bpf: allow CGROUP_SKB programs to use bpf_skb_cgroup_id() helper
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
b285fcb7 179#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 180#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 181
c93552c4
DB
182#define BPF_MAP_PTR_UNPRIV 1UL
183#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
184 POISON_POINTER_DELTA))
185#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186
187static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188{
189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190}
191
192static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193{
194 return aux->map_state & BPF_MAP_PTR_UNPRIV;
195}
196
197static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 const struct bpf_map *map, bool unpriv)
199{
200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 unpriv |= bpf_map_ptr_unpriv(aux);
202 aux->map_state = (unsigned long)map |
203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204}
fad73a1a 205
33ff9823
DB
206struct bpf_call_arg_meta {
207 struct bpf_map *map_ptr;
435faee1 208 bool raw_mode;
36bbef52 209 bool pkt_access;
435faee1
DB
210 int regno;
211 int access_size;
849fa506
YS
212 s64 msize_smax_value;
213 u64 msize_umax_value;
1b986589 214 int ref_obj_id;
d83525ca 215 int func_id;
33ff9823
DB
216};
217
cbd35700
AS
218static DEFINE_MUTEX(bpf_verifier_lock);
219
d9762e84
MKL
220static const struct bpf_line_info *
221find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222{
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239}
240
77d2e05a
MKL
241void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
cbd35700 243{
a2a7d570 244 unsigned int n;
cbd35700 245
a2a7d570 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
cbd35700 258}
abe08840
JO
259
260/* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
430e68d1 263 */
abe08840
JO
264__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266{
267 va_list args;
268
77d2e05a
MKL
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
abe08840 272 va_start(args, fmt);
77d2e05a 273 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
274 va_end(args);
275}
276EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279{
77d2e05a 280 struct bpf_verifier_env *env = private_data;
abe08840
JO
281 va_list args;
282
77d2e05a
MKL
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
abe08840 286 va_start(args, fmt);
77d2e05a 287 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
288 va_end(args);
289}
cbd35700 290
d9762e84
MKL
291static const char *ltrim(const char *s)
292{
293 while (isspace(*s))
294 s++;
295
296 return s;
297}
298
299__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302{
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325}
326
de8f3a83
DB
327static bool type_is_pkt_pointer(enum bpf_reg_type type)
328{
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331}
332
46f8bc92
MKL
333static bool type_is_sk_pointer(enum bpf_reg_type type)
334{
335 return type == PTR_TO_SOCKET ||
655a51e5
MKL
336 type == PTR_TO_SOCK_COMMON ||
337 type == PTR_TO_TCP_SOCK;
46f8bc92
MKL
338}
339
840b9615
JS
340static bool reg_type_may_be_null(enum bpf_reg_type type)
341{
fd978bf7 342 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 343 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
344 type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
346}
347
d83525ca
AS
348static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349{
350 return reg->type == PTR_TO_MAP_VALUE &&
351 map_value_has_spin_lock(reg->map_ptr);
352}
353
cba368c1
MKL
354static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355{
356 return type == PTR_TO_SOCKET ||
357 type == PTR_TO_SOCKET_OR_NULL ||
358 type == PTR_TO_TCP_SOCK ||
359 type == PTR_TO_TCP_SOCK_OR_NULL;
360}
361
1b986589 362static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 363{
1b986589 364 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
365}
366
367/* Determine whether the function releases some resources allocated by another
368 * function call. The first reference type argument will be assumed to be
369 * released by release_reference().
370 */
371static bool is_release_function(enum bpf_func_id func_id)
372{
6acc9b43 373 return func_id == BPF_FUNC_sk_release;
840b9615
JS
374}
375
46f8bc92
MKL
376static bool is_acquire_function(enum bpf_func_id func_id)
377{
378 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
379 func_id == BPF_FUNC_sk_lookup_udp ||
380 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
381}
382
1b986589
MKL
383static bool is_ptr_cast_function(enum bpf_func_id func_id)
384{
385 return func_id == BPF_FUNC_tcp_sock ||
386 func_id == BPF_FUNC_sk_fullsock;
387}
388
17a52670
AS
389/* string representation of 'enum bpf_reg_type' */
390static const char * const reg_type_str[] = {
391 [NOT_INIT] = "?",
f1174f77 392 [SCALAR_VALUE] = "inv",
17a52670
AS
393 [PTR_TO_CTX] = "ctx",
394 [CONST_PTR_TO_MAP] = "map_ptr",
395 [PTR_TO_MAP_VALUE] = "map_value",
396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 397 [PTR_TO_STACK] = "fp",
969bf05e 398 [PTR_TO_PACKET] = "pkt",
de8f3a83 399 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 400 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 401 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
402 [PTR_TO_SOCKET] = "sock",
403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
404 [PTR_TO_SOCK_COMMON] = "sock_common",
405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
406 [PTR_TO_TCP_SOCK] = "tcp_sock",
407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 408 [PTR_TO_TP_BUFFER] = "tp_buffer",
17a52670
AS
409};
410
8efea21d
EC
411static char slot_type_char[] = {
412 [STACK_INVALID] = '?',
413 [STACK_SPILL] = 'r',
414 [STACK_MISC] = 'm',
415 [STACK_ZERO] = '0',
416};
417
4e92024a
AS
418static void print_liveness(struct bpf_verifier_env *env,
419 enum bpf_reg_liveness live)
420{
9242b5f5 421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
422 verbose(env, "_");
423 if (live & REG_LIVE_READ)
424 verbose(env, "r");
425 if (live & REG_LIVE_WRITTEN)
426 verbose(env, "w");
9242b5f5
AS
427 if (live & REG_LIVE_DONE)
428 verbose(env, "D");
4e92024a
AS
429}
430
f4d7e40a
AS
431static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 const struct bpf_reg_state *reg)
433{
434 struct bpf_verifier_state *cur = env->cur_state;
435
436 return cur->frame[reg->frameno];
437}
438
61bd5218 439static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 440 const struct bpf_func_state *state)
17a52670 441{
f4d7e40a 442 const struct bpf_reg_state *reg;
17a52670
AS
443 enum bpf_reg_type t;
444 int i;
445
f4d7e40a
AS
446 if (state->frameno)
447 verbose(env, " frame%d:", state->frameno);
17a52670 448 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
449 reg = &state->regs[i];
450 t = reg->type;
17a52670
AS
451 if (t == NOT_INIT)
452 continue;
4e92024a
AS
453 verbose(env, " R%d", i);
454 print_liveness(env, reg->live);
455 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
456 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 tnum_is_const(reg->var_off)) {
458 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 459 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
460 if (t == PTR_TO_STACK)
461 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 462 } else {
cba368c1
MKL
463 verbose(env, "(id=%d", reg->id);
464 if (reg_type_may_be_refcounted_or_null(t))
465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 466 if (t != SCALAR_VALUE)
61bd5218 467 verbose(env, ",off=%d", reg->off);
de8f3a83 468 if (type_is_pkt_pointer(t))
61bd5218 469 verbose(env, ",r=%d", reg->range);
f1174f77
EC
470 else if (t == CONST_PTR_TO_MAP ||
471 t == PTR_TO_MAP_VALUE ||
472 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 473 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
474 reg->map_ptr->key_size,
475 reg->map_ptr->value_size);
7d1238f2
EC
476 if (tnum_is_const(reg->var_off)) {
477 /* Typically an immediate SCALAR_VALUE, but
478 * could be a pointer whose offset is too big
479 * for reg->off
480 */
61bd5218 481 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
482 } else {
483 if (reg->smin_value != reg->umin_value &&
484 reg->smin_value != S64_MIN)
61bd5218 485 verbose(env, ",smin_value=%lld",
7d1238f2
EC
486 (long long)reg->smin_value);
487 if (reg->smax_value != reg->umax_value &&
488 reg->smax_value != S64_MAX)
61bd5218 489 verbose(env, ",smax_value=%lld",
7d1238f2
EC
490 (long long)reg->smax_value);
491 if (reg->umin_value != 0)
61bd5218 492 verbose(env, ",umin_value=%llu",
7d1238f2
EC
493 (unsigned long long)reg->umin_value);
494 if (reg->umax_value != U64_MAX)
61bd5218 495 verbose(env, ",umax_value=%llu",
7d1238f2
EC
496 (unsigned long long)reg->umax_value);
497 if (!tnum_is_unknown(reg->var_off)) {
498 char tn_buf[48];
f1174f77 499
7d1238f2 500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 501 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 502 }
f1174f77 503 }
61bd5218 504 verbose(env, ")");
f1174f77 505 }
17a52670 506 }
638f5b90 507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
508 char types_buf[BPF_REG_SIZE + 1];
509 bool valid = false;
510 int j;
511
512 for (j = 0; j < BPF_REG_SIZE; j++) {
513 if (state->stack[i].slot_type[j] != STACK_INVALID)
514 valid = true;
515 types_buf[j] = slot_type_char[
516 state->stack[i].slot_type[j]];
517 }
518 types_buf[BPF_REG_SIZE] = 0;
519 if (!valid)
520 continue;
521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 print_liveness(env, state->stack[i].spilled_ptr.live);
523 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 524 verbose(env, "=%s",
638f5b90 525 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
526 else
527 verbose(env, "=%s", types_buf);
17a52670 528 }
fd978bf7
JS
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
61bd5218 535 verbose(env, "\n");
17a52670
AS
536}
537
84dbf350
JS
538#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541{ \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
638f5b90 552}
fd978bf7
JS
553/* copy_reference_state() */
554COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
555/* copy_stack_state() */
556COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557#undef COPY_STATE_FN
558
559#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562{ \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592}
fd978bf7
JS
593/* realloc_reference_state() */
594REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
595/* realloc_stack_state() */
596REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597#undef REALLOC_STATE_FN
638f5b90
AS
598
599/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 601 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
638f5b90 605 */
fd978bf7
JS
606static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
638f5b90 608{
fd978bf7
JS
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613}
614
615/* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
638f5b90 619 */
fd978bf7 620static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 621{
fd978bf7
JS
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 632
fd978bf7
JS
633 return id;
634}
635
636/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 637static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
638{
639 int i, last_idx;
640
fd978bf7
JS
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
638f5b90 649 return 0;
638f5b90 650 }
638f5b90 651 }
46f8bc92 652 return -EINVAL;
fd978bf7
JS
653}
654
655static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657{
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
638f5b90
AS
664 return 0;
665}
666
f4d7e40a
AS
667static void free_func_state(struct bpf_func_state *state)
668{
5896351e
AS
669 if (!state)
670 return;
fd978bf7 671 kfree(state->refs);
f4d7e40a
AS
672 kfree(state->stack);
673 kfree(state);
674}
675
1969db47
AS
676static void free_verifier_state(struct bpf_verifier_state *state,
677 bool free_self)
638f5b90 678{
f4d7e40a
AS
679 int i;
680
681 for (i = 0; i <= state->curframe; i++) {
682 free_func_state(state->frame[i]);
683 state->frame[i] = NULL;
684 }
1969db47
AS
685 if (free_self)
686 kfree(state);
638f5b90
AS
687}
688
689/* copy verifier state from src to dst growing dst stack space
690 * when necessary to accommodate larger src stack
691 */
f4d7e40a
AS
692static int copy_func_state(struct bpf_func_state *dst,
693 const struct bpf_func_state *src)
638f5b90
AS
694{
695 int err;
696
fd978bf7
JS
697 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
698 false);
699 if (err)
700 return err;
701 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 err = copy_reference_state(dst, src);
638f5b90
AS
703 if (err)
704 return err;
638f5b90
AS
705 return copy_stack_state(dst, src);
706}
707
f4d7e40a
AS
708static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 const struct bpf_verifier_state *src)
710{
711 struct bpf_func_state *dst;
712 int i, err;
713
714 /* if dst has more stack frames then src frame, free them */
715 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 free_func_state(dst_state->frame[i]);
717 dst_state->frame[i] = NULL;
718 }
979d63d5 719 dst_state->speculative = src->speculative;
f4d7e40a 720 dst_state->curframe = src->curframe;
d83525ca 721 dst_state->active_spin_lock = src->active_spin_lock;
f4d7e40a
AS
722 for (i = 0; i <= src->curframe; i++) {
723 dst = dst_state->frame[i];
724 if (!dst) {
725 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
726 if (!dst)
727 return -ENOMEM;
728 dst_state->frame[i] = dst;
729 }
730 err = copy_func_state(dst, src->frame[i]);
731 if (err)
732 return err;
733 }
734 return 0;
735}
736
638f5b90
AS
737static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
738 int *insn_idx)
739{
740 struct bpf_verifier_state *cur = env->cur_state;
741 struct bpf_verifier_stack_elem *elem, *head = env->head;
742 int err;
17a52670
AS
743
744 if (env->head == NULL)
638f5b90 745 return -ENOENT;
17a52670 746
638f5b90
AS
747 if (cur) {
748 err = copy_verifier_state(cur, &head->st);
749 if (err)
750 return err;
751 }
752 if (insn_idx)
753 *insn_idx = head->insn_idx;
17a52670 754 if (prev_insn_idx)
638f5b90
AS
755 *prev_insn_idx = head->prev_insn_idx;
756 elem = head->next;
1969db47 757 free_verifier_state(&head->st, false);
638f5b90 758 kfree(head);
17a52670
AS
759 env->head = elem;
760 env->stack_size--;
638f5b90 761 return 0;
17a52670
AS
762}
763
58e2af8b 764static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
765 int insn_idx, int prev_insn_idx,
766 bool speculative)
17a52670 767{
638f5b90 768 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 769 struct bpf_verifier_stack_elem *elem;
638f5b90 770 int err;
17a52670 771
638f5b90 772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
773 if (!elem)
774 goto err;
775
17a52670
AS
776 elem->insn_idx = insn_idx;
777 elem->prev_insn_idx = prev_insn_idx;
778 elem->next = env->head;
779 env->head = elem;
780 env->stack_size++;
1969db47
AS
781 err = copy_verifier_state(&elem->st, cur);
782 if (err)
783 goto err;
979d63d5 784 elem->st.speculative |= speculative;
b285fcb7
AS
785 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
786 verbose(env, "The sequence of %d jumps is too complex.\n",
787 env->stack_size);
17a52670
AS
788 goto err;
789 }
790 return &elem->st;
791err:
5896351e
AS
792 free_verifier_state(env->cur_state, true);
793 env->cur_state = NULL;
17a52670 794 /* pop all elements and return */
638f5b90 795 while (!pop_stack(env, NULL, NULL));
17a52670
AS
796 return NULL;
797}
798
799#define CALLER_SAVED_REGS 6
800static const int caller_saved[CALLER_SAVED_REGS] = {
801 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
802};
803
f1174f77
EC
804static void __mark_reg_not_init(struct bpf_reg_state *reg);
805
b03c9f9f
EC
806/* Mark the unknown part of a register (variable offset or scalar value) as
807 * known to have the value @imm.
808 */
809static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
810{
a9c676bc
AS
811 /* Clear id, off, and union(map_ptr, range) */
812 memset(((u8 *)reg) + sizeof(reg->type), 0,
813 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
814 reg->var_off = tnum_const(imm);
815 reg->smin_value = (s64)imm;
816 reg->smax_value = (s64)imm;
817 reg->umin_value = imm;
818 reg->umax_value = imm;
819}
820
f1174f77
EC
821/* Mark the 'variable offset' part of a register as zero. This should be
822 * used only on registers holding a pointer type.
823 */
824static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 825{
b03c9f9f 826 __mark_reg_known(reg, 0);
f1174f77 827}
a9789ef9 828
cc2b14d5
AS
829static void __mark_reg_const_zero(struct bpf_reg_state *reg)
830{
831 __mark_reg_known(reg, 0);
cc2b14d5
AS
832 reg->type = SCALAR_VALUE;
833}
834
61bd5218
JK
835static void mark_reg_known_zero(struct bpf_verifier_env *env,
836 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
837{
838 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 839 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
840 /* Something bad happened, let's kill all regs */
841 for (regno = 0; regno < MAX_BPF_REG; regno++)
842 __mark_reg_not_init(regs + regno);
843 return;
844 }
845 __mark_reg_known_zero(regs + regno);
846}
847
de8f3a83
DB
848static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
849{
850 return type_is_pkt_pointer(reg->type);
851}
852
853static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
854{
855 return reg_is_pkt_pointer(reg) ||
856 reg->type == PTR_TO_PACKET_END;
857}
858
859/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
860static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
861 enum bpf_reg_type which)
862{
863 /* The register can already have a range from prior markings.
864 * This is fine as long as it hasn't been advanced from its
865 * origin.
866 */
867 return reg->type == which &&
868 reg->id == 0 &&
869 reg->off == 0 &&
870 tnum_equals_const(reg->var_off, 0);
871}
872
b03c9f9f
EC
873/* Attempts to improve min/max values based on var_off information */
874static void __update_reg_bounds(struct bpf_reg_state *reg)
875{
876 /* min signed is max(sign bit) | min(other bits) */
877 reg->smin_value = max_t(s64, reg->smin_value,
878 reg->var_off.value | (reg->var_off.mask & S64_MIN));
879 /* max signed is min(sign bit) | max(other bits) */
880 reg->smax_value = min_t(s64, reg->smax_value,
881 reg->var_off.value | (reg->var_off.mask & S64_MAX));
882 reg->umin_value = max(reg->umin_value, reg->var_off.value);
883 reg->umax_value = min(reg->umax_value,
884 reg->var_off.value | reg->var_off.mask);
885}
886
887/* Uses signed min/max values to inform unsigned, and vice-versa */
888static void __reg_deduce_bounds(struct bpf_reg_state *reg)
889{
890 /* Learn sign from signed bounds.
891 * If we cannot cross the sign boundary, then signed and unsigned bounds
892 * are the same, so combine. This works even in the negative case, e.g.
893 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
894 */
895 if (reg->smin_value >= 0 || reg->smax_value < 0) {
896 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
897 reg->umin_value);
898 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
899 reg->umax_value);
900 return;
901 }
902 /* Learn sign from unsigned bounds. Signed bounds cross the sign
903 * boundary, so we must be careful.
904 */
905 if ((s64)reg->umax_value >= 0) {
906 /* Positive. We can't learn anything from the smin, but smax
907 * is positive, hence safe.
908 */
909 reg->smin_value = reg->umin_value;
910 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
911 reg->umax_value);
912 } else if ((s64)reg->umin_value < 0) {
913 /* Negative. We can't learn anything from the smax, but smin
914 * is negative, hence safe.
915 */
916 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
917 reg->umin_value);
918 reg->smax_value = reg->umax_value;
919 }
920}
921
922/* Attempts to improve var_off based on unsigned min/max information */
923static void __reg_bound_offset(struct bpf_reg_state *reg)
924{
925 reg->var_off = tnum_intersect(reg->var_off,
926 tnum_range(reg->umin_value,
927 reg->umax_value));
928}
929
930/* Reset the min/max bounds of a register */
931static void __mark_reg_unbounded(struct bpf_reg_state *reg)
932{
933 reg->smin_value = S64_MIN;
934 reg->smax_value = S64_MAX;
935 reg->umin_value = 0;
936 reg->umax_value = U64_MAX;
937}
938
f1174f77
EC
939/* Mark a register as having a completely unknown (scalar) value. */
940static void __mark_reg_unknown(struct bpf_reg_state *reg)
941{
a9c676bc
AS
942 /*
943 * Clear type, id, off, and union(map_ptr, range) and
944 * padding between 'type' and union
945 */
946 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 947 reg->type = SCALAR_VALUE;
f1174f77 948 reg->var_off = tnum_unknown;
f4d7e40a 949 reg->frameno = 0;
b03c9f9f 950 __mark_reg_unbounded(reg);
f1174f77
EC
951}
952
61bd5218
JK
953static void mark_reg_unknown(struct bpf_verifier_env *env,
954 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
955{
956 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 957 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
958 /* Something bad happened, let's kill all regs except FP */
959 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
960 __mark_reg_not_init(regs + regno);
961 return;
962 }
963 __mark_reg_unknown(regs + regno);
964}
965
966static void __mark_reg_not_init(struct bpf_reg_state *reg)
967{
968 __mark_reg_unknown(reg);
969 reg->type = NOT_INIT;
970}
971
61bd5218
JK
972static void mark_reg_not_init(struct bpf_verifier_env *env,
973 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
974{
975 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 976 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
977 /* Something bad happened, let's kill all regs except FP */
978 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
979 __mark_reg_not_init(regs + regno);
980 return;
981 }
982 __mark_reg_not_init(regs + regno);
a9789ef9
DB
983}
984
5327ed3d 985#define DEF_NOT_SUBREG (0)
61bd5218 986static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 987 struct bpf_func_state *state)
17a52670 988{
f4d7e40a 989 struct bpf_reg_state *regs = state->regs;
17a52670
AS
990 int i;
991
dc503a8a 992 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 993 mark_reg_not_init(env, regs, i);
dc503a8a 994 regs[i].live = REG_LIVE_NONE;
679c782d 995 regs[i].parent = NULL;
5327ed3d 996 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 997 }
17a52670
AS
998
999 /* frame pointer */
f1174f77 1000 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1001 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1002 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1003
1004 /* 1st arg to a function */
1005 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1006 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1007}
1008
f4d7e40a
AS
1009#define BPF_MAIN_FUNC (-1)
1010static void init_func_state(struct bpf_verifier_env *env,
1011 struct bpf_func_state *state,
1012 int callsite, int frameno, int subprogno)
1013{
1014 state->callsite = callsite;
1015 state->frameno = frameno;
1016 state->subprogno = subprogno;
1017 init_reg_state(env, state);
1018}
1019
17a52670
AS
1020enum reg_arg_type {
1021 SRC_OP, /* register is used as source operand */
1022 DST_OP, /* register is used as destination operand */
1023 DST_OP_NO_MARK /* same as above, check only, don't mark */
1024};
1025
cc8b0b92
AS
1026static int cmp_subprogs(const void *a, const void *b)
1027{
9c8105bd
JW
1028 return ((struct bpf_subprog_info *)a)->start -
1029 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1030}
1031
1032static int find_subprog(struct bpf_verifier_env *env, int off)
1033{
9c8105bd 1034 struct bpf_subprog_info *p;
cc8b0b92 1035
9c8105bd
JW
1036 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1037 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1038 if (!p)
1039 return -ENOENT;
9c8105bd 1040 return p - env->subprog_info;
cc8b0b92
AS
1041
1042}
1043
1044static int add_subprog(struct bpf_verifier_env *env, int off)
1045{
1046 int insn_cnt = env->prog->len;
1047 int ret;
1048
1049 if (off >= insn_cnt || off < 0) {
1050 verbose(env, "call to invalid destination\n");
1051 return -EINVAL;
1052 }
1053 ret = find_subprog(env, off);
1054 if (ret >= 0)
1055 return 0;
4cb3d99c 1056 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1057 verbose(env, "too many subprograms\n");
1058 return -E2BIG;
1059 }
9c8105bd
JW
1060 env->subprog_info[env->subprog_cnt++].start = off;
1061 sort(env->subprog_info, env->subprog_cnt,
1062 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1063 return 0;
1064}
1065
1066static int check_subprogs(struct bpf_verifier_env *env)
1067{
1068 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1069 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1070 struct bpf_insn *insn = env->prog->insnsi;
1071 int insn_cnt = env->prog->len;
1072
f910cefa
JW
1073 /* Add entry function. */
1074 ret = add_subprog(env, 0);
1075 if (ret < 0)
1076 return ret;
1077
cc8b0b92
AS
1078 /* determine subprog starts. The end is one before the next starts */
1079 for (i = 0; i < insn_cnt; i++) {
1080 if (insn[i].code != (BPF_JMP | BPF_CALL))
1081 continue;
1082 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1083 continue;
1084 if (!env->allow_ptr_leaks) {
1085 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1086 return -EPERM;
1087 }
cc8b0b92
AS
1088 ret = add_subprog(env, i + insn[i].imm + 1);
1089 if (ret < 0)
1090 return ret;
1091 }
1092
4cb3d99c
JW
1093 /* Add a fake 'exit' subprog which could simplify subprog iteration
1094 * logic. 'subprog_cnt' should not be increased.
1095 */
1096 subprog[env->subprog_cnt].start = insn_cnt;
1097
06ee7115 1098 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1099 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1100 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1101
1102 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1103 subprog_start = subprog[cur_subprog].start;
1104 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1105 for (i = 0; i < insn_cnt; i++) {
1106 u8 code = insn[i].code;
1107
092ed096 1108 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1109 goto next;
1110 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1111 goto next;
1112 off = i + insn[i].off + 1;
1113 if (off < subprog_start || off >= subprog_end) {
1114 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1115 return -EINVAL;
1116 }
1117next:
1118 if (i == subprog_end - 1) {
1119 /* to avoid fall-through from one subprog into another
1120 * the last insn of the subprog should be either exit
1121 * or unconditional jump back
1122 */
1123 if (code != (BPF_JMP | BPF_EXIT) &&
1124 code != (BPF_JMP | BPF_JA)) {
1125 verbose(env, "last insn is not an exit or jmp\n");
1126 return -EINVAL;
1127 }
1128 subprog_start = subprog_end;
4cb3d99c
JW
1129 cur_subprog++;
1130 if (cur_subprog < env->subprog_cnt)
9c8105bd 1131 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1132 }
1133 }
1134 return 0;
1135}
1136
679c782d
EC
1137/* Parentage chain of this register (or stack slot) should take care of all
1138 * issues like callee-saved registers, stack slot allocation time, etc.
1139 */
f4d7e40a 1140static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1141 const struct bpf_reg_state *state,
5327ed3d 1142 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1143{
1144 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1145 int cnt = 0;
dc503a8a
EC
1146
1147 while (parent) {
1148 /* if read wasn't screened by an earlier write ... */
679c782d 1149 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1150 break;
9242b5f5
AS
1151 if (parent->live & REG_LIVE_DONE) {
1152 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1153 reg_type_str[parent->type],
1154 parent->var_off.value, parent->off);
1155 return -EFAULT;
1156 }
5327ed3d
JW
1157 /* The first condition is more likely to be true than the
1158 * second, checked it first.
1159 */
1160 if ((parent->live & REG_LIVE_READ) == flag ||
1161 parent->live & REG_LIVE_READ64)
25af32da
AS
1162 /* The parentage chain never changes and
1163 * this parent was already marked as LIVE_READ.
1164 * There is no need to keep walking the chain again and
1165 * keep re-marking all parents as LIVE_READ.
1166 * This case happens when the same register is read
1167 * multiple times without writes into it in-between.
5327ed3d
JW
1168 * Also, if parent has the stronger REG_LIVE_READ64 set,
1169 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1170 */
1171 break;
dc503a8a 1172 /* ... then we depend on parent's value */
5327ed3d
JW
1173 parent->live |= flag;
1174 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1175 if (flag == REG_LIVE_READ64)
1176 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1177 state = parent;
1178 parent = state->parent;
f4d7e40a 1179 writes = true;
06ee7115 1180 cnt++;
dc503a8a 1181 }
06ee7115
AS
1182
1183 if (env->longest_mark_read_walk < cnt)
1184 env->longest_mark_read_walk = cnt;
f4d7e40a 1185 return 0;
dc503a8a
EC
1186}
1187
5327ed3d
JW
1188/* This function is supposed to be used by the following 32-bit optimization
1189 * code only. It returns TRUE if the source or destination register operates
1190 * on 64-bit, otherwise return FALSE.
1191 */
1192static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1193 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1194{
1195 u8 code, class, op;
1196
1197 code = insn->code;
1198 class = BPF_CLASS(code);
1199 op = BPF_OP(code);
1200 if (class == BPF_JMP) {
1201 /* BPF_EXIT for "main" will reach here. Return TRUE
1202 * conservatively.
1203 */
1204 if (op == BPF_EXIT)
1205 return true;
1206 if (op == BPF_CALL) {
1207 /* BPF to BPF call will reach here because of marking
1208 * caller saved clobber with DST_OP_NO_MARK for which we
1209 * don't care the register def because they are anyway
1210 * marked as NOT_INIT already.
1211 */
1212 if (insn->src_reg == BPF_PSEUDO_CALL)
1213 return false;
1214 /* Helper call will reach here because of arg type
1215 * check, conservatively return TRUE.
1216 */
1217 if (t == SRC_OP)
1218 return true;
1219
1220 return false;
1221 }
1222 }
1223
1224 if (class == BPF_ALU64 || class == BPF_JMP ||
1225 /* BPF_END always use BPF_ALU class. */
1226 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1227 return true;
1228
1229 if (class == BPF_ALU || class == BPF_JMP32)
1230 return false;
1231
1232 if (class == BPF_LDX) {
1233 if (t != SRC_OP)
1234 return BPF_SIZE(code) == BPF_DW;
1235 /* LDX source must be ptr. */
1236 return true;
1237 }
1238
1239 if (class == BPF_STX) {
1240 if (reg->type != SCALAR_VALUE)
1241 return true;
1242 return BPF_SIZE(code) == BPF_DW;
1243 }
1244
1245 if (class == BPF_LD) {
1246 u8 mode = BPF_MODE(code);
1247
1248 /* LD_IMM64 */
1249 if (mode == BPF_IMM)
1250 return true;
1251
1252 /* Both LD_IND and LD_ABS return 32-bit data. */
1253 if (t != SRC_OP)
1254 return false;
1255
1256 /* Implicit ctx ptr. */
1257 if (regno == BPF_REG_6)
1258 return true;
1259
1260 /* Explicit source could be any width. */
1261 return true;
1262 }
1263
1264 if (class == BPF_ST)
1265 /* The only source register for BPF_ST is a ptr. */
1266 return true;
1267
1268 /* Conservatively return true at default. */
1269 return true;
1270}
1271
b325fbca
JW
1272/* Return TRUE if INSN doesn't have explicit value define. */
1273static bool insn_no_def(struct bpf_insn *insn)
1274{
1275 u8 class = BPF_CLASS(insn->code);
1276
1277 return (class == BPF_JMP || class == BPF_JMP32 ||
1278 class == BPF_STX || class == BPF_ST);
1279}
1280
1281/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1282static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1283{
1284 if (insn_no_def(insn))
1285 return false;
1286
1287 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1288}
1289
5327ed3d
JW
1290static void mark_insn_zext(struct bpf_verifier_env *env,
1291 struct bpf_reg_state *reg)
1292{
1293 s32 def_idx = reg->subreg_def;
1294
1295 if (def_idx == DEF_NOT_SUBREG)
1296 return;
1297
1298 env->insn_aux_data[def_idx - 1].zext_dst = true;
1299 /* The dst will be zero extended, so won't be sub-register anymore. */
1300 reg->subreg_def = DEF_NOT_SUBREG;
1301}
1302
dc503a8a 1303static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1304 enum reg_arg_type t)
1305{
f4d7e40a
AS
1306 struct bpf_verifier_state *vstate = env->cur_state;
1307 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1308 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1309 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1310 bool rw64;
dc503a8a 1311
17a52670 1312 if (regno >= MAX_BPF_REG) {
61bd5218 1313 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1314 return -EINVAL;
1315 }
1316
c342dc10 1317 reg = &regs[regno];
5327ed3d 1318 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1319 if (t == SRC_OP) {
1320 /* check whether register used as source operand can be read */
c342dc10 1321 if (reg->type == NOT_INIT) {
61bd5218 1322 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1323 return -EACCES;
1324 }
679c782d 1325 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1326 if (regno == BPF_REG_FP)
1327 return 0;
1328
5327ed3d
JW
1329 if (rw64)
1330 mark_insn_zext(env, reg);
1331
1332 return mark_reg_read(env, reg, reg->parent,
1333 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1334 } else {
1335 /* check whether register used as dest operand can be written to */
1336 if (regno == BPF_REG_FP) {
61bd5218 1337 verbose(env, "frame pointer is read only\n");
17a52670
AS
1338 return -EACCES;
1339 }
c342dc10 1340 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1341 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1342 if (t == DST_OP)
61bd5218 1343 mark_reg_unknown(env, regs, regno);
17a52670
AS
1344 }
1345 return 0;
1346}
1347
1be7f75d
AS
1348static bool is_spillable_regtype(enum bpf_reg_type type)
1349{
1350 switch (type) {
1351 case PTR_TO_MAP_VALUE:
1352 case PTR_TO_MAP_VALUE_OR_NULL:
1353 case PTR_TO_STACK:
1354 case PTR_TO_CTX:
969bf05e 1355 case PTR_TO_PACKET:
de8f3a83 1356 case PTR_TO_PACKET_META:
969bf05e 1357 case PTR_TO_PACKET_END:
d58e468b 1358 case PTR_TO_FLOW_KEYS:
1be7f75d 1359 case CONST_PTR_TO_MAP:
c64b7983
JS
1360 case PTR_TO_SOCKET:
1361 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1362 case PTR_TO_SOCK_COMMON:
1363 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1364 case PTR_TO_TCP_SOCK:
1365 case PTR_TO_TCP_SOCK_OR_NULL:
1be7f75d
AS
1366 return true;
1367 default:
1368 return false;
1369 }
1370}
1371
cc2b14d5
AS
1372/* Does this register contain a constant zero? */
1373static bool register_is_null(struct bpf_reg_state *reg)
1374{
1375 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1376}
1377
17a52670
AS
1378/* check_stack_read/write functions track spill/fill of registers,
1379 * stack boundary and alignment are checked in check_mem_access()
1380 */
61bd5218 1381static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1382 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1383 int off, int size, int value_regno, int insn_idx)
17a52670 1384{
f4d7e40a 1385 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1386 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1387 enum bpf_reg_type type;
638f5b90 1388
f4d7e40a 1389 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1390 state->acquired_refs, true);
638f5b90
AS
1391 if (err)
1392 return err;
9c399760
AS
1393 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1394 * so it's aligned access and [off, off + size) are within stack limits
1395 */
638f5b90
AS
1396 if (!env->allow_ptr_leaks &&
1397 state->stack[spi].slot_type[0] == STACK_SPILL &&
1398 size != BPF_REG_SIZE) {
1399 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1400 return -EACCES;
1401 }
17a52670 1402
f4d7e40a 1403 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1404 if (value_regno >= 0 &&
f4d7e40a 1405 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1406
1407 /* register containing pointer is being spilled into stack */
9c399760 1408 if (size != BPF_REG_SIZE) {
61bd5218 1409 verbose(env, "invalid size of register spill\n");
17a52670
AS
1410 return -EACCES;
1411 }
1412
f4d7e40a
AS
1413 if (state != cur && type == PTR_TO_STACK) {
1414 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1415 return -EINVAL;
1416 }
1417
17a52670 1418 /* save register state */
f4d7e40a 1419 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1420 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1421
af86ca4e
AS
1422 for (i = 0; i < BPF_REG_SIZE; i++) {
1423 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1424 !env->allow_ptr_leaks) {
1425 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1426 int soff = (-spi - 1) * BPF_REG_SIZE;
1427
1428 /* detected reuse of integer stack slot with a pointer
1429 * which means either llvm is reusing stack slot or
1430 * an attacker is trying to exploit CVE-2018-3639
1431 * (speculative store bypass)
1432 * Have to sanitize that slot with preemptive
1433 * store of zero.
