240 /* Overflow possible, we know nothing */
3241 dst_reg->smin_value = S64_MIN;
3242 dst_reg->smax_value = S64_MAX;
3243 } else {
3244 dst_reg->smin_value -= smax_val;
3245 dst_reg->smax_value -= smin_val;
3246 }
3247 if (dst_reg->umin_value < umax_val) {
3248 /* Overflow possible, we know nothing */
3249 dst_reg->umin_value = 0;
3250 dst_reg->umax_value = U64_MAX;
3251 } else {
3252 /* Cannot overflow (as long as bounds are consistent) */
3253 dst_reg->umin_value -= umax_val;
3254 dst_reg->umax_value -= umin_val;
3255 }
f1174f77 3256 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3257 break;
3258 case BPF_MUL:
b03c9f9f
EC
3259 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3260 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3261 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3262 __mark_reg_unbounded(dst_reg);
3263 __update_reg_bounds(dst_reg);
f1174f77
EC
3264 break;
3265 }
b03c9f9f
EC
3266 /* Both values are positive, so we can work with unsigned and
3267 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3268 */
b03c9f9f
EC
3269 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3270 /* Potential overflow, we know nothing */
3271 __mark_reg_unbounded(dst_reg);
3272 /* (except what we can learn from the var_off) */
3273 __update_reg_bounds(dst_reg);
3274 break;
3275 }
3276 dst_reg->umin_value *= umin_val;
3277 dst_reg->umax_value *= umax_val;
3278 if (dst_reg->umax_value > S64_MAX) {
3279 /* Overflow possible, we know nothing */
3280 dst_reg->smin_value = S64_MIN;
3281 dst_reg->smax_value = S64_MAX;
3282 } else {
3283 dst_reg->smin_value = dst_reg->umin_value;
3284 dst_reg->smax_value = dst_reg->umax_value;
3285 }
48461135
JB
3286 break;
3287 case BPF_AND:
f1174f77 3288 if (src_known && dst_known) {
b03c9f9f
EC
3289 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3290 src_reg.var_off.value);
f1174f77
EC
3291 break;
3292 }
b03c9f9f
EC
3293 /* We get our minimum from the var_off, since that's inherently
3294 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3295 */
f1174f77 3296 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3297 dst_reg->umin_value = dst_reg->var_off.value;
3298 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3299 if (dst_reg->smin_value < 0 || smin_val < 0) {
3300 /* Lose signed bounds when ANDing negative numbers,
3301 * ain't nobody got time for that.
3302 */
3303 dst_reg->smin_value = S64_MIN;
3304 dst_reg->smax_value = S64_MAX;
3305 } else {
3306 /* ANDing two positives gives a positive, so safe to
3307 * cast result into s64.
3308 */
3309 dst_reg->smin_value = dst_reg->umin_value;
3310 dst_reg->smax_value = dst_reg->umax_value;
3311 }
3312 /* We may learn something more from the var_off */
3313 __update_reg_bounds(dst_reg);
f1174f77
EC
3314 break;
3315 case BPF_OR:
3316 if (src_known && dst_known) {
b03c9f9f
EC
3317 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3318 src_reg.var_off.value);
f1174f77
EC
3319 break;
3320 }
b03c9f9f
EC
3321 /* We get our maximum from the var_off, and our minimum is the
3322 * maximum of the operands' minima
f1174f77
EC
3323 */
3324 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3325 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3326 dst_reg->umax_value = dst_reg->var_off.value |
3327 dst_reg->var_off.mask;
3328 if (dst_reg->smin_value < 0 || smin_val < 0) {
3329 /* Lose signed bounds when ORing negative numbers,
3330 * ain't nobody got time for that.
3331 */
3332 dst_reg->smin_value = S64_MIN;
3333 dst_reg->smax_value = S64_MAX;
f1174f77 3334 } else {
b03c9f9f
EC
3335 /* ORing two positives gives a positive, so safe to
3336 * cast result into s64.
3337 */
3338 dst_reg->smin_value = dst_reg->umin_value;
3339 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3340 }
b03c9f9f
EC
3341 /* We may learn something more from the var_off */
3342 __update_reg_bounds(dst_reg);
48461135
JB
3343 break;
3344 case BPF_LSH:
468f6eaf
JH
3345 if (umax_val >= insn_bitness) {
3346 /* Shifts greater than 31 or 63 are undefined.
3347 * This includes shifts by a negative number.
b03c9f9f 3348 */
61bd5218 3349 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3350 break;
3351 }
b03c9f9f
EC
3352 /* We lose all sign bit information (except what we can pick
3353 * up from var_off)
48461135 3354 */
b03c9f9f
EC
3355 dst_reg->smin_value = S64_MIN;
3356 dst_reg->smax_value = S64_MAX;
3357 /* If we might shift our top bit out, then we know nothing */
3358 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3359 dst_reg->umin_value = 0;
3360 dst_reg->umax_value = U64_MAX;
d1174416 3361 } else {
b03c9f9f
EC
3362 dst_reg->umin_value <<= umin_val;
3363 dst_reg->umax_value <<= umax_val;
d1174416 3364 }
afbe1a5b 3365 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3366 /* We may learn something more from the var_off */
3367 __update_reg_bounds(dst_reg);
48461135
JB
3368 break;
3369 case BPF_RSH:
468f6eaf
JH
3370 if (umax_val >= insn_bitness) {
3371 /* Shifts greater than 31 or 63 are undefined.
3372 * This includes shifts by a negative number.
b03c9f9f 3373 */
61bd5218 3374 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3375 break;
3376 }
4374f256
EC
3377 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3378 * be negative, then either:
3379 * 1) src_reg might be zero, so the sign bit of the result is
3380 * unknown, so we lose our signed bounds
3381 * 2) it's known negative, thus the unsigned bounds capture the
3382 * signed bounds
3383 * 3) the signed bounds cross zero, so they tell us nothing
3384 * about the result
3385 * If the value in dst_reg is known nonnegative, then again the
3386 * unsigned bounts capture the signed bounds.
3387 * Thus, in all cases it suffices to blow away our signed bounds
3388 * and rely on inferring new ones from the unsigned bounds and
3389 * var_off of the result.
3390 */
3391 dst_reg->smin_value = S64_MIN;
3392 dst_reg->smax_value = S64_MAX;
afbe1a5b 3393 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3394 dst_reg->umin_value >>= umax_val;
3395 dst_reg->umax_value >>= umin_val;
3396 /* We may learn something more from the var_off */
3397 __update_reg_bounds(dst_reg);
48461135 3398 break;
9cbe1f5a
YS
3399 case BPF_ARSH:
3400 if (umax_val >= insn_bitness) {
3401 /* Shifts greater than 31 or 63 are undefined.
3402 * This includes shifts by a negative number.
3403 */
3404 mark_reg_unknown(env, regs, insn->dst_reg);
3405 break;
3406 }
3407
3408 /* Upon reaching here, src_known is true and
3409 * umax_val is equal to umin_val.
3410 */
3411 dst_reg->smin_value >>= umin_val;
3412 dst_reg->smax_value >>= umin_val;
3413 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3414
3415 /* blow away the dst_reg umin_value/umax_value and rely on
3416 * dst_reg var_off to refine the result.
3417 */
3418 dst_reg->umin_value = 0;
3419 dst_reg->umax_value = U64_MAX;
3420 __update_reg_bounds(dst_reg);
3421 break;
48461135 3422 default:
61bd5218 3423 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3424 break;
3425 }
3426
468f6eaf
JH
3427 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3428 /* 32-bit ALU ops are (32,32)->32 */
3429 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3430 }
3431
b03c9f9f
EC
3432 __reg_deduce_bounds(dst_reg);
3433 __reg_bound_offset(dst_reg);
f1174f77
EC
3434 return 0;
3435}
3436
3437/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3438 * and var_off.
3439 */
3440static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3441 struct bpf_insn *insn)
3442{
f4d7e40a
AS
3443 struct bpf_verifier_state *vstate = env->cur_state;
3444 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3445 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3446 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3447 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3448
3449 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3450 src_reg = NULL;
3451 if (dst_reg->type != SCALAR_VALUE)
3452 ptr_reg = dst_reg;
3453 if (BPF_SRC(insn->code) == BPF_X) {
3454 src_reg = &regs[insn->src_reg];
f1174f77
EC
3455 if (src_reg->type != SCALAR_VALUE) {
3456 if (dst_reg->type != SCALAR_VALUE) {
3457 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3458 * an arbitrary scalar. Disallow all math except
3459 * pointer subtraction
f1174f77 3460 */
dd066823 3461 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3462 mark_reg_unknown(env, regs, insn->dst_reg);
3463 return 0;
f1174f77 3464 }
82abbf8d
AS
3465 verbose(env, "R%d pointer %s pointer prohibited\n",
3466 insn->dst_reg,
3467 bpf_alu_string[opcode >> 4]);
3468 return -EACCES;
f1174f77
EC
3469 } else {
3470 /* scalar += pointer
3471 * This is legal, but we have to reverse our
3472 * src/dest handling in computing the range
3473 */
82abbf8d
AS
3474 return adjust_ptr_min_max_vals(env, insn,
3475 src_reg, dst_reg);
f1174f77
EC
3476 }
3477 } else if (ptr_reg) {
3478 /* pointer += scalar */
82abbf8d
AS
3479 return adjust_ptr_min_max_vals(env, insn,
3480 dst_reg, src_reg);
f1174f77
EC
3481 }
3482 } else {
3483 /* Pretend the src is a reg with a known value, since we only
3484 * need to be able to read from this state.
3485 */
3486 off_reg.type = SCALAR_VALUE;
b03c9f9f 3487 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3488 src_reg = &off_reg;
82abbf8d
AS
3489 if (ptr_reg) /* pointer += K */
3490 return adjust_ptr_min_max_vals(env, insn,
3491 ptr_reg, src_reg);
f1174f77
EC
3492 }
3493
3494 /* Got here implies adding two SCALAR_VALUEs */
3495 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3496 print_verifier_state(env, state);
61bd5218 3497 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3498 return -EINVAL;
3499 }
3500 if (WARN_ON(!src_reg)) {
f4d7e40a 3501 print_verifier_state(env, state);
61bd5218 3502 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3503 return -EINVAL;
3504 }
3505 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3506}
3507
17a52670 3508/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3509static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3510{
638f5b90 3511 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3512 u8 opcode = BPF_OP(insn->code);
3513 int err;
3514
3515 if (opcode == BPF_END || opcode == BPF_NEG) {
3516 if (opcode == BPF_NEG) {
3517 if (BPF_SRC(insn->code) != 0 ||
3518 insn->src_reg != BPF_REG_0 ||
3519 insn->off != 0 || insn->imm != 0) {
61bd5218 3520 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3521 return -EINVAL;
3522 }
3523 } else {
3524 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3525 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3526 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3527 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3528 return -EINVAL;
3529 }
3530 }
3531
3532 /* check src operand */
dc503a8a 3533 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3534 if (err)
3535 return err;
3536
1be7f75d 3537 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3538 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3539 insn->dst_reg);
3540 return -EACCES;
3541 }
3542
17a52670 3543 /* check dest operand */
dc503a8a 3544 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3545 if (err)
3546 return err;
3547
3548 } else if (opcode == BPF_MOV) {
3549
3550 if (BPF_SRC(insn->code) == BPF_X) {
3551 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3552 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3553 return -EINVAL;
3554 }
3555
3556 /* check src operand */
dc503a8a 3557 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3558 if (err)
3559 return err;
3560 } else {
3561 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3562 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3563 return -EINVAL;
3564 }
3565 }
3566
fbeb1603
AF
3567 /* check dest operand, mark as required later */
3568 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3569 if (err)
3570 return err;
3571
3572 if (BPF_SRC(insn->code) == BPF_X) {
3573 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3574 /* case: R1 = R2
3575 * copy register state to dest reg
3576 */
3577 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3578 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3579 } else {
f1174f77 3580 /* R1 = (u32) R2 */
1be7f75d 3581 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3582 verbose(env,
3583 "R%d partial copy of pointer\n",
1be7f75d
AS
3584 insn->src_reg);
3585 return -EACCES;
3586 }
61bd5218 3587 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3588 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3589 }
3590 } else {
3591 /* case: R = imm
3592 * remember the value we stored into this reg
3593 */
fbeb1603
AF
3594 /* clear any state __mark_reg_known doesn't set */
3595 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3596 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3597 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3598 __mark_reg_known(regs + insn->dst_reg,
3599 insn->imm);
3600 } else {
3601 __mark_reg_known(regs + insn->dst_reg,
3602 (u32)insn->imm);
3603 }
17a52670
AS
3604 }
3605
3606 } else if (opcode > BPF_END) {
61bd5218 3607 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3608 return -EINVAL;
3609
3610 } else { /* all other ALU ops: and, sub, xor, add, ... */
3611
17a52670
AS
3612 if (BPF_SRC(insn->code) == BPF_X) {
3613 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3614 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3615 return -EINVAL;
3616 }
3617 /* check src1 operand */
dc503a8a 3618 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3619 if (err)
3620 return err;
3621 } else {
3622 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3623 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3624 return -EINVAL;
3625 }
3626 }
3627
3628 /* check src2 operand */
dc503a8a 3629 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3630 if (err)
3631 return err;
3632
3633 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3634 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3635 verbose(env, "div by zero\n");
17a52670
AS
3636 return -EINVAL;
3637 }
3638
7891a87e
DB
3639 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3640 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3641 return -EINVAL;
3642 }
3643
229394e8
RV
3644 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3645 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3646 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3647
3648 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3649 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3650 return -EINVAL;
3651 }
3652 }
3653
1a0dc1ac 3654 /* check dest operand */
dc503a8a 3655 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3656 if (err)
3657 return err;
3658
f1174f77 3659 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3660 }
3661
3662 return 0;
3663}
3664
f4d7e40a 3665static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3666 struct bpf_reg_state *dst_reg,
f8ddadc4 3667 enum bpf_reg_type type,
fb2a311a 3668 bool range_right_open)
969bf05e 3669{
f4d7e40a 3670 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3671 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3672 u16 new_range;
f4d7e40a 3673 int i, j;
2d2be8ca 3674
fb2a311a
DB
3675 if (dst_reg->off < 0 ||
3676 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3677 /* This doesn't give us any range */
3678 return;
3679
b03c9f9f
EC
3680 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3681 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3682 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3683 * than pkt_end, but that's because it's also less than pkt.
