bpf: Replace ARG_XXX_OR_NULL with ARG_XXX | PTR_MAYBE_NULL
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
51580e79 26
f4ac7e0b
JK
27#include "disasm.h"
28
00176a34 29static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 30#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
31 [_id] = & _name ## _verifier_ops,
32#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 33#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
34#include <linux/bpf_types.h>
35#undef BPF_PROG_TYPE
36#undef BPF_MAP_TYPE
f2e10bff 37#undef BPF_LINK_TYPE
00176a34
JK
38};
39
51580e79
AS
40/* bpf_check() is a static code analyzer that walks eBPF program
41 * instruction by instruction and updates register/stack state.
42 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43 *
44 * The first pass is depth-first-search to check that the program is a DAG.
45 * It rejects the following programs:
46 * - larger than BPF_MAXINSNS insns
47 * - if loop is present (detected via back-edge)
48 * - unreachable insns exist (shouldn't be a forest. program = one function)
49 * - out of bounds or malformed jumps
50 * The second pass is all possible path descent from the 1st insn.
8fb33b60 51 * Since it's analyzing all paths through the program, the length of the
eba38a96 52 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
53 * insn is less then 4K, but there are too many branches that change stack/regs.
54 * Number of 'branches to be analyzed' is limited to 1k
55 *
56 * On entry to each instruction, each register has a type, and the instruction
57 * changes the types of the registers depending on instruction semantics.
58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59 * copied to R1.
60 *
61 * All registers are 64-bit.
62 * R0 - return register
63 * R1-R5 argument passing registers
64 * R6-R9 callee saved registers
65 * R10 - frame pointer read-only
66 *
67 * At the start of BPF program the register R1 contains a pointer to bpf_context
68 * and has type PTR_TO_CTX.
69 *
70 * Verifier tracks arithmetic operations on pointers in case:
71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73 * 1st insn copies R10 (which has FRAME_PTR) type into R1
74 * and 2nd arithmetic instruction is pattern matched to recognize
75 * that it wants to construct a pointer to some element within stack.
76 * So after 2nd insn, the register R1 has type PTR_TO_STACK
77 * (and -20 constant is saved for further stack bounds checking).
78 * Meaning that this reg is a pointer to stack plus known immediate constant.
79 *
f1174f77 80 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 81 * means the register has some value, but it's not a valid pointer.
f1174f77 82 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
83 *
84 * When verifier sees load or store instructions the type of base register
c64b7983
JS
85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86 * four pointer types recognized by check_mem_access() function.
51580e79
AS
87 *
88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89 * and the range of [ptr, ptr + map's value_size) is accessible.
90 *
91 * registers used to pass values to function calls are checked against
92 * function argument constraints.
93 *
94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95 * It means that the register type passed to this function must be
96 * PTR_TO_STACK and it will be used inside the function as
97 * 'pointer to map element key'
98 *
99 * For example the argument constraints for bpf_map_lookup_elem():
100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101 * .arg1_type = ARG_CONST_MAP_PTR,
102 * .arg2_type = ARG_PTR_TO_MAP_KEY,
103 *
104 * ret_type says that this function returns 'pointer to map elem value or null'
105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106 * 2nd argument should be a pointer to stack, which will be used inside
107 * the helper function as a pointer to map element key.
108 *
109 * On the kernel side the helper function looks like:
110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111 * {
112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113 * void *key = (void *) (unsigned long) r2;
114 * void *value;
115 *
116 * here kernel can access 'key' and 'map' pointers safely, knowing that
117 * [key, key + map->key_size) bytes are valid and were initialized on
118 * the stack of eBPF program.
119 * }
120 *
121 * Corresponding eBPF program may look like:
122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126 * here verifier looks at prototype of map_lookup_elem() and sees:
127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129 *
130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132 * and were initialized prior to this call.
133 * If it's ok, then verifier allows this BPF_CALL insn and looks at
134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 136 * returns either pointer to map value or NULL.
51580e79
AS
137 *
138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139 * insn, the register holding that pointer in the true branch changes state to
140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141 * branch. See check_cond_jmp_op().
142 *
143 * After the call R0 is set to return type of the function and registers R1-R5
144 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
145 *
146 * The following reference types represent a potential reference to a kernel
147 * resource which, after first being allocated, must be checked and freed by
148 * the BPF program:
149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150 *
151 * When the verifier sees a helper call return a reference type, it allocates a
152 * pointer id for the reference and stores it in the current function state.
153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155 * passes through a NULL-check conditional. For the branch wherein the state is
156 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
157 *
158 * For each helper function that allocates a reference, such as
159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160 * bpf_sk_release(). When a reference type passes into the release function,
161 * the verifier also releases the reference. If any unchecked or unreleased
162 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
163 */
164
17a52670 165/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 166struct bpf_verifier_stack_elem {
17a52670
AS
167 /* verifer state is 'st'
168 * before processing instruction 'insn_idx'
169 * and after processing instruction 'prev_insn_idx'
170 */
58e2af8b 171 struct bpf_verifier_state st;
17a52670
AS
172 int insn_idx;
173 int prev_insn_idx;
58e2af8b 174 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
175 /* length of verifier log at the time this state was pushed on stack */
176 u32 log_pos;
cbd35700
AS
177};
178
b285fcb7 179#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 180#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 181
d2e4c1e6
DB
182#define BPF_MAP_KEY_POISON (1ULL << 63)
183#define BPF_MAP_KEY_SEEN (1ULL << 62)
184
c93552c4
DB
185#define BPF_MAP_PTR_UNPRIV 1UL
186#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
187 POISON_POINTER_DELTA))
188#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189
190static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
191{
d2e4c1e6 192 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
193}
194
195static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
196{
d2e4c1e6 197 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
198}
199
200static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
201 const struct bpf_map *map, bool unpriv)
202{
203 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
204 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
205 aux->map_ptr_state = (unsigned long)map |
206 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
207}
208
209static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
210{
211 return aux->map_key_state & BPF_MAP_KEY_POISON;
212}
213
214static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
215{
216 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
217}
218
219static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
220{
221 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
222}
223
224static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
225{
226 bool poisoned = bpf_map_key_poisoned(aux);
227
228 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
229 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 230}
fad73a1a 231
23a2d70c
YS
232static bool bpf_pseudo_call(const struct bpf_insn *insn)
233{
234 return insn->code == (BPF_JMP | BPF_CALL) &&
235 insn->src_reg == BPF_PSEUDO_CALL;
236}
237
e6ac2450
MKL
238static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
239{
240 return insn->code == (BPF_JMP | BPF_CALL) &&
241 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
242}
243
33ff9823
DB
244struct bpf_call_arg_meta {
245 struct bpf_map *map_ptr;
435faee1 246 bool raw_mode;
36bbef52 247 bool pkt_access;
435faee1
DB
248 int regno;
249 int access_size;
457f4436 250 int mem_size;
10060503 251 u64 msize_max_value;
1b986589 252 int ref_obj_id;
3e8ce298 253 int map_uid;
d83525ca 254 int func_id;
22dc4a0f 255 struct btf *btf;
eaa6bcb7 256 u32 btf_id;
22dc4a0f 257 struct btf *ret_btf;
eaa6bcb7 258 u32 ret_btf_id;
69c087ba 259 u32 subprogno;
33ff9823
DB
260};
261
8580ac94
AS
262struct btf *btf_vmlinux;
263
cbd35700
AS
264static DEFINE_MUTEX(bpf_verifier_lock);
265
d9762e84
MKL
266static const struct bpf_line_info *
267find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
268{
269 const struct bpf_line_info *linfo;
270 const struct bpf_prog *prog;
271 u32 i, nr_linfo;
272
273 prog = env->prog;
274 nr_linfo = prog->aux->nr_linfo;
275
276 if (!nr_linfo || insn_off >= prog->len)
277 return NULL;
278
279 linfo = prog->aux->linfo;
280 for (i = 1; i < nr_linfo; i++)
281 if (insn_off < linfo[i].insn_off)
282 break;
283
284 return &linfo[i - 1];
285}
286
77d2e05a
MKL
287void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
288 va_list args)
cbd35700 289{
a2a7d570 290 unsigned int n;
cbd35700 291
a2a7d570 292 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
293
294 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
295 "verifier log line truncated - local buffer too short\n");
296
8580ac94 297 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
298 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
299
300 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
301 return;
302 }
436d404c
HT
303
304 n = min(log->len_total - log->len_used - 1, n);
305 log->kbuf[n] = '\0';
a2a7d570
JK
306 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
307 log->len_used += n;
308 else
309 log->ubuf = NULL;
cbd35700 310}
abe08840 311
6f8a57cc
AN
312static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
313{
314 char zero = 0;
315
316 if (!bpf_verifier_log_needed(log))
317 return;
318
319 log->len_used = new_pos;
320 if (put_user(zero, log->ubuf + new_pos))
321 log->ubuf = NULL;
322}
323
abe08840
JO
324/* log_level controls verbosity level of eBPF verifier.
325 * bpf_verifier_log_write() is used to dump the verification trace to the log,
326 * so the user can figure out what's wrong with the program
430e68d1 327 */
abe08840
JO
328__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
329 const char *fmt, ...)
330{
331 va_list args;
332
77d2e05a
MKL
333 if (!bpf_verifier_log_needed(&env->log))
334 return;
335
abe08840 336 va_start(args, fmt);
77d2e05a 337 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
338 va_end(args);
339}
340EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
341
342__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
343{
77d2e05a 344 struct bpf_verifier_env *env = private_data;
abe08840
JO
345 va_list args;
346
77d2e05a
MKL
347 if (!bpf_verifier_log_needed(&env->log))
348 return;
349
abe08840 350 va_start(args, fmt);
77d2e05a 351 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
352 va_end(args);
353}
cbd35700 354
9e15db66
AS
355__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
356 const char *fmt, ...)
357{
358 va_list args;
359
360 if (!bpf_verifier_log_needed(log))
361 return;
362
363 va_start(args, fmt);
364 bpf_verifier_vlog(log, fmt, args);
365 va_end(args);
366}
367
d9762e84
MKL
368static const char *ltrim(const char *s)
369{
370 while (isspace(*s))
371 s++;
372
373 return s;
374}
375
376__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
377 u32 insn_off,
378 const char *prefix_fmt, ...)
379{
380 const struct bpf_line_info *linfo;
381
382 if (!bpf_verifier_log_needed(&env->log))
383 return;
384
385 linfo = find_linfo(env, insn_off);
386 if (!linfo || linfo == env->prev_linfo)
387 return;
388
389 if (prefix_fmt) {
390 va_list args;
391
392 va_start(args, prefix_fmt);
393 bpf_verifier_vlog(&env->log, prefix_fmt, args);
394 va_end(args);
395 }
396
397 verbose(env, "%s\n",
398 ltrim(btf_name_by_offset(env->prog->aux->btf,
399 linfo->line_off)));
400
401 env->prev_linfo = linfo;
402}
403
bc2591d6
YS
404static void verbose_invalid_scalar(struct bpf_verifier_env *env,
405 struct bpf_reg_state *reg,
406 struct tnum *range, const char *ctx,
407 const char *reg_name)
408{
409 char tn_buf[48];
410
411 verbose(env, "At %s the register %s ", ctx, reg_name);
412 if (!tnum_is_unknown(reg->var_off)) {
413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
414 verbose(env, "has value %s", tn_buf);
415 } else {
416 verbose(env, "has unknown scalar value");
417 }
418 tnum_strn(tn_buf, sizeof(tn_buf), *range);
419 verbose(env, " should have been in %s\n", tn_buf);
420}
421
de8f3a83
DB
422static bool type_is_pkt_pointer(enum bpf_reg_type type)
423{
424 return type == PTR_TO_PACKET ||
425 type == PTR_TO_PACKET_META;
426}
427
46f8bc92
MKL
428static bool type_is_sk_pointer(enum bpf_reg_type type)
429{
430 return type == PTR_TO_SOCKET ||
655a51e5 431 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
432 type == PTR_TO_TCP_SOCK ||
433 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
434}
435
cac616db
JF
436static bool reg_type_not_null(enum bpf_reg_type type)
437{
438 return type == PTR_TO_SOCKET ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_MAP_VALUE ||
69c087ba 441 type == PTR_TO_MAP_KEY ||
01c66c48 442 type == PTR_TO_SOCK_COMMON;
cac616db
JF
443}
444
840b9615
JS
445static bool reg_type_may_be_null(enum bpf_reg_type type)
446{
fd978bf7 447 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 448 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 449 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 450 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 451 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
452 type == PTR_TO_MEM_OR_NULL ||
453 type == PTR_TO_RDONLY_BUF_OR_NULL ||
454 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
455}
456
d83525ca
AS
457static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
458{
459 return reg->type == PTR_TO_MAP_VALUE &&
460 map_value_has_spin_lock(reg->map_ptr);
461}
462
cba368c1
MKL
463static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
464{
465 return type == PTR_TO_SOCKET ||
466 type == PTR_TO_SOCKET_OR_NULL ||
467 type == PTR_TO_TCP_SOCK ||
457f4436
AN
468 type == PTR_TO_TCP_SOCK_OR_NULL ||
469 type == PTR_TO_MEM ||
470 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
471}
472
1b986589 473static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 474{
1b986589 475 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
476}
477
48946bd6 478static bool type_may_be_null(u32 type)
fd1b0d60 479{
48946bd6 480 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
481}
482
fd978bf7
JS
483/* Determine whether the function releases some resources allocated by another
484 * function call. The first reference type argument will be assumed to be
485 * released by release_reference().
486 */
487static bool is_release_function(enum bpf_func_id func_id)
488{
457f4436
AN
489 return func_id == BPF_FUNC_sk_release ||
490 func_id == BPF_FUNC_ringbuf_submit ||
491 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
492}
493
64d85290 494static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
495{
496 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 497 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 498 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
499 func_id == BPF_FUNC_map_lookup_elem ||
500 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
501}
502
503static bool is_acquire_function(enum bpf_func_id func_id,
504 const struct bpf_map *map)
505{
506 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
507
508 if (func_id == BPF_FUNC_sk_lookup_tcp ||
509 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
510 func_id == BPF_FUNC_skc_lookup_tcp ||
511 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
512 return true;
513
514 if (func_id == BPF_FUNC_map_lookup_elem &&
515 (map_type == BPF_MAP_TYPE_SOCKMAP ||
516 map_type == BPF_MAP_TYPE_SOCKHASH))
517 return true;
518
519 return false;
46f8bc92
MKL
520}
521
1b986589
MKL
522static bool is_ptr_cast_function(enum bpf_func_id func_id)
523{
524 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
525 func_id == BPF_FUNC_sk_fullsock ||
526 func_id == BPF_FUNC_skc_to_tcp_sock ||
527 func_id == BPF_FUNC_skc_to_tcp6_sock ||
528 func_id == BPF_FUNC_skc_to_udp6_sock ||
529 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
530 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
531}
532
39491867
BJ
533static bool is_cmpxchg_insn(const struct bpf_insn *insn)
534{
535 return BPF_CLASS(insn->code) == BPF_STX &&
536 BPF_MODE(insn->code) == BPF_ATOMIC &&
537 insn->imm == BPF_CMPXCHG;
538}
539
17a52670
AS
540/* string representation of 'enum bpf_reg_type' */
541static const char * const reg_type_str[] = {
542 [NOT_INIT] = "?",
f1174f77 543 [SCALAR_VALUE] = "inv",
17a52670
AS
544 [PTR_TO_CTX] = "ctx",
545 [CONST_PTR_TO_MAP] = "map_ptr",
546 [PTR_TO_MAP_VALUE] = "map_value",
547 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 548 [PTR_TO_STACK] = "fp",
969bf05e 549 [PTR_TO_PACKET] = "pkt",
de8f3a83 550 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 551 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 552 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
553 [PTR_TO_SOCKET] = "sock",
554 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
555 [PTR_TO_SOCK_COMMON] = "sock_common",
556 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
557 [PTR_TO_TCP_SOCK] = "tcp_sock",
558 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 559 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 560 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 561 [PTR_TO_BTF_ID] = "ptr_",
b121b341 562 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 563 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
564 [PTR_TO_MEM] = "mem",
565 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
566 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
567 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
568 [PTR_TO_RDWR_BUF] = "rdwr_buf",
569 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
570 [PTR_TO_FUNC] = "func",
571 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
572};
573
8efea21d
EC
574static char slot_type_char[] = {
575 [STACK_INVALID] = '?',
576 [STACK_SPILL] = 'r',
577 [STACK_MISC] = 'm',
578 [STACK_ZERO] = '0',
579};
580
4e92024a
AS
581static void print_liveness(struct bpf_verifier_env *env,
582 enum bpf_reg_liveness live)
583{
9242b5f5 584 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
585 verbose(env, "_");
586 if (live & REG_LIVE_READ)
587 verbose(env, "r");
588 if (live & REG_LIVE_WRITTEN)
589 verbose(env, "w");
9242b5f5
AS
590 if (live & REG_LIVE_DONE)
591 verbose(env, "D");
4e92024a
AS
592}
593
f4d7e40a
AS
594static struct bpf_func_state *func(struct bpf_verifier_env *env,
595 const struct bpf_reg_state *reg)
596{
597 struct bpf_verifier_state *cur = env->cur_state;
598
599 return cur->frame[reg->frameno];
600}
601
22dc4a0f 602static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 603{
22dc4a0f 604 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
605}
606
0f55f9ed
CL
607static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
608{
609 env->scratched_regs |= 1U << regno;
610}
611
612static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
613{
614 env->scratched_stack_slots |= 1UL << spi;
615}
616
617static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
618{
619 return (env->scratched_regs >> regno) & 1;
620}
621
622static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
623{
624 return (env->scratched_stack_slots >> regno) & 1;
625}
626
627static bool verifier_state_scratched(const struct bpf_verifier_env *env)
628{
629 return env->scratched_regs || env->scratched_stack_slots;
630}
631
632static void mark_verifier_state_clean(struct bpf_verifier_env *env)
633{
634 env->scratched_regs = 0U;
635 env->scratched_stack_slots = 0UL;
636}
637
638/* Used for printing the entire verifier state. */
639static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
640{
641 env->scratched_regs = ~0U;
642 env->scratched_stack_slots = ~0UL;
643}
644
27113c59
MKL
645/* The reg state of a pointer or a bounded scalar was saved when
646 * it was spilled to the stack.
647 */
648static bool is_spilled_reg(const struct bpf_stack_state *stack)
649{
650 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
651}
652
354e8f19
MKL
653static void scrub_spilled_slot(u8 *stype)
654{
655 if (*stype != STACK_INVALID)
656 *stype = STACK_MISC;
657}
658
61bd5218 659static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
660 const struct bpf_func_state *state,
661 bool print_all)
17a52670 662{
f4d7e40a 663 const struct bpf_reg_state *reg;
17a52670
AS
664 enum bpf_reg_type t;
665 int i;
666
f4d7e40a
AS
667 if (state->frameno)
668 verbose(env, " frame%d:", state->frameno);
17a52670 669 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
670 reg = &state->regs[i];
671 t = reg->type;
17a52670
AS
672 if (t == NOT_INIT)
673 continue;
0f55f9ed
CL
674 if (!print_all && !reg_scratched(env, i))
675 continue;
4e92024a
AS
676 verbose(env, " R%d", i);
677 print_liveness(env, reg->live);
678 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
679 if (t == SCALAR_VALUE && reg->precise)
680 verbose(env, "P");
f1174f77
EC
681 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
682 tnum_is_const(reg->var_off)) {
683 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 684 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 685 } else {
eaa6bcb7
HL
686 if (t == PTR_TO_BTF_ID ||
687 t == PTR_TO_BTF_ID_OR_NULL ||
688 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 689 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
690 verbose(env, "(id=%d", reg->id);
691 if (reg_type_may_be_refcounted_or_null(t))
692 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 693 if (t != SCALAR_VALUE)
61bd5218 694 verbose(env, ",off=%d", reg->off);
de8f3a83 695 if (type_is_pkt_pointer(t))
61bd5218 696 verbose(env, ",r=%d", reg->range);
f1174f77 697 else if (t == CONST_PTR_TO_MAP ||
69c087ba 698 t == PTR_TO_MAP_KEY ||
f1174f77
EC
699 t == PTR_TO_MAP_VALUE ||
700 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 701 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
702 reg->map_ptr->key_size,
703 reg->map_ptr->value_size);
7d1238f2
EC
704 if (tnum_is_const(reg->var_off)) {
705 /* Typically an immediate SCALAR_VALUE, but
706 * could be a pointer whose offset is too big
707 * for reg->off
708 */
61bd5218 709 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
710 } else {
711 if (reg->smin_value != reg->umin_value &&
712 reg->smin_value != S64_MIN)
61bd5218 713 verbose(env, ",smin_value=%lld",
7d1238f2
EC
714 (long long)reg->smin_value);
715 if (reg->smax_value != reg->umax_value &&
716 reg->smax_value != S64_MAX)
61bd5218 717 verbose(env, ",smax_value=%lld",
7d1238f2
EC
718 (long long)reg->smax_value);
719 if (reg->umin_value != 0)
61bd5218 720 verbose(env, ",umin_value=%llu",
7d1238f2
EC
721 (unsigned long long)reg->umin_value);
722 if (reg->umax_value != U64_MAX)
61bd5218 723 verbose(env, ",umax_value=%llu",
7d1238f2
EC
724 (unsigned long long)reg->umax_value);
725 if (!tnum_is_unknown(reg->var_off)) {
726 char tn_buf[48];
f1174f77 727
7d1238f2 728 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 729 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 730 }
3f50f132
JF
731 if (reg->s32_min_value != reg->smin_value &&
732 reg->s32_min_value != S32_MIN)
733 verbose(env, ",s32_min_value=%d",
734 (int)(reg->s32_min_value));
735 if (reg->s32_max_value != reg->smax_value &&
736 reg->s32_max_value != S32_MAX)
737 verbose(env, ",s32_max_value=%d",
738 (int)(reg->s32_max_value));
739 if (reg->u32_min_value != reg->umin_value &&
740 reg->u32_min_value != U32_MIN)
741 verbose(env, ",u32_min_value=%d",
742 (int)(reg->u32_min_value));
743 if (reg->u32_max_value != reg->umax_value &&
744 reg->u32_max_value != U32_MAX)
745 verbose(env, ",u32_max_value=%d",
746 (int)(reg->u32_max_value));
f1174f77 747 }
61bd5218 748 verbose(env, ")");
f1174f77 749 }
17a52670 750 }
638f5b90 751 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
752 char types_buf[BPF_REG_SIZE + 1];
753 bool valid = false;
754 int j;
755
756 for (j = 0; j < BPF_REG_SIZE; j++) {
757 if (state->stack[i].slot_type[j] != STACK_INVALID)
758 valid = true;
759 types_buf[j] = slot_type_char[
760 state->stack[i].slot_type[j]];
761 }
762 types_buf[BPF_REG_SIZE] = 0;
763 if (!valid)
764 continue;
0f55f9ed
CL
765 if (!print_all && !stack_slot_scratched(env, i))
766 continue;
8efea21d
EC
767 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
768 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 769 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
770 reg = &state->stack[i].spilled_ptr;
771 t = reg->type;
772 verbose(env, "=%s", reg_type_str[t]);
773 if (t == SCALAR_VALUE && reg->precise)
774 verbose(env, "P");
775 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
776 verbose(env, "%lld", reg->var_off.value + reg->off);
777 } else {
8efea21d 778 verbose(env, "=%s", types_buf);
b5dc0163 779 }
17a52670 780 }
fd978bf7
JS
781 if (state->acquired_refs && state->refs[0].id) {
782 verbose(env, " refs=%d", state->refs[0].id);
783 for (i = 1; i < state->acquired_refs; i++)
784 if (state->refs[i].id)
785 verbose(env, ",%d", state->refs[i].id);
786 }
bfc6bb74
AS
787 if (state->in_callback_fn)
788 verbose(env, " cb");
789 if (state->in_async_callback_fn)
790 verbose(env, " async_cb");
61bd5218 791 verbose(env, "\n");
0f55f9ed 792 mark_verifier_state_clean(env);
17a52670
AS
793}
794
2e576648
CL
795static inline u32 vlog_alignment(u32 pos)
796{
797 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
798 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
799}
800
801static void print_insn_state(struct bpf_verifier_env *env,
802 const struct bpf_func_state *state)
803{
804 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
805 /* remove new line character */
806 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
807 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
808 } else {
809 verbose(env, "%d:", env->insn_idx);
810 }
811 print_verifier_state(env, state, false);
812}
813
c69431aa
LB
814/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
815 * small to hold src. This is different from krealloc since we don't want to preserve
816 * the contents of dst.
817 *
818 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
819 * not be allocated.
638f5b90 820 */
c69431aa 821static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 822{
c69431aa
LB
823 size_t bytes;
824
825 if (ZERO_OR_NULL_PTR(src))
826 goto out;
827
828 if (unlikely(check_mul_overflow(n, size, &bytes)))
829 return NULL;
830
831 if (ksize(dst) < bytes) {
832 kfree(dst);
833 dst = kmalloc_track_caller(bytes, flags);
834 if (!dst)
835 return NULL;
836 }
837
838 memcpy(dst, src, bytes);
839out:
840 return dst ? dst : ZERO_SIZE_PTR;
841}
842
843/* resize an array from old_n items to new_n items. the array is reallocated if it's too
844 * small to hold new_n items. new items are zeroed out if the array grows.
845 *
846 * Contrary to krealloc_array, does not free arr if new_n is zero.
847 */
848static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
849{
850 if (!new_n || old_n == new_n)
851 goto out;
852
853 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
854 if (!arr)
855 return NULL;
856
857 if (new_n > old_n)
858 memset(arr + old_n * size, 0, (new_n - old_n) * size);
859
860out:
861 return arr ? arr : ZERO_SIZE_PTR;
862}
863
864static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
865{
866 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
867 sizeof(struct bpf_reference_state), GFP_KERNEL);
868 if (!dst->refs)
869 return -ENOMEM;
870
871 dst->acquired_refs = src->acquired_refs;
872 return 0;
873}
874
875static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
876{
877 size_t n = src->allocated_stack / BPF_REG_SIZE;
878
879 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
880 GFP_KERNEL);
881 if (!dst->stack)
882 return -ENOMEM;
883
884 dst->allocated_stack = src->allocated_stack;
885 return 0;
886}
887
888static int resize_reference_state(struct bpf_func_state *state, size_t n)
889{
890 state->refs = realloc_array(state->refs, state->acquired_refs, n,
891 sizeof(struct bpf_reference_state));
892 if (!state->refs)
893 return -ENOMEM;
894
895 state->acquired_refs = n;
896 return 0;
897}
898
899static int grow_stack_state(struct bpf_func_state *state, int size)
900{
901 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
902
903 if (old_n >= n)
904 return 0;
905
906 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
907 if (!state->stack)
908 return -ENOMEM;
909
910 state->allocated_stack = size;
911 return 0;
fd978bf7
JS
912}
913
914/* Acquire a pointer id from the env and update the state->refs to include
915 * this new pointer reference.
916 * On success, returns a valid pointer id to associate with the register
917 * On failure, returns a negative errno.
638f5b90 918 */
fd978bf7 919static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 920{
fd978bf7
JS
921 struct bpf_func_state *state = cur_func(env);
922 int new_ofs = state->acquired_refs;
923 int id, err;
924
c69431aa 925 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
926 if (err)
927 return err;
928 id = ++env->id_gen;
929 state->refs[new_ofs].id = id;
930 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 931
fd978bf7
JS
932 return id;
933}
934
935/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 936static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
937{
938 int i, last_idx;
939
fd978bf7
JS
940 last_idx = state->acquired_refs - 1;
941 for (i = 0; i < state->acquired_refs; i++) {
942 if (state->refs[i].id == ptr_id) {
943 if (last_idx && i != last_idx)
944 memcpy(&state->refs[i], &state->refs[last_idx],
945 sizeof(*state->refs));
946 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
947 state->acquired_refs--;
638f5b90 948 return 0;
638f5b90 949 }
638f5b90 950 }
46f8bc92 951 return -EINVAL;
fd978bf7
JS
952}
953
f4d7e40a
AS
954static void free_func_state(struct bpf_func_state *state)
955{
5896351e
AS
956 if (!state)
957 return;
fd978bf7 958 kfree(state->refs);
f4d7e40a
AS
959 kfree(state->stack);
960 kfree(state);
961}
962
b5dc0163
AS
963static void clear_jmp_history(struct bpf_verifier_state *state)
964{
965 kfree(state->jmp_history);
966 state->jmp_history = NULL;
967 state->jmp_history_cnt = 0;
968}
969
1969db47
AS
970static void free_verifier_state(struct bpf_verifier_state *state,
971 bool free_self)
638f5b90 972{
f4d7e40a
AS
973 int i;
974
975 for (i = 0; i <= state->curframe; i++) {
976 free_func_state(state->frame[i]);
977 state->frame[i] = NULL;
978 }
b5dc0163 979 clear_jmp_history(state);
1969db47
AS
980 if (free_self)
981 kfree(state);
638f5b90
AS
982}
983
984/* copy verifier state from src to dst growing dst stack space
985 * when necessary to accommodate larger src stack
986 */
f4d7e40a
AS
987static int copy_func_state(struct bpf_func_state *dst,
988 const struct bpf_func_state *src)
638f5b90
AS
989{
990 int err;
991
fd978bf7
JS
992 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
993 err = copy_reference_state(dst, src);
638f5b90
AS
994 if (err)
995 return err;
638f5b90
AS
996 return copy_stack_state(dst, src);
997}
998
f4d7e40a
AS
999static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1000 const struct bpf_verifier_state *src)
1001{
1002 struct bpf_func_state *dst;
1003 int i, err;
1004
06ab6a50
LB
1005 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1006 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1007 GFP_USER);
1008 if (!dst_state->jmp_history)
1009 return -ENOMEM;
b5dc0163
AS
1010 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1011
f4d7e40a
AS
1012 /* if dst has more stack frames then src frame, free them */
1013 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1014 free_func_state(dst_state->frame[i]);
1015 dst_state->frame[i] = NULL;
1016 }
979d63d5 1017 dst_state->speculative = src->speculative;
f4d7e40a 1018 dst_state->curframe = src->curframe;
d83525ca 1019 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
1020 dst_state->branches = src->branches;
1021 dst_state->parent = src->parent;
b5dc0163
AS
1022 dst_state->first_insn_idx = src->first_insn_idx;
1023 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1024 for (i = 0; i <= src->curframe; i++) {
1025 dst = dst_state->frame[i];
1026 if (!dst) {
1027 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1028 if (!dst)
1029 return -ENOMEM;
1030 dst_state->frame[i] = dst;
1031 }
1032 err = copy_func_state(dst, src->frame[i]);
1033 if (err)
1034 return err;
1035 }
1036 return 0;
1037}
1038
2589726d
AS
1039static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1040{
1041 while (st) {
1042 u32 br = --st->branches;
1043
1044 /* WARN_ON(br > 1) technically makes sense here,
1045 * but see comment in push_stack(), hence:
1046 */
1047 WARN_ONCE((int)br < 0,
1048 "BUG update_branch_counts:branches_to_explore=%d\n",
1049 br);
1050 if (br)
1051 break;
1052 st = st->parent;
1053 }
1054}
1055
638f5b90 1056static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1057 int *insn_idx, bool pop_log)
638f5b90
AS
1058{
1059 struct bpf_verifier_state *cur = env->cur_state;
1060 struct bpf_verifier_stack_elem *elem, *head = env->head;
1061 int err;
17a52670
AS
1062
1063 if (env->head == NULL)
638f5b90 1064 return -ENOENT;
17a52670 1065
638f5b90
AS
1066 if (cur) {
1067 err = copy_verifier_state(cur, &head->st);
1068 if (err)
1069 return err;
1070 }
6f8a57cc
AN
1071 if (pop_log)
1072 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1073 if (insn_idx)
1074 *insn_idx = head->insn_idx;
17a52670 1075 if (prev_insn_idx)
638f5b90
AS
1076 *prev_insn_idx = head->prev_insn_idx;
1077 elem = head->next;
1969db47 1078 free_verifier_state(&head->st, false);
638f5b90 1079 kfree(head);
17a52670
AS
1080 env->head = elem;
1081 env->stack_size--;
638f5b90 1082 return 0;
17a52670
AS
1083}
1084
58e2af8b 1085static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1086 int insn_idx, int prev_insn_idx,
1087 bool speculative)
17a52670 1088{
638f5b90 1089 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1090 struct bpf_verifier_stack_elem *elem;
638f5b90 1091 int err;
17a52670 1092
638f5b90 1093 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1094 if (!elem)
1095 goto err;
1096
17a52670
AS
1097 elem->insn_idx = insn_idx;
1098 elem->prev_insn_idx = prev_insn_idx;
1099 elem->next = env->head;
6f8a57cc 1100 elem->log_pos = env->log.len_used;
17a52670
AS
1101 env->head = elem;
1102 env->stack_size++;
1969db47
AS
1103 err = copy_verifier_state(&elem->st, cur);
1104 if (err)
1105 goto err;
979d63d5 1106 elem->st.speculative |= speculative;
b285fcb7
AS
1107 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1108 verbose(env, "The sequence of %d jumps is too complex.\n",
1109 env->stack_size);
17a52670
AS
1110 goto err;
1111 }
2589726d
AS
1112 if (elem->st.parent) {
1113 ++elem->st.parent->branches;
1114 /* WARN_ON(branches > 2) technically makes sense here,
1115 * but
1116 * 1. speculative states will bump 'branches' for non-branch
1117 * instructions
1118 * 2. is_state_visited() heuristics may decide not to create
1119 * a new state for a sequence of branches and all such current
1120 * and cloned states will be pointing to a single parent state
1121 * which might have large 'branches' count.
1122 */
1123 }
17a52670
AS
1124 return &elem->st;
1125err:
5896351e
AS
1126 free_verifier_state(env->cur_state, true);
1127 env->cur_state = NULL;
17a52670 1128 /* pop all elements and return */
6f8a57cc 1129 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1130 return NULL;
1131}
1132
1133#define CALLER_SAVED_REGS 6
1134static const int caller_saved[CALLER_SAVED_REGS] = {
1135 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1136};
1137
f54c7898
DB
1138static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1139 struct bpf_reg_state *reg);
f1174f77 1140
e688c3db
AS
1141/* This helper doesn't clear reg->id */
1142static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1143{
b03c9f9f
EC
1144 reg->var_off = tnum_const(imm);
1145 reg->smin_value = (s64)imm;
1146 reg->smax_value = (s64)imm;
1147 reg->umin_value = imm;
1148 reg->umax_value = imm;
3f50f132
JF
1149
1150 reg->s32_min_value = (s32)imm;
1151 reg->s32_max_value = (s32)imm;
1152 reg->u32_min_value = (u32)imm;
1153 reg->u32_max_value = (u32)imm;
1154}
1155
e688c3db
AS
1156/* Mark the unknown part of a register (variable offset or scalar value) as
1157 * known to have the value @imm.
1158 */
1159static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1160{
1161 /* Clear id, off, and union(map_ptr, range) */
1162 memset(((u8 *)reg) + sizeof(reg->type), 0,
1163 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1164 ___mark_reg_known(reg, imm);
1165}
1166
3f50f132
JF
1167static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1168{
1169 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1170 reg->s32_min_value = (s32)imm;
1171 reg->s32_max_value = (s32)imm;
1172 reg->u32_min_value = (u32)imm;
1173 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1174}
1175
f1174f77
EC
1176/* Mark the 'variable offset' part of a register as zero. This should be
1177 * used only on registers holding a pointer type.
1178 */
1179static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1180{
b03c9f9f 1181 __mark_reg_known(reg, 0);
f1174f77 1182}
a9789ef9 1183
cc2b14d5
AS
1184static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1185{
1186 __mark_reg_known(reg, 0);
cc2b14d5
AS
1187 reg->type = SCALAR_VALUE;
1188}
1189
61bd5218
JK
1190static void mark_reg_known_zero(struct bpf_verifier_env *env,
1191 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1192{
1193 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1194 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1195 /* Something bad happened, let's kill all regs */
1196 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1197 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1198 return;
1199 }
1200 __mark_reg_known_zero(regs + regno);
1201}
1202
4ddb7416
DB
1203static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1204{
1205 switch (reg->type) {
1206 case PTR_TO_MAP_VALUE_OR_NULL: {
1207 const struct bpf_map *map = reg->map_ptr;
1208
1209 if (map->inner_map_meta) {
1210 reg->type = CONST_PTR_TO_MAP;
1211 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1212 /* transfer reg's id which is unique for every map_lookup_elem
1213 * as UID of the inner map.
1214 */
34d11a44
AS
1215 if (map_value_has_timer(map->inner_map_meta))
1216 reg->map_uid = reg->id;
4ddb7416
DB
1217 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1218 reg->type = PTR_TO_XDP_SOCK;
1219 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1220 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1221 reg->type = PTR_TO_SOCKET;
1222 } else {
1223 reg->type = PTR_TO_MAP_VALUE;
1224 }
1225 break;
1226 }
1227 case PTR_TO_SOCKET_OR_NULL:
1228 reg->type = PTR_TO_SOCKET;
1229 break;
1230 case PTR_TO_SOCK_COMMON_OR_NULL:
1231 reg->type = PTR_TO_SOCK_COMMON;
1232 break;
1233 case PTR_TO_TCP_SOCK_OR_NULL:
1234 reg->type = PTR_TO_TCP_SOCK;
1235 break;
1236 case PTR_TO_BTF_ID_OR_NULL:
1237 reg->type = PTR_TO_BTF_ID;
1238 break;
1239 case PTR_TO_MEM_OR_NULL:
1240 reg->type = PTR_TO_MEM;
1241 break;
1242 case PTR_TO_RDONLY_BUF_OR_NULL:
1243 reg->type = PTR_TO_RDONLY_BUF;
1244 break;
1245 case PTR_TO_RDWR_BUF_OR_NULL:
1246 reg->type = PTR_TO_RDWR_BUF;
1247 break;
1248 default:
33ccec5f 1249 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1250 }
1251}
1252
de8f3a83
DB
1253static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1254{
1255 return type_is_pkt_pointer(reg->type);
1256}
1257
1258static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1259{
1260 return reg_is_pkt_pointer(reg) ||
1261 reg->type == PTR_TO_PACKET_END;
1262}
1263
1264/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1265static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1266 enum bpf_reg_type which)
1267{
1268 /* The register can already have a range from prior markings.
1269 * This is fine as long as it hasn't been advanced from its
1270 * origin.
1271 */
1272 return reg->type == which &&
1273 reg->id == 0 &&
1274 reg->off == 0 &&
1275 tnum_equals_const(reg->var_off, 0);
1276}
1277
3f50f132
JF
1278/* Reset the min/max bounds of a register */
1279static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1280{
1281 reg->smin_value = S64_MIN;
1282 reg->smax_value = S64_MAX;
1283 reg->umin_value = 0;
1284 reg->umax_value = U64_MAX;
1285
1286 reg->s32_min_value = S32_MIN;
1287 reg->s32_max_value = S32_MAX;
1288 reg->u32_min_value = 0;
1289 reg->u32_max_value = U32_MAX;
1290}
1291
1292static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1293{
1294 reg->smin_value = S64_MIN;
1295 reg->smax_value = S64_MAX;
1296 reg->umin_value = 0;
1297 reg->umax_value = U64_MAX;
1298}
1299
1300static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1301{
1302 reg->s32_min_value = S32_MIN;
1303 reg->s32_max_value = S32_MAX;
1304 reg->u32_min_value = 0;
1305 reg->u32_max_value = U32_MAX;
1306}
1307
1308static void __update_reg32_bounds(struct bpf_reg_state *reg)
1309{
1310 struct tnum var32_off = tnum_subreg(reg->var_off);
1311
1312 /* min signed is max(sign bit) | min(other bits) */
1313 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1314 var32_off.value | (var32_off.mask & S32_MIN));
1315 /* max signed is min(sign bit) | max(other bits) */
1316 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1317 var32_off.value | (var32_off.mask & S32_MAX));
1318 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1319 reg->u32_max_value = min(reg->u32_max_value,
1320 (u32)(var32_off.value | var32_off.mask));
1321}
1322
1323static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1324{
1325 /* min signed is max(sign bit) | min(other bits) */
1326 reg->smin_value = max_t(s64, reg->smin_value,
1327 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1328 /* max signed is min(sign bit) | max(other bits) */
1329 reg->smax_value = min_t(s64, reg->smax_value,
1330 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1331 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1332 reg->umax_value = min(reg->umax_value,
1333 reg->var_off.value | reg->var_off.mask);
1334}
1335
3f50f132
JF
1336static void __update_reg_bounds(struct bpf_reg_state *reg)
1337{
1338 __update_reg32_bounds(reg);
1339 __update_reg64_bounds(reg);
1340}
1341
b03c9f9f 1342/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1343static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1344{
1345 /* Learn sign from signed bounds.
1346 * If we cannot cross the sign boundary, then signed and unsigned bounds
1347 * are the same, so combine. This works even in the negative case, e.g.
1348 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1349 */
1350 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1351 reg->s32_min_value = reg->u32_min_value =
1352 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1353 reg->s32_max_value = reg->u32_max_value =
1354 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1355 return;
1356 }
1357 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1358 * boundary, so we must be careful.
1359 */
1360 if ((s32)reg->u32_max_value >= 0) {
1361 /* Positive. We can't learn anything from the smin, but smax
1362 * is positive, hence safe.
1363 */
1364 reg->s32_min_value = reg->u32_min_value;
1365 reg->s32_max_value = reg->u32_max_value =
1366 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1367 } else if ((s32)reg->u32_min_value < 0) {
1368 /* Negative. We can't learn anything from the smax, but smin
1369 * is negative, hence safe.
1370 */
1371 reg->s32_min_value = reg->u32_min_value =
1372 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1373 reg->s32_max_value = reg->u32_max_value;
1374 }
1375}
1376
1377static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1378{
1379 /* Learn sign from signed bounds.
1380 * If we cannot cross the sign boundary, then signed and unsigned bounds
1381 * are the same, so combine. This works even in the negative case, e.g.
1382 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1383 */
1384 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1385 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1386 reg->umin_value);
1387 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1388 reg->umax_value);
1389 return;
1390 }
1391 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1392 * boundary, so we must be careful.
1393 */
1394 if ((s64)reg->umax_value >= 0) {
1395 /* Positive. We can't learn anything from the smin, but smax
1396 * is positive, hence safe.
1397 */
1398 reg->smin_value = reg->umin_value;
1399 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1400 reg->umax_value);
1401 } else if ((s64)reg->umin_value < 0) {
1402 /* Negative. We can't learn anything from the smax, but smin
1403 * is negative, hence safe.
1404 */
1405 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1406 reg->umin_value);
1407 reg->smax_value = reg->umax_value;
1408 }
1409}
1410
3f50f132
JF
1411static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1412{
1413 __reg32_deduce_bounds(reg);
1414 __reg64_deduce_bounds(reg);
1415}
1416
b03c9f9f
EC
1417/* Attempts to improve var_off based on unsigned min/max information */
1418static void __reg_bound_offset(struct bpf_reg_state *reg)
1419{
3f50f132
JF
1420 struct tnum var64_off = tnum_intersect(reg->var_off,
1421 tnum_range(reg->umin_value,
1422 reg->umax_value));
1423 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1424 tnum_range(reg->u32_min_value,
1425 reg->u32_max_value));
1426
1427 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1428}
1429
3f50f132 1430static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1431{
3f50f132
JF
1432 reg->umin_value = reg->u32_min_value;
1433 reg->umax_value = reg->u32_max_value;
1434 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1435 * but must be positive otherwise set to worse case bounds
1436 * and refine later from tnum.
1437 */
3a71dc36 1438 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1439 reg->smax_value = reg->s32_max_value;
1440 else
1441 reg->smax_value = U32_MAX;
3a71dc36
JF
1442 if (reg->s32_min_value >= 0)
1443 reg->smin_value = reg->s32_min_value;
1444 else
1445 reg->smin_value = 0;
3f50f132
JF
1446}
1447
1448static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1449{
1450 /* special case when 64-bit register has upper 32-bit register
1451 * zeroed. Typically happens after zext or <<32, >>32 sequence
1452 * allowing us to use 32-bit bounds directly,
1453 */
1454 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1455 __reg_assign_32_into_64(reg);
1456 } else {
1457 /* Otherwise the best we can do is push lower 32bit known and
1458 * unknown bits into register (var_off set from jmp logic)
1459 * then learn as much as possible from the 64-bit tnum
1460 * known and unknown bits. The previous smin/smax bounds are
1461 * invalid here because of jmp32 compare so mark them unknown
1462 * so they do not impact tnum bounds calculation.
1463 */
1464 __mark_reg64_unbounded(reg);
1465 __update_reg_bounds(reg);
1466 }
1467
1468 /* Intersecting with the old var_off might have improved our bounds
1469 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1470 * then new var_off is (0; 0x7f...fc) which improves our umax.
1471 */
1472 __reg_deduce_bounds(reg);
1473 __reg_bound_offset(reg);
1474 __update_reg_bounds(reg);
1475}
1476
1477static bool __reg64_bound_s32(s64 a)
1478{
388e2c0b 1479 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1480}
1481
1482static bool __reg64_bound_u32(u64 a)
1483{
b9979db8 1484 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1485}
1486
1487static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1488{
1489 __mark_reg32_unbounded(reg);
1490
b0270958 1491 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1492 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1493 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1494 }
10bf4e83 1495 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1496 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1497 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1498 }
3f50f132
JF
1499
1500 /* Intersecting with the old var_off might have improved our bounds
1501 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1502 * then new var_off is (0; 0x7f...fc) which improves our umax.
1503 */
1504 __reg_deduce_bounds(reg);
1505 __reg_bound_offset(reg);
1506 __update_reg_bounds(reg);
b03c9f9f
EC
1507}
1508
f1174f77 1509/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1510static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1511 struct bpf_reg_state *reg)
f1174f77 1512{
a9c676bc
AS
1513 /*
1514 * Clear type, id, off, and union(map_ptr, range) and
1515 * padding between 'type' and union
1516 */
1517 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1518 reg->type = SCALAR_VALUE;
f1174f77 1519 reg->var_off = tnum_unknown;
f4d7e40a 1520 reg->frameno = 0;
2c78ee89 1521 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1522 __mark_reg_unbounded(reg);
f1174f77
EC
1523}
1524
61bd5218
JK
1525static void mark_reg_unknown(struct bpf_verifier_env *env,
1526 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1527{
1528 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1529 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1530 /* Something bad happened, let's kill all regs except FP */
1531 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1532 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1533 return;
1534 }
f54c7898 1535 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1536}
1537
f54c7898
DB
1538static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1539 struct bpf_reg_state *reg)
f1174f77 1540{
f54c7898 1541 __mark_reg_unknown(env, reg);
f1174f77
EC
1542 reg->type = NOT_INIT;
1543}
1544
61bd5218
JK
1545static void mark_reg_not_init(struct bpf_verifier_env *env,
1546 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1547{
1548 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1549 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1550 /* Something bad happened, let's kill all regs except FP */
1551 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1552 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1553 return;
1554 }
f54c7898 1555 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1556}
1557
41c48f3a
AI
1558static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1559 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1560 enum bpf_reg_type reg_type,
1561 struct btf *btf, u32 btf_id)
41c48f3a
AI
1562{
1563 if (reg_type == SCALAR_VALUE) {
1564 mark_reg_unknown(env, regs, regno);
1565 return;
1566 }
1567 mark_reg_known_zero(env, regs, regno);
1568 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1569 regs[regno].btf = btf;
41c48f3a
AI
1570 regs[regno].btf_id = btf_id;
1571}
1572
5327ed3d 1573#define DEF_NOT_SUBREG (0)
61bd5218 1574static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1575 struct bpf_func_state *state)
17a52670 1576{
f4d7e40a 1577 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1578 int i;
1579
dc503a8a 1580 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1581 mark_reg_not_init(env, regs, i);
dc503a8a 1582 regs[i].live = REG_LIVE_NONE;
679c782d 1583 regs[i].parent = NULL;
5327ed3d 1584 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1585 }
17a52670
AS
1586
1587 /* frame pointer */
f1174f77 1588 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1589 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1590 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1591}
1592
f4d7e40a
AS
1593#define BPF_MAIN_FUNC (-1)
1594static void init_func_state(struct bpf_verifier_env *env,
1595 struct bpf_func_state *state,
1596 int callsite, int frameno, int subprogno)
1597{
1598 state->callsite = callsite;
1599 state->frameno = frameno;
1600 state->subprogno = subprogno;
1601 init_reg_state(env, state);
0f55f9ed 1602 mark_verifier_state_scratched(env);
f4d7e40a
AS
1603}
1604
bfc6bb74
AS
1605/* Similar to push_stack(), but for async callbacks */
1606static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1607 int insn_idx, int prev_insn_idx,
1608 int subprog)
1609{
1610 struct bpf_verifier_stack_elem *elem;
1611 struct bpf_func_state *frame;
1612
1613 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1614 if (!elem)
1615 goto err;
1616
1617 elem->insn_idx = insn_idx;
1618 elem->prev_insn_idx = prev_insn_idx;
1619 elem->next = env->head;
1620 elem->log_pos = env->log.len_used;
1621 env->head = elem;
1622 env->stack_size++;
1623 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1624 verbose(env,
1625 "The sequence of %d jumps is too complex for async cb.\n",
1626 env->stack_size);
1627 goto err;
1628 }
1629 /* Unlike push_stack() do not copy_verifier_state().
1630 * The caller state doesn't matter.
1631 * This is async callback. It starts in a fresh stack.
1632 * Initialize it similar to do_check_common().
1633 */
1634 elem->st.branches = 1;
1635 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1636 if (!frame)
1637 goto err;
1638 init_func_state(env, frame,
1639 BPF_MAIN_FUNC /* callsite */,
1640 0 /* frameno within this callchain */,
1641 subprog /* subprog number within this prog */);
1642 elem->st.frame[0] = frame;
1643 return &elem->st;
1644err:
1645 free_verifier_state(env->cur_state, true);
1646 env->cur_state = NULL;
1647 /* pop all elements and return */
1648 while (!pop_stack(env, NULL, NULL, false));
1649 return NULL;
1650}
1651
1652
17a52670
AS
1653enum reg_arg_type {
1654 SRC_OP, /* register is used as source operand */
1655 DST_OP, /* register is used as destination operand */
1656 DST_OP_NO_MARK /* same as above, check only, don't mark */
1657};
1658
cc8b0b92
AS
1659static int cmp_subprogs(const void *a, const void *b)
1660{
9c8105bd
JW
1661 return ((struct bpf_subprog_info *)a)->start -
1662 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1663}
1664
1665static int find_subprog(struct bpf_verifier_env *env, int off)
1666{
9c8105bd 1667 struct bpf_subprog_info *p;
cc8b0b92 1668
9c8105bd
JW
1669 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1670 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1671 if (!p)
1672 return -ENOENT;
9c8105bd 1673 return p - env->subprog_info;
cc8b0b92
AS
1674
1675}
1676
1677static int add_subprog(struct bpf_verifier_env *env, int off)
1678{
1679 int insn_cnt = env->prog->len;
1680 int ret;
1681
1682 if (off >= insn_cnt || off < 0) {
1683 verbose(env, "call to invalid destination\n");
1684 return -EINVAL;
1685 }
1686 ret = find_subprog(env, off);
1687 if (ret >= 0)
282a0f46 1688 return ret;
4cb3d99c 1689 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1690 verbose(env, "too many subprograms\n");
1691 return -E2BIG;
1692 }
e6ac2450 1693 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1694 env->subprog_info[env->subprog_cnt++].start = off;
1695 sort(env->subprog_info, env->subprog_cnt,
1696 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1697 return env->subprog_cnt - 1;
cc8b0b92
AS
1698}
1699
2357672c
KKD
1700#define MAX_KFUNC_DESCS 256
1701#define MAX_KFUNC_BTFS 256
1702
e6ac2450
MKL
1703struct bpf_kfunc_desc {
1704 struct btf_func_model func_model;
1705 u32 func_id;
1706 s32 imm;
2357672c
KKD
1707 u16 offset;
1708};
1709
1710struct bpf_kfunc_btf {
1711 struct btf *btf;
1712 struct module *module;
1713 u16 offset;
e6ac2450
MKL
1714};
1715
e6ac2450
MKL
1716struct bpf_kfunc_desc_tab {
1717 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1718 u32 nr_descs;
1719};
1720
2357672c
KKD
1721struct bpf_kfunc_btf_tab {
1722 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1723 u32 nr_descs;
1724};
1725
1726static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1727{
1728 const struct bpf_kfunc_desc *d0 = a;
1729 const struct bpf_kfunc_desc *d1 = b;
1730
1731 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1732 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1733}
1734
1735static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1736{
1737 const struct bpf_kfunc_btf *d0 = a;
1738 const struct bpf_kfunc_btf *d1 = b;
1739
1740 return d0->offset - d1->offset;
e6ac2450
MKL
1741}
1742
1743static const struct bpf_kfunc_desc *
2357672c 1744find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1745{
1746 struct bpf_kfunc_desc desc = {
1747 .func_id = func_id,
2357672c 1748 .offset = offset,
e6ac2450
MKL
1749 };
1750 struct bpf_kfunc_desc_tab *tab;
1751
1752 tab = prog->aux->kfunc_tab;
1753 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1754 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1755}
1756
1757static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1758 s16 offset, struct module **btf_modp)
1759{
1760 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1761 struct bpf_kfunc_btf_tab *tab;
1762 struct bpf_kfunc_btf *b;
1763 struct module *mod;
1764 struct btf *btf;
1765 int btf_fd;
1766
1767 tab = env->prog->aux->kfunc_btf_tab;
1768 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1769 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1770 if (!b) {
1771 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1772 verbose(env, "too many different module BTFs\n");
1773 return ERR_PTR(-E2BIG);
1774 }
1775
1776 if (bpfptr_is_null(env->fd_array)) {
1777 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1778 return ERR_PTR(-EPROTO);
1779 }
1780
1781 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1782 offset * sizeof(btf_fd),
1783 sizeof(btf_fd)))
1784 return ERR_PTR(-EFAULT);
1785
1786 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1787 if (IS_ERR(btf)) {
1788 verbose(env, "invalid module BTF fd specified\n");
2357672c 1789 return btf;
588cd7ef 1790 }
2357672c
KKD
1791
1792 if (!btf_is_module(btf)) {
1793 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1794 btf_put(btf);
1795 return ERR_PTR(-EINVAL);
1796 }
1797
1798 mod = btf_try_get_module(btf);
1799 if (!mod) {
1800 btf_put(btf);
1801 return ERR_PTR(-ENXIO);
1802 }
1803
1804 b = &tab->descs[tab->nr_descs++];
1805 b->btf = btf;
1806 b->module = mod;
1807 b->offset = offset;
1808
1809 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1810 kfunc_btf_cmp_by_off, NULL);
1811 }
1812 if (btf_modp)
1813 *btf_modp = b->module;
1814 return b->btf;
e6ac2450
MKL
1815}
1816
2357672c
KKD
1817void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1818{
1819 if (!tab)
1820 return;
1821
1822 while (tab->nr_descs--) {
1823 module_put(tab->descs[tab->nr_descs].module);
1824 btf_put(tab->descs[tab->nr_descs].btf);
1825 }
1826 kfree(tab);
1827}
1828
1829static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1830 u32 func_id, s16 offset,
1831 struct module **btf_modp)
1832{
2357672c
KKD
1833 if (offset) {
1834 if (offset < 0) {
1835 /* In the future, this can be allowed to increase limit
1836 * of fd index into fd_array, interpreted as u16.
1837 */
1838 verbose(env, "negative offset disallowed for kernel module function call\n");
1839 return ERR_PTR(-EINVAL);
1840 }
1841
588cd7ef 1842 return __find_kfunc_desc_btf(env, offset, btf_modp);
2357672c
KKD
1843 }
1844 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
1845}
1846
2357672c 1847static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
1848{
1849 const struct btf_type *func, *func_proto;
2357672c 1850 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
1851 struct bpf_kfunc_desc_tab *tab;
1852 struct bpf_prog_aux *prog_aux;
1853 struct bpf_kfunc_desc *desc;
1854 const char *func_name;
2357672c 1855 struct btf *desc_btf;
e6ac2450
MKL
1856 unsigned long addr;
1857 int err;
1858
1859 prog_aux = env->prog->aux;
1860 tab = prog_aux->kfunc_tab;
2357672c 1861 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
1862 if (!tab) {
1863 if (!btf_vmlinux) {
1864 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1865 return -ENOTSUPP;
1866 }
1867
1868 if (!env->prog->jit_requested) {
1869 verbose(env, "JIT is required for calling kernel function\n");
1870 return -ENOTSUPP;
1871 }
1872
1873 if (!bpf_jit_supports_kfunc_call()) {
1874 verbose(env, "JIT does not support calling kernel function\n");
1875 return -ENOTSUPP;
1876 }
1877
1878 if (!env->prog->gpl_compatible) {
1879 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1880 return -EINVAL;
1881 }
1882
1883 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1884 if (!tab)
1885 return -ENOMEM;
1886 prog_aux->kfunc_tab = tab;
1887 }
1888
a5d82727
KKD
1889 /* func_id == 0 is always invalid, but instead of returning an error, be
1890 * conservative and wait until the code elimination pass before returning
1891 * error, so that invalid calls that get pruned out can be in BPF programs
1892 * loaded from userspace. It is also required that offset be untouched
1893 * for such calls.