1434 */
1435 if (*poff && *poff != soff) {
1436 /* disallow programs where single insn stores
1437 * into two different stack slots, since verifier
1438 * cannot sanitize them
1439 */
1440 verbose(env,
1441 "insn %d cannot access two stack slots fp%d and fp%d",
1442 insn_idx, *poff, soff);
1443 return -EINVAL;
1444 }
1445 *poff = soff;
1446 }
638f5b90 1447 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1448 }
9c399760 1449 } else {
cc2b14d5
AS
1450 u8 type = STACK_MISC;
1451
679c782d
EC
1452 /* regular write of data into stack destroys any spilled ptr */
1453 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1454 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1455 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1456 for (i = 0; i < BPF_REG_SIZE; i++)
1457 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1458
cc2b14d5
AS
1459 /* only mark the slot as written if all 8 bytes were written
1460 * otherwise read propagation may incorrectly stop too soon
1461 * when stack slots are partially written.
1462 * This heuristic means that read propagation will be
1463 * conservative, since it will add reg_live_read marks
1464 * to stack slots all the way to first state when programs
1465 * writes+reads less than 8 bytes
1466 */
1467 if (size == BPF_REG_SIZE)
1468 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1469
1470 /* when we zero initialize stack slots mark them as such */
1471 if (value_regno >= 0 &&
1472 register_is_null(&cur->regs[value_regno]))
1473 type = STACK_ZERO;
1474
0bae2d4d 1475 /* Mark slots affected by this stack write. */
9c399760 1476 for (i = 0; i < size; i++)
638f5b90 1477 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1478 type;
17a52670
AS
1479 }
1480 return 0;
1481}
1482
61bd5218 1483static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1484 struct bpf_func_state *reg_state /* func where register points to */,
1485 int off, int size, int value_regno)
17a52670 1486{
f4d7e40a
AS
1487 struct bpf_verifier_state *vstate = env->cur_state;
1488 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1489 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1490 u8 *stype;
17a52670 1491
f4d7e40a 1492 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1493 verbose(env, "invalid read from stack off %d+0 size %d\n",
1494 off, size);
1495 return -EACCES;
1496 }
f4d7e40a 1497 stype = reg_state->stack[spi].slot_type;
17a52670 1498
638f5b90 1499 if (stype[0] == STACK_SPILL) {
9c399760 1500 if (size != BPF_REG_SIZE) {
61bd5218 1501 verbose(env, "invalid size of register spill\n");
17a52670
AS
1502 return -EACCES;
1503 }
9c399760 1504 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1505 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1506 verbose(env, "corrupted spill memory\n");
17a52670
AS
1507 return -EACCES;
1508 }
1509 }
1510
dc503a8a 1511 if (value_regno >= 0) {
17a52670 1512 /* restore register state from stack */
f4d7e40a 1513 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1514 /* mark reg as written since spilled pointer state likely
1515 * has its liveness marks cleared by is_state_visited()
1516 * which resets stack/reg liveness for state transitions
1517 */
1518 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1519 }
679c782d 1520 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
5327ed3d
JW
1521 reg_state->stack[spi].spilled_ptr.parent,
1522 REG_LIVE_READ64);
17a52670
AS
1523 return 0;
1524 } else {
cc2b14d5
AS
1525 int zeros = 0;
1526
17a52670 1527 for (i = 0; i < size; i++) {
cc2b14d5
AS
1528 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1529 continue;
1530 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1531 zeros++;
1532 continue;
17a52670 1533 }
cc2b14d5
AS
1534 verbose(env, "invalid read from stack off %d+%d size %d\n",
1535 off, i, size);
1536 return -EACCES;
1537 }
679c782d 1538 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
5327ed3d
JW
1539 reg_state->stack[spi].spilled_ptr.parent,
1540 REG_LIVE_READ64);
cc2b14d5
AS
1541 if (value_regno >= 0) {
1542 if (zeros == size) {
1543 /* any size read into register is zero extended,
1544 * so the whole register == const_zero
1545 */
1546 __mark_reg_const_zero(&state->regs[value_regno]);
1547 } else {
1548 /* have read misc data from the stack */
1549 mark_reg_unknown(env, state->regs, value_regno);
1550 }
1551 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1552 }
17a52670
AS
1553 return 0;
1554 }
1555}
1556
e4298d25
DB
1557static int check_stack_access(struct bpf_verifier_env *env,
1558 const struct bpf_reg_state *reg,
1559 int off, int size)
1560{
1561 /* Stack accesses must be at a fixed offset, so that we
1562 * can determine what type of data were returned. See
1563 * check_stack_read().
1564 */
1565 if (!tnum_is_const(reg->var_off)) {
1566 char tn_buf[48];
1567
1568 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 1569 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
1570 tn_buf, off, size);
1571 return -EACCES;
1572 }
1573
1574 if (off >= 0 || off < -MAX_BPF_STACK) {
1575 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1576 return -EACCES;
1577 }
1578
1579 return 0;
1580}
1581
591fe988
DB
1582static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1583 int off, int size, enum bpf_access_type type)
1584{
1585 struct bpf_reg_state *regs = cur_regs(env);
1586 struct bpf_map *map = regs[regno].map_ptr;
1587 u32 cap = bpf_map_flags_to_cap(map);
1588
1589 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1590 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1591 map->value_size, off, size);
1592 return -EACCES;
1593 }
1594
1595 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1596 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1597 map->value_size, off, size);
1598 return -EACCES;
1599 }
1600
1601 return 0;
1602}
1603
17a52670 1604/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1605static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1606 int size, bool zero_size_allowed)
17a52670 1607{
638f5b90
AS
1608 struct bpf_reg_state *regs = cur_regs(env);
1609 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1610
9fd29c08
YS
1611 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1612 off + size > map->value_size) {
61bd5218 1613 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1614 map->value_size, off, size);
1615 return -EACCES;
1616 }
1617 return 0;
1618}
1619
f1174f77
EC
1620/* check read/write into a map element with possible variable offset */
1621static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1622 int off, int size, bool zero_size_allowed)
dbcfe5f7 1623{
f4d7e40a
AS
1624 struct bpf_verifier_state *vstate = env->cur_state;
1625 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1626 struct bpf_reg_state *reg = &state->regs[regno];
1627 int err;
1628
f1174f77
EC
1629 /* We may have adjusted the register to this map value, so we
1630 * need to try adding each of min_value and max_value to off
1631 * to make sure our theoretical access will be safe.
dbcfe5f7 1632 */
06ee7115 1633 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 1634 print_verifier_state(env, state);
b7137c4e 1635
dbcfe5f7
GB
1636 /* The minimum value is only important with signed
1637 * comparisons where we can't assume the floor of a
1638 * value is 0. If we are using signed variables for our
1639 * index'es we need to make sure that whatever we use
1640 * will have a set floor within our range.
1641 */
b7137c4e
DB
1642 if (reg->smin_value < 0 &&
1643 (reg->smin_value == S64_MIN ||
1644 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1645 reg->smin_value + off < 0)) {
61bd5218 1646 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1647 regno);
1648 return -EACCES;
1649 }
9fd29c08
YS
1650 err = __check_map_access(env, regno, reg->smin_value + off, size,
1651 zero_size_allowed);
dbcfe5f7 1652 if (err) {
61bd5218
JK
1653 verbose(env, "R%d min value is outside of the array range\n",
1654 regno);
dbcfe5f7
GB
1655 return err;
1656 }
1657
b03c9f9f
EC
1658 /* If we haven't set a max value then we need to bail since we can't be
1659 * sure we won't do bad things.
1660 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1661 */
b03c9f9f 1662 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1663 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1664 regno);
1665 return -EACCES;
1666 }
9fd29c08
YS
1667 err = __check_map_access(env, regno, reg->umax_value + off, size,
1668 zero_size_allowed);
f1174f77 1669 if (err)
61bd5218
JK
1670 verbose(env, "R%d max value is outside of the array range\n",
1671 regno);
d83525ca
AS
1672
1673 if (map_value_has_spin_lock(reg->map_ptr)) {
1674 u32 lock = reg->map_ptr->spin_lock_off;
1675
1676 /* if any part of struct bpf_spin_lock can be touched by
1677 * load/store reject this program.
1678 * To check that [x1, x2) overlaps with [y1, y2)
1679 * it is sufficient to check x1 < y2 && y1 < x2.
1680 */
1681 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1682 lock < reg->umax_value + off + size) {
1683 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1684 return -EACCES;
1685 }
1686 }
f1174f77 1687 return err;
dbcfe5f7
GB
1688}
1689
969bf05e
AS
1690#define MAX_PACKET_OFF 0xffff
1691
58e2af8b 1692static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1693 const struct bpf_call_arg_meta *meta,
1694 enum bpf_access_type t)
4acf6c0b 1695{
36bbef52 1696 switch (env->prog->type) {
5d66fa7d 1697 /* Program types only with direct read access go here! */
3a0af8fd
TG
1698 case BPF_PROG_TYPE_LWT_IN:
1699 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1700 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1701 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1702 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1703 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1704 if (t == BPF_WRITE)
1705 return false;
7e57fbb2 1706 /* fallthrough */
5d66fa7d
DB
1707
1708 /* Program types with direct read + write access go here! */
36bbef52
DB
1709 case BPF_PROG_TYPE_SCHED_CLS:
1710 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1711 case BPF_PROG_TYPE_XDP:
3a0af8fd 1712 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1713 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1714 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1715 if (meta)
1716 return meta->pkt_access;
1717
1718 env->seen_direct_write = true;
4acf6c0b
BB
1719 return true;
1720 default:
1721 return false;
1722 }
1723}
1724
f1174f77 1725static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1726 int off, int size, bool zero_size_allowed)
969bf05e 1727{
638f5b90 1728 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1729 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1730
9fd29c08
YS
1731 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1732 (u64)off + size > reg->range) {
61bd5218 1733 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1734 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1735 return -EACCES;
1736 }
1737 return 0;
1738}
1739
f1174f77 1740static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1741 int size, bool zero_size_allowed)
f1174f77 1742{
638f5b90 1743 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1744 struct bpf_reg_state *reg = &regs[regno];
1745 int err;
1746
1747 /* We may have added a variable offset to the packet pointer; but any
1748 * reg->range we have comes after that. We are only checking the fixed
1749 * offset.
1750 */
1751
1752 /* We don't allow negative numbers, because we aren't tracking enough
1753 * detail to prove they're safe.
1754 */
b03c9f9f 1755 if (reg->smin_value < 0) {
61bd5218 1756 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1757 regno);
1758 return -EACCES;
1759 }
9fd29c08 1760 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1761 if (err) {
61bd5218 1762 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1763 return err;
1764 }
e647815a
JW
1765
1766 /* __check_packet_access has made sure "off + size - 1" is within u16.
1767 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1768 * otherwise find_good_pkt_pointers would have refused to set range info
1769 * that __check_packet_access would have rejected this pkt access.
1770 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1771 */
1772 env->prog->aux->max_pkt_offset =
1773 max_t(u32, env->prog->aux->max_pkt_offset,
1774 off + reg->umax_value + size - 1);
1775
f1174f77
EC
1776 return err;
1777}
1778
1779/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1780static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1781 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1782{
f96da094
DB
1783 struct bpf_insn_access_aux info = {
1784 .reg_type = *reg_type,
1785 };
31fd8581 1786
4f9218aa 1787 if (env->ops->is_valid_access &&
5e43f899 1788 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1789 /* A non zero info.ctx_field_size indicates that this field is a
1790 * candidate for later verifier transformation to load the whole
1791 * field and then apply a mask when accessed with a narrower
1792 * access than actual ctx access size. A zero info.ctx_field_size
1793 * will only allow for whole field access and rejects any other
1794 * type of narrower access.
31fd8581 1795 */
23994631 1796 *reg_type = info.reg_type;
31fd8581 1797
4f9218aa 1798 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1799 /* remember the offset of last byte accessed in ctx */
1800 if (env->prog->aux->max_ctx_offset < off + size)
1801 env->prog->aux->max_ctx_offset = off + size;
17a52670 1802 return 0;
32bbe007 1803 }
17a52670 1804
61bd5218 1805 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1806 return -EACCES;
1807}
1808
d58e468b
PP
1809static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1810 int size)
1811{
1812 if (size < 0 || off < 0 ||
1813 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1814 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1815 off, size);
1816 return -EACCES;
1817 }
1818 return 0;
1819}
1820
5f456649
MKL
1821static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1822 u32 regno, int off, int size,
1823 enum bpf_access_type t)
c64b7983
JS
1824{
1825 struct bpf_reg_state *regs = cur_regs(env);
1826 struct bpf_reg_state *reg = &regs[regno];
5f456649 1827 struct bpf_insn_access_aux info = {};
46f8bc92 1828 bool valid;
c64b7983
JS
1829
1830 if (reg->smin_value < 0) {
1831 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1832 regno);
1833 return -EACCES;
1834 }
1835
46f8bc92
MKL
1836 switch (reg->type) {
1837 case PTR_TO_SOCK_COMMON:
1838 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1839 break;
1840 case PTR_TO_SOCKET:
1841 valid = bpf_sock_is_valid_access(off, size, t, &info);
1842 break;
655a51e5
MKL
1843 case PTR_TO_TCP_SOCK:
1844 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1845 break;
46f8bc92
MKL
1846 default:
1847 valid = false;
c64b7983
JS
1848 }
1849
5f456649 1850
46f8bc92
MKL
1851 if (valid) {
1852 env->insn_aux_data[insn_idx].ctx_field_size =
1853 info.ctx_field_size;
1854 return 0;
1855 }
1856
1857 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1858 regno, reg_type_str[reg->type], off, size);
1859
1860 return -EACCES;
c64b7983
JS
1861}
1862
4cabc5b1
DB
1863static bool __is_pointer_value(bool allow_ptr_leaks,
1864 const struct bpf_reg_state *reg)
1be7f75d 1865{
4cabc5b1 1866 if (allow_ptr_leaks)
1be7f75d
AS
1867 return false;
1868
f1174f77 1869 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1870}
1871
2a159c6f
DB
1872static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1873{
1874 return cur_regs(env) + regno;
1875}
1876
4cabc5b1
DB
1877static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1878{
2a159c6f 1879 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1880}
1881
f37a8cb8
DB
1882static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1883{
2a159c6f 1884 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1885
46f8bc92
MKL
1886 return reg->type == PTR_TO_CTX;
1887}
1888
1889static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1890{
1891 const struct bpf_reg_state *reg = reg_state(env, regno);
1892
1893 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
1894}
1895
ca369602
DB
1896static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1897{
2a159c6f 1898 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1899
1900 return type_is_pkt_pointer(reg->type);
1901}
1902
4b5defde
DB
1903static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1904{
1905 const struct bpf_reg_state *reg = reg_state(env, regno);
1906
1907 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1908 return reg->type == PTR_TO_FLOW_KEYS;
1909}
1910
61bd5218
JK
1911static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1912 const struct bpf_reg_state *reg,
d1174416 1913 int off, int size, bool strict)
969bf05e 1914{
f1174f77 1915 struct tnum reg_off;
e07b98d9 1916 int ip_align;
d1174416
DM
1917
1918 /* Byte size accesses are always allowed. */
1919 if (!strict || size == 1)
1920 return 0;
1921
e4eda884
DM
1922 /* For platforms that do not have a Kconfig enabling
1923 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1924 * NET_IP_ALIGN is universally set to '2'. And on platforms
1925 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1926 * to this code only in strict mode where we want to emulate
1927 * the NET_IP_ALIGN==2 checking. Therefore use an
1928 * unconditional IP align value of '2'.
e07b98d9 1929 */
e4eda884 1930 ip_align = 2;
f1174f77
EC
1931
1932 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1933 if (!tnum_is_aligned(reg_off, size)) {
1934 char tn_buf[48];
1935
1936 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1937 verbose(env,
1938 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1939 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1940 return -EACCES;
1941 }
79adffcd 1942
969bf05e
AS
1943 return 0;
1944}
1945
61bd5218
JK
1946static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1947 const struct bpf_reg_state *reg,
f1174f77
EC
1948 const char *pointer_desc,
1949 int off, int size, bool strict)
79adffcd 1950{
f1174f77
EC
1951 struct tnum reg_off;
1952
1953 /* Byte size accesses are always allowed. */
1954 if (!strict || size == 1)
1955 return 0;
1956
1957 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1958 if (!tnum_is_aligned(reg_off, size)) {
1959 char tn_buf[48];
1960
1961 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1962 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1963 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1964 return -EACCES;
1965 }
1966
969bf05e
AS
1967 return 0;
1968}
1969
e07b98d9 1970static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1971 const struct bpf_reg_state *reg, int off,
1972 int size, bool strict_alignment_once)
79adffcd 1973{
ca369602 1974 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1975 const char *pointer_desc = "";
d1174416 1976
79adffcd
DB
1977 switch (reg->type) {
1978 case PTR_TO_PACKET:
de8f3a83
DB
1979 case PTR_TO_PACKET_META:
1980 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1981 * right in front, treat it the very same way.
1982 */
61bd5218 1983 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1984 case PTR_TO_FLOW_KEYS:
1985 pointer_desc = "flow keys ";
1986 break;
f1174f77
EC
1987 case PTR_TO_MAP_VALUE:
1988 pointer_desc = "value ";
1989 break;
1990 case PTR_TO_CTX:
1991 pointer_desc = "context ";
1992 break;
1993 case PTR_TO_STACK:
1994 pointer_desc = "stack ";
a5ec6ae1
JH
1995 /* The stack spill tracking logic in check_stack_write()
1996 * and check_stack_read() relies on stack accesses being
1997 * aligned.
1998 */
1999 strict = true;
f1174f77 2000 break;
c64b7983
JS
2001 case PTR_TO_SOCKET:
2002 pointer_desc = "sock ";
2003 break;
46f8bc92
MKL
2004 case PTR_TO_SOCK_COMMON:
2005 pointer_desc = "sock_common ";
2006 break;
655a51e5
MKL
2007 case PTR_TO_TCP_SOCK:
2008 pointer_desc = "tcp_sock ";
2009 break;
79adffcd 2010 default:
f1174f77 2011 break;
79adffcd 2012 }
61bd5218
JK
2013 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2014 strict);
79adffcd
DB
2015}
2016
f4d7e40a
AS
2017static int update_stack_depth(struct bpf_verifier_env *env,
2018 const struct bpf_func_state *func,
2019 int off)
2020{
9c8105bd 2021 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2022
2023 if (stack >= -off)
2024 return 0;
2025
2026 /* update known max for given subprogram */
9c8105bd 2027 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2028 return 0;
2029}
f4d7e40a 2030
70a87ffe
AS
2031/* starting from main bpf function walk all instructions of the function
2032 * and recursively walk all callees that given function can call.
2033 * Ignore jump and exit insns.
2034 * Since recursion is prevented by check_cfg() this algorithm
2035 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2036 */
2037static int check_max_stack_depth(struct bpf_verifier_env *env)
2038{
9c8105bd
JW
2039 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2040 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2041 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2042 int ret_insn[MAX_CALL_FRAMES];
2043 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2044
70a87ffe
AS
2045process_func:
2046 /* round up to 32-bytes, since this is granularity
2047 * of interpreter stack size
2048 */
9c8105bd 2049 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2050 if (depth > MAX_BPF_STACK) {
f4d7e40a 2051 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2052 frame + 1, depth);
f4d7e40a
AS
2053 return -EACCES;
2054 }
70a87ffe 2055continue_func:
4cb3d99c 2056 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2057 for (; i < subprog_end; i++) {
2058 if (insn[i].code != (BPF_JMP | BPF_CALL))
2059 continue;
2060 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2061 continue;
2062 /* remember insn and function to return to */
2063 ret_insn[frame] = i + 1;
9c8105bd 2064 ret_prog[frame] = idx;
70a87ffe
AS
2065
2066 /* find the callee */
2067 i = i + insn[i].imm + 1;
9c8105bd
JW
2068 idx = find_subprog(env, i);
2069 if (idx < 0) {
70a87ffe
AS
2070 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2071 i);
2072 return -EFAULT;
2073 }
70a87ffe
AS
2074 frame++;
2075 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2076 verbose(env, "the call stack of %d frames is too deep !\n",
2077 frame);
2078 return -E2BIG;
70a87ffe
AS
2079 }
2080 goto process_func;
2081 }
2082 /* end of for() loop means the last insn of the 'subprog'
2083 * was reached. Doesn't matter whether it was JA or EXIT
2084 */
2085 if (frame == 0)
2086 return 0;
9c8105bd 2087 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2088 frame--;
2089 i = ret_insn[frame];
9c8105bd 2090 idx = ret_prog[frame];
70a87ffe 2091 goto continue_func;
f4d7e40a
AS
2092}
2093
19d28fbd 2094#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2095static int get_callee_stack_depth(struct bpf_verifier_env *env,
2096 const struct bpf_insn *insn, int idx)
2097{
2098 int start = idx + insn->imm + 1, subprog;
2099
2100 subprog = find_subprog(env, start);
2101 if (subprog < 0) {
2102 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2103 start);
2104 return -EFAULT;
2105 }
9c8105bd 2106 return env->subprog_info[subprog].stack_depth;
1ea47e01 2107}
19d28fbd 2108#endif
1ea47e01 2109
58990d1f
DB
2110static int check_ctx_reg(struct bpf_verifier_env *env,
2111 const struct bpf_reg_state *reg, int regno)
2112{
2113 /* Access to ctx or passing it to a helper is only allowed in
2114 * its original, unmodified form.
2115 */
2116
2117 if (reg->off) {
2118 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2119 regno, reg->off);
2120 return -EACCES;
2121 }
2122
2123 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2124 char tn_buf[48];
2125
2126 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2127 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2128 return -EACCES;
2129 }
2130
2131 return 0;
2132}
2133
9df1c28b
MM
2134static int check_tp_buffer_access(struct bpf_verifier_env *env,
2135 const struct bpf_reg_state *reg,
2136 int regno, int off, int size)
2137{
2138 if (off < 0) {
2139 verbose(env,
2140 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2141 regno, off, size);
2142 return -EACCES;
2143 }
2144 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2145 char tn_buf[48];
2146
2147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2148 verbose(env,
2149 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2150 regno, off, tn_buf);
2151 return -EACCES;
2152 }
2153 if (off + size > env->prog->aux->max_tp_access)
2154 env->prog->aux->max_tp_access = off + size;
2155
2156 return 0;
2157}
2158
2159
0c17d1d2
JH
2160/* truncate register to smaller size (in bytes)
2161 * must be called with size < BPF_REG_SIZE
2162 */
2163static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2164{
2165 u64 mask;
2166
2167 /* clear high bits in bit representation */
2168 reg->var_off = tnum_cast(reg->var_off, size);
2169
2170 /* fix arithmetic bounds */
2171 mask = ((u64)1 << (size * 8)) - 1;
2172 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2173 reg->umin_value &= mask;
2174 reg->umax_value &= mask;
2175 } else {
2176 reg->umin_value = 0;
2177 reg->umax_value = mask;
2178 }
2179 reg->smin_value = reg->umin_value;
2180 reg->smax_value = reg->umax_value;
2181}
2182
17a52670
AS
2183/* check whether memory at (regno + off) is accessible for t = (read | write)
2184 * if t==write, value_regno is a register which value is stored into memory
2185 * if t==read, value_regno is a register which will receive the value from memory
2186 * if t==write && value_regno==-1, some unknown value is stored into memory
2187 * if t==read && value_regno==-1, don't care what we read from memory
2188 */
ca369602
DB
2189static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2190 int off, int bpf_size, enum bpf_access_type t,
2191 int value_regno, bool strict_alignment_once)
17a52670 2192{
638f5b90
AS
2193 struct bpf_reg_state *regs = cur_regs(env);
2194 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2195 struct bpf_func_state *state;
17a52670
AS
2196 int size, err = 0;
2197
2198 size = bpf_size_to_bytes(bpf_size);
2199 if (size < 0)
2200 return size;
2201
f1174f77 2202 /* alignment checks will add in reg->off themselves */
ca369602 2203 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2204 if (err)
2205 return err;
17a52670 2206
f1174f77
EC
2207 /* for access checks, reg->off is just part of off */
2208 off += reg->off;
2209
2210 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2211 if (t == BPF_WRITE && value_regno >= 0 &&
2212 is_pointer_value(env, value_regno)) {
61bd5218 2213 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2214 return -EACCES;
2215 }
591fe988
DB
2216 err = check_map_access_type(env, regno, off, size, t);
2217 if (err)
2218 return err;
9fd29c08 2219 err = check_map_access(env, regno, off, size, false);
17a52670 2220 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2221 mark_reg_unknown(env, regs, value_regno);
17a52670 2222
1a0dc1ac 2223 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2224 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2225
1be7f75d
AS
2226 if (t == BPF_WRITE && value_regno >= 0 &&
2227 is_pointer_value(env, value_regno)) {
61bd5218 2228 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2229 return -EACCES;
2230 }
f1174f77 2231
58990d1f
DB
2232 err = check_ctx_reg(env, reg, regno);
2233 if (err < 0)
2234 return err;
2235
31fd8581 2236 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2237 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2238 /* ctx access returns either a scalar, or a
de8f3a83
DB
2239 * PTR_TO_PACKET[_META,_END]. In the latter
2240 * case, we know the offset is zero.
f1174f77 2241 */
46f8bc92 2242 if (reg_type == SCALAR_VALUE) {
638f5b90 2243 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2244 } else {
638f5b90 2245 mark_reg_known_zero(env, regs,
61bd5218 2246 value_regno);
46f8bc92
MKL
2247 if (reg_type_may_be_null(reg_type))
2248 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2249 /* A load of ctx field could have different
2250 * actual load size with the one encoded in the
2251 * insn. When the dst is PTR, it is for sure not
2252 * a sub-register.
2253 */
2254 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
46f8bc92 2255 }
638f5b90 2256 regs[value_regno].type = reg_type;
969bf05e 2257 }
17a52670 2258
f1174f77 2259 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2260 off += reg->var_off.value;
e4298d25
DB
2261 err = check_stack_access(env, reg, off, size);
2262 if (err)
2263 return err;
8726679a 2264
f4d7e40a
AS
2265 state = func(env, reg);
2266 err = update_stack_depth(env, state, off);
2267 if (err)
2268 return err;
8726679a 2269
638f5b90 2270 if (t == BPF_WRITE)
61bd5218 2271 err = check_stack_write(env, state, off, size,
af86ca4e 2272 value_regno, insn_idx);
638f5b90 2273 else
61bd5218
JK
2274 err = check_stack_read(env, state, off, size,
2275 value_regno);
de8f3a83 2276 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2277 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2278 verbose(env, "cannot write into packet\n");
969bf05e
AS
2279 return -EACCES;
2280 }
4acf6c0b
BB
2281 if (t == BPF_WRITE && value_regno >= 0 &&
2282 is_pointer_value(env, value_regno)) {
61bd5218
JK
2283 verbose(env, "R%d leaks addr into packet\n",
2284 value_regno);
4acf6c0b
BB
2285 return -EACCES;
2286 }
9fd29c08 2287 err = check_packet_access(env, regno, off, size, false);
969bf05e 2288 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2289 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2290 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2291 if (t == BPF_WRITE && value_regno >= 0 &&
2292 is_pointer_value(env, value_regno)) {
2293 verbose(env, "R%d leaks addr into flow keys\n",
2294 value_regno);
2295 return -EACCES;
2296 }
2297
2298 err = check_flow_keys_access(env, off, size);
2299 if (!err && t == BPF_READ && value_regno >= 0)
2300 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2301 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2302 if (t == BPF_WRITE) {
46f8bc92
MKL
2303 verbose(env, "R%d cannot write into %s\n",
2304 regno, reg_type_str[reg->type]);
c64b7983
JS
2305 return -EACCES;
2306 }
5f456649 2307 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2308 if (!err && value_regno >= 0)
2309 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
2310 } else if (reg->type == PTR_TO_TP_BUFFER) {
2311 err = check_tp_buffer_access(env, reg, regno, off, size);
2312 if (!err && t == BPF_READ && value_regno >= 0)
2313 mark_reg_unknown(env, regs, value_regno);
17a52670 2314 } else {
61bd5218
JK
2315 verbose(env, "R%d invalid mem access '%s'\n", regno,
2316 reg_type_str[reg->type]);
17a52670
AS
2317 return -EACCES;
2318 }
969bf05e 2319
f1174f77 2320 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2321 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2322 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2323 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2324 }
17a52670
AS
2325 return err;
2326}
2327
31fd8581 2328static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2329{
17a52670
AS
2330 int err;
2331
2332 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2333 insn->imm != 0) {
61bd5218 2334 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2335 return -EINVAL;
2336 }
2337
2338 /* check src1 operand */
dc503a8a 2339 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2340 if (err)
2341 return err;
2342
2343 /* check src2 operand */
dc503a8a 2344 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2345 if (err)
2346 return err;
2347
6bdf6abc 2348 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2349 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2350 return -EACCES;
2351 }
2352
ca369602 2353 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2354 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2355 is_flow_key_reg(env, insn->dst_reg) ||
2356 is_sk_reg(env, insn->dst_reg)) {
ca369602 2357 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2358 insn->dst_reg,
2359 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2360 return -EACCES;
2361 }
2362
17a52670 2363 /* check whether atomic_add can read the memory */
31fd8581 2364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2365 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2366 if (err)
2367 return err;
2368
2369 /* check whether atomic_add can write into the same memory */
31fd8581 2370 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2371 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2372}
2373
2011fccf
AI
2374static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2375 int off, int access_size,
2376 bool zero_size_allowed)
2377{
2378 struct bpf_reg_state *reg = reg_state(env, regno);
2379
2380 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2381 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2382 if (tnum_is_const(reg->var_off)) {
2383 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2384 regno, off, access_size);
2385 } else {
2386 char tn_buf[48];
2387
2388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2389 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2390 regno, tn_buf, access_size);
2391 }
2392 return -EACCES;
2393 }
2394 return 0;
2395}
2396
17a52670
AS
2397/* when register 'regno' is passed into function that will read 'access_size'
2398 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2399 * and all elements of stack are initialized.
2400 * Unlike most pointer bounds-checking functions, this one doesn't take an
2401 * 'off' argument, so it has to add in reg->off itself.
17a52670 2402 */
58e2af8b 2403static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2404 int access_size, bool zero_size_allowed,
2405 struct bpf_call_arg_meta *meta)
17a52670 2406{
2a159c6f 2407 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2408 struct bpf_func_state *state = func(env, reg);
2011fccf 2409 int err, min_off, max_off, i, slot, spi;
17a52670 2410
914cb781 2411 if (reg->type != PTR_TO_STACK) {
f1174f77 2412 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2413 if (zero_size_allowed && access_size == 0 &&
914cb781 2414 register_is_null(reg))
8e2fe1d9
DB
2415 return 0;
2416
61bd5218 2417 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2418 reg_type_str[reg->type],
8e2fe1d9 2419 reg_type_str[PTR_TO_STACK]);
17a52670 2420 return -EACCES;
8e2fe1d9 2421 }
17a52670 2422
2011fccf
AI
2423 if (tnum_is_const(reg->var_off)) {
2424 min_off = max_off = reg->var_off.value + reg->off;
2425 err = __check_stack_boundary(env, regno, min_off, access_size,
2426 zero_size_allowed);
2427 if (err)
2428 return err;
2429 } else {
088ec26d
AI
2430 /* Variable offset is prohibited for unprivileged mode for
2431 * simplicity since it requires corresponding support in
2432 * Spectre masking for stack ALU.
2433 * See also retrieve_ptr_limit().
2434 */
2435 if (!env->allow_ptr_leaks) {
2436 char tn_buf[48];
f1174f77 2437
088ec26d
AI
2438 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2439 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2440 regno, tn_buf);
2441 return -EACCES;
2442 }
f2bcd05e
AI
2443 /* Only initialized buffer on stack is allowed to be accessed
2444 * with variable offset. With uninitialized buffer it's hard to
2445 * guarantee that whole memory is marked as initialized on
2446 * helper return since specific bounds are unknown what may
2447 * cause uninitialized stack leaking.