3684 */
3685 return;
3686
fb2a311a
DB
3687 new_range = dst_reg->off;
3688 if (range_right_open)
3689 new_range--;
3690
3691 /* Examples for register markings:
2d2be8ca 3692 *
fb2a311a 3693 * pkt_data in dst register:
2d2be8ca
DB
3694 *
3695 * r2 = r3;
3696 * r2 += 8;
3697 * if (r2 > pkt_end) goto <handle exception>
3698 * <access okay>
3699 *
b4e432f1
DB
3700 * r2 = r3;
3701 * r2 += 8;
3702 * if (r2 < pkt_end) goto <access okay>
3703 * <handle exception>
3704 *
2d2be8ca
DB
3705 * Where:
3706 * r2 == dst_reg, pkt_end == src_reg
3707 * r2=pkt(id=n,off=8,r=0)
3708 * r3=pkt(id=n,off=0,r=0)
3709 *
fb2a311a 3710 * pkt_data in src register:
2d2be8ca
DB
3711 *
3712 * r2 = r3;
3713 * r2 += 8;
3714 * if (pkt_end >= r2) goto <access okay>
3715 * <handle exception>
3716 *
b4e432f1
DB
3717 * r2 = r3;
3718 * r2 += 8;
3719 * if (pkt_end <= r2) goto <handle exception>
3720 * <access okay>
3721 *
2d2be8ca
DB
3722 * Where:
3723 * pkt_end == dst_reg, r2 == src_reg
3724 * r2=pkt(id=n,off=8,r=0)
3725 * r3=pkt(id=n,off=0,r=0)
3726 *
3727 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3728 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3729 * and [r3, r3 + 8-1) respectively is safe to access depending on
3730 * the check.
969bf05e 3731 */
2d2be8ca 3732
f1174f77
EC
3733 /* If our ids match, then we must have the same max_value. And we
3734 * don't care about the other reg's fixed offset, since if it's too big
3735 * the range won't allow anything.
3736 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3737 */
969bf05e 3738 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3739 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3740 /* keep the maximum range already checked */
fb2a311a 3741 regs[i].range = max(regs[i].range, new_range);
969bf05e 3742
f4d7e40a
AS
3743 for (j = 0; j <= vstate->curframe; j++) {
3744 state = vstate->frame[j];
f3709f69
JS
3745 bpf_for_each_spilled_reg(i, state, reg) {
3746 if (!reg)
f4d7e40a 3747 continue;
f4d7e40a
AS
3748 if (reg->type == type && reg->id == dst_reg->id)
3749 reg->range = max(reg->range, new_range);
3750 }
969bf05e
AS
3751 }
3752}
3753
4f7b3e82
AS
3754/* compute branch direction of the expression "if (reg opcode val) goto target;"
3755 * and return:
3756 * 1 - branch will be taken and "goto target" will be executed
3757 * 0 - branch will not be taken and fall-through to next insn
3758 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3759 */
3760static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3761{
3762 if (__is_pointer_value(false, reg))
3763 return -1;
3764
3765 switch (opcode) {
3766 case BPF_JEQ:
3767 if (tnum_is_const(reg->var_off))
3768 return !!tnum_equals_const(reg->var_off, val);
3769 break;
3770 case BPF_JNE:
3771 if (tnum_is_const(reg->var_off))
3772 return !tnum_equals_const(reg->var_off, val);
3773 break;
3774 case BPF_JGT:
3775 if (reg->umin_value > val)
3776 return 1;
3777 else if (reg->umax_value <= val)
3778 return 0;
3779 break;
3780 case BPF_JSGT:
3781 if (reg->smin_value > (s64)val)
3782 return 1;
3783 else if (reg->smax_value < (s64)val)
3784 return 0;
3785 break;
3786 case BPF_JLT:
3787 if (reg->umax_value < val)
3788 return 1;
3789 else if (reg->umin_value >= val)
3790 return 0;
3791 break;
3792 case BPF_JSLT:
3793 if (reg->smax_value < (s64)val)
3794 return 1;
3795 else if (reg->smin_value >= (s64)val)
3796 return 0;
3797 break;
3798 case BPF_JGE:
3799 if (reg->umin_value >= val)
3800 return 1;
3801 else if (reg->umax_value < val)
3802 return 0;
3803 break;
3804 case BPF_JSGE:
3805 if (reg->smin_value >= (s64)val)
3806 return 1;
3807 else if (reg->smax_value < (s64)val)
3808 return 0;
3809 break;
3810 case BPF_JLE:
3811 if (reg->umax_value <= val)
3812 return 1;
3813 else if (reg->umin_value > val)
3814 return 0;
3815 break;
3816 case BPF_JSLE:
3817 if (reg->smax_value <= (s64)val)
3818 return 1;
3819 else if (reg->smin_value > (s64)val)
3820 return 0;
3821 break;
3822 }
3823
3824 return -1;
3825}
3826
48461135
JB
3827/* Adjusts the register min/max values in the case that the dst_reg is the
3828 * variable register that we are working on, and src_reg is a constant or we're
3829 * simply doing a BPF_K check.
f1174f77 3830 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3831 */
3832static void reg_set_min_max(struct bpf_reg_state *true_reg,
3833 struct bpf_reg_state *false_reg, u64 val,
3834 u8 opcode)
3835{
f1174f77
EC
3836 /* If the dst_reg is a pointer, we can't learn anything about its
3837 * variable offset from the compare (unless src_reg were a pointer into
3838 * the same object, but we don't bother with that.
3839 * Since false_reg and true_reg have the same type by construction, we
3840 * only need to check one of them for pointerness.
3841 */
3842 if (__is_pointer_value(false, false_reg))
3843 return;
4cabc5b1 3844
48461135
JB
3845 switch (opcode) {
3846 case BPF_JEQ:
3847 /* If this is false then we know nothing Jon Snow, but if it is
3848 * true then we know for sure.
3849 */
b03c9f9f 3850 __mark_reg_known(true_reg, val);
48461135
JB
3851 break;
3852 case BPF_JNE:
3853 /* If this is true we know nothing Jon Snow, but if it is false
3854 * we know the value for sure;
3855 */
b03c9f9f 3856 __mark_reg_known(false_reg, val);
48461135
JB
3857 break;
3858 case BPF_JGT:
b03c9f9f
EC
3859 false_reg->umax_value = min(false_reg->umax_value, val);
3860 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3861 break;
48461135 3862 case BPF_JSGT:
b03c9f9f
EC
3863 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3864 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3865 break;
b4e432f1
DB
3866 case BPF_JLT:
3867 false_reg->umin_value = max(false_reg->umin_value, val);
3868 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3869 break;
3870 case BPF_JSLT:
3871 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3872 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3873 break;
48461135 3874 case BPF_JGE:
b03c9f9f
EC
3875 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3876 true_reg->umin_value = max(true_reg->umin_value, val);
3877 break;
48461135 3878 case BPF_JSGE:
b03c9f9f
EC
3879 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3880 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3881 break;
b4e432f1
DB
3882 case BPF_JLE:
3883 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3884 true_reg->umax_value = min(true_reg->umax_value, val);
3885 break;
3886 case BPF_JSLE:
3887 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3888 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3889 break;
48461135
JB
3890 default:
3891 break;
3892 }
3893
b03c9f9f
EC
3894 __reg_deduce_bounds(false_reg);
3895 __reg_deduce_bounds(true_reg);
3896 /* We might have learned some bits from the bounds. */
3897 __reg_bound_offset(false_reg);
3898 __reg_bound_offset(true_reg);
3899 /* Intersecting with the old var_off might have improved our bounds
3900 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3901 * then new var_off is (0; 0x7f...fc) which improves our umax.
3902 */
3903 __update_reg_bounds(false_reg);
3904 __update_reg_bounds(true_reg);
48461135
JB
3905}
3906
f1174f77
EC
3907/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3908 * the variable reg.
48461135
JB
3909 */
3910static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3911 struct bpf_reg_state *false_reg, u64 val,
3912 u8 opcode)
3913{
f1174f77
EC
3914 if (__is_pointer_value(false, false_reg))
3915 return;
4cabc5b1 3916
48461135
JB
3917 switch (opcode) {
3918 case BPF_JEQ:
3919 /* If this is false then we know nothing Jon Snow, but if it is
3920 * true then we know for sure.
3921 */
b03c9f9f 3922 __mark_reg_known(true_reg, val);
48461135
JB
3923 break;
3924 case BPF_JNE:
3925 /* If this is true we know nothing Jon Snow, but if it is false
3926 * we know the value for sure;
3927 */
b03c9f9f 3928 __mark_reg_known(false_reg, val);
48461135
JB
3929 break;
3930 case BPF_JGT:
b03c9f9f
EC
3931 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3932 false_reg->umin_value = max(false_reg->umin_value, val);
3933 break;
48461135 3934 case BPF_JSGT:
b03c9f9f
EC
3935 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3936 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3937 break;
b4e432f1
DB
3938 case BPF_JLT:
3939 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3940 false_reg->umax_value = min(false_reg->umax_value, val);
3941 break;
3942 case BPF_JSLT:
3943 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3944 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3945 break;
48461135 3946 case BPF_JGE:
b03c9f9f
EC
3947 true_reg->umax_value = min(true_reg->umax_value, val);
3948 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3949 break;
48461135 3950 case BPF_JSGE:
b03c9f9f
EC
3951 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3952 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3953 break;
b4e432f1
DB
3954 case BPF_JLE:
3955 true_reg->umin_value = max(true_reg->umin_value, val);
3956 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3957 break;
3958 case BPF_JSLE:
3959 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3960 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3961 break;
48461135
JB
3962 default:
3963 break;
3964 }
3965
b03c9f9f
EC
3966 __reg_deduce_bounds(false_reg);
3967 __reg_deduce_bounds(true_reg);
3968 /* We might have learned some bits from the bounds. */
3969 __reg_bound_offset(false_reg);
3970 __reg_bound_offset(true_reg);
3971 /* Intersecting with the old var_off might have improved our bounds
3972 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3973 * then new var_off is (0; 0x7f...fc) which improves our umax.
3974 */
3975 __update_reg_bounds(false_reg);
3976 __update_reg_bounds(true_reg);
f1174f77
EC
3977}
3978
3979/* Regs are known to be equal, so intersect their min/max/var_off */
3980static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3981 struct bpf_reg_state *dst_reg)
3982{
b03c9f9f
EC
3983 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3984 dst_reg->umin_value);
3985 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3986 dst_reg->umax_value);
3987 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3988 dst_reg->smin_value);
3989 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3990 dst_reg->smax_value);
f1174f77
EC
3991 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3992 dst_reg->var_off);
b03c9f9f
EC
3993 /* We might have learned new bounds from the var_off. */
3994 __update_reg_bounds(src_reg);
3995 __update_reg_bounds(dst_reg);
3996 /* We might have learned something about the sign bit. */
3997 __reg_deduce_bounds(src_reg);
3998 __reg_deduce_bounds(dst_reg);
3999 /* We might have learned some bits from the bounds. */
4000 __reg_bound_offset(src_reg);
4001 __reg_bound_offset(dst_reg);
4002 /* Intersecting with the old var_off might have improved our bounds
4003 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4004 * then new var_off is (0; 0x7f...fc) which improves our umax.
4005 */
4006 __update_reg_bounds(src_reg);
4007 __update_reg_bounds(dst_reg);
f1174f77
EC
4008}
4009
4010static void reg_combine_min_max(struct bpf_reg_state *true_src,
4011 struct bpf_reg_state *true_dst,
4012 struct bpf_reg_state *false_src,
4013 struct bpf_reg_state *false_dst,
4014 u8 opcode)
4015{
4016 switch (opcode) {
4017 case BPF_JEQ:
4018 __reg_combine_min_max(true_src, true_dst);
4019 break;
4020 case BPF_JNE:
4021 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4022 break;
4cabc5b1 4023 }
48461135
JB
4024}
4025
fd978bf7
JS
4026static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4027 struct bpf_reg_state *reg, u32 id,
840b9615 4028 bool is_null)
57a09bf0 4029{
840b9615 4030 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4031 /* Old offset (both fixed and variable parts) should
4032 * have been known-zero, because we don't allow pointer
4033 * arithmetic on pointers that might be NULL.