1894 */
1895 if (!func_id && !offset)
1896 return 0;
1897
2357672c
KKD
1898 if (!btf_tab && offset) {
1899 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1900 if (!btf_tab)
1901 return -ENOMEM;
1902 prog_aux->kfunc_btf_tab = btf_tab;
1903 }
1904
1905 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1906 if (IS_ERR(desc_btf)) {
1907 verbose(env, "failed to find BTF for kernel function\n");
1908 return PTR_ERR(desc_btf);
1909 }
1910
1911 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
1912 return 0;
1913
1914 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1915 verbose(env, "too many different kernel function calls\n");
1916 return -E2BIG;
1917 }
1918
2357672c 1919 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
1920 if (!func || !btf_type_is_func(func)) {
1921 verbose(env, "kernel btf_id %u is not a function\n",
1922 func_id);
1923 return -EINVAL;
1924 }
2357672c 1925 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
1926 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1927 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1928 func_id);
1929 return -EINVAL;
1930 }
1931
2357672c 1932 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
1933 addr = kallsyms_lookup_name(func_name);
1934 if (!addr) {
1935 verbose(env, "cannot find address for kernel function %s\n",
1936 func_name);
1937 return -EINVAL;
1938 }
1939
1940 desc = &tab->descs[tab->nr_descs++];
1941 desc->func_id = func_id;
3d717fad 1942 desc->imm = BPF_CALL_IMM(addr);
2357672c
KKD
1943 desc->offset = offset;
1944 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
1945 func_proto, func_name,
1946 &desc->func_model);
1947 if (!err)
1948 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 1949 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
1950 return err;
1951}
1952
1953static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1954{
1955 const struct bpf_kfunc_desc *d0 = a;
1956 const struct bpf_kfunc_desc *d1 = b;
1957
1958 if (d0->imm > d1->imm)
1959 return 1;
1960 else if (d0->imm < d1->imm)
1961 return -1;
1962 return 0;
1963}
1964
1965static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1966{
1967 struct bpf_kfunc_desc_tab *tab;
1968
1969 tab = prog->aux->kfunc_tab;
1970 if (!tab)
1971 return;
1972
1973 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1974 kfunc_desc_cmp_by_imm, NULL);
1975}
1976
1977bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1978{
1979 return !!prog->aux->kfunc_tab;
1980}
1981
1982const struct btf_func_model *
1983bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1984 const struct bpf_insn *insn)
1985{
1986 const struct bpf_kfunc_desc desc = {
1987 .imm = insn->imm,
1988 };
1989 const struct bpf_kfunc_desc *res;
1990 struct bpf_kfunc_desc_tab *tab;
1991
1992 tab = prog->aux->kfunc_tab;
1993 res = bsearch(&desc, tab->descs, tab->nr_descs,
1994 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1995
1996 return res ? &res->func_model : NULL;
1997}
1998
1999static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2000{
9c8105bd 2001 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2002 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2003 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2004
f910cefa
JW
2005 /* Add entry function. */
2006 ret = add_subprog(env, 0);
e6ac2450 2007 if (ret)
f910cefa
JW
2008 return ret;
2009
e6ac2450
MKL
2010 for (i = 0; i < insn_cnt; i++, insn++) {
2011 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2012 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2013 continue;
e6ac2450 2014
2c78ee89 2015 if (!env->bpf_capable) {
e6ac2450 2016 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2017 return -EPERM;
2018 }
e6ac2450 2019
3990ed4c 2020 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2021 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2022 else
2357672c 2023 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2024
cc8b0b92
AS
2025 if (ret < 0)
2026 return ret;
2027 }
2028
4cb3d99c
JW
2029 /* Add a fake 'exit' subprog which could simplify subprog iteration
2030 * logic. 'subprog_cnt' should not be increased.
2031 */
2032 subprog[env->subprog_cnt].start = insn_cnt;
2033
06ee7115 2034 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2035 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2036 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2037
e6ac2450
MKL
2038 return 0;
2039}
2040
2041static int check_subprogs(struct bpf_verifier_env *env)
2042{
2043 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2044 struct bpf_subprog_info *subprog = env->subprog_info;
2045 struct bpf_insn *insn = env->prog->insnsi;
2046 int insn_cnt = env->prog->len;
2047
cc8b0b92 2048 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2049 subprog_start = subprog[cur_subprog].start;
2050 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2051 for (i = 0; i < insn_cnt; i++) {
2052 u8 code = insn[i].code;
2053
7f6e4312
MF
2054 if (code == (BPF_JMP | BPF_CALL) &&
2055 insn[i].imm == BPF_FUNC_tail_call &&
2056 insn[i].src_reg != BPF_PSEUDO_CALL)
2057 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2058 if (BPF_CLASS(code) == BPF_LD &&
2059 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2060 subprog[cur_subprog].has_ld_abs = true;
092ed096 2061 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2062 goto next;
2063 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2064 goto next;
2065 off = i + insn[i].off + 1;
2066 if (off < subprog_start || off >= subprog_end) {
2067 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2068 return -EINVAL;
2069 }
2070next:
2071 if (i == subprog_end - 1) {
2072 /* to avoid fall-through from one subprog into another
2073 * the last insn of the subprog should be either exit
2074 * or unconditional jump back
2075 */
2076 if (code != (BPF_JMP | BPF_EXIT) &&
2077 code != (BPF_JMP | BPF_JA)) {
2078 verbose(env, "last insn is not an exit or jmp\n");
2079 return -EINVAL;
2080 }
2081 subprog_start = subprog_end;
4cb3d99c
JW
2082 cur_subprog++;
2083 if (cur_subprog < env->subprog_cnt)
9c8105bd 2084 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2085 }
2086 }
2087 return 0;
2088}
2089
679c782d
EC
2090/* Parentage chain of this register (or stack slot) should take care of all
2091 * issues like callee-saved registers, stack slot allocation time, etc.
2092 */
f4d7e40a 2093static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2094 const struct bpf_reg_state *state,
5327ed3d 2095 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2096{
2097 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2098 int cnt = 0;
dc503a8a
EC
2099
2100 while (parent) {
2101 /* if read wasn't screened by an earlier write ... */
679c782d 2102 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2103 break;
9242b5f5
AS
2104 if (parent->live & REG_LIVE_DONE) {
2105 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2106 reg_type_str[parent->type],
2107 parent->var_off.value, parent->off);
2108 return -EFAULT;
2109 }
5327ed3d
JW
2110 /* The first condition is more likely to be true than the
2111 * second, checked it first.
2112 */
2113 if ((parent->live & REG_LIVE_READ) == flag ||
2114 parent->live & REG_LIVE_READ64)
25af32da
AS
2115 /* The parentage chain never changes and
2116 * this parent was already marked as LIVE_READ.
2117 * There is no need to keep walking the chain again and
2118 * keep re-marking all parents as LIVE_READ.
2119 * This case happens when the same register is read
2120 * multiple times without writes into it in-between.
5327ed3d
JW
2121 * Also, if parent has the stronger REG_LIVE_READ64 set,
2122 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2123 */
2124 break;
dc503a8a 2125 /* ... then we depend on parent's value */
5327ed3d
JW
2126 parent->live |= flag;
2127 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2128 if (flag == REG_LIVE_READ64)
2129 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2130 state = parent;
2131 parent = state->parent;
f4d7e40a 2132 writes = true;
06ee7115 2133 cnt++;
dc503a8a 2134 }
06ee7115
AS
2135
2136 if (env->longest_mark_read_walk < cnt)
2137 env->longest_mark_read_walk = cnt;
f4d7e40a 2138 return 0;
dc503a8a
EC
2139}
2140
5327ed3d
JW
2141/* This function is supposed to be used by the following 32-bit optimization
2142 * code only. It returns TRUE if the source or destination register operates
2143 * on 64-bit, otherwise return FALSE.
2144 */
2145static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2146 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2147{
2148 u8 code, class, op;
2149
2150 code = insn->code;
2151 class = BPF_CLASS(code);
2152 op = BPF_OP(code);
2153 if (class == BPF_JMP) {
2154 /* BPF_EXIT for "main" will reach here. Return TRUE
2155 * conservatively.
2156 */
2157 if (op == BPF_EXIT)
2158 return true;
2159 if (op == BPF_CALL) {
2160 /* BPF to BPF call will reach here because of marking
2161 * caller saved clobber with DST_OP_NO_MARK for which we
2162 * don't care the register def because they are anyway
2163 * marked as NOT_INIT already.
2164 */
2165 if (insn->src_reg == BPF_PSEUDO_CALL)
2166 return false;
2167 /* Helper call will reach here because of arg type
2168 * check, conservatively return TRUE.
2169 */
2170 if (t == SRC_OP)
2171 return true;
2172
2173 return false;
2174 }
2175 }
2176
2177 if (class == BPF_ALU64 || class == BPF_JMP ||
2178 /* BPF_END always use BPF_ALU class. */
2179 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2180 return true;
2181
2182 if (class == BPF_ALU || class == BPF_JMP32)
2183 return false;
2184
2185 if (class == BPF_LDX) {
2186 if (t != SRC_OP)
2187 return BPF_SIZE(code) == BPF_DW;
2188 /* LDX source must be ptr. */
2189 return true;
2190 }
2191
2192 if (class == BPF_STX) {
83a28819
IL
2193 /* BPF_STX (including atomic variants) has multiple source
2194 * operands, one of which is a ptr. Check whether the caller is
2195 * asking about it.
2196 */
2197 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2198 return true;
2199 return BPF_SIZE(code) == BPF_DW;
2200 }
2201
2202 if (class == BPF_LD) {
2203 u8 mode = BPF_MODE(code);
2204
2205 /* LD_IMM64 */
2206 if (mode == BPF_IMM)
2207 return true;
2208
2209 /* Both LD_IND and LD_ABS return 32-bit data. */
2210 if (t != SRC_OP)
2211 return false;
2212
2213 /* Implicit ctx ptr. */
2214 if (regno == BPF_REG_6)
2215 return true;
2216
2217 /* Explicit source could be any width. */
2218 return true;
2219 }
2220
2221 if (class == BPF_ST)
2222 /* The only source register for BPF_ST is a ptr. */
2223 return true;
2224
2225 /* Conservatively return true at default. */
2226 return true;
2227}
2228
83a28819
IL
2229/* Return the regno defined by the insn, or -1. */
2230static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2231{
83a28819
IL
2232 switch (BPF_CLASS(insn->code)) {
2233 case BPF_JMP:
2234 case BPF_JMP32:
2235 case BPF_ST:
2236 return -1;
2237 case BPF_STX:
2238 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2239 (insn->imm & BPF_FETCH)) {
2240 if (insn->imm == BPF_CMPXCHG)
2241 return BPF_REG_0;
2242 else
2243 return insn->src_reg;
2244 } else {
2245 return -1;
2246 }
2247 default:
2248 return insn->dst_reg;
2249 }
b325fbca
JW
2250}
2251
2252/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2253static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2254{
83a28819
IL
2255 int dst_reg = insn_def_regno(insn);
2256
2257 if (dst_reg == -1)
b325fbca
JW
2258 return false;
2259
83a28819 2260 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2261}
2262
5327ed3d
JW
2263static void mark_insn_zext(struct bpf_verifier_env *env,
2264 struct bpf_reg_state *reg)
2265{
2266 s32 def_idx = reg->subreg_def;
2267
2268 if (def_idx == DEF_NOT_SUBREG)
2269 return;
2270
2271 env->insn_aux_data[def_idx - 1].zext_dst = true;
2272 /* The dst will be zero extended, so won't be sub-register anymore. */
2273 reg->subreg_def = DEF_NOT_SUBREG;
2274}
2275
dc503a8a 2276static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2277 enum reg_arg_type t)
2278{
f4d7e40a
AS
2279 struct bpf_verifier_state *vstate = env->cur_state;
2280 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2281 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2282 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2283 bool rw64;
dc503a8a 2284
17a52670 2285 if (regno >= MAX_BPF_REG) {
61bd5218 2286 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2287 return -EINVAL;
2288 }
2289
0f55f9ed
CL
2290 mark_reg_scratched(env, regno);
2291
c342dc10 2292 reg = &regs[regno];
5327ed3d 2293 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2294 if (t == SRC_OP) {
2295 /* check whether register used as source operand can be read */
c342dc10 2296 if (reg->type == NOT_INIT) {
61bd5218 2297 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2298 return -EACCES;
2299 }
679c782d 2300 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2301 if (regno == BPF_REG_FP)
2302 return 0;
2303
5327ed3d
JW
2304 if (rw64)
2305 mark_insn_zext(env, reg);
2306
2307 return mark_reg_read(env, reg, reg->parent,
2308 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2309 } else {
2310 /* check whether register used as dest operand can be written to */
2311 if (regno == BPF_REG_FP) {
61bd5218 2312 verbose(env, "frame pointer is read only\n");
17a52670
AS
2313 return -EACCES;
2314 }
c342dc10 2315 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2316 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2317 if (t == DST_OP)
61bd5218 2318 mark_reg_unknown(env, regs, regno);
17a52670
AS
2319 }
2320 return 0;
2321}
2322
b5dc0163
AS
2323/* for any branch, call, exit record the history of jmps in the given state */
2324static int push_jmp_history(struct bpf_verifier_env *env,
2325 struct bpf_verifier_state *cur)
2326{
2327 u32 cnt = cur->jmp_history_cnt;
2328 struct bpf_idx_pair *p;
2329
2330 cnt++;
2331 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2332 if (!p)
2333 return -ENOMEM;
2334 p[cnt - 1].idx = env->insn_idx;
2335 p[cnt - 1].prev_idx = env->prev_insn_idx;
2336 cur->jmp_history = p;
2337 cur->jmp_history_cnt = cnt;
2338 return 0;
2339}
2340
2341/* Backtrack one insn at a time. If idx is not at the top of recorded
2342 * history then previous instruction came from straight line execution.
2343 */
2344static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2345 u32 *history)
2346{
2347 u32 cnt = *history;
2348
2349 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2350 i = st->jmp_history[cnt - 1].prev_idx;
2351 (*history)--;
2352 } else {
2353 i--;
2354 }
2355 return i;
2356}
2357
e6ac2450
MKL
2358static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2359{
2360 const struct btf_type *func;
2357672c 2361 struct btf *desc_btf;
e6ac2450
MKL
2362
2363 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2364 return NULL;
2365
2357672c
KKD
2366 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2367 if (IS_ERR(desc_btf))
2368 return "<error>";
2369
2370 func = btf_type_by_id(desc_btf, insn->imm);
2371 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2372}
2373
b5dc0163
AS
2374/* For given verifier state backtrack_insn() is called from the last insn to
2375 * the first insn. Its purpose is to compute a bitmask of registers and
2376 * stack slots that needs precision in the parent verifier state.
2377 */
2378static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2379 u32 *reg_mask, u64 *stack_mask)
2380{
2381 const struct bpf_insn_cbs cbs = {
e6ac2450 2382 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2383 .cb_print = verbose,
2384 .private_data = env,
2385 };
2386 struct bpf_insn *insn = env->prog->insnsi + idx;
2387 u8 class = BPF_CLASS(insn->code);
2388 u8 opcode = BPF_OP(insn->code);
2389 u8 mode = BPF_MODE(insn->code);
2390 u32 dreg = 1u << insn->dst_reg;
2391 u32 sreg = 1u << insn->src_reg;
2392 u32 spi;
2393
2394 if (insn->code == 0)
2395 return 0;
496f3324 2396 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
2397 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2398 verbose(env, "%d: ", idx);
2399 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2400 }
2401
2402 if (class == BPF_ALU || class == BPF_ALU64) {
2403 if (!(*reg_mask & dreg))
2404 return 0;
2405 if (opcode == BPF_MOV) {
2406 if (BPF_SRC(insn->code) == BPF_X) {
2407 /* dreg = sreg
2408 * dreg needs precision after this insn
2409 * sreg needs precision before this insn
2410 */
2411 *reg_mask &= ~dreg;
2412 *reg_mask |= sreg;
2413 } else {
2414 /* dreg = K
2415 * dreg needs precision after this insn.
2416 * Corresponding register is already marked
2417 * as precise=true in this verifier state.
2418 * No further markings in parent are necessary
2419 */
2420 *reg_mask &= ~dreg;
2421 }
2422 } else {
2423 if (BPF_SRC(insn->code) == BPF_X) {
2424 /* dreg += sreg
2425 * both dreg and sreg need precision
2426 * before this insn
2427 */
2428 *reg_mask |= sreg;
2429 } /* else dreg += K
2430 * dreg still needs precision before this insn
2431 */
2432 }
2433 } else if (class == BPF_LDX) {
2434 if (!(*reg_mask & dreg))
2435 return 0;
2436 *reg_mask &= ~dreg;
2437
2438 /* scalars can only be spilled into stack w/o losing precision.
2439 * Load from any other memory can be zero extended.
2440 * The desire to keep that precision is already indicated
2441 * by 'precise' mark in corresponding register of this state.
2442 * No further tracking necessary.
2443 */
2444 if (insn->src_reg != BPF_REG_FP)
2445 return 0;
2446 if (BPF_SIZE(insn->code) != BPF_DW)
2447 return 0;
2448
2449 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2450 * that [fp - off] slot contains scalar that needs to be
2451 * tracked with precision
2452 */
2453 spi = (-insn->off - 1) / BPF_REG_SIZE;
2454 if (spi >= 64) {
2455 verbose(env, "BUG spi %d\n", spi);
2456 WARN_ONCE(1, "verifier backtracking bug");
2457 return -EFAULT;
2458 }
2459 *stack_mask |= 1ull << spi;
b3b50f05 2460 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2461 if (*reg_mask & dreg)
b3b50f05 2462 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2463 * to access memory. It means backtracking
2464 * encountered a case of pointer subtraction.
2465 */
2466 return -ENOTSUPP;
2467 /* scalars can only be spilled into stack */
2468 if (insn->dst_reg != BPF_REG_FP)
2469 return 0;
2470 if (BPF_SIZE(insn->code) != BPF_DW)
2471 return 0;
2472 spi = (-insn->off - 1) / BPF_REG_SIZE;
2473 if (spi >= 64) {
2474 verbose(env, "BUG spi %d\n", spi);
2475 WARN_ONCE(1, "verifier backtracking bug");
2476 return -EFAULT;
2477 }
2478 if (!(*stack_mask & (1ull << spi)))
2479 return 0;
2480 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2481 if (class == BPF_STX)
2482 *reg_mask |= sreg;
b5dc0163
AS
2483 } else if (class == BPF_JMP || class == BPF_JMP32) {
2484 if (opcode == BPF_CALL) {
2485 if (insn->src_reg == BPF_PSEUDO_CALL)
2486 return -ENOTSUPP;
2487 /* regular helper call sets R0 */
2488 *reg_mask &= ~1;
2489 if (*reg_mask & 0x3f) {
2490 /* if backtracing was looking for registers R1-R5
2491 * they should have been found already.
2492 */
2493 verbose(env, "BUG regs %x\n", *reg_mask);
2494 WARN_ONCE(1, "verifier backtracking bug");
2495 return -EFAULT;
2496 }
2497 } else if (opcode == BPF_EXIT) {
2498 return -ENOTSUPP;
2499 }
2500 } else if (class == BPF_LD) {
2501 if (!(*reg_mask & dreg))
2502 return 0;
2503 *reg_mask &= ~dreg;
2504 /* It's ld_imm64 or ld_abs or ld_ind.
2505 * For ld_imm64 no further tracking of precision
2506 * into parent is necessary
2507 */
2508 if (mode == BPF_IND || mode == BPF_ABS)
2509 /* to be analyzed */
2510 return -ENOTSUPP;
b5dc0163
AS
2511 }
2512 return 0;
2513}
2514
2515/* the scalar precision tracking algorithm:
2516 * . at the start all registers have precise=false.
2517 * . scalar ranges are tracked as normal through alu and jmp insns.
2518 * . once precise value of the scalar register is used in:
2519 * . ptr + scalar alu
2520 * . if (scalar cond K|scalar)
2521 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2522 * backtrack through the verifier states and mark all registers and
2523 * stack slots with spilled constants that these scalar regisers
2524 * should be precise.
2525 * . during state pruning two registers (or spilled stack slots)
2526 * are equivalent if both are not precise.
2527 *
2528 * Note the verifier cannot simply walk register parentage chain,
2529 * since many different registers and stack slots could have been
2530 * used to compute single precise scalar.
2531 *
2532 * The approach of starting with precise=true for all registers and then
2533 * backtrack to mark a register as not precise when the verifier detects
2534 * that program doesn't care about specific value (e.g., when helper
2535 * takes register as ARG_ANYTHING parameter) is not safe.
2536 *
2537 * It's ok to walk single parentage chain of the verifier states.
2538 * It's possible that this backtracking will go all the way till 1st insn.
2539 * All other branches will be explored for needing precision later.
2540 *
2541 * The backtracking needs to deal with cases like:
2542 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2543 * r9 -= r8
2544 * r5 = r9
2545 * if r5 > 0x79f goto pc+7
2546 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2547 * r5 += 1
2548 * ...
2549 * call bpf_perf_event_output#25
2550 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2551 *
2552 * and this case:
2553 * r6 = 1
2554 * call foo // uses callee's r6 inside to compute r0
2555 * r0 += r6
2556 * if r0 == 0 goto
2557 *
2558 * to track above reg_mask/stack_mask needs to be independent for each frame.
2559 *
2560 * Also if parent's curframe > frame where backtracking started,
2561 * the verifier need to mark registers in both frames, otherwise callees
2562 * may incorrectly prune callers. This is similar to
2563 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2564 *
2565 * For now backtracking falls back into conservative marking.
2566 */
2567static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2568 struct bpf_verifier_state *st)
2569{
2570 struct bpf_func_state *func;
2571 struct bpf_reg_state *reg;
2572 int i, j;
2573
2574 /* big hammer: mark all scalars precise in this path.
2575 * pop_stack may still get !precise scalars.
2576 */
2577 for (; st; st = st->parent)
2578 for (i = 0; i <= st->curframe; i++) {
2579 func = st->frame[i];
2580 for (j = 0; j < BPF_REG_FP; j++) {
2581 reg = &func->regs[j];
2582 if (reg->type != SCALAR_VALUE)
2583 continue;
2584 reg->precise = true;
2585 }
2586 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2587 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2588 continue;
2589 reg = &func->stack[j].spilled_ptr;
2590 if (reg->type != SCALAR_VALUE)
2591 continue;
2592 reg->precise = true;
2593 }
2594 }
2595}
2596
a3ce685d
AS
2597static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2598 int spi)
b5dc0163
AS
2599{
2600 struct bpf_verifier_state *st = env->cur_state;
2601 int first_idx = st->first_insn_idx;
2602 int last_idx = env->insn_idx;
2603 struct bpf_func_state *func;
2604 struct bpf_reg_state *reg;
a3ce685d
AS
2605 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2606 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2607 bool skip_first = true;
a3ce685d 2608 bool new_marks = false;
b5dc0163
AS
2609 int i, err;
2610
2c78ee89 2611 if (!env->bpf_capable)
b5dc0163
AS
2612 return 0;
2613
2614 func = st->frame[st->curframe];
a3ce685d
AS
2615 if (regno >= 0) {
2616 reg = &func->regs[regno];
2617 if (reg->type != SCALAR_VALUE) {
2618 WARN_ONCE(1, "backtracing misuse");
2619 return -EFAULT;
2620 }
2621 if (!reg->precise)
2622 new_marks = true;
2623 else
2624 reg_mask = 0;
2625 reg->precise = true;
b5dc0163 2626 }
b5dc0163 2627
a3ce685d 2628 while (spi >= 0) {
27113c59 2629 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2630 stack_mask = 0;
2631 break;
2632 }
2633 reg = &func->stack[spi].spilled_ptr;
2634 if (reg->type != SCALAR_VALUE) {
2635 stack_mask = 0;
2636 break;
2637 }
2638 if (!reg->precise)
2639 new_marks = true;
2640 else
2641 stack_mask = 0;
2642 reg->precise = true;
2643 break;
2644 }
2645
2646 if (!new_marks)
2647 return 0;
2648 if (!reg_mask && !stack_mask)
2649 return 0;
b5dc0163
AS
2650 for (;;) {
2651 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2652 u32 history = st->jmp_history_cnt;
2653
496f3324 2654 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163
AS
2655 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2656 for (i = last_idx;;) {
2657 if (skip_first) {
2658 err = 0;
2659 skip_first = false;
2660 } else {
2661 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2662 }
2663 if (err == -ENOTSUPP) {
2664 mark_all_scalars_precise(env, st);
2665 return 0;
2666 } else if (err) {
2667 return err;
2668 }
2669 if (!reg_mask && !stack_mask)
2670 /* Found assignment(s) into tracked register in this state.
2671 * Since this state is already marked, just return.
2672 * Nothing to be tracked further in the parent state.
2673 */
2674 return 0;
2675 if (i == first_idx)
2676 break;
2677 i = get_prev_insn_idx(st, i, &history);
2678 if (i >= env->prog->len) {
2679 /* This can happen if backtracking reached insn 0
2680 * and there are still reg_mask or stack_mask
2681 * to backtrack.
2682 * It means the backtracking missed the spot where
2683 * particular register was initialized with a constant.
2684 */
2685 verbose(env, "BUG backtracking idx %d\n", i);
2686 WARN_ONCE(1, "verifier backtracking bug");
2687 return -EFAULT;
2688 }
2689 }
2690 st = st->parent;
2691 if (!st)
2692 break;
2693
a3ce685d 2694 new_marks = false;
b5dc0163
AS
2695 func = st->frame[st->curframe];
2696 bitmap_from_u64(mask, reg_mask);
2697 for_each_set_bit(i, mask, 32) {
2698 reg = &func->regs[i];
a3ce685d
AS
2699 if (reg->type != SCALAR_VALUE) {
2700 reg_mask &= ~(1u << i);
b5dc0163 2701 continue;
a3ce685d 2702 }
b5dc0163
AS
2703 if (!reg->precise)
2704 new_marks = true;
2705 reg->precise = true;
2706 }
2707
2708 bitmap_from_u64(mask, stack_mask);
2709 for_each_set_bit(i, mask, 64) {
2710 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2711 /* the sequence of instructions:
2712 * 2: (bf) r3 = r10
2713 * 3: (7b) *(u64 *)(r3 -8) = r0
2714 * 4: (79) r4 = *(u64 *)(r10 -8)
2715 * doesn't contain jmps. It's backtracked
2716 * as a single block.
2717 * During backtracking insn 3 is not recognized as
2718 * stack access, so at the end of backtracking
2719 * stack slot fp-8 is still marked in stack_mask.
2720 * However the parent state may not have accessed
2721 * fp-8 and it's "unallocated" stack space.
2722 * In such case fallback to conservative.
b5dc0163 2723 */
2339cd6c
AS
2724 mark_all_scalars_precise(env, st);
2725 return 0;
b5dc0163
AS
2726 }
2727
27113c59 2728 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2729 stack_mask &= ~(1ull << i);
b5dc0163 2730 continue;
a3ce685d 2731 }
b5dc0163 2732 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2733 if (reg->type != SCALAR_VALUE) {
2734 stack_mask &= ~(1ull << i);
b5dc0163 2735 continue;
a3ce685d 2736 }
b5dc0163
AS
2737 if (!reg->precise)
2738 new_marks = true;
2739 reg->precise = true;
2740 }
496f3324 2741 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 2742 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
2743 new_marks ? "didn't have" : "already had",
2744 reg_mask, stack_mask);
2e576648 2745 print_verifier_state(env, func, true);
b5dc0163
AS
2746 }
2747
a3ce685d
AS
2748 if (!reg_mask && !stack_mask)
2749 break;
b5dc0163
AS
2750 if (!new_marks)
2751 break;
2752
2753 last_idx = st->last_insn_idx;
2754 first_idx = st->first_insn_idx;
2755 }
2756 return 0;
2757}
2758
a3ce685d
AS
2759static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2760{
2761 return __mark_chain_precision(env, regno, -1);
2762}
2763
2764static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2765{
2766 return __mark_chain_precision(env, -1, spi);
2767}
b5dc0163 2768
1be7f75d
AS
2769static bool is_spillable_regtype(enum bpf_reg_type type)
2770{
2771 switch (type) {
2772 case PTR_TO_MAP_VALUE:
2773 case PTR_TO_MAP_VALUE_OR_NULL:
2774 case PTR_TO_STACK:
2775 case PTR_TO_CTX:
969bf05e 2776 case PTR_TO_PACKET:
de8f3a83 2777 case PTR_TO_PACKET_META:
969bf05e 2778 case PTR_TO_PACKET_END:
d58e468b 2779 case PTR_TO_FLOW_KEYS:
1be7f75d 2780 case CONST_PTR_TO_MAP:
c64b7983
JS
2781 case PTR_TO_SOCKET:
2782 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2783 case PTR_TO_SOCK_COMMON:
2784 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2785 case PTR_TO_TCP_SOCK:
2786 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2787 case PTR_TO_XDP_SOCK:
65726b5b 2788 case PTR_TO_BTF_ID:
b121b341 2789 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2790 case PTR_TO_RDONLY_BUF:
2791 case PTR_TO_RDONLY_BUF_OR_NULL:
2792 case PTR_TO_RDWR_BUF:
2793 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2794 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2795 case PTR_TO_MEM:
2796 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2797 case PTR_TO_FUNC:
2798 case PTR_TO_MAP_KEY:
1be7f75d
AS
2799 return true;
2800 default:
2801 return false;
2802 }
2803}
2804
cc2b14d5
AS
2805/* Does this register contain a constant zero? */
2806static bool register_is_null(struct bpf_reg_state *reg)
2807{
2808 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2809}
2810
f7cf25b2
AS
2811static bool register_is_const(struct bpf_reg_state *reg)
2812{
2813 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2814}
2815
5689d49b
YS
2816static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2817{
2818 return tnum_is_unknown(reg->var_off) &&
2819 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2820 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2821 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2822 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2823}
2824
2825static bool register_is_bounded(struct bpf_reg_state *reg)
2826{
2827 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2828}
2829
6e7e63cb
JH
2830static bool __is_pointer_value(bool allow_ptr_leaks,
2831 const struct bpf_reg_state *reg)
2832{
2833 if (allow_ptr_leaks)
2834 return false;
2835
2836 return reg->type != SCALAR_VALUE;
2837}
2838
f7cf25b2 2839static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2840 int spi, struct bpf_reg_state *reg,
2841 int size)
f7cf25b2
AS
2842{
2843 int i;
2844
2845 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2846 if (size == BPF_REG_SIZE)
2847 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 2848
354e8f19
MKL
2849 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2850 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 2851
354e8f19
MKL
2852 /* size < 8 bytes spill */
2853 for (; i; i--)
2854 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
2855}
2856
01f810ac 2857/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2858 * stack boundary and alignment are checked in check_mem_access()
2859 */
01f810ac
AM
2860static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2861 /* stack frame we're writing to */
2862 struct bpf_func_state *state,
2863 int off, int size, int value_regno,
2864 int insn_idx)
17a52670 2865{
f4d7e40a 2866 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2867 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2868 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2869 struct bpf_reg_state *reg = NULL;
638f5b90 2870
c69431aa 2871 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2872 if (err)
2873 return err;
9c399760
AS
2874 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2875 * so it's aligned access and [off, off + size) are within stack limits
2876 */
638f5b90
AS
2877 if (!env->allow_ptr_leaks &&
2878 state->stack[spi].slot_type[0] == STACK_SPILL &&
2879 size != BPF_REG_SIZE) {
2880 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2881 return -EACCES;
2882 }
17a52670 2883
f4d7e40a 2884 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2885 if (value_regno >= 0)
2886 reg = &cur->regs[value_regno];
2039f26f
DB
2887 if (!env->bypass_spec_v4) {
2888 bool sanitize = reg && is_spillable_regtype(reg->type);
2889
2890 for (i = 0; i < size; i++) {
2891 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2892 sanitize = true;
2893 break;
2894 }
2895 }
2896
2897 if (sanitize)
2898 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2899 }
17a52670 2900
0f55f9ed 2901 mark_stack_slot_scratched(env, spi);
354e8f19 2902 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 2903 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2904 if (dst_reg != BPF_REG_FP) {
2905 /* The backtracking logic can only recognize explicit
2906 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2907 * scalar via different register has to be conservative.
b5dc0163
AS
2908 * Backtrack from here and mark all registers as precise
2909 * that contributed into 'reg' being a constant.
2910 */
2911 err = mark_chain_precision(env, value_regno);
2912 if (err)
2913 return err;
2914 }
354e8f19 2915 save_register_state(state, spi, reg, size);
f7cf25b2 2916 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2917 /* register containing pointer is being spilled into stack */
9c399760 2918 if (size != BPF_REG_SIZE) {
f7cf25b2 2919 verbose_linfo(env, insn_idx, "; ");
61bd5218 2920 verbose(env, "invalid size of register spill\n");
17a52670
AS
2921 return -EACCES;
2922 }
f7cf25b2 2923 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2924 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2925 return -EINVAL;
2926 }
354e8f19 2927 save_register_state(state, spi, reg, size);
9c399760 2928 } else {
cc2b14d5
AS
2929 u8 type = STACK_MISC;
2930
679c782d
EC
2931 /* regular write of data into stack destroys any spilled ptr */
2932 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 2933 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 2934 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 2935 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 2936 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 2937
cc2b14d5
AS
2938 /* only mark the slot as written if all 8 bytes were written
2939 * otherwise read propagation may incorrectly stop too soon
2940 * when stack slots are partially written.
2941 * This heuristic means that read propagation will be
2942 * conservative, since it will add reg_live_read marks
2943 * to stack slots all the way to first state when programs
2944 * writes+reads less than 8 bytes
2945 */
2946 if (size == BPF_REG_SIZE)
2947 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2948
2949 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2950 if (reg && register_is_null(reg)) {
2951 /* backtracking doesn't work for STACK_ZERO yet. */
2952 err = mark_chain_precision(env, value_regno);
2953 if (err)
2954 return err;
cc2b14d5 2955 type = STACK_ZERO;
b5dc0163 2956 }
cc2b14d5 2957
0bae2d4d 2958 /* Mark slots affected by this stack write. */
9c399760 2959 for (i = 0; i < size; i++)
638f5b90 2960 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2961 type;
17a52670
AS
2962 }
2963 return 0;
2964}
2965
01f810ac
AM
2966/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2967 * known to contain a variable offset.
2968 * This function checks whether the write is permitted and conservatively
2969 * tracks the effects of the write, considering that each stack slot in the
2970 * dynamic range is potentially written to.
2971 *
2972 * 'off' includes 'regno->off'.
2973 * 'value_regno' can be -1, meaning that an unknown value is being written to
2974 * the stack.
2975 *
2976 * Spilled pointers in range are not marked as written because we don't know
2977 * what's going to be actually written. This means that read propagation for
2978 * future reads cannot be terminated by this write.
2979 *
2980 * For privileged programs, uninitialized stack slots are considered
2981 * initialized by this write (even though we don't know exactly what offsets
2982 * are going to be written to). The idea is that we don't want the verifier to
2983 * reject future reads that access slots written to through variable offsets.
2984 */
2985static int check_stack_write_var_off(struct bpf_verifier_env *env,
2986 /* func where register points to */
2987 struct bpf_func_state *state,
2988 int ptr_regno, int off, int size,
2989 int value_regno, int insn_idx)
2990{
2991 struct bpf_func_state *cur; /* state of the current function */
2992 int min_off, max_off;
2993 int i, err;
2994 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2995 bool writing_zero = false;
2996 /* set if the fact that we're writing a zero is used to let any
2997 * stack slots remain STACK_ZERO
2998 */
2999 bool zero_used = false;
3000
3001 cur = env->cur_state->frame[env->cur_state->curframe];
3002 ptr_reg = &cur->regs[ptr_regno];
3003 min_off = ptr_reg->smin_value + off;
3004 max_off = ptr_reg->smax_value + off + size;
3005 if (value_regno >= 0)
3006 value_reg = &cur->regs[value_regno];
3007 if (value_reg && register_is_null(value_reg))
3008 writing_zero = true;
3009
c69431aa 3010 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3011 if (err)
3012 return err;
3013
3014
3015 /* Variable offset writes destroy any spilled pointers in range. */
3016 for (i = min_off; i < max_off; i++) {
3017 u8 new_type, *stype;
3018 int slot, spi;
3019
3020 slot = -i - 1;
3021 spi = slot / BPF_REG_SIZE;
3022 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 3023 mark_stack_slot_scratched(env, spi);
01f810ac
AM
3024
3025 if (!env->allow_ptr_leaks
3026 && *stype != NOT_INIT
3027 && *stype != SCALAR_VALUE) {
3028 /* Reject the write if there's are spilled pointers in
3029 * range. If we didn't reject here, the ptr status
3030 * would be erased below (even though not all slots are
3031 * actually overwritten), possibly opening the door to
3032 * leaks.
3033 */
3034 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3035 insn_idx, i);
3036 return -EINVAL;
3037 }
3038
3039 /* Erase all spilled pointers. */
3040 state->stack[spi].spilled_ptr.type = NOT_INIT;
3041
3042 /* Update the slot type. */
3043 new_type = STACK_MISC;
3044 if (writing_zero && *stype == STACK_ZERO) {
3045 new_type = STACK_ZERO;
3046 zero_used = true;
3047 }
3048 /* If the slot is STACK_INVALID, we check whether it's OK to
3049 * pretend that it will be initialized by this write. The slot
3050 * might not actually be written to, and so if we mark it as
3051 * initialized future reads might leak uninitialized memory.
3052 * For privileged programs, we will accept such reads to slots
3053 * that may or may not be written because, if we're reject
3054 * them, the error would be too confusing.
3055 */
3056 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3057 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3058 insn_idx, i);
3059 return -EINVAL;
3060 }
3061 *stype = new_type;
3062 }
3063 if (zero_used) {
3064 /* backtracking doesn't work for STACK_ZERO yet. */
3065 err = mark_chain_precision(env, value_regno);
3066 if (err)
3067 return err;
3068 }
3069 return 0;
3070}
3071
3072/* When register 'dst_regno' is assigned some values from stack[min_off,
3073 * max_off), we set the register's type according to the types of the
3074 * respective stack slots. If all the stack values are known to be zeros, then
3075 * so is the destination reg. Otherwise, the register is considered to be
3076 * SCALAR. This function does not deal with register filling; the caller must
3077 * ensure that all spilled registers in the stack range have been marked as
3078 * read.
3079 */
3080static void mark_reg_stack_read(struct bpf_verifier_env *env,
3081 /* func where src register points to */
3082 struct bpf_func_state *ptr_state,
3083 int min_off, int max_off, int dst_regno)
3084{
3085 struct bpf_verifier_state *vstate = env->cur_state;
3086 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3087 int i, slot, spi;
3088 u8 *stype;
3089 int zeros = 0;
3090
3091 for (i = min_off; i < max_off; i++) {
3092 slot = -i - 1;
3093 spi = slot / BPF_REG_SIZE;
3094 stype = ptr_state->stack[spi].slot_type;
3095 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3096 break;
3097 zeros++;
3098 }
3099 if (zeros == max_off - min_off) {
3100 /* any access_size read into register is zero extended,
3101 * so the whole register == const_zero
3102 */
3103 __mark_reg_const_zero(&state->regs[dst_regno]);
3104 /* backtracking doesn't support STACK_ZERO yet,
3105 * so mark it precise here, so that later
3106 * backtracking can stop here.
3107 * Backtracking may not need this if this register
3108 * doesn't participate in pointer adjustment.
3109 * Forward propagation of precise flag is not
3110 * necessary either. This mark is only to stop
3111 * backtracking. Any register that contributed
3112 * to const 0 was marked precise before spill.
3113 */
3114 state->regs[dst_regno].precise = true;
3115 } else {
3116 /* have read misc data from the stack */
3117 mark_reg_unknown(env, state->regs, dst_regno);
3118 }
3119 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3120}
3121
3122/* Read the stack at 'off' and put the results into the register indicated by
3123 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3124 * spilled reg.
3125 *
3126 * 'dst_regno' can be -1, meaning that the read value is not going to a
3127 * register.
3128 *
3129 * The access is assumed to be within the current stack bounds.
3130 */
3131static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3132 /* func where src register points to */
3133 struct bpf_func_state *reg_state,
3134 int off, int size, int dst_regno)
17a52670 3135{
f4d7e40a
AS
3136 struct bpf_verifier_state *vstate = env->cur_state;
3137 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3138 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3139 struct bpf_reg_state *reg;
354e8f19 3140 u8 *stype, type;
17a52670 3141
f4d7e40a 3142 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3143 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3144
27113c59 3145 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3146 u8 spill_size = 1;
3147
3148 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3149 spill_size++;
354e8f19 3150
f30d4968 3151 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3152 if (reg->type != SCALAR_VALUE) {
3153 verbose_linfo(env, env->insn_idx, "; ");
3154 verbose(env, "invalid size of register fill\n");
3155 return -EACCES;
3156 }
354e8f19
MKL
3157
3158 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3159 if (dst_regno < 0)
3160 return 0;
3161
f30d4968 3162 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3163 /* The earlier check_reg_arg() has decided the
3164 * subreg_def for this insn. Save it first.
3165 */
3166 s32 subreg_def = state->regs[dst_regno].subreg_def;
3167
3168 state->regs[dst_regno] = *reg;
3169 state->regs[dst_regno].subreg_def = subreg_def;
3170 } else {
3171 for (i = 0; i < size; i++) {
3172 type = stype[(slot - i) % BPF_REG_SIZE];
3173 if (type == STACK_SPILL)
3174 continue;
3175 if (type == STACK_MISC)
3176 continue;
3177 verbose(env, "invalid read from stack off %d+%d size %d\n",
3178 off, i, size);
3179 return -EACCES;
3180 }
01f810ac 3181 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3182 }
354e8f19 3183 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3184 return 0;
17a52670 3185 }
17a52670 3186
01f810ac 3187 if (dst_regno >= 0) {
17a52670 3188 /* restore register state from stack */
01f810ac 3189 state->regs[dst_regno] = *reg;
2f18f62e
AS
3190 /* mark reg as written since spilled pointer state likely
3191 * has its liveness marks cleared by is_state_visited()
3192 * which resets stack/reg liveness for state transitions
3193 */
01f810ac 3194 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3195 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3196 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3197 * it is acceptable to use this value as a SCALAR_VALUE
3198 * (e.g. for XADD).
3199 * We must not allow unprivileged callers to do that
3200 * with spilled pointers.
3201 */
3202 verbose(env, "leaking pointer from stack off %d\n",
3203 off);
3204 return -EACCES;
dc503a8a 3205 }
f7cf25b2 3206 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3207 } else {
3208 for (i = 0; i < size; i++) {
01f810ac
AM
3209 type = stype[(slot - i) % BPF_REG_SIZE];
3210 if (type == STACK_MISC)
cc2b14d5 3211 continue;
01f810ac 3212 if (type == STACK_ZERO)
cc2b14d5 3213 continue;
cc2b14d5
AS
3214 verbose(env, "invalid read from stack off %d+%d size %d\n",
3215 off, i, size);
3216 return -EACCES;
3217 }
f7cf25b2 3218 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3219 if (dst_regno >= 0)
3220 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3221 }
f7cf25b2 3222 return 0;
17a52670
AS
3223}
3224
01f810ac
AM
3225enum stack_access_src {
3226 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3227 ACCESS_HELPER = 2, /* the access is performed by a helper */
3228};
3229
3230static int check_stack_range_initialized(struct bpf_verifier_env *env,
3231 int regno, int off, int access_size,
3232 bool zero_size_allowed,
3233 enum stack_access_src type,
3234 struct bpf_call_arg_meta *meta);
3235
3236static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3237{
3238 return cur_regs(env) + regno;
3239}
3240
3241/* Read the stack at 'ptr_regno + off' and put the result into the register
3242 * 'dst_regno'.
3243 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3244 * but not its variable offset.
3245 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3246 *
3247 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3248 * filling registers (i.e. reads of spilled register cannot be detected when
3249 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3250 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3251 * offset; for a fixed offset check_stack_read_fixed_off should be used
3252 * instead.
3253 */
3254static int check_stack_read_var_off(struct bpf_verifier_env *env,
3255 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3256{
01f810ac
AM
3257 /* The state of the source register. */
3258 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3259 struct bpf_func_state *ptr_state = func(env, reg);
3260 int err;
3261 int min_off, max_off;
3262
3263 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3264 */
01f810ac
AM
3265 err = check_stack_range_initialized(env, ptr_regno, off, size,
3266 false, ACCESS_DIRECT, NULL);
3267 if (err)
3268 return err;
3269
3270 min_off = reg->smin_value + off;
3271 max_off = reg->smax_value + off;
3272 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3273 return 0;
3274}
3275
3276/* check_stack_read dispatches to check_stack_read_fixed_off or
3277 * check_stack_read_var_off.
3278 *
3279 * The caller must ensure that the offset falls within the allocated stack
3280 * bounds.
3281 *
3282 * 'dst_regno' is a register which will receive the value from the stack. It
3283 * can be -1, meaning that the read value is not going to a register.
3284 */
3285static int check_stack_read(struct bpf_verifier_env *env,
3286 int ptr_regno, int off, int size,
3287 int dst_regno)
3288{
3289 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3290 struct bpf_func_state *state = func(env, reg);
3291 int err;
3292 /* Some accesses are only permitted with a static offset. */
3293 bool var_off = !tnum_is_const(reg->var_off);
3294
3295 /* The offset is required to be static when reads don't go to a
3296 * register, in order to not leak pointers (see
3297 * check_stack_read_fixed_off).
3298 */
3299 if (dst_regno < 0 && var_off) {
e4298d25
DB
3300 char tn_buf[48];
3301
3302 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3303 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3304 tn_buf, off, size);
3305 return -EACCES;
3306 }
01f810ac
AM
3307 /* Variable offset is prohibited for unprivileged mode for simplicity
3308 * since it requires corresponding support in Spectre masking for stack
3309 * ALU. See also retrieve_ptr_limit().
3310 */
3311 if (!env->bypass_spec_v1 && var_off) {
3312 char tn_buf[48];
e4298d25 3313
01f810ac
AM
3314 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3315 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3316 ptr_regno, tn_buf);
e4298d25
DB
3317 return -EACCES;
3318 }
3319
01f810ac
AM
3320 if (!var_off) {
3321 off += reg->var_off.value;
3322 err = check_stack_read_fixed_off(env, state, off, size,
3323 dst_regno);
3324 } else {
3325 /* Variable offset stack reads need more conservative handling
3326 * than fixed offset ones. Note that dst_regno >= 0 on this
3327 * branch.
3328 */
3329 err = check_stack_read_var_off(env, ptr_regno, off, size,
3330 dst_regno);
3331 }
3332 return err;
3333}
3334
3335
3336/* check_stack_write dispatches to check_stack_write_fixed_off or
3337 * check_stack_write_var_off.
3338 *
3339 * 'ptr_regno' is the register used as a pointer into the stack.
3340 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3341 * 'value_regno' is the register whose value we're writing to the stack. It can
3342 * be -1, meaning that we're not writing from a register.
3343 *
3344 * The caller must ensure that the offset falls within the maximum stack size.
3345 */
3346static int check_stack_write(struct bpf_verifier_env *env,
3347 int ptr_regno, int off, int size,
3348 int value_regno, int insn_idx)
3349{
3350 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3351 struct bpf_func_state *state = func(env, reg);
3352 int err;
3353
3354 if (tnum_is_const(reg->var_off)) {
3355 off += reg->var_off.value;
3356 err = check_stack_write_fixed_off(env, state, off, size,
3357 value_regno, insn_idx);
3358 } else {
3359 /* Variable offset stack reads need more conservative handling
3360 * than fixed offset ones.
3361 */
3362 err = check_stack_write_var_off(env, state,
3363 ptr_regno, off, size,
3364 value_regno, insn_idx);
3365 }
3366 return err;
e4298d25
DB
3367}
3368
591fe988
DB
3369static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3370 int off, int size, enum bpf_access_type type)
3371{
3372 struct bpf_reg_state *regs = cur_regs(env);
3373 struct bpf_map *map = regs[regno].map_ptr;
3374 u32 cap = bpf_map_flags_to_cap(map);
3375
3376 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3377 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3378 map->value_size, off, size);
3379 return -EACCES;
3380 }
3381
3382 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3383 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3384 map->value_size, off, size);
3385 return -EACCES;
3386 }
3387
3388 return 0;
3389}
3390
457f4436
AN
3391/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3392static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3393 int off, int size, u32 mem_size,
3394 bool zero_size_allowed)
17a52670 3395{
457f4436
AN
3396 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3397 struct bpf_reg_state *reg;
3398
3399 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3400 return 0;
17a52670 3401
457f4436
AN
3402 reg = &cur_regs(env)[regno];
3403 switch (reg->type) {
69c087ba
YS
3404 case PTR_TO_MAP_KEY:
3405 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3406 mem_size, off, size);
3407 break;
457f4436 3408 case PTR_TO_MAP_VALUE:
61bd5218 3409 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3410 mem_size, off, size);
3411 break;
3412 case PTR_TO_PACKET:
3413 case PTR_TO_PACKET_META:
3414 case PTR_TO_PACKET_END:
3415 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3416 off, size, regno, reg->id, off, mem_size);
3417 break;
3418 case PTR_TO_MEM:
3419 default:
3420 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3421 mem_size, off, size);
17a52670 3422 }
457f4436
AN
3423
3424 return -EACCES;
17a52670
AS
3425}
3426
457f4436
AN
3427/* check read/write into a memory region with possible variable offset */
3428static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3429 int off, int size, u32 mem_size,
3430 bool zero_size_allowed)
dbcfe5f7 3431{
f4d7e40a
AS
3432 struct bpf_verifier_state *vstate = env->cur_state;
3433 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3434 struct bpf_reg_state *reg = &state->regs[regno];
3435 int err;
3436
457f4436 3437 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3438 * need to try adding each of min_value and max_value to off
3439 * to make sure our theoretical access will be safe.
2e576648
CL
3440 *
3441 * The minimum value is only important with signed
dbcfe5f7
GB
3442 * comparisons where we can't assume the floor of a
3443 * value is 0. If we are using signed variables for our
3444 * index'es we need to make sure that whatever we use
3445 * will have a set floor within our range.
3446 */
b7137c4e
DB
3447 if (reg->smin_value < 0 &&
3448 (reg->smin_value == S64_MIN ||
3449 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3450 reg->smin_value + off < 0)) {
61bd5218 3451 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3452 regno);
3453 return -EACCES;
3454 }
457f4436
AN
3455 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3456 mem_size, zero_size_allowed);
dbcfe5f7 3457 if (err) {
457f4436 3458 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3459 regno);
dbcfe5f7
GB
3460 return err;
3461 }
3462
b03c9f9f
EC
3463 /* If we haven't set a max value then we need to bail since we can't be
3464 * sure we won't do bad things.
3465 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3466 */
b03c9f9f 3467 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3468 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3469 regno);
3470 return -EACCES;
3471 }
457f4436
AN
3472 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3473 mem_size, zero_size_allowed);
3474 if (err) {
3475 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3476 regno);
457f4436
AN
3477 return err;
3478 }
3479
3480 return 0;
3481}
d83525ca 3482
457f4436
AN
3483/* check read/write into a map element with possible variable offset */
3484static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3485 int off, int size, bool zero_size_allowed)
3486{
3487 struct bpf_verifier_state *vstate = env->cur_state;
3488 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3489 struct bpf_reg_state *reg = &state->regs[regno];
3490 struct bpf_map *map = reg->map_ptr;
3491 int err;
3492
3493 err = check_mem_region_access(env, regno, off, size, map->value_size,
3494 zero_size_allowed);
3495 if (err)
3496 return err;
3497
3498 if (map_value_has_spin_lock(map)) {
3499 u32 lock = map->spin_lock_off;
d83525ca
AS
3500
3501 /* if any part of struct bpf_spin_lock can be touched by
3502 * load/store reject this program.
3503 * To check that [x1, x2) overlaps with [y1, y2)
3504 * it is sufficient to check x1 < y2 && y1 < x2.
3505 */
3506 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3507 lock < reg->umax_value + off + size) {
3508 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3509 return -EACCES;
3510 }
3511 }
68134668
AS
3512 if (map_value_has_timer(map)) {
3513 u32 t = map->timer_off;
3514
3515 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3516 t < reg->umax_value + off + size) {
3517 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3518 return -EACCES;
3519 }
3520 }
f1174f77 3521 return err;
dbcfe5f7
GB
3522}
3523
969bf05e
AS
3524#define MAX_PACKET_OFF 0xffff
3525
7e40781c
UP
3526static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3527{
3aac1ead 3528 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3529}
3530
58e2af8b 3531static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3532 const struct bpf_call_arg_meta *meta,
3533 enum bpf_access_type t)
4acf6c0b 3534{
7e40781c
UP
3535 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3536
3537 switch (prog_type) {
5d66fa7d 3538 /* Program types only with direct read access go here! */
3a0af8fd
TG
3539 case BPF_PROG_TYPE_LWT_IN:
3540 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3541 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3542 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3543 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3544 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3545 if (t == BPF_WRITE)
3546 return false;
8731745e 3547 fallthrough;
5d66fa7d
DB
3548
3549 /* Program types with direct read + write access go here! */
36bbef52
DB
3550 case BPF_PROG_TYPE_SCHED_CLS:
3551 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3552 case BPF_PROG_TYPE_XDP:
3a0af8fd 3553 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3554 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3555 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3556 if (meta)
3557 return meta->pkt_access;
3558
3559 env->seen_direct_write = true;
4acf6c0b 3560 return true;
0d01da6a
SF
3561
3562 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3563 if (t == BPF_WRITE)
3564 env->seen_direct_write = true;
3565
3566 return true;
3567
4acf6c0b
BB
3568 default:
3569 return false;
3570 }
3571}
3572
f1174f77 3573static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3574 int size, bool zero_size_allowed)
f1174f77 3575{
638f5b90 3576 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3577 struct bpf_reg_state *reg = &regs[regno];
3578 int err;
3579
3580 /* We may have added a variable offset to the packet pointer; but any
3581 * reg->range we have comes after that. We are only checking the fixed
3582 * offset.
3583 */
3584
3585 /* We don't allow negative numbers, because we aren't tracking enough
3586 * detail to prove they're safe.
3587 */
b03c9f9f 3588 if (reg->smin_value < 0) {
61bd5218 3589 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3590 regno);
3591 return -EACCES;
3592 }
6d94e741
AS
3593
3594 err = reg->range < 0 ? -EINVAL :
3595 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3596 zero_size_allowed);
f1174f77 3597 if (err) {
61bd5218 3598 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3599 return err;
3600 }
e647815a 3601
457f4436 3602 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3603 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3604 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3605 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3606 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3607 */
3608 env->prog->aux->max_pkt_offset =
3609 max_t(u32, env->prog->aux->max_pkt_offset,
3610 off + reg->umax_value + size - 1);
3611
f1174f77
EC
3612 return err;
3613}
3614
3615/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3616static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3617 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3618 struct btf **btf, u32 *btf_id)
17a52670 3619{
f96da094
DB
3620 struct bpf_insn_access_aux info = {
3621 .reg_type = *reg_type,
9e15db66 3622 .log = &env->log,
f96da094 3623 };
31fd8581 3624
4f9218aa 3625 if (env->ops->is_valid_access &&
5e43f899 3626 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3627 /* A non zero info.ctx_field_size indicates that this field is a
3628 * candidate for later verifier transformation to load the whole
3629 * field and then apply a mask when accessed with a narrower
3630 * access than actual ctx access size. A zero info.ctx_field_size
3631 * will only allow for whole field access and rejects any other
3632 * type of narrower access.