2448 */
2449 if (meta && meta->raw_mode)
2450 meta = NULL;
2451
107c26a7
AI
2452 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2453 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2454 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2455 regno);
2456 return -EACCES;
2457 }
2011fccf 2458 min_off = reg->smin_value + reg->off;
107c26a7 2459 max_off = reg->smax_value + reg->off;
2011fccf
AI
2460 err = __check_stack_boundary(env, regno, min_off, access_size,
2461 zero_size_allowed);
107c26a7
AI
2462 if (err) {
2463 verbose(env, "R%d min value is outside of stack bound\n",
2464 regno);
2011fccf 2465 return err;
107c26a7 2466 }
2011fccf
AI
2467 err = __check_stack_boundary(env, regno, max_off, access_size,
2468 zero_size_allowed);
107c26a7
AI
2469 if (err) {
2470 verbose(env, "R%d max value is outside of stack bound\n",
2471 regno);
2011fccf 2472 return err;
107c26a7 2473 }
17a52670
AS
2474 }
2475
435faee1
DB
2476 if (meta && meta->raw_mode) {
2477 meta->access_size = access_size;
2478 meta->regno = regno;
2479 return 0;
2480 }
2481
2011fccf 2482 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
2483 u8 *stype;
2484
2011fccf 2485 slot = -i - 1;
638f5b90 2486 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2487 if (state->allocated_stack <= slot)
2488 goto err;
2489 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2490 if (*stype == STACK_MISC)
2491 goto mark;
2492 if (*stype == STACK_ZERO) {
2493 /* helper can write anything into the stack */
2494 *stype = STACK_MISC;
2495 goto mark;
17a52670 2496 }
cc2b14d5 2497err:
2011fccf
AI
2498 if (tnum_is_const(reg->var_off)) {
2499 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2500 min_off, i - min_off, access_size);
2501 } else {
2502 char tn_buf[48];
2503
2504 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2505 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2506 tn_buf, i - min_off, access_size);
2507 }
cc2b14d5
AS
2508 return -EACCES;
2509mark:
2510 /* reading any byte out of 8-byte 'spill_slot' will cause
2511 * the whole slot to be marked as 'read'
2512 */
679c782d 2513 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
2514 state->stack[spi].spilled_ptr.parent,
2515 REG_LIVE_READ64);
17a52670 2516 }
2011fccf 2517 return update_stack_depth(env, state, min_off);
17a52670
AS
2518}
2519
06c1c049
GB
2520static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2521 int access_size, bool zero_size_allowed,
2522 struct bpf_call_arg_meta *meta)
2523{
638f5b90 2524 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2525
f1174f77 2526 switch (reg->type) {
06c1c049 2527 case PTR_TO_PACKET:
de8f3a83 2528 case PTR_TO_PACKET_META:
9fd29c08
YS
2529 return check_packet_access(env, regno, reg->off, access_size,
2530 zero_size_allowed);
06c1c049 2531 case PTR_TO_MAP_VALUE:
591fe988
DB
2532 if (check_map_access_type(env, regno, reg->off, access_size,
2533 meta && meta->raw_mode ? BPF_WRITE :
2534 BPF_READ))
2535 return -EACCES;
9fd29c08
YS
2536 return check_map_access(env, regno, reg->off, access_size,
2537 zero_size_allowed);
f1174f77 2538 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2539 return check_stack_boundary(env, regno, access_size,
2540 zero_size_allowed, meta);
2541 }
2542}
2543
d83525ca
AS
2544/* Implementation details:
2545 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2546 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2547 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2548 * value_or_null->value transition, since the verifier only cares about
2549 * the range of access to valid map value pointer and doesn't care about actual
2550 * address of the map element.
2551 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2552 * reg->id > 0 after value_or_null->value transition. By doing so
2553 * two bpf_map_lookups will be considered two different pointers that
2554 * point to different bpf_spin_locks.
2555 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2556 * dead-locks.
2557 * Since only one bpf_spin_lock is allowed the checks are simpler than
2558 * reg_is_refcounted() logic. The verifier needs to remember only
2559 * one spin_lock instead of array of acquired_refs.
2560 * cur_state->active_spin_lock remembers which map value element got locked
2561 * and clears it after bpf_spin_unlock.
2562 */
2563static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2564 bool is_lock)
2565{
2566 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2567 struct bpf_verifier_state *cur = env->cur_state;
2568 bool is_const = tnum_is_const(reg->var_off);
2569 struct bpf_map *map = reg->map_ptr;
2570 u64 val = reg->var_off.value;
2571
2572 if (reg->type != PTR_TO_MAP_VALUE) {
2573 verbose(env, "R%d is not a pointer to map_value\n", regno);
2574 return -EINVAL;
2575 }
2576 if (!is_const) {
2577 verbose(env,
2578 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2579 regno);
2580 return -EINVAL;
2581 }
2582 if (!map->btf) {
2583 verbose(env,
2584 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2585 map->name);
2586 return -EINVAL;
2587 }
2588 if (!map_value_has_spin_lock(map)) {
2589 if (map->spin_lock_off == -E2BIG)
2590 verbose(env,
2591 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2592 map->name);
2593 else if (map->spin_lock_off == -ENOENT)
2594 verbose(env,
2595 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2596 map->name);
2597 else
2598 verbose(env,
2599 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2600 map->name);
2601 return -EINVAL;
2602 }
2603 if (map->spin_lock_off != val + reg->off) {
2604 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2605 val + reg->off);
2606 return -EINVAL;
2607 }
2608 if (is_lock) {
2609 if (cur->active_spin_lock) {
2610 verbose(env,
2611 "Locking two bpf_spin_locks are not allowed\n");
2612 return -EINVAL;
2613 }
2614 cur->active_spin_lock = reg->id;
2615 } else {
2616 if (!cur->active_spin_lock) {
2617 verbose(env, "bpf_spin_unlock without taking a lock\n");
2618 return -EINVAL;
2619 }
2620 if (cur->active_spin_lock != reg->id) {
2621 verbose(env, "bpf_spin_unlock of different lock\n");
2622 return -EINVAL;
2623 }
2624 cur->active_spin_lock = 0;
2625 }
2626 return 0;
2627}
2628
90133415
DB
2629static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2630{
2631 return type == ARG_PTR_TO_MEM ||
2632 type == ARG_PTR_TO_MEM_OR_NULL ||
2633 type == ARG_PTR_TO_UNINIT_MEM;
2634}
2635
2636static bool arg_type_is_mem_size(enum bpf_arg_type type)
2637{
2638 return type == ARG_CONST_SIZE ||
2639 type == ARG_CONST_SIZE_OR_ZERO;
2640}
2641
57c3bb72
AI
2642static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2643{
2644 return type == ARG_PTR_TO_INT ||
2645 type == ARG_PTR_TO_LONG;
2646}
2647
2648static int int_ptr_type_to_size(enum bpf_arg_type type)
2649{
2650 if (type == ARG_PTR_TO_INT)
2651 return sizeof(u32);
2652 else if (type == ARG_PTR_TO_LONG)
2653 return sizeof(u64);
2654
2655 return -EINVAL;
2656}
2657
58e2af8b 2658static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2659 enum bpf_arg_type arg_type,
2660 struct bpf_call_arg_meta *meta)
17a52670 2661{
638f5b90 2662 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2663 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2664 int err = 0;
2665
80f1d68c 2666 if (arg_type == ARG_DONTCARE)
17a52670
AS
2667 return 0;
2668
dc503a8a
EC
2669 err = check_reg_arg(env, regno, SRC_OP);
2670 if (err)
2671 return err;
17a52670 2672
1be7f75d
AS
2673 if (arg_type == ARG_ANYTHING) {
2674 if (is_pointer_value(env, regno)) {
61bd5218
JK
2675 verbose(env, "R%d leaks addr into helper function\n",
2676 regno);
1be7f75d
AS
2677 return -EACCES;
2678 }
80f1d68c 2679 return 0;
1be7f75d 2680 }
80f1d68c 2681
de8f3a83 2682 if (type_is_pkt_pointer(type) &&
3a0af8fd 2683 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2684 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2685 return -EACCES;
2686 }
2687
8e2fe1d9 2688 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 2689 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
2690 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2691 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 2692 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
2693 if (register_is_null(reg) &&
2694 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2695 /* final test in check_stack_boundary() */;
2696 else if (!type_is_pkt_pointer(type) &&
2697 type != PTR_TO_MAP_VALUE &&
2698 type != expected_type)
6841de8b 2699 goto err_type;
39f19ebb
AS
2700 } else if (arg_type == ARG_CONST_SIZE ||
2701 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2702 expected_type = SCALAR_VALUE;
2703 if (type != expected_type)
6841de8b 2704 goto err_type;
17a52670
AS
2705 } else if (arg_type == ARG_CONST_MAP_PTR) {
2706 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2707 if (type != expected_type)
2708 goto err_type;
608cd71a
AS
2709 } else if (arg_type == ARG_PTR_TO_CTX) {
2710 expected_type = PTR_TO_CTX;
6841de8b
AS
2711 if (type != expected_type)
2712 goto err_type;
58990d1f
DB
2713 err = check_ctx_reg(env, reg, regno);
2714 if (err < 0)
2715 return err;
46f8bc92
MKL
2716 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2717 expected_type = PTR_TO_SOCK_COMMON;
2718 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2719 if (!type_is_sk_pointer(type))
2720 goto err_type;
1b986589
MKL
2721 if (reg->ref_obj_id) {
2722 if (meta->ref_obj_id) {
2723 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2724 regno, reg->ref_obj_id,
2725 meta->ref_obj_id);
2726 return -EFAULT;
2727 }
2728 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 2729 }
6ac99e8f
MKL
2730 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2731 expected_type = PTR_TO_SOCKET;
2732 if (type != expected_type)
2733 goto err_type;
d83525ca
AS
2734 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2735 if (meta->func_id == BPF_FUNC_spin_lock) {
2736 if (process_spin_lock(env, regno, true))
2737 return -EACCES;
2738 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2739 if (process_spin_lock(env, regno, false))
2740 return -EACCES;
2741 } else {
2742 verbose(env, "verifier internal error\n");
2743 return -EFAULT;
2744 }
90133415 2745 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2746 expected_type = PTR_TO_STACK;
2747 /* One exception here. In case function allows for NULL to be
f1174f77 2748 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2749 * happens during stack boundary checking.
2750 */
914cb781 2751 if (register_is_null(reg) &&
db1ac496 2752 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2753 /* final test in check_stack_boundary() */;
de8f3a83
DB
2754 else if (!type_is_pkt_pointer(type) &&
2755 type != PTR_TO_MAP_VALUE &&
f1174f77 2756 type != expected_type)
6841de8b 2757 goto err_type;
39f19ebb 2758 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
2759 } else if (arg_type_is_int_ptr(arg_type)) {
2760 expected_type = PTR_TO_STACK;
2761 if (!type_is_pkt_pointer(type) &&
2762 type != PTR_TO_MAP_VALUE &&
2763 type != expected_type)
2764 goto err_type;
17a52670 2765 } else {
61bd5218 2766 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2767 return -EFAULT;
2768 }
2769
17a52670
AS
2770 if (arg_type == ARG_CONST_MAP_PTR) {
2771 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2772 meta->map_ptr = reg->map_ptr;
17a52670
AS
2773 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2774 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2775 * check that [key, key + map->key_size) are within
2776 * stack limits and initialized
2777 */
33ff9823 2778 if (!meta->map_ptr) {
17a52670
AS
2779 /* in function declaration map_ptr must come before
2780 * map_key, so that it's verified and known before
2781 * we have to check map_key here. Otherwise it means
2782 * that kernel subsystem misconfigured verifier
2783 */
61bd5218 2784 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2785 return -EACCES;
2786 }
d71962f3
PC
2787 err = check_helper_mem_access(env, regno,
2788 meta->map_ptr->key_size, false,
2789 NULL);
2ea864c5 2790 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
2791 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2792 !register_is_null(reg)) ||
2ea864c5 2793 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2794 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2795 * check [value, value + map->value_size) validity
2796 */
33ff9823 2797 if (!meta->map_ptr) {
17a52670 2798 /* kernel subsystem misconfigured verifier */
61bd5218 2799 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2800 return -EACCES;
2801 }
2ea864c5 2802 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2803 err = check_helper_mem_access(env, regno,
2804 meta->map_ptr->value_size, false,
2ea864c5 2805 meta);
90133415 2806 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2807 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2808
849fa506
YS
2809 /* remember the mem_size which may be used later
2810 * to refine return values.
2811 */
2812 meta->msize_smax_value = reg->smax_value;
2813 meta->msize_umax_value = reg->umax_value;
2814
f1174f77
EC
2815 /* The register is SCALAR_VALUE; the access check
2816 * happens using its boundaries.
06c1c049 2817 */
f1174f77 2818 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2819 /* For unprivileged variable accesses, disable raw
2820 * mode so that the program is required to
2821 * initialize all the memory that the helper could
2822 * just partially fill up.
2823 */
2824 meta = NULL;
2825
b03c9f9f 2826 if (reg->smin_value < 0) {
61bd5218 2827 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2828 regno);
2829 return -EACCES;
2830 }
06c1c049 2831
b03c9f9f 2832 if (reg->umin_value == 0) {
f1174f77
EC
2833 err = check_helper_mem_access(env, regno - 1, 0,
2834 zero_size_allowed,
2835 meta);
06c1c049
GB
2836 if (err)
2837 return err;
06c1c049 2838 }
f1174f77 2839
b03c9f9f 2840 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2841 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2842 regno);
2843 return -EACCES;
2844 }
2845 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2846 reg->umax_value,
f1174f77 2847 zero_size_allowed, meta);
57c3bb72
AI
2848 } else if (arg_type_is_int_ptr(arg_type)) {
2849 int size = int_ptr_type_to_size(arg_type);
2850
2851 err = check_helper_mem_access(env, regno, size, false, meta);
2852 if (err)
2853 return err;
2854 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
2855 }
2856
2857 return err;
6841de8b 2858err_type:
61bd5218 2859 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2860 reg_type_str[type], reg_type_str[expected_type]);
2861 return -EACCES;
17a52670
AS
2862}
2863
61bd5218
JK
2864static int check_map_func_compatibility(struct bpf_verifier_env *env,
2865 struct bpf_map *map, int func_id)
35578d79 2866{
35578d79
KX
2867 if (!map)
2868 return 0;
2869
6aff67c8
AS
2870 /* We need a two way check, first is from map perspective ... */
2871 switch (map->map_type) {
2872 case BPF_MAP_TYPE_PROG_ARRAY:
2873 if (func_id != BPF_FUNC_tail_call)
2874 goto error;
2875 break;
2876 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2877 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2878 func_id != BPF_FUNC_perf_event_output &&
2879 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2880 goto error;
2881 break;
2882 case BPF_MAP_TYPE_STACK_TRACE:
2883 if (func_id != BPF_FUNC_get_stackid)
2884 goto error;
2885 break;
4ed8ec52 2886 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2887 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2888 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2889 goto error;
2890 break;
cd339431 2891 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2892 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2893 if (func_id != BPF_FUNC_get_local_storage)
2894 goto error;
2895 break;
546ac1ff
JF
2896 /* devmap returns a pointer to a live net_device ifindex that we cannot
2897 * allow to be modified from bpf side. So do not allow lookup elements
2898 * for now.
2899 */
2900 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2901 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2902 goto error;
2903 break;
fbfc504a
BT
2904 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2905 * appear.
2906 */
6710e112 2907 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2908 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2909 if (func_id != BPF_FUNC_redirect_map)
2910 goto error;
2911 break;
56f668df 2912 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2913 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2914 if (func_id != BPF_FUNC_map_lookup_elem)
2915 goto error;
16a43625 2916 break;
174a79ff
JF
2917 case BPF_MAP_TYPE_SOCKMAP:
2918 if (func_id != BPF_FUNC_sk_redirect_map &&
2919 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2920 func_id != BPF_FUNC_map_delete_elem &&
2921 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2922 goto error;
2923 break;
81110384
JF
2924 case BPF_MAP_TYPE_SOCKHASH:
2925 if (func_id != BPF_FUNC_sk_redirect_hash &&
2926 func_id != BPF_FUNC_sock_hash_update &&
2927 func_id != BPF_FUNC_map_delete_elem &&
2928 func_id != BPF_FUNC_msg_redirect_hash)
2929 goto error;
2930 break;
2dbb9b9e
MKL
2931 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2932 if (func_id != BPF_FUNC_sk_select_reuseport)
2933 goto error;
2934 break;
f1a2e44a
MV
2935 case BPF_MAP_TYPE_QUEUE:
2936 case BPF_MAP_TYPE_STACK:
2937 if (func_id != BPF_FUNC_map_peek_elem &&
2938 func_id != BPF_FUNC_map_pop_elem &&
2939 func_id != BPF_FUNC_map_push_elem)
2940 goto error;
2941 break;
6ac99e8f
MKL
2942 case BPF_MAP_TYPE_SK_STORAGE:
2943 if (func_id != BPF_FUNC_sk_storage_get &&
2944 func_id != BPF_FUNC_sk_storage_delete)
2945 goto error;
2946 break;
6aff67c8
AS
2947 default:
2948 break;
2949 }
2950
2951 /* ... and second from the function itself. */
2952 switch (func_id) {
2953 case BPF_FUNC_tail_call:
2954 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2955 goto error;
f910cefa 2956 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2957 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2958 return -EINVAL;
2959 }
6aff67c8
AS
2960 break;
2961 case BPF_FUNC_perf_event_read:
2962 case BPF_FUNC_perf_event_output:
908432ca 2963 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2964 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2965 goto error;
2966 break;
2967 case BPF_FUNC_get_stackid:
2968 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2969 goto error;
2970 break;
60d20f91 2971 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2972 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2973 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2974 goto error;
2975 break;
97f91a7c 2976 case BPF_FUNC_redirect_map:
9c270af3 2977 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2978 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2979 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2980 goto error;
2981 break;
174a79ff 2982 case BPF_FUNC_sk_redirect_map:
4f738adb 2983 case BPF_FUNC_msg_redirect_map:
81110384 2984 case BPF_FUNC_sock_map_update:
174a79ff
JF
2985 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2986 goto error;
2987 break;
81110384
JF
2988 case BPF_FUNC_sk_redirect_hash:
2989 case BPF_FUNC_msg_redirect_hash:
2990 case BPF_FUNC_sock_hash_update:
2991 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2992 goto error;
2993 break;
cd339431 2994 case BPF_FUNC_get_local_storage:
b741f163
RG
2995 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2996 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2997 goto error;
2998 break;
2dbb9b9e
MKL
2999 case BPF_FUNC_sk_select_reuseport:
3000 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3001 goto error;
3002 break;
f1a2e44a
MV
3003 case BPF_FUNC_map_peek_elem:
3004 case BPF_FUNC_map_pop_elem:
3005 case BPF_FUNC_map_push_elem:
3006 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3007 map->map_type != BPF_MAP_TYPE_STACK)
3008 goto error;
3009 break;
6ac99e8f
MKL
3010 case BPF_FUNC_sk_storage_get:
3011 case BPF_FUNC_sk_storage_delete:
3012 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3013 goto error;
3014 break;
6aff67c8
AS
3015 default:
3016 break;
35578d79
KX
3017 }
3018
3019 return 0;
6aff67c8 3020error:
61bd5218 3021 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3022 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3023 return -EINVAL;
35578d79
KX
3024}
3025
90133415 3026static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3027{
3028 int count = 0;
3029
39f19ebb 3030 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3031 count++;
39f19ebb 3032 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3033 count++;
39f19ebb 3034 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3035 count++;
39f19ebb 3036 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3037 count++;
39f19ebb 3038 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3039 count++;
3040
90133415
DB
3041 /* We only support one arg being in raw mode at the moment,
3042 * which is sufficient for the helper functions we have
3043 * right now.
3044 */
3045 return count <= 1;
3046}
3047
3048static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3049 enum bpf_arg_type arg_next)
3050{
3051 return (arg_type_is_mem_ptr(arg_curr) &&
3052 !arg_type_is_mem_size(arg_next)) ||
3053 (!arg_type_is_mem_ptr(arg_curr) &&
3054 arg_type_is_mem_size(arg_next));
3055}
3056
3057static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3058{
3059 /* bpf_xxx(..., buf, len) call will access 'len'
3060 * bytes from memory 'buf'. Both arg types need
3061 * to be paired, so make sure there's no buggy
3062 * helper function specification.
3063 */
3064 if (arg_type_is_mem_size(fn->arg1_type) ||
3065 arg_type_is_mem_ptr(fn->arg5_type) ||
3066 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3067 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3068 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3069 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3070 return false;
3071
3072 return true;
3073}
3074
1b986589 3075static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3076{
3077 int count = 0;
3078
1b986589 3079 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3080 count++;
1b986589 3081 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3082 count++;
1b986589 3083 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3084 count++;
1b986589 3085 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3086 count++;
1b986589 3087 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3088 count++;
3089
1b986589
MKL
3090 /* A reference acquiring function cannot acquire
3091 * another refcounted ptr.
3092 */
3093 if (is_acquire_function(func_id) && count)
3094 return false;
3095
fd978bf7
JS
3096 /* We only support one arg being unreferenced at the moment,
3097 * which is sufficient for the helper functions we have right now.
3098 */
3099 return count <= 1;
3100}
3101
1b986589 3102static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3103{
3104 return check_raw_mode_ok(fn) &&
fd978bf7 3105 check_arg_pair_ok(fn) &&
1b986589 3106 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3107}
3108
de8f3a83
DB
3109/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3110 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3111 */
f4d7e40a
AS
3112static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3113 struct bpf_func_state *state)
969bf05e 3114{
58e2af8b 3115 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3116 int i;
3117
3118 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3119 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3120 mark_reg_unknown(env, regs, i);
969bf05e 3121
f3709f69
JS
3122 bpf_for_each_spilled_reg(i, state, reg) {
3123 if (!reg)
969bf05e 3124 continue;
de8f3a83
DB
3125 if (reg_is_pkt_pointer_any(reg))
3126 __mark_reg_unknown(reg);
969bf05e
AS
3127 }
3128}
3129
f4d7e40a
AS
3130static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3131{
3132 struct bpf_verifier_state *vstate = env->cur_state;
3133 int i;
3134
3135 for (i = 0; i <= vstate->curframe; i++)
3136 __clear_all_pkt_pointers(env, vstate->frame[i]);
3137}
3138
fd978bf7 3139static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3140 struct bpf_func_state *state,
3141 int ref_obj_id)
fd978bf7
JS
3142{
3143 struct bpf_reg_state *regs = state->regs, *reg;
3144 int i;
3145
3146 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3147 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3148 mark_reg_unknown(env, regs, i);
3149
3150 bpf_for_each_spilled_reg(i, state, reg) {
3151 if (!reg)
3152 continue;
1b986589 3153 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
3154 __mark_reg_unknown(reg);
3155 }
3156}
3157
3158/* The pointer with the specified id has released its reference to kernel
3159 * resources. Identify all copies of the same pointer and clear the reference.
3160 */
3161static int release_reference(struct bpf_verifier_env *env,
1b986589 3162 int ref_obj_id)
fd978bf7
JS
3163{
3164 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3165 int err;
fd978bf7
JS
3166 int i;
3167
1b986589
MKL
3168 err = release_reference_state(cur_func(env), ref_obj_id);
3169 if (err)
3170 return err;
3171
fd978bf7 3172 for (i = 0; i <= vstate->curframe; i++)
1b986589 3173 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3174
1b986589 3175 return 0;
fd978bf7
JS
3176}
3177
f4d7e40a
AS
3178static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3179 int *insn_idx)
3180{
3181 struct bpf_verifier_state *state = env->cur_state;
3182 struct bpf_func_state *caller, *callee;
fd978bf7 3183 int i, err, subprog, target_insn;
f4d7e40a 3184
aada9ce6 3185 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3186 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3187 state->curframe + 2);
f4d7e40a
AS
3188 return -E2BIG;
3189 }
3190
3191 target_insn = *insn_idx + insn->imm;
3192 subprog = find_subprog(env, target_insn + 1);
3193 if (subprog < 0) {
3194 verbose(env, "verifier bug. No program starts at insn %d\n",
3195 target_insn + 1);
3196 return -EFAULT;
3197 }
3198
3199 caller = state->frame[state->curframe];
3200 if (state->frame[state->curframe + 1]) {
3201 verbose(env, "verifier bug. Frame %d already allocated\n",
3202 state->curframe + 1);
3203 return -EFAULT;
3204 }
3205
3206 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3207 if (!callee)
3208 return -ENOMEM;
3209 state->frame[state->curframe + 1] = callee;
3210
3211 /* callee cannot access r0, r6 - r9 for reading and has to write
3212 * into its own stack before reading from it.
3213 * callee can read/write into caller's stack
3214 */
3215 init_func_state(env, callee,
3216 /* remember the callsite, it will be used by bpf_exit */
3217 *insn_idx /* callsite */,
3218 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3219 subprog /* subprog number within this prog */);
f4d7e40a 3220
fd978bf7
JS
3221 /* Transfer references to the callee */
3222 err = transfer_reference_state(callee, caller);
3223 if (err)
3224 return err;
3225
679c782d
EC
3226 /* copy r1 - r5 args that callee can access. The copy includes parent
3227 * pointers, which connects us up to the liveness chain
3228 */
f4d7e40a
AS
3229 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3230 callee->regs[i] = caller->regs[i];
3231
679c782d 3232 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
3233 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3234 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3235 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3236 }
3237
3238 /* only increment it after check_reg_arg() finished */
3239 state->curframe++;
3240
3241 /* and go analyze first insn of the callee */
3242 *insn_idx = target_insn;
3243
06ee7115 3244 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3245 verbose(env, "caller:\n");
3246 print_verifier_state(env, caller);
3247 verbose(env, "callee:\n");
3248 print_verifier_state(env, callee);
3249 }
3250 return 0;
3251}
3252
3253static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3254{
3255 struct bpf_verifier_state *state = env->cur_state;
3256 struct bpf_func_state *caller, *callee;
3257 struct bpf_reg_state *r0;
fd978bf7 3258 int err;
f4d7e40a
AS
3259
3260 callee = state->frame[state->curframe];
3261 r0 = &callee->regs[BPF_REG_0];
3262 if (r0->type == PTR_TO_STACK) {
3263 /* technically it's ok to return caller's stack pointer
3264 * (or caller's caller's pointer) back to the caller,
3265 * since these pointers are valid. Only current stack
3266 * pointer will be invalid as soon as function exits,
3267 * but let's be conservative
3268 */
3269 verbose(env, "cannot return stack pointer to the caller\n");
3270 return -EINVAL;
3271 }
3272
3273 state->curframe--;
3274 caller = state->frame[state->curframe];
3275 /* return to the caller whatever r0 had in the callee */
3276 caller->regs[BPF_REG_0] = *r0;
3277
fd978bf7
JS
3278 /* Transfer references to the caller */
3279 err = transfer_reference_state(caller, callee);
3280 if (err)
3281 return err;
3282
f4d7e40a 3283 *insn_idx = callee->callsite + 1;
06ee7115 3284 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3285 verbose(env, "returning from callee:\n");
3286 print_verifier_state(env, callee);
3287 verbose(env, "to caller at %d:\n", *insn_idx);
3288 print_verifier_state(env, caller);
3289 }
3290 /* clear everything in the callee */
3291 free_func_state(callee);
3292 state->frame[state->curframe + 1] = NULL;
3293 return 0;
3294}
3295
849fa506
YS
3296static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3297 int func_id,
3298 struct bpf_call_arg_meta *meta)
3299{
3300 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3301
3302 if (ret_type != RET_INTEGER ||
3303 (func_id != BPF_FUNC_get_stack &&
3304 func_id != BPF_FUNC_probe_read_str))
3305 return;
3306
3307 ret_reg->smax_value = meta->msize_smax_value;
3308 ret_reg->umax_value = meta->msize_umax_value;
3309 __reg_deduce_bounds(ret_reg);
3310 __reg_bound_offset(ret_reg);
3311}
3312
c93552c4
DB
3313static int
3314record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3315 int func_id, int insn_idx)
3316{
3317 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 3318 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
3319
3320 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3321 func_id != BPF_FUNC_map_lookup_elem &&
3322 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3323 func_id != BPF_FUNC_map_delete_elem &&
3324 func_id != BPF_FUNC_map_push_elem &&
3325 func_id != BPF_FUNC_map_pop_elem &&
3326 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3327 return 0;
09772d92 3328
591fe988 3329 if (map == NULL) {
c93552c4
DB
3330 verbose(env, "kernel subsystem misconfigured verifier\n");
3331 return -EINVAL;
3332 }
3333
591fe988
DB
3334 /* In case of read-only, some additional restrictions
3335 * need to be applied in order to prevent altering the
3336 * state of the map from program side.
3337 */
3338 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3339 (func_id == BPF_FUNC_map_delete_elem ||
3340 func_id == BPF_FUNC_map_update_elem ||
3341 func_id == BPF_FUNC_map_push_elem ||
3342 func_id == BPF_FUNC_map_pop_elem)) {
3343 verbose(env, "write into map forbidden\n");
3344 return -EACCES;
3345 }
3346
c93552c4
DB
3347 if (!BPF_MAP_PTR(aux->map_state))
3348 bpf_map_ptr_store(aux, meta->map_ptr,
3349 meta->map_ptr->unpriv_array);
3350 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3351 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3352 meta->map_ptr->unpriv_array);
3353 return 0;
3354}
3355
fd978bf7
JS
3356static int check_reference_leak(struct bpf_verifier_env *env)
3357{
3358 struct bpf_func_state *state = cur_func(env);
3359 int i;
3360
3361 for (i = 0; i < state->acquired_refs; i++) {
3362 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3363 state->refs[i].id, state->refs[i].insn_idx);
3364 }
3365 return state->acquired_refs ? -EINVAL : 0;
3366}
3367
f4d7e40a 3368static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3369{
17a52670 3370 const struct bpf_func_proto *fn = NULL;
638f5b90 3371 struct bpf_reg_state *regs;
33ff9823 3372 struct bpf_call_arg_meta meta;
969bf05e 3373 bool changes_data;
17a52670
AS
3374 int i, err;
3375
3376 /* find function prototype */
3377 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3378 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3379 func_id);
17a52670
AS
3380 return -EINVAL;
3381 }
3382
00176a34 3383 if (env->ops->get_func_proto)
5e43f899 3384 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3385 if (!fn) {
61bd5218
JK
3386 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3387 func_id);
17a52670
AS
3388 return -EINVAL;
3389 }
3390
3391 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3392 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3393 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3394 return -EINVAL;
3395 }
3396
04514d13 3397 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3398 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3399 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3400 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3401 func_id_name(func_id), func_id);
3402 return -EINVAL;
3403 }
969bf05e 3404
33ff9823 3405 memset(&meta, 0, sizeof(meta));
36bbef52 3406 meta.pkt_access = fn->pkt_access;
33ff9823 3407
1b986589 3408 err = check_func_proto(fn, func_id);
435faee1 3409 if (err) {
61bd5218 3410 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3411 func_id_name(func_id), func_id);
435faee1
DB
3412 return err;
3413 }
3414
d83525ca 3415 meta.func_id = func_id;
17a52670 3416 /* check args */
33ff9823 3417 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3418 if (err)
3419 return err;
33ff9823 3420 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3421 if (err)
3422 return err;
33ff9823 3423 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3424 if (err)
3425 return err;
33ff9823 3426 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3427 if (err)
3428 return err;
33ff9823 3429 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3430 if (err)
3431 return err;
3432
c93552c4
DB
3433 err = record_func_map(env, &meta, func_id, insn_idx);
3434 if (err)
3435 return err;
3436
435faee1
DB
3437 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3438 * is inferred from register state.
3439 */
3440 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
3441 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3442 BPF_WRITE, -1, false);
435faee1
DB
3443 if (err)
3444 return err;
3445 }
3446
fd978bf7
JS
3447 if (func_id == BPF_FUNC_tail_call) {
3448 err = check_reference_leak(env);
3449 if (err) {
3450 verbose(env, "tail_call would lead to reference leak\n");
3451 return err;
3452 }
3453 } else if (is_release_function(func_id)) {
1b986589 3454 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
3455 if (err) {
3456 verbose(env, "func %s#%d reference has not been acquired before\n",
3457 func_id_name(func_id), func_id);
fd978bf7 3458 return err;
46f8bc92 3459 }
fd978bf7
JS
3460 }
3461
638f5b90 3462 regs = cur_regs(env);
cd339431
RG
3463
3464 /* check that flags argument in get_local_storage(map, flags) is 0,
3465 * this is required because get_local_storage() can't return an error.