4034 */
b03c9f9f
EC
4035 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4036 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4037 reg->off)) {
b03c9f9f
EC
4038 __mark_reg_known_zero(reg);
4039 reg->off = 0;
f1174f77
EC
4040 }
4041 if (is_null) {
4042 reg->type = SCALAR_VALUE;
840b9615
JS
4043 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4044 if (reg->map_ptr->inner_map_meta) {
4045 reg->type = CONST_PTR_TO_MAP;
4046 reg->map_ptr = reg->map_ptr->inner_map_meta;
4047 } else {
4048 reg->type = PTR_TO_MAP_VALUE;
4049 }
c64b7983
JS
4050 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4051 reg->type = PTR_TO_SOCKET;
56f668df 4052 }
fd978bf7
JS
4053 if (is_null || !reg_is_refcounted(reg)) {
4054 /* We don't need id from this point onwards anymore,
4055 * thus we should better reset it, so that state
4056 * pruning has chances to take effect.
4057 */
4058 reg->id = 0;
56f668df 4059 }
57a09bf0
TG
4060 }
4061}
4062
4063/* The logic is similar to find_good_pkt_pointers(), both could eventually
4064 * be folded together at some point.
4065 */
840b9615
JS
4066static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4067 bool is_null)
57a09bf0 4068{
f4d7e40a 4069 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4070 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 4071 u32 id = regs[regno].id;
f4d7e40a 4072 int i, j;
57a09bf0 4073
fd978bf7
JS
4074 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4075 __release_reference_state(state, id);
4076
57a09bf0 4077 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4078 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4079
f4d7e40a
AS
4080 for (j = 0; j <= vstate->curframe; j++) {
4081 state = vstate->frame[j];
f3709f69
JS
4082 bpf_for_each_spilled_reg(i, state, reg) {
4083 if (!reg)
f4d7e40a 4084 continue;
fd978bf7 4085 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4086 }
57a09bf0
TG
4087 }
4088}
4089
5beca081
DB
4090static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4091 struct bpf_reg_state *dst_reg,
4092 struct bpf_reg_state *src_reg,
4093 struct bpf_verifier_state *this_branch,
4094 struct bpf_verifier_state *other_branch)
4095{
4096 if (BPF_SRC(insn->code) != BPF_X)
4097 return false;
4098
4099 switch (BPF_OP(insn->code)) {
4100 case BPF_JGT:
4101 if ((dst_reg->type == PTR_TO_PACKET &&
4102 src_reg->type == PTR_TO_PACKET_END) ||
4103 (dst_reg->type == PTR_TO_PACKET_META &&
4104 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4105 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4106 find_good_pkt_pointers(this_branch, dst_reg,
4107 dst_reg->type, false);
4108 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4109 src_reg->type == PTR_TO_PACKET) ||
4110 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4111 src_reg->type == PTR_TO_PACKET_META)) {
4112 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4113 find_good_pkt_pointers(other_branch, src_reg,
4114 src_reg->type, true);
4115 } else {
4116 return false;
4117 }
4118 break;
4119 case BPF_JLT:
4120 if ((dst_reg->type == PTR_TO_PACKET &&
4121 src_reg->type == PTR_TO_PACKET_END) ||
4122 (dst_reg->type == PTR_TO_PACKET_META &&
4123 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4124 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4125 find_good_pkt_pointers(other_branch, dst_reg,
4126 dst_reg->type, true);
4127 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4128 src_reg->type == PTR_TO_PACKET) ||
4129 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4130 src_reg->type == PTR_TO_PACKET_META)) {
4131 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4132 find_good_pkt_pointers(this_branch, src_reg,
4133 src_reg->type, false);
4134 } else {
4135 return false;
4136 }
4137 break;
4138 case BPF_JGE:
4139 if ((dst_reg->type == PTR_TO_PACKET &&
4140 src_reg->type == PTR_TO_PACKET_END) ||
4141 (dst_reg->type == PTR_TO_PACKET_META &&
4142 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4143 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4144 find_good_pkt_pointers(this_branch, dst_reg,
4145 dst_reg->type, true);
4146 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4147 src_reg->type == PTR_TO_PACKET) ||
4148 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4149 src_reg->type == PTR_TO_PACKET_META)) {
4150 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4151 find_good_pkt_pointers(other_branch, src_reg,
4152 src_reg->type, false);
4153 } else {
4154 return false;
4155 }
4156 break;
4157 case BPF_JLE:
4158 if ((dst_reg->type == PTR_TO_PACKET &&
4159 src_reg->type == PTR_TO_PACKET_END) ||
4160 (dst_reg->type == PTR_TO_PACKET_META &&
4161 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4162 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4163 find_good_pkt_pointers(other_branch, dst_reg,
4164 dst_reg->type, false);
4165 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4166 src_reg->type == PTR_TO_PACKET) ||
4167 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4168 src_reg->type == PTR_TO_PACKET_META)) {
4169 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4170 find_good_pkt_pointers(this_branch, src_reg,
4171 src_reg->type, true);
4172 } else {
4173 return false;
4174 }
4175 break;
4176 default:
4177 return false;
4178 }
4179
4180 return true;
4181}
4182
58e2af8b 4183static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4184 struct bpf_insn *insn, int *insn_idx)
4185{
f4d7e40a
AS
4186 struct bpf_verifier_state *this_branch = env->cur_state;
4187 struct bpf_verifier_state *other_branch;
4188 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4189 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
4190 u8 opcode = BPF_OP(insn->code);
4191 int err;
4192
b4e432f1 4193 if (opcode > BPF_JSLE) {
61bd5218 4194 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
4195 return -EINVAL;
4196 }
4197
4198 if (BPF_SRC(insn->code) == BPF_X) {
4199 if (insn->imm != 0) {
61bd5218 4200 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4201 return -EINVAL;
4202 }
4203
4204 /* check src1 operand */
dc503a8a 4205 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4206 if (err)
4207 return err;
1be7f75d
AS
4208
4209 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4210 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4211 insn->src_reg);
4212 return -EACCES;
4213 }
17a52670
AS
4214 } else {
4215 if (insn->src_reg != BPF_REG_0) {
61bd5218 4216 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4217 return -EINVAL;
4218 }
4219 }
4220
4221 /* check src2 operand */
dc503a8a 4222 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4223 if (err)
4224 return err;
4225
1a0dc1ac
AS
4226 dst_reg = &regs[insn->dst_reg];
4227
4f7b3e82
AS
4228 if (BPF_SRC(insn->code) == BPF_K) {
4229 int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4230
4231 if (pred == 1) {
4232 /* only follow the goto, ignore fall-through */
17a52670
AS
4233 *insn_idx += insn->off;
4234 return 0;
4f7b3e82
AS
4235 } else if (pred == 0) {
4236 /* only follow fall-through branch, since
17a52670
AS
4237 * that's where the program will go
4238 */
4239 return 0;
4240 }
4241 }
4242
4243 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4244 if (!other_branch)
4245 return -EFAULT;
f4d7e40a 4246 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4247
48461135
JB
4248 /* detect if we are comparing against a constant value so we can adjust
4249 * our min/max values for our dst register.
f1174f77
EC
4250 * this is only legit if both are scalars (or pointers to the same
4251 * object, I suppose, but we don't support that right now), because
4252 * otherwise the different base pointers mean the offsets aren't
4253 * comparable.
48461135
JB
4254 */
4255 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
4256 if (dst_reg->type == SCALAR_VALUE &&
4257 regs[insn->src_reg].type == SCALAR_VALUE) {
4258 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 4259 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
4260 dst_reg, regs[insn->src_reg].var_off.value,
4261 opcode);
4262 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 4263 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
4264 &regs[insn->src_reg],
4265 dst_reg->var_off.value, opcode);
4266 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4267 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4268 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4269 &other_branch_regs[insn->dst_reg],
f1174f77
EC
4270 &regs[insn->src_reg],
4271 &regs[insn->dst_reg], opcode);
4272 }
4273 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4274 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
4275 dst_reg, insn->imm, opcode);
4276 }
4277
58e2af8b 4278 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 4279 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4280 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4281 reg_type_may_be_null(dst_reg->type)) {
4282 /* Mark all identical registers in each branch as either
57a09bf0
TG
4283 * safe or unknown depending R == 0 or R != 0 conditional.
4284 */
840b9615
JS
4285 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4286 opcode == BPF_JNE);
4287 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4288 opcode == BPF_JEQ);
5beca081
DB
4289 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4290 this_branch, other_branch) &&
4291 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4292 verbose(env, "R%d pointer comparison prohibited\n",
4293 insn->dst_reg);
1be7f75d 4294 return -EACCES;
17a52670 4295 }
61bd5218 4296 if (env->log.level)
f4d7e40a 4297 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4298 return 0;
4299}
4300
0246e64d
AS
4301/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4302static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4303{
4304 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4305
4306 return (struct bpf_map *) (unsigned long) imm64;
4307}
4308
17a52670 4309/* verify BPF_LD_IMM64 instruction */
58e2af8b 4310static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4311{
638f5b90 4312 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4313 int err;
4314
4315 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4316 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4317 return -EINVAL;
4318 }
4319 if (insn->off != 0) {
61bd5218 4320 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4321 return -EINVAL;
4322 }
4323
dc503a8a 4324 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4325 if (err)
4326 return err;
4327
6b173873 4328 if (insn->src_reg == 0) {
6b173873
JK
4329 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4330
f1174f77 4331 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4332 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4333 return 0;
6b173873 4334 }
17a52670
AS
4335
4336 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4337 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4338
4339 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4340 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4341 return 0;
4342}
4343
96be4325
DB
4344static bool may_access_skb(enum bpf_prog_type type)
4345{
4346 switch (type) {
4347 case BPF_PROG_TYPE_SOCKET_FILTER:
4348 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4349 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4350 return true;
4351 default:
4352 return false;
4353 }
4354}
4355
ddd872bc
AS
4356/* verify safety of LD_ABS|LD_IND instructions:
4357 * - they can only appear in the programs where ctx == skb
4358 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4359 * preserve R6-R9, and store return value into R0
4360 *
4361 * Implicit input:
4362 * ctx == skb == R6 == CTX
4363 *
4364 * Explicit input:
4365 * SRC == any register
4366 * IMM == 32-bit immediate
4367 *
4368 * Output:
4369 * R0 - 8/16/32-bit skb data converted to cpu endianness
4370 */
58e2af8b 4371static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4372{
638f5b90 4373 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4374 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4375 int i, err;
4376
24701ece 4377 if (!may_access_skb(env->prog->type)) {
61bd5218 4378 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4379 return -EINVAL;
4380 }
4381
e0cea7ce
DB
4382 if (!env->ops->gen_ld_abs) {
4383 verbose(env, "bpf verifier is misconfigured\n");
4384 return -EINVAL;
4385 }
4386
f910cefa 4387 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4388 /* when program has LD_ABS insn JITs and interpreter assume
4389 * that r1 == ctx == skb which is not the case for callees
4390 * that can have arbitrary arguments. It's problematic
4391 * for main prog as well since JITs would need to analyze
4392 * all functions in order to make proper register save/restore
4393 * decisions in the main prog. Hence disallow LD_ABS with calls
4394 */
4395 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4396 return -EINVAL;
4397 }
4398
ddd872bc 4399 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4400 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4401 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4402 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4403 return -EINVAL;
4404 }
4405
4406 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4407 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4408 if (err)
4409 return err;
4410
fd978bf7
JS
4411 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4412 * gen_ld_abs() may terminate the program at runtime, leading to
4413 * reference leak.
4414 */
4415 err = check_reference_leak(env);
4416 if (err) {
4417 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4418 return err;
4419 }
4420
ddd872bc 4421 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4422 verbose(env,
4423 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4424 return -EINVAL;
4425 }
4426
4427 if (mode == BPF_IND) {
4428 /* check explicit source operand */
dc503a8a 4429 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4430 if (err)
4431 return err;
4432 }
4433
4434 /* reset caller saved regs to unreadable */
dc503a8a 4435 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4436 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4437 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4438 }
ddd872bc
AS
4439
4440 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4441 * the value fetched from the packet.