31fd8581 3633 */
23994631 3634 *reg_type = info.reg_type;
31fd8581 3635
22dc4a0f
AN
3636 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3637 *btf = info.btf;
9e15db66 3638 *btf_id = info.btf_id;
22dc4a0f 3639 } else {
9e15db66 3640 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3641 }
32bbe007
AS
3642 /* remember the offset of last byte accessed in ctx */
3643 if (env->prog->aux->max_ctx_offset < off + size)
3644 env->prog->aux->max_ctx_offset = off + size;
17a52670 3645 return 0;
32bbe007 3646 }
17a52670 3647
61bd5218 3648 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3649 return -EACCES;
3650}
3651
d58e468b
PP
3652static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3653 int size)
3654{
3655 if (size < 0 || off < 0 ||
3656 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3657 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3658 off, size);
3659 return -EACCES;
3660 }
3661 return 0;
3662}
3663
5f456649
MKL
3664static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3665 u32 regno, int off, int size,
3666 enum bpf_access_type t)
c64b7983
JS
3667{
3668 struct bpf_reg_state *regs = cur_regs(env);
3669 struct bpf_reg_state *reg = &regs[regno];
5f456649 3670 struct bpf_insn_access_aux info = {};
46f8bc92 3671 bool valid;
c64b7983
JS
3672
3673 if (reg->smin_value < 0) {
3674 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3675 regno);
3676 return -EACCES;
3677 }
3678
46f8bc92
MKL
3679 switch (reg->type) {
3680 case PTR_TO_SOCK_COMMON:
3681 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3682 break;
3683 case PTR_TO_SOCKET:
3684 valid = bpf_sock_is_valid_access(off, size, t, &info);
3685 break;
655a51e5
MKL
3686 case PTR_TO_TCP_SOCK:
3687 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3688 break;
fada7fdc
JL
3689 case PTR_TO_XDP_SOCK:
3690 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3691 break;
46f8bc92
MKL
3692 default:
3693 valid = false;
c64b7983
JS
3694 }
3695
5f456649 3696
46f8bc92
MKL
3697 if (valid) {
3698 env->insn_aux_data[insn_idx].ctx_field_size =
3699 info.ctx_field_size;
3700 return 0;
3701 }
3702
3703 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3704 regno, reg_type_str[reg->type], off, size);
3705
3706 return -EACCES;
c64b7983
JS
3707}
3708
4cabc5b1
DB
3709static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3710{
2a159c6f 3711 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3712}
3713
f37a8cb8
DB
3714static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3715{
2a159c6f 3716 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3717
46f8bc92
MKL
3718 return reg->type == PTR_TO_CTX;
3719}
3720
3721static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3722{
3723 const struct bpf_reg_state *reg = reg_state(env, regno);
3724
3725 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3726}
3727
ca369602
DB
3728static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3729{
2a159c6f 3730 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3731
3732 return type_is_pkt_pointer(reg->type);
3733}
3734
4b5defde
DB
3735static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3736{
3737 const struct bpf_reg_state *reg = reg_state(env, regno);
3738
3739 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3740 return reg->type == PTR_TO_FLOW_KEYS;
3741}
3742
61bd5218
JK
3743static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3744 const struct bpf_reg_state *reg,
d1174416 3745 int off, int size, bool strict)
969bf05e 3746{
f1174f77 3747 struct tnum reg_off;
e07b98d9 3748 int ip_align;
d1174416
DM
3749
3750 /* Byte size accesses are always allowed. */
3751 if (!strict || size == 1)
3752 return 0;
3753
e4eda884
DM
3754 /* For platforms that do not have a Kconfig enabling
3755 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3756 * NET_IP_ALIGN is universally set to '2'. And on platforms
3757 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3758 * to this code only in strict mode where we want to emulate
3759 * the NET_IP_ALIGN==2 checking. Therefore use an
3760 * unconditional IP align value of '2'.
e07b98d9 3761 */
e4eda884 3762 ip_align = 2;
f1174f77
EC
3763
3764 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3765 if (!tnum_is_aligned(reg_off, size)) {
3766 char tn_buf[48];
3767
3768 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3769 verbose(env,
3770 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3771 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3772 return -EACCES;
3773 }
79adffcd 3774
969bf05e
AS
3775 return 0;
3776}
3777
61bd5218
JK
3778static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3779 const struct bpf_reg_state *reg,
f1174f77
EC
3780 const char *pointer_desc,
3781 int off, int size, bool strict)
79adffcd 3782{
f1174f77
EC
3783 struct tnum reg_off;
3784
3785 /* Byte size accesses are always allowed. */
3786 if (!strict || size == 1)
3787 return 0;
3788
3789 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3790 if (!tnum_is_aligned(reg_off, size)) {
3791 char tn_buf[48];
3792
3793 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3794 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3795 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3796 return -EACCES;
3797 }
3798
969bf05e
AS
3799 return 0;
3800}
3801
e07b98d9 3802static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3803 const struct bpf_reg_state *reg, int off,
3804 int size, bool strict_alignment_once)
79adffcd 3805{
ca369602 3806 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3807 const char *pointer_desc = "";
d1174416 3808
79adffcd
DB
3809 switch (reg->type) {
3810 case PTR_TO_PACKET:
de8f3a83
DB
3811 case PTR_TO_PACKET_META:
3812 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3813 * right in front, treat it the very same way.
3814 */
61bd5218 3815 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3816 case PTR_TO_FLOW_KEYS:
3817 pointer_desc = "flow keys ";
3818 break;
69c087ba
YS
3819 case PTR_TO_MAP_KEY:
3820 pointer_desc = "key ";
3821 break;
f1174f77
EC
3822 case PTR_TO_MAP_VALUE:
3823 pointer_desc = "value ";
3824 break;
3825 case PTR_TO_CTX:
3826 pointer_desc = "context ";
3827 break;
3828 case PTR_TO_STACK:
3829 pointer_desc = "stack ";
01f810ac
AM
3830 /* The stack spill tracking logic in check_stack_write_fixed_off()
3831 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3832 * aligned.
3833 */
3834 strict = true;
f1174f77 3835 break;
c64b7983
JS
3836 case PTR_TO_SOCKET:
3837 pointer_desc = "sock ";
3838 break;
46f8bc92
MKL
3839 case PTR_TO_SOCK_COMMON:
3840 pointer_desc = "sock_common ";
3841 break;
655a51e5
MKL
3842 case PTR_TO_TCP_SOCK:
3843 pointer_desc = "tcp_sock ";
3844 break;
fada7fdc
JL
3845 case PTR_TO_XDP_SOCK:
3846 pointer_desc = "xdp_sock ";
3847 break;
79adffcd 3848 default:
f1174f77 3849 break;
79adffcd 3850 }
61bd5218
JK
3851 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3852 strict);
79adffcd
DB
3853}
3854
f4d7e40a
AS
3855static int update_stack_depth(struct bpf_verifier_env *env,
3856 const struct bpf_func_state *func,
3857 int off)
3858{
9c8105bd 3859 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3860
3861 if (stack >= -off)
3862 return 0;
3863
3864 /* update known max for given subprogram */
9c8105bd 3865 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3866 return 0;
3867}
f4d7e40a 3868
70a87ffe
AS
3869/* starting from main bpf function walk all instructions of the function
3870 * and recursively walk all callees that given function can call.
3871 * Ignore jump and exit insns.
3872 * Since recursion is prevented by check_cfg() this algorithm
3873 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3874 */
3875static int check_max_stack_depth(struct bpf_verifier_env *env)
3876{
9c8105bd
JW
3877 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3878 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3879 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3880 bool tail_call_reachable = false;
70a87ffe
AS
3881 int ret_insn[MAX_CALL_FRAMES];
3882 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3883 int j;
f4d7e40a 3884
70a87ffe 3885process_func:
7f6e4312
MF
3886 /* protect against potential stack overflow that might happen when
3887 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3888 * depth for such case down to 256 so that the worst case scenario
3889 * would result in 8k stack size (32 which is tailcall limit * 256 =
3890 * 8k).
3891 *
3892 * To get the idea what might happen, see an example:
3893 * func1 -> sub rsp, 128
3894 * subfunc1 -> sub rsp, 256
3895 * tailcall1 -> add rsp, 256
3896 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3897 * subfunc2 -> sub rsp, 64
3898 * subfunc22 -> sub rsp, 128
3899 * tailcall2 -> add rsp, 128
3900 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3901 *
3902 * tailcall will unwind the current stack frame but it will not get rid
3903 * of caller's stack as shown on the example above.
3904 */
3905 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3906 verbose(env,
3907 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3908 depth);
3909 return -EACCES;
3910 }
70a87ffe
AS
3911 /* round up to 32-bytes, since this is granularity
3912 * of interpreter stack size
3913 */
9c8105bd 3914 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3915 if (depth > MAX_BPF_STACK) {
f4d7e40a 3916 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3917 frame + 1, depth);
f4d7e40a
AS
3918 return -EACCES;
3919 }
70a87ffe 3920continue_func:
4cb3d99c 3921 subprog_end = subprog[idx + 1].start;
70a87ffe 3922 for (; i < subprog_end; i++) {
7ddc80a4
AS
3923 int next_insn;
3924
69c087ba 3925 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3926 continue;
3927 /* remember insn and function to return to */
3928 ret_insn[frame] = i + 1;
9c8105bd 3929 ret_prog[frame] = idx;
70a87ffe
AS
3930
3931 /* find the callee */
7ddc80a4
AS
3932 next_insn = i + insn[i].imm + 1;
3933 idx = find_subprog(env, next_insn);
9c8105bd 3934 if (idx < 0) {
70a87ffe 3935 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 3936 next_insn);
70a87ffe
AS
3937 return -EFAULT;
3938 }
7ddc80a4
AS
3939 if (subprog[idx].is_async_cb) {
3940 if (subprog[idx].has_tail_call) {
3941 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3942 return -EFAULT;
3943 }
3944 /* async callbacks don't increase bpf prog stack size */
3945 continue;
3946 }
3947 i = next_insn;
ebf7d1f5
MF
3948
3949 if (subprog[idx].has_tail_call)
3950 tail_call_reachable = true;
3951
70a87ffe
AS
3952 frame++;
3953 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3954 verbose(env, "the call stack of %d frames is too deep !\n",
3955 frame);
3956 return -E2BIG;
70a87ffe
AS
3957 }
3958 goto process_func;
3959 }
ebf7d1f5
MF
3960 /* if tail call got detected across bpf2bpf calls then mark each of the
3961 * currently present subprog frames as tail call reachable subprogs;
3962 * this info will be utilized by JIT so that we will be preserving the
3963 * tail call counter throughout bpf2bpf calls combined with tailcalls
3964 */
3965 if (tail_call_reachable)
3966 for (j = 0; j < frame; j++)
3967 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
3968 if (subprog[0].tail_call_reachable)
3969 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 3970
70a87ffe
AS
3971 /* end of for() loop means the last insn of the 'subprog'
3972 * was reached. Doesn't matter whether it was JA or EXIT
3973 */
3974 if (frame == 0)
3975 return 0;
9c8105bd 3976 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3977 frame--;
3978 i = ret_insn[frame];
9c8105bd 3979 idx = ret_prog[frame];
70a87ffe 3980 goto continue_func;
f4d7e40a
AS
3981}
3982
19d28fbd 3983#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3984static int get_callee_stack_depth(struct bpf_verifier_env *env,
3985 const struct bpf_insn *insn, int idx)
3986{
3987 int start = idx + insn->imm + 1, subprog;
3988
3989 subprog = find_subprog(env, start);
3990 if (subprog < 0) {
3991 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3992 start);
3993 return -EFAULT;
3994 }
9c8105bd 3995 return env->subprog_info[subprog].stack_depth;
1ea47e01 3996}
19d28fbd 3997#endif
1ea47e01 3998
51c39bb1
AS
3999int check_ctx_reg(struct bpf_verifier_env *env,
4000 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
4001{
4002 /* Access to ctx or passing it to a helper is only allowed in
4003 * its original, unmodified form.
4004 */
4005
4006 if (reg->off) {
4007 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
4008 regno, reg->off);
4009 return -EACCES;
4010 }
4011
4012 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4013 char tn_buf[48];
4014
4015 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4016 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
4017 return -EACCES;
4018 }
4019
4020 return 0;
4021}
4022
afbf21dc
YS
4023static int __check_buffer_access(struct bpf_verifier_env *env,
4024 const char *buf_info,
4025 const struct bpf_reg_state *reg,
4026 int regno, int off, int size)
9df1c28b
MM
4027{
4028 if (off < 0) {
4029 verbose(env,
4fc00b79 4030 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 4031 regno, buf_info, off, size);
9df1c28b
MM
4032 return -EACCES;
4033 }
4034 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4035 char tn_buf[48];
4036
4037 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4038 verbose(env,
4fc00b79 4039 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
4040 regno, off, tn_buf);
4041 return -EACCES;
4042 }
afbf21dc
YS
4043
4044 return 0;
4045}
4046
4047static int check_tp_buffer_access(struct bpf_verifier_env *env,
4048 const struct bpf_reg_state *reg,
4049 int regno, int off, int size)
4050{
4051 int err;
4052
4053 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4054 if (err)
4055 return err;
4056
9df1c28b
MM
4057 if (off + size > env->prog->aux->max_tp_access)
4058 env->prog->aux->max_tp_access = off + size;
4059
4060 return 0;
4061}
4062
afbf21dc
YS
4063static int check_buffer_access(struct bpf_verifier_env *env,
4064 const struct bpf_reg_state *reg,
4065 int regno, int off, int size,
4066 bool zero_size_allowed,
4067 const char *buf_info,
4068 u32 *max_access)
4069{
4070 int err;
4071
4072 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4073 if (err)
4074 return err;
4075
4076 if (off + size > *max_access)
4077 *max_access = off + size;
4078
4079 return 0;
4080}
4081
3f50f132
JF
4082/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4083static void zext_32_to_64(struct bpf_reg_state *reg)
4084{
4085 reg->var_off = tnum_subreg(reg->var_off);
4086 __reg_assign_32_into_64(reg);
4087}
9df1c28b 4088
0c17d1d2
JH
4089/* truncate register to smaller size (in bytes)
4090 * must be called with size < BPF_REG_SIZE
4091 */
4092static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4093{
4094 u64 mask;
4095
4096 /* clear high bits in bit representation */
4097 reg->var_off = tnum_cast(reg->var_off, size);
4098
4099 /* fix arithmetic bounds */
4100 mask = ((u64)1 << (size * 8)) - 1;
4101 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4102 reg->umin_value &= mask;
4103 reg->umax_value &= mask;
4104 } else {
4105 reg->umin_value = 0;
4106 reg->umax_value = mask;
4107 }
4108 reg->smin_value = reg->umin_value;
4109 reg->smax_value = reg->umax_value;
3f50f132
JF
4110
4111 /* If size is smaller than 32bit register the 32bit register
4112 * values are also truncated so we push 64-bit bounds into
4113 * 32-bit bounds. Above were truncated < 32-bits already.
4114 */
4115 if (size >= 4)
4116 return;
4117 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4118}
4119
a23740ec
AN
4120static bool bpf_map_is_rdonly(const struct bpf_map *map)
4121{
353050be
DB
4122 /* A map is considered read-only if the following condition are true:
4123 *
4124 * 1) BPF program side cannot change any of the map content. The
4125 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4126 * and was set at map creation time.
4127 * 2) The map value(s) have been initialized from user space by a
4128 * loader and then "frozen", such that no new map update/delete
4129 * operations from syscall side are possible for the rest of
4130 * the map's lifetime from that point onwards.
4131 * 3) Any parallel/pending map update/delete operations from syscall
4132 * side have been completed. Only after that point, it's safe to
4133 * assume that map value(s) are immutable.
4134 */
4135 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4136 READ_ONCE(map->frozen) &&
4137 !bpf_map_write_active(map);
a23740ec
AN
4138}
4139
4140static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4141{
4142 void *ptr;
4143 u64 addr;
4144 int err;
4145
4146 err = map->ops->map_direct_value_addr(map, &addr, off);
4147 if (err)
4148 return err;
2dedd7d2 4149 ptr = (void *)(long)addr + off;
a23740ec
AN
4150
4151 switch (size) {
4152 case sizeof(u8):
4153 *val = (u64)*(u8 *)ptr;
4154 break;
4155 case sizeof(u16):
4156 *val = (u64)*(u16 *)ptr;
4157 break;
4158 case sizeof(u32):
4159 *val = (u64)*(u32 *)ptr;
4160 break;
4161 case sizeof(u64):
4162 *val = *(u64 *)ptr;
4163 break;
4164 default:
4165 return -EINVAL;
4166 }
4167 return 0;
4168}
4169
9e15db66
AS
4170static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4171 struct bpf_reg_state *regs,
4172 int regno, int off, int size,
4173 enum bpf_access_type atype,
4174 int value_regno)
4175{
4176 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4177 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4178 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
4179 u32 btf_id;
4180 int ret;
4181
9e15db66
AS
4182 if (off < 0) {
4183 verbose(env,
4184 "R%d is ptr_%s invalid negative access: off=%d\n",
4185 regno, tname, off);
4186 return -EACCES;
4187 }
4188 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4189 char tn_buf[48];
4190
4191 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4192 verbose(env,
4193 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4194 regno, tname, off, tn_buf);
4195 return -EACCES;
4196 }
4197
27ae7997 4198 if (env->ops->btf_struct_access) {
22dc4a0f
AN
4199 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4200 off, size, atype, &btf_id);
27ae7997
MKL
4201 } else {
4202 if (atype != BPF_READ) {
4203 verbose(env, "only read is supported\n");
4204 return -EACCES;
4205 }
4206
22dc4a0f
AN
4207 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4208 atype, &btf_id);
27ae7997
MKL
4209 }
4210
9e15db66
AS
4211 if (ret < 0)
4212 return ret;
4213
41c48f3a 4214 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 4215 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
4216
4217 return 0;
4218}
4219
4220static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4221 struct bpf_reg_state *regs,
4222 int regno, int off, int size,
4223 enum bpf_access_type atype,
4224 int value_regno)
4225{
4226 struct bpf_reg_state *reg = regs + regno;
4227 struct bpf_map *map = reg->map_ptr;
4228 const struct btf_type *t;
4229 const char *tname;
4230 u32 btf_id;
4231 int ret;
4232
4233 if (!btf_vmlinux) {
4234 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4235 return -ENOTSUPP;
4236 }
4237
4238 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4239 verbose(env, "map_ptr access not supported for map type %d\n",
4240 map->map_type);
4241 return -ENOTSUPP;
4242 }
4243
4244 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4245 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4246
4247 if (!env->allow_ptr_to_map_access) {
4248 verbose(env,
4249 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4250 tname);
4251 return -EPERM;
9e15db66 4252 }
27ae7997 4253
41c48f3a
AI
4254 if (off < 0) {
4255 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4256 regno, tname, off);
4257 return -EACCES;
4258 }
4259
4260 if (atype != BPF_READ) {
4261 verbose(env, "only read from %s is supported\n", tname);
4262 return -EACCES;
4263 }
4264
22dc4a0f 4265 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
4266 if (ret < 0)
4267 return ret;
4268
4269 if (value_regno >= 0)
22dc4a0f 4270 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 4271
9e15db66
AS
4272 return 0;
4273}
4274
01f810ac
AM
4275/* Check that the stack access at the given offset is within bounds. The
4276 * maximum valid offset is -1.
4277 *
4278 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4279 * -state->allocated_stack for reads.
4280 */
4281static int check_stack_slot_within_bounds(int off,
4282 struct bpf_func_state *state,
4283 enum bpf_access_type t)
4284{
4285 int min_valid_off;
4286
4287 if (t == BPF_WRITE)
4288 min_valid_off = -MAX_BPF_STACK;
4289 else
4290 min_valid_off = -state->allocated_stack;
4291
4292 if (off < min_valid_off || off > -1)
4293 return -EACCES;
4294 return 0;
4295}
4296
4297/* Check that the stack access at 'regno + off' falls within the maximum stack
4298 * bounds.
4299 *
4300 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4301 */
4302static int check_stack_access_within_bounds(
4303 struct bpf_verifier_env *env,
4304 int regno, int off, int access_size,
4305 enum stack_access_src src, enum bpf_access_type type)
4306{
4307 struct bpf_reg_state *regs = cur_regs(env);
4308 struct bpf_reg_state *reg = regs + regno;
4309 struct bpf_func_state *state = func(env, reg);
4310 int min_off, max_off;
4311 int err;
4312 char *err_extra;
4313
4314 if (src == ACCESS_HELPER)
4315 /* We don't know if helpers are reading or writing (or both). */
4316 err_extra = " indirect access to";
4317 else if (type == BPF_READ)
4318 err_extra = " read from";
4319 else
4320 err_extra = " write to";
4321
4322 if (tnum_is_const(reg->var_off)) {
4323 min_off = reg->var_off.value + off;
4324 if (access_size > 0)
4325 max_off = min_off + access_size - 1;
4326 else
4327 max_off = min_off;
4328 } else {
4329 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4330 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4331 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4332 err_extra, regno);
4333 return -EACCES;
4334 }
4335 min_off = reg->smin_value + off;
4336 if (access_size > 0)
4337 max_off = reg->smax_value + off + access_size - 1;
4338 else
4339 max_off = min_off;
4340 }
4341
4342 err = check_stack_slot_within_bounds(min_off, state, type);
4343 if (!err)
4344 err = check_stack_slot_within_bounds(max_off, state, type);
4345
4346 if (err) {
4347 if (tnum_is_const(reg->var_off)) {
4348 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4349 err_extra, regno, off, access_size);
4350 } else {
4351 char tn_buf[48];
4352
4353 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4354 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4355 err_extra, regno, tn_buf, access_size);
4356 }
4357 }
4358 return err;
4359}
41c48f3a 4360
17a52670
AS
4361/* check whether memory at (regno + off) is accessible for t = (read | write)
4362 * if t==write, value_regno is a register which value is stored into memory
4363 * if t==read, value_regno is a register which will receive the value from memory
4364 * if t==write && value_regno==-1, some unknown value is stored into memory
4365 * if t==read && value_regno==-1, don't care what we read from memory
4366 */
ca369602
DB
4367static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4368 int off, int bpf_size, enum bpf_access_type t,
4369 int value_regno, bool strict_alignment_once)
17a52670 4370{
638f5b90
AS
4371 struct bpf_reg_state *regs = cur_regs(env);
4372 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4373 struct bpf_func_state *state;
17a52670
AS
4374 int size, err = 0;
4375
4376 size = bpf_size_to_bytes(bpf_size);
4377 if (size < 0)
4378 return size;
4379
f1174f77 4380 /* alignment checks will add in reg->off themselves */
ca369602 4381 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4382 if (err)
4383 return err;
17a52670 4384
f1174f77
EC
4385 /* for access checks, reg->off is just part of off */
4386 off += reg->off;
4387
69c087ba
YS
4388 if (reg->type == PTR_TO_MAP_KEY) {
4389 if (t == BPF_WRITE) {
4390 verbose(env, "write to change key R%d not allowed\n", regno);
4391 return -EACCES;
4392 }
4393
4394 err = check_mem_region_access(env, regno, off, size,
4395 reg->map_ptr->key_size, false);
4396 if (err)
4397 return err;
4398 if (value_regno >= 0)
4399 mark_reg_unknown(env, regs, value_regno);
4400 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4401 if (t == BPF_WRITE && value_regno >= 0 &&
4402 is_pointer_value(env, value_regno)) {
61bd5218 4403 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4404 return -EACCES;
4405 }
591fe988
DB
4406 err = check_map_access_type(env, regno, off, size, t);
4407 if (err)
4408 return err;
9fd29c08 4409 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4410 if (!err && t == BPF_READ && value_regno >= 0) {
4411 struct bpf_map *map = reg->map_ptr;
4412
4413 /* if map is read-only, track its contents as scalars */
4414 if (tnum_is_const(reg->var_off) &&
4415 bpf_map_is_rdonly(map) &&
4416 map->ops->map_direct_value_addr) {
4417 int map_off = off + reg->var_off.value;
4418 u64 val = 0;
4419
4420 err = bpf_map_direct_read(map, map_off, size,
4421 &val);
4422 if (err)
4423 return err;
4424
4425 regs[value_regno].type = SCALAR_VALUE;
4426 __mark_reg_known(&regs[value_regno], val);
4427 } else {
4428 mark_reg_unknown(env, regs, value_regno);
4429 }
4430 }
457f4436
AN
4431 } else if (reg->type == PTR_TO_MEM) {
4432 if (t == BPF_WRITE && value_regno >= 0 &&
4433 is_pointer_value(env, value_regno)) {
4434 verbose(env, "R%d leaks addr into mem\n", value_regno);
4435 return -EACCES;
4436 }
4437 err = check_mem_region_access(env, regno, off, size,
4438 reg->mem_size, false);
4439 if (!err && t == BPF_READ && value_regno >= 0)
4440 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4441 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4442 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4443 struct btf *btf = NULL;
9e15db66 4444 u32 btf_id = 0;
19de99f7 4445
1be7f75d
AS
4446 if (t == BPF_WRITE && value_regno >= 0 &&
4447 is_pointer_value(env, value_regno)) {
61bd5218 4448 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4449 return -EACCES;
4450 }
f1174f77 4451
58990d1f
DB
4452 err = check_ctx_reg(env, reg, regno);
4453 if (err < 0)
4454 return err;
4455
22dc4a0f 4456 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4457 if (err)
4458 verbose_linfo(env, insn_idx, "; ");
969bf05e 4459 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4460 /* ctx access returns either a scalar, or a
de8f3a83
DB
4461 * PTR_TO_PACKET[_META,_END]. In the latter
4462 * case, we know the offset is zero.
f1174f77 4463 */
46f8bc92 4464 if (reg_type == SCALAR_VALUE) {
638f5b90 4465 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4466 } else {
638f5b90 4467 mark_reg_known_zero(env, regs,
61bd5218 4468 value_regno);
46f8bc92
MKL
4469 if (reg_type_may_be_null(reg_type))
4470 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4471 /* A load of ctx field could have different
4472 * actual load size with the one encoded in the
4473 * insn. When the dst is PTR, it is for sure not
4474 * a sub-register.
4475 */
4476 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4477 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4478 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4479 regs[value_regno].btf = btf;
9e15db66 4480 regs[value_regno].btf_id = btf_id;
22dc4a0f 4481 }
46f8bc92 4482 }
638f5b90 4483 regs[value_regno].type = reg_type;
969bf05e 4484 }
17a52670 4485
f1174f77 4486 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4487 /* Basic bounds checks. */
4488 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4489 if (err)
4490 return err;
8726679a 4491
f4d7e40a
AS
4492 state = func(env, reg);
4493 err = update_stack_depth(env, state, off);
4494 if (err)
4495 return err;
8726679a 4496
01f810ac
AM
4497 if (t == BPF_READ)
4498 err = check_stack_read(env, regno, off, size,
61bd5218 4499 value_regno);
01f810ac
AM
4500 else
4501 err = check_stack_write(env, regno, off, size,
4502 value_regno, insn_idx);
de8f3a83 4503 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4504 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4505 verbose(env, "cannot write into packet\n");
969bf05e
AS
4506 return -EACCES;
4507 }
4acf6c0b
BB
4508 if (t == BPF_WRITE && value_regno >= 0 &&
4509 is_pointer_value(env, value_regno)) {
61bd5218
JK
4510 verbose(env, "R%d leaks addr into packet\n",
4511 value_regno);
4acf6c0b
BB
4512 return -EACCES;
4513 }
9fd29c08 4514 err = check_packet_access(env, regno, off, size, false);
969bf05e 4515 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4516 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4517 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4518 if (t == BPF_WRITE && value_regno >= 0 &&
4519 is_pointer_value(env, value_regno)) {
4520 verbose(env, "R%d leaks addr into flow keys\n",
4521 value_regno);
4522 return -EACCES;
4523 }
4524
4525 err = check_flow_keys_access(env, off, size);
4526 if (!err && t == BPF_READ && value_regno >= 0)
4527 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4528 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4529 if (t == BPF_WRITE) {
46f8bc92
MKL
4530 verbose(env, "R%d cannot write into %s\n",
4531 regno, reg_type_str[reg->type]);
c64b7983
JS
4532 return -EACCES;
4533 }
5f456649 4534 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4535 if (!err && value_regno >= 0)
4536 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4537 } else if (reg->type == PTR_TO_TP_BUFFER) {
4538 err = check_tp_buffer_access(env, reg, regno, off, size);
4539 if (!err && t == BPF_READ && value_regno >= 0)
4540 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4541 } else if (reg->type == PTR_TO_BTF_ID) {
4542 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4543 value_regno);
41c48f3a
AI
4544 } else if (reg->type == CONST_PTR_TO_MAP) {
4545 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4546 value_regno);
afbf21dc
YS
4547 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4548 if (t == BPF_WRITE) {
4549 verbose(env, "R%d cannot write into %s\n",
4550 regno, reg_type_str[reg->type]);
4551 return -EACCES;
4552 }
f6dfbe31
CIK
4553 err = check_buffer_access(env, reg, regno, off, size, false,
4554 "rdonly",
afbf21dc
YS
4555 &env->prog->aux->max_rdonly_access);
4556 if (!err && value_regno >= 0)
4557 mark_reg_unknown(env, regs, value_regno);
4558 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4559 err = check_buffer_access(env, reg, regno, off, size, false,
4560 "rdwr",
afbf21dc
YS
4561 &env->prog->aux->max_rdwr_access);
4562 if (!err && t == BPF_READ && value_regno >= 0)
4563 mark_reg_unknown(env, regs, value_regno);
17a52670 4564 } else {
61bd5218
JK
4565 verbose(env, "R%d invalid mem access '%s'\n", regno,
4566 reg_type_str[reg->type]);
17a52670
AS
4567 return -EACCES;
4568 }
969bf05e 4569
f1174f77 4570 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4571 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4572 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4573 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4574 }
17a52670
AS
4575 return err;
4576}
4577
91c960b0 4578static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4579{
5ffa2550 4580 int load_reg;
17a52670
AS
4581 int err;
4582
5ca419f2
BJ
4583 switch (insn->imm) {
4584 case BPF_ADD:
4585 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4586 case BPF_AND:
4587 case BPF_AND | BPF_FETCH:
4588 case BPF_OR:
4589 case BPF_OR | BPF_FETCH:
4590 case BPF_XOR:
4591 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4592 case BPF_XCHG:
4593 case BPF_CMPXCHG:
5ca419f2
BJ
4594 break;
4595 default:
91c960b0
BJ
4596 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4597 return -EINVAL;
4598 }
4599
4600 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4601 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4602 return -EINVAL;
4603 }
4604
4605 /* check src1 operand */
dc503a8a 4606 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4607 if (err)
4608 return err;
4609
4610 /* check src2 operand */
dc503a8a 4611 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4612 if (err)
4613 return err;
4614
5ffa2550
BJ
4615 if (insn->imm == BPF_CMPXCHG) {
4616 /* Check comparison of R0 with memory location */
4617 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4618 if (err)
4619 return err;
4620 }
4621
6bdf6abc 4622 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4623 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4624 return -EACCES;
4625 }
4626
ca369602 4627 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4628 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4629 is_flow_key_reg(env, insn->dst_reg) ||
4630 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4631 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4632 insn->dst_reg,
4633 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4634 return -EACCES;
4635 }
4636
37086bfd
BJ
4637 if (insn->imm & BPF_FETCH) {
4638 if (insn->imm == BPF_CMPXCHG)
4639 load_reg = BPF_REG_0;
4640 else
4641 load_reg = insn->src_reg;
4642
4643 /* check and record load of old value */
4644 err = check_reg_arg(env, load_reg, DST_OP);
4645 if (err)
4646 return err;
4647 } else {
4648 /* This instruction accesses a memory location but doesn't
4649 * actually load it into a register.
4650 */
4651 load_reg = -1;
4652 }
4653
91c960b0 4654 /* check whether we can read the memory */
31fd8581 4655 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4656 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4657 if (err)
4658 return err;
4659
91c960b0 4660 /* check whether we can write into the same memory */
5ca419f2
BJ
4661 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4662 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4663 if (err)
4664 return err;
4665
5ca419f2 4666 return 0;
17a52670
AS
4667}
4668
01f810ac
AM
4669/* When register 'regno' is used to read the stack (either directly or through
4670 * a helper function) make sure that it's within stack boundary and, depending
4671 * on the access type, that all elements of the stack are initialized.
4672 *
4673 * 'off' includes 'regno->off', but not its dynamic part (if any).
4674 *
4675 * All registers that have been spilled on the stack in the slots within the
4676 * read offsets are marked as read.
4677 */
4678static int check_stack_range_initialized(
4679 struct bpf_verifier_env *env, int regno, int off,
4680 int access_size, bool zero_size_allowed,
4681 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4682{
4683 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4684 struct bpf_func_state *state = func(env, reg);
4685 int err, min_off, max_off, i, j, slot, spi;
4686 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4687 enum bpf_access_type bounds_check_type;
4688 /* Some accesses can write anything into the stack, others are
4689 * read-only.
4690 */
4691 bool clobber = false;
2011fccf 4692
01f810ac
AM
4693 if (access_size == 0 && !zero_size_allowed) {
4694 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4695 return -EACCES;
4696 }
2011fccf 4697
01f810ac
AM
4698 if (type == ACCESS_HELPER) {
4699 /* The bounds checks for writes are more permissive than for
4700 * reads. However, if raw_mode is not set, we'll do extra
4701 * checks below.
4702 */
4703 bounds_check_type = BPF_WRITE;
4704 clobber = true;
4705 } else {
4706 bounds_check_type = BPF_READ;
4707 }
4708 err = check_stack_access_within_bounds(env, regno, off, access_size,
4709 type, bounds_check_type);
4710 if (err)
4711 return err;
4712
17a52670 4713
2011fccf 4714 if (tnum_is_const(reg->var_off)) {
01f810ac 4715 min_off = max_off = reg->var_off.value + off;
2011fccf 4716 } else {
088ec26d
AI
4717 /* Variable offset is prohibited for unprivileged mode for
4718 * simplicity since it requires corresponding support in
4719 * Spectre masking for stack ALU.
4720 * See also retrieve_ptr_limit().
4721 */
2c78ee89 4722 if (!env->bypass_spec_v1) {
088ec26d 4723 char tn_buf[48];
f1174f77 4724
088ec26d 4725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4726 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4727 regno, err_extra, tn_buf);
088ec26d
AI
4728 return -EACCES;
4729 }
f2bcd05e
AI
4730 /* Only initialized buffer on stack is allowed to be accessed
4731 * with variable offset. With uninitialized buffer it's hard to
4732 * guarantee that whole memory is marked as initialized on
4733 * helper return since specific bounds are unknown what may
4734 * cause uninitialized stack leaking.
4735 */
4736 if (meta && meta->raw_mode)
4737 meta = NULL;
4738
01f810ac
AM
4739 min_off = reg->smin_value + off;
4740 max_off = reg->smax_value + off;
17a52670
AS
4741 }
4742
435faee1
DB
4743 if (meta && meta->raw_mode) {
4744 meta->access_size = access_size;
4745 meta->regno = regno;
4746 return 0;
4747 }
4748
2011fccf 4749 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4750 u8 *stype;
4751
2011fccf 4752 slot = -i - 1;
638f5b90 4753 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4754 if (state->allocated_stack <= slot)
4755 goto err;
4756 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4757 if (*stype == STACK_MISC)
4758 goto mark;
4759 if (*stype == STACK_ZERO) {
01f810ac
AM
4760 if (clobber) {
4761 /* helper can write anything into the stack */
4762 *stype = STACK_MISC;
4763 }
cc2b14d5 4764 goto mark;
17a52670 4765 }
1d68f22b 4766
27113c59 4767 if (is_spilled_reg(&state->stack[spi]) &&
1d68f22b
YS
4768 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4769 goto mark;
4770
27113c59 4771 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
4772 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4773 env->allow_ptr_leaks)) {
01f810ac
AM
4774 if (clobber) {
4775 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4776 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 4777 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 4778 }
f7cf25b2
AS
4779 goto mark;
4780 }
4781
cc2b14d5 4782err:
2011fccf 4783 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4784 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4785 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4786 } else {
4787 char tn_buf[48];
4788
4789 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4790 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4791 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4792 }
cc2b14d5
AS
4793 return -EACCES;
4794mark:
4795 /* reading any byte out of 8-byte 'spill_slot' will cause
4796 * the whole slot to be marked as 'read'
4797 */
679c782d 4798 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4799 state->stack[spi].spilled_ptr.parent,
4800 REG_LIVE_READ64);
17a52670 4801 }
2011fccf 4802 return update_stack_depth(env, state, min_off);
17a52670
AS
4803}
4804
06c1c049
GB
4805static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4806 int access_size, bool zero_size_allowed,
4807 struct bpf_call_arg_meta *meta)
4808{
638f5b90 4809 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4810
f1174f77 4811 switch (reg->type) {
06c1c049 4812 case PTR_TO_PACKET:
de8f3a83 4813 case PTR_TO_PACKET_META:
9fd29c08
YS
4814 return check_packet_access(env, regno, reg->off, access_size,
4815 zero_size_allowed);
69c087ba
YS
4816 case PTR_TO_MAP_KEY:
4817 return check_mem_region_access(env, regno, reg->off, access_size,
4818 reg->map_ptr->key_size, false);
06c1c049 4819 case PTR_TO_MAP_VALUE:
591fe988
DB
4820 if (check_map_access_type(env, regno, reg->off, access_size,
4821 meta && meta->raw_mode ? BPF_WRITE :
4822 BPF_READ))
4823 return -EACCES;
9fd29c08
YS
4824 return check_map_access(env, regno, reg->off, access_size,
4825 zero_size_allowed);
457f4436
AN
4826 case PTR_TO_MEM:
4827 return check_mem_region_access(env, regno, reg->off,
4828 access_size, reg->mem_size,
4829 zero_size_allowed);
afbf21dc
YS
4830 case PTR_TO_RDONLY_BUF:
4831 if (meta && meta->raw_mode)
4832 return -EACCES;
4833 return check_buffer_access(env, reg, regno, reg->off,
4834 access_size, zero_size_allowed,
4835 "rdonly",
4836 &env->prog->aux->max_rdonly_access);
4837 case PTR_TO_RDWR_BUF:
4838 return check_buffer_access(env, reg, regno, reg->off,
4839 access_size, zero_size_allowed,
4840 "rdwr",
4841 &env->prog->aux->max_rdwr_access);
0d004c02 4842 case PTR_TO_STACK:
01f810ac
AM
4843 return check_stack_range_initialized(
4844 env,
4845 regno, reg->off, access_size,
4846 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4847 default: /* scalar_value or invalid ptr */
4848 /* Allow zero-byte read from NULL, regardless of pointer type */
4849 if (zero_size_allowed && access_size == 0 &&
4850 register_is_null(reg))
4851 return 0;
4852
4853 verbose(env, "R%d type=%s expected=%s\n", regno,
4854 reg_type_str[reg->type],
4855 reg_type_str[PTR_TO_STACK]);
4856 return -EACCES;
06c1c049
GB
4857 }
4858}
4859
e5069b9c
DB
4860int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4861 u32 regno, u32 mem_size)
4862{
4863 if (register_is_null(reg))
4864 return 0;
4865
4866 if (reg_type_may_be_null(reg->type)) {
4867 /* Assuming that the register contains a value check if the memory
4868 * access is safe. Temporarily save and restore the register's state as
4869 * the conversion shouldn't be visible to a caller.
4870 */
4871 const struct bpf_reg_state saved_reg = *reg;
4872 int rv;
4873
4874 mark_ptr_not_null_reg(reg);
4875 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4876 *reg = saved_reg;
4877 return rv;
4878 }
4879
4880 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4881}
4882
d83525ca
AS
4883/* Implementation details:
4884 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4885 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4886 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4887 * value_or_null->value transition, since the verifier only cares about
4888 * the range of access to valid map value pointer and doesn't care about actual
4889 * address of the map element.
4890 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4891 * reg->id > 0 after value_or_null->value transition. By doing so
4892 * two bpf_map_lookups will be considered two different pointers that
4893 * point to different bpf_spin_locks.
4894 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4895 * dead-locks.
4896 * Since only one bpf_spin_lock is allowed the checks are simpler than
4897 * reg_is_refcounted() logic. The verifier needs to remember only
4898 * one spin_lock instead of array of acquired_refs.
4899 * cur_state->active_spin_lock remembers which map value element got locked
4900 * and clears it after bpf_spin_unlock.
4901 */
4902static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4903 bool is_lock)
4904{
4905 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4906 struct bpf_verifier_state *cur = env->cur_state;
4907 bool is_const = tnum_is_const(reg->var_off);
4908 struct bpf_map *map = reg->map_ptr;
4909 u64 val = reg->var_off.value;
4910
d83525ca
AS
4911 if (!is_const) {
4912 verbose(env,
4913 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4914 regno);
4915 return -EINVAL;
4916 }
4917 if (!map->btf) {
4918 verbose(env,
4919 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4920 map->name);
4921 return -EINVAL;
4922 }
4923 if (!map_value_has_spin_lock(map)) {
4924 if (map->spin_lock_off == -E2BIG)
4925 verbose(env,
4926 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4927 map->name);
4928 else if (map->spin_lock_off == -ENOENT)
4929 verbose(env,
4930 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4931 map->name);
4932 else
4933 verbose(env,
4934 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4935 map->name);
4936 return -EINVAL;
4937 }
4938 if (map->spin_lock_off != val + reg->off) {
4939 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4940 val + reg->off);
4941 return -EINVAL;
4942 }
4943 if (is_lock) {
4944 if (cur->active_spin_lock) {
4945 verbose(env,
4946 "Locking two bpf_spin_locks are not allowed\n");
4947 return -EINVAL;
4948 }
4949 cur->active_spin_lock = reg->id;
4950 } else {
4951 if (!cur->active_spin_lock) {
4952 verbose(env, "bpf_spin_unlock without taking a lock\n");
4953 return -EINVAL;
4954 }
4955 if (cur->active_spin_lock != reg->id) {
4956 verbose(env, "bpf_spin_unlock of different lock\n");
4957 return -EINVAL;
4958 }
4959 cur->active_spin_lock = 0;
4960 }
4961 return 0;
4962}
4963
b00628b1
AS
4964static int process_timer_func(struct bpf_verifier_env *env, int regno,
4965 struct bpf_call_arg_meta *meta)
4966{
4967 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4968 bool is_const = tnum_is_const(reg->var_off);
4969 struct bpf_map *map = reg->map_ptr;
4970 u64 val = reg->var_off.value;
4971
4972 if (!is_const) {
4973 verbose(env,
4974 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4975 regno);
4976 return -EINVAL;
4977 }
4978 if (!map->btf) {
4979 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4980 map->name);
4981 return -EINVAL;
4982 }
68134668
AS
4983 if (!map_value_has_timer(map)) {
4984 if (map->timer_off == -E2BIG)
4985 verbose(env,
4986 "map '%s' has more than one 'struct bpf_timer'\n",
4987 map->name);
4988 else if (map->timer_off == -ENOENT)
4989 verbose(env,
4990 "map '%s' doesn't have 'struct bpf_timer'\n",
4991 map->name);
4992 else
4993 verbose(env,
4994 "map '%s' is not a struct type or bpf_timer is mangled\n",
4995 map->name);
4996 return -EINVAL;
4997 }
4998 if (map->timer_off != val + reg->off) {
4999 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5000 val + reg->off, map->timer_off);
b00628b1
AS
5001 return -EINVAL;
5002 }
5003 if (meta->map_ptr) {
5004 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5005 return -EFAULT;
5006 }
3e8ce298 5007 meta->map_uid = reg->map_uid;
b00628b1
AS
5008 meta->map_ptr = map;
5009 return 0;
5010}
5011
90133415
DB
5012static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5013{
48946bd6
HL
5014 return base_type(type) == ARG_PTR_TO_MEM ||
5015 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
90133415
DB
5016}
5017
5018static bool arg_type_is_mem_size(enum bpf_arg_type type)
5019{
5020 return type == ARG_CONST_SIZE ||
5021 type == ARG_CONST_SIZE_OR_ZERO;
5022}
5023
457f4436
AN
5024static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5025{
5026 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5027}
5028
57c3bb72
AI
5029static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5030{
5031 return type == ARG_PTR_TO_INT ||
5032 type == ARG_PTR_TO_LONG;
5033}
5034
5035static int int_ptr_type_to_size(enum bpf_arg_type type)
5036{
5037 if (type == ARG_PTR_TO_INT)
5038 return sizeof(u32);
5039 else if (type == ARG_PTR_TO_LONG)
5040 return sizeof(u64);
5041
5042 return -EINVAL;
5043}
5044
912f442c
LB
5045static int resolve_map_arg_type(struct bpf_verifier_env *env,
5046 const struct bpf_call_arg_meta *meta,
5047 enum bpf_arg_type *arg_type)
5048{
5049 if (!meta->map_ptr) {
5050 /* kernel subsystem misconfigured verifier */
5051 verbose(env, "invalid map_ptr to access map->type\n");
5052 return -EACCES;
5053 }
5054
5055 switch (meta->map_ptr->map_type) {
5056 case BPF_MAP_TYPE_SOCKMAP:
5057 case BPF_MAP_TYPE_SOCKHASH:
5058 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5059 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5060 } else {
5061 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5062 return -EINVAL;
5063 }
5064 break;
9330986c
JK
5065 case BPF_MAP_TYPE_BLOOM_FILTER:
5066 if (meta->func_id == BPF_FUNC_map_peek_elem)
5067 *arg_type = ARG_PTR_TO_MAP_VALUE;
5068 break;
912f442c
LB
5069 default:
5070 break;
5071 }
5072 return 0;
5073}
5074
f79e7ea5
LB
5075struct bpf_reg_types {
5076 const enum bpf_reg_type types[10];
1df8f55a 5077 u32 *btf_id;
f79e7ea5
LB
5078};
5079
5080static const struct bpf_reg_types map_key_value_types = {
5081 .types = {
5082 PTR_TO_STACK,
5083 PTR_TO_PACKET,
5084 PTR_TO_PACKET_META,
69c087ba 5085 PTR_TO_MAP_KEY,
f79e7ea5
LB
5086 PTR_TO_MAP_VALUE,
5087 },
5088};
5089
5090static const struct bpf_reg_types sock_types = {
5091 .types = {
5092 PTR_TO_SOCK_COMMON,
5093 PTR_TO_SOCKET,
5094 PTR_TO_TCP_SOCK,
5095 PTR_TO_XDP_SOCK,
5096 },
5097};
5098
49a2a4d4 5099#ifdef CONFIG_NET
1df8f55a
MKL
5100static const struct bpf_reg_types btf_id_sock_common_types = {
5101 .types = {
5102 PTR_TO_SOCK_COMMON,
5103 PTR_TO_SOCKET,
5104 PTR_TO_TCP_SOCK,
5105 PTR_TO_XDP_SOCK,
5106 PTR_TO_BTF_ID,
5107 },
5108 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5109};
49a2a4d4 5110#endif
1df8f55a 5111
f79e7ea5
LB
5112static const struct bpf_reg_types mem_types = {
5113 .types = {
5114 PTR_TO_STACK,
5115 PTR_TO_PACKET,
5116 PTR_TO_PACKET_META,
69c087ba 5117 PTR_TO_MAP_KEY,
f79e7ea5
LB
5118 PTR_TO_MAP_VALUE,
5119 PTR_TO_MEM,
5120 PTR_TO_RDONLY_BUF,
5121 PTR_TO_RDWR_BUF,
5122 },
5123};
5124
5125static const struct bpf_reg_types int_ptr_types = {
5126 .types = {
5127 PTR_TO_STACK,
5128 PTR_TO_PACKET,
5129 PTR_TO_PACKET_META,
69c087ba 5130 PTR_TO_MAP_KEY,
f79e7ea5
LB
5131 PTR_TO_MAP_VALUE,
5132 },
5133};
5134
5135static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5136static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5137static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5138static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5139static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5140static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5141static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 5142static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
5143static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5144static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5145static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5146static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 5147
0789e13b 5148static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
5149 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5150 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5151 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
f79e7ea5
LB
5152 [ARG_CONST_SIZE] = &scalar_types,
5153 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5154 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5155 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5156 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 5157 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5158#ifdef CONFIG_NET
1df8f55a 5159 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5160#endif
f79e7ea5 5161 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
5162 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5163 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5164 [ARG_PTR_TO_MEM] = &mem_types,
f79e7ea5
LB
5165 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5166 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
f79e7ea5
LB
5167 [ARG_PTR_TO_INT] = &int_ptr_types,
5168 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5169 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 5170 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 5171 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 5172 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5173 [ARG_PTR_TO_TIMER] = &timer_types,
f79e7ea5
LB
5174};
5175
5176static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
5177 enum bpf_arg_type arg_type,
5178 const u32 *arg_btf_id)
f79e7ea5
LB
5179{
5180 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5181 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5182 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5183 int i, j;
5184
48946bd6 5185 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
5186 if (!compatible) {
5187 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5188 return -EFAULT;
5189 }
5190
f79e7ea5
LB
5191 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5192 expected = compatible->types[i];
5193 if (expected == NOT_INIT)
5194 break;
5195
5196 if (type == expected)
a968d5e2 5197 goto found;
f79e7ea5
LB
5198 }
5199
5200 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5201 for (j = 0; j + 1 < i; j++)
5202 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5203 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5204 return -EACCES;
a968d5e2
MKL
5205
5206found:
5207 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
5208 if (!arg_btf_id) {
5209 if (!compatible->btf_id) {
5210 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5211 return -EFAULT;
5212 }
5213 arg_btf_id = compatible->btf_id;
5214 }
5215
22dc4a0f
AN
5216 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5217 btf_vmlinux, *arg_btf_id)) {
a968d5e2 5218 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
5219 regno, kernel_type_name(reg->btf, reg->btf_id),
5220 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
5221 return -EACCES;
5222 }
5223
5224 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5225 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5226 regno);
5227 return -EACCES;
5228 }
5229 }
5230
5231 return 0;
f79e7ea5
LB
5232}
5233
af7ec138
YS
5234static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5235 struct bpf_call_arg_meta *meta,
5236 const struct bpf_func_proto *fn)
17a52670 5237{
af7ec138 5238 u32 regno = BPF_REG_1 + arg;
638f5b90 5239 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5240 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5241 enum bpf_reg_type type = reg->type;
17a52670
AS
5242 int err = 0;
5243
80f1d68c 5244 if (arg_type == ARG_DONTCARE)
17a52670
AS
5245 return 0;
5246
dc503a8a
EC
5247 err = check_reg_arg(env, regno, SRC_OP);
5248 if (err)
5249 return err;
17a52670 5250
1be7f75d
AS
5251 if (arg_type == ARG_ANYTHING) {
5252 if (is_pointer_value(env, regno)) {
61bd5218
JK
5253 verbose(env, "R%d leaks addr into helper function\n",
5254 regno);
1be7f75d
AS
5255 return -EACCES;
5256 }
80f1d68c 5257 return 0;
1be7f75d 5258 }
80f1d68c 5259
de8f3a83 5260 if (type_is_pkt_pointer(type) &&
3a0af8fd 5261 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5262 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5263 return -EACCES;
5264 }
5265
48946bd6
HL
5266 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5267 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
912f442c
LB
5268 err = resolve_map_arg_type(env, meta, &arg_type);
5269 if (err)
5270 return err;
5271 }
5272
48946bd6 5273 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
5274 /* A NULL register has a SCALAR_VALUE type, so skip
5275 * type checking.
5276 */
5277 goto skip_type_check;
5278
a968d5e2 5279 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
5280 if (err)
5281 return err;
5282
a968d5e2 5283 if (type == PTR_TO_CTX) {
feec7040
LB
5284 err = check_ctx_reg(env, reg, regno);
5285 if (err < 0)
5286 return err;
d7b9454a
LB
5287 }
5288
fd1b0d60 5289skip_type_check:
02f7c958 5290 if (reg->ref_obj_id) {
457f4436
AN
5291 if (meta->ref_obj_id) {
5292 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5293 regno, reg->ref_obj_id,
5294 meta->ref_obj_id);
5295 return -EFAULT;
5296 }
5297 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5298 }
5299
17a52670
AS
5300 if (arg_type == ARG_CONST_MAP_PTR) {
5301 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5302 if (meta->map_ptr) {
5303 /* Use map_uid (which is unique id of inner map) to reject:
5304 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5305 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5306 * if (inner_map1 && inner_map2) {
5307 * timer = bpf_map_lookup_elem(inner_map1);
5308 * if (timer)
5309 * // mismatch would have been allowed
5310 * bpf_timer_init(timer, inner_map2);
5311 * }
5312 *
5313 * Comparing map_ptr is enough to distinguish normal and outer maps.
5314 */
5315 if (meta->map_ptr != reg->map_ptr ||
5316 meta->map_uid != reg->map_uid) {
5317 verbose(env,
5318 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5319 meta->map_uid, reg->map_uid);
5320 return -EINVAL;
5321 }
b00628b1 5322 }
33ff9823 5323 meta->map_ptr = reg->map_ptr;
3e8ce298 5324 meta->map_uid = reg->map_uid;
17a52670
AS
5325 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5326 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5327 * check that [key, key + map->key_size) are within
5328 * stack limits and initialized
5329 */
33ff9823 5330 if (!meta->map_ptr) {
17a52670
AS
5331 /* in function declaration map_ptr must come before
5332 * map_key, so that it's verified and known before
5333 * we have to check map_key here. Otherwise it means
5334 * that kernel subsystem misconfigured verifier
5335 */
61bd5218 5336 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5337 return -EACCES;
5338 }
d71962f3
PC
5339 err = check_helper_mem_access(env, regno,
5340 meta->map_ptr->key_size, false,
5341 NULL);
48946bd6
HL
5342 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5343 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5344 if (type_may_be_null(arg_type) && register_is_null(reg))
5345 return 0;
5346
17a52670
AS
5347 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5348 * check [value, value + map->value_size) validity
5349 */
33ff9823 5350 if (!meta->map_ptr) {
17a52670 5351 /* kernel subsystem misconfigured verifier */
61bd5218 5352 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5353 return -EACCES;
5354 }
2ea864c5 5355 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
5356 err = check_helper_mem_access(env, regno,
5357 meta->map_ptr->value_size, false,
2ea864c5 5358 meta);
eaa6bcb7
HL
5359 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5360 if (!reg->btf_id) {
5361 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5362 return -EACCES;
5363 }
22dc4a0f 5364 meta->ret_btf = reg->btf;
eaa6bcb7 5365 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
5366 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5367 if (meta->func_id == BPF_FUNC_spin_lock) {
5368 if (process_spin_lock(env, regno, true))
5369 return -EACCES;
5370 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5371 if (process_spin_lock(env, regno, false))
5372 return -EACCES;
5373 } else {
5374 verbose(env, "verifier internal error\n");
5375 return -EFAULT;
5376 }
b00628b1
AS
5377 } else if (arg_type == ARG_PTR_TO_TIMER) {
5378 if (process_timer_func(env, regno, meta))
5379 return -EACCES;
69c087ba
YS
5380 } else if (arg_type == ARG_PTR_TO_FUNC) {
5381 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5382 } else if (arg_type_is_mem_ptr(arg_type)) {
5383 /* The access to this pointer is only checked when we hit the
5384 * next is_mem_size argument below.
5385 */
5386 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5387 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5388 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5389
10060503
JF
5390 /* This is used to refine r0 return value bounds for helpers
5391 * that enforce this value as an upper bound on return values.
5392 * See do_refine_retval_range() for helpers that can refine
5393 * the return value. C type of helper is u32 so we pull register
5394 * bound from umax_value however, if negative verifier errors
5395 * out. Only upper bounds can be learned because retval is an
5396 * int type and negative retvals are allowed.
849fa506 5397 */
10060503 5398 meta->msize_max_value = reg->umax_value;
849fa506 5399
f1174f77
EC
5400 /* The register is SCALAR_VALUE; the access check
5401 * happens using its boundaries.
06c1c049 5402 */
f1174f77 5403 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5404 /* For unprivileged variable accesses, disable raw
5405 * mode so that the program is required to
5406 * initialize all the memory that the helper could
5407 * just partially fill up.
5408 */
5409 meta = NULL;
5410
b03c9f9f 5411 if (reg->smin_value < 0) {
61bd5218 5412 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5413 regno);
5414 return -EACCES;
5415 }
06c1c049 5416
b03c9f9f 5417 if (reg->umin_value == 0) {
f1174f77
EC
5418 err = check_helper_mem_access(env, regno - 1, 0,
5419 zero_size_allowed,
5420 meta);
06c1c049
GB
5421 if (err)
5422 return err;
06c1c049 5423 }
f1174f77 5424
b03c9f9f 5425 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5426 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5427 regno);
5428 return -EACCES;
5429 }
5430 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5431 reg->umax_value,
f1174f77 5432 zero_size_allowed, meta);
b5dc0163
AS
5433 if (!err)
5434 err = mark_chain_precision(env, regno);
457f4436
AN
5435 } else if (arg_type_is_alloc_size(arg_type)) {
5436 if (!tnum_is_const(reg->var_off)) {
28a8add6 5437 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5438 regno);
5439 return -EACCES;
5440 }
5441 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5442 } else if (arg_type_is_int_ptr(arg_type)) {
5443 int size = int_ptr_type_to_size(arg_type);
5444
5445 err = check_helper_mem_access(env, regno, size, false, meta);
5446 if (err)
5447 return err;
5448 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5449 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5450 struct bpf_map *map = reg->map_ptr;
5451 int map_off;
5452 u64 map_addr;
5453 char *str_ptr;
5454
a8fad73e 5455 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5456 verbose(env, "R%d does not point to a readonly map'\n", regno);
5457 return -EACCES;
5458 }
5459
5460 if (!tnum_is_const(reg->var_off)) {
5461 verbose(env, "R%d is not a constant address'\n", regno);
5462 return -EACCES;
5463 }
5464
5465 if (!map->ops->map_direct_value_addr) {
5466 verbose(env, "no direct value access support for this map type\n");
5467 return -EACCES;
5468 }
5469
5470 err = check_map_access(env, regno, reg->off,
5471 map->value_size - reg->off, false);
5472 if (err)
5473 return err;
5474
5475 map_off = reg->off + reg->var_off.value;
5476 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5477 if (err) {
5478 verbose(env, "direct value access on string failed\n");
5479 return err;
5480 }
5481
5482 str_ptr = (char *)(long)(map_addr);
5483 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5484 verbose(env, "string is not zero-terminated\n");
5485 return -EINVAL;
5486 }
17a52670
AS
5487 }
5488
5489 return err;
5490}
5491
0126240f
LB
5492static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5493{
5494 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5495 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5496
5497 if (func_id != BPF_FUNC_map_update_elem)
5498 return false;
5499
5500 /* It's not possible to get access to a locked struct sock in these
5501 * contexts, so updating is safe.