3466 */
3467 if (func_id == BPF_FUNC_get_local_storage &&
3468 !register_is_null(&regs[BPF_REG_2])) {
3469 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3470 return -EINVAL;
3471 }
3472
17a52670 3473 /* reset caller saved regs */
dc503a8a 3474 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3475 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3476 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3477 }
17a52670 3478
5327ed3d
JW
3479 /* helper call returns 64-bit value. */
3480 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
3481
dc503a8a 3482 /* update return register (already marked as written above) */
17a52670 3483 if (fn->ret_type == RET_INTEGER) {
f1174f77 3484 /* sets type to SCALAR_VALUE */
61bd5218 3485 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
3486 } else if (fn->ret_type == RET_VOID) {
3487 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
3488 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3489 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 3490 /* There is no offset yet applied, variable or fixed */
61bd5218 3491 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
3492 /* remember map_ptr, so that check_map_access()
3493 * can check 'value_size' boundary of memory access
3494 * to map element returned from bpf_map_lookup_elem()
3495 */
33ff9823 3496 if (meta.map_ptr == NULL) {
61bd5218
JK
3497 verbose(env,
3498 "kernel subsystem misconfigured verifier\n");
17a52670
AS
3499 return -EINVAL;
3500 }
33ff9823 3501 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
3502 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3503 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
3504 if (map_value_has_spin_lock(meta.map_ptr))
3505 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
3506 } else {
3507 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3508 regs[BPF_REG_0].id = ++env->id_gen;
3509 }
c64b7983
JS
3510 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3511 mark_reg_known_zero(env, regs, BPF_REG_0);
3512 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 3513 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
3514 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3515 mark_reg_known_zero(env, regs, BPF_REG_0);
3516 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3517 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
3518 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3519 mark_reg_known_zero(env, regs, BPF_REG_0);
3520 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3521 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 3522 } else {
61bd5218 3523 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 3524 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
3525 return -EINVAL;
3526 }
04fd61ab 3527
0f3adc28 3528 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
3529 /* For release_reference() */
3530 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
3531 } else if (is_acquire_function(func_id)) {
3532 int id = acquire_reference_state(env, insn_idx);
3533
3534 if (id < 0)
3535 return id;
3536 /* For mark_ptr_or_null_reg() */
3537 regs[BPF_REG_0].id = id;
3538 /* For release_reference() */
3539 regs[BPF_REG_0].ref_obj_id = id;
3540 }
1b986589 3541
849fa506
YS
3542 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3543
61bd5218 3544 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
3545 if (err)
3546 return err;
04fd61ab 3547
c195651e
YS
3548 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3549 const char *err_str;
3550
3551#ifdef CONFIG_PERF_EVENTS
3552 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3553 err_str = "cannot get callchain buffer for func %s#%d\n";
3554#else
3555 err = -ENOTSUPP;
3556 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3557#endif
3558 if (err) {
3559 verbose(env, err_str, func_id_name(func_id), func_id);
3560 return err;
3561 }
3562
3563 env->prog->has_callchain_buf = true;
3564 }
3565
969bf05e
AS
3566 if (changes_data)
3567 clear_all_pkt_pointers(env);
3568 return 0;
3569}
3570
b03c9f9f
EC
3571static bool signed_add_overflows(s64 a, s64 b)
3572{
3573 /* Do the add in u64, where overflow is well-defined */
3574 s64 res = (s64)((u64)a + (u64)b);
3575
3576 if (b < 0)
3577 return res > a;
3578 return res < a;
3579}
3580
3581static bool signed_sub_overflows(s64 a, s64 b)
3582{
3583 /* Do the sub in u64, where overflow is well-defined */
3584 s64 res = (s64)((u64)a - (u64)b);
3585
3586 if (b < 0)
3587 return res < a;
3588 return res > a;
969bf05e
AS
3589}
3590
bb7f0f98
AS
3591static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3592 const struct bpf_reg_state *reg,
3593 enum bpf_reg_type type)
3594{
3595 bool known = tnum_is_const(reg->var_off);
3596 s64 val = reg->var_off.value;
3597 s64 smin = reg->smin_value;
3598
3599 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3600 verbose(env, "math between %s pointer and %lld is not allowed\n",
3601 reg_type_str[type], val);
3602 return false;
3603 }
3604
3605 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3606 verbose(env, "%s pointer offset %d is not allowed\n",
3607 reg_type_str[type], reg->off);
3608 return false;
3609 }
3610
3611 if (smin == S64_MIN) {
3612 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3613 reg_type_str[type]);
3614 return false;
3615 }
3616
3617 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3618 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3619 smin, reg_type_str[type]);
3620 return false;
3621 }
3622
3623 return true;
3624}
3625
979d63d5
DB
3626static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3627{
3628 return &env->insn_aux_data[env->insn_idx];
3629}
3630
3631static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3632 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3633{
3634 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3635 (opcode == BPF_SUB && !off_is_neg);
3636 u32 off;
3637
3638 switch (ptr_reg->type) {
3639 case PTR_TO_STACK:
088ec26d
AI
3640 /* Indirect variable offset stack access is prohibited in
3641 * unprivileged mode so it's not handled here.
3642 */
979d63d5
DB
3643 off = ptr_reg->off + ptr_reg->var_off.value;
3644 if (mask_to_left)
3645 *ptr_limit = MAX_BPF_STACK + off;
3646 else
3647 *ptr_limit = -off;
3648 return 0;
3649 case PTR_TO_MAP_VALUE:
3650 if (mask_to_left) {
3651 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3652 } else {
3653 off = ptr_reg->smin_value + ptr_reg->off;
3654 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3655 }
3656 return 0;
3657 default:
3658 return -EINVAL;
3659 }
3660}
3661
d3bd7413
DB
3662static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3663 const struct bpf_insn *insn)
3664{
3665 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3666}
3667
3668static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3669 u32 alu_state, u32 alu_limit)
3670{
3671 /* If we arrived here from different branches with different
3672 * state or limits to sanitize, then this won't work.
3673 */
3674 if (aux->alu_state &&
3675 (aux->alu_state != alu_state ||
3676 aux->alu_limit != alu_limit))
3677 return -EACCES;
3678
3679 /* Corresponding fixup done in fixup_bpf_calls(). */
3680 aux->alu_state = alu_state;
3681 aux->alu_limit = alu_limit;
3682 return 0;
3683}
3684
3685static int sanitize_val_alu(struct bpf_verifier_env *env,
3686 struct bpf_insn *insn)
3687{
3688 struct bpf_insn_aux_data *aux = cur_aux(env);
3689
3690 if (can_skip_alu_sanitation(env, insn))
3691 return 0;
3692
3693 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3694}
3695
979d63d5
DB
3696static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3697 struct bpf_insn *insn,
3698 const struct bpf_reg_state *ptr_reg,
3699 struct bpf_reg_state *dst_reg,
3700 bool off_is_neg)
3701{
3702 struct bpf_verifier_state *vstate = env->cur_state;
3703 struct bpf_insn_aux_data *aux = cur_aux(env);
3704 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3705 u8 opcode = BPF_OP(insn->code);
3706 u32 alu_state, alu_limit;
3707 struct bpf_reg_state tmp;
3708 bool ret;
3709
d3bd7413 3710 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
3711 return 0;
3712
3713 /* We already marked aux for masking from non-speculative
3714 * paths, thus we got here in the first place. We only care
3715 * to explore bad access from here.
3716 */
3717 if (vstate->speculative)
3718 goto do_sim;
3719
3720 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3721 alu_state |= ptr_is_dst_reg ?
3722 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3723
3724 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3725 return 0;
d3bd7413 3726 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 3727 return -EACCES;
979d63d5
DB
3728do_sim:
3729 /* Simulate and find potential out-of-bounds access under
3730 * speculative execution from truncation as a result of
3731 * masking when off was not within expected range. If off
3732 * sits in dst, then we temporarily need to move ptr there
3733 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3734 * for cases where we use K-based arithmetic in one direction
3735 * and truncated reg-based in the other in order to explore
3736 * bad access.
3737 */
3738 if (!ptr_is_dst_reg) {
3739 tmp = *dst_reg;
3740 *dst_reg = *ptr_reg;
3741 }
3742 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 3743 if (!ptr_is_dst_reg && ret)
979d63d5
DB
3744 *dst_reg = tmp;
3745 return !ret ? -EFAULT : 0;
3746}
3747
f1174f77 3748/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3749 * Caller should also handle BPF_MOV case separately.
3750 * If we return -EACCES, caller may want to try again treating pointer as a
3751 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3752 */
3753static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3754 struct bpf_insn *insn,
3755 const struct bpf_reg_state *ptr_reg,
3756 const struct bpf_reg_state *off_reg)
969bf05e 3757{
f4d7e40a
AS
3758 struct bpf_verifier_state *vstate = env->cur_state;
3759 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3760 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3761 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3762 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3763 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3764 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3765 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 3766 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 3767 u8 opcode = BPF_OP(insn->code);
979d63d5 3768 int ret;
969bf05e 3769
f1174f77 3770 dst_reg = &regs[dst];
969bf05e 3771
6f16101e
DB
3772 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3773 smin_val > smax_val || umin_val > umax_val) {
3774 /* Taint dst register if offset had invalid bounds derived from
3775 * e.g. dead branches.
3776 */
3777 __mark_reg_unknown(dst_reg);
3778 return 0;
f1174f77
EC
3779 }
3780
3781 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3782 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3783 verbose(env,
3784 "R%d 32-bit pointer arithmetic prohibited\n",
3785 dst);
f1174f77 3786 return -EACCES;
969bf05e
AS
3787 }
3788
aad2eeaf
JS
3789 switch (ptr_reg->type) {
3790 case PTR_TO_MAP_VALUE_OR_NULL:
3791 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3792 dst, reg_type_str[ptr_reg->type]);
f1174f77 3793 return -EACCES;
aad2eeaf
JS
3794 case CONST_PTR_TO_MAP:
3795 case PTR_TO_PACKET_END:
c64b7983
JS
3796 case PTR_TO_SOCKET:
3797 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
3798 case PTR_TO_SOCK_COMMON:
3799 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
3800 case PTR_TO_TCP_SOCK:
3801 case PTR_TO_TCP_SOCK_OR_NULL:
aad2eeaf
JS
3802 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3803 dst, reg_type_str[ptr_reg->type]);
f1174f77 3804 return -EACCES;
9d7eceed
DB
3805 case PTR_TO_MAP_VALUE:
3806 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3807 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3808 off_reg == dst_reg ? dst : src);
3809 return -EACCES;
3810 }
3811 /* fall-through */
aad2eeaf
JS
3812 default:
3813 break;
f1174f77
EC
3814 }
3815
3816 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3817 * The id may be overwritten later if we create a new variable offset.
969bf05e 3818 */
f1174f77
EC
3819 dst_reg->type = ptr_reg->type;
3820 dst_reg->id = ptr_reg->id;
969bf05e 3821
bb7f0f98
AS
3822 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3823 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3824 return -EINVAL;
3825
f1174f77
EC
3826 switch (opcode) {
3827 case BPF_ADD:
979d63d5
DB
3828 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3829 if (ret < 0) {
3830 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3831 return ret;
3832 }
f1174f77
EC
3833 /* We can take a fixed offset as long as it doesn't overflow
3834 * the s32 'off' field
969bf05e 3835 */
b03c9f9f
EC
3836 if (known && (ptr_reg->off + smin_val ==
3837 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3838 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3839 dst_reg->smin_value = smin_ptr;
3840 dst_reg->smax_value = smax_ptr;
3841 dst_reg->umin_value = umin_ptr;
3842 dst_reg->umax_value = umax_ptr;
f1174f77 3843 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3844 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3845 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3846 break;
3847 }
f1174f77
EC
3848 /* A new variable offset is created. Note that off_reg->off
3849 * == 0, since it's a scalar.
3850 * dst_reg gets the pointer type and since some positive
3851 * integer value was added to the pointer, give it a new 'id'
3852 * if it's a PTR_TO_PACKET.
3853 * this creates a new 'base' pointer, off_reg (variable) gets
3854 * added into the variable offset, and we copy the fixed offset
3855 * from ptr_reg.
969bf05e 3856 */
b03c9f9f
EC
3857 if (signed_add_overflows(smin_ptr, smin_val) ||
3858 signed_add_overflows(smax_ptr, smax_val)) {
3859 dst_reg->smin_value = S64_MIN;
3860 dst_reg->smax_value = S64_MAX;
3861 } else {
3862 dst_reg->smin_value = smin_ptr + smin_val;
3863 dst_reg->smax_value = smax_ptr + smax_val;
3864 }
3865 if (umin_ptr + umin_val < umin_ptr ||
3866 umax_ptr + umax_val < umax_ptr) {
3867 dst_reg->umin_value = 0;
3868 dst_reg->umax_value = U64_MAX;
3869 } else {
3870 dst_reg->umin_value = umin_ptr + umin_val;
3871 dst_reg->umax_value = umax_ptr + umax_val;
3872 }
f1174f77
EC
3873 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3874 dst_reg->off = ptr_reg->off;
0962590e 3875 dst_reg->raw = ptr_reg->raw;
de8f3a83 3876 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3877 dst_reg->id = ++env->id_gen;
3878 /* something was added to pkt_ptr, set range to zero */
0962590e 3879 dst_reg->raw = 0;
f1174f77
EC
3880 }
3881 break;
3882 case BPF_SUB:
979d63d5
DB
3883 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3884 if (ret < 0) {
3885 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3886 return ret;
3887 }
f1174f77
EC
3888 if (dst_reg == off_reg) {
3889 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3890 verbose(env, "R%d tried to subtract pointer from scalar\n",
3891 dst);
f1174f77
EC
3892 return -EACCES;
3893 }
3894 /* We don't allow subtraction from FP, because (according to
3895 * test_verifier.c test "invalid fp arithmetic", JITs might not
3896 * be able to deal with it.
969bf05e 3897 */
f1174f77 3898 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3899 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3900 dst);
f1174f77
EC
3901 return -EACCES;
3902 }
b03c9f9f
EC
3903 if (known && (ptr_reg->off - smin_val ==
3904 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3905 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3906 dst_reg->smin_value = smin_ptr;
3907 dst_reg->smax_value = smax_ptr;
3908 dst_reg->umin_value = umin_ptr;
3909 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3910 dst_reg->var_off = ptr_reg->var_off;
3911 dst_reg->id = ptr_reg->id;
b03c9f9f 3912 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3913 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3914 break;
3915 }
f1174f77
EC
3916 /* A new variable offset is created. If the subtrahend is known
3917 * nonnegative, then any reg->range we had before is still good.
969bf05e 3918 */
b03c9f9f
EC
3919 if (signed_sub_overflows(smin_ptr, smax_val) ||
3920 signed_sub_overflows(smax_ptr, smin_val)) {
3921 /* Overflow possible, we know nothing */
3922 dst_reg->smin_value = S64_MIN;
3923 dst_reg->smax_value = S64_MAX;
3924 } else {
3925 dst_reg->smin_value = smin_ptr - smax_val;
3926 dst_reg->smax_value = smax_ptr - smin_val;
3927 }
3928 if (umin_ptr < umax_val) {
3929 /* Overflow possible, we know nothing */
3930 dst_reg->umin_value = 0;
3931 dst_reg->umax_value = U64_MAX;
3932 } else {
3933 /* Cannot overflow (as long as bounds are consistent) */
3934 dst_reg->umin_value = umin_ptr - umax_val;
3935 dst_reg->umax_value = umax_ptr - umin_val;
3936 }
f1174f77
EC
3937 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3938 dst_reg->off = ptr_reg->off;
0962590e 3939 dst_reg->raw = ptr_reg->raw;
de8f3a83 3940 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3941 dst_reg->id = ++env->id_gen;
3942 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3943 if (smin_val < 0)
0962590e 3944 dst_reg->raw = 0;
43188702 3945 }
f1174f77
EC
3946 break;
3947 case BPF_AND:
3948 case BPF_OR:
3949 case BPF_XOR:
82abbf8d
AS
3950 /* bitwise ops on pointers are troublesome, prohibit. */
3951 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3952 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3953 return -EACCES;
3954 default:
3955 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3956 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3957 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3958 return -EACCES;
43188702
JF
3959 }
3960
bb7f0f98
AS
3961 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3962 return -EINVAL;
3963
b03c9f9f
EC
3964 __update_reg_bounds(dst_reg);
3965 __reg_deduce_bounds(dst_reg);
3966 __reg_bound_offset(dst_reg);
0d6303db
DB
3967
3968 /* For unprivileged we require that resulting offset must be in bounds
3969 * in order to be able to sanitize access later on.
3970 */
e4298d25
DB
3971 if (!env->allow_ptr_leaks) {
3972 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3973 check_map_access(env, dst, dst_reg->off, 1, false)) {
3974 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3975 "prohibited for !root\n", dst);
3976 return -EACCES;
3977 } else if (dst_reg->type == PTR_TO_STACK &&
3978 check_stack_access(env, dst_reg, dst_reg->off +
3979 dst_reg->var_off.value, 1)) {
3980 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3981 "prohibited for !root\n", dst);
3982 return -EACCES;
3983 }
0d6303db
DB
3984 }
3985
43188702
JF
3986 return 0;
3987}
3988
468f6eaf
JH
3989/* WARNING: This function does calculations on 64-bit values, but the actual
3990 * execution may occur on 32-bit values. Therefore, things like bitshifts
3991 * need extra checks in the 32-bit case.
3992 */
f1174f77
EC
3993static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3994 struct bpf_insn *insn,
3995 struct bpf_reg_state *dst_reg,
3996 struct bpf_reg_state src_reg)
969bf05e 3997{
638f5b90 3998 struct bpf_reg_state *regs = cur_regs(env);
48461135 3999 u8 opcode = BPF_OP(insn->code);
f1174f77 4000 bool src_known, dst_known;
b03c9f9f
EC
4001 s64 smin_val, smax_val;
4002 u64 umin_val, umax_val;
468f6eaf 4003 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4004 u32 dst = insn->dst_reg;
4005 int ret;
48461135 4006
b799207e
JH
4007 if (insn_bitness == 32) {
4008 /* Relevant for 32-bit RSH: Information can propagate towards
4009 * LSB, so it isn't sufficient to only truncate the output to
4010 * 32 bits.
4011 */
4012 coerce_reg_to_size(dst_reg, 4);
4013 coerce_reg_to_size(&src_reg, 4);
4014 }
4015
b03c9f9f
EC
4016 smin_val = src_reg.smin_value;
4017 smax_val = src_reg.smax_value;
4018 umin_val = src_reg.umin_value;
4019 umax_val = src_reg.umax_value;
f1174f77
EC
4020 src_known = tnum_is_const(src_reg.var_off);
4021 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4022
6f16101e
DB
4023 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4024 smin_val > smax_val || umin_val > umax_val) {
4025 /* Taint dst register if offset had invalid bounds derived from
4026 * e.g. dead branches.
4027 */
4028 __mark_reg_unknown(dst_reg);
4029 return 0;
4030 }
4031
bb7f0f98
AS
4032 if (!src_known &&
4033 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4034 __mark_reg_unknown(dst_reg);
4035 return 0;
4036 }
4037
48461135
JB
4038 switch (opcode) {
4039 case BPF_ADD:
d3bd7413
DB
4040 ret = sanitize_val_alu(env, insn);
4041 if (ret < 0) {
4042 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4043 return ret;
4044 }
b03c9f9f
EC
4045 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4046 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4047 dst_reg->smin_value = S64_MIN;
4048 dst_reg->smax_value = S64_MAX;
4049 } else {
4050 dst_reg->smin_value += smin_val;
4051 dst_reg->smax_value += smax_val;
4052 }
4053 if (dst_reg->umin_value + umin_val < umin_val ||
4054 dst_reg->umax_value + umax_val < umax_val) {
4055 dst_reg->umin_value = 0;
4056 dst_reg->umax_value = U64_MAX;
4057 } else {
4058 dst_reg->umin_value += umin_val;
4059 dst_reg->umax_value += umax_val;
4060 }
f1174f77 4061 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4062 break;
4063 case BPF_SUB:
d3bd7413
DB
4064 ret = sanitize_val_alu(env, insn);
4065 if (ret < 0) {
4066 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4067 return ret;
4068 }
b03c9f9f
EC
4069 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4070 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4071 /* Overflow possible, we know nothing */
4072 dst_reg->smin_value = S64_MIN;
4073 dst_reg->smax_value = S64_MAX;
4074 } else {
4075 dst_reg->smin_value -= smax_val;
4076 dst_reg->smax_value -= smin_val;
4077 }
4078 if (dst_reg->umin_value < umax_val) {
4079 /* Overflow possible, we know nothing */
4080 dst_reg->umin_value = 0;
4081 dst_reg->umax_value = U64_MAX;
4082 } else {
4083 /* Cannot overflow (as long as bounds are consistent) */
4084 dst_reg->umin_value -= umax_val;
4085 dst_reg->umax_value -= umin_val;
4086 }
f1174f77 4087 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4088 break;
4089 case BPF_MUL:
b03c9f9f
EC
4090 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4091 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4092 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4093 __mark_reg_unbounded(dst_reg);
4094 __update_reg_bounds(dst_reg);
f1174f77
EC
4095 break;
4096 }
b03c9f9f
EC
4097 /* Both values are positive, so we can work with unsigned and
4098 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4099 */
b03c9f9f
EC
4100 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4101 /* Potential overflow, we know nothing */
4102 __mark_reg_unbounded(dst_reg);
4103 /* (except what we can learn from the var_off) */
4104 __update_reg_bounds(dst_reg);
4105 break;
4106 }
4107 dst_reg->umin_value *= umin_val;
4108 dst_reg->umax_value *= umax_val;
4109 if (dst_reg->umax_value > S64_MAX) {
4110 /* Overflow possible, we know nothing */
4111 dst_reg->smin_value = S64_MIN;
4112 dst_reg->smax_value = S64_MAX;
4113 } else {
4114 dst_reg->smin_value = dst_reg->umin_value;
4115 dst_reg->smax_value = dst_reg->umax_value;
4116 }
48461135
JB
4117 break;
4118 case BPF_AND:
f1174f77 4119 if (src_known && dst_known) {
b03c9f9f
EC
4120 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4121 src_reg.var_off.value);
f1174f77
EC
4122 break;
4123 }
b03c9f9f
EC
4124 /* We get our minimum from the var_off, since that's inherently
4125 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4126 */
f1174f77 4127 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4128 dst_reg->umin_value = dst_reg->var_off.value;
4129 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4130 if (dst_reg->smin_value < 0 || smin_val < 0) {
4131 /* Lose signed bounds when ANDing negative numbers,
4132 * ain't nobody got time for that.
4133 */
4134 dst_reg->smin_value = S64_MIN;
4135 dst_reg->smax_value = S64_MAX;
4136 } else {
4137 /* ANDing two positives gives a positive, so safe to
4138 * cast result into s64.
4139 */
4140 dst_reg->smin_value = dst_reg->umin_value;
4141 dst_reg->smax_value = dst_reg->umax_value;
4142 }
4143 /* We may learn something more from the var_off */
4144 __update_reg_bounds(dst_reg);
f1174f77
EC
4145 break;
4146 case BPF_OR:
4147 if (src_known && dst_known) {
b03c9f9f
EC
4148 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4149 src_reg.var_off.value);
f1174f77
EC
4150 break;
4151 }
b03c9f9f
EC
4152 /* We get our maximum from the var_off, and our minimum is the
4153 * maximum of the operands' minima
f1174f77
EC
4154 */
4155 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4156 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4157 dst_reg->umax_value = dst_reg->var_off.value |
4158 dst_reg->var_off.mask;
4159 if (dst_reg->smin_value < 0 || smin_val < 0) {
4160 /* Lose signed bounds when ORing negative numbers,
4161 * ain't nobody got time for that.
4162 */
4163 dst_reg->smin_value = S64_MIN;
4164 dst_reg->smax_value = S64_MAX;
f1174f77 4165 } else {
b03c9f9f
EC
4166 /* ORing two positives gives a positive, so safe to
4167 * cast result into s64.
4168 */
4169 dst_reg->smin_value = dst_reg->umin_value;
4170 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4171 }
b03c9f9f
EC
4172 /* We may learn something more from the var_off */
4173 __update_reg_bounds(dst_reg);
48461135
JB
4174 break;
4175 case BPF_LSH:
468f6eaf
JH
4176 if (umax_val >= insn_bitness) {
4177 /* Shifts greater than 31 or 63 are undefined.
4178 * This includes shifts by a negative number.
b03c9f9f 4179 */
61bd5218 4180 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4181 break;
4182 }
b03c9f9f
EC
4183 /* We lose all sign bit information (except what we can pick
4184 * up from var_off)
48461135 4185 */
b03c9f9f
EC
4186 dst_reg->smin_value = S64_MIN;
4187 dst_reg->smax_value = S64_MAX;
4188 /* If we might shift our top bit out, then we know nothing */
4189 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4190 dst_reg->umin_value = 0;
4191 dst_reg->umax_value = U64_MAX;
d1174416 4192 } else {
b03c9f9f
EC
4193 dst_reg->umin_value <<= umin_val;
4194 dst_reg->umax_value <<= umax_val;
d1174416 4195 }
afbe1a5b 4196 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4197 /* We may learn something more from the var_off */
4198 __update_reg_bounds(dst_reg);
48461135
JB
4199 break;
4200 case BPF_RSH:
468f6eaf
JH
4201 if (umax_val >= insn_bitness) {
4202 /* Shifts greater than 31 or 63 are undefined.
4203 * This includes shifts by a negative number.
b03c9f9f 4204 */
61bd5218 4205 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4206 break;
4207 }
4374f256
EC
4208 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4209 * be negative, then either:
4210 * 1) src_reg might be zero, so the sign bit of the result is
4211 * unknown, so we lose our signed bounds
4212 * 2) it's known negative, thus the unsigned bounds capture the
4213 * signed bounds
4214 * 3) the signed bounds cross zero, so they tell us nothing
4215 * about the result
4216 * If the value in dst_reg is known nonnegative, then again the
4217 * unsigned bounts capture the signed bounds.
4218 * Thus, in all cases it suffices to blow away our signed bounds
4219 * and rely on inferring new ones from the unsigned bounds and
4220 * var_off of the result.
4221 */
4222 dst_reg->smin_value = S64_MIN;
4223 dst_reg->smax_value = S64_MAX;
afbe1a5b 4224 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4225 dst_reg->umin_value >>= umax_val;
4226 dst_reg->umax_value >>= umin_val;
4227 /* We may learn something more from the var_off */
4228 __update_reg_bounds(dst_reg);
48461135 4229 break;
9cbe1f5a
YS
4230 case BPF_ARSH:
4231 if (umax_val >= insn_bitness) {
4232 /* Shifts greater than 31 or 63 are undefined.
4233 * This includes shifts by a negative number.
4234 */
4235 mark_reg_unknown(env, regs, insn->dst_reg);
4236 break;
4237 }
4238
4239 /* Upon reaching here, src_known is true and
4240 * umax_val is equal to umin_val.
4241 */
4242 dst_reg->smin_value >>= umin_val;
4243 dst_reg->smax_value >>= umin_val;
4244 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4245
4246 /* blow away the dst_reg umin_value/umax_value and rely on
4247 * dst_reg var_off to refine the result.
4248 */
4249 dst_reg->umin_value = 0;
4250 dst_reg->umax_value = U64_MAX;
4251 __update_reg_bounds(dst_reg);
4252 break;
48461135 4253 default:
61bd5218 4254 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
4255 break;
4256 }
4257
468f6eaf
JH
4258 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4259 /* 32-bit ALU ops are (32,32)->32 */
4260 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
4261 }
4262
b03c9f9f
EC
4263 __reg_deduce_bounds(dst_reg);
4264 __reg_bound_offset(dst_reg);
f1174f77
EC
4265 return 0;
4266}
4267
4268/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4269 * and var_off.
4270 */
4271static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4272 struct bpf_insn *insn)
4273{
f4d7e40a
AS
4274 struct bpf_verifier_state *vstate = env->cur_state;
4275 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4276 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4277 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4278 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
4279
4280 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4281 src_reg = NULL;
4282 if (dst_reg->type != SCALAR_VALUE)
4283 ptr_reg = dst_reg;
4284 if (BPF_SRC(insn->code) == BPF_X) {
4285 src_reg = &regs[insn->src_reg];
f1174f77
EC
4286 if (src_reg->type != SCALAR_VALUE) {
4287 if (dst_reg->type != SCALAR_VALUE) {
4288 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4289 * an arbitrary scalar. Disallow all math except
4290 * pointer subtraction
f1174f77 4291 */
dd066823 4292 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4293 mark_reg_unknown(env, regs, insn->dst_reg);
4294 return 0;
f1174f77 4295 }
82abbf8d
AS
4296 verbose(env, "R%d pointer %s pointer prohibited\n",
4297 insn->dst_reg,
4298 bpf_alu_string[opcode >> 4]);
4299 return -EACCES;
f1174f77
EC
4300 } else {
4301 /* scalar += pointer
4302 * This is legal, but we have to reverse our
4303 * src/dest handling in computing the range
4304 */
82abbf8d
AS
4305 return adjust_ptr_min_max_vals(env, insn,
4306 src_reg, dst_reg);
f1174f77
EC
4307 }
4308 } else if (ptr_reg) {
4309 /* pointer += scalar */
82abbf8d
AS
4310 return adjust_ptr_min_max_vals(env, insn,
4311 dst_reg, src_reg);
f1174f77
EC
4312 }
4313 } else {
4314 /* Pretend the src is a reg with a known value, since we only
4315 * need to be able to read from this state.
4316 */
4317 off_reg.type = SCALAR_VALUE;
b03c9f9f 4318 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4319 src_reg = &off_reg;
82abbf8d
AS
4320 if (ptr_reg) /* pointer += K */
4321 return adjust_ptr_min_max_vals(env, insn,
4322 ptr_reg, src_reg);
f1174f77
EC
4323 }
4324
4325 /* Got here implies adding two SCALAR_VALUEs */
4326 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4327 print_verifier_state(env, state);
61bd5218 4328 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4329 return -EINVAL;
4330 }
4331 if (WARN_ON(!src_reg)) {
f4d7e40a 4332 print_verifier_state(env, state);
61bd5218 4333 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4334 return -EINVAL;
4335 }
4336 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4337}
4338
17a52670 4339/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4340static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4341{
638f5b90 4342 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4343 u8 opcode = BPF_OP(insn->code);
4344 int err;
4345
4346 if (opcode == BPF_END || opcode == BPF_NEG) {
4347 if (opcode == BPF_NEG) {
4348 if (BPF_SRC(insn->code) != 0 ||
4349 insn->src_reg != BPF_REG_0 ||
4350 insn->off != 0 || insn->imm != 0) {
61bd5218 4351 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4352 return -EINVAL;
4353 }
4354 } else {
4355 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4356 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4357 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4358 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4359 return -EINVAL;
4360 }
4361 }
4362
4363 /* check src operand */
dc503a8a 4364 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4365 if (err)
4366 return err;
4367
1be7f75d 4368 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 4369 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4370 insn->dst_reg);
4371 return -EACCES;
4372 }
4373
17a52670 4374 /* check dest operand */
dc503a8a 4375 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4376 if (err)
4377 return err;
4378
4379 } else if (opcode == BPF_MOV) {
4380
4381 if (BPF_SRC(insn->code) == BPF_X) {
4382 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4383 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4384 return -EINVAL;
4385 }
4386
4387 /* check src operand */
dc503a8a 4388 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4389 if (err)
4390 return err;
4391 } else {
4392 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4393 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4394 return -EINVAL;
4395 }
4396 }
4397
fbeb1603
AF
4398 /* check dest operand, mark as required later */
4399 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4400 if (err)
4401 return err;
4402
4403 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4404 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4405 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4406
17a52670
AS
4407 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4408 /* case: R1 = R2
4409 * copy register state to dest reg
4410 */
e434b8cd
JW
4411 *dst_reg = *src_reg;
4412 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4413 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 4414 } else {
f1174f77 4415 /* R1 = (u32) R2 */
1be7f75d 4416 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4417 verbose(env,
4418 "R%d partial copy of pointer\n",
1be7f75d
AS
4419 insn->src_reg);
4420 return -EACCES;
e434b8cd
JW
4421 } else if (src_reg->type == SCALAR_VALUE) {
4422 *dst_reg = *src_reg;
4423 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4424 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
4425 } else {
4426 mark_reg_unknown(env, regs,
4427 insn->dst_reg);
1be7f75d 4428 }
e434b8cd 4429 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
4430 }
4431 } else {
4432 /* case: R = imm
4433 * remember the value we stored into this reg
4434 */
fbeb1603
AF
4435 /* clear any state __mark_reg_known doesn't set */
4436 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 4437 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
4438 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4439 __mark_reg_known(regs + insn->dst_reg,
4440 insn->imm);
4441 } else {
4442 __mark_reg_known(regs + insn->dst_reg,
4443 (u32)insn->imm);
4444 }
17a52670
AS
4445 }
4446
4447 } else if (opcode > BPF_END) {
61bd5218 4448 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
4449 return -EINVAL;
4450
4451 } else { /* all other ALU ops: and, sub, xor, add, ... */
4452
17a52670
AS
4453 if (BPF_SRC(insn->code) == BPF_X) {
4454 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4455 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4456 return -EINVAL;
4457 }
4458 /* check src1 operand */
dc503a8a 4459 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4460 if (err)
4461 return err;
4462 } else {
4463 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4464 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4465 return -EINVAL;
4466 }
4467 }
4468
4469 /* check src2 operand */
dc503a8a 4470 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4471 if (err)
4472 return err;
4473
4474 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4475 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 4476 verbose(env, "div by zero\n");
17a52670
AS
4477 return -EINVAL;
4478 }
4479
229394e8
RV
4480 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4481 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4482 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4483
4484 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 4485 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
4486 return -EINVAL;
4487 }
4488 }
4489
1a0dc1ac 4490 /* check dest operand */
dc503a8a 4491 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
4492 if (err)
4493 return err;
4494
f1174f77 4495 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
4496 }
4497
4498 return 0;
4499}
4500
c6a9efa1
PC
4501static void __find_good_pkt_pointers(struct bpf_func_state *state,
4502 struct bpf_reg_state *dst_reg,
4503 enum bpf_reg_type type, u16 new_range)
4504{
4505 struct bpf_reg_state *reg;
4506 int i;
4507
4508 for (i = 0; i < MAX_BPF_REG; i++) {
4509 reg = &state->regs[i];
4510 if (reg->type == type && reg->id == dst_reg->id)
4511 /* keep the maximum range already checked */
4512 reg->range = max(reg->range, new_range);
4513 }
4514
4515 bpf_for_each_spilled_reg(i, state, reg) {
4516 if (!reg)
4517 continue;
4518 if (reg->type == type && reg->id == dst_reg->id)
4519 reg->range = max(reg->range, new_range);
4520 }
4521}
4522
f4d7e40a 4523static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 4524 struct bpf_reg_state *dst_reg,
f8ddadc4 4525 enum bpf_reg_type type,
fb2a311a 4526 bool range_right_open)
969bf05e 4527{
fb2a311a 4528 u16 new_range;
c6a9efa1 4529 int i;
2d2be8ca 4530
fb2a311a
DB
4531 if (dst_reg->off < 0 ||
4532 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
4533 /* This doesn't give us any range */
4534 return;
4535
b03c9f9f
EC
4536 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4537 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
4538 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4539 * than pkt_end, but that's because it's also less than pkt.