4442 * Already marked as written above.
ddd872bc 4443 */
61bd5218 4444 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4445 return 0;
4446}
4447
390ee7e2
AS
4448static int check_return_code(struct bpf_verifier_env *env)
4449{
4450 struct bpf_reg_state *reg;
4451 struct tnum range = tnum_range(0, 1);
4452
4453 switch (env->prog->type) {
4454 case BPF_PROG_TYPE_CGROUP_SKB:
4455 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4456 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4457 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4458 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4459 break;
4460 default:
4461 return 0;
4462 }
4463
638f5b90 4464 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4465 if (reg->type != SCALAR_VALUE) {
61bd5218 4466 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4467 reg_type_str[reg->type]);
4468 return -EINVAL;
4469 }
4470
4471 if (!tnum_in(range, reg->var_off)) {
61bd5218 4472 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4473 if (!tnum_is_unknown(reg->var_off)) {
4474 char tn_buf[48];
4475
4476 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4477 verbose(env, "has value %s", tn_buf);
390ee7e2 4478 } else {
61bd5218 4479 verbose(env, "has unknown scalar value");
390ee7e2 4480 }
61bd5218 4481 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4482 return -EINVAL;
4483 }
4484 return 0;
4485}
4486
475fb78f
AS
4487/* non-recursive DFS pseudo code
4488 * 1 procedure DFS-iterative(G,v):
4489 * 2 label v as discovered
4490 * 3 let S be a stack
4491 * 4 S.push(v)
4492 * 5 while S is not empty
4493 * 6 t <- S.pop()
4494 * 7 if t is what we're looking for:
4495 * 8 return t
4496 * 9 for all edges e in G.adjacentEdges(t) do
4497 * 10 if edge e is already labelled
4498 * 11 continue with the next edge
4499 * 12 w <- G.adjacentVertex(t,e)
4500 * 13 if vertex w is not discovered and not explored
4501 * 14 label e as tree-edge
4502 * 15 label w as discovered
4503 * 16 S.push(w)
4504 * 17 continue at 5
4505 * 18 else if vertex w is discovered
4506 * 19 label e as back-edge
4507 * 20 else
4508 * 21 // vertex w is explored
4509 * 22 label e as forward- or cross-edge
4510 * 23 label t as explored
4511 * 24 S.pop()
4512 *
4513 * convention:
4514 * 0x10 - discovered
4515 * 0x11 - discovered and fall-through edge labelled
4516 * 0x12 - discovered and fall-through and branch edges labelled
4517 * 0x20 - explored
4518 */
4519
4520enum {
4521 DISCOVERED = 0x10,
4522 EXPLORED = 0x20,
4523 FALLTHROUGH = 1,
4524 BRANCH = 2,
4525};
4526
58e2af8b 4527#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4528
475fb78f
AS
4529static int *insn_stack; /* stack of insns to process */
4530static int cur_stack; /* current stack index */
4531static int *insn_state;
4532
4533/* t, w, e - match pseudo-code above:
4534 * t - index of current instruction
4535 * w - next instruction
4536 * e - edge
4537 */
58e2af8b 4538static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4539{
4540 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4541 return 0;
4542
4543 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4544 return 0;
4545
4546 if (w < 0 || w >= env->prog->len) {
61bd5218 4547 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4548 return -EINVAL;
4549 }
4550
f1bca824
AS
4551 if (e == BRANCH)
4552 /* mark branch target for state pruning */
4553 env->explored_states[w] = STATE_LIST_MARK;
4554
475fb78f
AS
4555 if (insn_state[w] == 0) {
4556 /* tree-edge */
4557 insn_state[t] = DISCOVERED | e;
4558 insn_state[w] = DISCOVERED;
4559 if (cur_stack >= env->prog->len)
4560 return -E2BIG;
4561 insn_stack[cur_stack++] = w;
4562 return 1;
4563 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4564 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4565 return -EINVAL;
4566 } else if (insn_state[w] == EXPLORED) {
4567 /* forward- or cross-edge */
4568 insn_state[t] = DISCOVERED | e;
4569 } else {
61bd5218 4570 verbose(env, "insn state internal bug\n");
475fb78f
AS
4571 return -EFAULT;
4572 }
4573 return 0;
4574}
4575
4576/* non-recursive depth-first-search to detect loops in BPF program
4577 * loop == back-edge in directed graph
4578 */
58e2af8b 4579static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4580{
4581 struct bpf_insn *insns = env->prog->insnsi;
4582 int insn_cnt = env->prog->len;
4583 int ret = 0;
4584 int i, t;
4585
cc8b0b92
AS
4586 ret = check_subprogs(env);
4587 if (ret < 0)
4588 return ret;
4589
475fb78f
AS
4590 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4591 if (!insn_state)
4592 return -ENOMEM;
4593
4594 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4595 if (!insn_stack) {
4596 kfree(insn_state);
4597 return -ENOMEM;
4598 }
4599
4600 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4601 insn_stack[0] = 0; /* 0 is the first instruction */
4602 cur_stack = 1;
4603
4604peek_stack:
4605 if (cur_stack == 0)
4606 goto check_state;
4607 t = insn_stack[cur_stack - 1];
4608
4609 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4610 u8 opcode = BPF_OP(insns[t].code);
4611
4612 if (opcode == BPF_EXIT) {
4613 goto mark_explored;
4614 } else if (opcode == BPF_CALL) {
4615 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4616 if (ret == 1)
4617 goto peek_stack;
4618 else if (ret < 0)
4619 goto err_free;
07016151
DB
4620 if (t + 1 < insn_cnt)
4621 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4622 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4623 env->explored_states[t] = STATE_LIST_MARK;
4624 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4625 if (ret == 1)
4626 goto peek_stack;
4627 else if (ret < 0)
4628 goto err_free;
4629 }
475fb78f
AS
4630 } else if (opcode == BPF_JA) {
4631 if (BPF_SRC(insns[t].code) != BPF_K) {
4632 ret = -EINVAL;
4633 goto err_free;
4634 }
4635 /* unconditional jump with single edge */
4636 ret = push_insn(t, t + insns[t].off + 1,
4637 FALLTHROUGH, env);
4638 if (ret == 1)
4639 goto peek_stack;
4640 else if (ret < 0)
4641 goto err_free;
f1bca824
AS
4642 /* tell verifier to check for equivalent states
4643 * after every call and jump
4644 */
c3de6317
AS
4645 if (t + 1 < insn_cnt)
4646 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4647 } else {
4648 /* conditional jump with two edges */
3c2ce60b 4649 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4650 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4651 if (ret == 1)
4652 goto peek_stack;
4653 else if (ret < 0)
4654 goto err_free;
4655
4656 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4657 if (ret == 1)
4658 goto peek_stack;
4659 else if (ret < 0)
4660 goto err_free;
4661 }
4662 } else {
4663 /* all other non-branch instructions with single
4664 * fall-through edge
4665 */
4666 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4667 if (ret == 1)
4668 goto peek_stack;
4669 else if (ret < 0)
4670 goto err_free;
4671 }
4672
4673mark_explored:
4674 insn_state[t] = EXPLORED;
4675 if (cur_stack-- <= 0) {
61bd5218 4676 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4677 ret = -EFAULT;
4678 goto err_free;
4679 }
4680 goto peek_stack;
4681
4682check_state:
4683 for (i = 0; i < insn_cnt; i++) {
4684 if (insn_state[i] != EXPLORED) {
61bd5218 4685 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4686 ret = -EINVAL;
4687 goto err_free;
4688 }
4689 }
4690 ret = 0; /* cfg looks good */
4691
4692err_free:
4693 kfree(insn_state);
4694 kfree(insn_stack);
4695 return ret;
4696}
4697
f1174f77
EC
4698/* check %cur's range satisfies %old's */
4699static bool range_within(struct bpf_reg_state *old,
4700 struct bpf_reg_state *cur)
4701{
b03c9f9f
EC
4702 return old->umin_value <= cur->umin_value &&
4703 old->umax_value >= cur->umax_value &&
4704 old->smin_value <= cur->smin_value &&
4705 old->smax_value >= cur->smax_value;
f1174f77
EC
4706}
4707
4708/* Maximum number of register states that can exist at once */
4709#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4710struct idpair {
4711 u32 old;
4712 u32 cur;
4713};
4714
4715/* If in the old state two registers had the same id, then they need to have
4716 * the same id in the new state as well. But that id could be different from
4717 * the old state, so we need to track the mapping from old to new ids.
4718 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4719 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4720 * regs with a different old id could still have new id 9, we don't care about
4721 * that.
4722 * So we look through our idmap to see if this old id has been seen before. If
4723 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4724 */
f1174f77 4725static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4726{
f1174f77 4727 unsigned int i;
969bf05e 4728
f1174f77
EC
4729 for (i = 0; i < ID_MAP_SIZE; i++) {
4730 if (!idmap[i].old) {
4731 /* Reached an empty slot; haven't seen this id before */
4732 idmap[i].old = old_id;
4733 idmap[i].cur = cur_id;
4734 return true;
4735 }
4736 if (idmap[i].old == old_id)
4737 return idmap[i].cur == cur_id;
4738 }
4739 /* We ran out of idmap slots, which should be impossible */
4740 WARN_ON_ONCE(1);
4741 return false;
4742}
4743
4744/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4745static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4746 struct idpair *idmap)
f1174f77 4747{
f4d7e40a
AS
4748 bool equal;
4749
dc503a8a
EC
4750 if (!(rold->live & REG_LIVE_READ))
4751 /* explored state didn't use this */
4752 return true;
4753
679c782d 4754 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
4755
4756 if (rold->type == PTR_TO_STACK)
4757 /* two stack pointers are equal only if they're pointing to
4758 * the same stack frame, since fp-8 in foo != fp-8 in bar
4759 */
4760 return equal && rold->frameno == rcur->frameno;
4761
4762 if (equal)
969bf05e
AS
4763 return true;
4764
f1174f77
EC
4765 if (rold->type == NOT_INIT)
4766 /* explored state can't have used this */
969bf05e 4767 return true;
f1174f77
EC
4768 if (rcur->type == NOT_INIT)
4769 return false;
4770 switch (rold->type) {
4771 case SCALAR_VALUE:
4772 if (rcur->type == SCALAR_VALUE) {
4773 /* new val must satisfy old val knowledge */
4774 return range_within(rold, rcur) &&
4775 tnum_in(rold->var_off, rcur->var_off);
4776 } else {
179d1c56
JH
4777 /* We're trying to use a pointer in place of a scalar.
4778 * Even if the scalar was unbounded, this could lead to
4779 * pointer leaks because scalars are allowed to leak
4780 * while pointers are not. We could make this safe in
4781 * special cases if root is calling us, but it's
4782 * probably not worth the hassle.
f1174f77 4783 */
179d1c56 4784 return false;
f1174f77
EC
4785 }
4786 case PTR_TO_MAP_VALUE:
1b688a19
EC
4787 /* If the new min/max/var_off satisfy the old ones and
4788 * everything else matches, we are OK.
4789 * We don't care about the 'id' value, because nothing
4790 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4791 */
4792 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4793 range_within(rold, rcur) &&
4794 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4795 case PTR_TO_MAP_VALUE_OR_NULL:
4796 /* a PTR_TO_MAP_VALUE could be safe to use as a
4797 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4798 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4799 * checked, doing so could have affected others with the same
4800 * id, and we can't check for that because we lost the id when
4801 * we converted to a PTR_TO_MAP_VALUE.
4802 */
4803 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4804 return false;
4805 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4806 return false;
4807 /* Check our ids match any regs they're supposed to */
4808 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4809 case PTR_TO_PACKET_META:
f1174f77 4810 case PTR_TO_PACKET:
de8f3a83 4811 if (rcur->type != rold->type)
f1174f77
EC
4812 return false;
4813 /* We must have at least as much range as the old ptr
4814 * did, so that any accesses which were safe before are
4815 * still safe. This is true even if old range < old off,
4816 * since someone could have accessed through (ptr - k), or
4817 * even done ptr -= k in a register, to get a safe access.
4818 */
4819 if (rold->range > rcur->range)
4820 return false;
4821 /* If the offsets don't match, we can't trust our alignment;
4822 * nor can we be sure that we won't fall out of range.
4823 */
4824 if (rold->off != rcur->off)
4825 return false;
4826 /* id relations must be preserved */
4827 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4828 return false;
4829 /* new val must satisfy old val knowledge */
4830 return range_within(rold, rcur) &&
4831 tnum_in(rold->var_off, rcur->var_off);
4832 case PTR_TO_CTX:
4833 case CONST_PTR_TO_MAP:
f1174f77 4834 case PTR_TO_PACKET_END:
d58e468b 4835 case PTR_TO_FLOW_KEYS:
c64b7983
JS
4836 case PTR_TO_SOCKET:
4837 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
4838 /* Only valid matches are exact, which memcmp() above
4839 * would have accepted
4840 */
4841 default:
4842 /* Don't know what's going on, just say it's not safe */
4843 return false;
4844 }
969bf05e 4845
f1174f77
EC
4846 /* Shouldn't get here; if we do, say it's not safe */
4847 WARN_ON_ONCE(1);
969bf05e
AS
4848 return false;
4849}
4850
f4d7e40a
AS
4851static bool stacksafe(struct bpf_func_state *old,
4852 struct bpf_func_state *cur,
638f5b90
AS
4853 struct idpair *idmap)
4854{
4855 int i, spi;
4856
4857 /* if explored stack has more populated slots than current stack
4858 * such stacks are not equivalent
4859 */
4860 if (old->allocated_stack > cur->allocated_stack)
4861 return false;
4862
4863 /* walk slots of the explored stack and ignore any additional
4864 * slots in the current stack, since explored(safe) state
4865 * didn't use them
4866 */
4867 for (i = 0; i < old->allocated_stack; i++) {
4868 spi = i / BPF_REG_SIZE;
4869
cc2b14d5
AS
4870 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4871 /* explored state didn't use this */
fd05e57b 4872 continue;
cc2b14d5 4873
638f5b90
AS
4874 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4875 continue;
cc2b14d5
AS
4876 /* if old state was safe with misc data in the stack
4877 * it will be safe with zero-initialized stack.
4878 * The opposite is not true
4879 */
4880 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4881 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4882 continue;
638f5b90
AS
4883 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4884 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4885 /* Ex: old explored (safe) state has STACK_SPILL in
4886 * this stack slot, but current has has STACK_MISC ->
4887 * this verifier states are not equivalent,
4888 * return false to continue verification of this path
4889 */
4890 return false;
4891 if (i % BPF_REG_SIZE)
4892 continue;
4893 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4894 continue;
4895 if (!regsafe(&old->stack[spi].spilled_ptr,
4896 &cur->stack[spi].spilled_ptr,
4897 idmap))
4898 /* when explored and current stack slot are both storing
4899 * spilled registers, check that stored pointers types
4900 * are the same as well.