5502 */
5503 switch (type) {
5504 case BPF_PROG_TYPE_TRACING:
5505 if (eatype == BPF_TRACE_ITER)
5506 return true;
5507 break;
5508 case BPF_PROG_TYPE_SOCKET_FILTER:
5509 case BPF_PROG_TYPE_SCHED_CLS:
5510 case BPF_PROG_TYPE_SCHED_ACT:
5511 case BPF_PROG_TYPE_XDP:
5512 case BPF_PROG_TYPE_SK_REUSEPORT:
5513 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5514 case BPF_PROG_TYPE_SK_LOOKUP:
5515 return true;
5516 default:
5517 break;
5518 }
5519
5520 verbose(env, "cannot update sockmap in this context\n");
5521 return false;
5522}
5523
e411901c
MF
5524static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5525{
5526 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5527}
5528
61bd5218
JK
5529static int check_map_func_compatibility(struct bpf_verifier_env *env,
5530 struct bpf_map *map, int func_id)
35578d79 5531{
35578d79
KX
5532 if (!map)
5533 return 0;
5534
6aff67c8
AS
5535 /* We need a two way check, first is from map perspective ... */
5536 switch (map->map_type) {
5537 case BPF_MAP_TYPE_PROG_ARRAY:
5538 if (func_id != BPF_FUNC_tail_call)
5539 goto error;
5540 break;
5541 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5542 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5543 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5544 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5545 func_id != BPF_FUNC_perf_event_read_value &&
5546 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5547 goto error;
5548 break;
457f4436
AN
5549 case BPF_MAP_TYPE_RINGBUF:
5550 if (func_id != BPF_FUNC_ringbuf_output &&
5551 func_id != BPF_FUNC_ringbuf_reserve &&
457f4436
AN
5552 func_id != BPF_FUNC_ringbuf_query)
5553 goto error;
5554 break;
6aff67c8
AS
5555 case BPF_MAP_TYPE_STACK_TRACE:
5556 if (func_id != BPF_FUNC_get_stackid)
5557 goto error;
5558 break;
4ed8ec52 5559 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5560 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5561 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5562 goto error;
5563 break;
cd339431 5564 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5565 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5566 if (func_id != BPF_FUNC_get_local_storage)
5567 goto error;
5568 break;
546ac1ff 5569 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5570 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5571 if (func_id != BPF_FUNC_redirect_map &&
5572 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5573 goto error;
5574 break;
fbfc504a
BT
5575 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5576 * appear.
5577 */
6710e112
JDB
5578 case BPF_MAP_TYPE_CPUMAP:
5579 if (func_id != BPF_FUNC_redirect_map)
5580 goto error;
5581 break;
fada7fdc
JL
5582 case BPF_MAP_TYPE_XSKMAP:
5583 if (func_id != BPF_FUNC_redirect_map &&
5584 func_id != BPF_FUNC_map_lookup_elem)
5585 goto error;
5586 break;
56f668df 5587 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5588 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5589 if (func_id != BPF_FUNC_map_lookup_elem)
5590 goto error;
16a43625 5591 break;
174a79ff
JF
5592 case BPF_MAP_TYPE_SOCKMAP:
5593 if (func_id != BPF_FUNC_sk_redirect_map &&
5594 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5595 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5596 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5597 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5598 func_id != BPF_FUNC_map_lookup_elem &&
5599 !may_update_sockmap(env, func_id))
174a79ff
JF
5600 goto error;
5601 break;
81110384
JF
5602 case BPF_MAP_TYPE_SOCKHASH:
5603 if (func_id != BPF_FUNC_sk_redirect_hash &&
5604 func_id != BPF_FUNC_sock_hash_update &&
5605 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5606 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5607 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5608 func_id != BPF_FUNC_map_lookup_elem &&
5609 !may_update_sockmap(env, func_id))
81110384
JF
5610 goto error;
5611 break;
2dbb9b9e
MKL
5612 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5613 if (func_id != BPF_FUNC_sk_select_reuseport)
5614 goto error;
5615 break;
f1a2e44a
MV
5616 case BPF_MAP_TYPE_QUEUE:
5617 case BPF_MAP_TYPE_STACK:
5618 if (func_id != BPF_FUNC_map_peek_elem &&
5619 func_id != BPF_FUNC_map_pop_elem &&
5620 func_id != BPF_FUNC_map_push_elem)
5621 goto error;
5622 break;
6ac99e8f
MKL
5623 case BPF_MAP_TYPE_SK_STORAGE:
5624 if (func_id != BPF_FUNC_sk_storage_get &&
5625 func_id != BPF_FUNC_sk_storage_delete)
5626 goto error;
5627 break;
8ea63684
KS
5628 case BPF_MAP_TYPE_INODE_STORAGE:
5629 if (func_id != BPF_FUNC_inode_storage_get &&
5630 func_id != BPF_FUNC_inode_storage_delete)
5631 goto error;
5632 break;
4cf1bc1f
KS
5633 case BPF_MAP_TYPE_TASK_STORAGE:
5634 if (func_id != BPF_FUNC_task_storage_get &&
5635 func_id != BPF_FUNC_task_storage_delete)
5636 goto error;
5637 break;
9330986c
JK
5638 case BPF_MAP_TYPE_BLOOM_FILTER:
5639 if (func_id != BPF_FUNC_map_peek_elem &&
5640 func_id != BPF_FUNC_map_push_elem)
5641 goto error;
5642 break;
6aff67c8
AS
5643 default:
5644 break;
5645 }
5646
5647 /* ... and second from the function itself. */
5648 switch (func_id) {
5649 case BPF_FUNC_tail_call:
5650 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5651 goto error;
e411901c
MF
5652 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5653 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5654 return -EINVAL;
5655 }
6aff67c8
AS
5656 break;
5657 case BPF_FUNC_perf_event_read:
5658 case BPF_FUNC_perf_event_output:
908432ca 5659 case BPF_FUNC_perf_event_read_value:
a7658e1a 5660 case BPF_FUNC_skb_output:
d831ee84 5661 case BPF_FUNC_xdp_output:
6aff67c8
AS
5662 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5663 goto error;
5664 break;
5b029a32
DB
5665 case BPF_FUNC_ringbuf_output:
5666 case BPF_FUNC_ringbuf_reserve:
5667 case BPF_FUNC_ringbuf_query:
5668 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5669 goto error;
5670 break;
6aff67c8
AS
5671 case BPF_FUNC_get_stackid:
5672 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5673 goto error;
5674 break;
60d20f91 5675 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5676 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5677 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5678 goto error;
5679 break;
97f91a7c 5680 case BPF_FUNC_redirect_map:
9c270af3 5681 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5682 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5683 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5684 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5685 goto error;
5686 break;
174a79ff 5687 case BPF_FUNC_sk_redirect_map:
4f738adb 5688 case BPF_FUNC_msg_redirect_map:
81110384 5689 case BPF_FUNC_sock_map_update:
174a79ff
JF
5690 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5691 goto error;
5692 break;
81110384
JF
5693 case BPF_FUNC_sk_redirect_hash:
5694 case BPF_FUNC_msg_redirect_hash:
5695 case BPF_FUNC_sock_hash_update:
5696 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5697 goto error;
5698 break;
cd339431 5699 case BPF_FUNC_get_local_storage:
b741f163
RG
5700 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5701 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5702 goto error;
5703 break;
2dbb9b9e 5704 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5705 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5706 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5707 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5708 goto error;
5709 break;
f1a2e44a 5710 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
5711 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5712 map->map_type != BPF_MAP_TYPE_STACK)
5713 goto error;
5714 break;
9330986c
JK
5715 case BPF_FUNC_map_peek_elem:
5716 case BPF_FUNC_map_push_elem:
5717 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5718 map->map_type != BPF_MAP_TYPE_STACK &&
5719 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5720 goto error;
5721 break;
6ac99e8f
MKL
5722 case BPF_FUNC_sk_storage_get:
5723 case BPF_FUNC_sk_storage_delete:
5724 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5725 goto error;
5726 break;
8ea63684
KS
5727 case BPF_FUNC_inode_storage_get:
5728 case BPF_FUNC_inode_storage_delete:
5729 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5730 goto error;
5731 break;
4cf1bc1f
KS
5732 case BPF_FUNC_task_storage_get:
5733 case BPF_FUNC_task_storage_delete:
5734 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5735 goto error;
5736 break;
6aff67c8
AS
5737 default:
5738 break;
35578d79
KX
5739 }
5740
5741 return 0;
6aff67c8 5742error:
61bd5218 5743 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5744 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5745 return -EINVAL;
35578d79
KX
5746}
5747
90133415 5748static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5749{
5750 int count = 0;
5751
39f19ebb 5752 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5753 count++;
39f19ebb 5754 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5755 count++;
39f19ebb 5756 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5757 count++;
39f19ebb 5758 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5759 count++;
39f19ebb 5760 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5761 count++;
5762
90133415
DB
5763 /* We only support one arg being in raw mode at the moment,
5764 * which is sufficient for the helper functions we have
5765 * right now.
5766 */
5767 return count <= 1;
5768}
5769
5770static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5771 enum bpf_arg_type arg_next)
5772{
5773 return (arg_type_is_mem_ptr(arg_curr) &&
5774 !arg_type_is_mem_size(arg_next)) ||
5775 (!arg_type_is_mem_ptr(arg_curr) &&
5776 arg_type_is_mem_size(arg_next));
5777}
5778
5779static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5780{
5781 /* bpf_xxx(..., buf, len) call will access 'len'
5782 * bytes from memory 'buf'. Both arg types need
5783 * to be paired, so make sure there's no buggy
5784 * helper function specification.
5785 */
5786 if (arg_type_is_mem_size(fn->arg1_type) ||
5787 arg_type_is_mem_ptr(fn->arg5_type) ||
5788 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5789 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5790 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5791 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5792 return false;
5793
5794 return true;
5795}
5796
1b986589 5797static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5798{
5799 int count = 0;
5800
1b986589 5801 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5802 count++;
1b986589 5803 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5804 count++;
1b986589 5805 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5806 count++;
1b986589 5807 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5808 count++;
1b986589 5809 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5810 count++;
5811
1b986589
MKL
5812 /* A reference acquiring function cannot acquire
5813 * another refcounted ptr.
5814 */
64d85290 5815 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5816 return false;
5817
fd978bf7
JS
5818 /* We only support one arg being unreferenced at the moment,
5819 * which is sufficient for the helper functions we have right now.
5820 */
5821 return count <= 1;
5822}
5823
9436ef6e
LB
5824static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5825{
5826 int i;
5827
1df8f55a 5828 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5829 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5830 return false;
5831
1df8f55a
MKL
5832 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5833 return false;
5834 }
5835
9436ef6e
LB
5836 return true;
5837}
5838
1b986589 5839static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5840{
5841 return check_raw_mode_ok(fn) &&
fd978bf7 5842 check_arg_pair_ok(fn) &&
9436ef6e 5843 check_btf_id_ok(fn) &&
1b986589 5844 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5845}
5846
de8f3a83
DB
5847/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5848 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5849 */
f4d7e40a
AS
5850static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5851 struct bpf_func_state *state)
969bf05e 5852{
58e2af8b 5853 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5854 int i;
5855
5856 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5857 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5858 mark_reg_unknown(env, regs, i);
969bf05e 5859
f3709f69
JS
5860 bpf_for_each_spilled_reg(i, state, reg) {
5861 if (!reg)
969bf05e 5862 continue;
de8f3a83 5863 if (reg_is_pkt_pointer_any(reg))
f54c7898 5864 __mark_reg_unknown(env, reg);
969bf05e
AS
5865 }
5866}
5867
f4d7e40a
AS
5868static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5869{
5870 struct bpf_verifier_state *vstate = env->cur_state;
5871 int i;
5872
5873 for (i = 0; i <= vstate->curframe; i++)
5874 __clear_all_pkt_pointers(env, vstate->frame[i]);
5875}
5876
6d94e741
AS
5877enum {
5878 AT_PKT_END = -1,
5879 BEYOND_PKT_END = -2,
5880};
5881
5882static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5883{
5884 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5885 struct bpf_reg_state *reg = &state->regs[regn];
5886
5887 if (reg->type != PTR_TO_PACKET)
5888 /* PTR_TO_PACKET_META is not supported yet */
5889 return;
5890
5891 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5892 * How far beyond pkt_end it goes is unknown.
5893 * if (!range_open) it's the case of pkt >= pkt_end
5894 * if (range_open) it's the case of pkt > pkt_end
5895 * hence this pointer is at least 1 byte bigger than pkt_end
5896 */
5897 if (range_open)
5898 reg->range = BEYOND_PKT_END;
5899 else
5900 reg->range = AT_PKT_END;
5901}
5902
fd978bf7 5903static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5904 struct bpf_func_state *state,
5905 int ref_obj_id)
fd978bf7
JS
5906{
5907 struct bpf_reg_state *regs = state->regs, *reg;
5908 int i;
5909
5910 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5911 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5912 mark_reg_unknown(env, regs, i);
5913
5914 bpf_for_each_spilled_reg(i, state, reg) {
5915 if (!reg)
5916 continue;
1b986589 5917 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5918 __mark_reg_unknown(env, reg);
fd978bf7
JS
5919 }
5920}
5921
5922/* The pointer with the specified id has released its reference to kernel
5923 * resources. Identify all copies of the same pointer and clear the reference.
5924 */
5925static int release_reference(struct bpf_verifier_env *env,
1b986589 5926 int ref_obj_id)
fd978bf7
JS
5927{
5928 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5929 int err;
fd978bf7
JS
5930 int i;
5931
1b986589
MKL
5932 err = release_reference_state(cur_func(env), ref_obj_id);
5933 if (err)
5934 return err;
5935
fd978bf7 5936 for (i = 0; i <= vstate->curframe; i++)
1b986589 5937 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5938
1b986589 5939 return 0;
fd978bf7
JS
5940}
5941
51c39bb1
AS
5942static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5943 struct bpf_reg_state *regs)
5944{
5945 int i;
5946
5947 /* after the call registers r0 - r5 were scratched */
5948 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5949 mark_reg_not_init(env, regs, caller_saved[i]);
5950 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5951 }
5952}
5953
14351375
YS
5954typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5955 struct bpf_func_state *caller,
5956 struct bpf_func_state *callee,
5957 int insn_idx);
5958
5959static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5960 int *insn_idx, int subprog,
5961 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5962{
5963 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5964 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5965 struct bpf_func_state *caller, *callee;
14351375 5966 int err;
51c39bb1 5967 bool is_global = false;
f4d7e40a 5968
aada9ce6 5969 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5970 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5971 state->curframe + 2);
f4d7e40a
AS
5972 return -E2BIG;
5973 }
5974
f4d7e40a
AS
5975 caller = state->frame[state->curframe];
5976 if (state->frame[state->curframe + 1]) {
5977 verbose(env, "verifier bug. Frame %d already allocated\n",
5978 state->curframe + 1);
5979 return -EFAULT;
5980 }
5981
51c39bb1
AS
5982 func_info_aux = env->prog->aux->func_info_aux;
5983 if (func_info_aux)
5984 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5985 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5986 if (err == -EFAULT)
5987 return err;
5988 if (is_global) {
5989 if (err) {
5990 verbose(env, "Caller passes invalid args into func#%d\n",
5991 subprog);
5992 return err;
5993 } else {
5994 if (env->log.level & BPF_LOG_LEVEL)
5995 verbose(env,
5996 "Func#%d is global and valid. Skipping.\n",
5997 subprog);
5998 clear_caller_saved_regs(env, caller->regs);
5999
45159b27 6000 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 6001 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 6002 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
6003
6004 /* continue with next insn after call */
6005 return 0;
6006 }
6007 }
6008
bfc6bb74
AS
6009 if (insn->code == (BPF_JMP | BPF_CALL) &&
6010 insn->imm == BPF_FUNC_timer_set_callback) {
6011 struct bpf_verifier_state *async_cb;
6012
6013 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 6014 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
6015 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6016 *insn_idx, subprog);
6017 if (!async_cb)
6018 return -EFAULT;
6019 callee = async_cb->frame[0];
6020 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6021
6022 /* Convert bpf_timer_set_callback() args into timer callback args */
6023 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6024 if (err)
6025 return err;
6026
6027 clear_caller_saved_regs(env, caller->regs);
6028 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6029 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6030 /* continue with next insn after call */
6031 return 0;
6032 }
6033
f4d7e40a
AS
6034 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6035 if (!callee)
6036 return -ENOMEM;
6037 state->frame[state->curframe + 1] = callee;
6038
6039 /* callee cannot access r0, r6 - r9 for reading and has to write
6040 * into its own stack before reading from it.
6041 * callee can read/write into caller's stack
6042 */
6043 init_func_state(env, callee,
6044 /* remember the callsite, it will be used by bpf_exit */
6045 *insn_idx /* callsite */,
6046 state->curframe + 1 /* frameno within this callchain */,
f910cefa 6047 subprog /* subprog number within this prog */);
f4d7e40a 6048
fd978bf7 6049 /* Transfer references to the callee */
c69431aa 6050 err = copy_reference_state(callee, caller);
fd978bf7
JS
6051 if (err)
6052 return err;
6053
14351375
YS
6054 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6055 if (err)
6056 return err;
f4d7e40a 6057
51c39bb1 6058 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6059
6060 /* only increment it after check_reg_arg() finished */
6061 state->curframe++;
6062
6063 /* and go analyze first insn of the callee */
14351375 6064 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6065
06ee7115 6066 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6067 verbose(env, "caller:\n");
0f55f9ed 6068 print_verifier_state(env, caller, true);
f4d7e40a 6069 verbose(env, "callee:\n");
0f55f9ed 6070 print_verifier_state(env, callee, true);
f4d7e40a
AS
6071 }
6072 return 0;
6073}
6074
314ee05e
YS
6075int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6076 struct bpf_func_state *caller,
6077 struct bpf_func_state *callee)
6078{
6079 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6080 * void *callback_ctx, u64 flags);
6081 * callback_fn(struct bpf_map *map, void *key, void *value,
6082 * void *callback_ctx);
6083 */
6084 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6085
6086 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6087 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6088 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6089
6090 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6091 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6092 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6093
6094 /* pointer to stack or null */
6095 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6096
6097 /* unused */
6098 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6099 return 0;
6100}
6101
14351375
YS
6102static int set_callee_state(struct bpf_verifier_env *env,
6103 struct bpf_func_state *caller,
6104 struct bpf_func_state *callee, int insn_idx)
6105{
6106 int i;
6107
6108 /* copy r1 - r5 args that callee can access. The copy includes parent
6109 * pointers, which connects us up to the liveness chain
6110 */
6111 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6112 callee->regs[i] = caller->regs[i];
6113 return 0;
6114}
6115
6116static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6117 int *insn_idx)
6118{
6119 int subprog, target_insn;
6120
6121 target_insn = *insn_idx + insn->imm + 1;
6122 subprog = find_subprog(env, target_insn);
6123 if (subprog < 0) {
6124 verbose(env, "verifier bug. No program starts at insn %d\n",
6125 target_insn);
6126 return -EFAULT;
6127 }
6128
6129 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6130}
6131
69c087ba
YS
6132static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6133 struct bpf_func_state *caller,
6134 struct bpf_func_state *callee,
6135 int insn_idx)
6136{
6137 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6138 struct bpf_map *map;
6139 int err;
6140
6141 if (bpf_map_ptr_poisoned(insn_aux)) {
6142 verbose(env, "tail_call abusing map_ptr\n");
6143 return -EINVAL;
6144 }
6145
6146 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6147 if (!map->ops->map_set_for_each_callback_args ||
6148 !map->ops->map_for_each_callback) {
6149 verbose(env, "callback function not allowed for map\n");
6150 return -ENOTSUPP;
6151 }
6152
6153 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6154 if (err)
6155 return err;
6156
6157 callee->in_callback_fn = true;
6158 return 0;
6159}
6160
e6f2dd0f
JK
6161static int set_loop_callback_state(struct bpf_verifier_env *env,
6162 struct bpf_func_state *caller,
6163 struct bpf_func_state *callee,
6164 int insn_idx)
6165{
6166 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6167 * u64 flags);
6168 * callback_fn(u32 index, void *callback_ctx);
6169 */
6170 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6171 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6172
6173 /* unused */
6174 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6175 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6176 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6177
6178 callee->in_callback_fn = true;
6179 return 0;
6180}
6181
b00628b1
AS
6182static int set_timer_callback_state(struct bpf_verifier_env *env,
6183 struct bpf_func_state *caller,
6184 struct bpf_func_state *callee,
6185 int insn_idx)
6186{
6187 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6188
6189 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6190 * callback_fn(struct bpf_map *map, void *key, void *value);
6191 */
6192 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6193 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6194 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6195
6196 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6197 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6198 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6199
6200 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6201 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6202 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6203
6204 /* unused */
6205 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6206 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6207 callee->in_async_callback_fn = true;
b00628b1
AS
6208 return 0;
6209}
6210
7c7e3d31
SL
6211static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6212 struct bpf_func_state *caller,
6213 struct bpf_func_state *callee,
6214 int insn_idx)
6215{
6216 /* bpf_find_vma(struct task_struct *task, u64 addr,
6217 * void *callback_fn, void *callback_ctx, u64 flags)
6218 * (callback_fn)(struct task_struct *task,
6219 * struct vm_area_struct *vma, void *callback_ctx);
6220 */
6221 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6222
6223 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6224 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6225 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 6226 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
6227
6228 /* pointer to stack or null */
6229 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6230
6231 /* unused */
6232 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6233 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6234 callee->in_callback_fn = true;
6235 return 0;
6236}
6237
f4d7e40a
AS
6238static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6239{
6240 struct bpf_verifier_state *state = env->cur_state;
6241 struct bpf_func_state *caller, *callee;
6242 struct bpf_reg_state *r0;
fd978bf7 6243 int err;
f4d7e40a
AS
6244
6245 callee = state->frame[state->curframe];
6246 r0 = &callee->regs[BPF_REG_0];
6247 if (r0->type == PTR_TO_STACK) {
6248 /* technically it's ok to return caller's stack pointer
6249 * (or caller's caller's pointer) back to the caller,
6250 * since these pointers are valid. Only current stack
6251 * pointer will be invalid as soon as function exits,
6252 * but let's be conservative
6253 */
6254 verbose(env, "cannot return stack pointer to the caller\n");
6255 return -EINVAL;
6256 }
6257
6258 state->curframe--;
6259 caller = state->frame[state->curframe];
69c087ba
YS
6260 if (callee->in_callback_fn) {
6261 /* enforce R0 return value range [0, 1]. */
6262 struct tnum range = tnum_range(0, 1);
6263
6264 if (r0->type != SCALAR_VALUE) {
6265 verbose(env, "R0 not a scalar value\n");
6266 return -EACCES;
6267 }
6268 if (!tnum_in(range, r0->var_off)) {
6269 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6270 return -EINVAL;
6271 }
6272 } else {
6273 /* return to the caller whatever r0 had in the callee */
6274 caller->regs[BPF_REG_0] = *r0;
6275 }
f4d7e40a 6276
fd978bf7 6277 /* Transfer references to the caller */
c69431aa 6278 err = copy_reference_state(caller, callee);
fd978bf7
JS
6279 if (err)
6280 return err;
6281
f4d7e40a 6282 *insn_idx = callee->callsite + 1;
06ee7115 6283 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6284 verbose(env, "returning from callee:\n");
0f55f9ed 6285 print_verifier_state(env, callee, true);
f4d7e40a 6286 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 6287 print_verifier_state(env, caller, true);
f4d7e40a
AS
6288 }
6289 /* clear everything in the callee */
6290 free_func_state(callee);
6291 state->frame[state->curframe + 1] = NULL;
6292 return 0;
6293}
6294
849fa506
YS
6295static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6296 int func_id,
6297 struct bpf_call_arg_meta *meta)
6298{
6299 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6300
6301 if (ret_type != RET_INTEGER ||
6302 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6303 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6304 func_id != BPF_FUNC_probe_read_str &&
6305 func_id != BPF_FUNC_probe_read_kernel_str &&
6306 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6307 return;
6308
10060503 6309 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6310 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6311 ret_reg->smin_value = -MAX_ERRNO;
6312 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
6313 __reg_deduce_bounds(ret_reg);
6314 __reg_bound_offset(ret_reg);
10060503 6315 __update_reg_bounds(ret_reg);
849fa506
YS
6316}
6317
c93552c4
DB
6318static int
6319record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6320 int func_id, int insn_idx)
6321{
6322 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6323 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6324
6325 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
6326 func_id != BPF_FUNC_map_lookup_elem &&
6327 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
6328 func_id != BPF_FUNC_map_delete_elem &&
6329 func_id != BPF_FUNC_map_push_elem &&
6330 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 6331 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
6332 func_id != BPF_FUNC_for_each_map_elem &&
6333 func_id != BPF_FUNC_redirect_map)
c93552c4 6334 return 0;
09772d92 6335
591fe988 6336 if (map == NULL) {
c93552c4
DB
6337 verbose(env, "kernel subsystem misconfigured verifier\n");
6338 return -EINVAL;
6339 }
6340
591fe988
DB
6341 /* In case of read-only, some additional restrictions
6342 * need to be applied in order to prevent altering the
6343 * state of the map from program side.
6344 */
6345 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6346 (func_id == BPF_FUNC_map_delete_elem ||
6347 func_id == BPF_FUNC_map_update_elem ||
6348 func_id == BPF_FUNC_map_push_elem ||
6349 func_id == BPF_FUNC_map_pop_elem)) {
6350 verbose(env, "write into map forbidden\n");
6351 return -EACCES;
6352 }
6353
d2e4c1e6 6354 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 6355 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 6356 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 6357 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 6358 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 6359 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
6360 return 0;
6361}
6362
d2e4c1e6
DB
6363static int
6364record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6365 int func_id, int insn_idx)
6366{
6367 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6368 struct bpf_reg_state *regs = cur_regs(env), *reg;
6369 struct bpf_map *map = meta->map_ptr;
6370 struct tnum range;
6371 u64 val;
cc52d914 6372 int err;
d2e4c1e6
DB
6373
6374 if (func_id != BPF_FUNC_tail_call)
6375 return 0;
6376 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6377 verbose(env, "kernel subsystem misconfigured verifier\n");
6378 return -EINVAL;
6379 }
6380
6381 range = tnum_range(0, map->max_entries - 1);
6382 reg = &regs[BPF_REG_3];
6383
6384 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6385 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6386 return 0;
6387 }
6388
cc52d914
DB
6389 err = mark_chain_precision(env, BPF_REG_3);
6390 if (err)
6391 return err;
6392
d2e4c1e6
DB
6393 val = reg->var_off.value;
6394 if (bpf_map_key_unseen(aux))
6395 bpf_map_key_store(aux, val);
6396 else if (!bpf_map_key_poisoned(aux) &&
6397 bpf_map_key_immediate(aux) != val)
6398 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6399 return 0;
6400}
6401
fd978bf7
JS
6402static int check_reference_leak(struct bpf_verifier_env *env)
6403{
6404 struct bpf_func_state *state = cur_func(env);
6405 int i;
6406
6407 for (i = 0; i < state->acquired_refs; i++) {
6408 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6409 state->refs[i].id, state->refs[i].insn_idx);
6410 }
6411 return state->acquired_refs ? -EINVAL : 0;
6412}
6413
7b15523a
FR
6414static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6415 struct bpf_reg_state *regs)
6416{
6417 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6418 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6419 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6420 int err, fmt_map_off, num_args;
6421 u64 fmt_addr;
6422 char *fmt;
6423
6424 /* data must be an array of u64 */
6425 if (data_len_reg->var_off.value % 8)
6426 return -EINVAL;
6427 num_args = data_len_reg->var_off.value / 8;
6428
6429 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6430 * and map_direct_value_addr is set.
6431 */
6432 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6433 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6434 fmt_map_off);
8e8ee109
FR
6435 if (err) {
6436 verbose(env, "verifier bug\n");
6437 return -EFAULT;
6438 }
7b15523a
FR
6439 fmt = (char *)(long)fmt_addr + fmt_map_off;
6440
6441 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6442 * can focus on validating the format specifiers.
6443 */
48cac3f4 6444 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
6445 if (err < 0)
6446 verbose(env, "Invalid format string\n");
6447
6448 return err;
6449}
6450
9b99edca
JO
6451static int check_get_func_ip(struct bpf_verifier_env *env)
6452{
9b99edca
JO
6453 enum bpf_prog_type type = resolve_prog_type(env->prog);
6454 int func_id = BPF_FUNC_get_func_ip;
6455
6456 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 6457 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
6458 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6459 func_id_name(func_id), func_id);
6460 return -ENOTSUPP;
6461 }
6462 return 0;
9ffd9f3f
JO
6463 } else if (type == BPF_PROG_TYPE_KPROBE) {
6464 return 0;
9b99edca
JO
6465 }
6466
6467 verbose(env, "func %s#%d not supported for program type %d\n",
6468 func_id_name(func_id), func_id, type);
6469 return -ENOTSUPP;
6470}
6471
69c087ba
YS
6472static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6473 int *insn_idx_p)
17a52670 6474{
17a52670 6475 const struct bpf_func_proto *fn = NULL;
638f5b90 6476 struct bpf_reg_state *regs;
33ff9823 6477 struct bpf_call_arg_meta meta;
69c087ba 6478 int insn_idx = *insn_idx_p;
969bf05e 6479 bool changes_data;
69c087ba 6480 int i, err, func_id;
17a52670
AS
6481
6482 /* find function prototype */
69c087ba 6483 func_id = insn->imm;
17a52670 6484 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
6485 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6486 func_id);
17a52670
AS
6487 return -EINVAL;
6488 }
6489
00176a34 6490 if (env->ops->get_func_proto)
5e43f899 6491 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 6492 if (!fn) {
61bd5218
JK
6493 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6494 func_id);
17a52670
AS
6495 return -EINVAL;
6496 }
6497
6498 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 6499 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 6500 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
6501 return -EINVAL;
6502 }
6503
eae2e83e
JO
6504 if (fn->allowed && !fn->allowed(env->prog)) {
6505 verbose(env, "helper call is not allowed in probe\n");
6506 return -EINVAL;
6507 }
6508
04514d13 6509 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 6510 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
6511 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6512 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6513 func_id_name(func_id), func_id);
6514 return -EINVAL;
6515 }
969bf05e 6516
33ff9823 6517 memset(&meta, 0, sizeof(meta));
36bbef52 6518 meta.pkt_access = fn->pkt_access;
33ff9823 6519
1b986589 6520 err = check_func_proto(fn, func_id);
435faee1 6521 if (err) {
61bd5218 6522 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6523 func_id_name(func_id), func_id);
435faee1
DB
6524 return err;
6525 }
6526
d83525ca 6527 meta.func_id = func_id;
17a52670 6528 /* check args */
523a4cf4 6529 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6530 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6531 if (err)
6532 return err;
6533 }
17a52670 6534
c93552c4
DB
6535 err = record_func_map(env, &meta, func_id, insn_idx);
6536 if (err)
6537 return err;
6538
d2e4c1e6
DB
6539 err = record_func_key(env, &meta, func_id, insn_idx);
6540 if (err)
6541 return err;
6542
435faee1
DB
6543 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6544 * is inferred from register state.
6545 */
6546 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6547 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6548 BPF_WRITE, -1, false);
435faee1
DB
6549 if (err)
6550 return err;
6551 }
6552
e6f2dd0f 6553 if (is_release_function(func_id)) {
1b986589 6554 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6555 if (err) {
6556 verbose(env, "func %s#%d reference has not been acquired before\n",
6557 func_id_name(func_id), func_id);
fd978bf7 6558 return err;
46f8bc92 6559 }
fd978bf7
JS
6560 }
6561
638f5b90 6562 regs = cur_regs(env);
cd339431 6563
e6f2dd0f
JK
6564 switch (func_id) {
6565 case BPF_FUNC_tail_call:
6566 err = check_reference_leak(env);
6567 if (err) {
6568 verbose(env, "tail_call would lead to reference leak\n");
6569 return err;
6570 }
6571 break;
6572 case BPF_FUNC_get_local_storage:
6573 /* check that flags argument in get_local_storage(map, flags) is 0,
6574 * this is required because get_local_storage() can't return an error.
6575 */
6576 if (!register_is_null(&regs[BPF_REG_2])) {
6577 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6578 return -EINVAL;
6579 }
6580 break;
6581 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
6582 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6583 set_map_elem_callback_state);
e6f2dd0f
JK
6584 break;
6585 case BPF_FUNC_timer_set_callback:
b00628b1
AS
6586 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6587 set_timer_callback_state);
e6f2dd0f
JK
6588 break;
6589 case BPF_FUNC_find_vma:
7c7e3d31
SL
6590 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6591 set_find_vma_callback_state);
e6f2dd0f
JK
6592 break;
6593 case BPF_FUNC_snprintf:
7b15523a 6594 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
6595 break;
6596 case BPF_FUNC_loop:
6597 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6598 set_loop_callback_state);
6599 break;
7b15523a
FR
6600 }
6601
e6f2dd0f
JK
6602 if (err)
6603 return err;
6604
17a52670 6605 /* reset caller saved regs */
dc503a8a 6606 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6607 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6608 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6609 }
17a52670 6610
5327ed3d
JW
6611 /* helper call returns 64-bit value. */
6612 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6613
dc503a8a 6614 /* update return register (already marked as written above) */
17a52670 6615 if (fn->ret_type == RET_INTEGER) {
f1174f77 6616 /* sets type to SCALAR_VALUE */
61bd5218 6617 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6618 } else if (fn->ret_type == RET_VOID) {
6619 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6620 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6621 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6622 /* There is no offset yet applied, variable or fixed */
61bd5218 6623 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6624 /* remember map_ptr, so that check_map_access()
6625 * can check 'value_size' boundary of memory access
6626 * to map element returned from bpf_map_lookup_elem()
6627 */
33ff9823 6628 if (meta.map_ptr == NULL) {
61bd5218
JK
6629 verbose(env,
6630 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6631 return -EINVAL;
6632 }
33ff9823 6633 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 6634 regs[BPF_REG_0].map_uid = meta.map_uid;
4d31f301
DB
6635 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6636 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6637 if (map_value_has_spin_lock(meta.map_ptr))
6638 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6639 } else {
6640 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6641 }
c64b7983
JS
6642 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6643 mark_reg_known_zero(env, regs, BPF_REG_0);
6644 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6645 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6646 mark_reg_known_zero(env, regs, BPF_REG_0);
6647 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6648 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6649 mark_reg_known_zero(env, regs, BPF_REG_0);
6650 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6651 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6652 mark_reg_known_zero(env, regs, BPF_REG_0);
6653 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6654 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6655 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6656 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6657 const struct btf_type *t;
6658
6659 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6660 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6661 if (!btf_type_is_struct(t)) {
6662 u32 tsize;
6663 const struct btf_type *ret;
6664 const char *tname;
6665
6666 /* resolve the type size of ksym. */
22dc4a0f 6667 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6668 if (IS_ERR(ret)) {
22dc4a0f 6669 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6670 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6671 tname, PTR_ERR(ret));
6672 return -EINVAL;
6673 }
63d9b80d
HL
6674 regs[BPF_REG_0].type =
6675 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6676 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6677 regs[BPF_REG_0].mem_size = tsize;
6678 } else {
63d9b80d
HL
6679 regs[BPF_REG_0].type =
6680 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6681 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6682 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6683 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6684 }
3ca1032a
KS
6685 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6686 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6687 int ret_btf_id;
6688
6689 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6690 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6691 PTR_TO_BTF_ID :
6692 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6693 ret_btf_id = *fn->ret_btf_id;
6694 if (ret_btf_id == 0) {
6695 verbose(env, "invalid return type %d of func %s#%d\n",
6696 fn->ret_type, func_id_name(func_id), func_id);
6697 return -EINVAL;
6698 }
22dc4a0f
AN
6699 /* current BPF helper definitions are only coming from
6700 * built-in code with type IDs from vmlinux BTF
6701 */
6702 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6703 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6704 } else {
61bd5218 6705 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6706 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6707 return -EINVAL;
6708 }
04fd61ab 6709
93c230e3
MKL
6710 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6711 regs[BPF_REG_0].id = ++env->id_gen;
6712
0f3adc28 6713 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6714 /* For release_reference() */
6715 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6716 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6717 int id = acquire_reference_state(env, insn_idx);
6718
6719 if (id < 0)
6720 return id;
6721 /* For mark_ptr_or_null_reg() */
6722 regs[BPF_REG_0].id = id;
6723 /* For release_reference() */
6724 regs[BPF_REG_0].ref_obj_id = id;
6725 }
1b986589 6726
849fa506
YS
6727 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6728
61bd5218 6729 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6730 if (err)
6731 return err;
04fd61ab 6732
fa28dcb8
SL
6733 if ((func_id == BPF_FUNC_get_stack ||
6734 func_id == BPF_FUNC_get_task_stack) &&
6735 !env->prog->has_callchain_buf) {
c195651e
YS
6736 const char *err_str;
6737
6738#ifdef CONFIG_PERF_EVENTS
6739 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6740 err_str = "cannot get callchain buffer for func %s#%d\n";
6741#else
6742 err = -ENOTSUPP;
6743 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6744#endif
6745 if (err) {
6746 verbose(env, err_str, func_id_name(func_id), func_id);
6747 return err;
6748 }
6749
6750 env->prog->has_callchain_buf = true;
6751 }
6752
5d99cb2c
SL
6753 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6754 env->prog->call_get_stack = true;
6755
9b99edca
JO
6756 if (func_id == BPF_FUNC_get_func_ip) {
6757 if (check_get_func_ip(env))
6758 return -ENOTSUPP;
6759 env->prog->call_get_func_ip = true;
6760 }
6761
969bf05e
AS
6762 if (changes_data)
6763 clear_all_pkt_pointers(env);
6764 return 0;
6765}
6766
e6ac2450
MKL
6767/* mark_btf_func_reg_size() is used when the reg size is determined by
6768 * the BTF func_proto's return value size and argument.
6769 */
6770static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6771 size_t reg_size)
6772{
6773 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6774
6775 if (regno == BPF_REG_0) {
6776 /* Function return value */
6777 reg->live |= REG_LIVE_WRITTEN;
6778 reg->subreg_def = reg_size == sizeof(u64) ?
6779 DEF_NOT_SUBREG : env->insn_idx + 1;
6780 } else {
6781 /* Function argument */
6782 if (reg_size == sizeof(u64)) {
6783 mark_insn_zext(env, reg);
6784 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6785 } else {
6786 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6787 }
6788 }
6789}
6790
6791static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6792{
6793 const struct btf_type *t, *func, *func_proto, *ptr_type;
6794 struct bpf_reg_state *regs = cur_regs(env);
6795 const char *func_name, *ptr_type_name;
6796 u32 i, nargs, func_id, ptr_type_id;
2357672c 6797 struct module *btf_mod = NULL;
e6ac2450 6798 const struct btf_param *args;
2357672c 6799 struct btf *desc_btf;
e6ac2450
MKL
6800 int err;
6801
a5d82727
KKD
6802 /* skip for now, but return error when we find this in fixup_kfunc_call */
6803 if (!insn->imm)
6804 return 0;
6805
2357672c
KKD
6806 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6807 if (IS_ERR(desc_btf))
6808 return PTR_ERR(desc_btf);
6809
e6ac2450 6810 func_id = insn->imm;
2357672c
KKD
6811 func = btf_type_by_id(desc_btf, func_id);
6812 func_name = btf_name_by_offset(desc_btf, func->name_off);
6813 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
6814
6815 if (!env->ops->check_kfunc_call ||
2357672c 6816 !env->ops->check_kfunc_call(func_id, btf_mod)) {
e6ac2450
MKL
6817 verbose(env, "calling kernel function %s is not allowed\n",
6818 func_name);
6819 return -EACCES;
6820 }
6821
6822 /* Check the arguments */
2357672c 6823 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
e6ac2450
MKL
6824 if (err)
6825 return err;
6826
6827 for (i = 0; i < CALLER_SAVED_REGS; i++)
6828 mark_reg_not_init(env, regs, caller_saved[i]);
6829
6830 /* Check return type */
2357672c 6831 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
e6ac2450
MKL
6832 if (btf_type_is_scalar(t)) {
6833 mark_reg_unknown(env, regs, BPF_REG_0);
6834 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6835 } else if (btf_type_is_ptr(t)) {
2357672c 6836 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
6837 &ptr_type_id);
6838 if (!btf_type_is_struct(ptr_type)) {
2357672c 6839 ptr_type_name = btf_name_by_offset(desc_btf,
e6ac2450
MKL
6840 ptr_type->name_off);
6841 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6842 func_name, btf_type_str(ptr_type),
6843 ptr_type_name);
6844 return -EINVAL;
6845 }
6846 mark_reg_known_zero(env, regs, BPF_REG_0);
2357672c 6847 regs[BPF_REG_0].btf = desc_btf;
e6ac2450
MKL
6848 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6849 regs[BPF_REG_0].btf_id = ptr_type_id;
6850 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6851 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6852
6853 nargs = btf_type_vlen(func_proto);
6854 args = (const struct btf_param *)(func_proto + 1);
6855 for (i = 0; i < nargs; i++) {
6856 u32 regno = i + 1;
6857
2357672c 6858 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
6859 if (btf_type_is_ptr(t))
6860 mark_btf_func_reg_size(env, regno, sizeof(void *));
6861 else
6862 /* scalar. ensured by btf_check_kfunc_arg_match() */
6863 mark_btf_func_reg_size(env, regno, t->size);
6864 }
6865
6866 return 0;
6867}
6868
b03c9f9f
EC
6869static bool signed_add_overflows(s64 a, s64 b)
6870{
6871 /* Do the add in u64, where overflow is well-defined */
6872 s64 res = (s64)((u64)a + (u64)b);
6873
6874 if (b < 0)
6875 return res > a;
6876 return res < a;
6877}
6878
bc895e8b 6879static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6880{
6881 /* Do the add in u32, where overflow is well-defined */
6882 s32 res = (s32)((u32)a + (u32)b);
6883
6884 if (b < 0)
6885 return res > a;
6886 return res < a;
6887}
6888
bc895e8b 6889static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6890{
6891 /* Do the sub in u64, where overflow is well-defined */
6892 s64 res = (s64)((u64)a - (u64)b);
6893
6894 if (b < 0)
6895 return res < a;
6896 return res > a;
969bf05e
AS
6897}
6898
3f50f132
JF
6899static bool signed_sub32_overflows(s32 a, s32 b)
6900{
bc895e8b 6901 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6902 s32 res = (s32)((u32)a - (u32)b);
6903
6904 if (b < 0)
6905 return res < a;
6906 return res > a;
6907}
6908
bb7f0f98
AS
6909static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6910 const struct bpf_reg_state *reg,
6911 enum bpf_reg_type type)
6912{
6913 bool known = tnum_is_const(reg->var_off);
6914 s64 val = reg->var_off.value;
6915 s64 smin = reg->smin_value;
6916
6917 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6918 verbose(env, "math between %s pointer and %lld is not allowed\n",
6919 reg_type_str[type], val);
6920 return false;
6921 }
6922
6923 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6924 verbose(env, "%s pointer offset %d is not allowed\n",
6925 reg_type_str[type], reg->off);
6926 return false;
6927 }
6928
6929 if (smin == S64_MIN) {
6930 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6931 reg_type_str[type]);
6932 return false;
6933 }
6934
6935 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6936 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6937 smin, reg_type_str[type]);
6938 return false;
6939 }
6940
6941 return true;
6942}
6943
979d63d5
DB
6944static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6945{
6946 return &env->insn_aux_data[env->insn_idx];
6947}
6948
a6aaece0
DB
6949enum {
6950 REASON_BOUNDS = -1,
6951 REASON_TYPE = -2,
6952 REASON_PATHS = -3,
6953 REASON_LIMIT = -4,
6954 REASON_STACK = -5,
6955};
6956
979d63d5 6957static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 6958 u32 *alu_limit, bool mask_to_left)
979d63d5 6959{
7fedb63a 6960 u32 max = 0, ptr_limit = 0;
979d63d5
DB
6961
6962 switch (ptr_reg->type) {
6963 case PTR_TO_STACK:
1b1597e6 6964 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
6965 * left direction, see BPF_REG_FP. Also, unknown scalar
6966 * offset where we would need to deal with min/max bounds is
6967 * currently prohibited for unprivileged.
1b1597e6
PK
6968 */
6969 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 6970 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 6971 break;
979d63d5 6972 case PTR_TO_MAP_VALUE:
1b1597e6 6973 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
6974 ptr_limit = (mask_to_left ?
6975 ptr_reg->smin_value :
6976 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 6977 break;
979d63d5 6978 default:
a6aaece0 6979 return REASON_TYPE;
979d63d5 6980 }
b658bbb8
DB
6981
6982 if (ptr_limit >= max)
a6aaece0 6983 return REASON_LIMIT;
b658bbb8
DB
6984 *alu_limit = ptr_limit;
6985 return 0;
979d63d5
DB
6986}
6987
d3bd7413
DB
6988static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6989 const struct bpf_insn *insn)
6990{
2c78ee89 6991 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6992}
6993
6994static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6995 u32 alu_state, u32 alu_limit)
6996{
6997 /* If we arrived here from different branches with different
6998 * state or limits to sanitize, then this won't work.
6999 */
7000 if (aux->alu_state &&
7001 (aux->alu_state != alu_state ||
7002 aux->alu_limit != alu_limit))
a6aaece0 7003 return REASON_PATHS;
d3bd7413 7004
e6ac5933 7005 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
7006 aux->alu_state = alu_state;
7007 aux->alu_limit = alu_limit;
7008 return 0;
7009}
7010
7011static int sanitize_val_alu(struct bpf_verifier_env *env,
7012 struct bpf_insn *insn)
7013{
7014 struct bpf_insn_aux_data *aux = cur_aux(env);
7015
7016 if (can_skip_alu_sanitation(env, insn))
7017 return 0;
7018
7019 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7020}
7021
f5288193
DB
7022static bool sanitize_needed(u8 opcode)
7023{
7024 return opcode == BPF_ADD || opcode == BPF_SUB;
7025}
7026
3d0220f6
DB
7027struct bpf_sanitize_info {
7028 struct bpf_insn_aux_data aux;
bb01a1bb 7029 bool mask_to_left;
3d0220f6
DB
7030};
7031
9183671a
DB
7032static struct bpf_verifier_state *
7033sanitize_speculative_path(struct bpf_verifier_env *env,
7034 const struct bpf_insn *insn,
7035 u32 next_idx, u32 curr_idx)
7036{
7037 struct bpf_verifier_state *branch;
7038 struct bpf_reg_state *regs;
7039
7040 branch = push_stack(env, next_idx, curr_idx, true);
7041 if (branch && insn) {
7042 regs = branch->frame[branch->curframe]->regs;
7043 if (BPF_SRC(insn->code) == BPF_K) {
7044 mark_reg_unknown(env, regs, insn->dst_reg);
7045 } else if (BPF_SRC(insn->code) == BPF_X) {
7046 mark_reg_unknown(env, regs, insn->dst_reg);
7047 mark_reg_unknown(env, regs, insn->src_reg);
7048 }
7049 }
7050 return branch;
7051}
7052
979d63d5
DB
7053static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7054 struct bpf_insn *insn,
7055 const struct bpf_reg_state *ptr_reg,
6f55b2f2 7056 const struct bpf_reg_state *off_reg,
979d63d5 7057 struct bpf_reg_state *dst_reg,
3d0220f6 7058 struct bpf_sanitize_info *info,
7fedb63a 7059 const bool commit_window)
979d63d5 7060{
3d0220f6 7061 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 7062 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 7063 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 7064 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
7065 bool ptr_is_dst_reg = ptr_reg == dst_reg;
7066 u8 opcode = BPF_OP(insn->code);
7067 u32 alu_state, alu_limit;
7068 struct bpf_reg_state tmp;
7069 bool ret;
f232326f 7070 int err;
979d63d5 7071
d3bd7413 7072 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
7073 return 0;
7074
7075 /* We already marked aux for masking from non-speculative
7076 * paths, thus we got here in the first place. We only care
7077 * to explore bad access from here.
7078 */
7079 if (vstate->speculative)
7080 goto do_sim;
7081
bb01a1bb
DB
7082 if (!commit_window) {
7083 if (!tnum_is_const(off_reg->var_off) &&
7084 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7085 return REASON_BOUNDS;
7086
7087 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
7088 (opcode == BPF_SUB && !off_is_neg);
7089 }
7090
7091 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
7092 if (err < 0)
7093 return err;
7094
7fedb63a
DB
7095 if (commit_window) {
7096 /* In commit phase we narrow the masking window based on
7097 * the observed pointer move after the simulated operation.
7098 */
3d0220f6
DB
7099 alu_state = info->aux.alu_state;
7100 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
7101 } else {
7102 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 7103 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
7104 alu_state |= ptr_is_dst_reg ?
7105 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
7106
7107 /* Limit pruning on unknown scalars to enable deep search for
7108 * potential masking differences from other program paths.
7109 */
7110 if (!off_is_imm)
7111 env->explore_alu_limits = true;
7fedb63a
DB
7112 }
7113
f232326f
PK
7114 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7115 if (err < 0)
7116 return err;
979d63d5 7117do_sim:
7fedb63a
DB
7118 /* If we're in commit phase, we're done here given we already
7119 * pushed the truncated dst_reg into the speculative verification
7120 * stack.
a7036191
DB
7121 *
7122 * Also, when register is a known constant, we rewrite register-based
7123 * operation to immediate-based, and thus do not need masking (and as
7124 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7125 */
a7036191 7126 if (commit_window || off_is_imm)
7fedb63a
DB
7127 return 0;
7128
979d63d5
DB
7129 /* Simulate and find potential out-of-bounds access under
7130 * speculative execution from truncation as a result of
7131 * masking when off was not within expected range. If off
7132 * sits in dst, then we temporarily need to move ptr there
7133 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7134 * for cases where we use K-based arithmetic in one direction
7135 * and truncated reg-based in the other in order to explore
7136 * bad access.
7137 */
7138 if (!ptr_is_dst_reg) {
7139 tmp = *dst_reg;
7140 *dst_reg = *ptr_reg;
7141 }
9183671a
DB
7142 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7143 env->insn_idx);
0803278b 7144 if (!ptr_is_dst_reg && ret)
979d63d5 7145 *dst_reg = tmp;
a6aaece0
DB
7146 return !ret ? REASON_STACK : 0;
7147}
7148
fe9a5ca7
DB
7149static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7150{
7151 struct bpf_verifier_state *vstate = env->cur_state;
7152
7153 /* If we simulate paths under speculation, we don't update the
7154 * insn as 'seen' such that when we verify unreachable paths in
7155 * the non-speculative domain, sanitize_dead_code() can still
7156 * rewrite/sanitize them.
7157 */
7158 if (!vstate->speculative)
7159 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7160}
7161
a6aaece0
DB
7162static int sanitize_err(struct bpf_verifier_env *env,
7163 const struct bpf_insn *insn, int reason,
7164 const struct bpf_reg_state *off_reg,
7165 const struct bpf_reg_state *dst_reg)
7166{
7167 static const char *err = "pointer arithmetic with it prohibited for !root";
7168 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7169 u32 dst = insn->dst_reg, src = insn->src_reg;
7170
7171 switch (reason) {
7172 case REASON_BOUNDS:
7173 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7174 off_reg == dst_reg ? dst : src, err);
7175 break;
7176 case REASON_TYPE:
7177 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7178 off_reg == dst_reg ? src : dst, err);
7179 break;
7180 case REASON_PATHS:
7181 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7182 dst, op, err);
7183 break;
7184 case REASON_LIMIT:
7185 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7186 dst, op, err);
7187 break;
7188 case REASON_STACK:
7189 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7190 dst, err);
7191 break;
7192 default:
7193 verbose(env, "verifier internal error: unknown reason (%d)\n",
7194 reason);
7195 break;
7196 }
7197
7198 return -EACCES;
979d63d5
DB
7199}
7200
01f810ac
AM
7201/* check that stack access falls within stack limits and that 'reg' doesn't
7202 * have a variable offset.
7203 *
7204 * Variable offset is prohibited for unprivileged mode for simplicity since it
7205 * requires corresponding support in Spectre masking for stack ALU. See also
7206 * retrieve_ptr_limit().
7207 *
7208 *
7209 * 'off' includes 'reg->off'.
7210 */
7211static int check_stack_access_for_ptr_arithmetic(
7212 struct bpf_verifier_env *env,
7213 int regno,
7214 const struct bpf_reg_state *reg,
7215 int off)
7216{
7217 if (!tnum_is_const(reg->var_off)) {
7218 char tn_buf[48];
7219
7220 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7221 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7222 regno, tn_buf, off);
7223 return -EACCES;
7224 }
7225
7226 if (off >= 0 || off < -MAX_BPF_STACK) {
7227 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7228 "prohibited for !root; off=%d\n", regno, off);
7229 return -EACCES;
7230 }
7231
7232 return 0;
7233}
7234
073815b7
DB
7235static int sanitize_check_bounds(struct bpf_verifier_env *env,
7236 const struct bpf_insn *insn,
7237 const struct bpf_reg_state *dst_reg)
7238{
7239 u32 dst = insn->dst_reg;
7240
7241 /* For unprivileged we require that resulting offset must be in bounds
7242 * in order to be able to sanitize access later on.
7243 */
7244 if (env->bypass_spec_v1)
7245 return 0;
7246
7247 switch (dst_reg->type) {
7248 case PTR_TO_STACK:
7249 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7250 dst_reg->off + dst_reg->var_off.value))
7251 return -EACCES;
7252 break;
7253 case PTR_TO_MAP_VALUE:
7254 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7255 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7256 "prohibited for !root\n", dst);
7257 return -EACCES;
7258 }
7259 break;
7260 default:
7261 break;
7262 }
7263
7264 return 0;
7265}
01f810ac 7266
f1174f77 7267/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
7268 * Caller should also handle BPF_MOV case separately.
7269 * If we return -EACCES, caller may want to try again treating pointer as a
7270 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7271 */
7272static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7273 struct bpf_insn *insn,
7274 const struct bpf_reg_state *ptr_reg,
7275 const struct bpf_reg_state *off_reg)
969bf05e 7276{
f4d7e40a
AS
7277 struct bpf_verifier_state *vstate = env->cur_state;
7278 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7279 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 7280 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
7281 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7282 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7283 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7284 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 7285 struct bpf_sanitize_info info = {};
969bf05e 7286 u8 opcode = BPF_OP(insn->code);
24c109bb 7287 u32 dst = insn->dst_reg;
979d63d5 7288 int ret;
969bf05e 7289
f1174f77 7290 dst_reg = &regs[dst];
969bf05e 7291
6f16101e
DB
7292 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7293 smin_val > smax_val || umin_val > umax_val) {
7294 /* Taint dst register if offset had invalid bounds derived from
7295 * e.g. dead branches.
7296 */
f54c7898 7297 __mark_reg_unknown(env, dst_reg);
6f16101e 7298 return 0;
f1174f77
EC
7299 }
7300
7301 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7302 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
7303 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7304 __mark_reg_unknown(env, dst_reg);
7305 return 0;
7306 }
7307
82abbf8d
AS
7308 verbose(env,
7309 "R%d 32-bit pointer arithmetic prohibited\n",
7310 dst);
f1174f77 7311 return -EACCES;
969bf05e
AS
7312 }
7313
aad2eeaf
JS
7314 switch (ptr_reg->type) {
7315 case PTR_TO_MAP_VALUE_OR_NULL:
7316 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7317 dst, reg_type_str[ptr_reg->type]);
f1174f77 7318 return -EACCES;
aad2eeaf 7319 case CONST_PTR_TO_MAP:
7c696732
YS
7320 /* smin_val represents the known value */
7321 if (known && smin_val == 0 && opcode == BPF_ADD)
7322 break;
8731745e 7323 fallthrough;
aad2eeaf 7324 case PTR_TO_PACKET_END:
c64b7983
JS
7325 case PTR_TO_SOCKET:
7326 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7327 case PTR_TO_SOCK_COMMON:
7328 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7329 case PTR_TO_TCP_SOCK:
7330 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7331 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
7332 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7333 dst, reg_type_str[ptr_reg->type]);
f1174f77 7334 return -EACCES;
aad2eeaf
JS
7335 default:
7336 break;
f1174f77
EC
7337 }
7338
7339 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7340 * The id may be overwritten later if we create a new variable offset.
969bf05e 7341 */
f1174f77
EC
7342 dst_reg->type = ptr_reg->type;
7343 dst_reg->id = ptr_reg->id;
969bf05e 7344
bb7f0f98
AS
7345 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7346 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7347 return -EINVAL;
7348
3f50f132
JF
7349 /* pointer types do not carry 32-bit bounds at the moment. */
7350 __mark_reg32_unbounded(dst_reg);
7351
7fedb63a
DB
7352 if (sanitize_needed(opcode)) {
7353 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 7354 &info, false);
a6aaece0
DB
7355 if (ret < 0)
7356 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 7357 }
a6aaece0 7358
f1174f77
EC
7359 switch (opcode) {
7360 case BPF_ADD:
7361 /* We can take a fixed offset as long as it doesn't overflow
7362 * the s32 'off' field
969bf05e 7363 */
b03c9f9f
EC
7364 if (known && (ptr_reg->off + smin_val ==
7365 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 7366 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
7367 dst_reg->smin_value = smin_ptr;
7368 dst_reg->smax_value = smax_ptr;
7369 dst_reg->umin_value = umin_ptr;
7370 dst_reg->umax_value = umax_ptr;
f1174f77 7371 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 7372 dst_reg->off = ptr_reg->off + smin_val;
0962590e 7373 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7374 break;
7375 }
f1174f77
EC
7376 /* A new variable offset is created. Note that off_reg->off
7377 * == 0, since it's a scalar.
7378 * dst_reg gets the pointer type and since some positive
7379 * integer value was added to the pointer, give it a new 'id'
7380 * if it's a PTR_TO_PACKET.
7381 * this creates a new 'base' pointer, off_reg (variable) gets
7382 * added into the variable offset, and we copy the fixed offset
7383 * from ptr_reg.