4540 */
4541 return;
4542
fb2a311a
DB
4543 new_range = dst_reg->off;
4544 if (range_right_open)
4545 new_range--;
4546
4547 /* Examples for register markings:
2d2be8ca 4548 *
fb2a311a 4549 * pkt_data in dst register:
2d2be8ca
DB
4550 *
4551 * r2 = r3;
4552 * r2 += 8;
4553 * if (r2 > pkt_end) goto <handle exception>
4554 * <access okay>
4555 *
b4e432f1
DB
4556 * r2 = r3;
4557 * r2 += 8;
4558 * if (r2 < pkt_end) goto <access okay>
4559 * <handle exception>
4560 *
2d2be8ca
DB
4561 * Where:
4562 * r2 == dst_reg, pkt_end == src_reg
4563 * r2=pkt(id=n,off=8,r=0)
4564 * r3=pkt(id=n,off=0,r=0)
4565 *
fb2a311a 4566 * pkt_data in src register:
2d2be8ca
DB
4567 *
4568 * r2 = r3;
4569 * r2 += 8;
4570 * if (pkt_end >= r2) goto <access okay>
4571 * <handle exception>
4572 *
b4e432f1
DB
4573 * r2 = r3;
4574 * r2 += 8;
4575 * if (pkt_end <= r2) goto <handle exception>
4576 * <access okay>
4577 *
2d2be8ca
DB
4578 * Where:
4579 * pkt_end == dst_reg, r2 == src_reg
4580 * r2=pkt(id=n,off=8,r=0)
4581 * r3=pkt(id=n,off=0,r=0)
4582 *
4583 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
4584 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4585 * and [r3, r3 + 8-1) respectively is safe to access depending on
4586 * the check.
969bf05e 4587 */
2d2be8ca 4588
f1174f77
EC
4589 /* If our ids match, then we must have the same max_value. And we
4590 * don't care about the other reg's fixed offset, since if it's too big
4591 * the range won't allow anything.
4592 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4593 */
c6a9efa1
PC
4594 for (i = 0; i <= vstate->curframe; i++)
4595 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4596 new_range);
969bf05e
AS
4597}
4598
4f7b3e82
AS
4599/* compute branch direction of the expression "if (reg opcode val) goto target;"
4600 * and return:
4601 * 1 - branch will be taken and "goto target" will be executed
4602 * 0 - branch will not be taken and fall-through to next insn
4603 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4604 */
092ed096
JW
4605static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4606 bool is_jmp32)
4f7b3e82 4607{
092ed096 4608 struct bpf_reg_state reg_lo;
a72dafaf
JW
4609 s64 sval;
4610
4f7b3e82
AS
4611 if (__is_pointer_value(false, reg))
4612 return -1;
4613
092ed096
JW
4614 if (is_jmp32) {
4615 reg_lo = *reg;
4616 reg = &reg_lo;
4617 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4618 * could truncate high bits and update umin/umax according to
4619 * information of low bits.
4620 */
4621 coerce_reg_to_size(reg, 4);
4622 /* smin/smax need special handling. For example, after coerce,
4623 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4624 * used as operand to JMP32. It is a negative number from s32's
4625 * point of view, while it is a positive number when seen as
4626 * s64. The smin/smax are kept as s64, therefore, when used with
4627 * JMP32, they need to be transformed into s32, then sign
4628 * extended back to s64.
4629 *
4630 * Also, smin/smax were copied from umin/umax. If umin/umax has
4631 * different sign bit, then min/max relationship doesn't
4632 * maintain after casting into s32, for this case, set smin/smax
4633 * to safest range.
4634 */
4635 if ((reg->umax_value ^ reg->umin_value) &
4636 (1ULL << 31)) {
4637 reg->smin_value = S32_MIN;
4638 reg->smax_value = S32_MAX;
4639 }
4640 reg->smin_value = (s64)(s32)reg->smin_value;
4641 reg->smax_value = (s64)(s32)reg->smax_value;
4642
4643 val = (u32)val;
4644 sval = (s64)(s32)val;
4645 } else {
4646 sval = (s64)val;
4647 }
a72dafaf 4648
4f7b3e82
AS
4649 switch (opcode) {
4650 case BPF_JEQ:
4651 if (tnum_is_const(reg->var_off))
4652 return !!tnum_equals_const(reg->var_off, val);
4653 break;
4654 case BPF_JNE:
4655 if (tnum_is_const(reg->var_off))
4656 return !tnum_equals_const(reg->var_off, val);
4657 break;
960ea056
JK
4658 case BPF_JSET:
4659 if ((~reg->var_off.mask & reg->var_off.value) & val)
4660 return 1;
4661 if (!((reg->var_off.mask | reg->var_off.value) & val))
4662 return 0;
4663 break;
4f7b3e82
AS
4664 case BPF_JGT:
4665 if (reg->umin_value > val)
4666 return 1;
4667 else if (reg->umax_value <= val)
4668 return 0;
4669 break;
4670 case BPF_JSGT:
a72dafaf 4671 if (reg->smin_value > sval)
4f7b3e82 4672 return 1;
a72dafaf 4673 else if (reg->smax_value < sval)
4f7b3e82
AS
4674 return 0;
4675 break;
4676 case BPF_JLT:
4677 if (reg->umax_value < val)
4678 return 1;
4679 else if (reg->umin_value >= val)
4680 return 0;
4681 break;
4682 case BPF_JSLT:
a72dafaf 4683 if (reg->smax_value < sval)
4f7b3e82 4684 return 1;
a72dafaf 4685 else if (reg->smin_value >= sval)
4f7b3e82
AS
4686 return 0;
4687 break;
4688 case BPF_JGE:
4689 if (reg->umin_value >= val)
4690 return 1;
4691 else if (reg->umax_value < val)
4692 return 0;
4693 break;
4694 case BPF_JSGE:
a72dafaf 4695 if (reg->smin_value >= sval)
4f7b3e82 4696 return 1;
a72dafaf 4697 else if (reg->smax_value < sval)
4f7b3e82
AS
4698 return 0;
4699 break;
4700 case BPF_JLE:
4701 if (reg->umax_value <= val)
4702 return 1;
4703 else if (reg->umin_value > val)
4704 return 0;
4705 break;
4706 case BPF_JSLE:
a72dafaf 4707 if (reg->smax_value <= sval)
4f7b3e82 4708 return 1;
a72dafaf 4709 else if (reg->smin_value > sval)
4f7b3e82
AS
4710 return 0;
4711 break;
4712 }
4713
4714 return -1;
4715}
4716
092ed096
JW
4717/* Generate min value of the high 32-bit from TNUM info. */
4718static u64 gen_hi_min(struct tnum var)
4719{
4720 return var.value & ~0xffffffffULL;
4721}
4722
4723/* Generate max value of the high 32-bit from TNUM info. */
4724static u64 gen_hi_max(struct tnum var)
4725{
4726 return (var.value | var.mask) & ~0xffffffffULL;
4727}
4728
4729/* Return true if VAL is compared with a s64 sign extended from s32, and they
4730 * are with the same signedness.
4731 */
4732static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4733{
4734 return ((s32)sval >= 0 &&
4735 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4736 ((s32)sval < 0 &&
4737 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4738}
4739
48461135
JB
4740/* Adjusts the register min/max values in the case that the dst_reg is the
4741 * variable register that we are working on, and src_reg is a constant or we're
4742 * simply doing a BPF_K check.
f1174f77 4743 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
4744 */
4745static void reg_set_min_max(struct bpf_reg_state *true_reg,
4746 struct bpf_reg_state *false_reg, u64 val,
092ed096 4747 u8 opcode, bool is_jmp32)
48461135 4748{
a72dafaf
JW
4749 s64 sval;
4750
f1174f77
EC
4751 /* If the dst_reg is a pointer, we can't learn anything about its
4752 * variable offset from the compare (unless src_reg were a pointer into
4753 * the same object, but we don't bother with that.
4754 * Since false_reg and true_reg have the same type by construction, we
4755 * only need to check one of them for pointerness.
4756 */
4757 if (__is_pointer_value(false, false_reg))
4758 return;
4cabc5b1 4759
092ed096
JW
4760 val = is_jmp32 ? (u32)val : val;
4761 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4762
48461135
JB
4763 switch (opcode) {
4764 case BPF_JEQ:
48461135 4765 case BPF_JNE:
a72dafaf
JW
4766 {
4767 struct bpf_reg_state *reg =
4768 opcode == BPF_JEQ ? true_reg : false_reg;
4769
4770 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4771 * if it is true we know the value for sure. Likewise for
4772 * BPF_JNE.
48461135 4773 */
092ed096
JW
4774 if (is_jmp32) {
4775 u64 old_v = reg->var_off.value;
4776 u64 hi_mask = ~0xffffffffULL;
4777
4778 reg->var_off.value = (old_v & hi_mask) | val;
4779 reg->var_off.mask &= hi_mask;
4780 } else {
4781 __mark_reg_known(reg, val);
4782 }
48461135 4783 break;
a72dafaf 4784 }
960ea056
JK
4785 case BPF_JSET:
4786 false_reg->var_off = tnum_and(false_reg->var_off,
4787 tnum_const(~val));
4788 if (is_power_of_2(val))
4789 true_reg->var_off = tnum_or(true_reg->var_off,
4790 tnum_const(val));
4791 break;
48461135 4792 case BPF_JGE:
a72dafaf
JW
4793 case BPF_JGT:
4794 {
4795 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4796 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4797
092ed096
JW
4798 if (is_jmp32) {
4799 false_umax += gen_hi_max(false_reg->var_off);
4800 true_umin += gen_hi_min(true_reg->var_off);
4801 }
a72dafaf
JW
4802 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4803 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 4804 break;
a72dafaf 4805 }
48461135 4806 case BPF_JSGE:
a72dafaf
JW
4807 case BPF_JSGT:
4808 {
4809 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4810 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4811
092ed096
JW
4812 /* If the full s64 was not sign-extended from s32 then don't
4813 * deduct further info.
4814 */
4815 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4816 break;
a72dafaf
JW
4817 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4818 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 4819 break;
a72dafaf 4820 }
b4e432f1 4821 case BPF_JLE:
a72dafaf
JW
4822 case BPF_JLT:
4823 {
4824 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4825 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4826
092ed096
JW
4827 if (is_jmp32) {
4828 false_umin += gen_hi_min(false_reg->var_off);
4829 true_umax += gen_hi_max(true_reg->var_off);
4830 }
a72dafaf
JW
4831 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4832 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 4833 break;
a72dafaf 4834 }
b4e432f1 4835 case BPF_JSLE:
a72dafaf
JW
4836 case BPF_JSLT:
4837 {
4838 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4839 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4840
092ed096
JW
4841 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4842 break;
a72dafaf
JW
4843 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4844 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 4845 break;
a72dafaf 4846 }
48461135
JB
4847 default:
4848 break;
4849 }
4850
b03c9f9f
EC
4851 __reg_deduce_bounds(false_reg);
4852 __reg_deduce_bounds(true_reg);
4853 /* We might have learned some bits from the bounds. */
4854 __reg_bound_offset(false_reg);
4855 __reg_bound_offset(true_reg);
4856 /* Intersecting with the old var_off might have improved our bounds
4857 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4858 * then new var_off is (0; 0x7f...fc) which improves our umax.
4859 */
4860 __update_reg_bounds(false_reg);
4861 __update_reg_bounds(true_reg);
48461135
JB
4862}
4863
f1174f77
EC
4864/* Same as above, but for the case that dst_reg holds a constant and src_reg is
4865 * the variable reg.
48461135
JB
4866 */
4867static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4868 struct bpf_reg_state *false_reg, u64 val,
092ed096 4869 u8 opcode, bool is_jmp32)
48461135 4870{
a72dafaf
JW
4871 s64 sval;
4872
f1174f77
EC
4873 if (__is_pointer_value(false, false_reg))
4874 return;
4cabc5b1 4875
092ed096
JW
4876 val = is_jmp32 ? (u32)val : val;
4877 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4878
48461135
JB
4879 switch (opcode) {
4880 case BPF_JEQ:
48461135 4881 case BPF_JNE:
a72dafaf
JW
4882 {
4883 struct bpf_reg_state *reg =
4884 opcode == BPF_JEQ ? true_reg : false_reg;
4885
092ed096
JW
4886 if (is_jmp32) {
4887 u64 old_v = reg->var_off.value;
4888 u64 hi_mask = ~0xffffffffULL;
4889
4890 reg->var_off.value = (old_v & hi_mask) | val;
4891 reg->var_off.mask &= hi_mask;
4892 } else {
4893 __mark_reg_known(reg, val);
4894 }
48461135 4895 break;
a72dafaf 4896 }
960ea056
JK
4897 case BPF_JSET:
4898 false_reg->var_off = tnum_and(false_reg->var_off,
4899 tnum_const(~val));
4900 if (is_power_of_2(val))
4901 true_reg->var_off = tnum_or(true_reg->var_off,
4902 tnum_const(val));
4903 break;
48461135 4904 case BPF_JGE:
a72dafaf
JW
4905 case BPF_JGT:
4906 {
4907 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4908 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4909
092ed096
JW
4910 if (is_jmp32) {
4911 false_umin += gen_hi_min(false_reg->var_off);
4912 true_umax += gen_hi_max(true_reg->var_off);
4913 }
a72dafaf
JW
4914 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4915 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 4916 break;
a72dafaf 4917 }
48461135 4918 case BPF_JSGE:
a72dafaf
JW
4919 case BPF_JSGT:
4920 {
4921 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4922 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4923
092ed096
JW
4924 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4925 break;
a72dafaf
JW
4926 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4927 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 4928 break;
a72dafaf 4929 }
b4e432f1 4930 case BPF_JLE:
a72dafaf
JW
4931 case BPF_JLT:
4932 {
4933 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4934 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4935
092ed096
JW
4936 if (is_jmp32) {
4937 false_umax += gen_hi_max(false_reg->var_off);
4938 true_umin += gen_hi_min(true_reg->var_off);
4939 }
a72dafaf
JW
4940 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4941 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 4942 break;
a72dafaf 4943 }
b4e432f1 4944 case BPF_JSLE:
a72dafaf
JW
4945 case BPF_JSLT:
4946 {
4947 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4948 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4949
092ed096
JW
4950 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4951 break;
a72dafaf
JW
4952 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4953 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 4954 break;
a72dafaf 4955 }
48461135
JB
4956 default:
4957 break;
4958 }
4959
b03c9f9f
EC
4960 __reg_deduce_bounds(false_reg);
4961 __reg_deduce_bounds(true_reg);
4962 /* We might have learned some bits from the bounds. */
4963 __reg_bound_offset(false_reg);
4964 __reg_bound_offset(true_reg);
4965 /* Intersecting with the old var_off might have improved our bounds
4966 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4967 * then new var_off is (0; 0x7f...fc) which improves our umax.
4968 */
4969 __update_reg_bounds(false_reg);
4970 __update_reg_bounds(true_reg);
f1174f77
EC
4971}
4972
4973/* Regs are known to be equal, so intersect their min/max/var_off */
4974static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4975 struct bpf_reg_state *dst_reg)
4976{
b03c9f9f
EC
4977 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4978 dst_reg->umin_value);
4979 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4980 dst_reg->umax_value);
4981 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4982 dst_reg->smin_value);
4983 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4984 dst_reg->smax_value);
f1174f77
EC
4985 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4986 dst_reg->var_off);
b03c9f9f
EC
4987 /* We might have learned new bounds from the var_off. */
4988 __update_reg_bounds(src_reg);
4989 __update_reg_bounds(dst_reg);
4990 /* We might have learned something about the sign bit. */
4991 __reg_deduce_bounds(src_reg);
4992 __reg_deduce_bounds(dst_reg);
4993 /* We might have learned some bits from the bounds. */
4994 __reg_bound_offset(src_reg);
4995 __reg_bound_offset(dst_reg);
4996 /* Intersecting with the old var_off might have improved our bounds
4997 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4998 * then new var_off is (0; 0x7f...fc) which improves our umax.
4999 */
5000 __update_reg_bounds(src_reg);
5001 __update_reg_bounds(dst_reg);
f1174f77
EC
5002}
5003
5004static void reg_combine_min_max(struct bpf_reg_state *true_src,
5005 struct bpf_reg_state *true_dst,
5006 struct bpf_reg_state *false_src,
5007 struct bpf_reg_state *false_dst,
5008 u8 opcode)
5009{
5010 switch (opcode) {
5011 case BPF_JEQ:
5012 __reg_combine_min_max(true_src, true_dst);
5013 break;
5014 case BPF_JNE:
5015 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5016 break;
4cabc5b1 5017 }
48461135
JB
5018}
5019
fd978bf7
JS
5020static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5021 struct bpf_reg_state *reg, u32 id,
840b9615 5022 bool is_null)
57a09bf0 5023{
840b9615 5024 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5025 /* Old offset (both fixed and variable parts) should
5026 * have been known-zero, because we don't allow pointer
5027 * arithmetic on pointers that might be NULL.
5028 */
b03c9f9f
EC
5029 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5030 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5031 reg->off)) {
b03c9f9f
EC
5032 __mark_reg_known_zero(reg);
5033 reg->off = 0;
f1174f77
EC
5034 }
5035 if (is_null) {
5036 reg->type = SCALAR_VALUE;
840b9615
JS
5037 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5038 if (reg->map_ptr->inner_map_meta) {
5039 reg->type = CONST_PTR_TO_MAP;
5040 reg->map_ptr = reg->map_ptr->inner_map_meta;
5041 } else {
5042 reg->type = PTR_TO_MAP_VALUE;
5043 }
c64b7983
JS
5044 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5045 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5046 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5047 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5048 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5049 reg->type = PTR_TO_TCP_SOCK;
56f668df 5050 }
1b986589
MKL
5051 if (is_null) {
5052 /* We don't need id and ref_obj_id from this point
5053 * onwards anymore, thus we should better reset it,
5054 * so that state pruning has chances to take effect.
5055 */
5056 reg->id = 0;
5057 reg->ref_obj_id = 0;
5058 } else if (!reg_may_point_to_spin_lock(reg)) {
5059 /* For not-NULL ptr, reg->ref_obj_id will be reset
5060 * in release_reg_references().
5061 *
5062 * reg->id is still used by spin_lock ptr. Other
5063 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5064 */
5065 reg->id = 0;
56f668df 5066 }
57a09bf0
TG
5067 }
5068}
5069
c6a9efa1
PC
5070static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5071 bool is_null)
5072{
5073 struct bpf_reg_state *reg;
5074 int i;
5075
5076 for (i = 0; i < MAX_BPF_REG; i++)
5077 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5078
5079 bpf_for_each_spilled_reg(i, state, reg) {
5080 if (!reg)
5081 continue;
5082 mark_ptr_or_null_reg(state, reg, id, is_null);
5083 }
5084}
5085
57a09bf0
TG
5086/* The logic is similar to find_good_pkt_pointers(), both could eventually
5087 * be folded together at some point.
5088 */
840b9615
JS
5089static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5090 bool is_null)
57a09bf0 5091{
f4d7e40a 5092 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5093 struct bpf_reg_state *regs = state->regs;
1b986589 5094 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5095 u32 id = regs[regno].id;
c6a9efa1 5096 int i;
57a09bf0 5097
1b986589
MKL
5098 if (ref_obj_id && ref_obj_id == id && is_null)
5099 /* regs[regno] is in the " == NULL" branch.
5100 * No one could have freed the reference state before
5101 * doing the NULL check.
5102 */
5103 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5104
c6a9efa1
PC
5105 for (i = 0; i <= vstate->curframe; i++)
5106 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5107}
5108
5beca081
DB
5109static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5110 struct bpf_reg_state *dst_reg,
5111 struct bpf_reg_state *src_reg,
5112 struct bpf_verifier_state *this_branch,
5113 struct bpf_verifier_state *other_branch)
5114{
5115 if (BPF_SRC(insn->code) != BPF_X)
5116 return false;
5117
092ed096
JW
5118 /* Pointers are always 64-bit. */
5119 if (BPF_CLASS(insn->code) == BPF_JMP32)
5120 return false;
5121
5beca081
DB
5122 switch (BPF_OP(insn->code)) {
5123 case BPF_JGT:
5124 if ((dst_reg->type == PTR_TO_PACKET &&
5125 src_reg->type == PTR_TO_PACKET_END) ||
5126 (dst_reg->type == PTR_TO_PACKET_META &&
5127 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5128 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5129 find_good_pkt_pointers(this_branch, dst_reg,
5130 dst_reg->type, false);
5131 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5132 src_reg->type == PTR_TO_PACKET) ||
5133 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5134 src_reg->type == PTR_TO_PACKET_META)) {
5135 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5136 find_good_pkt_pointers(other_branch, src_reg,
5137 src_reg->type, true);
5138 } else {
5139 return false;
5140 }
5141 break;
5142 case BPF_JLT:
5143 if ((dst_reg->type == PTR_TO_PACKET &&
5144 src_reg->type == PTR_TO_PACKET_END) ||
5145 (dst_reg->type == PTR_TO_PACKET_META &&
5146 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5147 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5148 find_good_pkt_pointers(other_branch, dst_reg,
5149 dst_reg->type, true);
5150 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5151 src_reg->type == PTR_TO_PACKET) ||
5152 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5153 src_reg->type == PTR_TO_PACKET_META)) {
5154 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5155 find_good_pkt_pointers(this_branch, src_reg,
5156 src_reg->type, false);
5157 } else {
5158 return false;
5159 }
5160 break;
5161 case BPF_JGE:
5162 if ((dst_reg->type == PTR_TO_PACKET &&
5163 src_reg->type == PTR_TO_PACKET_END) ||
5164 (dst_reg->type == PTR_TO_PACKET_META &&
5165 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5166 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5167 find_good_pkt_pointers(this_branch, dst_reg,
5168 dst_reg->type, true);
5169 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5170 src_reg->type == PTR_TO_PACKET) ||
5171 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5172 src_reg->type == PTR_TO_PACKET_META)) {
5173 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5174 find_good_pkt_pointers(other_branch, src_reg,
5175 src_reg->type, false);
5176 } else {
5177 return false;
5178 }
5179 break;
5180 case BPF_JLE:
5181 if ((dst_reg->type == PTR_TO_PACKET &&
5182 src_reg->type == PTR_TO_PACKET_END) ||
5183 (dst_reg->type == PTR_TO_PACKET_META &&
5184 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5185 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5186 find_good_pkt_pointers(other_branch, dst_reg,
5187 dst_reg->type, false);
5188 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5189 src_reg->type == PTR_TO_PACKET) ||
5190 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5191 src_reg->type == PTR_TO_PACKET_META)) {
5192 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5193 find_good_pkt_pointers(this_branch, src_reg,
5194 src_reg->type, true);
5195 } else {
5196 return false;
5197 }
5198 break;
5199 default:
5200 return false;
5201 }
5202
5203 return true;
5204}
5205
58e2af8b 5206static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
5207 struct bpf_insn *insn, int *insn_idx)
5208{
f4d7e40a
AS
5209 struct bpf_verifier_state *this_branch = env->cur_state;
5210 struct bpf_verifier_state *other_branch;
5211 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5212 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670 5213 u8 opcode = BPF_OP(insn->code);
092ed096 5214 bool is_jmp32;
17a52670
AS
5215 int err;
5216
092ed096
JW
5217 /* Only conditional jumps are expected to reach here. */
5218 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5219 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
5220 return -EINVAL;
5221 }
5222
5223 if (BPF_SRC(insn->code) == BPF_X) {
5224 if (insn->imm != 0) {
092ed096 5225 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5226 return -EINVAL;
5227 }
5228
5229 /* check src1 operand */
dc503a8a 5230 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5231 if (err)
5232 return err;
1be7f75d
AS
5233
5234 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5235 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
5236 insn->src_reg);
5237 return -EACCES;
5238 }
17a52670
AS
5239 } else {
5240 if (insn->src_reg != BPF_REG_0) {
092ed096 5241 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5242 return -EINVAL;
5243 }
5244 }
5245
5246 /* check src2 operand */
dc503a8a 5247 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5248 if (err)
5249 return err;
5250
1a0dc1ac 5251 dst_reg = &regs[insn->dst_reg];
092ed096 5252 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 5253
4f7b3e82 5254 if (BPF_SRC(insn->code) == BPF_K) {
092ed096
JW
5255 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5256 is_jmp32);
4f7b3e82
AS
5257
5258 if (pred == 1) {
5259 /* only follow the goto, ignore fall-through */
17a52670
AS
5260 *insn_idx += insn->off;
5261 return 0;
4f7b3e82
AS
5262 } else if (pred == 0) {
5263 /* only follow fall-through branch, since
17a52670
AS
5264 * that's where the program will go
5265 */
5266 return 0;
5267 }
5268 }
5269
979d63d5
DB
5270 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5271 false);
17a52670
AS
5272 if (!other_branch)
5273 return -EFAULT;
f4d7e40a 5274 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 5275
48461135
JB
5276 /* detect if we are comparing against a constant value so we can adjust
5277 * our min/max values for our dst register.
f1174f77
EC
5278 * this is only legit if both are scalars (or pointers to the same
5279 * object, I suppose, but we don't support that right now), because
5280 * otherwise the different base pointers mean the offsets aren't
5281 * comparable.
48461135
JB
5282 */
5283 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
5284 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5285 struct bpf_reg_state lo_reg0 = *dst_reg;
5286 struct bpf_reg_state lo_reg1 = *src_reg;
5287 struct bpf_reg_state *src_lo, *dst_lo;
5288
5289 dst_lo = &lo_reg0;
5290 src_lo = &lo_reg1;
5291 coerce_reg_to_size(dst_lo, 4);
5292 coerce_reg_to_size(src_lo, 4);
5293
f1174f77 5294 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5295 src_reg->type == SCALAR_VALUE) {
5296 if (tnum_is_const(src_reg->var_off) ||
5297 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5298 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5299 dst_reg,
5300 is_jmp32
5301 ? src_lo->var_off.value
5302 : src_reg->var_off.value,
5303 opcode, is_jmp32);
5304 else if (tnum_is_const(dst_reg->var_off) ||
5305 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5306 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5307 src_reg,
5308 is_jmp32
5309 ? dst_lo->var_off.value
5310 : dst_reg->var_off.value,
5311 opcode, is_jmp32);
5312 else if (!is_jmp32 &&
5313 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5314 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5315 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5316 &other_branch_regs[insn->dst_reg],
092ed096 5317 src_reg, dst_reg, opcode);
f1174f77
EC
5318 }
5319 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5320 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5321 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5322 }
5323
092ed096
JW
5324 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5325 * NOTE: these optimizations below are related with pointer comparison
5326 * which will never be JMP32.
5327 */
5328 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5329 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5330 reg_type_may_be_null(dst_reg->type)) {
5331 /* Mark all identical registers in each branch as either
57a09bf0
TG
5332 * safe or unknown depending R == 0 or R != 0 conditional.
5333 */
840b9615
JS
5334 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5335 opcode == BPF_JNE);
5336 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5337 opcode == BPF_JEQ);
5beca081
DB
5338 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5339 this_branch, other_branch) &&
5340 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5341 verbose(env, "R%d pointer comparison prohibited\n",
5342 insn->dst_reg);
1be7f75d 5343 return -EACCES;
17a52670 5344 }
06ee7115 5345 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5346 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
5347 return 0;
5348}
5349
17a52670 5350/* verify BPF_LD_IMM64 instruction */
58e2af8b 5351static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5352{
d8eca5bb 5353 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 5354 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 5355 struct bpf_map *map;
17a52670
AS
5356 int err;
5357
5358 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 5359 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
5360 return -EINVAL;
5361 }
5362 if (insn->off != 0) {
61bd5218 5363 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
5364 return -EINVAL;
5365 }
5366
dc503a8a 5367 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5368 if (err)
5369 return err;
5370
6b173873 5371 if (insn->src_reg == 0) {
6b173873
JK
5372 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5373
f1174f77 5374 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 5375 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 5376 return 0;
6b173873 5377 }
17a52670 5378
d8eca5bb
DB
5379 map = env->used_maps[aux->map_index];
5380 mark_reg_known_zero(env, regs, insn->dst_reg);
5381 regs[insn->dst_reg].map_ptr = map;
5382
5383 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5384 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5385 regs[insn->dst_reg].off = aux->map_off;
5386 if (map_value_has_spin_lock(map))
5387 regs[insn->dst_reg].id = ++env->id_gen;
5388 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5389 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5390 } else {
5391 verbose(env, "bpf verifier is misconfigured\n");
5392 return -EINVAL;
5393 }
17a52670 5394
17a52670
AS
5395 return 0;
5396}
5397
96be4325
DB
5398static bool may_access_skb(enum bpf_prog_type type)
5399{
5400 switch (type) {
5401 case BPF_PROG_TYPE_SOCKET_FILTER:
5402 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5403 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5404 return true;
5405 default:
5406 return false;
5407 }
5408}
5409
ddd872bc
AS
5410/* verify safety of LD_ABS|LD_IND instructions:
5411 * - they can only appear in the programs where ctx == skb
5412 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5413 * preserve R6-R9, and store return value into R0
5414 *
5415 * Implicit input:
5416 * ctx == skb == R6 == CTX
5417 *
5418 * Explicit input:
5419 * SRC == any register
5420 * IMM == 32-bit immediate
5421 *
5422 * Output:
5423 * R0 - 8/16/32-bit skb data converted to cpu endianness
5424 */
58e2af8b 5425static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 5426{
638f5b90 5427 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 5428 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
5429 int i, err;
5430
24701ece 5431 if (!may_access_skb(env->prog->type)) {
61bd5218 5432 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
5433 return -EINVAL;
5434 }
5435
e0cea7ce
DB
5436 if (!env->ops->gen_ld_abs) {
5437 verbose(env, "bpf verifier is misconfigured\n");
5438 return -EINVAL;
5439 }
5440
f910cefa 5441 if (env->subprog_cnt > 1) {
f4d7e40a
AS
5442 /* when program has LD_ABS insn JITs and interpreter assume
5443 * that r1 == ctx == skb which is not the case for callees
5444 * that can have arbitrary arguments. It's problematic
5445 * for main prog as well since JITs would need to analyze
5446 * all functions in order to make proper register save/restore
5447 * decisions in the main prog. Hence disallow LD_ABS with calls
5448 */
5449 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5450 return -EINVAL;
5451 }
5452
ddd872bc 5453 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 5454 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 5455 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 5456 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
5457 return -EINVAL;
5458 }
5459
5460 /* check whether implicit source operand (register R6) is readable */
dc503a8a 5461 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
5462 if (err)
5463 return err;
5464
fd978bf7
JS
5465 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5466 * gen_ld_abs() may terminate the program at runtime, leading to
5467 * reference leak.
5468 */
5469 err = check_reference_leak(env);
5470 if (err) {
5471 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5472 return err;
5473 }
5474
d83525ca
AS
5475 if (env->cur_state->active_spin_lock) {
5476 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5477 return -EINVAL;
5478 }
5479
ddd872bc 5480 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
5481 verbose(env,
5482 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
5483 return -EINVAL;
5484 }
5485
5486 if (mode == BPF_IND) {
5487 /* check explicit source operand */
dc503a8a 5488 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
5489 if (err)
5490 return err;
5491 }
5492
5493 /* reset caller saved regs to unreadable */
dc503a8a 5494 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5495 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5496 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5497 }
ddd872bc
AS
5498
5499 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
5500 * the value fetched from the packet.