4901 * Ex: explored safe path could have stored
4902 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4903 * but current path has stored:
4904 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4905 * such verifier states are not equivalent.
4906 * return false to continue verification of this path
4907 */
4908 return false;
4909 }
4910 return true;
4911}
4912
fd978bf7
JS
4913static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4914{
4915 if (old->acquired_refs != cur->acquired_refs)
4916 return false;
4917 return !memcmp(old->refs, cur->refs,
4918 sizeof(*old->refs) * old->acquired_refs);
4919}
4920
f1bca824
AS
4921/* compare two verifier states
4922 *
4923 * all states stored in state_list are known to be valid, since
4924 * verifier reached 'bpf_exit' instruction through them
4925 *
4926 * this function is called when verifier exploring different branches of
4927 * execution popped from the state stack. If it sees an old state that has
4928 * more strict register state and more strict stack state then this execution
4929 * branch doesn't need to be explored further, since verifier already
4930 * concluded that more strict state leads to valid finish.
4931 *
4932 * Therefore two states are equivalent if register state is more conservative
4933 * and explored stack state is more conservative than the current one.
4934 * Example:
4935 * explored current
4936 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4937 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4938 *
4939 * In other words if current stack state (one being explored) has more
4940 * valid slots than old one that already passed validation, it means
4941 * the verifier can stop exploring and conclude that current state is valid too
4942 *
4943 * Similarly with registers. If explored state has register type as invalid
4944 * whereas register type in current state is meaningful, it means that
4945 * the current state will reach 'bpf_exit' instruction safely
4946 */
f4d7e40a
AS
4947static bool func_states_equal(struct bpf_func_state *old,
4948 struct bpf_func_state *cur)
f1bca824 4949{
f1174f77
EC
4950 struct idpair *idmap;
4951 bool ret = false;
f1bca824
AS
4952 int i;
4953
f1174f77
EC
4954 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4955 /* If we failed to allocate the idmap, just say it's not safe */
4956 if (!idmap)
1a0dc1ac 4957 return false;
f1174f77
EC
4958
4959 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4960 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4961 goto out_free;
f1bca824
AS
4962 }
4963
638f5b90
AS
4964 if (!stacksafe(old, cur, idmap))
4965 goto out_free;
fd978bf7
JS
4966
4967 if (!refsafe(old, cur))
4968 goto out_free;
f1174f77
EC
4969 ret = true;
4970out_free:
4971 kfree(idmap);
4972 return ret;
f1bca824
AS
4973}
4974
f4d7e40a
AS
4975static bool states_equal(struct bpf_verifier_env *env,
4976 struct bpf_verifier_state *old,
4977 struct bpf_verifier_state *cur)
4978{
4979 int i;
4980
4981 if (old->curframe != cur->curframe)
4982 return false;
4983
4984 /* for states to be equal callsites have to be the same
4985 * and all frame states need to be equivalent
4986 */
4987 for (i = 0; i <= old->curframe; i++) {
4988 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4989 return false;
4990 if (!func_states_equal(old->frame[i], cur->frame[i]))
4991 return false;
4992 }
4993 return true;
4994}
4995
8e9cd9ce 4996/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4997 * straight-line code between a state and its parent. When we arrive at an
4998 * equivalent state (jump target or such) we didn't arrive by the straight-line
4999 * code, so read marks in the state must propagate to the parent regardless
5000 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 5001 * in mark_reg_read() is for.
8e9cd9ce 5002 */
f4d7e40a
AS
5003static int propagate_liveness(struct bpf_verifier_env *env,
5004 const struct bpf_verifier_state *vstate,
5005 struct bpf_verifier_state *vparent)
dc503a8a 5006{
f4d7e40a
AS
5007 int i, frame, err = 0;
5008 struct bpf_func_state *state, *parent;
dc503a8a 5009
f4d7e40a
AS
5010 if (vparent->curframe != vstate->curframe) {
5011 WARN(1, "propagate_live: parent frame %d current frame %d\n",
5012 vparent->curframe, vstate->curframe);
5013 return -EFAULT;
5014 }
dc503a8a
EC
5015 /* Propagate read liveness of registers... */
5016 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5017 /* We don't need to worry about FP liveness because it's read-only */
5018 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 5019 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 5020 continue;
f4d7e40a 5021 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
5022 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5023 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
5024 if (err)
5025 return err;
dc503a8a
EC
5026 }
5027 }
f4d7e40a 5028
dc503a8a 5029 /* ... and stack slots */
f4d7e40a
AS
5030 for (frame = 0; frame <= vstate->curframe; frame++) {
5031 state = vstate->frame[frame];
5032 parent = vparent->frame[frame];
5033 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5034 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
5035 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5036 continue;
5037 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
5038 mark_reg_read(env, &state->stack[i].spilled_ptr,
5039 &parent->stack[i].spilled_ptr);
dc503a8a
EC
5040 }
5041 }
f4d7e40a 5042 return err;
dc503a8a
EC
5043}
5044
58e2af8b 5045static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 5046{
58e2af8b
JK
5047 struct bpf_verifier_state_list *new_sl;
5048 struct bpf_verifier_state_list *sl;
679c782d 5049 struct bpf_verifier_state *cur = env->cur_state, *new;
f4d7e40a 5050 int i, j, err;
f1bca824
AS
5051
5052 sl = env->explored_states[insn_idx];
5053 if (!sl)
5054 /* this 'insn_idx' instruction wasn't marked, so we will not
5055 * be doing state search here
5056 */
5057 return 0;
5058
5059 while (sl != STATE_LIST_MARK) {
638f5b90 5060 if (states_equal(env, &sl->state, cur)) {
f1bca824 5061 /* reached equivalent register/stack state,
dc503a8a
EC
5062 * prune the search.
5063 * Registers read by the continuation are read by us.
8e9cd9ce
EC
5064 * If we have any write marks in env->cur_state, they
5065 * will prevent corresponding reads in the continuation
5066 * from reaching our parent (an explored_state). Our
5067 * own state will get the read marks recorded, but
5068 * they'll be immediately forgotten as we're pruning
5069 * this state and will pop a new one.
f1bca824 5070 */
f4d7e40a
AS
5071 err = propagate_liveness(env, &sl->state, cur);
5072 if (err)
5073 return err;
f1bca824 5074 return 1;
dc503a8a 5075 }
f1bca824
AS
5076 sl = sl->next;
5077 }
5078
5079 /* there were no equivalent states, remember current one.
5080 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
5081 * but it will either reach outer most bpf_exit (which means it's safe)
5082 * or it will be rejected. Since there are no loops, we won't be
5083 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5084 * again on the way to bpf_exit
f1bca824 5085 */
638f5b90 5086 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
5087 if (!new_sl)
5088 return -ENOMEM;
5089
5090 /* add new state to the head of linked list */
679c782d
EC
5091 new = &new_sl->state;
5092 err = copy_verifier_state(new, cur);
1969db47 5093 if (err) {
679c782d 5094 free_verifier_state(new, false);
1969db47
AS
5095 kfree(new_sl);
5096 return err;
5097 }
f1bca824
AS
5098 new_sl->next = env->explored_states[insn_idx];
5099 env->explored_states[insn_idx] = new_sl;
dc503a8a 5100 /* connect new state to parentage chain */
679c782d
EC
5101 for (i = 0; i < BPF_REG_FP; i++)
5102 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
8e9cd9ce
EC
5103 /* clear write marks in current state: the writes we did are not writes
5104 * our child did, so they don't screen off its reads from us.
5105 * (There are no read marks in current state, because reads always mark
5106 * their parent and current state never has children yet. Only
5107 * explored_states can get read marks.)
5108 */
dc503a8a 5109 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
5110 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5111
5112 /* all stack frames are accessible from callee, clear them all */
5113 for (j = 0; j <= cur->curframe; j++) {
5114 struct bpf_func_state *frame = cur->frame[j];
679c782d 5115 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 5116
679c782d 5117 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 5118 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
5119 frame->stack[i].spilled_ptr.parent =
5120 &newframe->stack[i].spilled_ptr;
5121 }
f4d7e40a 5122 }
f1bca824
AS
5123 return 0;
5124}
5125
c64b7983
JS
5126/* Return true if it's OK to have the same insn return a different type. */
5127static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5128{
5129 switch (type) {
5130 case PTR_TO_CTX:
5131 case PTR_TO_SOCKET:
5132 case PTR_TO_SOCKET_OR_NULL:
5133 return false;
5134 default:
5135 return true;
5136 }
5137}
5138
5139/* If an instruction was previously used with particular pointer types, then we
5140 * need to be careful to avoid cases such as the below, where it may be ok
5141 * for one branch accessing the pointer, but not ok for the other branch:
5142 *
5143 * R1 = sock_ptr
5144 * goto X;
5145 * ...
5146 * R1 = some_other_valid_ptr;
5147 * goto X;
5148 * ...
5149 * R2 = *(u32 *)(R1 + 0);
5150 */
5151static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5152{
5153 return src != prev && (!reg_type_mismatch_ok(src) ||
5154 !reg_type_mismatch_ok(prev));
5155}
5156
58e2af8b 5157static int do_check(struct bpf_verifier_env *env)
17a52670 5158{
638f5b90 5159 struct bpf_verifier_state *state;
17a52670 5160 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 5161 struct bpf_reg_state *regs;
f4d7e40a 5162 int insn_cnt = env->prog->len, i;
17a52670
AS
5163 int insn_idx, prev_insn_idx = 0;
5164 int insn_processed = 0;
5165 bool do_print_state = false;
5166
638f5b90
AS
5167 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5168 if (!state)
5169 return -ENOMEM;
f4d7e40a 5170 state->curframe = 0;
f4d7e40a
AS
5171 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5172 if (!state->frame[0]) {
5173 kfree(state);
5174 return -ENOMEM;
5175 }
5176 env->cur_state = state;
5177 init_func_state(env, state->frame[0],
5178 BPF_MAIN_FUNC /* callsite */,
5179 0 /* frameno */,
5180 0 /* subprogno, zero == main subprog */);
17a52670
AS
5181 insn_idx = 0;
5182 for (;;) {
5183 struct bpf_insn *insn;
5184 u8 class;
5185 int err;
5186
5187 if (insn_idx >= insn_cnt) {
61bd5218 5188 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
5189 insn_idx, insn_cnt);
5190 return -EFAULT;
5191 }
5192
5193 insn = &insns[insn_idx];
5194 class = BPF_CLASS(insn->code);
5195
07016151 5196 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
5197 verbose(env,
5198 "BPF program is too large. Processed %d insn\n",
17a52670
AS
5199 insn_processed);
5200 return -E2BIG;
5201 }
5202
f1bca824
AS
5203 err = is_state_visited(env, insn_idx);
5204 if (err < 0)
5205 return err;
5206 if (err == 1) {
5207 /* found equivalent state, can prune the search */
61bd5218 5208 if (env->log.level) {
f1bca824 5209 if (do_print_state)
61bd5218 5210 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
5211 prev_insn_idx, insn_idx);
5212 else
61bd5218 5213 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
5214 }
5215 goto process_bpf_exit;
5216 }
5217
c3494801
AS
5218 if (signal_pending(current))
5219 return -EAGAIN;
5220
3c2ce60b
DB
5221 if (need_resched())
5222 cond_resched();
5223
61bd5218
JK
5224 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5225 if (env->log.level > 1)
5226 verbose(env, "%d:", insn_idx);
c5fc9692 5227 else
61bd5218 5228 verbose(env, "\nfrom %d to %d:",
c5fc9692 5229 prev_insn_idx, insn_idx);
f4d7e40a 5230 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
5231 do_print_state = false;
5232 }
5233
61bd5218 5234 if (env->log.level) {
7105e828
DB
5235 const struct bpf_insn_cbs cbs = {
5236 .cb_print = verbose,
abe08840 5237 .private_data = env,
7105e828
DB
5238 };
5239
61bd5218 5240 verbose(env, "%d: ", insn_idx);
abe08840 5241 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
5242 }
5243
cae1927c
JK
5244 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5245 err = bpf_prog_offload_verify_insn(env, insn_idx,
5246 prev_insn_idx);
5247 if (err)
5248 return err;
5249 }
13a27dfc 5250
638f5b90 5251 regs = cur_regs(env);
c131187d 5252 env->insn_aux_data[insn_idx].seen = true;
fd978bf7 5253
17a52670 5254 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 5255 err = check_alu_op(env, insn);
17a52670
AS
5256 if (err)
5257 return err;
5258
5259 } else if (class == BPF_LDX) {
3df126f3 5260 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
5261
5262 /* check for reserved fields is already done */
5263
17a52670 5264 /* check src operand */
dc503a8a 5265 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5266 if (err)
5267 return err;
5268
dc503a8a 5269 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5270 if (err)
5271 return err;
5272
725f9dcd
AS
5273 src_reg_type = regs[insn->src_reg].type;
5274
17a52670
AS
5275 /* check that memory (src_reg + off) is readable,
5276 * the state of dst_reg will be updated by this func
5277 */
31fd8581 5278 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 5279 BPF_SIZE(insn->code), BPF_READ,
ca369602 5280 insn->dst_reg, false);
17a52670
AS
5281 if (err)
5282 return err;
5283
3df126f3
JK
5284 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5285
5286 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
5287 /* saw a valid insn
5288 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 5289 * save type to validate intersecting paths
9bac3d6d 5290 */
3df126f3 5291 *prev_src_type = src_reg_type;
9bac3d6d 5292
c64b7983 5293 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
5294 /* ABuser program is trying to use the same insn
5295 * dst_reg = *(u32*) (src_reg + off)
5296 * with different pointer types:
5297 * src_reg == ctx in one branch and
5298 * src_reg == stack|map in some other branch.