969bf05e 7384 */
b03c9f9f
EC
7385 if (signed_add_overflows(smin_ptr, smin_val) ||
7386 signed_add_overflows(smax_ptr, smax_val)) {
7387 dst_reg->smin_value = S64_MIN;
7388 dst_reg->smax_value = S64_MAX;
7389 } else {
7390 dst_reg->smin_value = smin_ptr + smin_val;
7391 dst_reg->smax_value = smax_ptr + smax_val;
7392 }
7393 if (umin_ptr + umin_val < umin_ptr ||
7394 umax_ptr + umax_val < umax_ptr) {
7395 dst_reg->umin_value = 0;
7396 dst_reg->umax_value = U64_MAX;
7397 } else {
7398 dst_reg->umin_value = umin_ptr + umin_val;
7399 dst_reg->umax_value = umax_ptr + umax_val;
7400 }
f1174f77
EC
7401 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7402 dst_reg->off = ptr_reg->off;
0962590e 7403 dst_reg->raw = ptr_reg->raw;
de8f3a83 7404 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7405 dst_reg->id = ++env->id_gen;
7406 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 7407 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
7408 }
7409 break;
7410 case BPF_SUB:
7411 if (dst_reg == off_reg) {
7412 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
7413 verbose(env, "R%d tried to subtract pointer from scalar\n",
7414 dst);
f1174f77
EC
7415 return -EACCES;
7416 }
7417 /* We don't allow subtraction from FP, because (according to
7418 * test_verifier.c test "invalid fp arithmetic", JITs might not
7419 * be able to deal with it.
969bf05e 7420 */
f1174f77 7421 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
7422 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7423 dst);
f1174f77
EC
7424 return -EACCES;
7425 }
b03c9f9f
EC
7426 if (known && (ptr_reg->off - smin_val ==
7427 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 7428 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
7429 dst_reg->smin_value = smin_ptr;
7430 dst_reg->smax_value = smax_ptr;
7431 dst_reg->umin_value = umin_ptr;
7432 dst_reg->umax_value = umax_ptr;
f1174f77
EC
7433 dst_reg->var_off = ptr_reg->var_off;
7434 dst_reg->id = ptr_reg->id;
b03c9f9f 7435 dst_reg->off = ptr_reg->off - smin_val;
0962590e 7436 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7437 break;
7438 }
f1174f77
EC
7439 /* A new variable offset is created. If the subtrahend is known
7440 * nonnegative, then any reg->range we had before is still good.
969bf05e 7441 */
b03c9f9f
EC
7442 if (signed_sub_overflows(smin_ptr, smax_val) ||
7443 signed_sub_overflows(smax_ptr, smin_val)) {
7444 /* Overflow possible, we know nothing */
7445 dst_reg->smin_value = S64_MIN;
7446 dst_reg->smax_value = S64_MAX;
7447 } else {
7448 dst_reg->smin_value = smin_ptr - smax_val;
7449 dst_reg->smax_value = smax_ptr - smin_val;
7450 }
7451 if (umin_ptr < umax_val) {
7452 /* Overflow possible, we know nothing */
7453 dst_reg->umin_value = 0;
7454 dst_reg->umax_value = U64_MAX;
7455 } else {
7456 /* Cannot overflow (as long as bounds are consistent) */
7457 dst_reg->umin_value = umin_ptr - umax_val;
7458 dst_reg->umax_value = umax_ptr - umin_val;
7459 }
f1174f77
EC
7460 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7461 dst_reg->off = ptr_reg->off;
0962590e 7462 dst_reg->raw = ptr_reg->raw;
de8f3a83 7463 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7464 dst_reg->id = ++env->id_gen;
7465 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 7466 if (smin_val < 0)
22dc4a0f 7467 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 7468 }
f1174f77
EC
7469 break;
7470 case BPF_AND:
7471 case BPF_OR:
7472 case BPF_XOR:
82abbf8d
AS
7473 /* bitwise ops on pointers are troublesome, prohibit. */
7474 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7475 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
7476 return -EACCES;
7477 default:
7478 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
7479 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7480 dst, bpf_alu_string[opcode >> 4]);
f1174f77 7481 return -EACCES;
43188702
JF
7482 }
7483
bb7f0f98
AS
7484 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7485 return -EINVAL;
7486
b03c9f9f
EC
7487 __update_reg_bounds(dst_reg);
7488 __reg_deduce_bounds(dst_reg);
7489 __reg_bound_offset(dst_reg);
0d6303db 7490
073815b7
DB
7491 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7492 return -EACCES;
7fedb63a
DB
7493 if (sanitize_needed(opcode)) {
7494 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 7495 &info, true);
7fedb63a
DB
7496 if (ret < 0)
7497 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
7498 }
7499
43188702
JF
7500 return 0;
7501}
7502
3f50f132
JF
7503static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7504 struct bpf_reg_state *src_reg)
7505{
7506 s32 smin_val = src_reg->s32_min_value;
7507 s32 smax_val = src_reg->s32_max_value;
7508 u32 umin_val = src_reg->u32_min_value;
7509 u32 umax_val = src_reg->u32_max_value;
7510
7511 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7512 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7513 dst_reg->s32_min_value = S32_MIN;
7514 dst_reg->s32_max_value = S32_MAX;
7515 } else {
7516 dst_reg->s32_min_value += smin_val;
7517 dst_reg->s32_max_value += smax_val;
7518 }
7519 if (dst_reg->u32_min_value + umin_val < umin_val ||
7520 dst_reg->u32_max_value + umax_val < umax_val) {
7521 dst_reg->u32_min_value = 0;
7522 dst_reg->u32_max_value = U32_MAX;
7523 } else {
7524 dst_reg->u32_min_value += umin_val;
7525 dst_reg->u32_max_value += umax_val;
7526 }
7527}
7528
07cd2631
JF
7529static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7530 struct bpf_reg_state *src_reg)
7531{
7532 s64 smin_val = src_reg->smin_value;
7533 s64 smax_val = src_reg->smax_value;
7534 u64 umin_val = src_reg->umin_value;
7535 u64 umax_val = src_reg->umax_value;
7536
7537 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7538 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7539 dst_reg->smin_value = S64_MIN;
7540 dst_reg->smax_value = S64_MAX;
7541 } else {
7542 dst_reg->smin_value += smin_val;
7543 dst_reg->smax_value += smax_val;
7544 }
7545 if (dst_reg->umin_value + umin_val < umin_val ||
7546 dst_reg->umax_value + umax_val < umax_val) {
7547 dst_reg->umin_value = 0;
7548 dst_reg->umax_value = U64_MAX;
7549 } else {
7550 dst_reg->umin_value += umin_val;
7551 dst_reg->umax_value += umax_val;
7552 }
3f50f132
JF
7553}
7554
7555static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7556 struct bpf_reg_state *src_reg)
7557{
7558 s32 smin_val = src_reg->s32_min_value;
7559 s32 smax_val = src_reg->s32_max_value;
7560 u32 umin_val = src_reg->u32_min_value;
7561 u32 umax_val = src_reg->u32_max_value;
7562
7563 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7564 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7565 /* Overflow possible, we know nothing */
7566 dst_reg->s32_min_value = S32_MIN;
7567 dst_reg->s32_max_value = S32_MAX;
7568 } else {
7569 dst_reg->s32_min_value -= smax_val;
7570 dst_reg->s32_max_value -= smin_val;
7571 }
7572 if (dst_reg->u32_min_value < umax_val) {
7573 /* Overflow possible, we know nothing */
7574 dst_reg->u32_min_value = 0;
7575 dst_reg->u32_max_value = U32_MAX;
7576 } else {
7577 /* Cannot overflow (as long as bounds are consistent) */
7578 dst_reg->u32_min_value -= umax_val;
7579 dst_reg->u32_max_value -= umin_val;
7580 }
07cd2631
JF
7581}
7582
7583static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7584 struct bpf_reg_state *src_reg)
7585{
7586 s64 smin_val = src_reg->smin_value;
7587 s64 smax_val = src_reg->smax_value;
7588 u64 umin_val = src_reg->umin_value;
7589 u64 umax_val = src_reg->umax_value;
7590
7591 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7592 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7593 /* Overflow possible, we know nothing */
7594 dst_reg->smin_value = S64_MIN;
7595 dst_reg->smax_value = S64_MAX;
7596 } else {
7597 dst_reg->smin_value -= smax_val;
7598 dst_reg->smax_value -= smin_val;
7599 }
7600 if (dst_reg->umin_value < umax_val) {
7601 /* Overflow possible, we know nothing */
7602 dst_reg->umin_value = 0;
7603 dst_reg->umax_value = U64_MAX;
7604 } else {
7605 /* Cannot overflow (as long as bounds are consistent) */
7606 dst_reg->umin_value -= umax_val;
7607 dst_reg->umax_value -= umin_val;
7608 }
3f50f132
JF
7609}
7610
7611static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7612 struct bpf_reg_state *src_reg)
7613{
7614 s32 smin_val = src_reg->s32_min_value;
7615 u32 umin_val = src_reg->u32_min_value;
7616 u32 umax_val = src_reg->u32_max_value;
7617
7618 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7619 /* Ain't nobody got time to multiply that sign */
7620 __mark_reg32_unbounded(dst_reg);
7621 return;
7622 }
7623 /* Both values are positive, so we can work with unsigned and
7624 * copy the result to signed (unless it exceeds S32_MAX).
7625 */
7626 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7627 /* Potential overflow, we know nothing */
7628 __mark_reg32_unbounded(dst_reg);
7629 return;
7630 }
7631 dst_reg->u32_min_value *= umin_val;
7632 dst_reg->u32_max_value *= umax_val;
7633 if (dst_reg->u32_max_value > S32_MAX) {
7634 /* Overflow possible, we know nothing */
7635 dst_reg->s32_min_value = S32_MIN;
7636 dst_reg->s32_max_value = S32_MAX;
7637 } else {
7638 dst_reg->s32_min_value = dst_reg->u32_min_value;
7639 dst_reg->s32_max_value = dst_reg->u32_max_value;
7640 }
07cd2631
JF
7641}
7642
7643static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7644 struct bpf_reg_state *src_reg)
7645{
7646 s64 smin_val = src_reg->smin_value;
7647 u64 umin_val = src_reg->umin_value;
7648 u64 umax_val = src_reg->umax_value;
7649
07cd2631
JF
7650 if (smin_val < 0 || dst_reg->smin_value < 0) {
7651 /* Ain't nobody got time to multiply that sign */
3f50f132 7652 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7653 return;
7654 }
7655 /* Both values are positive, so we can work with unsigned and
7656 * copy the result to signed (unless it exceeds S64_MAX).
7657 */
7658 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7659 /* Potential overflow, we know nothing */
3f50f132 7660 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7661 return;
7662 }
7663 dst_reg->umin_value *= umin_val;
7664 dst_reg->umax_value *= umax_val;
7665 if (dst_reg->umax_value > S64_MAX) {
7666 /* Overflow possible, we know nothing */
7667 dst_reg->smin_value = S64_MIN;
7668 dst_reg->smax_value = S64_MAX;
7669 } else {
7670 dst_reg->smin_value = dst_reg->umin_value;
7671 dst_reg->smax_value = dst_reg->umax_value;
7672 }
7673}
7674
3f50f132
JF
7675static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7676 struct bpf_reg_state *src_reg)
7677{
7678 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7679 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7680 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7681 s32 smin_val = src_reg->s32_min_value;
7682 u32 umax_val = src_reg->u32_max_value;
7683
049c4e13
DB
7684 if (src_known && dst_known) {
7685 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7686 return;
049c4e13 7687 }
3f50f132
JF
7688
7689 /* We get our minimum from the var_off, since that's inherently
7690 * bitwise. Our maximum is the minimum of the operands' maxima.
7691 */
7692 dst_reg->u32_min_value = var32_off.value;
7693 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7694 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7695 /* Lose signed bounds when ANDing negative numbers,
7696 * ain't nobody got time for that.
7697 */
7698 dst_reg->s32_min_value = S32_MIN;
7699 dst_reg->s32_max_value = S32_MAX;
7700 } else {
7701 /* ANDing two positives gives a positive, so safe to
7702 * cast result into s64.
7703 */
7704 dst_reg->s32_min_value = dst_reg->u32_min_value;
7705 dst_reg->s32_max_value = dst_reg->u32_max_value;
7706 }
3f50f132
JF
7707}
7708
07cd2631
JF
7709static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7710 struct bpf_reg_state *src_reg)
7711{
3f50f132
JF
7712 bool src_known = tnum_is_const(src_reg->var_off);
7713 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7714 s64 smin_val = src_reg->smin_value;
7715 u64 umax_val = src_reg->umax_value;
7716
3f50f132 7717 if (src_known && dst_known) {
4fbb38a3 7718 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7719 return;
7720 }
7721
07cd2631
JF
7722 /* We get our minimum from the var_off, since that's inherently
7723 * bitwise. Our maximum is the minimum of the operands' maxima.
7724 */
07cd2631
JF
7725 dst_reg->umin_value = dst_reg->var_off.value;
7726 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7727 if (dst_reg->smin_value < 0 || smin_val < 0) {
7728 /* Lose signed bounds when ANDing negative numbers,
7729 * ain't nobody got time for that.
7730 */
7731 dst_reg->smin_value = S64_MIN;
7732 dst_reg->smax_value = S64_MAX;
7733 } else {
7734 /* ANDing two positives gives a positive, so safe to
7735 * cast result into s64.
7736 */
7737 dst_reg->smin_value = dst_reg->umin_value;
7738 dst_reg->smax_value = dst_reg->umax_value;
7739 }
7740 /* We may learn something more from the var_off */
7741 __update_reg_bounds(dst_reg);
7742}
7743
3f50f132
JF
7744static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7745 struct bpf_reg_state *src_reg)
7746{
7747 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7748 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7749 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7750 s32 smin_val = src_reg->s32_min_value;
7751 u32 umin_val = src_reg->u32_min_value;
3f50f132 7752
049c4e13
DB
7753 if (src_known && dst_known) {
7754 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7755 return;
049c4e13 7756 }
3f50f132
JF
7757
7758 /* We get our maximum from the var_off, and our minimum is the
7759 * maximum of the operands' minima
7760 */
7761 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7762 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7763 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7764 /* Lose signed bounds when ORing negative numbers,
7765 * ain't nobody got time for that.
7766 */
7767 dst_reg->s32_min_value = S32_MIN;
7768 dst_reg->s32_max_value = S32_MAX;
7769 } else {
7770 /* ORing two positives gives a positive, so safe to
7771 * cast result into s64.
7772 */
5b9fbeb7
DB
7773 dst_reg->s32_min_value = dst_reg->u32_min_value;
7774 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7775 }
7776}
7777
07cd2631
JF
7778static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7779 struct bpf_reg_state *src_reg)
7780{
3f50f132
JF
7781 bool src_known = tnum_is_const(src_reg->var_off);
7782 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7783 s64 smin_val = src_reg->smin_value;
7784 u64 umin_val = src_reg->umin_value;
7785
3f50f132 7786 if (src_known && dst_known) {
4fbb38a3 7787 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7788 return;
7789 }
7790
07cd2631
JF
7791 /* We get our maximum from the var_off, and our minimum is the
7792 * maximum of the operands' minima
7793 */
07cd2631
JF
7794 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7795 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7796 if (dst_reg->smin_value < 0 || smin_val < 0) {
7797 /* Lose signed bounds when ORing negative numbers,
7798 * ain't nobody got time for that.
7799 */
7800 dst_reg->smin_value = S64_MIN;
7801 dst_reg->smax_value = S64_MAX;
7802 } else {
7803 /* ORing two positives gives a positive, so safe to
7804 * cast result into s64.
7805 */
7806 dst_reg->smin_value = dst_reg->umin_value;
7807 dst_reg->smax_value = dst_reg->umax_value;
7808 }
7809 /* We may learn something more from the var_off */
7810 __update_reg_bounds(dst_reg);
7811}
7812
2921c90d
YS
7813static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7814 struct bpf_reg_state *src_reg)
7815{
7816 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7817 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7818 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7819 s32 smin_val = src_reg->s32_min_value;
7820
049c4e13
DB
7821 if (src_known && dst_known) {
7822 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 7823 return;
049c4e13 7824 }
2921c90d
YS
7825
7826 /* We get both minimum and maximum from the var32_off. */
7827 dst_reg->u32_min_value = var32_off.value;
7828 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7829
7830 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7831 /* XORing two positive sign numbers gives a positive,
7832 * so safe to cast u32 result into s32.
7833 */
7834 dst_reg->s32_min_value = dst_reg->u32_min_value;
7835 dst_reg->s32_max_value = dst_reg->u32_max_value;
7836 } else {
7837 dst_reg->s32_min_value = S32_MIN;
7838 dst_reg->s32_max_value = S32_MAX;
7839 }
7840}
7841
7842static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7843 struct bpf_reg_state *src_reg)
7844{
7845 bool src_known = tnum_is_const(src_reg->var_off);
7846 bool dst_known = tnum_is_const(dst_reg->var_off);
7847 s64 smin_val = src_reg->smin_value;
7848
7849 if (src_known && dst_known) {
7850 /* dst_reg->var_off.value has been updated earlier */
7851 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7852 return;
7853 }
7854
7855 /* We get both minimum and maximum from the var_off. */
7856 dst_reg->umin_value = dst_reg->var_off.value;
7857 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7858
7859 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7860 /* XORing two positive sign numbers gives a positive,
7861 * so safe to cast u64 result into s64.
7862 */
7863 dst_reg->smin_value = dst_reg->umin_value;
7864 dst_reg->smax_value = dst_reg->umax_value;
7865 } else {
7866 dst_reg->smin_value = S64_MIN;
7867 dst_reg->smax_value = S64_MAX;
7868 }
7869
7870 __update_reg_bounds(dst_reg);
7871}
7872
3f50f132
JF
7873static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7874 u64 umin_val, u64 umax_val)
07cd2631 7875{
07cd2631
JF
7876 /* We lose all sign bit information (except what we can pick
7877 * up from var_off)
7878 */
3f50f132
JF
7879 dst_reg->s32_min_value = S32_MIN;
7880 dst_reg->s32_max_value = S32_MAX;
7881 /* If we might shift our top bit out, then we know nothing */
7882 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7883 dst_reg->u32_min_value = 0;
7884 dst_reg->u32_max_value = U32_MAX;
7885 } else {
7886 dst_reg->u32_min_value <<= umin_val;
7887 dst_reg->u32_max_value <<= umax_val;
7888 }
7889}
7890
7891static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7892 struct bpf_reg_state *src_reg)
7893{
7894 u32 umax_val = src_reg->u32_max_value;
7895 u32 umin_val = src_reg->u32_min_value;
7896 /* u32 alu operation will zext upper bits */
7897 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7898
7899 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7900 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7901 /* Not required but being careful mark reg64 bounds as unknown so
7902 * that we are forced to pick them up from tnum and zext later and
7903 * if some path skips this step we are still safe.
7904 */
7905 __mark_reg64_unbounded(dst_reg);
7906 __update_reg32_bounds(dst_reg);
7907}
7908
7909static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7910 u64 umin_val, u64 umax_val)
7911{
7912 /* Special case <<32 because it is a common compiler pattern to sign
7913 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7914 * positive we know this shift will also be positive so we can track
7915 * bounds correctly. Otherwise we lose all sign bit information except
7916 * what we can pick up from var_off. Perhaps we can generalize this
7917 * later to shifts of any length.
7918 */
7919 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7920 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7921 else
7922 dst_reg->smax_value = S64_MAX;
7923
7924 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7925 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7926 else
7927 dst_reg->smin_value = S64_MIN;
7928
07cd2631
JF
7929 /* If we might shift our top bit out, then we know nothing */
7930 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7931 dst_reg->umin_value = 0;
7932 dst_reg->umax_value = U64_MAX;
7933 } else {
7934 dst_reg->umin_value <<= umin_val;
7935 dst_reg->umax_value <<= umax_val;
7936 }
3f50f132
JF
7937}
7938
7939static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7940 struct bpf_reg_state *src_reg)
7941{
7942 u64 umax_val = src_reg->umax_value;
7943 u64 umin_val = src_reg->umin_value;
7944
7945 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7946 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7947 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7948
07cd2631
JF
7949 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7950 /* We may learn something more from the var_off */
7951 __update_reg_bounds(dst_reg);
7952}
7953
3f50f132
JF
7954static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7955 struct bpf_reg_state *src_reg)
7956{
7957 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7958 u32 umax_val = src_reg->u32_max_value;
7959 u32 umin_val = src_reg->u32_min_value;
7960
7961 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7962 * be negative, then either:
7963 * 1) src_reg might be zero, so the sign bit of the result is
7964 * unknown, so we lose our signed bounds
7965 * 2) it's known negative, thus the unsigned bounds capture the
7966 * signed bounds
7967 * 3) the signed bounds cross zero, so they tell us nothing
7968 * about the result
7969 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7970 * unsigned bounds capture the signed bounds.
3f50f132
JF
7971 * Thus, in all cases it suffices to blow away our signed bounds
7972 * and rely on inferring new ones from the unsigned bounds and
7973 * var_off of the result.
7974 */
7975 dst_reg->s32_min_value = S32_MIN;
7976 dst_reg->s32_max_value = S32_MAX;
7977
7978 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7979 dst_reg->u32_min_value >>= umax_val;
7980 dst_reg->u32_max_value >>= umin_val;
7981
7982 __mark_reg64_unbounded(dst_reg);
7983 __update_reg32_bounds(dst_reg);
7984}
7985
07cd2631
JF
7986static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7987 struct bpf_reg_state *src_reg)
7988{
7989 u64 umax_val = src_reg->umax_value;
7990 u64 umin_val = src_reg->umin_value;
7991
7992 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7993 * be negative, then either:
7994 * 1) src_reg might be zero, so the sign bit of the result is
7995 * unknown, so we lose our signed bounds
7996 * 2) it's known negative, thus the unsigned bounds capture the
7997 * signed bounds
7998 * 3) the signed bounds cross zero, so they tell us nothing
7999 * about the result
8000 * If the value in dst_reg is known nonnegative, then again the
18b24d78 8001 * unsigned bounds capture the signed bounds.
07cd2631
JF
8002 * Thus, in all cases it suffices to blow away our signed bounds
8003 * and rely on inferring new ones from the unsigned bounds and
8004 * var_off of the result.
8005 */
8006 dst_reg->smin_value = S64_MIN;
8007 dst_reg->smax_value = S64_MAX;
8008 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8009 dst_reg->umin_value >>= umax_val;
8010 dst_reg->umax_value >>= umin_val;
3f50f132
JF
8011
8012 /* Its not easy to operate on alu32 bounds here because it depends
8013 * on bits being shifted in. Take easy way out and mark unbounded
8014 * so we can recalculate later from tnum.
8015 */
8016 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
8017 __update_reg_bounds(dst_reg);
8018}
8019
3f50f132
JF
8020static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8021 struct bpf_reg_state *src_reg)
07cd2631 8022{
3f50f132 8023 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
8024
8025 /* Upon reaching here, src_known is true and
8026 * umax_val is equal to umin_val.
8027 */
3f50f132
JF
8028 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8029 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 8030
3f50f132
JF
8031 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8032
8033 /* blow away the dst_reg umin_value/umax_value and rely on
8034 * dst_reg var_off to refine the result.
8035 */
8036 dst_reg->u32_min_value = 0;
8037 dst_reg->u32_max_value = U32_MAX;
8038
8039 __mark_reg64_unbounded(dst_reg);
8040 __update_reg32_bounds(dst_reg);
8041}
8042
8043static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8044 struct bpf_reg_state *src_reg)
8045{
8046 u64 umin_val = src_reg->umin_value;
8047
8048 /* Upon reaching here, src_known is true and umax_val is equal
8049 * to umin_val.
8050 */
8051 dst_reg->smin_value >>= umin_val;
8052 dst_reg->smax_value >>= umin_val;
8053
8054 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
8055
8056 /* blow away the dst_reg umin_value/umax_value and rely on
8057 * dst_reg var_off to refine the result.
8058 */
8059 dst_reg->umin_value = 0;
8060 dst_reg->umax_value = U64_MAX;
3f50f132
JF
8061
8062 /* Its not easy to operate on alu32 bounds here because it depends
8063 * on bits being shifted in from upper 32-bits. Take easy way out
8064 * and mark unbounded so we can recalculate later from tnum.
8065 */
8066 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
8067 __update_reg_bounds(dst_reg);
8068}
8069
468f6eaf
JH
8070/* WARNING: This function does calculations on 64-bit values, but the actual
8071 * execution may occur on 32-bit values. Therefore, things like bitshifts
8072 * need extra checks in the 32-bit case.
8073 */
f1174f77
EC
8074static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8075 struct bpf_insn *insn,
8076 struct bpf_reg_state *dst_reg,
8077 struct bpf_reg_state src_reg)
969bf05e 8078{
638f5b90 8079 struct bpf_reg_state *regs = cur_regs(env);
48461135 8080 u8 opcode = BPF_OP(insn->code);
b0b3fb67 8081 bool src_known;
b03c9f9f
EC
8082 s64 smin_val, smax_val;
8083 u64 umin_val, umax_val;
3f50f132
JF
8084 s32 s32_min_val, s32_max_val;
8085 u32 u32_min_val, u32_max_val;
468f6eaf 8086 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 8087 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 8088 int ret;
b799207e 8089
b03c9f9f
EC
8090 smin_val = src_reg.smin_value;
8091 smax_val = src_reg.smax_value;
8092 umin_val = src_reg.umin_value;
8093 umax_val = src_reg.umax_value;
f23cc643 8094
3f50f132
JF
8095 s32_min_val = src_reg.s32_min_value;
8096 s32_max_val = src_reg.s32_max_value;
8097 u32_min_val = src_reg.u32_min_value;
8098 u32_max_val = src_reg.u32_max_value;
8099
8100 if (alu32) {
8101 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
8102 if ((src_known &&
8103 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8104 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8105 /* Taint dst register if offset had invalid bounds
8106 * derived from e.g. dead branches.
8107 */
8108 __mark_reg_unknown(env, dst_reg);
8109 return 0;
8110 }
8111 } else {
8112 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
8113 if ((src_known &&
8114 (smin_val != smax_val || umin_val != umax_val)) ||
8115 smin_val > smax_val || umin_val > umax_val) {
8116 /* Taint dst register if offset had invalid bounds
8117 * derived from e.g. dead branches.
8118 */
8119 __mark_reg_unknown(env, dst_reg);
8120 return 0;
8121 }
6f16101e
DB
8122 }
8123
bb7f0f98
AS
8124 if (!src_known &&
8125 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8126 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8127 return 0;
8128 }
8129
f5288193
DB
8130 if (sanitize_needed(opcode)) {
8131 ret = sanitize_val_alu(env, insn);
8132 if (ret < 0)
8133 return sanitize_err(env, insn, ret, NULL, NULL);
8134 }
8135
3f50f132
JF
8136 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8137 * There are two classes of instructions: The first class we track both
8138 * alu32 and alu64 sign/unsigned bounds independently this provides the
8139 * greatest amount of precision when alu operations are mixed with jmp32
8140 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8141 * and BPF_OR. This is possible because these ops have fairly easy to
8142 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8143 * See alu32 verifier tests for examples. The second class of
8144 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8145 * with regards to tracking sign/unsigned bounds because the bits may
8146 * cross subreg boundaries in the alu64 case. When this happens we mark
8147 * the reg unbounded in the subreg bound space and use the resulting
8148 * tnum to calculate an approximation of the sign/unsigned bounds.
8149 */
48461135
JB
8150 switch (opcode) {
8151 case BPF_ADD:
3f50f132 8152 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 8153 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 8154 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
8155 break;
8156 case BPF_SUB:
3f50f132 8157 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 8158 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 8159 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
8160 break;
8161 case BPF_MUL:
3f50f132
JF
8162 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8163 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 8164 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
8165 break;
8166 case BPF_AND:
3f50f132
JF
8167 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8168 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 8169 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
8170 break;
8171 case BPF_OR:
3f50f132
JF
8172 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8173 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 8174 scalar_min_max_or(dst_reg, &src_reg);
48461135 8175 break;
2921c90d
YS
8176 case BPF_XOR:
8177 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8178 scalar32_min_max_xor(dst_reg, &src_reg);
8179 scalar_min_max_xor(dst_reg, &src_reg);
8180 break;
48461135 8181 case BPF_LSH:
468f6eaf
JH
8182 if (umax_val >= insn_bitness) {
8183 /* Shifts greater than 31 or 63 are undefined.
8184 * This includes shifts by a negative number.
b03c9f9f 8185 */
61bd5218 8186 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8187 break;
8188 }
3f50f132
JF
8189 if (alu32)
8190 scalar32_min_max_lsh(dst_reg, &src_reg);
8191 else
8192 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
8193 break;
8194 case BPF_RSH:
468f6eaf
JH
8195 if (umax_val >= insn_bitness) {
8196 /* Shifts greater than 31 or 63 are undefined.
8197 * This includes shifts by a negative number.
b03c9f9f 8198 */
61bd5218 8199 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8200 break;
8201 }
3f50f132
JF
8202 if (alu32)
8203 scalar32_min_max_rsh(dst_reg, &src_reg);
8204 else
8205 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 8206 break;
9cbe1f5a
YS
8207 case BPF_ARSH:
8208 if (umax_val >= insn_bitness) {
8209 /* Shifts greater than 31 or 63 are undefined.
8210 * This includes shifts by a negative number.
8211 */
8212 mark_reg_unknown(env, regs, insn->dst_reg);
8213 break;
8214 }
3f50f132
JF
8215 if (alu32)
8216 scalar32_min_max_arsh(dst_reg, &src_reg);
8217 else
8218 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 8219 break;
48461135 8220 default:
61bd5218 8221 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
8222 break;
8223 }
8224
3f50f132
JF
8225 /* ALU32 ops are zero extended into 64bit register */
8226 if (alu32)
8227 zext_32_to_64(dst_reg);
468f6eaf 8228
294f2fc6 8229 __update_reg_bounds(dst_reg);
b03c9f9f
EC
8230 __reg_deduce_bounds(dst_reg);
8231 __reg_bound_offset(dst_reg);
f1174f77
EC
8232 return 0;
8233}
8234
8235/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8236 * and var_off.
8237 */
8238static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8239 struct bpf_insn *insn)
8240{
f4d7e40a
AS
8241 struct bpf_verifier_state *vstate = env->cur_state;
8242 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8243 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
8244 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8245 u8 opcode = BPF_OP(insn->code);
b5dc0163 8246 int err;
f1174f77
EC
8247
8248 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
8249 src_reg = NULL;
8250 if (dst_reg->type != SCALAR_VALUE)
8251 ptr_reg = dst_reg;
75748837
AS
8252 else
8253 /* Make sure ID is cleared otherwise dst_reg min/max could be
8254 * incorrectly propagated into other registers by find_equal_scalars()
8255 */
8256 dst_reg->id = 0;
f1174f77
EC
8257 if (BPF_SRC(insn->code) == BPF_X) {
8258 src_reg = &regs[insn->src_reg];
f1174f77
EC
8259 if (src_reg->type != SCALAR_VALUE) {
8260 if (dst_reg->type != SCALAR_VALUE) {
8261 /* Combining two pointers by any ALU op yields
82abbf8d
AS
8262 * an arbitrary scalar. Disallow all math except
8263 * pointer subtraction
f1174f77 8264 */
dd066823 8265 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
8266 mark_reg_unknown(env, regs, insn->dst_reg);
8267 return 0;
f1174f77 8268 }
82abbf8d
AS
8269 verbose(env, "R%d pointer %s pointer prohibited\n",
8270 insn->dst_reg,
8271 bpf_alu_string[opcode >> 4]);
8272 return -EACCES;
f1174f77
EC
8273 } else {
8274 /* scalar += pointer
8275 * This is legal, but we have to reverse our
8276 * src/dest handling in computing the range
8277 */
b5dc0163
AS
8278 err = mark_chain_precision(env, insn->dst_reg);
8279 if (err)
8280 return err;
82abbf8d
AS
8281 return adjust_ptr_min_max_vals(env, insn,
8282 src_reg, dst_reg);
f1174f77
EC
8283 }
8284 } else if (ptr_reg) {
8285 /* pointer += scalar */
b5dc0163
AS
8286 err = mark_chain_precision(env, insn->src_reg);
8287 if (err)
8288 return err;
82abbf8d
AS
8289 return adjust_ptr_min_max_vals(env, insn,
8290 dst_reg, src_reg);
f1174f77
EC
8291 }
8292 } else {
8293 /* Pretend the src is a reg with a known value, since we only
8294 * need to be able to read from this state.
8295 */
8296 off_reg.type = SCALAR_VALUE;
b03c9f9f 8297 __mark_reg_known(&off_reg, insn->imm);
f1174f77 8298 src_reg = &off_reg;
82abbf8d
AS
8299 if (ptr_reg) /* pointer += K */
8300 return adjust_ptr_min_max_vals(env, insn,
8301 ptr_reg, src_reg);
f1174f77
EC
8302 }
8303
8304 /* Got here implies adding two SCALAR_VALUEs */
8305 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 8306 print_verifier_state(env, state, true);
61bd5218 8307 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
8308 return -EINVAL;
8309 }
8310 if (WARN_ON(!src_reg)) {
0f55f9ed 8311 print_verifier_state(env, state, true);
61bd5218 8312 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
8313 return -EINVAL;
8314 }
8315 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
8316}
8317
17a52670 8318/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 8319static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8320{
638f5b90 8321 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
8322 u8 opcode = BPF_OP(insn->code);
8323 int err;
8324
8325 if (opcode == BPF_END || opcode == BPF_NEG) {
8326 if (opcode == BPF_NEG) {
8327 if (BPF_SRC(insn->code) != 0 ||
8328 insn->src_reg != BPF_REG_0 ||
8329 insn->off != 0 || insn->imm != 0) {
61bd5218 8330 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
8331 return -EINVAL;
8332 }
8333 } else {
8334 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
8335 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8336 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 8337 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
8338 return -EINVAL;
8339 }
8340 }
8341
8342 /* check src operand */
dc503a8a 8343 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8344 if (err)
8345 return err;
8346
1be7f75d 8347 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 8348 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
8349 insn->dst_reg);
8350 return -EACCES;
8351 }
8352
17a52670 8353 /* check dest operand */
dc503a8a 8354 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8355 if (err)
8356 return err;
8357
8358 } else if (opcode == BPF_MOV) {
8359
8360 if (BPF_SRC(insn->code) == BPF_X) {
8361 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8362 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8363 return -EINVAL;
8364 }
8365
8366 /* check src operand */
dc503a8a 8367 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8368 if (err)
8369 return err;
8370 } else {
8371 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8372 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8373 return -EINVAL;
8374 }
8375 }
8376
fbeb1603
AF
8377 /* check dest operand, mark as required later */
8378 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8379 if (err)
8380 return err;
8381
8382 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
8383 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8384 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8385
17a52670
AS
8386 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8387 /* case: R1 = R2
8388 * copy register state to dest reg
8389 */
75748837
AS
8390 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8391 /* Assign src and dst registers the same ID
8392 * that will be used by find_equal_scalars()
8393 * to propagate min/max range.
8394 */
8395 src_reg->id = ++env->id_gen;
e434b8cd
JW
8396 *dst_reg = *src_reg;
8397 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8398 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 8399 } else {
f1174f77 8400 /* R1 = (u32) R2 */
1be7f75d 8401 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
8402 verbose(env,
8403 "R%d partial copy of pointer\n",
1be7f75d
AS
8404 insn->src_reg);
8405 return -EACCES;
e434b8cd
JW
8406 } else if (src_reg->type == SCALAR_VALUE) {
8407 *dst_reg = *src_reg;
75748837
AS
8408 /* Make sure ID is cleared otherwise
8409 * dst_reg min/max could be incorrectly
8410 * propagated into src_reg by find_equal_scalars()
8411 */
8412 dst_reg->id = 0;
e434b8cd 8413 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8414 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
8415 } else {
8416 mark_reg_unknown(env, regs,
8417 insn->dst_reg);
1be7f75d 8418 }
3f50f132 8419 zext_32_to_64(dst_reg);
17a52670
AS
8420 }
8421 } else {
8422 /* case: R = imm
8423 * remember the value we stored into this reg
8424 */
fbeb1603
AF
8425 /* clear any state __mark_reg_known doesn't set */
8426 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 8427 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
8428 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8429 __mark_reg_known(regs + insn->dst_reg,
8430 insn->imm);
8431 } else {
8432 __mark_reg_known(regs + insn->dst_reg,
8433 (u32)insn->imm);
8434 }
17a52670
AS
8435 }
8436
8437 } else if (opcode > BPF_END) {
61bd5218 8438 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
8439 return -EINVAL;
8440
8441 } else { /* all other ALU ops: and, sub, xor, add, ... */
8442
17a52670
AS
8443 if (BPF_SRC(insn->code) == BPF_X) {
8444 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8445 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8446 return -EINVAL;
8447 }
8448 /* check src1 operand */
dc503a8a 8449 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8450 if (err)
8451 return err;
8452 } else {
8453 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8454 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8455 return -EINVAL;
8456 }
8457 }
8458
8459 /* check src2 operand */
dc503a8a 8460 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8461 if (err)
8462 return err;
8463
8464 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8465 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 8466 verbose(env, "div by zero\n");
17a52670
AS
8467 return -EINVAL;
8468 }
8469
229394e8
RV
8470 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8471 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8472 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8473
8474 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 8475 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
8476 return -EINVAL;
8477 }
8478 }
8479
1a0dc1ac 8480 /* check dest operand */
dc503a8a 8481 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
8482 if (err)
8483 return err;
8484
f1174f77 8485 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
8486 }
8487
8488 return 0;
8489}
8490
c6a9efa1
PC
8491static void __find_good_pkt_pointers(struct bpf_func_state *state,
8492 struct bpf_reg_state *dst_reg,
6d94e741 8493 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
8494{
8495 struct bpf_reg_state *reg;
8496 int i;
8497
8498 for (i = 0; i < MAX_BPF_REG; i++) {
8499 reg = &state->regs[i];
8500 if (reg->type == type && reg->id == dst_reg->id)
8501 /* keep the maximum range already checked */
8502 reg->range = max(reg->range, new_range);
8503 }
8504
8505 bpf_for_each_spilled_reg(i, state, reg) {
8506 if (!reg)
8507 continue;
8508 if (reg->type == type && reg->id == dst_reg->id)
8509 reg->range = max(reg->range, new_range);
8510 }
8511}
8512
f4d7e40a 8513static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 8514 struct bpf_reg_state *dst_reg,
f8ddadc4 8515 enum bpf_reg_type type,
fb2a311a 8516 bool range_right_open)
969bf05e 8517{
6d94e741 8518 int new_range, i;
2d2be8ca 8519
fb2a311a
DB
8520 if (dst_reg->off < 0 ||
8521 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
8522 /* This doesn't give us any range */
8523 return;
8524
b03c9f9f
EC
8525 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8526 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
8527 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8528 * than pkt_end, but that's because it's also less than pkt.
8529 */
8530 return;
8531
fb2a311a
DB
8532 new_range = dst_reg->off;
8533 if (range_right_open)
2fa7d94a 8534 new_range++;
fb2a311a
DB
8535
8536 /* Examples for register markings:
2d2be8ca 8537 *
fb2a311a 8538 * pkt_data in dst register:
2d2be8ca
DB
8539 *
8540 * r2 = r3;
8541 * r2 += 8;
8542 * if (r2 > pkt_end) goto <handle exception>
8543 * <access okay>
8544 *
b4e432f1
DB
8545 * r2 = r3;
8546 * r2 += 8;
8547 * if (r2 < pkt_end) goto <access okay>
8548 * <handle exception>
8549 *
2d2be8ca
DB
8550 * Where:
8551 * r2 == dst_reg, pkt_end == src_reg
8552 * r2=pkt(id=n,off=8,r=0)
8553 * r3=pkt(id=n,off=0,r=0)
8554 *
fb2a311a 8555 * pkt_data in src register:
2d2be8ca
DB
8556 *
8557 * r2 = r3;
8558 * r2 += 8;
8559 * if (pkt_end >= r2) goto <access okay>
8560 * <handle exception>
8561 *
b4e432f1
DB
8562 * r2 = r3;
8563 * r2 += 8;
8564 * if (pkt_end <= r2) goto <handle exception>
8565 * <access okay>
8566 *
2d2be8ca
DB
8567 * Where:
8568 * pkt_end == dst_reg, r2 == src_reg
8569 * r2=pkt(id=n,off=8,r=0)
8570 * r3=pkt(id=n,off=0,r=0)
8571 *
8572 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8573 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8574 * and [r3, r3 + 8-1) respectively is safe to access depending on
8575 * the check.
969bf05e 8576 */
2d2be8ca 8577
f1174f77
EC
8578 /* If our ids match, then we must have the same max_value. And we
8579 * don't care about the other reg's fixed offset, since if it's too big
8580 * the range won't allow anything.
8581 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8582 */
c6a9efa1
PC
8583 for (i = 0; i <= vstate->curframe; i++)
8584 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8585 new_range);
969bf05e
AS
8586}
8587
3f50f132 8588static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8589{
3f50f132
JF
8590 struct tnum subreg = tnum_subreg(reg->var_off);
8591 s32 sval = (s32)val;
a72dafaf 8592
3f50f132
JF
8593 switch (opcode) {
8594 case BPF_JEQ:
8595 if (tnum_is_const(subreg))
8596 return !!tnum_equals_const(subreg, val);
8597 break;
8598 case BPF_JNE:
8599 if (tnum_is_const(subreg))
8600 return !tnum_equals_const(subreg, val);
8601 break;
8602 case BPF_JSET:
8603 if ((~subreg.mask & subreg.value) & val)
8604 return 1;
8605 if (!((subreg.mask | subreg.value) & val))
8606 return 0;
8607 break;
8608 case BPF_JGT:
8609 if (reg->u32_min_value > val)
8610 return 1;
8611 else if (reg->u32_max_value <= val)
8612 return 0;
8613 break;
8614 case BPF_JSGT:
8615 if (reg->s32_min_value > sval)
8616 return 1;
ee114dd6 8617 else if (reg->s32_max_value <= sval)
3f50f132
JF
8618 return 0;
8619 break;
8620 case BPF_JLT:
8621 if (reg->u32_max_value < val)
8622 return 1;
8623 else if (reg->u32_min_value >= val)
8624 return 0;
8625 break;
8626 case BPF_JSLT:
8627 if (reg->s32_max_value < sval)
8628 return 1;
8629 else if (reg->s32_min_value >= sval)
8630 return 0;
8631 break;
8632 case BPF_JGE:
8633 if (reg->u32_min_value >= val)
8634 return 1;
8635 else if (reg->u32_max_value < val)
8636 return 0;
8637 break;
8638 case BPF_JSGE:
8639 if (reg->s32_min_value >= sval)
8640 return 1;
8641 else if (reg->s32_max_value < sval)
8642 return 0;
8643 break;
8644 case BPF_JLE:
8645 if (reg->u32_max_value <= val)
8646 return 1;
8647 else if (reg->u32_min_value > val)
8648 return 0;
8649 break;
8650 case BPF_JSLE:
8651 if (reg->s32_max_value <= sval)
8652 return 1;
8653 else if (reg->s32_min_value > sval)
8654 return 0;
8655 break;
8656 }
4f7b3e82 8657
3f50f132
JF
8658 return -1;
8659}
092ed096 8660
3f50f132
JF
8661
8662static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8663{
8664 s64 sval = (s64)val;
a72dafaf 8665
4f7b3e82
AS
8666 switch (opcode) {
8667 case BPF_JEQ:
8668 if (tnum_is_const(reg->var_off))
8669 return !!tnum_equals_const(reg->var_off, val);
8670 break;
8671 case BPF_JNE:
8672 if (tnum_is_const(reg->var_off))
8673 return !tnum_equals_const(reg->var_off, val);
8674 break;
960ea056
JK
8675 case BPF_JSET:
8676 if ((~reg->var_off.mask & reg->var_off.value) & val)
8677 return 1;
8678 if (!((reg->var_off.mask | reg->var_off.value) & val))
8679 return 0;
8680 break;
4f7b3e82
AS
8681 case BPF_JGT:
8682 if (reg->umin_value > val)
8683 return 1;
8684 else if (reg->umax_value <= val)
8685 return 0;
8686 break;
8687 case BPF_JSGT:
a72dafaf 8688 if (reg->smin_value > sval)
4f7b3e82 8689 return 1;
ee114dd6 8690 else if (reg->smax_value <= sval)
4f7b3e82
AS
8691 return 0;
8692 break;
8693 case BPF_JLT:
8694 if (reg->umax_value < val)
8695 return 1;
8696 else if (reg->umin_value >= val)
8697 return 0;
8698 break;
8699 case BPF_JSLT:
a72dafaf 8700 if (reg->smax_value < sval)
4f7b3e82 8701 return 1;
a72dafaf 8702 else if (reg->smin_value >= sval)
4f7b3e82
AS
8703 return 0;
8704 break;
8705 case BPF_JGE:
8706 if (reg->umin_value >= val)
8707 return 1;
8708 else if (reg->umax_value < val)
8709 return 0;
8710 break;
8711 case BPF_JSGE:
a72dafaf 8712 if (reg->smin_value >= sval)
4f7b3e82 8713 return 1;
a72dafaf 8714 else if (reg->smax_value < sval)
4f7b3e82
AS
8715 return 0;
8716 break;
8717 case BPF_JLE:
8718 if (reg->umax_value <= val)
8719 return 1;
8720 else if (reg->umin_value > val)
8721 return 0;
8722 break;
8723 case BPF_JSLE:
a72dafaf 8724 if (reg->smax_value <= sval)
4f7b3e82 8725 return 1;
a72dafaf 8726 else if (reg->smin_value > sval)
4f7b3e82
AS
8727 return 0;
8728 break;
8729 }
8730
8731 return -1;
8732}
8733
3f50f132
JF
8734/* compute branch direction of the expression "if (reg opcode val) goto target;"
8735 * and return:
8736 * 1 - branch will be taken and "goto target" will be executed
8737 * 0 - branch will not be taken and fall-through to next insn
8738 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8739 * range [0,10]
604dca5e 8740 */
3f50f132
JF
8741static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8742 bool is_jmp32)
604dca5e 8743{
cac616db
JF
8744 if (__is_pointer_value(false, reg)) {
8745 if (!reg_type_not_null(reg->type))
8746 return -1;
8747
8748 /* If pointer is valid tests against zero will fail so we can
8749 * use this to direct branch taken.
8750 */
8751 if (val != 0)
8752 return -1;
8753
8754 switch (opcode) {
8755 case BPF_JEQ:
8756 return 0;
8757 case BPF_JNE:
8758 return 1;
8759 default:
8760 return -1;
8761 }
8762 }
604dca5e 8763
3f50f132
JF
8764 if (is_jmp32)
8765 return is_branch32_taken(reg, val, opcode);
8766 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8767}
8768
6d94e741
AS
8769static int flip_opcode(u32 opcode)
8770{
8771 /* How can we transform "a <op> b" into "b <op> a"? */
8772 static const u8 opcode_flip[16] = {
8773 /* these stay the same */
8774 [BPF_JEQ >> 4] = BPF_JEQ,
8775 [BPF_JNE >> 4] = BPF_JNE,
8776 [BPF_JSET >> 4] = BPF_JSET,
8777 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8778 [BPF_JGE >> 4] = BPF_JLE,
8779 [BPF_JGT >> 4] = BPF_JLT,
8780 [BPF_JLE >> 4] = BPF_JGE,
8781 [BPF_JLT >> 4] = BPF_JGT,
8782 [BPF_JSGE >> 4] = BPF_JSLE,
8783 [BPF_JSGT >> 4] = BPF_JSLT,
8784 [BPF_JSLE >> 4] = BPF_JSGE,
8785 [BPF_JSLT >> 4] = BPF_JSGT
8786 };
8787 return opcode_flip[opcode >> 4];
8788}
8789
8790static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8791 struct bpf_reg_state *src_reg,
8792 u8 opcode)
8793{
8794 struct bpf_reg_state *pkt;
8795
8796 if (src_reg->type == PTR_TO_PACKET_END) {
8797 pkt = dst_reg;
8798 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8799 pkt = src_reg;
8800 opcode = flip_opcode(opcode);
8801 } else {
8802 return -1;
8803 }
8804
8805 if (pkt->range >= 0)
8806 return -1;
8807
8808 switch (opcode) {
8809 case BPF_JLE:
8810 /* pkt <= pkt_end */
8811 fallthrough;
8812 case BPF_JGT:
8813 /* pkt > pkt_end */
8814 if (pkt->range == BEYOND_PKT_END)
8815 /* pkt has at last one extra byte beyond pkt_end */
8816 return opcode == BPF_JGT;
8817 break;
8818 case BPF_JLT:
8819 /* pkt < pkt_end */
8820 fallthrough;
8821 case BPF_JGE:
8822 /* pkt >= pkt_end */
8823 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8824 return opcode == BPF_JGE;
8825 break;
8826 }
8827 return -1;
8828}
8829
48461135
JB
8830/* Adjusts the register min/max values in the case that the dst_reg is the
8831 * variable register that we are working on, and src_reg is a constant or we're
8832 * simply doing a BPF_K check.
f1174f77 8833 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8834 */
8835static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8836 struct bpf_reg_state *false_reg,
8837 u64 val, u32 val32,
092ed096 8838 u8 opcode, bool is_jmp32)
48461135 8839{
3f50f132
JF
8840 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8841 struct tnum false_64off = false_reg->var_off;
8842 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8843 struct tnum true_64off = true_reg->var_off;
8844 s64 sval = (s64)val;
8845 s32 sval32 = (s32)val32;
a72dafaf 8846
f1174f77
EC
8847 /* If the dst_reg is a pointer, we can't learn anything about its
8848 * variable offset from the compare (unless src_reg were a pointer into
8849 * the same object, but we don't bother with that.
8850 * Since false_reg and true_reg have the same type by construction, we
8851 * only need to check one of them for pointerness.
8852 */
8853 if (__is_pointer_value(false, false_reg))
8854 return;
4cabc5b1 8855
48461135
JB
8856 switch (opcode) {
8857 case BPF_JEQ:
48461135 8858 case BPF_JNE:
a72dafaf
JW
8859 {
8860 struct bpf_reg_state *reg =
8861 opcode == BPF_JEQ ? true_reg : false_reg;
8862
e688c3db
AS
8863 /* JEQ/JNE comparison doesn't change the register equivalence.
8864 * r1 = r2;
8865 * if (r1 == 42) goto label;
8866 * ...
8867 * label: // here both r1 and r2 are known to be 42.
8868 *
8869 * Hence when marking register as known preserve it's ID.
48461135 8870 */
3f50f132
JF
8871 if (is_jmp32)
8872 __mark_reg32_known(reg, val32);
8873 else
e688c3db 8874 ___mark_reg_known(reg, val);
48461135 8875 break;
a72dafaf 8876 }
960ea056 8877 case BPF_JSET:
3f50f132
JF
8878 if (is_jmp32) {
8879 false_32off = tnum_and(false_32off, tnum_const(~val32));
8880 if (is_power_of_2(val32))
8881 true_32off = tnum_or(true_32off,
8882 tnum_const(val32));
8883 } else {
8884 false_64off = tnum_and(false_64off, tnum_const(~val));
8885 if (is_power_of_2(val))
8886 true_64off = tnum_or(true_64off,
8887 tnum_const(val));
8888 }
960ea056 8889 break;
48461135 8890 case BPF_JGE:
a72dafaf
JW
8891 case BPF_JGT:
8892 {
3f50f132
JF
8893 if (is_jmp32) {
8894 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8895 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8896
8897 false_reg->u32_max_value = min(false_reg->u32_max_value,
8898 false_umax);
8899 true_reg->u32_min_value = max(true_reg->u32_min_value,
8900 true_umin);
8901 } else {
8902 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8903 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8904
8905 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8906 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8907 }
b03c9f9f 8908 break;
a72dafaf 8909 }
48461135 8910 case BPF_JSGE:
a72dafaf
JW
8911 case BPF_JSGT:
8912 {
3f50f132
JF
8913 if (is_jmp32) {
8914 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8915 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8916
3f50f132
JF
8917 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8918 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8919 } else {
8920 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8921 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8922
8923 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8924 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8925 }
48461135 8926 break;
a72dafaf 8927 }
b4e432f1 8928 case BPF_JLE:
a72dafaf
JW
8929 case BPF_JLT:
8930 {
3f50f132
JF
8931 if (is_jmp32) {
8932 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8933 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8934
8935 false_reg->u32_min_value = max(false_reg->u32_min_value,
8936 false_umin);
8937 true_reg->u32_max_value = min(true_reg->u32_max_value,
8938 true_umax);
8939 } else {
8940 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8941 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8942
8943 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8944 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8945 }
b4e432f1 8946 break;
a72dafaf 8947 }
b4e432f1 8948 case BPF_JSLE:
a72dafaf
JW
8949 case BPF_JSLT:
8950 {
3f50f132
JF
8951 if (is_jmp32) {
8952 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8953 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8954
3f50f132
JF
8955 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8956 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8957 } else {
8958 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8959 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8960
8961 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8962 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8963 }
b4e432f1 8964 break;
a72dafaf 8965 }
48461135 8966 default:
0fc31b10 8967 return;
48461135
JB
8968 }
8969
3f50f132
JF
8970 if (is_jmp32) {
8971 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8972 tnum_subreg(false_32off));
8973 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8974 tnum_subreg(true_32off));
8975 __reg_combine_32_into_64(false_reg);
8976 __reg_combine_32_into_64(true_reg);
8977 } else {
8978 false_reg->var_off = false_64off;
8979 true_reg->var_off = true_64off;
8980 __reg_combine_64_into_32(false_reg);
8981 __reg_combine_64_into_32(true_reg);
8982 }
48461135
JB
8983}
8984
f1174f77
EC
8985/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8986 * the variable reg.
48461135
JB
8987 */
8988static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8989 struct bpf_reg_state *false_reg,
8990 u64 val, u32 val32,
092ed096 8991 u8 opcode, bool is_jmp32)
48461135 8992{
6d94e741 8993 opcode = flip_opcode(opcode);
0fc31b10
JH
8994 /* This uses zero as "not present in table"; luckily the zero opcode,
8995 * BPF_JA, can't get here.
b03c9f9f 8996 */
0fc31b10 8997 if (opcode)
3f50f132 8998 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8999}
9000
9001/* Regs are known to be equal, so intersect their min/max/var_off */
9002static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9003 struct bpf_reg_state *dst_reg)
9004{
b03c9f9f
EC
9005 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9006 dst_reg->umin_value);
9007 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9008 dst_reg->umax_value);
9009 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9010 dst_reg->smin_value);
9011 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9012 dst_reg->smax_value);
f1174f77
EC
9013 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9014 dst_reg->var_off);
b03c9f9f
EC
9015 /* We might have learned new bounds from the var_off. */
9016 __update_reg_bounds(src_reg);
9017 __update_reg_bounds(dst_reg);
9018 /* We might have learned something about the sign bit. */
9019 __reg_deduce_bounds(src_reg);
9020 __reg_deduce_bounds(dst_reg);
9021 /* We might have learned some bits from the bounds. */
9022 __reg_bound_offset(src_reg);
9023 __reg_bound_offset(dst_reg);
9024 /* Intersecting with the old var_off might have improved our bounds
9025 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
9026 * then new var_off is (0; 0x7f...fc) which improves our umax.
9027 */
9028 __update_reg_bounds(src_reg);
9029 __update_reg_bounds(dst_reg);
f1174f77
EC
9030}
9031
9032static void reg_combine_min_max(struct bpf_reg_state *true_src,
9033 struct bpf_reg_state *true_dst,
9034 struct bpf_reg_state *false_src,
9035 struct bpf_reg_state *false_dst,
9036 u8 opcode)
9037{
9038 switch (opcode) {
9039 case BPF_JEQ:
9040 __reg_combine_min_max(true_src, true_dst);
9041 break;
9042 case BPF_JNE:
9043 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 9044 break;
4cabc5b1 9045 }
48461135
JB
9046}
9047
fd978bf7
JS
9048static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9049 struct bpf_reg_state *reg, u32 id,
840b9615 9050 bool is_null)
57a09bf0 9051{
93c230e3
MKL
9052 if (reg_type_may_be_null(reg->type) && reg->id == id &&
9053 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
9054 /* Old offset (both fixed and variable parts) should
9055 * have been known-zero, because we don't allow pointer
9056 * arithmetic on pointers that might be NULL.
9057 */
b03c9f9f
EC
9058 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9059 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 9060 reg->off)) {
b03c9f9f
EC
9061 __mark_reg_known_zero(reg);
9062 reg->off = 0;
f1174f77
EC
9063 }
9064 if (is_null) {
9065 reg->type = SCALAR_VALUE;
1b986589
MKL
9066 /* We don't need id and ref_obj_id from this point
9067 * onwards anymore, thus we should better reset it,
9068 * so that state pruning has chances to take effect.
9069 */
9070 reg->id = 0;
9071 reg->ref_obj_id = 0;
4ddb7416
DB
9072
9073 return;
9074 }
9075
9076 mark_ptr_not_null_reg(reg);
9077
9078 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
9079 /* For not-NULL ptr, reg->ref_obj_id will be reset
9080 * in release_reg_references().
9081 *
9082 * reg->id is still used by spin_lock ptr. Other
9083 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
9084 */
9085 reg->id = 0;
56f668df 9086 }
57a09bf0
TG
9087 }
9088}
9089
c6a9efa1
PC
9090static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9091 bool is_null)
9092{
9093 struct bpf_reg_state *reg;
9094 int i;
9095
9096 for (i = 0; i < MAX_BPF_REG; i++)
9097 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9098
9099 bpf_for_each_spilled_reg(i, state, reg) {
9100 if (!reg)
9101 continue;
9102 mark_ptr_or_null_reg(state, reg, id, is_null);
9103 }
9104}
9105
57a09bf0
TG
9106/* The logic is similar to find_good_pkt_pointers(), both could eventually
9107 * be folded together at some point.