5501 * Already marked as written above.
ddd872bc 5502 */
61bd5218 5503 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
5504 /* ld_abs load up to 32-bit skb data. */
5505 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
5506 return 0;
5507}
5508
390ee7e2
AS
5509static int check_return_code(struct bpf_verifier_env *env)
5510{
5cf1e914 5511 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
5512 struct bpf_reg_state *reg;
5513 struct tnum range = tnum_range(0, 1);
5514
5515 switch (env->prog->type) {
5516 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 5517 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
5518 range = tnum_range(0, 3);
5519 enforce_attach_type_range = tnum_range(2, 3);
5520 }
390ee7e2 5521 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 5522 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 5523 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 5524 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 5525 case BPF_PROG_TYPE_CGROUP_SYSCTL:
390ee7e2
AS
5526 break;
5527 default:
5528 return 0;
5529 }
5530
638f5b90 5531 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 5532 if (reg->type != SCALAR_VALUE) {
61bd5218 5533 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
5534 reg_type_str[reg->type]);
5535 return -EINVAL;
5536 }
5537
5538 if (!tnum_in(range, reg->var_off)) {
5cf1e914 5539 char tn_buf[48];
5540
61bd5218 5541 verbose(env, "At program exit the register R0 ");
390ee7e2 5542 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 5543 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5544 verbose(env, "has value %s", tn_buf);
390ee7e2 5545 } else {
61bd5218 5546 verbose(env, "has unknown scalar value");
390ee7e2 5547 }
5cf1e914 5548 tnum_strn(tn_buf, sizeof(tn_buf), range);
5549 verbose(env, " should have been %s\n", tn_buf);
390ee7e2
AS
5550 return -EINVAL;
5551 }
5cf1e914 5552
5553 if (!tnum_is_unknown(enforce_attach_type_range) &&
5554 tnum_in(enforce_attach_type_range, reg->var_off))
5555 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
5556 return 0;
5557}
5558
475fb78f
AS
5559/* non-recursive DFS pseudo code
5560 * 1 procedure DFS-iterative(G,v):
5561 * 2 label v as discovered
5562 * 3 let S be a stack
5563 * 4 S.push(v)
5564 * 5 while S is not empty
5565 * 6 t <- S.pop()
5566 * 7 if t is what we're looking for:
5567 * 8 return t
5568 * 9 for all edges e in G.adjacentEdges(t) do
5569 * 10 if edge e is already labelled
5570 * 11 continue with the next edge
5571 * 12 w <- G.adjacentVertex(t,e)
5572 * 13 if vertex w is not discovered and not explored
5573 * 14 label e as tree-edge
5574 * 15 label w as discovered
5575 * 16 S.push(w)
5576 * 17 continue at 5
5577 * 18 else if vertex w is discovered
5578 * 19 label e as back-edge
5579 * 20 else
5580 * 21 // vertex w is explored
5581 * 22 label e as forward- or cross-edge
5582 * 23 label t as explored
5583 * 24 S.pop()
5584 *
5585 * convention:
5586 * 0x10 - discovered
5587 * 0x11 - discovered and fall-through edge labelled
5588 * 0x12 - discovered and fall-through and branch edges labelled
5589 * 0x20 - explored
5590 */
5591
5592enum {
5593 DISCOVERED = 0x10,
5594 EXPLORED = 0x20,
5595 FALLTHROUGH = 1,
5596 BRANCH = 2,
5597};
5598
dc2a4ebc
AS
5599static u32 state_htab_size(struct bpf_verifier_env *env)
5600{
5601 return env->prog->len;
5602}
5603
5d839021
AS
5604static struct bpf_verifier_state_list **explored_state(
5605 struct bpf_verifier_env *env,
5606 int idx)
5607{
dc2a4ebc
AS
5608 struct bpf_verifier_state *cur = env->cur_state;
5609 struct bpf_func_state *state = cur->frame[cur->curframe];
5610
5611 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
5612}
5613
5614static void init_explored_state(struct bpf_verifier_env *env, int idx)
5615{
a8f500af 5616 env->insn_aux_data[idx].prune_point = true;
5d839021 5617}
f1bca824 5618
475fb78f
AS
5619/* t, w, e - match pseudo-code above:
5620 * t - index of current instruction
5621 * w - next instruction
5622 * e - edge
5623 */
58e2af8b 5624static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f 5625{
7df737e9
AS
5626 int *insn_stack = env->cfg.insn_stack;
5627 int *insn_state = env->cfg.insn_state;
5628
475fb78f
AS
5629 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5630 return 0;
5631
5632 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5633 return 0;
5634
5635 if (w < 0 || w >= env->prog->len) {
d9762e84 5636 verbose_linfo(env, t, "%d: ", t);
61bd5218 5637 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
5638 return -EINVAL;
5639 }
5640
f1bca824
AS
5641 if (e == BRANCH)
5642 /* mark branch target for state pruning */
5d839021 5643 init_explored_state(env, w);
f1bca824 5644
475fb78f
AS
5645 if (insn_state[w] == 0) {
5646 /* tree-edge */
5647 insn_state[t] = DISCOVERED | e;
5648 insn_state[w] = DISCOVERED;
7df737e9 5649 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 5650 return -E2BIG;
7df737e9 5651 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
5652 return 1;
5653 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
5654 verbose_linfo(env, t, "%d: ", t);
5655 verbose_linfo(env, w, "%d: ", w);
61bd5218 5656 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
5657 return -EINVAL;
5658 } else if (insn_state[w] == EXPLORED) {
5659 /* forward- or cross-edge */
5660 insn_state[t] = DISCOVERED | e;
5661 } else {
61bd5218 5662 verbose(env, "insn state internal bug\n");
475fb78f
AS
5663 return -EFAULT;
5664 }
5665 return 0;
5666}
5667
5668/* non-recursive depth-first-search to detect loops in BPF program
5669 * loop == back-edge in directed graph
5670 */
58e2af8b 5671static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
5672{
5673 struct bpf_insn *insns = env->prog->insnsi;
5674 int insn_cnt = env->prog->len;
7df737e9 5675 int *insn_stack, *insn_state;
475fb78f
AS
5676 int ret = 0;
5677 int i, t;
5678
7df737e9 5679 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
5680 if (!insn_state)
5681 return -ENOMEM;
5682
7df737e9 5683 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 5684 if (!insn_stack) {
71dde681 5685 kvfree(insn_state);
475fb78f
AS
5686 return -ENOMEM;
5687 }
5688
5689 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5690 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 5691 env->cfg.cur_stack = 1;
475fb78f
AS
5692
5693peek_stack:
7df737e9 5694 if (env->cfg.cur_stack == 0)
475fb78f 5695 goto check_state;
7df737e9 5696 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 5697
092ed096
JW
5698 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5699 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
5700 u8 opcode = BPF_OP(insns[t].code);
5701
5702 if (opcode == BPF_EXIT) {
5703 goto mark_explored;
5704 } else if (opcode == BPF_CALL) {
5705 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5706 if (ret == 1)
5707 goto peek_stack;
5708 else if (ret < 0)
5709 goto err_free;
07016151 5710 if (t + 1 < insn_cnt)
5d839021 5711 init_explored_state(env, t + 1);
cc8b0b92 5712 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 5713 init_explored_state(env, t);
cc8b0b92
AS
5714 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5715 if (ret == 1)
5716 goto peek_stack;
5717 else if (ret < 0)
5718 goto err_free;
5719 }
475fb78f
AS
5720 } else if (opcode == BPF_JA) {
5721 if (BPF_SRC(insns[t].code) != BPF_K) {
5722 ret = -EINVAL;
5723 goto err_free;
5724 }
5725 /* unconditional jump with single edge */
5726 ret = push_insn(t, t + insns[t].off + 1,
5727 FALLTHROUGH, env);
5728 if (ret == 1)
5729 goto peek_stack;
5730 else if (ret < 0)
5731 goto err_free;
f1bca824
AS
5732 /* tell verifier to check for equivalent states
5733 * after every call and jump
5734 */
c3de6317 5735 if (t + 1 < insn_cnt)
5d839021 5736 init_explored_state(env, t + 1);
475fb78f
AS
5737 } else {
5738 /* conditional jump with two edges */
5d839021 5739 init_explored_state(env, t);
475fb78f
AS
5740 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5741 if (ret == 1)
5742 goto peek_stack;
5743 else if (ret < 0)
5744 goto err_free;
5745
5746 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5747 if (ret == 1)
5748 goto peek_stack;
5749 else if (ret < 0)
5750 goto err_free;
5751 }
5752 } else {
5753 /* all other non-branch instructions with single
5754 * fall-through edge
5755 */
5756 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5757 if (ret == 1)
5758 goto peek_stack;
5759 else if (ret < 0)
5760 goto err_free;
5761 }
5762
5763mark_explored:
5764 insn_state[t] = EXPLORED;
7df737e9 5765 if (env->cfg.cur_stack-- <= 0) {
61bd5218 5766 verbose(env, "pop stack internal bug\n");
475fb78f
AS
5767 ret = -EFAULT;
5768 goto err_free;
5769 }
5770 goto peek_stack;
5771
5772check_state:
5773 for (i = 0; i < insn_cnt; i++) {
5774 if (insn_state[i] != EXPLORED) {
61bd5218 5775 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
5776 ret = -EINVAL;
5777 goto err_free;
5778 }
5779 }
5780 ret = 0; /* cfg looks good */
5781
5782err_free:
71dde681
AS
5783 kvfree(insn_state);
5784 kvfree(insn_stack);
7df737e9 5785 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
5786 return ret;
5787}
5788
838e9690
YS
5789/* The minimum supported BTF func info size */
5790#define MIN_BPF_FUNCINFO_SIZE 8
5791#define MAX_FUNCINFO_REC_SIZE 252
5792
c454a46b
MKL
5793static int check_btf_func(struct bpf_verifier_env *env,
5794 const union bpf_attr *attr,
5795 union bpf_attr __user *uattr)
838e9690 5796{
d0b2818e 5797 u32 i, nfuncs, urec_size, min_size;
838e9690 5798 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 5799 struct bpf_func_info *krecord;
838e9690 5800 const struct btf_type *type;
c454a46b
MKL
5801 struct bpf_prog *prog;
5802 const struct btf *btf;
838e9690 5803 void __user *urecord;
d0b2818e 5804 u32 prev_offset = 0;
838e9690
YS
5805 int ret = 0;
5806
5807 nfuncs = attr->func_info_cnt;
5808 if (!nfuncs)
5809 return 0;
5810
5811 if (nfuncs != env->subprog_cnt) {
5812 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5813 return -EINVAL;
5814 }
5815
5816 urec_size = attr->func_info_rec_size;
5817 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5818 urec_size > MAX_FUNCINFO_REC_SIZE ||
5819 urec_size % sizeof(u32)) {
5820 verbose(env, "invalid func info rec size %u\n", urec_size);
5821 return -EINVAL;
5822 }
5823
c454a46b
MKL
5824 prog = env->prog;
5825 btf = prog->aux->btf;
838e9690
YS
5826
5827 urecord = u64_to_user_ptr(attr->func_info);
5828 min_size = min_t(u32, krec_size, urec_size);
5829
ba64e7d8 5830 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
5831 if (!krecord)
5832 return -ENOMEM;
ba64e7d8 5833
838e9690
YS
5834 for (i = 0; i < nfuncs; i++) {
5835 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5836 if (ret) {
5837 if (ret == -E2BIG) {
5838 verbose(env, "nonzero tailing record in func info");
5839 /* set the size kernel expects so loader can zero
5840 * out the rest of the record.
5841 */
5842 if (put_user(min_size, &uattr->func_info_rec_size))
5843 ret = -EFAULT;
5844 }
c454a46b 5845 goto err_free;
838e9690
YS
5846 }
5847
ba64e7d8 5848 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 5849 ret = -EFAULT;
c454a46b 5850 goto err_free;
838e9690
YS
5851 }
5852
d30d42e0 5853 /* check insn_off */
838e9690 5854 if (i == 0) {
d30d42e0 5855 if (krecord[i].insn_off) {
838e9690 5856 verbose(env,
d30d42e0
MKL
5857 "nonzero insn_off %u for the first func info record",
5858 krecord[i].insn_off);
838e9690 5859 ret = -EINVAL;
c454a46b 5860 goto err_free;
838e9690 5861 }
d30d42e0 5862 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
5863 verbose(env,
5864 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 5865 krecord[i].insn_off, prev_offset);
838e9690 5866 ret = -EINVAL;
c454a46b 5867 goto err_free;
838e9690
YS
5868 }
5869
d30d42e0 5870 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
5871 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5872 ret = -EINVAL;
c454a46b 5873 goto err_free;
838e9690
YS
5874 }
5875
5876 /* check type_id */
ba64e7d8 5877 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
5878 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5879 verbose(env, "invalid type id %d in func info",
ba64e7d8 5880 krecord[i].type_id);
838e9690 5881 ret = -EINVAL;
c454a46b 5882 goto err_free;
838e9690
YS
5883 }
5884
d30d42e0 5885 prev_offset = krecord[i].insn_off;
838e9690
YS
5886 urecord += urec_size;
5887 }
5888
ba64e7d8
YS
5889 prog->aux->func_info = krecord;
5890 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
5891 return 0;
5892
c454a46b 5893err_free:
ba64e7d8 5894 kvfree(krecord);
838e9690
YS
5895 return ret;
5896}
5897
ba64e7d8
YS
5898static void adjust_btf_func(struct bpf_verifier_env *env)
5899{
5900 int i;
5901
5902 if (!env->prog->aux->func_info)
5903 return;
5904
5905 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 5906 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
5907}
5908
c454a46b
MKL
5909#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5910 sizeof(((struct bpf_line_info *)(0))->line_col))
5911#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5912
5913static int check_btf_line(struct bpf_verifier_env *env,
5914 const union bpf_attr *attr,
5915 union bpf_attr __user *uattr)
5916{
5917 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5918 struct bpf_subprog_info *sub;
5919 struct bpf_line_info *linfo;
5920 struct bpf_prog *prog;
5921 const struct btf *btf;
5922 void __user *ulinfo;
5923 int err;
5924
5925 nr_linfo = attr->line_info_cnt;
5926 if (!nr_linfo)
5927 return 0;
5928
5929 rec_size = attr->line_info_rec_size;
5930 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5931 rec_size > MAX_LINEINFO_REC_SIZE ||
5932 rec_size & (sizeof(u32) - 1))
5933 return -EINVAL;
5934
5935 /* Need to zero it in case the userspace may
5936 * pass in a smaller bpf_line_info object.
5937 */
5938 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5939 GFP_KERNEL | __GFP_NOWARN);
5940 if (!linfo)
5941 return -ENOMEM;
5942
5943 prog = env->prog;
5944 btf = prog->aux->btf;
5945
5946 s = 0;
5947 sub = env->subprog_info;
5948 ulinfo = u64_to_user_ptr(attr->line_info);
5949 expected_size = sizeof(struct bpf_line_info);
5950 ncopy = min_t(u32, expected_size, rec_size);
5951 for (i = 0; i < nr_linfo; i++) {
5952 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5953 if (err) {
5954 if (err == -E2BIG) {
5955 verbose(env, "nonzero tailing record in line_info");
5956 if (put_user(expected_size,
5957 &uattr->line_info_rec_size))
5958 err = -EFAULT;
5959 }
5960 goto err_free;
5961 }
5962
5963 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5964 err = -EFAULT;
5965 goto err_free;
5966 }
5967
5968 /*
5969 * Check insn_off to ensure
5970 * 1) strictly increasing AND
5971 * 2) bounded by prog->len
5972 *
5973 * The linfo[0].insn_off == 0 check logically falls into
5974 * the later "missing bpf_line_info for func..." case
5975 * because the first linfo[0].insn_off must be the
5976 * first sub also and the first sub must have
5977 * subprog_info[0].start == 0.
5978 */
5979 if ((i && linfo[i].insn_off <= prev_offset) ||
5980 linfo[i].insn_off >= prog->len) {
5981 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5982 i, linfo[i].insn_off, prev_offset,
5983 prog->len);
5984 err = -EINVAL;
5985 goto err_free;
5986 }
5987
fdbaa0be
MKL
5988 if (!prog->insnsi[linfo[i].insn_off].code) {
5989 verbose(env,
5990 "Invalid insn code at line_info[%u].insn_off\n",
5991 i);
5992 err = -EINVAL;
5993 goto err_free;
5994 }
5995
23127b33
MKL
5996 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5997 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
5998 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5999 err = -EINVAL;
6000 goto err_free;
6001 }
6002
6003 if (s != env->subprog_cnt) {
6004 if (linfo[i].insn_off == sub[s].start) {
6005 sub[s].linfo_idx = i;
6006 s++;
6007 } else if (sub[s].start < linfo[i].insn_off) {
6008 verbose(env, "missing bpf_line_info for func#%u\n", s);
6009 err = -EINVAL;
6010 goto err_free;
6011 }
6012 }
6013
6014 prev_offset = linfo[i].insn_off;
6015 ulinfo += rec_size;
6016 }
6017
6018 if (s != env->subprog_cnt) {
6019 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6020 env->subprog_cnt - s, s);
6021 err = -EINVAL;
6022 goto err_free;
6023 }
6024
6025 prog->aux->linfo = linfo;
6026 prog->aux->nr_linfo = nr_linfo;
6027
6028 return 0;
6029
6030err_free:
6031 kvfree(linfo);
6032 return err;
6033}
6034
6035static int check_btf_info(struct bpf_verifier_env *env,
6036 const union bpf_attr *attr,
6037 union bpf_attr __user *uattr)
6038{
6039 struct btf *btf;
6040 int err;
6041
6042 if (!attr->func_info_cnt && !attr->line_info_cnt)
6043 return 0;
6044
6045 btf = btf_get_by_fd(attr->prog_btf_fd);
6046 if (IS_ERR(btf))
6047 return PTR_ERR(btf);
6048 env->prog->aux->btf = btf;
6049
6050 err = check_btf_func(env, attr, uattr);
6051 if (err)
6052 return err;
6053
6054 err = check_btf_line(env, attr, uattr);
6055 if (err)
6056 return err;
6057
6058 return 0;
ba64e7d8
YS
6059}
6060
f1174f77
EC
6061/* check %cur's range satisfies %old's */
6062static bool range_within(struct bpf_reg_state *old,
6063 struct bpf_reg_state *cur)
6064{
b03c9f9f
EC
6065 return old->umin_value <= cur->umin_value &&
6066 old->umax_value >= cur->umax_value &&
6067 old->smin_value <= cur->smin_value &&
6068 old->smax_value >= cur->smax_value;
f1174f77
EC
6069}
6070
6071/* Maximum number of register states that can exist at once */
6072#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6073struct idpair {
6074 u32 old;
6075 u32 cur;
6076};
6077
6078/* If in the old state two registers had the same id, then they need to have
6079 * the same id in the new state as well. But that id could be different from
6080 * the old state, so we need to track the mapping from old to new ids.
6081 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6082 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6083 * regs with a different old id could still have new id 9, we don't care about
6084 * that.
6085 * So we look through our idmap to see if this old id has been seen before. If
6086 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6087 */
f1174f77 6088static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6089{
f1174f77 6090 unsigned int i;
969bf05e 6091
f1174f77
EC
6092 for (i = 0; i < ID_MAP_SIZE; i++) {
6093 if (!idmap[i].old) {
6094 /* Reached an empty slot; haven't seen this id before */
6095 idmap[i].old = old_id;
6096 idmap[i].cur = cur_id;
6097 return true;
6098 }
6099 if (idmap[i].old == old_id)
6100 return idmap[i].cur == cur_id;
6101 }
6102 /* We ran out of idmap slots, which should be impossible */
6103 WARN_ON_ONCE(1);
6104 return false;
6105}
6106
9242b5f5
AS
6107static void clean_func_state(struct bpf_verifier_env *env,
6108 struct bpf_func_state *st)
6109{
6110 enum bpf_reg_liveness live;
6111 int i, j;
6112
6113 for (i = 0; i < BPF_REG_FP; i++) {
6114 live = st->regs[i].live;
6115 /* liveness must not touch this register anymore */
6116 st->regs[i].live |= REG_LIVE_DONE;
6117 if (!(live & REG_LIVE_READ))
6118 /* since the register is unused, clear its state
6119 * to make further comparison simpler
6120 */
6121 __mark_reg_not_init(&st->regs[i]);
6122 }
6123
6124 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6125 live = st->stack[i].spilled_ptr.live;
6126 /* liveness must not touch this stack slot anymore */
6127 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6128 if (!(live & REG_LIVE_READ)) {
6129 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6130 for (j = 0; j < BPF_REG_SIZE; j++)
6131 st->stack[i].slot_type[j] = STACK_INVALID;
6132 }
6133 }
6134}
6135
6136static void clean_verifier_state(struct bpf_verifier_env *env,
6137 struct bpf_verifier_state *st)
6138{
6139 int i;
6140
6141 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6142 /* all regs in this state in all frames were already marked */
6143 return;
6144
6145 for (i = 0; i <= st->curframe; i++)
6146 clean_func_state(env, st->frame[i]);
6147}
6148
6149/* the parentage chains form a tree.
6150 * the verifier states are added to state lists at given insn and
6151 * pushed into state stack for future exploration.
6152 * when the verifier reaches bpf_exit insn some of the verifer states
6153 * stored in the state lists have their final liveness state already,
6154 * but a lot of states will get revised from liveness point of view when
6155 * the verifier explores other branches.
6156 * Example:
6157 * 1: r0 = 1
6158 * 2: if r1 == 100 goto pc+1
6159 * 3: r0 = 2
6160 * 4: exit
6161 * when the verifier reaches exit insn the register r0 in the state list of
6162 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6163 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6164 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6165 *
6166 * Since the verifier pushes the branch states as it sees them while exploring
6167 * the program the condition of walking the branch instruction for the second
6168 * time means that all states below this branch were already explored and
6169 * their final liveness markes are already propagated.
6170 * Hence when the verifier completes the search of state list in is_state_visited()
6171 * we can call this clean_live_states() function to mark all liveness states
6172 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6173 * will not be used.
6174 * This function also clears the registers and stack for states that !READ
6175 * to simplify state merging.
6176 *
6177 * Important note here that walking the same branch instruction in the callee
6178 * doesn't meant that the states are DONE. The verifier has to compare
6179 * the callsites
6180 */
6181static void clean_live_states(struct bpf_verifier_env *env, int insn,
6182 struct bpf_verifier_state *cur)
6183{
6184 struct bpf_verifier_state_list *sl;
6185 int i;
6186
5d839021 6187 sl = *explored_state(env, insn);
a8f500af 6188 while (sl) {
dc2a4ebc
AS
6189 if (sl->state.insn_idx != insn ||
6190 sl->state.curframe != cur->curframe)
9242b5f5
AS
6191 goto next;
6192 for (i = 0; i <= cur->curframe; i++)
6193 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6194 goto next;
6195 clean_verifier_state(env, &sl->state);
6196next:
6197 sl = sl->next;
6198 }
6199}
6200
f1174f77 6201/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
6202static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6203 struct idpair *idmap)
f1174f77 6204{
f4d7e40a
AS
6205 bool equal;
6206
dc503a8a
EC
6207 if (!(rold->live & REG_LIVE_READ))
6208 /* explored state didn't use this */
6209 return true;
6210
679c782d 6211 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
6212
6213 if (rold->type == PTR_TO_STACK)
6214 /* two stack pointers are equal only if they're pointing to
6215 * the same stack frame, since fp-8 in foo != fp-8 in bar
6216 */
6217 return equal && rold->frameno == rcur->frameno;
6218
6219 if (equal)
969bf05e
AS
6220 return true;
6221
f1174f77
EC
6222 if (rold->type == NOT_INIT)
6223 /* explored state can't have used this */
969bf05e 6224 return true;
f1174f77
EC
6225 if (rcur->type == NOT_INIT)
6226 return false;
6227 switch (rold->type) {
6228 case SCALAR_VALUE:
6229 if (rcur->type == SCALAR_VALUE) {
6230 /* new val must satisfy old val knowledge */
6231 return range_within(rold, rcur) &&
6232 tnum_in(rold->var_off, rcur->var_off);
6233 } else {
179d1c56
JH
6234 /* We're trying to use a pointer in place of a scalar.
6235 * Even if the scalar was unbounded, this could lead to
6236 * pointer leaks because scalars are allowed to leak
6237 * while pointers are not. We could make this safe in
6238 * special cases if root is calling us, but it's
6239 * probably not worth the hassle.
f1174f77 6240 */
179d1c56 6241 return false;
f1174f77
EC
6242 }
6243 case PTR_TO_MAP_VALUE:
1b688a19
EC
6244 /* If the new min/max/var_off satisfy the old ones and
6245 * everything else matches, we are OK.
d83525ca
AS
6246 * 'id' is not compared, since it's only used for maps with
6247 * bpf_spin_lock inside map element and in such cases if
6248 * the rest of the prog is valid for one map element then
6249 * it's valid for all map elements regardless of the key
6250 * used in bpf_map_lookup()
1b688a19
EC
6251 */
6252 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6253 range_within(rold, rcur) &&
6254 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
6255 case PTR_TO_MAP_VALUE_OR_NULL:
6256 /* a PTR_TO_MAP_VALUE could be safe to use as a
6257 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6258 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6259 * checked, doing so could have affected others with the same
6260 * id, and we can't check for that because we lost the id when
6261 * we converted to a PTR_TO_MAP_VALUE.
6262 */
6263 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6264 return false;
6265 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6266 return false;
6267 /* Check our ids match any regs they're supposed to */
6268 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 6269 case PTR_TO_PACKET_META:
f1174f77 6270 case PTR_TO_PACKET:
de8f3a83 6271 if (rcur->type != rold->type)
f1174f77
EC
6272 return false;
6273 /* We must have at least as much range as the old ptr
6274 * did, so that any accesses which were safe before are
6275 * still safe. This is true even if old range < old off,
6276 * since someone could have accessed through (ptr - k), or
6277 * even done ptr -= k in a register, to get a safe access.
6278 */
6279 if (rold->range > rcur->range)
6280 return false;
6281 /* If the offsets don't match, we can't trust our alignment;
6282 * nor can we be sure that we won't fall out of range.
6283 */
6284 if (rold->off != rcur->off)
6285 return false;
6286 /* id relations must be preserved */
6287 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6288 return false;
6289 /* new val must satisfy old val knowledge */
6290 return range_within(rold, rcur) &&
6291 tnum_in(rold->var_off, rcur->var_off);
6292 case PTR_TO_CTX:
6293 case CONST_PTR_TO_MAP:
f1174f77 6294 case PTR_TO_PACKET_END:
d58e468b 6295 case PTR_TO_FLOW_KEYS:
c64b7983
JS
6296 case PTR_TO_SOCKET:
6297 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6298 case PTR_TO_SOCK_COMMON:
6299 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6300 case PTR_TO_TCP_SOCK:
6301 case PTR_TO_TCP_SOCK_OR_NULL:
f1174f77
EC
6302 /* Only valid matches are exact, which memcmp() above
6303 * would have accepted
6304 */
6305 default:
6306 /* Don't know what's going on, just say it's not safe */
6307 return false;
6308 }
969bf05e 6309
f1174f77
EC
6310 /* Shouldn't get here; if we do, say it's not safe */
6311 WARN_ON_ONCE(1);
969bf05e
AS
6312 return false;
6313}
6314
f4d7e40a
AS
6315static bool stacksafe(struct bpf_func_state *old,
6316 struct bpf_func_state *cur,
638f5b90
AS
6317 struct idpair *idmap)
6318{
6319 int i, spi;
6320
638f5b90
AS
6321 /* walk slots of the explored stack and ignore any additional
6322 * slots in the current stack, since explored(safe) state
6323 * didn't use them
6324 */
6325 for (i = 0; i < old->allocated_stack; i++) {
6326 spi = i / BPF_REG_SIZE;
6327
b233920c
AS
6328 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6329 i += BPF_REG_SIZE - 1;
cc2b14d5 6330 /* explored state didn't use this */
fd05e57b 6331 continue;
b233920c 6332 }
cc2b14d5 6333
638f5b90
AS
6334 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6335 continue;
19e2dbb7
AS
6336
6337 /* explored stack has more populated slots than current stack
6338 * and these slots were used
6339 */
6340 if (i >= cur->allocated_stack)
6341 return false;
6342
cc2b14d5
AS
6343 /* if old state was safe with misc data in the stack
6344 * it will be safe with zero-initialized stack.
6345 * The opposite is not true
6346 */
6347 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6348 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6349 continue;
638f5b90
AS
6350 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6351 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6352 /* Ex: old explored (safe) state has STACK_SPILL in
6353 * this stack slot, but current has has STACK_MISC ->
6354 * this verifier states are not equivalent,
6355 * return false to continue verification of this path
6356 */
6357 return false;
6358 if (i % BPF_REG_SIZE)
6359 continue;
6360 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6361 continue;
6362 if (!regsafe(&old->stack[spi].spilled_ptr,
6363 &cur->stack[spi].spilled_ptr,
6364 idmap))
6365 /* when explored and current stack slot are both storing
6366 * spilled registers, check that stored pointers types
6367 * are the same as well.
6368 * Ex: explored safe path could have stored
6369 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6370 * but current path has stored:
6371 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6372 * such verifier states are not equivalent.
6373 * return false to continue verification of this path
6374 */
6375 return false;
6376 }
6377 return true;
6378}
6379
fd978bf7
JS
6380static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6381{
6382 if (old->acquired_refs != cur->acquired_refs)
6383 return false;
6384 return !memcmp(old->refs, cur->refs,
6385 sizeof(*old->refs) * old->acquired_refs);
6386}
6387
f1bca824
AS
6388/* compare two verifier states
6389 *
6390 * all states stored in state_list are known to be valid, since
6391 * verifier reached 'bpf_exit' instruction through them
6392 *
6393 * this function is called when verifier exploring different branches of
6394 * execution popped from the state stack. If it sees an old state that has
6395 * more strict register state and more strict stack state then this execution
6396 * branch doesn't need to be explored further, since verifier already
6397 * concluded that more strict state leads to valid finish.
6398 *
6399 * Therefore two states are equivalent if register state is more conservative
6400 * and explored stack state is more conservative than the current one.
6401 * Example:
6402 * explored current
6403 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6404 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6405 *
6406 * In other words if current stack state (one being explored) has more
6407 * valid slots than old one that already passed validation, it means
6408 * the verifier can stop exploring and conclude that current state is valid too
6409 *
6410 * Similarly with registers. If explored state has register type as invalid
6411 * whereas register type in current state is meaningful, it means that
6412 * the current state will reach 'bpf_exit' instruction safely
6413 */
f4d7e40a
AS
6414static bool func_states_equal(struct bpf_func_state *old,
6415 struct bpf_func_state *cur)
f1bca824 6416{
f1174f77
EC
6417 struct idpair *idmap;
6418 bool ret = false;
f1bca824
AS
6419 int i;
6420
f1174f77
EC
6421 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6422 /* If we failed to allocate the idmap, just say it's not safe */
6423 if (!idmap)
1a0dc1ac 6424 return false;
f1174f77
EC
6425
6426 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 6427 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 6428 goto out_free;
f1bca824
AS
6429 }
6430
638f5b90
AS
6431 if (!stacksafe(old, cur, idmap))
6432 goto out_free;
fd978bf7
JS
6433
6434 if (!refsafe(old, cur))
6435 goto out_free;
f1174f77
EC
6436 ret = true;
6437out_free:
6438 kfree(idmap);
6439 return ret;
f1bca824
AS
6440}
6441
f4d7e40a
AS
6442static bool states_equal(struct bpf_verifier_env *env,
6443 struct bpf_verifier_state *old,
6444 struct bpf_verifier_state *cur)
6445{
6446 int i;
6447
6448 if (old->curframe != cur->curframe)
6449 return false;
6450
979d63d5
DB
6451 /* Verification state from speculative execution simulation
6452 * must never prune a non-speculative execution one.
6453 */
6454 if (old->speculative && !cur->speculative)
6455 return false;
6456
d83525ca
AS
6457 if (old->active_spin_lock != cur->active_spin_lock)
6458 return false;
6459
f4d7e40a
AS
6460 /* for states to be equal callsites have to be the same
6461 * and all frame states need to be equivalent
6462 */
6463 for (i = 0; i <= old->curframe; i++) {
6464 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6465 return false;
6466 if (!func_states_equal(old->frame[i], cur->frame[i]))
6467 return false;
6468 }
6469 return true;
6470}
6471
5327ed3d
JW
6472/* Return 0 if no propagation happened. Return negative error code if error
6473 * happened. Otherwise, return the propagated bit.
6474 */
55e7f3b5
JW
6475static int propagate_liveness_reg(struct bpf_verifier_env *env,
6476 struct bpf_reg_state *reg,
6477 struct bpf_reg_state *parent_reg)
6478{
5327ed3d
JW
6479 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
6480 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
6481 int err;
6482
5327ed3d
JW
6483 /* When comes here, read flags of PARENT_REG or REG could be any of
6484 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
6485 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
6486 */
6487 if (parent_flag == REG_LIVE_READ64 ||
6488 /* Or if there is no read flag from REG. */
6489 !flag ||
6490 /* Or if the read flag from REG is the same as PARENT_REG. */
6491 parent_flag == flag)
55e7f3b5
JW
6492 return 0;
6493
5327ed3d 6494 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
6495 if (err)
6496 return err;
6497
5327ed3d 6498 return flag;
55e7f3b5
JW
6499}
6500
8e9cd9ce 6501/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
6502 * straight-line code between a state and its parent. When we arrive at an
6503 * equivalent state (jump target or such) we didn't arrive by the straight-line
6504 * code, so read marks in the state must propagate to the parent regardless
6505 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 6506 * in mark_reg_read() is for.
8e9cd9ce 6507 */
f4d7e40a
AS
6508static int propagate_liveness(struct bpf_verifier_env *env,
6509 const struct bpf_verifier_state *vstate,
6510 struct bpf_verifier_state *vparent)
dc503a8a 6511{
3f8cafa4 6512 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 6513 struct bpf_func_state *state, *parent;
3f8cafa4 6514 int i, frame, err = 0;
dc503a8a 6515
f4d7e40a
AS
6516 if (vparent->curframe != vstate->curframe) {
6517 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6518 vparent->curframe, vstate->curframe);
6519 return -EFAULT;
6520 }
dc503a8a
EC
6521 /* Propagate read liveness of registers... */
6522 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 6523 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
6524 parent = vparent->frame[frame];
6525 state = vstate->frame[frame];
6526 parent_reg = parent->regs;
6527 state_reg = state->regs;
83d16312
JK
6528 /* We don't need to worry about FP liveness, it's read-only */
6529 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
6530 err = propagate_liveness_reg(env, &state_reg[i],
6531 &parent_reg[i]);
5327ed3d 6532 if (err < 0)
3f8cafa4 6533 return err;
5327ed3d
JW
6534 if (err == REG_LIVE_READ64)
6535 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 6536 }
f4d7e40a 6537
1b04aee7 6538 /* Propagate stack slots. */
f4d7e40a
AS
6539 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6540 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
6541 parent_reg = &parent->stack[i].spilled_ptr;
6542 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
6543 err = propagate_liveness_reg(env, state_reg,
6544 parent_reg);
5327ed3d 6545 if (err < 0)
3f8cafa4 6546 return err;
dc503a8a
EC
6547 }
6548 }
5327ed3d 6549 return 0;
dc503a8a
EC
6550}
6551
58e2af8b 6552static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 6553{
58e2af8b 6554 struct bpf_verifier_state_list *new_sl;
9f4686c4 6555 struct bpf_verifier_state_list *sl, **pprev;
679c782d 6556 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 6557 int i, j, err, states_cnt = 0;
f1bca824 6558
a8f500af 6559 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
6560 /* this 'insn_idx' instruction wasn't marked, so we will not
6561 * be doing state search here
6562 */
6563 return 0;
6564
a8f500af
AS
6565 pprev = explored_state(env, insn_idx);
6566 sl = *pprev;
6567
9242b5f5
AS
6568 clean_live_states(env, insn_idx, cur);
6569
a8f500af 6570 while (sl) {
dc2a4ebc
AS
6571 states_cnt++;
6572 if (sl->state.insn_idx != insn_idx)
6573 goto next;
638f5b90 6574 if (states_equal(env, &sl->state, cur)) {
9f4686c4 6575 sl->hit_cnt++;
f1bca824 6576 /* reached equivalent register/stack state,
dc503a8a
EC
6577 * prune the search.