5299 * Reject it.
5300 */
61bd5218 5301 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
5302 return -EINVAL;
5303 }
5304
17a52670 5305 } else if (class == BPF_STX) {
3df126f3 5306 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 5307
17a52670 5308 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 5309 err = check_xadd(env, insn_idx, insn);
17a52670
AS
5310 if (err)
5311 return err;
5312 insn_idx++;
5313 continue;
5314 }
5315
17a52670 5316 /* check src1 operand */
dc503a8a 5317 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5318 if (err)
5319 return err;
5320 /* check src2 operand */
dc503a8a 5321 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5322 if (err)
5323 return err;
5324
d691f9e8
AS
5325 dst_reg_type = regs[insn->dst_reg].type;
5326
17a52670 5327 /* check that memory (dst_reg + off) is writeable */
31fd8581 5328 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5329 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5330 insn->src_reg, false);
17a52670
AS
5331 if (err)
5332 return err;
5333
3df126f3
JK
5334 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5335
5336 if (*prev_dst_type == NOT_INIT) {
5337 *prev_dst_type = dst_reg_type;
c64b7983 5338 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 5339 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
5340 return -EINVAL;
5341 }
5342
17a52670
AS
5343 } else if (class == BPF_ST) {
5344 if (BPF_MODE(insn->code) != BPF_MEM ||
5345 insn->src_reg != BPF_REG_0) {
61bd5218 5346 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
5347 return -EINVAL;
5348 }
5349 /* check src operand */
dc503a8a 5350 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5351 if (err)
5352 return err;
5353
f37a8cb8 5354 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 5355 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
5356 insn->dst_reg,
5357 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
5358 return -EACCES;
5359 }
5360
17a52670 5361 /* check that memory (dst_reg + off) is writeable */
31fd8581 5362 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5363 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5364 -1, false);
17a52670
AS
5365 if (err)
5366 return err;
5367
5368 } else if (class == BPF_JMP) {
5369 u8 opcode = BPF_OP(insn->code);
5370
5371 if (opcode == BPF_CALL) {
5372 if (BPF_SRC(insn->code) != BPF_K ||
5373 insn->off != 0 ||
f4d7e40a
AS
5374 (insn->src_reg != BPF_REG_0 &&
5375 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 5376 insn->dst_reg != BPF_REG_0) {
61bd5218 5377 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
5378 return -EINVAL;
5379 }
5380
f4d7e40a
AS
5381 if (insn->src_reg == BPF_PSEUDO_CALL)
5382 err = check_func_call(env, insn, &insn_idx);
5383 else
5384 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
5385 if (err)
5386 return err;
5387
5388 } else if (opcode == BPF_JA) {
5389 if (BPF_SRC(insn->code) != BPF_K ||
5390 insn->imm != 0 ||
5391 insn->src_reg != BPF_REG_0 ||
5392 insn->dst_reg != BPF_REG_0) {
61bd5218 5393 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
5394 return -EINVAL;
5395 }
5396
5397 insn_idx += insn->off + 1;
5398 continue;
5399
5400 } else if (opcode == BPF_EXIT) {
5401 if (BPF_SRC(insn->code) != BPF_K ||
5402 insn->imm != 0 ||
5403 insn->src_reg != BPF_REG_0 ||
5404 insn->dst_reg != BPF_REG_0) {
61bd5218 5405 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5406 return -EINVAL;
5407 }
5408
f4d7e40a
AS
5409 if (state->curframe) {
5410 /* exit from nested function */
5411 prev_insn_idx = insn_idx;
5412 err = prepare_func_exit(env, &insn_idx);
5413 if (err)
5414 return err;
5415 do_print_state = true;
5416 continue;
5417 }
5418
fd978bf7
JS
5419 err = check_reference_leak(env);
5420 if (err)
5421 return err;
5422
17a52670
AS
5423 /* eBPF calling convetion is such that R0 is used
5424 * to return the value from eBPF program.
5425 * Make sure that it's readable at this time
5426 * of bpf_exit, which means that program wrote
5427 * something into it earlier
5428 */
dc503a8a 5429 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5430 if (err)
5431 return err;
5432
1be7f75d 5433 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5434 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5435 return -EACCES;
5436 }
5437
390ee7e2
AS
5438 err = check_return_code(env);
5439 if (err)
5440 return err;
f1bca824 5441process_bpf_exit:
638f5b90
AS
5442 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5443 if (err < 0) {
5444 if (err != -ENOENT)
5445 return err;
17a52670
AS
5446 break;
5447 } else {
5448 do_print_state = true;
5449 continue;
5450 }
5451 } else {
5452 err = check_cond_jmp_op(env, insn, &insn_idx);
5453 if (err)
5454 return err;
5455 }
5456 } else if (class == BPF_LD) {
5457 u8 mode = BPF_MODE(insn->code);
5458
5459 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5460 err = check_ld_abs(env, insn);
5461 if (err)
5462 return err;
5463
17a52670
AS
5464 } else if (mode == BPF_IMM) {
5465 err = check_ld_imm(env, insn);
5466 if (err)
5467 return err;
5468
5469 insn_idx++;
c131187d 5470 env->insn_aux_data[insn_idx].seen = true;
17a52670 5471 } else {
61bd5218 5472 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5473 return -EINVAL;
5474 }
5475 } else {
61bd5218 5476 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5477 return -EINVAL;
5478 }
5479
5480 insn_idx++;
5481 }
5482
4bd95f4b
DB
5483 verbose(env, "processed %d insns (limit %d), stack depth ",
5484 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5485 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5486 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5487
5488 verbose(env, "%d", depth);
f910cefa 5489 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5490 verbose(env, "+");
5491 }
5492 verbose(env, "\n");
9c8105bd 5493 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5494 return 0;
5495}
5496
56f668df
MKL
5497static int check_map_prealloc(struct bpf_map *map)
5498{
5499 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5500 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5501 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5502 !(map->map_flags & BPF_F_NO_PREALLOC);
5503}
5504
61bd5218
JK
5505static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5506 struct bpf_map *map,
fdc15d38
AS
5507 struct bpf_prog *prog)
5508
5509{
56f668df
MKL
5510 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5511 * preallocated hash maps, since doing memory allocation
5512 * in overflow_handler can crash depending on where nmi got
5513 * triggered.
5514 */
5515 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5516 if (!check_map_prealloc(map)) {
61bd5218 5517 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
5518 return -EINVAL;
5519 }
5520 if (map->inner_map_meta &&
5521 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 5522 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
5523 return -EINVAL;
5524 }
fdc15d38 5525 }
a3884572
JK
5526
5527 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 5528 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
5529 verbose(env, "offload device mismatch between prog and map\n");
5530 return -EINVAL;
5531 }
5532
fdc15d38
AS
5533 return 0;
5534}
5535
b741f163
RG
5536static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5537{
5538 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5539 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5540}
5541
0246e64d
AS
5542/* look for pseudo eBPF instructions that access map FDs and
5543 * replace them with actual map pointers
5544 */
58e2af8b 5545static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
5546{
5547 struct bpf_insn *insn = env->prog->insnsi;
5548 int insn_cnt = env->prog->len;
fdc15d38 5549 int i, j, err;
0246e64d 5550
f1f7714e 5551 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
5552 if (err)
5553 return err;
5554
0246e64d 5555 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5556 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5557 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5558 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5559 return -EINVAL;
5560 }
5561
d691f9e8
AS
5562 if (BPF_CLASS(insn->code) == BPF_STX &&
5563 ((BPF_MODE(insn->code) != BPF_MEM &&
5564 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5565 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5566 return -EINVAL;
5567 }
5568
0246e64d
AS
5569 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5570 struct bpf_map *map;
5571 struct fd f;
5572
5573 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5574 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5575 insn[1].off != 0) {
61bd5218 5576 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5577 return -EINVAL;
5578 }
5579
5580 if (insn->src_reg == 0)
5581 /* valid generic load 64-bit imm */
5582 goto next_insn;
5583
5584 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5585 verbose(env,
5586 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5587 return -EINVAL;
5588 }
5589
5590 f = fdget(insn->imm);
c2101297 5591 map = __bpf_map_get(f);
0246e64d 5592 if (IS_ERR(map)) {
61bd5218 5593 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5594 insn->imm);
0246e64d
AS
5595 return PTR_ERR(map);
5596 }
5597
61bd5218 5598 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5599 if (err) {
5600 fdput(f);
5601 return err;
5602 }
5603
0246e64d
AS
5604 /* store map pointer inside BPF_LD_IMM64 instruction */
5605 insn[0].imm = (u32) (unsigned long) map;
5606 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5607
5608 /* check whether we recorded this map already */
5609 for (j = 0; j < env->used_map_cnt; j++)
5610 if (env->used_maps[j] == map) {
5611 fdput(f);
5612 goto next_insn;
5613 }
5614
5615 if (env->used_map_cnt >= MAX_USED_MAPS) {
5616 fdput(f);
5617 return -E2BIG;
5618 }
5619
0246e64d
AS
5620 /* hold the map. If the program is rejected by verifier,
5621 * the map will be released by release_maps() or it
5622 * will be used by the valid program until it's unloaded
ab7f5bf0 5623 * and all maps are released in free_used_maps()
0246e64d 5624 */
92117d84
AS
5625 map = bpf_map_inc(map, false);
5626 if (IS_ERR(map)) {
5627 fdput(f);
5628 return PTR_ERR(map);
5629 }
5630 env->used_maps[env->used_map_cnt++] = map;
5631
b741f163 5632 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 5633 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 5634 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
5635 fdput(f);
5636 return -EBUSY;
5637 }
5638
0246e64d
AS
5639 fdput(f);
5640next_insn:
5641 insn++;
5642 i++;
5e581dad
DB
5643 continue;
5644 }
5645
5646 /* Basic sanity check before we invest more work here. */
5647 if (!bpf_opcode_in_insntable(insn->code)) {
5648 verbose(env, "unknown opcode %02x\n", insn->code);
5649 return -EINVAL;
0246e64d
AS
5650 }
5651 }
5652
5653 /* now all pseudo BPF_LD_IMM64 instructions load valid
5654 * 'struct bpf_map *' into a register instead of user map_fd.
5655 * These pointers will be used later by verifier to validate map access.
5656 */
5657 return 0;
5658}
5659
5660/* drop refcnt of maps used by the rejected program */
58e2af8b 5661static void release_maps(struct bpf_verifier_env *env)
0246e64d 5662{
8bad74f9 5663 enum bpf_cgroup_storage_type stype;
0246e64d
AS
5664 int i;
5665
8bad74f9
RG
5666 for_each_cgroup_storage_type(stype) {
5667 if (!env->prog->aux->cgroup_storage[stype])
5668 continue;
de9cbbaa 5669 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
5670 env->prog->aux->cgroup_storage[stype]);
5671 }
de9cbbaa 5672
0246e64d
AS
5673 for (i = 0; i < env->used_map_cnt; i++)
5674 bpf_map_put(env->used_maps[i]);
5675}
5676
5677/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5678static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5679{
5680 struct bpf_insn *insn = env->prog->insnsi;
5681 int insn_cnt = env->prog->len;
5682 int i;
5683
5684 for (i = 0; i < insn_cnt; i++, insn++)
5685 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5686 insn->src_reg = 0;
5687}
5688
8041902d
AS
5689/* single env->prog->insni[off] instruction was replaced with the range
5690 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5691 * [0, off) and [off, end) to new locations, so the patched range stays zero
5692 */
5693static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5694 u32 off, u32 cnt)
5695{
5696 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5697 int i;
8041902d
AS
5698
5699 if (cnt == 1)
5700 return 0;
fad953ce
KC
5701 new_data = vzalloc(array_size(prog_len,
5702 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
5703 if (!new_data)
5704 return -ENOMEM;
5705 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5706 memcpy(new_data + off + cnt - 1, old_data + off,
5707 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5708 for (i = off; i < off + cnt - 1; i++)
5709 new_data[i].seen = true;
8041902d
AS
5710 env->insn_aux_data = new_data;
5711 vfree(old_data);
5712 return 0;
5713}
5714
cc8b0b92
AS
5715static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5716{
5717 int i;
5718
5719 if (len == 1)
5720 return;
4cb3d99c
JW
5721 /* NOTE: fake 'exit' subprog should be updated as well. */
5722 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 5723 if (env->subprog_info[i].start <= off)
cc8b0b92 5724 continue;
9c8105bd 5725 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5726 }
5727}
5728
8041902d
AS
5729static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5730 const struct bpf_insn *patch, u32 len)
5731{
5732 struct bpf_prog *new_prog;
5733
5734 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5735 if (!new_prog)
5736 return NULL;
5737 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5738 return NULL;
cc8b0b92 5739 adjust_subprog_starts(env, off, len);
8041902d
AS
5740 return new_prog;
5741}
5742
2a5418a1
DB
5743/* The verifier does more data flow analysis than llvm and will not
5744 * explore branches that are dead at run time. Malicious programs can
5745 * have dead code too. Therefore replace all dead at-run-time code
5746 * with 'ja -1'.