9108 */
840b9615
JS
9109static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9110 bool is_null)
57a09bf0 9111{
f4d7e40a 9112 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 9113 struct bpf_reg_state *regs = state->regs;
1b986589 9114 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 9115 u32 id = regs[regno].id;
c6a9efa1 9116 int i;
57a09bf0 9117
1b986589
MKL
9118 if (ref_obj_id && ref_obj_id == id && is_null)
9119 /* regs[regno] is in the " == NULL" branch.
9120 * No one could have freed the reference state before
9121 * doing the NULL check.
9122 */
9123 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9124
c6a9efa1
PC
9125 for (i = 0; i <= vstate->curframe; i++)
9126 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
9127}
9128
5beca081
DB
9129static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9130 struct bpf_reg_state *dst_reg,
9131 struct bpf_reg_state *src_reg,
9132 struct bpf_verifier_state *this_branch,
9133 struct bpf_verifier_state *other_branch)
9134{
9135 if (BPF_SRC(insn->code) != BPF_X)
9136 return false;
9137
092ed096
JW
9138 /* Pointers are always 64-bit. */
9139 if (BPF_CLASS(insn->code) == BPF_JMP32)
9140 return false;
9141
5beca081
DB
9142 switch (BPF_OP(insn->code)) {
9143 case BPF_JGT:
9144 if ((dst_reg->type == PTR_TO_PACKET &&
9145 src_reg->type == PTR_TO_PACKET_END) ||
9146 (dst_reg->type == PTR_TO_PACKET_META &&
9147 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9148 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9149 find_good_pkt_pointers(this_branch, dst_reg,
9150 dst_reg->type, false);
6d94e741 9151 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9152 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9153 src_reg->type == PTR_TO_PACKET) ||
9154 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9155 src_reg->type == PTR_TO_PACKET_META)) {
9156 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9157 find_good_pkt_pointers(other_branch, src_reg,
9158 src_reg->type, true);
6d94e741 9159 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9160 } else {
9161 return false;
9162 }
9163 break;
9164 case BPF_JLT:
9165 if ((dst_reg->type == PTR_TO_PACKET &&
9166 src_reg->type == PTR_TO_PACKET_END) ||
9167 (dst_reg->type == PTR_TO_PACKET_META &&
9168 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9169 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9170 find_good_pkt_pointers(other_branch, dst_reg,
9171 dst_reg->type, true);
6d94e741 9172 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
9173 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9174 src_reg->type == PTR_TO_PACKET) ||
9175 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9176 src_reg->type == PTR_TO_PACKET_META)) {
9177 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9178 find_good_pkt_pointers(this_branch, src_reg,
9179 src_reg->type, false);
6d94e741 9180 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
9181 } else {
9182 return false;
9183 }
9184 break;
9185 case BPF_JGE:
9186 if ((dst_reg->type == PTR_TO_PACKET &&
9187 src_reg->type == PTR_TO_PACKET_END) ||
9188 (dst_reg->type == PTR_TO_PACKET_META &&
9189 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9190 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9191 find_good_pkt_pointers(this_branch, dst_reg,
9192 dst_reg->type, true);
6d94e741 9193 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
9194 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9195 src_reg->type == PTR_TO_PACKET) ||
9196 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9197 src_reg->type == PTR_TO_PACKET_META)) {
9198 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9199 find_good_pkt_pointers(other_branch, src_reg,
9200 src_reg->type, false);
6d94e741 9201 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
9202 } else {
9203 return false;
9204 }
9205 break;
9206 case BPF_JLE:
9207 if ((dst_reg->type == PTR_TO_PACKET &&
9208 src_reg->type == PTR_TO_PACKET_END) ||
9209 (dst_reg->type == PTR_TO_PACKET_META &&
9210 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9211 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9212 find_good_pkt_pointers(other_branch, dst_reg,
9213 dst_reg->type, false);
6d94e741 9214 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
9215 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9216 src_reg->type == PTR_TO_PACKET) ||
9217 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9218 src_reg->type == PTR_TO_PACKET_META)) {
9219 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9220 find_good_pkt_pointers(this_branch, src_reg,
9221 src_reg->type, true);
6d94e741 9222 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
9223 } else {
9224 return false;
9225 }
9226 break;
9227 default:
9228 return false;
9229 }
9230
9231 return true;
9232}
9233
75748837
AS
9234static void find_equal_scalars(struct bpf_verifier_state *vstate,
9235 struct bpf_reg_state *known_reg)
9236{
9237 struct bpf_func_state *state;
9238 struct bpf_reg_state *reg;
9239 int i, j;
9240
9241 for (i = 0; i <= vstate->curframe; i++) {
9242 state = vstate->frame[i];
9243 for (j = 0; j < MAX_BPF_REG; j++) {
9244 reg = &state->regs[j];
9245 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9246 *reg = *known_reg;
9247 }
9248
9249 bpf_for_each_spilled_reg(j, state, reg) {
9250 if (!reg)
9251 continue;
9252 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9253 *reg = *known_reg;
9254 }
9255 }
9256}
9257
58e2af8b 9258static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
9259 struct bpf_insn *insn, int *insn_idx)
9260{
f4d7e40a
AS
9261 struct bpf_verifier_state *this_branch = env->cur_state;
9262 struct bpf_verifier_state *other_branch;
9263 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 9264 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 9265 u8 opcode = BPF_OP(insn->code);
092ed096 9266 bool is_jmp32;
fb8d251e 9267 int pred = -1;
17a52670
AS
9268 int err;
9269
092ed096
JW
9270 /* Only conditional jumps are expected to reach here. */
9271 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9272 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
9273 return -EINVAL;
9274 }
9275
9276 if (BPF_SRC(insn->code) == BPF_X) {
9277 if (insn->imm != 0) {
092ed096 9278 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9279 return -EINVAL;
9280 }
9281
9282 /* check src1 operand */
dc503a8a 9283 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9284 if (err)
9285 return err;
1be7f75d
AS
9286
9287 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 9288 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
9289 insn->src_reg);
9290 return -EACCES;
9291 }
fb8d251e 9292 src_reg = &regs[insn->src_reg];
17a52670
AS
9293 } else {
9294 if (insn->src_reg != BPF_REG_0) {
092ed096 9295 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9296 return -EINVAL;
9297 }
9298 }
9299
9300 /* check src2 operand */
dc503a8a 9301 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9302 if (err)
9303 return err;
9304
1a0dc1ac 9305 dst_reg = &regs[insn->dst_reg];
092ed096 9306 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 9307
3f50f132
JF
9308 if (BPF_SRC(insn->code) == BPF_K) {
9309 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9310 } else if (src_reg->type == SCALAR_VALUE &&
9311 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9312 pred = is_branch_taken(dst_reg,
9313 tnum_subreg(src_reg->var_off).value,
9314 opcode,
9315 is_jmp32);
9316 } else if (src_reg->type == SCALAR_VALUE &&
9317 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9318 pred = is_branch_taken(dst_reg,
9319 src_reg->var_off.value,
9320 opcode,
9321 is_jmp32);
6d94e741
AS
9322 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9323 reg_is_pkt_pointer_any(src_reg) &&
9324 !is_jmp32) {
9325 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
9326 }
9327
b5dc0163 9328 if (pred >= 0) {
cac616db
JF
9329 /* If we get here with a dst_reg pointer type it is because
9330 * above is_branch_taken() special cased the 0 comparison.
9331 */
9332 if (!__is_pointer_value(false, dst_reg))
9333 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
9334 if (BPF_SRC(insn->code) == BPF_X && !err &&
9335 !__is_pointer_value(false, src_reg))
b5dc0163
AS
9336 err = mark_chain_precision(env, insn->src_reg);
9337 if (err)
9338 return err;
9339 }
9183671a 9340
fb8d251e 9341 if (pred == 1) {
9183671a
DB
9342 /* Only follow the goto, ignore fall-through. If needed, push
9343 * the fall-through branch for simulation under speculative
9344 * execution.
9345 */
9346 if (!env->bypass_spec_v1 &&
9347 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9348 *insn_idx))
9349 return -EFAULT;
fb8d251e
AS
9350 *insn_idx += insn->off;
9351 return 0;
9352 } else if (pred == 0) {
9183671a
DB
9353 /* Only follow the fall-through branch, since that's where the
9354 * program will go. If needed, push the goto branch for
9355 * simulation under speculative execution.
fb8d251e 9356 */
9183671a
DB
9357 if (!env->bypass_spec_v1 &&
9358 !sanitize_speculative_path(env, insn,
9359 *insn_idx + insn->off + 1,
9360 *insn_idx))
9361 return -EFAULT;
fb8d251e 9362 return 0;
17a52670
AS
9363 }
9364
979d63d5
DB
9365 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9366 false);
17a52670
AS
9367 if (!other_branch)
9368 return -EFAULT;
f4d7e40a 9369 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 9370
48461135
JB
9371 /* detect if we are comparing against a constant value so we can adjust
9372 * our min/max values for our dst register.
f1174f77
EC
9373 * this is only legit if both are scalars (or pointers to the same
9374 * object, I suppose, but we don't support that right now), because
9375 * otherwise the different base pointers mean the offsets aren't
9376 * comparable.
48461135
JB
9377 */
9378 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 9379 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 9380
f1174f77 9381 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
9382 src_reg->type == SCALAR_VALUE) {
9383 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
9384 (is_jmp32 &&
9385 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 9386 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 9387 dst_reg,
3f50f132
JF
9388 src_reg->var_off.value,
9389 tnum_subreg(src_reg->var_off).value,
092ed096
JW
9390 opcode, is_jmp32);
9391 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
9392 (is_jmp32 &&
9393 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 9394 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 9395 src_reg,
3f50f132
JF
9396 dst_reg->var_off.value,
9397 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
9398 opcode, is_jmp32);
9399 else if (!is_jmp32 &&
9400 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 9401 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
9402 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9403 &other_branch_regs[insn->dst_reg],
092ed096 9404 src_reg, dst_reg, opcode);
e688c3db
AS
9405 if (src_reg->id &&
9406 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
9407 find_equal_scalars(this_branch, src_reg);
9408 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9409 }
9410
f1174f77
EC
9411 }
9412 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 9413 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
9414 dst_reg, insn->imm, (u32)insn->imm,
9415 opcode, is_jmp32);
48461135
JB
9416 }
9417
e688c3db
AS
9418 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9419 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
9420 find_equal_scalars(this_branch, dst_reg);
9421 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9422 }
9423
092ed096
JW
9424 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9425 * NOTE: these optimizations below are related with pointer comparison
9426 * which will never be JMP32.
9427 */
9428 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 9429 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
9430 reg_type_may_be_null(dst_reg->type)) {
9431 /* Mark all identical registers in each branch as either
57a09bf0
TG
9432 * safe or unknown depending R == 0 or R != 0 conditional.
9433 */
840b9615
JS
9434 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9435 opcode == BPF_JNE);
9436 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9437 opcode == BPF_JEQ);
5beca081
DB
9438 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9439 this_branch, other_branch) &&
9440 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
9441 verbose(env, "R%d pointer comparison prohibited\n",
9442 insn->dst_reg);
1be7f75d 9443 return -EACCES;
17a52670 9444 }
06ee7115 9445 if (env->log.level & BPF_LOG_LEVEL)
2e576648 9446 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
9447 return 0;
9448}
9449
17a52670 9450/* verify BPF_LD_IMM64 instruction */
58e2af8b 9451static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9452{
d8eca5bb 9453 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 9454 struct bpf_reg_state *regs = cur_regs(env);
4976b718 9455 struct bpf_reg_state *dst_reg;
d8eca5bb 9456 struct bpf_map *map;
17a52670
AS
9457 int err;
9458
9459 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 9460 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
9461 return -EINVAL;
9462 }
9463 if (insn->off != 0) {
61bd5218 9464 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
9465 return -EINVAL;
9466 }
9467
dc503a8a 9468 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9469 if (err)
9470 return err;
9471
4976b718 9472 dst_reg = &regs[insn->dst_reg];
6b173873 9473 if (insn->src_reg == 0) {
6b173873
JK
9474 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9475
4976b718 9476 dst_reg->type = SCALAR_VALUE;
b03c9f9f 9477 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 9478 return 0;
6b173873 9479 }
17a52670 9480
4976b718
HL
9481 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9482 mark_reg_known_zero(env, regs, insn->dst_reg);
9483
9484 dst_reg->type = aux->btf_var.reg_type;
9485 switch (dst_reg->type) {
9486 case PTR_TO_MEM:
9487 dst_reg->mem_size = aux->btf_var.mem_size;
9488 break;
9489 case PTR_TO_BTF_ID:
eaa6bcb7 9490 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 9491 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
9492 dst_reg->btf_id = aux->btf_var.btf_id;
9493 break;
9494 default:
9495 verbose(env, "bpf verifier is misconfigured\n");
9496 return -EFAULT;
9497 }
9498 return 0;
9499 }
9500
69c087ba
YS
9501 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9502 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
9503 u32 subprogno = find_subprog(env,
9504 env->insn_idx + insn->imm + 1);
69c087ba
YS
9505
9506 if (!aux->func_info) {
9507 verbose(env, "missing btf func_info\n");
9508 return -EINVAL;
9509 }
9510 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9511 verbose(env, "callback function not static\n");
9512 return -EINVAL;
9513 }
9514
9515 dst_reg->type = PTR_TO_FUNC;
9516 dst_reg->subprogno = subprogno;
9517 return 0;
9518 }
9519
d8eca5bb
DB
9520 map = env->used_maps[aux->map_index];
9521 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 9522 dst_reg->map_ptr = map;
d8eca5bb 9523
387544bf
AS
9524 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9525 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
9526 dst_reg->type = PTR_TO_MAP_VALUE;
9527 dst_reg->off = aux->map_off;
d8eca5bb 9528 if (map_value_has_spin_lock(map))
4976b718 9529 dst_reg->id = ++env->id_gen;
387544bf
AS
9530 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9531 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 9532 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
9533 } else {
9534 verbose(env, "bpf verifier is misconfigured\n");
9535 return -EINVAL;
9536 }
17a52670 9537
17a52670
AS
9538 return 0;
9539}
9540
96be4325
DB
9541static bool may_access_skb(enum bpf_prog_type type)
9542{
9543 switch (type) {
9544 case BPF_PROG_TYPE_SOCKET_FILTER:
9545 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 9546 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
9547 return true;
9548 default:
9549 return false;
9550 }
9551}
9552
ddd872bc
AS
9553/* verify safety of LD_ABS|LD_IND instructions:
9554 * - they can only appear in the programs where ctx == skb
9555 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9556 * preserve R6-R9, and store return value into R0
9557 *
9558 * Implicit input:
9559 * ctx == skb == R6 == CTX
9560 *
9561 * Explicit input:
9562 * SRC == any register
9563 * IMM == 32-bit immediate
9564 *
9565 * Output:
9566 * R0 - 8/16/32-bit skb data converted to cpu endianness
9567 */
58e2af8b 9568static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9569{
638f5b90 9570 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9571 static const int ctx_reg = BPF_REG_6;
ddd872bc 9572 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9573 int i, err;
9574
7e40781c 9575 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9576 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9577 return -EINVAL;
9578 }
9579
e0cea7ce
DB
9580 if (!env->ops->gen_ld_abs) {
9581 verbose(env, "bpf verifier is misconfigured\n");
9582 return -EINVAL;
9583 }
9584
ddd872bc 9585 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9586 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9587 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9588 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9589 return -EINVAL;
9590 }
9591
9592 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9593 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9594 if (err)
9595 return err;
9596
fd978bf7
JS
9597 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9598 * gen_ld_abs() may terminate the program at runtime, leading to
9599 * reference leak.
9600 */
9601 err = check_reference_leak(env);
9602 if (err) {
9603 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9604 return err;
9605 }
9606
d83525ca
AS
9607 if (env->cur_state->active_spin_lock) {
9608 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9609 return -EINVAL;
9610 }
9611
6d4f151a 9612 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9613 verbose(env,
9614 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9615 return -EINVAL;
9616 }
9617
9618 if (mode == BPF_IND) {
9619 /* check explicit source operand */
dc503a8a 9620 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9621 if (err)
9622 return err;
9623 }
9624
6d4f151a
DB
9625 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9626 if (err < 0)
9627 return err;
9628
ddd872bc 9629 /* reset caller saved regs to unreadable */
dc503a8a 9630 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9631 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9632 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9633 }
ddd872bc
AS
9634
9635 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9636 * the value fetched from the packet.
9637 * Already marked as written above.
ddd872bc 9638 */
61bd5218 9639 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9640 /* ld_abs load up to 32-bit skb data. */
9641 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9642 return 0;
9643}
9644
390ee7e2
AS
9645static int check_return_code(struct bpf_verifier_env *env)
9646{
5cf1e914 9647 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9648 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9649 struct bpf_reg_state *reg;
9650 struct tnum range = tnum_range(0, 1);
7e40781c 9651 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9652 int err;
bfc6bb74
AS
9653 struct bpf_func_state *frame = env->cur_state->frame[0];
9654 const bool is_subprog = frame->subprogno;
27ae7997 9655
9e4e01df 9656 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9657 if (!is_subprog &&
9658 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9659 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9660 !prog->aux->attach_func_proto->type)
9661 return 0;
9662
8fb33b60 9663 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9664 * to return the value from eBPF program.
9665 * Make sure that it's readable at this time
9666 * of bpf_exit, which means that program wrote
9667 * something into it earlier
9668 */
9669 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9670 if (err)
9671 return err;
9672
9673 if (is_pointer_value(env, BPF_REG_0)) {
9674 verbose(env, "R0 leaks addr as return value\n");
9675 return -EACCES;
9676 }
390ee7e2 9677
f782e2c3 9678 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
9679
9680 if (frame->in_async_callback_fn) {
9681 /* enforce return zero from async callbacks like timer */
9682 if (reg->type != SCALAR_VALUE) {
9683 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9684 reg_type_str[reg->type]);
9685 return -EINVAL;
9686 }
9687
9688 if (!tnum_in(tnum_const(0), reg->var_off)) {
9689 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9690 return -EINVAL;
9691 }
9692 return 0;
9693 }
9694
f782e2c3
DB
9695 if (is_subprog) {
9696 if (reg->type != SCALAR_VALUE) {
9697 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9698 reg_type_str[reg->type]);
9699 return -EINVAL;
9700 }
9701 return 0;
9702 }
9703
7e40781c 9704 switch (prog_type) {
983695fa
DB
9705 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9706 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9707 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9708 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9709 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9710 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9711 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9712 range = tnum_range(1, 1);
77241217
SF
9713 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9714 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9715 range = tnum_range(0, 3);
ed4ed404 9716 break;
390ee7e2 9717 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9718 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9719 range = tnum_range(0, 3);
9720 enforce_attach_type_range = tnum_range(2, 3);
9721 }
ed4ed404 9722 break;
390ee7e2
AS
9723 case BPF_PROG_TYPE_CGROUP_SOCK:
9724 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9725 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9726 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9727 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9728 break;
15ab09bd
AS
9729 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9730 if (!env->prog->aux->attach_btf_id)
9731 return 0;
9732 range = tnum_const(0);
9733 break;
15d83c4d 9734 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9735 switch (env->prog->expected_attach_type) {
9736 case BPF_TRACE_FENTRY:
9737 case BPF_TRACE_FEXIT:
9738 range = tnum_const(0);
9739 break;
9740 case BPF_TRACE_RAW_TP:
9741 case BPF_MODIFY_RETURN:
15d83c4d 9742 return 0;
2ec0616e
DB
9743 case BPF_TRACE_ITER:
9744 break;
e92888c7
YS
9745 default:
9746 return -ENOTSUPP;
9747 }
15d83c4d 9748 break;
e9ddbb77
JS
9749 case BPF_PROG_TYPE_SK_LOOKUP:
9750 range = tnum_range(SK_DROP, SK_PASS);
9751 break;
e92888c7
YS
9752 case BPF_PROG_TYPE_EXT:
9753 /* freplace program can return anything as its return value
9754 * depends on the to-be-replaced kernel func or bpf program.
9755 */
390ee7e2
AS
9756 default:
9757 return 0;
9758 }
9759
390ee7e2 9760 if (reg->type != SCALAR_VALUE) {
61bd5218 9761 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9762 reg_type_str[reg->type]);
9763 return -EINVAL;
9764 }
9765
9766 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9767 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9768 return -EINVAL;
9769 }
5cf1e914 9770
9771 if (!tnum_is_unknown(enforce_attach_type_range) &&
9772 tnum_in(enforce_attach_type_range, reg->var_off))
9773 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9774 return 0;
9775}
9776
475fb78f
AS
9777/* non-recursive DFS pseudo code
9778 * 1 procedure DFS-iterative(G,v):
9779 * 2 label v as discovered
9780 * 3 let S be a stack
9781 * 4 S.push(v)
9782 * 5 while S is not empty
9783 * 6 t <- S.pop()
9784 * 7 if t is what we're looking for:
9785 * 8 return t
9786 * 9 for all edges e in G.adjacentEdges(t) do
9787 * 10 if edge e is already labelled
9788 * 11 continue with the next edge
9789 * 12 w <- G.adjacentVertex(t,e)
9790 * 13 if vertex w is not discovered and not explored
9791 * 14 label e as tree-edge
9792 * 15 label w as discovered
9793 * 16 S.push(w)
9794 * 17 continue at 5
9795 * 18 else if vertex w is discovered
9796 * 19 label e as back-edge
9797 * 20 else
9798 * 21 // vertex w is explored
9799 * 22 label e as forward- or cross-edge
9800 * 23 label t as explored
9801 * 24 S.pop()
9802 *
9803 * convention:
9804 * 0x10 - discovered
9805 * 0x11 - discovered and fall-through edge labelled
9806 * 0x12 - discovered and fall-through and branch edges labelled
9807 * 0x20 - explored
9808 */
9809
9810enum {
9811 DISCOVERED = 0x10,
9812 EXPLORED = 0x20,
9813 FALLTHROUGH = 1,
9814 BRANCH = 2,
9815};
9816
dc2a4ebc
AS
9817static u32 state_htab_size(struct bpf_verifier_env *env)
9818{
9819 return env->prog->len;
9820}
9821
5d839021
AS
9822static struct bpf_verifier_state_list **explored_state(
9823 struct bpf_verifier_env *env,
9824 int idx)
9825{
dc2a4ebc
AS
9826 struct bpf_verifier_state *cur = env->cur_state;
9827 struct bpf_func_state *state = cur->frame[cur->curframe];
9828
9829 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9830}
9831
9832static void init_explored_state(struct bpf_verifier_env *env, int idx)
9833{
a8f500af 9834 env->insn_aux_data[idx].prune_point = true;
5d839021 9835}
f1bca824 9836
59e2e27d
WAF
9837enum {
9838 DONE_EXPLORING = 0,
9839 KEEP_EXPLORING = 1,
9840};
9841
475fb78f
AS
9842/* t, w, e - match pseudo-code above:
9843 * t - index of current instruction
9844 * w - next instruction
9845 * e - edge
9846 */
2589726d
AS
9847static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9848 bool loop_ok)
475fb78f 9849{
7df737e9
AS
9850 int *insn_stack = env->cfg.insn_stack;
9851 int *insn_state = env->cfg.insn_state;
9852
475fb78f 9853 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9854 return DONE_EXPLORING;
475fb78f
AS
9855
9856 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9857 return DONE_EXPLORING;
475fb78f
AS
9858
9859 if (w < 0 || w >= env->prog->len) {
d9762e84 9860 verbose_linfo(env, t, "%d: ", t);
61bd5218 9861 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9862 return -EINVAL;
9863 }
9864
f1bca824
AS
9865 if (e == BRANCH)
9866 /* mark branch target for state pruning */
5d839021 9867 init_explored_state(env, w);
f1bca824 9868
475fb78f
AS
9869 if (insn_state[w] == 0) {
9870 /* tree-edge */
9871 insn_state[t] = DISCOVERED | e;
9872 insn_state[w] = DISCOVERED;
7df737e9 9873 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9874 return -E2BIG;
7df737e9 9875 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9876 return KEEP_EXPLORING;
475fb78f 9877 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9878 if (loop_ok && env->bpf_capable)
59e2e27d 9879 return DONE_EXPLORING;
d9762e84
MKL
9880 verbose_linfo(env, t, "%d: ", t);
9881 verbose_linfo(env, w, "%d: ", w);
61bd5218 9882 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9883 return -EINVAL;
9884 } else if (insn_state[w] == EXPLORED) {
9885 /* forward- or cross-edge */
9886 insn_state[t] = DISCOVERED | e;
9887 } else {
61bd5218 9888 verbose(env, "insn state internal bug\n");
475fb78f
AS
9889 return -EFAULT;
9890 }
59e2e27d
WAF
9891 return DONE_EXPLORING;
9892}
9893
efdb22de
YS
9894static int visit_func_call_insn(int t, int insn_cnt,
9895 struct bpf_insn *insns,
9896 struct bpf_verifier_env *env,
9897 bool visit_callee)
9898{
9899 int ret;
9900
9901 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9902 if (ret)
9903 return ret;
9904
9905 if (t + 1 < insn_cnt)
9906 init_explored_state(env, t + 1);
9907 if (visit_callee) {
9908 init_explored_state(env, t);
86fc6ee6
AS
9909 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9910 /* It's ok to allow recursion from CFG point of
9911 * view. __check_func_call() will do the actual
9912 * check.
9913 */
9914 bpf_pseudo_func(insns + t));
efdb22de
YS
9915 }
9916 return ret;
9917}
9918
59e2e27d
WAF
9919/* Visits the instruction at index t and returns one of the following:
9920 * < 0 - an error occurred
9921 * DONE_EXPLORING - the instruction was fully explored
9922 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9923 */
9924static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9925{
9926 struct bpf_insn *insns = env->prog->insnsi;
9927 int ret;
9928
69c087ba
YS
9929 if (bpf_pseudo_func(insns + t))
9930 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9931
59e2e27d
WAF
9932 /* All non-branch instructions have a single fall-through edge. */
9933 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9934 BPF_CLASS(insns[t].code) != BPF_JMP32)
9935 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9936
9937 switch (BPF_OP(insns[t].code)) {
9938 case BPF_EXIT:
9939 return DONE_EXPLORING;
9940
9941 case BPF_CALL:
bfc6bb74
AS
9942 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9943 /* Mark this call insn to trigger is_state_visited() check
9944 * before call itself is processed by __check_func_call().
9945 * Otherwise new async state will be pushed for further
9946 * exploration.
9947 */
9948 init_explored_state(env, t);
efdb22de
YS
9949 return visit_func_call_insn(t, insn_cnt, insns, env,
9950 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9951
9952 case BPF_JA:
9953 if (BPF_SRC(insns[t].code) != BPF_K)
9954 return -EINVAL;
9955
9956 /* unconditional jump with single edge */
9957 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9958 true);
9959 if (ret)
9960 return ret;
9961
9962 /* unconditional jmp is not a good pruning point,
9963 * but it's marked, since backtracking needs
9964 * to record jmp history in is_state_visited().
9965 */
9966 init_explored_state(env, t + insns[t].off + 1);
9967 /* tell verifier to check for equivalent states
9968 * after every call and jump
9969 */
9970 if (t + 1 < insn_cnt)
9971 init_explored_state(env, t + 1);
9972
9973 return ret;
9974
9975 default:
9976 /* conditional jump with two edges */
9977 init_explored_state(env, t);
9978 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9979 if (ret)
9980 return ret;
9981
9982 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9983 }
475fb78f
AS
9984}
9985
9986/* non-recursive depth-first-search to detect loops in BPF program
9987 * loop == back-edge in directed graph
9988 */
58e2af8b 9989static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9990{
475fb78f 9991 int insn_cnt = env->prog->len;
7df737e9 9992 int *insn_stack, *insn_state;
475fb78f 9993 int ret = 0;
59e2e27d 9994 int i;
475fb78f 9995
7df737e9 9996 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9997 if (!insn_state)
9998 return -ENOMEM;
9999
7df737e9 10000 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 10001 if (!insn_stack) {
71dde681 10002 kvfree(insn_state);
475fb78f
AS
10003 return -ENOMEM;
10004 }
10005
10006 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10007 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 10008 env->cfg.cur_stack = 1;
475fb78f 10009
59e2e27d
WAF
10010 while (env->cfg.cur_stack > 0) {
10011 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 10012
59e2e27d
WAF
10013 ret = visit_insn(t, insn_cnt, env);
10014 switch (ret) {
10015 case DONE_EXPLORING:
10016 insn_state[t] = EXPLORED;
10017 env->cfg.cur_stack--;
10018 break;
10019 case KEEP_EXPLORING:
10020 break;
10021 default:
10022 if (ret > 0) {
10023 verbose(env, "visit_insn internal bug\n");
10024 ret = -EFAULT;
475fb78f 10025 }
475fb78f 10026 goto err_free;
59e2e27d 10027 }
475fb78f
AS
10028 }
10029
59e2e27d 10030 if (env->cfg.cur_stack < 0) {
61bd5218 10031 verbose(env, "pop stack internal bug\n");
475fb78f
AS
10032 ret = -EFAULT;
10033 goto err_free;
10034 }
475fb78f 10035
475fb78f
AS
10036 for (i = 0; i < insn_cnt; i++) {
10037 if (insn_state[i] != EXPLORED) {
61bd5218 10038 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
10039 ret = -EINVAL;
10040 goto err_free;
10041 }
10042 }
10043 ret = 0; /* cfg looks good */
10044
10045err_free:
71dde681
AS
10046 kvfree(insn_state);
10047 kvfree(insn_stack);
7df737e9 10048 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
10049 return ret;
10050}
10051
09b28d76
AS
10052static int check_abnormal_return(struct bpf_verifier_env *env)
10053{
10054 int i;
10055
10056 for (i = 1; i < env->subprog_cnt; i++) {
10057 if (env->subprog_info[i].has_ld_abs) {
10058 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10059 return -EINVAL;
10060 }
10061 if (env->subprog_info[i].has_tail_call) {
10062 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10063 return -EINVAL;
10064 }
10065 }
10066 return 0;
10067}
10068
838e9690
YS
10069/* The minimum supported BTF func info size */
10070#define MIN_BPF_FUNCINFO_SIZE 8
10071#define MAX_FUNCINFO_REC_SIZE 252
10072
c454a46b
MKL
10073static int check_btf_func(struct bpf_verifier_env *env,
10074 const union bpf_attr *attr,
af2ac3e1 10075 bpfptr_t uattr)
838e9690 10076{
09b28d76 10077 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 10078 u32 i, nfuncs, urec_size, min_size;
838e9690 10079 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 10080 struct bpf_func_info *krecord;
8c1b6e69 10081 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
10082 struct bpf_prog *prog;
10083 const struct btf *btf;
af2ac3e1 10084 bpfptr_t urecord;
d0b2818e 10085 u32 prev_offset = 0;
09b28d76 10086 bool scalar_return;
e7ed83d6 10087 int ret = -ENOMEM;
838e9690
YS
10088
10089 nfuncs = attr->func_info_cnt;
09b28d76
AS
10090 if (!nfuncs) {
10091 if (check_abnormal_return(env))
10092 return -EINVAL;
838e9690 10093 return 0;
09b28d76 10094 }
838e9690
YS
10095
10096 if (nfuncs != env->subprog_cnt) {
10097 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10098 return -EINVAL;
10099 }
10100
10101 urec_size = attr->func_info_rec_size;
10102 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10103 urec_size > MAX_FUNCINFO_REC_SIZE ||
10104 urec_size % sizeof(u32)) {
10105 verbose(env, "invalid func info rec size %u\n", urec_size);
10106 return -EINVAL;
10107 }
10108
c454a46b
MKL
10109 prog = env->prog;
10110 btf = prog->aux->btf;
838e9690 10111
af2ac3e1 10112 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
10113 min_size = min_t(u32, krec_size, urec_size);
10114
ba64e7d8 10115 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
10116 if (!krecord)
10117 return -ENOMEM;
8c1b6e69
AS
10118 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10119 if (!info_aux)
10120 goto err_free;
ba64e7d8 10121
838e9690
YS
10122 for (i = 0; i < nfuncs; i++) {
10123 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10124 if (ret) {
10125 if (ret == -E2BIG) {
10126 verbose(env, "nonzero tailing record in func info");
10127 /* set the size kernel expects so loader can zero
10128 * out the rest of the record.
10129 */
af2ac3e1
AS
10130 if (copy_to_bpfptr_offset(uattr,
10131 offsetof(union bpf_attr, func_info_rec_size),
10132 &min_size, sizeof(min_size)))
838e9690
YS
10133 ret = -EFAULT;
10134 }
c454a46b 10135 goto err_free;
838e9690
YS
10136 }
10137
af2ac3e1 10138 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10139 ret = -EFAULT;
c454a46b 10140 goto err_free;
838e9690
YS
10141 }
10142
d30d42e0 10143 /* check insn_off */
09b28d76 10144 ret = -EINVAL;
838e9690 10145 if (i == 0) {
d30d42e0 10146 if (krecord[i].insn_off) {
838e9690 10147 verbose(env,
d30d42e0
MKL
10148 "nonzero insn_off %u for the first func info record",
10149 krecord[i].insn_off);
c454a46b 10150 goto err_free;
838e9690 10151 }
d30d42e0 10152 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
10153 verbose(env,
10154 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 10155 krecord[i].insn_off, prev_offset);
c454a46b 10156 goto err_free;
838e9690
YS
10157 }
10158
d30d42e0 10159 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 10160 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 10161 goto err_free;
838e9690
YS
10162 }
10163
10164 /* check type_id */
ba64e7d8 10165 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 10166 if (!type || !btf_type_is_func(type)) {
838e9690 10167 verbose(env, "invalid type id %d in func info",
ba64e7d8 10168 krecord[i].type_id);
c454a46b 10169 goto err_free;
838e9690 10170 }
51c39bb1 10171 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
10172
10173 func_proto = btf_type_by_id(btf, type->type);
10174 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10175 /* btf_func_check() already verified it during BTF load */
10176 goto err_free;
10177 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10178 scalar_return =
10179 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10180 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10181 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10182 goto err_free;
10183 }
10184 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10185 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10186 goto err_free;
10187 }
10188
d30d42e0 10189 prev_offset = krecord[i].insn_off;
af2ac3e1 10190 bpfptr_add(&urecord, urec_size);
838e9690
YS
10191 }
10192
ba64e7d8
YS
10193 prog->aux->func_info = krecord;
10194 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 10195 prog->aux->func_info_aux = info_aux;
838e9690
YS
10196 return 0;
10197
c454a46b 10198err_free:
ba64e7d8 10199 kvfree(krecord);
8c1b6e69 10200 kfree(info_aux);
838e9690
YS
10201 return ret;
10202}
10203
ba64e7d8
YS
10204static void adjust_btf_func(struct bpf_verifier_env *env)
10205{
8c1b6e69 10206 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
10207 int i;
10208
8c1b6e69 10209 if (!aux->func_info)
ba64e7d8
YS
10210 return;
10211
10212 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 10213 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
10214}
10215
c454a46b
MKL
10216#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10217 sizeof(((struct bpf_line_info *)(0))->line_col))
10218#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10219
10220static int check_btf_line(struct bpf_verifier_env *env,
10221 const union bpf_attr *attr,
af2ac3e1 10222 bpfptr_t uattr)
c454a46b
MKL
10223{
10224 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10225 struct bpf_subprog_info *sub;
10226 struct bpf_line_info *linfo;
10227 struct bpf_prog *prog;
10228 const struct btf *btf;
af2ac3e1 10229 bpfptr_t ulinfo;
c454a46b
MKL
10230 int err;
10231
10232 nr_linfo = attr->line_info_cnt;
10233 if (!nr_linfo)
10234 return 0;
0e6491b5
BC
10235 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10236 return -EINVAL;
c454a46b
MKL
10237
10238 rec_size = attr->line_info_rec_size;
10239 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10240 rec_size > MAX_LINEINFO_REC_SIZE ||
10241 rec_size & (sizeof(u32) - 1))
10242 return -EINVAL;
10243
10244 /* Need to zero it in case the userspace may
10245 * pass in a smaller bpf_line_info object.
10246 */
10247 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10248 GFP_KERNEL | __GFP_NOWARN);
10249 if (!linfo)
10250 return -ENOMEM;
10251
10252 prog = env->prog;
10253 btf = prog->aux->btf;
10254
10255 s = 0;
10256 sub = env->subprog_info;
af2ac3e1 10257 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
10258 expected_size = sizeof(struct bpf_line_info);
10259 ncopy = min_t(u32, expected_size, rec_size);
10260 for (i = 0; i < nr_linfo; i++) {
10261 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10262 if (err) {
10263 if (err == -E2BIG) {
10264 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
10265 if (copy_to_bpfptr_offset(uattr,
10266 offsetof(union bpf_attr, line_info_rec_size),
10267 &expected_size, sizeof(expected_size)))
c454a46b
MKL
10268 err = -EFAULT;
10269 }
10270 goto err_free;
10271 }
10272
af2ac3e1 10273 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
10274 err = -EFAULT;
10275 goto err_free;
10276 }
10277
10278 /*
10279 * Check insn_off to ensure
10280 * 1) strictly increasing AND
10281 * 2) bounded by prog->len
10282 *
10283 * The linfo[0].insn_off == 0 check logically falls into
10284 * the later "missing bpf_line_info for func..." case
10285 * because the first linfo[0].insn_off must be the
10286 * first sub also and the first sub must have
10287 * subprog_info[0].start == 0.
10288 */
10289 if ((i && linfo[i].insn_off <= prev_offset) ||
10290 linfo[i].insn_off >= prog->len) {
10291 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10292 i, linfo[i].insn_off, prev_offset,
10293 prog->len);
10294 err = -EINVAL;
10295 goto err_free;
10296 }
10297
fdbaa0be
MKL
10298 if (!prog->insnsi[linfo[i].insn_off].code) {
10299 verbose(env,
10300 "Invalid insn code at line_info[%u].insn_off\n",
10301 i);
10302 err = -EINVAL;
10303 goto err_free;
10304 }
10305
23127b33
MKL
10306 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10307 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
10308 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10309 err = -EINVAL;
10310 goto err_free;
10311 }
10312
10313 if (s != env->subprog_cnt) {
10314 if (linfo[i].insn_off == sub[s].start) {
10315 sub[s].linfo_idx = i;
10316 s++;
10317 } else if (sub[s].start < linfo[i].insn_off) {
10318 verbose(env, "missing bpf_line_info for func#%u\n", s);
10319 err = -EINVAL;
10320 goto err_free;
10321 }
10322 }
10323
10324 prev_offset = linfo[i].insn_off;
af2ac3e1 10325 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
10326 }
10327
10328 if (s != env->subprog_cnt) {
10329 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10330 env->subprog_cnt - s, s);
10331 err = -EINVAL;
10332 goto err_free;
10333 }
10334
10335 prog->aux->linfo = linfo;
10336 prog->aux->nr_linfo = nr_linfo;
10337
10338 return 0;
10339
10340err_free:
10341 kvfree(linfo);
10342 return err;
10343}
10344
fbd94c7a
AS
10345#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
10346#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
10347
10348static int check_core_relo(struct bpf_verifier_env *env,
10349 const union bpf_attr *attr,
10350 bpfptr_t uattr)
10351{
10352 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
10353 struct bpf_core_relo core_relo = {};
10354 struct bpf_prog *prog = env->prog;
10355 const struct btf *btf = prog->aux->btf;
10356 struct bpf_core_ctx ctx = {
10357 .log = &env->log,
10358 .btf = btf,
10359 };
10360 bpfptr_t u_core_relo;
10361 int err;
10362
10363 nr_core_relo = attr->core_relo_cnt;
10364 if (!nr_core_relo)
10365 return 0;
10366 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
10367 return -EINVAL;
10368
10369 rec_size = attr->core_relo_rec_size;
10370 if (rec_size < MIN_CORE_RELO_SIZE ||
10371 rec_size > MAX_CORE_RELO_SIZE ||
10372 rec_size % sizeof(u32))
10373 return -EINVAL;
10374
10375 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
10376 expected_size = sizeof(struct bpf_core_relo);
10377 ncopy = min_t(u32, expected_size, rec_size);
10378
10379 /* Unlike func_info and line_info, copy and apply each CO-RE
10380 * relocation record one at a time.
10381 */
10382 for (i = 0; i < nr_core_relo; i++) {
10383 /* future proofing when sizeof(bpf_core_relo) changes */
10384 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
10385 if (err) {
10386 if (err == -E2BIG) {
10387 verbose(env, "nonzero tailing record in core_relo");
10388 if (copy_to_bpfptr_offset(uattr,
10389 offsetof(union bpf_attr, core_relo_rec_size),
10390 &expected_size, sizeof(expected_size)))
10391 err = -EFAULT;
10392 }
10393 break;
10394 }
10395
10396 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
10397 err = -EFAULT;
10398 break;
10399 }
10400
10401 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
10402 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
10403 i, core_relo.insn_off, prog->len);
10404 err = -EINVAL;
10405 break;
10406 }
10407
10408 err = bpf_core_apply(&ctx, &core_relo, i,
10409 &prog->insnsi[core_relo.insn_off / 8]);
10410 if (err)
10411 break;
10412 bpfptr_add(&u_core_relo, rec_size);
10413 }
10414 return err;
10415}
10416
c454a46b
MKL
10417static int check_btf_info(struct bpf_verifier_env *env,
10418 const union bpf_attr *attr,
af2ac3e1 10419 bpfptr_t uattr)
c454a46b
MKL
10420{
10421 struct btf *btf;
10422 int err;
10423
09b28d76
AS
10424 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10425 if (check_abnormal_return(env))
10426 return -EINVAL;
c454a46b 10427 return 0;
09b28d76 10428 }
c454a46b
MKL
10429
10430 btf = btf_get_by_fd(attr->prog_btf_fd);
10431 if (IS_ERR(btf))
10432 return PTR_ERR(btf);
350a5c4d
AS
10433 if (btf_is_kernel(btf)) {
10434 btf_put(btf);
10435 return -EACCES;
10436 }
c454a46b
MKL
10437 env->prog->aux->btf = btf;
10438
10439 err = check_btf_func(env, attr, uattr);
10440 if (err)
10441 return err;
10442
10443 err = check_btf_line(env, attr, uattr);
10444 if (err)
10445 return err;
10446
fbd94c7a
AS
10447 err = check_core_relo(env, attr, uattr);
10448 if (err)
10449 return err;
10450
c454a46b 10451 return 0;
ba64e7d8
YS
10452}
10453
f1174f77
EC
10454/* check %cur's range satisfies %old's */
10455static bool range_within(struct bpf_reg_state *old,
10456 struct bpf_reg_state *cur)
10457{
b03c9f9f
EC
10458 return old->umin_value <= cur->umin_value &&
10459 old->umax_value >= cur->umax_value &&
10460 old->smin_value <= cur->smin_value &&
fd675184
DB
10461 old->smax_value >= cur->smax_value &&
10462 old->u32_min_value <= cur->u32_min_value &&
10463 old->u32_max_value >= cur->u32_max_value &&
10464 old->s32_min_value <= cur->s32_min_value &&
10465 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
10466}
10467
f1174f77
EC
10468/* If in the old state two registers had the same id, then they need to have
10469 * the same id in the new state as well. But that id could be different from
10470 * the old state, so we need to track the mapping from old to new ids.
10471 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10472 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10473 * regs with a different old id could still have new id 9, we don't care about
10474 * that.
10475 * So we look through our idmap to see if this old id has been seen before. If
10476 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 10477 */
c9e73e3d 10478static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 10479{
f1174f77 10480 unsigned int i;
969bf05e 10481
c9e73e3d 10482 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
10483 if (!idmap[i].old) {
10484 /* Reached an empty slot; haven't seen this id before */
10485 idmap[i].old = old_id;
10486 idmap[i].cur = cur_id;
10487 return true;
10488 }
10489 if (idmap[i].old == old_id)
10490 return idmap[i].cur == cur_id;
10491 }
10492 /* We ran out of idmap slots, which should be impossible */
10493 WARN_ON_ONCE(1);
10494 return false;
10495}
10496
9242b5f5
AS
10497static void clean_func_state(struct bpf_verifier_env *env,
10498 struct bpf_func_state *st)
10499{
10500 enum bpf_reg_liveness live;
10501 int i, j;
10502
10503 for (i = 0; i < BPF_REG_FP; i++) {
10504 live = st->regs[i].live;
10505 /* liveness must not touch this register anymore */
10506 st->regs[i].live |= REG_LIVE_DONE;
10507 if (!(live & REG_LIVE_READ))
10508 /* since the register is unused, clear its state
10509 * to make further comparison simpler
10510 */
f54c7898 10511 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
10512 }
10513
10514 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10515 live = st->stack[i].spilled_ptr.live;
10516 /* liveness must not touch this stack slot anymore */
10517 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10518 if (!(live & REG_LIVE_READ)) {
f54c7898 10519 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
10520 for (j = 0; j < BPF_REG_SIZE; j++)
10521 st->stack[i].slot_type[j] = STACK_INVALID;
10522 }
10523 }
10524}
10525
10526static void clean_verifier_state(struct bpf_verifier_env *env,
10527 struct bpf_verifier_state *st)
10528{
10529 int i;
10530
10531 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10532 /* all regs in this state in all frames were already marked */
10533 return;
10534
10535 for (i = 0; i <= st->curframe; i++)
10536 clean_func_state(env, st->frame[i]);
10537}
10538
10539/* the parentage chains form a tree.
10540 * the verifier states are added to state lists at given insn and
10541 * pushed into state stack for future exploration.
10542 * when the verifier reaches bpf_exit insn some of the verifer states
10543 * stored in the state lists have their final liveness state already,
10544 * but a lot of states will get revised from liveness point of view when
10545 * the verifier explores other branches.
10546 * Example:
10547 * 1: r0 = 1
10548 * 2: if r1 == 100 goto pc+1
10549 * 3: r0 = 2
10550 * 4: exit
10551 * when the verifier reaches exit insn the register r0 in the state list of
10552 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10553 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10554 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10555 *
10556 * Since the verifier pushes the branch states as it sees them while exploring
10557 * the program the condition of walking the branch instruction for the second
10558 * time means that all states below this branch were already explored and
8fb33b60 10559 * their final liveness marks are already propagated.
9242b5f5
AS
10560 * Hence when the verifier completes the search of state list in is_state_visited()
10561 * we can call this clean_live_states() function to mark all liveness states
10562 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10563 * will not be used.
10564 * This function also clears the registers and stack for states that !READ
10565 * to simplify state merging.
10566 *
10567 * Important note here that walking the same branch instruction in the callee
10568 * doesn't meant that the states are DONE. The verifier has to compare
10569 * the callsites
10570 */
10571static void clean_live_states(struct bpf_verifier_env *env, int insn,
10572 struct bpf_verifier_state *cur)
10573{
10574 struct bpf_verifier_state_list *sl;
10575 int i;
10576
5d839021 10577 sl = *explored_state(env, insn);
a8f500af 10578 while (sl) {
2589726d
AS
10579 if (sl->state.branches)
10580 goto next;
dc2a4ebc
AS
10581 if (sl->state.insn_idx != insn ||
10582 sl->state.curframe != cur->curframe)
9242b5f5
AS
10583 goto next;
10584 for (i = 0; i <= cur->curframe; i++)
10585 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10586 goto next;
10587 clean_verifier_state(env, &sl->state);
10588next:
10589 sl = sl->next;
10590 }
10591}
10592
f1174f77 10593/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
10594static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10595 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 10596{
f4d7e40a
AS
10597 bool equal;
10598
dc503a8a
EC
10599 if (!(rold->live & REG_LIVE_READ))
10600 /* explored state didn't use this */
10601 return true;
10602
679c782d 10603 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
10604
10605 if (rold->type == PTR_TO_STACK)
10606 /* two stack pointers are equal only if they're pointing to
10607 * the same stack frame, since fp-8 in foo != fp-8 in bar
10608 */
10609 return equal && rold->frameno == rcur->frameno;
10610
10611 if (equal)
969bf05e
AS
10612 return true;
10613
f1174f77
EC
10614 if (rold->type == NOT_INIT)
10615 /* explored state can't have used this */
969bf05e 10616 return true;
f1174f77
EC
10617 if (rcur->type == NOT_INIT)
10618 return false;
10619 switch (rold->type) {
10620 case SCALAR_VALUE:
e042aa53
DB
10621 if (env->explore_alu_limits)
10622 return false;
f1174f77 10623 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
10624 if (!rold->precise && !rcur->precise)
10625 return true;
f1174f77
EC
10626 /* new val must satisfy old val knowledge */
10627 return range_within(rold, rcur) &&
10628 tnum_in(rold->var_off, rcur->var_off);
10629 } else {
179d1c56
JH
10630 /* We're trying to use a pointer in place of a scalar.
10631 * Even if the scalar was unbounded, this could lead to
10632 * pointer leaks because scalars are allowed to leak
10633 * while pointers are not. We could make this safe in
10634 * special cases if root is calling us, but it's
10635 * probably not worth the hassle.
f1174f77 10636 */
179d1c56 10637 return false;
f1174f77 10638 }
69c087ba 10639 case PTR_TO_MAP_KEY:
f1174f77 10640 case PTR_TO_MAP_VALUE:
1b688a19
EC
10641 /* If the new min/max/var_off satisfy the old ones and
10642 * everything else matches, we are OK.
d83525ca
AS
10643 * 'id' is not compared, since it's only used for maps with
10644 * bpf_spin_lock inside map element and in such cases if
10645 * the rest of the prog is valid for one map element then
10646 * it's valid for all map elements regardless of the key
10647 * used in bpf_map_lookup()
1b688a19
EC
10648 */
10649 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10650 range_within(rold, rcur) &&
10651 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
10652 case PTR_TO_MAP_VALUE_OR_NULL:
10653 /* a PTR_TO_MAP_VALUE could be safe to use as a
10654 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10655 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10656 * checked, doing so could have affected others with the same
10657 * id, and we can't check for that because we lost the id when
10658 * we converted to a PTR_TO_MAP_VALUE.
10659 */
10660 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10661 return false;
10662 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10663 return false;
10664 /* Check our ids match any regs they're supposed to */
10665 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 10666 case PTR_TO_PACKET_META:
f1174f77 10667 case PTR_TO_PACKET:
de8f3a83 10668 if (rcur->type != rold->type)
f1174f77
EC
10669 return false;
10670 /* We must have at least as much range as the old ptr
10671 * did, so that any accesses which were safe before are
10672 * still safe. This is true even if old range < old off,
10673 * since someone could have accessed through (ptr - k), or
10674 * even done ptr -= k in a register, to get a safe access.
10675 */
10676 if (rold->range > rcur->range)
10677 return false;
10678 /* If the offsets don't match, we can't trust our alignment;
10679 * nor can we be sure that we won't fall out of range.
10680 */
10681 if (rold->off != rcur->off)
10682 return false;
10683 /* id relations must be preserved */
10684 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10685 return false;
10686 /* new val must satisfy old val knowledge */
10687 return range_within(rold, rcur) &&
10688 tnum_in(rold->var_off, rcur->var_off);
10689 case PTR_TO_CTX:
10690 case CONST_PTR_TO_MAP:
f1174f77 10691 case PTR_TO_PACKET_END:
d58e468b 10692 case PTR_TO_FLOW_KEYS:
c64b7983
JS
10693 case PTR_TO_SOCKET:
10694 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10695 case PTR_TO_SOCK_COMMON:
10696 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10697 case PTR_TO_TCP_SOCK:
10698 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10699 case PTR_TO_XDP_SOCK:
f1174f77
EC
10700 /* Only valid matches are exact, which memcmp() above
10701 * would have accepted
10702 */
10703 default:
10704 /* Don't know what's going on, just say it's not safe */
10705 return false;
10706 }
969bf05e 10707
f1174f77
EC
10708 /* Shouldn't get here; if we do, say it's not safe */
10709 WARN_ON_ONCE(1);
969bf05e
AS
10710 return false;
10711}
10712
e042aa53
DB
10713static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10714 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
10715{
10716 int i, spi;
10717
638f5b90
AS
10718 /* walk slots of the explored stack and ignore any additional
10719 * slots in the current stack, since explored(safe) state
10720 * didn't use them
10721 */
10722 for (i = 0; i < old->allocated_stack; i++) {
10723 spi = i / BPF_REG_SIZE;
10724
b233920c
AS
10725 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10726 i += BPF_REG_SIZE - 1;
cc2b14d5 10727 /* explored state didn't use this */
fd05e57b 10728 continue;
b233920c 10729 }
cc2b14d5 10730
638f5b90
AS
10731 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10732 continue;
19e2dbb7
AS
10733
10734 /* explored stack has more populated slots than current stack
10735 * and these slots were used
10736 */
10737 if (i >= cur->allocated_stack)
10738 return false;
10739
cc2b14d5
AS
10740 /* if old state was safe with misc data in the stack
10741 * it will be safe with zero-initialized stack.
10742 * The opposite is not true
10743 */
10744 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10745 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10746 continue;
638f5b90
AS
10747 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10748 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10749 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10750 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10751 * this verifier states are not equivalent,
10752 * return false to continue verification of this path
10753 */
10754 return false;
27113c59 10755 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 10756 continue;
27113c59 10757 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 10758 continue;
e042aa53
DB
10759 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10760 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
10761 /* when explored and current stack slot are both storing
10762 * spilled registers, check that stored pointers types
10763 * are the same as well.
10764 * Ex: explored safe path could have stored
10765 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10766 * but current path has stored:
10767 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10768 * such verifier states are not equivalent.
10769 * return false to continue verification of this path
10770 */
10771 return false;
10772 }
10773 return true;
10774}
10775
fd978bf7
JS
10776static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10777{
10778 if (old->acquired_refs != cur->acquired_refs)
10779 return false;
10780 return !memcmp(old->refs, cur->refs,
10781 sizeof(*old->refs) * old->acquired_refs);
10782}
10783
f1bca824
AS
10784/* compare two verifier states
10785 *
10786 * all states stored in state_list are known to be valid, since
10787 * verifier reached 'bpf_exit' instruction through them
10788 *
10789 * this function is called when verifier exploring different branches of
10790 * execution popped from the state stack. If it sees an old state that has
10791 * more strict register state and more strict stack state then this execution
10792 * branch doesn't need to be explored further, since verifier already
10793 * concluded that more strict state leads to valid finish.
10794 *
10795 * Therefore two states are equivalent if register state is more conservative
10796 * and explored stack state is more conservative than the current one.
10797 * Example:
10798 * explored current
10799 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10800 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10801 *
10802 * In other words if current stack state (one being explored) has more
10803 * valid slots than old one that already passed validation, it means
10804 * the verifier can stop exploring and conclude that current state is valid too
10805 *
10806 * Similarly with registers. If explored state has register type as invalid
10807 * whereas register type in current state is meaningful, it means that
10808 * the current state will reach 'bpf_exit' instruction safely
10809 */
c9e73e3d 10810static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 10811 struct bpf_func_state *cur)
f1bca824
AS
10812{
10813 int i;
10814
c9e73e3d
LB
10815 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10816 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
10817 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10818 env->idmap_scratch))
c9e73e3d 10819 return false;
f1bca824 10820
e042aa53 10821 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 10822 return false;
fd978bf7
JS
10823
10824 if (!refsafe(old, cur))
c9e73e3d
LB
10825 return false;
10826
10827 return true;
f1bca824
AS
10828}
10829
f4d7e40a
AS
10830static bool states_equal(struct bpf_verifier_env *env,
10831 struct bpf_verifier_state *old,
10832 struct bpf_verifier_state *cur)
10833{
10834 int i;
10835
10836 if (old->curframe != cur->curframe)
10837 return false;
10838
979d63d5
DB
10839 /* Verification state from speculative execution simulation
10840 * must never prune a non-speculative execution one.
10841 */
10842 if (old->speculative && !cur->speculative)
10843 return false;
10844
d83525ca
AS
10845 if (old->active_spin_lock != cur->active_spin_lock)
10846 return false;
10847
f4d7e40a
AS
10848 /* for states to be equal callsites have to be the same
10849 * and all frame states need to be equivalent
10850 */
10851 for (i = 0; i <= old->curframe; i++) {
10852 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10853 return false;
c9e73e3d 10854 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
10855 return false;
10856 }
10857 return true;
10858}
10859
5327ed3d
JW
10860/* Return 0 if no propagation happened. Return negative error code if error
10861 * happened. Otherwise, return the propagated bit.
10862 */
55e7f3b5
JW
10863static int propagate_liveness_reg(struct bpf_verifier_env *env,
10864 struct bpf_reg_state *reg,
10865 struct bpf_reg_state *parent_reg)
10866{
5327ed3d
JW
10867 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10868 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10869 int err;
10870
5327ed3d
JW
10871 /* When comes here, read flags of PARENT_REG or REG could be any of
10872 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10873 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10874 */
10875 if (parent_flag == REG_LIVE_READ64 ||
10876 /* Or if there is no read flag from REG. */
10877 !flag ||
10878 /* Or if the read flag from REG is the same as PARENT_REG. */
10879 parent_flag == flag)
55e7f3b5
JW
10880 return 0;
10881
5327ed3d 10882 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10883 if (err)
10884 return err;
10885
5327ed3d 10886 return flag;
55e7f3b5
JW
10887}
10888
8e9cd9ce 10889/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10890 * straight-line code between a state and its parent. When we arrive at an
10891 * equivalent state (jump target or such) we didn't arrive by the straight-line
10892 * code, so read marks in the state must propagate to the parent regardless
10893 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10894 * in mark_reg_read() is for.