6578 * Registers read by the continuation are read by us.
8e9cd9ce
EC
6579 * If we have any write marks in env->cur_state, they
6580 * will prevent corresponding reads in the continuation
6581 * from reaching our parent (an explored_state). Our
6582 * own state will get the read marks recorded, but
6583 * they'll be immediately forgotten as we're pruning
6584 * this state and will pop a new one.
f1bca824 6585 */
f4d7e40a
AS
6586 err = propagate_liveness(env, &sl->state, cur);
6587 if (err)
6588 return err;
f1bca824 6589 return 1;
dc503a8a 6590 }
9f4686c4
AS
6591 sl->miss_cnt++;
6592 /* heuristic to determine whether this state is beneficial
6593 * to keep checking from state equivalence point of view.
6594 * Higher numbers increase max_states_per_insn and verification time,
6595 * but do not meaningfully decrease insn_processed.
6596 */
6597 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6598 /* the state is unlikely to be useful. Remove it to
6599 * speed up verification
6600 */
6601 *pprev = sl->next;
6602 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6603 free_verifier_state(&sl->state, false);
6604 kfree(sl);
6605 env->peak_states--;
6606 } else {
6607 /* cannot free this state, since parentage chain may
6608 * walk it later. Add it for free_list instead to
6609 * be freed at the end of verification
6610 */
6611 sl->next = env->free_list;
6612 env->free_list = sl;
6613 }
6614 sl = *pprev;
6615 continue;
6616 }
dc2a4ebc 6617next:
9f4686c4
AS
6618 pprev = &sl->next;
6619 sl = *pprev;
f1bca824
AS
6620 }
6621
06ee7115
AS
6622 if (env->max_states_per_insn < states_cnt)
6623 env->max_states_per_insn = states_cnt;
6624
ceefbc96
AS
6625 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6626 return 0;
6627
f1bca824
AS
6628 /* there were no equivalent states, remember current one.
6629 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
6630 * but it will either reach outer most bpf_exit (which means it's safe)
6631 * or it will be rejected. Since there are no loops, we won't be
6632 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6633 * again on the way to bpf_exit
f1bca824 6634 */
638f5b90 6635 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
6636 if (!new_sl)
6637 return -ENOMEM;
06ee7115
AS
6638 env->total_states++;
6639 env->peak_states++;
f1bca824
AS
6640
6641 /* add new state to the head of linked list */
679c782d
EC
6642 new = &new_sl->state;
6643 err = copy_verifier_state(new, cur);
1969db47 6644 if (err) {
679c782d 6645 free_verifier_state(new, false);
1969db47
AS
6646 kfree(new_sl);
6647 return err;
6648 }
dc2a4ebc 6649 new->insn_idx = insn_idx;
5d839021
AS
6650 new_sl->next = *explored_state(env, insn_idx);
6651 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
6652 /* connect new state to parentage chain. Current frame needs all
6653 * registers connected. Only r6 - r9 of the callers are alive (pushed
6654 * to the stack implicitly by JITs) so in callers' frames connect just
6655 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6656 * the state of the call instruction (with WRITTEN set), and r0 comes
6657 * from callee with its full parentage chain, anyway.
6658 */
6659 for (j = 0; j <= cur->curframe; j++)
6660 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6661 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8e9cd9ce
EC
6662 /* clear write marks in current state: the writes we did are not writes
6663 * our child did, so they don't screen off its reads from us.
6664 * (There are no read marks in current state, because reads always mark
6665 * their parent and current state never has children yet. Only
6666 * explored_states can get read marks.)
6667 */
dc503a8a 6668 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
6669 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6670
6671 /* all stack frames are accessible from callee, clear them all */
6672 for (j = 0; j <= cur->curframe; j++) {
6673 struct bpf_func_state *frame = cur->frame[j];
679c782d 6674 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 6675
679c782d 6676 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 6677 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
6678 frame->stack[i].spilled_ptr.parent =
6679 &newframe->stack[i].spilled_ptr;
6680 }
f4d7e40a 6681 }
f1bca824
AS
6682 return 0;
6683}
6684
c64b7983
JS
6685/* Return true if it's OK to have the same insn return a different type. */
6686static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6687{
6688 switch (type) {
6689 case PTR_TO_CTX:
6690 case PTR_TO_SOCKET:
6691 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6692 case PTR_TO_SOCK_COMMON:
6693 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6694 case PTR_TO_TCP_SOCK:
6695 case PTR_TO_TCP_SOCK_OR_NULL:
c64b7983
JS
6696 return false;
6697 default:
6698 return true;
6699 }
6700}
6701
6702/* If an instruction was previously used with particular pointer types, then we
6703 * need to be careful to avoid cases such as the below, where it may be ok
6704 * for one branch accessing the pointer, but not ok for the other branch:
6705 *
6706 * R1 = sock_ptr
6707 * goto X;
6708 * ...
6709 * R1 = some_other_valid_ptr;
6710 * goto X;
6711 * ...
6712 * R2 = *(u32 *)(R1 + 0);
6713 */
6714static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6715{
6716 return src != prev && (!reg_type_mismatch_ok(src) ||
6717 !reg_type_mismatch_ok(prev));
6718}
6719
58e2af8b 6720static int do_check(struct bpf_verifier_env *env)
17a52670 6721{
638f5b90 6722 struct bpf_verifier_state *state;
17a52670 6723 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 6724 struct bpf_reg_state *regs;
06ee7115 6725 int insn_cnt = env->prog->len;
17a52670
AS
6726 bool do_print_state = false;
6727
d9762e84
MKL
6728 env->prev_linfo = NULL;
6729
638f5b90
AS
6730 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6731 if (!state)
6732 return -ENOMEM;
f4d7e40a 6733 state->curframe = 0;
979d63d5 6734 state->speculative = false;
f4d7e40a
AS
6735 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6736 if (!state->frame[0]) {
6737 kfree(state);
6738 return -ENOMEM;
6739 }
6740 env->cur_state = state;
6741 init_func_state(env, state->frame[0],
6742 BPF_MAIN_FUNC /* callsite */,
6743 0 /* frameno */,
6744 0 /* subprogno, zero == main subprog */);
c08435ec 6745
17a52670
AS
6746 for (;;) {
6747 struct bpf_insn *insn;
6748 u8 class;
6749 int err;
6750
c08435ec 6751 if (env->insn_idx >= insn_cnt) {
61bd5218 6752 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 6753 env->insn_idx, insn_cnt);
17a52670
AS
6754 return -EFAULT;
6755 }
6756
c08435ec 6757 insn = &insns[env->insn_idx];
17a52670
AS
6758 class = BPF_CLASS(insn->code);
6759
06ee7115 6760 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
6761 verbose(env,
6762 "BPF program is too large. Processed %d insn\n",
06ee7115 6763 env->insn_processed);
17a52670
AS
6764 return -E2BIG;
6765 }
6766
c08435ec 6767 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
6768 if (err < 0)
6769 return err;
6770 if (err == 1) {
6771 /* found equivalent state, can prune the search */
06ee7115 6772 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 6773 if (do_print_state)
979d63d5
DB
6774 verbose(env, "\nfrom %d to %d%s: safe\n",
6775 env->prev_insn_idx, env->insn_idx,
6776 env->cur_state->speculative ?
6777 " (speculative execution)" : "");
f1bca824 6778 else
c08435ec 6779 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
6780 }
6781 goto process_bpf_exit;
6782 }
6783
c3494801
AS
6784 if (signal_pending(current))
6785 return -EAGAIN;
6786
3c2ce60b
DB
6787 if (need_resched())
6788 cond_resched();
6789
06ee7115
AS
6790 if (env->log.level & BPF_LOG_LEVEL2 ||
6791 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6792 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 6793 verbose(env, "%d:", env->insn_idx);
c5fc9692 6794 else
979d63d5
DB
6795 verbose(env, "\nfrom %d to %d%s:",
6796 env->prev_insn_idx, env->insn_idx,
6797 env->cur_state->speculative ?
6798 " (speculative execution)" : "");
f4d7e40a 6799 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
6800 do_print_state = false;
6801 }
6802
06ee7115 6803 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
6804 const struct bpf_insn_cbs cbs = {
6805 .cb_print = verbose,
abe08840 6806 .private_data = env,
7105e828
DB
6807 };
6808
c08435ec
DB
6809 verbose_linfo(env, env->insn_idx, "; ");
6810 verbose(env, "%d: ", env->insn_idx);
abe08840 6811 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
6812 }
6813
cae1927c 6814 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
6815 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6816 env->prev_insn_idx);
cae1927c
JK
6817 if (err)
6818 return err;
6819 }
13a27dfc 6820
638f5b90 6821 regs = cur_regs(env);
c08435ec 6822 env->insn_aux_data[env->insn_idx].seen = true;
fd978bf7 6823
17a52670 6824 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 6825 err = check_alu_op(env, insn);
17a52670
AS
6826 if (err)
6827 return err;
6828
6829 } else if (class == BPF_LDX) {
3df126f3 6830 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
6831
6832 /* check for reserved fields is already done */
6833
17a52670 6834 /* check src operand */
dc503a8a 6835 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6836 if (err)
6837 return err;
6838
dc503a8a 6839 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6840 if (err)
6841 return err;
6842
725f9dcd
AS
6843 src_reg_type = regs[insn->src_reg].type;
6844
17a52670
AS
6845 /* check that memory (src_reg + off) is readable,
6846 * the state of dst_reg will be updated by this func
6847 */
c08435ec
DB
6848 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6849 insn->off, BPF_SIZE(insn->code),
6850 BPF_READ, insn->dst_reg, false);
17a52670
AS
6851 if (err)
6852 return err;
6853
c08435ec 6854 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6855
6856 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
6857 /* saw a valid insn
6858 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 6859 * save type to validate intersecting paths
9bac3d6d 6860 */
3df126f3 6861 *prev_src_type = src_reg_type;
9bac3d6d 6862
c64b7983 6863 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
6864 /* ABuser program is trying to use the same insn
6865 * dst_reg = *(u32*) (src_reg + off)
6866 * with different pointer types:
6867 * src_reg == ctx in one branch and
6868 * src_reg == stack|map in some other branch.
6869 * Reject it.
6870 */
61bd5218 6871 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
6872 return -EINVAL;
6873 }
6874
17a52670 6875 } else if (class == BPF_STX) {
3df126f3 6876 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 6877
17a52670 6878 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 6879 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
6880 if (err)
6881 return err;
c08435ec 6882 env->insn_idx++;
17a52670
AS
6883 continue;
6884 }
6885
17a52670 6886 /* check src1 operand */
dc503a8a 6887 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6888 if (err)
6889 return err;
6890 /* check src2 operand */
dc503a8a 6891 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6892 if (err)
6893 return err;
6894
d691f9e8
AS
6895 dst_reg_type = regs[insn->dst_reg].type;
6896
17a52670 6897 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6898 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6899 insn->off, BPF_SIZE(insn->code),
6900 BPF_WRITE, insn->src_reg, false);
17a52670
AS
6901 if (err)
6902 return err;
6903
c08435ec 6904 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6905
6906 if (*prev_dst_type == NOT_INIT) {
6907 *prev_dst_type = dst_reg_type;
c64b7983 6908 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 6909 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
6910 return -EINVAL;
6911 }
6912
17a52670
AS
6913 } else if (class == BPF_ST) {
6914 if (BPF_MODE(insn->code) != BPF_MEM ||
6915 insn->src_reg != BPF_REG_0) {
61bd5218 6916 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
6917 return -EINVAL;
6918 }
6919 /* check src operand */
dc503a8a 6920 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6921 if (err)
6922 return err;
6923
f37a8cb8 6924 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 6925 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
6926 insn->dst_reg,
6927 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
6928 return -EACCES;
6929 }
6930
17a52670 6931 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6932 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6933 insn->off, BPF_SIZE(insn->code),
6934 BPF_WRITE, -1, false);
17a52670
AS
6935 if (err)
6936 return err;
6937
092ed096 6938 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
6939 u8 opcode = BPF_OP(insn->code);
6940
6941 if (opcode == BPF_CALL) {
6942 if (BPF_SRC(insn->code) != BPF_K ||
6943 insn->off != 0 ||
f4d7e40a
AS
6944 (insn->src_reg != BPF_REG_0 &&
6945 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
6946 insn->dst_reg != BPF_REG_0 ||
6947 class == BPF_JMP32) {
61bd5218 6948 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
6949 return -EINVAL;
6950 }
6951
d83525ca
AS
6952 if (env->cur_state->active_spin_lock &&
6953 (insn->src_reg == BPF_PSEUDO_CALL ||
6954 insn->imm != BPF_FUNC_spin_unlock)) {
6955 verbose(env, "function calls are not allowed while holding a lock\n");
6956 return -EINVAL;
6957 }
f4d7e40a 6958 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 6959 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 6960 else
c08435ec 6961 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
6962 if (err)
6963 return err;
6964
6965 } else if (opcode == BPF_JA) {
6966 if (BPF_SRC(insn->code) != BPF_K ||
6967 insn->imm != 0 ||
6968 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6969 insn->dst_reg != BPF_REG_0 ||
6970 class == BPF_JMP32) {
61bd5218 6971 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
6972 return -EINVAL;
6973 }
6974
c08435ec 6975 env->insn_idx += insn->off + 1;
17a52670
AS
6976 continue;
6977
6978 } else if (opcode == BPF_EXIT) {
6979 if (BPF_SRC(insn->code) != BPF_K ||
6980 insn->imm != 0 ||
6981 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6982 insn->dst_reg != BPF_REG_0 ||
6983 class == BPF_JMP32) {
61bd5218 6984 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
6985 return -EINVAL;
6986 }
6987
d83525ca
AS
6988 if (env->cur_state->active_spin_lock) {
6989 verbose(env, "bpf_spin_unlock is missing\n");
6990 return -EINVAL;
6991 }
6992
f4d7e40a
AS
6993 if (state->curframe) {
6994 /* exit from nested function */
c08435ec
DB
6995 env->prev_insn_idx = env->insn_idx;
6996 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
6997 if (err)
6998 return err;
6999 do_print_state = true;
7000 continue;
7001 }
7002
fd978bf7
JS
7003 err = check_reference_leak(env);
7004 if (err)
7005 return err;
7006
17a52670
AS
7007 /* eBPF calling convetion is such that R0 is used
7008 * to return the value from eBPF program.
7009 * Make sure that it's readable at this time
7010 * of bpf_exit, which means that program wrote
7011 * something into it earlier
7012 */
dc503a8a 7013 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
7014 if (err)
7015 return err;
7016
1be7f75d 7017 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 7018 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
7019 return -EACCES;
7020 }
7021
390ee7e2
AS
7022 err = check_return_code(env);
7023 if (err)
7024 return err;
f1bca824 7025process_bpf_exit:
c08435ec
DB
7026 err = pop_stack(env, &env->prev_insn_idx,
7027 &env->insn_idx);
638f5b90
AS
7028 if (err < 0) {
7029 if (err != -ENOENT)
7030 return err;
17a52670
AS
7031 break;
7032 } else {
7033 do_print_state = true;
7034 continue;
7035 }
7036 } else {
c08435ec 7037 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
7038 if (err)
7039 return err;
7040 }
7041 } else if (class == BPF_LD) {
7042 u8 mode = BPF_MODE(insn->code);
7043
7044 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
7045 err = check_ld_abs(env, insn);
7046 if (err)
7047 return err;
7048
17a52670
AS
7049 } else if (mode == BPF_IMM) {
7050 err = check_ld_imm(env, insn);
7051 if (err)
7052 return err;
7053
c08435ec
DB
7054 env->insn_idx++;
7055 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 7056 } else {
61bd5218 7057 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
7058 return -EINVAL;
7059 }
7060 } else {
61bd5218 7061 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
7062 return -EINVAL;
7063 }
7064
c08435ec 7065 env->insn_idx++;
17a52670
AS
7066 }
7067
9c8105bd 7068 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
7069 return 0;
7070}
7071
56f668df
MKL
7072static int check_map_prealloc(struct bpf_map *map)
7073{
7074 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
7075 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7076 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
7077 !(map->map_flags & BPF_F_NO_PREALLOC);
7078}
7079
d83525ca
AS
7080static bool is_tracing_prog_type(enum bpf_prog_type type)
7081{
7082 switch (type) {
7083 case BPF_PROG_TYPE_KPROBE:
7084 case BPF_PROG_TYPE_TRACEPOINT:
7085 case BPF_PROG_TYPE_PERF_EVENT:
7086 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7087 return true;
7088 default:
7089 return false;
7090 }
7091}
7092
61bd5218
JK
7093static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7094 struct bpf_map *map,
fdc15d38
AS
7095 struct bpf_prog *prog)
7096
7097{
56f668df
MKL
7098 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7099 * preallocated hash maps, since doing memory allocation
7100 * in overflow_handler can crash depending on where nmi got
7101 * triggered.
7102 */
7103 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7104 if (!check_map_prealloc(map)) {
61bd5218 7105 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
7106 return -EINVAL;
7107 }
7108 if (map->inner_map_meta &&
7109 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 7110 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
7111 return -EINVAL;
7112 }
fdc15d38 7113 }
a3884572 7114
d83525ca
AS
7115 if ((is_tracing_prog_type(prog->type) ||
7116 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7117 map_value_has_spin_lock(map)) {
7118 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7119 return -EINVAL;
7120 }
7121
a3884572 7122 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 7123 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
7124 verbose(env, "offload device mismatch between prog and map\n");
7125 return -EINVAL;
7126 }
7127
fdc15d38
AS
7128 return 0;
7129}
7130
b741f163
RG
7131static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7132{
7133 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7134 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7135}
7136
0246e64d
AS
7137/* look for pseudo eBPF instructions that access map FDs and
7138 * replace them with actual map pointers
7139 */
58e2af8b 7140static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
7141{
7142 struct bpf_insn *insn = env->prog->insnsi;
7143 int insn_cnt = env->prog->len;
fdc15d38 7144 int i, j, err;
0246e64d 7145
f1f7714e 7146 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
7147 if (err)
7148 return err;
7149
0246e64d 7150 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 7151 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 7152 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 7153 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
7154 return -EINVAL;
7155 }
7156
d691f9e8
AS
7157 if (BPF_CLASS(insn->code) == BPF_STX &&
7158 ((BPF_MODE(insn->code) != BPF_MEM &&
7159 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 7160 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
7161 return -EINVAL;
7162 }
7163
0246e64d 7164 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 7165 struct bpf_insn_aux_data *aux;
0246e64d
AS
7166 struct bpf_map *map;
7167 struct fd f;
d8eca5bb 7168 u64 addr;
0246e64d
AS
7169
7170 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7171 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7172 insn[1].off != 0) {
61bd5218 7173 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
7174 return -EINVAL;
7175 }
7176
d8eca5bb 7177 if (insn[0].src_reg == 0)
0246e64d
AS
7178 /* valid generic load 64-bit imm */
7179 goto next_insn;
7180
d8eca5bb
DB
7181 /* In final convert_pseudo_ld_imm64() step, this is
7182 * converted into regular 64-bit imm load insn.
7183 */
7184 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7185 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7186 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7187 insn[1].imm != 0)) {
7188 verbose(env,
7189 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
7190 return -EINVAL;
7191 }
7192
20182390 7193 f = fdget(insn[0].imm);
c2101297 7194 map = __bpf_map_get(f);
0246e64d 7195 if (IS_ERR(map)) {
61bd5218 7196 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 7197 insn[0].imm);
0246e64d
AS
7198 return PTR_ERR(map);
7199 }
7200
61bd5218 7201 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
7202 if (err) {
7203 fdput(f);
7204 return err;
7205 }
7206
d8eca5bb
DB
7207 aux = &env->insn_aux_data[i];
7208 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7209 addr = (unsigned long)map;
7210 } else {
7211 u32 off = insn[1].imm;
7212
7213 if (off >= BPF_MAX_VAR_OFF) {
7214 verbose(env, "direct value offset of %u is not allowed\n", off);
7215 fdput(f);
7216 return -EINVAL;
7217 }
7218
7219 if (!map->ops->map_direct_value_addr) {
7220 verbose(env, "no direct value access support for this map type\n");
7221 fdput(f);
7222 return -EINVAL;
7223 }
7224
7225 err = map->ops->map_direct_value_addr(map, &addr, off);
7226 if (err) {
7227 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7228 map->value_size, off);
7229 fdput(f);
7230 return err;
7231 }
7232
7233 aux->map_off = off;
7234 addr += off;
7235 }
7236
7237 insn[0].imm = (u32)addr;
7238 insn[1].imm = addr >> 32;
0246e64d
AS
7239
7240 /* check whether we recorded this map already */
d8eca5bb 7241 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 7242 if (env->used_maps[j] == map) {
d8eca5bb 7243 aux->map_index = j;
0246e64d
AS
7244 fdput(f);
7245 goto next_insn;
7246 }
d8eca5bb 7247 }
0246e64d
AS
7248
7249 if (env->used_map_cnt >= MAX_USED_MAPS) {
7250 fdput(f);
7251 return -E2BIG;
7252 }
7253
0246e64d
AS
7254 /* hold the map. If the program is rejected by verifier,
7255 * the map will be released by release_maps() or it
7256 * will be used by the valid program until it's unloaded
ab7f5bf0 7257 * and all maps are released in free_used_maps()
0246e64d 7258 */
92117d84
AS
7259 map = bpf_map_inc(map, false);
7260 if (IS_ERR(map)) {
7261 fdput(f);
7262 return PTR_ERR(map);
7263 }
d8eca5bb
DB
7264
7265 aux->map_index = env->used_map_cnt;
92117d84
AS
7266 env->used_maps[env->used_map_cnt++] = map;
7267
b741f163 7268 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 7269 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 7270 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
7271 fdput(f);
7272 return -EBUSY;
7273 }
7274
0246e64d
AS
7275 fdput(f);
7276next_insn:
7277 insn++;
7278 i++;
5e581dad
DB
7279 continue;
7280 }
7281
7282 /* Basic sanity check before we invest more work here. */
7283 if (!bpf_opcode_in_insntable(insn->code)) {
7284 verbose(env, "unknown opcode %02x\n", insn->code);
7285 return -EINVAL;
0246e64d
AS
7286 }
7287 }
7288
7289 /* now all pseudo BPF_LD_IMM64 instructions load valid
7290 * 'struct bpf_map *' into a register instead of user map_fd.
7291 * These pointers will be used later by verifier to validate map access.
7292 */
7293 return 0;
7294}
7295
7296/* drop refcnt of maps used by the rejected program */
58e2af8b 7297static void release_maps(struct bpf_verifier_env *env)
0246e64d 7298{
8bad74f9 7299 enum bpf_cgroup_storage_type stype;
0246e64d
AS
7300 int i;
7301
8bad74f9
RG
7302 for_each_cgroup_storage_type(stype) {
7303 if (!env->prog->aux->cgroup_storage[stype])
7304 continue;
de9cbbaa 7305 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
7306 env->prog->aux->cgroup_storage[stype]);
7307 }
de9cbbaa 7308
0246e64d
AS
7309 for (i = 0; i < env->used_map_cnt; i++)
7310 bpf_map_put(env->used_maps[i]);
7311}
7312
7313/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 7314static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
7315{
7316 struct bpf_insn *insn = env->prog->insnsi;
7317 int insn_cnt = env->prog->len;
7318 int i;
7319
7320 for (i = 0; i < insn_cnt; i++, insn++)
7321 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7322 insn->src_reg = 0;
7323}
7324
8041902d
AS
7325/* single env->prog->insni[off] instruction was replaced with the range
7326 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7327 * [0, off) and [off, end) to new locations, so the patched range stays zero
7328 */
b325fbca
JW
7329static int adjust_insn_aux_data(struct bpf_verifier_env *env,
7330 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
7331{
7332 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
7333 struct bpf_insn *insn = new_prog->insnsi;
7334 u32 prog_len;
c131187d 7335 int i;
8041902d 7336
b325fbca
JW
7337 /* aux info at OFF always needs adjustment, no matter fast path
7338 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
7339 * original insn at old prog.
7340 */
7341 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
7342
8041902d
AS
7343 if (cnt == 1)
7344 return 0;
b325fbca 7345 prog_len = new_prog->len;
fad953ce
KC
7346 new_data = vzalloc(array_size(prog_len,
7347 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
7348 if (!new_data)
7349 return -ENOMEM;
7350 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7351 memcpy(new_data + off + cnt - 1, old_data + off,
7352 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 7353 for (i = off; i < off + cnt - 1; i++) {
c131187d 7354 new_data[i].seen = true;
b325fbca
JW
7355 new_data[i].zext_dst = insn_has_def32(env, insn + i);
7356 }
8041902d
AS
7357 env->insn_aux_data = new_data;
7358 vfree(old_data);
7359 return 0;
7360}
7361
cc8b0b92
AS
7362static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7363{
7364 int i;
7365
7366 if (len == 1)
7367 return;
4cb3d99c
JW
7368 /* NOTE: fake 'exit' subprog should be updated as well. */
7369 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 7370 if (env->subprog_info[i].start <= off)
cc8b0b92 7371 continue;
9c8105bd 7372 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
7373 }
7374}
7375
8041902d
AS
7376static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7377 const struct bpf_insn *patch, u32 len)
7378{
7379 struct bpf_prog *new_prog;
7380
7381 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
7382 if (IS_ERR(new_prog)) {
7383 if (PTR_ERR(new_prog) == -ERANGE)
7384 verbose(env,
7385 "insn %d cannot be patched due to 16-bit range\n",
7386 env->insn_aux_data[off].orig_idx);
8041902d 7387 return NULL;
4f73379e 7388 }
b325fbca 7389 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 7390 return NULL;
cc8b0b92 7391 adjust_subprog_starts(env, off, len);
8041902d
AS
7392 return new_prog;
7393}
7394
52875a04
JK
7395static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7396 u32 off, u32 cnt)
7397{
7398 int i, j;
7399
7400 /* find first prog starting at or after off (first to remove) */
7401 for (i = 0; i < env->subprog_cnt; i++)
7402 if (env->subprog_info[i].start >= off)
7403 break;
7404 /* find first prog starting at or after off + cnt (first to stay) */
7405 for (j = i; j < env->subprog_cnt; j++)
7406 if (env->subprog_info[j].start >= off + cnt)
7407 break;
7408 /* if j doesn't start exactly at off + cnt, we are just removing
7409 * the front of previous prog
7410 */
7411 if (env->subprog_info[j].start != off + cnt)
7412 j--;
7413
7414 if (j > i) {
7415 struct bpf_prog_aux *aux = env->prog->aux;
7416 int move;
7417
7418 /* move fake 'exit' subprog as well */
7419 move = env->subprog_cnt + 1 - j;
7420
7421 memmove(env->subprog_info + i,
7422 env->subprog_info + j,
7423 sizeof(*env->subprog_info) * move);
7424 env->subprog_cnt -= j - i;
7425
7426 /* remove func_info */
7427 if (aux->func_info) {
7428 move = aux->func_info_cnt - j;
7429
7430 memmove(aux->func_info + i,
7431 aux->func_info + j,
7432 sizeof(*aux->func_info) * move);
7433 aux->func_info_cnt -= j - i;
7434 /* func_info->insn_off is set after all code rewrites,
7435 * in adjust_btf_func() - no need to adjust
7436 */
7437 }
7438 } else {
7439 /* convert i from "first prog to remove" to "first to adjust" */
7440 if (env->subprog_info[i].start == off)
7441 i++;
7442 }
7443
7444 /* update fake 'exit' subprog as well */
7445 for (; i <= env->subprog_cnt; i++)
7446 env->subprog_info[i].start -= cnt;
7447
7448 return 0;
7449}
7450
7451static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7452 u32 cnt)
7453{
7454 struct bpf_prog *prog = env->prog;
7455 u32 i, l_off, l_cnt, nr_linfo;
7456 struct bpf_line_info *linfo;
7457
7458 nr_linfo = prog->aux->nr_linfo;
7459 if (!nr_linfo)
7460 return 0;
7461
7462 linfo = prog->aux->linfo;
7463
7464 /* find first line info to remove, count lines to be removed */
7465 for (i = 0; i < nr_linfo; i++)
7466 if (linfo[i].insn_off >= off)
7467 break;
7468
7469 l_off = i;
7470 l_cnt = 0;
7471 for (; i < nr_linfo; i++)
7472 if (linfo[i].insn_off < off + cnt)
7473 l_cnt++;
7474 else
7475 break;
7476
7477 /* First live insn doesn't match first live linfo, it needs to "inherit"
7478 * last removed linfo. prog is already modified, so prog->len == off
7479 * means no live instructions after (tail of the program was removed).
7480 */
7481 if (prog->len != off && l_cnt &&
7482 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7483 l_cnt--;
7484 linfo[--i].insn_off = off + cnt;
7485 }
7486
7487 /* remove the line info which refer to the removed instructions */
7488 if (l_cnt) {
7489 memmove(linfo + l_off, linfo + i,
7490 sizeof(*linfo) * (nr_linfo - i));
7491
7492 prog->aux->nr_linfo -= l_cnt;
7493 nr_linfo = prog->aux->nr_linfo;
7494 }
7495
7496 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7497 for (i = l_off; i < nr_linfo; i++)
7498 linfo[i].insn_off -= cnt;
7499
7500 /* fix up all subprogs (incl. 'exit') which start >= off */
7501 for (i = 0; i <= env->subprog_cnt; i++)
7502 if (env->subprog_info[i].linfo_idx > l_off) {
7503 /* program may have started in the removed region but
7504 * may not be fully removed
7505 */
7506 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7507 env->subprog_info[i].linfo_idx -= l_cnt;
7508 else
7509 env->subprog_info[i].linfo_idx = l_off;
7510 }
7511
7512 return 0;
7513}
7514
7515static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7516{
7517 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7518 unsigned int orig_prog_len = env->prog->len;
7519 int err;
7520
08ca90af
JK
7521 if (bpf_prog_is_dev_bound(env->prog->aux))
7522 bpf_prog_offload_remove_insns(env, off, cnt);
7523
52875a04
JK
7524 err = bpf_remove_insns(env->prog, off, cnt);
7525 if (err)
7526 return err;
7527
7528 err = adjust_subprog_starts_after_remove(env, off, cnt);
7529 if (err)
7530 return err;
7531
7532 err = bpf_adj_linfo_after_remove(env, off, cnt);
7533 if (err)
7534 return err;
7535
7536 memmove(aux_data + off, aux_data + off + cnt,
7537 sizeof(*aux_data) * (orig_prog_len - off - cnt));
7538
7539 return 0;
7540}
7541
2a5418a1
DB
7542/* The verifier does more data flow analysis than llvm and will not
7543 * explore branches that are dead at run time. Malicious programs can
7544 * have dead code too. Therefore replace all dead at-run-time code
7545 * with 'ja -1'.
7546 *
7547 * Just nops are not optimal, e.g. if they would sit at the end of the
7548 * program and through another bug we would manage to jump there, then
7549 * we'd execute beyond program memory otherwise. Returning exception
7550 * code also wouldn't work since we can have subprogs where the dead
7551 * code could be located.
c131187d
AS
7552 */
7553static void sanitize_dead_code(struct bpf_verifier_env *env)
7554{
7555 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 7556 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
7557 struct bpf_insn *insn = env->prog->insnsi;
7558 const int insn_cnt = env->prog->len;
7559 int i;
7560
7561 for (i = 0; i < insn_cnt; i++) {
7562 if (aux_data[i].seen)
7563 continue;
2a5418a1 7564 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
7565 }
7566}
7567
e2ae4ca2
JK
7568static bool insn_is_cond_jump(u8 code)
7569{
7570 u8 op;
7571
092ed096
JW
7572 if (BPF_CLASS(code) == BPF_JMP32)
7573 return true;
7574
e2ae4ca2
JK
7575 if (BPF_CLASS(code) != BPF_JMP)
7576 return false;
7577
7578 op = BPF_OP(code);
7579 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7580}
7581
7582static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7583{
7584 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7585 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7586 struct bpf_insn *insn = env->prog->insnsi;
7587 const int insn_cnt = env->prog->len;
7588 int i;
7589
7590 for (i = 0; i < insn_cnt; i++, insn++) {
7591 if (!insn_is_cond_jump(insn->code))
7592 continue;
7593
7594 if (!aux_data[i + 1].seen)
7595 ja.off = insn->off;
7596 else if (!aux_data[i + 1 + insn->off].seen)
7597 ja.off = 0;
7598 else
7599 continue;
7600
08ca90af
JK
7601 if (bpf_prog_is_dev_bound(env->prog->aux))
7602 bpf_prog_offload_replace_insn(env, i, &ja);
7603
e2ae4ca2
JK
7604 memcpy(insn, &ja, sizeof(ja));
7605 }
7606}
7607
52875a04
JK
7608static int opt_remove_dead_code(struct bpf_verifier_env *env)
7609{
7610 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7611 int insn_cnt = env->prog->len;
7612 int i, err;
7613
7614 for (i = 0; i < insn_cnt; i++) {
7615 int j;
7616
7617 j = 0;
7618 while (i + j < insn_cnt && !aux_data[i + j].seen)
7619 j++;
7620 if (!j)
7621 continue;
7622
7623 err = verifier_remove_insns(env, i, j);
7624 if (err)
7625 return err;
7626 insn_cnt = env->prog->len;
7627 }
7628
7629 return 0;
7630}
7631
a1b14abc
JK
7632static int opt_remove_nops(struct bpf_verifier_env *env)
7633{
7634 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7635 struct bpf_insn *insn = env->prog->insnsi;
7636 int insn_cnt = env->prog->len;
7637 int i, err;
7638
7639 for (i = 0; i < insn_cnt; i++) {
7640 if (memcmp(&insn[i], &ja, sizeof(ja)))
7641 continue;
7642
7643 err = verifier_remove_insns(env, i, 1);
7644 if (err)
7645 return err;
7646 insn_cnt--;
7647 i--;
7648 }
7649
7650 return 0;
7651}
7652
d6c2308c
JW
7653static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
7654 const union bpf_attr *attr)
a4b1d3c1 7655{
d6c2308c 7656 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 7657 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 7658 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 7659 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 7660 struct bpf_prog *new_prog;
d6c2308c 7661 bool rnd_hi32;
a4b1d3c1 7662
d6c2308c 7663 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 7664 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
7665 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
7666 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
7667 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
7668 for (i = 0; i < len; i++) {
7669 int adj_idx = i + delta;
7670 struct bpf_insn insn;
7671
d6c2308c
JW
7672 insn = insns[adj_idx];
7673 if (!aux[adj_idx].zext_dst) {
7674 u8 code, class;
7675 u32 imm_rnd;
7676
7677 if (!rnd_hi32)
7678 continue;
7679
7680 code = insn.code;
7681 class = BPF_CLASS(code);
7682 if (insn_no_def(&insn))
7683 continue;
7684
7685 /* NOTE: arg "reg" (the fourth one) is only used for
7686 * BPF_STX which has been ruled out in above
7687 * check, it is safe to pass NULL here.