5747 *
5748 * Just nops are not optimal, e.g. if they would sit at the end of the
5749 * program and through another bug we would manage to jump there, then
5750 * we'd execute beyond program memory otherwise. Returning exception
5751 * code also wouldn't work since we can have subprogs where the dead
5752 * code could be located.
c131187d
AS
5753 */
5754static void sanitize_dead_code(struct bpf_verifier_env *env)
5755{
5756 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5757 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5758 struct bpf_insn *insn = env->prog->insnsi;
5759 const int insn_cnt = env->prog->len;
5760 int i;
5761
5762 for (i = 0; i < insn_cnt; i++) {
5763 if (aux_data[i].seen)
5764 continue;
2a5418a1 5765 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5766 }
5767}
5768
c64b7983
JS
5769/* convert load instructions that access fields of a context type into a
5770 * sequence of instructions that access fields of the underlying structure:
5771 * struct __sk_buff -> struct sk_buff
5772 * struct bpf_sock_ops -> struct sock
9bac3d6d 5773 */
58e2af8b 5774static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5775{
00176a34 5776 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5777 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5778 const int insn_cnt = env->prog->len;
36bbef52 5779 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5780 struct bpf_prog *new_prog;
d691f9e8 5781 enum bpf_access_type type;
f96da094
DB
5782 bool is_narrower_load;
5783 u32 target_size;
9bac3d6d 5784
b09928b9
DB
5785 if (ops->gen_prologue || env->seen_direct_write) {
5786 if (!ops->gen_prologue) {
5787 verbose(env, "bpf verifier is misconfigured\n");
5788 return -EINVAL;
5789 }
36bbef52
DB
5790 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5791 env->prog);
5792 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5793 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5794 return -EINVAL;
5795 } else if (cnt) {
8041902d 5796 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5797 if (!new_prog)
5798 return -ENOMEM;
8041902d 5799
36bbef52 5800 env->prog = new_prog;
3df126f3 5801 delta += cnt - 1;
36bbef52
DB
5802 }
5803 }
5804
c64b7983 5805 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5806 return 0;
5807
3df126f3 5808 insn = env->prog->insnsi + delta;
36bbef52 5809
9bac3d6d 5810 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
5811 bpf_convert_ctx_access_t convert_ctx_access;
5812
62c7989b
DB
5813 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5814 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5815 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5816 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5817 type = BPF_READ;
62c7989b
DB
5818 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5819 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5820 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5821 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5822 type = BPF_WRITE;
5823 else
9bac3d6d
AS
5824 continue;
5825
af86ca4e
AS
5826 if (type == BPF_WRITE &&
5827 env->insn_aux_data[i + delta].sanitize_stack_off) {
5828 struct bpf_insn patch[] = {
5829 /* Sanitize suspicious stack slot with zero.
5830 * There are no memory dependencies for this store,
5831 * since it's only using frame pointer and immediate
5832 * constant of zero
5833 */
5834 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5835 env->insn_aux_data[i + delta].sanitize_stack_off,
5836 0),
5837 /* the original STX instruction will immediately
5838 * overwrite the same stack slot with appropriate value
5839 */
5840 *insn,
5841 };
5842
5843 cnt = ARRAY_SIZE(patch);
5844 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5845 if (!new_prog)
5846 return -ENOMEM;
5847
5848 delta += cnt - 1;
5849 env->prog = new_prog;
5850 insn = new_prog->insnsi + i + delta;
5851 continue;
5852 }
5853
c64b7983
JS
5854 switch (env->insn_aux_data[i + delta].ptr_type) {
5855 case PTR_TO_CTX:
5856 if (!ops->convert_ctx_access)
5857 continue;
5858 convert_ctx_access = ops->convert_ctx_access;
5859 break;
5860 case PTR_TO_SOCKET:
5861 convert_ctx_access = bpf_sock_convert_ctx_access;
5862 break;
5863 default:
9bac3d6d 5864 continue;
c64b7983 5865 }
9bac3d6d 5866
31fd8581 5867 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5868 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5869
5870 /* If the read access is a narrower load of the field,
5871 * convert to a 4/8-byte load, to minimum program type specific
5872 * convert_ctx_access changes. If conversion is successful,
5873 * we will apply proper mask to the result.
5874 */
f96da094 5875 is_narrower_load = size < ctx_field_size;
31fd8581 5876 if (is_narrower_load) {
bc23105c 5877 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
f96da094
DB
5878 u32 off = insn->off;
5879 u8 size_code;
5880
5881 if (type == BPF_WRITE) {
61bd5218 5882 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5883 return -EINVAL;
5884 }
31fd8581 5885
f96da094 5886 size_code = BPF_H;
31fd8581
YS
5887 if (ctx_field_size == 4)
5888 size_code = BPF_W;
5889 else if (ctx_field_size == 8)
5890 size_code = BPF_DW;
f96da094 5891
bc23105c 5892 insn->off = off & ~(size_default - 1);
31fd8581
YS
5893 insn->code = BPF_LDX | BPF_MEM | size_code;
5894 }
f96da094
DB
5895
5896 target_size = 0;
c64b7983
JS
5897 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5898 &target_size);
f96da094
DB
5899 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5900 (ctx_field_size && !target_size)) {
61bd5218 5901 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5902 return -EINVAL;
5903 }
f96da094
DB
5904
5905 if (is_narrower_load && size < target_size) {
31fd8581
YS
5906 if (ctx_field_size <= 4)
5907 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5908 (1 << size * 8) - 1);
31fd8581
YS
5909 else
5910 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5911 (1 << size * 8) - 1);
31fd8581 5912 }
9bac3d6d 5913
8041902d 5914 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5915 if (!new_prog)
5916 return -ENOMEM;
5917
3df126f3 5918 delta += cnt - 1;
9bac3d6d
AS
5919
5920 /* keep walking new program and skip insns we just inserted */
5921 env->prog = new_prog;
3df126f3 5922 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5923 }
5924
5925 return 0;
5926}
5927
1c2a088a
AS
5928static int jit_subprogs(struct bpf_verifier_env *env)
5929{
5930 struct bpf_prog *prog = env->prog, **func, *tmp;
5931 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5932 struct bpf_insn *insn;
1c2a088a
AS
5933 void *old_bpf_func;
5934 int err = -ENOMEM;
5935
f910cefa 5936 if (env->subprog_cnt <= 1)
1c2a088a
AS
5937 return 0;
5938
7105e828 5939 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5940 if (insn->code != (BPF_JMP | BPF_CALL) ||
5941 insn->src_reg != BPF_PSEUDO_CALL)
5942 continue;
c7a89784
DB
5943 /* Upon error here we cannot fall back to interpreter but
5944 * need a hard reject of the program. Thus -EFAULT is
5945 * propagated in any case.
5946 */
1c2a088a
AS
5947 subprog = find_subprog(env, i + insn->imm + 1);
5948 if (subprog < 0) {
5949 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5950 i + insn->imm + 1);
5951 return -EFAULT;
5952 }
5953 /* temporarily remember subprog id inside insn instead of
5954 * aux_data, since next loop will split up all insns into funcs
5955 */
f910cefa 5956 insn->off = subprog;
1c2a088a
AS
5957 /* remember original imm in case JIT fails and fallback
5958 * to interpreter will be needed
5959 */
5960 env->insn_aux_data[i].call_imm = insn->imm;
5961 /* point imm to __bpf_call_base+1 from JITs point of view */
5962 insn->imm = 1;
5963 }
5964
6396bb22 5965 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 5966 if (!func)
c7a89784 5967 goto out_undo_insn;
1c2a088a 5968
f910cefa 5969 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5970 subprog_start = subprog_end;
4cb3d99c 5971 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5972
5973 len = subprog_end - subprog_start;
5974 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5975 if (!func[i])
5976 goto out_free;
5977 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5978 len * sizeof(struct bpf_insn));
4f74d809 5979 func[i]->type = prog->type;
1c2a088a 5980 func[i]->len = len;
4f74d809
DB
5981 if (bpf_prog_calc_tag(func[i]))
5982 goto out_free;
1c2a088a
AS
5983 func[i]->is_func = 1;
5984 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5985 * Long term would need debug info to populate names
5986 */
5987 func[i]->aux->name[0] = 'F';
9c8105bd 5988 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5989 func[i]->jit_requested = 1;
5990 func[i] = bpf_int_jit_compile(func[i]);
5991 if (!func[i]->jited) {
5992 err = -ENOTSUPP;
5993 goto out_free;
5994 }
5995 cond_resched();
5996 }
5997 /* at this point all bpf functions were successfully JITed
5998 * now populate all bpf_calls with correct addresses and
5999 * run last pass of JIT
6000 */
f910cefa 6001 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6002 insn = func[i]->insnsi;
6003 for (j = 0; j < func[i]->len; j++, insn++) {
6004 if (insn->code != (BPF_JMP | BPF_CALL) ||
6005 insn->src_reg != BPF_PSEUDO_CALL)
6006 continue;
6007 subprog = insn->off;
1c2a088a
AS
6008 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6009 func[subprog]->bpf_func -
6010 __bpf_call_base;
6011 }
2162fed4
SD
6012
6013 /* we use the aux data to keep a list of the start addresses
6014 * of the JITed images for each function in the program
6015 *
6016 * for some architectures, such as powerpc64, the imm field
6017 * might not be large enough to hold the offset of the start
6018 * address of the callee's JITed image from __bpf_call_base
6019 *
6020 * in such cases, we can lookup the start address of a callee
6021 * by using its subprog id, available from the off field of
6022 * the call instruction, as an index for this list
6023 */
6024 func[i]->aux->func = func;
6025 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 6026 }
f910cefa 6027 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6028 old_bpf_func = func[i]->bpf_func;
6029 tmp = bpf_int_jit_compile(func[i]);
6030 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6031 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 6032 err = -ENOTSUPP;
1c2a088a
AS
6033 goto out_free;
6034 }
6035 cond_resched();
6036 }
6037
6038 /* finally lock prog and jit images for all functions and
6039 * populate kallsysm
6040 */
f910cefa 6041 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6042 bpf_prog_lock_ro(func[i]);
6043 bpf_prog_kallsyms_add(func[i]);
6044 }
7105e828
DB
6045
6046 /* Last step: make now unused interpreter insns from main
6047 * prog consistent for later dump requests, so they can
6048 * later look the same as if they were interpreted only.