8e9cd9ce 10895 */
f4d7e40a
AS
10896static int propagate_liveness(struct bpf_verifier_env *env,
10897 const struct bpf_verifier_state *vstate,
10898 struct bpf_verifier_state *vparent)
dc503a8a 10899{
3f8cafa4 10900 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10901 struct bpf_func_state *state, *parent;
3f8cafa4 10902 int i, frame, err = 0;
dc503a8a 10903
f4d7e40a
AS
10904 if (vparent->curframe != vstate->curframe) {
10905 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10906 vparent->curframe, vstate->curframe);
10907 return -EFAULT;
10908 }
dc503a8a
EC
10909 /* Propagate read liveness of registers... */
10910 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10911 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10912 parent = vparent->frame[frame];
10913 state = vstate->frame[frame];
10914 parent_reg = parent->regs;
10915 state_reg = state->regs;
83d16312
JK
10916 /* We don't need to worry about FP liveness, it's read-only */
10917 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10918 err = propagate_liveness_reg(env, &state_reg[i],
10919 &parent_reg[i]);
5327ed3d 10920 if (err < 0)
3f8cafa4 10921 return err;
5327ed3d
JW
10922 if (err == REG_LIVE_READ64)
10923 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10924 }
f4d7e40a 10925
1b04aee7 10926 /* Propagate stack slots. */
f4d7e40a
AS
10927 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10928 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10929 parent_reg = &parent->stack[i].spilled_ptr;
10930 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10931 err = propagate_liveness_reg(env, state_reg,
10932 parent_reg);
5327ed3d 10933 if (err < 0)
3f8cafa4 10934 return err;
dc503a8a
EC
10935 }
10936 }
5327ed3d 10937 return 0;
dc503a8a
EC
10938}
10939
a3ce685d
AS
10940/* find precise scalars in the previous equivalent state and
10941 * propagate them into the current state
10942 */
10943static int propagate_precision(struct bpf_verifier_env *env,
10944 const struct bpf_verifier_state *old)
10945{
10946 struct bpf_reg_state *state_reg;
10947 struct bpf_func_state *state;
10948 int i, err = 0;
10949
10950 state = old->frame[old->curframe];
10951 state_reg = state->regs;
10952 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10953 if (state_reg->type != SCALAR_VALUE ||
10954 !state_reg->precise)
10955 continue;
10956 if (env->log.level & BPF_LOG_LEVEL2)
10957 verbose(env, "propagating r%d\n", i);
10958 err = mark_chain_precision(env, i);
10959 if (err < 0)
10960 return err;
10961 }
10962
10963 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 10964 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
10965 continue;
10966 state_reg = &state->stack[i].spilled_ptr;
10967 if (state_reg->type != SCALAR_VALUE ||
10968 !state_reg->precise)
10969 continue;
10970 if (env->log.level & BPF_LOG_LEVEL2)
10971 verbose(env, "propagating fp%d\n",
10972 (-i - 1) * BPF_REG_SIZE);
10973 err = mark_chain_precision_stack(env, i);
10974 if (err < 0)
10975 return err;
10976 }
10977 return 0;
10978}
10979
2589726d
AS
10980static bool states_maybe_looping(struct bpf_verifier_state *old,
10981 struct bpf_verifier_state *cur)
10982{
10983 struct bpf_func_state *fold, *fcur;
10984 int i, fr = cur->curframe;
10985
10986 if (old->curframe != fr)
10987 return false;
10988
10989 fold = old->frame[fr];
10990 fcur = cur->frame[fr];
10991 for (i = 0; i < MAX_BPF_REG; i++)
10992 if (memcmp(&fold->regs[i], &fcur->regs[i],
10993 offsetof(struct bpf_reg_state, parent)))
10994 return false;
10995 return true;
10996}
10997
10998
58e2af8b 10999static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 11000{
58e2af8b 11001 struct bpf_verifier_state_list *new_sl;
9f4686c4 11002 struct bpf_verifier_state_list *sl, **pprev;
679c782d 11003 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 11004 int i, j, err, states_cnt = 0;
10d274e8 11005 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 11006
b5dc0163 11007 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 11008 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
11009 /* this 'insn_idx' instruction wasn't marked, so we will not
11010 * be doing state search here
11011 */
11012 return 0;
11013
2589726d
AS
11014 /* bpf progs typically have pruning point every 4 instructions
11015 * http://vger.kernel.org/bpfconf2019.html#session-1
11016 * Do not add new state for future pruning if the verifier hasn't seen
11017 * at least 2 jumps and at least 8 instructions.
11018 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11019 * In tests that amounts to up to 50% reduction into total verifier
11020 * memory consumption and 20% verifier time speedup.
11021 */
11022 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11023 env->insn_processed - env->prev_insn_processed >= 8)
11024 add_new_state = true;
11025
a8f500af
AS
11026 pprev = explored_state(env, insn_idx);
11027 sl = *pprev;
11028
9242b5f5
AS
11029 clean_live_states(env, insn_idx, cur);
11030
a8f500af 11031 while (sl) {
dc2a4ebc
AS
11032 states_cnt++;
11033 if (sl->state.insn_idx != insn_idx)
11034 goto next;
bfc6bb74 11035
2589726d 11036 if (sl->state.branches) {
bfc6bb74
AS
11037 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11038
11039 if (frame->in_async_callback_fn &&
11040 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11041 /* Different async_entry_cnt means that the verifier is
11042 * processing another entry into async callback.
11043 * Seeing the same state is not an indication of infinite
11044 * loop or infinite recursion.
11045 * But finding the same state doesn't mean that it's safe
11046 * to stop processing the current state. The previous state
11047 * hasn't yet reached bpf_exit, since state.branches > 0.
11048 * Checking in_async_callback_fn alone is not enough either.
11049 * Since the verifier still needs to catch infinite loops
11050 * inside async callbacks.
11051 */
11052 } else if (states_maybe_looping(&sl->state, cur) &&
11053 states_equal(env, &sl->state, cur)) {
2589726d
AS
11054 verbose_linfo(env, insn_idx, "; ");
11055 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11056 return -EINVAL;
11057 }
11058 /* if the verifier is processing a loop, avoid adding new state
11059 * too often, since different loop iterations have distinct
11060 * states and may not help future pruning.
11061 * This threshold shouldn't be too low to make sure that
11062 * a loop with large bound will be rejected quickly.
11063 * The most abusive loop will be:
11064 * r1 += 1
11065 * if r1 < 1000000 goto pc-2
11066 * 1M insn_procssed limit / 100 == 10k peak states.
11067 * This threshold shouldn't be too high either, since states
11068 * at the end of the loop are likely to be useful in pruning.
11069 */
11070 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11071 env->insn_processed - env->prev_insn_processed < 100)
11072 add_new_state = false;
11073 goto miss;
11074 }
638f5b90 11075 if (states_equal(env, &sl->state, cur)) {
9f4686c4 11076 sl->hit_cnt++;
f1bca824 11077 /* reached equivalent register/stack state,
dc503a8a
EC
11078 * prune the search.
11079 * Registers read by the continuation are read by us.
8e9cd9ce
EC
11080 * If we have any write marks in env->cur_state, they
11081 * will prevent corresponding reads in the continuation
11082 * from reaching our parent (an explored_state). Our
11083 * own state will get the read marks recorded, but
11084 * they'll be immediately forgotten as we're pruning
11085 * this state and will pop a new one.
f1bca824 11086 */
f4d7e40a 11087 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
11088
11089 /* if previous state reached the exit with precision and
11090 * current state is equivalent to it (except precsion marks)
11091 * the precision needs to be propagated back in
11092 * the current state.
11093 */
11094 err = err ? : push_jmp_history(env, cur);
11095 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
11096 if (err)
11097 return err;
f1bca824 11098 return 1;
dc503a8a 11099 }
2589726d
AS
11100miss:
11101 /* when new state is not going to be added do not increase miss count.
11102 * Otherwise several loop iterations will remove the state
11103 * recorded earlier. The goal of these heuristics is to have
11104 * states from some iterations of the loop (some in the beginning
11105 * and some at the end) to help pruning.
11106 */
11107 if (add_new_state)
11108 sl->miss_cnt++;
9f4686c4
AS
11109 /* heuristic to determine whether this state is beneficial
11110 * to keep checking from state equivalence point of view.
11111 * Higher numbers increase max_states_per_insn and verification time,
11112 * but do not meaningfully decrease insn_processed.
11113 */
11114 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11115 /* the state is unlikely to be useful. Remove it to
11116 * speed up verification
11117 */
11118 *pprev = sl->next;
11119 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
11120 u32 br = sl->state.branches;
11121
11122 WARN_ONCE(br,
11123 "BUG live_done but branches_to_explore %d\n",
11124 br);
9f4686c4
AS
11125 free_verifier_state(&sl->state, false);
11126 kfree(sl);
11127 env->peak_states--;
11128 } else {
11129 /* cannot free this state, since parentage chain may
11130 * walk it later. Add it for free_list instead to
11131 * be freed at the end of verification
11132 */
11133 sl->next = env->free_list;
11134 env->free_list = sl;
11135 }
11136 sl = *pprev;
11137 continue;
11138 }
dc2a4ebc 11139next:
9f4686c4
AS
11140 pprev = &sl->next;
11141 sl = *pprev;
f1bca824
AS
11142 }
11143
06ee7115
AS
11144 if (env->max_states_per_insn < states_cnt)
11145 env->max_states_per_insn = states_cnt;
11146
2c78ee89 11147 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 11148 return push_jmp_history(env, cur);
ceefbc96 11149
2589726d 11150 if (!add_new_state)
b5dc0163 11151 return push_jmp_history(env, cur);
ceefbc96 11152
2589726d
AS
11153 /* There were no equivalent states, remember the current one.
11154 * Technically the current state is not proven to be safe yet,
f4d7e40a 11155 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 11156 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 11157 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
11158 * again on the way to bpf_exit.
11159 * When looping the sl->state.branches will be > 0 and this state
11160 * will not be considered for equivalence until branches == 0.
f1bca824 11161 */
638f5b90 11162 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
11163 if (!new_sl)
11164 return -ENOMEM;
06ee7115
AS
11165 env->total_states++;
11166 env->peak_states++;
2589726d
AS
11167 env->prev_jmps_processed = env->jmps_processed;
11168 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
11169
11170 /* add new state to the head of linked list */
679c782d
EC
11171 new = &new_sl->state;
11172 err = copy_verifier_state(new, cur);
1969db47 11173 if (err) {
679c782d 11174 free_verifier_state(new, false);
1969db47
AS
11175 kfree(new_sl);
11176 return err;
11177 }
dc2a4ebc 11178 new->insn_idx = insn_idx;
2589726d
AS
11179 WARN_ONCE(new->branches != 1,
11180 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 11181
2589726d 11182 cur->parent = new;
b5dc0163
AS
11183 cur->first_insn_idx = insn_idx;
11184 clear_jmp_history(cur);
5d839021
AS
11185 new_sl->next = *explored_state(env, insn_idx);
11186 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
11187 /* connect new state to parentage chain. Current frame needs all
11188 * registers connected. Only r6 - r9 of the callers are alive (pushed
11189 * to the stack implicitly by JITs) so in callers' frames connect just
11190 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11191 * the state of the call instruction (with WRITTEN set), and r0 comes
11192 * from callee with its full parentage chain, anyway.
11193 */
8e9cd9ce
EC
11194 /* clear write marks in current state: the writes we did are not writes
11195 * our child did, so they don't screen off its reads from us.
11196 * (There are no read marks in current state, because reads always mark
11197 * their parent and current state never has children yet. Only
11198 * explored_states can get read marks.)
11199 */
eea1c227
AS
11200 for (j = 0; j <= cur->curframe; j++) {
11201 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11202 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11203 for (i = 0; i < BPF_REG_FP; i++)
11204 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11205 }
f4d7e40a
AS
11206
11207 /* all stack frames are accessible from callee, clear them all */
11208 for (j = 0; j <= cur->curframe; j++) {
11209 struct bpf_func_state *frame = cur->frame[j];
679c782d 11210 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 11211
679c782d 11212 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 11213 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
11214 frame->stack[i].spilled_ptr.parent =
11215 &newframe->stack[i].spilled_ptr;
11216 }
f4d7e40a 11217 }
f1bca824
AS
11218 return 0;
11219}
11220
c64b7983
JS
11221/* Return true if it's OK to have the same insn return a different type. */
11222static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11223{
11224 switch (type) {
11225 case PTR_TO_CTX:
11226 case PTR_TO_SOCKET:
11227 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
11228 case PTR_TO_SOCK_COMMON:
11229 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
11230 case PTR_TO_TCP_SOCK:
11231 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 11232 case PTR_TO_XDP_SOCK:
2a02759e 11233 case PTR_TO_BTF_ID:
b121b341 11234 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
11235 return false;
11236 default:
11237 return true;
11238 }
11239}
11240
11241/* If an instruction was previously used with particular pointer types, then we
11242 * need to be careful to avoid cases such as the below, where it may be ok
11243 * for one branch accessing the pointer, but not ok for the other branch:
11244 *
11245 * R1 = sock_ptr
11246 * goto X;
11247 * ...
11248 * R1 = some_other_valid_ptr;
11249 * goto X;
11250 * ...
11251 * R2 = *(u32 *)(R1 + 0);
11252 */
11253static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11254{
11255 return src != prev && (!reg_type_mismatch_ok(src) ||
11256 !reg_type_mismatch_ok(prev));
11257}
11258
58e2af8b 11259static int do_check(struct bpf_verifier_env *env)
17a52670 11260{
6f8a57cc 11261 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 11262 struct bpf_verifier_state *state = env->cur_state;
17a52670 11263 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 11264 struct bpf_reg_state *regs;
06ee7115 11265 int insn_cnt = env->prog->len;
17a52670 11266 bool do_print_state = false;
b5dc0163 11267 int prev_insn_idx = -1;
17a52670 11268
17a52670
AS
11269 for (;;) {
11270 struct bpf_insn *insn;
11271 u8 class;
11272 int err;
11273
b5dc0163 11274 env->prev_insn_idx = prev_insn_idx;
c08435ec 11275 if (env->insn_idx >= insn_cnt) {
61bd5218 11276 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 11277 env->insn_idx, insn_cnt);
17a52670
AS
11278 return -EFAULT;
11279 }
11280
c08435ec 11281 insn = &insns[env->insn_idx];
17a52670
AS
11282 class = BPF_CLASS(insn->code);
11283
06ee7115 11284 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
11285 verbose(env,
11286 "BPF program is too large. Processed %d insn\n",
06ee7115 11287 env->insn_processed);
17a52670
AS
11288 return -E2BIG;
11289 }
11290
c08435ec 11291 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
11292 if (err < 0)
11293 return err;
11294 if (err == 1) {
11295 /* found equivalent state, can prune the search */
06ee7115 11296 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 11297 if (do_print_state)
979d63d5
DB
11298 verbose(env, "\nfrom %d to %d%s: safe\n",
11299 env->prev_insn_idx, env->insn_idx,
11300 env->cur_state->speculative ?
11301 " (speculative execution)" : "");
f1bca824 11302 else
c08435ec 11303 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
11304 }
11305 goto process_bpf_exit;
11306 }
11307
c3494801
AS
11308 if (signal_pending(current))
11309 return -EAGAIN;
11310
3c2ce60b
DB
11311 if (need_resched())
11312 cond_resched();
11313
2e576648
CL
11314 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
11315 verbose(env, "\nfrom %d to %d%s:",
11316 env->prev_insn_idx, env->insn_idx,
11317 env->cur_state->speculative ?
11318 " (speculative execution)" : "");
11319 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
11320 do_print_state = false;
11321 }
11322
06ee7115 11323 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 11324 const struct bpf_insn_cbs cbs = {
e6ac2450 11325 .cb_call = disasm_kfunc_name,
7105e828 11326 .cb_print = verbose,
abe08840 11327 .private_data = env,
7105e828
DB
11328 };
11329
2e576648
CL
11330 if (verifier_state_scratched(env))
11331 print_insn_state(env, state->frame[state->curframe]);
11332
c08435ec 11333 verbose_linfo(env, env->insn_idx, "; ");
2e576648 11334 env->prev_log_len = env->log.len_used;
c08435ec 11335 verbose(env, "%d: ", env->insn_idx);
abe08840 11336 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
11337 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
11338 env->prev_log_len = env->log.len_used;
17a52670
AS
11339 }
11340
cae1927c 11341 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
11342 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11343 env->prev_insn_idx);
cae1927c
JK
11344 if (err)
11345 return err;
11346 }
13a27dfc 11347
638f5b90 11348 regs = cur_regs(env);
fe9a5ca7 11349 sanitize_mark_insn_seen(env);
b5dc0163 11350 prev_insn_idx = env->insn_idx;
fd978bf7 11351
17a52670 11352 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 11353 err = check_alu_op(env, insn);
17a52670
AS
11354 if (err)
11355 return err;
11356
11357 } else if (class == BPF_LDX) {
3df126f3 11358 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
11359
11360 /* check for reserved fields is already done */
11361
17a52670 11362 /* check src operand */
dc503a8a 11363 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11364 if (err)
11365 return err;
11366
dc503a8a 11367 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
11368 if (err)
11369 return err;
11370
725f9dcd
AS
11371 src_reg_type = regs[insn->src_reg].type;
11372
17a52670
AS
11373 /* check that memory (src_reg + off) is readable,
11374 * the state of dst_reg will be updated by this func
11375 */
c08435ec
DB
11376 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11377 insn->off, BPF_SIZE(insn->code),
11378 BPF_READ, insn->dst_reg, false);
17a52670
AS
11379 if (err)
11380 return err;
11381
c08435ec 11382 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11383
11384 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
11385 /* saw a valid insn
11386 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 11387 * save type to validate intersecting paths
9bac3d6d 11388 */
3df126f3 11389 *prev_src_type = src_reg_type;
9bac3d6d 11390
c64b7983 11391 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
11392 /* ABuser program is trying to use the same insn
11393 * dst_reg = *(u32*) (src_reg + off)
11394 * with different pointer types:
11395 * src_reg == ctx in one branch and
11396 * src_reg == stack|map in some other branch.
11397 * Reject it.
11398 */
61bd5218 11399 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
11400 return -EINVAL;
11401 }
11402
17a52670 11403 } else if (class == BPF_STX) {
3df126f3 11404 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 11405
91c960b0
BJ
11406 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11407 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
11408 if (err)
11409 return err;
c08435ec 11410 env->insn_idx++;
17a52670
AS
11411 continue;
11412 }
11413
5ca419f2
BJ
11414 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11415 verbose(env, "BPF_STX uses reserved fields\n");
11416 return -EINVAL;
11417 }
11418
17a52670 11419 /* check src1 operand */
dc503a8a 11420 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11421 if (err)
11422 return err;
11423 /* check src2 operand */
dc503a8a 11424 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11425 if (err)
11426 return err;
11427
d691f9e8
AS
11428 dst_reg_type = regs[insn->dst_reg].type;
11429
17a52670 11430 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11431 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11432 insn->off, BPF_SIZE(insn->code),
11433 BPF_WRITE, insn->src_reg, false);
17a52670
AS
11434 if (err)
11435 return err;
11436
c08435ec 11437 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11438
11439 if (*prev_dst_type == NOT_INIT) {
11440 *prev_dst_type = dst_reg_type;
c64b7983 11441 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 11442 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
11443 return -EINVAL;
11444 }
11445
17a52670
AS
11446 } else if (class == BPF_ST) {
11447 if (BPF_MODE(insn->code) != BPF_MEM ||
11448 insn->src_reg != BPF_REG_0) {
61bd5218 11449 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
11450 return -EINVAL;
11451 }
11452 /* check src operand */
dc503a8a 11453 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11454 if (err)
11455 return err;
11456
f37a8cb8 11457 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 11458 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
11459 insn->dst_reg,
11460 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
11461 return -EACCES;
11462 }
11463
17a52670 11464 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11465 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11466 insn->off, BPF_SIZE(insn->code),
11467 BPF_WRITE, -1, false);
17a52670
AS
11468 if (err)
11469 return err;
11470
092ed096 11471 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
11472 u8 opcode = BPF_OP(insn->code);
11473
2589726d 11474 env->jmps_processed++;
17a52670
AS
11475 if (opcode == BPF_CALL) {
11476 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
11477 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11478 && insn->off != 0) ||
f4d7e40a 11479 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
11480 insn->src_reg != BPF_PSEUDO_CALL &&
11481 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
11482 insn->dst_reg != BPF_REG_0 ||
11483 class == BPF_JMP32) {
61bd5218 11484 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
11485 return -EINVAL;
11486 }
11487
d83525ca
AS
11488 if (env->cur_state->active_spin_lock &&
11489 (insn->src_reg == BPF_PSEUDO_CALL ||
11490 insn->imm != BPF_FUNC_spin_unlock)) {
11491 verbose(env, "function calls are not allowed while holding a lock\n");
11492 return -EINVAL;
11493 }
f4d7e40a 11494 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 11495 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
11496 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11497 err = check_kfunc_call(env, insn);
f4d7e40a 11498 else
69c087ba 11499 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
11500 if (err)
11501 return err;
17a52670
AS
11502 } else if (opcode == BPF_JA) {
11503 if (BPF_SRC(insn->code) != BPF_K ||
11504 insn->imm != 0 ||
11505 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11506 insn->dst_reg != BPF_REG_0 ||
11507 class == BPF_JMP32) {
61bd5218 11508 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
11509 return -EINVAL;
11510 }
11511
c08435ec 11512 env->insn_idx += insn->off + 1;
17a52670
AS
11513 continue;
11514
11515 } else if (opcode == BPF_EXIT) {
11516 if (BPF_SRC(insn->code) != BPF_K ||
11517 insn->imm != 0 ||
11518 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11519 insn->dst_reg != BPF_REG_0 ||
11520 class == BPF_JMP32) {
61bd5218 11521 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
11522 return -EINVAL;
11523 }
11524
d83525ca
AS
11525 if (env->cur_state->active_spin_lock) {
11526 verbose(env, "bpf_spin_unlock is missing\n");
11527 return -EINVAL;
11528 }
11529
f4d7e40a
AS
11530 if (state->curframe) {
11531 /* exit from nested function */
c08435ec 11532 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
11533 if (err)
11534 return err;
11535 do_print_state = true;
11536 continue;
11537 }
11538
fd978bf7
JS
11539 err = check_reference_leak(env);
11540 if (err)
11541 return err;
11542
390ee7e2
AS
11543 err = check_return_code(env);
11544 if (err)
11545 return err;
f1bca824 11546process_bpf_exit:
0f55f9ed 11547 mark_verifier_state_scratched(env);
2589726d 11548 update_branch_counts(env, env->cur_state);
b5dc0163 11549 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 11550 &env->insn_idx, pop_log);
638f5b90
AS
11551 if (err < 0) {
11552 if (err != -ENOENT)
11553 return err;
17a52670
AS
11554 break;
11555 } else {
11556 do_print_state = true;
11557 continue;
11558 }
11559 } else {
c08435ec 11560 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
11561 if (err)
11562 return err;
11563 }
11564 } else if (class == BPF_LD) {
11565 u8 mode = BPF_MODE(insn->code);
11566
11567 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
11568 err = check_ld_abs(env, insn);
11569 if (err)
11570 return err;
11571
17a52670
AS
11572 } else if (mode == BPF_IMM) {
11573 err = check_ld_imm(env, insn);
11574 if (err)
11575 return err;
11576
c08435ec 11577 env->insn_idx++;
fe9a5ca7 11578 sanitize_mark_insn_seen(env);
17a52670 11579 } else {
61bd5218 11580 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
11581 return -EINVAL;
11582 }
11583 } else {
61bd5218 11584 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
11585 return -EINVAL;
11586 }
11587
c08435ec 11588 env->insn_idx++;
17a52670
AS
11589 }
11590
11591 return 0;
11592}
11593
541c3bad
AN
11594static int find_btf_percpu_datasec(struct btf *btf)
11595{
11596 const struct btf_type *t;
11597 const char *tname;
11598 int i, n;
11599
11600 /*
11601 * Both vmlinux and module each have their own ".data..percpu"
11602 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11603 * types to look at only module's own BTF types.
11604 */
11605 n = btf_nr_types(btf);
11606 if (btf_is_module(btf))
11607 i = btf_nr_types(btf_vmlinux);
11608 else
11609 i = 1;
11610
11611 for(; i < n; i++) {
11612 t = btf_type_by_id(btf, i);
11613 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11614 continue;
11615
11616 tname = btf_name_by_offset(btf, t->name_off);
11617 if (!strcmp(tname, ".data..percpu"))
11618 return i;
11619 }
11620
11621 return -ENOENT;
11622}
11623
4976b718
HL
11624/* replace pseudo btf_id with kernel symbol address */
11625static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11626 struct bpf_insn *insn,
11627 struct bpf_insn_aux_data *aux)
11628{
eaa6bcb7
HL
11629 const struct btf_var_secinfo *vsi;
11630 const struct btf_type *datasec;
541c3bad 11631 struct btf_mod_pair *btf_mod;
4976b718
HL
11632 const struct btf_type *t;
11633 const char *sym_name;
eaa6bcb7 11634 bool percpu = false;
f16e6313 11635 u32 type, id = insn->imm;
541c3bad 11636 struct btf *btf;
f16e6313 11637 s32 datasec_id;
4976b718 11638 u64 addr;
541c3bad 11639 int i, btf_fd, err;
4976b718 11640
541c3bad
AN
11641 btf_fd = insn[1].imm;
11642 if (btf_fd) {
11643 btf = btf_get_by_fd(btf_fd);
11644 if (IS_ERR(btf)) {
11645 verbose(env, "invalid module BTF object FD specified.\n");
11646 return -EINVAL;
11647 }
11648 } else {
11649 if (!btf_vmlinux) {
11650 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11651 return -EINVAL;
11652 }
11653 btf = btf_vmlinux;
11654 btf_get(btf);
4976b718
HL
11655 }
11656
541c3bad 11657 t = btf_type_by_id(btf, id);
4976b718
HL
11658 if (!t) {
11659 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
11660 err = -ENOENT;
11661 goto err_put;
4976b718
HL
11662 }
11663
11664 if (!btf_type_is_var(t)) {
541c3bad
AN
11665 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11666 err = -EINVAL;
11667 goto err_put;
4976b718
HL
11668 }
11669
541c3bad 11670 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11671 addr = kallsyms_lookup_name(sym_name);
11672 if (!addr) {
11673 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11674 sym_name);
541c3bad
AN
11675 err = -ENOENT;
11676 goto err_put;
4976b718
HL
11677 }
11678
541c3bad 11679 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11680 if (datasec_id > 0) {
541c3bad 11681 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11682 for_each_vsi(i, datasec, vsi) {
11683 if (vsi->type == id) {
11684 percpu = true;
11685 break;
11686 }
11687 }
11688 }
11689
4976b718
HL
11690 insn[0].imm = (u32)addr;
11691 insn[1].imm = addr >> 32;
11692
11693 type = t->type;
541c3bad 11694 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
11695 if (percpu) {
11696 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 11697 aux->btf_var.btf = btf;
eaa6bcb7
HL
11698 aux->btf_var.btf_id = type;
11699 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11700 const struct btf_type *ret;
11701 const char *tname;
11702 u32 tsize;
11703
11704 /* resolve the type size of ksym. */
541c3bad 11705 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11706 if (IS_ERR(ret)) {
541c3bad 11707 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11708 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11709 tname, PTR_ERR(ret));
541c3bad
AN
11710 err = -EINVAL;
11711 goto err_put;
4976b718
HL
11712 }
11713 aux->btf_var.reg_type = PTR_TO_MEM;
11714 aux->btf_var.mem_size = tsize;
11715 } else {
11716 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11717 aux->btf_var.btf = btf;
4976b718
HL
11718 aux->btf_var.btf_id = type;
11719 }
541c3bad
AN
11720
11721 /* check whether we recorded this BTF (and maybe module) already */
11722 for (i = 0; i < env->used_btf_cnt; i++) {
11723 if (env->used_btfs[i].btf == btf) {
11724 btf_put(btf);
11725 return 0;
11726 }
11727 }
11728
11729 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11730 err = -E2BIG;
11731 goto err_put;
11732 }
11733
11734 btf_mod = &env->used_btfs[env->used_btf_cnt];
11735 btf_mod->btf = btf;
11736 btf_mod->module = NULL;
11737
11738 /* if we reference variables from kernel module, bump its refcount */
11739 if (btf_is_module(btf)) {
11740 btf_mod->module = btf_try_get_module(btf);
11741 if (!btf_mod->module) {
11742 err = -ENXIO;
11743 goto err_put;
11744 }
11745 }
11746
11747 env->used_btf_cnt++;
11748
4976b718 11749 return 0;
541c3bad
AN
11750err_put:
11751 btf_put(btf);
11752 return err;
4976b718
HL
11753}
11754
56f668df
MKL
11755static int check_map_prealloc(struct bpf_map *map)
11756{
11757 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11758 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11759 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11760 !(map->map_flags & BPF_F_NO_PREALLOC);
11761}
11762
d83525ca
AS
11763static bool is_tracing_prog_type(enum bpf_prog_type type)
11764{
11765 switch (type) {
11766 case BPF_PROG_TYPE_KPROBE:
11767 case BPF_PROG_TYPE_TRACEPOINT:
11768 case BPF_PROG_TYPE_PERF_EVENT:
11769 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11770 return true;
11771 default:
11772 return false;
11773 }
11774}
11775
94dacdbd
TG
11776static bool is_preallocated_map(struct bpf_map *map)
11777{
11778 if (!check_map_prealloc(map))
11779 return false;
11780 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11781 return false;
11782 return true;
11783}
11784
61bd5218
JK
11785static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11786 struct bpf_map *map,
fdc15d38
AS
11787 struct bpf_prog *prog)
11788
11789{
7e40781c 11790 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
11791 /*
11792 * Validate that trace type programs use preallocated hash maps.
11793 *
11794 * For programs attached to PERF events this is mandatory as the
11795 * perf NMI can hit any arbitrary code sequence.
11796 *
11797 * All other trace types using preallocated hash maps are unsafe as
11798 * well because tracepoint or kprobes can be inside locked regions
11799 * of the memory allocator or at a place where a recursion into the
11800 * memory allocator would see inconsistent state.
11801 *
2ed905c5
TG
11802 * On RT enabled kernels run-time allocation of all trace type
11803 * programs is strictly prohibited due to lock type constraints. On
11804 * !RT kernels it is allowed for backwards compatibility reasons for
11805 * now, but warnings are emitted so developers are made aware of
11806 * the unsafety and can fix their programs before this is enforced.
56f668df 11807 */
7e40781c
UP
11808 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11809 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11810 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11811 return -EINVAL;
11812 }
2ed905c5
TG
11813 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11814 verbose(env, "trace type programs can only use preallocated hash map\n");
11815 return -EINVAL;
11816 }
94dacdbd
TG
11817 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11818 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11819 }
a3884572 11820
9e7a4d98
KS
11821 if (map_value_has_spin_lock(map)) {
11822 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11823 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11824 return -EINVAL;
11825 }
11826
11827 if (is_tracing_prog_type(prog_type)) {
11828 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11829 return -EINVAL;
11830 }
11831
11832 if (prog->aux->sleepable) {
11833 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11834 return -EINVAL;
11835 }
d83525ca
AS
11836 }
11837
5e0bc308
DB
11838 if (map_value_has_timer(map)) {
11839 if (is_tracing_prog_type(prog_type)) {
11840 verbose(env, "tracing progs cannot use bpf_timer yet\n");
11841 return -EINVAL;
11842 }
11843 }
11844
a3884572 11845 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11846 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11847 verbose(env, "offload device mismatch between prog and map\n");
11848 return -EINVAL;
11849 }
11850
85d33df3
MKL
11851 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11852 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11853 return -EINVAL;
11854 }
11855
1e6c62a8
AS
11856 if (prog->aux->sleepable)
11857 switch (map->map_type) {
11858 case BPF_MAP_TYPE_HASH:
11859 case BPF_MAP_TYPE_LRU_HASH:
11860 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11861 case BPF_MAP_TYPE_PERCPU_HASH:
11862 case BPF_MAP_TYPE_PERCPU_ARRAY:
11863 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11864 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11865 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11866 if (!is_preallocated_map(map)) {
11867 verbose(env,
638e4b82 11868 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11869 return -EINVAL;
11870 }
11871 break;
ba90c2cc
KS
11872 case BPF_MAP_TYPE_RINGBUF:
11873 break;
1e6c62a8
AS
11874 default:
11875 verbose(env,
ba90c2cc 11876 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11877 return -EINVAL;
11878 }
11879
fdc15d38
AS
11880 return 0;
11881}
11882
b741f163
RG
11883static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11884{
11885 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11886 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11887}
11888
4976b718
HL
11889/* find and rewrite pseudo imm in ld_imm64 instructions:
11890 *
11891 * 1. if it accesses map FD, replace it with actual map pointer.
11892 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11893 *
11894 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11895 */
4976b718 11896static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11897{
11898 struct bpf_insn *insn = env->prog->insnsi;
11899 int insn_cnt = env->prog->len;
fdc15d38 11900 int i, j, err;
0246e64d 11901
f1f7714e 11902 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11903 if (err)
11904 return err;
11905
0246e64d 11906 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11907 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11908 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11909 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11910 return -EINVAL;
11911 }
11912
0246e64d 11913 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11914 struct bpf_insn_aux_data *aux;
0246e64d
AS
11915 struct bpf_map *map;
11916 struct fd f;
d8eca5bb 11917 u64 addr;
387544bf 11918 u32 fd;
0246e64d
AS
11919
11920 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11921 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11922 insn[1].off != 0) {
61bd5218 11923 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11924 return -EINVAL;
11925 }
11926
d8eca5bb 11927 if (insn[0].src_reg == 0)
0246e64d
AS
11928 /* valid generic load 64-bit imm */
11929 goto next_insn;
11930
4976b718
HL
11931 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11932 aux = &env->insn_aux_data[i];
11933 err = check_pseudo_btf_id(env, insn, aux);
11934 if (err)
11935 return err;
11936 goto next_insn;
11937 }
11938
69c087ba
YS
11939 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11940 aux = &env->insn_aux_data[i];
11941 aux->ptr_type = PTR_TO_FUNC;
11942 goto next_insn;
11943 }
11944
d8eca5bb
DB
11945 /* In final convert_pseudo_ld_imm64() step, this is
11946 * converted into regular 64-bit imm load insn.
11947 */
387544bf
AS
11948 switch (insn[0].src_reg) {
11949 case BPF_PSEUDO_MAP_VALUE:
11950 case BPF_PSEUDO_MAP_IDX_VALUE:
11951 break;
11952 case BPF_PSEUDO_MAP_FD:
11953 case BPF_PSEUDO_MAP_IDX:
11954 if (insn[1].imm == 0)
11955 break;
11956 fallthrough;
11957 default:
11958 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11959 return -EINVAL;
11960 }
11961
387544bf
AS
11962 switch (insn[0].src_reg) {
11963 case BPF_PSEUDO_MAP_IDX_VALUE:
11964 case BPF_PSEUDO_MAP_IDX:
11965 if (bpfptr_is_null(env->fd_array)) {
11966 verbose(env, "fd_idx without fd_array is invalid\n");
11967 return -EPROTO;
11968 }
11969 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11970 insn[0].imm * sizeof(fd),
11971 sizeof(fd)))
11972 return -EFAULT;
11973 break;
11974 default:
11975 fd = insn[0].imm;
11976 break;
11977 }
11978
11979 f = fdget(fd);
c2101297 11980 map = __bpf_map_get(f);
0246e64d 11981 if (IS_ERR(map)) {
61bd5218 11982 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11983 insn[0].imm);
0246e64d
AS
11984 return PTR_ERR(map);
11985 }
11986
61bd5218 11987 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11988 if (err) {
11989 fdput(f);
11990 return err;
11991 }
11992
d8eca5bb 11993 aux = &env->insn_aux_data[i];
387544bf
AS
11994 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11995 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
11996 addr = (unsigned long)map;
11997 } else {
11998 u32 off = insn[1].imm;
11999
12000 if (off >= BPF_MAX_VAR_OFF) {
12001 verbose(env, "direct value offset of %u is not allowed\n", off);
12002 fdput(f);
12003 return -EINVAL;
12004 }
12005
12006 if (!map->ops->map_direct_value_addr) {
12007 verbose(env, "no direct value access support for this map type\n");
12008 fdput(f);
12009 return -EINVAL;
12010 }
12011
12012 err = map->ops->map_direct_value_addr(map, &addr, off);
12013 if (err) {
12014 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12015 map->value_size, off);
12016 fdput(f);
12017 return err;
12018 }
12019
12020 aux->map_off = off;
12021 addr += off;
12022 }
12023
12024 insn[0].imm = (u32)addr;
12025 insn[1].imm = addr >> 32;
0246e64d
AS
12026
12027 /* check whether we recorded this map already */
d8eca5bb 12028 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 12029 if (env->used_maps[j] == map) {
d8eca5bb 12030 aux->map_index = j;
0246e64d
AS
12031 fdput(f);
12032 goto next_insn;
12033 }
d8eca5bb 12034 }
0246e64d
AS
12035
12036 if (env->used_map_cnt >= MAX_USED_MAPS) {
12037 fdput(f);
12038 return -E2BIG;
12039 }
12040
0246e64d
AS
12041 /* hold the map. If the program is rejected by verifier,
12042 * the map will be released by release_maps() or it
12043 * will be used by the valid program until it's unloaded
ab7f5bf0 12044 * and all maps are released in free_used_maps()
0246e64d 12045 */
1e0bd5a0 12046 bpf_map_inc(map);
d8eca5bb
DB
12047
12048 aux->map_index = env->used_map_cnt;
92117d84
AS
12049 env->used_maps[env->used_map_cnt++] = map;
12050
b741f163 12051 if (bpf_map_is_cgroup_storage(map) &&
e4730423 12052 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 12053 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
12054 fdput(f);
12055 return -EBUSY;
12056 }
12057
0246e64d
AS
12058 fdput(f);
12059next_insn:
12060 insn++;
12061 i++;
5e581dad
DB
12062 continue;
12063 }
12064
12065 /* Basic sanity check before we invest more work here. */
12066 if (!bpf_opcode_in_insntable(insn->code)) {
12067 verbose(env, "unknown opcode %02x\n", insn->code);
12068 return -EINVAL;
0246e64d
AS
12069 }
12070 }
12071
12072 /* now all pseudo BPF_LD_IMM64 instructions load valid
12073 * 'struct bpf_map *' into a register instead of user map_fd.
12074 * These pointers will be used later by verifier to validate map access.
12075 */
12076 return 0;
12077}
12078
12079/* drop refcnt of maps used by the rejected program */
58e2af8b 12080static void release_maps(struct bpf_verifier_env *env)
0246e64d 12081{
a2ea0746
DB
12082 __bpf_free_used_maps(env->prog->aux, env->used_maps,
12083 env->used_map_cnt);
0246e64d
AS
12084}
12085
541c3bad
AN
12086/* drop refcnt of maps used by the rejected program */
12087static void release_btfs(struct bpf_verifier_env *env)
12088{
12089 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12090 env->used_btf_cnt);
12091}
12092
0246e64d 12093/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 12094static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
12095{
12096 struct bpf_insn *insn = env->prog->insnsi;
12097 int insn_cnt = env->prog->len;
12098 int i;
12099
69c087ba
YS
12100 for (i = 0; i < insn_cnt; i++, insn++) {
12101 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12102 continue;
12103 if (insn->src_reg == BPF_PSEUDO_FUNC)
12104 continue;
12105 insn->src_reg = 0;
12106 }
0246e64d
AS
12107}
12108
8041902d
AS
12109/* single env->prog->insni[off] instruction was replaced with the range
12110 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
12111 * [0, off) and [off, end) to new locations, so the patched range stays zero
12112 */
75f0fc7b
HF
12113static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12114 struct bpf_insn_aux_data *new_data,
12115 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 12116{
75f0fc7b 12117 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 12118 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 12119 u32 old_seen = old_data[off].seen;
b325fbca 12120 u32 prog_len;
c131187d 12121 int i;
8041902d 12122
b325fbca
JW
12123 /* aux info at OFF always needs adjustment, no matter fast path
12124 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12125 * original insn at old prog.
12126 */
12127 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12128
8041902d 12129 if (cnt == 1)
75f0fc7b 12130 return;
b325fbca 12131 prog_len = new_prog->len;
75f0fc7b 12132
8041902d
AS
12133 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12134 memcpy(new_data + off + cnt - 1, old_data + off,
12135 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 12136 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
12137 /* Expand insni[off]'s seen count to the patched range. */
12138 new_data[i].seen = old_seen;
b325fbca
JW
12139 new_data[i].zext_dst = insn_has_def32(env, insn + i);
12140 }
8041902d
AS
12141 env->insn_aux_data = new_data;
12142 vfree(old_data);
8041902d
AS
12143}
12144
cc8b0b92
AS
12145static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12146{
12147 int i;
12148
12149 if (len == 1)
12150 return;
4cb3d99c
JW
12151 /* NOTE: fake 'exit' subprog should be updated as well. */
12152 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 12153 if (env->subprog_info[i].start <= off)
cc8b0b92 12154 continue;
9c8105bd 12155 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
12156 }
12157}
12158
7506d211 12159static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
12160{
12161 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12162 int i, sz = prog->aux->size_poke_tab;
12163 struct bpf_jit_poke_descriptor *desc;
12164
12165 for (i = 0; i < sz; i++) {
12166 desc = &tab[i];
7506d211
JF
12167 if (desc->insn_idx <= off)
12168 continue;
a748c697
MF
12169 desc->insn_idx += len - 1;
12170 }
12171}
12172
8041902d
AS
12173static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12174 const struct bpf_insn *patch, u32 len)
12175{
12176 struct bpf_prog *new_prog;
75f0fc7b
HF
12177 struct bpf_insn_aux_data *new_data = NULL;
12178
12179 if (len > 1) {
12180 new_data = vzalloc(array_size(env->prog->len + len - 1,
12181 sizeof(struct bpf_insn_aux_data)));
12182 if (!new_data)
12183 return NULL;
12184 }
8041902d
AS
12185
12186 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
12187 if (IS_ERR(new_prog)) {
12188 if (PTR_ERR(new_prog) == -ERANGE)
12189 verbose(env,
12190 "insn %d cannot be patched due to 16-bit range\n",
12191 env->insn_aux_data[off].orig_idx);
75f0fc7b 12192 vfree(new_data);
8041902d 12193 return NULL;
4f73379e 12194 }
75f0fc7b 12195 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 12196 adjust_subprog_starts(env, off, len);
7506d211 12197 adjust_poke_descs(new_prog, off, len);
8041902d
AS
12198 return new_prog;
12199}
12200
52875a04
JK
12201static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12202 u32 off, u32 cnt)
12203{
12204 int i, j;
12205
12206 /* find first prog starting at or after off (first to remove) */
12207 for (i = 0; i < env->subprog_cnt; i++)
12208 if (env->subprog_info[i].start >= off)
12209 break;
12210 /* find first prog starting at or after off + cnt (first to stay) */
12211 for (j = i; j < env->subprog_cnt; j++)
12212 if (env->subprog_info[j].start >= off + cnt)
12213 break;
12214 /* if j doesn't start exactly at off + cnt, we are just removing
12215 * the front of previous prog
12216 */
12217 if (env->subprog_info[j].start != off + cnt)
12218 j--;
12219
12220 if (j > i) {
12221 struct bpf_prog_aux *aux = env->prog->aux;
12222 int move;
12223
12224 /* move fake 'exit' subprog as well */
12225 move = env->subprog_cnt + 1 - j;
12226
12227 memmove(env->subprog_info + i,
12228 env->subprog_info + j,
12229 sizeof(*env->subprog_info) * move);
12230 env->subprog_cnt -= j - i;
12231
12232 /* remove func_info */
12233 if (aux->func_info) {
12234 move = aux->func_info_cnt - j;
12235
12236 memmove(aux->func_info + i,
12237 aux->func_info + j,
12238 sizeof(*aux->func_info) * move);
12239 aux->func_info_cnt -= j - i;
12240 /* func_info->insn_off is set after all code rewrites,
12241 * in adjust_btf_func() - no need to adjust
12242 */
12243 }
12244 } else {
12245 /* convert i from "first prog to remove" to "first to adjust" */
12246 if (env->subprog_info[i].start == off)
12247 i++;
12248 }
12249
12250 /* update fake 'exit' subprog as well */
12251 for (; i <= env->subprog_cnt; i++)
12252 env->subprog_info[i].start -= cnt;
12253
12254 return 0;
12255}
12256
12257static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12258 u32 cnt)
12259{
12260 struct bpf_prog *prog = env->prog;
12261 u32 i, l_off, l_cnt, nr_linfo;
12262 struct bpf_line_info *linfo;
12263
12264 nr_linfo = prog->aux->nr_linfo;
12265 if (!nr_linfo)
12266 return 0;
12267
12268 linfo = prog->aux->linfo;
12269
12270 /* find first line info to remove, count lines to be removed */
12271 for (i = 0; i < nr_linfo; i++)
12272 if (linfo[i].insn_off >= off)
12273 break;
12274
12275 l_off = i;
12276 l_cnt = 0;
12277 for (; i < nr_linfo; i++)
12278 if (linfo[i].insn_off < off + cnt)
12279 l_cnt++;
12280 else
12281 break;
12282
12283 /* First live insn doesn't match first live linfo, it needs to "inherit"
12284 * last removed linfo. prog is already modified, so prog->len == off
12285 * means no live instructions after (tail of the program was removed).
12286 */
12287 if (prog->len != off && l_cnt &&
12288 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12289 l_cnt--;
12290 linfo[--i].insn_off = off + cnt;
12291 }
12292
12293 /* remove the line info which refer to the removed instructions */
12294 if (l_cnt) {
12295 memmove(linfo + l_off, linfo + i,
12296 sizeof(*linfo) * (nr_linfo - i));
12297
12298 prog->aux->nr_linfo -= l_cnt;
12299 nr_linfo = prog->aux->nr_linfo;
12300 }
12301
12302 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12303 for (i = l_off; i < nr_linfo; i++)
12304 linfo[i].insn_off -= cnt;
12305
12306 /* fix up all subprogs (incl. 'exit') which start >= off */
12307 for (i = 0; i <= env->subprog_cnt; i++)
12308 if (env->subprog_info[i].linfo_idx > l_off) {
12309 /* program may have started in the removed region but
12310 * may not be fully removed
12311 */
12312 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12313 env->subprog_info[i].linfo_idx -= l_cnt;
12314 else
12315 env->subprog_info[i].linfo_idx = l_off;
12316 }
12317
12318 return 0;
12319}
12320
12321static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12322{
12323 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12324 unsigned int orig_prog_len = env->prog->len;
12325 int err;
12326
08ca90af
JK
12327 if (bpf_prog_is_dev_bound(env->prog->aux))
12328 bpf_prog_offload_remove_insns(env, off, cnt);
12329
52875a04
JK
12330 err = bpf_remove_insns(env->prog, off, cnt);
12331 if (err)
12332 return err;
12333
12334 err = adjust_subprog_starts_after_remove(env, off, cnt);
12335 if (err)
12336 return err;
12337
12338 err = bpf_adj_linfo_after_remove(env, off, cnt);
12339 if (err)
12340 return err;
12341
12342 memmove(aux_data + off, aux_data + off + cnt,
12343 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12344
12345 return 0;
12346}
12347
2a5418a1
DB
12348/* The verifier does more data flow analysis than llvm and will not
12349 * explore branches that are dead at run time. Malicious programs can
12350 * have dead code too. Therefore replace all dead at-run-time code
12351 * with 'ja -1'.
12352 *
12353 * Just nops are not optimal, e.g. if they would sit at the end of the
12354 * program and through another bug we would manage to jump there, then
12355 * we'd execute beyond program memory otherwise. Returning exception
12356 * code also wouldn't work since we can have subprogs where the dead
12357 * code could be located.
c131187d
AS
12358 */
12359static void sanitize_dead_code(struct bpf_verifier_env *env)
12360{
12361 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 12362 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
12363 struct bpf_insn *insn = env->prog->insnsi;
12364 const int insn_cnt = env->prog->len;
12365 int i;
12366
12367 for (i = 0; i < insn_cnt; i++) {
12368 if (aux_data[i].seen)
12369 continue;
2a5418a1 12370 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 12371 aux_data[i].zext_dst = false;
c131187d
AS
12372 }
12373}
12374
e2ae4ca2
JK
12375static bool insn_is_cond_jump(u8 code)
12376{
12377 u8 op;
12378
092ed096
JW
12379 if (BPF_CLASS(code) == BPF_JMP32)
12380 return true;
12381
e2ae4ca2
JK
12382 if (BPF_CLASS(code) != BPF_JMP)
12383 return false;
12384
12385 op = BPF_OP(code);
12386 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12387}
12388
12389static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12390{
12391 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12392 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12393 struct bpf_insn *insn = env->prog->insnsi;
12394 const int insn_cnt = env->prog->len;
12395 int i;
12396
12397 for (i = 0; i < insn_cnt; i++, insn++) {
12398 if (!insn_is_cond_jump(insn->code))
12399 continue;
12400
12401 if (!aux_data[i + 1].seen)
12402 ja.off = insn->off;
12403 else if (!aux_data[i + 1 + insn->off].seen)
12404 ja.off = 0;
12405 else
12406 continue;
12407
08ca90af
JK
12408 if (bpf_prog_is_dev_bound(env->prog->aux))
12409 bpf_prog_offload_replace_insn(env, i, &ja);
12410
e2ae4ca2
JK
12411 memcpy(insn, &ja, sizeof(ja));
12412 }
12413}
12414
52875a04
JK
12415static int opt_remove_dead_code(struct bpf_verifier_env *env)
12416{
12417 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12418 int insn_cnt = env->prog->len;
12419 int i, err;
12420
12421 for (i = 0; i < insn_cnt; i++) {
12422 int j;
12423
12424 j = 0;
12425 while (i + j < insn_cnt && !aux_data[i + j].seen)
12426 j++;
12427 if (!j)
12428 continue;
12429
12430 err = verifier_remove_insns(env, i, j);
12431 if (err)
12432 return err;
12433 insn_cnt = env->prog->len;
12434 }
12435
12436 return 0;
12437}
12438
a1b14abc
JK
12439static int opt_remove_nops(struct bpf_verifier_env *env)
12440{
12441 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12442 struct bpf_insn *insn = env->prog->insnsi;
12443 int insn_cnt = env->prog->len;
12444 int i, err;
12445
12446 for (i = 0; i < insn_cnt; i++) {
12447 if (memcmp(&insn[i], &ja, sizeof(ja)))
12448 continue;
12449
12450 err = verifier_remove_insns(env, i, 1);
12451 if (err)
12452 return err;
12453 insn_cnt--;
12454 i--;
12455 }
12456
12457 return 0;
12458}
12459
d6c2308c
JW
12460static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12461 const union bpf_attr *attr)
a4b1d3c1 12462{
d6c2308c 12463 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 12464 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 12465 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 12466 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 12467 struct bpf_prog *new_prog;
d6c2308c 12468 bool rnd_hi32;
a4b1d3c1 12469
d6c2308c 12470 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 12471 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
12472 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12473 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12474 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
12475 for (i = 0; i < len; i++) {
12476 int adj_idx = i + delta;
12477 struct bpf_insn insn;
83a28819 12478 int load_reg;
a4b1d3c1 12479
d6c2308c 12480 insn = insns[adj_idx];
83a28819 12481 load_reg = insn_def_regno(&insn);
d6c2308c
JW
12482 if (!aux[adj_idx].zext_dst) {
12483 u8 code, class;
12484 u32 imm_rnd;
12485
12486 if (!rnd_hi32)
12487 continue;
12488
12489 code = insn.code;
12490 class = BPF_CLASS(code);
83a28819 12491 if (load_reg == -1)
d6c2308c
JW
12492 continue;
12493
12494 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
12495 * BPF_STX + SRC_OP, so it is safe to pass NULL
12496 * here.
d6c2308c 12497 */
83a28819 12498 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
12499 if (class == BPF_LD &&
12500 BPF_MODE(code) == BPF_IMM)
12501 i++;
12502 continue;
12503 }
12504
12505 /* ctx load could be transformed into wider load. */
12506 if (class == BPF_LDX &&
12507 aux[adj_idx].ptr_type == PTR_TO_CTX)
12508 continue;
12509
12510 imm_rnd = get_random_int();
12511 rnd_hi32_patch[0] = insn;
12512 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 12513 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
12514 patch = rnd_hi32_patch;
12515 patch_len = 4;
12516 goto apply_patch_buffer;
12517 }
12518
39491867
BJ
12519 /* Add in an zero-extend instruction if a) the JIT has requested
12520 * it or b) it's a CMPXCHG.
12521 *
12522 * The latter is because: BPF_CMPXCHG always loads a value into
12523 * R0, therefore always zero-extends. However some archs'
12524 * equivalent instruction only does this load when the
12525 * comparison is successful. This detail of CMPXCHG is
12526 * orthogonal to the general zero-extension behaviour of the
12527 * CPU, so it's treated independently of bpf_jit_needs_zext.
12528 */
12529 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
12530 continue;
12531
83a28819
IL
12532 if (WARN_ON(load_reg == -1)) {
12533 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12534 return -EFAULT;
b2e37a71
IL
12535 }
12536
a4b1d3c1 12537 zext_patch[0] = insn;
b2e37a71
IL
12538 zext_patch[1].dst_reg = load_reg;
12539 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
12540 patch = zext_patch;
12541 patch_len = 2;
12542apply_patch_buffer:
12543 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
12544 if (!new_prog)
12545 return -ENOMEM;
12546 env->prog = new_prog;
12547 insns = new_prog->insnsi;
12548 aux = env->insn_aux_data;
d6c2308c 12549 delta += patch_len - 1;
a4b1d3c1
JW
12550 }
12551
12552 return 0;
12553}
12554
c64b7983
JS
12555/* convert load instructions that access fields of a context type into a
12556 * sequence of instructions that access fields of the underlying structure:
12557 * struct __sk_buff -> struct sk_buff
12558 * struct bpf_sock_ops -> struct sock
9bac3d6d 12559 */
58e2af8b 12560static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 12561{
00176a34 12562 const struct bpf_verifier_ops *ops = env->ops;
f96da094 12563 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 12564 const int insn_cnt = env->prog->len;
36bbef52 12565 struct bpf_insn insn_buf[16], *insn;
46f53a65 12566 u32 target_size, size_default, off;
9bac3d6d 12567 struct bpf_prog *new_prog;
d691f9e8 12568 enum bpf_access_type type;
f96da094 12569 bool is_narrower_load;
9bac3d6d 12570
b09928b9
DB
12571 if (ops->gen_prologue || env->seen_direct_write) {
12572 if (!ops->gen_prologue) {
12573 verbose(env, "bpf verifier is misconfigured\n");
12574 return -EINVAL;
12575 }
36bbef52
DB
12576 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12577 env->prog);
12578 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 12579 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
12580 return -EINVAL;
12581 } else if (cnt) {
8041902d 12582 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
12583 if (!new_prog)
12584 return -ENOMEM;
8041902d 12585
36bbef52 12586 env->prog = new_prog;
3df126f3 12587 delta += cnt - 1;
36bbef52
DB
12588 }
12589 }
12590
c64b7983 12591 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
12592 return 0;
12593
3df126f3 12594 insn = env->prog->insnsi + delta;
36bbef52 12595
9bac3d6d 12596 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 12597 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 12598 bool ctx_access;
c64b7983 12599
62c7989b
DB
12600 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12601 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12602 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 12603 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 12604 type = BPF_READ;
2039f26f
DB
12605 ctx_access = true;
12606 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12607 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12608 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12609 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12610 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12611 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12612 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12613 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 12614 type = BPF_WRITE;
2039f26f
DB
12615 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12616 } else {
9bac3d6d 12617 continue;
2039f26f 12618 }
9bac3d6d 12619
af86ca4e 12620 if (type == BPF_WRITE &&
2039f26f 12621 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 12622 struct bpf_insn patch[] = {
af86ca4e 12623 *insn,
2039f26f 12624 BPF_ST_NOSPEC(),
af86ca4e
AS
12625 };
12626
12627 cnt = ARRAY_SIZE(patch);
12628 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12629 if (!new_prog)
12630 return -ENOMEM;
12631
12632 delta += cnt - 1;
12633 env->prog = new_prog;
12634 insn = new_prog->insnsi + i + delta;
12635 continue;
12636 }
12637
2039f26f
DB
12638 if (!ctx_access)
12639 continue;
12640
c64b7983
JS
12641 switch (env->insn_aux_data[i + delta].ptr_type) {
12642 case PTR_TO_CTX:
12643 if (!ops->convert_ctx_access)
12644 continue;
12645 convert_ctx_access = ops->convert_ctx_access;
12646 break;
12647 case PTR_TO_SOCKET:
46f8bc92 12648 case PTR_TO_SOCK_COMMON:
c64b7983
JS
12649 convert_ctx_access = bpf_sock_convert_ctx_access;
12650 break;
655a51e5
MKL
12651 case PTR_TO_TCP_SOCK:
12652 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12653 break;
fada7fdc
JL
12654 case PTR_TO_XDP_SOCK:
12655 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12656 break;
2a02759e 12657 case PTR_TO_BTF_ID:
27ae7997
MKL
12658 if (type == BPF_READ) {
12659 insn->code = BPF_LDX | BPF_PROBE_MEM |
12660 BPF_SIZE((insn)->code);
12661 env->prog->aux->num_exentries++;
7e40781c 12662 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
12663 verbose(env, "Writes through BTF pointers are not allowed\n");
12664 return -EINVAL;
12665 }
2a02759e 12666 continue;
c64b7983 12667 default:
9bac3d6d 12668 continue;
c64b7983 12669 }
9bac3d6d 12670
31fd8581 12671 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 12672 size = BPF_LDST_BYTES(insn);
31fd8581
YS
12673
12674 /* If the read access is a narrower load of the field,
12675 * convert to a 4/8-byte load, to minimum program type specific
12676 * convert_ctx_access changes. If conversion is successful,
12677 * we will apply proper mask to the result.