7688 */
7689 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
7690 if (class == BPF_LD &&
7691 BPF_MODE(code) == BPF_IMM)
7692 i++;
7693 continue;
7694 }
7695
7696 /* ctx load could be transformed into wider load. */
7697 if (class == BPF_LDX &&
7698 aux[adj_idx].ptr_type == PTR_TO_CTX)
7699 continue;
7700
7701 imm_rnd = get_random_int();
7702 rnd_hi32_patch[0] = insn;
7703 rnd_hi32_patch[1].imm = imm_rnd;
7704 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
7705 patch = rnd_hi32_patch;
7706 patch_len = 4;
7707 goto apply_patch_buffer;
7708 }
7709
7710 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
7711 continue;
7712
a4b1d3c1
JW
7713 zext_patch[0] = insn;
7714 zext_patch[1].dst_reg = insn.dst_reg;
7715 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
7716 patch = zext_patch;
7717 patch_len = 2;
7718apply_patch_buffer:
7719 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
7720 if (!new_prog)
7721 return -ENOMEM;
7722 env->prog = new_prog;
7723 insns = new_prog->insnsi;
7724 aux = env->insn_aux_data;
d6c2308c 7725 delta += patch_len - 1;
a4b1d3c1
JW
7726 }
7727
7728 return 0;
7729}
7730
c64b7983
JS
7731/* convert load instructions that access fields of a context type into a
7732 * sequence of instructions that access fields of the underlying structure:
7733 * struct __sk_buff -> struct sk_buff
7734 * struct bpf_sock_ops -> struct sock
9bac3d6d 7735 */
58e2af8b 7736static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 7737{
00176a34 7738 const struct bpf_verifier_ops *ops = env->ops;
f96da094 7739 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 7740 const int insn_cnt = env->prog->len;
36bbef52 7741 struct bpf_insn insn_buf[16], *insn;
46f53a65 7742 u32 target_size, size_default, off;
9bac3d6d 7743 struct bpf_prog *new_prog;
d691f9e8 7744 enum bpf_access_type type;
f96da094 7745 bool is_narrower_load;
9bac3d6d 7746
b09928b9
DB
7747 if (ops->gen_prologue || env->seen_direct_write) {
7748 if (!ops->gen_prologue) {
7749 verbose(env, "bpf verifier is misconfigured\n");
7750 return -EINVAL;
7751 }
36bbef52
DB
7752 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7753 env->prog);
7754 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 7755 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
7756 return -EINVAL;
7757 } else if (cnt) {
8041902d 7758 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
7759 if (!new_prog)
7760 return -ENOMEM;
8041902d 7761
36bbef52 7762 env->prog = new_prog;
3df126f3 7763 delta += cnt - 1;
36bbef52
DB
7764 }
7765 }
7766
c64b7983 7767 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
7768 return 0;
7769
3df126f3 7770 insn = env->prog->insnsi + delta;
36bbef52 7771
9bac3d6d 7772 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
7773 bpf_convert_ctx_access_t convert_ctx_access;
7774
62c7989b
DB
7775 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7776 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7777 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 7778 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 7779 type = BPF_READ;
62c7989b
DB
7780 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7781 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7782 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 7783 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
7784 type = BPF_WRITE;
7785 else
9bac3d6d
AS
7786 continue;
7787
af86ca4e
AS
7788 if (type == BPF_WRITE &&
7789 env->insn_aux_data[i + delta].sanitize_stack_off) {
7790 struct bpf_insn patch[] = {
7791 /* Sanitize suspicious stack slot with zero.
7792 * There are no memory dependencies for this store,
7793 * since it's only using frame pointer and immediate
7794 * constant of zero
7795 */
7796 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7797 env->insn_aux_data[i + delta].sanitize_stack_off,
7798 0),
7799 /* the original STX instruction will immediately
7800 * overwrite the same stack slot with appropriate value
7801 */
7802 *insn,
7803 };
7804
7805 cnt = ARRAY_SIZE(patch);
7806 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7807 if (!new_prog)
7808 return -ENOMEM;
7809
7810 delta += cnt - 1;
7811 env->prog = new_prog;
7812 insn = new_prog->insnsi + i + delta;
7813 continue;
7814 }
7815
c64b7983
JS
7816 switch (env->insn_aux_data[i + delta].ptr_type) {
7817 case PTR_TO_CTX:
7818 if (!ops->convert_ctx_access)
7819 continue;
7820 convert_ctx_access = ops->convert_ctx_access;
7821 break;
7822 case PTR_TO_SOCKET:
46f8bc92 7823 case PTR_TO_SOCK_COMMON:
c64b7983
JS
7824 convert_ctx_access = bpf_sock_convert_ctx_access;
7825 break;
655a51e5
MKL
7826 case PTR_TO_TCP_SOCK:
7827 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7828 break;
c64b7983 7829 default:
9bac3d6d 7830 continue;
c64b7983 7831 }
9bac3d6d 7832
31fd8581 7833 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 7834 size = BPF_LDST_BYTES(insn);
31fd8581
YS
7835
7836 /* If the read access is a narrower load of the field,
7837 * convert to a 4/8-byte load, to minimum program type specific
7838 * convert_ctx_access changes. If conversion is successful,
7839 * we will apply proper mask to the result.
7840 */
f96da094 7841 is_narrower_load = size < ctx_field_size;
46f53a65
AI
7842 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7843 off = insn->off;
31fd8581 7844 if (is_narrower_load) {
f96da094
DB
7845 u8 size_code;
7846
7847 if (type == BPF_WRITE) {
61bd5218 7848 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
7849 return -EINVAL;
7850 }
31fd8581 7851
f96da094 7852 size_code = BPF_H;
31fd8581
YS
7853 if (ctx_field_size == 4)
7854 size_code = BPF_W;
7855 else if (ctx_field_size == 8)
7856 size_code = BPF_DW;
f96da094 7857
bc23105c 7858 insn->off = off & ~(size_default - 1);
31fd8581
YS
7859 insn->code = BPF_LDX | BPF_MEM | size_code;
7860 }
f96da094
DB
7861
7862 target_size = 0;
c64b7983
JS
7863 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7864 &target_size);
f96da094
DB
7865 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7866 (ctx_field_size && !target_size)) {
61bd5218 7867 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
7868 return -EINVAL;
7869 }
f96da094
DB
7870
7871 if (is_narrower_load && size < target_size) {
46f53a65
AI
7872 u8 shift = (off & (size_default - 1)) * 8;
7873
7874 if (ctx_field_size <= 4) {
7875 if (shift)
7876 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7877 insn->dst_reg,
7878 shift);
31fd8581 7879 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 7880 (1 << size * 8) - 1);
46f53a65
AI
7881 } else {
7882 if (shift)
7883 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7884 insn->dst_reg,
7885 shift);
31fd8581 7886 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 7887 (1ULL << size * 8) - 1);
46f53a65 7888 }
31fd8581 7889 }
9bac3d6d 7890
8041902d 7891 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
7892 if (!new_prog)
7893 return -ENOMEM;
7894
3df126f3 7895 delta += cnt - 1;
9bac3d6d
AS
7896
7897 /* keep walking new program and skip insns we just inserted */
7898 env->prog = new_prog;
3df126f3 7899 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
7900 }
7901
7902 return 0;
7903}
7904
1c2a088a
AS
7905static int jit_subprogs(struct bpf_verifier_env *env)
7906{
7907 struct bpf_prog *prog = env->prog, **func, *tmp;
7908 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 7909 struct bpf_insn *insn;
1c2a088a 7910 void *old_bpf_func;
c454a46b 7911 int err;
1c2a088a 7912
f910cefa 7913 if (env->subprog_cnt <= 1)
1c2a088a
AS
7914 return 0;
7915
7105e828 7916 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
7917 if (insn->code != (BPF_JMP | BPF_CALL) ||
7918 insn->src_reg != BPF_PSEUDO_CALL)
7919 continue;
c7a89784
DB
7920 /* Upon error here we cannot fall back to interpreter but
7921 * need a hard reject of the program. Thus -EFAULT is
7922 * propagated in any case.
7923 */
1c2a088a
AS
7924 subprog = find_subprog(env, i + insn->imm + 1);
7925 if (subprog < 0) {
7926 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7927 i + insn->imm + 1);
7928 return -EFAULT;
7929 }
7930 /* temporarily remember subprog id inside insn instead of
7931 * aux_data, since next loop will split up all insns into funcs
7932 */
f910cefa 7933 insn->off = subprog;
1c2a088a
AS
7934 /* remember original imm in case JIT fails and fallback
7935 * to interpreter will be needed
7936 */
7937 env->insn_aux_data[i].call_imm = insn->imm;
7938 /* point imm to __bpf_call_base+1 from JITs point of view */
7939 insn->imm = 1;
7940 }
7941
c454a46b
MKL
7942 err = bpf_prog_alloc_jited_linfo(prog);
7943 if (err)
7944 goto out_undo_insn;
7945
7946 err = -ENOMEM;
6396bb22 7947 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 7948 if (!func)
c7a89784 7949 goto out_undo_insn;
1c2a088a 7950
f910cefa 7951 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 7952 subprog_start = subprog_end;
4cb3d99c 7953 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
7954
7955 len = subprog_end - subprog_start;
492ecee8
AS
7956 /* BPF_PROG_RUN doesn't call subprogs directly,
7957 * hence main prog stats include the runtime of subprogs.
7958 * subprogs don't have IDs and not reachable via prog_get_next_id
7959 * func[i]->aux->stats will never be accessed and stays NULL
7960 */
7961 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
7962 if (!func[i])
7963 goto out_free;
7964 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7965 len * sizeof(struct bpf_insn));
4f74d809 7966 func[i]->type = prog->type;
1c2a088a 7967 func[i]->len = len;
4f74d809
DB
7968 if (bpf_prog_calc_tag(func[i]))
7969 goto out_free;
1c2a088a 7970 func[i]->is_func = 1;
ba64e7d8
YS
7971 func[i]->aux->func_idx = i;
7972 /* the btf and func_info will be freed only at prog->aux */
7973 func[i]->aux->btf = prog->aux->btf;
7974 func[i]->aux->func_info = prog->aux->func_info;
7975
1c2a088a
AS
7976 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7977 * Long term would need debug info to populate names
7978 */
7979 func[i]->aux->name[0] = 'F';
9c8105bd 7980 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 7981 func[i]->jit_requested = 1;
c454a46b
MKL
7982 func[i]->aux->linfo = prog->aux->linfo;
7983 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7984 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7985 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
7986 func[i] = bpf_int_jit_compile(func[i]);
7987 if (!func[i]->jited) {
7988 err = -ENOTSUPP;
7989 goto out_free;
7990 }
7991 cond_resched();
7992 }
7993 /* at this point all bpf functions were successfully JITed
7994 * now populate all bpf_calls with correct addresses and
7995 * run last pass of JIT
7996 */
f910cefa 7997 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7998 insn = func[i]->insnsi;
7999 for (j = 0; j < func[i]->len; j++, insn++) {
8000 if (insn->code != (BPF_JMP | BPF_CALL) ||
8001 insn->src_reg != BPF_PSEUDO_CALL)
8002 continue;
8003 subprog = insn->off;
0d306c31
PB
8004 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8005 __bpf_call_base;
1c2a088a 8006 }
2162fed4
SD
8007
8008 /* we use the aux data to keep a list of the start addresses
8009 * of the JITed images for each function in the program
8010 *
8011 * for some architectures, such as powerpc64, the imm field
8012 * might not be large enough to hold the offset of the start
8013 * address of the callee's JITed image from __bpf_call_base
8014 *
8015 * in such cases, we can lookup the start address of a callee
8016 * by using its subprog id, available from the off field of
8017 * the call instruction, as an index for this list
8018 */
8019 func[i]->aux->func = func;
8020 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 8021 }
f910cefa 8022 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8023 old_bpf_func = func[i]->bpf_func;
8024 tmp = bpf_int_jit_compile(func[i]);
8025 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8026 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 8027 err = -ENOTSUPP;
1c2a088a
AS
8028 goto out_free;
8029 }
8030 cond_resched();
8031 }
8032
8033 /* finally lock prog and jit images for all functions and
8034 * populate kallsysm
8035 */
f910cefa 8036 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8037 bpf_prog_lock_ro(func[i]);
8038 bpf_prog_kallsyms_add(func[i]);
8039 }
7105e828
DB
8040
8041 /* Last step: make now unused interpreter insns from main
8042 * prog consistent for later dump requests, so they can
8043 * later look the same as if they were interpreted only.
8044 */
8045 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
8046 if (insn->code != (BPF_JMP | BPF_CALL) ||
8047 insn->src_reg != BPF_PSEUDO_CALL)
8048 continue;
8049 insn->off = env->insn_aux_data[i].call_imm;
8050 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 8051 insn->imm = subprog;
7105e828
DB
8052 }
8053
1c2a088a
AS
8054 prog->jited = 1;
8055 prog->bpf_func = func[0]->bpf_func;
8056 prog->aux->func = func;
f910cefa 8057 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 8058 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
8059 return 0;
8060out_free:
f910cefa 8061 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
8062 if (func[i])
8063 bpf_jit_free(func[i]);
8064 kfree(func);
c7a89784 8065out_undo_insn:
1c2a088a
AS
8066 /* cleanup main prog to be interpreted */
8067 prog->jit_requested = 0;
8068 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8069 if (insn->code != (BPF_JMP | BPF_CALL) ||
8070 insn->src_reg != BPF_PSEUDO_CALL)
8071 continue;
8072 insn->off = 0;
8073 insn->imm = env->insn_aux_data[i].call_imm;
8074 }
c454a46b 8075 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
8076 return err;
8077}
8078
1ea47e01
AS
8079static int fixup_call_args(struct bpf_verifier_env *env)
8080{
19d28fbd 8081#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8082 struct bpf_prog *prog = env->prog;
8083 struct bpf_insn *insn = prog->insnsi;
8084 int i, depth;
19d28fbd 8085#endif
e4052d06 8086 int err = 0;
1ea47e01 8087
e4052d06
QM
8088 if (env->prog->jit_requested &&
8089 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
8090 err = jit_subprogs(env);
8091 if (err == 0)
1c2a088a 8092 return 0;
c7a89784
DB
8093 if (err == -EFAULT)
8094 return err;
19d28fbd
DM
8095 }
8096#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8097 for (i = 0; i < prog->len; i++, insn++) {
8098 if (insn->code != (BPF_JMP | BPF_CALL) ||
8099 insn->src_reg != BPF_PSEUDO_CALL)
8100 continue;
8101 depth = get_callee_stack_depth(env, insn, i);
8102 if (depth < 0)
8103 return depth;
8104 bpf_patch_call_args(insn, depth);
8105 }
19d28fbd
DM
8106 err = 0;
8107#endif
8108 return err;
1ea47e01
AS
8109}
8110
79741b3b 8111/* fixup insn->imm field of bpf_call instructions
81ed18ab 8112 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
8113 *
8114 * this function is called after eBPF program passed verification
8115 */
79741b3b 8116static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 8117{
79741b3b
AS
8118 struct bpf_prog *prog = env->prog;
8119 struct bpf_insn *insn = prog->insnsi;
e245c5c6 8120 const struct bpf_func_proto *fn;
79741b3b 8121 const int insn_cnt = prog->len;
09772d92 8122 const struct bpf_map_ops *ops;
c93552c4 8123 struct bpf_insn_aux_data *aux;
81ed18ab
AS
8124 struct bpf_insn insn_buf[16];
8125 struct bpf_prog *new_prog;
8126 struct bpf_map *map_ptr;
8127 int i, cnt, delta = 0;
e245c5c6 8128
79741b3b 8129 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
8130 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8131 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8132 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 8133 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
8134 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8135 struct bpf_insn mask_and_div[] = {
8136 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8137 /* Rx div 0 -> 0 */
8138 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8139 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8140 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8141 *insn,
8142 };
8143 struct bpf_insn mask_and_mod[] = {
8144 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8145 /* Rx mod 0 -> Rx */
8146 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8147 *insn,
8148 };
8149 struct bpf_insn *patchlet;
8150
8151 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8152 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8153 patchlet = mask_and_div + (is64 ? 1 : 0);
8154 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8155 } else {
8156 patchlet = mask_and_mod + (is64 ? 1 : 0);
8157 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8158 }
8159
8160 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
8161 if (!new_prog)
8162 return -ENOMEM;
8163
8164 delta += cnt - 1;
8165 env->prog = prog = new_prog;
8166 insn = new_prog->insnsi + i + delta;
8167 continue;
8168 }
8169
e0cea7ce
DB
8170 if (BPF_CLASS(insn->code) == BPF_LD &&
8171 (BPF_MODE(insn->code) == BPF_ABS ||
8172 BPF_MODE(insn->code) == BPF_IND)) {
8173 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8174 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8175 verbose(env, "bpf verifier is misconfigured\n");
8176 return -EINVAL;
8177 }
8178
8179 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8180 if (!new_prog)
8181 return -ENOMEM;
8182
8183 delta += cnt - 1;
8184 env->prog = prog = new_prog;
8185 insn = new_prog->insnsi + i + delta;
8186 continue;
8187 }
8188
979d63d5
DB
8189 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8190 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8191 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8192 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8193 struct bpf_insn insn_buf[16];
8194 struct bpf_insn *patch = &insn_buf[0];
8195 bool issrc, isneg;
8196 u32 off_reg;
8197
8198 aux = &env->insn_aux_data[i + delta];
3612af78
DB
8199 if (!aux->alu_state ||
8200 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
8201 continue;
8202
8203 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8204 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8205 BPF_ALU_SANITIZE_SRC;
8206
8207 off_reg = issrc ? insn->src_reg : insn->dst_reg;
8208 if (isneg)
8209 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8210 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8211 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8212 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8213 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8214 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8215 if (issrc) {
8216 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8217 off_reg);
8218 insn->src_reg = BPF_REG_AX;
8219 } else {
8220 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8221 BPF_REG_AX);
8222 }
8223 if (isneg)
8224 insn->code = insn->code == code_add ?
8225 code_sub : code_add;
8226 *patch++ = *insn;
8227 if (issrc && isneg)
8228 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8229 cnt = patch - insn_buf;
8230
8231 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8232 if (!new_prog)
8233 return -ENOMEM;
8234
8235 delta += cnt - 1;
8236 env->prog = prog = new_prog;
8237 insn = new_prog->insnsi + i + delta;
8238 continue;
8239 }
8240
79741b3b
AS
8241 if (insn->code != (BPF_JMP | BPF_CALL))
8242 continue;
cc8b0b92
AS
8243 if (insn->src_reg == BPF_PSEUDO_CALL)
8244 continue;
e245c5c6 8245
79741b3b
AS
8246 if (insn->imm == BPF_FUNC_get_route_realm)
8247 prog->dst_needed = 1;
8248 if (insn->imm == BPF_FUNC_get_prandom_u32)
8249 bpf_user_rnd_init_once();
9802d865
JB
8250 if (insn->imm == BPF_FUNC_override_return)
8251 prog->kprobe_override = 1;
79741b3b 8252 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
8253 /* If we tail call into other programs, we
8254 * cannot make any assumptions since they can
8255 * be replaced dynamically during runtime in
8256 * the program array.
8257 */
8258 prog->cb_access = 1;
80a58d02 8259 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 8260 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 8261
79741b3b
AS
8262 /* mark bpf_tail_call as different opcode to avoid
8263 * conditional branch in the interpeter for every normal
8264 * call and to prevent accidental JITing by JIT compiler
8265 * that doesn't support bpf_tail_call yet
e245c5c6 8266 */
79741b3b 8267 insn->imm = 0;
71189fa9 8268 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 8269
c93552c4
DB
8270 aux = &env->insn_aux_data[i + delta];
8271 if (!bpf_map_ptr_unpriv(aux))
8272 continue;
8273
b2157399
AS
8274 /* instead of changing every JIT dealing with tail_call
8275 * emit two extra insns:
8276 * if (index >= max_entries) goto out;
8277 * index &= array->index_mask;
8278 * to avoid out-of-bounds cpu speculation
8279 */
c93552c4 8280 if (bpf_map_ptr_poisoned(aux)) {
40950343 8281 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
8282 return -EINVAL;
8283 }
c93552c4
DB
8284
8285 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
8286 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8287 map_ptr->max_entries, 2);
8288 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8289 container_of(map_ptr,
8290 struct bpf_array,
8291 map)->index_mask);
8292 insn_buf[2] = *insn;
8293 cnt = 3;
8294 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8295 if (!new_prog)
8296 return -ENOMEM;
8297
8298 delta += cnt - 1;
8299 env->prog = prog = new_prog;
8300 insn = new_prog->insnsi + i + delta;
79741b3b
AS
8301 continue;
8302 }
e245c5c6 8303
89c63074 8304 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
8305 * and other inlining handlers are currently limited to 64 bit
8306 * only.
89c63074 8307 */
60b58afc 8308 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
8309 (insn->imm == BPF_FUNC_map_lookup_elem ||
8310 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
8311 insn->imm == BPF_FUNC_map_delete_elem ||
8312 insn->imm == BPF_FUNC_map_push_elem ||
8313 insn->imm == BPF_FUNC_map_pop_elem ||
8314 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
8315 aux = &env->insn_aux_data[i + delta];
8316 if (bpf_map_ptr_poisoned(aux))
8317 goto patch_call_imm;
8318
8319 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
8320 ops = map_ptr->ops;
8321 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8322 ops->map_gen_lookup) {
8323 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8324 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8325 verbose(env, "bpf verifier is misconfigured\n");
8326 return -EINVAL;
8327 }
81ed18ab 8328
09772d92
DB
8329 new_prog = bpf_patch_insn_data(env, i + delta,
8330 insn_buf, cnt);
8331 if (!new_prog)
8332 return -ENOMEM;
81ed18ab 8333
09772d92
DB
8334 delta += cnt - 1;
8335 env->prog = prog = new_prog;
8336 insn = new_prog->insnsi + i + delta;
8337 continue;
8338 }
81ed18ab 8339
09772d92
DB
8340 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8341 (void *(*)(struct bpf_map *map, void *key))NULL));
8342 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8343 (int (*)(struct bpf_map *map, void *key))NULL));
8344 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8345 (int (*)(struct bpf_map *map, void *key, void *value,
8346 u64 flags))NULL));
84430d42
DB
8347 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8348 (int (*)(struct bpf_map *map, void *value,
8349 u64 flags))NULL));
8350 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8351 (int (*)(struct bpf_map *map, void *value))NULL));
8352 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8353 (int (*)(struct bpf_map *map, void *value))NULL));
8354
09772d92
DB
8355 switch (insn->imm) {
8356 case BPF_FUNC_map_lookup_elem:
8357 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8358 __bpf_call_base;
8359 continue;
8360 case BPF_FUNC_map_update_elem:
8361 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8362 __bpf_call_base;
8363 continue;
8364 case BPF_FUNC_map_delete_elem:
8365 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8366 __bpf_call_base;
8367 continue;
84430d42
DB
8368 case BPF_FUNC_map_push_elem:
8369 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8370 __bpf_call_base;
8371 continue;
8372 case BPF_FUNC_map_pop_elem:
8373 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8374 __bpf_call_base;
8375 continue;
8376 case BPF_FUNC_map_peek_elem:
8377 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8378 __bpf_call_base;
8379 continue;
09772d92 8380 }
81ed18ab 8381
09772d92 8382 goto patch_call_imm;
81ed18ab
AS
8383 }
8384
8385patch_call_imm:
5e43f899 8386 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
8387 /* all functions that have prototype and verifier allowed
8388 * programs to call them, must be real in-kernel functions
8389 */
8390 if (!fn->func) {
61bd5218
JK
8391 verbose(env,
8392 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
8393 func_id_name(insn->imm), insn->imm);
8394 return -EFAULT;
e245c5c6 8395 }
79741b3b 8396 insn->imm = fn->func - __bpf_call_base;
e245c5c6 8397 }
e245c5c6 8398
79741b3b
AS
8399 return 0;
8400}
e245c5c6 8401
58e2af8b 8402static void free_states(struct bpf_verifier_env *env)
f1bca824 8403{
58e2af8b 8404 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
8405 int i;
8406
9f4686c4
AS
8407 sl = env->free_list;
8408 while (sl) {
8409 sln = sl->next;
8410 free_verifier_state(&sl->state, false);
8411 kfree(sl);
8412 sl = sln;
8413 }
8414
f1bca824
AS
8415 if (!env->explored_states)
8416 return;
8417
dc2a4ebc 8418 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
8419 sl = env->explored_states[i];
8420
a8f500af
AS
8421 while (sl) {
8422 sln = sl->next;
8423 free_verifier_state(&sl->state, false);
8424 kfree(sl);
8425 sl = sln;
8426 }
f1bca824
AS
8427 }
8428
71dde681 8429 kvfree(env->explored_states);
f1bca824
AS
8430}
8431
06ee7115
AS
8432static void print_verification_stats(struct bpf_verifier_env *env)
8433{
8434 int i;
8435
8436 if (env->log.level & BPF_LOG_STATS) {
8437 verbose(env, "verification time %lld usec\n",
8438 div_u64(env->verification_time, 1000));
8439 verbose(env, "stack depth ");
8440 for (i = 0; i < env->subprog_cnt; i++) {
8441 u32 depth = env->subprog_info[i].stack_depth;
8442
8443 verbose(env, "%d", depth);
8444 if (i + 1 < env->subprog_cnt)
8445 verbose(env, "+");
8446 }
8447 verbose(env, "\n");
8448 }
8449 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8450 "total_states %d peak_states %d mark_read %d\n",
8451 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8452 env->max_states_per_insn, env->total_states,
8453 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
8454}
8455
838e9690
YS
8456int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8457 union bpf_attr __user *uattr)
51580e79 8458{
06ee7115 8459 u64 start_time = ktime_get_ns();
58e2af8b 8460 struct bpf_verifier_env *env;
b9193c1b 8461 struct bpf_verifier_log *log;
9e4c24e7 8462 int i, len, ret = -EINVAL;
e2ae4ca2 8463 bool is_priv;
51580e79 8464
eba0c929
AB
8465 /* no program is valid */
8466 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8467 return -EINVAL;
8468
58e2af8b 8469 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
8470 * allocate/free it every time bpf_check() is called
8471 */
58e2af8b 8472 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
8473 if (!env)
8474 return -ENOMEM;
61bd5218 8475 log = &env->log;
cbd35700 8476
9e4c24e7 8477 len = (*prog)->len;
fad953ce 8478 env->insn_aux_data =
9e4c24e7 8479 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
8480 ret = -ENOMEM;
8481 if (!env->insn_aux_data)
8482 goto err_free_env;
9e4c24e7
JK
8483 for (i = 0; i < len; i++)
8484 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 8485 env->prog = *prog;
00176a34 8486 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 8487 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 8488
cbd35700 8489 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
8490 if (!is_priv)
8491 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
8492
8493 if (attr->log_level || attr->log_buf || attr->log_size) {
8494 /* user requested verbose verifier output
8495 * and supplied buffer to store the verification trace
8496 */
e7bf8249
JK
8497 log->level = attr->log_level;
8498 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8499 log->len_total = attr->log_size;
cbd35700
AS
8500
8501 ret = -EINVAL;
e7bf8249 8502 /* log attributes have to be sane */
7a9f5c65 8503 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 8504 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 8505 goto err_unlock;
cbd35700 8506 }
1ad2f583
DB
8507
8508 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8509 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 8510 env->strict_alignment = true;
e9ee9efc
DM
8511 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8512 env->strict_alignment = false;
cbd35700 8513
e2ae4ca2
JK
8514 env->allow_ptr_leaks = is_priv;
8515
f4e3ec0d
JK
8516 ret = replace_map_fd_with_map_ptr(env);
8517 if (ret < 0)
8518 goto skip_full_check;
8519
cae1927c 8520 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 8521 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 8522 if (ret)
f4e3ec0d 8523 goto skip_full_check;
ab3f0063
JK
8524 }
8525
dc2a4ebc 8526 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 8527 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
8528 GFP_USER);
8529 ret = -ENOMEM;
8530 if (!env->explored_states)
8531 goto skip_full_check;
8532
d9762e84 8533 ret = check_subprogs(env);
475fb78f
AS
8534 if (ret < 0)
8535 goto skip_full_check;
8536
c454a46b 8537 ret = check_btf_info(env, attr, uattr);
838e9690
YS
8538 if (ret < 0)
8539 goto skip_full_check;
8540
d9762e84
MKL
8541 ret = check_cfg(env);
8542 if (ret < 0)
8543 goto skip_full_check;
8544
17a52670 8545 ret = do_check(env);
8c01c4f8
CG
8546 if (env->cur_state) {
8547 free_verifier_state(env->cur_state, true);
8548 env->cur_state = NULL;
8549 }
cbd35700 8550
c941ce9c
QM
8551 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8552 ret = bpf_prog_offload_finalize(env);
8553
0246e64d 8554skip_full_check:
638f5b90 8555 while (!pop_stack(env, NULL, NULL));
f1bca824 8556 free_states(env);
0246e64d 8557
c131187d 8558 if (ret == 0)
9b38c405 8559 ret = check_max_stack_depth(env);
c131187d 8560
9b38c405 8561 /* instruction rewrites happen after this point */
e2ae4ca2
JK
8562 if (is_priv) {
8563 if (ret == 0)
8564 opt_hard_wire_dead_code_branches(env);
52875a04
JK
8565 if (ret == 0)
8566 ret = opt_remove_dead_code(env);
a1b14abc
JK
8567 if (ret == 0)
8568 ret = opt_remove_nops(env);
52875a04
JK
8569 } else {
8570 if (ret == 0)
8571 sanitize_dead_code(env);
e2ae4ca2
JK
8572 }
8573
9bac3d6d
AS
8574 if (ret == 0)
8575 /* program is valid, convert *(u32*)(ctx + off) accesses */
8576 ret = convert_ctx_accesses(env);
8577
e245c5c6 8578 if (ret == 0)
79741b3b 8579 ret = fixup_bpf_calls(env);
e245c5c6 8580
a4b1d3c1
JW
8581 /* do 32-bit optimization after insn patching has done so those patched
8582 * insns could be handled correctly.
8583 */
d6c2308c
JW
8584 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
8585 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
8586 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
8587 : false;
a4b1d3c1
JW
8588 }
8589
1ea47e01
AS
8590 if (ret == 0)
8591 ret = fixup_call_args(env);
8592
06ee7115
AS
8593 env->verification_time = ktime_get_ns() - start_time;
8594 print_verification_stats(env);
8595
a2a7d570 8596 if (log->level && bpf_verifier_log_full(log))
cbd35700 8597 ret = -ENOSPC;
a2a7d570 8598 if (log->level && !log->ubuf) {
cbd35700 8599 ret = -EFAULT;
a2a7d570 8600 goto err_release_maps;
cbd35700
AS
8601 }
8602
0246e64d
AS
8603 if (ret == 0 && env->used_map_cnt) {
8604 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
8605 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8606 sizeof(env->used_maps[0]),
8607 GFP_KERNEL);
0246e64d 8608
9bac3d6d 8609 if (!env->prog->aux->used_maps) {
0246e64d 8610 ret = -ENOMEM;
a2a7d570 8611 goto err_release_maps;
0246e64d
AS
8612 }
8613
9bac3d6d 8614 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 8615 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 8616 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
8617
8618 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8619 * bpf_ld_imm64 instructions
8620 */
8621 convert_pseudo_ld_imm64(env);
8622 }
cbd35700 8623
ba64e7d8
YS
8624 if (ret == 0)
8625 adjust_btf_func(env);
8626
a2a7d570 8627err_release_maps:
9bac3d6d 8628 if (!env->prog->aux->used_maps)
0246e64d 8629 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 8630 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
8631 */
8632 release_maps(env);
9bac3d6d 8633 *prog = env->prog;
3df126f3 8634err_unlock:
45a73c17
AS
8635 if (!is_priv)
8636 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
8637 vfree(env->insn_aux_data);
8638err_free_env:
8639 kfree(env);
51580e79
AS
8640 return ret;
8641}