6049 */
6050 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
6051 if (insn->code != (BPF_JMP | BPF_CALL) ||
6052 insn->src_reg != BPF_PSEUDO_CALL)
6053 continue;
6054 insn->off = env->insn_aux_data[i].call_imm;
6055 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 6056 insn->imm = subprog;
7105e828
DB
6057 }
6058
1c2a088a
AS
6059 prog->jited = 1;
6060 prog->bpf_func = func[0]->bpf_func;
6061 prog->aux->func = func;
f910cefa 6062 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
6063 return 0;
6064out_free:
f910cefa 6065 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
6066 if (func[i])
6067 bpf_jit_free(func[i]);
6068 kfree(func);
c7a89784 6069out_undo_insn:
1c2a088a
AS
6070 /* cleanup main prog to be interpreted */
6071 prog->jit_requested = 0;
6072 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6073 if (insn->code != (BPF_JMP | BPF_CALL) ||
6074 insn->src_reg != BPF_PSEUDO_CALL)
6075 continue;
6076 insn->off = 0;
6077 insn->imm = env->insn_aux_data[i].call_imm;
6078 }
6079 return err;
6080}
6081
1ea47e01
AS
6082static int fixup_call_args(struct bpf_verifier_env *env)
6083{
19d28fbd 6084#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6085 struct bpf_prog *prog = env->prog;
6086 struct bpf_insn *insn = prog->insnsi;
6087 int i, depth;
19d28fbd 6088#endif
e4052d06 6089 int err = 0;
1ea47e01 6090
e4052d06
QM
6091 if (env->prog->jit_requested &&
6092 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
6093 err = jit_subprogs(env);
6094 if (err == 0)
1c2a088a 6095 return 0;
c7a89784
DB
6096 if (err == -EFAULT)
6097 return err;
19d28fbd
DM
6098 }
6099#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6100 for (i = 0; i < prog->len; i++, insn++) {
6101 if (insn->code != (BPF_JMP | BPF_CALL) ||
6102 insn->src_reg != BPF_PSEUDO_CALL)
6103 continue;
6104 depth = get_callee_stack_depth(env, insn, i);
6105 if (depth < 0)
6106 return depth;
6107 bpf_patch_call_args(insn, depth);
6108 }
19d28fbd
DM
6109 err = 0;
6110#endif
6111 return err;
1ea47e01
AS
6112}
6113
79741b3b 6114/* fixup insn->imm field of bpf_call instructions
81ed18ab 6115 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
6116 *
6117 * this function is called after eBPF program passed verification
6118 */
79741b3b 6119static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 6120{
79741b3b
AS
6121 struct bpf_prog *prog = env->prog;
6122 struct bpf_insn *insn = prog->insnsi;
e245c5c6 6123 const struct bpf_func_proto *fn;
79741b3b 6124 const int insn_cnt = prog->len;
09772d92 6125 const struct bpf_map_ops *ops;
c93552c4 6126 struct bpf_insn_aux_data *aux;
81ed18ab
AS
6127 struct bpf_insn insn_buf[16];
6128 struct bpf_prog *new_prog;
6129 struct bpf_map *map_ptr;
6130 int i, cnt, delta = 0;
e245c5c6 6131
79741b3b 6132 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
6133 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6134 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6135 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 6136 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
6137 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6138 struct bpf_insn mask_and_div[] = {
6139 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6140 /* Rx div 0 -> 0 */
6141 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6142 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6143 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6144 *insn,
6145 };
6146 struct bpf_insn mask_and_mod[] = {
6147 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6148 /* Rx mod 0 -> Rx */
6149 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6150 *insn,
6151 };
6152 struct bpf_insn *patchlet;
6153
6154 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6155 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6156 patchlet = mask_and_div + (is64 ? 1 : 0);
6157 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6158 } else {
6159 patchlet = mask_and_mod + (is64 ? 1 : 0);
6160 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6161 }
6162
6163 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
6164 if (!new_prog)
6165 return -ENOMEM;
6166
6167 delta += cnt - 1;
6168 env->prog = prog = new_prog;
6169 insn = new_prog->insnsi + i + delta;
6170 continue;
6171 }
6172
e0cea7ce
DB
6173 if (BPF_CLASS(insn->code) == BPF_LD &&
6174 (BPF_MODE(insn->code) == BPF_ABS ||
6175 BPF_MODE(insn->code) == BPF_IND)) {
6176 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6177 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6178 verbose(env, "bpf verifier is misconfigured\n");
6179 return -EINVAL;
6180 }
6181
6182 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6183 if (!new_prog)
6184 return -ENOMEM;
6185
6186 delta += cnt - 1;
6187 env->prog = prog = new_prog;
6188 insn = new_prog->insnsi + i + delta;
6189 continue;
6190 }
6191
79741b3b
AS
6192 if (insn->code != (BPF_JMP | BPF_CALL))
6193 continue;
cc8b0b92
AS
6194 if (insn->src_reg == BPF_PSEUDO_CALL)
6195 continue;
e245c5c6 6196
79741b3b
AS
6197 if (insn->imm == BPF_FUNC_get_route_realm)
6198 prog->dst_needed = 1;
6199 if (insn->imm == BPF_FUNC_get_prandom_u32)
6200 bpf_user_rnd_init_once();
9802d865
JB
6201 if (insn->imm == BPF_FUNC_override_return)
6202 prog->kprobe_override = 1;
79741b3b 6203 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
6204 /* If we tail call into other programs, we
6205 * cannot make any assumptions since they can
6206 * be replaced dynamically during runtime in
6207 * the program array.
6208 */
6209 prog->cb_access = 1;
80a58d02 6210 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 6211
79741b3b
AS
6212 /* mark bpf_tail_call as different opcode to avoid
6213 * conditional branch in the interpeter for every normal
6214 * call and to prevent accidental JITing by JIT compiler
6215 * that doesn't support bpf_tail_call yet
e245c5c6 6216 */
79741b3b 6217 insn->imm = 0;
71189fa9 6218 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 6219
c93552c4
DB
6220 aux = &env->insn_aux_data[i + delta];
6221 if (!bpf_map_ptr_unpriv(aux))
6222 continue;
6223
b2157399
AS
6224 /* instead of changing every JIT dealing with tail_call
6225 * emit two extra insns:
6226 * if (index >= max_entries) goto out;
6227 * index &= array->index_mask;
6228 * to avoid out-of-bounds cpu speculation
6229 */
c93552c4 6230 if (bpf_map_ptr_poisoned(aux)) {
40950343 6231 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
6232 return -EINVAL;
6233 }
c93552c4
DB
6234
6235 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
6236 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6237 map_ptr->max_entries, 2);
6238 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6239 container_of(map_ptr,
6240 struct bpf_array,
6241 map)->index_mask);
6242 insn_buf[2] = *insn;
6243 cnt = 3;
6244 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6245 if (!new_prog)
6246 return -ENOMEM;
6247
6248 delta += cnt - 1;
6249 env->prog = prog = new_prog;
6250 insn = new_prog->insnsi + i + delta;
79741b3b
AS
6251 continue;
6252 }
e245c5c6 6253
89c63074 6254 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
6255 * and other inlining handlers are currently limited to 64 bit
6256 * only.
89c63074 6257 */
60b58afc 6258 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
6259 (insn->imm == BPF_FUNC_map_lookup_elem ||
6260 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
6261 insn->imm == BPF_FUNC_map_delete_elem ||
6262 insn->imm == BPF_FUNC_map_push_elem ||
6263 insn->imm == BPF_FUNC_map_pop_elem ||
6264 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
6265 aux = &env->insn_aux_data[i + delta];
6266 if (bpf_map_ptr_poisoned(aux))
6267 goto patch_call_imm;
6268
6269 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
6270 ops = map_ptr->ops;
6271 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6272 ops->map_gen_lookup) {
6273 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6274 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6275 verbose(env, "bpf verifier is misconfigured\n");
6276 return -EINVAL;
6277 }
81ed18ab 6278
09772d92
DB
6279 new_prog = bpf_patch_insn_data(env, i + delta,
6280 insn_buf, cnt);
6281 if (!new_prog)
6282 return -ENOMEM;
81ed18ab 6283
09772d92
DB
6284 delta += cnt - 1;
6285 env->prog = prog = new_prog;
6286 insn = new_prog->insnsi + i + delta;
6287 continue;
6288 }
81ed18ab 6289
09772d92
DB
6290 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6291 (void *(*)(struct bpf_map *map, void *key))NULL));
6292 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6293 (int (*)(struct bpf_map *map, void *key))NULL));
6294 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6295 (int (*)(struct bpf_map *map, void *key, void *value,
6296 u64 flags))NULL));
84430d42
DB
6297 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6298 (int (*)(struct bpf_map *map, void *value,
6299 u64 flags))NULL));
6300 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6301 (int (*)(struct bpf_map *map, void *value))NULL));
6302 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6303 (int (*)(struct bpf_map *map, void *value))NULL));
6304
09772d92
DB
6305 switch (insn->imm) {
6306 case BPF_FUNC_map_lookup_elem:
6307 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6308 __bpf_call_base;
6309 continue;
6310 case BPF_FUNC_map_update_elem:
6311 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6312 __bpf_call_base;
6313 continue;
6314 case BPF_FUNC_map_delete_elem:
6315 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6316 __bpf_call_base;
6317 continue;
84430d42
DB
6318 case BPF_FUNC_map_push_elem:
6319 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6320 __bpf_call_base;
6321 continue;
6322 case BPF_FUNC_map_pop_elem:
6323 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6324 __bpf_call_base;
6325 continue;
6326 case BPF_FUNC_map_peek_elem:
6327 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6328 __bpf_call_base;
6329 continue;
09772d92 6330 }
81ed18ab 6331
09772d92 6332 goto patch_call_imm;
81ed18ab
AS
6333 }
6334
6335patch_call_imm:
5e43f899 6336 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
6337 /* all functions that have prototype and verifier allowed
6338 * programs to call them, must be real in-kernel functions
6339 */
6340 if (!fn->func) {
61bd5218
JK
6341 verbose(env,
6342 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
6343 func_id_name(insn->imm), insn->imm);
6344 return -EFAULT;
e245c5c6 6345 }
79741b3b 6346 insn->imm = fn->func - __bpf_call_base;
e245c5c6 6347 }
e245c5c6 6348
79741b3b
AS
6349 return 0;
6350}
e245c5c6 6351
58e2af8b 6352static void free_states(struct bpf_verifier_env *env)
f1bca824 6353{
58e2af8b 6354 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
6355 int i;
6356
6357 if (!env->explored_states)
6358 return;
6359
6360 for (i = 0; i < env->prog->len; i++) {
6361 sl = env->explored_states[i];
6362
6363 if (sl)
6364 while (sl != STATE_LIST_MARK) {
6365 sln = sl->next;
1969db47 6366 free_verifier_state(&sl->state, false);
f1bca824
AS
6367 kfree(sl);
6368 sl = sln;
6369 }
6370 }
6371
6372 kfree(env->explored_states);
6373}
6374
9bac3d6d 6375int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 6376{
58e2af8b 6377 struct bpf_verifier_env *env;
b9193c1b 6378 struct bpf_verifier_log *log;
51580e79
AS
6379 int ret = -EINVAL;
6380
eba0c929
AB
6381 /* no program is valid */
6382 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6383 return -EINVAL;
6384
58e2af8b 6385 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
6386 * allocate/free it every time bpf_check() is called
6387 */
58e2af8b 6388 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
6389 if (!env)
6390 return -ENOMEM;
61bd5218 6391 log = &env->log;
cbd35700 6392
fad953ce
KC
6393 env->insn_aux_data =
6394 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6395 (*prog)->len));
3df126f3
JK
6396 ret = -ENOMEM;
6397 if (!env->insn_aux_data)
6398 goto err_free_env;
9bac3d6d 6399 env->prog = *prog;
00176a34 6400 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 6401
cbd35700
AS
6402 /* grab the mutex to protect few globals used by verifier */
6403 mutex_lock(&bpf_verifier_lock);
6404
6405 if (attr->log_level || attr->log_buf || attr->log_size) {
6406 /* user requested verbose verifier output
6407 * and supplied buffer to store the verification trace
6408 */
e7bf8249
JK
6409 log->level = attr->log_level;
6410 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6411 log->len_total = attr->log_size;
cbd35700
AS
6412
6413 ret = -EINVAL;
e7bf8249
JK
6414 /* log attributes have to be sane */
6415 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6416 !log->level || !log->ubuf)
3df126f3 6417 goto err_unlock;
cbd35700 6418 }
1ad2f583
DB
6419
6420 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6421 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 6422 env->strict_alignment = true;
cbd35700 6423
f4e3ec0d
JK
6424 ret = replace_map_fd_with_map_ptr(env);
6425 if (ret < 0)
6426 goto skip_full_check;
6427
cae1927c 6428 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
6429 ret = bpf_prog_offload_verifier_prep(env);
6430 if (ret)
f4e3ec0d 6431 goto skip_full_check;
ab3f0063
JK
6432 }
6433
9bac3d6d 6434 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6435 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6436 GFP_USER);
6437 ret = -ENOMEM;
6438 if (!env->explored_states)
6439 goto skip_full_check;
6440
cc8b0b92
AS
6441 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6442
475fb78f
AS
6443 ret = check_cfg(env);
6444 if (ret < 0)
6445 goto skip_full_check;
6446
17a52670 6447 ret = do_check(env);
8c01c4f8
CG
6448 if (env->cur_state) {
6449 free_verifier_state(env->cur_state, true);
6450 env->cur_state = NULL;
6451 }
cbd35700 6452
c941ce9c
QM
6453 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6454 ret = bpf_prog_offload_finalize(env);
6455
0246e64d 6456skip_full_check:
638f5b90 6457 while (!pop_stack(env, NULL, NULL));
f1bca824 6458 free_states(env);
0246e64d 6459
c131187d
AS
6460 if (ret == 0)
6461 sanitize_dead_code(env);
6462
70a87ffe
AS
6463 if (ret == 0)
6464 ret = check_max_stack_depth(env);
6465
9bac3d6d
AS
6466 if (ret == 0)
6467 /* program is valid, convert *(u32*)(ctx + off) accesses */
6468 ret = convert_ctx_accesses(env);
6469
e245c5c6 6470 if (ret == 0)
79741b3b 6471 ret = fixup_bpf_calls(env);
e245c5c6 6472
1ea47e01
AS
6473 if (ret == 0)
6474 ret = fixup_call_args(env);
6475
a2a7d570 6476 if (log->level && bpf_verifier_log_full(log))
cbd35700 6477 ret = -ENOSPC;
a2a7d570 6478 if (log->level && !log->ubuf) {
cbd35700 6479 ret = -EFAULT;
a2a7d570 6480 goto err_release_maps;
cbd35700
AS
6481 }
6482
0246e64d
AS
6483 if (ret == 0 && env->used_map_cnt) {
6484 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
6485 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6486 sizeof(env->used_maps[0]),
6487 GFP_KERNEL);
0246e64d 6488
9bac3d6d 6489 if (!env->prog->aux->used_maps) {
0246e64d 6490 ret = -ENOMEM;
a2a7d570 6491 goto err_release_maps;
0246e64d
AS
6492 }
6493
9bac3d6d 6494 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 6495 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 6496 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
6497
6498 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
6499 * bpf_ld_imm64 instructions
6500 */
6501 convert_pseudo_ld_imm64(env);
6502 }
cbd35700 6503
a2a7d570 6504err_release_maps:
9bac3d6d 6505 if (!env->prog->aux->used_maps)
0246e64d 6506 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 6507 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
6508 */
6509 release_maps(env);
9bac3d6d 6510 *prog = env->prog;
3df126f3 6511err_unlock:
cbd35700 6512 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
6513 vfree(env->insn_aux_data);
6514err_free_env:
6515 kfree(env);
51580e79
AS
6516 return ret;
6517}