12678 */
f96da094 12679 is_narrower_load = size < ctx_field_size;
46f53a65
AI
12680 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12681 off = insn->off;
31fd8581 12682 if (is_narrower_load) {
f96da094
DB
12683 u8 size_code;
12684
12685 if (type == BPF_WRITE) {
61bd5218 12686 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12687 return -EINVAL;
12688 }
31fd8581 12689
f96da094 12690 size_code = BPF_H;
31fd8581
YS
12691 if (ctx_field_size == 4)
12692 size_code = BPF_W;
12693 else if (ctx_field_size == 8)
12694 size_code = BPF_DW;
f96da094 12695
bc23105c 12696 insn->off = off & ~(size_default - 1);
31fd8581
YS
12697 insn->code = BPF_LDX | BPF_MEM | size_code;
12698 }
f96da094
DB
12699
12700 target_size = 0;
c64b7983
JS
12701 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12702 &target_size);
f96da094
DB
12703 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12704 (ctx_field_size && !target_size)) {
61bd5218 12705 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12706 return -EINVAL;
12707 }
f96da094
DB
12708
12709 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12710 u8 shift = bpf_ctx_narrow_access_offset(
12711 off, size, size_default) * 8;
d7af7e49
AI
12712 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12713 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12714 return -EINVAL;
12715 }
46f53a65
AI
12716 if (ctx_field_size <= 4) {
12717 if (shift)
12718 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12719 insn->dst_reg,
12720 shift);
31fd8581 12721 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12722 (1 << size * 8) - 1);
46f53a65
AI
12723 } else {
12724 if (shift)
12725 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12726 insn->dst_reg,
12727 shift);
31fd8581 12728 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12729 (1ULL << size * 8) - 1);
46f53a65 12730 }
31fd8581 12731 }
9bac3d6d 12732
8041902d 12733 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12734 if (!new_prog)
12735 return -ENOMEM;
12736
3df126f3 12737 delta += cnt - 1;
9bac3d6d
AS
12738
12739 /* keep walking new program and skip insns we just inserted */
12740 env->prog = new_prog;
3df126f3 12741 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12742 }
12743
12744 return 0;
12745}
12746
1c2a088a
AS
12747static int jit_subprogs(struct bpf_verifier_env *env)
12748{
12749 struct bpf_prog *prog = env->prog, **func, *tmp;
12750 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12751 struct bpf_map *map_ptr;
7105e828 12752 struct bpf_insn *insn;
1c2a088a 12753 void *old_bpf_func;
c4c0bdc0 12754 int err, num_exentries;
1c2a088a 12755
f910cefa 12756 if (env->subprog_cnt <= 1)
1c2a088a
AS
12757 return 0;
12758
7105e828 12759 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 12760 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 12761 continue;
69c087ba 12762
c7a89784
DB
12763 /* Upon error here we cannot fall back to interpreter but
12764 * need a hard reject of the program. Thus -EFAULT is
12765 * propagated in any case.
12766 */
1c2a088a
AS
12767 subprog = find_subprog(env, i + insn->imm + 1);
12768 if (subprog < 0) {
12769 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12770 i + insn->imm + 1);
12771 return -EFAULT;
12772 }
12773 /* temporarily remember subprog id inside insn instead of
12774 * aux_data, since next loop will split up all insns into funcs
12775 */
f910cefa 12776 insn->off = subprog;
1c2a088a
AS
12777 /* remember original imm in case JIT fails and fallback
12778 * to interpreter will be needed
12779 */
12780 env->insn_aux_data[i].call_imm = insn->imm;
12781 /* point imm to __bpf_call_base+1 from JITs point of view */
12782 insn->imm = 1;
3990ed4c
MKL
12783 if (bpf_pseudo_func(insn))
12784 /* jit (e.g. x86_64) may emit fewer instructions
12785 * if it learns a u32 imm is the same as a u64 imm.
12786 * Force a non zero here.
12787 */
12788 insn[1].imm = 1;
1c2a088a
AS
12789 }
12790
c454a46b
MKL
12791 err = bpf_prog_alloc_jited_linfo(prog);
12792 if (err)
12793 goto out_undo_insn;
12794
12795 err = -ENOMEM;
6396bb22 12796 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 12797 if (!func)
c7a89784 12798 goto out_undo_insn;
1c2a088a 12799
f910cefa 12800 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 12801 subprog_start = subprog_end;
4cb3d99c 12802 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
12803
12804 len = subprog_end - subprog_start;
fb7dd8bc 12805 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
12806 * hence main prog stats include the runtime of subprogs.
12807 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 12808 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
12809 */
12810 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
12811 if (!func[i])
12812 goto out_free;
12813 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12814 len * sizeof(struct bpf_insn));
4f74d809 12815 func[i]->type = prog->type;
1c2a088a 12816 func[i]->len = len;
4f74d809
DB
12817 if (bpf_prog_calc_tag(func[i]))
12818 goto out_free;
1c2a088a 12819 func[i]->is_func = 1;
ba64e7d8 12820 func[i]->aux->func_idx = i;
f263a814 12821 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
12822 func[i]->aux->btf = prog->aux->btf;
12823 func[i]->aux->func_info = prog->aux->func_info;
f263a814
JF
12824 func[i]->aux->poke_tab = prog->aux->poke_tab;
12825 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 12826
a748c697 12827 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 12828 struct bpf_jit_poke_descriptor *poke;
a748c697 12829
f263a814
JF
12830 poke = &prog->aux->poke_tab[j];
12831 if (poke->insn_idx < subprog_end &&
12832 poke->insn_idx >= subprog_start)
12833 poke->aux = func[i]->aux;
a748c697
MF
12834 }
12835
1c2a088a
AS
12836 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12837 * Long term would need debug info to populate names
12838 */
12839 func[i]->aux->name[0] = 'F';
9c8105bd 12840 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12841 func[i]->jit_requested = 1;
e6ac2450 12842 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 12843 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
12844 func[i]->aux->linfo = prog->aux->linfo;
12845 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12846 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12847 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12848 num_exentries = 0;
12849 insn = func[i]->insnsi;
12850 for (j = 0; j < func[i]->len; j++, insn++) {
12851 if (BPF_CLASS(insn->code) == BPF_LDX &&
12852 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12853 num_exentries++;
12854 }
12855 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12856 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12857 func[i] = bpf_int_jit_compile(func[i]);
12858 if (!func[i]->jited) {
12859 err = -ENOTSUPP;
12860 goto out_free;
12861 }
12862 cond_resched();
12863 }
a748c697 12864
1c2a088a
AS
12865 /* at this point all bpf functions were successfully JITed
12866 * now populate all bpf_calls with correct addresses and
12867 * run last pass of JIT
12868 */
f910cefa 12869 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12870 insn = func[i]->insnsi;
12871 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 12872 if (bpf_pseudo_func(insn)) {
3990ed4c 12873 subprog = insn->off;
69c087ba
YS
12874 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12875 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12876 continue;
12877 }
23a2d70c 12878 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12879 continue;
12880 subprog = insn->off;
3d717fad 12881 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 12882 }
2162fed4
SD
12883
12884 /* we use the aux data to keep a list of the start addresses
12885 * of the JITed images for each function in the program
12886 *
12887 * for some architectures, such as powerpc64, the imm field
12888 * might not be large enough to hold the offset of the start
12889 * address of the callee's JITed image from __bpf_call_base
12890 *
12891 * in such cases, we can lookup the start address of a callee
12892 * by using its subprog id, available from the off field of
12893 * the call instruction, as an index for this list
12894 */
12895 func[i]->aux->func = func;
12896 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12897 }
f910cefa 12898 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12899 old_bpf_func = func[i]->bpf_func;
12900 tmp = bpf_int_jit_compile(func[i]);
12901 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12902 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12903 err = -ENOTSUPP;
1c2a088a
AS
12904 goto out_free;
12905 }
12906 cond_resched();
12907 }
12908
12909 /* finally lock prog and jit images for all functions and
12910 * populate kallsysm
12911 */
f910cefa 12912 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12913 bpf_prog_lock_ro(func[i]);
12914 bpf_prog_kallsyms_add(func[i]);
12915 }
7105e828
DB
12916
12917 /* Last step: make now unused interpreter insns from main
12918 * prog consistent for later dump requests, so they can
12919 * later look the same as if they were interpreted only.
12920 */
12921 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12922 if (bpf_pseudo_func(insn)) {
12923 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
12924 insn[1].imm = insn->off;
12925 insn->off = 0;
69c087ba
YS
12926 continue;
12927 }
23a2d70c 12928 if (!bpf_pseudo_call(insn))
7105e828
DB
12929 continue;
12930 insn->off = env->insn_aux_data[i].call_imm;
12931 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12932 insn->imm = subprog;
7105e828
DB
12933 }
12934
1c2a088a
AS
12935 prog->jited = 1;
12936 prog->bpf_func = func[0]->bpf_func;
12937 prog->aux->func = func;
f910cefa 12938 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12939 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12940 return 0;
12941out_free:
f263a814
JF
12942 /* We failed JIT'ing, so at this point we need to unregister poke
12943 * descriptors from subprogs, so that kernel is not attempting to
12944 * patch it anymore as we're freeing the subprog JIT memory.
12945 */
12946 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12947 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12948 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12949 }
12950 /* At this point we're guaranteed that poke descriptors are not
12951 * live anymore. We can just unlink its descriptor table as it's
12952 * released with the main prog.
12953 */
a748c697
MF
12954 for (i = 0; i < env->subprog_cnt; i++) {
12955 if (!func[i])
12956 continue;
f263a814 12957 func[i]->aux->poke_tab = NULL;
a748c697
MF
12958 bpf_jit_free(func[i]);
12959 }
1c2a088a 12960 kfree(func);
c7a89784 12961out_undo_insn:
1c2a088a
AS
12962 /* cleanup main prog to be interpreted */
12963 prog->jit_requested = 0;
12964 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12965 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12966 continue;
12967 insn->off = 0;
12968 insn->imm = env->insn_aux_data[i].call_imm;
12969 }
e16301fb 12970 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12971 return err;
12972}
12973
1ea47e01
AS
12974static int fixup_call_args(struct bpf_verifier_env *env)
12975{
19d28fbd 12976#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12977 struct bpf_prog *prog = env->prog;
12978 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12979 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12980 int i, depth;
19d28fbd 12981#endif
e4052d06 12982 int err = 0;
1ea47e01 12983
e4052d06
QM
12984 if (env->prog->jit_requested &&
12985 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12986 err = jit_subprogs(env);
12987 if (err == 0)
1c2a088a 12988 return 0;
c7a89784
DB
12989 if (err == -EFAULT)
12990 return err;
19d28fbd
DM
12991 }
12992#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12993 if (has_kfunc_call) {
12994 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12995 return -EINVAL;
12996 }
e411901c
MF
12997 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12998 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12999 * have to be rejected, since interpreter doesn't support them yet.
13000 */
13001 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13002 return -EINVAL;
13003 }
1ea47e01 13004 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
13005 if (bpf_pseudo_func(insn)) {
13006 /* When JIT fails the progs with callback calls
13007 * have to be rejected, since interpreter doesn't support them yet.
13008 */
13009 verbose(env, "callbacks are not allowed in non-JITed programs\n");
13010 return -EINVAL;
13011 }
13012
23a2d70c 13013 if (!bpf_pseudo_call(insn))
1ea47e01
AS
13014 continue;
13015 depth = get_callee_stack_depth(env, insn, i);
13016 if (depth < 0)
13017 return depth;
13018 bpf_patch_call_args(insn, depth);
13019 }
19d28fbd
DM
13020 err = 0;
13021#endif
13022 return err;
1ea47e01
AS
13023}
13024
e6ac2450
MKL
13025static int fixup_kfunc_call(struct bpf_verifier_env *env,
13026 struct bpf_insn *insn)
13027{
13028 const struct bpf_kfunc_desc *desc;
13029
a5d82727
KKD
13030 if (!insn->imm) {
13031 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13032 return -EINVAL;
13033 }
13034
e6ac2450
MKL
13035 /* insn->imm has the btf func_id. Replace it with
13036 * an address (relative to __bpf_base_call).
13037 */
2357672c 13038 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
13039 if (!desc) {
13040 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13041 insn->imm);
13042 return -EFAULT;
13043 }
13044
13045 insn->imm = desc->imm;
13046
13047 return 0;
13048}
13049
e6ac5933
BJ
13050/* Do various post-verification rewrites in a single program pass.
13051 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 13052 */
e6ac5933 13053static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 13054{
79741b3b 13055 struct bpf_prog *prog = env->prog;
f92c1e18 13056 enum bpf_attach_type eatype = prog->expected_attach_type;
d2e4c1e6 13057 bool expect_blinding = bpf_jit_blinding_enabled(prog);
9b99edca 13058 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 13059 struct bpf_insn *insn = prog->insnsi;
e245c5c6 13060 const struct bpf_func_proto *fn;
79741b3b 13061 const int insn_cnt = prog->len;
09772d92 13062 const struct bpf_map_ops *ops;
c93552c4 13063 struct bpf_insn_aux_data *aux;
81ed18ab
AS
13064 struct bpf_insn insn_buf[16];
13065 struct bpf_prog *new_prog;
13066 struct bpf_map *map_ptr;
d2e4c1e6 13067 int i, ret, cnt, delta = 0;
e245c5c6 13068
79741b3b 13069 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 13070 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
13071 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13072 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13073 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 13074 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 13075 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
13076 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13077 struct bpf_insn *patchlet;
13078 struct bpf_insn chk_and_div[] = {
9b00f1b7 13079 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
13080 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13081 BPF_JNE | BPF_K, insn->src_reg,
13082 0, 2, 0),
f6b1b3bf
DB
13083 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13084 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13085 *insn,
13086 };
e88b2c6e 13087 struct bpf_insn chk_and_mod[] = {
9b00f1b7 13088 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
13089 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13090 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 13091 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 13092 *insn,
9b00f1b7
DB
13093 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13094 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 13095 };
f6b1b3bf 13096
e88b2c6e
DB
13097 patchlet = isdiv ? chk_and_div : chk_and_mod;
13098 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 13099 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
13100
13101 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
13102 if (!new_prog)
13103 return -ENOMEM;
13104
13105 delta += cnt - 1;
13106 env->prog = prog = new_prog;
13107 insn = new_prog->insnsi + i + delta;
13108 continue;
13109 }
13110
e6ac5933 13111 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
13112 if (BPF_CLASS(insn->code) == BPF_LD &&
13113 (BPF_MODE(insn->code) == BPF_ABS ||
13114 BPF_MODE(insn->code) == BPF_IND)) {
13115 cnt = env->ops->gen_ld_abs(insn, insn_buf);
13116 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13117 verbose(env, "bpf verifier is misconfigured\n");
13118 return -EINVAL;
13119 }
13120
13121 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13122 if (!new_prog)
13123 return -ENOMEM;
13124
13125 delta += cnt - 1;
13126 env->prog = prog = new_prog;
13127 insn = new_prog->insnsi + i + delta;
13128 continue;
13129 }
13130
e6ac5933 13131 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
13132 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13133 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13134 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13135 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 13136 struct bpf_insn *patch = &insn_buf[0];
801c6058 13137 bool issrc, isneg, isimm;
979d63d5
DB
13138 u32 off_reg;
13139
13140 aux = &env->insn_aux_data[i + delta];
3612af78
DB
13141 if (!aux->alu_state ||
13142 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
13143 continue;
13144
13145 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13146 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13147 BPF_ALU_SANITIZE_SRC;
801c6058 13148 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
13149
13150 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
13151 if (isimm) {
13152 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13153 } else {
13154 if (isneg)
13155 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13156 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13157 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13158 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13159 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13160 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13161 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13162 }
b9b34ddb
DB
13163 if (!issrc)
13164 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13165 insn->src_reg = BPF_REG_AX;
979d63d5
DB
13166 if (isneg)
13167 insn->code = insn->code == code_add ?
13168 code_sub : code_add;
13169 *patch++ = *insn;
801c6058 13170 if (issrc && isneg && !isimm)
979d63d5
DB
13171 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13172 cnt = patch - insn_buf;
13173
13174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13175 if (!new_prog)
13176 return -ENOMEM;
13177
13178 delta += cnt - 1;
13179 env->prog = prog = new_prog;
13180 insn = new_prog->insnsi + i + delta;
13181 continue;
13182 }
13183
79741b3b
AS
13184 if (insn->code != (BPF_JMP | BPF_CALL))
13185 continue;
cc8b0b92
AS
13186 if (insn->src_reg == BPF_PSEUDO_CALL)
13187 continue;
e6ac2450
MKL
13188 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13189 ret = fixup_kfunc_call(env, insn);
13190 if (ret)
13191 return ret;
13192 continue;
13193 }
e245c5c6 13194
79741b3b
AS
13195 if (insn->imm == BPF_FUNC_get_route_realm)
13196 prog->dst_needed = 1;
13197 if (insn->imm == BPF_FUNC_get_prandom_u32)
13198 bpf_user_rnd_init_once();
9802d865
JB
13199 if (insn->imm == BPF_FUNC_override_return)
13200 prog->kprobe_override = 1;
79741b3b 13201 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
13202 /* If we tail call into other programs, we
13203 * cannot make any assumptions since they can
13204 * be replaced dynamically during runtime in
13205 * the program array.
13206 */
13207 prog->cb_access = 1;
e411901c
MF
13208 if (!allow_tail_call_in_subprogs(env))
13209 prog->aux->stack_depth = MAX_BPF_STACK;
13210 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 13211
79741b3b 13212 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 13213 * conditional branch in the interpreter for every normal
79741b3b
AS
13214 * call and to prevent accidental JITing by JIT compiler
13215 * that doesn't support bpf_tail_call yet
e245c5c6 13216 */
79741b3b 13217 insn->imm = 0;
71189fa9 13218 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 13219
c93552c4 13220 aux = &env->insn_aux_data[i + delta];
2c78ee89 13221 if (env->bpf_capable && !expect_blinding &&
cc52d914 13222 prog->jit_requested &&
d2e4c1e6
DB
13223 !bpf_map_key_poisoned(aux) &&
13224 !bpf_map_ptr_poisoned(aux) &&
13225 !bpf_map_ptr_unpriv(aux)) {
13226 struct bpf_jit_poke_descriptor desc = {
13227 .reason = BPF_POKE_REASON_TAIL_CALL,
13228 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13229 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 13230 .insn_idx = i + delta,
d2e4c1e6
DB
13231 };
13232
13233 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13234 if (ret < 0) {
13235 verbose(env, "adding tail call poke descriptor failed\n");
13236 return ret;
13237 }
13238
13239 insn->imm = ret + 1;
13240 continue;
13241 }
13242
c93552c4
DB
13243 if (!bpf_map_ptr_unpriv(aux))
13244 continue;
13245
b2157399
AS
13246 /* instead of changing every JIT dealing with tail_call
13247 * emit two extra insns:
13248 * if (index >= max_entries) goto out;
13249 * index &= array->index_mask;
13250 * to avoid out-of-bounds cpu speculation
13251 */
c93552c4 13252 if (bpf_map_ptr_poisoned(aux)) {
40950343 13253 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
13254 return -EINVAL;
13255 }
c93552c4 13256
d2e4c1e6 13257 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
13258 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13259 map_ptr->max_entries, 2);
13260 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13261 container_of(map_ptr,
13262 struct bpf_array,
13263 map)->index_mask);
13264 insn_buf[2] = *insn;
13265 cnt = 3;
13266 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13267 if (!new_prog)
13268 return -ENOMEM;
13269
13270 delta += cnt - 1;
13271 env->prog = prog = new_prog;
13272 insn = new_prog->insnsi + i + delta;
79741b3b
AS
13273 continue;
13274 }
e245c5c6 13275
b00628b1
AS
13276 if (insn->imm == BPF_FUNC_timer_set_callback) {
13277 /* The verifier will process callback_fn as many times as necessary
13278 * with different maps and the register states prepared by
13279 * set_timer_callback_state will be accurate.
13280 *
13281 * The following use case is valid:
13282 * map1 is shared by prog1, prog2, prog3.
13283 * prog1 calls bpf_timer_init for some map1 elements
13284 * prog2 calls bpf_timer_set_callback for some map1 elements.
13285 * Those that were not bpf_timer_init-ed will return -EINVAL.
13286 * prog3 calls bpf_timer_start for some map1 elements.
13287 * Those that were not both bpf_timer_init-ed and
13288 * bpf_timer_set_callback-ed will return -EINVAL.
13289 */
13290 struct bpf_insn ld_addrs[2] = {
13291 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13292 };
13293
13294 insn_buf[0] = ld_addrs[0];
13295 insn_buf[1] = ld_addrs[1];
13296 insn_buf[2] = *insn;
13297 cnt = 3;
13298
13299 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13300 if (!new_prog)
13301 return -ENOMEM;
13302
13303 delta += cnt - 1;
13304 env->prog = prog = new_prog;
13305 insn = new_prog->insnsi + i + delta;
13306 goto patch_call_imm;
13307 }
13308
89c63074 13309 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
13310 * and other inlining handlers are currently limited to 64 bit
13311 * only.
89c63074 13312 */
60b58afc 13313 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
13314 (insn->imm == BPF_FUNC_map_lookup_elem ||
13315 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
13316 insn->imm == BPF_FUNC_map_delete_elem ||
13317 insn->imm == BPF_FUNC_map_push_elem ||
13318 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 13319 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c
AI
13320 insn->imm == BPF_FUNC_redirect_map ||
13321 insn->imm == BPF_FUNC_for_each_map_elem)) {
c93552c4
DB
13322 aux = &env->insn_aux_data[i + delta];
13323 if (bpf_map_ptr_poisoned(aux))
13324 goto patch_call_imm;
13325
d2e4c1e6 13326 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
13327 ops = map_ptr->ops;
13328 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13329 ops->map_gen_lookup) {
13330 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
13331 if (cnt == -EOPNOTSUPP)
13332 goto patch_map_ops_generic;
13333 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
13334 verbose(env, "bpf verifier is misconfigured\n");
13335 return -EINVAL;
13336 }
81ed18ab 13337
09772d92
DB
13338 new_prog = bpf_patch_insn_data(env, i + delta,
13339 insn_buf, cnt);
13340 if (!new_prog)
13341 return -ENOMEM;
81ed18ab 13342
09772d92
DB
13343 delta += cnt - 1;
13344 env->prog = prog = new_prog;
13345 insn = new_prog->insnsi + i + delta;
13346 continue;
13347 }
81ed18ab 13348
09772d92
DB
13349 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13350 (void *(*)(struct bpf_map *map, void *key))NULL));
13351 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13352 (int (*)(struct bpf_map *map, void *key))NULL));
13353 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13354 (int (*)(struct bpf_map *map, void *key, void *value,
13355 u64 flags))NULL));
84430d42
DB
13356 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13357 (int (*)(struct bpf_map *map, void *value,
13358 u64 flags))NULL));
13359 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13360 (int (*)(struct bpf_map *map, void *value))NULL));
13361 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13362 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
13363 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13364 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
0640c77c
AI
13365 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13366 (int (*)(struct bpf_map *map,
13367 bpf_callback_t callback_fn,
13368 void *callback_ctx,
13369 u64 flags))NULL));
e6a4750f 13370
4a8f87e6 13371patch_map_ops_generic:
09772d92
DB
13372 switch (insn->imm) {
13373 case BPF_FUNC_map_lookup_elem:
3d717fad 13374 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
13375 continue;
13376 case BPF_FUNC_map_update_elem:
3d717fad 13377 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
13378 continue;
13379 case BPF_FUNC_map_delete_elem:
3d717fad 13380 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 13381 continue;
84430d42 13382 case BPF_FUNC_map_push_elem:
3d717fad 13383 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
13384 continue;
13385 case BPF_FUNC_map_pop_elem:
3d717fad 13386 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
13387 continue;
13388 case BPF_FUNC_map_peek_elem:
3d717fad 13389 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 13390 continue;
e6a4750f 13391 case BPF_FUNC_redirect_map:
3d717fad 13392 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 13393 continue;
0640c77c
AI
13394 case BPF_FUNC_for_each_map_elem:
13395 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 13396 continue;
09772d92 13397 }
81ed18ab 13398
09772d92 13399 goto patch_call_imm;
81ed18ab
AS
13400 }
13401
e6ac5933 13402 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
13403 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13404 insn->imm == BPF_FUNC_jiffies64) {
13405 struct bpf_insn ld_jiffies_addr[2] = {
13406 BPF_LD_IMM64(BPF_REG_0,
13407 (unsigned long)&jiffies),
13408 };
13409
13410 insn_buf[0] = ld_jiffies_addr[0];
13411 insn_buf[1] = ld_jiffies_addr[1];
13412 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13413 BPF_REG_0, 0);
13414 cnt = 3;
13415
13416 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13417 cnt);
13418 if (!new_prog)
13419 return -ENOMEM;
13420
13421 delta += cnt - 1;
13422 env->prog = prog = new_prog;
13423 insn = new_prog->insnsi + i + delta;
13424 continue;
13425 }
13426
f92c1e18
JO
13427 /* Implement bpf_get_func_arg inline. */
13428 if (prog_type == BPF_PROG_TYPE_TRACING &&
13429 insn->imm == BPF_FUNC_get_func_arg) {
13430 /* Load nr_args from ctx - 8 */
13431 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13432 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
13433 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
13434 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
13435 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
13436 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13437 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
13438 insn_buf[7] = BPF_JMP_A(1);
13439 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
13440 cnt = 9;
13441
13442 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13443 if (!new_prog)
13444 return -ENOMEM;
13445
13446 delta += cnt - 1;
13447 env->prog = prog = new_prog;
13448 insn = new_prog->insnsi + i + delta;
13449 continue;
13450 }
13451
13452 /* Implement bpf_get_func_ret inline. */
13453 if (prog_type == BPF_PROG_TYPE_TRACING &&
13454 insn->imm == BPF_FUNC_get_func_ret) {
13455 if (eatype == BPF_TRACE_FEXIT ||
13456 eatype == BPF_MODIFY_RETURN) {
13457 /* Load nr_args from ctx - 8 */
13458 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13459 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
13460 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
13461 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13462 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
13463 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
13464 cnt = 6;
13465 } else {
13466 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
13467 cnt = 1;
13468 }
13469
13470 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13471 if (!new_prog)
13472 return -ENOMEM;
13473
13474 delta += cnt - 1;
13475 env->prog = prog = new_prog;
13476 insn = new_prog->insnsi + i + delta;
13477 continue;
13478 }
13479
13480 /* Implement get_func_arg_cnt inline. */
13481 if (prog_type == BPF_PROG_TYPE_TRACING &&
13482 insn->imm == BPF_FUNC_get_func_arg_cnt) {
13483 /* Load nr_args from ctx - 8 */
13484 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13485
13486 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13487 if (!new_prog)
13488 return -ENOMEM;
13489
13490 env->prog = prog = new_prog;
13491 insn = new_prog->insnsi + i + delta;
13492 continue;
13493 }
13494
9b99edca
JO
13495 /* Implement bpf_get_func_ip inline. */
13496 if (prog_type == BPF_PROG_TYPE_TRACING &&
13497 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
13498 /* Load IP address from ctx - 16 */
13499 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
13500
13501 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13502 if (!new_prog)
13503 return -ENOMEM;
13504
13505 env->prog = prog = new_prog;
13506 insn = new_prog->insnsi + i + delta;
13507 continue;
13508 }
13509
81ed18ab 13510patch_call_imm:
5e43f899 13511 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
13512 /* all functions that have prototype and verifier allowed
13513 * programs to call them, must be real in-kernel functions
13514 */
13515 if (!fn->func) {
61bd5218
JK
13516 verbose(env,
13517 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
13518 func_id_name(insn->imm), insn->imm);
13519 return -EFAULT;
e245c5c6 13520 }
79741b3b 13521 insn->imm = fn->func - __bpf_call_base;
e245c5c6 13522 }
e245c5c6 13523
d2e4c1e6
DB
13524 /* Since poke tab is now finalized, publish aux to tracker. */
13525 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13526 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13527 if (!map_ptr->ops->map_poke_track ||
13528 !map_ptr->ops->map_poke_untrack ||
13529 !map_ptr->ops->map_poke_run) {
13530 verbose(env, "bpf verifier is misconfigured\n");
13531 return -EINVAL;
13532 }
13533
13534 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13535 if (ret < 0) {
13536 verbose(env, "tracking tail call prog failed\n");
13537 return ret;
13538 }
13539 }
13540
e6ac2450
MKL
13541 sort_kfunc_descs_by_imm(env->prog);
13542
79741b3b
AS
13543 return 0;
13544}
e245c5c6 13545
58e2af8b 13546static void free_states(struct bpf_verifier_env *env)
f1bca824 13547{
58e2af8b 13548 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
13549 int i;
13550
9f4686c4
AS
13551 sl = env->free_list;
13552 while (sl) {
13553 sln = sl->next;
13554 free_verifier_state(&sl->state, false);
13555 kfree(sl);
13556 sl = sln;
13557 }
51c39bb1 13558 env->free_list = NULL;
9f4686c4 13559
f1bca824
AS
13560 if (!env->explored_states)
13561 return;
13562
dc2a4ebc 13563 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
13564 sl = env->explored_states[i];
13565
a8f500af
AS
13566 while (sl) {
13567 sln = sl->next;
13568 free_verifier_state(&sl->state, false);
13569 kfree(sl);
13570 sl = sln;
13571 }
51c39bb1 13572 env->explored_states[i] = NULL;
f1bca824 13573 }
51c39bb1 13574}
f1bca824 13575
51c39bb1
AS
13576static int do_check_common(struct bpf_verifier_env *env, int subprog)
13577{
6f8a57cc 13578 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
13579 struct bpf_verifier_state *state;
13580 struct bpf_reg_state *regs;
13581 int ret, i;
13582
13583 env->prev_linfo = NULL;
13584 env->pass_cnt++;
13585
13586 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13587 if (!state)
13588 return -ENOMEM;
13589 state->curframe = 0;
13590 state->speculative = false;
13591 state->branches = 1;
13592 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13593 if (!state->frame[0]) {
13594 kfree(state);
13595 return -ENOMEM;
13596 }
13597 env->cur_state = state;
13598 init_func_state(env, state->frame[0],
13599 BPF_MAIN_FUNC /* callsite */,
13600 0 /* frameno */,
13601 subprog);
13602
13603 regs = state->frame[state->curframe]->regs;
be8704ff 13604 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
13605 ret = btf_prepare_func_args(env, subprog, regs);
13606 if (ret)
13607 goto out;
13608 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13609 if (regs[i].type == PTR_TO_CTX)
13610 mark_reg_known_zero(env, regs, i);
13611 else if (regs[i].type == SCALAR_VALUE)
13612 mark_reg_unknown(env, regs, i);
e5069b9c
DB
13613 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13614 const u32 mem_size = regs[i].mem_size;
13615
13616 mark_reg_known_zero(env, regs, i);
13617 regs[i].mem_size = mem_size;
13618 regs[i].id = ++env->id_gen;
13619 }
51c39bb1
AS
13620 }
13621 } else {
13622 /* 1st arg to a function */
13623 regs[BPF_REG_1].type = PTR_TO_CTX;
13624 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 13625 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
13626 if (ret == -EFAULT)
13627 /* unlikely verifier bug. abort.
13628 * ret == 0 and ret < 0 are sadly acceptable for
13629 * main() function due to backward compatibility.
13630 * Like socket filter program may be written as:
13631 * int bpf_prog(struct pt_regs *ctx)
13632 * and never dereference that ctx in the program.
13633 * 'struct pt_regs' is a type mismatch for socket
13634 * filter that should be using 'struct __sk_buff'.
13635 */
13636 goto out;
13637 }
13638
13639 ret = do_check(env);
13640out:
f59bbfc2
AS
13641 /* check for NULL is necessary, since cur_state can be freed inside
13642 * do_check() under memory pressure.
13643 */
13644 if (env->cur_state) {
13645 free_verifier_state(env->cur_state, true);
13646 env->cur_state = NULL;
13647 }
6f8a57cc
AN
13648 while (!pop_stack(env, NULL, NULL, false));
13649 if (!ret && pop_log)
13650 bpf_vlog_reset(&env->log, 0);
51c39bb1 13651 free_states(env);
51c39bb1
AS
13652 return ret;
13653}
13654
13655/* Verify all global functions in a BPF program one by one based on their BTF.
13656 * All global functions must pass verification. Otherwise the whole program is rejected.
13657 * Consider:
13658 * int bar(int);
13659 * int foo(int f)
13660 * {
13661 * return bar(f);
13662 * }
13663 * int bar(int b)
13664 * {
13665 * ...
13666 * }
13667 * foo() will be verified first for R1=any_scalar_value. During verification it
13668 * will be assumed that bar() already verified successfully and call to bar()
13669 * from foo() will be checked for type match only. Later bar() will be verified
13670 * independently to check that it's safe for R1=any_scalar_value.
13671 */
13672static int do_check_subprogs(struct bpf_verifier_env *env)
13673{
13674 struct bpf_prog_aux *aux = env->prog->aux;
13675 int i, ret;
13676
13677 if (!aux->func_info)
13678 return 0;
13679
13680 for (i = 1; i < env->subprog_cnt; i++) {
13681 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13682 continue;
13683 env->insn_idx = env->subprog_info[i].start;
13684 WARN_ON_ONCE(env->insn_idx == 0);
13685 ret = do_check_common(env, i);
13686 if (ret) {
13687 return ret;
13688 } else if (env->log.level & BPF_LOG_LEVEL) {
13689 verbose(env,
13690 "Func#%d is safe for any args that match its prototype\n",
13691 i);
13692 }
13693 }
13694 return 0;
13695}
13696
13697static int do_check_main(struct bpf_verifier_env *env)
13698{
13699 int ret;
13700
13701 env->insn_idx = 0;
13702 ret = do_check_common(env, 0);
13703 if (!ret)
13704 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13705 return ret;
13706}
13707
13708
06ee7115
AS
13709static void print_verification_stats(struct bpf_verifier_env *env)
13710{
13711 int i;
13712
13713 if (env->log.level & BPF_LOG_STATS) {
13714 verbose(env, "verification time %lld usec\n",
13715 div_u64(env->verification_time, 1000));
13716 verbose(env, "stack depth ");
13717 for (i = 0; i < env->subprog_cnt; i++) {
13718 u32 depth = env->subprog_info[i].stack_depth;
13719
13720 verbose(env, "%d", depth);
13721 if (i + 1 < env->subprog_cnt)
13722 verbose(env, "+");
13723 }
13724 verbose(env, "\n");
13725 }
13726 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13727 "total_states %d peak_states %d mark_read %d\n",
13728 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13729 env->max_states_per_insn, env->total_states,
13730 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
13731}
13732
27ae7997
MKL
13733static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13734{
13735 const struct btf_type *t, *func_proto;
13736 const struct bpf_struct_ops *st_ops;
13737 const struct btf_member *member;
13738 struct bpf_prog *prog = env->prog;
13739 u32 btf_id, member_idx;
13740 const char *mname;
13741
12aa8a94
THJ
13742 if (!prog->gpl_compatible) {
13743 verbose(env, "struct ops programs must have a GPL compatible license\n");
13744 return -EINVAL;
13745 }
13746
27ae7997
MKL
13747 btf_id = prog->aux->attach_btf_id;
13748 st_ops = bpf_struct_ops_find(btf_id);
13749 if (!st_ops) {
13750 verbose(env, "attach_btf_id %u is not a supported struct\n",
13751 btf_id);
13752 return -ENOTSUPP;
13753 }
13754
13755 t = st_ops->type;
13756 member_idx = prog->expected_attach_type;
13757 if (member_idx >= btf_type_vlen(t)) {
13758 verbose(env, "attach to invalid member idx %u of struct %s\n",
13759 member_idx, st_ops->name);
13760 return -EINVAL;
13761 }
13762
13763 member = &btf_type_member(t)[member_idx];
13764 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13765 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13766 NULL);
13767 if (!func_proto) {
13768 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13769 mname, member_idx, st_ops->name);
13770 return -EINVAL;
13771 }
13772
13773 if (st_ops->check_member) {
13774 int err = st_ops->check_member(t, member);
13775
13776 if (err) {
13777 verbose(env, "attach to unsupported member %s of struct %s\n",
13778 mname, st_ops->name);
13779 return err;
13780 }
13781 }
13782
13783 prog->aux->attach_func_proto = func_proto;
13784 prog->aux->attach_func_name = mname;
13785 env->ops = st_ops->verifier_ops;
13786
13787 return 0;
13788}
6ba43b76
KS
13789#define SECURITY_PREFIX "security_"
13790
f7b12b6f 13791static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 13792{
69191754 13793 if (within_error_injection_list(addr) ||
f7b12b6f 13794 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 13795 return 0;
6ba43b76 13796
6ba43b76
KS
13797 return -EINVAL;
13798}
27ae7997 13799
1e6c62a8
AS
13800/* list of non-sleepable functions that are otherwise on
13801 * ALLOW_ERROR_INJECTION list
13802 */
13803BTF_SET_START(btf_non_sleepable_error_inject)
13804/* Three functions below can be called from sleepable and non-sleepable context.
13805 * Assume non-sleepable from bpf safety point of view.
13806 */
9dd3d069 13807BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
13808BTF_ID(func, should_fail_alloc_page)
13809BTF_ID(func, should_failslab)
13810BTF_SET_END(btf_non_sleepable_error_inject)
13811
13812static int check_non_sleepable_error_inject(u32 btf_id)
13813{
13814 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13815}
13816
f7b12b6f
THJ
13817int bpf_check_attach_target(struct bpf_verifier_log *log,
13818 const struct bpf_prog *prog,
13819 const struct bpf_prog *tgt_prog,
13820 u32 btf_id,
13821 struct bpf_attach_target_info *tgt_info)
38207291 13822{
be8704ff 13823 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 13824 const char prefix[] = "btf_trace_";
5b92a28a 13825 int ret = 0, subprog = -1, i;
38207291 13826 const struct btf_type *t;
5b92a28a 13827 bool conservative = true;
38207291 13828 const char *tname;
5b92a28a 13829 struct btf *btf;
f7b12b6f 13830 long addr = 0;
38207291 13831
f1b9509c 13832 if (!btf_id) {
efc68158 13833 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
13834 return -EINVAL;
13835 }
22dc4a0f 13836 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 13837 if (!btf) {
efc68158 13838 bpf_log(log,
5b92a28a
AS
13839 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13840 return -EINVAL;
13841 }
13842 t = btf_type_by_id(btf, btf_id);
f1b9509c 13843 if (!t) {
efc68158 13844 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
13845 return -EINVAL;
13846 }
5b92a28a 13847 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 13848 if (!tname) {
efc68158 13849 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
13850 return -EINVAL;
13851 }
5b92a28a
AS
13852 if (tgt_prog) {
13853 struct bpf_prog_aux *aux = tgt_prog->aux;
13854
13855 for (i = 0; i < aux->func_info_cnt; i++)
13856 if (aux->func_info[i].type_id == btf_id) {
13857 subprog = i;
13858 break;
13859 }
13860 if (subprog == -1) {
efc68158 13861 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
13862 return -EINVAL;
13863 }
13864 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
13865 if (prog_extension) {
13866 if (conservative) {
efc68158 13867 bpf_log(log,
be8704ff
AS
13868 "Cannot replace static functions\n");
13869 return -EINVAL;
13870 }
13871 if (!prog->jit_requested) {
efc68158 13872 bpf_log(log,
be8704ff
AS
13873 "Extension programs should be JITed\n");
13874 return -EINVAL;
13875 }
be8704ff
AS
13876 }
13877 if (!tgt_prog->jited) {
efc68158 13878 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
13879 return -EINVAL;
13880 }
13881 if (tgt_prog->type == prog->type) {
13882 /* Cannot fentry/fexit another fentry/fexit program.
13883 * Cannot attach program extension to another extension.
13884 * It's ok to attach fentry/fexit to extension program.
13885 */
efc68158 13886 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
13887 return -EINVAL;
13888 }
13889 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13890 prog_extension &&
13891 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13892 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13893 /* Program extensions can extend all program types
13894 * except fentry/fexit. The reason is the following.
13895 * The fentry/fexit programs are used for performance
13896 * analysis, stats and can be attached to any program
13897 * type except themselves. When extension program is
13898 * replacing XDP function it is necessary to allow
13899 * performance analysis of all functions. Both original
13900 * XDP program and its program extension. Hence
13901 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13902 * allowed. If extending of fentry/fexit was allowed it
13903 * would be possible to create long call chain
13904 * fentry->extension->fentry->extension beyond
13905 * reasonable stack size. Hence extending fentry is not
13906 * allowed.
13907 */
efc68158 13908 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
13909 return -EINVAL;
13910 }
5b92a28a 13911 } else {
be8704ff 13912 if (prog_extension) {
efc68158 13913 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
13914 return -EINVAL;
13915 }
5b92a28a 13916 }
f1b9509c
AS
13917
13918 switch (prog->expected_attach_type) {
13919 case BPF_TRACE_RAW_TP:
5b92a28a 13920 if (tgt_prog) {
efc68158 13921 bpf_log(log,
5b92a28a
AS
13922 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13923 return -EINVAL;
13924 }
38207291 13925 if (!btf_type_is_typedef(t)) {
efc68158 13926 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
13927 btf_id);
13928 return -EINVAL;
13929 }
f1b9509c 13930 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 13931 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
13932 btf_id, tname);
13933 return -EINVAL;
13934 }
13935 tname += sizeof(prefix) - 1;
5b92a28a 13936 t = btf_type_by_id(btf, t->type);
38207291
MKL
13937 if (!btf_type_is_ptr(t))
13938 /* should never happen in valid vmlinux build */
13939 return -EINVAL;
5b92a28a 13940 t = btf_type_by_id(btf, t->type);
38207291
MKL
13941 if (!btf_type_is_func_proto(t))
13942 /* should never happen in valid vmlinux build */
13943 return -EINVAL;
13944
f7b12b6f 13945 break;
15d83c4d
YS
13946 case BPF_TRACE_ITER:
13947 if (!btf_type_is_func(t)) {
efc68158 13948 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13949 btf_id);
13950 return -EINVAL;
13951 }
13952 t = btf_type_by_id(btf, t->type);
13953 if (!btf_type_is_func_proto(t))
13954 return -EINVAL;
f7b12b6f
THJ
13955 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13956 if (ret)
13957 return ret;
13958 break;
be8704ff
AS
13959 default:
13960 if (!prog_extension)
13961 return -EINVAL;
df561f66 13962 fallthrough;
ae240823 13963 case BPF_MODIFY_RETURN:
9e4e01df 13964 case BPF_LSM_MAC:
fec56f58
AS
13965 case BPF_TRACE_FENTRY:
13966 case BPF_TRACE_FEXIT:
13967 if (!btf_type_is_func(t)) {
efc68158 13968 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13969 btf_id);
13970 return -EINVAL;
13971 }
be8704ff 13972 if (prog_extension &&
efc68158 13973 btf_check_type_match(log, prog, btf, t))
be8704ff 13974 return -EINVAL;
5b92a28a 13975 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13976 if (!btf_type_is_func_proto(t))
13977 return -EINVAL;
f7b12b6f 13978
4a1e7c0c
THJ
13979 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13980 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13981 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13982 return -EINVAL;
13983
f7b12b6f 13984 if (tgt_prog && conservative)
5b92a28a 13985 t = NULL;
f7b12b6f
THJ
13986
13987 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13988 if (ret < 0)
f7b12b6f
THJ
13989 return ret;
13990
5b92a28a 13991 if (tgt_prog) {
e9eeec58
YS
13992 if (subprog == 0)
13993 addr = (long) tgt_prog->bpf_func;
13994 else
13995 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13996 } else {
13997 addr = kallsyms_lookup_name(tname);
13998 if (!addr) {
efc68158 13999 bpf_log(log,
5b92a28a
AS
14000 "The address of function %s cannot be found\n",
14001 tname);
f7b12b6f 14002 return -ENOENT;
5b92a28a 14003 }
fec56f58 14004 }
18644cec 14005
1e6c62a8
AS
14006 if (prog->aux->sleepable) {
14007 ret = -EINVAL;
14008 switch (prog->type) {
14009 case BPF_PROG_TYPE_TRACING:
14010 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
14011 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14012 */
14013 if (!check_non_sleepable_error_inject(btf_id) &&
14014 within_error_injection_list(addr))
14015 ret = 0;
14016 break;
14017 case BPF_PROG_TYPE_LSM:
14018 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
14019 * Only some of them are sleepable.
14020 */
423f1610 14021 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
14022 ret = 0;
14023 break;
14024 default:
14025 break;
14026 }
f7b12b6f
THJ
14027 if (ret) {
14028 bpf_log(log, "%s is not sleepable\n", tname);
14029 return ret;
14030 }
1e6c62a8 14031 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 14032 if (tgt_prog) {
efc68158 14033 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
14034 return -EINVAL;
14035 }
14036 ret = check_attach_modify_return(addr, tname);
14037 if (ret) {
14038 bpf_log(log, "%s() is not modifiable\n", tname);
14039 return ret;
1af9270e 14040 }
18644cec 14041 }
f7b12b6f
THJ
14042
14043 break;
14044 }
14045 tgt_info->tgt_addr = addr;
14046 tgt_info->tgt_name = tname;
14047 tgt_info->tgt_type = t;
14048 return 0;
14049}
14050
35e3815f
JO
14051BTF_SET_START(btf_id_deny)
14052BTF_ID_UNUSED
14053#ifdef CONFIG_SMP
14054BTF_ID(func, migrate_disable)
14055BTF_ID(func, migrate_enable)
14056#endif
14057#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
14058BTF_ID(func, rcu_read_unlock_strict)
14059#endif
14060BTF_SET_END(btf_id_deny)
14061
f7b12b6f
THJ
14062static int check_attach_btf_id(struct bpf_verifier_env *env)
14063{
14064 struct bpf_prog *prog = env->prog;
3aac1ead 14065 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
14066 struct bpf_attach_target_info tgt_info = {};
14067 u32 btf_id = prog->aux->attach_btf_id;
14068 struct bpf_trampoline *tr;
14069 int ret;
14070 u64 key;
14071
79a7f8bd
AS
14072 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
14073 if (prog->aux->sleepable)
14074 /* attach_btf_id checked to be zero already */
14075 return 0;
14076 verbose(env, "Syscall programs can only be sleepable\n");
14077 return -EINVAL;
14078 }
14079
f7b12b6f
THJ
14080 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
14081 prog->type != BPF_PROG_TYPE_LSM) {
14082 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
14083 return -EINVAL;
14084 }
14085
14086 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
14087 return check_struct_ops_btf_id(env);
14088
14089 if (prog->type != BPF_PROG_TYPE_TRACING &&
14090 prog->type != BPF_PROG_TYPE_LSM &&
14091 prog->type != BPF_PROG_TYPE_EXT)
14092 return 0;
14093
14094 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
14095 if (ret)
fec56f58 14096 return ret;
f7b12b6f
THJ
14097
14098 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
14099 /* to make freplace equivalent to their targets, they need to
14100 * inherit env->ops and expected_attach_type for the rest of the
14101 * verification
14102 */
f7b12b6f
THJ
14103 env->ops = bpf_verifier_ops[tgt_prog->type];
14104 prog->expected_attach_type = tgt_prog->expected_attach_type;
14105 }
14106
14107 /* store info about the attachment target that will be used later */
14108 prog->aux->attach_func_proto = tgt_info.tgt_type;
14109 prog->aux->attach_func_name = tgt_info.tgt_name;
14110
4a1e7c0c
THJ
14111 if (tgt_prog) {
14112 prog->aux->saved_dst_prog_type = tgt_prog->type;
14113 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
14114 }
14115
f7b12b6f
THJ
14116 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
14117 prog->aux->attach_btf_trace = true;
14118 return 0;
14119 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
14120 if (!bpf_iter_prog_supported(prog))
14121 return -EINVAL;
14122 return 0;
14123 }
14124
14125 if (prog->type == BPF_PROG_TYPE_LSM) {
14126 ret = bpf_lsm_verify_prog(&env->log, prog);
14127 if (ret < 0)
14128 return ret;
35e3815f
JO
14129 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
14130 btf_id_set_contains(&btf_id_deny, btf_id)) {
14131 return -EINVAL;
38207291 14132 }
f7b12b6f 14133
22dc4a0f 14134 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
14135 tr = bpf_trampoline_get(key, &tgt_info);
14136 if (!tr)
14137 return -ENOMEM;
14138
3aac1ead 14139 prog->aux->dst_trampoline = tr;
f7b12b6f 14140 return 0;
38207291
MKL
14141}
14142
76654e67
AM
14143struct btf *bpf_get_btf_vmlinux(void)
14144{
14145 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
14146 mutex_lock(&bpf_verifier_lock);
14147 if (!btf_vmlinux)
14148 btf_vmlinux = btf_parse_vmlinux();
14149 mutex_unlock(&bpf_verifier_lock);
14150 }
14151 return btf_vmlinux;
14152}
14153
af2ac3e1 14154int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 14155{
06ee7115 14156 u64 start_time = ktime_get_ns();
58e2af8b 14157 struct bpf_verifier_env *env;
b9193c1b 14158 struct bpf_verifier_log *log;
9e4c24e7 14159 int i, len, ret = -EINVAL;
e2ae4ca2 14160 bool is_priv;
51580e79 14161
eba0c929
AB
14162 /* no program is valid */
14163 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
14164 return -EINVAL;
14165
58e2af8b 14166 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
14167 * allocate/free it every time bpf_check() is called
14168 */
58e2af8b 14169 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
14170 if (!env)
14171 return -ENOMEM;
61bd5218 14172 log = &env->log;
cbd35700 14173
9e4c24e7 14174 len = (*prog)->len;
fad953ce 14175 env->insn_aux_data =
9e4c24e7 14176 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
14177 ret = -ENOMEM;
14178 if (!env->insn_aux_data)
14179 goto err_free_env;
9e4c24e7
JK
14180 for (i = 0; i < len; i++)
14181 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 14182 env->prog = *prog;
00176a34 14183 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 14184 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 14185 is_priv = bpf_capable();
0246e64d 14186
76654e67 14187 bpf_get_btf_vmlinux();
8580ac94 14188
cbd35700 14189 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
14190 if (!is_priv)
14191 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
14192
14193 if (attr->log_level || attr->log_buf || attr->log_size) {
14194 /* user requested verbose verifier output
14195 * and supplied buffer to store the verification trace
14196 */
e7bf8249
JK
14197 log->level = attr->log_level;
14198 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
14199 log->len_total = attr->log_size;
cbd35700 14200
e7bf8249 14201 /* log attributes have to be sane */
866de407
HT
14202 if (!bpf_verifier_log_attr_valid(log)) {
14203 ret = -EINVAL;
3df126f3 14204 goto err_unlock;
866de407 14205 }
cbd35700 14206 }
1ad2f583 14207
0f55f9ed
CL
14208 mark_verifier_state_clean(env);
14209
8580ac94
AS
14210 if (IS_ERR(btf_vmlinux)) {
14211 /* Either gcc or pahole or kernel are broken. */
14212 verbose(env, "in-kernel BTF is malformed\n");
14213 ret = PTR_ERR(btf_vmlinux);
38207291 14214 goto skip_full_check;
8580ac94
AS
14215 }
14216
1ad2f583
DB
14217 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14218 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 14219 env->strict_alignment = true;
e9ee9efc
DM
14220 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14221 env->strict_alignment = false;
cbd35700 14222
2c78ee89 14223 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 14224 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 14225 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
14226 env->bypass_spec_v1 = bpf_bypass_spec_v1();
14227 env->bypass_spec_v4 = bpf_bypass_spec_v4();
14228 env->bpf_capable = bpf_capable();
e2ae4ca2 14229
10d274e8
AS
14230 if (is_priv)
14231 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14232
dc2a4ebc 14233 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 14234 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
14235 GFP_USER);
14236 ret = -ENOMEM;
14237 if (!env->explored_states)
14238 goto skip_full_check;
14239
e6ac2450
MKL
14240 ret = add_subprog_and_kfunc(env);
14241 if (ret < 0)
14242 goto skip_full_check;
14243
d9762e84 14244 ret = check_subprogs(env);
475fb78f
AS
14245 if (ret < 0)
14246 goto skip_full_check;
14247
c454a46b 14248 ret = check_btf_info(env, attr, uattr);
838e9690
YS
14249 if (ret < 0)
14250 goto skip_full_check;
14251
be8704ff
AS
14252 ret = check_attach_btf_id(env);
14253 if (ret)
14254 goto skip_full_check;
14255
4976b718
HL
14256 ret = resolve_pseudo_ldimm64(env);
14257 if (ret < 0)
14258 goto skip_full_check;
14259
ceb11679
YZ
14260 if (bpf_prog_is_dev_bound(env->prog->aux)) {
14261 ret = bpf_prog_offload_verifier_prep(env->prog);
14262 if (ret)
14263 goto skip_full_check;
14264 }
14265
d9762e84
MKL
14266 ret = check_cfg(env);
14267 if (ret < 0)
14268 goto skip_full_check;
14269
51c39bb1
AS
14270 ret = do_check_subprogs(env);
14271 ret = ret ?: do_check_main(env);
cbd35700 14272
c941ce9c
QM
14273 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14274 ret = bpf_prog_offload_finalize(env);
14275
0246e64d 14276skip_full_check:
51c39bb1 14277 kvfree(env->explored_states);
0246e64d 14278
c131187d 14279 if (ret == 0)
9b38c405 14280 ret = check_max_stack_depth(env);
c131187d 14281
9b38c405 14282 /* instruction rewrites happen after this point */
e2ae4ca2
JK
14283 if (is_priv) {
14284 if (ret == 0)
14285 opt_hard_wire_dead_code_branches(env);
52875a04
JK
14286 if (ret == 0)
14287 ret = opt_remove_dead_code(env);
a1b14abc
JK
14288 if (ret == 0)
14289 ret = opt_remove_nops(env);
52875a04
JK
14290 } else {
14291 if (ret == 0)
14292 sanitize_dead_code(env);
e2ae4ca2
JK
14293 }
14294
9bac3d6d
AS
14295 if (ret == 0)
14296 /* program is valid, convert *(u32*)(ctx + off) accesses */
14297 ret = convert_ctx_accesses(env);
14298
e245c5c6 14299 if (ret == 0)
e6ac5933 14300 ret = do_misc_fixups(env);
e245c5c6 14301
a4b1d3c1
JW
14302 /* do 32-bit optimization after insn patching has done so those patched
14303 * insns could be handled correctly.
14304 */
d6c2308c
JW
14305 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14306 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14307 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14308 : false;
a4b1d3c1
JW
14309 }
14310
1ea47e01
AS
14311 if (ret == 0)
14312 ret = fixup_call_args(env);
14313
06ee7115
AS
14314 env->verification_time = ktime_get_ns() - start_time;
14315 print_verification_stats(env);
aba64c7d 14316 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 14317
a2a7d570 14318 if (log->level && bpf_verifier_log_full(log))
cbd35700 14319 ret = -ENOSPC;
a2a7d570 14320 if (log->level && !log->ubuf) {
cbd35700 14321 ret = -EFAULT;
a2a7d570 14322 goto err_release_maps;
cbd35700
AS
14323 }
14324
541c3bad
AN
14325 if (ret)
14326 goto err_release_maps;
14327
14328 if (env->used_map_cnt) {
0246e64d 14329 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
14330 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14331 sizeof(env->used_maps[0]),
14332 GFP_KERNEL);
0246e64d 14333
9bac3d6d 14334 if (!env->prog->aux->used_maps) {
0246e64d 14335 ret = -ENOMEM;
a2a7d570 14336 goto err_release_maps;
0246e64d
AS
14337 }
14338
9bac3d6d 14339 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 14340 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 14341 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
14342 }
14343 if (env->used_btf_cnt) {
14344 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14345 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14346 sizeof(env->used_btfs[0]),
14347 GFP_KERNEL);
14348 if (!env->prog->aux->used_btfs) {
14349 ret = -ENOMEM;
14350 goto err_release_maps;
14351 }
0246e64d 14352
541c3bad
AN
14353 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14354 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14355 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14356 }
14357 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
14358 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14359 * bpf_ld_imm64 instructions
14360 */
14361 convert_pseudo_ld_imm64(env);
14362 }
cbd35700 14363
541c3bad 14364 adjust_btf_func(env);
ba64e7d8 14365
a2a7d570 14366err_release_maps:
9bac3d6d 14367 if (!env->prog->aux->used_maps)
0246e64d 14368 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 14369 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
14370 */
14371 release_maps(env);
541c3bad
AN
14372 if (!env->prog->aux->used_btfs)
14373 release_btfs(env);
03f87c0b
THJ
14374
14375 /* extension progs temporarily inherit the attach_type of their targets
14376 for verification purposes, so set it back to zero before returning
14377 */
14378 if (env->prog->type == BPF_PROG_TYPE_EXT)
14379 env->prog->expected_attach_type = 0;
14380
9bac3d6d 14381 *prog = env->prog;
3df126f3 14382err_unlock:
45a73c17
AS
14383 if (!is_priv)
14384 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
14385 vfree(env->insn_aux_data);
14386err_free_env:
14387 kfree(env);
51580e79
AS
14388 return ret;
14389}